
Contents

1 Features 14

1.1 4GL . 14

1.2 Aubit 4GL . 14

1.3 Aubit4GL Benefits . 14

1.3.1 GNU, GPL, OpenSource . 14

1.3.2 Commercially Supported . 14

1.3.3 Productive . 15

1.3.4 Fast . 15

1.3.5 Compatible . 15

1.3.6 Engine Independent . 15

1.4 Aubit4GL Extensions . 15

2 Installation - Quick Start 16

2.1 A Quick Start ? . 16

2.1.1 Downloading and installing . 16

2.1.2 Installing Source/CVS . 16

2.1.3 Binary . 16

2.2 Next steps . 17

2.2.1 Module types . 18

2.2.1.1 A4GL . 18

2.2.1.2 DATA . 18

2.2.1.3 ESQL . 18

2.2.1.4 EXDTYPE . 18

2.2.1.5 EXREPORT . 18

2.2.1.6 FORM . 18

2.2.1.7 HELP . 19

2.2.1.8 LEX . 19

2.2.1.9 LOGREP . 19

1

CONTENTS CONTENTS

2.2.1.10 MENU . 19

2.2.1.11 MSG . 19

2.2.1.12 PACKER . 19

2.2.1.13 RPC . 19

2.2.1.14 SQL . 20

2.2.1.14.1 EC generation . 20

2.2.1.14.1.1 COMPILE TIME 20

2.2.1.14.1.2 RUN TIME . 20

2.2.1.14.2 For C generation . 20

2.2.1.14.2.1 COMPILE TIME 20

2.2.1.14.2.2 RUN TIME . 20

2.2.1.14.2.3 ODBC . 20

2.2.1.15 UI . 20

2.2.1.16 XDRPACKER . 21

2.2.2 Standard settings . 21

2.2.2.1 Finally... 21

2.3 Troubleshooting . 21

2.3.1 For Informix . 21

2.3.1.0.1 Get the client SDK . 21

2.3.1.0.2 Check the SDK . 21

2.3.1.0.3 Set Up Aubit . 22

2.3.1.0.4 Try to compile a simple 4gl 22

2.3.1.0.5 Try to run it . 22

2.3.2 For PostgreSQL . 22

2.3.2.0.6 Install postgreSQL . 22

2.3.2.0.7 Configure postgreSQL and create database if required . 22

2.3.2.0.8 Check you’re ecpg setup 22

2.3.2.0.9 Set Up Aubit . 23

2.3.2.0.10 Try a 4gl program . 23

3 Installation - Full 24

3.1 Platforms . 24

3.1.1 Source or Binary . 24

3.2 Get Source . 24

3.2.1 Tarball . 24

3.2.2 SRPM . 25

3.2.3 CVS . 25

2

CONTENTS CONTENTS

3.3 Prerequisites . 26

3.3.1 C Compiler . 26

3.3.2 Options . 26

3.3.3 Architecture . 26

3.3.4 Database . 27

3.3.4.1 Engines . 27

3.3.4.2 No SQL . 29

3.3.4.3 ODBC . 29

3.3.4.4 ODBC config files . 30

3.3.4.4.1 Sample odbcinst.ini . 30

3.3.4.5 ODBC Datasources . 30

3.3.4.6 Informix ODBC Drivers . 31

3.3.4.6.1 Informix Driver Manager 31

3.3.4.7 PostgreSQL Drivers . 32

3.3.4.8 SAPDB Drivers . 32

3.3.4.9 ODBC Warning . 32

3.3.4.10 Native . 32

3.3.5 Curses . 33

3.3.6 PDFLib . 33

3.3.7 GTK . 33

3.3.8 Install Source . 33

3.3.9 /usr/local/bin/aubit . 34

3.3.10 /usr/local/bin/aubit-config . 34

3.4 Install Binaries . 35

3.4.1 Testing the compiler . 35

4 Compiling 4GL programs & Forms 37

4.1 A4GL compilers . 37

4.2 4glpc . 37

4.2.1 Usage . 38

4.3 4glc . 40

4.4 Compiling forms . 40

4.5 Compiling help files . 40

4.6 Compiling menu files . 41

3

CONTENTS CONTENTS

5 Configuration 42

5.1 Introduction to configuration . 42

5.1.1 configurator . 43

5.1.2 Essential Configuration flags . 43

5.1.2.1 A4GL_SQLTYPE . 43

5.1.2.2 A4GL_UI . 43

5.2 aubitrc files . 43

6 4GL Language 45

6.1 Introduction . 45

6.2 Summary: . 46

6.3 Short Intro to x4GL . 46

6.3.1 4GL Programs . 46

6.3.1.1 Structure of a program . 46

6.3.1.2 DATABASE section . 47

6.3.1.3 GLOBALS section . 47

6.3.1.4 Functions . 47

6.3.1.5 MAIN block . 47

6.3.1.6 DEFINE section . 47

6.3.1.7 Array Syntax: . 48

6.3.1.8 Records . 48

6.3.1.8.1 Syntax . 49

6.3.2 Associative Arrays . 49

6.3.2.0.2 Performance Note . 50

6.3.3 Constants . 50

6.3.4 Packages . 50

6.4 4GL Quick Reference . 51

6.5 Aubit4GL Quick Reference . 51

6.5.1 Data Types . 52

6.5.2 Constants . 52

6.5.3 Global Variables . 52

6.5.4 Syntax Conventions . 52

6.5.5 Operators . 52

6.5.6 Aubit 4GL Expressions . 52

6.5.7 Attribute Constants . 53

6.5.8 Key Constants . 53

6.5.9 Table Privileges . 53

4

CONTENTS CONTENTS

6.5.10 Comments . 53

6.5.11 4GL Statement Syntax . 53

6.5.12 Report Syntax . 56

6.5.13 Report Statement Syntax . 56

6.5.14 Report Expressions . 56

6.5.15 PDF Report Syntax . 56

6.5.16 PDF Report Expressions . 56

6.5.17 PDF Statements . 56

6.5.18 PDF_FUNCTION arglists . 56

6.6 Builtin Functions . 57

6.6.1 Standard 4GL Builtin Functions . 57

6.6.2 Standard 4GL Operators . 57

6.6.3 D4GL Builtin Functions . 57

6.6.4 Aubit Builtin Functions . 58

6.6.5 a4gl_get_info() . 58

6.6.5.1 Connection . 58

6.6.5.2 Form . 58

6.6.5.3 Statement . 58

6.6.5.4 Window . 58

6.7 Form Syntax . 58

6.7.1 Tag Description . 58

6.7.2 Aubit 4GL GUI Attributes . 58

6.8 Aubit4GL Builtins . 59

6.8.1 a4gl_get_info() . 59

6.8.1.1 Synopsis . 59

6.8.1.2 Input Parameters . 59

6.8.1.3 Return value(s) . 60

6.8.1.4 Properties . 60

6.8.1.5 Form Properties . 60

6.8.1.6 Statement Properties . 60

6.8.1.7 Window Properties . 61

6.8.1.8 Connection Properties . 61

6.8.1.9 Cursor Properties . 61

6.8.2 Comments . 61

6.8.3 Example . 61

5

CONTENTS CONTENTS

7 Help system 63

7.1 Help message source file . 63

7.2 Compiling help files . 63

7.3 help in programs . 63

7.3.1 Within 4GL . 63

7.3.2 At runtime . 63

7.4 Decompiling . 63

7.5 Compatibility . 64

7.6 mkmess . 64

8 SQL Conversion 65

8.1 Source SQL dialect . 65

8.2 Target SQL dialect . 65

8.3 Configuration files . 65

8.4 Converting SQL scripts . 66

8.5 Conversion file syntax . 66

8.5.1 Simple directives . 66

8.5.2 Complex Directives . 67

8.5.3 REPLACE directives . 67

9 Make 69

9.0.4 GNU make . 69

9.1 Makefiles . 69

9.1.0.1 Include File . 69

9.1.0.2 Make glossary: . 70

9.1.0.3 Makefile Example . 70

9.1.1 Pattern Rules . 70

9.1.2 Make variables . 71

9.1.3 GPATH and VPATH . 71

9.1.4 .PHONY . 71

9.1.5 Implicit rules . 71

9.1.6 Syntax . 71

9.1.7 Debugging make . 71

6

CONTENTS CONTENTS

10 amake 72

10.0.8 Introduction . 72

10.0.9 Summary . 72

10.0.10 Converting old makefiles . 72

10.0.10.1 prepmake . 72

10.0.10.2 example . 73

10.0.10.3 amakeallo . 73

10.0.10.4 amakeallf . 73

10.0.11 2. amake . 73

10.0.12 Requests . 73

10.0.13 Notes . 73

10.0.14 Installation . 74

10.0.15 Credits: . 74

10.0.16 #DEFINE . 74

10.0.17 4GL Makefiles . 75

10.0.17.1 Makefiles for Classic 4GL on Unix 75

10.0.18 D4GL Makefiles on Unix . 75

10.0.18.1 I4GL Makefiles on Unix . 76

10.0.18.2 NMAKE . 76

10.0.19 Bug in ESQL/C rules: . 76

11 A4GL Utilities 77

11.1 adbschema . 77

11.2 afinderr . 77

11.3 asql . 78

11.3.1 runforms . 79

11.4 aupscol . 79

11.5 P-Code . 80

11.6 configurator . 80

11.7 convertsql . 80

11.8 default_frm . 80

11.9 fshow . 81

11.10loadmap . 82

11.11mcompile . 82

11.12mkpackage . 82

11.13prepmake . 82

11.14decompilers . 82

11.15Internally used applications . 82

11.15.1 xgen . 82

7

CONTENTS CONTENTS

12 Aubit4GL Extension libraries 83

12.1 channel . 83

12.1.1 Dependencies . 83

12.1.2 Function list . 83

12.1.2.1 open_file . 83

12.1.2.2 open_pipe . 83

12.1.2.3 set_delimiter . 83

12.1.2.4 close . 83

12.1.2.5 fgl_read* . 84

12.1.2.6 read . 84

12.1.2.7 write . 84

12.2 file . 84

12.2.1 Dependencies . 84

12.2.2 Function list . 84

12.2.2.1 popen . 84

12.2.2.2 fopen . 84

12.2.2.3 ftell . 84

12.2.2.4 ferror . 85

12.2.2.5 fseek . 85

12.2.2.6 fseek_from_end . 85

12.2.2.7 fsize . 85

12.2.2.8 fgets . 85

12.2.2.9 feof . 85

12.2.2.10 fclose . 85

12.2.2.11 rewind . 85

12.3 memcached . 85

12.3.1 Dependencies . 85

12.3.2 Function list . 86

12.3.2.1 mc_new . 86

12.3.2.2 mc_server_add . 86

12.3.2.3 mc_add . 86

12.3.2.4 mc_replace . 86

12.3.2.5 mv_req_new . 86

12.3.2.6 mv_req_add . 86

12.3.2.7 mv_get . 86

12.3.2.8 mc_aget . 86

12.3.2.9 mv_set . 86

8

CONTENTS CONTENTS

12.3.2.10 mv_res_free . 86

12.3.2.11 mv_stats . 86

12.3.2.12 mv_delete . 86

12.3.2.13 mc_incr . 86

12.3.2.14 mc_decr . 86

12.4 pcre . 87

12.4.1 Dependencies . 87

12.4.2 Function list . 87

12.4.2.1 pcre_text . 87

12.4.2.2 pcre_match . 87

12.5 pop . 87

12.5.1 Dependencies . 87

12.5.2 Function list . 87

12.5.2.1 popget . 87

12.5.2.2 poperr . 87

12.5.2.3 popbegin . 87

12.5.2.4 popnum . 88

12.5.2.5 popbytes . 88

12.5.2.6 popmsgsize . 88

12.5.2.7 popmsguid . 88

12.5.2.8 popgetmsg . 88

12.5.2.9 popgethead . 88

12.5.2.10 popcancel . 88

12.5.2.11 popend . 88

12.5.2.12 popdelmsg . 88

12.6 smtp . 88

12.6.1 Dependencies . 88

12.6.2 Function list . 88

12.6.2.1 set_errmsg . 88

12.6.2.2 clear_err . 88

12.6.2.3 set_server . 89

12.6.2.4 get_server . 89

12.6.2.5 get_errmsg . 89

12.6.2.6 start_message . 89

12.6.2.7 add_recipient . 89

12.6.2.8 mime_type_new . 89

12.6.2.9 connect . 89

9

CONTENTS CONTENTS

12.6.2.10 disconnet . 89

12.6.2.11 send_to . 90

12.6.2.12 part_send_file . 90

12.6.2.13 send_report . 90

12.7 string . 90

12.7.1 Dependencies . 90

12.7.2 Function list . 90

12.7.2.1 split . 90

12.7.2.2 strstr . 90

12.7.2.3 strchr . 90

12.8 sxml . 90

12.8.1 Dependencies . 90

12.8.2 Function list . 91

12.9 dynamic . 91

12.9.1 Dependencies . 91

12.9.2 Function list . 91

13 Aubit4GL Extensions 92

13.1 Fake Comments {! ... !} . 92

13.2 Associative Arrays . 92

13.3 Paused Screen Handling . 92

13.4 ODBC Data access . 92

13.5 Multiple Concurrent Connections . 92

13.6 Application Constants . 93

13.7 Map Files . 93

13.8 Variable IDs . 93

13.9 Passing IDs . 93

13.10Embedded C code. 93

13.11MOVE/SHOW/HIDE WINDOW . 93

13.12WHENEVER SUCCESS/SQLSUCCESS . 93

13.13Multilevel Menus . 93

13.14Extended DISPLAY ARRAY . 93

13.15Extended USING . 93

13.16Local functions . 93

13.17get_info function . 94

13.18Dynamic Screen Fields . 94

13.19Remote Function Calls . 94

10

CONTENTS CONTENTS

13.20SELECT/DELETE/UPDATE USING . 94

13.21ON ANY KEY . 94

13.22Compile Time Environment . 94

13.23SET SESSION Option/SET CURSOR option . 94

13.24Application Partitioning . 94

13.25Y2K Runtime Translation . 94

13.26Globbing . 94

13.27A4GL Wizard . 95

13.27.1 Program Templates . 95

13.28PDF Reports . 95

13.29GUI . 95

13.30Packages . 95

13.31IDE . 95

13.31.1 Independent Development Environment . 95

13.32Logical Reports . 95

14 Tricks, tips etc. 96

15 Internationalisation 97

15.1 Auto-translation . 97

16 ACE reports 98

17 Aubit 4GL GUI 99

17.1 Plexus AD32 mode . 99

17.2 Aubit 4GL GUI mode . 99

17.2.1 Longer term . 99

17.3 GUI Menus . 100

17.3.1 Menu File Format . 100

17.4 Simple GUI menu . 101

17.4.1 Handling_menu_options . 103

17.5 GUI form files . 103

17.5.0.1 Extensions . 103

17.5.1 WIDGET . 103

17.5.2 CONFIG . 103

17.6 gtk_form . 104

17.6.0.1 Examples_(in_test/gui/) . 104

17.7 GUI issues . 104

17.7.1 Colours in GUI . 105

17.7.2 Threads . 105

17.7.3 Progress . 105

11

CONTENTS CONTENTS

18 Extended Reports 106

18.1 PDF reports . 106

18.1.1 Before you start . 106

18.2 Introduction . 106

18.3 Output Section . 106

18.3.1 Fonts . 107

18.3.2 Report Structure . 107

18.3.3 Extras . 107

18.3.3.1 Positioning . 107

18.3.3.2 Using pdf_function() . 108

18.3.3.3 Images . 108

18.3.4 Example program . 108

18.4 Printing generated reports . 108

19 Logical Reports 109

19.1 Invoking a logical report . 109

19.1.1 ’Finishing’ the report . 109

19.1.2 Converting to "filename" . 109

19.1.3 Default layouts . 109

19.1.4 Converting to many . 110

19.2 Saved Meta Data . 110

19.2.1 The Report Viewer . 111

19.2.2 The layout editor . 111

19.2.3 The report processor . 111

19.2.4 Tips for CSV layouts . 112

19.3 Helper programs . 112

20 Debugging 113

20.1 Coredumps . 113

20.2 Unexpected behaviour . 113

20.3 All other errors . 113

20.4 compiler errors . 113

20.5 Reporting bugs . 113

12

CONTENTS CONTENTS

21 Revisions 114

21.1 2006-8-15 . 114

21.2 2006-8-1 . 114

21.3 2005-9-9 . 114

21.4 2005-3-12 . 114

21.5 2004-4-27 . 115

21.6 2004-2-22 . 115

21.7 Problems . 115

A UNIX environment variables 116

13

Chapter 1

Features

1.1 4GL

Informix 4GL was co-designed by Roger Sippl (founder of Informix) and Chris Maloney. They
combined the elements of Perform (the screen package designed by Betty Chang), Ace (the report
writer written by Bill Hedge), and the SQL engine written by Roy Harrington into a Pascal-like
language which Informix released in 1986 - the same year that the first ANSI standard for SQL
was promulgated.

Informix 4GL complied with the SQL86 standard. I4GL was phenominally successful in the
marketplace. More applications were written in I4GL in the 1990s than in any other language.

1.2 Aubit 4GL

Aubit 4GL is a free opensource work-alike for Informix 4GL. The project was started by Mike
Aubury of Aubit Computing Ltd, who continues to contribute to it. A number of other notable
contributors include Andrej Falout, John O’Gorman, Sergio Ferreira, Walter Haslbeck.

Where Informix 4GL was locked into working only with Informix’s own database engines: SE
and IDS, Aubit 4GL can work with any SQL compliant engine. Currently supported engines are
Informix SE and IDS, PostgreSQL, SAPDB, SQLite and using ODBC (unixODBC or iODBC on
Linux/Unix) any other engine for which ODBC interfaces exist.

1.3 Aubit4GL Benefits

1.3.1 GNU, GPL, OpenSource

Aubit4GL is free and opensource. It will cost you nothing, but there are much more important
implications that this, in our view. Its future does not depend on anyone but you. To find
out more about implications of this feature, please see http://www.opensource.org and http:
//www.gnu.org.

1.3.2 Commercially Supported

Commercial support is available from Aubit Computing Ltd if you want it. Aubit Computing Ltd
is Mike Aubury’s company.

14

http://www.opensource.org
http://www.gnu.org
http://www.gnu.org

1.4. AUBIT4GL EXTENSIONS CHAPTER 1. FEATURES

This will guarantee you can use Aubit4GL in business-critical situations with confidence, and
bring together the best of both worlds. To learn more, visit http://www.aubit.com.

1.3.3 Productive

Based on a robust, mature, stable, efficient, and productive language, x4GL is dedicated to writing
business-related, database oriented applications, and this is what it does, in our opinion, best in
the world.

It is easy to learn, implement, and maintain. And most of all, it is at least 3 times more productive
in all aspect of the software lifecycle than third generation languages like C, and at least twice as
productive as the best component development environments.

1.3.4 Fast

It’s FAST! Full n tier deployment, native C code generation compiled by optimized C compilers
bring together the advantages of a high-level, human-like development language, and low-level
machine-code runtime execution performance. Not to mention that you can interpolate C code
directly into 4GL code!

1.3.5 Compatible

Aubit4GL is compatible with a number of commercial products giving you the freedom to mix and
match features and environments based on any particular situation. You will never again be locked
into one compiler, one company, or one database. You can develop with commercial products,
deploy with Aubit 4GL, and save on runtime licensing, at the same time gaining the speed of a C
compiled runtime. Or you can use 4GL Wizard functionality and templates in development, and
deploy using a commercial runtime that supports client side functionality that is not present in
Aubit 4GL at the moment.

1.3.6 Engine Independent

Database, OS, platform, and user interface independent ODBC means that choosing a database
engine is no longer an issue.

You can develop and deploy wherever a GCC compiler is available with a single recompile. And
because of full n-tier support, you can use CUI, GUI and Web interfaces from the same code, and
the same compiler program, at the same time, just by setting environment variables. Informix
4GL already has a big developer base, and a large existing applications base.

This is not a new language, just a new implementation of a mature and successful language. So
you will not need to look hard to find developers for your projects. And since 4GL is English-like
in syntax, programmers with experience in any language will be productive in just a few days. On
top of that, you will not need to look far to find commercial, tried and tested applications in any
field of business oriented database applications.

1.4 Aubit4GL Extensions

A4GL fully supports the features and syntax of Informix 4GL, but we have extended the language
with many enhancements to increase the productivity of the 4GL developer. These enhancements
are fully described in the Aubit4GL Extensions chapter of this manual.

15

http://www.aubit.com

Chapter 2

Installation - Quick Start

2.1 A Quick Start ?

If you are ready to just jump right in, the following sections highlight the most common configu-
rations.

2.1.1 Downloading and installing

Installation should be possible on most Linux distributions, and with some tweaking on most Unix
and Windows machines too.

There are several possible sources for download

• MARS Binary releases (http://www.aubit.com/aubit4gl/)

• MARS Source releases (http://www.aubit.com/aubit4gl/src)

• Nightly builds (http://aubit4gl.sourceforge.net/files/aubitdownload.htm)

• CVS (see http://sourceforge.net/cvs/?group_id=32409)

2.1.2 Installing Source/CVS

Basically - Follow the normal

./configure && make && make install

routine..

You may need to specify --prefix=/home/aubit4gl or something similar..

2.1.3 Binary

Just tar xvzf the tarball (you can optionally make install)

16

2.2. NEXT STEPS CHAPTER 2. INSTALLATION - QUICK START

2.2 Next steps

You can skip this if you read the rest of this document - otherwise please read on - it will save a
lot of confusion later!

Take a moment to note the libraries created in the lib directory.

E.g. (This is my list - yours will be different!) :

• libaubit4gl.so

• libA4GL_file.so libA4GL_HTML.so libA4GL_string.so

• libDATA_menu_list.so libDATA_module.so libDATA_report.so libDATA_struct_form.so

• libESQL_INFORMIX.so libESQL_POSTGRES.so

• libEXDTYPE_mpz.so

• libEXREPORT_NOPDF.so libEXREPORT_PDF.so

• libFORM_GENERIC.so libFORM_NOFORM.so libFORM_XDR.so

• libHELP_std.so

• libLEX_C.so libLEX_CS.so libLEX_EC.so libLEX_PERL.so

• libLOGREP_CSV.so

• libLOGREP_TXT.so

• libLOGREP_PROC_CSV.so libLOGREP_PROC_TXT.so

• libMENU_NOMENU.so

• libMSG_NATIVE.so

• libPACKER_MEMPACKED.so libPACKER_PACKED.so libPACKER_PERL.so libPACKER_XDR.so
libPACKER_XML.so

• libRPC_NORPC.so libRPC_XDR.so

• libSQL_esql.so libSQL_esql_s.so libSQL_FILESCHEMA.so libSQL_ifxodbc.so libSQL_nosql.so
libSQL_sqlite.so libSQL_sqliteS.so libSQL_unixodbc.so

• libUI_CONSOLE.so libUI_HL_TUIN.so libUI_HL_TUI.so libUI_TUI.so libUI_TUI_s.so

• libXDRPACKER_menu_list.so libXDRPACKER_module.so libXDRPACKER_report.so libXDRPACKER_struct_form.so

The correct selection of these libraries is pretty critical to the operation of Aubit4GL, because
everything is so highly configurable.

You’ll notice that most of them have a libXXX_YYY.so format (except libaubit4gl.so) so for ex-
ample :

libSQL_esql.so XXX=SQL YYY=esql

libUI_HL_TUI.so XXX=UI YYY=HL_TUI

The XXX represents the module type, the YYY the module name. Although Aubit4GL is dis-
tributed in a form which will be mostly Informix4GL compatible - you will almost certainly need
to adjust some of these settings.

17

2.2. NEXT STEPS CHAPTER 2. INSTALLATION - QUICK START

2.2.1 Module types

2.2.1.1 A4GL

eg : libA4GL_file.so libA4GL_HTML.so libA4GL_string.so

These are miscellaneous extra libraries.

2.2.1.2 DATA

eg : libDATA_menu_list.so libDATA_module.so libDATA_report.so libDATA_struct_form.so

These are internal libraries for reading data files.

2.2.1.3 ESQL

eg : libESQL_INFORMIX.so libESQL_POSTGRES.so

These are helper libraries used when A4GL_LEXTYPE=EC. The library used is taken from the
A4GL_LEXDIALECT variable. This library is used to copy between native types and aubit types
(eg for decimals, dates etc)

Not used when A4GL_LEXTYPE=C

2.2.1.4 EXDTYPE

eg : libEXDTYPE_mpz.so

Example extended datatype library (implements the GNU mpz datatype).

2.2.1.5 EXREPORT

eg : libEXREPORT_NOPDF.so libEXREPORT_PDF.so

Extended report handling. libEXREPORT_PDF.so relies on having pdflib installed. It will not be
generated otherwise... PDF reports are experimental.

2.2.1.6 FORM

eg : libFORM_GENERIC.so libFORM_NOFORM.so libFORM_XDR.so

This is used to read, write, and process a form file. The library is specified by the A4GL_FORMTYPE
variable. e.g.: A4GL_FORMTYPE=GENERIC

If you have libFORM_XDR.so - that is probably the best one to use, so

$ export A4GL_FORMTYPE=XDR

If you don’t have libFORM_XDR.so, you’ll need to use the GENERIC packers

$ export A4GL_FORMTYPE=GENERIC

You will then also need to specify the GENERIC packer by setting A4GL_PACKER (see PACKER)...

18

2.2. NEXT STEPS CHAPTER 2. INSTALLATION - QUICK START

2.2.1.7 HELP

eg : libHELP_std.so

Always set to std - can be ignored

2.2.1.8 LEX

eg : libLEX_C.so libLEX_CS.so libLEX_EC.so libLEX_PERL.so

Specifies the output format - currently only C and EC are supported.

For C generation, calls are made to internal SQL functions within the library specified by A4GL_SQLTYPE
(see SQL)

For EC generation, a .ec file is generated which should be compiled used native database tools
(like esql for informix and ecpg for postgres). If you can use EC generation - use it, performance
will be better...

2.2.1.9 LOGREP

eg : libLOGREP_CSV.so libLOGREP_PROC_CSV.so libLOGREPPROC_TXT.so libLOGREP_TXT.so

Logical report handling - ignore for now.

2.2.1.10 MENU

eg : libMENU_NOMENU.so

GUI Menu handling - obsoleted (probably).

2.2.1.11 MSG

eg : libMSG_NATIVE.so

Ignore..

2.2.1.12 PACKER

eg : libPACKER_MEMPACKED.so libPACKER_PACKED.so libPACKER_PERL.so libPACKER_XDR.so
libPACKER_XML.so

This specifies the packer to use for reading and writing data files. The library is specified via
the A4GL_PACKER variable. Do not use MEMPACKER and PERL unless you know what you are
doing.. PACKED, XML and XDR are all reasonable packers. The packer library is only used
when FORMTYPE etc is set to GENERIC.

2.2.1.13 RPC

eg : libRPC_NORPC.so libRPC_XDR.so

Specifies which RPC protocol to use - advanced stuff - still experimental.

19

2.2. NEXT STEPS CHAPTER 2. INSTALLATION - QUICK START

2.2.1.14 SQL

eg : libSQL_esql.so libSQL_esql_s.so libSQL_FILESCHEMA.so libSQL_ifxodbc.so libSQL_nosql.so
libSQL_sqlite.so libSQL_sqliteS.so libSQL_unixodbc.so

This is probably the most important setting, specified through SQLTYPE - this determines how
Aubit is going to talk to the database. There are two distinct times that this is done:

• At compile time

• At runtime

2.2.1.14.1 EC generation

2.2.1.14.1.1 COMPILE TIME the library controls detecting datatypes for LIKE and
RECORD LIKE etc.

2.2.1.14.1.2 RUN TIME The runtime usage is limited to handling LOAD and UNLOAD
statements. For postgreSQL, setting A4GL_ESQL_UNLOAD=Y will call the ecpg builtin load and
unload statements so this library doesn’t need to be used at all...

Special notes : A4GL_SQLTYPE=esql The Informix ESQL/C ’connector’, both runtime and compile
time. This requires Informix ESQL/C to be installed & configured.

2.2.1.14.2 For C generation

2.2.1.14.2.1 COMPILE TIME the library controls detecting datatypes for LIKE and
RECORD LIKE etc,

2.2.1.14.2.2 RUN TIME This handles all I/O with the database.

2.2.1.14.2.3 ODBC unixodbc/ifxodbc - These require that ODBC has been correctly in-
stalled and configured. You must specify a username and password to connect to most databases
this is done using SQLPWD and SQLUID:

$ export SQLUID=maubu

$ export SQLPWD=mypasswd

2.2.1.15 UI

libUI_CONSOLE.so libUI_HL_TUIN.so libUI_HL_TUI.so libUI_TUI.so libUI_TUI_s.so

This specifies how data will be displayed to the user. This handles all the UI controls (prompt,display,
input etc)

CONSOLE - is a simple I/O module which does not use any control codes. Just printfs and fgets
etc..

TUI - THIS IS THE ONE YOU SHOULD BE USING

HL_TUI - The next version of TUI, abstracted to help make other HL_.. modules

HL_TUIN - Ignore

HL_GTK - VERY experimental GTK version - don’t expect this to work...

20

2.3. TROUBLESHOOTING CHAPTER 2. INSTALLATION - QUICK START

2.2.1.16 XDRPACKER

eg : libXDRPACKER_menu_list.so libXDRPACKER_module.so libXDRPACKER_report.so libXDRPACKER_struct_form.so

This is a helper module when FORMTYPE etc are set to XDR. These contain the actual XDR
routines.

2.2.2 Standard settings

If you’ve got to here - check that you have set :

A4GL_UI=TUI

A4GL_SQLTYPE=esql (and you have libSQL_esql.so) if you want to connect to an Informix database
or

A4GL_SQLTYPE=unixodbc - ensure that you have SQLUID and SQLPWD set... or

A4GL_SQLTYPE=ifxodbc - ensure that you have SQLUID and SQLPWD set... or

A4GL_SQLTYPE=pg (if you have libSQL_pg.so) if you want to connect to a postgres Database

A4GL_LEXTYPE=EC for Esql/c generation (you must have Informix esql or Postgres ecpg installed)

A4GL_LEXDIALECT=INFORMIX or

A4GL_LEXDIALECT=POSTGRES

A4GL_FORMTYPE=XDR (if you have it) or

A4GL_FORMTYPE=GENERIC if you dont and also set A4GL_PACKER=PACKED

2.2.2.1 Finally...

Set up the the Unix environment so the whole thing will actually run!

export AUBITDIR=/directory/where/this/all/is

export PATH=$PATH:$AUBITDIR/bin

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$AUBITDIR/lib

2.3 Troubleshooting

2.3.1 For Informix

2.3.1.0.1 Get the client SDK Configure the SDK (normally the $INFORMIX/etc/sqlhosts
etc)

2.3.1.0.2 Check the SDK Try a simple esql/c program like :

main() {
$whenever error stop;
$database somedb;

}

21

2.3. TROUBLESHOOTING CHAPTER 2. INSTALLATION - QUICK START

$ esql somefile.ec -o somefile $./somefile

Compile and run - it if doesn’t this is an Informix setup problem - check out why...

Most likely : .rhosts/hosts.equiv is not set up properly, user doesn’t exist on the remote
machine, /etc/services isn’t set up, /etc/hosts isn’t set up, or a remote server isn’t allowing
tcp connections only shared memory ones.

2.3.1.0.3 Set Up Aubit export AUBITDIR=/aubits/path

export A4GL_SQLTYPE=esql ** check that you have a $AUBITDIR/lib/libSQL_esql.so **

export A4GL_LEXTYPE=EC

2.3.1.0.4 Try to compile a simple 4gl

database somedb
main

display "Hello World"
end main

4glpc simple.4gl -o simple.4ae

2.3.1.0.5 Try to run it Try to run that simple.4ae

2.3.2 For PostgreSQL

2.3.2.0.6 Install postgreSQL If possible - use PostgreSQL with the Informix compatibility
patches : (See http://gborg.postgresql.org/project/pginformix/projdisplay.php)

Make sure you have the ecpg module.

2.3.2.0.7 Configure postgreSQL and create database if required

2.3.2.0.8 Check you’re ecpg setup

main() {
exec sql database somedb;
printf("Status=%d\n",sqlca.sqlcode);

}

Remember to replace somedb with the database you created!

$ ecpg myprog.ec

$ gcc myprog.c -o myprog -I/usr/local/pgsql/include -L/usr/local/pgsql/lib -lecpg

(You’ll need to adjust /usr/local/pgsql/include etc to your environment)

If Status=0 then you’re fine - if not - its an ecpg/postgres problem...

22

2.3. TROUBLESHOOTING CHAPTER 2. INSTALLATION - QUICK START

2.3.2.0.9 Set Up Aubit export AUBITDIR=/aubits/path

export A4GL_SQLTYPE=pg

** check that you have a $AUBITDIR/lib/libSQL_pg.so **

if not - go to $AUBITDIR/lib/libsql/postgresql and do a make ** if that doesn’t make it - find
out why...

export A4GL_LEXTYPE=EC

export A4GL_LEXDIALECT=POSTGRES

2.3.2.0.10 Try a 4gl program simple.4ae:

database somedb

main

display "Hello World"

end main

$ 4glpc simple.4gl -o simple.4ae

$./simple.4ae

23

Chapter 3

Installation - Full

3.1 Platforms

You can install Aubit on recent versions of Linux (e.g Redhat 7 or later, SuSE 8 or later), other
Unix systems, or Microsoft Windows 95, NT, 2000 or later with or without Cygwin.

3.1.1 Source or Binary

You can install A4GL from source or binary. Binary is easier if we have created the binary on the
same system that you have. Otherwise you need to get the source and compile it.

3.2 Get Source

Create and select a directory like /opt/aubit or /usr/local/aubit for installing the source. Call
this SRCDIR e.g.
export SRCDIR=/opt/aubit

The Aubit4GL development site is aubit4gl.sourceforge.net.

You have 3 ways to get the source:

• From a source tar ball (e.g. aubit4glsrc-n.nn-r.tgz)

• From a source RPM

• From CVS.

3.2.1 Tarball

If you are getting the source from a gzipped tar ball, point a browser at the project home page.
Follow the links to the download page and download the file to $SRCDIR then:

tar xvfz aubit4glsrc0.47-32.tgz

24

3.2. GET SOURCE CHAPTER 3. INSTALLATION - FULL

The above assumes that you downloaded the tar file into the AUBITDIR directory. If you have
put it somewhere else supply the full path to the tar file e.g.

tar xvfz /home/informix/aubit4glsrc0.47-32.tgz

On systems where the z option does not work, run gzip and pipe its output into the tar command
e.g.:

gzip -cd aubit4glsrc0.47-32.tgz | tar xvf -

You can examine the contents of a gzipped tarball by using the command:

tar tvfz aubit4glsrc0.47-32.tgz

3.2.2 SRPM

As for the tar ball, point the browser at the project home page. Follow the links to the download
page and down load the file to $SRCDIR then:

rpm -Uvh aubit4glsrc0.47-32.rpm

The U option is really intended for update but it works equally well for a new install and saves
you the bother of learning a separate install syntax. The v option (verbose) will tell you what
rpm is doing. The h option will display conforting hash marks on screen for blocks of characters
loaded.

You can examine the contents of an rpm file before intalling it, the command is:

rpm -qpl aubit4glsrc0.47-32.rpm

3.2.3 CVS

You can get the bleeding edge current version of Aubit4GL from the CVS (Concurrent Versions
System). To do this:

1. cd $SRCDIR

2. Set an environment variable CVSROOT as follows:
export CVSROOT=:pserver:anonymout@cvs.sourceforge.net:/cvsroot/aubit4gl

3. Login to the aubit cvs pserver
cvs login
When it prompts for a password, just hit RETURN.

4. Checkout the module you want: aubit4glsrc or aubit4gldoc
cvs -z3 co aubit4glsrc

Be warned that from time to time the cvs version may be broken. Development is ongoing and
you cannot make an omelet without breaking eggs.

Note: Put the CVSROOT value in a file called (say) AUBITCVSROOT. Then whenever you wish
to checkout or update from cvs, you can set CVSROOT using the command
$export CVSROOT=$(cat AUBITCVSROOT)

The above works for ksh and bash. If your shell does not accept the $(...) syntax, then use
backticks instead:
$CVSROOT=‘cat AUBITCVSROOT‘ export CVSROOT

25

3.3. PREREQUISITES CHAPTER 3. INSTALLATION - FULL

3.3 Prerequisites

3.3.1 C Compiler

The source for Aubit4GL is in the C programming language with some Unix shell scripts. So if
you need to install from source, you will need a full GNU GCC or equivalent compiler and GNU
make. (These tools come with nearly all distributions of Linux.)

3.3.2 Options

The following software and/or libraries can be exploited by Aubit 4GL. They will be discovered
and linked by the autoconfig configure script when you install A4GL:

• ODBC manager libraries for database connection: unixODBC, iODBC (or Windows ODBC)

• Native database connections for Informix, PostgreSQL, SAPDB, or SQLite

• PDF library for fancy reports

• Curses Library (for screen DISPLAY, MENU, etc statements)

• GTK+ Library (for GUI frontend)

• Jabber IM library (for instant messaging)

• SUN RPC package (for n-tier applications using Remote Procedure Calls)

• RPC-XML libraries (for communicating with XML format files)

• Perl interpreter

• SWIG libraries (for Perl output instead of C)

Run the configure script to see which of these you have (or don’t have). If configure reports
something missing when you know you have it, you may have installed it in as unexpected location.
Rerun configure
./configure --help

To see how to point autoconfig to where you have installed the library. For example, if you installed
pdflib in /usr/john/pdflib then you can run configure with the command:
./configure --with-pdflib=/usr/john/pdflib

On Linux systems the command rpm -qa will give you a (huge) list of all software installed using
rpm (RedHat Package Manager). To find any rpms related to, say, PDF run the the following:
rpm -qa | grep -i pdf

On Linux systems you can find non rpm installed software with the locate command:e.g.
locate pdf

3.3.3 Architecture

Aubit4GL uses an abstraction layer for many of its functions. This means that the way Aubit4GL
works can be controlled very tightly by the setting of various variables. These variables specify
which library functions will be called from the compiler and/or 4GL program and hence affect the
following areas:

26

3.3. PREREQUISITES CHAPTER 3. INSTALLATION - FULL

Variable Function Library
A4GL_LEXTYPE Set generation language libLEX_???
A4GL_LEXDIALECT Set language dialect (used for ESQL/C generation) libESQL_???
A4GL_PDFTYPE Specify the enhanced report handler libEXREPORT_???
A4GL_HELPTYPE Specify the help handler libFORM_???
A4GL_MENUTYPE Specify the extended menu handler libMENU_???
A4GL_MSGTYPE Specify the message handler libMSG_???
A4GL_PACKER ’packer’ to use saving forms/reports etc (eg. XML) libPACKER_???
A4GL_RPCTYPE Specify the Remote Procedure Call handler libRPC_???
A4GL_SQLTYPE Specify the SQL handler libSQL_???
A4GL_SQLDIALECT Specify the SQL dialect to use libSQLPARSE_???
A4GL_UI output module to use to display the program libUI_???

3.3.4 Database

For most people, the most important component of the Informix 4GL language is its embedded
SQL. (At whim, you can put SQL code into any x4GL program). For this feature to work, you
must have a database engine which both the A4GL compiler and your 4GL program can connect
to. Classical Informix 4GL has a builtin native connection to Informix engines (SE, or IDS 7, or
IDS 9).

3.3.4.1 Engines

Informix, Ingres, PostgreSQL, and Sybase engines have their origins in Unix at Berkeley in the
1970s. They share some features which are counter to the ANSI SQL standards which were later
defined in 1986.

• Lower Case. By default, they downshift all words before parsing (unless the words are
protected by quotes). This is natural for Unix users but is the inverse of the ANSI standard
which upshifts all unquoted words. The standard was dominated by mainframe system
vendors (IBM DB2, Oracle, SAP, etc).

• Database concept. Each instance of an Informix or PostgreSQL engine can have many
databases. In contrast, IBM, Oracle, SAP, etc have only one database per engine instance.
The Informix concept of separate databases is implemented on these other systems each as
a SCHEMA.

• Outer Joins. These were originally a controversial concept and not defined in the 1986 SQL
standard. The 1992 SQL standard added a JOIN clause to SQL SELECT statements to
implement outer joins. Prior to that each database vendor had its own extension to the
standard to implement outer joins.

• Temporary tables. The SQL standard did not provide for capturing the rows from a SELECT
statement into a tempory table. Informix and Postgres both allow this but with differing
syntax.

• SERIAL datatype. Not part of the SQL standard but an Informix extension. PostgreSQL has
a SERIAL type but it is used differently. With Informix, you supply a zero as the SERIAL
value, and the engine replaces the zero with the next serial number. With PostgreSQL, you
don’t supply a value and the engine supplies the next serial number as a default. If you
supply a zero, it is accepted!

27

3.3. PREREQUISITES CHAPTER 3. INSTALLATION - FULL

• Functions. Informix has a number of functions TODAY, CURRENT, USER, MDY(m,d,y),
EXTEND, etc which are not in the SQL standard or have different names (e,g NOW(),
CURRENT_DATE, etc).

• MATCHES clause. Informix, in addition to the SQL standard LIKE clause, allows you to
SELECT rows which match patterns using the Unix shell wildcard symbols ([]*?). Post-
greSQL has a ~ operator which matches RE (regular expression) patterns in the manner of
perl.

• Mandatory FROM clause. In Informix, the SELECT statement must have a FROM clause.
PostgreSQL (and others like Sybase) does not require a FROM clause.

• MONEY datatype. A variant on DECIMAL which is suitable for financial systems.

A4GL allows you to connect to different database engines. This leads to difficulties when you are
coding into your 4GL programs any of the above Informix idioms which are not part of the SQL
standard. To use Aubit4GL with non Informix engines, you need to confine yourself to just the
ANSI standard, or rely on Aubit4GL’s translation mechanism to convert to Informix, or get a
special version of the engine which supports the Informix variations. Nearly all major applications
written in 4GL exploit the Informix SERIAL behaviour and the 4GL code usually relies on getting
the serial value for the sqlca.sqlerrd record. For this you need an Informix compatible engine.

Aubit4GL can connect directly to

• Informix SE, IDS 7, or IDS 9 or later. Best of breed commercial engines with full SQL92
compliance. You must purchase a licence from IBM-Informix in order to use it. Has a multi-
threaded architecture which gives it a performance advantage over all of its rivals. Now that
it is owned by IBM, it will gradually be absorbed into IBM’s own DB2 range of products
and will gradually disappear.

• PostgreSQL a free opensource engine now with full SQL92 compliance. Fully free and open-
source. Shares its origins with Ingres at UCB (University of California Berkeley). Unlike
Informix IDS, it is not based on a threaded architecture and each frontend connection results
in a separate backed process being spawned to service it. You can get postgresql from :
www.postgresql.org.
At the time of writing, the current version is 7.4.2. Each Linux distribution has its own
RPMs which you get from the distribution site (try a Google search). There is a special
version of PostgreSQL patched to imitate the Informix behaviour mentioned above: The site
for this project is:
gborg.postgresql.org/pginformix/download/download.php
and you can get the source tarballs there. Get the RPMs from
informix.postgresintl.com.
These RPMs are known to install OK on SuSE 9.0 and you may be lucky on similar systems
of equivalent vintage. The RPMS are patched from version 7.4. If you are installing the
RPMs on a system with PostgreSQL RPMs already installed, you may need to add the
--oldpackage argument to the rpm -Uvh command if the installled version is 7.4.1 or 7.4.2.
It is hoped that future versions of PostgreSQL will fold these Informix patches into the reg-
ular distribution. The latest patched postgres version is also available from Aubit website
http://www.aubit.com

• SAPDB a recently free and opensource engine up to version 7.4 with threaded architecture.
The engine is SAP’s tried and true commercial product and is solid and very fast. Unfor-
tunately, MySQL have acquired the rights to develop the next version of SAPDB (to be
renamed MAXDB) and the interfaces will no longer be free (GPL but not LGPL licensed).
Best avoided unless a project based on the LGPL base is spawned.

28

http://www.aubit.com

3.3. PREREQUISITES CHAPTER 3. INSTALLATION - FULL

• SQLite a free and opensource embeddable engine with nearly full SQL92 compliance. A
small engine (only 25K lines of C source code) which we actually deliver statically linked
into our binary distributions of Aubit4GL. It supports most of the SQL92 standard but is
typeless (everything is either a char type or numeric and the distinction is not enforced).
Get it from www.sqlite.org

• Any other database engine with an ODBC interface including PREPARE and SCROLL
CURSOR statements.

3.3.4.2 No SQL

It is possible to use 4GL without using any embedded SQL. The 4GL language can be used
as a general purpose programming tool. A dummy set of SQL functions is invoked with the
A4GL_SQLTYPE=nosql option.

More usually of course, you will want to use SQL within your 4GL programs. You can use ODBC
or one of several possible native connections to a RDBMS (Relational Database Management
System). You tell the Aubit4GL compiler (or programs compiled by it) where to send its SQL
statements by setting an environment variable: A4GL_SQLTYPE.

3.3.4.3 ODBC

ODBC (Open Database Connectivity) is an X/Open and ANSI standard CLI (Call Level Interface)
for communicating with database backends through a common library called a Driver Manager
which in turn uses another library (called a driver) appropriate to the backend desired. All ODBC
libraries implement common functions (an API or Application Programming Interface) with the
details of the functions tailored to the particular backend,

ODBC comes in two broad categories:

1. Driver Managers (e.g. unixODBC, iODBC, Windows ODBC) which act as a go-between
and can plug in vendors’ drivers

2. Direct (e.g. Informix, PostgreSQL, SAPDB, SQLite) which link directly to the vendors’
drivers

Aubit4GL can handle embedded SQL with a library of ODBC (Open Database Connectivity)
functions intended for passing to an implementation of ODBC. You need to install the ODBC
application as well as the database vendor’s odbc library files. (These latter may or may not come
with the ODBC application).

On Unix/Linux platforms the ODBC options supported are

• unixodbc a free opensource ODBC manager with a supplied SQL frontend (good for testing
the database). See www.unixodbc.org

• iodbc an ODBC manager from OpenLink, commercial but free to use. See www.iodbc.org

• ifxodbc direct ODBC to Informix engines (using libraries from Informix CSDK)

• pgodbc direct ODBC to PostgreSQL engines (free opensource)

• sapodbc direct ODBC with SAPDB (a free opensource Database Engine up till version 7.3)

29

3.3. PREREQUISITES CHAPTER 3. INSTALLATION - FULL

3.3.4.4 ODBC config files

ODBC configuration is held in files: /etc/odbcinst.ini (driver info) and /etc/odbc.ini (data-
sources). Each user may have his own configuration in ~/.odbc.ini (where ~ means the user’s
home directory). Applications often supply nice GUI applications to simplify editing these files.
Unfortunately implementation of ODBC is so inconsistent between database suppliers, that these
GUIs are useless. Use vi and edit the files by hand. Then observe the notes for each vendor and
copy or link the files appropriately.

3.3.4.4.1 Sample odbcinst.ini The file odbcinst.ini holds a list of ODBC drivers. An exam-
ple:

[Informix]
Driver=/opt/informix/lib/cli/libifcli.so
Setup=/opt/informix/lib/cli/libifcli.so
APILevel=1
ConnectFunctions=YYY
DriverODBCVer=03.00
FileUsage=0
SQLLevel=1
smProcessPerConnect=Y

[PostgreSQL]
Driver=/usr/lib/libodbcpsql.so
Setup=/usr/lbi/libodbcpsqlS.so
FileUsage=1
Threading=2

[SAPDB]
Driver=/opt/sapdb/interfaces/odbc/lib/libsqlod.so
Setup=/usr/lib/libsapdbS.so
FileUsage=1
CPTimeout=
CPReuse=

The Informix drivers will not tolerate whitespace (blanks or tabs) in the above file.

3.3.4.5 ODBC Datasources

Access to ODBC databases is configured in odbc.ini files which contain all the information required
by the vendor’s drivers to allow a connection. For example:

[infstores]
Description=Informixstores demo database
Driver=/opt/informix/lib/libifcli.so
Database=stores7
LogonID=fred
pwd=zxcv132
ServerName=elvis
CLIENT_LOCALE=en_us.8859-1
TRANSLATIONDLL=/opt/informix/lib/esql/igo4a304.so
[pgstores]

30

3.3. PREREQUISITES CHAPTER 3. INSTALLATION - FULL

Description=Postgres stores demo database
Driver=PostgreSQL
Trace=Yes
Tracefile=sql.log
Database=pgstores
Servername=localhost
UserName=
Password=
Port=5432
Protocol=6.4
ReadOnly=No
RowVersioning=No
ShowSystemTables=No
ShowOidColumn=No
FakeOidIndex=No
ConSettings=
[SAPstores]
Description=SAP stores demo database
Driver=SAPDB
ServerNode=elvis
ServerDB=stores

In principle, the Server property should be the name from the odbcinst.ini list of drivers, but the
Informix driver needs the full path to the driver library file.

The Informix driver will not find the /etc/odbc.ini file unless you point to it with the environment
variable: ODBCINI

export ODBCINI=/etc/odbc.ini

Note that the different vendors use different keywords for naming the same things, and they have
different sets of properties.

3.3.4.6 Informix ODBC Drivers

Informix give a choice of 4 ODBC drivers. They are installed in $INFORMIXDIR/lib/cli (usually
/opt/informix/lib/cli on Linux systems). There appear to be 7 files but 3 of them are links to
other files. Informix does not use separate files for setup; each library file contains both driver
and driver setup functions.

Static Dynamic
Threaded libthcli.a libthcli.so or oclit09b.so

Unthreaded libcli.a or libifcli.a libifcli.so or iclis09b.so

3.3.4.6.1 Informix Driver Manager Informix supplies a driver manager replacement (DMR)
file with 2 links:
libifdmr.so
idmrs09a.so

31

3.3. PREREQUISITES CHAPTER 3. INSTALLATION - FULL

3.3.4.7 PostgreSQL Drivers

PostgreSQL ODBC drivers are installed by default in /usr/lib

Static Dynamic
driver libodbcpsql.a libodbcpsqlso

driver setup libodbcpsqlS.a libodbcpsqlS.so

Note that there is a separate file Postgres driver setup.

3.3.4.8 SAPDB Drivers

SAPDB drivers are installed by default in /opt/sapdb/interfaces/odbc/lib/

Static Dynamic
Driver libsqlod.a libsqlod.so

For SAPDB, use driver setup file from unixODBC: /usr/lib/libsapdbS.so

SAPDB will not find its odbc.ini file unless it is in /usr/spool/sql/ini (which it will have created
at install time). You must either copy or link /etc/odbc.ini to that directory:

cd /usr/spool/sql/ini
ln -s /etc/odbc.ini .

On Linux systems /usr/spool with be a symbolic link to /var/spool

3.3.4.9 ODBC Warning

There are different versions of ODBC (2.5, 3.0, 3.5) - each with its own peculiarities. There are
also big differences between what is required and what is optional - not all drivers implement the
full ODBC functionality.

3.3.4.10 Native

Aubit 4GL can process DATABASE statements directly if it has a native interface to the database
engine. To achieve this, we need the database vendor’s ESQL/C compiler (Embedded SQL in C)
available when we compile the A4GL compilers.

Embedded SQL/C is an ANSI SQL standard for allowing you to embed SQL statements into C
source files. The SQL statements are enclosed within EXEC SQL ... END SQL tags. Traditionally
the ESQL/C file has a .ec suffix. A vendor supplied pre-compiler then replaces the SQL statements
with appropriate calls to functions in the vendor’s libraries. The result of the compile is a C code
.c file which can be compiled and linked to make executables, modules, or .so or .a library files.

At install time, the Aubit 4GL configure program looks for vendors ESQLC files and builds an
interface to each of the vendor databases detected.

Backend ESQL compiler Suffix
Informix /opt/informix/bin/esql .ec

PostgreSQL /usr/bin/ecpg .pgc
SAPDB /opt/sapdb/interfaces/precompiler/bin/cpc .cpc

SQLite??? Help here please!

32

3.3. PREREQUISITES CHAPTER 3. INSTALLATION - FULL

A4GL Native Connections
SQLTYPE RDBMS Compiler Comment
esql Informix esqlc
esqlPG PostgreSQL ecpg
pg PostgreSQL ecpg
esqlSAP SAPDB cpc
esqlQ Querix esqlQ
sqlite SQLite ???
sqliteS SQLite ??? Setup? Static link to 4glc?

The environment variable A4GL_SQLTYPE determines which connection is used when program
(or 4glc compiler) is run.

3.3.5 Curses

If you want A4GL to use 4GL’s character screen control statements (e.g. MENU, DISPLAY,
DISPLAY ARRAY, etc), you will need the curses library: NCURSES v 1.78 or later.

3.3.6 PDFLib

An extension to the 4GL language allows A4GL to exploit a PDF (Portable Data Format) library
to produce fancy reports. This is an optional feature and if unavailable when you build the A4GL
compiler, a library of do-nothing dummy PDF functions will be built-in to the compiler.

To get the PDFLib library go to the site: www.pdflib.org

3.3.7 GTK

A4GL has the ability to:

• display normal screen statements using Graphical Display widgets.

• support a set of extensions to the language to interface with Graphical objects such as
Checkboxes, Pulldowns, Buttons, etc.

To exploit the graphical capabilities of A4GL, you need the GNOME GTK (Graphical Tool Kit)
development library available at installation and run time.

3.3.8 Install Source

Having downloaded the source, whether from a tarball or via cvs

• cd $SRCDIR/aubit4gl

• Read the file README or README.txt

• Run the configure command:
./configure

– This will search for all the prerequisites and options and build Makefiles appropriately

– configure has a lot of options. Try: ./configure --help

33

3.3. PREREQUISITES CHAPTER 3. INSTALLATION - FULL

– The configure script will report all the prerequisites and options it finds and report any
missing elements. If there are prerequisites missing or in non-standard locations, you
can deal with this and run configure again.

• If configure seems OK then run the make command:
make

• There are other arguments to make which may be useful to you, especially if things go wrong
and you have to alter your setup (e.g. by installing some missing optional software):
make cleanall
make log
The cleanall target will undo the effects of a previous make.
The log target will save all the output from make into a file make.log which you can email
to the aubit email lists when you want help with an install problem.

• You will know the make succeeded if you see a message like the following
A4GL compiled successfully

• If make runs with no untoward error messages then you can install. You need root permis-
sions to do this:
su
make install

The install program will install the compiler in /opt/aubit4gl. It will create 2 links in /usr/local/bin:
/usr/local/bin/aubit and /usr/local/bin/aubit-config.

You may now remove the contents of $SRCDIR - they have served their purpose.

3.3.9 /usr/local/bin/aubit

This program reads the Aubit configuration files and sets its environment variables so that the
commands you submit to it will run correctly. e.g.

aubit 4glc hello.4gl -o hello

will compile the module hello.4gl and create an executable hello. The aubit program obviates the
need to have 4glc and its friends in your PATH.

Note: If you put /opt/aubit4gl/bin in your PATH, and set up your environment vars to match
the contents of aubit4glrc, then you could dispense with the aubit command and simply type:

4glc hello.4gl -o hello

3.3.10 /usr/local/bin/aubit-config

/usr/local/bin/aubit uses /usr/local/bin/aubit-config to find the Aubit configuration file
settings and sets its own environment variables to match. You can use it to inspect 1 or all of
these settings. The values set are held the file:/etc/opt/aubit4gl/aubitrc which is created by
the make install command.

Run the command aubit-config -a to see what has been configured.

Run the command aubit-config A4GL_SQLTYPE to get the value of that variable.

34

3.4. INSTALL BINARIES CHAPTER 3. INSTALLATION - FULL

• configure your .a4glrc defaults; they are used in the compiling of the compiler, and later
when the 4glpc script is invoked.

– Especially be careful to point ODBC_LIB_DIR to the location of your ODBC shared
library: For Openlink it should be libiodbc.so file in openlink_inst_dir/lib.

– The a4glrc file in $AUBITDIR is read first. If you have one in $HOME, it will override
the one in $AUBITDIR

• If your make process exited with message "Aubit 4GL compiler is now compiled", go to
section "Testing the installation".

Please be aware that to perform database related operations, you will need in addition to a
database engine installed, and a database created:

• an ODBC manager and ODBC driver installed

• odbc.ini file appropriate for your database, database engine and ODBC manager.
You can use odbc.ini.example file in "test" directory as example. This will unfortunately not
eliminate the need to read the documentation for these products.

3.4 Install Binaries

We will in future distribute binaries as RPM (RedHat Package Manager) files. The command to
install an RPM file is:
rpm -Uvh aubit4glbin-0.47-32.rpm

• Prerequisites are same as for Installation:

• Please note: the binary only distribution is not available at the moment. Please contact the
development team if you can assist in making RPM distribution

• copy the a4glrc.sample to $HOME/.a4glrc

• When your compiler is installed, read "Testing the installation of compiler"

• Please see Aubit 4GL download page for available binary builds. I Plan to provide both
tar.gz and RPM, and make this scriptable using main makefile, and stuff it in corn, so I can
provide nightly builds...

3.4.1 Testing the compiler

• cd to $AUBITDIR/test directory:
cd $AUBITDIR/test

• compile the hello.4gl program:
aubit 4glc hello.4gl -o hello

• Test the form compiler:
aubit fcompile form

• Run the hello program:
./hello
and you should see a little program with with three options in the menu on the top:
Hello test: window prompt form config exit
If you do, congratulations, you have just compiled your first 4GL program using Aubit 4GL!

35

3.4. INSTALL BINARIES CHAPTER 3. INSTALLATION - FULL

There are a few more test files there. Most important is hello_db.4gl, that is connecting to the
database. For it to compile and run, you will need to have a database, and ODBC DSN configured.

36

Chapter 4

Compiling 4GL programs & Forms

4.1 A4GL compilers

A4GL provides the following compilers:

• 4glc which translates x4GL code into C

• 4glpc which is a wrapper to call 4glc and gcc (or esql/c)

• fcompile which creates a binary form file from source

• mcompile which creates a binary menu file from source

• amkmessage which creates a binary help file from source

On Linux/Unix systems these programs are usually invoked as arguments to the ’aubit’ script,
e.g.

aubit 4glpc myprog.4gl -o myprog

The aubit program sets the environment from Aubit4GL configuration files and ensures that
LD_LIBRARY_PATH includes the appropriate A4GL libraries. You can omit it and use 4glc/4glpc
etc directly if you setup LD_LIBRARY_PATH & PATH correctly, as well as any settings specific
to your installation.

This file if first read from Aubit 4GL installation directory, as specified by $AUBITDIR, and then,
if it exists, from users home directory, as specified by $HOME, effectively overriding settings from
$AUBITDIR/.a4glrc that exist in both places. It also accepts a number of command line switches,
and environment variables.

4.2 4glpc

The 4glpc compiler is really just a wrapper around the 4glc, gcc, and esql/c compilers. The idea is
that the type of each file passed on the command line is determined, as well as the output object
type, and the relevant compilers are called in stages to generate that output. For example :

4glpc myprog.4gl -o myprog.4ae

Assuming we are compiling using A4GL_LEXTYPE=EC, then we know that we must :

37

4.2. 4GLPC CHAPTER 4. COMPILING 4GL PROGRAMS & FORMS

• compile myprog.4gl -> myprog.ec using 4glc

• compile myprog.ec -> myprog.c using the esql compiler

• compile myprog.c -> myprog.o using ’gcc’ or some other C compiler

• link myprog.o -> myprog.4ae

For A4GL_LEXTYPE=C, we can just remove the myprog.ec -> myprog.c and generate myprog.c
directly from the 4gl.

4.2.1 Usage

Basic Aubit 4GL compiler usage

4glpc [options] -oOutFile.ext file.ext [file.ext...]

Extensions (.ext):

In files list, all .4gl files will be compiled to c or .ec etc as applicable , other files passed to linker.

The extension specified on the file passed to the ’-o’ flag will normally decide type of linking:

ao=object

aox=static library

aso=shared lib

4ae=executable.

Options

38

4.2. 4GLPC CHAPTER 4. COMPILING 4GL PROGRAMS & FORMS

Option Meaning
-L Passed directly to the C compiler (specifies where libraries will be found)
-o Specify the output file
-c Compile only - no linking
-e Just generate the .c file
-I Passed directly to the C compiler (specifies where include files can be found)
-G or –globals Generate the globals map file
-S or –silent no output other then errors
-V or –verbose Verbose output (-V1.. -V5 for increasing levels of verbosity)
-N name Prefix all functions with name (default ’aclfgl_’)
–namespace name Same as -N option
-n or –noprefix remove any prefix from function names (= -N ’ ’)
-v or –version Show compiler version and exit
-f or –version_full Show full compiler version and details
-h or -? or –help Show this help and exit
-t TYPE or –lextype TYPE output language, TYPE=C(default), EC, or PERL
-td TYPE or –lexdialect TYPE Specify the output language dialect for ESQL/C generation (INFORMIX or POSTGRES)
-k or –keep keep intermediate files (default)
-K or –clean clean intermediate files when done
-s[01] or –stack_trace [01] Include the stack trace in file: 0-Don’t generate 1-Generate(Default)
–use-shared/–use-static compile with shared libraries
-echo Don’t really compile (ignored for now)
-d dbname Specify an alternative database name to use for compilation
–database dbname same as -d option (note ignores that specified in the .4gl
-4 or –system4gl Used internally - Ignores any clashes with builtin library names
–map Generate an unload file with some 4GL code metrics
–as-dll Generate a shared library as the output type
–make-compile Compare file times and only recompile where required (very simplistic)

Examples:

$ 4glpc sourcefile.4gl -o executablename.4ge

$ 4glpc sourcefile.4gl -c -o objectname.o

$ 4glpc -shared file.4gl -o file.4ge

$ 4glpc -static -echo file.4gl -o file.4ge

$ 4glpc -debug file.4gl -o file.debug 4glpc -map -echo file.4gl

As a matter of interest - the 4glpc compiler itself is written in Aubit4GL.

The 4glpc compiler will use a number of configuration files ($AUBITDIR/tools/4glpc/settings)
to control what commands will be used and what options will be passed to them. These will
normally be setup correctly, but if you wish to change them (for example if you are porting to a
new database backed, or a new platform), then you may need to know the order in which they are
read.

This will depend on the A4GL_LEXTYPE, A4GL_LEXDIALECT, TARGET_OS, TARGET.

For an example, assume A4GL_LEXTYPE is set to EC, A4GL_LEXDIALECT=POSTGRES,
TARGET_OS=linux (this is set by the ./configure script at compile time), and TARGET=i686-
pc-linux-gnu (this is also set by the ./configure)

Files will be read as :

tools/4glpc/settings/EC

39

4.3. 4GLC CHAPTER 4. COMPILING 4GL PROGRAMS & FORMS

tools/4glpc/settings/EC_POSTGRES

tools/4glpc/settings/linux

tools/4glpc/settings/linux__EC

tools/4glpc/settings/i686-pc-linux-gnu

tools/4glpc/settings/i686-pc-linux-gnu__EC

tools/4glpc/settings/i686-pc-linux-gnu__EC_POSTGRES

Settings in any later configuration file will overwrite those in any previous file. This gives the
maximum configurability possible.

4.3 4glc

Aubit 4GL source compiler 4glc is generally invoked using the 4glpc wrapper. It can be involked
directly :

aubit 4glc <filename>.4gl

For historic reasons, the 4glc compiler can also compile most modules to an executable. In order
to do this the 4glc compiler uses the normal C compiler and passes unknown options on to it e.g.:
aubit 4glc file.4gl -c -o file.o

aubit 4glc -shared file.4gl -o file.4ge

aubit 4glc -static -echo file.4gl -o file.4ge

aubit 4glc -debug file.4gl -o file.debug

aubit 4glc -map -echo file.4gl

compiles to an object file rather than a linked executable

It is now best practice, unless there is a very good reason otherwise, to not call 4glc directly as
all, and to invoke it via the 4glpc compiler instead.

4.4 Compiling forms

$ aubit fcompile file.per

fcompile compiles form compatible with both GUI and CUI run-time modes.

4.5 Compiling help files

Compile these using amkmessage

$ amkmessage helpfilename (without .msg extension)

This will generate the compiled help message file with a .hlp extension. Please note that many
Informix-4GL programs assume that compiled help file will have extension ".iem". You can just
rename created .hlp file to .iem if needed.

For format and syntax of help files, please see example file in test/ directory. It is fully compatible
with Informix standard definition.

40

4.6. COMPILING MENU FILES CHAPTER 4. COMPILING 4GL PROGRAMS & FORMS

4.6 Compiling menu files

Menu files are currently not used, so you can safely ignore them (for now...)

41

Chapter 5

Configuration

5.1 Introduction to configuration

Classical Informix 4GL does the following:

1. Processes Informix SQL statements embedded in 4GL code.

2. Outputs a program in the C language.

3. Connects to an Informix Database Engine (IDS or SE)

4. Interfaces with the user using curses on a terminal (or xterm emulator)

Aubit 4GL does all of this but is much more versatile.

1. It can process other dialects of SQL: (PostgreSQL, Oracle, SAPDB, ODBC)

2. It can output (by design at least) in Perl. One day it may produce Java.

3. It can connect to other database engines:(PostgreSQL, Oracle, SAPDB, SQLite, ODBC)

4. It can interface using Graphics (via GTK Gnome Tool Kit) or even a no curses console. In
addition, a special graphical menu structure is available.

5. It can optionally output reports in PDF format (using A4GL enhancements to the 4GL
language.

6. It can use RPC (Remote Procedure Calls) for n-tier applications

By the magic of Dynamically Linked Libraries (called shared objects in Unix/Linux), most of the
these options can be chosen at runtime. Different libraries implement the same set of required
functions for each option.

The programmer or the user can choose from these myriad options by editing by setting environ-
ment variables before invoking the compiler (or the compiled program).

Usually however, you setup the default options in aubitrc files then on Unix/Linux systems
you invoke the aubit program to run the programs you want to call. The aubit program sets
environment variables from the aubitrc files and also ensures the library files are available.

42

5.2. AUBITRC FILES CHAPTER 5. CONFIGURATION

5.1.1 configurator

Aubit 4GL supplies a 4GL program configurator which shows you all the switches and their
permitted values. You run it with the command:

aubit configurator

Note on Microsoft systems there is no aubit script. configurator will be in your PATH, so just
type configurator

A full list of all configuration options can be found in Appendix A.

5.1.2 Essential Configuration flags

5.1.2.1 A4GL_SQLTYPE

This switch chooses where to send SQL embedded in the 4GL code. Default is nosql. (which
means use dummy do-nothing functions for SQL code).

Other options available may include :

Option Database Backend
esql Informix esql/c native

nosql SQL statements are effectively ignored
pgodbc postgreSQL odbc

sapodbc SAPDB odbc
iodbc Openlink ODBC

unixodbc unixodbc (free opensource)
ifxodbc Informix CLI (now called ODBC)
odbc32 Only on Windows systems

The list of available options will depend on what was detected at compile time - check the $AUBIT-
DIR/lib directory.

5.1.2.2 A4GL_UI

This switch determines which frontend you are using. Options are CONSOLE, TUI, GTK.

5.2 aubitrc files

The aubit program sets A4GL_... environment variable then executes the arguments on the
command line. It reads configuration options in the following files in order:

1. /etc/opt/aubit4gl/aubitrc

2. $AUBITDIR/etc/aubitrc (AUBITDIR=/opt/aubit4gl by default)

3. ~/.aubit4gl/aubitrc

4. ./.aubitrc

5. Environment variables

43

5.2. AUBITRC FILES CHAPTER 5. CONFIGURATION

As each of these files is read, it overwrites the values of previous files. The environment variables
have final precedence.

To set up your A4GL system, you edit these files with text editor (e.g. vi)

For system wide configuration, edit /etc/opt/aubit4gl/aubitrc whereas for personal idiosyncrasies
edit your home directory’s .aubitrc file.

44

Chapter 6

4GL Language

6.1 Introduction

The 4GL programming language was born in Informix Corp in 1986. Because of that, and not
to conflict with with 4GL as general programming concept (BASIC is in principle also a Fourth
Generation Language, as opposed to C, which is a Third Generation Language), we should refer
to basic 4GL syntax as I4GL.

Today, even among Informix-distributed products, there is distinction between classic I4GL and
D4GL (Informix name for 4J’s 4GL compiler), which introduced a number of language enhance-
ments. Then Informix implemented some of these enhancements back into classic 4GL, and added
some of it’s own (v 7.3), which 4J in turn implemented in its Universal Compiler V3 (this is the
actual name for 4Js product that Informix distributes under the name D4GL - Dynamic 4GL.)

We refer to the syntax of different implementations as:

• I4GL - Informix non-GUI, a.k.a. "classic" products syntax, V 7.3

• D4GL - 4Js extended syntax, including I4GL

• A4GL - Aubit 4GL specific syntax, including I4GL

• x4GL - all of the above as general name for all

Luckily for us, Querix decided not to change the language, but instead do all GUI related config-
uration from separate configuration files.

Aubit 4GL, as a package, and A4GL, as a language definition, is a superset of I4GL.

Our first aim is to provide full unconditional compatibility with I4GL. Since this means that
90% of the syntax used in A4GL will be I4GL, and since this document is not intended to be an
I4GL manual, we strongly suggest that you refer to existing Informix documentation and tutorials
downloadable from their web site, and books about 4GL, like:

Informix Unleashed, (ISBN 0672306506) a complete book in HTML format about Informix prod-
ucts, by John McNally. You will find several complete chapters about 4GL language there, in-
cluding chapters on Informix database servers. You will also learn there that "To develop with a
4GL, the developer does not have to be an expert programmer".

(I have asked the author for permission to include his book in Aubit 4GL distribution, but received
no answer)

45

6.2. SUMMARY: CHAPTER 6. 4GL LANGUAGE

The rest of this page will serve as a quick and dirty crash course to give you some idea of what
the I4GL looks like, as a language.

For A4GL extensions. please refer to the appropriate sections of this manual.

6.2 Summary:

* To learn I4GL, refer to Informix manuals for Informix-4GL version 7.3 (http://www.informix.com
or direct links to Informix 4GL by example,Informix 4GL Concepts and Use, Informix 4GL Ref-
erence Manual - please remember that exact locations can change, and if they do, use the search
function on the Informix web site to find new locations of this documents), and third-party books.

* To learn about A4GL extensions, read this manual

* To get some idea about what I4GL looks like, and to get some idea about combined I4GL and
A4GL functionality, continue reading this page

* To get 4GL code examples, go to http://www.informix.com/idn and look for the Example
application, or download one of GNU 4GL programs from http://www.falout.com

6.3 Short Intro to x4GL

• 4GL Programs

• Structure of a program

• DATABASE section

• GLOBALS section

• Functions

• MAIN block

• DEFINE section

• 4GL Commands

6.3.1 4GL Programs

A 4GL program consists of a series of modules and forms. Each 4GL module can contain functions
and reports and each program must contain exactly one ’main’ section and must end in a .4gl
extension. C modules can also be included in programs.

6.3.1.1 Structure of a program

database section

globals section

function/report/main block

.

.

.

.

function/report/main block

46

6.3. SHORT INTRO TO X4GL CHAPTER 6. 4GL LANGUAGE

6.3.1.2 DATABASE section

This section is optional and is of the format :

DATABASE database-name

The database name is actually the DATA SOURCE NAME (DSN) from the ODBC drivers.

6.3.1.3 GLOBALS section

This optional section allows you to define variables which are accessible to all modules. There is
normally a single file (typically called ’globals.4gl’) where variables are defined. All other modules
which need these variables then include that file using the GLOBALS statement .eg.
globals.4gl:

GLOBALS
DEFINE a INTEGER
END GLOBALS

module.4gl:

GLOBALS "globals.4gl"

Note: In Aubit 4GL the ’globals’ module (containing the GLOBALS / END GLOBALS) must be
compiled first.

6.3.1.4 Functions

A function in 4GL is a sequence of commands which are executed when called from another block
of code. A function can accept parameters and can return values.

A function is defined :
FUNCTION function-name (parameter-list)
define-section
commands
END FUNCTION

Values are returned using the RETURN keyword:
RETURN value

6.3.1.5 MAIN block

Each program must contain a main section - it is the starting point in any program.

MAIN
define-section
commands
END MAIN

6.3.1.6 DEFINE section

This optional section allows you to define variables which may be used subsequently. In its simplest
form:

DEFINE variable_names datatype
or

47

6.3. SHORT INTRO TO X4GL CHAPTER 6. 4GL LANGUAGE

DEFINE CONSTANT constant_name "Value"
DEFINE CONSTANT constant_name Number-Value

More than one variable can be defined as any type in the same statement by separating the names
with a comma:
DEFINE a,b,c INTEGER

Available datatypes are :
SMALLINT (2 byte integer)
INTEGER (4 byte integer)
CHAR (Single character ’string’)
CHAR(n) (n character string)
MONEY
DECIMAL (These are not fully implemented)
FLOAT (8 byte floating point number - (C double))
SMALLFLOAT (4 byte floating point number - (C float))
DATE (date - number of days since 31/12/1899)
DATETIME
INTERVAL
BYTE
TEXT
VARCHAR Unimplemented yet
LIKE tablename.columnname
RECORD LIKE tablename.*
- can only be used when the module has a DATABASE statement. These copy the
datatypes directly from the database either for a simple column, or to generate an
entire record (see below)

Special datatypes are :

ARRAY[n] OF datatype defines an array

RECORD .. END RECORD defines a record structure

ASSOCIATE [CHAR](m) WITH ARRAY[n] of datatype defines an associative array (hash
table).

6.3.1.7 Array Syntax:

DEFINE vars ARRAY[n] datatype eg.
DEFINE lv_arr ARRAY[200] OF INTEGER defines an array of 200 elements each
being an integer. Elements of an array are indexed from 1 to the number of elements
specified.
IMPORTANT: No bounds checks are made. Accessing elements which are outside
those defined (i.e. <1 or > n) will result in an error (Usually a core dump). Eg
LET lv_arr[1]=1
LET lv_arr[200]=200
LET lv_arr[201]=201 # this will cause a program fault!

6.3.1.8 Records

Records are structured groups of data, with the entries separated by commas. Elements within a
record are accessed via the syntax: record name ’.’ element name.

48

6.3. SHORT INTRO TO X4GL CHAPTER 6. 4GL LANGUAGE

6.3.1.8.1 Syntax

DEFINE recordname RECORD
element datatype,
element datatype
...

END RECORD

eg.

DEFINE lv_rec RECORD
elem1 CHAR(10),
elem2 INTEGER

END RECORD

defines a record with two elements. eg.

LET lv_rec.elem1="string1"
Record may also be nested and used in conjunction with arrays. The following are all therefore valid:
DEFINE lv_record ARRAY[20] OF RECORD
elem1 CHAR(20),
elem2 INTEGER

END RECORD
DEFINE lv_record RECORD
a ARRAY[200] of INTEGER,
b CHAR(20)

END RECORD
DEFINE lv_record RECORD
subrecord1 RECORD
elem1 CHAR(10),
elem2 INTEGER

END RECORD,
subrecord2 RECORD
elem2 DATE

END RECORD
END RECORD

6.3.2 Associative Arrays

Associative arrays allow you to access data from an array using a string as a subscript rather than
an integer. For example:

LET age< <"bob"> >=40
DISPLAY age< <"bob"> >

This can be especially useful when dealing with codes and code desciptions:

LET lv_desc< <"A"> >="Active"
LET lv_desc< <"I"> >="Inactive"
LET lv_desc< <"R"> >="Running"
LET lv_desc< <"D"> >="Deleted"

49

6.3. SHORT INTRO TO X4GL CHAPTER 6. 4GL LANGUAGE

LET lv_state="A"
.
.
DISPLAY lv_desc< <lv_state> >

(This is for illustration, the data would normally be read from a database!)

To define an associate array:
DEFINE name ASSOCIATE [CHAR] (nc) WITH ARRAY [nx] OF datatype
Where nc is the number of characters to use for the index, and nx is the total number of elements
that may be stored.

6.3.2.0.2 Performance Note Internally, associate arrays are stored using hash tables, for
performance reasons always declare ’nx’ much larger than is actually required. A factor of two is
optimum in most cases.

Again the datatype used in this form of array may be a RECORD, ARRAY etc. Eg.

DEFINE lv_asoc1 ASSOCIATE CHAR(10) WITH ARRAY[10] OF INTEGER
DEFINE lv_asoc3 ASSOCIATE (10) WITH ARRAY[10] OF INTEGER
DEFINE lv_asoc2 ASSOCIATE CHAR(10) WITH ARRAY[10] OF RECORD
element1 CHAR(10),
element2 CHAR(20)
END RECORD

6.3.3 Constants
Constants are defined using:
DEFINE CONSTANT name value eg.
DEFINE CONSTANT max_num_vars 30
DEFINE CONSTANT err_string "There is an error"
IF num_vars>max_num_vars THEN

ERROR err_string
END IF
It is also possible to use constants in any subsequent define sections:
DEFINE CONSTANT num_elems 20
DEFINE lv_arr ARRAY [num_elems] OF INTEGER
IF num_vars<=num_elems THEN

LET lv_arr[num_vars]=1
END IF

You can think of DEFINE CONSTANT statements as being equivalent to C #define statements
(except that you cannot use them to define macros as you can with C).

6.3.4 Packages

The current system allows programs to call shared libraries using the syntax:

call library::function(..)

(See tools/test/file.4gl or lib/extra_libs/pop/pop_killer.4gl for some example usage)

Packages take this one step further in that the calls are coded like any other functions. They are
detected at compile time by referencing a list of possible function name mappings specified by an
import package statement. Syntax :

50

6.4. 4GL QUICK REFERENCE CHAPTER 6. 4GL LANGUAGE

IMPORT PACKAGE packagename
or
USE packagename

The packagename should be the name of a file in the $AUBITDIR/etc/import directory.

A file called default exists in this directory which is included for all compilations - this allows
you to add calls to your own subroutines just as if they were builtin functions with no need to
add them to the compile line as object or library modules..

This file should contain a series of lines, each containing:

library functionname

(In this way a package can contain functions from more than one library...)

e.g.

A4GL_pcre pcre_match
A4GL_pcre pcre_text

Whenever the compiler sees a call to pcre_match it will call pcre_match in the A4GL_pcre library
- in this way it’s equivalent to A4GL_pcre::pcre_match

So a full .4gl may look like :

import package a4gl_pcre
main
if pcre_match("cat|dog","There was an old cat") then
display "Matches to ",pcre_text(1)
else
display "No match"
end if
end main

Compile and run

$ 4glpc pcre_test.4gl -o pcre_test
$./pcre_test
Matches to cat

(Note - you don’t need to link against the library - it’s done at runtime!)

(If you’ve got pcre installed - you can compile up the pcre library by doing a make in the
lib/extra_libs/pcre directory)

6.4 4GL Quick Reference

The following subsections are from the Aubit4GL Quick Referece which is a separately available
document. It can be printed in Landscape orientation on A4 paper 2-up to produce an A5 booklet.

6.5 Aubit4GL Quick Reference

Version 0.6: 11 Oct 2006

51

6.5. AUBIT4GL QUICK REFERENCE CHAPTER 6. 4GL LANGUAGE

6.5.1 Data Types
ARRAY[m,n,...] OF type
BYTE
CHAR(n)
CHARACTER(n)
DATE
DATETIME(f TO l)
DEC
DEC(precision)
DEC(precision,scale)
DECIMAL
DECIMAL(precision)
DECIMAL(precision,scale)
DOUBLE PRECISION
DOUBLE PRECISION(precision)
INT
INTEGER
INTERVAL(f TO l)
LIKE table.column
MONEY
MONEY(precision)
MONEY(precision,scale)
NUMERIC
NUMERIC(m)
NUMERIC(m,n)
REAL
RECORD LIKE table.*
RECORD name type ,... END RECORD
SERIAL
SERIAL(n)
SMALLFLOAT
SMALLINT
TEXT
VARCHAR
VARCHAR(max)
VARCHAR(max,min)

Precision = No of significant digits (default 16)
Scale=No or digits after the decimal pt (default 2), can be
-ve.

max = number of chars (upper limit 254 for Informix IDS)
min = minimum number of chars.

Current Engines also support large integers: int8 and se-
rial8.

6.5.2 Constants
TRUE=1
FALSE=0
NOTFOUND=100

6.5.3 Global Variables
Flags: INT_FLAG QUIT_FLAG

Vars: STATUS SQLCA.SQLCODE

SQLCA Record:
SQLCA RECORD
SQLCODE INTEGER,
SQLERRM CHAR(71),
SQLERRP CHAR(8),
SQLERRD ARRAY[6] OF INTEGER,
SQLAWARN CHAR(8)
END RECORD

SQLCA.SQLERRD Array:
SQLERRD[1]:estimated row count
SQLERRD[2]:serial value returned
SQLERRD[3]:no of rows processed
SQLERRD[4]:estimated CPU cost
SQLERRD[5]:error offset
SQLERRD[6]:last rowid processed

Warning: Not all of the above work for all backends. For
PostgreSQL they may need a patched version of the engine.

6.5.4 Syntax Conventions

The remainder of this chapter uses the following conventions
to indicate the syntax of 4GL language constructs

• KEYWORDS are in UPPERCASE. You enter them
literally but in upper or lower case

• Lower case indicates terms for which you must enter
your own identifiers or expressions

• "string" indicates a quoted string. Informix allows
either single or double quotes but non-Informix en-
gines may enforce one or the other.

• string (without quotes) indicates an unquoted string
used for example, in naming cursors, prepared state-
ments, forms, windows, etc.

• m and n are used to denote a numeric value

• "c" denotes any quoted character

• [] and {} delimit options. {} indicates a mandatory
option. [] a non-mandatory toption. Within the [] or
{} elements are separated by the pipe symbol |. e.g.
{a|b|c} means you must choose a or b or c.

•

Expressions in red are Aubit 4GL extensions and will
not compile on Informix, 4J, or other 4GL compilers.

• Expressions in green work with Informix SE only.

• Expressions in blue work with Informix IDS only.

• relop means a relational operator (see below)

• expr means an expression

• charexpr means a character expression (e.g. filename
|| ".4gl")

6.5.5 Operators
Numeric: + - * / ** mod

String: , [m,n] || USING "string" CLIPPED

Relational: = <> != >= < <=

Boolean: expr relop expr
charexp LIKE charexpr
charexpr LIKE charexpr ESCAPE "c"
charexp NOT LIKE charexp
charexp NOT LIKE charexp ESCAPE "c"
charexpr MATCHES charexpr
charexpr NOT MATCHES charexpr ESCAPE "c"
charexpr MATCHES charexpr
charexpr NOT MATCHES charexpr ESCAPE "c"
expr IS NULL
expr IS NOT NULL
boolexpr AND boolexpr]
boolexpr OR boolexpr
NOT boolexpr

6.5.6 Aubit 4GL Expressions

52

6.5. AUBIT4GL QUICK REFERENCE CHAPTER 6. 4GL LANGUAGE

[NOT] IN ({expr,...
|selectstatement})

[NOT] EXISTS (selectstatement)

6.5.7 Attribute Constants
An attlist is a set of the following elements:

BLACK, WHITE, RED, GREEN, BLUE,
MAGENTA, CYAN, YELLOW,
REVERSE,DIM, BOLD, BLINK, INVISIBLE,
BORDER, UNDERLINE

6.5.8 Key Constants
A keylist is a set of the following elements:

F1 to F64
CONTROL-c (but c not in (A,D,H,I,

K,L,M,R,X)
ACCEPT, DELETE, DOWN, ESC, ESCAPE,
HELP, INSERT, INTERRUPT, LEFT,
RIGHT, NEXT, NEXTPAGE, PREVIOUS,
PREVPAGE, RETURN, TAB, UP

6.5.9 Table Privileges
ALTER, INDEX, DELETE, INSERT,
SELECT[(colname ,...)]
UPDATE[(colname ,...)

6.5.10 Comments
Characters on a line after the following are ignored by 4GL
compilers:

– ANSI SQL Standard for commenting out
rest of line

Unix convention for commenting out rest
of line

Curly braces are used to comment out lines of code (not
nestable):

{ ... } Compiler ignores everything between the
braces

{! ...
!}

Aubit 4GL compiles the enclosed code.
Informix 4GL ignores it.

6.5.11 4GL Statement Syntax
ALLOCATE ARRAY name, size
ALTER INDEX indexname TO [NOT] CLUSTER
ALTER TABLE tablename

{ADD (newcolname newcoltype
[BEFORE old-colname][,...])

|DROP (oldcolname[,...])
|MODIFY (oldcolname newcoltype [NOT NULL]

[,...])
}[,...]

AT TERMINATION CALL function ([args])

BEGIN WORK
statement ...
{COMMIT WORK | ROLLBACK WORK}

CALL [packet {::|.}] function([args])
[RETURNING arglist]

CASE [(expr)]
WHEN {expr | booleanexpr }

statement
...
[EXIT CASE]

...
[OTHERWISE]

...
[EXIT CASE]
...

END CASE

CHECK MENUITEM name
CHECK MENUITEMEM2 name
CLEAR STATUSBOX name
CLASS name [EXTENDS class]

definestatements ...
{FUNCTION func([arglist])

statements
[...]

END FUNCTION}
...

END CLASS

CLEAR {SCREEN |WINDOW windowname
|WINDOW SCREEN
|FORM

[TO DEFAULTS]

|fieldlist }
CLOSE cursor
CLOSE DATABASE
CLOSE FORM

CLOSE SESSION name
CLOSE STATUSBOX name

CLOSE WINDOW name

CODE
Cstatement;
...
ENDCODE

COMMIT WORK

CONNECT TO name

CONSTRUCT {BY NAME charvar ON collist
|charvar on collist FROM { fields

| screenrecord[[n]].*} [,...]}
[[{BEFORE|AFTER} CONSTRUCT statements]
[,...]
[{BEFORE|AFTER} FIELD field statements]
[,...]
{ON KEY (keylist)

statement
...
[{EXIT|CONTINUE} CONSTRUCT]

...]
END CONSTRUCT]
CONTINUE CONSTRUCT
CONTINUE DISPLAY
CONTINUE FOR
CONTINUE FOREACH
CONTINUE INPUT
CONTINUE MENU
CONTINUE PROMPT
CONTINUE WHILE

CONVERT REPORT TO "filename" AS
{"SAVE"|"PDF"|"CSV"|"TXT"}

53

6.5. AUBIT4GL QUICK REFERENCE CHAPTER 6. 4GL LANGUAGE

CREATE AUDIT FOR tabname in "pathname"
CREATE [UNIQUE|DISTINCT][CLUSTER] INDEX
indname ON tabname(colname [ASC|DESC]

[,...])
CREATE DATABASE {name| charvar}

[WITH LOG [IN path]]
CREATE SCHEMA AUTHORIZATION
CREATE PRIVATE SYNONYM
CREATE PUBLIC SYNONYM
CREATE SYNONYM name FOR tabname
CREATE TABLE
CREATE [TEMP] TABLE name

(colname coltype [NOT NULL][,...])
CREATE DISTINCT CLUSTER INDEX
CREATE VIEW
CURRENT WINDOW IS name
CURRENT WINDOW SCREEN
CURRENT WINDOW IS SCREEN
DATABASE name [EXCLUSIVE]
DEALLOCATE ARRAY name
DECLARE name [SCROLL] CURSOR FOR

{select_statement
[FOR UPDATE OF collist

|insert_statement
|statementid}

DEFER INTERRUPT
DEFER QUIT
DEFINE varlist datatype [,...]

DEFINE CONSTANT id {"string"|number}
DEFINE linkid LINKED TO tabname PRIMARY KEY (colname)
DEFINE name ASSOCIATE [CHAR](n)

with ARRAY[m] OF datatype

DELETE FROM tabname
[WHERE {condition|CURRENT OF cursor}]

DELETE USING linkid
DISABLE FORM name

DISABLE MENUITEM name
DISABLE MENUITEMS

DISPLAY {BY NAME varlist
| varlist TO {fieldlist|screenrec[[n]].*}

[,...]
| AT screenrow,screencol]}

[ON KEY (keylist)
statement
...
[EXIT DISPLAY]

...
END DISPLAY]

DISPLAY ARRAY id TO screenarray.*
[ATTRIBUTE(attlist)]
{ON KEY (keylist)

statement
...
[EXIT DISPLAY]

...
END DISPLAY| [END DISPLAY]}

DISPLAY FORM name [ATTRIBUTE(attlist)]
DROP AUDIT FOR tabname
DROP DATABASE {name | charvar}
DROP INDEX name
DROP SYNONYM name
DROP TABLE name
DROP TRIGGER name
DROP VIEW name
ENABLE FORM form

ENABLE MENUITEM name
ENABLE MENUITEMS

ERROR displaylist [ATTRIBUTE (attlist)]
EXECUTE [IMMEDIATE] statementid
EXIT CASE

EXIT CONSTRUCT
EXIT DISPLAY
EXIT FOR
EXIT FOREACH
EXIT INPUT
EXIT MENU
EXIT PROGRAM [expr]
EXIT PROMPT
EXIT WHILE
FETCH [NEXT

|PREVIOUS|PRIOR|FIRST|LAST
|CURRENT|RELATIVE n
|ABSOLUTE n]

cursorname [INTO varlist]
FINISH REPORT name

FINISH REPORT name
CONVERTING TO {{"filename"|EMAIL|}

[AS {"SAVE"|"PDF"|"CSV"|"TXT"|MANY}
[USING "filename" AS LAYOUT]}

FLUSH cursor

FONT SIZE n

FOR var = expr TO expr [STEP expr]
{statement|CONTINUE FOR|EXIT FOR}...
END FOR

FOREACH cursor [INTO varlist]
[statement|CONTINUE FOREACH|EXIT FOREACH]...
END FOREACH

FREE {statementid|cursor|blobvar}

FREE REPORT name

FUNCTION function([arglist])
[definestatement]...
statement ...
END FUNCTION

GO TO label
GOTO label
GRANT {tabpriv ON tabname

| CONNECT|RESOURCE|DBA }
TO {PUBLIC|userlist}

HIDE OPTION name
HIDE WINDOW name
IF boolexpr THEN

statement
...
[ELSE

statement
...

END IF]

IF boolexpr THEN
statement
...
[ELIF|ELSIF

statement
...]

...
[ELSE

statement
...]

END IF]
IMPORT PACKAGE name

INITIALIZE varlist
{LIKE collist| TO NULL}

INPUT ARRAY array [WITHOUT DEFAULTS]
FROM screenarray.* [HELP n]
[{BEFORE {ROW|INSERT|DELETE|FIELD list}

[,...]
|AFTER {ROW|INSERT|DELETE|FIELD list

INPUT}[,...]
|ON KEY (keylist)}
statement
...
[NEXT FIELD field]
...

54

6.5. AUBIT4GL QUICK REFERENCE CHAPTER 6. 4GL LANGUAGE

[EXIT INPUT]
...

...
END INPUT

INSERT INTO tabname[(collist)]
{VALUES(vallist)| selectstatemet}

INSERT USING linkid

LABEL name :
MESSAGE displaylist [ATTRIBUTE (attlist)]
LABEL label-name :
LET id = expr

LET hasharray< <"code"> > = "string"

LOAD FROM filename INSERT in tabname [(collist)]
LOCATE varlist in {MEMORY|FILE [filename]}
LOCK TABLE name IN {SHARE|EXCLUSIVE} MODE
MENU "name"

COMMAND {KEY (keylist)
| [KEY (keylist)] "option"

[HELP n]}
statement
...
[CONTINUE MENU]
...
[EXIT MENU]
...
[NEXT OPTION "option"]
...

...
[ON KEY (keylist)

statement
...
CONTINUE MENU]
...
[EXIT MENU]
...
[NEXT OPTION "option"]
...]

END MENU

MENU name
{OPTION opt [IMAGE="path/name.xpm"] "Label"
|SUBMENU subname "[_]Label"

{USE menu
|{statement,...
END SUBMENU}}

| statement
,...}

END MENU
MENUHANDLER name

[definestatement [,...]]
[statement

|{{DIS|EN}ABLE MENUITEM[S] item [,...]}
| ON item

statement
[...]]

END MENUHANDLER
MESSAGEBOX message

SET BUFFERED LOG
SET CONSTRAINTS ALL IMMEDIATE
SET LOG
START DATABASE identifier WITH LOG IN "..."

[MODE ANSI]
START REPORT name

[TO {file|PIPE program|PRINTER
|

CONVERTIBLE

}]
MOVE WINDOW
NEED n LINES
NEXT FIELD "fieldname"

NEXT FORM NEXT OPTION "optname"
OPEN cursor [USING varlist]
OPEN FORM name FROM "filename"
OPEN SESSION id TO DATABASE db

[USING user [PASSWORD pwd]]
OPEN STATUSBOX name
OPEN WINDOW name AT row, col

WITH {r ROWS, c COLUMNS
| FORM "file"}

[ATTRIBUTE(attlist)]
OPTIONS {MESSAGE LINE line

|PROMPT LINE line
|COMMENT LINE line
|ERROR LINE line
|FORM LINE line
|INPUT {[NO] WRAP}
|INSERT KEY key
|DELETE KEY key
|NEXT KEY key
|PREVIOUS KEY key
|ACCEPT KEY key
|HELP FILE "file"
|HELP KEY key
|INPUT ATTRIBUTE(attlist)
|DISPLAY ATTRIBUTE (attlist)}
[,...]

OUTPUT TO REPORT name(exprlist)
PAUSE "charexpr"
PREPARE id from "charexpr"
PRINT exprlist
PRINT FILE "filename"

PRINT IMAGE "name"

PROMPT displaylist FOR [CHAR] var
[HELP n]
[ON KEY (keylist)

statement
...

...
END PROMPT]

PUT cursor FROM varlist
RECOVER TABLE name
RENAME DATABASE name TO newname
RENAME COLUMN table.oldcol TO newcol
RENAME TABLE oldname TO newname
RESIZE ARRAY name, size
EXIT REPORT
RETURN exprlist
REVOKE { tabpriv ON tabname

| CONNECT | RESOURCE | DBA}
FROM {PUBLIC | userlist

ROLLBACK WORK
ROLLFORWARD DATABASE name
RUN command [RETURNING n

|WITHOUT WAITING]
SCROLL {fieldlist| screenrec.*}[,...]

{UP|DOWN}[BY n]
SELECT sellist [INTO varlist] FROM collist

[joinclause] [fromclause]
[groupclause [havingclause]]
[orderclause]

SELECT USING linkid
SET PAUSE MODE OFF
SET PAUSE MODE ON
SET CURSOR
SET SESSION TO name
SHOW MENU menu USING handler

[FROM "file"]
SHOW OPTION "optname"
SHOW WINDOW name

SKIP n LINE[S]

SKIP BY nval
SKIP TO nval

SKIP TO TOP OF PAGE
SLEEP n
SQL sqlstatement [,...] END SQL

55

6.5. AUBIT4GL QUICK REFERENCE CHAPTER 6. 4GL LANGUAGE

SET EXPLAIN OFF
SET EXPLAIN ON
SET ISOLATION TO COMMITTED READ
SET ISOLATION TO CURSOR STABILITY
SET ISOLATION TO DIRTY READ
SET ISOLATION TO REPEATABLE READ
SET LOCK MODE TO NOT WAIT
SET LOCK MODE TO WAIT

SET SQL DIALECT TO "{INFORMIX|ORACLE|...}"
START EXTERNAL FUNCTION

START REPORT name
[TO {"filename"|PIPE program|PRINTER}]

STOP ALL EXTERNAL
TERMINATE REPORT
UNCHECK MENUITEM name
UNCHECK MENUITEMS name

UNLOAD TO filename selectstatement
UNLOCK TABLE name
UPDATE tabname SET

{colname = expr [,...]
|{(collist}|table.*|*}=

{(exprlist)| record.*}}
[WHERE {condition|CURRENT of cursor}

UPDATE STATISTICS
UPDATE STATISTICS FOR TABLE name

UPDATE USING linkid
USE packagename
USE SESSION name

VALIDATE var LIKE collist
WHILE boolean

[statement| EXIT WHILE | CONTINUE WHILE]...
END WHILE

6.5.12 Report Syntax
REPORT repname(arglist)

definestatement ...
[OUTPUT

[REPORT TO
{file|PIPE program|PRINTER}]

[LEFT MARGIN n]
[RIGHT MARGIN n]
[TOP MARGIN n]
[BOTTOM MARGIN n]
[PAGE LENGTH n]

[ORDER [EXTERNAL] BY sortlist]
FORMAT

{ EVERY ROW
| {[FIRST] PAGE HEADER

|PAGE TRAILER
|ON EVERY ROW
|ON LAST ROW
|{BEFORE|AFTER} GROUP OF argvar}

statement
...
[...]}

END REPORT

6.5.13 Report Statement Syntax
NEED n LINES
PAUSE "string"
PRINT [[exprlist][;]| FILE "filename"]
SKIP {expr LINE[S]| TO TOP OF PAGE}

6.5.14 Report Expressions
COLUMN expr

[GROUP]{COUNT(*)|PERCENT(*)
|{SUM|AVG|MIN|MAX}(expr)}
[WHERE expr]}

DATE
LINENO
PAGENO
TIME
WORDWRAP

6.5.15 PDF Report Syntax
PDF reports are an Aubit 4GL extension.

• nval means an numeric expr followed by 1 of the fol-
lowing units:

POINTS, INCHES, MM, or nothing (which means char
spaces). Example: 2.54 mm

PDFREPORT name(arglist)
definestatement ...

[OUTPUT
[REPORT TO

{file|PIPE program|PRINTER}]
[LEFT MARGIN nval}
[RIGHT MARGIN nval]
[TOP MARGIN nval]
[BOTTOM MARGIN nval]
[PAGE LENGTH nval]

[ORDER [EXTERNAL] BY sortlist]
FORMAT

{ EVERY ROW
| {[FIRST] PAGE HEADER

|PAGE TRAILER
|ON EVERY ROW
|ON LAST ROW
|{BEFORE|AFTER} GROUP OF argvar}

statement| pdfstatement
...
[...]}

END PDFREPORT

6.5.16 PDF Report Expressions

COLUMN nval
reportexpression

6.5.17 PDF Statements

PRINT IMAGE blobvar AS
"{GIF|PNG|TIFF|JPEG}"
[SCALED by x.n, y.n}

SKIP {BY|TO} nval
CALL PDF_FUNCTION(arglist)

6.5.18 PDF_FUNCTION arglists
There are many libpdf functions. For a full list look at the
PDFlib documentation. Here are some useful examples:

56

6.6. BUILTIN FUNCTIONS CHAPTER 6. 4GL LANGUAGE

"set_font_name", "{Times-Roman|Helvetica| ..}"
"set_font_size", n
"set_parameter", "{underline|...}", "{true|false|...}"

Note: Font names are case sensitive.

6.6 Builtin Functions

Informix 4GL has a set of 40 or more functions built in to
the language. Aubit4GL implements all of these.

Aubit4gl also implements a few functions to make the com-
piler compatible with programs written for D4GL.

Finally Aubit4GL has added some builtins of its own to al-
low you to exploit Aubit4GL’s special features such as GUI
interfaces, different database engines, etc.

6.6.1 Standard 4GL Builtin Func-
tions

The following functions in 4GL work in Aubit4GL:

Function Comment
arg_val(n) returns a string
arr_count() returns smallint
arr_curr() returns smallint
downshift(s) returns string with

chars downshifted to
lowercase

err_get(n) returns a string
err_print(n) displays a string
err_quit(n) displays a string then

exits
errorlog(s) logs message s to logfile
fgl_drawbox(h, w, y, x [,clr])
fgl_getenv(s) returns string
fgl_keyval(s) returns integer code
fgl_lastkey() returns integer code
length(s) returns smallint
num_args() returns smallint
scr_line() returns smallint
set_count(n)
showhelp(n) displays help message n
sqlexit(n) returns 0, after closing

connection to database
startlog(s)
upshift(s) returns string with

chars upshifted to
uppercase

6.6.2 Standard 4GL Operators

The following functions are described by Informix 4GL as
builtin operators. They work in Aubit4GL:

Operator Comment
ascii(n) returns a char,

e.g. ascii(64) returns
’A’

date(s) returns a date
date returns a string

e.g. Wed Aug 15 2006
day(d) returns 1..31
extend(d or dt, format) returns a date or date-

time
field_touched(rec.field) returns TRUE or

FALSE
get_fldbuf(rec.field) returns string contents

of field
hex(n) returns string e.g.

0x0000001c
in()
infield(rec.field) returns TRUE or

FALSE
mdy(m,d,y) returns date from args

month, day, year
month(d or dt) returns 1:12
ord(c) returns smallint
time returns string
today returns date
year(date) returns smallint

6.6.3 D4GL Builtin Functions

The following are do-nothing functions which allow 4J’s
D4GL programs to compile:

Function Comment
ddeconnect()
ddeexecute()
ddefinish()
ddefinishall()
ddegeterror()
ddepeek()
ddepoke()

57

6.7. FORM SYNTAX CHAPTER 6. 4GL LANGUAGE

6.6.4 Aubit Builtin Functions
Function Return Values
_variable(name) pointer to object (e.g.

cursor, form, window,
etc)

abs(n) absolute value of n
a4gl_get_info("o","id","p") See below
a4gl_get_page()
a4gl_get_ui_mode() 0|1 (0=TUI, 1=GTK)
a4gl_run_gui()
a4gl_set_page()
a4gl_show_help(n)
dbms_dialect() "INFORMIX"|"POSTGRES"|...
fgl_buffertouched(s) TRUE|FALSE
fgl_dialog_get_buffer() string
fgl_dialog_getfieldname() string
fgl_dialog_setbuffer(value)
fgl_dialog_setcurrline(n)
fgl_dialog_setkeylabel("key","label")
fgl_getkey_wait(n)
fgl_setkeylabel("key","label")
fgl_prtscr()
fgl_scr_size(srec) returns int
fgl_set_arr_line(n)
fgl_keysetlabel("key","label")
fgl_set_scrline(n)
fgl_strtosend(s) returns string
fgl_winmessage(s)
load_datatype(s)
set_window_title(s)
sqrt(n) returns square root of n
winexec(s)
winexecwait(s)

6.6.5 a4gl_get_info()
Synopsis: a4gl_get_info("object", "id", "property")

where "object" in ("Form"|"Window"|"Connection"|"Statement")
and "id" is the quoted variable name of instance of
the object
and property is an element of the set of properties
of the object as follows:

In the properties below, replace the % with a value 1 ..
maxelement.

6.6.5.1 Connection

Synopsis: a4gl_get_info("Connection", "", "Database")

Database in the only property available. The id argument
is ignored.

6.6.5.2 Form

Form Property Return Value
Database char
Delimiters char
ScreenRecordCount int
ScreenRecordName% int
AttributeCount int
CurrentField int
Width int
Height int
Field% long?
ScreenName% char
TableName% char
AliasName% char
FieldType% char
FieldSize int
FieldBytes int
FieldDets long
Screens long

6.6.5.3 Statement

Atatement Property Return Value
NoColumns int
NoRows int
Name% char
Type% char
Scale% int
Nullable% int
Length% int

6.6.5.4 Window

Window Property Return Value
Height int
Width int
BeginX char
BeginY char
Border int
Metrics int,int,int,int (x, y, h,

w)

6.7 Form Syntax
DATABASE

{database|FORMONLY}[WITHOUT NUKK INPUT]
SCREEN
{

text[tag]
...

}
[TABLES name [,...]]
ATTRIBUTES

tag=tagdescr
...

[INSTRUCTIONS
[DELIMITERS "fl"
[SCREEN RECORD name[[n]]

({tablename.*
| tabname.colname THRU tabname.colname

| tabname.colname}[,...])]]

In the SCREEN statement, the {} and [] are literal and do
not indicate optional syntax.

6.7.1 Tag Description
tag=[table.]column[, attrlist];
tag=FORMONLY.field

[TYPE [type|LIKE table.col]]
[NOT NULL][, attrlist];

A tag’s attrlist is a set of values:

AUTONEXT, COLOR=color [WHERE boolean],
COMMENTS="string", DEFAULT="value",
DISPLAY LIKE "table.col", DOWNSHIFT,
FORMAT="string", INCLUDE=(list),
NOENTRY, PICTURE="string", PROGRAM="name",
REQUIRED, REVERSE, UPSHIFT, VERIFY,
VALIDATE LIKE table.col, WORDWRAP [COMPRESS]

6.7.2 Aubit 4GL GUI Attributes

The following Widgets can be used in an Aubit4GL GUI
form (runnable only under GUI or HL_GTK)

58

6.8. AUBIT4GL BUILTINS CHAPTER 6. 4GL LANGUAGE

tag=FORMONLY.field,
WIDGET={BUTTON|CHECK|COMBO|ENTRY

|DEFAULTS|LABEL|PIXMAP|RADIO
|TEXT} [CONFIG="guiattr=’value’ [;...]"]

Each widget may or must be given a set of GUI at-
tributes:

BUTTON [CONFIG="LABEL=’label’"| "IM-
AGE=’file.xpm’"]

CHECK [CONFIG="LABEL=’label’" ;
"VALUE=’value’"]

COMBO {CONFIG="LIST=item1,item2[,...]}
ENTRY [CONFIG="MAXCHARS=n"]
DEFAULT [CONFIG="MAXCHARS=n"]
LABEL {CONFIG="CAPTION=’string’"}
PIXMAP {CONFIG="IMAGE=’file.xpm’"}
RADIO {CONFIG="NUM=n;

L1="label1";V1="value2" ;
L2="label2"; V2=value2;
...
Ln="labeln"; Vn=valuen}

TEXT [CONFIG="MAXCHARS=n"]
any [CONFIG="WIDTH=xchars;HEIGHT=ylines"]

6.8 Aubit4GL Builtins

6.8.1 a4gl_get_info()

This function is an Aubit4GL extension. It is used to obtain properties from opened forms, windows, cursors (not imple-
mented yet), or from prepared statements, or from the current connection.

6.8.1.1 Synopsis
let h = a4gl_get_info("Window","mywin","Height")
let dbname = a4gl_get_info("Form","myform","Database")
let ncols = a4gl_get_info("Statement", "pquery", "NoColumns")

6.8.1.2 Input Parameters

The function always takes 3 parameters:

1. Object type: a char value: 1 of

(a) "Form"

(b) "Window"

(c) "Connection"

(d) "Statement"

(e) "Cursor" (Not yet implemented)

2. Object pointer: the quoted variable id of the object (window, form, or whatever). In the case of parameter 1 being
"Connection", this parameter is needed but ignored.

3. Property Name: e.g. "Database" or "Height". The list of acceptable properties depends on the object type of
parameter 1.

59

6.8. AUBIT4GL BUILTINS CHAPTER 6. 4GL LANGUAGE

6.8.1.3 Return value(s)

The return value is usually a single value (char, integer, or long) but 4 integers are returned if you invoke the call:

call a4gl_get_info("Window", "mywin", "Metrics")
returning x, y, h, w

An example calling sequence:

define l_retval char(64)
open window mywin at 2,3 with form "myform"
let l_retval = a4gl_get_info("Window","mywin","Height")

In the above example, we are asking Aubit4GL to tell us the value of the Height property of the window mywin.

It is OK to assign the return value to a char variable (as in our example) because then 4GL will humour you by coercing
numeric return values to type char.

6.8.1.4 Properties

Replace a trailing % with an index in the range 1 .. n where n is the number of columns or records or fields or whichever
is appropriate.

6.8.1.5 Form Properties

Use 1 of the Form Properties below when calling:

open myform from "myform"
call a4gl_get_info("Form", "myform", ?) returning ...

? will be one of:

Form Property Return Type Comment
Database char may be "formonly"
Delimiters char usually "[]"
ScreenRecordCount int
ScreenRecordName% char % is 1 of 1 .. ScreenRecordCount
FieldCount int
FieldName% char % is 1 of 1 .. FieldCount
AttributeCount int
CurrentField int
Width int
Height int
Field% long?
ScreenName% char
TableName% char
AliasName% char
FieldType% int
FieldSize% int
FieldBytes% int
FieldDets% long
Screens long

6.8.1.6 Statement Properties

Use 1 of the following Statement Properties when calling:

let l_query = "select * from customer"
prepare pquery from l_query
call a4gl_get_inf("Statement", "pquery", ?) returning ...

? will be 1 of:

Statement Property Return Type Comment
NoColumns int
NoRows int
Name% char
Type% char
Scale% int
Nullable% int 0 = false, 1 = true
Length% int

60

6.8. AUBIT4GL BUILTINS CHAPTER 6. 4GL LANGUAGE

6.8.1.7 Window Properties

Use 1 of the following Windo Properties when calling

open window mywin at 2,3 with form "myform"
call a4gl_get_info("Window", "mywin", ?) returning ...

Property Return Type(s) Comment
Height int
Width int
BeginX int
BeginY int
Border int 0=no, 1=yes
Metrics int,int,int,int h,w,x,y

6.8.1.8 Connection Properties

The only property you can ask for is "Database”. Parameter 2 is needed but ignored when you make the call:

let l_dbname = a4gl_get_info("Connection","","Database")

Aubit4GL will return the Database name of the current connection (if you have executed a 4GL database statement or a
connect statement).

Note: There is a bug in versions of Aubit4GL versions up to 0.50.16 which prevents the above call from working. This is
fixed in later versions.

6.8.1.9 Cursor Properties

The implementation of the "Cursor" set of calls to a4gl_get_info() is not yet done.

6.8.2 Comments
• The Type and Property parameters are case insensitive. e.g. "form" works as well as "Form", "database" is equivalent

to "Database" etc.

6.8.3 Example
The following snipped is a working example of how the Properties with the trailing %s work. It depends on your having
the traditional Informix stores database accessible:

database stores
main

define l_sql char(64)
define i, n int
define l_namecol char(6)
define la_name array[30] of char(64)
let l_sql = "select * from customer"
prepare p_sql from l_sql
let n = a4gl_get_info("Statement","p_sql","NoColumns")
for i = 1 to n

let l_namecol = "Name", i using "< <"
let l_namecol = l_namecol clipped
let la_name[i] = a4gl_get_info("Statement", "p_sql", l_namecol)
display i, ":", la_name[i]

end for
end main

When you compile and run this, the output should be:

1:customer_num
2:fname
3:lname
4:company
5:address1
6:address2
7:city
8:state
9:zipcode

10:phone

61

6.8. AUBIT4GL BUILTINS CHAPTER 6. 4GL LANGUAGE

Note that we supplied the "Name%" as parameter 3 by constructing the values: "Name1", "Name2", ..., "Name10" within
the FOR loop.

You can see that code like the above could be used in a Dynamic SQL application to discover the columns and their
properties returned by an SQL query entered by the user at runtime. You can use these properties to label and format
appropriately the rows returned by the cursor statement.

62

Chapter 7

Help system

7.1 Help message source file
Create your help files with a .msg extension using a text editor (e.g. vi)

A sample file:

.1
This is help message 1
.2
This is help message 2

7.2 Compiling help files
The syntax for compiling a help file (say myhelp.msg) into a binary help file (say myhelp.iem) is:
amkmessage myhelp.msg myhelp.iem
or
amkmessage myhelp.msg > myhelp.iem

Note that the syntax here is inconsistent with fcompile and mcompile in that you must supply the name (including suffix)
of the target binary file. This is consistent with Informix’s mkmessage program which has the same syntax.

7.3 help in programs

7.3.1 Within 4GL
CALL showhelp(3)

will display message number 3 from the current helpfile on the screen help line.

7.3.2 At runtime
The user presses the help key (default = CTRL-W) in any implemented command (Currently only menus have help
support)

7.4 Decompiling
The command unmkmessage can be used to decompile an Informix compiled help file (usually with a .iem suffix) as follows:

unmkmessage myhelp.iem myhelp.msg

or

unmkmessage myhelp.iem > myhelp.msg

If you omit the 2nd filename, the unmkmessage program will output to the standard output stream (by default , your
screen).

The unmkmessage program is useful when you lose or corrupt the source helpfile but still have the original binary.

63

7.5. COMPATIBILITY CHAPTER 7. HELP SYSTEM

7.5 Compatibility
The helpfile compiled by amkmessage is the same format as the IBM-Informix mkmessage program and the helpfiles will be
compatible both source and binary.

7.6 mkmess
Note that amkmessage replaces the mkmess program used by earlier versions of Aubit 4GL. The 2 programs are incom-
patible. The older mkmess created binaries of a different format from the standard Informix .iem files.

64

Chapter 8

SQL Conversion

Aubit4GL allows you to connect to DBMSes (database management systems) from various vendors, as long the connection
is via the SQL command language. Unfortunately, the syntax of the SQL language can differ considerably from one vendor
to another, and often valid syntax for one DBMS fails when executed against some other DBMS. One way around this
is to maintain different versions of your application, eg. one for use with Informix, another for running against Oracle,
another for PostgreSQL, and so on. Another way is to replace each SQL command in your source code with a number of
alternatives in a case statement, depending on the target database type. Either way, your code will be difficult to maintain
and harder to read.

Aubit4GL resolves this by providing a module that lets you write code using just one version or "dialect" of SQL, and have
this converted into the correct form for whatever database you connect to at run-time.

In order to do this, Aubit4GL needs to know the following:

• the source SQL dialect that your source code is written in

• the target SQL dialect expected by the currently connected DBMS

• rules on how to convert SQL commands between source and target forms.

8.1 Source SQL dialect
By default, the compiler assumes SQL is written using standard Informix syntax.

This can be changed by setting the environment variable A4GL_SQLDIALECT, or by setting the value of SQLDIALECT in the
/etc/opt/aubit4gl/aubitrc file.

You can also change it at run-time using the SET SQL DIALECT command eg.
SET SQL DIALECT TO ORACLE

This will cause all subsequent statements to be treated as if they were written using Oracle syntax.

Note - the 4GL compiler is not guaranteed to handle commands using non-Informix syntax. If the compiler cannot
understand a particular command, simply place it in a char variable (string), PREPARE it, and EXECUTE it.

8.2 Target SQL dialect
The database connection driver will inform Aubit4GL at run-time which dialect of SQL it speaks, so you do not have to
configure this explicitly.

8.3 Configuration files
The syntax of an SQL command is converted from its source dialect to the DBMS’ native dialect, by applying a number
of transformations one after another on the SQL text.

For example, consider the steps taken to get the following Informix SQL statement to run correctly with PostgreSQL:

select last_name, first_name[1], (today-birthday)/365 age
from client
where last_name matches "M*"

65

8.4. CONVERTING SQL SCRIPTS CHAPTER 8. SQL CONVERSION

1. replace double quotes with single quotes

2. replace matches with the regular expression operator ~

3. use the function substr() instead of subscripting with []

4. replace the word today with date(now())

5. insert the word "AS" before the column alias age

The result is:

select last_name, substr(first_name,1,1), (date(now())-birthday)/365 AS age
from client
where last_name ~ ’^M.*’

Special configuration files are used to indicate what conversions are needed.

They are located in the directory /opt/aubit4gl/etc/convertsql (this can be changed by setting the environment variable
A4GL_SQLCNVPATH to an alternative location).

There is one file for each combination of source and target dialect, each file being named as source-target.cnv. For example,
the rules for translating from Informix to PostgreSQL are in a file called INFORMIX-POSTGRESQL.cnv, in which the
conversion rules for the above example are given as:

DOUBLE_TO_SINGLE_QUOTES
MATCHES_TO_REGEX
SUBSTRING_FUNCTION = substr
REPLACE today = date(now())
COLUMN_ALIAS_AS

8.4 Converting SQL scripts
Many 4GL programmers keep script files of SQL commands to be run through SQL command interpreters like isql, psql,
etc., rather than via a 4GL program.

A command line utility, convertsql is available to convert these as well.

You may have to compile this program from source. Go to /opt/aubit4g/tools/convertsql, and follow the instructions in
README.txt.

For example, to convert a file full of Informix SQL commands into SapDB compatible commands, you might execute:

convertsql INFORMIX SAPDB < mystuff.sql > mystuff2.sql

8.5 Conversion file syntax
The file contains a series of conversion directives, one to a line, with the following formats:

8.5.1 Simple directives
Simple directives take no arguments:

• DOUBLE_TO_SINGLE_QUOTES Change double quotes (") to single quotes (’) around literal strings.

• MATCHES_TO_LIKE Change Informix_style ’matches’ clause to one using ’like’, and change * and ? to % and
_ respectively. eg: matches ’X?Z*’ -> like ’X_Z%’

• MATCHES_TO_REGEX Similar to ’matches-to-like’ but uses the Postgres style regular expression syntax, eg:
matches ’X?Z*’ -> ~ ’^X.Z.*’

• TABLE_ALIAS_AS Insert the word "as" before table alias names in a ’from’ clause eg: from ..., table1 t1, ... ->
from ..., table1 as t1, ...

• COLUMN_ALIAS_AS Insert the word "as" before column/expression alias names in a ’select’ clause eg: select ...,
sum(amount) amt, ...-> select ..., sum(amount) as amt, ...

• ANSI_UPDATE_SYNTAX Convert Informix-style "update ... set (..,..) = (..,..) " to the ANSI standard format
"update ... set ...=..., ...=... " eg. update mytable set (col1,col2,col3) = ("01", "X", 104) where ...->update mytable
set col1="01", col2="X", col3=104 where ...

• CONSTRAINT_NAME_AFTER Move the constraint name in a constraint command to after the constraint defi-
nition, eg: ... constraint c_name unique ->... unique constraint c_name

• CONSTRAINT_NAME_BEFORE Move the constraint name in a constraint command to before the constraint
definition, eg: ... unique constraint c_name -> ... constraint c_name unique

66

8.5. CONVERSION FILE SYNTAX CHAPTER 8. SQL CONVERSION

8.5.2 Complex Directives
The following directive takes an argument (in the rules below, replace the word "string" with the appropriate values):

• SUBSTRING_FUNCTION = string Change Informix-style string subscripting to a function call, Replace ’string’
with the name of the sql function. eg. where ... foo[3,5] = -> where ... substr(foo,3,3)

8.5.3 REPLACE directives
Search and replace is not case-sensitive. For legibility, lower case is used in the rules for search/replace strings to distinguish
them from the keywords (in upper case).

You may leave the replacement string (after the = sign) blank. This will have the effect of removing the matched string
from the converted output.

• REPLACE before = after Replace any occurrence of the string ’before’ with ’after’, eg.
REPLACE rowid = oid
REPLACE current year to second = sysdate
REPLACE today = date(now())

• REPLACE_EXPR before = after Replace only if the ’before’ text is found in an expression or where an expression
is allowed, such as in a where clause or a select clause. eg.
REPLACE_EXPR sysdate = current year to second
REPLACE_EXPR today = date(now())

• REPLACE COMMAND before = after Replace, but only if the whole SQL statement matches the ’before’ string
eg.
REPLACE_COMMAND set isolation to dirty read =

The example above has the effect of completely erasing the command.

Full list of available settings :

ADD_CASCADE

ADD_SESSION_TO_TEMP_TABLE

ANSI_UPDATE_SYNTAX

CHAR_TO_DATETIME

CHAR_TO_INTERVAL

COLUMN_ALIAS_AS

CONSTRAINT_NAME_AFTER

CONSTRAINT_NAME_BEFORE

DATETIME_EXTEND_FUNCTION

DOUBLE_TO_SINGLE_QUOTES

DTYPE_ALIAS

ESQL_AFTER_DELETE

ESQL_AFTER_INSERT

ESQL_AFTER_UPDATE

ESQL_UNLOAD

ESQL_UNLOAD_FULL_PATH

FAKE_IMMEDIATE

FULL_INSERT

IGNORE_CLOSE_ERROR

IGNORE_DTYPE_VARCHAR_MIN

IGNORE_OWNER

INSERT_ALIAS

67

8.5. CONVERSION FILE SYNTAX CHAPTER 8. SQL CONVERSION

INTERVAL_EXTEND_FUNCTION

LIMIT_LINE MATCHES_TO_GLOB

MATCHES_TO_LIKE

MATCHES_TO_REGEX

MONEY_AS_DECIMAL

MONEY_AS_MONEY

NO_DECLARE_INTO

NO_FETCH_WITHOUT_INTO

NO_ORDBY_INTO_TEMP

NO_OWNER_QUOTE

NO_PUT

NO_SELECT_WITHOUT_INTO

NO_SERIAL_START_VALUE

OMIT_INDEX_CLUSTER

OMIT_INDEX_ORDER

OMIT_NO_LOG

QUOTE_OWNER

RENAME_COLUMN_AS_ALTER_TABLE

RENAME_TABLE_AS_ALTER_TABLE

REPLACE

REPLACE_COMMAND

REPLACE_EXPR

REPLACE_SQLCONST

REPLACE_SQLFUNC

SELECT_INTO_TEMP_AS_CREATE_TEMP_AS

SELECT_INTO_TEMP_AS_DECLARE_GLOBAL

SIMPLE_GRANT_SELECT

SIMPLE_GRANT_UPDATE

SQL_CURRENT_FUNCTION

STRIP_ORDER_BY_INTO_TEMP

SUBSTRING_FUNCTION

SWAP_SQLCA62

TABLE_ALIAS_AS

TEMP_AS_DECLARE_GLOBAL TEMP_AS_TEMPORARY

USE_BINDING_FOR_PUT

USE_DATABASE_STMT

USE_INDICATOR

68

Chapter 9

Make

make is a command generator. It is used to automate the task of recompiling and relinking programs when you have altered
a source file. Typically you create a file called Makefile or makefile (Makefile is preferred as it sorts higher in an ls listing
of directory files) which contains information about which files depend on which others and lists the commands needed to
create the object modules (.o files) and executable binaries.

Once you have your Makefile correctly written, whenever you want to recompile a program after changing a file, simply
type:

make

and the minimum necessary compilation and linking will be done for you to produce the altered executable.

9.0.4 GNU make
This chapter gives some advice and examples for writing Makefiles for use with Aubit4GL. For documentation, ignore the
O’Reilly book (which does not cover GNU make) but go to the www.gnu.org website and read the online documentation
there.

9.1 Makefiles
The following advice assumes that you are using GNU make (which has several constructs not available in other older
versions of make).

9.1.0.1 Include File

Here is a sample set of definitions for an Aubit4GL Makefile:

---- Declare the following suffixes meaningful to make
.SUFFIXES: .afr .per
.SUFFIXES: .ao .4gl
.SUFFIXES: .iem .msg
---- Pattern rules for the above suffixes
%.afr : %.per # equivalent to the old make form .per.afr:
(TAB) aubit fcompile $<
%.ao : %.4gl
(TAB) aubit 4glc -c $?
%.iem : %.msg
(TAB) aubit amkmessage $< $@

These definitions should be put into a separate file (say makedefs) in the parent directory. You can then include the
makedefs file in the Makefile itself with the statement:

include ../makedefs

The benefit of using include files in this way is that you avoid repetition of the included elements, and maintenance is
reduced to a single file.

69

9.1. MAKEFILES CHAPTER 9. MAKE

9.1.0.2 Make glossary:

$? = all the newer prerequisites (which need recompiling)

$@ = the current target (left of the : in the prereq line)

$< = the first of the newer prerequisitess. This is suitable when the command can only compile 1 file at a time (like
aubit fcompile).

$^ = all the prereqs (not just the newer ones). Use this when you need to relink all the object modules.

$* = the stem (matching % in prereq line).

% = wildcard matches any sequence of zero+ chars. Note: the 2nd and subsequent % is the same sequence that the 1st
% matched.

$?, $(?), and ${?} are all the same variable. If a variable has more than a 1 char identifier you must enclose the identifier
in () or {}s

A modifier D, or F, can be used with $?, $@, $<, or $^ to return just the D(irectory part) or the F(ile part) of the filename.

e.g. if $? = ../lib/options.4gl then

$(?D) = ../lib and $(?F)= options.4gl

Note that these D and F modifiers are defined in make’s built-in rules as:

?D=$(patsubst %/,%,$(dir $?))
?F=$(not-dir $?)
etc

The $(dir arg) and $(not-dir arg) macros are available for use with any variables whether user defined or builtin. Note
that the $(?D) definition removes the trailing slash from the directory path (substituting %/ with %)

9.1.0.3 Makefile Example
#
GPATH = ../lib ../per
.PHONY: all
all: prog prog.iem prog.afr proga.afr prog.iem
srcfiles = prog0.4gl prog1.4gl prog2.4gl ../lib/options.4gl
objfiles = $(srcfiles:.4gl=.ao)
prog : $(objfiles)
(TAB) aubit 4glc -o $@ $^
Note the subtle difference here $^ (all prereqs are needed)
$? would link only the newly compiled objects

The example file above is for a program consisting of 4 modules:

• prog0.4gl (containing the global ... end global statements)

• prog1.4gl (containing the main ... end main function and some general purpose functions)

• prog2.4gl (containing table specificated generated functions for Query, Add, Update, Delete, etc

• options.4gl for directing report output.

This structure was common with Fourgen generated programs.

9.1.1 Pattern Rules
Rules in Makefiles take the form:

target : prereq1 [[prereq2] ...]
(TAB) command1
...

Note that the invisible tab is a crucial part of the syntax of Make. These sometimes get corrupted into spaces in ftp
transfers - so be careful!. A make rule specifies that the target files depend on the listed prerequisite files and supplies the
command that make should execute whenever a prerequisite file is newer (that is modified more recently than) the target
file(s).

70

9.1. MAKEFILES CHAPTER 9. MAKE

9.1.2 Make variables
In Makefiles like the above, we use variables srcfiles and objfiles to minimise the work of changing definitions. Note
that the assignment to objfiles is done using a substitution expression (.ao replaces .4gl from the srcfiles list). If we add
another library module to the srcfiles list (say ../lib/names.4gl), no other change need be made to the Makefile.

Traditionally we have used uppercase for variable names in Makefiles. The GNU people now recommend that you use
lowercase for better readablity.

9.1.3 GPATH and VPATH
Normally make will search only the current directory. If you want to force it to look elsewhere then you can set GPATH
or VPATH to a list of search directories.

Directories listed in GPATH will we searched and the targets compiled into the remote directory.

Directories listed in VPATH will be searched but the targets compiled into the current directory.

In the example Makefile, options.ao will be compiled into ../lib/options.ao

9.1.4 .PHONY
Nearly all Makefiles have phoney targets: all, clean, install, and maybe others. GNU make allows you to declare these
phoney targets (i.e. targets which are not real files to be built by commands). The benefit of doing this is the .PHONY
declaration tells make to ignore any files called clean, install. etc. Omitting the .PHONY declaration might result in an
accidentally created file called install, preventing make from executing the install commands.

9.1.5 Implicit rules
Note in the example that there is no specific rule for the help file and forms. These will be built by make using the make
definitions we put into the include file. The targets: prog.iem, prog.afr, and proga.afr will be compiled using the %.iem :
%.hlp and %.afr : %.per pattern rules in ../makedef.

9.1.6 Syntax
comments the hash symbol # comments out the rest of the line (i.e make ignores what follows the #).

quotes both single quotes ’ and double quotes " are treated literally. Do not use them in Makefiles. In shell programs
you use quotes to inhibit interpretation and the shell strips them from its input. make does not do anything special
to quotes.

longlines break a long line by putting a backslash \ before the end of line. This will tell make to remove the backslash
and the end of line, and interpret the result as a single line.

9.1.7 Debugging make
A botched Makefile can destroy your sourcefiles.

To help debug your Makefiles, use the -n and -p options.

-p will display all the rules (including the builtins) that make is using

-n will cause make not to actually execute the command but display them to the screen

Type the command:

make -np prog

will cause make to display all its definitions and rules, and to display all the commands it would run if you had typed the
command: make progAmake

amake is an x4GL specific set of rules and tools for GNU "make"

71

Chapter 10

amake

10.0.8 Introduction
With Aubit 4gl compiler, compiling small program can be trivial:

aubit 4glpc *.4gl -o myprog
aubit 4glpc *.per
aubit amkmessage myhelp.msg myhelp.iem

Even with extra C code, it’s still simple:

aubit 4glpc *.4gl myccode.c -o myprog -DAUBIT4GL

But, when you want to keep your make files compatible with Informix and 4Js compilers, have multiple program definitions
in one directory, use pre-linked libraries, and be capable of compiling to P-code and C-code for each compiler, take care
of installing and cleaning, it’s not that simple any more.

10.0.9 Summary
When you need to create new make file to compile x4gl programs, you should use rules, headers and footer prototypes
supplied with Aubit 4GL. Utility for running created make files, while not necessary, is also supplied, and can make your
life a little easier.

For existing Informix 4gl and 4Js BDL/D4GL makefiles, I created a conversion system that will first create completely
new set of make files from existing makefile (one per program) and then let you use it, in more or less same way we did
so far, but erase most if not all of existing shortcomings. Old makefiles are preserved, so you can mix and match, if you
really want to, but you won’t need to.

10.0.10 Converting old makefiles

10.0.10.1 prepmake

run "prepmake" in the directory containing old make file, "makefile".

This will create file "makefile.prep" containing instruction needed for dumping program definitions to individual make
files (*.mk). Note: this functionality depends on the fact that your existing makefiles use command "fgllink" or other 4gl
compiler commands somewhere in each defined program target, and list all source files in dependencies. If for any reason
this is not true for some makefile you want to process, look at the script, it should be easy to substitute this with some
other present command.

Next, "prepmake" will first run "touch *.4gl" (to force all targets into thinking they need building) and then "make -f
makefile.prep". This will create one make file for each program defined in makefile.prep, named as <program>.mk, using
script "genmake". Each .mk files will contain definitions of include headers and footers, and names of source files needed
to build that program, and nothing else. Like this:

72

CHAPTER 10. AMAKE

10.0.10.2 example
include header.mki
PROG = P4E
GLOBALS.4gl = P4E.4gl
FILES.4gl = \
${GLOBALS.4gl} \
bankwind.4gl \
ckapwind.4gl \
ckhdwind.4gl \
secufunc.4gl \
vendwind.4gl
FILES.per = ${ALLFORMS.per}
include_footer.mki

10.0.10.3 amakeallo

amakeallo can be ued to rebuild all the .o object files in a Makefile.

10.0.10.4 amakeallf

amakeallf can be used to recompile all the .per form files in a Makefile.

Note: amake knows how to override header.mki, footer.mki, or both. You can also

override anything coming from header, and later, in footer, anything at all.

10.0.11 2. amake
Examples:

aubit amake # build default targets of all .mk files in ./

aubit amake -k -all install # install all programs, ignore errors

aubit amake P11 aubit -k # build aubit target defined in P11.mk, ignore errors

aubit amake P11 aubit -defaultinclude# build P11 target for Aubit compiler, use includes defined in P11

aubit amake P11 -header myhead.mk # default P11 target, use myhead.mk for header

aubit amake --help for full lost of flags and parameters.

10.0.12 Requests
Tell me if it’s useful for you, if you need help, explanations, changes... If you make generally useful changes, I would like
if you send them back to me. Latest version of these files will always available through Aubit 4gl CVS

10.0.13 Notes
• Most existing makefiles have no idea which file contains GLOBALS definitions; some compilers care, some don’t. I

assumed first source file listed in GLOBALS file, which can be wrong. If you step on this one, you’ll need to find
out manually which one is it actually. I guess it’s more then possible to grep for "END GLOBALS" in "genmake"
if we wanted to do that automatically.

• Some existing makefiles often don’t have any references to form files, and even if they do, they have no idea which
forms belong to which program. By default, I defined that each program needs all forms in current module. It
would be wise to gradually replace this with actual forms needed. I guess that it should be possible to grep that
from "genmake", since there we know all 4gl source files.

• You should consider this as technology demonstration. Some things are probably missing, or incorrect, in rules
definitions and targets. But this is now so easy to fix, since it’s all in one place that I did not worry too much. It
compiled everything I tried. But I don’t consider this finished code. It does what I needed, it may or may not do
that same for you, but again, it’s really easy to do anything in the way this is structured now. You should consult
the "make" manual at http://www.gnu.org/manual/make-3.79.1/html_mono/make.html if you want to play with
existing code.

• All "programs" that are nothing more then hard links, are ignored. This needs to be fixed in existing makefiles
manually, unless someone can explain to me what’s good about linking a program to a different name and then
pretending it’s something else. It won’t work on Windows anyway, so if we want Windows compatibility, we cannot
do it anyway.

• some of functionality depends on recent version of GNU make. If you don’t have it, you’ll need to download it from
http://www.gnu.org. My version was 3.77. Current version as of time of writing was 3.79

73

CHAPTER 10. AMAKE

• Most existing x4gl makefiles don’t have any idea about help files. It should be possible to grep for this in "genmake".

• It’s really easy to add functionality to do local check out, since now you can compile anywhere, even without any
source files in local directory (amake/make will find them if they exist) This is closely related to the way that
serious development should be organized using version control...

• Why one make file for one program? First, when more then one developer is working in same tree, it gives me
the warm fussy feeling. Second, it makes target definitions cleaner, simpler, and easier to debug. Third, you can
checkout your own make file to wherever you want, together with all sources needed for program. Or without them
for that matter.

• Object libraries (.aox in Aubit, .42x in 4js dialect). I guess it should be possible to make attempt in automating
this in "genmake", if we really want it. Related to this is an issue of how different 4gl compilers "strip" unused
functions from executables. D4GL don’t really care, since linking produces only a map file. i4gl does care, and
Querix and Aubit, being C code translators, can easily strip executables.

• why is amake needed: actually, it’s not, you can do "make -f 1.mk 2.mk params" or "make -f *.mk params" just
fine, as long as you keep header and footer includes in each .mk file. It just makes things simpler, more flexible,
and can replace headers on the fly.

10.0.14 Installation
(don’t forget to convert back to UNIX file format if you are receiving this on Windows box; needless to say, scripts will
need "chmod a+x")

These two should go somewhere in the path, but will probably be used only once:

prepmake - sh script to prepare original make file, created"makefile.prep"

genmake - sh script called from prepared makefile to create individual make files

Header will probably be most useful in your program directory, since it can contain module specific definitions, but one
copy of general type should also probably be in /etc or /usr/incl:

header.mki - make file for including from each individual make file. It in turn includes a4gl.mk i4gl.mk q4gl.mk and
d4gl.mk by default.

The Following files are supposed to be completely abstracted, so in /etc or /usr/include they go:

footer.mki - make targets definitions included from each individual makefile.

a4gl.mk - rules for compiling using Aubit 4gl compiler

i4gl.mk - rules for compiling using classic Informix 4gl compiler

d4gl.mk - rules for compiling using 4Js (Informix D4GL) 4gl compiler

q4gl.mk - rules for compiling using Querix 4gl compiler

And finally, this one should be in the path, probably in /bin:

amake - sh script used for executing make process, instead of the "make"command

10.0.15 Credits:
Thanks to Jonathan Leffler for Informix-4gl and 4Js rules, and general concept of how 4gl program should be processed
by make. See www.informix.com/idn

10.0.16 #DEFINE
Note about using #DEFINE-style constructs, like C. There’s nothing built into 4GL, but many people use the Unix "M4"
command successfully. You could also use "cpp".

Stuart Kemp (stuart@cs.jcu.edu.au):

To use the C preprocessor (cpp) in conjunction with GNU make you might use a suffix of ".cpp" on the files you edit, and
then build a Makefile containing:

.SUFFIXES: .4gi .4go .4gl .cpp .frm .per .cpp.4gl:
@echo Make $@ from $< $(CPPDEFS)
@$(CPP) $(CPPDEFS) $< > $@
.per.frm:
@echo Make $@ from $<
@form4gl -s $<
.4gl.4go:
@fglpc $<

Of course, the downside of this is that if you get an error-message when running your .4g[io] program, the line-number
will be that in the .4gl file, not the .cpp file.

74

CHAPTER 10. AMAKE

10.0.17 4GL Makefiles
There are no standard rules for how to organize Makefiles for 4gl. This note attempts to repair this deficiency for both
Unix and NT systems.

10.0.17.1 Makefiles for Classic 4GL on Unix

Assuming that your version of MAKE understands the ’include’ directive, a typical makefile will look rather like the file
described earlier in thisdoccument. If your MAKE does not understand the ’include’ directive, the simplest solution is to
obtain a version of MAKE which does understand them.

One such MAKE is GNU Make, which is widely available on the Internet. See The GNU Project and the Free Software
Foundation (FSF) for more information.

The rules file ’i4gl.mk’ is located in some convenient directory. In the example, $HOME/etc is used, but a centralized
location such as $AUBITDIR/incl, $INFORMIXDIR/etc or $FGLDIR/etc is a reasonable choice. Note that either the
curly brackets or parentheses are required around the name of the environment variable in the makefile.

The macros list the components of the program, and the definitions of the lists avoid replicating names as much as possible,
so that if a file is added, deleted or renamed, only one line in the makefile needs to be changed.

Note too that the current versions of i4gl.mk and d4gl.mk automatically provide definitions for the majority of the derived
files, so the makefile itself does not have to define macros such as FILES.o or FILES.4ec. It must, however, define FILES.4gl
for the I4GL source files, FILES.per for the form source files, and FILES.msg for the help source files, since these macros
are used to define the other macros.

This makefile uses the ’standard’ install script for Unix, and that means it can only install a single file at a time (an silly
design decision, but one which was made so long ago that it cannot readily be changed). Consequently, we have to iterate
over the list of form files. If there was more than one message file, we’d need to do the same for the message files.

The hard work in this makefile is the install and clean process. The actual compilation rules are minimal, occupying just
six non-blank lines. There are some standard targets which are desirable in most makefiles. These include all to build
everything that is needed by default, install to put the software in a location where it can be used, and clean to remove
the debris from the development process.

As another pseudo-standard, if you are working with both Classic 4GL and Dynamic 4GL, or if you are using both p-code
and c-code, it helps to standardize on some extra names. The makefiles illustrated here use:

• aubit Aubit 4gl c-code compilation

• i4gl-ccode Classic 4GL c-code compilation (I4GL)

• i4gl-pcode Classic 4GL p-code compilation (I4GL-RDS)

• d4gl-ccode Dynamic 4GL c-code compilation

• d4gl-pcode Dynamic 4GL p-code compilation

• i4gl Classic 4GL (both p-code and c-code)

• d4gl Dynamic 4GL (both p-code and c-code)

• querix Querix 4gl c-code compilation

These makefiles can also builds the custom I4GL p-code runner that is needed to run the program.

10.0.18 D4GL Makefiles on Unix
The rules for compiling D4GL are similar to the rules for compiling I4GL, but they use a different set of suffixes.

The first target in the makefile is ’default’, and is what will be built if you simply type "make -f d4glonly.make". It is set
up to build just the D4GL p-code program; to build the c-code program too, you have to specify "all" or "d4gl-ccode" on
the command line.

This makefile builds a custom runner for D4GL because the code uses some C code. When you need a D4GL custom
runner, you have to link with it too, so you have to build the custom runner before you try linking the program, and the
dependencies ensure this happens automatically.

The rest of the makefile follows the pattern in the I4GL version, with the changes appropriate to handling D4GL instead
of I4GL.

75

CHAPTER 10. AMAKE

10.0.18.1 I4GL Makefiles on Unix

The actual rules for compiling Informix Classic 4GL are defined in the file i4gl.mk . There are a number of key things to
note about them.

• The rules file does not reset the complete MAKE suffix list. Some versions of the file did, but this leads to problems
when you try to add support for Dynamic 4GL as well; which file should be included first, and why, and so on.
The down-side of being so accommodating is that if there is an intermediate ".c" file left over by a failed I4GL
compilation, then that file will be compiled in preference to the ".4gl". To fix this, you have to nullify the suffix list
and then reinstate the suffixes you want in the correct order (which means preferring the .4gl file to the .c file, and
.ec files to .cfiles). However, it is difficult to write two separate files, i4gl.mk and d4gl.mk, which can be included
in either order, and which don’t repeat each others suffixes, if you also zero the suffix list in both files.
I guess you could solve this if you defined I4GL.SUFFIXES and D4GL.SUFFIXES as macros, and had the line
which re-instates the suffix rules specify both macros, even if one of them was actually empty (as it would be if you
had not already processed the other rules file). A change for next month.

• The rules file does not define any targets, so that you can include it at the top of the makefile without altering the
default target written in the makefile.

• The macro names are very consistent (arguably too consistent and not sufficiently mnemonic).

10.0.18.2 NMAKE

If you have Microsoft Visual Studio or Microsoft Visual C++ on your NT machine, you will have the NMAKE program
available to you. You can use Makefiles patterned on the one shown below (from the D4GLDEMO program). Note that
both the rules and the makefiles are much simpler on NT than on Unix because Classic 4GL is not available on NT, and
neither is the Dynamic 4GL c-code compiler.

Some of the significant differences between MAKE on Unix and NMAKE on NT are:

• NMAKE does not accept ${MACRO}, but only $(MACRO).

• NMAKE does not accept a dot in macro names.

• NMAKE does not recognize ’null suffix’ rules (for converting x.c into x, for example; it would only handle x.c to
x.exe).

• Since there is no D4GL c-code compiler on NT, those rules in d4gl.mk are irrelevant.

• Since there is no I4GL c-code or p-code compiler on NT, the rules in i4gl.mk are irrelevant.

• There is no fglmkrun on NT.

• You have to be very careful about what you do with ’cd’ commands. Typically,you have to do:
cd with && $(MAKE) && cd .. POSIX.1 requires MAKE to accept both ${MACRO} and ${FILE.o}, unlike
NMAKE.

• Since Unix versions of MAKE do accept the notations accepted by NMAKE, it would be possible, and possibly
even sensible, to resign oneself to using the notation accepted by NMAKE in both the Unix and NT versions of
the Classic 4GL and Dynamic 4GL makefiles and make rules. However, that also feels a bit like giving in to the
school-yard bully, and that isn’t really acceptable.

Prepared by: mailto:jleffler@informix.com

Last Updated: 1999-10-08

Edited by AF

10.0.19 Bug in ESQL/C rules:

Compiling ESQL/C code did not work because of macro name mismatches.

Specifically, there’s a line that defines ESQL = ${ESQL_EC_ENV} ${ESQL_EC_CMD} ${ESQL_EC_FLAGS} but
the corresponding macros for compiling ESQL/C code use ${ESQL_EC} rather than ${ESQL}. I concluded that I meant
to define ESQL_EC, not ESQL.

For Aubit 4gl team,

Andrej Falout

76

Chapter 11

A4GL Utilities

11.1 adbschema
Generate a schema file representing tables and or procedures within a database. It can also produce sql scripts (or 4GL
programs) for loading and unloading data to/from a database. This is useful when migrating from one RDBMS to another.

Usage :

adbschema [-noperms] [-fileschema] [-t tabname] [-s user] [-p user] [-r rolename] [-f procname] -d dbname [-ss]
[filename]

-noperms Do not include any GRANT/REVOKE

-fileschema Generate a schema suitable for the FILESCHEMA SQL Module

-U Generate unload statements

-U4GL Generate a 4GL program with unload statements

-L Generate load statements

-L4GL Generate a 4GL program with load statements

A typical example may be (assuming the database being migrated was called customers):

$ adbschema -q -noperms -d customers > customers.sql
$ convertsql INFORMIX POSTGRES < customers.sql > newdb.sql
$ adbschema -q -U4GL -d customers > unloadit.4gl
$ 4glpc unloadit.4gl -o unloadit
$./unloadit
$ adbschema -q -L4GL -d customers > loadit.4gl

(create database in new RDBMS and run the newdb.sql file to create the tables)

$ 4glpc loadit.4gl -o loadit
$./loadit

11.2 afinderr
Usage:

$ afinderr errornumber

This will trawl through all of the message files in the $AUBITDIR/etc directory looking for any help messages associated
with that help number. This is useful because the same error numbers could come from muliple places (eg. either Informix
or Postgres) and hence may well have a different meaning.

77

11.3. ASQL CHAPTER 11. A4GL UTILITIES

11.3 asql
This is an workalike for Informix’s dbaccess program. Several versions are required depending on the target database :

1. asql_g.4ae - Generic interface (For ODBC usage)

2. asql_i.4ae - Compiled using native Informix ESQL/C

3. asql_p.4ae - Compiled using native Postgres ecpg

When the program starts - you’ll be presented with a menu :

78

11.4. AUPSCOL CHAPTER 11. A4GL UTILITIES

The only major difference should be the Utilities menu - this provides access to some features which are present in the
Informix isql tool which are not available in the dbaccess tool.

11.3.1 runforms
This is a simple replacement for the sperform Informix utility which allows you to add, update and remove data from a
table (or tables) via a simple form interface. runforms is used as the ’Run Form’ option in the asql application.

11.4 aupscol
’aupscol’ is a workalike for the Informix-4GL upscol utility. Using this you can specify default attributes and validation
for use when forms are compiled.

79

11.5. P-CODE CHAPTER 11. A4GL UTILITIES

11.5 P-Code
Aubit4GL includes an experimental PCode compiler. This will eventually allow you to compile your code into a portable
bytecode. For now, only single module 4GL programs can be compiled as there is no facility to link 4GL modules. One
interesting feature of the Aubit P-Code compiler is that it emulates the role of a very simplified C compiler. In this way
it is still possible to use embedded C code within your 4GL program and have this work within the runtime environment
(exceptions and limitations apply to the C code which can be embedded!)

Generic 4GL Specific Description
c2pcode c2pcode_fgl Compiles a .c file
checker checker_fgl Dumps the contents of a compiled .c file
runner runner_fgl Runs the resulting file

11.6 configurator
The configurator allows you to view the various settings available within the Aubit4GL suite of programs. A brief summary
is available in Appendix A.

11.7 convertsql
convertsql is a program which uses the SQL conversion rules used internally by the Aubit4GL compiler to convert the
SQL of one RDBMS dialect to another. This is useful for converting existing SQL scripts to run on a different server, for
example, those generated by the adbschema program. The program always reads from the standard input, and writes to
the standard output.

Usage:

convertsql source-sql-dialect target-sql-dialect filename

Note : Currently only ’Informix’ is supported as a source dialect.

11.8 default_frm
default_frm will generate a default form for a table(s) specified on the command line.

Usage

default_frm -d dbname -t tabname [-t tabname ..] [-o outputfile]

80

11.9. FSHOW CHAPTER 11. A4GL UTILITIES

If no output file is specified, then the output will be written to the standard output (ie normally the terminal)

Eg.

11.9 fshow
This is a very simple 4GL application which opens and displays the form specified on the command line. This is very
useful for checking how a form will actually look from within a 4GL program (especially when using the GUI output).

Usage :

$ fshow formname

81

11.10. LOADMAP CHAPTER 11. A4GL UTILITIES

11.10 loadmap
This is a small 4GL application which can take the mapfiles generated by ’4glpc –map’ and load that information into a
database. The sourcecode for this (tools/loadmap/loadmap.4gl) is meant to be a pro-forma for your own loadmap program.

11.11 mcompile
This is the menuhandler menu compiler. Menus created by this are nothing to do with standard 4GL menus, but are
similar to those found in GUI applications. Support for these menus is temporarily suspended.

11.12 mkpackage
This program is for internal use. You can safely ignore it.

11.13 prepmake
A utillity script to convert makefiles to amake format

11.14 decompilers
Aubit4GL allows you to decompile most of the file formats which are compiled’(eg forms). The decompilers available are :

unmkmessage - message/help files

mdecompile - menu files

fdecompile - form files

11.15 Internally used applications

11.15.1 xgen
xgen is used interally as a replacement for the SUN RPC rpcgen program. This takes a ’.x’ description of data structures
and generated the C code required to read and write those structures to disk. Internally, Aubit4GL makes use of .x files
for describing forms, menus, and compiled P-Code.

The code generated by xgen is used by the generic packers to write the data in packed, memory packed, and gzip’d formats.

82

Chapter 12

Aubit4GL Extension libraries

12.1 channel
This library allows simple read/write access to files in a manner similar to that provided by some other 4GL vendors.

12.1.1 Dependencies
None

12.1.2 Function list

12.1.2.1 open_file
open_file(handle,filename,flag)

opens a file and associates ’handle’ as a name for that file. flag is

’u’ - use standard input/output

’r’ - readonly

’w’ - writeonly

’a’ - append

12.1.2.2 open_pipe
open_pipe(handle,cmd,flag)

runs a command and allows reading/writing to that command via a pipe. flag is

’u’ - input and output (*not implemented)

’w’ - write only

’r’ - read only

’a’ - write only (*append is identical to ’write only’ in this context)

12.1.2.3 set_delimiter
set_delimiter(handle,delimiter)

This sets the default field separator for a file

12.1.2.4 close
close(handle)

This closes the handle and associated file

83

12.2. FILE CHAPTER 12. AUBIT4GL EXTENSION LIBRARIES

12.1.2.5 fgl_read*
fgl_read(handle,nvars)

This reads from a file and returns each field as a separate return value. The number of values returned will therefore
depend in the number of fields on each line of the file. This function is not part of the current implementation. As has
been superceded by the ’read’ function.

12.1.2.6 read
read(handle,variable)

or

read(handle,[variable list])

This reads the fields from the file (separated by the delimiter) and put that data into the variables passed to the read
function.

eg. read("file",[var1,var2,var3])

12.1.2.7 write
write(handle,variable)

or

write(handle,[variable list])

eg. write("file",[var1,var2,var3])

This writes the data passed in to the specified file.

12.2 file
This is a library exposing various STDIO functions from the standard C library. Handles are all standard 4GL INTEGER’s.

12.2.1 Dependencies
None

12.2.2 Function list

12.2.2.1 popen

Open a pipe for reading/write

popen(p_command,mode)

12.2.2.2 fopen

Open a file for reading or writing

fopen(filename,mode)

12.2.2.3 ftell

indicate the current position in a file

ftell(handle)

84

12.3. MEMCACHED CHAPTER 12. AUBIT4GL EXTENSION LIBRARIES

12.2.2.4 ferror

Tests if there is an error on a file handle

ferror(handle)

12.2.2.5 fseek

move the current position in a file

fseek(handle,n)

12.2.2.6 fseek_from_end

move the current position in a file, counting backwards from the end of the file

fseek_from_end(handle,n)

12.2.2.7 fsize

get the size of a file

fsize(handle)

12.2.2.8 fgets

read a string line from a file

fgets(handle)

12.2.2.9 feof

test if the position of the end of the file

feof(handle)

12.2.2.10 fclose

close the file associated with the handle

fclose(handle)

12.2.2.11 rewind

move the position back to the start of the file

rewind(handle)

12.3 memcached
This library allows access to memcached servers.

12.3.1 Dependencies
None. A specialized version of libmemcache (originally by Sean Chittenden) is included in the directory. Please see
memcache.c and memcache.h for details

85

12.3. MEMCACHED CHAPTER 12. AUBIT4GL EXTENSION LIBRARIES

12.3.2 Function list

12.3.2.1 mc_new
mc_new()

12.3.2.2 mc_server_add
mc_server_add(lv_mc,lv_host,lv_port)
mc_server_add4(lv_mc,lv_host)

12.3.2.3 mc_add
mc_add(lv_mc, lv_key, lv_val, lv_bytes)
mc_add_str(lv_mc, lv_key, lv_val)

12.3.2.4 mc_replace
mc_replace(lv_mc, lv_key, lv_val, lv_bytes)
mc_replace_str(lv_mc, lv_key, lv_val)

12.3.2.5 mv_req_new
mc_req_new()

12.3.2.6 mv_req_add
mc_req_add(lv_req, lv_key)

12.3.2.7 mv_get
mc_get(lv_mc, lv_req)

12.3.2.8 mc_aget
mc_aget_str(lv_mc,lv_key)
mc_aget_rec(lv_mc,lv_key,lv_optr,lv_size)

12.3.2.9 mv_set
mc_set(lv_mc, lv_key, lv_val, lv_bytes)
mc_set_str(lv_mc, lv_key, lv_val)

12.3.2.10 mv_res_free
mc_res_free_on_delete(lv_res, lv_yesno)
mc_res_free(lv_req, lv_res)

12.3.2.11 mv_stats
mc_stats(lv_mc)

12.3.2.12 mv_delete
mc_delete(lv_mc, lv_key)

12.3.2.13 mc_incr
mc_incr(lv_mc, lv_key, lv_ival)

12.3.2.14 mc_decr
mc_decr(lv_mc, lv_key, lv_ival) mc_free(lv_mc)

86

12.4. PCRE CHAPTER 12. AUBIT4GL EXTENSION LIBRARIES

12.4 pcre
This allows you to use perl style regular expressions within your 4GL program.

12.4.1 Dependencies
pcre - Perl Compatible Regular Expressions http://www.pcre.org/

12.4.2 Function list

12.4.2.1 pcre_text

Returns the matched portion of the string (up to 30 ’portions’ are stored)

pcre_text(i)

12.4.2.2 pcre_match

Indicate if the string ’s’ matches the regular expression ’p’

pcre_match(p,s)

Eg.

import package a4gl_pcre main
if pcre_match("cat|dog","There was an old cat") then

display "Matches to ",pcre_text(1)
else

display "No match"
end if
end main

12.5 pop
This module allows you to download and delete email from a pop3 server.

12.5.1 Dependencies
libspopc - http://brouits.free.fr/libspopc/index.html

12.5.2 Function list

12.5.2.1 popget

Get a portion of the header from a message, the ’From’, To, subject,CC, date or size.

popget(lv_msg,which_info)

12.5.2.2 poperr

Returns the last error message from the POP3 server

poperr()

12.5.2.3 popbegin
popbegin(p_server,p_user,p_password)

begins a session, connecting to the server with the specified username and password

87

12.6. SMTP CHAPTER 12. AUBIT4GL EXTENSION LIBRARIES

12.5.2.4 popnum
popnum()

12.5.2.5 popbytes
popbytes()

12.5.2.6 popmsgsize
popmsgsize(lv_msg)

12.5.2.7 popmsguid
popmsguid(lv_msg)

12.5.2.8 popgetmsg
popgetmsg(lv_msg)

12.5.2.9 popgethead
popgethead(lv_msg)

12.5.2.10 popcancel
popcancel()

12.5.2.11 popend
popend()

12.5.2.12 popdelmsg
popdelmsg(lv_msg)

12.6 smtp
This allows you to send email from your 4GL program. This module is also required if you wish to use ’REPORT TO
EMAIL’ from within your 4GL application.

12.6.1 Dependencies
A patched libsmtp - http://libsmtp.berlios.de.

12.6.2 Function list

12.6.2.1 set_errmsg

Displays the specified message and exits the program

set_errmsg(lv_msg)

12.6.2.2 clear_err

Clears down any active smtp error message/error number

clear_err()

88

12.6. SMTP CHAPTER 12. AUBIT4GL EXTENSION LIBRARIES

12.6.2.3 set_server

Sets the name of the smtp server to use.

set_server(lv_server)

12.6.2.4 get_server

Gets the name of the smtp server to use. If no server has been specified via the set_server function, then the SMTP_SERVER
environment variable will be used instead. If no SMTP_SERVER is specified, ’mail’ is used.

get_server()

12.6.2.5 get_errmsg

Returns the last generated error message.

get_errmsg()

12.6.2.6 start_message

Start a new message session.

start_message(lv_sender,lv_subject)

12.6.2.7 add_recipient

Add a recipient to a message session.

add_recipient(lv_message,lv_to)

12.6.2.8 mime_type_new

Add a mime section to a message

mime_type_new(lv_message,lv_part,lv_mimetype)
mime_type_new_with_description(lv_message,lv_part,lv_mimetype,lv_description)

Normally - if you are using a mime email, you would add two initial sections a mixed part and a text part. You then add
any files to the mixed part. Eg:

let lv_mixedpart = fgl_smtp::mime_type_new(lv_message,0,"multipart/mixed")
let lv_textpart = fgl_smtp::mime_type_new(lv_message,lv_mixedpart,"text/plain")
if lv_rep_filename matches "*.pdf" or lv_hint="PDF" then
let lv_pdfpart=fgl_smtp::mime_type_new_with_description(lv_message,lv_mixedpart,"application/pdf",lv_rep_filename)
else

let lv_reppart=fgl_smtp::mime_type_new_with_description(lv_message,lv_mixedpart,"text/html",lv_rep_filename)
end if

12.6.2.9 connect

Connect to an smtp server with a given message to send, if no server is specified (ie its null or blank) then the server from
get_server will be used.

connect(lv_message,lv_server,lv_port,lv_flags,lv_ismime)

12.6.2.10 disconnet

Closes the connection to the server and indicates that the email is complete and ready for transmision.

disconnect(lv_message)

89

12.7. STRING CHAPTER 12. AUBIT4GL EXTENSION LIBRARIES

12.6.2.11 send_to

Add additional recipients to an email message. the ’send_to’ is identical to the ’add_recipient’ function.

send_to(lv_message,lv_to)
send_to_cc(lv_message,lv_to)
send_to_bcc(lv_message,lv_to)

12.6.2.12 part_send_file

This is called to actually send the mime encoding of the file. the order in which these are used must match the order of
the mime_type_new sections created previously.

part_send_file_html_listing(lv_message,lv_file,lv_last)
part_send_file(lv_message,lv_file,lv_last)

12.6.2.13 send_report

This is used by the 4GL library to send a report output (via the REPORT TO EMAIL) to the report recipients.

send_report(lv_hint,lv_rep_filename,lv_email_addr)

12.7 string
This module includes numerous string handling functions which may be useful from within a 4GL program.

12.7.1 Dependencies
None

12.7.2 Function list

12.7.2.1 split

Split a string into space separated fields

split(string,number_of_fields)

12.7.2.2 strstr

find the first location of a string within a string

strstr(haystack,needle)

12.7.2.3 strchr

find the first location of a character within a string

strchr(haystack,needle)

12.8 sxml

12.8.1 Dependencies
sxml - http://freshmeat.net/projects/sxml/

90

12.9. DYNAMIC CHAPTER 12. AUBIT4GL EXTENSION LIBRARIES

12.8.2 Function list

12.9 dynamic

12.9.1 Dependencies
None

12.9.2 Function list
This is a currently just list of all the Informix/4Js’s Dynamic 4GL functions yet to be implemented...

91

Chapter 13

Aubit4GL Extensions

Aubit4GL fully implements the syntax of classic Informix 4GL v7.3. But further to that it has enhanced the language
with many extra features.

13.1 Fake Comments {! ... !}
You can include A4GL extensions in your program code and still compile the source with Informix 4GL compilers by
enclosing A4GL specific statements within the delimiters {! and !}. Aubit4GL will ignore the {! and !} delimiters and
compile the code enclosed. Informix 4GL compiles will see the {! and !} as no different syntactically from { and } and
will therefore treat enclosed code as a comment (and therefore not try to compile it). This allows you to write functions
like the following:

function isaubit()
{! return true !}
return false

end function

13.2 Associative Arrays
This productivity enhancement will make complex Array manipulations easy and fast, and at the same time make your
code easier to maintain and understand

13.3 Paused Screen Handling
This enhances usability over the slower connection lines, no matter which front-end implementation you deploy by selec-
tively stopping updates to the screen. Using

SET PAUSE MODE ON

all screen updates are stopped, until a

SET PAUSE MODE OFF

is issued. This means that you can completely redraw the screen and then issue it to the user as a single screen rewrite,
reducing cursor flicker as well as giving a much faster update.

13.4 ODBC Data access
ODBC compliance is a crucial feature for unprecedented connectivity and freedom of database options in the 4GL world.

13.5 Multiple Concurrent Connections
Based on the ODBC access concept, this feature will enable you to not only easily open several databases at the same time,
and keep them open, but also to open several databases from several vendors from different servers, bringing together all
database resources in corporate environments.

92

13.6. APPLICATION CONSTANTS CHAPTER 13. AUBIT4GL EXTENSIONS

13.6 Application Constants
These are a small but effective contribution to creating error free programs that are easier to maintain and debug.

13.7 Map Files
These will for the first time enable you to have full overview of what your code is doing, how, and where. Indispensable
for debugging and understanding unfamiliar code, and the behaviour of the compiler.

13.8 Variable IDs
No more hard-coded ID names! You can specify and reference all 4GL objects in the runtime! No more copy-and-paste
code just to change ID names, resulting in higher productivity and code that is compact and easier to maintain.

13.9 Passing IDs
Passing IDs to functions is one of the implications of Variable IDs. It will allow you to name objects passed to functions,
even in another module.

13.10 Embedded C code.
No more messing around with external C code, and no more complex make and link process. Just embed your C code
inside your 4GL code, between the keywords CODE ... ENDCODE.

13.11 MOVE/SHOW/HIDE WINDOW
Enhanced windows manipulation resulting in more usable and flexible user interfaces.

13.12 WHENEVER SUCCESS/SQLSUCCESS
Will give you new options for conditional code execution, instead of always depending on error conditions.

13.13 Multilevel Menus
User interface enhancement that will make the coding and using applications faster and easier.

13.14 Extended DISPLAY ARRAY
Control providing many of features of INPUT ARRAY, and dynamically setting current and display lines of array. This
will eliminate the need to use INPUT ARRAY logic where input is not needed, making the result safer and the code cleaner
and easier to maintain.

13.15 Extended USING
Syntax provides more options for commonly used date formatting in reports and on the display, without the need to write
additional code to handle this formatting, making especially report writing more productive.

13.16 Local functions
Defining a function to be local to the module opens possibilities fore some interesting and productive program structuring,
and can also contribute to more easily maintainable and problem-free code.

93

13.17. GET_INFO FUNCTION CHAPTER 13. AUBIT4GL EXTENSIONS

13.17 get_info function
The get_info function will enable you to get almost all of the information about the state of the running program at
runtime. It will allow you to write more flexible code than ever before, and achieve tasks that were simply not possible
with other x4GL compilers.

13.18 Dynamic Screen Fields
These allow input fields to accept more data than will fit in the visible screen field size, making for more usable and flexible
user interfaces.

13.19 Remote Function Calls
Will make x4GL applications for the first time enter the n-tier world. Running programs on the same or different machines,
or even platforms, call each other to execute functions and return results. This can not only enhance typical 3-tier role
separation, but also facilitate multi-processing on the level of the application, application partitioning on protocol level and
enable weird things like accessing UNIX database from Windows PC that have no ODBC drivers for a specific platform....

13.20 SELECT/DELETE/UPDATE USING
By linking a record with a table and it’s primary key, this extremely productive enhancement will automate and simplify
multi-table data manipulation, the way it was always supposed to be, gaining productivity and maintainability in the ways
you did not experience before.

13.21 ON ANY KEY
extremely useful with array manipulation, it will simplify user interaction logic in many places.

13.22 Compile Time Environment
This can override many library settings at compile time and will enable you to control compiler behaviour in ways not
imaginable with other x4GL compilers

13.23 SET SESSION Option/SET CURSOR option
Thanks to the ODBC connectivity, it is possible to assign and change all attributes of database connection and defined
database cursor at runtime, resulting in adjustable connection attributes at the same time exploring all the power of target
ODBC driver and database from simple A4GL statements.

13.24 Application Partitioning
Thanks to user interface layer on one side, and ODBC layer on the other, and combined with RPC calling functionality,
it is now possible to fully utilize all the resources of the enterprise environment, end-to-end, and deploy a4GL programs
from one single computer, to hundreds of connected computers running different or same layers.

13.25 Y2K Runtime Translation
Two digit year support is implemented using run-time environment variable setting, enabling you to dynamically decide
interpretation of year while preserving the code that was not written using 4 digit year functionality. Aubit 4GL is, of
course, fully Y2K compliant.

13.26 Globbing
You can freely mix and use all IDs as module specific or global, allowing you do make distinction when naming ID’s at
runtime, thanks to ’Variable ID’s’ and the ability to pass ID’s to functions as parameters. This functionality alone can
save significant time in the coding process, and allow you to isolate ID related problems easily.

94

13.27. A4GL WIZARD CHAPTER 13. AUBIT4GL EXTENSIONS

13.27 A4GL Wizard

13.27.1 Program Templates
These will allow the generation of full 4GL code for typical table oriented screens, just by specifying and compiling the
template with a few simple definitions, much in the way that users used to use the Informix ISQL tool, but with full code
generation and unprecedented flexibility, even to the point of direct inclusion in other 4GL programs.

13.28 PDF Reports
Built using PDFlib, allows you to produce reports in PDF format with fancy fonts.

13.29 GUI
Built using GTK+, this can allow normal 4GL programs to substitute a GUI version of the normal ASCII form based
screens. Alternatively, you can exploit Aubit extensions to the classic language to create GTK widgets (e.g. cascading
menus, pulldown lists, checkboxes, dialogues, etc.)

13.30 Packages
This is a feature borrowed from languages like Java, perl, and Python. It allows you to call functions from external libraries
using normal CALL function() syntax.

13.31 IDE

13.31.1 Independent Development Environment
Written completely in 4GL, this application facilitates rapid development of any x4GL language application, while thanks
to available source code remaining fully customizable using tools and language familiar to any 4GL language developer.
FIXME: add JL’s instructions to "Development Environment" page Please see appropriate sections of "A4GL enhancements
to standard x4GL language for details of all features and syntax.

13.32 Logical Reports
These allow existing reports to be output as CSV, PDF or text files. These can be printed, saved to a file, etc - just like
a normal 4GL report, and can also be automatically emailed to a recipient.

95

Chapter 14

Tricks, tips etc.

96

Chapter 15

Internationalisation

15.1 Auto-translation

97

Chapter 16

ACE reports

aace aace_4gl aace_perl

generate_aace

adecompile

98

Chapter 17

Aubit 4GL GUI

17.1 Plexus AD32 mode
An extension to A4GL is the ability to communicate using a Graphical User Interface. This is meant as a workalike for
Plexus AD32. This is not meant for migrating normal 4GL applications to a GUI interface.

17.2 Aubit 4GL GUI mode
To compile a 4GL program with GTK and GUI support :
aubit 4glpc -gtk filename.4gl -o filename

(note: -gtk switch is now default for 4glpc)

This will generate a CUI/GUI switchable version. To use the GUI you must set the AUBITGUI environment variable:

AUBITGUI=gtk export AUBITGUI

Options for AUBITGUI are: text, curses, gtk, gui (not case sensitive).

You can then run it as normal (make sure you have the DISPLAY environment variable pointing to your X server).7.3 c

Notes:

• You must recompile any forms (these have changed!) The new forms will work for GUI and CUI modes whether
you have compiled the 4GL with -gtk or not.

• Make sure that there is no form_x.h in lib/libincl (the makefile should remove this anyway)

Make sure that you’re using the new libraries (ie if you’ve copied any to /usr/lib, /usr/local/lib etc. that these are
updated).

17.2.1 Longer term
We’ll need to add to assist.4gl to add in lots of useful functions - I’ve made a start - should be a few good examples to
copy.

Client/Server mode - I’ve started to split the display bits from the rest of the library (look at lib/gui.c). This is used to
do the redirecting from CUI to GUI modes. It should be possible to add to this to extend GUIs to non-GTK or remote
displays.

VERY IMPORTANT : I’ve not tested lots of things and this is a very first draft.

Lots of things are not implemented yet - eg. attributes (colors, upshifts, formats etc) on input/display statements. I will
need help to do all of these.

The way it works at the minute is really bad (uses #define to force a call to the GUI function instead of the CUI function.)

Eventually - I’d like to do a libtui (text mode), and get the calls routed via a variable (ui_mode). In that way you would
compile the code in the same way (ie no -gtk), but have a command line/environment variable used to specify the runtime
mode (Text or Graphical).

You might also want to set the environment variable ’NOCURSES’ before running :
NOCURSES=1 export NOCURSES
./file

This will enable some of the output to be printed (There is some debugging stuff, GTK error messages and the output of
"DISPLAY", and printf (if you use the embedded C code)) without turning on curses. (This isn’t 100% effective yet.)

There are still a lot of things to work out (don’t try CLEAR FORM/fieldname ...for example).

99

17.3. GUI MENUS CHAPTER 17. AUBIT 4GL GUI

17.3 GUI Menus
There are two ways to use menus in GUI mode. The first is the traditional 4GL menu command in 4GL :

MENU ...
COMMAND ...
COMMAND ...

END MENU

This should work as before - but does not look very GUI. There is no support for drop down menus for example.

A GUI specific alternative is to use menu files.

Menu files have a couple of benefits :

• .They are the only way to get GUI looking drop down menus

• You can distribute different files, eg. in different languages (Only a very small benefit!)

Menu are loaded from this file using the ’SHOW MENU’ 4GL command. eg.
SHOW MENU my_menu USING my_menuhandler

You should then have a MENUHANDLER function to deal with clicks on menu items:

MENUHANDLER my_menuhandler
DEFINE somevariables...
BEFORE SHOW MENU
ENABLE MENUITEM mn_1 #You can use MENUITEM or MENUITEMS here
ENABLE MENUITEMS mn_2,mn_3
DISABLE MENUITEM mn_1,mn_3
DISABLE MENUITEMS mn_1
ON mn_2
DISPLAY "Hello World"
ON mn_3
EXIT PROGRAM
END MENUHANDLER

By default menus are loaded from a file called "menu.mnu", you can specify an alternate filename by using a FROM clause :
eg.

SHOW MENU my_menu USING my_menuhandler FROM "myfile"

The .mnu will be automatically appended.

17.3.1 Menu File Format
Source menu files have the extension ’.menu’, which will be compiled to ’.mnu’ by the mcompile command.

FIXME: add to "using compilers"

$ mcompile filename

If no extension is specified .menu is assumed.

mcompile can also compile the menu file into C code which can be included in

the application directly (this means you don’t need to distrubute the .mnu

file) using the -c option.

$ mcompile -c filename

This will generated a .c which can be linked into the application.

$ mcompile -c mymenu

will compile mymenu.menu into mymenu.c

100

17.4. SIMPLE GUI MENU CHAPTER 17. AUBIT 4GL GUI

$ mcompile mymenu

will compile mymenu.menu into mymenu.mnu

.menu_files

A menu file contains one or more MENUs. Each menu has an associated ID :

MENU file
....
END MENU

Within the menu you can place OPTIONs, these are specified as follows :

OPTION id "Caption"

You can also specify an image for an option in addition to the caption :

OPTION id Image="filename" "Caption"

Note : At present all images must be in .xpm format Although not fully implemented yet, you can also specify attributes
for an option. Currently the only option allowed is ’RIGHT’ [not implemented] which will right align the menu item (Often
used for Help), although there may be others later...

OPTION id "Caption" ATTRIBUTES(RIGHT)

17.4 Simple GUI menu
A Typical file menu may look like this:

MENU file
OPTION mn_new Image="New.xpm" "New"
OPTION mn_open Image="Open.xpm" "Open"
OPTION mn_save "Save"
OPTION mn_saveas "Save As"
OPTION mn_exit "Exit"
END MENU

The above example will probably not appear as you’d imagine, the menu is displayed across the screen, what you’d normally
have is a File menu, with the options listed as a drop down menu.

This is done using SUBMENUs. These have the same parameters as options : eg.

SUBMENU mn_file "_File" Image="file.xpm" .. ATTRIBUTE(RIGHT)

Options to submenus are listed between the SUBMENU and an END SUBMENU :

SUBMENU mn_zoom "Zoom"
OPTION mn_in "In"
OPTION mn_out "Out"
OPTION mn_fit "To Fit"
END SUBMENU

Additionally, because these may be reused, you can specify the ID of the SUBMENU:

SUBMENU mn_file "_File" USE file

In which case the compiler will substitute the options associated with a MENU with the specified ID. eg.

101

17.4. SIMPLE GUI MENU CHAPTER 17. AUBIT 4GL GUI

MENU file
OPTION mn_new "New"
OPTION mn_open "Open"
OPTION mn_save "Save"
OPTION mn_saveas "Save As"
OPTION mn_exit "Exit"
END MENU
MENU mymenu
SUBMENU mn_file "_File" USE file
END_MENU

Is the same as :

MENU mymenu
SUBMENU mn_file "_File"
OPTION mn_new "New"
OPTION mn_open"Open"
OPTION mn_save "Save"
OPTION mn_saveas "Save As"
OPTION mn_exit "Exit"

END SUBMENU
END_MENU

You can also nest SUBMENUs

SUBMENU mn_edit "_Edit"
OPTION mn_cut IMAGE="m1.xpm" "Cut"
OPTION mn_copy Image="Copy.xpm" "Copy"
OPTION mn_paste"Pastxxxxxxxxxxxxxxxxxxxxxxxxe"
SUBMENU mn_zoom "Zoom"
OPTION mn_in "In"
OPTION mn_out "In"
OPTION mn_fit "To Fit"

END SUBMENU
END_SUBMENU___|

Again - these can be either direct (as in the above example) or SUBMENU .. USE.

A complete example :

MENU file
OPTION mn_new "New"
OPTION mn_open "Open"
OPTION mn_save "Save"
OPTION mn_saveas "Save As"
OPTION mn_exit "Exit"
END MENU
MENU mymenu
SUBMENU mn_file "_File" USE file
SUBMENU mn_edit "_Edit"
OPTION mn_cut IMAGE="m1.xpm" "Cut"
OPTION mn_copy Image="Copy.xpm" "Copy"
OPTION mn_paste "Pastxxxxxxxxxxxxxxxxxxxxxxxxe"
SUBMENU mn_zoom "Zoom"
OPTION mn_in "In"
OPTION mn_out "Out"
OPTION mn_fit "To Fit"

END SUBMENU
END SUBMENU
SUBMENU mn_useful "Useful Stuff"
OPTION mn_form "Open Window & Form"
OPTION mn_sform "Open small Window & Form"
OPTION mn_screen "Open Form on Screen"
OPTION mn_lots "Open lots of windows"
OPTION mn_loop "Loop windows"
OPTION mn_closewin "Close windows"

END SUBMENU
OPTION mn_help "Help" ATTRIBUTES(RIGHT)

END_MENU

In this example - your program could ’SHOW MENU’ mymenu or file.

102

17.5. GUI FORM FILES CHAPTER 17. AUBIT 4GL GUI

17.4.1 Handling_menu_options
In code, options can be enabled or disabled using ENABLE MENUITEM id or DISABLE MENUITEM id

Note :

You can’t use the ’SHOW OPTION "caption"’ AND ’HIDE OPTION "caption"’ ! These are for the traditional menu
command.

17.5 GUI form files
New version of fcompile with minor changes to the original which can eventually be used for the text mode as well. It
generates a slightly different output format which is currently incompatible with the old fcompile.

This includes extensions (which are present in the current fcompile in CVS) as well as a new one ’SCREEN TITLE’.

17.5.0.1 Extensions

SCREEN TITLE

fcompile can compile multiple screen sections into a single .per. Where more than one screen section is specified, the GTK
GUI places each screen on a separate tab window (GtkNotebook). These will be labeled ’Screen n’. You can specify an
alternate title with this extension : multi.per:

database formonly
screen title "Address" size 15 by 60
{
..
}
screen title "Contact" size 15 by 60
{..
}
screen title "Jobs" size 15 by 60
{..
}

17.5.1 WIDGET
WIDGET is a new parameter that specifies what should be place instead of an entry field (textbox). Currently this can
contain "TEXT", "BUTTON", "CHECK" (checkbox), "LABEL" (text label - not editable), "PIXMAP" (picture - currently
only xpm format handled), "COMBO" (combo box) , or "RADIO" (radio buttons).

More will be added when I get the chance!!

eg.

f001=formonly.fld1, WIDGET="CHECK";

17.5.2 CONFIG
When using a WIDGET, there are some specific things that may need setting - the CONFIG parameter is used to specify
these. For all widgets you can specify a WIDTH and a HEIGHT (integers - in character spacing) If no width is specified
- the size of the field on the form is used. If no height is specified a single character height will be used.

eg.

f001=formonly.fld1, WIDGET="BUTTON", CONFIG="WIDTH=5";

Some widgets require special config parameters, eg PIXMAP requires a FILENAME:

f001=formonly.fld1, WIDGET="PIXMAP", CONFIG="FILENAME=’aubit.xpm’";

[When config parameters require strings, place them in single quotes.]

Some widgets have optional parameters :

f001=formonly.fld1, WIDGET="BUTTON", CONFIG="LABEL=’OK’";

103

17.6. GTK_FORM CHAPTER 17. AUBIT 4GL GUI

or

f001=formonly.fld1, WIDGET="BUTTON", CONFIG="IMAGE=’okpic.xpm’";
WIDGET PIXMAP
CONFIG REQUIRED STR FILENAME filename (xpm format)
WIDGET BUTTON
CONFIG OPTIONAL STR LABEL label to use
CONFIG OPTIONAL STR IMAGE image to use (xpm format)
WIDGET RADIO
CONFIG REQUIRED INT NUM label to use
CONFIG REQUIRED STR Ln Label for button ’n’
CONFIG REQUIRED STR Vn Value for button ’n’
WIDGET ENTRY/TEXT/DEFAULT
CONFIG OPTIONAL INT MAXCHARS maximum field size
WIDGET LABEL
CONFIG REQUIRED STR CAPTION Caption for label
WIDGET CHECK
CONFIG OPTIONAL STR LABEL label for checkbox (may be clicked)
CONFIG OPTIONAL STR VALUE value for checkbox
WIDGET CHECK
CONFIG_NONE

17.6 gtk_form
Once you’ve compiled your form using the new fcompile, you can use gtk_form to show how it would look. There are no
command line options on gtk_form, although gtk_init takes parameters (but I don’t know what most of them do!).

There is also a GTKRC file which allows you to specify a scheme for example :

GTKRC=/usr/local/share/themes/Redmond95/gtk/gtkrc export GTKRC

You can select different themes by setting GTKRC under KDE (under GNOME I think this is automatic)

This program will not do anything useful once your form is displayed - but it should indicate when a field gains focus and
when it is clicked or changed (depending on the widget type).

17.6.0.1 Examples_(in_test/gui/)

multi.per - An example of a multi screen form

radio.per - Radio buttons

widget.per - Many widgets on a single screen

17.7 GUI issues
FIXME: unsorted comments on GUI development:

Status:

So far I have a basic DISPLAY AT, DISPLAY .. TO ... and DISPLAY BY NAME. (90%)

Got HIDE WINDOW, SHOW WINDOW, MOVE WINDOW 100% complete

CURRENT WINDOW IS .. 100% complete (may need some attention later)

ENABLE/DISABLE fields.. 100% complete

Open Window 90% complete

Open Form 90% complete

Work on Menus and menuhandlers (90% complete)

Started on Input statement (40% complete)

Still have to deal with the modality issue, disabling, formhandlers, and the rest of the input & construct stuff..

Currently there is no support for ’SET PAUSE MODE ...’ within the GTK stuff..

I’ll_also_run_the_assumptions_by_you_:

• Opening a window in the old fashioned way will open a ’frame’ in GTK on the ’screen’ window.

104

17.7. GUI ISSUES CHAPTER 17. AUBIT 4GL GUI

• The menu command works pretty much the same as now (no multilevels, title to the left). Currently the only valid
menu line is ’1’

• All fields on a form will be disabled by default when the form is loaded (I may change this for PIXMAPs as they
are dimmed when disabled and can’t be activated anyway).

• Menu Handlers will load menus from a menu file, this allows for internationalisation and also allows descriptions
of multilevel menus to be loaded at runtime. This uses an ’mcompile’ command to compile into a runable menu
(Details to follow).

• The only way to open a new X type window will be with the SHOW WINDOW xxx USING formhandler command.
In this way - all current 4GL stuff should work and look the same as the text based one (with the additional widgets
obviously)..

• Comments in forms and menus are displayed as tooltips rather than having a line of their own

• The DISPLAY AT is a bit dodgy - it works by putting a label at the specified position, if a label was started at
that position it will be remove before the new one is created. if the text to display is "" then the label will be
removed and no new label created. This may cause a problem with code like :
DISPLAY "Hello World" at 1,1
DISPLAY "World!" at 1,7
Which would display "Hello World!" in the TUI mode, in GUI mode - you’d have two labels, one on top of the
other, how it appears would depend on the type of font used, but it could be :
Hello World!
or
HellWorld!
(if the font is larger than my spacing)
or
Hello WWorld!
(if the font is smaller)
This will be a problem mainly with proportionaly spaced fonts. For courier and friends - we should be able to get
the right spacings..

17.7.1 Colours in GUI
So far all colors and attributes (except border) are ignored. I need to investigate how to do this in GTK (any ideas ?)

17.7.2 Threads
So far I havn’t needed to have any extra threads, although there are a couple of functions which may be called from 4GL,
they will be something like :

FUNCTION gui_run_till_idle()

and

FUNCTION gui_run_till_terminate()

the ’till_idle" function will allow GTK to catch up with itself during complex programming. (At the minute all operations
which do something to GTK, opening a window, displaying some text etc, run this after completing. the "till_terminate"
function will run gtk_main() which is a loop that will stop the 4GL program terminating and should be the last function
called in MAIN..END

MAIN if you use formhandlers or menuhanlders.

17.7.3 Progress
I’ll try to get something posted up by the middle of the week. In the meantime - if anyone fancies helping - if you can
brush up/read up on GTK it would be helpful, there will be a lot of 4GL functions that we will need to write to handle
the nicer things (for example - I already have a 4GL function to set the window title which appears in the title bar...)

We’ll need more for adding and maintaining list boxes etc.

105

Chapter 18

Extended Reports

18.1 PDF reports

18.1.1 Before you start
Aubit 4GL uses PDFLib to help generate the PDF output, you’ll need a copy of this. NOTE : You must use a recent
release of PDFLIB (available from http://www.pdflib.com).

You’ll need to add ’-DUSE_PDF_REPORTS’ to the CFLAGS line at the top of lib/makefile.

Regenerate the files in lib (touch lib/pdf_reports.c;make) to include PDF generating capabilities.

18.2 Introduction
PDF reports are very similar to normal 4GL reports, but with added functionality. PDF reports are usually started with
the

START REPORT repname TO "somefile.pdf"

This is because PDFs are read using Acrobat or some other pdf reader that requires a file.

To define a report as being a PDF report, you must use

PDFREPORT report_name(...)

instead of

REPORT report_name(...)

18.3 Output Section
The output section of a 4GL PDF report is slightly different to a normal report. It can have any of the following

LEFT MARGIN nval
RIGHT MARGIN nval
TOP MARGIN nval
BOTTOM MARGIN nval
PAGE LENGTH nval
PAGE WIDTH nval
FONT NAME "font"
FONT SIZE integer
PAPER SIZE IS A4
PAPER SIZE IS LETTER
PAPER SIZE IS LEGAL
REPORT TO "filename"
REPORT TO PIPE "progname"

106

18.3. OUTPUT SECTION CHAPTER 18. EXTENDED REPORTS

nval can be any of the following :

n POINTS - PDF points 1/72 of an inch
n INCHES - Inches
n MM - metric mm
n

eg.

LEFT MARGIN 0.25 INCHES
RIGHT MARGIN 20 MM
PAGE LENGTH 60
COLUMN 10

When the units expression is omitted, n defaults to characters or lines (whichever is appropriate).

18.3.1 Fonts
The 4GL program will use the PDFLIB fonts. If the required fonts do not exist then the program will abort with a PDFLIB
error.

NOTE : Case is sensitive for these font names!

Eg.

FONT NAME "Times-Roman"

or

FONT NAME "Helvetica"

18.3.2 Report Structure
The report structure will be identical to that of a normal 4GL report.

18.3.3 Extras
In order to generate ’nice’ reports - there are a couple of extra features available.

18.3.3.1 Positioning

You can use the normal column and skip positioning mechanisms. You can use the nval values for column

eg

print column 1.1 inches,"Hello World"

but you have to use ’skip by’ for nval movements :

Eg.

skip by 2 inches

Also you now have a ’skip to’ which allows you to move to an absolute position within the current page (including
backwards).

Eg.

skip to 2 inches

107

18.4. PRINTING GENERATED REPORTS CHAPTER 18. EXTENDED REPORTS

18.3.3.2 Using pdf_function()

This allows you to control certain aspects of the PDF report, changing fonts etc. The first argument is the operation type,
this will be :

Argument Indirectly calls

set_font_name -> PDF_setfont
set_font_size -> PDF_setfont
set_parameter -> PDF_set_parameter set_value_->_PDF_set_value

Check the PDFlib manual for these

Eg.

call pdf_function("set_font_name","Times-Roman")
call pdf_function("set_font_size",30)
call_pdf_function("set_parameter","underline","true");

18.3.3.3 Images

It is also possible to include an image within the PDF report, this is done using the ’PRINT IMAGE’ statement with a
blob variable containing an image. The image must be a GIF,PNG, TIFF or JPEG and this type must be specified when
displaying the image, this is done using the ’AS ...’ keyword, ie "AS GIF", "ASTIFF", "AS PNG", "AS JPEG".

Finally - the image can be scaled when it is displayed. This can be either a single value (ie scaling x & y by the same
value) or two (specifying the scaling for x & y separately)

|print image some_blob_var as png
print image some_blob_var as gif scaled by 0.5.7,0.8

18.3.4 Example program
Please see pfd_example.4gl in test/

18.4 Printing generated reports
What’s really nice is that with most Linux distributions include the ability to print PDF / PS files direct to the printer!

From http://www.apsfilter.org/ :

"Apsfilter supports PS (Postscript) printer and non-PS capable printer by using Ghostscript as PS emu-
lator. So if you have a non-expensive color DeskJet printer, Apsfilter and Ghostscript enhance your printers
capabilities, that you’ll get a Color Postscript Printer in return for free ! "

This one is especially important for running Aubit on any kind of remote display:

"Printing on locally connected, network printer, as well as on Unix-, Windows-and AppleTalk remote printer is supported.
"

From http://www.linuxprinting.org/howto/setup.html

"apsfilter is a filter designed for use on a wide variety of Unices. It supports essentially all Ghostscript
drivers. It, too, works with various strains of LPD, including stock BSD and LPRng. At the moment, this
is probably the best third-party system around for non-PostScript printers"

Apsfilter V 6.0 Filetype Support lists PDF, and many other file types supported: http://www.apsfilter.org/filetypes.html

Also see http://www.cups.org/ :

"A UNIX printing system (with sample drivers for HP, EPSON, and OKIDATA printers) based on the Internet Printing
Protocol. CUPS is the basis for ESP Print Pro and is being considered as the standard printing system for a number of
commercial and free UNIX operating systems. CUPS is provided under GNU GPLand LGPL. "

108

Chapter 19

Logical Reports

Logical reports take the print statements in an unmodified REPORT and log whats printed and the section in which its
printed to a meta data file.

19.1 Invoking a logical report
The report ’function’ is unchanged - but the calling procedure is enhanced to include :

START REPORT report-name TO CONVERTIBLE

as well as the familiar TO PIPE/TO FILE etc.

This creates the meta data file (in /tmp) which can be processed later.

19.1.1 ’Finishing’ the report
The processing is done via the "FINISH REPORT" statement, "CONVERT REPORT" statement or via an external program
"process_report".

The enhanced FINISH REPORT now accepts the following syntax :

FINISH REPORT report-name CONVERTING TO "filename" AS "type" [USING "layout"]

(You can also CONVERTING TO PRINTER, TO PIPE)

FINISH REPORT report-name CONVERTING TO EMAIL AS "type" [USING "layout"]

FINISH REPORT report-name CONVERTING TO MANY

19.1.2 Converting to "filename"
"type" can be any one of the conversions available on the system.

These are in $AUBITDIR/lib called libLOGREPPROC_*.[so/dll]

On an average system you may have :

libLOGREPPROC_CSV.so libLOGREPPROC_PDF.so libLOGREPPROC_TXT.so

This means you can process types of "CSV", "TXT" or "PDF" A special name of "SAVE" can also be used which copied
the data verbatim from the meta data file into the filename specified. This file can then be used with the layout editor
and/or the process_report program.

If USING "layout" is omitted a default layout will be used.

19.1.3 Default layouts
For PDF and TXT it is safe to setup a default layout.

These can be put in the $AUBITDIR/etc directory and have a .lrf extension. The filename is made up of combinations
of program/module/report name and the width of the page (<=80 = narrow <=132 = normal >132 = wide). The search
order is complex - but basically it depends on :

109

19.2. SAVED META DATA CHAPTER 19. LOGICAL REPORTS

1. program_module_report_type.lrf

2. program_report_type.lrf

3. program_module_type.lrf

4. module_report_type.lrf

5. report_type.lrf

6. module_type.lrf

7. program_type.lrf

If none of these is found - then it looks for :

1. default_type_narrow.lrf

2. default_type_normal.lrf

3. default_type_wide.lrf

dependingon the width

Finally - it will use

1. default_type.lrf

(Where type is PDF, TXT or CSV for example)

To create one of these defaults - use layout_engine (for PDF and TXT, you can edit using any meta data file as an input)

19.1.4 Converting to many
This allows multiple conversions. The meta data file is not automatically deleted so it is possible to use the same meta
data to generate a text file, CSV output and PDF if required.

To do this you need to use the CONVERT statement

CONVERT REPORT rep-name TO "filename" AS "type" USING "layout"

again - USING "layout" is omitted, one will be generated automatically..

Once you’ve done all your conversions, free report will delete the meta data.

Examples :

start report r1 to convertible

output to report r1 (1,2)

finish report r1 converting to "myfile1.pdf" AS "PDF" using "layout1"

start report r1 to convertible

output to report r1 (1,2)

finish report r1 converting to "myfile2.pdf" AS "PDF" # uses default layout

start report r1 to convertible

output to report r1 (1,2)

finish report r1 converting to many

convert report r1 to "orig.output" AS "SAVE"

convert report r1 to "myfile3.pdf" AS "PDF"

convert report r1 to "myfile4.txt" AS "TXT"

free report r1

19.2 Saved Meta Data
There are 3 things you can use with the meta data

110

19.2. SAVED META DATA CHAPTER 19. LOGICAL REPORTS

19.2.1 The Report Viewer
This is a GTK2.0 application which displays the contents of the report in a tab’d window (one tab per page) - you can’t
print or anything, but its useful to see whats been put out in the meta data file and is used as the basis of the next app..

By default - it will only show you the first 10 and last 10 pages (if your report is only 5 pages long - you’ll still only see 5
pages!) - this is basically to limit the impact of a very large report in terms of creating GTK widgets!

You can change this by changing the MAX_PAGE and MIN_PAGE in report_viewer/report_viewer.

Invoke using :

$ report_viewer filename

Where filename is the meta data file (ie the START REPORT TO "filename")

You will probably note that you can click on sections of the report and they change colour. These define the printed
elements. When you click on an ’element’ everything that the report considers to be printed in the same place in your
4GL (not based on lines/columns etc) is highlighted..

Also - there is a series of ’>’ going down the left hand side - these indicate the block in which those elements are printed.
Again clicking on one of these highlights all lines printed within that block (i have not done anything about have a print
... ; in an after then have a print in an on every row etc)

There is some debugging stuff which is printed to stdout (ie from the window you ran the application from) which will
eventually be removed...

19.2.2 The layout editor
This is another GTK2 application which embeds the report viewer and allows you to edit a logical report output.

ATM - there are only two coded report output types :

CSV and TXT

Although all of the code has been abstracted into shared libraries :

libLOGREP_???.so

You can’t edit the TXT layout at all - so you get a ’no configurable options’ for that.

For CSV mode - the libLOGREP creates a series of tables - one for each block which has seen something printed in the
output... (Eg before group/after group/ page header/on every row)

You can then drag&drop information from the report viewer into these tables to generate the report layout. Double clicking
a cell removes the contents of that cell..

At the minute you are limited to 10 cells across - this will be changed to use a spin button like the number of lines...

You can use the ’Default’ menu option to create you a default layout which you can then play with.

Unfortunately - the layout is indicated by using the block and entry ID for the printed output - so you’ll see things like
"0/1", "1/4" in the layout editor - if you want to see what they represent, a single click will highlight that section on the
report viewer...

You can load a layout using the menu option.. When you’re happy - save the file using the menu options...

Invocation :

$ layout_engine type filename

Where type is TXT or CSV (more to be added later!) and filename is the original 4GL report output (just like for the
report_viewer)

eg

$ layout_engine CSV /tmp/r1.out

You can’t change the report you’re editing or the type from within the layout engine - you’ll need to start it again.

All load/saves within the layout editor refer to the layout file - not the meta data report file!!!

An extension .lrf (Logical Report Format) is used when it thinks its required...

19.2.3 The report processor
This a text mode application which takes a report meta data file and a report type and renders the report to the required
output type with an optional layout file...

This is abstracted behind a shared library just like the report layout but its called libLOGREPPROC_?.so

If no layout file is supplied then a default one is generated before the report is processed...

Invocation

$ process_report type filename or $ process_report type filename layoutfile

The output is currently stored in a temporary file (the name of which is displayed when the process completes)

111

19.3. HELPER PROGRAMS CHAPTER 19. LOGICAL REPORTS

19.2.4 Tips for CSV layouts
Copy to the same block type - the only exception might be for BEFORE GROUP OF to duplicate these details in an on
every row..

19.3 Helper programs
process_report

report_viewer

layout_engine

112

Chapter 20

Debugging

Aubit4GL is a ’live’ project. It is in pretty constant development, both adding new features and fixing any issues as
they come along. It is important to understand that while considerable effort has been made to remove any bugs in the
Aubit4GL, as with all code - some will remain. It is therefore essential that these bugs are reported back in the most
efficient manner so that that can be fixed promptly.

20.1 Coredumps
To find the reason for core dumps, create debuggable files!

If 4glc (or fcompile etc) is core dumping - then recompile them to have debugging information included, to do this:

set the CFLAGS in incl/Makefile-common to have a -g, and compile recompile the relevant Aubit application.

If a compiled 4gl application is core dumping, then compile that with -g (4glpc -g ...) so that we have a debuggable 4gl
executable.

Next, run the core-dumping application through gdb, when it dumps core do a bt in gdb..

aubit 4glc -g hello.4gl

gdb 4glc core

Now type bt inside gdb - that will give you a backtrace (with any luck).

20.2 Unexpected behaviour
If an application is failing in some way, the best thing to do is to create and examine (or ask those on the aubit4gl mailing
lists to examine) a debug file.

This is created by setting

$ export DEBUG=ALL

You can then run your application and it should generate a file called ’debug.out’. This file can get huge very quickly,
though only the last 100 or so lines will normally be needed to see whats wrong.

You may also find it useful to compile using the -g option and run it through the gdb debugger.

20.3 All other errors
When a 4GL module or form is compiled, the compiler will generate a .err file if the compilation is not successful.

20.4 compiler errors

20.5 Reporting bugs
For most cases, the simplest way to report a bug is to generate a test case. This is the minimal amount of code required to
reproduce the bug. This may entail forms etc which should be included. Once a test case has been generated, either post it
to one of the Aubit4GL mailing lists, or create an account on the Mantis Bug Tracking system at www.aubit.com/mantis
and enter it there.

113

Chapter 21

Revisions

21.1 2006-8-15
• Added GUI Form Widgets and their attributes

21.2 2006-8-1
• Further elaboration of builtin functions

• Folded get_info() documention into this manual

• Change of syntax (use . instead of ::) for extended library package calls

• More info about libraries, especially libchannel

• Put a Quick Reference section into the Language Chapter

21.3 2005-9-9
Just editing changes:

• Fix numerous spelling mistakes

• Fix some infelicities of English expression

• Fix punctuation, syntax, and some grammatical errors

21.4 2005-3-12
Extensive new material from Mike Aubury

• Quick Installation

• Elaboration of combinations of Informix/PostgreSQL with EC/C

• Troubleshooting

• Details of 4glpc and 4glc compiler flags

• Utilities:adbschema, adbaccess, asql, etc

• Extension Libraries: channel, file, etc

• Debugging

• Aubit 4GL GTK GUI development

114

21.5. 2004-4-27 CHAPTER 21. REVISIONS

21.5 2004-4-27
• Chapter 2: further information about PostgreSQL and in particular the gborg.postgresql.org project

• Chapter 5: include Mike’s documentation on IMPORT PACKAGE packagename

21.6 2004-2-22
• Some tidying of chapters 1-3

• LYX preamble now sets up PDF properties: pdfinfo, pdfcatalog. You can navigate with Table of contents (book-
marks) on the left under Acroread now.

• HTML version now shows section numbering.

21.7 Problems
• Tables bug in latex2html is now fixed (thanks to Ross Moore of MacQuarie University)

• Stylesheets still not right (latex2html configuration problem?)

115

Appendix A

UNIX environment variables

The following list of environment variables was derived from the configurator program’s description file.

A4GL_AUTOBANG=YES|NO UI/TUI/MENU
Enable automatic ! for command entry(like dbaccess menus) for all applicable statements

A4GL_CINT COMPILE/RUNTIME
Full path to CINT C-code interpreter, if installed, othewise ’no’. Used by 4glc compiler to run C compiled
code after compilation.

A4GL_C_COMP COMPILE
Name of the executable of C compiler to use. Note that 4glpc uses $CC

A4GL_EXE_EXT COMPILE
Extension to use for executable files compiled by Aubit compiler. Aubit default extensions for compiled
resources (forms,menus,help) and objects as used by Amake and Aubit compiler (see resources.c) Amake does
NOT read this file (?-check) note that composite variables A4GL_FRM_EXT and A4GL_MNU_EXT exist
only in/for Amake defaults:
A4GL_MNU_BASE_EXT=.mnu
A4GL_HLP_EXT=.hlp
A4GL_FRM_BASE_EXT=.afr
A4GL_XML_EXT=.xml
A4GL_PACKED_EXT=.dat
A4GL_OBJ_EXT=.ao
A4GL_LIB_EXT=.aox
A4GL_SOB_EXT=.aso
A4GL_SOL_EXT=.asx
A4GL_EXE_EXT=.4ae
To emulate Informix p-code extensions (for instance, to re-use legacy make files) you would use this settings;
note that doing this is not recomended and that created files will still be in Aubit format, not Informix one:
A4GL_MNU_EXT=<no equivalent>
A4GL_HLP_EXT=.iem
A4GL_FRM_BASE_EXT=.frm
A4GL_XML_EXT=”
A4GL_PACKED_EXT=”
A4GL_OBJ_EXT=.4go
A4GL_LIB_EXT=<no (standard) equivalent>
A4GL_SOB_EXT=<no equivalent>
A4GL_SOL_EXT=<no equivalent>
A4GL_EXE_EXT=.4gi

A4GL_FORMTYPE FORMS/RUNTIME
Determine which runtime library to use for reading forms $AUBITDIR/lib/libFORM_?.so Default forms driver
to be loaded When used: run-time only
Options: (GENERIC), NOFORM, XDR
Generic implies that format specified with A4GL_PACKER will be used

A4GL_FRM_BASE_EXT RUNTIME/COMPILE/FORMS
Default form extension (for all packing types)

A4GL_HELPTYPE HELP/RUNTIME
Determine which runtime library to use for displaying help messages $AUBITDIR/lib/libHELP_?.so

A4GL_HLP_EXT HELP/RUNTIME/COMPILE
Specify the default extension for a help file

116

APPENDIX A. UNIX ENVIRONMENT VARIABLES

A4GL_INIFILE COMPILE/RUNTIME
Environment variable optionaly specifiying aubitrc file to use

A4GL_LEXDIALECT ESQL/COMPILE
Determine which ESQL/C dialect to use $AUBITDIR/lib/libESQL_?.so When A4GL_LEXTYPE=EC, spec-
ify type of EC compiler to be used. Ignored if A4GL_LEXTYPE is not set to EC When used: compile-time
only
Options: (INFORMIX), POSTGRES, SAPDB, QUERIX

A4GL_LEXTYPE COMPILE
Determine what language to convert the 4GL code into $AUBITDIR/lib/libLEX_?.so Default output language
driver for 4gl compiler: When used: compile-time only
Options: (C), PERL, EC, CS
Note CS means C#
Note: EC (Embedded SQL C) can be Informix ESQL/C, SAP DB pre-compiler, Querix esqlc or PostgreSQL
ecpg. Using EC will limit Aubit DB connectivity at run-time to that of used EC compiler, ignoring setting of
A4GL_SQLTYPE

A4GL_LIB_EXT COMPILE
Extension to use for libraries created by Aubit compiler

A4GL_LINK_LIBS COMPILE
Libraries to link against when producing executables

A4GL_MENUTYPE MENU/COMPILE/RUNTIME
Determine library to use for menuhandlers (not normal 4GL menus) $AUBITDIR/lib/libMENU_?.so Default
menu driver to be loaded: When used: run-time only
Options: (NOMENU), XDR, GENERIC
Generic implies that format specified with A4GL_PACKER will be used

A4GL_MNU_BASE_EXT COMPILE/RUNTIME/MENU
Base extension for compiled menu files Base extension (without packer extension) to use when compiling/opening
menu files

A4GL_MSGTYPE HELP/RUNTIME
Determine library for help message handling $AUBITDIR/lib/libMSG_?.so Default help message driver to be
loaded: When used: run-time only
Options: (NATIVE), XML (??? XML? check this!)

A4GL_MV_CMD COMPILE
Command to ise to move files on the file system

A4GL_OBJ_EXT COMPILE extension to use when compiling 4GL modules to objects

A4GL_OMIT_NO_LOG

A4GL_PACKED_EXT COMPILE/RUNTIME
Determine file extension for packing

A4GL_PACKER MENU/FORMS/HELP/COMPILE/RUNTIME
Determine library for packing forms/menus/help etc $AUBITDIR/lib/libPACKER_?.so You can select which
packer to use
Options:(PACKED),XDR, XML, PERL
(PACKED) - default This is very similar to XDR in that data is written in a hopefully portable way (optionally
non-portable if the required functions aren’t available). This will probably give the smallest output files
XDR This is the same as doing it the old way
XML This stores and reads the data in an XML file. The reading is very limited and can basically only read
the XML files that it generates - IT IS NOT A FULL BLOWN XML PARSER. It uses some odd constructs
and isn’t ideal - but you’ll get the idea when you see the output. Size of created files is much larger then
PACKED or XDR
PERL This generates a data structure which can be used inside a perl program - its pretty complicated stuff
though using hashes for the data representation. What you do with it after you’ve generated it is up to you,
because this is an output only library (ie it can’t read back what its written).

A4GL_PDFTYPE REPORT/RUNTIME
Determine which library to use for extended reports $AUBITDIR/lib/libEXREPORT_?.so Determine default
driver for Extended Reporting When used: run-time only
Options: PDF, (NOPDF)

A4GL_RESERVEWORDS COMPILE –obsolete?– Reserved word handling Used to determine if traditionaly reserved
words in 4GL language should be treated as reserved Procesing of reserved word is experimental. Set this to
YES, if you want to disable this functionality. When set to NO, compiler will try to process most reserved
words, instead of reporting the error.

A4GL_RM_CMD COMPILE
Command to use for deleting files on the file system

A4GL_SAPDB_ESQLC ESQL/COMPILE
Full path to SAP DB ESQL/C compiler full path to SAP-DB ESQL/C pre-compiler executable used when
compiling EC output for SAP DB(does not have to be in the path)

117

APPENDIX A. UNIX ENVIRONMENT VARIABLES

A4GL_SQLTYPE SQL/RUNTIME/COMPILE Determine which library to use to connect to the database $AUBIT-
DIR/libSQL_?.so Name of default SQL library plug-in to use. When used: run-time and compile-time
Options: (nosql) , <ODBC MANAGERS> iodbc unixodbc odbc32 (Windows only),
<DIRECT ODBC> ifxodbc, pgodbc, sapodbc, sqliteodbc,
<NATIVE> esql esqpPG esqlSAP esqlQ sqlite sqliteS pg
<SPECIAL> FILESCHEMA
FILESCHEMA is to be used for compiling programs where either the database doesn’t exist yet - or you can’t
get immediate access to it. This takes the ’database’ as a filename (with a .schema extension) and uses that
to collect the data used by compiler(s) Warning: this setting is ignored at run-rime when A4GL_LEXTYPE
is set to ’EC’. At compile time, it is used by compilers regardless of A4GL_LEXTYPE setting

A4GL_UI UI/RUNTIME
Determine which plug-in to use for the user interface $AUBITDIR/lib/libUI_?.so Defines default UI (user
intertface) driver plug-in to load When used: run-time only
Options: (CONSOLE) [no deps.], HL_TUI [curses], GTK [GTK+], HL_GTK.

A4GL_USE_ALIAS_AS=YES|NO

A4GL_XML_EXT COMPILE/RUNTIME
extension to use with XML packer Used when when creating output (forms,menus) or opening resource files
using XML packer Default: SEE ALSO: A4GL_ALWAYSCLOBBER=YES|NO

A4GL_ANSI_ERROR SQL/COMPILE
ANSI SQL 92 error checking mode When ANSI_ERROR is set to Yes, compiler will abort if non ANSI SQL 92
statement is found in source code (Static SQL only). If neither A4GL_ANSI_WARN or A4GL_ANSI_ERROR
is set, no checking is performed.

A4GL_ANSI_WARN SQL/COMPILE
ANSI SQL 92 warning checking mode When ANSI_WARN is set to Yes compiler will display a warning if it
encounters static SQL statement not confitming to ANSI SQL 92 specification If neither A4GL_ANSI_WARN
or A4GL_ANSI_ERROR is set, no checking is performed.

A4GL_ARR_DIR_MSG UI/TUI Display/Input array message ’There are no more rows in that direction’

AUBITDIR COMPILE/RUNTIME Specify the location of the aubit source tree or installation Default for source distri-
bution:/opt/aubit/aubit4glsrc Default for binary distribution:/opt/aubit4gl Usually set using –prefix=/path
to ’configure’ script

AUBITETC COMPILE/RUNTIME
Location of global Aubit configuration directory This internal variable points to default location of Aubit config
files Default: /etc/opt/aubit4gl You should not need to change this.

AUBIT_Y2K RUNTIME
Specify Y2K handling of dates:
+n (n<100) - set to nearest year using +n years from today as limit for future
-n (n>-100) - set to nearest year using -n from today as limit for past (note: -25 = +75) eg if year=1997 n=20
> 17 will be taken as historic anything <17 is future n=-20 <77 will be taken as future >77 is in the past
XX00 - always use century XX
999 - Do not add anything - dealing with AD 0-99
-999 - use current century

A4GL_AUTONULL COMPILE
Auto initializing module and function local variables
=YES|NO
This setting is used at compile-time only. Numeric variables are initializet to 0, everything else to NULL To
turn on, set to ’Y’ (??? or is that YES ???)

A4GL_BACKGROUND UI/TUI
Default background character (in hex) when creating a window (eg 2E for a ’.’) Application windows back-
ground colour xxxx is a HEX code of a colour attribute - eg 1400 (for 0x1400) for blue and reverse. Applies
to all windows created when no attribute is specified (including the main screen)

A4GL_CLASSIC_I4GL_MONO UI/TUI
Inhibit mapping of colours to attributes (like red->BOLD)
=YES|NO

A4GL_COLOR_TUI_BKG UI/TUI
specify the default background color

A4GL_COLOR_TUI_BKG_DEF UI/TUI
specify the default background color

A4GL_COLOR_TUI_BLACK UI/TUI
Remap black screen colour to alternative

A4GL_COLOR_TUI_BLUE UI/TUI
Remap blue screen color to alternative

A4GL_COLOR_TUI_CYAN UI/TUI
Remap cyan screen color to alternative

118

APPENDIX A. UNIX ENVIRONMENT VARIABLES

A4GL_COLOR_TUI_FG UI/TUI
specify the default fg color

A4GL_COLOR_TUI_FG_DEF UI/TUI
specify the default fg color

A4GL_COLOR_TUI_GREEN UI/TUI
Remap green screen color to alternative

A4GL_COLOR_TUI_MAGENTA UI/TUI
Remap magenta screen color to alternative

A4GL_COLOR_TUI_RED UI/TUI
Remap red screen color to alternative

A4GL_COLOR_TUI_WHITE UI/TUI
Remap white screen color to alternative

A4GL_COLOR_TUI_YELLOW UI/TUI
Remap yellow screen color to alternative

A4GL_COLUMNS UI/TUI
Specify the width of the screen See A4GL_LINES for description

A4GL_COMMENTS COMPILE
Add comments to the generated code

A4GL_COMMENT_LIKE_DISPLAY UI
Specify comments to be in current display color
=YES|NO

A4GL_COMMENT_LIKE_INPUT UI
Specify comments to be in current input color
=YES|NO

A4GL_CONSTANT2DEFINES COMPILE
Print on standard output a #define for all constants
=YES|NO (can be used to generate a .h file)

DBDATE RUNTIME
Specifies how dates will be formated

DBEDIT RUNTIME
Name of the editor to use for TEXT BLOB fields Applies to asql only?

A4GL_DBPATH RUNTIME/COMPILE
Path to look in for databases and resource files See ’DBPATH’ for more information

DBPATH SQL/HELP/FORMS/MENU/RUNTIME/COMPILE
Path to look in for databases and resource files DBPATH variable containls list of directory(es) that will
be searched for objects like compiled form, help and menu files, and SQLite databases. Use coloumn (:)
as a delimiter between paths you want searched, (;) on Windows. Default: tools/ in Aubit source code root
directory and tools/ in Aubit binaryinstallation directory. As opposed to most Aubit settings that are exclusive
and order of there source (environment, aubitrc, built-in resources) decides which one will prevail, DBPATH
and A4GL_DBPATH are cumulated from both variables, and added one to another in order depending on
their source. So if you have path 1 in environment variable A4GL_DBPATH path 2 in environment variable
DBPATH, path 3 in A4GL_DBPATH in aubitrc, path 4 in DBPATH in aubitrc, cumulated value will look like
this: 1:2:3:4. Search for the file in DBPATH will then be performed from left to right, and first path found
to contain file looked for will be used. NOTE: DBPATH to xxx/incl is for adbaccess form files Only SQLite
databases are searched for using DBPATH. Resources file are:compiled forms/menus/help/p-code files

DBPRINT PRINT/RUNTIME/REPORT
Printing command Name of command to use to pass report output when executing reports defines as START
REPORT ... TO PRINTER

A4GL_DEBUG DEBUG/COMPILE/RUNTIME
Log extensive information for tracing bugs in Aubit4gl code When you encounter programs that crash, use
this for debugging - it will create file debug.out that can be very useful when you don’t get a core dump, so
you don’t have file core to run gdb on. WARNING: do not set this under normal circumstances - all programs
will create debug.out file when they run, files can be VERY large, and they will slow down program execution
considerably. This setting applies to all Aubit compiler executables (including all compilers) and to all 4gl
programs compiled with the Aubit compiler.
FIXME: we should have separate settings for compilers and compiled programs, like A4GL_DEBUG_COMP
and A4GL_DEBUG_PRG
FIXME: add note about priority numbers
Default=<not set>

A4GL_DEBUG_CFG DEBUG

A4GL_DEBUG_DECIMAL DEBUG

119

APPENDIX A. UNIX ENVIRONMENT VARIABLES

A4GL_DEBUG_LEVEL DEBUG/COMPILE/RUNTIME
Specify the detail in which debug messages will be logged

A4GL_DEFPRINTER PRINT

A4GL_DUMPCOMMENTS FORMS/COMPILE
Dump form file attributes when compiling form to stdout

A4GL_DUMPSTRINGS COMPILE
Dump all the strings in a 4GL to a file called strings.out
=YES|NO (normally set to ’ident’) (see TRANSLATEFILE)

A4GL_DUMP_CORE DEBUG/RUNTIME
Action to perform when aubit/4gl programs crash
=YES|NO either print a sorry message (Internal Error...) , or dump core (seg fault)

A4GL_ERROR_MSG

A4GL_ESQL_UNLOAD ESQL/RUNTIME
=YES|NO

A4GL_EXTENDED_ERRORLOG DEBUG/RUNTIME
Error log handling Add module and line when writing to the error log from CALL errorlog(..)

A4GL_EXTENDED_GRAPHICS FORMS/UI/TUI
enable the use of extended graphics from form files (+<>^v for cross and tee’s) If set to Y allows forms
to contain the additional graphics characters <,>,^,v, and + to be used for tee’s and an intersection.So the
following :
\gp--v--q\g
\g| | |\g
\g>--+--<\g
\g| | |\g
\gb--^--d\g Will draw a box with an intersecting horizonal and vertical line. Note - you’ll need to set this
before you compile the form as well as when you run program that will use form file compiled this way

A4GL_FAKELEXTYPE PCODE/COMPILE
Compile C code resulting from 4gl compilation to P-code

A4GL_FAKE_IMMEDIATE

A4GL_FIELD_CONSTR_EXPR UI/TUI
Message to display when a fields value cannot be used for a construct statement

A4GL_FIELD_ERROR_MSG UI/TUI
Message to display when a fields value is invalid (eg non numeric in numeric field)

A4GL_FIELD_INCL_MSG UI/TUI
Message to display when a value in a field is not in the include list

A4GL_FIELD_PICTURE_MSG UI/TUI
Message to display when a pressed which is invalid for picture fields

A4GL_FIELD_REQD_MSG UI/TUI
Message to display when a field requires a value to be entered

A4GL_FIXUPDATE=YES|NO

A4GL_FORMAT_OVERFLOW RUNTIME
Determines what happens when a decimal number is too large to fit [ROUND,REFORMAT]
=ROUND|REFORMAT

A4GL_GTKGUI UI/RUNTIME GTK+ —obsolete?—

GTKRC UI/RUNTIME GTK+
resources file to use when running in GTK+ GUI mode –probaly obsolete, GTK libs use this themselves?–

A4GL_GTK_INC_PATH UI/COMPILE Path to includes needed ghen compiling GTK gui enabled code —should be
obsolete— Full path to GTK+ includes (header) files, used when ...? FIXME: why do we need this?

A4GL_GUIPORT UI/RUNTIME —obsolete?—

A4GL_HIDE_MENU MENU/UI/TUI
Remove menu when finished with it, default is to leave it displayed
=YES|NO

A4GL_DIM_INACTIVE_MENU MENU/UI/TUI
Leave menu displayed - but as DIM rather than NORMAL to show its inactive
=YES|NO

120

APPENDIX A. UNIX ENVIRONMENT VARIABLES

HOME COMPILE/RUNTIME
System environement vatialbe pointing to current user’s home directory Used to find user-scpecific copy of
Aubit configuration file (aubitrc) if any

A4GL_INCLINES DEBUG/COMPILE
Adds originating line number to genrated source code
=YES|NO Adds originating line number of each created target language statement coresponding to 4gl source
code, to created target language source code, which is useful for debugging. e.g.: #line 2 ’../tools/test/test_build.4gl’

INFORMIXDIR ESQL/COMPILE
Location of Informix ESQL/C installation Used when compiling EC ouptput using Informix ESQL/C compiler

A4GL_INIT_COL_REFRESH UI/TUI
Reinitialise curses colors on exit Used when curses colours must be reinitialized when returning to Screen mode
(terminal specific)
=YES|NO

A4GL_INPARRAY_FULL_MSG UI/TUI Message to display when input array becomes full

A4GL_KEEP_QUALIFIER=YES|NO

A4GL_KEYFILE DEBUG/UI/RUNTIME
Read keystokes from a file and replay them Mechanism for doing automated testing A4GL_KEYFILE=(some
filename in DBPATH) SEE ALSO: A4GL_KEYDELAY

A4GL_KEYDELAY DEBUG/UI/RUNTIME
Speed to replay keystokes Mechanism for doing automated testing

A4GL_KEYDELAY=(time in usec 1000000 = 1 second, defaults to 0.1s) SEE ALSO: A4GL_KEYFILE

A4GL_NEEDALLKEYS DEBUG/UI/RUNTIME
Keyfile handling. Specifies an error if more key stokes are requested than appear in the keystoke file (otherwise
-return to keyboard input) SEE ALSO: A4GL_KEYFILE

A4GL_KEYLOG DEBUG/UI/RUNTIME
Log all keystokes to the specified file

A4GL_LANGUAGE

A4GL_LINES UI/TUI
Number of rows on the screen. Terminal size This should make programs work with a normal (not xterm)
terminal session. Defaults:
A4GL_COLUMNS=80
A4GL_LINES=24 FIXME: is this really A4GL_ variable - terminal will set LINES/COLUMNS, not A4GL_LINES/A4GL_COLUMNS
SEE ALSO: A4GL_COLUMNS

A4GL_LOGNAME DEBUG/RUNTIME

MAKE

A4GL_MAP4GL=YES|NO

A4GL_MARK_SCOPE

A4GL_MONEY_AS_DECIMAL=YES|NO

A4GL_MONEY_AS_MONEY=YES|NO

A4GL_MONO UI/TUI
Force monochrome output
=YES|NO

A4GL_NOCFILE=YES|NO

A4GL_NOCLOBBER=YES|NO

A4GL_NO_INVIS_ATTR UI/TUI
Disable usage of A_INVIS in curses - attempt alternative method for concealment
=YES|NO

A4GL_PAGER

A4GL_PAUSE_MSG REPORT/RUNTIME
Message to show when executing PAUSE statement in REPORT

A4GL_PGKEYSMOVE UI
Defines the use of the PgUp and PgDn keys as the same as NEXT KEY or for ON KEY (PGDN)
=YES|NO

POSTGRESDIR ESQL/COMPILE
Base directory of PostgreSQL installation. Used when looking for includes or libraries to link with, when
compiling usign PostgreSQL ESQL compiler

121

APPENDIX A. UNIX ENVIRONMENT VARIABLES

A4GL_PRINTPROGRESS

A4GL_PRINTSCRFILE DEBUG/UI/TUI
Specify a file to dump screen to (start with a | to pipe to a command)

A4GL_PRINTSCRKEY DEBUG/UI/TUI
Specify a key to automatically dump the screen with (goes to PRINTSCRFILE)

A4GL_RPCTYPE RUNTIME
Determine which library to use for remote procedure calls $AUBITDIR/lib/libRPC_?.so Determine default
RPC (Remote Procedure Call) driver to load When used: run-time only
Options: SUNRPC, (NORPC), XMLRPC
Note: XMLRPC is client only at the moment

A4GL_SCROLLBACKTO1 UI/TUI
Display array handling
=YES|NO

A4GL_SCROLLTOEND UI/TUI
Display array handling
=YES|NO In display array scroll back to first line if PgUp is used rather than to just first page

A4GL_SIMPLE_GRAPHICS UI/TUI
Force usage of simple graphics for borders
=YES|NO if set to YES then +,|,- will be used to draw graphics characters instead of proper borders (if
available)

A4GL_SQLCNVPATH RUNTIME/SQL
Specifies the location of the conversion details for SQL grammars CONFIG FILE BASED CONVERSIONS
convert_sql() now uses configuration files. These are by default located in /opt/aubit4gl/etc/convertsql/, but
that can be changed with A4GL_SQLCNVPATH.

A4GL_SQLCONVERT COMPILE/RUNTIME/SQL
Autoconvert SQL from sources files dialect to runtime dialect. Conversion of SQL statements in 4GL code, to
the SQL dialect of target RDBMS. Conversion is only done if you set A4GL_SQLCONVERT=YES and only
if the dialect used by the program differs from that used by the DBMS interface.

A4GL_SQLDIALECT COMPILE/RUNTIME/SQL
SQL Dialect used for the source file. Declares the SQL dialect of SQL code in 4GL source code. an 4GL
directive to change the default SQL dialect at runtime is: SET SQL DIALECT TO ORACLE by default the
system assumes the 4GL application is using Informix SQL syntax, but this can be changed by setting, for
example:A4GL_SQLEXEC SQL

A4GL_SQLPWD SQL/COMPILE/RUNTIME
Database access password See A4GL_SQLUID for description

A4GL_SQLUID SQL/COMPILE/RUNTIME
Database access user name FIXME: is not odbc.ini supposed to have default login name and password? Defines
username and password for accessing database server via ODBC: needed for DATABASE and DEFINE LIKE
statements at compile time, and procedural DATABASE statement ar run-time. You can use OPEN SESSION
and supply login information at run-time, but NOT at compile time:
Default=<no default value> WARNING!! BE CAREFULL NOT TO HAVE A TAB OR OTHER SPECIAL
CHARACTRS IN THE VALUE OF THIS VARIABLES !!!!!!!!!!

A4GL_SQL_CURRENT_FUNCTION SQL

A4GL_SYSTEM

A4GL_SYSTEMDIR

A4GL_SYSUSER

A4GL_TEMPDIR

A4GL_TRANSLATEFILE COMPILE
Specifies the location of a translation file. This is used for transforming 4GL strings via a message file (see
DUMPSTRINGS)

A4GL_TRANSMODE

A4GL_TRIMDUMP DEBUG/UI/TUI
Trim the results of a dump screen to a specified screen size (eg 24x80) =24x80|25x80|24x132|25x132

A4GL_TRIMUSINGFMT RUNTIME
Trim trailing spaces from a using string variable before applying it

A4GL_USEPAGEKEYS UI
Does odd processing with PgUp PgDn keys on keyboard

A4GL_USE_BINDING_FOR_PUT SQL
=YES|NO

122

APPENDIX A. UNIX ENVIRONMENT VARIABLES

A4GL_USE_DATABASE_STMT SQL
=YES|NO

A4GL_USE_FORM_SIZE FORMS/UI/RUNTIME
Aubit used to honouring the size y by x in the form, this has been removed. If you require to specify the
size, it can still be used by setting A4GL_USE_FORM_SIZE=Y (using this is an Aubit extension - and not
default informix behaviour!)
=YES|NO

A4GL_USE_INDICATOR ESQL/COMPILE
Use indicator variables in ESQL/C generated code
=YES|NO

VISUAL RUNTIME
Name of the editor for BLOB fields (?)

A4GL_YYDEBUG DEBUG/COMPILE
Aubit parser debugging

A4GL_EXDTYPE RUNTIME
External data types support to be loaded $AUBITDIR/lib/libEXDTYPE_?.so Currently only MPZ (large
integers) are supported FIME: not sure if this is needed - looks like this is loaded on request: see example
testmpz.4gl into the tools/test directory.

A4GL_NULL_DECIMAL_IF_BAD RUNTIME
Null a decimal value rather than set it to 0 if its invalid
=YES|NO The standard informix behaviour seems to be to set the value to 0 for decimals but sets dates to
NULL. This is inconsistent and so this default behaviour is switchable via this configuration setting

A4GL_BEEPONERROR RUNTIME
Indicates that a beep should be emitted by the ERROR statement
=YES|NO

A4GL_FLASHONERROR RUNTIME
Indicates that a screen flash should be emitted by the ERROR statement
=YES|NO Not all terminals are capable of emitting a screen flash. If a screen flash is not possible then the
terminal bell is rung instead.

A4GL_REFRESH_AFTER_MOVE UI/TUI
Issue a screen update after a cursor movement
=YES|NO This is a screen drawing optimisation function. Normally a screen update is not required but there
may be some instances where the screen cursor does not move to the right place if this isn’t set. If you’re not
too worried about where the screen cursor is, or your application doesn’t suffer from this problem then set this
to N

A4GL_FIRSTCOL_ONERR UI/TUI
Move to the beginning of a field after an error
=YES|NO Can only be set if CLR_FIELD_ON_ERROR=N See CLR_FIELD_ON_ERROR

A4GL_CLR_FIELD_ON_ERROR UI/TUI
Clears a field after an error
=YES|NO If this is set them FIRSTCOL_ONERR will never be triggered See FIRSTCOL_ONERR

A4GL_NO_REFRESH_AFTER_SYSTEM UI
Issue a screen refresh after any sysem command
=YES|NO In Informix 4GL, the screen is not refreshed after every system command but only after a new
screen instruction is issued. This means that if you are running a lot of system commands, Aubit4GL’s screen
may appear to flicker between line mode and screen mode. Set this to N to inhibit the automatic screen refresh.

A4GL_NO_ARRAY_EXPAND COMPILE
Remove the array expansion code
=YES|NO This is solely for backward compatibilty with older Aubit4GL versions. It should be set to N in all
other cases..

RM_COMMENTS_FIRST COMPILE
remove any comments before compiling the 4GL code
=YES|NO This defaults to Yes, if you have problems with compilation - it may be that this code is getting
confused. Try setting to N, or setting DUMP_LAST

GDB_ATTACH RUNTIME Attach GDB
to the process when a Segmentation Fault occurs
=YES|NO This is useful for tracing back problems during runtime execution The first command to execute in
gdb would normally be a ’bt’ which should give something like :
#0 0x402095a9 in __wait4 () from /lib/libc.so.6
#1 0x40271ad8 in __DTOR_END__ () from /lib/libc.so.6
#2 0x401ad506 in system () from /lib/libc.so.6
#3 0x40038858 in A4GL_core_dump () at fglwrap.c:911
#4 <signal handler called>
#5 0x8048bbd in aclfgl_xxx (_nargs=0) at ./x1.c:95
#6 0x8048a6d in main (argc=1, argv=0xbffff1d4) at ./x1.c:58
#7 0x40180baf in __libc_start_main () from /lib/libc.so.6
Ignore everything up to the <signal handler called>, and ’frame 5’ (in this case) should show the offending
line.

123

APPENDIX A. UNIX ENVIRONMENT VARIABLES

DUMP_LAST COMPILE
output the results of the last remove comments
=YES|NO This will produce a file ’last’ which contains the file with the comments removed. This is used to
check the operation of the RM_COMMENTS_FIRST code

124

	Features
	4GL
	Aubit 4GL
	Aubit4GL Benefits
	GNU, GPL, OpenSource
	Commercially Supported
	Productive
	Fast
	Compatible
	Engine Independent

	Aubit4GL Extensions

	Installation - Quick Start
	A Quick Start ?
	Downloading and installing
	Installing Source/CVS
	Binary

	Next steps
	Module types
	A4GL
	DATA
	ESQL
	EXDTYPE
	EXREPORT
	FORM
	HELP
	LEX
	LOGREP
	MENU
	MSG
	PACKER
	RPC
	SQL
	EC generation
	COMPILE TIME
	RUN TIME

	For C generation
	COMPILE TIME
	RUN TIME
	ODBC

	UI
	XDRPACKER

	Standard settings
	Finally...

	Troubleshooting
	For Informix
	Get the client SDK
	Check the SDK
	Set Up Aubit
	Try to compile a simple 4gl
	Try to run it

	For PostgreSQL
	Install postgreSQL
	Configure postgreSQL and create database if required
	Check you're ecpg setup
	Set Up Aubit
	Try a 4gl program

	Installation - Full
	Platforms
	Source or Binary

	Get Source
	Tarball
	SRPM
	CVS

	Prerequisites
	C Compiler
	Options
	Architecture
	Database
	Engines
	No SQL
	ODBC
	ODBC config files
	Sample odbcinst.ini

	ODBC Datasources
	Informix ODBC Drivers
	Informix Driver Manager

	PostgreSQL Drivers
	SAPDB Drivers
	ODBC Warning
	Native

	Curses
	PDFLib
	GTK
	Install Source
	/usr/local/bin/aubit
	/usr/local/bin/aubit-config

	Install Binaries
	Testing the compiler

	Compiling 4GL programs & Forms
	A4GL compilers
	4glpc
	Usage

	4glc
	Compiling forms
	Compiling help files
	Compiling menu files

	Configuration
	Introduction to configuration
	configurator
	Essential Configuration flags
	A4GL_SQLTYPE
	A4GL_UI

	aubitrc files

	4GL Language
	Introduction
	Summary:
	Short Intro to x4GL
	4GL Programs
	Structure of a program
	DATABASE section
	GLOBALS section
	Functions
	MAIN block
	DEFINE section
	Array Syntax:
	Records
	Syntax

	Associative Arrays
	Performance Note

	Constants
	Packages

	4GL Quick Reference
	Aubit4GL Quick Reference
	Data Types
	Constants
	Global Variables
	Syntax Conventions
	Operators
	Aubit 4GL Expressions
	Attribute Constants
	Key Constants
	Table Privileges
	Comments
	4GL Statement Syntax
	Report Syntax
	Report Statement Syntax
	Report Expressions
	PDF Report Syntax
	PDF Report Expressions
	PDF Statements
	PDF_FUNCTION arglists

	Builtin Functions
	Standard 4GL Builtin Functions
	Standard 4GL Operators
	D4GL Builtin Functions
	Aubit Builtin Functions
	a4gl_get_info()
	Connection
	Form
	Statement
	Window

	Form Syntax
	Tag Description
	Aubit 4GL GUI Attributes

	Aubit4GL Builtins
	a4gl_get_info()
	Synopsis
	Input Parameters
	Return value(s)
	Properties
	Form Properties
	Statement Properties
	Window Properties
	Connection Properties
	Cursor Properties

	Comments
	Example

	Help system
	Help message source file
	Compiling help files
	help in programs
	Within 4GL
	At runtime

	Decompiling
	Compatibility
	mkmess

	SQL Conversion
	Source SQL dialect
	Target SQL dialect
	Configuration files
	Converting SQL scripts
	Conversion file syntax
	Simple directives
	Complex Directives
	REPLACE directives

	Make
	GNU make
	Makefiles
	Include File
	Make glossary:
	Makefile Example

	Pattern Rules
	Make variables
	GPATH and VPATH
	.PHONY
	Implicit rules
	Syntax
	Debugging make

	amake
	Introduction
	Summary
	Converting old makefiles
	prepmake
	example
	amakeallo
	amakeallf

	2. amake
	Requests
	Notes
	Installation
	Credits:
	#DEFINE
	4GL Makefiles
	Makefiles for Classic 4GL on Unix

	D4GL Makefiles on Unix
	I4GL Makefiles on Unix
	NMAKE

	Bug in ESQL/C rules:

	A4GL Utilities
	adbschema
	afinderr
	asql
	runforms

	aupscol
	P-Code
	configurator
	convertsql
	default_frm
	fshow
	loadmap
	mcompile
	mkpackage
	prepmake
	decompilers
	Internally used applications
	xgen

	Aubit4GL Extension libraries
	channel
	Dependencies
	Function list
	open_file
	open_pipe
	set_delimiter
	close
	fgl_read*
	read
	write

	file
	Dependencies
	Function list
	popen
	fopen
	ftell
	ferror
	fseek
	fseek_from_end
	fsize
	fgets
	feof
	fclose
	rewind

	memcached
	Dependencies
	Function list
	mc_new
	mc_server_add
	mc_add
	mc_replace
	mv_req_new
	mv_req_add
	mv_get
	mc_aget
	mv_set
	mv_res_free
	mv_stats
	mv_delete
	mc_incr
	mc_decr

	pcre
	Dependencies
	Function list
	pcre_text
	pcre_match

	pop
	Dependencies
	Function list
	popget
	poperr
	popbegin
	popnum
	popbytes
	popmsgsize
	popmsguid
	popgetmsg
	popgethead
	popcancel
	popend
	popdelmsg

	smtp
	Dependencies
	Function list
	set_errmsg
	clear_err
	set_server
	get_server
	get_errmsg
	start_message
	add_recipient
	mime_type_new
	connect
	disconnet
	send_to
	part_send_file
	send_report

	string
	Dependencies
	Function list
	split
	strstr
	strchr

	sxml
	Dependencies
	Function list

	dynamic
	Dependencies
	Function list

	Aubit4GL Extensions
	Fake Comments {! ... !}
	Associative Arrays
	Paused Screen Handling
	ODBC Data access
	Multiple Concurrent Connections
	Application Constants
	Map Files
	Variable IDs
	Passing IDs
	Embedded C code.
	MOVE/SHOW/HIDE WINDOW
	WHENEVER SUCCESS/SQLSUCCESS
	Multilevel Menus
	Extended DISPLAY ARRAY
	Extended USING
	Local functions
	get_info function
	Dynamic Screen Fields
	Remote Function Calls
	SELECT/DELETE/UPDATE USING
	ON ANY KEY
	Compile Time Environment
	SET SESSION Option/SET CURSOR option
	Application Partitioning
	Y2K Runtime Translation
	Globbing
	A4GL Wizard
	Program Templates

	PDF Reports
	GUI
	Packages
	IDE
	Independent Development Environment

	Logical Reports

	Tricks, tips etc.
	Internationalisation
	Auto-translation

	ACE reports
	Aubit 4GL GUI
	Plexus AD32 mode
	Aubit 4GL GUI mode
	Longer term

	GUI Menus
	Menu File Format

	Simple GUI menu
	Handling_menu_options

	GUI form files
	Extensions
	WIDGET
	CONFIG

	gtk_form
	Examples_(in_test/gui/)

	GUI issues
	Colours in GUI
	Threads
	Progress

	Extended Reports
	PDF reports
	Before you start

	Introduction
	Output Section
	Fonts
	Report Structure
	Extras
	Positioning
	Using pdf_function()
	Images

	Example program

	Printing generated reports

	Logical Reports
	Invoking a logical report
	'Finishing' the report
	Converting to `¨filename`¨
	Default layouts
	Converting to many

	Saved Meta Data
	The Report Viewer
	The layout editor
	The report processor
	Tips for CSV layouts

	Helper programs

	Debugging
	Coredumps
	Unexpected behaviour
	All other errors
	compiler errors
	Reporting bugs

	Revisions
	2006-8-15
	2006-8-1
	2005-9-9
	2005-3-12
	2004-4-27
	2004-2-22
	Problems

	UNIX environment variables

