
Four Js Genero Business Development
Language User Guide

Contents | 2

Contents

Genero Business Development Language User Guide......................... 15

What's new in Genero Business Development Language, v 3.00......... 18

General..22
Documentation conventions.. 22

Syntaxes... 22
Warnings... 22
Code examples...23
Enhancement references..23

General terms used in this documentation... 23
Introduction to Genero BDL programming..24

Overview of Genero BDL... 25
Genero BDL concepts.. 26

Installation.. 33
Documentation resources for upgrades.. 33
Software requirements.. 33

Supported operating systems...33
Database client software.. 33
C compiler for C extensions...34
Java

™
 runtime environment.. 34

IPv6 support with Genero...35
Installing Genero BDL... 35
Upgrading Genero BDL...35
Platform specific notes.. 36

HP-UX configuration notes... 36
IBM

®
 AIX

®
 configuration notes..36

Mac OS X configuration notes... 37
Microsoft

™
 Windows

™
 configuration notes..38

Web Services platform notes... 39

Upgrading... 40
New features of Genero BDL... 40

What's new in Genero Business Development Language, v 3.00 (Maintenance Releases)... 41
What's new in Genero Business Development Language, v 3.00... 41
What's new in Genero Business Development Language, v 2.51... 45
What's new in Genero Business Development Language, v 2.50... 48
What's new in Genero Business Development Language, v 2.41... 51
What's new in Genero Business Development Language, v 2.40... 51
What's new in Genero Business Development Language, v 2.32... 55
What's new in Genero Business Development Language, v 2.30... 56
What's new in Genero Business Development Language, v 2.21... 58
What's new in Genero Business Development Language, v 2.20... 62
What's new in Genero Business Development Language, v 2.11... 65

Contents | 3

What's new in Genero Business Development Language, v 2.10... 68
What's new in Genero Business Development Language, v 2.02... 71
What's new in Genero Business Development Language, v 2.01... 72
What's new in Genero Business Development Language, v 2.00... 72
What's new in Genero Business Development Language, v 1.33... 76
What's new in Genero Business Development Language, v 1.32... 76
What's new in Genero Business Development Language, v 1.31... 77
What's new in Genero Business Development Language, v 1.30... 78
What's new in Genero Business Development Language, v 1.20... 82
What's new in Genero Business Development Language, v 1.10... 84

Frequently asked questions.. 85
FAQ001: Why do I have a different display with Genero than with BDS V3?........................ 85
FAQ002: Why does an empty window always appear?...86
FAQ003: Why do some COMMAND KEY buttons no longer appear?...................................86
FAQ004: Why aren't the elements of my forms aligned properly?...87
FAQ005: Why doesn't the ESC key validate my input?...88
FAQ006: Why doesn't the Ctrl-C key cancel my input?...88
FAQ007: Why do the gui.* FGLPROFILE entries have no effect?.. 89
FAQ008: Why do I get invalid characters in my form?.. 89
FAQ009: Why do large static arrays raise a stack overflow?.. 89
FAQ010: Why do I get error -6366 "Could not load database driver drivername"?................90

Upgrade Guides for Genero BDL... 90
General upgrade guide...90
3.00 upgrade guide.. 91
2.51 upgrade guide.. 101
2.50 upgrade guide.. 106
2.40 upgrade guide.. 109
2.32 upgrade guide.. 112
2.30 upgrade guide.. 113
2.21 upgrade guide.. 116
2.20 upgrade guide.. 117
2.11 upgrade guide.. 122
2.10 upgrade guide.. 123
2.02 upgrade guide.. 123
2.01 upgrade guide.. 123
2.00 upgrade guide.. 123
1.33 upgrade guide.. 129
1.32 upgrade guide.. 129
1.31 upgrade guide.. 130
1.30 upgrade guide.. 130

Planned desupport.. 139
Migrating from IBM

®
 Informix

®
 4gl to Genero BDL... 139

Introduction to I4GL migration..140
Installation and setup topics...140
User interface topics...141
4GL programming topics.. 147

Migrating from Four Js BDS to Genero BDL..151
Installation and setup topics...152
User interface topics...153
4GL Programming topics..161

Configuration..164
The FGLPROFILE file... 164

Understanding FGLPROFILE... 164
FGLPROFILE entry syntax...165

Contents | 4

List of FGLPROFILE entries.. 166
Environment variables... 169

Setting environment variables on UNIX
™

... 169
Setting environment variables on Windows

™
... 170

Setting environment variables in FGLPROFILE (mobile)...170
Operating system environment variables... 171
Database client environment variables.. 173
Genero environment variables... 173

Configuring the front-end connection..186
Configuring the database server connections...186

Language basics..188
Syntax features..188

Lettercase insensitivity..188
Whitespace separators... 189
Quotation marks... 189
Escape symbol... 189
Statement terminator.. 190
Comments...190
Identifiers...191
Preprocessor directives.. 191

Data types... 191
BIGINT.. 192
BYTE...193
BOOLEAN...195
CHAR(size)... 195
DATE...197
DATETIME qual1 TO qual2... 198
DECIMAL(p,s)... 200
FLOAT...202
INTEGER.. 202
INTERVAL qual1 TO qual2.. 203
MONEY(p,s)..204
SMALLFLOAT...205
SMALLINT...205
STRING...206
TINYINT.. 207
TEXT... 208
VARCHAR(size)..210

Type conversions.. 211
When does type conversion occur?...211
Data type conversion reference... 212
Handling type conversion errors...216
Formatting numeric values... 217
Formatting DATE values.. 220
Formatting DATETIME values..221
Formatting INTERVAL values.. 223

Literals... 225
Integer literals... 225
Numeric literals... 225
Text literals... 226
Datetime literals.. 227
Interval literals...228

Expressions... 229
Understanding expressions.. 229

Contents | 5

Boolean expressions.. 230
Integer expressions.. 231
Numeric expressions.. 231
String expressions.. 232
Date expressions.. 232
Datetime expressions... 233
Interval expressions..233

Operators... 234
Order of precedence.. 234
General warnings regarding expressions...236
List of expression elements..236

Flow control... 267
CALL... 268
RETURN... 270
CASE.. 270
CONTINUE block-name..272
EXIT block-name.. 273
FOR...274
GOTO..275
IF... 276
LABEL... 276
SLEEP...277
WHILE...277

Functions... 278
Understanding functions... 278
FUNCTION blocks.. 278
Using functions in programs...279
Examples.. 280

Variables.. 281
Understanding variables... 281
DEFINE... 281
Declaration context... 282
Structured types..283
Database column types..283
User defined types... 284
Variable initialization values... 284
INITIALIZE.. 285
LOCATE (for TEXT/BYTE)... 286
FREE (for TEXT/BYTE)..287
LET..288
VALIDATE...288
THRU operator... 289
Examples.. 290

Constants...291
Understanding constants.. 291
CONSTANT.. 291
Examples.. 293

Records..294
Understanding records..294
DEFINE ... RECORD..294
Examples.. 296

Arrays...296
Understanding arrays..297
DEFINE ... ARRAY...297
Static arrays..298
Dynamic arrays...300

Contents | 6

Array methods.. 302
Copying complete arrays..302
Examples.. 302

Types... 303
Understanding type definition... 303
TYPE...303
Using types in programs.. 304
Examples.. 305

Advanced features...307
Localization.. 307

Application locale..307
Localized strings... 327

Runtime stack..336
Passing simple typed values as parameter... 336
Passing a record as parameter..337
Passing a static array as parameter.. 337
Passing a dynamic array as parameter... 338
Passing objects as parameter..338
Passing a TEXT/BYTE as parameter...339
Returning simple typed values from functions... 339
Returning dynamic arrays from functions...339
Returning TEXT/BYTE values from functions.. 340
Implicit data type conversion on the stack...340

Exceptions... 340
Understanding exceptions.. 341
Exception classes... 341
Exception actions..341
WHENEVER instruction..342
TRY - CATCH block...344
Tracing exceptions..345
Default exception handling... 346
Non-trappable errors...346
Examples.. 346

OOP support..349
Understanding classes and objects..349
DEFINE ... package.class...349
Distinguish class and object methods..349
Working with objects...350
What class packages exist?...351

XML support.. 351
DOM and SAX standards...351
DOM and SAX built-in classes...351
Limitations of XML built-in classes...352
Exception handling with XML classes..352
Controlling the user interface with XML classes.. 352

Globals...353
Understanding global blocks.. 353
GLOBALS... 353
Rules for globals usage..353
Database schema in globals.. 354
Content of a globals file... 354
Examples.. 354

Database schema..355
Understanding database schemas... 356

Contents | 7

SCHEMA...356
Structure of database schema files..357
Database schema extractor options...364

Programs... 368
Structure of a program... 368
Structure of a module...368
The MAIN block..370
Importing modules.. 371
Predefined constants.. 376
Configuration options..378
Program registers... 387

Program execution.. 390
Executing programs..390
RUN.. 391
EXIT PROGRAM.. 394
BREAKPOINT... 394

Front calls.. 395
Understanding front calls..395
ui.Interface.frontCall.. 395
User-defined front calls...397

SQL support... 398
SQL programming... 398

SQL basics... 398
SQL security... 410
SQL portability.. 412
SQL performance... 452

Database connections... 457
Understanding database connections.. 457
Opening a database connection...458
Database client environment.. 459
Connection parameters...461
Connection parameters in database specification..464
Direct database specification method.. 465
Indirect database specification method.. 466
IBM

®
 Informix

®
 emulation parameters in FGLPROFILE... 466

Database vendor specific parameters in FGLPROFILE...469
Database user authentication...473
Unique session mode connection instructions... 476
Multi-session mode connection instructions...477
Miscellaneous SQL statements.. 480

Database transactions...480
Understanding database transactions.. 481
BEGIN WORK.. 482
SAVEPOINT..483
COMMIT WORK... 483
ROLLBACK WORK.. 484
RELEASE SAVEPOINT..484
SET ISOLATION...485
SET LOCK MODE..486

Static SQL statements.. 486
Understanding static SQL statements..487
Using program variables in static SQL.. 487
Table and column names in static SQL...488
SQL texts generated by the compiler.. 488

Contents | 8

INSERT... 489
UPDATE..490
DELETE.. 492
SELECT.. 493
SQL ... END SQL... 495
CREATE SEQUENCE.. 496
ALTER SEQUENCE... 496
DROP SEQUENCE.. 497
CREATE TABLE...497
ALTER TABLE..497
DROP TABLE... 498
CREATE INDEX... 498
ALTER INDEX.. 499
DROP INDEX... 499
CREATE VIEW... 499
DROP VIEW... 499
CREATE SYNONYM.. 499
DROP SYNONYM.. 499
RENAME...500

Dynamic SQL management.. 500
Understanding dynamic SQL..500
PREPARE (SQL statement)... 501
EXECUTE (SQL statement)... 502
FREE (SQL statement)...503
EXECUTE IMMEDIATE..504

Result set processing..504
Understanding database result sets...504
DECLARE (result set cursor)... 506
OPEN (result set cursor).. 509
FETCH (result set cursor).. 510
CLOSE (result set cursor).. 511
FREE (result set cursor)...512
FOREACH (result set cursor)...512

Positioned updates/deletes..514
Understanding positioned update or delete... 514
DECLARE (SELECT ... FOR UPDATE)...515
UPDATE ... WHERE CURRENT OF..516
DELETE ... WHERE CURRENT OF.. 517
Examples.. 517

SQL insert cursors.. 517
Understanding SQL insert cursors... 518
DECLARE (insert cursor)... 520
OPEN (insert cursor).. 521
PUT (insert cursor)... 521
FLUSH (insert cursor)...521
CLOSE (insert cursor).. 522
FREE (insert cursor)...522
Examples.. 522

SQL load and unload.. 524
LOAD.. 524
UNLOAD... 527

SQL adaptation guides..529
SQL guide for IBM

®
 Informix

®
 database servers 5.x, 7.x, 8.x, 9.x, 10.x, 11.x.......................529

SQL adaptation guide for IBM
®
 DB2

®
 UDB 10.x..540

SQL adaptation guide for IBM
®
 Netezza

®
 6.x.. 572

SQL adaptation guide for SQL SERVER 2005, 2008, 2012, 2014...................................... 592

Contents | 9

SQL adaptation guide for Oracle MySQL 5.x, MariaDB 10.x...625
SQL adaptation guide for Oracle Database 11, 12..643
SQL adaptation guide for PostgreSQL 9.x...683
SQL adaptation guide for SQLite 3.x... 709
SQL adaptation guide for SAP Sybase ASE 16.x..723

User interface...747
User interface basics...747

The dynamic user interface..747
The abstract user interface tree... 749
Genero user interface modes...752
Establish a GUI front-end connection.. 755
Special user interface features...759
Configuring a text terminal... 762

Form definitions... 769
Windows and forms..769
Using images.. 782
Accessibility guidelines... 791
Message files..794
Action defaults files.. 796
Presentation styles... 799
Form specification files...853
Form rendering... 1002
Toolbars.. 1021
Topmenus... 1027

Dialog instructions... 1034
Static display (DISPLAY/ERROR/MESSAGE/CLEAR).. 1034
Prompt for values (PROMPT).. 1042
Ring menus (MENU).. 1048
Record input (INPUT)...1060
Read-only record list (DISPLAY ARRAY).. 1075
Editable record list (INPUT ARRAY)..1098
Query by example (CONSTRUCT).. 1128
Multiple dialogs (DIALOG)..1144
Parallel dialogs (START DIALOG)... 1199

User interface programming..1249
Dialog programming basics.. 1249
Input fields.. 1260
Dialog actions... 1276
Table views...1345
Tree views.. 1384
Split views...1395
Drag & drop.. 1411
Web components..1416
Canvases.. 1448
Start menus.. 1454
Window containers (WCI)...1458

Reports..1460
Understanding reports... 1460
XML output for reports.. 1461

Writing an XML report driver and routine...1461
Structure of XML report output...1462
Conditional statement output in XML reports...1462

Contents | 10

The report driver..1464
START REPORT.. 1465
OUTPUT TO REPORT...1467
FINISH REPORT.. 1468
TERMINATE REPORT... 1468

The report routine..1469
The report prototype...1471
DEFINE section in REPORT..1471
OUTPUT section in REPORT.. 1472
ORDER BY section in REPORT.. 1473
FORMAT section in REPORT..1474
Prohibited report routine statements.. 1480

Two-pass reports...1480
Report instructions...1480

EXIT REPORT..1480
PRINT... 1481
PRINTX... 1483
NEED.. 1484
PAUSE.. 1485
SKIP.. 1485

Report operators..1486
LINENO...1486
PAGENO...1486
SPACES..1487
WORDWRAP.. 1487

Report aggregate functions... 1489
COUNT... 1489
PERCENT... 1490
SUM.. 1490
AVG...1490
MIN..1491
MAX.. 1491

Report engine configuration.. 1492

Programming tools..1493
Command line tools.. 1493

fglrun... 1493
fglform... 1495
fgl2p.. 1496
fglcomp..1497
fgllink... 1499
fglmkmsg...1500
fglmkext...1500
fgldb.. 1501
fgldbsch...1502
fglmkstr..1503
fglwsdl... 1503
fglpass...1506
fglWrt...1507

Compiling source files... 1508
Compiling form files..1508
Compiling message files...1509
Compiling string files.. 1510
Compiling source code...1510
Importing modules.. 1511

Contents | 11

Linking libraries...1511
Linking programs.. 1512
Using makefiles.. 1515
Module build information.. 1515

Source code edition.. 1516
Choosing the correct locale..1516
Avoid Tab characters in screen layouts...1517
Code completion and syntax highlighting with VIM..1517

Source documentation...1517
Understanding source code documentation...1518
Prerequisites for source documentation generation...1518
Documentation structure...1518
Adding comments to sources...1519
Run the documentation generator..1521

The preprocessor.. 1522
Understanding the preprocessor.. 1522
Compilers command line options... 1522
File inclusion... 1523
Simple macro definition.. 1525
Function macro definition... 1527
Stringification operator..1529
Concatenation operator.. 1529
Predefined macros..1530
Undefining a macro.. 1530
Conditional compilation...1530

The debugger.. 1531
Understanding the debugger.. 1531
Prerequisites to run the debugger..1532
Starting fglrun in debug mode..1532
Attaching to a running program..1533
Debugging on a mobile device...1534
Stack frames in the debugger.. 1535
Setting a breakpoint programmatically... 1536
Expressions in debugger commands... 1536
Debugger commands..1537

The profiler.. 1556
Syntax of the program profiler..1556
Usage..1556
Example.. 1558

Optimization... 1559
Runtime system basics...1560
Check runtime system memory leaks.. 1561
Optimize your programs... 1561

Logging options... 1563

Extending the language.. 1564
The Java

™
 interface...1564

Prerequisites and installation..1565
Getting started with the Java

™
 interface.. 1566

Advanced programming..1568
Examples.. 1592

C-Extensions..1597
Understanding C-Extensions.. 1597
Header files for ESQL/C typedefs..1598
Creating C-Extensions..1598

Contents | 12

Creating Informix
®
 ESQL/C Extensions..1599

The C interface file...1600
Linking programs using C-Extensions..1601
Loading C-Extensions at runtime... 1601
Runtime stack functions... 1602
C-Extension data types and structures.. 1606
Calling C functions from programs...1609
Calling program functions from C.. 1610
Sharing global variables... 1611
Simple C-Extension example... 1612
Implementing C-Extensions for GMI.. 1613

User-defined front calls... 1615
Implement front call modules for GDC...1615
Implement front call modules for GMA.. 1620
Implement front call modules for GMI..1624
Implement front call modules for GWC - HTML5 theme..1631
Implement front call modules for GWC - JavaScript..1632

Web Components..1636

Library reference... 1637
Built-in functions.. 1637

Built-in functions... 1637
List of desupported built-in functions..1666
The key code table...1666

Utility functions.. 1667
Common dialog utility functions (IMPORT FGL fgldialog)..1668
Database utility functions (IMPORT FGL fgldbutl)... 1672
Front-end dialog utility functions (IMPORT FGL fglwinexec)... 1676
vCard utility functions (IMPORT FGL VCard).. 1679

Built-in packages... 1687
BDL data types package.. 1687
The base package..1703
The ui package...1755
The om package...1833

Built-in front calls...1881
Built-in front calls.. 1881

Extension packages.. 1947
The util package... 1947
The os package..1990
The com package...2009
The xml package.. 2103
The security package... 2278

File extensions...2296
Genero BDL errors..2297

Web services..2400
General.. 2400

Introduction to Web Services... 2400
SOAP Web Services basics...2404
RESTful Web Services basics..2416
Getting started and examples.. 2416
Debugging...2416
Platform-specific notes..2416
Known issues..2419

Contents | 13

Legal Notices.. 2419
Concepts..2419

High-level and low-level web services APIs...2420
SOAP features..2420
Stateful web services..2422
Encryption, base64 and password agent with fglpass tool.. 2429
HTTP compression... 2432
SOAP multipart style requests in GWS..2434

Security.. 2435
Encryption and authentication.. 2435
Accessing secured services... 2438
HTTPS configuration...2440
Certificates in practice.. 2441
Examining certificates...2443
Troubleshoot common issues...2446
The Diffie-Hellman key agreement algorithm...2447

SOAP Web Services... 2450
Writing a Web Services client application.. 2450
Writing a Web Services server application.. 2468
How To's...2484

RESTful Web Services..2505
Deploy a Web Service.. 2506

Web services server program deployment...2506
Configuring the apache web server for HTTPS... 2507

Reference.. 2509
Web services configuration.. 2509
Attributes to customize XML serialization.. 2517
Error handling in GWS calls (STATUS)... 2546
Interruption handling in GWS calls (INT_FLAG).. 2546
Server API functions - version 1.3 only... 2546
Configuration API functions - version 1.3 only...2552
Using fglwsdl to generate code from WSDL or XSD schemas.. 2555

Mobile applications... 2557
Types of Genero Mobile apps...2557
Language limitations..2560
Environment variables on mobile..2560
App localization... 2560
Apps user interface... 2561

Action rendering..2561
Images and icons... 2562
Keyboard type...2563
List views.. 2563
Split views...2564
Toolbars.. 2565
Topmenus... 2565
Front call support..2566
Color and theming.. 2566

Database support on mobile devices..2567
Using SQLite database in mobile apps..2567

Accessing device functions... 2569
Web Services on mobile devices..2569
Debugging a mobile app... 2570
Deploying mobile apps..2572

Deploying mobile apps on Android
™

 devices... 2572

Contents | 14

Deploying mobile apps on iOS devices... 2584
Running mobile apps on an application server..2595

Push notifications.. 2599
Google Cloud Messaging (GCM)... 2600
Apple Push Notification Service (APNs).. 2605
Implementing a token maintainer... 2611
Handling notifications in the mobile app.. 2617

Genero Business Development Language User Guide | 15

Genero Business Development Language User Guide

Manual organization at a glance.

General on page 22 Installation on page
33

Upgrading on page
40

Configuration on page
164

• What's new in
Genero Business
Development
Language, v 3.00 on
page 18

• Documentation
conventions on page
22

• General terms used
in this documentation
on page 23

• Introduction to
Genero BDL
programming on
page 24

• Documentation
resources for
upgrades on page
33

• Software
requirements on
page 33

• Installing Genero
BDL on page 35

• Upgrading Genero
BDL on page 35

• Platform specific
notes on page 36

• New features of
Genero BDL on page
40

• Frequently asked
questions on page
85

• Upgrade Guides for
Genero BDL on page
90

• Planned desupport
on page 139

• Migrating from
IBM Informix 4gl to
Genero BDL on page
139

• Migrating from Four
Js BDS to Genero
BDL on page 151

• The FGLPROFILE
file on page 164

• Environment
variables on page
169

• Configuring the front-
end connection on
page 186

• Configuring the
database server
connections on page
186

Language basics on
page 188

Advanced features on
page 307

SQL support on page
398

SQL adaptation guides
on page 529

• Syntax features on
page 188

• Data types on page
191

• Type conversions on
page 211

• Literals on page
225

• Expressions on page
229

• Operators on page
234

• Flow control on page
267

• Functions on page
278

• Variables on page
281

• Constants on page
291

• Records on page
294

• Arrays on page 296

• Localization on page
307

• Runtime stack on
page 336

• Exceptions on page
340

• OOP support on
page 349

• XML support on page
351

• Globals on page
353

• Database schema on
page 355

• Programs on page
368

• Program execution
on page 390

• SQL programming on
page 398

• Database
connections on page
457

• Database
transactions on page
480

• Static SQL
statements on page
486

• Dynamic SQL
management on
page 500

• Result set processing
on page 504

• Positioned updates/
deletes on page
514

• SQL insert cursors on
page 517

• SQL load and unload
on page 524

• IBM Informix
• IBM DB2 UDB
• IBM Netezza
• SQL Server
• Oracle MySQL
• Oracle database
• PostgreSQL
• SQLite
• Sybase ASE

Genero Business Development Language User Guide | 16

• Types on page 303

User Interface: User
interface basics on
page 747

User Interface: Form
definitions on page
769

User Interface: Dialog
instructions on page
1034

User Interface: User
interface programming
on page 1249

• The dynamic user
interface on page
747

• The abstract user
interface tree on
page 749

• Genero user interface
modes on page 752

• Establish a GUI front-
end connection on
page 755

• Special user interface
features on page
759

• Configuring a text
terminal on page
762

• Windows and forms
on page 769

• Using images on
page 782

• Accessibility
guidelines on page
791

• Message files on
page 794

• Action defaults files
on page 796

• Presentation styles
on page 799

• Form specification
files on page 853

• Form rendering on
page 1002

• Toolbars on page
1021

• Topmenus on page
1027

• Static display
(DISPLAY/ERROR/
MESSAGE/CLEAR)
on page 1034

• Prompt for values
(PROMPT) on page
1042

• Ring menus (MENU)
on page 1048

• Record input (INPUT)
on page 1060

• Read-only record list
(DISPLAY ARRAY)
on page 1075

• Editable record list
(INPUT ARRAY) on
page 1098

• Query by example
(CONSTRUCT) on
page 1128

• Multiple dialogs
(DIALOG) on page
1144

• Parallel dialogs
(START DIALOG) on
page 1199

• Dialog programming
basics on page 1249

• Input fields on page
1260

• Dialog actions on
page 1276

• Table views on page
1345

• Tree views on page
1384

• Split views on page
1395

• Drag & drop on page
1411

• Front calls on page
395

• Web components on
page 1416

• Canvases on page
1448

• Start menus on page
1454

• Window containers
(WCI) on page 1458

Reports on page 1460 Programming tools on
page 1493

Extending the
language on page
1564

Library reference on
page 1637

• Understanding
reports on page
1460

• XML output for
reports on page
1461

• The report driver on
page 1464

• The report routine on
page 1469

• Two-pass reports on
page 1480

• Report instructions
on page 1480

• Report operators on
page 1486

• Command line tools
on page 1493

• Compiling source
files on page 1508

• Source code edition
on page 1516

• Source
documentation on
page 1517

• The preprocessor on
page 1522

• The debugger on
page 1531

• The profiler on page
1556

• Optimization on page
1559

• The Java interface on
page 1564

• C-Extensions on
page 1597

• Built-in functions on
page 1637

• Utility functions on
page 1667

• Built-in packages on
page 1687

• Extension packages
on page 1947

• File extensions on
page 2296

• Genero BDL errors
on page 2297

Genero Business Development Language User Guide | 17

• Report aggregate
functions on page
1489

• Report engine
configuration on page
1492

• Logging options on
page 1563

Web services on page
2400

Mobile applications on
page 2557

• General on page
2400

• Concepts on page
2419

• Security on page
2435

• Writing a Web
Services client
application on page
2450

• Writing a Web
Services server
application on page
2468

• How To's
• Reference on page

2509

• Types of Genero
Mobile apps on page
2557

• Language limitations
on page 2560

• Environment
variables on mobile
on page 2560

• Database support on
mobile devices on
page 2567

• Web Services on
mobile devices on
page 2569

• Front call support on
page 2566

• List views on page
2563

• Split views on page
2564

• Toolbars on page
2565

• Topmenus on page
2565

• Debugging a mobile
app on page 2570

• Deploying mobile
apps on page 2572

• Push notifications on
page 2599

What's new in Genero Business Development Language, v 3.00 | 18

What's new in Genero Business Development Language,
v 3.00

This topic lists features added for the 3.00 GA release of the Genero Business Development Language.

Important: Please read also:

• What's new in Genero Business Development Language, v 3.00 (Maintenance Releases) on
page 41, for a list of features that were introduced with the Genero BDL 3.00 Maintenance
Releases.

• What's new in Genero Business Development Language, v 2.51 on page 45, for a list of
features that were introduced with the Genero Mobile 1.0 release.

Table 1: Core language

Overview Reference

The fglmkext command line tool can build your C Extension library. See fglmkext on page 1500.

New fglcomp warning for invalid NULL usage in expressions like
var==NULL.

See Compiler warning -6636.

C Extension runtime stack introspection (parameter type and actual string
value size in bytes).

See Runtime stack functions on
page 1602.

Temporary file name creation with os.Path.makeTempName(). See os.Path.makeTempName on
page 2002.

Attach the debugger to a running program with fgldb -p process-id. See Attaching to a running program
on page 1533.

Improved compilation time (fglcomp and fglform) See Improved compilation time on
page 98.

Datetime-related utility methods. See util.Datetime.getCurrentAsUTC
on page 1951, util.Datetime.format
on page 1949, util.Datetime.parse
on page 1951.

Date-related utility methods. See util.Date methods on page
1947.

Interval-related utility methods. See util.Interval methods on page
1955.

Table 2: User interface

Overview Reference

Autocompletion in text edit fields with the COMPLETER attribute. See Enabling autocompletion on
page 1274.

Centralization of icon definitions with the FGLIMAGEPATH environment
variable.

See Providing the image resource
on page 784, FGLIMAGEPATH
on page 182, Built-in front-end
icons desupport on page 97.

Defining an action for IMAGE form items (clickable images). See Defining action views in forms
on page 1276, Defining actions on
list columns with images on page

What's new in Genero Business Development Language, v 3.00 | 19

Overview Reference

1355, IMAGE item type on page
888.

Resizable SCROLLGRID containers (WANTFIXEDPAGESIZE=NO). See WANTFIXEDPAGESIZE
attribute on page 994.

Detect window resizing or device orientation change with the
windowresized predefined action.

See Adapting to viewport changes
on page 1003.

Dialog methods to convert the program array row index to the visual
index, and the opposite.

See ui.Dialog.arrayToVisualIndex
on page 1796,
ui.Dialog.visualToArrayIndex on
page 1815.

The ON SORT dialog control block can be used to execute code when the
record list is re-ordered by the user.

See List ordering on page
1356, Populating a DISPLAY
ARRAY on page 1372, ON
SORT block on page 1091,
ui.Dialog.getSortKey on page
1802, ui.Dialog.getSortReverse on
page 1802.

ON TIMER trigger in dialogs, to execute a block of code at regular
intervals.

See Get program control on a
regular (timed) basis on page
1255.

Dynamic dialog creation. See Implementing dynamic dialogs
on page 1255.

Providing application image resources to Web Components with
ui.Interface.filenameToURI().

See Using image resources
with the gICAPI web
component on page 1430,
ui.Interface.filenameToURI on page
1759.

Binding structured ARRAYs in DISPLAY ARRAY and INPUT ARRAY. See Structured ARRAYs in list
dialogs on page 100.

Table 3: SQL databases

Overview Reference

Support for PostgreSQL 9.4. See Database driver specification
(driver) on page 462.

Support for Sybase ASE 16.x. See Database driver specification
(driver) on page 462.

Support for SQL Server 2008, 2012 and 2014 with FreeTDS driver (using
FreeTDS 0.95)

See FreeTDS driver supports SQL
Server 2008, 2012, 2014 on page
97.

SQL interruption is now supported with MySQL. See SQL interruption on page
405.

MySQL VARCHAR(N) can be used when N is greater as 255. See MySQL VARCHAR size limit
on page 95.

MySQL DATETIME can store fractional seconds. See MySQL DATETIME fractional
seconds on page 96.

What's new in Genero Business Development Language, v 3.00 | 20

Overview Reference

Maria DB support (V5.5 and V10): Use the dbmmys driver. See MariaDB support on page
97.

Dynamic cursor built-in class base.SqlHandle. See The SqlHandle class on page
1725.

Native Oracle NUMBER type (without precision/scale) can be extracted
by fgldbsch.

See Oracle DB NUMBER type on
page 95.

Serial emulation based on triggers and sequences with SQL Server 2012
and +.

See SERIAL data types on page
606.

PostgreSQL connection string option specification in the source
parameter.

See Database source specification
(source) on page 461, Prepare
the runtime environment -
connecting to the database on page
684.

Table 4: Web Services

Overview Reference

Flushing immediately the response of a web service operation with
com.WebServicesEngine.flush.

See com.WebServiceEngine.Flush
on page 2026.

Base64 / Hexadecimal / Digest methods using a specific character set for
string data.

See
security.Base64.FromStringWithCharset
on page 2282,
security.Base64.ToStringWithCharset
on page 2285,
security.HexBinary.FromStringWithCharset
on page 2288,
security.HexBinary.ToStringWithCharset
on page 2290,
security.Digest.AddStringDataWithCharset
on page 2293.

com.WebServiceEngine option server_readwritetimeout to
define a server socket read/write timeout.

See Web Services changes on
page 93, WebServiceEngine
options on page 2032.

IPv6 support for Web Services clients. See Configure a WS client to use
IPv6 on page 2464.

Specific APIs for Apple Push Notification Service support. See The APNS
class on page 2095,
com.TCPRequest.setKeepConnection
on page 2091,
com.TCPRequest.doDataRequest
on page 2087,
com.TCPResponse.getDataResponse
on page 2093, Push notifications
on page 2599.

Methods to perform RESTful requests using files on disk. See
com.HTTPServiceRequest.readFileRequest
on page 2046,
com.HTTPServiceRequest.sendFileResponse
on page 2048,

What's new in Genero Business Development Language, v 3.00 | 21

Overview Reference

com.HTTPRequest.doFileRequest
on page 2058,
com.HTTPResponse.getFileResponse
on page 2073,
com.HTTPPart.getAttachment
on page 2080,
com.HTTPPart.CreateAttachment
on page 2080.

FGLPROFILE entries to define XML Signature and XML Encrypted data
prefix: xml.signature.prefix and xml.encrypted.prefix.

See XML configuration on page
2514.

SOAP fault handling works now when HTTP error 200 is returned by the
server.

See SOAP fault handling in client
stub on page 93.

Client stub multipart supports now optional parts. See Optional multipart handling in
client stub on page 94

Table 5: Mobile apps

Overview Reference

Starting remote applications from a mobile device with the runOnServer
front call.

See Running mobile apps on an
application server on page 2595.

Extended feInfo front call options for mobile devices (deviceModel,
deviceId, freeStorageSpace, iccid, imei, ppi, windowSize, and so on).

See feInfo on page 1893.

New materialFABType and materialFABActionList style
attributes for Window class, to control the FAB button on devices
following material design guidelines.

See Floating action button on
Android devices on page 1286.

Front call to display a box controlling debug settings on GMA. See showSettings (Android) on
page 1941.

Push notification APIs for Google Cloud Messaging (GMA) and
Apple Push Notification Service (GMI), with new predefined actions
(notificationpushed).

See Push notifications on page
2599.

Command line tools to build mobile apps. See Building Android apps with
Genero on page 2574, Building
iOS apps with Genero on page
2586.

Automatic FGLAPPDIR environment variable (defining the path to the
appdir), and automatic FGLDIR environment variable, when executing on
mobile devices.

See FGLAPPDIR on page
181, FGLDIR on page 181,
Setting environment variables in
FGLPROFILE (mobile) on page
170.

Front calls to take or choose videos on mobile devices. See chooseVideo on page 1927,
takeVideo on page 1939 front calls.

Table 6: Experimental features

Overview Reference

Stacked form definition in .per files with the new STACK container, for
mobile programming.

See Stack-based layout on page
1017, STACK container on page
914.

General | 22

General

These topics provide an introduction to the Genero Business Development Language

• Documentation conventions on page 22
• General terms used in this documentation on page 23
• Introduction to Genero BDL programming on page 24
• Frequently asked questions on page 85

Documentation conventions
Learn about documentation conventions regarding syntax, warnings, code examples, and enhancement
references.

• Syntaxes on page 22
• Warnings on page 22
• Code examples on page 23
• Enhancement references on page 23

Syntaxes
The term syntax is global and indicates the way to use a product function.

For example, it can be used to describe a language instruction or a command-line tool:

CALL function ([parameter [,...]])
 [RETURNING variable [,...]]

Language keywords are written in uppercase.

Variable elements in a syntax definition are written in italic.

Wildcard characters in syntax definitions are marked with an underscore:

Table 7: Wildcard characters

Wildcards Description

[e] Square braces indicate an optional element in the syntax.

[e1 | e2 ...] Square braces with pipe indicate an optional element to be selected from the
list.

{ e1 | e2 ... } Curly braces with pipe separator indicate a mandatory element the be selected
from the list.

[...] Indicates that the previous element can appear more than once.

[,...] Previous element can appear more than once, and must be separated by a
comma.

Warnings
Warnings are noticeable technical remarks, describing special behavior of the product function you must
be aware of.

Important: When a DATE, DATETIME or INTERVAL constant cannot be initialized correctly, it is
set to NULL.

General | 23

Some Genero features are not supported on all back-end or front-end platforms. The following note will
warn you about the limitation:

Important: This feature is not supported on mobile platforms.

Important: This feature is only for mobile platforms.

Important: This feature is experimental, the syntax/name and semantics/behavior may change in a
future version.

Code examples
Code examples contain code that can be copied as-is.

Code examples appear in the documentation as follows:

MAIN
 DEFINE a1 ARRAY[100] OF INTEGER,
 a2 ARRAY[10,20] OF RECORD
 id INTEGER,
...

Enhancement references
In some parts of the documentation you can find enhancement reference notes with a number identifying
the request in our internal database.

Enhancement reference: BZ#1827

General terms used in this documentation
This documentation uses several terms that must be clarified for a good understanding.

Application The application defines all software components
that compose the information system managing
a given domain. Usually, the domains covered by
programs written in BDL are business oriented.

End user The end user is the person that uses the
application; that person works on hardware called
the workstation.

Programs The programs are the software components that
are developed and distributed by the supplier of
the application. Programs typically implement
business logic. Programs are executed by the
runtime system. Program components are typically
p-code modules, forms and additional resource
files.

Developer The developer is the person in charge of the
conception and implementation of the application
components.

Application data Application data defines the data manipulated by
the application. It is typically managed by one or
more database systems. The application data has
a volatile state when loaded in the runtime system,
and it has a static state when stored in the database
system.

General | 24

Database The database is a logical entity regrouping the
application data. It is managed by the database
system.

Database system The database system is the software that manages
data storage and searching; it is usually installed on
the database server machine and is supported by a
tier software vendor.

Development database The development database is the database used in
the application development environment.

Production database The production database is the database used on
production sites.

Front end The front end is the software that manages the
display and input of the user interface on the
workstation machine. This component is historically
called "the client". It is the software handling the
presentation. There are different sort of front-ends
available, for desktop workstations (GDC), for web-
browsers (GAS), and on mobile devices (GMA/
GMI).

Runtime system The runtime system is the software that manages
the execution of the programs, where the business
logic is processed. The runtime system is also
known as the Dynamic Virtual Machine (DVM -
fglrun).

User interface The user interface defines the parts of the programs
that interact with the end user, including interactive
elements like windows, screens, input fields,
buttons and menus. It is managed by the front-end.

Graphical user interface The graphical user interface (GUI) mode identifies
the user interface displayed on a remote machine
via a front end. The GUI mode is active when the
FGLGUI environment variable is set to 1 or when
not set (GUI mode is the default).

Text user interface The text user interface (TUI) mode identifies the
user interface displayed on dumb terminals (TTY on
UNIX™ or Console Window on MS Windows™). The
TUI mode is active when the FGLGUI environment
variable is set to 0.

Workstation The workstation identifies the hardware used by the
end user to interact with the front end. It can be an
dumb terminal, a computer, or mobile device, as
long as a front end is available on the hardware.

Introduction to Genero BDL programming
Understand the basics about programming, compiling and deploying an application.

• Overview of Genero BDL on page 25
• Genero BDL concepts on page 26

General | 25

Overview of Genero BDL
Genero Business Development Language (BDL) is a program language designed to write an interactive
database application.

A Genero BDL application is a set of programs that handle the interaction between a user and a database.
Programs communicate with the database server with Structured Query Language (SQL), and execute
interactive instruction controlling application forms, to manage user input.

Figure 1: Interactive database applications with Genero

An important feature of the language is the ease with which you can design applications that allow the
user to access and modify data in a database. The language syntax includes a set of SQL statements
to manipulate the database, powerful interactive instructions that provide simple record input, read-only
and read-write record list handling, as well as database query to search the database, by using forms
supporting a large variety of graphical widgets.

The program sources are compiled to p-code modules, which can be interpreted on different platforms by
the Dynamic Virtual Machine (the Runtime system).

• Separation of business logic and user interface on page 25
• Portability - write once, deploy anywhere on page 25

Separation of business logic and user interface
Genero BDL separates business logic and the user interface to provide maximum flexibility.

• Intensive use of XML standards ensures that user interface is well separated from the program logic.
• Forms define the user interface are designed in a simple-to-understand and simple-to-read syntax.
• The business logic is written in .4gl source code modules.
• High-level interactive instructions called dialogs let you write form controllers in a few lines of code.
• Action views (buttons, menu items, toolbar icons) in the form definition can trigger actions defined in the

business logic.
• The user interface can be manipulated at runtime, for example to enable/disable fields and action views

dynamically.

Portability - write once, deploy anywhere
Genero application can be deployed for different kinds of display devices, operating systems and database
servers, by using the same source code.

Application forms can be displayed with a graphical front-end device based on native desktop frameworks,
in web browsers, as well as on simple dumb terminals. Genero programs can be executed on major
Operating Systems such as UNIX™, Linux™, Windows™ and Mac OS X® SQL can be performed by IBM®

Informix®, or any other major database server such as Oracle DB, IBM® DB2®, Microsoft™ SQL Server,
PostgreSQL, Oracle MySQL, Sybase ASE.

General | 26

Figure 2: Genero portability

Genero BDL concepts
This section describes basic Genero language concepts.

• Genero programs on page 27
• Integrated SQL support on page 27
• The user interface on page 27
• Language library on page 28
• Windows and forms on page 28
• Interactive instructions on page 28
• Responding to user actions on page 29
• Producing reports on page 29
• Internationalization on page 29
• Web services support on page 29
• Extending the language on page 30
• Programming tools on page 30

General | 27

Genero programs
Genero Business Development Language (BDL) is a programming language based on simple and
readable syntax.

The program logic in written in text files with the .4gl file extension, called program source modules.
Module sources are compiled (fglcomp) into p-code modules with the .42m file extension, that can be
executed by the runtime system (fglrun). Application programs are build with a group of .42m modules.

Integrated SQL support
A set of SQL statements are part of the language syntax and can be used directly in the source code, as a
normal procedural instruction.

The static SQL statements are parsed and validated at compile time. At runtime, these SQL statements are
automatically prepared and executed. Program variables are detected by the compiler and handled as SQL
parameters. Common SQL statements such as SELECT, INSERT, UPDATE or DELETE can be directly
written in the source code, as part of the language syntax:

MAIN
 DEFINE n INTEGER, s CHAR(20)
 DATABASE stores
 LET s = "Sansino"
 SELECT COUNT(*) INTO n FROM customer WHERE custname = s
 DISPLAY "Rows found: " || n
END MAIN

Dynamic SQL management allows you to execute SQL statements that are constructed at runtime. The
SQL statement can use SQL parameters:

MAIN
 DEFINE txt CHAR(20)
 DATABASE stores
 LET txt = "SET DATE_FORMAT = YMD"
 PREPARE sh FROM txt
 EXECUTE sh
END MAIN

Through the database drivers, the same program can open database connections to any of the supported
databases.

XML support
The language provides XML support through different classes, according to the needs.

Genero XML support is provided in two forms:

• For basic XML tasks related to the user interface, use the built-in XML classes.
• For complex XML tasks, and Web Services functions, use the full-featured XML classes provided in the

web services extension.

The user interface
The Genero user interface technology is based on the sharing of an abstract representation between the
runtime system and the front-end.

When a program starts, the runtime system creates the abstract user interface (AUI) tree and passes
this tree to the front-end. The front-end renders the abstract element as real graphical objects on the
workstation.

When an interaction statement takes control of the application, the tree on the front-end is automatically
synchronized with the runtime system tree. Runtime system and front-ends communicate with the front end
protocol, through the computer network. The AUI tree and the protocol are using XML standards.

General | 28

Figure 3: AUI tree synchronization

Resource files describe the appearance (decoration) of some of the graphic objects. Default resource files
(default.4ad, default.4st) are provided and can be customized, or replaced with your own versions.

The elements of the AUI tree can be manipulated at runtime with built-in utilities.

Language library
Several utility packages are provided to ease programming in different domains.

Utility functions and classes are available in different forms, including built-in classes, built-in functions, and
loadable modules.

Windows and forms
Programs manipulate window and form objects to define display areas controlled by interactive statements.

The forms are defined in text-based form specification files (.per). These form files are transformed by the
fglform compiler to produce the runtime form files (.42f) that are deployed in production environments.
The resulting (.42f) files are XML documents that describe the form elements, enabling portability across
display devices. The XML file can also be written directly, or it can be generated or modified from your
program at runtime with XML utilities.

Interactive instructions
Control application forms with interactive instructions that perform field input and action handling.

These interactive instructions allow the program to respond to user actions and data input. For example the
INPUT BY NAME block controls a set of form fields where the user can enter data:

DEFINE cust_rec RECORD LIKE customer.*
INPUT BY NAME cust_rec.*
 ...
 BEFORE FIELD cust_name
 ...
 ON ACTION print
 ...
END INPUT

Interactive instructions can be implemented as modal or parallel dialogs. Modal dialogs control a given
window, and that window closes when the dialog is accepted or canceled. The window displays on the top
of any existing windows which are not accessible while the modal dialog executes. Parallel dialogs allow
access to several windows simultaneously; the user can switch from on window to the other.

General | 29

Responding to user actions
Clicking a form button or pressing a key triggers actions that can invoke the execution of program of code
called action handlers. Form elements that can trigger actions are called action views.

Action handlers are defined in interactive statements with the ON ACTION clause. The code defined in
action handler blocks is executed when an action is fired. Action objects are created and linked to action
views when such ON ACTION handlers are seen by the runtime system. Common action handlers, such as
accept (dialog validation) and cancel (dialog cancellation), are created automatically in accordance with
the interactive instruction.

By configuring action defaults, you define the default decoration attributes (text, image) and functional
attributes (accelerator keys, context menu display) for the action views associated with actions.

Producing reports
The language allows you to implement reports easily, producing different sort of output formats.

Page headers and footers, with page numbers, can be defined. Data can be grouped together, with group
totals and subtotals shown. The output from a report can be sent to the screen, to a printer, to a file, or
(through a pipe) to another program, and report output can even be redirected to an SAX filter in order
to write XML data, that can be transformed into HTML, PDF or any other document format that can be
generated from an XML source.

Internationalization
The language supports single-byte and multi-byte internationalization.

The language supports single-byte such as ISO-8859-1, as well as multibyte character sets such as BIG5
or UTF-8.

Length semantics to define variables and manipulate character string data can be based on byte or
character units.

Labels and messages can be separated from programs and forms, to customize your application for
specific subsets of for the user population, whether it is for a particular language or a particular business
segment.

The source files (4gl, per, 4ad, and so on) can be written in a specific encoding, however, we
recommend you to keep sources in ASCII, and store locale-dependent strings in external strings files
(str).

Web services support
The Genero Web service library allows to implement web service clients and servers.

Web services are a standard way of communicating between applications over an intranet or Internet. They
define how to communicate between two entities:

• A server that exposes services
• A client that consumes services

The Genero Web Services Extension (GWS) is an extension to the Genero Business Development
Language. It installs within the Genero Business Development Language directory. The fglgws package
includes both Genero Business Development Language and Genero Web Services.

The Genero Application Server is required to manage your Web Services in a deployment environment. It
is not required for Web services development, unless you are interested in testing deployment issues.

General | 30

Extending the language
You can extend the language using C or Java™.

Using C

The language can be completed with C extensions. This allows you to implement specific function libraries
in C, callable from the program modules. C extension libraries are typically used to interface with specific
devices, such as barcode scanners or biometric identification devices.

Using Java™

You can instantiate Java™ objects from your programs by using the Java™ interface. This allows you to
take benefit of the huge class library of Java™.

Programming tools
Genero BDL includes several programming tools in addition to compilers.

A set of useful programming tools is provided, to help you in the application development process, for
debugging, optimization and source documentation production.

Compiling a program
You need to compile the source files in order to run the application.

A program can consist of a single source code module, but generally it will be organized in multiple
modules, will involve form specification files and perhaps localized string files.

Database schema files are required when you define program data types and variables in the terms of an
existing database column or table, by using the DEFINE ... LIKE statement.

Before running your application with the runtime system, you need to use compilation tools in order to build
the various runtime files.

Figure 4: Genero compilation tools

The compiled source code modules can be linked into a .42r program that can be executed by the Runtime
System. Compiled modules can also be grouped together into a.42x library that can then be used to
build .42r programs.

General | 31

Figure 5: Linking of compiled modules

It is also possible to declare what modules are needed by the current module with the IMPORT FGL
instruction, in order to define the dependency between .4gl modules. When using this language feature, it
is no longer required to link modules together to build a program.

IMPORT FGL cust_module
MAIN
 DATABASE stores
 CALL cust_module.input_customer()
END MAIN

Importing modules is the preferred solution.

Deploying an application
To deploy an application, you must deploy all of the required runtime and resource files. Many (but not all)
of these files are compiled from the source files.

Figure 6: Deployment files

General | 32

These program files must be deployed at the user site:

• .42r, .42x, .42m - Executable programs and libraries, compiled modules
• .42f - Runtime form files
• .42s - compiled localized string files, if used in your applications
• .4sm - your custom Start Menu XML file, if created
• .4ad, .4st - these default XML files, provided with Genero, must be distributed with the runtime

system files; if you have customized these files, or created your own versions, your versions must be
deployed instead.

Runtime environment settings

The fglprofile configuration file and environment variables can be used to change the behavior of
programs.

Installation | 33

Installation

This chapter contains installation and setup instructions.

• Documentation resources for upgrades on page 33
• Software requirements on page 33

• Supported operating systems on page 33
• Database client software on page 33
• C compiler for C extensions on page 34
• Java runtime environment on page 34

• Installing Genero BDL on page 35
• Upgrading Genero BDL on page 35
• Platform specific notes on page 36

• HP-UX configuration notes on page 36
• IBM AIX configuration notes on page 36
• Mac OS X configuration notes on page 37
• Microsoft Windows configuration notes on page 38

Documentation resources for upgrades
Version-specific upgrade guides describe potential compatibility issues with new product releases.

Product improvements can be found in the new features section of this documentation.

Contact you support channel to get the list of corrected defects in the new version.

Software requirements
Before installing, ensure that your system meets the minimum system requirements and additional
software.

Supported operating systems
Details of the supported operating systems for the Genero Business Development Language.

Genero Business Development Language is supported on a large brand of operating systems, such as
Linux™, IBM® AIX®, HP-UX, SUN Solaris, Mac OS X® and Microsoft™ Windows™.

You must install the software package corresponding to the operating system that you use. For the detailed
list of supported operating systems, refer to the relevant installation guide or contact your support center.

Database client software
To connect to a database server, the database client software must be installed on the system where you
run the Genero BDL programs.

The Genero runtime system uses database drivers to connect to database servers, as a database client
program. Database vendor-specific client software needs to be installed on the system where you run the
Genero programs.

Example of database client software:

• IBM® Informix® Client SDK (with ESQL/C)
• IBM® okDB2 Connect® (with CLI)

Installation | 34

• Oracle® Client (with OCI)
• Oracle® MySQL client (libmysqlclient)
• Microsoft™ SQL Server Native Client(with ODBC driver)
• PostgreSQL client (libpq)
• FreeTDS ODBC client (libtdsodbc)
• Easysoft™ ODBC client for SQL Server (libessqlsrv)
• SQLite 3.x (libsqlite3)
• SAP Sybase ASE™ OCS client

Database drivers are shipped as shared libraries and require a database client software shared library. The
database driver to be selected must correspond to the database client type and version.

C compiler for C extensions
Ensure you have a C compiler and linker to compile your C-Extensions.

Applications using C extensions, need a C compiler and linker to build the C extension library that will be
loaded by the runtime system.

C compiler On UNIX™ platforms

On UNIX platforms, you need a cc compiler on the system where you create the C extension libraries.
Some systems may not have a C compiler by default. Make sure you have a C compiler on the system.

C compiler On Microsoft™ Windows™ platforms

On Windows platforms, it is mandatory to install Microsoft Visual C++ 2010 (also known as Visual C++
10.0) on the system where you create the C extension libraries.

C compiler On Mac OS X™ platforms

On Mac OS X platforms, it is mandatory to install XCode 6.1, on the system where you create the C
extension libraries.

Java™ runtime environment
Software requirements when using the Java™ Interface

In order to use the Java™ Interface in your application programs, you need the Java software installed and
properly configured.

• Install a Java™ Development Kit on development sites (if you need to compile your own Java classes)
• Install a Java™ Runtime Environment on production sites (on the server where your programs are

running)

The Java™ classes defined by Genero (com.fourjs.fgl.lang.*) are compiled with javac -source
1.5 -target 1.5, to be Java™ 1.5+ compatible. Therefore the minimum theoretical Java™ version is
1.5. However, according to the platform, the minimum required version is Java™ 1.6 or 1.7.

The version of the installed Java software can be shown with the command:

java --version

In order to execute Java byte code, the Genero runtime system uses the JNI interface. The JVM is loaded
as a shared library and its binary format must match the binary format of the Genero runtime system. For
example, a 64-bit Genero package requires a 64-bit JVM.

When implementing Java classes for Genero Mobile for Android (GMA), check the JDK version required by
the Android™ SDK. For more information, see the Android Studio web site.

https://developer.android.com/sdk/installing/studio.html

Installation | 35

IPv6 support with Genero
Network interface configuration for IPv6 support

IPv6 basics

IPV6 is the successor for IPv4, to increase the possible number of nodes of a computer network.

IPv6 support for WS clients

A Web Services client program can by default access to a WS server using IPv6. For more details, see
Configure a WS client to use IPv6 on page 2464.

Note: Web Services server programs work only in IPv4 to communicate with the GAS (since there
is no need for IPv6 on a localhost). It's up to the web server to support IPv6 for the internet access
of WS clients.

Installing Genero BDL
Different forms of installation programs are provided, as individual package or bundeled with other
Genero components. Refer to the appropriate installation guide for a detailed description of the installation
procedure. Do not hesitate to contact your support if you need help.

After installing a package, you should:

1. Set the FGLDIR environment variable to the installation directory.
2. Set the PATH environment variable to (FGLDIR)/bin in order to run compilers and runtime system tools

from the command line.
3. Set the database client software environment (INFORMIXDIR, ORACLE_HOME, DB2DIR, SYBASE,

PGDIR, LD_LIBRARY_PATH, etc)
4. Set access path to database client software DLLs (PATH), or Unix shared libraries

(LD_LIBRARY_PATH, SHLIB_PATH, LIBPATH)
5. According to the database server you want to connect to, set up the correct database driver in

FGLPROFILE. The default database driver is Informix®.
6. Depending what rendering mode you want to use (text mode or graphical mode), you will have to set

environment variables such as FGLGUI, FGLSERVER, TERM, INFORMIXTERM.
7. If your application uses C-Extensions, a C compiler is required and you must recompile your C-

Extensions as shared libraries.

Upgrading Genero BDL
After upgrading to a newer version, follow these next steps:

1. If the new version is a major upgrade (for example, from 2.20 to 2.21), recompile the sources and form
files. While recompilation is not needed when migrating to maintenance release versions (for example,
from 2.21.01 to 2.21.02), it is recommended to benefit from potential p-code optimizations.

2. If required, you may need to recreate the C-Extension libraries. C extension libraries must be provided
as dynamically loadable modules and thus should not required a rebuild. However, if the C-Extension
API header files have changed, consider recompiling your C sources. Check FGLDIR/include/f2c
for C Extension API header file changes.

Installation | 36

Platform specific notes

HP-UX configuration notes

Thread Local Storage in shared libraries

On HP-UX, the shared library loader cannot load libraries using Thread Local Storage (TLS), like
Oracle libclntsh. In order to use shared libraries with TLS, you must use the LD_PRELOAD_ONCE
environment variable. For more details, search for "shl_load + Thread Local Storage" on the HP support
site.

PostgreSQL on HP-UX LP64

On HP-UX LP64, the PostgreSQL database driver should be linked with the libxnet.sl library if
you want to use networking. You can force the usage of libxnet by setting the LD_PRELOAD_ONCE
environment variable to /lib/pa20_64/libxnet.sl.

Java™ Interface

When using the Java™ Interface with the HotSpot JVM on HP/UX:

If you get an error when fglcomp or fglrun try to load the libjvm library, use the LD_PRELOAD environment
variable:

$ LD_PRELOAD=libjvm.sl
$ export LD_PRELOAD

Using LD_PREPLOAD can make other applications fail. LD_PRELOAD should only be set for the runtime
system. If you need to run other applications in the same environment as your application programs,
you can set the LD_PRELOAD_ONCE or JAVA_PRELOAD_ONCE variable in the shell scripts found in
FGLDIR/bin.

IBM® AIX® configuration notes

LIBPATH environment variable

The LIBPATH environment variable defines the search path for shared libraries. Make sure LIBPATH
contains all required library directories, including the system library path /lib and /usr/lib.

Shared libraries archives

On AIX®, shared libraries are usually provided in .a archives containing the shared object(s). For example,
the DB2® client library libdb2.a contains both the 32-bit (shr.o) and the 64-bit (shr_64.o) versions
of the shared library. Not all products follow this rule; for example Oracle 9.2 provides libclntsh.a with
shr.o on 64-bit platforms, and Informix® provides both .a archives with static objects and .so shared
libraries as on other platforms.

The runtime system database drivers are created with the library archives or with the .so shared objects,
according to the database type and version. No particular manipulation is needed to use any supported
database client libraries on this platform.

The dump command

On IBM® AIX®, you can check the library dependencies with the dump command:

$ dump -Hv -X64 libstckp.so

Installation | 37

Unloading shared libraries from memory

In production environments, AIX® loads shared libraries into the system shared library segment in order
to improve program load time. Once a shared library is loaded, other programs using the same library are
attached to that memory segment.

Once a shared library is loaded by the system, you cannot copy the executable file unless you unload the
library from the system memory. This problem will occur when installing a new version of the software,
even if it is installed in a different directory. Since shared libraries will have the same name, AIX® will not
allow multiple versions of the same library to load. Therefore, before installing a new version, make sure all
shared libraries are unloaded from memory.

The genkld command prints the list of shared libraries currently loaded into memory. The slibclean
command unloads a shared library from the system shared library segment.

POSIX Threads and shared libraries

When using a thread-enabled shared library like Oracle's libclntsh, the program using the shared
object must be linked with thread support, otherwise you can experience problems (like segmentation fault
when the runner program ends). IBM® recommends using the xlc_r compiler to link a program with pthread
support.

By default, the runtime system provided for AIX® platforms is linked with pthread support.

Java™ Interface

When using the Java™ Interface with the IBM® Java™ VM (J9VM) on AIX®, you may need
to set the path to native shared libraries in the LIBPATH environment variable, if you get
java.lang.UnsatisfiedLinkError exceptions:

$ LIBPATH=$JAVA_HOME/jre/bin:$JAVA_HOME/jre/bin/j9vm:$JAVA_HOME/jre/lib/
ppc64:$LIBPATH
$ export LIBPATH

This is required when using Java code that needs to access native code supplied as part of the JRE.
For example, without setting LIBPATH to the appropriate path, the JVM cannot find the shared library
libnet.so.

Using the -Djava.library.path=path-to-native-library java VM option does not seem to help.

Mac OS X configuration notes

DYLD_LIBRARY_PATH denied in OS X 10.11

Starting with Mac OS X 10.11 (El Capitan), if the System Integrity Protection (SIP) is enabled, the
DYLD_LIBRARY_PATH environment variable is no longer exported in sub processes. This variable could
be used to define the shared library search path for software components used by the Genero runtime
system. This was required especially for database client libraries installed in directories other than /usr/
lib and /usr/local/lib (the default location for shared libraries).

As DYLD_LIBRARY_PATH cannot be used, the proper workaround is to install all required shared libraries
in /usr/local/lib. A good practice is to create the installation directory of the software component in
/usr/local/product/version, and create symbolic links to the required shared libraries in /usr/
local/lib.

Important: You might need to install several shared libraries in /usr/local/lib: To make sure
that all required libraries are available, check the dependencies with the otool -L shared-
library.dylib command.

Installation | 38

For example:

$ mkdir /usr/local/postgresql
$ mkdir /usr/local/postgresql/9.5.1

... install PostgreSQL in /usr/local/postgresql/9.5.1 ...

$ cd /usr/local/lib
$ ln -s /usr/local/postgresql/9.5.1/lib/libpq.5.dylib libpq.5.dylib
$ otool -L /usr/local/lib/libpq.5.dylib
...

Java™ Interface

When using the Java Interface, the runtime system is able to find automatically the libjvm.dylib
according to the JAVA_HOME environment variable.

For more details, see Platform-specific notes for the JVM on page 1566

Microsoft™ Windows™ configuration notes

Microsoft™ Visual C++ version

When using C-Extensions, you need Microsoft™ Visual C++ compiler to compile and link your C sources.
Make sure you have installed the software package corresponding to the MSVC version installed on your
system. The MSVC version is identified in the software package name.

Checking binary dependencies

Microsoft™ Visual C++ provides the dumpbin utility to extract information from a binary file.

Use the /dependents option to check for DLL dependencies:

C:\ dumpbin /dependents mylib.dll
Microsoft (R) COFF/PE Dumper Version 7.10.3077
Copyright (C) Microsoft Corporation. All rights reserved.

Dump of file mylib.dll

File Type: EXECUTABLE IMAGE

Image has the following dependencies:

isqlt09a.dll
MSVCR71.dll
KERNEL32.dll

Summary

1000 .data
1000 .rdata
1000 .text

Changing the stack size of fglrun

On Windows™ platforms, the fglrun.exe binary has a predefined C stack size. In some rare cases (for
example, when programs do deep recursion), the stack size of fglrun.exe binary needs to be changed to
avoid a stack overflow. The stack size of fglrun can be changed this permanently by patching the EXE

Installation | 39

file with the Microsoft™ Visual C++ editbin utility. Check the stack size by running the dumpbin utility on
fglrun.exe as follows:

C:\ dumpbin /headers %FGLDIR%\bin\fglrun.exe

Search for the line containing "stack reserve" words in the OPTIONAL HEADER VALUES section:

OPTIONAL HEADER VALUES
 ...
 100000 size of stack reserve

The stack size is displayed in hexadecimal value. So for example, a value 100,000 means1,048,567 bytes
= 1MB.

In order to modify the stack size of fglrun.exe, run the editbin utility on fglrun.exe with the /stack option:

C:\ editbin /stack:1000000 %FGLDIR%\bin\fglrun.exe

See Microsoft™ Visual C++ documentation for more details.

Web Services platform notes

Genero Web Services reference documentation contains a list of platform specific notes to consider. For
more details, see Web Services platform specific notes.

Upgrading | 40

Upgrading

These topics talk about what steps you need to take to upgrade to the next release of Genero Business
Development Language, and allows you to identify which features were added for a specific version.

• New features of Genero BDL on page 40
• Frequently asked questions on page 85
• Upgrade Guides for Genero BDL on page 90
• Planned desupport on page 139
• Migrating from IBM Informix 4gl to Genero BDL on page 139
• Migrating from Four Js BDS to Genero BDL on page 151

New features of Genero BDL
These topics provide an look back at the new features introduced with each release of the Genero
Business Development Language.

• Product line 3.0x

• What's new in Genero Business Development Language, v 3.00 (Maintenance Releases) on page
41

• What's new in Genero Business Development Language, v 3.00 on page 18

• Product line 2.5x

• What's new in Genero Business Development Language, v 2.51 on page 45
• What's new in Genero Business Development Language, v 2.50 on page 48

• Product line 2.4x

• What's new in Genero Business Development Language, v 2.41 on page 51
• What's new in Genero Business Development Language, v 2.40 on page 51

• Product line 2.3x

• What's new in Genero Business Development Language, v 2.32 on page 55
• What's new in Genero Business Development Language, v 2.30 on page 56

• Product line 2.2x

• What's new in Genero Business Development Language, v 2.21 on page 58
• What's new in Genero Business Development Language, v 2.20 on page 62

• Product line 2.1x:

• What's new in Genero Business Development Language, v 2.11 on page 65
• What's new in Genero Business Development Language, v 2.10 on page 68

• Product line 2.0x:

• What's new in Genero Business Development Language, v 2.02 on page 71
• What's new in Genero Business Development Language, v 2.01 on page 72
• What's new in Genero Business Development Language, v 2.00 on page 72

• Product line 1.3x:

• What's new in Genero Business Development Language, v 1.33 on page 76
• What's new in Genero Business Development Language, v 1.32 on page 76
• What's new in Genero Business Development Language, v 1.31 on page 77
• What's new in Genero Business Development Language, v 1.30 on page 78

• Product line 1.2x:

Upgrading | 41

• What's new in Genero Business Development Language, v 1.20 on page 82
• Product line 1.1x:

• What's new in Genero Business Development Language, v 1.10 on page 84

What's new in Genero Business Development Language, v 3.00 (Maintenance
Releases)

This topic lists features added for 3.00 MRs of the Genero Business Development Language.

Important: Please read What's new in Genero Business Development Language, v 3.00 on page
18, for a list of features that were introduced with Genero 3.00 General Availability release.

Table 8: User interface

Overview Reference

The standard.openFile frontcall is now supported with GWC-JS. See standard frontcall support
matrix.

The dictionariesDirectory parameter for the standard.feInfo
frontcall can be used to get the directory where spell checker dictionary
files can be uploaded.

See standard.feInfo frontcall.

Table 9: Mobile apps

Overview Reference

Front call to ask user for Android permissions. See askForPermission (Android) on
page 1940 front call.

GMA buildtool clean option to cleanup the scaffold directory in case of
interruption or failure in prior build.

See Building Android apps with
Genero on page 2574.

Note: The new features listed in this topic are available in the lastest version of the related
products. Contact your support channel for more details.

What's new in Genero Business Development Language, v 3.00
This topic lists features added for the 3.00 GA release of the Genero Business Development Language.

Important: Please read also:

• What's new in Genero Business Development Language, v 3.00 (Maintenance Releases) on
page 41, for a list of features that were introduced with the Genero BDL 3.00 Maintenance
Releases.

• What's new in Genero Business Development Language, v 2.51 on page 45, for a list of
features that were introduced with the Genero Mobile 1.0 release.

Table 10: Core language

Overview Reference

The fglmkext command line tool can build your C Extension library. See fglmkext on page 1500.

New fglcomp warning for invalid NULL usage in expressions like
var==NULL.

See Compiler warning -6636.

C Extension runtime stack introspection (parameter type and actual string
value size in bytes).

See Runtime stack functions on
page 1602.

Upgrading | 42

Overview Reference

Temporary file name creation with os.Path.makeTempName(). See os.Path.makeTempName on
page 2002.

Attach the debugger to a running program with fgldb -p process-id. See Attaching to a running program
on page 1533.

Improved compilation time (fglcomp and fglform) See Improved compilation time on
page 98.

Datetime-related utility methods. See util.Datetime.getCurrentAsUTC
on page 1951, util.Datetime.format
on page 1949, util.Datetime.parse
on page 1951.

Date-related utility methods. See util.Date methods on page
1947.

Interval-related utility methods. See util.Interval methods on page
1955.

Table 11: User interface

Overview Reference

Autocompletion in text edit fields with the COMPLETER attribute. See Enabling autocompletion on
page 1274.

Centralization of icon definitions with the FGLIMAGEPATH environment
variable.

See Providing the image resource
on page 784, FGLIMAGEPATH
on page 182, Built-in front-end
icons desupport on page 97.

Defining an action for IMAGE form items (clickable images). See Defining action views in forms
on page 1276, Defining actions on
list columns with images on page
1355, IMAGE item type on page
888.

Resizable SCROLLGRID containers (WANTFIXEDPAGESIZE=NO). See WANTFIXEDPAGESIZE
attribute on page 994.

Detect window resizing or device orientation change with the
windowresized predefined action.

See Adapting to viewport changes
on page 1003.

Dialog methods to convert the program array row index to the visual
index, and the opposite.

See ui.Dialog.arrayToVisualIndex
on page 1796,
ui.Dialog.visualToArrayIndex on
page 1815.

The ON SORT dialog control block can be used to execute code when the
record list is re-ordered by the user.

See List ordering on page
1356, Populating a DISPLAY
ARRAY on page 1372, ON
SORT block on page 1091,
ui.Dialog.getSortKey on page
1802, ui.Dialog.getSortReverse on
page 1802.

ON TIMER trigger in dialogs, to execute a block of code at regular
intervals.

See Get program control on a
regular (timed) basis on page
1255.

Upgrading | 43

Overview Reference

Dynamic dialog creation. See Implementing dynamic dialogs
on page 1255.

Providing application image resources to Web Components with
ui.Interface.filenameToURI().

See Using image resources
with the gICAPI web
component on page 1430,
ui.Interface.filenameToURI on page
1759.

Binding structured ARRAYs in DISPLAY ARRAY and INPUT ARRAY. See Structured ARRAYs in list
dialogs on page 100.

Table 12: SQL databases

Overview Reference

Support for PostgreSQL 9.4. See Database driver specification
(driver) on page 462.

Support for Sybase ASE 16.x. See Database driver specification
(driver) on page 462.

Support for SQL Server 2008, 2012 and 2014 with FreeTDS driver (using
FreeTDS 0.95)

See FreeTDS driver supports SQL
Server 2008, 2012, 2014 on page
97.

SQL interruption is now supported with MySQL. See SQL interruption on page
405.

MySQL VARCHAR(N) can be used when N is greater as 255. See MySQL VARCHAR size limit
on page 95.

MySQL DATETIME can store fractional seconds. See MySQL DATETIME fractional
seconds on page 96.

Maria DB support (V5.5 and V10): Use the dbmmys driver. See MariaDB support on page
97.

Dynamic cursor built-in class base.SqlHandle. See The SqlHandle class on page
1725.

Native Oracle NUMBER type (without precision/scale) can be extracted
by fgldbsch.

See Oracle DB NUMBER type on
page 95.

Serial emulation based on triggers and sequences with SQL Server 2012
and +.

See SERIAL data types on page
606.

PostgreSQL connection string option specification in the source
parameter.

See Database source specification
(source) on page 461, Prepare
the runtime environment -
connecting to the database on page
684.

Table 13: Web Services

Overview Reference

Flushing immediately the response of a web service operation with
com.WebServicesEngine.flush.

See com.WebServiceEngine.Flush
on page 2026.

Upgrading | 44

Overview Reference

Base64 / Hexadecimal / Digest methods using a specific character set for
string data.

See
security.Base64.FromStringWithCharset
on page 2282,
security.Base64.ToStringWithCharset
on page 2285,
security.HexBinary.FromStringWithCharset
on page 2288,
security.HexBinary.ToStringWithCharset
on page 2290,
security.Digest.AddStringDataWithCharset
on page 2293.

com.WebServiceEngine option server_readwritetimeout to
define a server socket read/write timeout.

See Web Services changes on
page 93, WebServiceEngine
options on page 2032.

IPv6 support for Web Services clients. See Configure a WS client to use
IPv6 on page 2464.

Specific APIs for Apple Push Notification Service support. See The APNS
class on page 2095,
com.TCPRequest.setKeepConnection
on page 2091,
com.TCPRequest.doDataRequest
on page 2087,
com.TCPResponse.getDataResponse
on page 2093, Push notifications
on page 2599.

Methods to perform RESTful requests using files on disk. See
com.HTTPServiceRequest.readFileRequest
on page 2046,
com.HTTPServiceRequest.sendFileResponse
on page 2048,
com.HTTPRequest.doFileRequest
on page 2058,
com.HTTPResponse.getFileResponse
on page 2073,
com.HTTPPart.getAttachment
on page 2080,
com.HTTPPart.CreateAttachment
on page 2080.

FGLPROFILE entries to define XML Signature and XML Encrypted data
prefix: xml.signature.prefix and xml.encrypted.prefix.

See XML configuration on page
2514.

SOAP fault handling works now when HTTP error 200 is returned by the
server.

See SOAP fault handling in client
stub on page 93.

Client stub multipart supports now optional parts. See Optional multipart handling in
client stub on page 94

Table 14: Mobile apps

Overview Reference

Starting remote applications from a mobile device with the runOnServer
front call.

See Running mobile apps on an
application server on page 2595.

Upgrading | 45

Overview Reference

Extended feInfo front call options for mobile devices (deviceModel,
deviceId, freeStorageSpace, iccid, imei, ppi, windowSize, and so on).

See feInfo on page 1893.

New materialFABType and materialFABActionList style
attributes for Window class, to control the FAB button on devices
following material design guidelines.

See Floating action button on
Android devices on page 1286.

Front call to display a box controlling debug settings on GMA. See showSettings (Android) on
page 1941.

Push notification APIs for Google Cloud Messaging (GMA) and
Apple Push Notification Service (GMI), with new predefined actions
(notificationpushed).

See Push notifications on page
2599.

Command line tools to build mobile apps. See Building Android apps with
Genero on page 2574, Building
iOS apps with Genero on page
2586.

Automatic FGLAPPDIR environment variable (defining the path to the
appdir), and automatic FGLDIR environment variable, when executing on
mobile devices.

See FGLAPPDIR on page
181, FGLDIR on page 181,
Setting environment variables in
FGLPROFILE (mobile) on page
170.

Front calls to take or choose videos on mobile devices. See chooseVideo on page 1927,
takeVideo on page 1939 front calls.

Table 15: Experimental features

Overview Reference

Stacked form definition in .per files with the new STACK container, for
mobile programming.

See Stack-based layout on page
1017, STACK container on page
914.

What's new in Genero Business Development Language, v 2.51
This topic lists features added for the 2.51 release of the Genero Business Development Language.

Important: Most of the new features of BDL 2.51 have been added for Genero Mobile. The
features designed for Genero Mobile may not be supported by desktop and web-browser front ends
in the coming releases.

Genero Mobile V 1.0 (FGL 2.51.06)

Table 16: Core language

Overview Reference

The channel methods openServerSocket() and readOctets() See
base.Channel.openServerSocket
on page 1713,
base.Channel.readOctets on page
1715.

The sort() method of ARRAY variables. See DYNAMIC ARRAY.sort on
page 1700.

Upgrading | 46

Overview Reference

Remote debugging through network TCP socket See Debugging on a mobile device
on page 1534.

Datetime-related utility methods. See util.Datetime methods on page
1949.

String-related utility methods. See util.Strings methods on page
1956.

Write to stdout with om.XmlWriter.createFileWriter(NULL). See om.XmlWriter.createFileWriter
on page 1878.

Table 17: Core language (mobile apps)

Overview Reference

FGLPROFILE settings to define environment variables See Setting environment variables
in FGLPROFILE (mobile) on page
170.

The method base.Application.isMobile() See base.Application.isMobile on
page 1706.

FGL Java class to access Android™ JVM context See Standard Java and Android
library usage on page 1587.

VCard utility functions. See vCard utility functions
(IMPORT FGL VCard) on page
1679.

Table 18: User interface

Overview Reference

Dialog-level action attribute definitions with ON ACTION name
ATTRIBUTES().

See Configuring actions on page
1318.

URL-based Web Components See Using a URL-based web
component on page 1419.

The DATETIMEEDIT form item type See DATETIMEEDIT item type on
page 884.

New ON SELECTION CHANGE control block. See Multiple row selection on page
1381.

Table 19: User interface (mobile apps)

Overview Reference

START DIALOG / TERMINATE DIALOG / fgl_eventLoop() See Understanding parallel dialogs
on page 1199.

Window TYPE attribute in OPEN WINDOW instruction. See Window types on page 777.

DISPLAY ARRAY attributes for list views handling: ACCESSORYTYPE,
DETAILACTION, DOUBLECLICK.

See Using tables on mobile devices
on page 1362.

The DISCLOSUREINDICATOR action attribute. See DISCLOSUREINDICATOR
action attribute on page 1328

Upgrading | 47

Overview Reference

The ROWBOUND action attribute. See ROWBOUND action attribute
on page 1329

The KEYBOARDHINT form field attribute. See KEYBOARDHINT attribute on
page 973.

List filter with DISPLAY ARRAY dialog. See Reduce filter on page 1358.

Method ui.Interface.getFrontEndName() can now return GMI or
GMA

See ui.Interface.getFrontEndName
on page 1761.

Front-end functions for Genero Mobile (GMA / GMI) See Genero Mobile common front
calls on page 1925, Genero Mobile
Android front calls on page 1940,
Genero Mobile iOS front calls on
page 1945.

Toolbar style attribute iosStretchSeparator, to stretch item
separators on iOS device toolbars.

See Toolbar style attributes on
page 838.

Navigation bar button colors and background colors for iOS
device (iosTintColor , iosNavigationBarTintColor,
iosToolBarTintColor, iosTabBarTintColor) - provided as
Window class style attributes.

See Window style attributes on
page 839.

Table 20: SQL databases

Overview Reference

Simplified database driver specification See New database driver name
specification on page 102.

Support for SQL Server 2014 See Database driver specification
(driver) on page 462.

Support for Oracle Database 12c See Database driver specification
(driver) on page 462.

Support for PostgreSQL 9.3 See Database driver specification
(driver) on page 462.

Better support for DATETIME types with SQLite See DATETIME types with SQLite
on page 103.

STRING typed variables can be used in SQL statements. See STRING on page 206.

Genero Mobile V 1.1 (FGL 2.51.07)

Table 21: Core language (mobile apps)

Overview Reference

Implementing C-Extensions on iOS / GMI. See Implementing C-Extensions for
GMI on page 1613.

Using Java interface for Android / GMA. See Executing Java code with GMA
on page 1587.

Implementing customer front calls for GMA. See Implement front call modules
for GMA on page 1620.

Upgrading | 48

Overview Reference

Presentation styles are now supported by mobile front-ends. See Style attributes reference on
page 818.

GMA bundles zxing for Android. See scanBarCode on page 1937.

Table 22: Web Services (mobile apps)

Overview Reference

Complete support of Web Services on mobile devices.

(WS were partially supported in GM v1.0)

See Web services on page 2400.

Table 23: User interface (mobile apps)

Overview Reference

Presentation styles are now supported by mobile front-ends. See Style attributes reference on
page 818.

GMA bundles zxing for Android. See scanBarCode on page 1937.

What's new in Genero Business Development Language, v 2.50
This topic lists features added for the 2.50 release of the Genero Business Development Language.

Table 24: Core language

Overview Reference

Support for character length semantics to simplify UTF-8 programming. See Length semantics settings on
page 314.

The UTF-8 character set can be used on Microsoft™ Windows™ platforms
by setting the LANG environment variable to .fglutf8.

See Language and character set
settings on page 313.

JSON (JavaScript™ Object Notation) utility classes. See The util.JSON class on page
1966, The util.JSONObject class
on page 1970, The util.JSONArray
class on page 1979.

String to DATETIME conversion now accepts ISO 8601 format sub-set. See Data type conversion reference
on page 212.

The base.Channel method dataAvailable(), to check for channel
readability.

See base.Channel.dataAvailable on
page 1709.

With IMPORT FGL, fglcomp now automatically compiles imported
modules when needed. To avoid implicit compilation, use the --
implicit=none option of fglcomp.

See IMPORT FGL module on page
372.

The --resolve-calls or -W implicit fglcomp compiler options can
be used to detected unresolved symbols.

See IMPORT FGL module on page
372.

The fglrun option --print-imports can be used to find modules
dependencies and use IMPORT FGL instead of traditional linking.

See IMPORT FGL module on page
372.

Upgrading | 49

Table 25: User interface

Overview Reference

Dialog modularization. Declarative DIALOG blocks can be defined as
module elements and reused with the SUBDIALOG keyword of procedural
DIALOG blocks.

See Structure of a procedural
DIALOG block on page 1153.

Form modularization. Use the new FORM layout keyword to include a sub-
form in the current form specification file.

See Form file structure on page
901.

CLEAR SCREEN ARRAY instruction clears the values of all the rows of a
form list (TABLE, TREE, SCROLLGRID).

See CLEAR SCREEN ARRAY.

AUTONEXT attribute is allowed in DATEEDIT, SPINEDIT and TIMEEDIT
fields.

See DATEEDIT, SPINEDIT,
TIMEEDIT.

BUTTONEDIT item type attribute NOTEDITABLE, to disable the field
editor.

See NOTEDITABLE attribute on
page 976.

ON CHANGE fired when selecting a date in DATEEDIT calendar or when
changing the value of a TIMEEDIT widget.

See ON CHANGE block on page
1069.

Presentation style attributes ringMenuButtonTextHidden and
actionPanelButtonTextHidden added to customize the default
action view panels.

See actionPanelButtonTextHidden,
ringMenuButtonTextHidden.

Presentation style attribute thinScrollbarDisplayTime to define the
display time of the thin scrollbar when scrolling in fixed screen arrays.

See thinScrollbarDisplayTime

Presentation style attribute customWidget to define the widget to be
used for a TEXTEDIT (and CHECKBOX - removed in V3.00).

See TEXTEDIT customWidget.

fglrun options --start-guilog and --run-guilog, to generate and
replay a GUI protocol exchange.

See Front-end protocol logging on
page 759.

Table 26: SQL databases

Overview Reference

The SQLite driver dbmsqt3xx is now statically linked with the SQLite
library, except on platforms where the SQLite library is usually present
such as Linux™ and Mac OS-X™.

See the SQLite adaptation guide.

Database driver for PostgreSQL 9.2: dbmpgs92x. This driver is similar
to the prior PGS 9.x drivers, it is supported for strict binary compatibility
with the PostgreSQL 9.2 client library and is compiled with the 9.2 libpq
headers.

See Database driver dbmpgs92x.

Database driver for IBM® DB2® UDB version 10: dbmdb2Ax. This driver
is similar to the prior DB2® 9.x driver, it is supported for strict binary
compatibility with the DB2® 10.x client library and is compiled with the
10.x CLI headers.

See Database driver dbmdb2Ax.

Support for the Oracle RAW data type, in order to use the SYS_GUID()
values generator.

See The RAW data type on page
662.

FGLPROFILE entry for MySQL to specify the my.cnf client configuration
file: dbi.database.dbname.mys.config.

See Oracle MySQL / MariaDB
specific FGLPROFILE parameters
on page 471.

Upgrading | 50

Table 27: Web Services

Overview Reference

New security library provides classes and methods to support basic
cryptographic features. Although added for Genero Web Services, can be
used for any Genero application.

See The security package on page
2278.

New signature methods in xml.Signature class: signString() and
verifyString().

See xml.Signature methods on
page 2235.

New methods in xml.CryptoKey: loadPublicFromString() and
savePublicToString().

See xml.CryptoKey methods on
page 2209.

Support of Diffie-Hellman key-agreement algorithm. It allows two peers to
agree on the same symmetric key, the shared secret, without exchanging
confidential data.

See The Diffie-Hellman key
agreement algorithm on page
2447, Supported kind of keys on
page 2221 and Computing the
shared secret with Diffie-Hellman
on page 2227

HTTP compression support has been added for Genero Web Services. See HTTP compression on page
2432.

The com.HTTPRequest.setAutoReply() method now works for
HTTP HEAD method as well as the GET method.

See com.HTTPRequest methods
on page 2053.

DOM features:

The Genero XML DOM library has been enhanced with new features that
can be set with the setFeature() method or retrieved with the getFeature()
method.

• load-save-base64-string - loads and saves an XML document
from/to a base64 string

• auto-id-attribute - sets at document loading all unqualified
attributes named ID, id, Id or iD of type ID

• auto-id-qualified-attribute - sets at document loading all
qualified attributes named ID, id, Id or iD of type ID

• enable-html-compliancy - allows HTML document parsing and
modification using the xml.DomDocument API.

See The DomDocument class on
page 2104.

Binary support on HTTP layer:

The Genero COM library has been enhanced to support transport of
binary data via the Genero BYTE data type.

On the client side, it is now possible to send and read binary data to/from
a server with the following two methods:

• doRequest() - sends binary data from a BYTE to a HTTP server
• getDataResponse() - reads binary data from a HTTP server into a

BYTE

On the server side, it is possible to read and write binary data to a client
with following two methods:

• readDataRequest() - reads binary data from a HTTP client into a
BYTE

• sendDataResponse() - sends binary data from a BYTE to a HTTP
client

See The com package on page
2009.

Upgrading | 51

Overview Reference

Access the HTTP headers request and response in high level web
services.

See how to modify your server or
use fglwsdl generated global end
point at runtime.

The standard API is enhanced with few new methods and a new class
called HTTPPart to handle the different part in a HTTP request or
response at client and server side.

See The HTTPPart class on page
2077, The HTTPRequest class on
page 2053, The HTTPResponse
class on page 2070, and The
HTTPServiceRequest class on
page 2036.

The client side is able to generate stubs to support multiple part with
Genero Web Services. Support for the server side is not yet provided.

Note: Starting with version 2.50.25, when generating client
stubs managing multipart, you will get extra input and/or output
variables called AnyInputParts and AnyOutputParts,
defined as a DYNAMIC ARRAY of com.HTTPPart objects. These
arrays may contain additional input and/or output HTTP parts
not specified in the WSDL. You will have to adapt your client
program, to handle those dynamic arrays in any functions calling
such stubs. See Client stubs managing multipart changes on
page 109.

See Multipart in the client stub on
page 2460 and SOAP multipart
style requests in GWS on page
2434.

FGLPROFILE HTTPS configuration details no longer needed to perform
HTTPS communication. A default SSL configuration is now generated
automatically.

See HTTPS configuration on page
2440.

Creating URL base that applies to multiple server applications by using a
wildcard in the URL, allowing for a shared server configuration (such as
authentication and HTTPS).

See Wildcards in the URL base on
page 2517.

What's new in Genero Business Development Language, v 2.41
This topic lists features added for the 2.41 release of the Genero Business Development Language.

Table 28: User interface

Overview Reference

The datatypeHint style attribute (for Edit item types) and
nativeLook style attribute (for CheckBox item types) have been added
for use by the GWC for HTML5 front end.

Important: In 2.50, the nativeLook attribute is renamed
customWidget.

See Edit style attributes on
page 826 and CheckBox style
attributes on page 822.

What's new in Genero Business Development Language, v 2.40
This topic lists features added for the 2.40 release of the Genero Business Development Language.

Table 29: Core language

Overview Reference

The NVL() operator allows you to write the equivalent of an IF expr
IS NOT NULL THEN RETURN expr ELSE RETURN default END IF
statement in a single scalar expression.

See NVL() on page 242.

Upgrading | 52

Overview Reference

The IIF() allows you to write the equivalent of an IF bool-expr THEN
RETURN true-value ELSE RETURN false-value END IF statement in a
single scalar expression.

See IIF() on page 243.

A new global program option has been added, OPTIONS SHORT
CIRCUIT, to instruct the runtime system to evaluate Boolean expressions
by using the short-circuit evaluation (also called minimal evaluation)
method.

See OPTIONS (Compilation)
on page 378 and Controlling
semantics of AND / OR operators
on page 379.

Table 30: User interface

Overview Reference

New ON INSERT, ON APPEND, ON UPDATE and ON DELETE
interaction blocks are now allowed in DISPLAY ARRAY dialogs to
implement list modification, as an alternative to the traditional INPUT
ARRAY dialog. These new triggers simplify the programming of
modifiable record lists.

See DISPLAY ARRAY modification
triggers on page 1380.

The new find and findnext actions of DISPLAY ARRAY and INPUT
ARRAY can be used by the user to search rows where a field value
matches the value entered in the find dialog box.

See Find function on page 1357.

The DISPLAY ARRAY dialog now supports a built-in seek feature to
quickly find rows where a field value starts with the character typed by the
user.

See Keyboard seek on page 1357.

It is now possible to define a summary line for TABLEs by using
AGGREGATE form fields. Values can be automatically computed or can
be calculated and displayed by program

See AGGREGATE item definition
on page 933.

You can now use the terminfo database for text terminal mode
(FGLGUI=0) by setting INFORMIXTERM=terminfo.

See Configuring a text terminal on
page 762.

Table 31: SQL databases

Overview Reference

New database drivers are provided. List of new database drivers:

• dbmntz6x for IBM® Netezza®

ODBC client
• dbmsncB0 for SQL Server

2012 Native client
• dbmesmB0 for SQL Server

2012, with Easysoft ODBC
driver

• dbmpgs91x for PostgreSQL
9.1.x client

The fglcomp compiler now supports SQL ... END SQL blocks for
compliance with IBM® Informix® 4GL.

See SQL ... END SQL on page
495.

The Static SQL syntax has been extended to allow the FIRST, LIMIT,
SKIP and MIDDLE SELECT projection clause options.

See Static SQL statements on page
486.

The CASE operator is now allowed in Static SQL statements. See Static SQL statements on page
486.

Upgrading | 53

Overview Reference

The syntax of DDL (Data Definition Language) statements in Static SQL
now allows the IF NOT EXISTS and IF EXISTS clauses.

See Static SQL statements on page
486.

The transaction instruction set has been completed with SAVEPOINT
and ROLLBACK WORK TO SAVEPOINT.

See SAVEPOINT on page 483
and ROLLBACK WORK on page
484.

Control shadow column extraction with fgldbsch. See fgldbsch on page 1502.

A new FGLPROFILE entry parameter has been added to control the
ORACLE DATE fetch into CHAR/VARCHAR variables.

See DATE and DATETIME data
types on page 657.

Support for the ROWVERSION data type of SQL Server (2008 and +)
has been added.

See SQL Server ROWVERSION
data type on page 611.

Table 32: Web Services

Overview Reference

The Genero Web Service engine has been enhanced to support a part
of SOAP 1.2 protocol, restricted to the SOAP POST feature only. It does
not support the SOAP 1.2 encoding feature, as it is prohibited by the WS-
I Basic Profile 2.0.

To allow the SOAP 1.2 protocol in your Genero Web service application,
call the setFeature() method of your web service to enable SOAP 1.2
support.

The same Web service can provide both the SOAP 1.1 and SOAP 1.2
protocol.

You can also specify the SOAP role of your Genero application if
you pass the new SoapModuleURI option to the WebServiceEngine
setOption() method in order to identify the headers the SOAP engine
has to understand.

See com.WebService.setFeature
on page 2017,
com.WebServiceEngine.SetOption
on page 2030, and
WebServiceEngine options on page
2032.

The Genero Web Service engine has been enhanced to support the WS-
Addressing 1.0 specification. To enable WS-Addressing 1.0 specification
in your Genero Web service application, call the setFeature() method
of your web service with "TRUE" or "REQUIRED" as a parameter.

See com.WebService.setFeature
on page 2017.

The Genero Web Service engine has been enhanced to support stateful
services.

There are two kinds of stateful services:

• Based on WS-Addressing: independent from the transport protocol
used to to convey the state between the client and the server.

• Based on HTTP cookies: depends on the transport protocol to convey
the state between the client and the server.

To create a stateful web service, call
com.WebService.createStatefulWebService() with a simple
BDL variable or a dedicated W3CEndpointReference record to handle the
service state.

You can also take a look at WS-Addressing and at the following links for
additional information: JAX-WS, Oracle and Stateful based on cookies.

See
com.WebService.CreateStatefulWebService
on page 2012 and Stateful web
services on page 2422.

The Genero Web Service engine has been enhanced to support SOAP
faults in RPC and Document style services.

See The com package on page
2009 (com.WebService.createFault

http://www.w3.org/TR/ws-addr-core/#eprs
http://jax-ws.java.net/nonav/jax-ws-21-ea2/docs/statefulWebservice.html
http://blogs.oracle.com/sujit/entry/ws_addressing_and_stateful_webservice
http://download.oracle.com/docs/cd/E12839_01/web.1111/e13734/stateful.htm

Upgrading | 54

Overview Reference

On the server side, you can define BDL variables that will be thrown as
SOAP faults to a web service client using the SOAP 1.1 or SOAP 1.2
protocol.

The fglwsdl tool has also been enhanced to generate client and server
stubs according to the SOAP fault described in the WSDL.

• Method createFault()
• Method addFault()
• Method SetFaultDetail()
• Tool fglwsdl

on page 2011,
com.WebOperation.addFault
on page 2020,
com.WebServiceEngine.SetFaultDetail
on page 2030) and fglwsdl on page
1503.

The Genero fglwsdl tool generates a new Endpoint record per service in
the client stub to configure the client behavior at runtime without the need
to modify the generated code.

This feature requires regeneration of the client stub and modification of
the server location assignment if used in your application (See migration
note).

See Change WS client behavior at
runtime on page 2453.

The Genero fglwsdl tool has been enhanced to support WS-Addressing
1.0, the SOAP 1.2 protocol and to handle operation faults in SOAP 1.1
and SOAP 1.2.

The generated client and server stub will handle WS-Addressing 1.0,
SOAP 1.2 protocol and manage soap faults as defined in the WSDL.

The following options have been added:

Options related to SOAP:

• -soap11 : Generate only client and server stubs supporting the
SOAP 1.1 protocol.

• -soap12 : Generate only client and server stubs supporting the
SOAP 1.2 protocol.

• -ignoreFaults : Do not generate soap faults.

Options related to WS-Addressing:

• -wsa <yes|no> : Force support of WS-Addressing 1.0. if yes,
disable support of WS-Addressing 1.0, if no, otherwise support WS-
Addressing 1.0 according to the definition in the WSDL.

Other options:

• -alias : Generate FGLPROFILE Logical names in place of URLs for
all client stubs.

• -extDir : Add all schema files located in a directory and ending
with .xsd as external schemas.

• -CA : Validate HTTPS certificate against a certificate authority list.

See fglwsdl on page 1503.

The XML-Signature and XML Encryption API of the XML library have
been enhanced with new built-in methods to ease compatibility with the
WS-Security specification:

• Method getSignatureMethod()
• Method getThumbprintSHA1()
• Method getSHA1()

See XML security classes on page
2208.

Upgrading | 55

Overview Reference

The XML library has been enhanced to support XML parsing from PIPE
and saving to PIPE:

• Method loadFromPipe()
• Method saveToPipe()
• Method readFromPipe()
• Method writeToPipe()

See The xml package
on page 2103
(xml.DomDocument.loadFromPipe
on page 2124,
xml.DomDocument.saveToPipe
on page 2126,
xml.StaxReader.readFromPipe
on page 2198,
xml.StaxWriter.writeToPipe on page
2182)

The Genero Web Services service library has been enhanced to
support global SSL security configuration in FGLPROFILE for HTTPS
communication.

You can now define the SSL certificate and private key to be used for all
secured connections with the following entries and still use a dedicated
SSL configuration if needed for a particular server.

• Entry security.global.certificate
• Entry security.global.privatekey
• Entry security.global.keysubject (Windows™ only)
• Entry security.global.protocol

See Web services configuration on
page 2509.

A universal unique identifier function, CreateUUIDString(), has been
added to the COM library. This funciton generates a universal unique
identifier in BDL.

This method is desupported
since 3.00, use
security.RandomGenerator.CreateUUIDString
on page 2280 as replacement.

The Genero Web services library has been enhanced with two new
serializers:

• xml.Serializer.DomToStax() converts a Dom node to a Stax
writer

• xml.Serializer.StaxToDom() converts a Stax reader to a Dom
node

See xml.Serializer.DomToStax
on page 2204 and
xml.Serializer.StaxToDom on page
2206.

What's new in Genero Business Development Language, v 2.32
This topic lists features added for the 2.32 release of the Genero Business Development Language.

Table 33: Web Services

Overview Reference

The COM library enables to intercept high-level web services operation
on server side. You can now define three BDL functions via methods of
the web service class.

They will be executed at different steps of a web service request
processing in order to modify the SOAP request, response or the
generated WSDL document before or after the SOAP engine has
processed it. This helps handle WS-* specifications not supported in the
web service API.

• Method registerWSDLHandler()
• Method registerInputRequestHandler()
• Method registerOutputRequestHandler()

See The WebService class on page
2009.

Upgrading | 56

Overview Reference

All three kinds of BDL callback functions must conform to the following
prototype:

FUNCTION CallbackHandler(doc xml.DomDocument)
 RETURNING xml.DomDocument

What's new in Genero Business Development Language, v 2.30
This topic lists features added for the 2.30 release of the Genero Business Development Language.

Table 34: Core language

Overview Reference

Genero is now available on Mac OS-X™. You need at least Mac OS X
version 10.5. The Operating System code for Mac OS X 10.5 64-bit is
m64x105.

See Supported operating systems
on page 33.

Platform identifier is now displayed when using the -V option with
command-line tools.

See fglrun on page 1493.

The FGLPROFILE environment variable now accepts multiple file
specification with an operating-system-specific path separator.

See The FGLPROFILE file on page
164.

The LOAD, UNLOAD and base.Channel class support the "CSV"
delimiter specification to read/write files in Comma Separated Value
format.

See LOAD on page 524,
UNLOAD on page 527 and The
Channel class on page 1707

Version 2.30.04 supports now the fglrun.arrayIgnoreRangeError
entry which can be set to true to force the runtime system to return the
first element of an array when the array index is out of bounds.

See Arrays on page 296.

The version 2.30.04 introduces the new
fglrun.mapAnyErrorToError FGLPROFILE entry. This configuration
parameter can be set to true to map the default action of the
WHENEVER ANY ERROR exceptions to the action defined for the
WHENEVER ERROR exception type.

See Exceptions on page 340.

Table 35: User interface

Overview Reference

Drag & Drop support in DISPLAY ARRAY for tables or tree views. See The DragDrop class on page
1827.

A new form item type called WEBCOMPONENT is provided to integrate
external Java-Script-based widgets in your forms.

See WEBCOMPONENT item type
on page 900.

New ui.Form class method to make a specific form field visible, showing
the parent containers automatically.

This method can also be used to bring a given folder page to the front,
even if the field is not active (i.e. not driven by a dialog).

See ui.Form.ensureFieldVisible
on page 1777 and
ui.Form.ensureElementVisible on
page 1776.

The ERROR and MESSAGE instructions get an additional STYLE
attribute, to reference a presentation style and define the rendering with
font, color, and position.

See MESSAGE on page 1035.

Upgrading | 57

Overview Reference

New style for TOOLBAR and TOPMENU elements. See Front-End
documentation for more details about possible decoration attributes.

See Toolbars on page 1021 and
Topmenus on page 1027.

As with COMBOBOX, the items of a RADIOGROUP are now filled with
the values of the INCLUDE attribute, if specified.

See RADIOGROUP item definition
on page 943

Identify the last clicked CANVAS item with the drawGetClickedItemId()
function of fgldraw.4gl.

See Step by step canvas example
on page 1452

The FIELD_TOUCHED() operator and ui.Dialog.getFieldTouched()
method accept now a simple star as parameter, in order to check all
fields used by the dialog.

See FIELD_TOUCHED()
on page 266 and
ui.Dialog.getFieldTouched on page
1800.

The JUSTIFY attribute is now supported for all form item types, in order
to let you specify both the data justification in the field/cell and the
alignment of the table column header.

See JUSTIFY attribute on page
972.

The ui.Dialog.setFieldActive() method takes now a list of fields as
parameter, with the "dot-asterisk" notation, like the setFieldTouched()
method.

See ui.Dialog.setFieldActive on
page 1812.

This new feature is part of the fix for bug #18224.

When modifying a tree during the dialog execution (for example, when
implementing dynamic trees with ON EXPAND / ON COLLAPSE
triggers), if you use the ui.Dialog.insertRow(), ui.Dialog.deleteRow() or
ui.Dialog.deleteAllRows() methods to modify the node list, the internal
tree structure was corrupted. You could safely modify directly the
program array with array methods, but multi-range selection flags and cell
attributes are not synchronized when doing this. Starting with 2.30.02,
you can now use the ui.Dialog.insertNode(), ui.Dialog.appendNode()
and ui.Dialog.deleteNode() methods to manipulate the node list and get
additional data like row selection flags and cell attributes synchronized.

See The Dialog class on page
1784.

Table 36: SQL databases

Overview Reference

New database drivers List of new database drivers:

• dbmase0Fx for Sybase ASE
15.x (2.30.01)

• dbmmys55x for a Mysql 5.5.x
client (2.30.01)

• dbmpgs90x for a PostgreSQL
9.0.x client (2.30.02)

Informix® SMALLFLOAT and FLOAT can now be stored in Oracle native
BINARY_FLOAT / BINARY_DOUBLE types.

See SQL adaptation guide for
Oracle Database 11, 12 on page
643.

The LOAD, UNLOAD and base.Channel class support the "CSV"
delimiter specification to read/write files in Comma Separated Value
format.

See LOAD on page 524,
UNLOAD on page 527 and The
Channel class on page 1707

Use the fgl_db_driver_type() built-in function to identify the target
database type.

See fgl_db_driver_type() on page
1646.

Upgrading | 58

Overview Reference

In order to identify the reason why a database driver cannot be loaded,
when setting FGLSQLDEBUG you now get an additional debug message
that contains the operating system error message (dlerror())

See .

The fgldbsch tool can now extract database schema from SQLite.
However, pay attention to the data types used in SQLite (V 3.6): This
database supports some standard type names in the SQL syntax but in
reality the types used to store data are very limited. For example, a DATE
will be stored as an integer or string (i.e. there is no native DATE type).
See SQLite documentation for more details.

The fgldbsch tool will extract the schema according to the original type
names used to create the table.

See fgldbsch on page 1502.

What's new in Genero Business Development Language, v 2.21
This topic lists features added for the 2.21 release of the Genero Business Development Language.

Table 37: Core language

Overview Reference

Program module dependency specification with IMPORT FGL instruction. See The IMPORT FGL instruction

Support for C1 Ming Guo date format modifier: Enable the digit-based
Ming Guo date format by adding the C1 modifier at the end of the value
set for the DBDATE environment variable:

$ DBDATE="Y3MD/C1"
$ export DBDATE

Note:

• When using C1, the possible values for the Yn specifier are
Y4, Y3, Y2.

• The MDY() function is sensitive to the C1 modifier usage in
DBDATE.

• The USING operator supports the c1 modifier as well.
• The C2 modifier to use Era names is not supported.
• Unlike Informix® 4gl, when using negative years, the minus

sign is placed over the left-most zero of the year.
• Front-ends may not support the Ming Guo calendar for

widgets like DATEEDIT.

See DBDATE on page 174

Table 38: User interface

Overview Reference

VALUEMIN/VALUEMAX attributes for the SPINEDIT widget. See SPINEDIT

New presentation styles attributes for Window nodes. See actionPanelButtonTextAlign,
ringMenuButtonTextAlign

New presentation styles attributes for Image nodes. See alignment

Upgrading | 59

Overview Reference

Numeric keypad decimal separator: The decimal separator defined by
DBMONEY or DBFORMAT will be used when pressing the dot key of the
numeric keypad.

See DBMONEY and DBFORMAT.

Automatic display of BYTE images: Image data contained in a BYTE
variable are now displayed automatically when using a simple DISPLAY
BY NAME, DISPLAY TO or when the BYTE variable is used by a dialog
instruction. The BYTE data must be located in a file (LOCATE IN FILE
"path") or temp file (LOCATE IN FILE).

See IMAGE item definition on page
941.

Paged DISPLAY ARRAY supports undefined initial row count: With
this feature, when using a Paged DISPLAY ARRAY, it was mandatory
to provide the total number of rows in the result set, which required a
SELECT COUNT(*) before executing the dialog instruction. The dialog
now supports an undefined number of rows, with value -1 in the COUNT
dialog attribute.

See Read-only record list
(DISPLAY ARRAY) on page 1075.

New ui.Interface.setSize() method to to let you define the initial size of the
WCI container window.

See The Interface class on page
1755.

New formScroll presentation style attribute for windows. See Window style attributes on
page 839.

Table 39: SQL databases

Overview Reference

New database drivers List of new database drivers:

• dbmesmA0 for an EasySoft
1.2.3 client

• dbmpgs84x for a PostgreSQL
8.4.x client

• dbmoraB2x for Oracle 11g
release 2 (11.2)

New EasySoft driver to connect from UNIX™ to SQL Server. This driver is
based on the EasySoft SQL Server ODBC client.

See SQL adaptation guide for SQL
SERVER 2005, 2008, 2012, 2014
on page 592.

New PostgreSQL 8.4 driver with INTERVAL support: dbmpgs84x.
This driver converts Informix-style INTERVALs to native PostgreSQL
INTERVALs.

See SQL adaptation guide for
PostgreSQL 9.x on page 683.

Static SQL column definition supports DEFAULT clause: The syntax of
the CREATE TABLE and ALTER TABLE Static SQL statements allows
the DEFAULT clause in column definitions.

CREATE TABLE item (
 num SERIAL,
 name VARCHAR(50)
 DEFAULT '<undefined>'
 NOT NULL)

See Static SQL statements on page
486.

PostgreSQL database driver supports now TEXT/BYTE. See Large OBject (LOB) types on
page 696.

http://www.easysoft.com

Upgrading | 60

Overview Reference

New Static SQL syntax for the INSERT statement, which removes the
record member defined as SERIAL, SERIAL8 or BIGSERIAL in the
schema file:

SCHEMA mydb
...
DEFINE record RECORD LIKE table.*
...
INSERT INTO table VALUES record.*

See INSERT on page 489.

The LOAD can now raise error -846 when the input file has a corrupted
line (missing or invalid field separator, invalid character set, UNIX/DOS
line terminators). You can now easily find the invalid line by setting the
FGLSQLDEBUG on page 185 environment variable. The runtime
system will display such debug messages with the line number:

| DBI: LOAD: Corrupted data file,
 check line #12345.

See LOAD on page 524.

ODBC Character type control with SNC driver is now possible by using
simple char or wide-char character strings for ODBC, with the following
FGLPROFILE entry:

dbi.database.<dbname>.snc.widechar =
 true/false

See SQL adaptation guide for SQL
SERVER 2005, 2008, 2012, 2014
on page 592.

Table 40: Web Services

Overview Reference

The fglwsdl tool supports HTTPS request to retrieve WSDL or XSD on
the network. You must specify the X509 certificate and private key using
these options:

• -cert filename : The filename of the X509 PEM-encoded
certificate.

• -key filename : The filename of the X509 PEM-encoded private
key associatedto the above certificate.

• -wCert name : The name of the X509 certificate and its associated
private key in the Windows™ key store (Windows™ Only)

See fglwsdl on page 1503.

The fglwsdl tool allows http authentication and proxy authentication
when requesting a WSDL or an XSD on the network, and supports
basic and digest authentication. Two options have been added for
authentication.

• -pAuth login password : The login and the password to be used
for proxy authentication.

• -hAuth login password : The login and the password to be used
for http or https authentication.

See fglwsdl on page 1503.

The fglwsdl tool provides a new option that generates:

• a client stub entirely based on the DOM API
• calls to a request, response and fault callback function per service

See WS client stubs and handlers
on page 2456.

Upgrading | 61

Overview Reference

This option is especially useful when you have to communicate with
another web service that requires additional information on the XML
request, or when it returns additional information that was not specified in
the WSDL. For instance, this is the case if you have to communicate with
web services using WS-Security. You can manipulate the XML document
in the generated client stub using the XML-Signature or XML-Encryption
API to perform the security part by hand before it is sent on the network.

The following option has been added for that purpose:

• -domHandler : Generate function calls to a request, response and
fault callback handler, and force the use of DOM in the client stub.

The COM library is enhanced by a new function called HandleRequest
to allow low-level and high-level web services on the same server.

See
com.WebServiceEngine.HandleRequest
on page 2028

The COM library is enhanced to perform automatic reply on HTTP
GET request when the server requires HTTP authentication, proxy
authentication, or returns an HTTP redirect.

See
com.HTTPRequest.setAutoReply
on page 2064.

The XML library supports a new option, xml_useutctime, to serialize
any BDL DATE and DATETIME using the UTC format requested in most
WS-Security exchanges.

See Serialization option flags on
page 2207.

The XML library has been enhanced with two APIs in the CryptoKey
class. Due to security issues, the usage of a direct shared symmetric or
HMAC key is not recommended; most secured operations should use
a key derived from a common shared key instead. The XML library has
been enhanced with two APIs in the CryptoKey class:

• Constructor CreateDerivedKey()
• Method deriveKey()

See Derived keys on page 2224.

The COM library has been enhanced with two helper APIs in a new Util
class. In most Web Service security exchanges, the application must
be able to compute digest passwords and use random binary data to
detect reply attacks (for instance). The COM library has therefore been
enhanced with two helper APIs in a new Util class:

• Static method CreateDigestString()
• Static method CreateRandomString()

These methods are
desupported since 3.00, use
security.Digest.CreateDigestString
on page 2294 and
security.RandomGenerator.CreateRandomString
on page 2279

The StAX reader and writer classes have been enhanced with two
new methods to set up the XML stream on a TEXT lob. It enables
parsing of an XML document in StAX directly from a TEXT with the
readFromText() method, and creating a new XML document saved
directly as TEXT with the writeToText() method.

See The StaxWriter class on page
2170 and The StaxReader class on
page 2183.

The Genero Web Services library has been enhanced to support XML
wildcard attributes.

Such wildcard attribute can be set in a XML schema or in a WSDL via
the anyAttribute tag. It allows additional attributes belonging to other
XML schemas in a main XML schema. The additional attributes are not
necessarily known by the main schema.

The fglwsdl tool has been enhanced to recognize the additional
attribute and to generate a one-dimensional dynamic array with a

See Attributes to customize XML
serialization on page 2517 and The
Serializer class on page 2202.

Upgrading | 62

Overview Reference

new XMLAnyAttribute attribute, and the XML Serializer has been
enhanced to handle the new XMLAnyAttribute during the serialization
and deserialization process.

A new option called xs_processcontents is supported by the XML
Serializer to generate the XML schema of such wildcard attributes with a
processContents tag that defines the way a validator will handle them.

The package contains a new demo called SimplePKI that demonstrates
the usage of XML-Encryption in Genero.

It allows several clients to register to a centralized PKI (Public Key
Infrastructure) service that generates a unique RSA key-pair per user.
The private key is returned to the user during the registration or login,
using a derived symmetric key based on the user's password to make it
secure. Then any client is able to retrieve the public key of the registered
users, and to encrypt XML data only readable by that user.

Note: This demo could easily be adapted in a real-world
application if (for instance) all key-pair are stored in a database
for persistence.

You can find the demo in the demo/WebServices/simplepki subdirectory
or by running the demo application in your installation directory.

N/A.

What's new in Genero Business Development Language, v 2.20
This topic lists features added for the 2.20 release of the Genero Business Development Language.

Table 41: Core language

Overview Reference

The Java™ Interface allows your programs to use the Java™ library. See Java™ Interface.

New TINYINT, BIGINT and BOOLEAN data types. See TINYINT on page 207,
BIGINT on page 192, BOOLEAN
on page 195.

Private functions: It is now possible to hide a function (or report) to the
other modules with the new PRIVATE keyword.

See Understanding functions on
page 278.

Automatic source documentation generator. See Source documentation on page
1517.

The fglcomp compiler has been extended with a new option (--
timestamp) to write the compilation timestamp to the generated 42m
p-code module. If present, the timestamp will be printed when using
fglrun -b. Use compilation timestamps only if really needed; every
new compiled .42m module will be different, even if the source code has
not changed.

See fglcomp on page 1497.

The FGLRESOURCEPATH environment variable to define search paths
for program resource files like forms.

See FGLRESOURCEPATH on
page 184.

New precision math built-in functions for DECIMAL data. See fgl_decimal_truncate() on page
1647, fgl_decimal_sqrt() on page
1647, fgl_decimal_exp() on page
1647, fgl_decimal_logn() on page

Upgrading | 63

Overview Reference

1647, fgl_decimal_power() on page
1648.

Automatic Code Completion with VIM: If you have Vim 7 installed, you
can now use .per and .4gl code completion.

See Source code edition on page
1516.

Table 42: Reports

Overview Reference

The START REPORT instruction now allows to specify the XML SAX
Document Handler to process XML output with the TO XML HANDLER
clause.

See TO XML HANDLER syntax.

Report definition file generation with fglcomp --build-rdd option. See See fglcomp on page 1497.

Table 43: User interface

Overview Reference

Support for typical Tree-View widgets with the new TREE container. See Tree views on page 1384.

The traditional user interface mode: To simplify migration from Informix®

4GL or Four Js BDS, you can now run applications in traditional mode to
render windows as simple boxes, as in the WTK front-end.

See Traditional GUI mode on page
753.

Phantom form fields can be used to define the screen-record or screen-
array, but are not used in the LAYOUT section of the form. Phantom
fields are especially useful when implementing a TREE container.

See Phantom fields on page 861.

Multi-row selection allows end users to highlight several rows in a list of
records.

See Syntax of DISPLAY ARRAY
instruction on page 1076.

Built-in sort works now in INPUT ARRAY. See List ordering on page 1356.

New contextMenu action default attribute to allow you to specify
whether the menu option is visible in the default context menu. The
default value is "yes" - the option is visible whenever the action is visible.

See Action defaults files on page
796.

New integratedSearch presentation style attribute for TEXTEDIT
fields to enable text search.

See TextEdit style attributes on
page 834.

FOLDER elements can now use a "position" style attribute to define
the position (top, left, right, bottom) of folder tabs.

See Folder style attributes on page
827.

BUTTON form items get a new "buttonType" attribute to define the
rendering of the button.

See Button style attributes on page
821.

MENU object created with the popup option can be placed with the
"position" style attribute.

See Menu style attributes on page
829.

Window Menu and Action panel decoration can be customized using
the new "ringMenuDecoration", "actionPanelDecoration" style
attributes.

See Window style attributes on
page 839.

The new "tabbedContainer", "tabbedContainerCloseMethod"
style attributes can be used to turn on and customize tabbed WCI
containers.

See Window style attributes on
page 839.

TABLE elements can use the new "tableType" attribute to render data
in different ways. The new "resizeFillsEmptySpace" attribute can be
used to define how the last column is resized when the table is resized.

See Table style attributes on page
831.

Upgrading | 64

Overview Reference

All items with an IMAGE attribute can use the new "imageCache"
attribute to define if the picture can be cached locally on the front-end.

See Common style attributes on
page 818.

New Front-End Functions "getWindowId", "feInfo", "launchURL". See Standard front calls on page
1889.

Front-End protocol compression can now be disabled with a new
FGLPROFILE entry. This is especially useful in fast networks to save
processor time.

See GUI protocol compression on
page 758.

New built-in functions are now available to control the part of the text that
is selected in the current field.

See fgl_dialog_getselectionend()
on page 1652,
fgl_dialog_setselection() on page
1653.

New IMAGE attribute in form LAYOUT element: The LAYOUT section of
a form definition can now use the IMAGE attribute to define the icon to
be used for the parent Window. This is especially useful in a Container-
based application, to distinguish child programs inside the WCI container.

See LAYOUT section on page
907.

Use the new INFIELD clause in ON ACTION interactive block to
automatically enable/disable the action when entering/leaving the
specified field.

See Field-specific actions (INFIELD
clause) on page 1335.

Getting the current active dialog with ui.Dialog.getCurrent(). See ui.Dialog.getCurrent on page
1792.

Table 44: SQL databases

Overview Reference

New database drivers. List of new database drivers:

• dbmsqt3xx for an SQLite 3
library (2.20.01)

MySQL Driver supports TEXT/BYTE data types. See SQL adaptation guide for
Oracle MySQL 5.x, MariaDB 10.x
on page 625.

To work around conflicts with the Informix® database path specification in
DBPATH, use the FGLRESOURCEPATH environment variable.

See FGLRESOURCEPATH on
page 184.

Database user authentication callback function can be used to specify a
database user and password when the DATABASE instruction cannot be
replaced by CONNECT TO.

See User authentication callback
function on page 474.

FGLSQLDEBUG output is improved to display and SQL command
header with SQL command name and source/line information before
executing the underlying ODI driver code. If the driver code crashes or
stops the process with an assertion, you can easily identify the last SQL
instruction that was executed.

See FGLSQLDEBUG on page
185.

Table 45: Web Services

Overview Reference

The Genero Web Services XML Library has been improved to support
the XML-Signature and XML-Encryption specifications defined by the
W3C (also known as XML-Security).

See XML security classes on page
2208.

Upgrading | 65

Overview Reference

The library enables BDL applications to handle public, private, symmetric
or hmac keys and X509 certificates in order to sign XML documents or
document fragments, and verify a XML signature against a certificate
or key. It also enables the applications to encrypt XML nodes using
symmetric keys, and decrypt them back using DOM manipulation.
Combined with the COM library, any BDL application can now exchange
any XML documents over the Internet in a completely secured manner.

The library provides classes for:

• Manipulating cryptography keys
• Handling X509 certificates for identification
• Encrypting and decrypting XML documents, document fragments, or

symmetric keys
• Signing XML documents, document fragments, or any kind of data,

and validating them againstXML signatures

The Genero Web Services XML library provides APIs to encrypt and
decrypt strings with symmetric or RSA public/private keys. These APIs
can be used to encrypt/decrypt passwords directly in BDL applications.

See The Encryption class on page
2262 and fglpass on page 1506.

The Genero Web Services provides support for the new BOOLEAN,
TINYINT and BIGINT data types.

You can use these data types when writing your web service or to
customize your BDL RECORDs for XML serialization. The fglwsdl
tool has been enhanced to generate these new data types automatically
when encountered in WSDL files or XML schemas.

Note: For compatibility issues, the fglwsdl tool allows code
generation without these new data types by using the option '-
legacyTypes'.

See Attributes to customize XML
serialization on page 2517 and
fglwsdl on page 1503.

What's new in Genero Business Development Language, v 2.11
This topic lists features added for the 2.11 release of the Genero Business Development Language.

Table 46: Core language

Overview Reference

New -p noln preprocessor option to remove line number information to
get a readable output:

fglcomp -E -p noln mymodule.4gl

See The preprocessor on page
1522

The -b option of fglrun has been extended to recognize headers of p-
code modules compiled with older versions of Genero.

See Module build information on
page 1515

The fglform compiler now writes build information in the .42f files, to
identify on the production site what version was used to compile forms.

See Compiling form files on page
1508

Upgrading | 66

Table 47: User interface

Overview Reference

The ui.ComboBox class has been extended with new methods:
getTextOf() and getIndexOf().

See The ComboBox class on page
1820

A new FGLPROFILE entry has been added to force the current row to be
shown automatically after a sort in a table:

Dialog.currentRowVisibleAfterSort = 1

By default, the offset does not change and the current row may disappear
from the window. When this new parameter is used, the current row will
always be visible.

See Dialog configuration with
FGLPROFILE on page 1251

Table 48: SQL databases

Overview Reference

Static SQL syntax now supports derived tables and derived column lists
in the FROM clause. For example:

SELECT * FROM
 (SELECT * FROM customer
 ORDER BY cust_num)
 AS t(c1,c2,c3,...)

See database server documentation for more details about this SQL
feature.

Informix® 11 does not support the full ANSI SQL 92 specification for
derived columns, while other databases like DB2® do. For this reason,
fglcomp allows the ANSI standard syntax.

See SELECT on page 493

The SET ISOLATION statement now supports the newInformix® 11
clauses for the COMMITTED READ option:

SET ISOLATION TO COMMITTED READ
 [LAST COMMITTED]
 [RETAIN UPDATE LOCKS]

When connecting to a non-Informix database, the LAST COMMITTED and
RETAIN UPDATE LOCKS are ignored; other databases do not support
these options, and have the same behavior as when these options are
used with Informix® 11.

See SET ISOLATION on page
485

The CAST operator can now be used in static SQL statements:

CAST (expression AS sql-data-type)

Only Informix® data types are supported after the AS keyword.

See Static SQL statements on page
486

In order to execute database administration tasks, you can now connect
to Oracle as SYSDBA or SYSOPER with the CONNECT instruction:

CONNECT TO "dbname"
 USER "scott/SYSDBA"

See CONNECT TO on page 477

Upgrading | 67

Overview Reference
 USING "tiger"

Table 49: Web Services - Version 2.11.00

Overview Reference

The Genero Web Services com library provides the
HTTPServiceRequest class to perform low-level XML and TEXT over
HTTP communication on the server side. This allows communication at a
very low-level layer, to write your own type of web services.

See The HTTPServiceRequest
class on page 2036.

XML facet constraints attributes: the Genero Web Services XML library
provides 12 new XML attributes to map to simple BDL variables. These
attributes restrict the acceptable value-space for each variable in different
ways such as:

• a minimum or a maximum number of XML characters or bytes.
• a strict number of XML characters or bytes.
• a minimum inclusive or exclusive value depending on the data type.
• a maximum inclusive or exclusive value depending on the data type,
• a enumeration of authorized values.
• a number of digits and fraction digits.
• how white spaces have to be handled.
• a regular expression to match. (See Section F of XML Schema Part 2)

See Attributes to customize XML
serialization on page 2517.

The fglwsdl tool has been enhanced with the following three new
options :

• -disk : to retrieve locally a WSDL or an XSD with all its
dependencies from an URL on the disk

• -noFacets : to avoid the generation of the new facet constrain
attributes (for compatibility)

• -regex : to validate a value against a regular expression as
described in the XML Schema specification

See fglwsdl on page 1503.

Table 50: Web Services - Version 2.11.04

Overview Reference

The Genero Web Services library provides two new methods in the
WebOperation class to create One-Way operations in services.

A One-Way operation means that the server accepts an incoming
request, but doesn't return any response back to the client. There is
one method called CreateOneWayRPCStyle to create an RPC Style
operation, and another one called CreateOneWayDOCStyle to create a
Document Style operation.

For instance, a One-Way operation can be used as a logger service,
where a client sends a message to the server, but doesn't care about
what the server is doing with it.

See The WebOperation class on
page 2018.

The fglwsdl tool has been enhanced with the following new options:

• -b: Generate code from a WSDL using the binding section instead of
the service section

See fglwsdl on page 1503.

http://www.w3.org/TR/xmlschema-2/#regexs

Upgrading | 68

Overview Reference

• -autoNsPrefix: Determine the prefix for variables and types
according to the XML namespace they belong to

• -nsPrefix: Set the prefix for a variable or a type belonging to the
given XML namespace

The following options have been changed:

• -o: If there are several services in one WSDL, they will be generated
in the same file with the given base name instead of returning an error

• -disk: Retrieves and displays all dependencies to the current
directory but there are no sub directories any longer.

• -prefix: Accepts patterns %s, %f and %p

The Genero Web Services library has been enhanced to support WSDL
with circular references.

The Genero language doesn't provide a way to define variables or types
that refer to themselves. However, to provide better interoperability and
a way to handle such circular data, the fglwsdl tool now generates
variables or types of xml.DomDocument type when circular references
are detected during the processing of WSDL files. This gives the user the
ability to manipulate the circular data by hand, using the XML DOM API.

See The xml package on page
2103.

What's new in Genero Business Development Language, v 2.10
This topic lists features added for the 2.10 release of the Genero Business Development Language.

Table 51: Core language

Overview Reference

The TRY/CATCH block can handle exceptions raised by the runtime
system.

See TRY - CATCH block on page
344

WHENEVER ... RAISE instructs the runtime system that an uncaught
exception will be handled by the caller of the function.

See WHENEVER instruction on
page 342

NULL point exceptions can now be trapped as other exceptions: Error
-8083 will be raised if you try to call an object method with a variable that
does not reference an object (that contains NULL):

DEFINE x ui.Dialog
-- x is NULL
CALL x.setFieldActive("fieldname",FALSE)
 -- raises -8083

In previous versions, the above code raised a fatal NULL pointer error.

See OOP support on page 349

The base.Channel class now provides a method to establish a client
socket connection to a server, with the new openClientSocket()
method.

See
base.Channel.openClientSocket on
page 1710

For debugging purpose, get the stack trace of the program with the
base.Application.getStackTrace() method.

See
base.Application.getStackTrace on
page 1706

Before version 2.10, it was only possible to assign a TEXT to a TEXT
variable. It is now possible to assign STRING, CHAR and VARCHAR values
to a TEXT variable.

See Type conversions on page
211

Upgrading | 69

Overview Reference

The fglrun -e option now supports a comma-separated list of extensions,
and -e can be specified multiple times:

fglrun -e ext1,ext2,ext3
 -e ext4,ext5 myprogram

See Loading C-Extensions at
runtime on page 1601

Get an action event when the user modifies the value of a field, with the
predefined dialogtouched action, to detect first user modifications.

See Immediate detection of user
changes on page 1267

The parse() and toString() methods are now available for a
om.DomNode object.

See The DomNode class on page
1839

A om.DomDocument object can be created with
createFromString().

See The DomDocument class on
page 1833

The TEXT and BYTE data types now support the methods
readFile(fileName) and writeFile(fileName).

See BYTE on page 193, TEXT on
page 208

Table 52: User interface

Overview Reference

The new DIALOG instruction handles different parts of a form
simultaneously.

See Multiple dialogs (DIALOG) on
page 1144

HBox and VBox containers can now have a splitter. See SPLITTER attribute on page
985

The new DOUBLECLICK table allows to configure the action to be sent
when the user double-clicks on a row.

See DOUBLECLICK attribute on
page 962

Define a timeout delay for front-end connections with the following
FGLPROFILE entry:

gui.connection.timeout = seconds

See Configure the GUI connection
timeout on page 757

Before version 2.10, it was only possible to assign a TEXT to a TEXT
variable. It is now possible to assign STRING, CHAR and VARCHAR values
to a TEXT variable.

See Type conversions on page
211

Presentation styles have been extended:

• The style attribute "position" for Windows™ can be set to
"previous".

• TEXTEDIT now has the "textSyntaxHighlight" attribute (value
can be "per", more to come...).

• All widgets can now use the "localAccelerators" global style
attribute to interpret standard navigation and editor keys (like Home/
End) without firing an action that uses the same keys as accelerators.

See Presentation styles on page
799

Get an action event when the user modifies the value of a field, with the
predefined dialogtouched action, to detect first user modifications.

See Immediate detection of user
changes on page 1267

Use the validate="no" action default attribute to prevent data
validation when executing an action.

See Data validation at action
invocation on page 1331

Upgrading | 70

Overview Reference

Define a minimum width and height for forms with the MINWIDTH,
MINHEIGHT attributes.

See MINHEIGHT attribute on page
975, MINWIDTH attribute on page
975

In INPUT ARRAY, avoid the automatic creation of a temporary row with
the new AUTO APPEND = FALSE dialog attribute.

See INPUT ARRAY temporary rows
on page 1378

Table 53: SQL databases

Overview Reference

Support for SQL Server 2005 Native Client is now provided. See SQL adaptation guide for SQL
SERVER 2005, 2008, 2012, 2014
on page 592

The fgldbsch tool now supports the X conversion code to ignore table
columns of a specific type. This is useful for ROWID-like columns such as
SQL Server's uniqueidentifier columns.

See Data type conversion control
on page 365

Before version 2.10, SQL interruption was not supported well for some
databases. SQL interruption is now available with all databases providing
an API to cancel a long-running query.

See SQL interruption on page
405

Table 54: Web Services

Overview Reference

The Genero Web Services XML library (xml) has been added. This
library provides classes and methods to perform:

• XML manipulation with a W3C Document Object Model (DOM) API
• XML manipulation with a Streaming API for XML (StAX)
• Validation of DOM documents against XML Schemas
• Serialization of BDL variables in XML
• Creation of XML Schemas corresponding to BDL variables

See The xml package on page
2103.

New classes have been added to the Genero Web Services COM
library to facilitate low-level XML and TEXT over HTTP and TCP Client
communication (com).

The Genero Web Services com library provides two classes,
HTTPRequest and HTTPResponse, to perform low-level XML and
TEXT over HTTP communications on the client side. Two more classes,
TCPRequest and TCPResponse, are also provided to perform low-level
XML and TEXT over TCP communications on the client side. This allows
communication between applications using the core Web technology,
taking advantage of the large installed base of tools that can process
XML delivered plainly over HTTP or TCP, as well as SOAP over HTTP.

Specific streaming methods are also available to improve the
communication by sending XML to the network even if the serialization
process is not yet finished, as well as for the deserialization process.

It is also possible to prevent asynchronous requests from being blocked
when waiting for a response, and to perform specific HTTP form encoded
requests as specified in HTML4 or XForms1.0.

See The HTTPRequest class on
page 2053, The HTTPResponse
class on page 2070, The
TCPResponse class on page 2092
and The TCPResponse class on
page 2092.

http://www.w3.org/TR/1999/REC-html401-19991224/interact/forms.html#h-17.13.4.1
http://www.w3.org/TR/xforms/#serialize-urlencode

Upgrading | 71

Overview Reference

The fglwsdl tool now generates low-level and asynchronous client
stubs from the WSDL.

The fglwsdl tool generates all client stubs with the low-level
HTTPRequest and HTTPResponse classes of the com library to
perform HTTP communications. The low-level generated stub also
takes advantage of the streaming methods, if Document Style or RPC-
Literal web services are performed. Streaming is not possible with RPC-
Encoded web services, as nodes can have references to other nodes in
the XML document, requiring the entire document in memory to perform
serialization or deserialization.

The fglwsdl tool also generates two new BDL functions for each
operation of a Web service. These two functions enable you to perform
asynchronous web service operation calls by first sending the request,
and retrieving the corresponding response later in the application.
This allows you to prevent a BDL application from being blocked if the
response of a web service operation takes a certain amount of time.

See The HTTPRequest class on
page 2053, The HTTPResponse
class on page 2070, and fglwsdl on
page 1503.

Genero Web Services provides an enhanced fglwsdl tool that is able
to generate Genero data types from a XML schema. The data types can
then be used in your application to be serialized or deserialized in XML.
The resulting XML is a valid instance of that XML schema, and validation
with a XML validator will succeed.

See fglwsdl on page 1503.

What's new in Genero Business Development Language, v 2.02
This topic lists features added for the 2.02 release of the Genero Business Development Language.

Table 55: Core language

Overview Reference

Share global variables between the Genero source and the C Extension,
by using the -G option of fglcomp.

See Sharing global variables on
page 1611

Customize the runtime system error messages according to the current
locale.

See Runtime system messages on
page 321

New debugger commands (ptype).

Avoid switching into debug mode with SIGTRAP (Unix) or CTRL-
Break (Windows™) with the new fglrun.ignoreDebuggerEvent
FGLPROFILE entry.

See The debugger on page 1531

Table 56: User interface

Overview Reference

Specify a TABINDEX of zero to exclude the form item from the tagging
list.

See TABINDEX attribute on page
986

Upgrading | 72

Table 57: SQL databases

Overview Reference

Some common SQL statements have been added to the static SQL
syntax, such as TRUNCATE TABLE, RENAME INDEX, CREATE / ALTER /
DROP / RENAME SEQUENCE.

See Static SQL statements on page
486

With Oracle, specify the SELECT statement producing the unique session
identifier which is used for temporary table names.

See Oracle DB specific
FGLPROFILE parameters on page
470

To emulate Informix® temporary tables in Oracle, set the
temptables.emulation parameter to use GLOBAL TEMPORARY
TABLES instead of permanent tables..

See Using the global temporary
table emulation on page 672

What's new in Genero Business Development Language, v 2.01
This topic lists features added for the 2.01 release of the Genero Business Development Language.

Table 58: Core language

Overview Reference

The fglcomp compiler now supports a negative form for -W warning
arguments.

See Compiling source code on
page 1510

When using the RUN command, the ComSpec environment variable is
now used under Windows™ platforms.

See RUN on page 391

Table 59: User interface

Overview Reference

The layout tag syntax in grids has been extended to support an ending
tag to get better control of form layout.

See Layout tags on page 868

Table 60: SQL databases

Overview Reference

Support for IBM® DB2® V9.x. See SQL adaptation guide for IBM
DB2 UDB 10.x on page 540

Support for PostgreSQL 8.2.x. See SQL adaptation guide for
PostgreSQL 9.x on page 683

What's new in Genero Business Development Language, v 2.00
This topic lists features added for the 2.00 release of the Genero Business Development Language.

Table 61: Core language

Overview Reference

The runtime system (fglrun) now uses shared libraries for database
drivers; there is no need to link anymore.

See Database driver specification
(driver) on page 462.

The TYPE instruction allows to define your own data type structures. See Types on page 303.

Upgrading | 73

Overview Reference

File management function library provided as loadable extension. See The os.Path class on page
1990.

Mathematical function library provided as loadable extension. See The util.Math class on page
1960.

C extension support has been extended with Informix-like C API
functions.

No longer applicable as of Genero
2.51

The runtime system now shares several static elements among all
processes, reducing the memory usage. The shared elements are: Data
type definitions, string constants and debug information. For example,
when a program defines a string containing a long SQL statement, all
fglrun processes will share the same string, which is allocated only once.

See Runtime system basics on
page 1560.

The IMPORT instruction allows to declare a C extension module. See IMPORT C-Extension on page
371.

New debugger commands (call, ignore). See Debugger commands on page
1537.

The base.Channel class now has an isEof() method to detect end of
file.

See Read and write simple lines on
page 1720.

Ignoring the CTRL_LOGOFF_EVENT events on Microsoft™ Windows™

platforms.
See Responding to
CTRL_LOGOFF_EVENT on page
386.

New built-in function to set an environment variable: FGL_SETENV(). See fgl_setenv() on page 1662.

The XML reader and writer classes have been extended to properly
support markup language entities (like HTML's).

See The XmlReader class on page
1871, The XmlWriter class on page
1876.

Table 62: User interface

Overview Reference

New form item types (i.e. widgets): SLIDER, SPINEDIT, TIMEEDIT. See ATTRIBUTES section on page
932.

The WIDTH and HEIGHT attributes can be used for IMAGE form items, as
a replacement for PIXELWIDTH/PIXELHEIGHT.

See HEIGHT attribute on page
965, WIDTH attribute on page
999.

New debugger commands (call, ignore). See Debugger commands on page
1537.

Presentation styles support now pseudo selectors such as focus,
active, inactive, input, display for fields and odd / even states
for table rows.

See Pseudo selectors on page
802.

New presentation style attributes were added:

• 'errorMessagePosition' can be used for windows to define how
the ERROR message must be displayed;

• 'highlightTextColor' for tables allows you to change the color of
the selected line;

• 'border' allows you to remove the border of some widgets like
button, images;

See Style attributes reference on
page 818.

Upgrading | 74

Overview Reference

• 'firstDayOfWeek' can be used for DateEdit widget to specify the
first day of the week in the calendar;

• The auto-selection behavior for ComboBoxes and RadioGroup can be
changed using 'autoSelectionStart'.

With X11 or Windows™ TSE environments, you can now automatically
start up the front-end with FGLPROFILE entries.

See Automatic front end startup on
page 761.

Up to fourth accelerators can now be defined for an action in actions
defaults files or in the ACTION DEFAULTS section of form files.

See Defining keyboard accelerators
on page 1323.

Specify TTY attributes (COLOR, REVERSE) and conditional TTY attributes
(COLOR WHERE) for all type of fields.

See COLOR attribute on page
957, REVERSE attribute on page
981, COLOR WHERE Attribute
on page 958.

Table 63: SQL databases

Overview Reference

Database schema files have been extended to centralize form field
definition with the new FIELD item type.

Important: This feature is deprecated in 2.51 and +.

See FIELD item type.

Call database stored procedures with output parameters with the new
IN/OUT keywords.

See EXECUTE (SQL statement) on
page 502, Stored procedures on
page 441.

Primary key, foreign key and check constraints can be specified in static
SQL CREATE TABLE statements:

CREATE TABLE t1 (
 col1 INTEGER PRIMARY KEY,
 col2 CHAR(2),
 col3 DATE,
 FOREIGN KEY (col2)
 REFERENCES t2(col1)
)

See CREATE TABLE on page
497.

The fgldbsch tool can now extract database tables with LVARCHAR
columns. The LVARCHAR type is converted to VARCHAR2(n>255) in
the .sch file.

See Data type conversion control
on page 365.

Table 64: Web Services

Overview Reference

You can now choose to use Document Style Service (Doc/Literal) or RPC
Literal Style Service (RPC/Literal) with Genero Web Services (GWS),
for .NET compatibility and WS-I compatibility (standards defined by the
Web Services Interoperability organization).

• Document Style Service allows you to exchange complex data
structures, such as database tables or word processing documents
(MS.Net default)

See Choosing a web services style
on page 2483 and Writing a Web
server application on page 2473.

Upgrading | 75

Overview Reference

• RPC Literal Style Service is usually used to execute a function, such
as a service that returns a stock option

Note: RPC/Encoded Style Service (Traditional SOAP section 5)
is available for backwards compatibility.

Genero Web Services now provides a tool, fglwsdl, to allow a
Genero application that is accessing a Web Service to obtain the WSDL
information for the service. It does not matter what language the Web
Service is written in. The fglwsdl tool is installed in Genero as part of
the Genero Web Services package.

See fglwsdl on page 1503.

You no longer need to create a runner that includes the Genero Web
Services package. Instead, your applications import the Genero Web
Services library named com. This library provides classes and methods
that allow you to perform tasks associated with creating GWS Servers
and Clients, and managing the Web Services.

See The com package on page
2009.

GWS now supports SOAP header management through the
CreateHeader method in the Web Service class that is part of the Web
Services library (com).

See The WebService class on page
2009.

HTTPS support has been added on the client side. GWS supports secure
communications through the use of encryption and standard X.509
certificates. Based on the OpenSSL engine, new security features allow a
Web Services client to communicate with any secured server over HTTP
or HTTPS.

A new tool is provided, fglpass, allowing you to encrypt a password
from a standard X.509 certificate, and to decrypt a password you
previously encrypted with a certificate.

Entries in the FGLPROFILE file are used to define the configuration for
client security.

See fglpass on page 1506,
Encryption, base64 and password
agent with fglpass tool on page
2429, and The FGLPROFILE file
on page 164.

You can configure a GWS Client to connect via an HTTP proxy by adding
an entry in the FGLPROFILE file.

See Configure a WS client to
connect via an HTTP Proxy on
page 2463.

You can define multiple Web Services in a single Genero DVM. When
you start the Web Services engine, all registered Web Services are
started.

See The WebServiceEngine class
on page 2025.

You can remap the location of Genero Web Services using entries in
the FGLPROFILE file, depending on the network configuration and the
access rights management of the deployment site.

See Using logical names for service
locations on page 2462.

Serializing Genero data types: you can add optional attributes to the
definition of data types. You can use these attributes to map the BDL
data types in a Genero Web Services Client or Server application to their
corresponding XML data types.

See Attributes to customize XML
serialization on page 2517.

The WSHelper.42m library file contains internal BDL functions to handle
SOAP requests and errors.

The file is provided in the $FGLDIR/lib directory of the Genero Web
Services package, and should be linked into every Genero Web Services
Server or Client program.

See Compiling the client application
on page 2453 and Compiling GWS
server applications on page 2480.

Upgrading | 76

What's new in Genero Business Development Language, v 1.33
This topic lists features added for the 1.33 release of the Genero Business Development Language.

Table 65: Core language

Overview Reference

New base.TypeInfo built-in class to serialize program variables. See The TypeInfo class on page
1752

The base.Channel class now supports a binary mode with the 'b'
option, to control CR/LF translation when using DOS files.

See Line terminators on Windows
and UNIX on page 1721

Table 66: User interface

Overview Reference

Up to three accelerators can now be defined for an action in actions
defaults files or in the ACTION DEFAULTS section of form files.

See Defining keyboard accelerators
on page 1323

Table 67: SQL databases

Overview Reference

Generic ODBC database driver is now available (code is generic ODBC
database driver is now available (code is odc).

See Database driver specification
(driver) on page 462

MySQL version 5.0.x is now supported. See SQL adaptation guide for
Oracle MySQL 5.x, MariaDB 10.x
on page 625

PostgreSQL version 8.1.x is now supported. See SQL adaptation guide for
PostgreSQL 9.x on page 683

Microsoft™ SQL Server 2005 is now supported. See SQL adaptation guide for SQL
SERVER 2005, 2008, 2012, 2014
on page 592

Pre-fetch rows by block with SQL Server to get better performance. Use
the following FGLPROFILE entry to specify the maximum number of rows
the driver can pre-fetch:

dbi.database.dbname.msv.prefetch.rows = count

See "Database vendor specific parameters" in Connections for more
details.

See SQL Server (Native Client
driver) specific FGLPROFILE
parameters on page 471

What's new in Genero Business Development Language, v 1.32
This topic lists features added for the 1.32 release of the Genero Business Development Language.

Table 68: Core language

Overview Reference

New debugger commands (watch with condition, whatis). See Debugger commands on page
1537

The preprocessor is now part of the compilers and is always enabled.
Preprocessing directives start with an ampersand character (&).

See The preprocessor on page
1522

http://www.4js.com/online_documentation/fjs-fgl-manual-html/User/Connections.html#DS_ODI_DBVSPEC

Upgrading | 77

Table 69: User interface

Overview Reference

New built-in functions to transfer files from/to the front-end. See fgl_getfile() on page 1656,
fgl_putfile() on page 1660

Table 70: SQL databases

Overview Reference

PostgreSQL version 8.0 is now supported (8.0.2 and higher). See SQL adaptation guide for
PostgreSQL 9.x on page 683

What's new in Genero Business Development Language, v 1.31
This topic lists features added for the 1.31 release of the Genero Business Development Language.

Table 71: Core language

Overview Reference

C extensions can be loaded dynamically, no need to re-link runner. See C-Extensions on page 1597

The FGL_WIDTH() built-in function computes the number of print
columns needed to represent a single or multi-byte character.

See fgl_width() on page 1663

Table 72: User interface

Overview Reference

GUI protocol compression for slow networks. See GUI protocol compression on
page 758

Interruption handling with SSH port forwarding - only supported with GDC
1.31!

See User interruption handling on
page 1252

New method ui.Form.setFieldStyle() to set a style for a field. See ui.Form.setFieldStyle on page
1782

Improved front-end identification when connecting to GUI client. See Establish a GUI front-end
connection on page 755

Table 73: SQL databases

Overview Reference

MySQL version 4.1.x is now supported, 3.23 is desupported. See SQL adaptation guide for
Oracle MySQL 5.x, MariaDB 10.x
on page 625

Oracle version 10g is now supported. See SQL adaptation guide for
Oracle Database 11, 12 on page
643

Upgrading | 78

What's new in Genero Business Development Language, v 1.30
This topic lists features added for the 1.30 release of the Genero Business Development Language.

Table 74: Core language

Overview Reference

First version of integrated preprocessor using # sharp syntax for macros.
Version 1.32 uses & instead

See The preprocessor on page
1522

Localization support (multi-byte character sets). See Localization on page 307

The fglcomp compiler now adds build information in 42m modules.
Compiler version of a 42m module can be checked on site by using the
fglrun with the -b option (line break added for documentation only):

$ fglrun -b module.42m
2004-05-17 10:42:05 1.30.2a-620.10
 /devel/tests/module.4gl

See Module build information on
page 1515

The fglmkmsg tool now has the same behavior as other tools like
fglcomp and fglform: If you give only the source file, the message
compiler uses the same file name for the compiled output file, adding the
.iem extension.

See Compiling message files on
page 795

New BREAKPOINT instruction to stop a program at a given position when
using the debugger. It is ignored when not running in debug mode.

See Setting a breakpoint
programmatically on page 1536

New assignment operator := has been added to the language. Assign
variables directly within expressions: IF (i:=(j+1))==2 THEN

See Assignment (:=) on page 259

New fglcomp compiler option to detect non-standard SQL syntax:
fglcomp -W stdsql module.4gl

See SQL portability on page 412

New method base.StringBuffer.replace(), to replace a sub-string
in a string:

CALL s.replace("old","new",2)

Replaces two occurrences of "old" with "new"...

See base.StringBuffer.replace on
page 1745

New methods to read/write complete lines in base.Channel built-in
class: readLine() and writeLine().

See Read and write simple lines on
page 1720

The FGLLDPATH variable is now used during program linking. See Compiling source files on page
1508

The linker option -O (optimize) is de-supported (was ignored before). You
now get a warning if you use this option.

See Linking programs on page
1512

The [] array sub-script operator now returns the sub-array:

DEFINE a2 DYNAMIC ARRAY
 WITH DIMENSION 2 OF INTEGER
LET a2[5,10] = 123
DISPLAY a2.getLength() -- displays 5
DISPLAY a2[5].getLength() -- displays 10

See Arrays on page 296

Upgrading | 79

Table 75: User interface

Overview Reference

New layout rules and form item attributes provide better control of form
design.

See Form rendering on page 1002

Decoration attribute can be defined in a presentation style file to set fonts
and colors.

See Presentation styles on page
799

Action defaults can be specified in forms in the ACTION DEFAULTS
section.

See ACTION DEFAULTS section
on page 903

New ui.Dialog built-in class to provide better control over interactive
instructions.

See The Dialog class on page
1784

COMBOBOX fields now support UPSHIFT and DOWNSHIFT attributes, to
force character case when QUERYEDITABLE is used.

See QUERYEDITABLE attribute on
page 979

New presentation style attribute highlightCurrentRow for Tables,
to indicate if the current row must be highlighted in a specific mode. By
default, the current row is highlighted during a DISPLAY ARRAY.

See Table style attributes on page
831

New method appendElement() for ARRAYs, to append an element at
the end of a dynamic array.

See Array methods on page 302

New assignment operator := has been added to the language. Assign
variables directly within expressions: IF (i:=(j+1))==2 THEN

See Assignment (:=) on page 259

The new method ui.Dialog.setCellAttributes() lets you define
colors for each cell of a table.

See Cell color attributes on page
1380

The ui.Window class provides new methods to create or get a form
object.

See ui.Window methods on page
1769

When using a dynamic array in INPUT ARRAY or DISPLAY ARRAY,
the number of rows is defined by the size of the dynamic array. The
SET_COUNT() or COUNT attributes are ignored.

See Controlling the total number of
rows on page 1350

The new form field attribute TITLE can be used to specify a table column
label with a localized string.

See TITLE attribute on page 988

New class method ui.Dialog.setDefaultUnbuffered() to set the
default for the UNBUFFERED mode.

See The buffered and unbuffered
modes on page 1262

Action defaults are now applied at element creation by the runtime
system. In previous versions this was done dynamically by the front-end.
Now, changing an action default node at runtime has no effect on existing
elements.

See Configuring actions on page
1318

The DATEEDIT field type now supports DBDATE/CENTURY settings and
the FORMAT attribute.

See FORMAT attribute on page
963

New default action 'close' to control window closing:

 ON ACTION close

See Implementing the close action
on page 1337

INPUT ARRAY using TABLE container now needs FIELD ORDER FORM
attribute to keep tabbing order consistent with visual order of columns.

See Defining the tabbing order on
page 1271

New instructions ACCEPT INPUT / ACCEPT CONSTRUCT / ACCEPT
DISPLAY to validate a dialog by program.

ON ACTION doit

See ACCEPT INPUT instruction
on page 1072, ACCEPT DISPLAY
instruction on page 1095, ACCEPT

Upgrading | 80

Overview Reference
 ACCEPT INPUT CONSTRUCT instruction on page

1139

New dialog attribute ACCEPT / CANCEL to avoid creation of default
actions 'accept' and 'cancel'.

See INPUT instruction configuration
on page 1065

New default action 'append' in INPUT ARRAY. Allows you to add a row at
the end of the list.

See Default actions in INPUT
ARRAY on page 1105

New method ui.Window.createForm() to create an empty form
object in order to build forms from scratch at runtime.

See ui.Window.createForm on page
1770

TOPMENU definition in forms now allows attributes in parenthesis. See TOPMENU section on page
903

The form layout syntax now allows you to specify the real width of form
items by using a dash '-' in the layout tag.

See Widget size within hbox tags
on page 1016

Important remark: Before build 530 the MENU has attached the window
when returning from the BEFORE MENU actions. Since build 530 the
WINDOW must exist before the MENU statement. So now the Menu AUI
tree node is available in the BEFORE MENU block, but a window opened
or made current in the BEFORE MENU block will NOT be used.

Layout GRID now accepts HBox tags to group items horizontally. See Hbox tags on page 875

Form VERSION attribute to distinguish form revisions. See VERSION attribute on page
994

Form layout SPACING attribute to define space between widgets. See SPACING attribute on page
984

Form DEFAULT SAMPLE instruction to define a default sample attribute
for all form fields.

See INSTRUCTIONS section on
page 950

New form item attributes: SAMPLE, JUSTIFY, SIZEPOLICY ... See SAMPLE attribute on page
981, JUSTIFY attribute on page
972, SIZEPOLICY attribute on
page 982

To hide form elements by default, that can be shown by the end user by
option, use HIDDEN=USER as 'hidden to the user by default'.

See HIDDEN attribute on page
965

Individual table columns now have new attribute UNMOVABLE to avoid
moving.

See UNMOVABLE attribute on
page 990

WANTCOLUMNSANCHORED replaced by UNMOVABLECOLUMN and
WANTCOLUMNSVISIBLE replaced by UNHIDABLECOLUMNS.

See UNMOVABLECOLUMNS
attribute on page 990,
UNHIDABLECOLUMNS attribute
on page 990

Tables now accept a WIDTH and HEIGHT attribute to specify a size. See WIDTH attribute on page
999, HEIGHT attribute on page
965

New RADIOGROUP attribute to define the orientation of the radio buttons:
ORIENTATION.

See ORIENTATION attribute on
page 977

The MENU COMMAND clause now generates action names in lowercase.
This means, when you define COMMAND "Open", it will bind to all actions
views defined with the name 'open'.

See COMMAND [KEY()] "option"
block on page 1054

Upgrading | 81

Overview Reference

New ui.Interface.loadTopMenu() method to load a global
TOPMENU.

See ui.Interface.loadTopMenu on
page 1765

The ON CHANGE block is now invoked when the user clicks on a
CHECKBOX, RADIOGROUP, or changes the item in a COMBOBOX.

See ON CHANGE block on page
1069

New DIALOG keyword to reference the current dialog as a ui.Dialog
object. This can be used for example to enable/disable fields durint the
dialog execution.

See The Dialog class on page
1784

The ui.Form built-in class has new methods to handle form elements.
The hidden attribute is now also managed at the model level, this allows
you to hide form fields by name, instead of using the decoration node.

CALL myform.setElementHidden("formonly.field1",2)
CALL myform.setFieldHidden("field1",2)
 -- prefix is optional

See The Form class on page 1774

New methods are provided in ui.Interface to control the MDI
children.

See Window containers (WCI) on
page 1458

In INPUT ARRAY, CANCEL INSERT now supported in AFTER INSERT,
to remove the new added line when needed.

See CANCEL INSERT instruction
on page 1120

TOOLBAR and TOPMENU elements now have the hidden attribute so you
can create them and hide the options the user is not supposed to see.

Important: Hiding a toolbar or topmenu option does
not prevent the use of the accelerator of the action. Use
ui.Dialog.setActionActive() to disable an action.

See ui.Form.setElementHidden on
page 1779

New option NEXT FIELD CURRENT to gives control back to the dialog
instruction without moving to another field.

See Giving the focus to a form
element on page 1272

Table 76: SQL databases

Overview Reference

Support for PostgreSQL 7.4 with parameterized queries. See SQL adaptation guide for
PostgreSQL 9.x on page 683

A MySQL 3.23 driver is now provided for Windows™ platforms (was
previously only provided on Linux™).

See SQL adaptation guide for
Oracle MySQL 5.x, MariaDB 10.x
on page 625

The fglcomp compiler now converts static SQL updates like:

UPDATE tab SET (c1,c2)=(v1,c2) ...

to a standard syntax:

UPDATE tab SET c1=v1, c2=v2 ...

See UPDATE on page 490

On Windows™ platforms only, the ix drivers automatically set standard
Informix® environment variables with ifx_putenv(). Values are taken

See

Upgrading | 82

Overview Reference

from the console environment with getenv(). Additional variables can be
specified with:

dbi.stdifx.environment.count = n
dbi.stdifx.environment.xx = "variable"

What's new in Genero Business Development Language, v 1.20
This topic lists features added for the 1.20 release of the Genero Business Development Language.

Table 77: Core language

Overview Reference

Integrated debugger with gdb syntax to interface with graphical tools like
ddd.

See The debugger on page 1531.

The program profiler can be used to generate statistics of program
execution, to find the bottlenecks in the source code.

See The profiler on page 1556.

Internationalize your application in different languages with localized
strings, by using the %"string" notation.

See Localized strings on page
327.

The TERMINATE REPORT and EXIT REPORT can be used in reports to
respectively stop a report from outside of the REPORT routine, or stop the
report from inside the REPORT routine.

See TERMINATE REPORT on
page 1468, EXIT REPORT on
page 1480.

The fgl_getversion() function returns the version number of the
runtime system.

See fgl_getversion() on page 1657.

Static arrays can be passed as parameters: all elements are expanded. See Static arrays on page 298.

New methods for StringBuffer class:
base.StringBuffer.replaceAt() and
base.StringBuffer.insertAt().

See The StringBuffer class on
page 1738.

Operators equal (= or ==) and not equal (<> or !=) now can be used with
records: All record members will be compared. If two members are NULL
the result of this member comparison results in TRUE.

See DEFINE ... RECORD on page
294.

New -W option for fglform to show warnings. See fglform on page 1495.

LSTR() operator, to get a localized string by name. Useful when the
localized string identifier is known at runtime only.

See LSTR() on page 253.

SFMT() operator, to format strings with parameter placeholders. Useful
to localize application messages with parameters.

See SFMT() on page 253.

The base.StringTokenizer class can be used to parse strings for
tokens.

See The StringTokenizer class on
page 1749.

CONSTANT language elements can now be defined as GLOBALs. See Constants on page 291.

The base.Application class provides an interface to the program
properties.

See The Application class on page
1703.

Review of the definition of base.Channel class, now based on objects. See The Channel class on page
1707.

Upgrading | 83

Table 78: User interface

Overview Reference

Interactive instructions support the UNBUFFERED mode, to synchronise
data model and view automatically: When you set a variable, the value is
automatically displayed to the field, and when the user fires and action,
the field value is automatically assigned to the corresponding program
variable.

See The buffered and unbuffered
modes on page 1262.

DISPLAY ARRAY can now work in paged mode, to avoid loading a large
array of rows, with the ON FILL BUFFER clause.

See Paged mode of DISPLAY
ARRAY on page 1374.

Centralize default attributes for actions in ACTION DEFAULTS. See Configuring actions on page
1318.

Client side settings can now be saved by application name, with a
specific API. By default it is the the name of the program.

See ui.Interface.setName on page
1766.

New attribute APPEND ROW = TRUE/FALSE attribute for the INPUT
ARRAY instruction, to control the creation of the default append action.

See INPUT ARRAY row
modifications on page 1377.

New attribute KEEP CURRENT ROW = TRUE/FALSE for the DISPLAY
ARRAY and INPUT ARRAY instructions, to defines if the current row must
remain highlighted when leaving the dialog. The default is FALSE.

See Handling the current row on
page 1352

You can now define a TOOLBAR in form specification files. See TOOLBAR section on page
905.

You can now define a TOPMENU in form specification files. See TOPMENU section on page
903.

The fgl_gethelp() function returns the help text for the given help
number.

See fgl_gethelp() on page 1655.

The fgl_set_arr_curr() function changes the current row in
DISPLAY ARRAY or INPUT ARRAY.

See Handling the current row on
page 1352.

Users can now send an interruption event to the program,to stop long
running SQL queries, processing loops and reports.

See User interruption handling on
page 1252.

The statusBarType window style attribute to define the statusbar
layout.

See Window style attributes on
page 839.

The new FIELD ORDER FORM option can be used to follow the new
TABINDEX attribute, to define the field tabbing order. FIELD ORDER
FORM can also be used at the dialog level as dialog attribute.

See Defining the tabbing order on
page 1271.

For COMBOBOX form items, a default ITEMS list is created by fglform
when an INCLUDE attribute is used.

See COMBOBOX item type on
page 881.

The ON IDLE clause can be used to execute a block of instructions after
a timeout.

See Get program control if user
inactivity on page 1254.

New logical order of execution for INPUT ARRAY triggers:

1. BEFORE INPUT

2. BEFORE ROW

3. BEFORE INSERT

4. BEFORE FIELD

See Editable record list (INPUT
ARRAY) on page 1098.

New ui.ComboBox class to configure COMBOBOX fields at runtime. See The ComboBox class on page
1820.

Upgrading | 84

Overview Reference

DISPLAY ARRAY and INPUT ARRAY instructions now automatically
use two predefined actions nextrow and prevrow, which allow binding
action views for navigation.

See Predefined actions on page
1338.

ON CHANGE field trigger can be used to detect field modification. Useful
for fields such as CHECKBOX and COMBOBOX.

See Reacting to field value changes
on page 1267.

Program icon definition with ui.Interface.setImage(). See ui.Interface.setImage on page
1766.

LABEL fields can now have a FORMAT attribute. See LABEL item type on page
890.

Front-end function calls allow to execut code on the front-end side with
the ui.Interface.frontCall() method.

See Front calls on page 395.

New ui.Form built-in class to handle forms. See The Form class on page
1774.

New ON ROW CHANGE clause in INPUT ARRAY, executed when if at
least one value in the row has been modified, and the user moves to
another row or validates the dialog. The ON ROW CHANGE block is
executed before the AFTER ROW block.

See ON ROW CHANGE block on
page 1110.

MENU instruction now supports ON ACTION clause, to write abstract
menus as simple action handlers.

See Ring menus (MENU) on page
1048.

New 'help' predefined action, to start help viewer for HELP clauses in
dialog instructions.

See Predefined actions on page
1338.

Table 79: SQL databases

Overview Reference

SQL Server driver now supports the TINYINT data type. See NUMERIC data types on page
602.

The fglcomp compiler supports now ANSI outer join syntax in SQL
statements (LEFT OUTER JOIN), to replace the Informix specific
OUTER() syntax.

See SELECT on page 493.

FOREACH that raises an error no longer loops infinitely. See FOREACH (result set cursor)
on page 512.

New SQLSTATE and SQLERRMESSAGE registers, to give SQL execution
information.

See SQL error identification on
page 402.

What's new in Genero Business Development Language, v 1.10
This topic lists features added for the 1.10 release of the Genero Business Development Language.

Table 80: Core language

Overview Reference

The language supports now built-in classes, a new object-oriented way to
program in BDL.

See OOP support on page 349.

CONSTANT keyword to define constants in your programs. See Constants on page 291.

Upgrading | 85

Overview Reference

The language now supports dynamic arrays with automatic memory
allocation.

See Dynamic arrays on page 300.

A set of XML Utilities are provided in the runtime library as built-in
classes.

See The om package on page
1833.

The STRING data type can be used to manipulate character strings
without a length limit as with CHAR/VARCHAR.

See STRING on page 206.

Table 81: User interface

Overview Reference

The Dynamic User Interface is the major new concept in Genero. It is the
basement for the new graphical user interface.

See User interface basics on page
747.

Compared to classic IBM Informix 4gl, interactive instructions such as
INPUT, DISPLAY ARRAY, have been extended with new control blocks
and control instructions.

See Dialog instructions on page
1034.

Form specification files (.per) support now extended layout definition with
the LAYOUT section.

See Form definitions on page
769.

Defining Window Containers (a.k.a. MDI) is a simple way to group
programs.

See Window containers (WCI) on
page 1458.

Table 82: SQL databases

Overview Reference

The new SCHEMA instruction allows you to specific a database schema,
without having an implicit connection, when the program executes.

See Database schema on page
355.

Frequently asked questions
The FAQ lists those questions frequently asked when migrating an existing 4GL application to Genero.

• FAQ001: Why do I have a different display with Genero than with BDS V3? on page 85
• FAQ002: Why does an empty window always appear? on page 86
• FAQ003: Why do some COMMAND KEY buttons no longer appear? on page 86
• FAQ004: Why aren't the elements of my forms aligned properly? on page 87
• FAQ005: Why doesn't the ESC key validate my input? on page 88
• FAQ006: Why doesn't the Ctrl-C key cancel my input? on page 88
• FAQ007: Why do the gui.* FGLPROFILE entries have no effect? on page 89
• FAQ008: Why do I get invalid characters in my form? on page 89
• FAQ009: Why do large static arrays raise a stack overflow? on page 89
• FAQ010: Why do I get error -6366 "Could not load database driver drivername"? on page 90

FAQ001: Why do I have a different display with Genero than with BDS V3?

Explanation

Genero Business Development Language (BDL) introduces major graphical user interface enhancements
that sometimes require code modification. With BDS V3, application windows created with the OPEN

Upgrading | 86

WINDOW instruction were displayed as static boxes in the main graphical window. In the GUI mode of
Genero, application windows are displayed as independent, re-sizeable graphical windows.

Solution:
Review the program logic to reduce the number of windows created by the programs. Replace MENU
created in specific windows by TOPMENU elements in your forms.

FAQ002: Why does an empty window always appear?

Description

An additional empty window appears when I explicitly create a window with the OPEN WINDOW instruction.

MAIN
 OPEN WINDOW w1 AT 1,1 WITH FORM "form1"
 MENU "Example"
 COMMAND "Exit"
 EXIT MENU
 END MENU
 CLOSE WINDOW w1
END MAIN

Explanation

In the new standard GUI mode, all windows are displayed as real front-end windows, including the default
SCREEN window. When an application starts, the runtime system creates this default SCREEN window, as
in version 3. This is required because some applications use the SCREEN window to display forms (they do
not use the OPEN WINDOW instruction to create new windows). To facilitate BDS V3 to Genero migration,
the runtime system must keep the default SCREEN window creation; otherwise, existing applications would
fail if their code was not modified.

Solution

You can either execute a CLOSE WINDOW SCREEN at the beginning of the program, to close the default
window created by the runtime system, or use the OPEN FORM + DISPLAY FORM instructions, to display
the main form in the default SCREEN window.

Example

MAIN
 OPEN FORM f FORM "form1"
 DISPLAY FORM f
 MENU "Example"
 COMMAND "Exit"
 EXIT MENU
 END MENU
END MAIN

FAQ003: Why do some COMMAND KEY buttons no longer appear?

Description

When creating a MENU with COMMAND KEY(keyname) "option" clause, the button for keyname is no
longer displayed:

MAIN
 MENU "Example"

Upgrading | 87

 COMMAND "First"
 EXIT PROGRAM
 COMMAND KEY (F5) "Second"
 EXIT PROGRAM
 COMMAND KEY (F6) -- Third is a hidden option
 EXIT PROGRAM
 END MENU
END MAIN

Explanation

In BDS Version 3, when using the MENU instruction, several buttons are displayed for each clause of the
type COMMANDKEY(keyname) "option": one for the menu option, and others for each associated key.

When using Genero, for a named MENU option defined with COMMAND KEY, the buttons of associated
keys are no longer displayed (F5 in our example), because there is already a button created for the
named menu option. The so called "hidden menu options" created by a COMMAND KEY(keyname)
clause (F6 in our example) are not displayed as long as you do not associate a label, for example with the
FGL_SETKEYLABEL() function.

FAQ004: Why aren't the elements of my forms aligned properly?

Description

In my forms, I used to align labels and fields by character, for typical terminal display. But now, when using
the new LAYOUT section, some elements are not aligned as expected. In this example, the beginning of
the field f001 is expected in the column near the end of the digit-based text of the first line, but the field is
actually displayed just after the label "Name:":

DATABASE FORMONLY

LAYOUT
 GRID {
 01234567890123456789
 Name: [f001]
 }
 END
END

ATTRIBUTES
 f001 = formonly.field1 TYPE CHAR;
END

Explanation

By default, Genero displays form elements with proportional fonts, using layout managers to align these
elements inside the window. In some cases, this requires a review of the content of form screens when
using the new layout management, because the layout is based on new alignment rules which are more
abstract and automatic than the character-based grids in Version 3.

In most cases, the fglform compiler is able to analyze the layout section of .per form specification file in
order to produce an acceptable presentation, but sometimes you will have to touch the form files to give
hints for the alignment of elements.

Upgrading | 88

Solution

In this example, the field f001 is aligned according to the label appearing on the same line. By adding one
space before the field position, the form compiler will understand that the field must be aligned to the text in
the first line:

DATABASE FORMONLY

LAYOUT
 GRID {
 01234567890123456789
 Name: [f001]
 }
 END
END

ATTRIBUTES
 f001 = formonly.field1 TYPE CHAR;
END

In the next example, the fields are automatically aligned to the text in the first line:

DATABASE FORMONLY

LAYOUT
 GRID {
 First Last
 Name: [f001] [f002]
 }
 END
END

ATTRIBUTES
 f001 = formonly.field1 TYPE CHAR;
 f002 = formonly.field2 TYPE CHAR;
END

FAQ005: Why doesn't the ESC key validate my input?

Description

The traditional ESC (escape) key does not validate an INPUT, it cancels the dialog instead.

Explanation

To follow platform standards (like Microsoft™ Windows™ for example), the ESC key as the standard key to
cancel the current interactive statement.

Solution

You can change the accelerator keys for the 'accept' action with action defaults. However, is not
recommended to change the defaults, because ESC is the standard key to be used to cancel a dialog in
GUI applications.

FAQ006: Why doesn't the Ctrl-C key cancel my input?

Description

The traditional Ctrl-C key does not cancel an INPUT statement.

Upgrading | 89

Explanation

To follow platform standards (like Microsoft™ Windows™ for example), the Ctrl-C key is used as the
standard key to copy the current selected text to the clipboard, for cut and paste.

Solution

You can change the accelerator keys for the 'cancel' action with action defaults. However, is not
recommended to change the defaults, because ESC is the standard key to be used to cancel a dialog in
GUI applications.

FAQ007: Why do the gui.* FGLPROFILE entries have no effect?

Description

The gui.* and some other FGLPROFILE entries related to graphics no longer have effect.

Explanation

These entries are related to the old user interface. They are no longer supported. In BDS version 3, the
gui.* entries were interpreted by the front end. As the user interface has completely been redesigned in
Genero, some gui.* entries have been removed.

Solution:

Review all FGLPROFILE entries used in your current application and verify if there is a replacement.

FAQ008: Why do I get invalid characters in my form?

Description

The application starts, connects to the database and seams to work properly, but strange symbols
(rectangles, question marks) are displayed in the forms for non-ASCII characters. The ASCII characters
display properly.

Explanation

The is certainly a character set configuration mistake.

Solution

You have probably defined a wrong runtime system locale or the database client locale.

FAQ009: Why do large static arrays raise a stack overflow?

Description

When using very large static arrays (DEFINE a1 ARRAY[10000] OF ...), I get a stack overflow on
Windows™ platforms.

Explanation

The runtime system uses the default stack size defined by the C compiler. Because function static arrays
are allocated on the C stack, using very large static arrays in functions can result in a stack overflow error.

Solution

Review the program and use dynamic array instead of static arrays.

Upgrading | 90

FAQ010: Why do I get error -6366 "Could not load database driver drivername"?

Description

Error -6366 occurs when the runtime system fails to load the specified database driver.

Explanation

The database driver shared object (.so or . DLL) or a dependent library could not be found.

Solution

Make sure that the specified driver name does not have a spelling mistake. If the driver name is correct,
there is probably an environment problem. Make sure that the database client software is installed on
the system (Genero does not communicate directly with the database server, you need the client library).
Check the UNIX™ LD_LIBRARY_PATH environment variable or the PATH variable on Windows™. These
must point to the database client libraries. Another common error is the installation of a database client
software of a different object type as the Genero runtime system. For example, if you install a 32 bit
Genero version, you must install a 32 bit version of the database client software, the 64 bit version will not
work.

Upgrade Guides for Genero BDL
Each upgrade guide is an incremental upgrade guide that covers only topics related to a specific version
of Genero. It is important that you read all of the upgrade guides that sit between your existing version and
the desired version.

• General upgrade guide on page 90
• 3.00 upgrade guide on page 91
• 2.51 upgrade guide on page 101
• 2.50 upgrade guide on page 106
• 2.40 upgrade guide on page 109
• 2.32 upgrade guide on page 112
• 2.30 upgrade guide on page 113
• 2.21 upgrade guide on page 116
• 2.20 upgrade guide on page 117
• 2.11 upgrade guide on page 122
• 2.10 upgrade guide on page 123
• 2.02 upgrade guide on page 123
• 2.01 upgrade guide on page 123
• 2.00 upgrade guide on page 123
• 1.33 upgrade guide on page 129
• 1.32 upgrade guide on page 129
• 1.31 upgrade guide on page 130
• 1.30 upgrade guide on page 130

General upgrade guide
These topics describe general considerations when upgrading to a new version of Genero BDL.

1. Runtime system and front-end compatibility on page 91
2. P-Code compatibility accross versions on page 91
3. Genero Web Services migration notes on page 91

Upgrading | 91

Runtime system and front-end compatibility
For better compatibility and GUI related bug fixes, use front-end and runtime system with the equivalent
version number.

Graphical User Interface new features and bug fixes usually require modifications inside the runtime
system (fglrun) and front-ends (GDC, GWC, GMA, GMI).

When upgrading the runtime system to the latest version, we strongly recommend that you upgrade to the
latest front-end version as well. For example, when upgrading to a runtime system 2.50.xx, upgrade front-
ends to the latest available 2.50.xx version.

P-Code compatibility accross versions
P-Code incompatibility (within .42m files) may be introduced from version to version.

Recompilation is only needed when the p-code becomes incompatible. When executing a program with
and older p-code version as expected, fglrun will raise the error -6201.

Recompile your .4gl sources when upgrading to a new features release. Recompilation is not required
when upgrading to a bug-fix release.

Feature and bug-fix releases are distinguished by the product version number. The product version
number can be found by executing the fglrun command with the -V option.

The product version number has the following format: M.FF.BB, where M stands for the major release
number, FF is a feature number, and BB is the bug-fix number. For example: 2.31.14.

• A new feature release is identified by the M.FF part of the product version number.
• A bug-fix release is idenfitied by the BB part of the product version number.

For example, you must recompile your sources when upgrading from 2.50 to 3.00, from 2.40 to 2.50, or
from 2.51. to 2.52.

Genero Web Services migration notes
Upgrade notes for Genero Web Services are available in the chapter dedicated to web services
programming.

For more details see Migration notes for Genero Web Services.

3.00 upgrade guide
These topics describe product changes you must be aware of when upgrading to version 3.00.

Important: This is an incremental upgrade guide that covers only topics related to a specific
version of Genero. Check prior upgrade guides if you migrate from an earlier version.

1. Form definitions for mobile applications on page 92
2. Desupported database drivers on page 92
3. Web Services changes on page 93
4. Oracle DB NUMBER type on page 95
5. Oracle DB scroll cursor emulation removal on page 95
6. MySQL VARCHAR size limit on page 95
7. MySQL DATETIME fractional seconds on page 96
8. PostgreSQL DATETIME type mapping change on page 96
9. MariaDB support on page 97
10.FreeTDS driver supports SQL Server 2008, 2012, 2014 on page 97
11.FGL_GETVERSION() built-in function on page 97
12.Built-in front-end icons desupport on page 97
13.Modifications in front calls on page 98
14.SERIAL emulation with SQL Server on page 98
15.Improved compilation time on page 98
16.Preprocessor changes on page 99

Upgrading | 92

17.Current system time in UTC on page 100
18.Structured ARRAYs in list dialogs on page 100

Form definitions for mobile applications
Genero version 3 supports grid-based layout with all front-ends, and introduces STACK layout.

Support for grid-based and stack-based layout

Before Genero version 3.00 (i.e., with Genero Mobile version 1.1), the GMI front-end could only
support a stack-based layout and it was required to create different forms for iOS apps and other front-
ends supporting grid-based layout. In fact, to get a stack-based layout, grid-based .per forms were
automatically transformed on the fly when displayed on the GMI front-end.

Starting with Genero 3.00, all mobile front-end supports now grid-based layout and stack-based layout, and
a new STACK layout container was introduced to define stack-based layout forms explicitely. Therefore,
you can now use the same form definition for all mobile front-ends, by implementing the layout type of your
choice. It is even possible to mix grid-based or stack-based forms in the same app.

Loading different forms according to front-end type

If you want to use a grid-based or stack-based form according to the front-end, you can load the form with
OPEN FORM (or OPEN WINDOW) based on the front-end name returned by the feInfo.feName front call:

-- util module
DEFINE fe_name STRING

FUNCTION get_fe_name()
 IF fe_name IS NULL THEN
 CALL ui.Interface.frontCall("standard", "feInfo", "feName", [fe_name])
 END IF
 RETURN fe_name
END FUNCTION

FUNCTION is_gmi()
 RETURN (get_fe_name() == "GMI")
END FUNCTION

-- main module
MAIN
 ...
 OPEN FORM f1 FROM IIF(is_gmi(), "myform_stack", "myform_grid")

 ...
END MAIN

Desupported database drivers
Database drivers for old database client versions are removed according to the vendor de-support plans.

Database drivers desupported in version 3.00:

• SAP Sybase ASE 15.x (dbmase_15): New SAP Sybase ASE 16.x version is now supported.
• Oracle Database 10.1 and 10.2 (dbmora_10)

Note that no more driver is available for Linux PowerPC 32/64 platforms, because Oracle has
desupported this platform.

• IBM DB2 UDB 9.x (dbmdb2_9)

Upgrading | 93

Web Services changes
There are changes in support of web services in Genero 3.00.

Default SSL protocol

The default for the FGLPROFILE entry security.global.protocol is now SSLv23, enabling all
supported SSL protocols, including TLSv1.2 as required by the Federal Law of USA. In prior versions, the
default was TLSv1 (v1.0). It is up to the web server administrator to restrict the SSL protocol to TLSv1.2.

For more details, see HTTPS and password encryption on page 2510

Server socket read/write timeout

Before version 3.00, when a WS client did not send all the HTTP body (for instance, after connection
has been accepted), by default the WS server was waiting indefinitely, and this could end up in a deny of
service.

The com.WebServiceEngine class supports now a new option called server_readwritetimeout, to
define the server socket read/write timeout: If a timeout occurs, the WS server program will raise the BDL
exception -15553. By default this timeout is defined as 5 seconds.

For more details, see WebServiceEngine options on page 2032.

HTTPPart header default settings with com.HTTPPart.CreateAttachment()

The com.HTTPPart.CreateAttachment() method now by default headers fields according to the
filename and file extension.

For more details, see com.HTTPPart.CreateAttachment on page 2080.

File path returned by com.HTTPPart.getAttachment()

Before version 3.00, the com.HTTPPart.getAttachment() method returned the path to a temporary
file. Starting with Version 3.00, this method will now return the absolute path location of the received part
filename, according to the "Content-Disposition" header.

For more details, see com.HTTPPart.getAttachment on page 2080.

XForms characters in com.HTTPServiceRequest.readFormEncodedRequest()

Starting with version 3.00, if the result string of the HTTP request contains & or = XForms special
characters, these are escaped by doubling it.

For more details, see com.HTTPServiceRequest.readFormEncodedRequest on page 2046.

Note: This behavior change is related to the bug fix FGL-401.

Specific exception -15575 when GAS disconnects web service server

The GWS methods listed below will raise an exception with a specific error code -15575, when the GAS
disconnects properly the web service server. Before version 3.00, the generic error -15565 was raised. A
specific error code allows you to distinguish properly a normal disconnection from other errors, in a TRY/
CATCH block. See code examples in method reference pages:

• com.WebServiceEngine.GetHTTPServiceRequest on page 2027
• com.WebServiceEngine.HandleRequest on page 2028

SOAP fault handling in client stub

Web Services client stub generation has been changed to support fault response with HTTP error code of
200.

Upgrading | 94

The generated code supports SOAP fault with HTTP error code of 200 and 500. To enable this new feature
in your client stub code, re-generate the stubs with the fglwsdl tool.

For more details, see Client side SOAP fault handling.

Optional multipart handling in client stub

In the generated client stub code, all functions handling the SOAP request with multipart get an additional
input parameter and/or return parameter as a DYNAMIC ARRAY OF com.HTTPPart, to pass and return
optional parts.

When generating client stubs managing multipart, you get an extra input and/or output variable called
"AnyInputParts" and "AnyOutputParts" that is a DYNAMIC ARRAY of com.HTTPPart objects. Those
variables may contain additional input and/or output HTTP parts not specified in the WSDL. You will have
to adapt your client program by handling those dynamic arrays in any Genero functions calling such stubs.

Request example prior to 3.00:

FUNCTION xxx_g(InputHttpPart_1, ..., InputHttpPart_n)
 DEFINE InputHttpPart_1 com.HTTPPart
 ...
 DEFINE InputHttpPart_n com.HTTPPart
 ...
 RETURN wsstatus
END FUNCTION

Request example 3.00 and greater, with extra input variable AnyInputParts:

FUNCTION xxx_g(InputHttpPart_1, ..., InputHttpPart_n)
 DEFINE InputHttpPart_1 com.HTTPPart
 ...
 DEFINE InputHttpPart_n com.HTTPPart
 DEFINE AnyInputParts DYNAMIC ARRAY OF com.HTTPPart
 ...
 RETURN wsstatus
END FUNCTION

Note: This change has also been backported in 2.50.25.

For more details, see Multipart in the client stub on page 2460.

Removal of FGLWSNOINFO environment variable

Before version 3.00, the GWS library was displaying by default a message about certificates used by the
program:

—
WS-INFO (Certificate authority) | Loading from Windows keystore
—

To avoid this message, it was possible to set the FGLWSNOINFO environment variable to TRUE.

Starting with version 3.00, this message is no longer displayed by the GWS library, and the
FGLWSNOINFO is no longer required.

Desupported Web Services APIs

The methods listed in the following table are de-supported in Genero 3.00.

Upgrading | 95

Table 83: Table of de-supported methods (with their alternative)

Method de-supported as of 3.00 Alternative method to use

com.Util.CreateDigestString security.Digest.CreateDigestString on page 2294

com.Util.CreateRandomString security.RandomGenerator.CreateRandomString on
page 2279

com.Util.CreateUUIDString security.RandomGenerator.CreateUUIDString on
page 2280

Oracle DB NUMBER type
The NUMBER/FLOAT Oracle data type can now be extracted by fgldbsch to create .sch files.

Before Genero 3.00, columns using the native Oracle NUMBER/NUMBER(p>32) type (with up to 38
significant digits), or the FLOAT(b) type (when (b/3)>32), were denied by the fgldbsch schema extractor.
This restriction was applied to avoid potential overflow errors, if the Oracle NUMBER/FLOAT column
contains values that do not fit into a BDL DECIMAL(32,s) type.

Starting with Genero 3.00, fgldbsch can map NUMBER/FLOAT native Oracle types to BDL DECIMAL(32)
or DECIMAL(32,s) types, according to the -cv option:

• NUMBER (floating point number) is extracted as DECIMAL(32)
• NUMBER(p>32) (scale defaults to 0) is extracted as DECIMAL(32,0)
• NUMBER(p>32,s) or NUMBER(*,s) is extracted as DECIMAL(32,s)
• FLOAT(b) is extracted as DECIMAL(b/3) or FLOAT

For more details about Oracle type conversion rules and -cv type positions, run fgldbsch with the -cx
ora option.

Note: This new behavior has been introduced to simplify integration with existing Oracle
databases, to extract .sch schema from databases using column types that have no exact
equivalent BDL type. When designing new database tables, you should only use DECIMAL(p,s),
with p<=32 to achieve maximum portability. When fetching numeric values with more than 32
significant digits into BDL decimals, values will be rounded for DECIMAL(32), or raise an overflow
error -1226 for DECIMAL(32,s).

Oracle DB scroll cursor emulation removal
The scroll cursor emulation has been removed in the Oracle DB driver.

Before Genero 3.00, it was possible to enable scrollable cursor emulation (with temporary files) by defining
the following FGLPROFILE entry:

dbi.database.mydbname.ora.cursor.scroll.emul = true

This feature was supported to workaround an Oracle DB bug in versions 8 and 9i. The Oracle bug does
no longer exist in recent Oracle DB versions and the default native scrollable cursor feature can be safely
used.

If this FGLPROFILE entry is set, the runtime system will print a warning to stderr.

MySQL VARCHAR size limit
MySQL 5 VARCHAR columns can be used to store VARCHAR(N>255) values.

Before Genero 3.00, the MySQL driver converted a VARCHAR(N>255) type to a MySQL TEXT type,
because MySQL versions before 5.0.3 only allowed up to 255 characters for a VARCHAR column. MySQL
TEXT type is a large object type with specific semantics and constraints, but it was the only available type
to store character data above the 255 character limit. As a result, data type information was lost when
extracting the database schema with fgldbsch from a MySQL database: When creating a table in a Genero
BDL program, the original VARCHAR(N>255) type was converted to TEXT (with a fixed size of 65535

Upgrading | 96

characters), and then converted by fgldbsch back to a VARCHAR2(65535) type in the .sch file. The original
size of the VARCHAR type was lost.

Starting with Genero 3.00, when creating a table in a BDL program with CREATE TABLE, the MySQL
driver leaves any VARCHAR(N) as-is, even if the size is greater as 255.

Note: The MySQL driver does not distinguish MySQL server 5.0.x (5.0.2 / 5.0.3) versions. It
assumes that we are connected to a server version 5.0.3 or above, supporting large VARCHAR
types.

If your application is using VARCHAR(N) types with N>255 and your MySQL server version is 5.0.3 or
above, you should review your database creation scripts to use VARCHAR(N) instead of TEXT.

Note: The CHAR(N>255) types are still mapped to a MySQL TEXT type, because MySQL CHAR
type has a limit of 255 characters. When designing a database, consider using CHAR only for short
character string data storage (less than 50 characters), and use VARCHAR for larger character
string data storage (name, address, comments).

MySQL DATETIME fractional seconds
MySQL 5.6.4 TIME and DATETIME types support fractions of seconds that can be used to store
DATETIME HOUR TO FRACTION(N) or DATETIME YEAR TO FRACTION(N).

Before Genero 3.00, the MySQL driver converted DATETIME types as follows:

• DATETIME HOUR TO SECOND was converted to MySQL TIME.
• Other DATETIME types were converted to MySQL DATETIME.

Starting with Genero 3.00, when creating a table in a BDL program with the CREATE TABLE statement, if
the MySQL server version is greater or equal to 5.6.4, the types are converted differently, as follows:

The SQL Translator of the MySQL driver makes the following conversions automatically for the DATETIME
types:

• DATETIME HOUR TO MINUTE is converted to MySQL TIME (seconds set to 00).
• DATETIME HOUR TO SECOND is converted to MySQL TIME.
• DATETIME HOUR TO FRACTION(N) is converted to MySQL TIME(N).
• DATETIME YEAR TO MINUTE is converted to MySQL DATETIME (seconds set to 00).
• DATETIME YEAR TO SECOND is converted to MySQL DATETIME.
• DATETIME YEAR TO FRACTION(N) is converted to MySQL DATETIME(N).

This change has no impact if your application is using DATETIME HOUR TO SECOND or DATETIME
YEAR TO SECOND. However, it is now possible to store DATETIME HOUR TO FRACTION(N) and
DATETIME YEAR TO FRACTION(N) data. The DATETIME YEAR TO FRACTION(N) is typically used to
implement data modification timestamps to track user changes.

PostgreSQL DATETIME type mapping change
Conversion of DATETIME type with fractional seconds to PostgreSQL TIME(N)/TIMESTAMP(N) was
invalid and has been reviewed.

Before Genero 3.00, the PostgreSQL driver converted DATETIME types as follows:

• DATETIME HOUR TO MINUTE was converted to TIMESTAMP(3) WITHOUT TIME ZONE
• DATETIME HOUR TO SECOND was converted to TIME(0) WITHOUT TIME ZONE
• DATETIME HOUR TO FRACTION(N) was converted to TIME(N+1) WITHOUT TIME ZONE
• DATETIME YEAR TO MINUTE was converted to TIMESTAMP(3) WITHOUT TIME ZONE
• DATETIME YEAR TO SECOND was converted to TIMESTAMP(3) WITHOUT TIME ZONE
• DATETIME YEAR TO FRACTION(N) was converted to TIMESTAMP(N+1) WITHOUT TIME ZONE

Starting with Genero 3.00, when creating a table in a BDL program with CREATE TABLE, the types are
converted in a different way.

Upgrading | 97

The SQL Translator of the PostgreSQL driver makes the following conversions automatically for the
DATETIME types:

• DATETIME HOUR TO MINUTE is converted to PostgreSQL TIME(0) WITHOUT TIME ZONE (seconds
set to 00).

• DATETIME HOUR TO SECOND is converted to PostgreSQL TIME(0) WITHOUT TIME ZONE.
• DATETIME HOUR TO FRACTION(N) is converted to PostgreSQL TIME(N) WITHOUT TIME ZONE.
• DATETIME YEAR TO MINUTE is converted to PostgreSQL TIMSTAMP(0) WITHOUT TIME ZONE

(seconds set to 00).
• DATETIME YEAR TO SECOND is converted to PostgreSQL TIMESTAMP(0) WITHOUT TIME ZONE.
• DATETIME YEAR TO FRACTION(N) is converted to PostgreSQL TIMESTAMP(N) WITHOUT TIME

ZONE.

Note: This behavior change is related to the bug fix FGL-3893.

This bug fix introduces a incompatibility and can have an impact on applications using DATETIME HOUR
TO MINUTE, DATETIME HOUR TO FRACTION(N) or DATETIME YEAR TO FRACTION(N). If you are
using one of these types, consider reviewing your database schema, to modify the column types accord to
the new SQL type conversion rules.

MariaDB support
The MariaDB database is now supported by Genero 3.00.

MariaDB is the open source brand of Oracle's MySQL and has been adopted by several major
organizations.

The purpose of the MariaDB project is to be a drop-in replacement for MySQL.

MariaDB supported versions are 10.0 and higher.

To connect to MariaDB, use the MySQL database driver (dbmmys), and follow MySQL adaptation guide for
configuration and SQL portability issues.

According to the libmysqlclient library compatibility, you might need to configure Genero to use a version-
stamped driver. As of Genero version 3.00, the generic driver name "dbmmys" can be used to connect to
MariaDB 10.0. See Database driver specification (driver) on page 462 for more details.

FreeTDS driver supports SQL Server 2008, 2012, 2014
The FreeTDS driver can now be used for SQL Server versions > 2005.

Before Genero version 3.00, the FreeTDS driver could only be used to connect to SQL Server 2005.
Starting with Genero 3.00 the dbmftm driver can connect to SQL Server 2008, 2012 and 2014.

With SQL Server version >= 2008, date/time types used to store DATE and DATETIME values is different
as with SQL Server version 2005. See DATE and DATETIME data types on page 604 for more details.

Important: For SQL Server version 2008, 2012 and 2014, you must set TDS_Version=7.3 in
odbc.ini. Using TDS version 8.0 introduces problems (tested with FreeTDS 0.95.5 to 0.95.19)

FGL_GETVERSION() built-in function
The FGL_GETVERSION() function now returns the product version number (for ex: 3.00.00).

Prior to Genero 3.00, the FGL_GETVERSION() built-in function was returning the internal build number.

Starting with Genero 3.00, the function returns the product version number as a string, such as 3.00.00.

Built-in front-end icons desupport
Images resources included in front-ends are desupported with Genero 3.00.

Starting with Genero 3.00, the icon files distributed in front-end packages are no longer provided (former
GDC-installation-dir/pics for example)

Upgrading | 98

Common icons for buttons, toolbars, topmenus, and other items using icons can be centralized on the
application side where the program executes. This feature should be used to get the same icons on
different type of front-ends, or use specific icons, but from the same central icon directory. For more
details, see Providing the image resource on page 784.

Note however that mobile front-ends will display default icons, for default action views, if no IMAGE
attribute is specified for the action. See Rendering default action views on mobile on page 1279 for more
details.

Presentation style attribute changes
Deprecated and renamed presentation style attributes.

Starting with version 3.00:

The following presentation style attributes are desupported:

• CheckBox: customWidget

The following presentation style attributes are deprecated:

• Image: imageContainerType (= "browser")

Note: Replace IMAGE fields using this style attribute by URL-based WEBCOMPONENT fields.

Modifications in front calls
Describes changes done in front calls.

Front call modifications in BDL version 3.00:

• Before version 3.00, the connectivity front call was accepting a hostname as parameter. Starting
with version 3.00, this front call no longer use a hostname: It will only check the available network type.
For more details, see the mobile.connectivity front call.

SERIAL emulation with SQL Server
The SERIAL and BIGSERIAL types can be emulated with triggers and sequences when using SQL Server
2012 and higher.

By default when using SQL Server, the SERIAL and BIGSERIAL types are emulated with IDENTITY
columns. This native sequence generator is the fastest and prefered solution. However, it requires to
remove the serial column in all INSERT statements, which can lead to a large change in your legacy code.

Until version 3.00, you could workaround this limitation by using the "regtable" serial emulation. But this
solution is using a dedicated SERIALREG table that must be updated for each INSERT statement. This
can result in bad performances, when concurrent programs create rows in the same tables (locking issues
in SERIALREG).

Starting with Genero 3.00, it is now possible to use a serial emulation based on triggers and sequences.
Sequences where introduced in SQL Server version 2012, so you need at least a 2012 server in order to
use this emulation:

dbi.database.mydb.ifxemul.datatype.serial.emulation = "trigseq"

Improved compilation time
The fglcomp and fglform compilers have been reviewed to achieve faster compilation.

A Genero project can be very large, with thousands of .4gl source files to compile. Compilation time can
be an issue when the whole set of sources needs to be compiled every day, or several times a day.

In Genero 3.00, the fglcomp compiler has been improved to deliver better performances. Depending on
the content of the source file, the compiler can be over twice as fast.

Upgrading | 99

Loading .sch database schema files has also been improved. Using huge schema files with several
thousands of lines is no longer an issue. This is especially useful when compiling forms that define fields
based on database columns in a schema file.

Preprocessor changes
Several bugs have been fixed in the preprocessor, that can now result in a compilation error.

String token expansion

Before version 3.00, the following preprocessor syntax could be used to expand a string macro parameter:

&define T(x) DISPLAY "head_"#x"_tail"
-- macro usage:
T(body)

This was producing following result (after preprocessing):

"head_""body""_tail"

And was accepted by the compiler, because it was interpreted as a single string literal.

The new preprocessor now produces (as expected):

"head_" "body" "_tail"

However, this will now result in a compiler error, because this is not a valid string literal.

To solve such issue and get the same result string as before version 3.00, use the || concatenation
operator in the preprocessor macro and add (escaped) double quotes before and after the #ident
placeholder:

&define T(x) DISPLAY "head_""" || #x || """_tail"

or, by using single quotes as border strings delimiters:

&define T(x) DISPLAY 'head_"' || #x || '"_tail'

Identifier concatenation

Before version 3.00, the following type of macro:

&define FOO() foo
-- macro usage:
FOO()bar

was producing a single identifier token (accepted by the compiler):

foobar

But it will now produce two distinct identifier tokens (as expected):

foo bar

And this will result in a compilation error.

Upgrading | 100

Backslash in macro parameters

Before version 3.00.00 is was possible to use the backslash to escape a comma in preprocessor macro
parameters. This syntax is no longer allowed by the preprocessor, it is not a valid usage. To solve such
issue, replace parameters by real string literals in the macro:

-- bad coding
&define FOO(p1) DISPLAY #p1
FOO(hello world) -- expands to: DISPLAY "hello world"
FOO(hello \, world) -- error

-- good coding
&define FOO(p1) DISPLAY p1
FOO("hello world") -- expands to: DISPLAY "hello world"
FOO("hello , world") -- expands to: DISPLAY "hello , world"

The ## paste operator

Before version 3.00.00, the ## paste operator could be used to construct code with two elements that did
not result in a valid token, for example:

&define FOO(name) rec_ ## [x]
FOO(x)

was producing:

rec_[x]

This kind of preprocessor macro is no longer allowed in version 3.00.00 and will result in a compiler error:

x.4gl:2:1:2:1:error:(-8042) The operator '##' formed 'rec_[', an invalid
 preprocessing token.

The ## paste operator must be used to join two identifiers, to create a new identifier:

&define REC_PREFIX(name) rec_ ## name
LET REC_PREFIX(customer) = NULL

will produce:

LET rec_customer = NULL

Current system time in UTC
Use the util.Datetime.getCurrentAsUTC() method to get the current system date/time in UTC.

Starting with Genero version 3.00, you can use the util.Datetime.getCurrentAsUTC() method to get the
current system time in UTC (Coordinated Universal Time).

This method has been added to solve the issue when using util.Datetime.toUTC(CURRENT) during
the daylight saving time transition period in the fall, as described in util.Datetime.toUTC on page 1953.

Structured ARRAYs in list dialogs
ARRAYs with sub-records can be used in list dialogs, to simplify array definition based on database tables,
requiring additional information at runtime.

Starting with Genero version 3.00, ARRAY variables defined with a sub-records can be bound to DISPLAY
ARRAY and INPUT ARRAY screen records.

Upgrading | 101

This is especially useful when you need to define arrays from database tables, and handle additional
row information at runtime, for example, to hold image resource for each row, to be displayed with the
IMAGECOLUMN attribute.

An array is usually defined with a flat list of members:

SCHEMA shop
DEFINE a_items DYNAMIC ARRAY OF RECORD LIKE items.*
...

With version 3.00, arrays structured with sub-records can now be used within a DISPLAY ARRAY or
INPUT ARRAY dialog. The array members and the form fields used by the screen array are bound by
position:

SCHEMA shop
DEFINE a_items DYNAMIC ARRAY OF RECORD
 item_data RECORD LIKE items.*,
 it_image STRING,
 it_count INTEGER
 END RECORD
...
DISPLAY ARRAY a_items TO sr.*
 ...

For more details about program variable to form field binding in dialogs, see Variable binding in DISPLAY
ARRAY on page 1078, Variable binding in INPUT ARRAY on page 1101, Binding variables to form fields
on page 1264, Example 4: DISPLAY ARRAY with structured array.

2.51 upgrade guide
These topics describe product changes you must be aware of when upgrading to version 2.51.

Important: This is an incremental upgrade guide that covers only topics related to a specific
version of Genero. Check prior upgrade guides if you migrate from an earlier version.

1. Desupported database drivers on page 101
2. New database driver name specification on page 102
3. The FIELD form item type and .val schema file on page 102
4. TRY/CATCH and ERROR LOG on page 103
5. DATETIME types with SQLite on page 103
6. Desupport of C-Extension API functions on page 103

Desupported database drivers
Database drivers for old database client versions are removed according to the vendor de-support plans.

Database drivers desupported in version 2.51:

• Genero DB is no longer supported (dbmads*).
• Oracle MySQL 5.0, 5.1 (dbmmys50x, dbmmys51x).
• PostgreSQL 8.3, 8.4 (dbmora83x, dbmpgs84x)
• Oracle MySQL 4.1 (dbmmys41x)
• Oracle Database 9.2 (dbmora92x)
• IBM DB2 UDB version 7.x and 8.x (dbmdb27x, dbmdb28x)

Note also that database driver naming convention has changed in 2.51, for more details see New database
driver name specification on page 102.

Upgrading | 102

New database driver name specification
Allows database driver specification without target database version information.

Starting with version 2.51, the database drivers are following a new file name convention, to let you specify
a generic name according to the target database type, without any database version information.

Important: Most database driver names have changed. You need to re-configure the "driver"
entry in your FGLPROFILE settings (or database connection string parameters), to match the new
driver names. If you are using the default driver (dbmdefault), there is no configuration change
needed. To simplify upgrading, the runtime system identifies old driver names and converts them to
new names. However, you should consider using the generic driver name corresponding to the type
of database your applications connect to. The error -6366 occurs if the runtime system is not able to
load the specified database driver, or cannot identify an old driver name.

Before version 2.51, it was required to specify the exact database type and version, that had to match both
the database client and the server version. For example, when using Oracle 11.2 (server and client):

dbi.database.stores.driver = "dbmoraB2x"

Starting with 2.51, you can now for example specify a generic driver name without version, which can
connect to any database server version supported by the DB vendor client/server protocol. The generic
name defines a database driver for the latest database client version that is available on the platform:

dbi.database.stores.driver = "dbmora"

Each generic database driver name has also a human-readable alias, such as "informix" or "oracle".

dbi.database.stores.driver = "oracle"

To simplify driver specification, install the latest database client software that corresponds to the generic
driver name, especially if it does not require a database server upgrade.

For some type of database client software, additional database drivers are still provided for older database
client versions (if available on the platform). In such case, the driver file name gets a version identifier.

For example:

• dbmora_11 (Oracle 11g client)
• dbmmys_5_1 (Oracle MySQL 5.1.x)
• dbmsnc_10 (SQL Native Client 10 (SQLNCLI10.DLL))
• dbmsnc_9 (SQL Native Client 9 (SQLNCLI.DLL))

Such database drivers with version info are provided to follow db client library dependency rules, as
defined by the database vendors. For example, on a Linux platform, Oracle MySQL version 5.1.x provides
the db client library named libmysqlclient.so.16. In this file name, "16" is the version number that
defines the shared library compatibility. The database driver that was compiled and linked in a compatible
db client environment is dbmmys_5_1: This database driver is linked to libmysqlclient.so.16.
Starting with Oracle MySQL version 5.5.x, the db client library version number has incremented to 18 (i.e.
libmysqlclient.so.18). The driver to be used with that library version is dbmmys_5_5, which was
compiled and linked with a 5.5.x environment.

The FIELD form item type and .val schema file
Form files using the FIELD item type and/or .val attribute definitions must be reviewed.

Starting with version 2.51, the FIELD item type defining abstract fields in forms, based on .val schema file
attributes is deprecated.

Further, any non-I4GL attribute defined in the .val schema file must be avoided: Reading attributes in
the .val is now only supported for compatibility with I4GL projects.

With Genero, it is recommended to define all form item attributes in the form definition file.

Upgrading | 103

TRY/CATCH and ERROR LOG
Errors are no longer logged when raised in a TRY/CATCH block.

Before version 2.51, exceptions occuring in a TRY/CATCH block were logged if the error log is initiated with
the startlog() function. With version 2.51, if an exception is raised in a TRY/CATCH block, it will no longer
be logged in the error log file. In other words, the TRY/CATCH block will behave like WHENEVER ERROR
CONTINUE, regarding error logging.

Note: This behavior change is related to the bug fix FGL-3091.

Example:

CALL startlog("errors.txt")
...
TRY
 INSERT INTO customer ...
CATCH
 -- Handle errors and write to error log with errorlog() if needed.
 IF SQLCA.SQLCODE == -8634 THEN
 ...
 END IF
END TRY

Important: In order to get this new behavior, the pcode is no longer compatible with older versions
(<=2.50): All programs must be recompiled.

DATETIME types with SQLite
Better support for Informix DATETIME types emulation within SQLite.

Before version 2.51, DATETIME SQL types where converted to SQLite types as follows:

• DATETIME HOUR TO SECOND type was translated to TIME (hh:mm:ss).
• DATETIME YEAR TO FRACTION and all other combinations (except HOUR TO SECOND) were

translated to TIMESTAMP (YYYY-MM-DD hh:mm:ss.fff).

Since most DATETIME types were converted to TIMESTAMP, it was not possible to distinguish common
date/time types such as DATETIME HOUR TO MINUTE or DATETIME YEAR TO MINUTE, especially
when extracting the database schema with fgldbsch: Type information was lost and this prevented
schema-base variable definitions with DEFINE LIKE.

Starting with version 2.51, common DATETIME SQL types are now mapped to different types in SQLite,
for a better support of these types. In fact, SQLite allows to define table columns with custom types (you
can use any type name), however the number of tokens in the syntax is limited so it's not possible to use
for ex the tokens DATETIME YEAR TO SECOND directly. The Genero database driver uses this SQLite
SQL language feature to map Informix-style DATETIME types to specific custom types. For example, a
DATETIME HOUR TO MINUTE becomes a SMALLTIME, a DATETIME YEAR TO FRACTION(2) becomes
a DATETIME(2), etc. Further, the data values inserted in the database do now match exactly the precision
of the original DATETIME type. For more details about date/time mapping and emulation, see DATE and
DATETIME data types on page 714.

Desupport of C-Extension API functions
BIGINT and BOOLEAN stack functions and C API functions for C-Extensions are no longer supported.

Since version 2.51:

The C-Extension stack functions to handle BIGINT and BOOLEAN types have been removed:

Table 84: Desupported FGL stack functions

popboolean()

popbigint()

Upgrading | 104

pushboolean()

pushbigint()

The C API functions such as decadd(), risnull(), rsetnull(), have been removed. These functions
are part of the IBM® Informix® ESQL/C product and cannot be part of the Genero BDL product. The
Genero runtime system provides only the C functions to push and pop data on the Genero BDL stack.

Below is the list of C API functions that have been removed, check your C extension code for the usage
of these functions. If such functions are required, link your C-Extensions with the IBM® Informix® ESQL/C
libraries.

Table 85: Desupported C API functions

bycmpr()

byleng()

bycopy()

byfill()

risnull()

rsetnull()

rgetmsg()

rgetlmsg()

rtypalign()

rtypmsize()

rtypname()

rtypwidth()

rdatestr()

rdayofweek()

rdefmtdate()

ifx_defmtdate()

rfmtdate()

rjulmdy()

rleapyear()

rmdyjul()

rstrdate()

ifx_strdate()

rtoday()

ldchar()

rdownshift()

rfmtdouble()

rfmtint4()

rstod()

Upgrading | 105

rstoi()

rstol()

rupshift()

stcat()

stchar()

stcmpr()

stcopy()

stleng()

decadd()

deccmp()

deccopy()

deccvasc()

deccvdbl()

deccvflt()

deccvint()

deccvlong()

decdiv()

dececvt()

decfcvt()

decmul()

decround()

decsub()

dectoasc()

dectodbl()

dectoflt()

dectoint()

dectolong()

dectrunc()

rfmtdec()

dtaddinv dtaddinv()

dtcurrent()

dtcvasc()

ifx_dtcvasc()

dtcvfmtasc()

ifx_dtcvfmtasc()

dtextend()

dtsub()

Upgrading | 106

dtsubinv()

dttoasc()

dttofmtasc()

ifx_dttofmtasc()

incvasc()

incvfmtasc()

intoasc()

intofmtasc()

invdivdbl()

invdivinv()

invextend()

invmuldbl()

2.50 upgrade guide
These topics describe product changes you must be aware of when upgrading to version 2.50.

Important: This is an incremental upgrade guide that covers only topics related to a specific
version of Genero. Check prior upgrade guides if you migrate from an earlier version.

1. Desupported database drivers on page 106
2. TEXT/BYTE support with FTM/ESM database drivers on page 106
3. Presentation style attribute changes on page 107
4. Floating point to string conversion on page 107
5. Web Services changes on page 108
6. Implicit creation of certificates for HTTPS on page 108
7. PostgreSQL schema extraction needs namespace on page 108
8. Client stubs managing multipart changes on page 109

Desupported database drivers
Database drivers for old database client versions are removed according to the vendor de-support plans.

Database drivers desupported in versions 2.50:

• SQL Server MDAC drivers (Code MSV, name: dbmmsv*):

On a Microsoft™ Windows™ platform, use the SQL Native Client driver instead (Code SNC).

With the SNC drivers, set the dbi.database.dbname.snc.widechar FGLPROFILE entry to false when
using CHAR/VARCHAR/TEXT in the SQL Server database.

• Oracle MySQL 5.4 (dbmmys54x)
• Oracle Database 8.1 (dbmora81x)
• Oracle Database 9.0 (dbmora90x)

TEXT/BYTE support with FTM/ESM database drivers
FTM and ESM database drivers TEXT/BYTE type mapping has changed.

Since version 2.50, the TEXT and BYTE data types are now converted respectively to VARCHAR(MAX)
and VARBINARY(MAX) data types, the recommended LOB types introduced in SQL Server 2005.
Before version 2.50, the TEXT and BYTE data types were converted to TEXT and IMAGE data types,
respectively, in SQL Server.

Upgrading | 107

Note: This behavior change is related to the bug fix FGL-2534.

It is still possible to use SQL Server TEXT and IMAGE types, but if you create or alter tables in an FGL
program, the VARCHAR(MAX) and VARBINARY(MAX) types will be used instead.

Presentation style attribute changes
Deprecated and renamed presentation style attributes.

Starting with version 2.50:

The following presentation style attributes are deprecated (still implemented, but not to be used):

• Window: backgroundImage

• TextEdit: textSyntaxHighlight

The next presentation style attributes have been replaced by a new style attribute, or have been renamed:

• CheckBox: nativeLook => customWidget (with same possible values)

Important: In 3.00, the customWidget attribute is desupported.

Floating point to string conversion
The default formatting of a DECIMAL(P), SMALLFLOAT and FLOAT adapts to the significant digits of the
value.

Floating point decimal types (like DECIMAL(5)) can store a large range of values, with a variable number
of digits after the decimal point: For example, a DECIMAL(5) can store 12345 as well as 0.12345. See
DECIMAL(p,s) on page 200 for more details about floating point decimal types.

With Genero 2.50, the conversion to string from a DECIMAL(P), FLOAT and SMALLFLOAT has been
revised, to keep all significant digits and avoid data loss.

Note: This behavior change is related to the bug fix FGL-3915.

Before Genero 2.50, floating point decimals converted to strings were formatted with 2 decimal digits by
default, which could lead to data loss. See following example using a DECIMAL(12):

MAIN
 DEFINE str STRING, dec12, dec12_bis DECIMAL(12)
 LET dec12 = 10.12999
 LET str = dec12
 DISPLAY str
 LET dec12_bis = str
 DISPLAY (dec12 == dec12_bis)
END MAIN

Prior to Genero 2.50, the above code would display:

10.13
 0

Starting with Genero 2.50, all significant digits are kept, which allows proper decimal data serialization:

10.12999
 1

Prior to Genero 2.50, floating point decimal values conversion of huge values could also lose digits in the
whole part of the number; the width of the result was never longer than p + 2. Starting with Genero 2.50, all
significant digits of a floating point decimal are kept in the result string:

 Values Vers<2.50 Vers>=2.50

Upgrading | 108

 1.23456e123 1.23456e123 1.23456e123
 1.23456e40 1.235e40 1.23456e40
 123.456 123.46 123.456
 123456.0 123456.0 123456.0
 0.123456 0.12 0.123456
 0.0123456 0.01 0.0123456
 0.00123456 0.00 0.00123456
 1.23456e-08 0.00 1.23456e-08

If you expect that any DECIMAL(P) to string conversion rounds to 2 digits, define the following
FGLPROFILE entry:

fglrun.decToCharScale2 = true

Note: Do not use this configuration parameter unless you have migration issues. This configuration
parameter applies only to DECIMAL(P) types, FLOAT and SMALLFLOAT conversions to string is not
impacted.

Web Services changes
Several methods of built-in and extension classes are de-supported.

The methods listed in the following table are deprecated in version 2.50.

Table 86: Table of deprecated methods (with their alternative)

Method deprecated as of 2.50 Alternative method to use

com.Util.CreateDigestString security.Digest.CreateDigestString on page 2294

com.Util.CreateRandomString security.RandomGenerator.CreateRandomString on
page 2279

com.Util.CreateUUIDString security.RandomGenerator.CreateUUIDString on
page 2280

Implicit creation of certificates for HTTPS
Certificates for HTTPS are now created implicitly, when nothing is specified in FGLPROFILE.

Before version 2.50, certificates for HTTPS had to be specified explicitly in FGLPROFILE.

Starting with 2.50, in no HTTPS certificate is defined in FGLPROFILE, when a web services program
starts, the creation is implicit.

PostgreSQL schema extraction needs namespace
To extract a database schema from PostgreSQL, the fgldbsch tool now requires db namespace
specification.

In version 2.50, the fgldbsch database schema extractor can only extract the schema from a PostgreSQL
database if you specify the -ow option.

Note: This behavior change is related to the bug fix FGL-2647.

PostgreSQL distinguishes table owners from table schemas (i.e. table namespaces). The real table
namespace is defined by the pg_class.relnamespace column: it contains the oid of a namespace
defined in pg_namespace. For PostgreSQL, the fgldbsch -ow option will specify the namespace, instead
of the owner of the table, because an db user can create several schemas/namespaces and use the same
table name in those different namespaces. As result, filtering on user name can mix table definitions from
different schemas/namespaces.

When extracting a database schema from a PostgreSQL database, you must specify the namespace of
tables with the -ow option. If no -ow option is specified and the -un option is specified, fgldbsch will use

Upgrading | 109

the login name of the -un option as namespace. If neither -ow, nor -up options are specified, fgldbsch will
use the PostgreSQL "public" namespace/schema by default.

Since database tables are usually created in the "public" namespace, you typically specify this namespace
with the -ow option:

fgldbsch -db test1 -dv dbmpgs -un pgsuser -up fourjs -v -ow public

Client stubs managing multipart changes
You must update client programs that call client stubs managing multipart.

Important: This change has been backported from V 3.00

Starting with version 2.50.25, when generating client stubs managing multipart, you get an extra input
and/or output variable called "AnyInputParts" and "AnyOutputParts" that is a DYNAMIC ARRAY
of com.HTTPPart objects. Those variables may contain additional input and/or output HTTP parts not
specified in the WSDL. You will have to adapt your client program by handling those dynamic arrays in any
Genero functions calling such stubs.

Request example prior to 2.50.25:

FUNCTION xxx_g(InputHttpPart_1, ..., InputHttpPart_n)
 DEFINE InputHttpPart_1 com.HTTPPart
 ...
 DEFINE InputHttpPart_n com.HTTPPart
 ...
 RETURN wsstatus
END FUNCTION

Request example 2.50.25 and greater, with extra input variable AnyInputParts:

FUNCTION xxx_g(InputHttpPart_1, ..., InputHttpPart_n)
 DEFINE InputHttpPart_1 com.HTTPPart
 ...
 DEFINE InputHttpPart_n com.HTTPPart
 DEFINE AnyInputParts DYNAMIC ARRAY OF com.HTTPPart
 ...
 RETURN wsstatus
END FUNCTION

2.40 upgrade guide
These topics describe product changes you must be aware of when upgrading to version 2.40.

Important: This is an incremental upgrade guide that covers only topics related to a specific
version of Genero. Also check prior upgrade guides if you migrate from an earlier version.

1. Desupported database drivers on page 110
2. Program size option removal (fglrun -s) on page 110
3. Informix SERIAL emulation with SQL Server on page 110
4. SIZEPOLICY attribute removal for containers on page 110
5. The LVARCHAR type in IBM Informix databases on page 110
6. Right-trim collation for character types in SQLite on page 111
7. Message files support now 4-bytes integer message numbers on page 111
8. MySQL client library version change in MySQL 5.5.11 on page 111
9. New compiler warning to avoid action shadowing on page 111
10.Runtime error raised when report dimensions are invalid on page 112
11.Linker checks all referenced functions on page 112

Upgrading | 110

Desupported database drivers
Database drivers for old database client versions are removed according to the vendor de-support plans.

Database drivers desupported in versions 2.40:

• PostgreSQL versions 8.0, 8.1 and 8.2 (dbmpgs80x, dbmpgs81x, dbmpgs82x).
• Sybase Adaptive Server Anywhere (ASA) version 8 driver (dbmasa8x)

The dbmasa8x driver was provided for the Sybase ASA desktop database engine (renamed Sybase
SQL Anywhere when writing these lines). Since version 2.30, Genero Business Development Language
supports a new driver to connect to Sybase Adaptive Server Enterprise (ASE): dbmase*.

Program size option removal (fglrun -s)
The -s option of fglrun is no longer available.

Before version 2.30 the -s option of fglrun could be used to compute the size of program elements such
as global and module variables, p-code and structured data types. Starting with version 2.30, this option
reported a size of zero. With version 2.40 the -s option is now fully desupported.

The -s option was mainly implemented for internal use. Regarding the amount of memory used by a
program, you should consider the memory allocated dynamically at runtime: If you fill large dynamic arrays,
or leave a lot of SQL cursors open without freeing them, the memory footprint of a program can be much
larger as the actual size of static elements that could be reported by the -s option.

Informix® SERIAL emulation with SQL Server
SERIAL type emulation has been enhanced for SQL Server.

Using SCOPE_IDENTITY() to get the last sequence

Before version 2.40, the SQL Server drivers (SNC, MSV, ESM, FTM) were using the @@IDENTITY
expression to retrieve the last generated identity column, if the native serial emulation is configured. But
@@IDENTITY is not recommended, because it can return an identity value generated for another table in
a trigger of the main table.

Starting with 2.40, the SQL Server drivers use the SCOPE_IDENTITY() function, which returns the last
number generated in the current scope (ignoring identity numbers generated in triggers).

Regtable serial emulation trigger code change

When using the "regtable" serial emulation, the code of the triggers has changed in version 2.40, using
now the SET NOCOUNT ON instruction. Existing serial triggers created by prior versions must be
reviewed, to have the same trigger body in all tables, otherwise an SQL error is raised when executing
INSERT statements.

SIZEPOLICY attribute removal for containers
The SIZEPOLICY attribute is no longer availabel for layout containers like TABLE / GRID.

Before version 2.40 it was possible to specify a SIZEPOLICY attribute for several sort of form elements,
including containers such as TABLE, GRID. The SIZEPOLICY attribute make no sense in containers and is
only meaningful for leaf nodes (i.e. widgets such as EDIT, COMBOBOX). The form compiler will now report
a syntax error if the SIZEPOLICY attribute is used in the definition of elements that are not widgets.

The LVARCHAR type in IBM® Informix® databases
Native LVARCHAR type of Informix is now mapped by default to a large VARCHAR in schema file.

Starting with version 2.40, the fgldbsch database schema extractor converts now by default IBM® Informix®

LVARCHAR(N) types to VARCHAR2(N) with type code 201. Before 2.40, you had to pass -cv AAAB...
option to avoid a conversion error when generating the schema file.

Upgrading | 111

The static SQL syntax has been enhanced, to support the LVARCHAR type name in DDL statements such
as CREATE TABLE. The non-Informix ODI drivers have been adapted to convert LVARCHAR type names
to VARCHAR.

Two-Pass reports can now use VARCHAR types with a size greater as 255 bytes (the temporary table
will be created with an LVARCHAR column). Note however that and index is created as well, and IBM®

Informix® IDS (version 11 when writing these lines) has a size limitation for indexes. You may get an SQL
error -517 if the VARCHAR variable used to group / order rows in the report routine exceeds ~350 bytes
(see IDS SQL error -517 for details).

Right-trim collation for character types in SQLite
CHAR and VARCHAR columns in SQLite need to be defined with a TRIM collation to ignore trailing spaces
in comparisons.

Since version 2.40, the SQLite database driver adds the COLLATE RTRIM keywords after the CHAR(N)
and VARCHAR(N) types in CREATE TABLE statements, when Informix® emulation is enabled (the
default). This collation clause forces SQLite to use right-trim comparison rules instead of the default binary
mode. The binary mode requires to have the same number of trailing spaces in both character values to
be equal. By using COLLATE RTRIM clause, the trailing blanks are trimmed and thus ignored. You should
also use [VAR]CHAR(N) COLLATE RTRIM in database creation scripts.

Message files support now 4-bytes integer message numbers
2-byte .msg message number limitation was removed.

Before version 2.40, message files entries could only be defined with numbers in the range -32767 to
32767 (i.e. SMALLINT). This limitation is not longer true in 2.40: Message numbers can now be in the
range -2147483648 to 2147483647 (i.e. INTEGER).

Note: This behavior change is related to the bug fix FGL-1670.

MySQL client library version change in MySQL 5.5.11
Shared library version number of the MySQL client library must match the library used to link the ODI
driver.

Starting with MySQL 5.5.11, the client library version number was changed from 16 to 18. In fact
the libmysqlclient.so.16 file was renamed to libmysqlclient.so.18. From a cross-5.5.x
compatibility point of view, this was maybe not the best thing to do: Since the major shared library version
has changed, client applications using the C API (such as Genero ODI MySQL drivers) need to be
recompiled and re-linked in order to use le latest library.

In Genero version 2.40, the dbmmys55x ODI driver is linked with libmysqlclient.so.18 on the platforms
where MySQL 5.5.11+ is available. That is: Linux™, Solaris and Mac OS X® platforms, when writing these
lines. On other UNIX™ platforms such as HP, the client library is still libmysqlclient.so.16. This may
change in the future Genero versions, following the availability of MySQL 5.5.11+ versions.

Therefore, you must pay attention to the MySQL 5.5 version you have installed: You need to upgrade your
MySQL 5.5 client software to match le client library that was used to build the dbmmys55x.so shared
library. On Linux™, you can run the ldd command to check what libmysqlclient.so version is required.
If it's not possible to upgrade your MySQL client software, please contact the support channel.

New compiler warning to avoid action shadowing
Prevent the same action name at different levels of ON ACTION handlers in a dialog.

The fglcomp compiler of version 2.40 will now print warning -8409, if a dialog block defines ON ACTION
handlers at different levels with the same action name.

It is not good practice to use the same action names at different levels of a dialog. For example, you can
define several ON ACTION INFIELD handlers using the action name "zoom", but you should not define
and ON ACTION zoom at the sub-dialog or dialog level.

Upgrading | 112

If the warning occurs during compilation, modify your code in order to use specific action names at each
level, and do not forget to rename the actions of the corresponding action views in the forms.

Runtime error raised when report dimensions are invalid
Report page length checking error -4375 might occur at compile time or runtime.

Starting with version 2.40, a START REPORT instruction raises the runtime error -4375, when the top/
bottom margin sizes do not fit the page length.

In version 2.40, the error is not returned at compile time, because report dimensions can be specified with
variables in START REPORT.

But since version 2.50.00 (build 2155) fixing bug FGL-3711, the compiler will also raise error -4375 when
using constants.

Further change is done in version 2.51.07 (build 2506), by fixing the bug FGL-651, to relax the page length
test and allow FIRST PAGE HEADER blocks with the same number of rows as the page length.

Note: This behavior change is related to the bug fix FGL-3035, FGL-3711 and FGL-651.

Linker checks all referenced functions
The linker checks definition of all functions referenced in all modules provided in the link command.

Starting with version 2.40, any reference to a function has to be resolved by the linker: When linking a 42r
program, if an unused module references an undefined function, the linker (fglrun -l or fgllink) will
stop with the error -1338. Before version 2.40, the undefined function was ignored.

Note: Complete function reference is only checked by the linker when creation a 42r program file.
When creating a 42x library, there can be references to undefined functions.

In the next example, the main.4gl module does not call any function, but the module used in the link line
(module.4gl) defines an unused function (f1) calling an undefined function (f2):

main.4gl:

MAIN
 DISPLAY "In main..."
END MAIN

module.4gl:

FUNCTION f1() -- Unused in program
 DISPLAY "In f1..."
 CALL f2() -- Undefined
END FUNCTION

Compiling and linking:

$ fglcomp main.4gl
$ fglcomp module.4gl
$ fgllink -o prog.42r main.42m module.42m
ERROR(-1338):The function 'f2' has not been defined in any module in the
 program.

2.32 upgrade guide
These topics describe product changes you must be aware of when upgrading to version 2.32.

Important: This is an incremental upgrade guide that covers only topics related to a specific
version of Genero. Also check prior upgrade guides if you migrate from an earlier version.

1. Front-end protocol compression disabled on page 113
2. SQLite driver does no longer need libiconv on Windows on page 113

Upgrading | 113

3. Need for Informix CSDK to compile C extensions on page 113
4. FESQLC tool removal on page 113

Front-end protocol compression disabled
GUI communication does not require protocol compression on LAN networks.

Until version 2.32.00, front-end protocol compression was enabled by default, to speed GUI
communication on slow networks. However, on regular networks, compression is useless and can be
disabled to save processing resources. With version 2.32.00, the compression is now disabled by default.
If needed, compression can be enabled with this FGLPROFILE entry:

gui.protocol.format = "zlib"

Note also that compression needs the zlib library to be present on the computer where fglrun executes.
Starting with 2.32.00, the product package does no longer include the fallback zlib library ($FGLDIR/lib/
libzfgl.so or %FGLDIR%\bin\libzfgl.dll). If no standard zlib is installed on your system, compression will not
be possible.

SQLite driver does no longer need libiconv on Windows™

UTF-8 string data storage in SQLite requires conversion when the application is not UTF-8.

Starting with version 2.32, the SQLite driver (dbmsqt3xx) does no longer need the LIBICONV.DLL library
on Windows™ platforms to do charset conversion, when the application locale is not UTF-8.

Need for Informix® CSDK to compile C extensions
Compiling C Extensions requires now the Informix CSDK.

Note: This upgrade note is related to C Extensions or ESQL/C Extensions, and can be ignored if
your application does not use such extensions.

To compile C or ESQL/C extensions manipulating data types like DECIMAL, you need IBM® Informix®

data type structure definitions such as dec_t, dtime_t, intrvl_t, as well as macros like DECLEN() or
TU_ENCODE(). Before version 2.32, these C structure and macros where provided in the files of the
FGLDIR/include/f2c directory.

Genero BDL version 2.32 does no longer provide the IBM® Informix® ESQL/C structure definitions in
FGLDIR/include/f2c files, because we have identified that some of the definitions are platform specific.
However, to compile your C extensions, you need these definitions if your extensions use complex data
types such as DECIMAL, DATETIME/INTERVAL, BYTE/TEXT. The definitions are not required if you use
standard C types such as int or char[].

Starting with version 2.32, you need to install an IBM® Informix® CSDK on your development machine in
order to get the structure and macro definitions to compile your C extensions. Understand that the IBM®

Informix® CSDK is only required on the development platform. It is not required to install the CSDK on the
production machines, except of course if you want to connect to an IBM® Informix® database server.

FESQLC tool removal
The ESQL/C compiler (fesql) has been removed from the Genero BDL product.

Starting with version 2.32, the fesqlc compiler and linker is no longer part of the Genero BDL package.

Contact you support channel for more details.

2.30 upgrade guide
These topics describe product changes you must be aware of when upgrading to version 2.30.

Important: This is an incremental upgrade guide that covers only topics related to a specific
version of Genero. Also check prior upgrade guides if you migrate from an earlier version.

1. GUI server auto start on page 114
2. Form compiler is more strict on page 114

Upgrading | 114

3. ORACLE and INTERVAL columns on page 114
4. DIALOG.setCurrentRow() changes row selection flags on page 115
5. Schema extractor needs table owner on page 115
6. Windows installation for all users only on page 115
7. MenuAction close no longer created by default on page 115
8. Emulated scrollable cursor temp files in DBTEMP on page 115
9. Modifying tree view data during dialog execution on page 115
10.FPI tool removal on page 115

GUI server auto start
FGLSERVER defaults the server defined by wsmap settings, when starting GUI server

Before version 2.30, the runtime system was trying to connect to localhost:0 when FGLSERVER was
not set, even if gui.server.autostart FGLPROFILE entries are defined.

This behavior has been identified as a bug (FGL-1583) and has been fixed, changing the way fglrun
proceeds with the GUI connection when autostart settings are defined; with 2.30, the wsmap workstation
mappings are now taken into account, so that FGLSERVER defaults to locahost:n, where n is the GUI
server number found from the wsmap settings.

Note: This behavior change is related to the bug fix FGL-1583.

Form compiler is more strict
The .per grammar parser has been reviewed to deny invalid code.

In version 2.30, the internals of fglform have been reviewed to simplify the extension of the form syntax
with new item types and attributes. This code review has removed some inconsistencies in the grammar
parser; as a result, the form compiler is more strict regarding invalid syntaxes. Thus, you may experience
compilation errors with forms that compiled with prior versions. Simply fix the invalid syntax in your forms
and recompile.

ORACLE and INTERVAL columns
INTERVAL storage bug fix needs a review of existing databases in production.

Before 2.30.00 (build 1566), negative (and only negative) INTERVAL values were inserted incorrectly. This
a critical bug.

For example, it was not possible to compare an INTERVAL value inserted by a program with an
INTERVAL literal:

SELECT ... FROM table
 WHERE interval_col = INTERVAL '-55555-11' YEAR(9) TO MONTH

The problem concerns database columns with the following interval types:

INTERVAL YEAR(p) TO MONTH
INTERVAL DAY(p) TO FRACTION(n)

(Other INTERVAL types are stored in a CHAR(50))

A simple INTERVAL to CHAR to INTERVAL conversion will fix the values:

UPDATE table SET interval_col = TO_CHAR(interval_col)

Note: This behavior change is related to the bug fix FGL-95.

Upgrading | 115

DIALOG.setCurrentRow() changes row selection flags
Row selection flags are reset by a call to setCurrentRow().

Before version , the DIALOG.setCurrentRow() method was not modifying the row selection flags.

Starting with version 2.30, the method resets row selection flags to false and marks the new current row as
selected.

Schema extractor needs table owner
The fgldbsch schema extractor requires a -ow option to distinguish different database users/shemas.

Starting with version 2.30, the fgldbsch schema extractor will always use a table owner / schema to select
tables from databases where several schemas can hold tables with the same name.

Note: This behavior change is related to the bug fix FGL-2072.

The table owner can be specified with the -ow option, and defaults to the user name passed with the -
un option, or to the current database user if no -up option was given. The last case can occur when the
database connection information is taken from the FGLPROFILE configuration file, or when the OS user
authentication is used.

Windows™ installation for all users only
Installation on Windows platforms is for all users.

Starting with version 2.30, the Windows™ installer forces you to install the product for all users.

MenuAction close no longer created by default
The close action is no longer created by default in MENU dialog.

Before version 2.30, a close MenuAction was created by default for MENU dialogs. This action node is
no longer created, except if you have a COMMAND KEY(INTERRUPT) in the MENU, or if you have your
own user action handler ON ACTION close, of course. You must take this change into account if you are
manipulating the AUI tree with om classes in MENUs.

Emulated scrollable cursor temp files in DBTEMP
Directory of scrollable cursor data storage can be defined with DBTEMP.

On UNIX™ platforms, starting with 2.30, the temporary files for emulated scrollable cursors will be created
in the directory defined by the DBTEMP environment variable when defined, otherwise TMPDIR, TEMP
or TMP will be used. Using DBTEMP for database files conforms to DBTEMP usage for temporary files of
TEXT and BYTE data storage.

Modifying tree view data during dialog execution
Use ui.Dialog methods to insert/append/delete treeview nodes.

Before version 2.30, it was possible to use the insertRow() / appendRow() / deleteRow() /
deleteAllRows() dialog class methods to modify the tree array during the dialog execution. But these
methods were not prepared to handle tree data properly. You could use program array methods instead,
but when modifying the program array directly, multi-range selection flags or cell attributes were not
synchronized.

Starting with 2.30.02, you can now use the insertNode(), appendNode() and deleteNode()
methods of the ui.Dialog class. You can still directly fill the program array before the dialog execution,
but you should use dialog methods during the dialog execution.

FPI tool removal
The fgi tool to show version information is no longer available, use fglrun -V.

Up to version 2.30, the fpi tool was provided to print version information of the different components of
Genero BDL.

Starting with 2.32.00, this tool is no longer distributed.

Upgrading | 116

To print version information, you must use the -V option of fglrun.

2.21 upgrade guide
These topics describe product changes you must be aware of when upgrading to version 2.21.

Important: This is an incremental upgrade guide that covers only topics related to a specific
version of Genero. Also check prior upgrade guides if you migrate from an earlier version.

1. PostgreSQL 8.4 and INTERVAL type on page 116
2. fglcomp --build-rdd compiles the module on page 116
3. Unique and primary key constraint violation on page 116
4. IMPORT with list of C-Extensions on page 117
5. Initializing dynamic arrays to null on page 117
6. Strict screen record definition for tables on page 117

PostgreSQL 8.4 and INTERVAL type
The dbmpgs84x database driver requires your database schema use the INTERVAL type, rather than a
CHAR(50) type.

Version 2.21 introduced support for PostgreSQL 8.4 with the new database driver dbmpgs84x. This
version of PostgreSQL implements a native INTERVAL data type that is similar to the Genero Business
Development Language INTERVAL type.

When using the dbmpgs84x (and higher) driver, Informix-style INTERVAL types will be mapped /
translated to native PostgreSQL INTERVALs. Prior drivers will keep using the CHAR(50) replacement. If
your application is storing INTERVAL in a PostgreSQL database, you will have to modify you database
schema to replace the existing CHAR(50) column with the native INTERVAL data type of PostgreSQL
8.4. If you cannot migrate the database, you can still use the older dbmpgs83x driver using CHAR(50) for
INTERVALs, but that driver requires a PostgreSQL client version 8.3.

fglcomp --build-rdd compiles the module
fglcomp --build-rdd now creates both the .42m and .rdd files.

Before version 2.21, fglcomp --build-rdd only produced the .rdd data definition file.

This option is now a compilation option. Both .42m and .rdd files are created at the same time.

Unique and primary key constraint violation
Unique and primary key constraint violations mostly return error -268, however you might also need to
check for error -269 in some instances.

When a unique or primary key constraint is violated, the IBM® Informix® driver returns the error -268
in SQLCA.SQLCODE if the database uses transaction logging, and error -239 if the database uses no
logging.

Regarding non-Informix drivers, all 2.21 drivers now return -268 when a unique constraint or primary key
constraint is violated. Before 2.21, the Oracle and SQL Server / Sybase drivers returned error -239, which
is only returned by IBM® Informix® databases without transaction logging. Returning error -268 for all
drivers is the best choice in a context of transactional databases.

Check your code for -239 error code usage and replace by -268. If you still need to test error -239 (for
example because you have IBM® Informix® databases without transactions), we recommend that you write
a function testing different error codes to check unique constraint violation:

FUNCTION isUniqueConstraintError()
 IF (SQLCA.SQLCODE==-239 OR SQLCA.SQLCODE==-268)
 OR (SQLCA.SQLCODE==-346 AND SQLCA.SQLERRD[2]==-100)
 THEN
 RETURN TRUE
 ELSE
 RETURN FALSE

Upgrading | 117

 END IF
END FUNCTION

IMPORT with list of C-Extensions
The IMPORT instruction for C extensions denies a comma-separated syntax.

Before version 2.21.00, the IMPORT instruction for C extensions was documented as allowing a comma-
separated list of libraries:

IMPORT lib1, lib2

This compiled, but at runtime only the first library was found. Using elements of the other libraries raised a
runtime error.

With 2.21.00 and the new .42m module importation support, the compiler is now more strict and denies the
comma-separated syntax. You must specify every library, Java™ class or .4gl module in separate lines:

IMPORT lib1
IMPORT JAVA myclass
IMPORT FGL mymodule

Initializing dynamic arrays to null
The INITIALIZE TO NULL instruction clears the dynamic array.

(This issue was actually registered as a bug/enhancement #15128)

Starting with version 2.21.00, the INITIALIZE TO NULL instruction clears the dynamic arrays (i.e.
array.getLength() returns 0). Before this version, all elements of the dynamic array were kept, and set to
null. Since the old behavior was documented, this behavior change required a migration note. The new
behavior is expected by most programmers.

Strict screen record definition for tables
The fglform compiler of version 2.21.00 now makes a strict checking of the fields used in the screen record
definition for table containers.

It generates error -6819 if the screen record do not use all columns used in the table. The order can be
different, however.

Note: This behavior change is related to the bug fix FGL-2701 and FGL-3174.

2.20 upgrade guide
These topics describe product changes you must be aware of when upgrading to version 2.20.

Important: This is an incremental upgrade guide that covers only topics related to a specific
version of Genero. Also check prior upgrade guides if you migrate from an earlier version.

1. Sort is now possible during INPUT ARRAY on page 118
2. Cell attributes and buffered mode on page 118
3. Field methods are more strict on page 118
4. Strict variable identification in SQL statements on page 118
5. SQL Warnings with non-Informix databases on page 119
6. SERIALREG table for 64-bit serial emulation on page 119
7. Extracting the database schema with fgldbsch on page 120
8. Database driver internal error changed from -768 to -6319 on page 120
9. Searching for image files on the application server on page 120
10.Strict action identification in dialog methods on page 120
11.Strict field identification in dialog methods on page 120
12.Form compiler checking invalid layout definition on page 121

Upgrading | 118

13.Database schema compatibility on page 121
14.Predefined actions get automatically disabled according to context on page 122
15.BEFORE ROW no longer executed when array is empty on page 122
16.Controlling INPUT ARRAY temporary row creation on page 122

Sort is now possible during INPUT ARRAY
Starting with version 2.20, the built-in sort is now available during INPUT ARRAY. If you want to avoid sorts
in a Table, use the UNSORTABLECOLUMNS attribute.

Cell attributes and buffered mode
Use the UNBUFFERED mode when setting cell attributes.

Before version 2.20, array cell attributes were synchronized quite often by the runtime system, and this
was not very efficient. As a result, there was not much difference between using buffered or unbuffered
mode; when changing cell attributes, the result was immediate even in buffered mode.

Starting with version 2.20, it is recommended that you use the UNBUFFERED mode when setting cell
attributes; otherwise, the colors will not be synchronized on the front-end.

Field methods are more strict
Starting with Genero 2.20 (or when using multiple dialogs in 2.11.08 and higher), DIALOG class methods
such as setFieldActive() need the correct field specification with the screen-record name prefix, if the
field was explicitly bound with the FROM clause of INPUT or INPUT ARRAY.

In prior versions, the field was found by these methods even if the prefix was invalid. (Actually, the prefix
was just ignored and only the fieldname was used.)

Strict variable identification in SQL statements
Program variable identification in static SQL statements is more strict in version 2.20 than older versions.

If you define a variable with the same name as a SQL object (i.e. table name, table alias), the fglcomp
compiler will raise an error because it will consider the program variable first. For example, if the variable
name matches the table or alias identifier, using table.column in the SQL statement will be resolved as
variable.member, which does not exist.

The next code example will not compile because the program defines a variable using the same name as
the table alias c:

MAIN
 DEFINE c INTEGER
 DATABASE stores
 SELECT COUNT(*) INTO cFROM customer c
 WHERE c.fnameIS NULL
END MAIN

The code also fails to compile with IBM® Informix® 4gl 7.32, but it did compile with version of Genero
Business Development Language.

To work around this, you must either rename the program variable, or explicitly identify SQL objects with
the @ prefix in the SQL statement:

MAIN
 DEFINE c INTEGER
 DATABASE stores
 SELECT COUNT(*) INTO cFROM customer c
 WHERE @c.fnameIS NULL
END MAIN

Recompile all your programs to find the conflicts.

Upgrading | 119

SQL Warnings with non-Informix databases
SQL Warnings are now propagated for all database drivers, and can set the SQLCA.SQLAWARN,
SQLSTATE and SQLERRMESSAGE registers.

Before version 2.20, is was impossible for a non-Informix driver to return SQL Warning information in
SQLCA, SQLSTATE and SQLERRMESSAGE.

This new behavior will have no impact if you test SQL Errors with STATUS or SQLCA.SQLCODE, as these
registers remain zero if an SQL Warning is raised. However, if you are using SQLSTATE to check for SQL
Errors, you must now distinguish SQLSTATE of class 01: These are SQL Warnings, not SQL errors.

In this example, when connected to IBM® DB2®, the SQLSTATE register will get the value 01504 indicating
that all rows of the table have been deleted. As a result, testing SQLSTATE against 00000 will evaluate to
false, and run into the error handling block, which is unexpected:

MAIN
 DATABASE stores
 WHENEVER ERROR CONTINUE
 DELETE FROM customer
 IF SQLSTATE <> "00000" THEN
 -- handle error
 END IF
END MAIN

To check for successful SQL execution with or without warning, you can, for example, code:

MAIN
 DATABASE stores
 WHENEVER ERROR CONTINUE
 DELETE FROM customer
 IF NOT (SQLSTATE=="00000" OR SQLSTATE MATCHES "01*") THEN
 -- handle error
 END IF
END MAIN

SERIALREG table for 64-bit serial emulation
You must alter the SERIALREG table to do serial emulation on a BIGINT column.

The SERIALREG based serial emulation is defined by the following FGLPROFILE entry:

dbi.database.<dbname>.ifxemul.datatype.serial.emulation = "regtable"

Version 2.20 introduces the BIGINT data type, which is a 64-bit signed integer. You can use BIGSERIAL
or SERIAL8 columns with IBM® Informix®, and ODI drivers can emulate 64-bit serials in other database
servers. However, if you are using serial emulation based on the SERIALREG table, you must redefine this
table to change the LASTSERIAL column data type to a BIGINT. If the BIGINT data type is not supported
by the database server, you can use a DECIMAL(20,0) instead:

CREATE TABLE serialreg (
 tablename VARCHAR2(50) NOT NULL,
 lastserial BIGINT NOT NULL,
 PRIMARY KEY (tablename)
)

Important: If you need to migrate an installed database using SERIALREG-based triggers, you will
have to keep the current registered serials and use ALTER TABLE instead of CREATE TABLE. This
example shows the ALTER TABLE syntax for SQL Server. Check the database server manuals for
the exact syntax of the ALTER TABLE statement.

ALTER TABLE serialreg ALTER COLUMN lastserial BIGINT NOT NULL

Upgrading | 120

Additionally, all existing SERIALREG-based triggers must be modified, in order to use BIGINT instead of
INTEGER variables, otherwise you will get BIGINT to INTEGER overflow errors. For example, to modify
existing triggers with SQL Server, you can use the ALTER TRIGGER statement, which can be easily
generated from the database browser tool (there is a modify option in the contextual menu of triggers).
After the existing trigger code was generated, you must edit the code to replace the INTEGER data type by
BIGINT in the variable declarations, and execute the ALTER TRIGGER statement.

Extracting the database schema with fgldbsch
The fgldbsch database schema extraction tool has been updated to map native database types to newly-
added types.

Version 2.20 implements new data types such as BIGINT and BOOLEAN. The fgldbsch database schema
extraction tool has been reviewed to map native database types to these new types when possible. Pay
attention to these changes, when extracting a schema from your database.

For example, before version 2.20, fgldbsch converted an Oracle NUMBER(20,0) to a DECIMAL(20,0) by
default. Now, since 2.20 provides the BIGINT native FGL type, it can be used to store a NUMBER(20,0)
from Oracle.

You can get the previous behavior by using a conversion directive with the -cv option of fgldbsch.

To see the new conversion rules, run the fgldbsch tool with the -ct option.

Database driver internal error changed from -768 to -6319
The internal error raised was changed to avoid conflicts with an IBM® Informix® SQL error code.

Prior to version 2.20, if an unexpected error occurred in a database driver, the driver could return error
-768, which is a real IBM® Informix® SQL error that instructs the user to call the IBM® support center.

To avoid any mistake, 2.20 database drivers return now the error -6319 if an internal error occurs, which
is a Genero Business Development Language specific error message that suggests you to set the
FGLSQLDEBUG environment variable to get detailed debug messages.

Searching for image files on the application server
For security reasons, the image file transfer mechanism has been slightly modified in version 2.20.

(This modification has also been back-ported in 2.11.14):

If FGLIMAGEPATH is set, the current working directory is no longer searched as in previous versions. You
must explicitly add "." to the list of directories. By default, if FGLIMAGEPATH is not defined, the runtime
system still searches the current directory.

If FGLIMAGEPATH is defined, the image files used in IMAGE form fields or in the IMAGE attribute must
be located below one of the directories listed in the environment variable. This constraint does not exist if
FGLIMAGEPATH is not set and has been relaxed in 2.21.00 for image fields displayed by program.

Starting with 2.21.00, images displayed by program to IMAGE fields are considered as valid files to be
transferred to the clients without risk and do not follow the FGLIMAGEPATH security restrictions. Images
are however searched according to the path list defined in FGLIMAGEPATH.

Strict action identification in dialog methods
Actions referenced in methods of the dialog class must exist in the current dialog, or an error is raised.

Starting with version 2.20.00, dialog class methods like ui.Dialog.setActionActive() can now raise
a runtime error -8089 if the action name is invalid. Before version 2.20, the method ignored the invalid
action name, and it could take a while for the programmer to find the mistake.

Strict field identification in dialog methods
Fields referenced in methods of the dialog class must exist in the current dialog, or an error is raised.

Starting with version 2.20.05, dialog class methods like ui.Dialog.setFieldTouched() can now
raise a runtime error -1373 if the field specified does not match a field in the current dialog. Before version

Upgrading | 121

2.20.05, these methods previously ignored the invalid field specification, and it could take a while for the
programmer to find the mistake.

Form compiler checking invalid layout definition
It is better to identify form layout mistakes when the form is compiled, rather than at runtime.

Starting with version 2.20.05, the fglform compiler performs more layout checking than before. Thus,
existing (invalid) forms that compiled with prior versions of Genero may no longer compile with 2.20.05.
This strict checking is done to detect layout mistakes during form design, instead of having the front-ends
render invalid forms in a unknown manner at run time.

For example, the following form definitions are invalid and will raise a compilation error with fglform:

SCHEMA FORMONLY
LAYOUT
GRID
{
 [f01: |f02] -- HBox layout tags in lists are denied
 [f01: |f02]
 [f01: |f02]
 [f01: |f02]
}
END
END

SCHEMA FORMONLY
LAYOUT
GRID
{
 [f01] [f02]
 [f01] [f02] -- Misaligned field tags (vertical)
 [f01] [f02]
 [f01] [f02]
}
END
END

SCHEMA FORMONLY
LAYOUT
GRID
{
 [f01][f01][f01] [f01] -- Misaligned field tags (horizontal)
}
END
END

Database schema compatibility
Version 2.20.06 database schema extraction now generates a different type code for BOOLEAN, that
introduces a compatibility issue with older versions of fglcomp and fglform.

Note: This behavior change is related to the bug fix FGL-2048.

If database tables use data types that are equivalent to the BOOLEAN Informix® type, such as the BIT type
in SQL Server, you must regenerate the .sch database schema file with the fgldbsch tool. If you keep using
the schema generated by an older version such as 2.20.04, fglcomp or fglform will raise the error -6634.

This problem will only occur if your database tables use the BOOLEAN (or native equivalent type). See
ODI Adaptation Guides for more details about database specific boolean types.

Upgrading | 122

Predefined actions get automatically disabled according to context
Dialogs will automatically disable some predefined actions, if it makes no sense to trigger the action in the
current context.

Starting with version 2.20, (or with version 2.10 when FGL_USENDIALOG=1), the dialogs will automatically
disable some predefined actions if it makes no sense to trigger the action in the current context. For
example, during an INPUT ARRAY, if there are no rows to remove, the predefined delete action will be
disabled automatically. Similarly, the insert and append actions get disabled when the array is full (this
can happen with static arrays or when using the MAXCOUNT attribute). The predefined actions will also be
disabled if you overwrite them with your own ON ACTION handler.

BEFORE ROW no longer executed when array is empty
In order to trigger the BEFORE ROW block when entering an array, the array must not be empty.

Before version 2.20, the BEFORE ROW block was always executed when entering a DISPLAY ARRAY or
INPUT ARRAY dialog, even if the number of real data rows was zero. Starting with 2.20, when using an
empty dynamic array or when using a static array and specifying zero data rows with a SET_COUNT(0)
call or with the COUNT=0 attribute, the BEFORE ROW control block is no longer executed when the dialog
starts.

The BEFORE ROW block will be executed when a new row is created in INPUT ARRAY. When entering an
INPUT ARRAY with an empty array, a new temporary row is created by default, except if you use the AUTO
APPEND = FALSE attribute.

Controlling INPUT ARRAY temporary row creation
The INPUT ARRAY dialog and sub-dialog provides the APPEND ROW and AUTO APPEND attributes to
control row creation at the end of a list (known as temporary row creation).

APPEND ROW controls explicit temporary row creation, while AUTO APPEND controls automatic temporary
row creation.

Starting with version 2.20, moving down after the last row (with the mouse or keyboard) or leaving the last
column of the last row with a TAB key are considered events that trigger automatic temporary row creation.

Before version 2.20, these cases were considered as events for an explicit temporary row creation. In
other words, if you want to deny temporary row creation in such case, it is now done with AUTO APPEND =
FALSE while in older versions it was controlled by APPEND ROW = FALSE.

2.11 upgrade guide
These topics describe product changes you must be aware of when upgrading to version 2.11.

Important: This is an incremental upgrade guide that covers only topics related to a specific
version of Genero. Also check previous upgrade guides if you migrate from an earlier version.

1. Writing timestamp information in p-code modules on page 122

Writing timestamp information in p-code modules
A compilation timestamp is no longer automatically written to p-code files, when the source code is not
modified.

Before release 2.10, the 42m p-code files were stamped with a compilation timestamp. This information
changed after every compilation, even if the source code was not modified.

Since 2.10, the timestamp information is no longer written to p-code files by default, allowing 42m file
comparison, checksum creation, or storage of 42m file in versioning tools. Version 2.11.05, provides the --
timestamp fglcomp option to force a timestamp in p-code modules:

$ fglcomp --timestamp mymodule.4gl
$ fglrun -b mymodule.42m
2008-12-24 11:22:33 2.11.05-1169.84 /home/devel/stores/mymodule.4gl 15

Upgrading | 123

2.10 upgrade guide
These topics describe product changes you must be aware of when upgrading to version 2.10.

Important: This is an incremental upgrade guide that covers only topics related to a specific
version of Genero. Also check previous upgrade guides if you migrate from an earlier version.

1. XML declaration added automatically on page 123

XML declaration added automatically
The XML declaration is added automatically when writing XML files.

An XML file must start with a "Prolog" or "XML Declaration" defining the XML version and character set
used by the file:

<?xml version='1.0' encoding='ISO-8859-1' ?>
<root ...>
...
</root>

Starting with Genero version 2.10.05, the XML declaration is now added automatically when writing XML
files.

Note: This behavior change is related to the bug fix FGL-285.

Before 2.10.05, you could workaround this by writing this header yourself as a processing instruction, but
this solution was subject to mistakes: The non-ASCII characters written to the XML file must match the
encoding specification in the XML Declaration.

To avoid invalid character set definitions, the Genero BDL built-in classes now add the XML Declaration
with the encoding attribute defined according to the current locale used by the runtime system. The value
written in the encoding attribute is defined by the charmap.alias file.

2.02 upgrade guide
These topics describe product changes you must be aware of when upgrading to version 2.02.

Important: This is an incremental upgrade guide that covers only topics related to a specific
version of Genero. Also check prior upgrade guides if you migrate from an earlier version.

1. Automatic HBox/VBox on page 123

Automatic HBox/VBox
Starting with version 2.02.01, the form compiler automatically adds HBox and VBox containers with splitter
around stretchable form elements that are placed side-by-side.

When recompiling your forms with this new version of fglform, the generated .42f can get additional HBox/
VBox nodes even if you did not touch the .per source file.

2.01 upgrade guide
These topics describe product changes you must be aware of when upgrading to version 2.01.

Important: This is an incremental upgrade guide that covers only topics related to a specific
version of Genero. Also check prior upgrade guides if you migrate from an earlier version.

There is no upgrade note with this version.

2.00 upgrade guide
These topics describe product changes you must be aware of when upgrading to version 2.00.

Important: This is an incremental upgrade guide that covers only topics related to a specific
version of Genero. Also check prior upgrade guides if you migrate from an earlier version.

Upgrading | 124

1. Runner creation is no longer needed on page 124
2. Desupported Informix client environments on page 124
3. Desupported database drivers on page 124
4. fglmkrtm tool removed on page 125
5. fglinstall tool removed on page 125
6. Linking the utility functions library on page 125
7. Dynamic C extensions on page 125
8. WANTCOLUMNSANCHORED is desupported on page 125
9. PIXELWIDTH / PIXELHEIGHT are desupported on page 125
10.Pre-fetch parameters with Oracle on page 126
11.Preprocessor directive syntax changed on page 126
12.Static SQL cache is removed on page 126
13.Connection database schema specification on page 127
14.Changes in the schema extraction tools on page 127
15.Global and module variables using the same name on page 128
16.Connection parameters in FGLPROFILE when using Informix on page 128
17.Inconsistent USING clauses on page 128
18.Usage of RUN IN FORM MODE on page 129
19.TTY and COLOR WHERE attribute on page 129

Runner creation is no longer needed
Starting with version 2.00, you no longer need to recompile/build a runner.

The runtime system architecture is now based on shared libraries (or DLLs on Windows™), and the
database drivers are automatically loaded according to FGLPROFILE configuration parameters.

If you have C extensions, you must rebuild them as shared libraries.

Important: Database vendor client libraries (libclntsh, libcli, libpq, libaodbc) must be provided as
shared objects (or DLL on Windows™).

Desupported Informix® client environments
We strongly recommend you to upgrade the IBM® Informix® Client Software Development Kit (CSDK) to
the most recent version supported by Genero BDL.

The database interface of Genero Business Development Language (BDL) version 2.00 was redesigned
to allow dynamic loading of database drivers. The following IBM® Informix® drivers and environments have
been desupported with this redesign:

• ix210: Informix® ESQL/C 2.10
• ix410: Informix® ESQL/C 4.10
• ix501: Informix® ESQL/C 5.01
• ix711: Informix® ESQL/C 7.11
• ix720: Informix® ESQL/C 7.20

If required, old IBM® Informix® drivers can be re-enabled in a next Genero BDL version. However, we
strongly recommend you to upgrade the IBM® Informix® Client Software Development Kit (CSDK) to the
most recent version supported by Genero BDL.

Desupported database drivers
Database drivers for old database client versions are removed according to the vendor de-support plans.

Database drivers desupported in versions 2.00:

• Adabas D 12 (dbmabd12)
• PostgreSQL 7 (dbmpgs7x)

Upgrading | 125

• SQL Server 7 (dbmmsv7x)

fglmkrtm tool removed
The fglmkrtm tool has been removed, as database drivers are loaded dynamically.

Starting with version 2.00, database drivers are now always loaded dynamically. Thus the fglmkrtm tool
has been removed from the distribution. This tool was provided in previous versions to create a fglrun
runner with the correct database driver.

Refer to Database connections on page 457 for more details about database driver configuration.

fglinstall tool removed
The fglinstall tool has been removed from the distribution.

This tool was provided in previous versions to compile product message files, form files, and program
modules provided in the distribution. The compiled versions of all these files are now included in the
package.

Linking the utility functions library
All utility functions are in the libfgl4js.42x library, up until 2.21.

Prior to version 2.00, some utility functions (canvas draw* and database db_* functions) were linked
automatically to the 42r program when using fglrun -l or fgllink. These functions are implemented in the
fgldraw.4gl and fgldbutl.4gl modules, which were linked in the libfgl.42x library and loaded automatically at
runtime by fglrun.

Starting with version 2.00, all utility functions are now in the libfgl4js.42x library. So, if you use the draw*
or db_* utility functions, you must now add the libfgl4js.42x library explicitly when using fglrun -l or fgllink,
or you can use the fgl2p tool to link .42r programs. The fgl2p tool links the program with the libfgl4js.42x
library by default.

Starting with version 2.21, the libfgl.42x library is no longer provided.

Dynamic C extensions
Dynamic C extensions are automatically loaded according to IMPORT instructions.

Prior to version 2.00, you must use FGLPROFILE entries to specify Dynamic C extensions to be loaded at
runtime.

Starting with version 2.00, Dynamic C extensions are automatically loaded according to IMPORT
instructions. The FGLPROFILE entries are no longer used.

Important: Global variables (userData) can no longer be shared between the runtime system and
the C extensions. You must use functions to pass global variable values.

There is no longer a need to define the FGL_API_MAIN macro in the extension interface file.

All C data type definitions are now centralized in the fglExt.h header file, header files like Date.h,
MyDecimal.h have been removed from the distribution.

WANTCOLUMNSANCHORED is desupported
Use UNMOVABLECOLUMNS to specify that table columns cannot be moved around by the user.

Before version 2.00, the WANTCOLUMNSANCHORED attribute was undocumented but still supported by the
language, to simplify migration from 1.20.

Starting with version 2.00, the WANTCOLUMNSANCHORED attribute is de-supported; you must use
UNMOVABLECOLUMNS to specify that table columns cannot be moved around by the user.

PIXELWIDTH / PIXELHEIGHT are desupported
Use the WIDTH and HEIGHT attributes to specify the size of an image.

Before version 2.00, the PIXELWIDTH and PIXELHEIGHT attributes were used to specify the real size of
an IMAGE form item.

Upgrading | 126

Starting with version 2.00, you must use the WIDTH and HEIGHT attributes to specify the size of an image:

In the .per form file:

IMAGE img1 = FORMONLY.image1,
 HEIGHT = 100 PIXELS,
 WIDTH = 100 PIXELS;

The PIXELWIDTH and PIXELHEIGHT attributes are still supported by the form compiler, but are
deprecated and will be removed in a future version.

Pre-fetch parameters with Oracle
Pre-fetch parameters allow an application to automatically fetch rows from the Oracle database when
opening a cursor.

Before version 2.00, the default pre-fetch parameters are 50 rows and 65535 bytes for the pre-fetch
buffer. Some customers experienced a huge memory usage with those default values, when using a lot of
cursors: It appears that the Oracle client is allocating a buffer of pre-fetch.memory (i.e. 64 Kbytes) for each
cursor.

Starting with version 2.00, the default is 10 rows and 0 (zero) bytes for the pre-fetch buffer (memory),
meaning that memory is not included in computing the number of rows to pre-fetch.

Preprocessor directive syntax changed
The preprocessor directives use an ampersand character (&) instead of a sharp (#) character.

Before version 2.00, the preprocessor directives start with a (#) sharp character, to be compliant with
standard preprocessors (like cpp). This caused too many conflicts with standard language comments that
use the same character:

#include "myheader.4gl"
This is a comment

Starting with version 2.00, the preprocessor directives use an ampersand character (&):

&include "myheader.4gl"
FUNCTION debug(msg)
 DEFINE msg STRING
&ifdef DEBUG
 DISPLAY msg
&endif
END FUNCTION

The preprocessor is now integrated in the compiler, to achieve faster compilation.

Important: To simplify the migration, the # sharp character is still supported when using the -p
fglpp option of compiler. However, you should review your source code and use the & character
instead; # sharp will be desupported in a future version.

Static SQL cache is removed
The Static SQL Cache has been removed.

Before version 2.00, the size of the static SQL cache is defined by a FGLPROFILE entry:

dbi.sql.static.optimization.cache.size = max

This entry was provided to optimize SQL execution without touching code using a lot of static SQL
statements, especially when using non-Informix databases where the execution of static SQL statements
is slower than with Informix®. This is useful for fast migrations, but there were a lot of side effects and
unexpected errors.

Upgrading | 127

Starting with version 2.00, the Static SQL Cache has been removed for the reasons described. Programs
continue to run without changing the code, but if you want to optimize program execution, you must use
dynamic SQL (PREPARE + EXECUTE).

Connection database schema specification
Oracle- and DB2-specific FGLPROFILE entries can be specified to define the database schema at runtime.

Before version 2.00, an FGLPROFILE entry can be specified to define the database schema at runtime:

dbi.database.dbname.schema = "schema-name"

This entry could be used to select the native database schema after connecting to the server, for Oracle
and DB2 only.

Starting with version 2.00, this entry is now specific to the Oracle and DB2 database driver configuration
parameters:

dbi.database.dbname.ora.schema = "schema-name"
dbi.database.dbname.db2.schema = "schema-name"

For other database servers, this configuration parameter is not defined.

Important: It is no longer possible to specify the "schema" parameter in the connection string
(dbname+schema='name').

Changes in the schema extraction tools
The fgldbsch schema extractor is recommended, and has been enhanced.

Unique tool

Version prior to 2.00 provide two schema extractors: fglschema and fgldbsch. The first can only extract
schemas from Informix® databases, while the second one can extract schemas from all supported
databases.

Starting with version 2.00, the fgldbsch tool has been extended to support the old fglschema options, and
fglschema has been replaced by a simple script calling fgldbsch. When you call fglschema, you actually
call fgldbsch. We recommend that you use fgldbsch with its specific command line options.

System tables

In 2.0x, fgldbsch does not extract system tables by default. You must specify the -st option to get the
system tables description in the schema files.

Remote synonyms

The original fglschema tool was searching for remote synonyms with Informix® databases. The fgldbsch
tool of version 2.00 does not search for remote synonyms.

Public and private synonyms

Since version 1.32.1b (build 620.313), fgldbsch does not extract private synonyms anymore. Only public
synonyms are extracted. The .sch schema files do not contain table owners, and if two private synonyms
have the same names, there is no way to distinguish them in the schema files. Therefore, to avoid any
mistakes, private synonyms are not extracted anymore.

Note: This behavior change is related to the bug fix FGL-1033.

Upgrading | 128

Global and module variables using the same name
Since version 2.00, when you declare a module variable with the same name as a global variable, a
compilation error must be thrown.

Note: This behavior change is related to the bug fix FGL-114.

This is critical to avoid confusion with the variable usage:

GLOBALS
 DEFINE level INTEGER
END GLOBALS

GLOBALS "globals.4gl"
DEFINE level INTEGER
FUNCTION func1()
 LET level = 123 -- is this the global or the module variable?
END FUNCTION

Before version 2.00, the compiler did not detect this and the module variable was used, but one might want
to use the global variable instead!

If you have module variables defined with the same name as global variables, the compiler now raises the
following error:

-4319: The symbol 'variable-name' has been defined more than once.

You can easily fix this by renaming the module variable. There is no risk to do this modification, because in
versions before 2.00, the module variable was used, not the global variable.

Remark: The compiler now also detects duplicate global variable declaration. Just remove the duplicated
lines in your source.

Connection parameters in FGLPROFILE when using Informix®

The dbi.database.* connection parameters defined in FGLPROFILE are used by the Informix® driver

Before version 2.00, the dbi.database.* connection parameters defined in FGLPROFILE are ignored by the
Informix® drivers.

Starting with version 2.00, the dbi.database.* connection parameters defined in FGLPROFILE are used by
the Informix® driver, as well as other database vendor drivers. For example, if you connect to the database
"stores", and you have the following entries defined, the driver tries to connect as "user1" with password
"alpha":

dbi.database.stores.username = "user1"
dbi.database.stores.password = "alpha"

You typically get SQL errors -387 or -329 when the wrong database login or the wrong database name is
used.

Inconsistent USING clauses
Having data types changing at each execute is no longer supported.

Important: This issue applies to non-Informix databases only.

Before version 2.00, it was possible to execute a prepared statement with the variable list changing at each
EXECUTE statement:

DEFINE var1 DECIMAL(6,2)
DEFINE var2 CHAR(10)
DEFINE var3 DATE

Upgrading | 129

PREPARE st1 FROM "INSERT INTO tab1 VALUES (?. ?, ?)"
EXECUTE st1 USING var1, var2, var3
EXECUTE st1 USING var2, var3, var1 -- different order = different data
 types

The database interface of version 2.00 has been rewritten for better performance. Having data types
changing at each execute is no longer supported.

Error -254 will be raised if different data types are used in subsequent EXECUTE statements (with the
same statement name).

Usage of RUN IN FORM MODE
RUN ... IN LINE MODE is recommended to run interactive applications.

Before version 2.00, RUN...IN FORM MODE was recommended to run interactive applications.

Starting with version 2.00, RUN ... IN LINE MODE is recommended to run interactive applications. The
RUN command should be used as follows (in both GUI and TUI mode):

1. When starting an interactive program, either use RUN ... IN LINE MODE or, if the default mode is LINE
MODE, use the RUN instruction without any option.

2. When starting a batch program that does not display any message, you should use RUN ... IN FORM
MODE.

For more details about the RUN options, see the RUN instruction.

TTY and COLOR WHERE attribute
All type of fields now allow TTY attributes and the conditional COLOR WHERE attribute.

Before version 2.00, only some field types like EDIT or TEXTEDIT could support TTY attributes (COLOR,
REVERSE), and the conditional COLOR WHERE attribute.

Starting with version 2.00, all type of fields now allow TTY attributes and the conditional COLOR WHERE
attribute. So when using any ATTRIBUTES(tty-attribute) in programs, all fields will now be affected.

For example, CHECKBOX and RADIOGROUP fields will now get a colored background, this was not the
case in prior versions.

1.33 upgrade guide
These topics describe product changes you must be aware of when upgrading to version 1.33.

Important: This is an incremental upgrade guide that covers only topics related to a specific
version of Genero. Also check prior upgrade guides if you migrate from an earlier version.

1. Desupported database drivers on page 129

Desupported database drivers
Database drivers for old database client versions are removed according to the vendor de-support plans.

Database drivers desupported in versions 1.33:

• MySQL 3.23.x (dbmmys32x)

1.32 upgrade guide
These topics describe product changes you must be aware of when upgrading to version 1.32.

Important: This is an incremental upgrade guide that covers only topics related to a specific
version of Genero. Also check prior upgrade guides if you migrate from an earlier version.

There is no upgrade note with this version.

Upgrading | 130

1.31 upgrade guide
These topics describe product changes you must be aware of when upgrading to version 1.31.

Important: This is an incremental upgrade guide that covers only topics related to a specific
version of Genero. Also check prior upgrade guides if you migrate from an earlier version.

There is no upgrade note with this version.

1.30 upgrade guide
These topics describe product changes you must be aware of when upgrading to version 1.30.

Important: This is an incremental upgrade guide that covers only topics related to a specific
version of Genero. Also check prior upgrade guides if you migrate from an earlier version.

1. Action and field activation on page 130
2. Using HBox tags in forms on page 130
3. Width of ButtonEdit/DateEdit/ComboBox on page 133
4. Form fields default sample on page 135
5. Size policy for ComboBoxes on page 136
6. Action defaults at form level on page 139
7. Compiled string files have now .42s extension on page 139

Action and field activation
Dialog methods can be used to control action and field activation.

Version 1.30 provides dialog methods to control action and field activation:

• ui.Dialog.setActionActive(action-name, TRUE/FALSE)
• ui.Dialog.setFieldActive(field-name, TRUE/FALSE)

Previous versions allowed to modify directly the 'active' attribute of the underlying DOM node in the AUI
tree; This is now forbidden: It is mandatory to use the methods to enable/disable action or fields. The
dialog will synchronize the 'active' attribute in the AUI tree according to the value passed to the methods
and according to the context (some actions or fields can be automatically disabled).

Using HBox tags in forms
You can use HBox tags to stack form items horizontally, without being influenced by elements above or
below.

Version 1.30 supports now HBox tags to stack form items horizontally without being influenced by
elements above or below.

In an HBox there is a free mix of Form Fields, labels, and Spacer Items possible.

A typical usage of an HBox Tag is to have zipcode/city form fields side by side with predictable spacing in-
between.

The "classic" layout would look like the following form definition:

<G "User Data(version 1.20)" >
 Last Name [l_name]First Name[f_name]
 Street [street]
 City [city]Zip Code[zip]
 Phone(private)[phone] At work []
 Code [aa]-[ab]-[ac]

In Figure 7: HBox tag example screenshot on page 131 you will notice that the distance between
"l_name" and "First Name" is smaller than between "First Name" and "f_name". How can this be?
Two lines under, there is the "zip" field which affects this distance.

Upgrading | 131

If we put HBox Tags around the fields we want to group horizontally together, we get the predictable
spacing between "l_name","First Name" and "f_name".

<G "User Data in HBoxes stacked" >
Last Name [l_nameh :"First Name":f_nameh]
Street [streeth :]
City [cityh :"Zip Code":ziph :]
Phone(private)[phoneh :"At work":phonewh :]
Code [ba:"-":bb:"-":bc:]

Here "l_nameh", "First Name" and "f_nameh" are together in one HBox; the ":" colon acts as a
separator between the 3 elements.

The width of an element is calculated from the space between "[" and ":" (width of cityh is 14), or
from the space between ":" and ":" (width of "bb" is 2), or from the space between ":" and "]" (width of
"f_nameh" is 16). The "zip" field in the version 1.20 example has a width of five and the "ziph" field has
also a width of five.

In the second Groupbox in Figure 7: HBox tag example screenshot on page 131 you will notice that
the HBox is smaller than the first one, even though it uses two characters more in the screen definition.
The reason is that each HBox occupies only ONE cell in the parent grid, and the content in one HBox is
independent of the content in another HBox. This relaxes the parent grid; it has to align only the edges
of the HBoxes and the labels left of the HBoxes. The two extra characters in the Form file for the second
Group come from the fact that the labels need quoting to distinguish them from field definitions. Of course,
you could use a Label field if the two extra characters are unwanted (which is done in the third Groupbox).

The third Groupbox shows how the alignment in an HBox can be affected by putting empty elements
(: :) inside the HBox Tag:

<G "User Data in HBoxes right part right aligned" >
Last Name [l_nameh2 : :lfirsth2:f_nameh2]
Street [streeth2]
City [cityh2 : :lzip:ziph2]
Phone(private)[phoneh2 : :latw:phonewh2]
Code [ca: "-" :cb: "-" :cc]

Between "l_nameh2" and "lfirsth2" there are two ":" signs with a white space between them. This
means: put a Spacer Item between l_nameh2 and lfirsth2, which gets all the additional space if the
HBox is bigger than the sum of l_nameh2, lfirsth2 and f_nameh2. The number of spaces, however,
has no effect. The spacer item between cityh2 and lzip has the same force as the spacer between
l_nameh2 and lfirsth2.

You can treat a spacer item like a spring. The spacer item between cityh2 and lzip presses
cityh2 to the left-hand side, and the rest of the fields to the right-hand side. In the "Code" line there is
more than one spacer item; they share the additional space among them. (The "Code" HBox sample in
the third line is only to show how spacer items work; we always advise using "Code" as in the second
Groupbox, or to use a picture)

In general we advise using the approach shown in the second Groupbox: stack the items horizontally by
replacing field ends with ":". This is the easy way to remove unwanted horizontal spacing.

Figure 7: HBox tag example screenshot

Upgrading | 132

A big advantage in using elements in an HBox tag is that the fields get their real sizes according to the .per
definition.

LAYOUT
GRID
{
<G g1 >
[a] single Edit Field

<G g2 >
 MMMMM
[b] The large label expands the Edit Field

<G g3 >
 MMMMM
[c :]The large label has no influence on the Edit width

}

END
END
ATTRIBUTES

Upgrading | 133

EDIT a = formonly.a, sample="0", default="12345";
EDIT b = formonly.b, sample="0", default="12345";
EDIT c = formonly.c, sample="0", default="12345";
END

In the second Groupbox, the edit field is expanded to be as large as the label above; using an HBox
prevents this.

Figure 8: Use of HBox

Note: in this example, we use a sample of "0" to display exactly five numbers.

HBox Tags limitations

HBox Tags don't work for fields of Screen Arrays or Tables; you will get a form compiler error. The reason
is that the current AUI structure does not allow this. The front end needs a Matrix element directly in a
Grid or a ScrollGrid to perform the necessary positioning calculations for the individual fields.

Width of ButtonEdit/DateEdit/ComboBox
When using BUTTONEDIT/COMBOBOX/DATEEDIT fields, you should account for the width of the widget
button in addition to the input area.

The problem with BUTTONEDIT, DATEEDIT and COMBOBOX in versions prior to 1.30 is that a field [b]
got the width 3, the same width as an edit field with the same layout.

For example:

LAYOUT
GRID
{
 [e]
 [b]
}
END
END
ATTRIBUTES
EDIT e=formonly.e;
BUTTONEDIT b=formonly.b;
END

In this example, the outer (visual) width of both elements was the same, but the edit portion of "b" was
much smaller, because the button did not count at all. (In practice this meant that on average only one and

Upgrading | 134

a half characters of "b" was visible). However, you could input 3 characters! This made a BUTTONEDIT
where you could see only one character and input only one character without tricks impossible.

Starting with version 1.30, for the Button, the Form Compiler subtracts two character positions from
the width of BUTTONEDIT/COMBOBOX/DATEEDIT. This is possible because now the form compiler
differentiates the width of the widget from the width of the entry part.

In fact, there is no visual difference between version 1.20 and 1.30 regarding this example, but in version
1.30 you can only enter one character, which is visually more correct.

In the example the BUTTONEDIT aligns with the Edit; that's why the Edit part of the BUTTONEDIT is usually
still a bit bigger than one character (this depends on the button size, but if a button edit is contained by an
HBox, it will get the exact size of "width" multiplied by the average character pixel width.

To express the BUTTONEDIT/COMBOBOX/DATEEDIT layout more visually, it is possible to specify:

 [e]
 [b-]

the "-" sign marks the end of the edit portion and the beginning of the button portion (edit width ="1",
widget width ="3").

The two characters are also subtracted for a BUTTONEDIT which is child of an HBox.

 [b :]

gets also width="1" , but no widget width, because the HBox stacks the elements horizontally without
needing widget width definition.

The two extra characters are only used to show the real size relations more WYSIWYG, and to have the
same calculation as in a field without an HBox parent.

 [e1:e2:e3:]
 [b1 :b2 :b3]

shows that three BUTTONEDIT fields are much larger than three EDIT fields with the same width.

You can even write:

 [e1:e2:e3:]
 [b1- :b2- :b3-]

or:

 [e1:e2:e3:]
 [b1-:b2-:b3-]

to use slim buttons and

 [e1:e2:e3:]
 [b1- :b2- :b3-]

if one uses large buttons to get the maximum WYSIWYG effect.

Please note that buttons do not grow if two characters "- " is expanded to three characters "- "; the
button always computes its size from the image used, it's just to reserve more space in the form to match
the real size.

Upgrading | 135

Form fields default sample
An algorithm is used to compute the field width when no SAMPLE attribute is specified.

Starting with version 1.30, if no SAMPLE attribute is specified in the form files, the client uses an algorithm
to compute the field width. In this case, a very pessimistic algorithm is used to compute the field widths:
The client assumes a default SAMPLE of "M" for the first six characters and then "0" for the subsequent
characters and applies this algorithm to all fields, with some exceptions like DATEEDIT fields.

The default algorithm tends to produce larger forms compared to forms used in BDS V3 and very first
versions of Genero. Do not hesitate to modify the SAMPLE attribute in the form file, to make your fields
shorter.

If you do not want to touch all your forms, a more tailored automatic solution would be to specify a
ui.form.setDefaultInitializer() function, to set the SAMPLE depending on the AUI tag. In this example small
UPSHIFT fields get a sample of "M"; all other fields get a sample of "0". This will preserve the original width
for UPSHIFT fields, however numeric and normal String fields will get the sample of "0" and make the
overall width of the form smaller.

Program:

this demo program shows how to affect the "sample" attribute in a
ui.form.setDefaultInitializer function
the main concern is to set a default sample of "0" and to
correct the sample attribute for small UPSHIFT fields to "M"
to be able to display full uppercase letter for fields with a small width

MAIN
 DEFINE three_char_upshift CHAR(3)
 DEFINE three_digit_number Integer
 DEFINE longstring CHAR(100)
 CALL ui.form.setDefaultInitializer("myinit")
 OPEN form f from "sampletest2"
 DISPLAY form f
 INPUT BY NAME three_char_upshift,three_digit_number,longstring
END MAIN

FUNCTION myInit(f)
 DEFINE f ui.Form
 CALL checkSampleRecursive(f.getNode())
END FUNCTION

FUNCTION checkSampleRecursive(node)
 DEFINE node,child om.DomNode
 LET child= node.getFirstChild()
 WHILE child IS NOT NULL
 CALL checkSampleRecursive(child)
 CALL setSample(child)
 LET child=child.getNext()
 END WHILE
END FUNCTION

FUNCTION setSample(node)
 DEFINE node,parent om.DomNode
 LET parent=node.getParent()
 -- only set the "sample" for FormFields in this example
 IF parent.getTagName()<>"FormField" THEN
 RETURN
 END IF
 IF node.getAttribute("shift")="up"
 AND node.getAttribute("width")<=6 THEN
 CALL node.setAttribute("sample","M")
 ELSE
 CALL node.setAttribute("sample","0")

Upgrading | 136

 END IF
 DISPLAY "set sample attribute of ",node.getId()," to \"",
 node.getAttribute("sample"),"\""
END FUNCTION

Form File:

LAYOUT(text="sampletest2")
GRID
{
 <G sampletest
 >
 3 Letter Code: [a] 3 digit code:[b] Description:[longstring]

 <G "What can be seen"
 >
 There is no default sample set in this form, but due to a
 ui.form.setDefaultInitializer function, small UPSHIFT fields
 are adjusted to a sample of "M", all other fields get the sample "0"

 1. The 3 letter code should show up exactly "MMM" because of the applied
 sample="M"
 2. The 3 letter digit code should show up exactly "123" without additional

 spacing
}
END
END
ATTRIBUTES
EDIT a=formonly.three_char_upshift,UPSHIFT,default="MMM";
EDIT b=formonly.three_digit_number,default="123";
EDIT longstring=formonly.longstring,UPSHIFT,
 default="DESCRIPTION OF THE ITEM",SCROLL;
END

Figure 9: Sample usage in form

Size policy for ComboBoxes
You can use the SIZEPOLICY attribute for a COMBOBOX.

Starting with version 1.30 you can use the SIZEPOLICY attribute for COMBOBOXes.

Upgrading | 137

COMBOBOX form items had a special behavior in versions prior to 1.30, because they adapted their size to
the maximum item of the value list. On one hand, this is very convenient because the programmer doesn't
have to find the biggest string in the value list, and to estimate how large it will be on the screen (with
proportional fonts the string with the highest number of characters is not automatically the largest string).
On the other hand, this behavior often led to an unpredictable layout if the programmer didn't reserve
enough space for the COMBOBOX.

The SIZEPOLICY attribute gives better control of the result.

<G "Combo makes edit2 too big" >
 [edit1]
 [combo]
 [edit2]
...
ATTRIBUTES
EDIT edit1=formonly.edit1;
COMBOBOX combo=formonly.combo,
 ITEMS=((0,"Veeeeeeeery Loooooooooooooooong Item"),(1,"hallo")),
 DEFAULT=0;
EDIT edit2=formonly.edit2;
END

Figure 10: Use of SIZEPOLICY

In this case, the "combo" field gets very large as does "edit2", because it ends in the same grid column.
It will confuse the end user if he can input only eight characters and the field is apparently much bigger.
Two possibilities exist to surround this:

Use an HBox to prevent the edit2 from growing, and use HBoxes for all fields which start together with
combo and are as large or bigger than combo:

 <G "Edit2 in HBox doesn't grow" >
 [edit1]
 [combo :]
 [edit2 :]
 ...

Figure 11: Use of HBox

Upgrading | 138

Use the new SIZEPOLICY attribute, and set it to fixed to prevent combo from getting bigger than the
initial six characters (6+Button):

 <G "Combo has a fixed size">
 ...
 [combo]
 [edit2]
 ...
 ATTRIBUTES
 ...
 COMBOBOX combo=formonly.combo,
 ITEMS = ((0,"Veeeeeeeery Looooooooooooooooong Item"),(1,"hallo")),
 DEFAULT=0, SIZEPOLOCY=FIXED ;
....

Figure 12: Use of SIZEPOLICY as fixed

In this example the edit2 dictates the maximum size of combo, because even if the SIZEPOLICY is fixed,
the elements are aligned by the Grid.

To prevent this and have exactly six characters (numbers) in the ComboBox, you need to de-couple combo
from edit2 by using an HBox.

<G "Combo has a fixed size,sample 0,in HBox"
...
Combo [combo :]
Edit2 [edit2 :]
...
COMBOBOX combo=formonly.combo,
 ITEMS = ((0,"12345678 Looooooooooooooooong Item"),(1,"hallo")),
 DEFAULT=0, SIZEPOLICY=FIXED, SAMPLE="0";

Figure 13: Use of HBox

Now the wanted six numbers are displayed and combo does not grow to the size of edit2.

Upgrading | 139

Action defaults at form level
You can define action defaults in forms.

Starting with version 1.30 it is now possible to define action defaults in forms. In previous versions you had
to define a global action default file; this works for defining common global action attributes, but there is
a need to define specific action attributes in some forms. A typical zoom window may have search and
navigation actions, while data input windows need to define add/delete/update actions instead.

It is now possible to define an action default section in the form file, and you can also load action defaults
with ui.Form.loadActionDefaults().

Compiled string files have now .42s extension
Starting with version 1.30, compiled localized string files use now the file extension .42s.

Before version 1.30, the file extension was .4ls.

See Localized strings on page 327.

Planned desupport
The features described in this topic will be deprecated or de-supported in the next major release of the
product.

Consider reviewing your code now, if you are using one of these features.

Features that will be deprecated in next versions

• Microsoft SQL Server 2005

Features that will be de-supported in next versions

• The FIELD form item type, that could be used to specify abstract form fields with attributes defined in
the .val schema file.

• The GDC WinCOM, WinDDE and WinMail front-call modules.

Migrating from IBM® Informix® 4gl to Genero BDL
• Introduction to I4GL migration on page 140

• IBM Informix 4GL and Genero BDL products on page 140
• IBM Informix 4GL reference version on page 140

• Installation and setup topics on page 140

• Using C extensions on page 140
• Localization support in Genero on page 141
• Database schema extractor on page 141
• Compiling 4GL to C on page 141

• User interface topics on page 141

• Easy user interface migration with traditional mode on page 141
• SCREEN versus LAYOUT on page 141
• Migrating screen arrays to tables on page 143
• Review TUI specifics on page 144
• The default SCREEN window on page 145
• Specifying WINDOW position and size on page 145
• Right justified field labels on page 145
• Using widgets instead of multiple text screens on page 146

Upgrading | 140

• Review application ergonomics on page 146
• Subscripted form fields are not supported on page 146

• 4GL programming topics on page 147

• Dynamic arrays on page 147
• Debugger command syntax on page 147
• Mismatching global variable definitions on page 148
• Strict function signature checking on page 148
• STRING versus CHAR/VARCHAR on page 150
• Review user-made C routines on page 150
• Web Services support on page 150
• File I/O statements and APIs on page 150
• OPEN USING followed by FOREACH on page 151

Introduction to I4GL migration

IBM® Informix® 4GL and Genero BDL products

IBM® Informix® 4GL (I4GL) and Genero Business Development Language (BDL) are distinct development
tools. The purpose of Genero BDL is to be as compatible as possible with I4GL, and it is very close. The
success of Genero BDL depends on the ability to compile and run legacy 4gl code with minimum code
changes. For text-mode applications, the migration steps are often reduced to recompile-and-run.

Genero BDL extends the I4GL language with advanced features, such as a Graphical User Interface and
SQL access to non-Informix databases. This leads to some differences that you have to deal with, but
these incompatibilities are minor compared to the added value.

In some rare cases, the Genero BDL team decided to take a different path to implement an I4GL feature,
because we considered that the IBM® Informix® 4gl solution was not adaptable. For example, the dynamic
arrays in I4GL and Genero BDL have different semantics.

This guide will help you identify the differences and find solutions to make the migration from IBM®

Informix® 4gl easier.

IBM® Informix® 4GL reference version

Several versions of the IBM® Informix® 4GL language have been released. It started in the mid-80s with
I4GL version 4.x; then came version 6.x in 1996. I4GL version 7.2 was released in 1998; then versions
7.31, 7.32, and finally the version: 7.50 came out.

There have been several bug fixes and enhancements over the life of I4GL, resulting in releases that
slightly differ. Supporting strict compatibility with all versions of I4GL is not possible for Genero BDL.

The Genero BDL compatibility level with IBM® Informix® 4gl is achieved by comparing with the latest
version of I4GL, which is version 7.50 at the time of this writing.

Installation and setup topics

Using C extensions

With IBM® Informix® 4GL, you can extend the fglgo runtime executable or link your binary programs with
c4gl by adding your own C functions.

When migrating to Genero Business Development Language, the C-Extensions must be reviewed in order
to provide them as shared libraries. Normally, C extensions modules must be specified in .4gl modules with
the IMPORT instruction. To simplify migration, the runtime system loads the userextension shared library
(or DLL) automatically, so you can group all your existing C functions in a unique shared library and use it
without changing the source code of your programs.

Upgrading | 141

Localization support in Genero

To support language-specific and country-specific locales, as well as multibyte character sets like BIG5,
IBM® Informix® 4GL uses the Informix® GLS library.

For locale support, Genero Business Development Language (BDL) does not use the Informix® GLS
library, to be independent from Informix® GLS libraries. Genero uses the standard C library functions for
character data hanlding, based on the POSIX setlocale() function.

I4GL uses the CLIENT_LOCALE environment variable to define the locale for the application. With Genero
BDL, you must use the LANG/LC_ALL environment variables to specify the locale of the application. Note,
however, that CLIENT_LOCALE is still needed to define the locale for the IBM® Informix® database client.

Database schema extractor

Before compiling .4gl or .per files, you must extract the database schema with the fgldbsch tool. This will
produce an .sch file, and optionally, .val and .att files. The fgldbsch tool can extract database schemas
from Informix®, and from other databases such as Oracle and SQL Server, but you must be aware of data
type conversion rules.

Compiling 4GL to C

The IBM® Informix® 4GL compilers include a p-code based runtime system called RDS as well as a C-
compiled solution, the c4gl compiler. The RDS solution is typically used in a development environment,
supporting a debugger, while the Informix® 4GL C compiler is traditionally used to maximize performance
on production sites. However, the C compiled binaries need to be built on the same target platform as the
production system.

Genero Business Development Language supports a p-code architecture, which is as fast as the C-
compiled version of IBM® Informix® 4GL. Since p-code files are portable, you can develop your application
on a platform that is different from the production platform, saving porting procedures and simplifying
deployment tasks.

User interface topics

Easy user interface migration with traditional mode

IBM® Informix® 4GL (I4GL) and Genero Business Development Language (BDL) handle windows and form
content rendering differently. I4GL is designed to write applications for for dumb terminals, while Genero
BDL uses real GUI rendering, with resizeable windows and proportional fonts. To simplify migration from
TUI-style products, Genero BDL supports the traditional GUI mode.

SCREEN versus LAYOUT

To design a form with IBM® Informix® 4GL, you organize labels and fields in the SCREEN section of a
.per form file. Genero Business Development Language introduced a new LAYOUT section to place form
elements. The new LAYOUT section allows more sophisticated form design than SCREEN.

When writing new programs for GUI applications, you should use a LAYOUT section instead of SCREEN.
However, the SCREEN section is still supported to be used to design TUI mode forms.

Upgrading | 142

Figure 14: Form using a SCREEN section in TUI mode

Figure 15: Form using a LAYOUT section in GUI mode

Upgrading | 143

Migrating screen arrays to tables

With IBM® Informix® 4GL, a list of records can be displayed on the screen by using a static screen array in
the SCREEN section of the form specification file, with a finite number of lines:

DATABASE stores
SCREEN
{
 Id First name Last name
[f001 |f002 |f003]
[f001 |f002 |f003]
[f001 |f002 |f003]
[f001 |f002 |f003]
[f001 |f002 |f003]
[f001 |f002 |f003]
}
END
TABLES
 customer
END
ATTRIBUTES
 f001 = customer.customer_num ;
 f002 = customer.fname ;
 f003 = customer.lname ;
END
INSTRUCTIONS
 SCREEN RECORD sr_cust[6](customer.*);
END

The display of the form specification file in GUI mode:

Figure 16: Form displayed not using table widget

With Genero Business Development Language, use a static screen array for applications displayed in
dumb terminals, and for GUI applications you can for example use the TABLE container:

DATABASE stores
LAYOUT
TABLE
{
 Id First name Last name
[f001 |f002 |f003]
[f001 |f002 |f003]
[f001 |f002 |f003]
[f001 |f002 |f003]
[f001 |f002 |f003]

Upgrading | 144

[f001 |f002 |f003]
}
END
END
TABLES
 customer
END
ATTRIBUTES
 f001 = customer.customer_num ;
 f002 = customer.fname ;
 f003 = customer.lname ;
END
INSTRUCTIONS
 SCREEN RECORD sr_cust(customer.*);
END

The display of the form specification file is a real table widget, which is resizeable. The .4gl source is
untouched.

Figure 17: Form displayed as table widget

Review TUI specifics

Typical IBM® Informix® 4GL programs use the TUI mode and often exploit all the display possibilities of the
language for dumb terminals. Some instructions are specific to TUI mode and should be reviewed when
redesigning the application for GUI mode.

For example, data records can be displayed in a screen array with a DISPLAYarray[array-index].*
TO screen-array[screen-line] instruction, optionally with the ATTRIBUTES() clause to use some
TTY attributes like colors, reverse and bold effects. When scrolling a list, I4GL actually uses the terminal
scrolling capabilities to preserve the TTY attributes in each row. This applies only to the current rows
visible on the screen, but it was a commonly used feature.

In order to display application screens on different types of front-ends, Genero Business Development
Language (BDL) handles user interface elements in a more abstract way. Therefore, dumb terminal
specifics as described above cannot be supported. A good replacement for DISPLAY ... TO ...
ATTRIBUTES() in DISPLAY ARRAY or INPUT ARRAY is to use the DIALOG.setArrayAttributes() method.

Upgrading | 145

Genero BDL supports TUI-specific instructions such as DISPLAT AT, CLEAR SCREEN, CLEAR WINDOW,
as well as TTY attributes such as BLUE, RED, REVERSE, but you should use those instructions for TUI
programs only. New GUI programs should use graphical user interface possibilities. For example, a good
replacement for TTY attributes is to use presentation styles.

The default SCREEN window

When the first interactive instruction is reached in a Genero BDL program, a default window named
SCREEN is created.

The default SCREEN window can be used to open one or more successive forms; it can also be closed,
with the CLOSE WINDOW SCREEN instruction. If the default SCREEN window is not cloase, and a new
window is created with the OPEN WINDOW command, an empty default SCREEN window will be displayed.

When writing a GUI application, you typically open the main form in the SCREEN window, and display other
forms with the OPEN WINDOW name WITH FORM instruction:

MAIN
 DEFER INTERRUPT
 OPTIONS INPUT WRAP
 ...
 OPEN FORM f_main FROM "custfrm"
 DISPLAY FORM f_main
 ...
END MAIN

The SCREEN window is not visible in TUI mode because program windows are rendered as simple boxes
and SCREEN is created without borders. The size of the SCREEN window is 80x25 in TUI mode.

Specifying WINDOW position and size

When writing a program for TUI mode, the windows can be created with the OPEN WINDOW name AT
x,y instruction, specifying an position on the screen; sometimes even the width and height of the window
is specified, for example when you don't use a form to create the window. Window position and size is
allowed by Genero Business Development Language for TUI mode applications.

However, the window position and sizes are ignored in GUI mode. In GUI mode, the window position is
defined by the window manager, and the size adapts to the form displayed. In this mode, the preferred way
to display application forms is to use the OPEN WINDOW name WITH FORM instruction.

Right justified field labels

If the application forms define right-justified labels and use a proportional font in GUI mode, the text will no
longer be aligned as on a dumb terminal. Form layout must be reviewed to replace any right-justified text
with LABEL form items. Migration to GUI mode can also be easier achieved with the traditional mode, to
leave TUI-style forms untouched.

Example of right-justified static form labels

DATABASE FORMONLY
SCREEN
{
 Customer id: [f01]
 Name: [f02]
 Zipcode: [f03]
 Address: [f04]
}
END
ATTRIBUTES
EDIT f01 = FORMONLY.cust_id;
EDIT f02 = FORMONLY.cust_name;
EDIT f03 = FORMONLY.cust_zipcode;

Upgrading | 146

EDIT f04 = FORMONLY.cust_address;
END

Example of form label items with localized text

LAYOUT
GRID
{
 [l01 |f01]
 [l02 |f02]
 [l03 |f03]
 [l04 |f04]
}
END
END
ATTRIBUTES
LABEL l01: TEXT=%"customer.id";
LABEL l02: TEXT=%"customer.name";
LABEL l03: TEXT=%"customer.zipcode";
LABEL l04: TEXT=%"customer.address";
EDIT f01 = FORMONLY.cust_id;
EDIT f02 = FORMONLY.cust_name;
EDIT f03 = FORMONLY.cust_zipcode;
EDIT f04 = FORMONLY.cust_address;
END

Using widgets instead of multiple text screens

Applications designed for dumb terminals (TUI mode) use various techniques to ensure that all display
fits in an 80x25 screen. This may mean iterating through a number of dialogs using different forms, only
displaying certain columns in an record list, using abbreviations for labels, etc.

With a graphical user interface (GUI mode), windows are wider, re-sizable and can contain different sort
of layout elements and widgets, displaying much more information as in a simple dumb terminal. For
example, TABLE containers display record lists and have the ability to scroll horizontally so that you can
show more than 78 characters of data.

Dump-terminal oriented programs should be reviewed to take advantage of the GUI possibilities. However,
do not end up with over-crowded screens, that will be unreadable to the end user.

Review application ergonomics

With IBM® Informix® 4GL, programs can only execute a single MENU, INPUT, CONSTRUCT, DISPLAY
ARRAY or INPUT ARRAY instruction at a time. This may be sufficient for dumb-terminal applications, but is
not adapted for a graphical user interface.

Genero Business Development Language (BDL) introduces the concept of multi-dialog, where multiple
interactive instructions control several form areas at the same time. Typical GUI concepts such as Drag
and Drop and Tree Views are supported as well. You may wish to review your code to take advantage of
these features.

Subscripted form fields are not supported

IBM® Informix® 4GL forms can define subscripted fields with multiple field definition entries in the
ATTRIBUTES section, each defining a piece of the data displayed by the field, as in this example:

DATABASE stores
SCREEN
{
 1234567890
 [f01]

Upgrading | 147

 [f02]
}
END
ATTRIBUTES
f01 = customer.cust_name[1,10];
f02 = customer.cust_name[11,20];
END

In the ATTRIBUTES section, the name of the field is immediately followed by a subscript specification
defining the piece of sub-data the screen tag displays and allows to input.

This feature is not supported at all by Genero BDL, all fields must be defined as a whole.

4GL programming topics

Dynamic arrays

Both IBM® Informix® 4GL (I4GL) and Genero Business Development Language (BDL) implement static
arrays with a fixed size. Static arrays cannot be extended:

DEFINE arr ARRAY[100] OF RECORD LIKE customer.*

I4GL introduced dynamic arrays in version 7.32. Unlike Genero BDL, I4GL requires explicitly to associate
memory storage with a dynamic array by using the ALLOCATE ARRAY statement, and memory must
be freed with DEALLOCATE ARRAY. I4GL dynamica arrays can be resized with the RESIZE ARRAY
statement. I4GL dynamic arrays cannot be used in a interactive instructions such as DISPLAY ARRAY.

DEFINE arr DYNAMIC ARRAY OF RECORD LIKE customer.*
ALLOCATE ARRAY arr[10]
RESIZE ARRAY arr[100]
LET arr[50].cust_name = "Smith"
DEALLOCATE ARRAY arr

Genero BDL supports dynamic arrays in a slightly different way than I4GL. There are no allocation,
resizing, or deallocation instructions, because the memory for element storage is automatically allocated
when needed. Further, you can use dynamic arrays with interactive instructions, making a DISPLAY
ARRAY or INPUT ARRAY unlimited.

DEFINE arr DYNAMIC ARRAY OF RECORD LIKE customer.*
LET arr[50].cust_name = "Smith"
DISPLAY ARRAY arr TO sr.*

In Genero BDL, the main difference between static arrays and dynamic arrays is the memory usage; when
you use dynamic arrays, elements are allocated on demand. With static arrays, memory is allocated for the
complete array when the variable is created.

Important: The semantics of dynamic arrays is very similar to static arrays, but there are
some small differences. Keep in mind that the runtime system automatically allocates a new
element for a dynamic array when needed. For example, when a DISPLAY arr[100].* is
executed with a dynamic array, the element at index 100 is automatically created if does not
exist.

Debugger command syntax

IBM® Informix® 4GL (I4GL) provides a program debugger. Genero Business Development Language
provides a program debugger with a different set of commands as I4GL, compatible with the well-known
gdb tool. This debugger can be used alone in command line mode, or with a graphical shell compatible
with gdb, such as ddd:

ddd --debugger "fglrun -d myprog"

Upgrading | 148

Mismatching global variable definitions

The c4gl C-code compiler of IBM® Informix® 4GL has a weakness that allows global variable declarations
of the same variable with different data types. Each different declaration found by the c4gl compiler defines
a distinct global variable, which can be used separately. This can actually be very confusing (the same
global variable name can, for example, reference a DATE value in module A and an INTEGER value in
module B).

IBM® Informix® 4GL RDS (fglpc / fglgo) does not allow multiple global variable declaration with different
types. The fglgo runner raises error -1337 if this happens.

The next code example shows two .4gl modules defining the same global variable with different data types:

Main.4gl:

GLOBALS
 DEFINE v INTEGER
END GLOBALS
...
MAIN
 ...
 LET v = 123
 ...
END MAIN

Module.4gl:

GLOBALS
 DEFINE v DATE
END GLOBALS
...
FUNCTION test()
 ...
 LET v = TODAY
 ...
END FUNCTION

The fglcomp tool compiles both modules separately without problem, but when linking with fgllink, the linker
raises error -1337.

You must review your code and use the same data type for all global variables having the same name.

Strict function signature checking

IBM® Informix® 4GL (I4GL) is not very strict regarding function signature. With I4GL, you can, for example,
define a function in module A that returns three values, and call that function in module B with a returning
clause specifying two variables:

Module A:

FUNCTION func()
 RETURN "abc", "def", "ghi"
END FUNCTION

Module B (main):

MAIN
 DEFINE v1, v2 VARCHAR(100)
 CALL func() RETURNING v1, v2
END MAIN

Upgrading | 149

The c4gl compiler (7.32) compiles and links these modules without error, but at execution time you get the
following runtime error:

Program stopped at "main.4gl", line number 3.
FORMS statement error number -1320.
A function has not returned the correct number of values
expected by the calling function.

With Genero Business Development Language (BDL), the mistake will be detected at link time:

$ fgllink -o prog.42x main.42m module_a.42m
ERROR(-6200): Module 'main': The function module_a.func(0,3) will be
called as func(0,2).

Similarly, I4GL does not detect an invalid number of parameters passed to a function defined in a different
module:

Module A:

FUNCTION func(p)
 DEFINE p INTEGER
 DISPLAY p
END FUNCTION

Module B (main):

MAIN
 CALL func(1,2)
END MAIN

The c4gl compiler (7.32) compiles and links these modules without error, but at execution time, you get the
following runtime error:

Program stopped at "main.4gl", line number 2.
FORMS statement error number -1318.
A parameter count mismatch has occurred between the calling
function and the called function.

When using Genero BDL, the error will be detected at link time:

$ fgllink -o prog.42x main.42m module_a.42m
ERROR(-6200): Module 'main': The function module_a.func(1,0) will be
called as func(2,0).

Note, however, that Genero BDL does not check function signatures when several RETURN instructions
are found by the compiler. This is necessary in order to be compatible with I4GL. The next code example
compiles and runs with both I4GL and BDL:

MAIN
 DEFINE v1, v2 VARCHAR(100)
 CALL func(1) RETURNING v1
 DISPLAY v1
 CALL func(2) RETURNING v1, v2
 DISPLAY v1, v2
END MAIN

FUNCTION func(n)
 DEFINE n INTEGER
 IF n == 1 THEN
 RETURN "abc"
 ELSE

Upgrading | 150

 RETURN "abc", "def"
 END IF
END FUNCTION

However, this type of programming is not recommended.

STRING versus CHAR/VARCHAR

Genero Business Development Language (BDL) introduces a new data type named STRING, which is
similar to VARCHAR, but without a size limit. The STRING data type does not exist in IBM® Informix® 4GL.
The STRING data type implementation is optimized for memory usage; unlike CHAR/VARCHAR, BDL will
only allocate the memory needed to hold the actual character string value in a STRING variable.

A STRING variable is typically used within utility functions (for example, to hold the path to a file).
Another typical usage is with CONSTRUCT, to hold the SQL condition. The STRING variable can then be
completed to build the SQL text and passed to the PREPARE or DECLARE instruction.

However, because of SQL assignment and comparison rules, the STRING variables cannot be used as
SQL parameters in the USING clause of EXECUTE or OPEN/ FOREACH, not can it be used to receive
fetched data with the FETCH instruction: For SQL statements, use CHAR or VARCHAR data types.

The STRING data type has a number of built-in methods e.g. getLength() that will are very useful and will
reduce source code.

Review user-made C routines

IBM® Informix® 4GL (I4GL) applications often need additional utility C routines implemented in C-
Extensions, for example to access the file system and read the content of a directory. Writing C-Extensions
is an important cost in cross-platform portability and maintenance.

Genero Business Development Language (BDL) provides a set of utility libraries that include functions and
classes which can probably replace some of the routines written for I4GL application. For example, BDL
implements typical file management functions to search directories and files.

If portability is a concern (for example if you want to move from a UNIX™ platform to a Microsoft™

Windows™ or Mac OS-X™ platform), review your C routines and check whether there is a replacement built
into the language or in one of the libraries provided.

Genero BDL even allows to use to the huge Java™ class library with the Java™ Interface .

Web Services support

Starting with IBM® Informix® 4GL version 7.50, I4GL functions can be deployed as Web Services. The
published functions can be subscribed from programs that run on a Web client in another programming
language.

Web Services support was introduced in Genero Business Development Language before I4GL 7.50 was
released. Each implementation is quite different, but the basic principles are the same: publishing 4gl
functions as Web Services, by handling WS requests and supporting easy input and output parameter
conversions between WS data formats and 4gl program variables.

File I/O statements and APIs

Enhancement reference: BZ#19156

IBM® Informix® 4GL version 7.50.xC4 introduced file manipulation instructions to access files on the
operating system running the application. These instructions can be used to open, read, write, seek and
close files:

MAIN
 DEFINE fd1, fd2 INTEGER, v1,v2 VARCHAR(10)
 OPEN FILE fd1 FROM "/tmp/file1" OPTIONS (READ, FORMAT="CVS")

Upgrading | 151

 OPEN FILE fd2 FROM "/tmp/file2" OPTIONS (WRITE, APPEND, CREATE,
 FORMAT="CVS")
 READ FROM fd1INTO v1, v2
 SEEK ON fd2TO 0FROM LAST INTO v1
 WRITE TO fd2USING v1, v2
 CLOSE FILE fd1
 CLOSE FILE fd2
END MAIN

Genero Business Development Language (BDL) implements file I/O support with the base.Channel built-
in class. This class implements file access, but it can also open streams to subprocesses (i.e. pipes) and
sockets.

OPEN USING followed by FOREACH

In earlier versions of IBM® Informix® 4GL (I4GL), the FOREACH instruction had no a USING clause to
pass SQL parameters to the prepared statement. SQL Parameters could be specified in a OPEN USING
instruction, and were re-used by the next FOREACH instruction:

PREPARE st1 FROM "SELECT * FROM tab WHERE col>?"
DECLARE cu1 CURSOR FOR st1
OPEN cu1 USING var
FOREACH cu1 INTO rec.*
 DISPLAY rec.*
END FOREACH

This feature is supported by Genero Business Development Language, but can lead to defects with some
versions of the Informix® database client. Review your code to avoid the OPEN statement by moving the
USING clause to the FOREACH instruction.

Migrating from Four Js BDS to Genero BDL
These topics describe product changes you must be aware of when migrating from Four Js BDS 3.xx to
the most recent Genero Business Development Language version.

• Installation and setup topics on page 152

• License controller on page 152
• Runner linking is no longer needed on page 152
• Localization support on page 152
• Database schema extractor on page 152
• C-Code compilation is desupported on page 153
• Desupported environment variables on page 153
• Desupported FGLPROFILE entries on page 153

• User interface topics on page 153

• Easy user interface migration with traditional mode on page 153
• Front-end compatibility on page 154
• FGLGUI is 1 by default on page 154
• FGLPROFILE: GUI configuration on page 154
• Key labels versus action defaults on page 158
• Migrating form field widgets on page 159
• SCREEN versus LAYOUT on page 160
• Migrating screen arrays to tables on page 160
• Review TUI specifics on page 160
• The default SCREEN window on page 160
• Specifying WINDOW position and size on page 160

Upgrading | 152

• Front-end configuration tools on page 160
• Function key mapping on page 161

• 4GL Programming topics on page 161

• FGLPROFILE: VM configuration on page 161
• Calling fgl_init4gl() initialization function on page 162
• Static versus Dynamic Arrays on page 162
• Debugger syntax changed on page 162
• fgl_system() function on page 162
• The Channel:: methods on page 162
• STRING versus CHAR/VARCHAR on page 162
• Review user-made C routines on page 162
• Strict variable identification in SQL statements on page 162
• Default action of WHENEVER ANY ERROR on page 162

Installation and setup topics

License controller

With Four Js Business Development Suite (BDS), you must license the product with the licencef4gl
command line tool. Starting with Genero Business Development Language, the command line tool to
license the product is fglWrt. Run fglWrt with the -h option for the possible options.

Runner linking is no longer needed

With Four Js Business Development Suite (BDS), you need to create the fglrun binary with the fglmkrun
tool, by specifying the type of the database driver and C extensions libraries to be linked with the runtime
system. Since Genero Business Development Language version 2.00, you do not more need to link the
runtime system.

The database drivers are provided as shared libraries ready to use; you just need to specify the driver to
be loaded.

However, C extensions must be provided shared libraries for Genero BDL. To easy migration, the runtime
system loads automatically the userextension share library (or DLL).

Localization support

IBM® Informix® 4GL (I4GL) and Four Js Business Development Suite (BDS) use the Informix® GLS library
for localization support (i.e. to support non-ASCII character sets such as BIG5). This implies a strong
dependency to the proprietary GLS library.

Genero Business Development Language (BDL) does not use the GLS library; Genero BDL uses the
standard C library functions for character set handling, based on the setlocale() POSIX conformant
function.

While I4GL/BDS need the CLIENT_LOCALE environment variable to define the locale for the application,
you must now use the LANG/LC_ALL environment variables to specify the locale of the Genero
application. Note, however, that CLIENT_LOCALE is still needed when connecting to an Informix®

database.

In Four Js BDS, you could select the locale library with the fglmode tool, to select either GLS or ASCII
mode. This tool is no longer needed in Genero.

Database schema extractor

Before compiling .4gl or .per files with Four Js Business Development Suite (BDS) or with Genero
Business Development Language (BDS), you need to extract the database schema as a .sch file.

Upgrading | 153

In DBS, the name of the schema extraction tool fglschema, while Genero BDL provides the fgldbsch tool.
The fglschema tool could only extract schemas from Informix® databases; fgldbsch can extract database
schemas from Informix®, and from other databases like Oracle, SQL Server, DB2®, PostgreSQL, MySQL
and Genero db. The fglschema tool is still supported in Genero BDL for backward compatibility, but
fglschema actually calls fgldbsch.

Note that Genero BDL allows you to centralize new widget types and attributes in the .val file.

C-Code compilation is desupported

Four Js Business Development Suite (BDS) fglcomp could compile to P-Code or C-Code. The compiler of
Genero Business Development Language does not support C-Code generation. Only P-Code generation is
supported by Genero BDL.

If you experience performance problems when comparing Genero BDL to Four Js BDS, please contact
your local support center.

Desupported environment variables

This table lists the Four Js Business Development Suite (BDS) environment variables that are no longer
supported (or replaced) in Genero Business Development Language:

Table 87: Desupported environment variables

Entry Description of the BDS
environment variable

Genero equivalent

FGLDBS FGLDBS defines the type and
version of the database driver,
used when linking fglrun with
fglmkrun.

Database drivers are loaded
dynamically by fglrun.

FGLCC FGLCC defines the name of the
C compiler.

The fglrun tool does not need to
be created, it's fully dynamic.

FGLLIBSQL FGLLIBSQL defines the list of
database client software libraries
to be used to link fglrun with
fglmkrun.

Database drivers are loaded
dynamically by fglrun.

FGLLIBSYS FGLLIBSYS defines the list of
system libraries to be used to link
fglrun with fglmkrun.

The fglrun tool does not need to
be created, it's fully dynamic.

FGLSHELL FGLSHELL defined the name of
the fglrun program, for example
when using tools like fglschema.

The name of the runtime system
tool is fglrun and does not need to
be changed.

Desupported FGLPROFILE entries

Genero Business Development Language comes with redesigned software components and features.
Some FGLPROFILE entries have been desupported. This section describes what configurations settings
are no longer supported, and point to Genero equivalent features if they exist.

User interface topics

Easy user interface migration with traditional mode

This topic also concerns IBM® Informix® 4GL migration, see the I4GL Migration page for mode details.

Upgrading | 154

Front-end compatibility

When migrating to Genero Business Development Language (BDL), you must use one of the Genero Front
Ends; the WTK, WebFE and JavaFE front-ends are not compatible with the Genero fglrun runtime system.
Note also that the UNIX™ version of Genero does not include the fglX11d front-end any longer. You must
use the GDC front-end on UNIX™.

FGLGUI is 1 by default

In Four Js Business Development Suite (BDS), when the FGLGUI environment variable is not set, the
application starts in TUI mode (FGLGUI=0). With Genero BDL, the default is GUI mode (FGLGUI=1).
Therefore, when migrating from Informix® 4GL, you should set FGLGUI=0 to run the application in text
mode as a first step.

FGLPROFILE: GUI configuration

This table shows Four Js Business Development Suite (BDS) FGLPROFILE entries related to GUI
configuration which are desupported in Genero Business Development Language.

Table 88: BDS/WTK FGLPROFILE entries related to GUI configuration which are desupported in
Genero

Entry Description of the BDS feature Genero equivalent

fglrun.interface,
fglrun.scriptName

These entries defined the TCL
configuration and script to be send
to the WTK front-end.

There is no equivalent in Genero.

fglrun.guiProtocol.* These entries could be used to
configure the communication
protocol with WTK front-end.

In Genero you can control this with
gui.protocol.* entries.

fglrun.error.line.number This entry was used to define the
number of lines to be displayed in
the error message line.

You can control the aspect of the
error line with the Window style
attribute called statusBarType.

gui.useOOB.interrupt
fglrun.signalOOB

These entries could be used to
configure or disable Out Of Band
signal on the GUI protocol socket
to avoid problems on platforms not
supporting that feature.

OOB signal was used to send
interruption events the program
executed is processing.

Genero supports interruption event
handling with a predefined action
name called interrupt. You can
bind any sort of action view (button
in form, toolbar or topmenu item)
with this name.

Interrupt events are sent
asynchronously with the new
Genero GUI protocol and don't use
OOB signals any longer.

See User interruption handling on
page 1252 for more details.

Sleep.minTime This entry was used to define the
number of seconds before the
interrupt key button appeared
on the screen window when the
program is processing.

Genero supports interruption event
handling with a predefined action
name called interrupt. You can
bind any sort of action view (button
in form, toolbar or topmenu item)
with this name.

Interrupt events are sent
asynchronously with the new

Upgrading | 155

Entry Description of the BDS feature Genero equivalent

Genero GUI protocol and don't use
OOB signals any longer.

See User interruption handling on
page 1252 for more details.

gui.watch.delay This entry was used to define
the number of seconds before
the mouse cursor displays as a
wait cursor, when the program is
processing.

Genero supports interruption event
handling with a predefined action
name called interrupt. You can
bind any sort of action view (button
in form, toolbar or topmenu item)
with this name.

Interrupt events are sent
asynchronously with the new
Genero GUI protocol and don't use
OOB signals any longer.

See User interruption handling on
page 1252 for more details.

gui.bubbleHelp.* These entries could be used to
enable and configure tooltips
displaying field COMMENT text.

Genero front-ends display bubble-
help with field COMMENT text by
default.

gui.controlFrame.scroll.* These entries could be used to
show and configure a scrollbar in
the control frame displaying ON
KEY or COMMAND buttons.

Genero front-ends display control
frame scrolling buttons by default
when needed.

See also Window style attributes
like ringMenuScroll.

screen.scroll This entry could be used to get
scrollbars in the main window when
the form was too big for the screen
resolution of the workstation.

With Genero, by default, each
program window is rendered as
a distinct GUI window by the
front-end. Window aspect can be
controlled with style attributes. See
Window style attributes for more
details.

gui.screen.size.x

gui.screen.size.y

gui.screen.x

gui.screen.y

gui.screen.incrx

gui.screen.incry

These entries could be used to
configure the size and position of
the main screen window with the
WTK front-end.

In Genero, each program window
is rendered as a distinct GUI
window by the front-end. There is
no equivalent for these options.
However, you can use the
traditional mode to render program
windows in a single parent screen
window and with BDS/WTK.

gui.screen.withvm This entry could be used to
integrate with the X11 window
manager (allowing move and resize
actions).

There is no equivalent in Genero.

gui.preventClose.message This entry could be used to display
an error message to the user
attempting to close the main GUI

In Genero, each program window is
rendered as a distinct GUI window
by the front-end. You can use the

Upgrading | 156

Entry Description of the BDS feature Genero equivalent

window with CTRL-F4 or the cross-
button on the right of the GUI
window title bar.

close action to control window
close events.

See Implementing the close action
on page 1337 for more details.

See also ON CLOSE
APPLICATION program option.

gui.key.doubleClick.left This entry could be used to define
the key to be returned to the
program when the user double-
clicks on the left button of the
mouse.

You can use the DOUBLECLICK
attribute to define the action to be
invoked when the user double-
clicks on a Table container.

gui.key.click.right This entry could be used to define
the key to be returned to the
program when the user clicks on
the right button of the mouse.

You can configure contextual
menus with the CONTEXTMENU
attribute in action attributes.

gui.key.add_function Could be used to define the offset
to identify SHIFT+Fx keys.

There is no equivalent in Genero.

gui.key.x.translate These entries could be used to
map keys. For example, when the
user pressed Control-U, it could be
mapped to F5 for the program.

There is no equivalent in Genero.

gui.key.radiocheck.invokeexitCould be used to define the key to
select the RADIO or CHECK field
and move to the next field.

There is no equivalent in Genero.

gui.mswindow.button This entry defined the aspect of
buttons on Windows™ platforms.

There is no equivalent in Genero:
Front-ends will use the current
platform theme when possible.

gui.mswindow.scrollbar Could be used to get MS Windows™

scrollbar style.
There is no equivalent in Genero:
Front-ends will use the current
platform theme when possible.

gui.scrollbar.expandwindow When set to true, the WTK
front-end expanded the window
automatically if scrollbars are
needed in a screen array.

There is no equivalent in Genero.

gui.fieldButton.style Could be used to define the style of
BMP field buttons.

There is no equivalent in Genero.

gui.BMPbutton.style Could be used to define the style of
FIELD_BMP field buttons.

There is no equivalent in Genero.

gui.entry.style This entry defines the underlying
widgets to be used to manage form
fields.

There is no equivalent in Genero.

gui.user.font.choice This entry could be set to true to let
the end user change the font of the
application screen window.

Genero front-ends allow the user to
change the font.

Upgrading | 157

Entry Description of the BDS feature Genero equivalent

See front-end specific
documentation for option
configuration.

gui.interaction.
inputarray.usehighlightcolor

This entry could be used to
highlight the current row during an
INPUT ARRAY.

The current row highlighting
can be controlled in Genero
with the Table style attribute
highlightCurrentRow.

gui.form.foldertab.multiline

gui.folderTab.input.sendNextField

gui.folderTab.x.selection

These entries could be used to
configure folder tabs and define
the keys to be sent when a page is
selected by the user.

Genero supports folder tabs with
the FOLDER container in LAYOUT.
An action can be defined for each
folder PAGE.

gui.keyButton.position

gui.keyButton.style

gui.button.width

These entries could be used to
define the aspect of control frame
buttons associated to ON KEY
actions in dialogs like INPUT.

Default action views aspect and
position can be controlled with
Action Defaults attributes and with
Window style attributes.

Menu.style

gui.menu.timer

gui.menu.horizontal.*

gui.menu.showPagerArrows

gui.menuButton.position

gui.menuButton.style

These entries could be used to
define the aspect of control frame
buttons associated to COMMAND
[KEY] actions in MENU.

Default action views aspect and
position can be controlled with
action attributes with window style
attributes.

gui.empty.button.visible This entry could be used to hide
control frame buttons without text.
By default, the empty buttons are
visible but disabled.

Default action views aspect can
be controlled with action attributes.
Use for example the defaultView
attribute to display a default button
for an action.

gui.containerType

gui.containerName

gui.mdi.*

These entries could be used to
configure WCI windows in BDS.

To define WCI containers and
children in Genero, use the
ui.Interface methods.

See Window containers (WCI) on
page 1458 for more details.

gui.toolBar.* These entries define the toolbar
aspect in BDS.

Toolbar definition has been
extended in Genero.

See ToolBars for more details.

gui.statusBar.* These entries define the status
aspect in BDS.

The StatusBars are defined
with Window presentation style
attributes.

See Presentation Styles for more
details.

gui.directory.images This entry defines the path to the
directories where images (toolbar

See front-end documentation
for image files located on the
workstation. With Genero, image

Upgrading | 158

Entry Description of the BDS feature Genero equivalent

icons) are located, on the front-end
workstation.

files can be located on the
application server and automatically
transmitted to the front-end
according to the FGLIMAGEPATH
environment variable.

gui.display.<source> These entries could be used to
redirect the ERROR / MESSAGE /
COMMENT text to a specific place
on the GUI screen.

The rendering of ERROR,
MESSAGE or COMMENT can
be configured with Window style
attributes in Genero. However, it is
not possible to customize keyboard
NumLock / CapsLock status in
Genero.

See Presentation Styles for more
details.

gui.local.edit

gui.local.edit.error

gui.key.cut

gui.key.copy

gui.key.paste

These entry could be used to
enable and configure cut/copy/
paste local keys in WTK.

Cut/Copy/Paste are defined as
front-end local actions in Genero.
You can bind action views with
editcut, editcopy, editpaste
predefined action names.

See Dialog actions on page 1276
for more details.

gui.key.* These entries were used to map
physical key to a virtual key used in
programs.

For example:
gui.key.interrupt =
"control-c"

Cut/Copy/Paste are defined as
front-end local actions in Genero.
You can bind action views with
editcut, editcopy, editpaste
predefined action names.

See Dialog actions on page 1276
for more details.

gui.workSpaceFrame.nolist This entry could be used to define
the aspect of fixed size screen
arrays in forms, to render each
array cell as an individual edit field.

There is no equivalent in Genero.

Key labels versus action defaults

In Four Js Business Development Suite (BDS), labels can be defined for keys such as accept, F10 or
Control-Z. With this feature, it is possible to easily decorate ON KEY or COMMAND KEY blocks with a
button in the control frame.

With Genero Business Development Language (BDL), interaction statements can define actions with the
ON ACTION blocks. These action handlers are more abstract than ON KEY: You identify an action by a
name, while decoration is defined in form files (ACTION DEFAULTS section) or in global configuration
files (.4ad file).

When adapting your code for Genero, you are free to use the traditional ON KEY blocks or the new ON
ACTION blocks. Genero still supports the key label settings as in Four Js BDS. Note however that key label
settings will overwrite Action Defaults settings. Additionally, if the name of the key specified in the ON KEY
clause does not only contain alphanumeric characters (such as Control-Z), it will not be possible to define
action defaults attributes for these action handlers, as action names must be simple identifiers. This is also
true for Menu COMMAND labels, for example with COMMAND"Exit program".

Upgrading | 159

Migrating form field widgets

To get combo-boxes or check-boxes in Four Js Business Development Suite (BDS), .per forms could
define fields with the WIDGET attribute. To ease migration, the WIDGET attribute and the corresponding
form field widgets are still supported in Genero Business Development Language (BDL), but these are now
deprecated: You should use new BDL form item types instead.

Figure 18: Four Js BDS-specific widgets

This table shows new Genero BDL form item types corresponding to old BDS WIDGET fields:

Table 89: Genero form item types corresponding to old BDS WIDGET fields

WIDGET= Description Genero equivalent

WIDGET="Canvas" Drawing area for fgldraw
functions

CANVAS item type

WIDGET="BUTTON" Text push button firing key event BUTTON item type

WIDGET="BMP" Image push button firing key
event

BUTTON item type

WIDGET="CHECK" Checkbox field CHECKBOX item type

WIDGET="CHECK" +
CLASS="KEY"

Checkbox field firing key event CHECKBOX item type + ON
CHANGE trigger in program

WIDGET="COMBO" Combobox field COMBOBOX item type

WIDGET="FIELD_BMP" Edit field with push button BUTTONEDIT item type

WIDGET="LABEL" Label field (no input) LABEL item type

WIDGET="RADIO" Radio group field RADIOGROUP item type

WIDGET="RADIO" +
CLASS="KEY"

Radio group field firing key event RADIOGROUP item type + ON
CHANGE trigger in program

Upgrading | 160

Genero introduced more form item types like DATEEDIT, PROGRESSBAR.

Figure 19: New form types in Genero

SCREEN versus LAYOUT

This topic also concerns IBM® Informix® 4GL migration, see the I4GL Migration page for mode details.

Migrating screen arrays to tables

This topic also concerns IBM® Informix® 4GL migration, see the I4GL Migration page for mode details.

Review TUI specifics

This topic also concerns IBM® Informix® 4GL migration, see the I4GL Migration page for mode details.

The default SCREEN window

This topic also concerns IBM® Informix® 4GL migration, see the I4GL Migration page for mode details.

Specifying WINDOW position and size

This topic also concerns IBM® Informix® 4GL migration, see the I4GL Migration page for mode details.

Front-end configuration tools

Four Js Business Development Suite (BDS) provided WTK front-end and X11 front-end specific
configuration tools called "Configuration Manager" / confdesi. These tools could be used to define widget
aspect (color, borders, fonts).

In Genero Business Development Language, the form items can be decorated with presentation styles for
all sorts of front-ends.

Upgrading | 161

Function key mapping

With Four Js Business Development Suite (BDS), when the user pressed a key modifier plus a function
key (like Shift-F4 or Ctrl-F6), the key combination was mapped to a regular function key F(n+offset),
because Shift and Control key modifiers are not handled in the 4GL language. The number of function keys
of the keyboard was defined by the gui.key.add_function FGLPROFILE entry. For example, when this entry
is set to 12 (the default), a Shift-F4 was received as F16 (4 + 12) in the program.

This feature and FGLPROFILE entry is still supported when using the traditional mode.

4GL Programming topics

FGLPROFILE: VM configuration

Genero Business Development Language (BDL) comes with redesigned software components and
features. Some Four Js Business Development Suite (BDS) specific FGLPROFILE entries have been
desupported. This section describes what configurations settings are no longer supported, and point to
Genero equivalent features if they exist.

This table shows BDS FGLPROFILE entries related to runtime system configuration which are
desupported in Genero. See the FGLPROFILE description page for supported entries:

Table 90: BDS FGLPROFILE entries related to runtime system configuration which are desupported
in Genero

Entry Description of the BDS feature Genero BDL equivalent

fglrun.checkDecimalPrecisionControls decimal variable
assignment when overflow occurs.
For example, a value of 1000.0
does not fit in a DECIMAL(2,0).

Is false by default = no overflow
error, value assigned.

There is no equivalent in Genero.

By default Genero assigns NULL
to a decimal when overflow occurs.
Can be trapped by WHENEVER
ANY ERROR.

fglrun.ix6 Controls Informix® version 6.x
compatibility.

By default BDS is compatible with
I4GL 4.x

There is no equivalent in Genero.

By default Genero is compatible to
Informix® 4gl 7.32.

fglrun.cmd.winnt,
fglrun.cmd.win95

Defines the command line to be
executed for a RUN WITHOUT
WAITING on Windows™ platforms.

With Genero the command
program can be defined with the
COMSPEC environment variable.

fglrun.database.listvar,
fglrun.remote.envvar

Was used by Informix® driver to
set environment variables with the
ifx_putenv() function on Windows™

platforms.

There is no equivalent in Genero.

fglrun.setenv.*,
fglrun.defaultenv.*

These entries could be used to
define environment variables for all
programs.

There is no equivalent in Genero.

fgllic.* License controller related entries With Genero you configure license
settings with the flm.* entries.

See license manager
documentation for more details.

Upgrading | 162

Entry Description of the BDS feature Genero BDL equivalent

fglrun.server.* These entries could be used to
define X11 front-end automatic
startup.

In Genero this can be configured
with gui.server.autostart.*
entries.

See Automatic front end startup on
page 761 for more details.

Calling fgl_init4gl() initialization function

Four Js Business Development Suite (BDS) provided a few utility functions in the libfgl4js.42x library. This
library had to be initialized with a call to fgl_init4js():

MAIN
 ...
 CALL fgl_init4js()
 ...
END MAIN

Genero Business Development Language still supports the fgl_init4js() function, but only for backward
compatibility. Calling this function has no effect in Genero.

Static versus Dynamic Arrays

This topic also concerns IBM® Informix® 4GL migration, see the I4GL Migration page for more details.

Debugger syntax changed

This topic also concerns IBM® Informix® 4GL migration, see the I4GL Migration page for more details.

fgl_system() function

The fgl_system() function is still supported in Genero Business Development Language, but it does not
raise a terminal window on the front-end as with Four Js Business Development Suite (BDS). However,
some front-ends implement a workaround for this feature, based on the detection of special strings
displayed to stdout by fglrun. See front-end documentation for more details.

The Channel:: methods

Genero Business Development Language provides file, socket and process I/O with the Channel built-in
class, while Four Js Business Development Suite (BDS) has the Channel:: functions. You must review
your code and replace Channel:: calls with the new API.

STRING versus CHAR/VARCHAR

This topic also concerns IBM® Informix® 4GL migration, see the I4GL Migration page for mode details.

Review user-made C routines

This topic also concerns IBM® Informix® 4GL migration, see the I4GL Migration page for mode details.

Strict variable identification in SQL statements

This topic applies also to older Genero Business Development versions, see the Genero 2.20 Migration
page for more details.

Default action of WHENEVER ANY ERROR

With old Four Js Business Development Suite (BDS) versions like 2.10, expression evaluation errors such
as a division by zero stop the program with an error message. Genero Business Development Language
behaves like IBM® Informix® 4GL and recent BDS versions like 3.55: By default, the WHENEVER ANY

Upgrading | 163

ERROR action is to CONTINUE the program flow. You can change this behavior by setting the next
FGLPROFILE entry to true:

fglrun.mapAnyErrorToError = true

Configuration | 164

Configuration

These topics cover configuration options of the Genero Business Development Language.

• The FGLPROFILE file on page 164
• Environment variables on page 169
• Configuring the database server connections on page 186
• Configuring the front-end connection on page 186

The FGLPROFILE file
• Understanding FGLPROFILE on page 164
• FGLPROFILE entry syntax on page 165
• List of FGLPROFILE entries on page 166

Understanding FGLPROFILE
The runtime system uses one or more configuration files in which you can define options and parameters
to change the behavior of the programs.

Loading FGLPROFILE files

There are three different levels to specify a configuration file, and these files are loaded in the following
order:

1. First, the runtime system reads the default configuration file provided in FGLDIR/etc/fglprofile.
This file contains all supported entries, identifies the possible values for an entry, and documents
default values. You should not modify this default configuration file.

2. Then, if the FGLPROFILE environment variable is set, the runtime system reads entries from the files
specified by this environment variable. A list of files can be provided with FGLPROFILE. Files must be
separated by the operating system specific path separator.

Note: On mobile devices, it is not possible to define environment variables. To specify a custom
fglprofile file for a mobile application, you must deploy a file with the name "fglprofile" in the
appdir directory, along with the other application program files (.42m, .42f, and so on). Only
one custom fglprofile file can be deployed for a given mobile application.

3. After loading and merging the two previous levels, the runtime system checks whether the
fglrun.defaults entry is set. This entry defines the program-specific profile directory. If this
directory contains a file with the same name as the current program (without a .42r extension), the
runtime system reads the entries from that file.

The runtime system merges the different configuration files found at the three levels. If the same entry is
defined in several files, the last loaded entry wins. This means that the order of precedence is:

1. Program-specific configuration file (if fglrun.defaults is defined in one of the other levels).
2. Configuration files defined by the FGLPROFILE environment variable, or appdir/fglprofile, for

mobile applications.
3. The default configuration file FGLDIR/etc/fglprofile.

The default FGLPROFILE file

It is recommended that you NOT change the default configuration file in FGLDIR/etc/fglprofile. This
file will be overwritten by a new installation and your changes will be lost. It is recommended that you make
a copy and define your private configuration file using the FGLPROFILE environment variable.

Configuration | 165

FGLPROFILE file name

For non-mobile apps, there is no specific naming convention for FGLPROFILE configuration files. You can
use a file name without an extension, or the .txt extension for simple text file.

On mobile devices, the name of the custom fglprofile file must be "fglprofile", and must be deployed
under the appdir directory.

FGLPROFILE file encoding

The character encoding of FGLPROFILE files must match the application locale.

Defining your own FGLPROFILE entries

User-defined entries can be read with the FGL_GETRESOURCE() built-in function.

FGLPROFILE entry syntax
Description of the syntax of FGLPROFILE entries.

Syntax

 # comment
| entry-definition

where entry-definition is:

entry = value

where entry is:

ident [.ident [.ident] [...]]]

and value is:

 [-]{ digit [...] }[. digit [...]]
| " alphanum [...] "
| {true|false}

1. comment is a line of text that is started by a # sharp.
2. entry identifies the name of the entry. This can be a dot-separated list of identifiers.
3. value is the value of the entry; it might be a numeric value, a string literal, or a boolean value (true/

false).

Usage

An FGLPROFILE entry is a line in the configuration file associating a parameter name to a value that can
be specified as a numeric, string or boolean.

Important: The encoding of FGLPROFILE files must match the application locale of the program.
For more details about locale definition, see Application locale on page 307.

The entries are defined by a name composed of a list of identifiers separated by a dot character.

Note: FGLPROFILE entry names are case insensitive. In order to avoid any confusion, it is
recommended to write FGLPROFILE entry names in lower case.

If an entry is defined several times in the same file, the last entry found in the file is used. No error is
raised.

The value can be a numeric literal, a string literal, or a boolean (true/false).

Configuration | 166

Numeric values are composed by an optional sign, followed by digits, followed by an optional decimal point
and digits:

my.numeric.entry = -1566.57

String values must be delimited by single or double quotes. The escape character is backslash, \t \n \r
\f are interpreted as TAB, NL, CR, FF. Double the backslash to write a backslash character (\\):

my.string.entry = "C:\\data\\test1.dbf"

Boolean values must be either the true or false keyword:

my.boolean.entry = true

Example

Last modification: 2013-03-12/mike
report.aggregatezero = true
gui.connection.timeout = 100
dbi.database.stores.source = "C:\\data\\test1.dbf"
dbi.database.stores.prefetch.rows = 200

List of FGLPROFILE entries
This is a summary of supported FGLPROFILE entries.

Find more information for an FGLPROFILE entry by following the documentation link in the description of
the entry.

Table 91: Partial list of supported FGLPROFILE entries

Entry Values Default Description

Dialog.currentRowVisibleAfterSortboolean false Forces current row to be shown after a
sort in a table.

See Dialog configuration with
FGLPROFILE on page 1251.

Dialog.fieldOrder boolean false Defines if the intermediate field triggers
must be executed when a new field gets
the focus with a mouse click.

See Dialog configuration with
FGLPROFILE on page 1251.

dbi.default.driver string NULL Defines the default database driver.

See Default database driver on page
464.

dbi.database.dbname.driver string NULL Defines the database driver for a
database name.

See Database driver specification
(driver) on page 462.

Configuration | 167

Entry Values Default Description

dbi.database.dbname.source string NULL Defines the data source for a database
name.

See Database source specification
(source) on page 461.

dbi.* N/A N/A Database interface configuration.

See Connections.

fglrun.arrayIgnoreRangeError boolean false Controls runtime behavior when array
index is out of bounds.

See Arrays on page 296 for more
details.

fglrun.decToCharScale2 boolean false Formats DECIMAL(P) with 2 digits after
the decimal point. See Floating point to
string conversion on page 107.

fglrun.defaults string NULL Defines the directory where program
specific configuration files are located.

See Understanding FGLPROFILE on
page 164.

fglrun.ignoreDebuggerEvent boolean false Defines whether the runtime system can
swtich to debug mode.

See The debugger on page 1531.

fglrun.ignoreLogoffEvent boolean false Defines whether the runtime system
ignores a CTRL_LOGOFF_EVENT on
Windows™ platforms.

See Responding to
CTRL_LOGOFF_EVENT on page
386.

fglrun.localization.* N/A N/A Defines load parameters for localized
string resource files.

See Localized strings on page 327.

fglrun.mapAnyErrorToError boolean false Controls default action of WHENEVER
ANY ERROR.

See Exceptions on page 340.

fglrun.mmapDisable

Note: This entry may be
removed in a future version:
It is only provided to solve file
overwrite issues when doing
live program files updates on
Windows™ platforms.

boolean false Turns program files memory mapping
off on Windows™ platforms.

See Dynamic module loading on page
1560.

flm.* N/A N/A License management related entries.

Configuration | 168

Entry Values Default Description

See licensing documentation.

gui.connection.timeout integer 30 Defines the timeout delay (in seconds)
the runtime system waits when it
establishes a connection to the front-
end. After this delay the program stops
with an error.

See Configure the GUI connection
timeout on page 757.

gui.key.add_function integer none If set, this entry defines the offset for
function key mapping when using Shift-
Fx and Control-Fx key modifiers.

See Traditional GUI mode on page
753.

gui.protocol.pingTimeout integer 600 Defines the timeout delay (in seconds)
the runtime system waits for a front-end
ping when there is no user activity. After
this delay the program stops with an
error.

See Wait for front end ping timeout on
page 757.

gui.protocol.format string default Controls Front-End protocol format.

Possible values are: "block", "zlib".

Default is "block" (encapsulation only).

See GUI protocol compression on page
758.

gui.server.autostart.* N/A N/A Defines automatic front-end startup
parameters.

See Automatic front end startup on page
761.

gui.uiMode string NULL Defines the user interface mode, to
render windows in traditional I4GL
mode.

Possible values are: "default" or
"traditional". Default is the new Genero
GUI mode with real resizeable windows.

See Traditional GUI mode on page
753.

key.key-name.text string N/A Defines a label for an action defined
with an ON KEY clause.

Provided for V3 compatibility only.

See Setting key labels on page 759.

Configuration | 169

Entry Values Default Description

mobile.environment.name =
"value"

N/A N/A Define environment variable values in
FGLPROFILE for mobile applications.

See Setting environment variables in
FGLPROFILE (mobile) on page 170.

Report.aggregateZero boolean false Defines if the report aggregate functions
must return zero or NULL when all
values are NULL.

Provided for V3 compatibility only.

See Report engine configuration on
page 1492.

authenticate.* N/A N/A Web services configuration.

See Basic or digest HTTP
authentication on page 2512

proxy.* N/A N/A Web services configuration.

See Proxy configuration on page 2512

security.* N/A N/A Web services configuration.

See HTTPS and password encryption
on page 2510

ws.* N/A N/A Web services configuration.

See Server configuration on page 2513

xml.* N/A N/A Web services configuration.

See XML configuration on page 2514

Environment variables
• Setting environment variables on UNIX on page 169
• Setting environment variables on Windows on page 170
• Setting environment variables in FGLPROFILE (mobile) on page 170
• Operating system environment variables on page 171
• Database client environment variables on page 173
• Genero environment variables on page 173

Setting environment variables on UNIX™

On UNIX™ platforms, environment variables can be set through the following methods, depending on to
the command interpreter used:

Bourne shell:

VAR=value; export VAR

Korn shell:

export VAR=value

Configuration | 170

C shell:

setenv VAR=value

For more details, refer to the documentation for your UNIX™ system.

Setting environment variables on Windows™

On Windows™ platforms, environment variables can be set by one of the following methods:

• In a command window, with the SET command.
• In the registry, for the current user in HKEY_CURRENT_USER or a global setting in

HKEY_LOCAL_MACHINE.

For more details, refer to the documentation of your Windows™ system.

On Windows™, double quotes do not have the same meaning as on UNIX™ systems. For example, if you
set a variable with the command SET VAR="abc", the value of the variable will be "abc" (with double
quotes), and not abc.

When using Informix®, some variables related to the database engine must be set using the SETNET32
utility.

Setting environment variables in FGLPROFILE (mobile)

When executing applications on mobile devices, you can configure environment settings with
FGLPROFILE entries. Setting an environment variable with an FGLPROFILE entry is equivalent to setting
the environment variable before running the fglrun VM process on a server.

Note: Environment variables set in an FGLPROFILE file are only read when the deployed
application runs the mobile device. They are not read during development mode (i.e. when the VM
runs on the development machine and the mobile client displays on the device). The FGLPROFILE
environment variable settings are only for the VM component and are ignored by the GMA/GMI
front-end component.

FGLPROFILE environment variables settings can be used to define DBDATE and DBFORMAT, if the
default regional settings on the mobile must be ignored for date and numeric value formatting. Note that
defining DBMONEY will have no effect, because DBFORMAT is defined automatically by the GMI or
GMA front-end component before starting the VM component. Since DBFORMAT takes precedence over
DBMONEY, setting DBMONEY in FGLPROFILE is useless.

Important: C-runtime library variables such as LANG/LC_ALL cannot be set with FGLPROFILE
entries, because the C-runtime library is (and must be) initialized before reading FGLPROFILE files.

The syntax is:

mobile.environment.env_name = "env_value"

where:

1. env_name is the name of the environment variable to be set.
2. env_value is the value for the env_name environment variable.

For example:

mobile.environment.MY_ENV_VAR = "my value"

The value specified in a mobile.environment entry can contain $NAME placeholders, that will be
replaced by the actual value of the NAME environment variable. The NAME environment variable will
typically be set by the front-end component, before starting the runtime system component, for example to
define FGLDIR and FGLAPPDIR values.

Configuration | 171

If the environment variable contains directory or file pathes, use the UNIX path notation with / slashes as
directory name separator, and the : colon as path separator.

The next example defines the FGLIMAGEPATH environment variable for the mobile app, using
FGLAPPDIR and FGLDIR predefined environment variables:

mobile.environment.FGLIMAGEPATH = "$FGLAPPDIR/myimages:$FGLAPPDIR/icons/
myimage2font.txt:$FGLDIR/lib/image2font.txt"

Note: During development (when executing programs on a server), consider defining environment
variables such as FGLAPPDIR in the shell environment, along with the other environment variables
that are defined with mobile.environment entries, as these are only read when executing on
mobile devices.

Operating system environment variables

This section describes some well-known system environment variables that are used by Genero software
components.

• LC_ALL (or LANG) on page 171
• LD_LIBRARY_PATH on page 171
• PATH on page 172
• TERM on page 172
• TERMCAP on page 172
• TERMINFO on page 172
• TMPDIR, TEMP, TMP on page 173

LC_ALL (or LANG)
Defines the current application locale on UNIX™ platforms.

The LC_ALL (or LANG) environment variable defines language, territory and codeset for programs running
on UNIX™ platforms.

The codeset defined in LC_ALL is used by the runtime system to handle character strings.

It is important to set this variable properly according to the character set used by your application.

If LC_ALL is not defined, LANG is used instead.

Read the UNIX™ man page of the setlocale() C function for more details about this variable.

LD_LIBRARY_PATH
Defines search paths to find shared libraries on UNIX™ platforms.

The LD_LIBRARY_PATH environment variable defines the list of search paths for shared libraries loaded
by the dynamic linker on UNIX™ platforms.

On some operating systems, the environment variable defining the shared library search path may have a
different name.

• On a system where a 32-bit and a 64-bit environment coexist, you may need to set
LD_LIBRARY_PATH_64 to execute the 64-bit programs.

• On HP/UX, set SHLIB_PATH.
• On AIX®, set LIBPATH.
• On Mac OS X®, the usage of DYLD_LIBRARY_PATH is discouraged. Therefore, shared libraries that are

not part of the Genero runtime system (such as database client libraries) must be found in the standard
system directories (/usr/lib, /usr/local/lib)

Configuration | 172

PATH
Defines the list of search paths to find executable files.

The PATH environment variable defines the list of search paths for executable files.

On UNIX™ platforms, PATH defines the search path list for executable programs.

On Windows™ platforms, PATH defines the search path for programs and DLLs.

The path separator is a colon (:) on UNIX™ and a semicolon (;) on Windows™.

TERM
Defines the type of terminal on UNIX™ platforms.

The TERM variable is used by UNIX™ and Genero applications to identify the terminal type when running
in TUI mode.

By default or when INFORMIXTERM equals termcap, Genero reads terminal capabilities from the file
defined by the TERMCAP environment variable. When INFORMIXTERM is set to terminfo, Genero reads
terminal capabilities from the terminfo database of the system.

TERMCAP is the older implementation of terminal capabilities database. you should set
INFORMIXTERM=terminfo.

It is important to define this variable properly to match the text terminal hardware or the terminal emulation
you are using.

TERMCAP
Defines the termcap terminal capabilities database on UNIX™ platforms.

Usage

For UNIX™ platforms, TERMCAP is an environment variable that defines to the terminal capabilities file.
This variable must be used in conjunction with TERM, when INFORMIXTERM is set to termcap, or when
INFORMIXTERM is not set.

If the TERMCAP variable is not defined, Genero tries to open /etc/termap. If no /etc/termcap file
exists, the runtime system uses $FGLDIR/etc/termcap. You can add more terminal definitions in this
file.

TERMCAP is the older implementation of terminal capabilities database. you should set
INFORMIXTERM=terminfo.

It is important to define terminal capabilities properly according to the text terminal hardware or the terminal
emulation you are using. Especially function keys (F1, F16) and display attributes (bold, reverse, colors)
may not work if the escape sequences do not correspond to the terminal used.

For more details about the TERMCAP environment variable, please refer to your UNIX™ operating system
manual.

TERMINFO
Defines the terminfo terminal capabilities database.

On UNIX™ platforms, the TERMINFO environment variable points to the terminal capabilities database.
This variable must be used in conjunction with TERM, when INFORMIXTERM is set to terminfo.

You should not have to modify or set this environment variable. The default is defined by the UNIX™

system, it can be for example /etc/terminfo, /usr/lib/terminfo, or /lib/terminfo.

It is important to define terminal capabilities properly according to the text terminal hardware or the terminal
emulation you are using. In particular, function keys (F1, F16) and display attributes (bold, reverse, colors)
may not work if the escape sequences do not correspond to the terminal used.

Configuration | 173

For more details about the TERMINFO environment variable, please refer to your UNIX™ operating system
manual.

TMPDIR, TEMP, TMP
Defines the directory for temporary files.

The TMPDIR, TEMP and TMP environment variables define the directory where temporary files are
created by the operating system and by some other software (TMPDIR is typically used on UNIX™

platforms, TEMP and TMP are used on Windows™)

On desktop and server platforms, consider using DBTEMP to define the temp file directory for runtime
system temporary files.

On mobile devices, there is no need to define the TMPDIR (or DBTEMP) environment variable: The
runtime system will automatically use the appropriate temporary directory within the app sandbox file
system.

Database client environment variables

Programs connecting to a database server use a database driver that in turn uses a database client
library. The database client software usually needs configuration settings that are defined with environment
variables. Database client environment variable define information such as installation directory of the
client software, localization settings, temporary directory, and more.

Refer to the database client software documentation for the required environment variable settings.

Genero environment variables

This section lists and describes in detail all Genero specific environment variables.

• DBCENTURY on page 174
• DBDATE on page 174
• DBDELIMITER on page 175
• DBEDIT on page 175
• DBFORMAT on page 176
• DBMONEY on page 178
• DBPATH on page 179
• DBPRINT on page 179
• DBSCREENDUMP on page 180
• DBSCREENOUT on page 180
• DBTEMP on page 180
• FGL_LENGTH_SEMANTICS on page 180
• FGLAPPDIR on page 181
• FGLAPPSERVER on page 181
• FGLDBPATH on page 181
• FGLDIR on page 181
• FGLGUI on page 181
• FGLGUIDEBUG on page 181
• FGLIMAGEPATH on page 182
• FGLLDPATH on page 184
• FGLPROFILE on page 184
• FGLRESOURCEPATH on page 184
• FGLSERVER on page 185
• FGLSOURCEPATH on page 185
• FGLSQLDEBUG on page 185
• FGLWRTUMASK on page 186

Configuration | 174

• FGLWSDEBUG on page 186
• INFORMIXTERM on page 186

DBCENTURY
Specifies the expansion for the century in DATE and DATETIME values.

The DBCENTURY environment variable specifies how to expand abbreviated one- and two-digit year
specifications within DATE and DATETIME values, especially during field input.

Important: The DBCENTURY environment variable is also used by the IBM® Informix® database
client and server to make date to string conversions.

Default value is "R" (prefix the entered value with the first two digits of the current year).

Values are case sensitive; only the four uppercase letters are valid.

Table 92: DBCENTURY valid values

Symbol Algorithm for Expanding Abbreviated Years

C
Use the past, future, or current year closest to the
current date.

F
Use the nearest year in the future to expand the
entered value.

P
Use the nearest year in the past to expand the
entered value.

R
Prefix the entered value with the first two digits of
the current year.

If a year is entered as a single digit, it is first expanded to two digits by prefixing it with a zero;
DBCENTURY then expands this value to four digits.

Three-digit years are not expanded.

Years before 99 AD (or CE) require leading zeros (to avoid expansion).

If the database server and the client system have different settings for DBCENTURY, the client system
setting takes precedence for abbreviations of years in dates entered through the application. Expansion
is sensitive to the time of execution and to the accuracy of the system clock-calendar. You can avoid the
need to rely on DBCENTURY by requiring the user to enter four-digit years or by setting the CENTURY
attribute in the form specification of DATE and DATETIME fields.

DBDATE
Defines the default display and input format for DATE values.

The DBDATE environment variable defines the default display and input format for DATE values.

Important: The DBDATE environment variable is also used by the IBM® Informix® database client
and server to make date to string conversions.

DBDATE defines the order of the month, day, and year time units within a string representing a date with
numeric month and day such as "24/04/2014".

Values of DBDATE must be a restricted combination of symbols representing the position of the year
(Yn), month (M) and day (D), the separator and some optional configuration options. For example, DMY4/
defines a date format with the day unit at the first position, followed by the month and the year (on 4 digits):
"dd/mm/yyyy".

The separator always goes at the end of the format string (for example, DMY2/). If no separator or an
invalid character is specified, the slash (/) character is the default. Specifying a 0 (zero) as separator
indicates that no separator is used.

Configuration | 175

The default value of DBDATE depends on the type of platform: On destkop/server platforms, the default
setting for DBDATE is: MDY4/. On mobile platforms, DBDATE defaults to the regional settings defined on
the device.

Table 93: Valid DBDATE symbols

Symbol Meaning in DBDATE format string

D Day of month as one or two digits

M Month as one or two digits

Y2 Year as two digits

Y3 Year as three digits (Ming Guo format only)

Y4 Year as four digits

/ Default time-unit separator for the default locale

C1 Ming Guo format modifier (years as digits)

- Hyphen time-unit separator

. Period time-unit separator

0 Indicates no time-unit separator

The combinations must follow a specific order:

 { DM | MD } { Y2 | Y3 | Y4 } { / | - | . | 0 } [C1]
 { Y2 | Y3 | Y4 } { DM | MD } { / | - | . | 0 } [C1]

When a form field and its corresponding variable are defined with the DATE type, values will be displayed
according to the DBDATE format, except if a FORMAT attribute is defined.

The DBDATE format is also used to automatically convert a character string to/from a DATE value in
programs.

Note that DBDATE takes also effect when fetching DATE values from the database into CHAR/VARCHAR
program variables. However, it is not recommended to fetch date information into string variables, you
should use DATE or DATETIME variables instead.

The C1 modifier can be used at the end of the DBDATE value in order to use Ming Guo date format with
digit-based years. When using C1, you can use one of the Y4, Y3 or Y2 symbols for the year.

A Gregorian date format can look like "DMY4/", while a Ming Guo date format would look like "Y3MD/C1".

Date formatting specified in a USING clause or FORMAT attribute overrides the formatting specified in
DBDATE.

DBDELIMITER
Defines the value separator for unload data files.

The DBDELIMITER environment variable defines the value delimiter for LOAD and UNLOAD instructions.

If DBDELIMITER is not defined, the default delimiter is a (|) pipe.

Do not use backslash or hex digits (0-9, A-F, a-f).

DBEDIT
Defines the editor program for TEXT fields in TUI mode.

The DBEDIT environment variable defines the editor program to modify the values of form fields defined
with the TEXT data type, when running programs on dumb terminals.

Configuration | 176

DBFORMAT
Defines currency symbol, decimal and thousands separator for input and display of numeric values.

The DBFORMAT environment variable defines the input and display format for numeric values.

Important:

• When defined, the DBFORMAT environment variable takes precedence over DBMONEY.
• The DBFORMAT environment variable is also used by the IBM® Informix® database client and

server to make date to string conversions.

The value of a DBFORMAT variable must use the following syntax:

front:thousands:decimal:back

1. front is the leading currency symbol, can be an asterisk (*).
2. thousands is a character that you specify as a valid thousands separator, can be an asterisk (*).
3. decimal is a character that you specify as a valid decimal separator.
4. back is the trailing currency symbol, can be an asterisk (*).

DBFORMAT takes precedence over DBMONEY.

If neither DBMONEY, nor DBFORMAT are defined, the default numeric formatting depends on the type of
platform where the runtime system executes:

• On destkop/server platforms, the default numeric format defines the (,) comma as thousands
separator, the (.) dot as decimal separator, and the ($) dollar sign as front currency symbol for
MONEY values. This corresponds to DBMONEY="$.", or DBFORMAT="$:,:.:".

• On mobile platforms, the numeric format defaults to the regional settings defined on the device.
Normally, there is no need to modify these defaults.

DBFORMAT can be set to define the input and display format for values of these types:

• MONEY (thousands separator, decimal separator and currency symbol)
• DECIMAL (thousands separator, decimal separator)
• SMALLFLOAT (thousands separator, decimal separator)
• FLOAT (thousands separator, decimal separator)
• SMALLINT (thousands separator)
• INTEGER (thousands separator)
• BIGINT (thousands separator)

DBFORMAT can specify the leading and trailing currency symbols (but not their default positions within
a monetary value) and the decimal and thousands separators. The decimal and thousands separators
defined by DBFORMAT apply to both monetary and other numeric data.

The instructions affected by the setting in DBFORMAT include (but are not restricted to) these items:

• USING operator.
• FORMAT field attribute.
• DISPLAY or PRINT statement (default formatting of numeric values).
• LET statement, where a CHAR, VARCHAR or STRING variable is assigned a monetary or number value.
• LOAD and UNLOAD statements that use ASCII files (or whatever the locale regards as a flat file) to pass

data to or from the database.

The asterisk (*) specifies that a symbol or separator is not applicable; it is the default for any front,
thousands, or back term that you do not define.

If you specify more than one character for decimal or thousands, the values in the decimal or thousands list
cannot be separated by spaces (nor by any other symbols). However, only the first character will be used
to display numeric or currency values, when converting strings to numbers and when entering values in
form fields.

Configuration | 177

Any printable character that your locale supports is valid for the thousands separator or for the decimal
separator, except:

• Digits (0, 1, 2, 3, 4, 5, 6, 7, 8, 9)
• <, >, |, ?, !, =, [,]

The same character cannot be both the thousands and decimal separator. A blank space (ASCII 32) can
be the thousands separator (and is conventionally used for this purpose in some locales). The asterisk (*)
symbol is valid as the decimal separator, but is not valid as the thousands separator.

Enclosing the DBFORMAT specification in a pair of single quotation marks is recommended to prevent the
shell from attempting to interpret (or execute) any of the DBFORMAT characters.

The setting in DBFORMAT affects how formatting masks of the FORMAT attribute and USING operator are
interpreted. In formatting masks of FORMAT and USING, these symbols are not literal characters but are
placeholders for what DBFORMAT specifies:

• The dollar ($) sign is a placeholder for the front currency symbol.
• The comma (,) is a placeholder for the thousands separator.
• The period (.) is a placeholder for the decimal separator.
• The at (@) sign is a placeholder for the back currency symbol.

This table illustrates the results of different combinations of DBFORMAT setting and format string on the
same value.

Table 94: Results of combinations of DBFORMAT setting and format string on the same value

Value Format String DBFORMAT Result

1234.56 $#,###.## $:,:.: $1,234.56

1234.56 $#,###.## :.:,:DM 1.234,56

1234.56 #,###.##@ $:,:.: 1,234.56

1234.56 #,###.##@ :.:,:DM 1.234,56DM

When the user enters numeric or currency values in fields, the runtime system behaves as follows:

• If a symbol is entered that was defined as a decimal separator in DBFORMAT, it is interpreted as the
decimal separator.

• For MONEY fields, it disregards any front (leading) or back (trailing) currency symbol and any thousands
separators that the user enters.

• For DECIMAL fields, the user must enter values without currency symbols.

When the runtime system displays or prints values:

• The DBFORMAT-defined leading or trailing currency symbol is displayed for MONEY values.
• If a leading or trailing currency symbol is specified by the FORMAT attribute for non-MONEY data types,

the symbol is displayed.
• The thousands separator is not displayed unless it is included in a formatting mask of the FORMAT

attribute or of the USING operator.

When MONEY values are converted to character strings by the LET statement, both automatic data type
conversion and explicit conversion with a USING clause insert the DBFORMAT-defined separators and
currency symbol into the converted strings.

Configuration | 178

For example, suppose DBFORMAT is set as follows:

*:.:,:SFr

The value 1234.56 will print or display as follows:

1234,56SFr

Here SFr stands for the Swiss Franc currency symbol. Values input by the user into a screen form
are expected to contain commas, not periods, as their decimal separator because DBFORMAT has
*:.:,:SFr as its setting in this example.

When using a graphical front-end, the decimal separator of the numeric keypad will produce the character
defined by this environment variable.

DBMONEY
Defines currency symbol and decimal separator for input and display of numeric values, when DBFORMAT
is not defined.

The DBMONEY environment variable defines the currency symbol and the decimal separator for numeric
values.

Important:

• When defined, the DBFORMAT environment variable takes precedence over DBMONEY.
• The DBMONEY environment variable is also used by the IBM® Informix® database client and

server to make date to string conversions.

The value of a DBMONEY variable must use the following syntax:

front{.|,}back

1. front is a character string representing a leading currency symbol that precedes the value.
2. back is a character string representing a trailing currency symbol that follows the value.

If neither DBMONEY, nor DBFORMAT are defined, the default numeric formatting depends on the type of
platform where the runtime system executes:

• On destkop/server platforms, the default numeric format defines the (,) comma as thousands
separator, the (.) dot as decimal separator, and the ($) dollar sign as front currency symbol for
MONEY values. This corresponds to DBMONEY="$.", or DBFORMAT="$:,:.:".

• On mobile platforms, the numeric format defaults to the regional settings defined on the device.
Normally, there is no need to modify these defaults.

DBMONEY can only define the currency symbol and decimal separator characters must be specified in
this environment variable. If you want to define the thousands separator, use the DBFORMAT environment
variable instead. However, if only DBMONEY is used, an implicit thousands separator is selected.

The currency symbol in DBMONEY can be up to seven characters long and can contain any character
except a comma or a period. It can be non-ASCII characters if the current locale supports a code set that
defines the non-ASCII characters you use.

The DBMONEY environment variable can be set to define the input and display format for values of the
following types:

• MONEY (thousands separator, decimal separator and currency symbol)
• DECIMAL (thousands separator, decimal separator)
• SMALLFLOAT (thousands separator, decimal separator)
• FLOAT (thousands separator, decimal separator)
• SMALLINT (thousands separator)
• INTEGER (thousands separator)

Configuration | 179

• BIGINT (thousands separator)

Numeric values will be displayed in forms and reports according to this environment variable.

DBMONEY will also be used for implicit data conversion between numeric values and character strings.

The position of the currency symbol (relative to the decimal separator) indicates whether the currency
symbol appears before or after the MONEY value. When the currency symbol is positioned in DBMONEY
before the decimal separator, it is displayed before the value ($1234.56). When it is positioned after the
decimal separator, it is displayed after the value (1234.56F).

The runtime system recognizes the period (.) and the comma (,) as decimal separators. All other
characters are considered to be part of the currency symbol. For example, ", FR" defines a MONEY format
with the comma as decimal separator and the string " FR" (including the space) as the currency symbol.

Because only its position within a DBMONEY setting indicates whether a symbol is the front or back
currency symbol, the decimal separator is required. If you use DBMONEY to specify a back symbol, for
example, you must supply a decimal separator (a comma or period). Similarly, if you use DBMONEY to
change the decimal separator from a period to a comma, you must also supply a currency symbol.

To avoid ambiguity in displayed numbers and currency values, do not use the thousands separator of
DBFORMAT as the decimal separator of DBMONEY. For example, specifying comma as the DBFORMAT
thousands separator dictates using the period as the DBMONEY decimal separator.

When using a graphical front-end, the decimal separator of the numeric keypad will produce the character
defined by this environment variable.

DBPATH
Defines the paths to search for Genero program resource files.

For IBM® Informix® 4GL compatibility, DBPATH is used by the runtime system to find resource files such
as form definitions.

Important: The DBPATH environment variable is also used by the IBM® Informix® SE
engine and SQLite, to define the path list to find database files. Genero has introduced the
FGLRESOURCEPATH environment variable to not interfer with the database DBPATH settings.
Consider dedicating DBPATH for database configurations, and use the FGLRESOURCEPATH to
define program resource path list.

When FGLRESOURCEPATH is not defined, DBPATH environment variable is used to define the search
paths for:

1. Form files loaded (.42f),
2. Message files (.iem),
3. Action defaults files (.4ad),
4. Presentation styles files (.4st),
5. Start menu files (.4sm),
6. Toolbar files (.4tb),
7. Topmenu files (.4tm),
8. Compiled localized strings files (.42s).

By the default, the runtime system looks for resource files is the current directory.

DBPATH must contain a list of paths, separated by the operating system specific path separator.

The path separator is platform specific (":" on UNIX™ platforms and ";" on Windows™ platforms).

DBPRINT
Defines the print device to be used by reports.

The DBPRINT environment variable specifies the print device to be used by reports defined TO PRINTER.

Configuration | 180

On UNIX™ systems, the DBPRINT environment variable typically contains the printer queue command
(such as lp).

To have the runtime system print to the printer on the client running the Genero Desktop Client (GDC), set
DBPRINT=FGLSERVER.

DBSCREENDUMP
Defines the output file name for text screen shots.

The DBSCREENDUMP environment variable defines the output file name for text screen shots when
pressing Ctrl-P.

When using the TUI mode, if the user pressed the Ctrl-P key, the runtime system will dump the current
screen into the file defined by this variable.

Unlike DBSCREENOUT, the output of DBSCREENDUMP includes the escape sequences of TTY
attributes, which makes it less readable.

DBSCREENOUT
Defines the output file name for text screen shots.

The DBSCREENOUT environment variable defines the output file name for text screen shots when
pressing Ctrl-P.

When using the TUI mode, if the user pressed the Ctrl-P key, the runtime system will dump the current
screen into the file defined by this variable.

Unlike DBSCREENDUMP, the output of DBSCREENOUT excludes the escape sequences of TTY
attributes.

DBTEMP
Defines the directory for temporary files.

The DBTEMP environment variable defines the directory for temporary files created by the runtime system.

Important: The DBTEMP environment variable is also used by the IBM® Informix® database client
and server for temporary files.

This environment variable is use to create temporary files for:

1. TEXT or BYTE data located in a temporary file (LOCATE IN FILE without file name specification).
2. Temporary files of emulated scrollable cursors when the database engine does not support this feature.
3. Temporary file name generation with os.Path.makeTempName().
4. Temporary files created by the Web Services API, such as com.HTTPResponse.getFileResponse on

page 2073.

On mobile devices, do not set DBTEMP environment variable: The runtime system will automatically use
the appriopriate temporary directory withing the app sandbox file system.

FGL_LENGTH_SEMANTICS
Defines the length semantics to be used in programs.

Define the FGL_LENGTH_SEMANTICS environment variable to specify byte or character length
semantics, by setting the value to BYTE or CHAR, respectively.

If the variable is not set, byte length semantics will be used by default.

When using a single-byte character set such as ISO-8859-1, use byte length semantics (the default). If the
application character set is UTF-8, you should use char length semantics.

Configuration | 181

FGLAPPDIR
Contains the path to the application directory when executing on a mobile device.

When executing on mobile devices, the FGLAPPDIR environment variable is an automatic environment
variable that contains the path to the appdir directory, containing application program files (.42m, .42f,
and other resources).

This variable is typically used to define environment variables with mobile.environment FGLPROFILE
entries, relative to the mobile appdir where application program files and resources are located.

Note: During development (when executing programs on a server), consider defining the
FGLAPPDIR in the shell environment, along with the other environment variables that are defined
with mobile.environment entries, as these are only read when executing on mobile devices.

FGLAPPSERVER
Defines the listening port of the Web service in development context.

The FGLAPPSERVER environment variable defines the port on which the web service server will be
started.

During development, define this environment variable before starting the web service server program, to let
web service clients connect directly to the runtime system.

In production, Genero Application Server (GAS) is used to deploy web services servers. The GAS will
automatically set FGLAPPSERVER. Do not manually set FGLAPPSERVER when GAS is involved.

FGLDBPATH
Defines the path to database schema files for compilers.

The fglcomp and fglform compilers need database schema files to compile source modules and forms. The
path to the database schema files can be specified with FGLDBPATH.

If FGLDBPATH is not defined, the current directory is the default path for the database schema files. You
can provide a list of paths, separated by the operating system specific path separator. FGLDBPATH is only
used in development.

FGLDBPATH must contain a list of paths, separated by the operating system specific path separator. The
path separator is ":" on UNIX™ platforms and ";" on Windows™ platforms.

FGLDIR
Defines the installation directory of Genero Business Development Language.

The FGLDIR environment variable defines the installation directory of the runtime system and compilers of
Genero.

When executing on a mobile device, the FGLDIR environment variable is automatically set by the front-end
component, before starting the runtime system component. As result, it is possible to use the $FGLDIR
keyword in FGLPROFILE environment variable settings when executing on mobile devices.

FGLGUI
Defines the user interface mode to be used by the program.

The FGLGUI environment variable indicates whether the applications are run in TUI or GUI mode.

When set to 0 (zero), the application executes in TUI mode.

When set to 1 (one, the default), the application executes in GUI mode and needs a front-end to display
application windows.

FGLGUIDEBUG
Defines the debug level in GUI mode.

The FGLGUIDEBUG environment variable defines the debug level, when the GUI mode is used by the
program.

Configuration | 182

By setting FGLGUIDEBUG to 1, the runtime system will display AUI protocol exchanges in the stderr
output of the console running the program on the server.

The runtime system displays detailed information about user interface events that occur during program
execution.

FGLIMAGEPATH
Defines the search paths for VM server image files.

FGLIMAGEPATH basics

The FGLIMAGEPATH environment variable is used by the runtime system, to find image resources on the
server where the program executes, when the image name specified in the form element is not an URL
that can be directly resolved and fetched by the front-end.

Image resources found through FGLIMAGEPATH will be transmitted to the front-end for display.

FGLIMAGEPATH defines a list of directories and/or image-to-font-glyph mapping files: If a path of
FGLIMAGEPATH is a directory, it will be used for image file and font file lookup. If the element is a file
name, it will be used as an image-to-font-glyph mapping file.

FGLIMAGEPATH setting on mobile devices

When executing on a mobile device, the environment variables must be defined with
mobile.environment FGLPROFILE entries. The FGLAPPDIR and FGLDIR environment variables
are automatically defined by the front-end component, and can be referenced with the $FGLAPPDIR and
$FGLDIR placeholders, when defining FGLIMAGEPATH in FGLPROFILE:

mobile.environment.FGLIMAGEPATH = "$FGLAPPDIR/myimages:$FGLAPPDIR/icons/
myimage2font.txt:$FGLDIR/lib/image2font.txt"

For more details about environment variable settings for mobile apps, see Setting environment variables in
FGLPROFILE (mobile) on page 170.

Default behavior when FGLIMAGEPATH is not defined

If the FGLIMAGEPATH environment variable is not defined, the runtime system will by default:

• Find image resource files in the current working directory where the BDL program executes.

Note: When executing the app on an iOS device, instead of searching the current working
directory, image resources are by default found in the appdir directory.

• Use FGLDIR/lib/image2font.txt along with FGLDIR/lib/FontAwesome.ttf, for image to font
glyph mapping (to get default icons).

Order of precedence in FGLIMAGEPATH

It is possible to mix several image file directories with several image-to-font-glyph mapping files in
FGLIMAGEPATH:

The list of mapping files and directories defines the order of precedence to resolve conflicts, when several
image names can resolve to several image resources.

For example, if a form element defines an image as "smiley", and if FGLIMAGEPATH is defined as:

/opt/myapp/images:/opt/myapp/image2font.txt

If the /opt/myapp/images directory contains an image file "smiley.png", and the /opt/myapp/
image2font.txt file contains a mapping for "smiley", the "smiley.png" file from /opt/myapp/
images will be selected by the runtime system.

Configuration | 183

If FGLIMAGEPATH is defined as follows:

/opt/myapp/image2font.txt:/opt/myapp/images

The mapping for smiley to font glyph would take precedence.

FGLIMAGEPATH syntax

FGLIMAGEPATH must contain a list of paths, separated by the operating system specific path separator.
The path separator is ":" on UNIX™ platforms and ";" on Windows™ platforms.

For example, on UNIX:

$ export FGLIMAGEPATH="/var/myapp/myimages:$FGLDIR/lib/image2font.txt"

Image-to-font-glyph mapping

Image names can be mapped to font glyphs when at least one file path is specified in FGLIMAGEPATH.
The runtime system distinguishes file paths (as image-to-font-glyph mapping files), from directory paths (as
locations to file plain image files and font files).

Important: The directory to the font file must be specified in FGLIMAGEPATH, except if the font
file is located in the same directory as the mapping file.

A default mapping file ("image2font.txt") and its corresponding font file ("FontAwesome.ttf") are
provided in FGLDIR/lib. If FGLIMAGEPATH is not defined, the runtime system will use these files to
make the image to font glyph mapping.

Important: When providing your own customized font file, it must be a valid TTF file. For example,
changing the file name is not sufficient to turn it into another different font: In order to produce a
valid TTF file, use font management tools such as FontForge (http://fontforge.github.io/en-US/)
or Fontello (http://fontello.com). Further, to target Microsoft Internet Explorer (version 11), you will
need to patch the generated TTF file to remove embedding limitations from TrueType fonts, by
setting the fsType field in the OS/2 table to zero. This modification can be done with freeware tools
like ttembed

The image-to-font-glyph mapping file must have the following syntax:

image-name=font-file:hexa-ordinal[:color-spec]

where:

1. image-name - is the name of the image to be mapped to a font character.
2. font-file - is the file name containing the font definitions.
3. hexa-ordinal - is the font glyph position in the font file, in hexadecimal notation.
4. color-spec - is the color to be used, in RGB hexadecimal format or as color alias as defined in

presentation style colors. This field is optional: If not specified, the glyph will be displayed in a default
color according to the front-end platform.

Lines starting with the # sharp character are considered as comment lines and ignored.

For example:

Common icons
camera=FontAwesome.ttf:f030
file=FontAwesome.ttf:f0f6:#8B0000
smiley=FontAwesome.ttf:f118:yellow
Traffic lights
circle-red=FontAwesome.ttf:f111:red
circle-orange=FontAwesome.ttf:f111:orange

http://fontforge.github.io/en-US/
http://fontello.com
https://github.com/hisdeedsaredust/ttembed

Configuration | 184

circle-green=FontAwesome.ttf:f111:green

FGLIMAGEPATH and gICAPI web components

For applications executing on a server and displaying on GDC/GMA/GMI front-ends in client/server mode
(not through the GAS), you can use the FGLIMAGEPATH environment variable to locate the HTML
files of gICAPI web components on the server. Like image resources, the web component files will be
automatically transferred to the front-end.

FGLLDPATH
Defines the search paths to load program modules.

The FGLLDPATH environment variable defines the search paths to load C extensions and modules, and
by default to find sources with the debugger.

A program can be composed by several p-code modules (.42m) and can use C extensions. When linking
and when executing the program, the runtime system must known where to search for these modules. You
can use the FGLLDPATH environment variable to define the search paths to load C extensions and p-code
modules.

FGLLDPATH must contain a list of paths, separated by the operating system specific path separator. The
path separator is ":" on UNIX™ platforms and ";" on Windows™ platforms.

The FGLLDPATH variable is used at link time and at run time.

The directories are searched for the modules in the following order:

1. The current directory.
2. The directory where the program (.42r) file resides.
3. A path defined in the FGLLDPATH environment variable.
4. The FGLDIR/lib directory.

If FGLSOURCEPATH is not defined, the debugger will use FGLLDPATH to find program sources.

FGLPROFILE
Defines the configuration files to be used by the runtime system.

Usage

The FGLPROFILE environment variable defines a list of configuration files to be used by the runtime
system.

If FGLPROFILE is not set, the runtime system reads entries from the default configuration file located in
FGLDIR/etc/fglprofile.

FGLPROFILE can define one unique configuration file, or a list of files to be loaded sequentially.

FGLPROFILE must contain a list of file paths, separated by the operating system specific path separator.
The path separator is ":" on UNIX™ platforms and ";" on Windows™ platforms.

Note: On mobile devices, it is not possible to define environment variables. To specify a custom
fglprofile file for a mobile application, you must deploy a file with the name "fglprofile" in the
appdir directory, along with the other application program files (.42m, .42f, and so on). Only one
custom fglprofile file can be deployed for a given mobile application.

FGLRESOURCEPATH
Defines search path for resource files.

The FGLRESOURPATH environment variable is used to define the search paths for:

1. Form files loaded (.42f),
2. Message files (.iem),

Configuration | 185

3. Action defaults files (.4ad),
4. Presentation styles files (.4st),
5. Start menu files (.4sm),
6. Toolbar files (.4tb),
7. Topmenu files (.4tm),
8. Compiled localized strings files (.42s).

For compatibility with Informix® 4GL, DBPATH is used by default to search for resource files such as
form files and XML files used by the program. However, DBPATH is also used by the Informix® database
software to locate databases: Informix® Dynamic Server uses DBPATH to let you specify fallback servers
if INFORMIXSERVER is not available, and former Informix® Standard Engine needs DBPATH to find .dbs
database files. This can be a problem when connecting from a machine where path format is not the same
as on the remote database server: It is not possible to mix UNIX™ and DOS path formats in DBPATH. To
work around this Informix® limitation, FGLRESOURCEPATH can be used instead of DBPATH to specify
the directories of program resource files. You are then free to define DBPATH as Informix® requires.

The path separator is platform specific (":" on UNIX™ platforms and ";" on Windows™ platforms).

By the default, the runtime system looks for resource files is the current directory.

On mobile platforms, localize string files are searched by default in the language sub dirs of the app
directory. For more details, see Using localized strings at runtime on page 331.

FGLSERVER
Defines the graphical front-end form the application.

In GUI mode, FGLSERVER defines the hostname and port of the graphical front end the runtime system
will connect to in order to display application forms.

The values for the FGLSERVER environment variable must be specified with the following syntax:

{hostname|ipaddress}[:servnum]

1. hostname is the name of a machine on the network.
2. ipaddress is the IP V4 address (Ex: 10:0:0:105).
3. servnum identifies the front end.

The servnum parameter defines the front end server number (first is 0, second is 1, and so on). This
defines implicitly the TCP port number the front end is listening to, as an offset for the base port 6400. For
example, FGLSERVER=cobra:1 will use the TCP port 6401 (6400 + 1). This parameter is optional, when
not specified, it defaults to zero (i.e. port 6400).

FGLSOURCEPATH
Defines the path to program source files.

The debugger needs to access the source files to display program code. By default, the current directory
and the directories defined by FGLLDPATH are searched for the source files.

FGLSOURCEPATH must contain a list of paths, separated by the operating system specific path
separator. The path separator is ":" on UNIX™ platforms and ";" on Windows™ platforms.

FGLSQLDEBUG
Defines the debug level for tracing SQL instructions.

If FGLSQLDEBUG is set to a value greater than zero, you get a debug trace in the standard error channel
for every SQL instruction executed by the program.

FGLSQLDEBUG should only be used in development, or on a production site in order to identify a problem
related to SQL statements.

Configuration | 186

FGLWRTUMASK
Defines the umask to be used by the license manager.

The FGLWRTUMASK environment variable is used by the fglWrt license manager to create the FGLDIR/
lock directory.

This variable defines the umask to create the FGLDIR/lock directory.

The default is 000, which creates a directory with rwxrwxrwx rights.

FGLWSDEBUG
The FGLWSDEBUG environment variable enables web services library debugging.

Set the FGLWSDEBUG environment variable to turn on debug information display in the web services
library.

Table 95: FGLWSDEBUG variable values

Value Definition

0 No data displayed; debug turned off.

1 Display socket errors.

2 Display HTTP bodies of incoming and outgoing requests (the XML content)

3 Display all information about incoming and outgoing requests (HTTP headers +
HTTP bodies)

INFORMIXTERM
Defines terminal control library to be used.

The INFORMIXTERM environment variable indicates what terminal capabilities database must be used by
the runtime system when running a program in TUI mode on a dumb terminal.

Possible values of INFORMIXTERM are terminfo and termcap. If the variable is not set, it defaults to
termcap.

When set to termcap (the default), the runtime system reads terminal capabilities from the file defined by
the TERMCAP environment variable.

When set to terminfo, the runtime system reads terminal capabilities from the terminfo database of the
system (ncurses).

Configuring the front-end connection
In order to execute a Genero program with a graphical user interface, you need to specify the front-end
(i.e. the graphical server) to the runtime system.

In development mode, the target front-end is defined with the FGLSERVER environment variable.
However, there are various technologies to render a Genero application, according to the front-end
platform (PC, mobile device, web browser).

Details about front-end configuration for the runtime system can be found the user interface basics chapter
of this manual.

Configuring the database server connections
Before running a Genero program using a database, you must configure the connection parameters to
access the database server.

Configuration | 187

There are different solutions to define database connection parameters, consider using and indirect
database connection configuration, by using an abstract database name in programs, and define the real
database source, driver with FGLPROFILE entries.

The database configuration details can be found the SQL support chapter of this manual.

Language basics | 188

Language basics

These topics cover the basics for the Genero Business Development Language

• Syntax features on page 188
• Data types on page 191
• Type conversions on page 211
• Literals on page 225
• Expressions on page 229
• Operators on page 234
• Flow control on page 267
• Functions on page 278
• Variables on page 281
• Constants on page 291
• Records on page 294
• Arrays on page 296
• Types on page 303

Syntax features
Genero BDL is an English-like programming language, easy to write and read.

• Lettercase insensitivity on page 188
• Whitespace separators on page 189
• Quotation marks on page 189
• Escape symbol on page 189
• Statement terminator on page 190
• Comments on page 190
• Identifiers on page 191
• Preprocessor directives on page 191

Lettercase insensitivity
Genero Business Development Language (BDL) is case insensitive, making no distinction between
uppercase and lowercase letters, except within quoted strings.

Use pairs of double (") or single (') quotation marks in the code to preserve the lettercase of character
literals, filenames, and names of database entities.

You can mix uppercase and lowercase letters in the identifiers that you assign to language entities, but any
uppercase letters in identifiers are automatically shifted to lowercase during compilation.

It is strongly recommended that you define a naming convention for your projects. For example, you can
use underscore notation (get_user_name). If you plan to use the Java™ notation (getUserName), do not
forget that Genero BDL is case insensitive (getusername is the same identifier as getUserName).

With Genero BDL you can import and use Java™ classes and objects in BDL code. Genero BDL is case-
sensitive regarding Java™ elements.

Language basics | 189

Whitespace separators
Genero Business Development Language (BDL) is free-form, like C or Pascal, and generally ignores TAB
characters, LINEFEED characters, comments, and extra blank spaces between statements or statement
elements. You can freely use these whitespace characters to enhance the readability of your source code.

Blank (ASCII 32) characters act as delimiters in some contexts. Blank spaces must separate successive
keywords or identifiers, but cannot appear within a keyword or identifier. Pairs of double (") or single (')
quotation marks must delimit any character string that contains a blank (ASCII 32) or other whitespace
character, such as LINEFEED or RETURN.

Quotation marks
In the Genero BDL language, string literals are delimited by single (') or double (") quotation marks.

'Valid character string'
"Another valid character string"

Do not mix double and single quotation marks as delimiters of the same string. The following is not a valid
character string:

'Not A valid character string"

To include literal quotation marks within a quoted string, precede each literal quotation mark with the
backslash (\), or else enclose the string between a pair of the opposite type of quotation marks:

MAIN
 DISPLAY "Type 'Y' if you want to reformat your disk."
 DISPLAY 'Type "Y" if you want to reformat your disk.'
 DISPLAY 'Type \'Y\' if you want to reformat your disk.'
END MAIN

A string literal can be written on multiple lines. The compiler merges lines by removing the newline
character.

In the SQL language, the standard specifications recommend that you use single quotes for string literals
and double quotes for database object identifiers like table or column names. When accessing a non-
Informix database, double quotation marks might not be recognized as database object name delimiters.
As a general rule, use single quoted string literals in SQL statements, and use non-quoted, lowercase
database object identifiers.

Escape symbol
The Genero Business Development Language (BDL) compiler treats a backslash (\) as the default
escape symbol, and treats the immediately following symbol as a literal, except for special characters such
as \r or \t.

See the string literals reference for the complete list.

To specify anything that includes a literal backslash, enter double (\\) backslashes wherever a single
backslash is required. Similarly, use \\\\ to represent a literal double backslash.

MAIN
 DISPLAY "\a" -- displays a
 DISPLAY "\r" -- displays CR
 DISPLAY "\n" -- displays NL
 DISPLAY "\ta" -- displays <tab>a
 DISPLAY "\\" -- displays \
 DISPLAY "\\\\" -- displays \\
END MAIN

Language basics | 190

Statement terminator
Genero Business Development Language (BDL) requires no statement terminators, but you can use the
semicolon (;) as a statement terminator in some cases.

For example, you can add a semicolon statement terminator for PREPARE and PRINT statements.

MAIN
 DISPLAY "Hello, World" DISPLAY "Hello, World"
 DISPLAY "Hello, World"; DISPLAY "Hello, World"
END MAIN

Comments
For clarity and to simplify program maintenance, it is recommended that you document your code by
including comments in your source files.

A source comment is text in the source code to assist human readers, but which BDL ignores.

You can use comment indicators during development to disable instruction temporarily, without removing
them from your source code modules.

A source comment can be specified by any of the following:

• A pair of minus signs (--) indicates a comment that terminates at the end of the current line. This
comment indicator conforms to the ANSI standard for SQL.

• The sharp (#) symbol indicates a comment that terminates at the end of the current line.
• A starting left-brace ({) starts a comment. It can be followed by any character (including line breaks).

The comment ends when the closing right-brace (}) symbol is found.

MAIN
 -- DISPLAY "This line will be ignored."
 # DISPLAY "This line will be ignored."
 {
 DISPLAY "This line will be ignored."
 DISPLAY "This line will be ignored."
 }
 DISPLAY "Hello, World"
END MAIN

Within a quoted string, the compiler interprets comment indicators as literal characters, rather than as
comment indicators.

You cannot use braces ({ }) to nest comments within comments.

Comments cannot appear in the form section defining a layout grid, such as SCREEN, TABLE, TREE, or
GRID.

The # symbol cannot indicate comments in an SQL statement block nor in the text of a prepared
statement.

You cannot specify consecutive minus signs (--) in arithmetic expressions, as BDL interprets what
follows as a comment. Instead, use a blank space or parentheses to separate consecutive arithmetic
minus signs.

Do not follow the -- comment indicator with the sharp (#) symbol, unless you intend to compile the same
source file with the Informix® 4GL product. The --# specific comment indicator is used to distinguish
Informix® 4GL code from Genero BDL code. This conditional code compilation technique can be inverted
by enclosing code blocks between --#{ and --#} comments:

MAIN
 --# DISPLAY "Ignored by I4GL, but compiled with BDL."
 --#{

Language basics | 191

 DISPLAY "Ignored by BDL, but compiled with I4GL."
 --#}
END MAIN

To summarize:

• Code lines starting with --# are compiled with Genero BDL, but ignored by Informix® 4GL.
• Code blocks surrounded with --#{ and --#} are compiled with Informix® 4GL, but ignored by Genero

BDL.

Identifiers
A Genero Business Development Language (BDL) identifier is a character string that is declared as the
name of a program entity.

Identifiers must conform to the following rules:

• It must include at least one character, without any limitation in size.
• Only ASCII letters, digits, and underscore (_) symbols are valid.
• Blanks, hyphens, and other non-alphanumeric characters are not allowed.
• The initial character must be a letter or an underscore.
• Common identifiers are not case sensitive, so my_Var and MY_vaR both denote the same identifier.

However, in some cases, identifiers are case sensitive (like action names in the AUI tree). It is
recommended to always write identifiers in lower case to avoid mistakes.

Within non-English locales, BDL identifiers can include non-ASCII characters in identifiers, if those
characters are defined in the code set of the current locale. In multibyte East Asian locales that support
languages whose written form is not alphabet-based (such as Chinese, Japanese, or Korean), an identifier
does not need to begin with a letter. It is however recommended to program in ASCII.

Preprocessor directives
Genero Business Development Language (BDL) supports preprocessing instructions, which allow you to
write macros and conditional compilation rules.

&include "myheader.4gl"
FUNCTION debug(msg)
 DEFINE msg STRING
&ifdef DEBUG
 DISPLAY msg
&endif
END FUNCTION

Note: Use the preprocessor with care, and only when there is no native language solution. Do not
overcrowd your source code with preprocessing directive, that would make the code unreadable
and unmaintainable.

Data types
Selecting the correct data type assists you in the input, storage, and display of your data.

Table 96: Genero Business Development Language data types

Data type Description

BIGINT 8 byte signed integer

BOOLEAN TRUE/FALSE boolean

BYTE Large binary data (images)

Language basics | 192

Data type Description

CHAR[(n)] Fixed size character strings

DATE Simple calendar dates

DATETIME q1 TO q2 High precision date and hour data

DECIMAL[(p[,s])] High precision decimals

FLOAT[(p)] 8 byte floating point decimal

INTEGER 4 byte signed integer

INTERVAL q1 TO q2 High precision time intervals

MONEY[(p[,s])] High precision decimals with currency formatting

SMALLFLOAT 4 byte floating point decimal

SMALLINT 2 byte signed integer

STRING Dynamic size character strings

TINYINT 1 byte signed integer

TEXT Large text data (plain text)

VARCHAR[(n[,r])] Variable size character strings

BIGINT
The BIGINT data type is used for storing very large whole numbers.

Syntax

BIGINT

Usage

The storage of BIGINT variables is based on 8 bytes of signed data (= 64 bits).

The value range is from -9,223,372,036,854,775,807 to +9,223,372,036,854,775,807.

BIGINT variables can be initialized with integer literals:

MAIN
 DEFINE i BIGINT
 LET i = 9223372036854775600
 DISPLAY i
END MAIN

When assigning a whole number that exceeds the BIGINT range, the overflow error -1284 will be raised.

BIGINT variables are initialized to zero in functions, modules and globals.

Data type conversion can be controlled by catching the runtime exceptions. For more details, see Handling
type conversion errors on page 216.

Language basics | 193

BYTE
The BYTE data type stores any type of binary data, such as images or sounds.

Syntax

BYTE

Usage

A BYTE or TEXT variable is a handle for a large object (LOB), that is stored in a file or in memory. Such
data type is a complex type that cannot be used like INTEGER or CHAR basic types: It is designed to
handle a large amount of data and has different semantics as simple types. The main difference with
simple data types, is the fact that you must specify the storage with the LOCATE instruction, before using
BYTE and TEXT variables.

The maximum size of data that can be handled by BYTE and TEXT variable is theoretically 2^31 bytes
(~2.14 Gigabytes), but the practical limit depends from the disk or memory resources available to the
process.

BYTE and TEXT variable must be initialized with the LOCATE instruction before usage. The LOCATE
instruction basically defines where the large data object has to be stored (in a named file, in a temporary
file, or in memory). This instruction will actually allow you to fetch a LOB into memory or into a file, or insert
a LOB from memory or from a file into the database. When located in a temporary file (IN FILE), the temp
directory can be defined by the DBTEMP environment variable.

DEFINE t TEXT
LET t = "aaaa" -- invalid, t is not located
LOCATE t IN MEMORY
LET t = "aaaa" -- valid, now t is located in memory

With BYTE and TEXT types, you can insert/update/fetch large objects of the database. The native database
type to be used depends from the type of database server. After defining the storage (LOCATE) of a large
object handler, load / assign its value and use it directly in the SQL statements, or fetch data from LOB
columns of the database, like simple data types:

DEFINE t1, t2 TEXT
...
CREATE TABLE mytable (id INT, data TEXT)
...
LOCATE t1 IN MEMORY
CALL t1.readFile("lob.4gl")
INSERT INTO mytable VALUES (1, t1)
LOCATE t2 IN FILE
SELECT data INTO t2 FROM mytable WHERE id=1
...

BYTE and TEXT types implement the readFile() and writeFile() methods to read/write the
whole large object data from/to files. These methods can be used to easily interface with other software
components:

DEFINE t TEXT
LOCATE t IN MEMORY
CALL t.readFile("orig.txt")
CALL t.writeFile("copy.txt")

When initializing a BYTE or TEXT variable to NULL (INITIALIZE var TO NULL), if the variable is located
in a file, the file is truncated (file size will be zero). If the variable is located in memory, the data in memory

Language basics | 194

will be truncated. A subsequent usage of the variable (for example, FETCH INTO or LET assignment) is
still possible:

DEFINE b BYTE
LOCATE b IN FILE "picture.png"
INITIALIZE b TO NULL
-- The file "picture.png" is now empty.

Resources allocated to a BYTE or TEXT variable can be deallocated with the FREE instruction. A FREE will
remove the file if the LOB variable is located in a (named or temporary) file. When located in memory, the
FREE instruction will de-allocate the memory. After freeing the resources of a LOB variable, it must be re-
located with a LOCATE instruction:

DEFINE b BYTE
LOCATE b IN FILE
CALL t.readFile("picture.png") -- ok
FREE b
CALL t.readFile("picture.png") -- Invalid, b is not located.
LOCATE b IN MEMORY
CALL t.readFile("picture.png") -- ok

Important:

TEXT and BYTE are reference types. This implies that assigning two variables (LET, passing a
variable as parameter to a function, returning a result from a function) does not copy the value
(Only the handler is copied. As result, modifying the data with a TEXT/BYTE variable assigned from
another TEXT/BYTE variable will in fact modify the same LOB data. Further, the storage resource
(file or memory) that was used by the assigned variable becomes unreferenced and is lost:

DEFINE b1, b2 BYTE -- Could be TEXT: same behavior
LOCATE b1 IN FILE "mydata" -- reference file directly
LOCATE b2 IN MEMORY -- use memory instead of file
CALL b2.readFile("mydata") -- read file content into memory
FREE b2 -- this should be done to free memory before LET
LET b2 = b1 -- Now b2 points directly to the file (like b1)
INITIALIZE b1 TO NULL -- truncates reference file
DISPLAY IIF(b2 IS NULL, "b2 is null", "b2 is not null")
-- Displays "b2 is null"

In the next (invalid) code example, we try to save the value of the img BYTE variable in
a temporary variable (tmp), with the typical programming pattern to save the value before
modification. In fact the LET tmp=img assignment does not copy the data of the LOB like for
simple data types (STRING, VARCHAR, DECIMAL), only the reference (i.e. handle) to the data is
copied:

-- WARNING: THIS IS AN INVALID CODE EXAMPLE
DEFINE img, tmp BYTE
LOCATE img IN MEMORY
CALL img.readFile("picture1.png")
LOCATE tmp IN MEMORY
LET tmp = img -- Expecting to save the current data, but now
 -- both variables reference the same data...
CALL img.readFile("picture2.png")
LET img = tmp -- Does not restore the old value: Same data.

If you need to clone a large object, use the writeFile() / readFile() methods.

Language basics | 195

BOOLEAN
The BOOLEAN data type stores a logical value, TRUE or FALSE.

Syntax

BOOLEAN

Usage

Boolean data types have two possible values: TRUE (integer 1) and FALSE (integer 0).

Variables of this type can be used to store the result of a boolean expression:

DEFINE result BOOLEAN
LET result = (length("abcdef") > 0)

Data type conversion can be controlled by catching the runtime exceptions. For more details, see Handling
type conversion errors on page 216.

Boolean variables are typically used to store the result of a boolean expression:

FUNCTION checkOrderStatus(cid)
 DEFINE oid INT, b BOOLEAN
 LET b = (isValid(oid) AND isStored(oid))
 IF NOT b THEN
 ERROR "The order is not ready."
 END IF
END FUNCTION

Note that the database vendor specific implementation of the boolean SQL type may not correspond
exactly to the Genero BOOLEAN type. For example, IBM® Informix® SQL boolean type accepts the 't'
and 'f' values, while the BOOLEAN Genero type expects 0/FALSE and 1/TRUE integer values only.
You can however use a BOOLEAN variable in SQL statements: IBM® Informix® will handle the conversion,
and for other databases, the db drivers handle the conversion. Note also that the TRUE/FALSE constants
are Genero language constants: The SQL syntax of the database may not support these keywords, for
example in an statement such as INSERT INTO mytable (key,bcol) VALUES (455,TRUE). For
more details, see SQL portability on page 412.

CHAR(size)
The CHAR data type is a fixed-length character string data type.

Syntax

CHAR[ACTER] [(size)]

1. size defines the maximum length of the character string, in byte or char units (depending on the
character length semantics)

2. The maximum size of a CHAR type is 65534.
3. If no size is specified, it defaults to 1.

Usage

The CHAR type is typically used to store fixed-length character strings such as short codes (XB124), phone
numbers (650-23-2345), vehicle identification numbers.

CHAR and CHARACTER are synonyms.

Language basics | 196

The size can be expressed in bytes or characters, depending on the length semantics used in programs.
For more details about character length semantics, see Length semantics settings on page 314.

When size is not specified, the default length is 1.

CHAR variables are initialized to NULL in functions, modules and globals.

Text literals can be assigned to character string variables:

MAIN
 DEFINE c CHAR(10)
 LET c = "abcdef"
END MAIN

When assigning a non-NULL value, CHAR variables are always blank-padded:

MAIN
 DEFINE c CHAR(10)
 LET c = "abcdef"
 DISPLAY "[", c ,"]" -- displays [abcdef]
END MAIN

Trailing blanks of a CHAR value are not significant in comparisons:

MAIN
 DEFINE c CHAR(5)
 LET c = "abc"
 IF c == "abc" THEN -- evaluates to TRUE
 DISPLAY "equals"
 END IF
END MAIN

Numeric and date-time values can be directly assigned the character strings:

MAIN
 DEFINE c CHAR(50), da DATE, dec DECIMAL(10,2)
 LET da = TODAY
 LET dec = 345.12
 LET c = da, " : ", dec
END MAIN

When you insert character data from CHAR variables into CHAR columns in a database table, the column-
value is blank-padded to the size of the column. Likewise, when you fetch CHAR column values into CHAR
variables, the program variable is blank-padded to the size of the variable.

MAIN
 DEFINE c CHAR(10)
 DATABASE test1
 CREATE TABLE table1 (k INT, x CHAR(10))
 LET c = "abc"
 INSERT INTO table1 VALUES (1, c)
 SELECT x INTO c FROM table1 WHERE k = 1
 DISPLAY "[", vc ,"]" -- displays [abc]
END MAIN

In SQL statements, the behavior of the comparison operators when using CHAR values may vary from
one database to the other. However, most database engines ignore trailing blanks when compating CHAR
values. For more details, see SQL portability on page 412.

Language basics | 197

DATE
The DATE data type stores calendar dates with a Year/Month/Day representation.

Syntax

DATE

Usage

Storage of DATE variables is based on a 4 byte integer representing the number of days since 1899/12/31.

The value range is from 0001-01-1 (-693594) to 9999-12-31 (2958464) .

DATE variables are initialized to zero (=1899/12/31) in functions, modules and globals.

Several built-in functions and operators specific to the DATE type are available, such as MDY() and TODAY.
For more details, see Date and time operators on page 259.

Data type conversions, input and display of DATE values are ruled by environment settings, such as the
DBDATE and DBCENTURY enviroment variables. Dates can be formatted with the USING operator. For
more details, see Formatting DATE values on page 220.

Note: As date-to-string conversion is based on an environment settings, it is not recommended
that you hard code strings representing dates:

LET date_var = "24/12/1998" -- DBDATE dependant code
LET date_var = MDY(12,24,1998) -- Portable code

To add or substract a given number of days to a DATE, simply use a + or - arithmetic operator followed by
an integer expression representing a number of days:

MAIN
 DEFINE d DATE
 LET d = TODAY
 LET d = d + 10 -- Add 10 days
 LET d = d - 20 -- Substract 20 days
 DISPLAY "d = ", d USING "yyyy-mm-dd"
END MAIN

The difference of two dates returns the number of days:

MAIN
 DEFINE d1, d2 DATE
 LET d1 = MDY(12,24,1998)
 LET d2 = MDY(5,11,2010)
 DISPLAY "d2 - d1 = ", (d2-d1)
END MAIN

DATE values can be converted directly from/to DATETIME values:

MAIN
 DEFINE d DATE,
 dt DATETIME YEAR TO FRACTION(3)
 LET d = TODAY
 LET dt = d; DISPLAY "dt = ", dt
 LET dt = CURRENT
 LET d = dt; DISPLAY "d = ", d
END MAIN

Language basics | 198

In order to add or substract a number of months to a DATE, use the UNITS operator:

MAIN
 DEFINE d0, d date
 LET d0 = MDY(01, 31, 2015)
 LET d = d0 + 1 UNITS MONTH; DISPLAY d
 LET d = d0 - 1 UNITS MONTH; DISPLAY d
 LET d = d0 - 2 UNITS MONTH; DISPLAY d
END MAIN

Note: In fact, the UNITS operator will produce an INTERVAL. Then the DATE value is converted
to a DATETIME, to add or substract the INTERVAL value. Finally the DATETIME is converted to a
DATE, in order to assign the result to the target variable.

DATETIME qual1 TO qual2
The DATETIME data type stores date and time data with time units from the year to fractions of a second.

Syntax

 DATETIME YEAR TO FRACTION [(scale)]
| DATETIME YEAR TO SECOND
| DATETIME YEAR TO MINUTE
| DATETIME YEAR TO HOUR
| DATETIME YEAR TO DAY
| DATETIME YEAR TO MONTH
| DATETIME YEAR TO YEAR
| DATETIME MONTH TO FRACTION [(scale)]
| DATETIME MONTH TO SECOND
| DATETIME MONTH TO MINUTE
| DATETIME MONTH TO HOUR
| DATETIME MONTH TO DAY
| DATETIME MONTH TO MONTH
| DATETIME DAY TO FRACTION [(scale)]
| DATETIME DAY TO SECOND
| DATETIME DAY TO MINUTE
| DATETIME DAY TO HOUR
| DATETIME DAY TO DAY
| DATETIME HOUR TO FRACTION [(scale)]
| DATETIME HOUR TO SECOND
| DATETIME HOUR TO MINUTE
| DATETIME HOUR TO HOUR
| DATETIME MINUTE TO FRACTION [(scale)]
| DATETIME MINUTE TO SECOND
| DATETIME MINUTE TO MINUTE
| DATETIME SECOND TO FRACTION [(scale)]
| DATETIME SECOND TO SECOND
| DATETIME FRACTION TO FRACTION [(scale)]

1. scale defines the scale of the fractional part, it can be 1, 2, 3, 4 or 5.

Usage

The DATETIME data type stores an instance in time, expressed as a calendar date and time-of-day.

The qualifiers following the DATETIME keyword define the precision of the DATETIME type. While
many sort of datetime types can be defined with all possible qualifier combinations, only a limited set of
DATETIME types are typical used in applications:

• DATETIME HOUR TO MINUTE, DATETIME HOUR TO SECOND, DATETIME HOUR TO
FRACTION(scale): To hold a time value.

Language basics | 199

• DATETIME YEAR TO MINUTE, DATETIME YEAR TO SECOND, DATETIME YEAR TO
FRACTION(scale): To hold a date with time value.

DATETIME YEAR TO DAY is equivalent to DATE, consider used DATE instead.

When the FRACTION qualifier is specified without a precision, the precision defaults to 3.

DATETIME arithmetic is based on the INTERVAL data type, and can be combined with DATE values:

Table 97: Datetime Arithmetic operators

Left Operand Type Operator Right Operand Type Result Type

DATETIME - DATETIME INTERVAL

DATETIME - DATE INTERVAL

DATETIME - INTERVAL DATETIME

DATETIME + INTERVAL DATETIME

DATETIME variables are initialized to NULL in functions, modules and globals.

The CURRENT operator provides current system date/time:

DEFINE dt DATETIME YEAR TO SECOND
LET dt = CURRENT

DATETIME variables can be assigned with datetime literals, by using the DATETIME() q1 TO q2
notation:

DEFINE dt DATETIME YEAR TO SECOND
LET dt = DATETIME(2014-02-21 13:45:34) YEAR TO SECOND

DATETIME variables can be assigned from string literals, by using the format YYYY-MM-DD
hh:mm:ss.fffff, or the ISO 8601 format sub-set (with the T separator between the date and time part,
and with optional +/-nn UTC indicator or timezone offset):

DEFINE dt DATETIME YEAR TO FRACTION(5)
LET dt = "2012-10-05 11:34:56.99999"
LET dt = "2012-10-05T11:34:56.99999+02:00"

When converting a DATETIME to a string, the format YYYY-MM-DD hh:mm:ss.fffff is used.

Data type conversion can be controlled by catching the runtime exceptions. For more details, see Handling
type conversion errors on page 216.

Datetime conversion functions are provided in the util.Datetime class, for example to convert local
datetime to UTC datetime values:

IMPORT util
MAIN
 DEFINE dt DATETIME YEAR TO FRACTION(5)
 LET dt = "2012-10-05 11:34:56.99999"
 DISPLAY util.Datetime.toUTC(dt)
END MAIN

Language basics | 200

DECIMAL(p,s)
The DECIMAL data type is provided to handle large numeric values with exact decimal storage.

Syntax

DECIMAL [(precision[,scale])]

1. precision defines the number of significant digits (limit is 32, default is 16).
2. scale defines the number of digits to the right of the decimal point.
3. When no scale is specified, the data type defines a floating point number.
4. When no (precision, scale) is specified, it defaults to DECIMAL(16).

Usage

Use the DECIMAL data type when you need to store values that have fixed number of digits on the right
and left of the decimal point (DECIMAL(p,s)), or to store a floating point decimal with an exact number of
significant digits (DECIMAL(p)).

DEC, DECIMAL and NUMERIC are synonyms.

DECIMAL variables are initialized to NULL in functions, modules and globals.

When using DECIMAL(p,s) with a precision and scale, you define a decimal for fixed point arithmetic,
with p significant digits and s digits on the right of the decimal point. For example, DECIMAL(8,2) can
hold the value 123456.78 (8 (p) = 6 digits on the left + 2 (s) digits of the right of the decimal point).

When using DECIMAL(p) with a precision but no scale, you define a floating-point number with p
significant digits. For example, DECIMAL(8) can store 12345678, as well as 0.12345678.

Note: In most database implementations, the decimal data type always has a fixed number of
decimal digits. Use DECIMAL types with precision and scale to implement portable code, and avoid
mistakes if default sizes apply when precisions and/or scale are omitted in SQL statements. For
example, with Oracle, a NUMBER(p) is equivalent to a DECIMAL(p,0) in BDL, not DECIMAL(p).

When using DECIMAL without a precision and scale, it defaults to DECIMAL(16), a floating-point number
with a precision of 16 digits.

MAIN
 DEFINE d1 DECIMAL(10,4)
 DEFINE d2 DECIMAL(10,3)
 LET d1 = 1234.4567
 LET d2 = d1 / 3 -- Rounds decimals to 3 digits
 DISPLAY d1, d2
END MAIN

DECIMAL values can be converted to strings according to the DBFORMAT (or DBMONEY) environment
variable (defines the decimal separator).

Value ranges

The largest absolute value that a DECIMAL(p,s) can store without errors is 10p-s - 10s. The stored value
can have up to 30 significant decimal digits in its fractional part, or up to 32 digits to the left of the decimal
point.

When using DECIMAL(p,s) the range of values is defined by the p, the number of significant digits. For
example, a variable defined as DECIMAL(5,3) can store values in the range -99.999 to 99.999. The
smallest positive non zero value is 0.001.

Language basics | 201

When using DECIMAL(p) the magnitude can range from -N*10-124 to N*10124, where N can have up to p
significant digits and be 0<N<10. For example, a variable defined as DECIMAL(5) can store values in the
range -9.9999e-124 to 9.9999e+124. The smallest positive non zero value is 9.9999e-130.

Exceptions

When the default exception handler is used, if you try to assign a value larger than the decimal definition
(for example, 12345.45 into DECIMAL(4,2)), no out of range error occurs, and the variable is assigned
with NULL. If WHENEVER ANY ERROR is used, it raises error -1226. If you do not use WHENEVER ANY
ERROR, the STATUS variable is not set to -1226.

Data type conversion can be controlled by catching the runtime exceptions. For more details, see Handling
type conversion errors on page 216.

Computation and rounding rules

When computing or converting decimal values, the "round half away from zero" rule will apply: If the
fraction of the value v is exactly 0.5, then r = v + 0.5 if v is positive, and r = v - 0.5 if v is negative. For
example, when the result must be rounded to a whole number, 23.5 gets rounded to 24, and -23.5 gets
rounded to -24.

In the next example, the division result of 11 / 3 gives the infinite decimal value 3.666666... (with an
infinite decimal part). However, this value cannot be stored in a fixed point decimal type. When stored in
a DECIMAL(10,2), the value will be rounded to 3.67, and when multiplying 3.67 by 3, the result will be
11.01, instead of 11:

MAIN
 DEFINE v DECIMAL(10,2)
 LET v = 11 / 3
 DISPLAY "1. v = ", v USING "---&.&&&&&&&&"
 LET v = v * 3
 DISPLAY "2. v = ", v USING "---&.&&&&&&&&"
END MAIN

Output:

1. v = 3.67000000
2. v = 11.01000000

High-precision math functions

A couple of precision math functions are available, to be used with DECIMAL values. These functions have
a higher precision as the standard C library functions based on C double data type, which is equivalent to
FLOAT:

• FGL_DECIMAL_TRUNCATE()
• FGL_DECIMAL_SQRT()
• FGL_DECIMAL_EXP()
• FGL_DECIMAL_LOGN()
• FGL_DECIMAL_POWER()

Language basics | 202

FLOAT
The FLOAT data type stores values as double-precision floating-point binary numbers with up to 16
significant digits.

Syntax

FLOAT [(precision)]

1. FLOAT and DOUBLE PRECISION are synonyms.
2. The precision can be specified but it has no effect in programs.

Usage

The storage of FLOAT variables is based on 8 bytes of signed data (=64 bits), this type is equivalent to the
double data type in C.

Note: This data type it is not recommended for exact decimal storage; use the DECIMAL type
instead.

FLOAT variables are initialized to zero in functions, modules and globals.

SMALLMONEY values can be converted to strings according to the DBFORMAT (or DBMONEY)
environment variable.

Data type conversion can be controlled by catching the runtime exceptions. For more details, see Handling
type conversion errors on page 216.

INTEGER
The INTEGER data type is used for storing large whole numbers.

Syntax

INTEGER

1. INT and INTEGER are synonyms.

Usage

The storage of INTEGER variables is based on 4 bytes of signed data (= 32 bits).

The value range is from -2,147,483,647 to +2,147,483,647.

INTEGER variables can be initialized with integer literals:

MAIN
 DEFINE i INTEGER
 LET i = 1234567
 DISPLAY i
END MAIN

When assigning a whole number that exceeds the INTEGER range, the overflow error -1215 will be raised.

INTEGER variables are initialized to zero in functions, modules and globals.

The INTEGER type can be used to define variables storing values from SERIAL columns.

Data type conversion can be controlled by catching the runtime exceptions. For more details, see Handling
type conversion errors on page 216.

Language basics | 203

INTERVAL qual1 TO qual2
The INTERVAL data type stores spans of time as Year/Month or Day/Hour/Minute/Second/Fraction units.

Syntax 1: year-month class interval

 INTERVAL YEAR[(precision)] TO MONTH
| INTERVAL YEAR[(precision)] TO YEAR
| INTERVAL MONTH[(precision)] TO MONTH

Syntax 2: day-time class interval

 INTERVAL DAY[(precision)] TO FRACTION[(scale)]
| INTERVAL DAY[(precision)] TO SECOND
| INTERVAL DAY[(precision)] TO MINUTE
| INTERVAL DAY[(precision)] TO HOUR
| INTERVAL DAY[(precision)] TO DAY

| INTERVAL HOUR[(precision)] TO FRACTION[(scale)]
| INTERVAL HOUR[(precision)] TO SECOND
| INTERVAL HOUR[(precision)] TO MINUTE
| INTERVAL HOUR[(precision)] TO HOUR

| INTERVAL MINUTE[(precision)] TO FRACTION[(scale)]
| INTERVAL MINUTE[(precision)] TO SECOND
| INTERVAL MINUTE[(precision)] TO MINUTE

| INTERVAL SECOND[(precision)] TO FRACTION[(scale)]
| INTERVAL SECOND[(precision)] TO SECOND

| INTERVAL FRACTION TO FRACTION[(scale)]

1. precision defines the number of significant digits of the first qualifier, it must be an integer from 1 to 9.
For YEAR, the default is 4. For all other time units, the default is 2. For example, YEAR(5) indicates that
the INTERVAL can store a number of years with up to 5 digits.

2. scale defines the scale of the fractional part, it can be 1, 2, 3, 4 or 5.

Usage

The INTERVAL data type stores a span of time, the difference between two points in time. It can also be
used to store quantities that are measured in units of time, such as ages or times.

The INTERVAL data type falls in two classes, which are mutually exclusive:

• Year-time intervals store a span of years, months or both.
• Day-time intervals store a span of days, hours, minutes, seconds and fraction of seconds, or a

contiguous subset of those units.

INTERVAL values can be negative.

INTERVAL variables are initialized to NULL in functions, modules and globals.

INTERVAL variables can be assigned from interval literals, by using the INTERVAL() q1 TO q2 notation:

DEFINE iv INTERVAL DAY(5) TO SECOND
LET iv = INTERVAL(-7634 14:23:55) DAY(5) TO SECOND

INTERVAL variables can be assigned from string literals, by using the format YYYY-MM or DD
hh:mm:ss.fffff, according to the interval class:

DEFINE iv INTERVAL DAY(5) TO SECOND

Language basics | 204

LET iv = "-7634 14:23:55"

INTERVAL variables defined with a single time unit can be assigned from integer values, by using the
UNITS operator:

DEFINE iv INTERVAL SECOND(5) TO SECOND
LET iv = 567 UNITS SECOND

Intervals are typically used for DATETIME computation. According to the arithmetic operator, DATETIME or
DECIMAL operands are involved:

Table 98: Arithmetic operands for the INTERVAL, DATETIME, and DECIMAL data types

Left Operand Type Operator Right Operand Type Result Type

INTERVAL * DECIMAL INTERVAL

INTERVAL / DECIMAL INTERVAL

INTERVAL - INTERVAL INTERVAL

INTERVAL + INTERVAL INTERVAL

DATETIME - INTERVAL DATETIME

DATETIME + INTERVAL DATETIME

DATETIME - DATETIME INTERVAL

The next example shows how to use INTERVAL with DATETIME variables:

MAIN
 DEFINE iym1, iym2 INTERVAL YEAR TO MONTH,
 dt1, dt2 DATETIME YEAR TO MINUTE,
 diff INTERVAL DAY(5) TO MINUTE
 LET iym1 = "2342-4"
 LET iym2 = "-55-11"
 DISPLAY iym1 + iym2
 LET dt1 = CURRENT
 LET dt2 = "2010-12-24 00:00"
 LET diff = dt1 - dt2
 DISPLAY diff
 LET diff = INTERVAL(-7634 14:23) DAY(5) TO MINUTE
 DISPLAY diff
END MAIN

Data type conversion can be controlled by catching the runtime exceptions. For more details, see Handling
type conversion errors on page 216.

MONEY(p,s)
The MONEY data type is provided to store currency amounts with exact decimal storage.

Syntax

MONEY [(precision[,scale])]

1. precision defines the number of significant digits (limit is 32, default is 16).
2. scale defines the number of digits to the right of the decimal point.
3. When no scale is specified, it defaults to 2.
4. When no (precision, scale) is specified, it defaults to MONEY(16,2).

Language basics | 205

Usage

The MONEY data type is provided to store currency amounts. Its behavior is similar to the DECIMAL data
type, with some important differences:

A MONEY variable is displayed with the currency symbol defined in the DBFORMAT (or DBMONEY)
environment variable.

You cannot define floating-point numbers with MONEY: If you do not specific the scale in the data type
declaration, it defaults to 2. A MONEY without precision and scale defaults to MONEY(16,2), which is
equivaltent to a DECIMAL(16,2).

Data type conversion can be controlled by catching the runtime exceptions. For more details, see Handling
type conversion errors on page 216.

See DECIMAL(p,s) on page 200 to learn other facts about the MONEY(p,s) data type.

SMALLFLOAT
The SMALLFLOAT data type stores values as single-precision floating-point binary numbers with up to 8
significant digits.

Syntax

SMALLFLOAT

1. SMALLFLOAT and REAL are synonyms.

Usage

The storage of SMALLFLOAT variables is based on 4 bytes of signed data (=32 bits), this type is equivalent
to the float data type in C.SMALLFLOAT variables are initialized to zero in functions, modules and
globals.

Note: This data type it is not recommended for exact decimal storage; use the DECIMAL data type
instead.

SMALLMONEY values can be converted to strings according to the DBFORMAT (or DBMONEY)
environment variable.

Data type conversion can be controlled by catching the runtime exceptions. For more details, see Handling
type conversion errors on page 216.

SMALLINT
The SMALLINT data type is used for storing small whole numbers.

Syntax

SMALLINT

Usage

The storage of SMALLINT variables is based on 2 bytes of signed data (= 16 bits).

The value range is from -32,767 to +32,767.

SMALLINT variables can be initialized with integer literals:

MAIN
 DEFINE i SMALLINT
 LET i = 1234
 DISPLAY i

Language basics | 206

END MAIN

When assigning a whole number that exceeds the SMALLINT range, the overflow error -1214 will be
raised.

SMALLINT variables are initialized to zero in functions, modules and globals.

Data type conversion can be controlled by catching the runtime exceptions. For more details, see Handling
type conversion errors on page 216.

STRING
The STRING data type is a variable-length, dynamically allocated character string data type, without
limitation.

Syntax

STRING

Usage

The STRING data type is typically used to implement utility functions manipulating character string with
unknown size, and in some special cases, in SQL statements.

STRING variables are initialized to NULL in functions, modules and globals.

The behavior of a STRING variable is similar to the VARCHAR data type, except that there is no theoretical
size limit.

STRING variables can be initialized from string literals:

MAIN
 DEFINE s STRING
 LET s = "abcdef"
END MAIN

Variables declared with the STRING data type can be used to call STRING-type methods such as
getLength() or toUpperCase(). For more details, see The STRING data type as class on page 1689:

MAIN
 DEFINE s STRING
 LET s = "abc"
 DISPLAY s.toUpperCase()
END MAIN

STRING variables have significant trailing blanks (i.e. "abc " is different from "abc"). However, in
comparisons, trailing blancs do not matter:

MAIN
 DEFINE s STRING
 LET s = "abc " -- a b c + 2 white spaces
 DISPLAY "1: s.length:", s.getLength()
 DISPLAY "[", s, "]" -- displays "[abc]"
 DISPLAY IIF(s=="abc","Equals",NULL)
END MAIN

Unlike CHAR and VARCHAR, a STRING can hold a value of zero length without being NULL. For example, if
you trim a string variable with the trim() method and if the original value is a set of blank characters, the

Language basics | 207

result is an empty string. But testing the variable with the IS NULL operator will evaluate to FALSE. Using
a VARCHAR with the CLIPPED operator would give a NULL string in this case:

MAIN
 DEFINE s STRING
 LET s = " " -- 5 spaces
 LET s = s.trim()
 DISPLAY "s = [", s, "] len=", s.getLength()
 DISPLAY IIF(s IS NULL, "NULL", "not NULL")
END MAIN

outputs:

s = [] len= 0
not NULL

STRING typed variables can be used in some special cases to hold SQL character string data, when the
size of the SQL data string is not known (string expressions, large strings like JSON documents). In order
to store character string data stored in a database, consider using the CHAR or VARCHAR types instead of
STRING.

In STRING methods, positions and length parameters (or return values) can be expressed in bytes or
characters, depending on the length semantics used in programs. For more details, see Length semantics
settings on page 314

TINYINT
The TINYINT data type is used for storing very small whole numbers.

Syntax

TINYINT

Usage

The storage of TINYINT variables is based on 1 byte of signed data (= 8 bits).

The value range is from -128 to +127.

TINYINT variables can be initialized with integer literals:

MAIN
 DEFINE i TINYINT
 LET i = 101
 DISPLAY i
END MAIN

When assigning a whole number that exceeds the TINYINT range, the overflow error -8097 will be raised.

TINYINT variables are initialized to zero in functions, modules and globals.

The TINYINT variables cannot be NULL.

Data type conversion can be controlled by catching the runtime exceptions. For more details, see Handling
type conversion errors on page 216.

Language basics | 208

TEXT
The TEXT data type stores large text data.

Syntax

TEXT

Usage

A BYTE or TEXT variable is a handle for a large object (LOB), that is stored in a file or in memory. Such
data type is a complex type that cannot be used like INTEGER or CHAR basic types: It is designed to
handle a large amount of data and has different semantics as simple types. The main difference with
simple data types, is the fact that you must specify the storage with the LOCATE instruction, before using
BYTE and TEXT variables.

The maximum size of data that can be handled by BYTE and TEXT variable is theoretically 2^31 bytes
(~2.14 Gigabytes), but the practical limit depends from the disk or memory resources available to the
process.

BYTE and TEXT variable must be initialized with the LOCATE instruction before usage. The LOCATE
instruction basically defines where the large data object has to be stored (in a named file, in a temporary
file, or in memory). This instruction will actually allow you to fetch a LOB into memory or into a file, or insert
a LOB from memory or from a file into the database. When located in a temporary file (IN FILE), the temp
directory can be defined by the DBTEMP environment variable.

DEFINE t TEXT
LET t = "aaaa" -- invalid, t is not located
LOCATE t IN MEMORY
LET t = "aaaa" -- valid, now t is located in memory

With BYTE and TEXT types, you can insert/update/fetch large objects of the database. The native database
type to be used depends from the type of database server. After defining the storage (LOCATE) of a large
object handler, load / assign its value and use it directly in the SQL statements, or fetch data from LOB
columns of the database, like simple data types:

DEFINE t1, t2 TEXT
...
CREATE TABLE mytable (id INT, data TEXT)
...
LOCATE t1 IN MEMORY
CALL t1.readFile("lob.4gl")
INSERT INTO mytable VALUES (1, t1)
LOCATE t2 IN FILE
SELECT data INTO t2 FROM mytable WHERE id=1
...

BYTE and TEXT types implement the readFile() and writeFile() methods to read/write the
whole large object data from/to files. These methods can be used to easily interface with other software
components:

DEFINE t TEXT
LOCATE t IN MEMORY
CALL t.readFile("orig.txt")
CALL t.writeFile("copy.txt")

When initializing a BYTE or TEXT variable to NULL (INITIALIZE var TO NULL), if the variable is located
in a file, the file is truncated (file size will be zero). If the variable is located in memory, the data in memory

Language basics | 209

will be truncated. A subsequent usage of the variable (for example, FETCH INTO or LET assignment) is
still possible:

DEFINE b BYTE
LOCATE b IN FILE "picture.png"
INITIALIZE b TO NULL
-- The file "picture.png" is now empty.

Resources allocated to a BYTE or TEXT variable can be deallocated with the FREE instruction. A FREE will
remove the file if the LOB variable is located in a (named or temporary) file. When located in memory, the
FREE instruction will de-allocate the memory. After freeing the resources of a LOB variable, it must be re-
located with a LOCATE instruction:

DEFINE b BYTE
LOCATE b IN FILE
CALL t.readFile("picture.png") -- ok
FREE b
CALL t.readFile("picture.png") -- Invalid, b is not located.
LOCATE b IN MEMORY
CALL t.readFile("picture.png") -- ok

Important:

TEXT and BYTE are reference types. This implies that assigning two variables (LET, passing a
variable as parameter to a function, returning a result from a function) does not copy the value
(Only the handler is copied. As result, modifying the data with a TEXT/BYTE variable assigned from
another TEXT/BYTE variable will in fact modify the same LOB data. Further, the storage resource
(file or memory) that was used by the assigned variable becomes unreferenced and is lost:

DEFINE b1, b2 BYTE -- Could be TEXT: same behavior
LOCATE b1 IN FILE "mydata" -- reference file directly
LOCATE b2 IN MEMORY -- use memory instead of file
CALL b2.readFile("mydata") -- read file content into memory
FREE b2 -- this should be done to free memory before LET
LET b2 = b1 -- Now b2 points directly to the file (like b1)
INITIALIZE b1 TO NULL -- truncates reference file
DISPLAY IIF(b2 IS NULL, "b2 is null", "b2 is not null")
-- Displays "b2 is null"

In the next (invalid) code example, we try to save the value of the img BYTE variable in
a temporary variable (tmp), with the typical programming pattern to save the value before
modification. In fact the LET tmp=img assignment does not copy the data of the LOB like for
simple data types (STRING, VARCHAR, DECIMAL), only the reference (i.e. handle) to the data is
copied:

-- WARNING: THIS IS AN INVALID CODE EXAMPLE
DEFINE img, tmp BYTE
LOCATE img IN MEMORY
CALL img.readFile("picture1.png")
LOCATE tmp IN MEMORY
LET tmp = img -- Expecting to save the current data, but now
 -- both variables reference the same data...
CALL img.readFile("picture2.png")
LET img = tmp -- Does not restore the old value: Same data.

If you need to clone a large object, use the writeFile() / readFile() methods.

It is possible to assign TEXT variables to/from VARCHAR, CHAR and STRING variables.

Language basics | 210

VARCHAR(size)
The VARCHAR data type is a variable-length character string data type, with a maximum size.

Syntax

VARCHAR [(size [,reserve])]

1. size defines the maximum length of the character string, in byte or char units (depending on the
character length semantics)

2. The maximum size of a VARCHAR type is 65534.
3. When no size is specified, it defaults to 1.
4. reserve is ignored; Its inclusion in the syntax is permitted for compatibility with the SQL data type.

Usage

The VARCHAR type is typically used to store variable-length character strings such as names, addresses
and comments.

The size can be expressed in bytes or characters, depending on the length semantics used in programs.
For more details about character length semantics, see Length semantics settings on page 314.

When size is not specified, the default length is 1.

VARCHAR variables are initialized to NULL in functions, modules and globals.

Text literals can be assigned to character string variables:

MAIN
 DEFINE c VARCHAR(10)
 LET c = "abcdef"
END MAIN

VARCHAR variables store trailing blanks (trailing blanks are displayed or printed in reports, and stored in
database columns):

MAIN
 DEFINE vc VARCHAR(10)
 LET vc = "abc " -- a b c + 2 white spaces
 DISPLAY "[", vc ,"]" -- displays [abc]
END MAIN

Trailing blanks of a VARCHAR value are not significant in comparisons:

MAIN
 DEFINE vc VARCHAR(10)
 LET vc = "abc " -- a b c + 2 white spaces
 IF vc == "abc " THEN -- evaluates to TRUE
 DISPLAY "equals"
 END IF
END MAIN

Numeric and date-time values can be directly assigned the character strings:

MAIN
 DEFINE vc VARCHAR(50), da DATE, dec DECIMAL(10,2)
 LET da = TODAY
 LET dec = 345.12
 LET vc = da, " : ", dec
END MAIN

Language basics | 211

When you insert character data from VARCHAR variables into VARCHAR columns in a database table, the
trailing blanks are kept. Likewise, when you fetch VARCHAR column values into VARCHAR variables, trailing
blanks are kept.

MAIN
 DEFINE vc VARCHAR(10)
 DATABASE test1
 CREATE TABLE table1 (k INT, x VARCHAR(10))
 LET vc = "abc " -- two trailing blanks
 INSERT INTO table1 VALUES (1, vc)
 SELECT x INTO vc FROM table1 WHERE k = 1
 DISPLAY "[", vc ,"]" -- displays [abc]
END MAIN

In SQL statements, the behavior of the comparison operators when using VARCHAR values differs from
one database to the other. IBM® Informix® is ignoring trailing blanks, but most other databases take trailing
blanks of VARCHAR values into account. For more details, see SQL portability on page 412.

Type conversions
Explains data type conversion rules of the language.

• When does type conversion occur? on page 211
• Data type conversion reference on page 212
• Handling type conversion errors on page 216
• Formatting numeric values on page 217
• Formatting DATE values on page 220
• Formatting DATETIME values on page 221
• Formatting INTERVAL values on page 223

When does type conversion occur?

The runtime system performs data conversion implicitly without objection, as long as the data conversion is
valid. A date value can be converted to a character string, but a character string can only be converted to a
date if the string represents a valid date in the current date format settings (DBDATE).

Implicit data type conversion can for example occur in the following cases:

• In a LET assignment,
• In an expression, when operands are not of the same data type,
• In DISPLAY instructions, or PRINT instructions in reports,
• In dialogs, when values must be converted to strings to be displayed in form fields,
• When passing and returning values to/from a function,
• When serializing numeric values in UNLOAD, JSON methods, etc.

In the next code example, implicit data type conversion occurs

1. When assiging the result of the decimal expression to the variable v,
2. When passing the decimal value d to function func(),
3. When returing the varchar value from the function func(),
4. In the DISPLAY instruction, to convert the decimal to a string.

MAIN
 DEFINE d DECIMAL(10,2), v VARCHAR(50)
 LET v = 1234.50 * 2 -- 1.
 LET d = func(d) -- 2. and 3.
 DISPLAY d -- 4.
END MAIN

Language basics | 212

FUNCTION func(v)
 DEFINE v VARCHAR(50)
 DISPLAY v
 RETURN v -- 3.
END FUNCTION

Data type conversion reference

Boolean type conversions

A BOOLEAN value is an integer value 1 or 0 and thus can be converted to/from any other numeric type of
the language.

When converting a numeric value to a BOOLEAN, any value different from 0 becomes TRUE, otherwise
(zero) is FALSE.

DEFINE hasContent BOOLEAN, s STRING
LET s = "abc"
LET hasContent = s.getLength()

When converting a string (CHAR, VARCHAR or STRING) to BOOLEAN, the string will be converted to a
number first, then the number-to-boolean conversion applies. If the string value cannot convert to a
numeric value (for example, "abc"), the boolean value becomes NULL.

When converting a BOOLEAN to a string, the result will be "1" or "0" string values, according to the
boolean value.

Large object type conversions

A TEXT value can be converted to/from CHAR, VARCHAR or STRING.

The BYTE type cannot be converted to/from any other type.

Integers to decimal types

TINYINT, SMALLINT, INTEGER and BIGINT values can be converted to SMALLFLOAT, FLOAT, DECIMAL
or MONEY as long as the decimal type is defined with sufficient digits to hold the whole number.

If the integer value exceeds the range of the receiving data type, an overflow error occurs.

Decimal to integer types

When converting a SMALLFLOAT, FLOAT DECIMAL or MONEY to a TINYINT, SMALLINT, INTEGER or
BIGINT, the fractional part of the decimal value is truncated.

MAIN
 DEFINE d DECIMAL(10,2),
 i INTEGER
 LET d = 123.45
 LET i = d
 DISPLAY i -- displays 123
END MAIN

If the decimal value exceeds the range of the receiving integer data type, an overflow error occurs.

Decimal to decimal types

Converting between SMALLFLOAT, FLOAT DECIMAL or MONEY types is allowed as long as the receiving
type is defined with sufficient digits to hold the whole part of the original value.

Language basics | 213

If the original value contains more fractional digits than the receiving data type supports, low-order digits
are discarded.

MAIN
 DEFINE d1 DECIMAL(10,2),
 d2 DECIMAL(5,1)
 LET d1 = 123.45
 LET d2 = d1
 DISPLAY d2 -- displays 123.5
END MAIN

Decimal to character types

Converting SMALLFLOAT, FLOAT DECIMAL or MONEY values to CHAR, VARCHAR and STRING implies
numeric formatting.

Numeric formatting is controlled by the DBMONEY and DBFORMAT environment variables.

According to the conversion context, the resulting string is left-aligned (for lossless conversions) or right-
aligned (for visual conversions), and the decimal part is kept, according to the numeric type.

MAIN
 DEFINE m MONEY(8,2),
 s VARCHAR(10)
 LET m = 123.45
 LET s = m -- Lossless conversion "$123.45"
 DISPLAY m -- Visual conversion " $123.45"
END MAIN

Fixed point decimals (DECIMAL(p,s)) are converted to strings that can fit in a CHAR(p+2): The string
is build with up to p significant digits + 1 character for the sign + 1 character for the decimal point. The
result of a DECIMAL(p,s) to string conversion is never longer than p + 2 characters. For example, a
DECIMAL(5,2) can produce "-999.99" (5 + 2 = 7c).

Floating point decimals (DECIMAL(p)) are converted to strings that can fit in a CHAR(p+7): The string is
build with up to p significant digits + 1 character for the sign + 1 character for the decimal point + the length
of the exponent of needed ("e+123"). The result of a DECIMAL(p) to string conversion is never longer than
p + 7. For example, a DECIMAL(5) can produce "-1.2345e-123" (5 + 7 = 12c).

DECIMAL to string conversion depends on the context in which the conversion occurs:

1. Visual conversion: The result of this conversion will typically be presented to the end user. This
conversion happens in DISPLAY, MESSAGE, ERROR, PRINT. The result of a visual conversion is right
aligned (padded with leading blanks). This padding results in the same length for any value for a given
decimal precision. The length of the result is the maximum possible length as described previously (p+2
for DECIMAL(p,s), p+7 for DECIMAL(p)).

Visual conversion examples for DECIMAL(5,2):

 Values 1234567

 0 | " 0.00"
 -999.99 | "-999.99"
 12.3 | " 12.30"
 12.34 | " 12.34"

Visual conversion examples for DECIMAL(5):

 Values 123456789012

 0 | " 0.0"
 -99999 | " -99999.0"

Language basics | 214

 12.3 | " 12.3"
 12.34 | " 12.34"
 12.345 | " 12.345"
 1.23e7 | " 12300000.0"
 1e100 | " 1e100"

2. Form field conversion: This conversion concerns decimal numbers presented in form-fields. The result
of this conversion is in best case the same as (1). The result of the conversion depends on the width
of the form-field. If the width of the form-field is smaller than the perfect length, automatic rounding and
exponential notation might be used.

3. Lossless conversion: Such conversion happens when assigning numbers to string variables (LET),
passing numbers as parameters to functions expecting strings, returning numbers from functions to
strings, serializing numbers (UNLOAD, XML or JSON APIs). These conversions must avoid the loss
of significant digits. When using floating point decimals, this leads to a variable length of the resulting
string. A conversion must be reversible: decimal to string to decimal must give the original value. If the
target variable is shorter then the maximum possible length, then automatic rounding will occur.

Lossless conversion examples of DECIMAL(5,2):

 Values 1234567

 0 | "0.00"
 -999.99 | "-999.99"
 12.3 | "12.30"
 12.34 | "12.34"

Lossless conversion examples of DECIMAL(5):

 Values 123456789012

 0 | "0.0"
 -99999 | "-99999.0"
 12.3 | "12.3"
 12.34 | "12.34"
 12.345 | "12.345"
 1.23e7 | "12300000.0"
 1e100 | "1e100"

Automatic rounding occurs if the target string variable is shorter than the maximum possible length of the
DECIMAL type. Such conversion might loose significant digits: The runtime system tries to round the value,
to fit into the target variable.

 Values Different target sizes
 123456 12345 1234

 0.98765 | "0.9877" "0.988" "0.99"
 123.45 | "123.45" "123.5" "123"

Automatic switch to the exponential notation will occur if the integer part of the decimal value does not
fit into the target string variable. For example, if the source variable is a DECIMAL(12) and the target
variable is a CHAR(9):

 Values 123456789

 1234567 | "1234567.0"
 12345678 | "12345678"
 123456789 | "123456789"
 1234567890 | "1.2346e10"
 12345678901 | "1.2346e11"

Language basics | 215

The exponential notation will also be used if the absolute value of a floating point decimal is less than 1e-8
(0.00000001).

Default formatting of floating point decimals has been revised with Genero 2.50. If DECIMAL(P)-to-string
conversion must round to 2 digits, use the fglrun.decToCharScale2 FGLPROFILE entry:

fglrun.decToCharScale2 = true

Note: Do not use the decToCharScale2 configuration parameter, unless you have migration
issues.

Formatting a FLOAT is the same as DECIMAL(16). Any FLOAT value with up to 15 digits is exact. There
is no precision loss when converting an exact FLOAT back and forth to/form a string. Some FLOAT values
require 16, in some rare cases 17 digits for an exact string representation. 16 and 17 digits are not always
exact: "8.000000000000001" and "8.000000000000002" represent the same float value.

Formatting a SMALLFLOAT is the same as DECIMAL(7). Any SMALLFLOAT value with up to 6 digits is
exact. There is no precision loss when converting an exact SMALLFLOAT back and forth to/form a string.
Some SMALLFLOAT values require 7, in some rare cases 8 digits for an exact string representation. 7 and
8 digits SMALLFLOAT are not always exact: "0.0009999901" and "0.0009999902" represent the same
SMALLFLOAT value.

Character to decimal types

A CHAR, VARCHAR and STRING value can be converted to a TINYINT, SMALLINT, INTEGER, BIGINT,
SMALLFLOAT, FLOAT DECIMAL or MONEY value as long as the character string value represents a valid
number.

If the original value contains more significant digits or more fractional digits than the receiving data type
supports, low-order digits are discarded.

MAIN
 DEFINE d DECIMAL(10,2)
 LET d = "-123.45"
 DISPLAY d -- displays -123.45
 LET d = "1234567890123.45"
 DISPLAY d -- displays null
 LET d = "12345678.999"
 DISPLAY d -- displays 12345679.00
END MAIN

Date time to character types

Converting DATE, DATETIME and INTERVAL values to CHAR, VARCHAR and STRING implies date time
formatting.

DATE formatting is controlled by the DBDATE environment variable.

When converting a DATETIME to a string, the YYYY-MM-DD hh:mm:ss.fffff standard format is used.

When converting an INTERVAL to a string, either YYYY-MM or DD hh:mm:ss.fffff standard formats are
used, according to the interval class.

If the resulting is longer than the receiving variable, the resulting character string is null.

MAIN
 DEFINE d DATE,
 s VARCHAR(20),
 v VARCHAR(5)
 LET d = MDY(12,24,2012)
 LET s = d
 DISPLAY s -- displays 12/24/2012

Language basics | 216

 LET v = d
 DISPLAY v -- displays null
END MAIN

Character to date time types

Converting a CHAR, VARCHAR or STRING value to a DATE, DATETIME or INTERVAL is possible as long as
the character string defines a well formatted date time or interval value.

When converting a character string to a DATE, the string must follow the date format defined by the
DBDATE environment variable.

When converting a string to a DATETIME, the format must be YYYY-MM-DD hh:mm:ss.fffff or follow
the ISO 8601 format sub-set (with the T separator between the date and time part, and with optional UTC
indicator or timezone offset)

MAIN
 DEFINE dt DATETIME YEAR TO SECOND
 LET dt = "2012-12-24 11:33:45"
 DISPLAY dt -- displays 2012-12-24 11:33:45
 LET dt = "2012-12-24T11:33:45+01:00"
 DISPLAY dt -- displays 2012-12-24 11:33:45 (if TZ=UTC+1h)
 LET dt = "2012-12-24T10:33:45Z"
 DISPLAY dt -- displays 2012-12-24 11:33:45 (if TZ=UTC+1h)
END MAIN

Converting DATE to/from DATETIME types

When converting a DATETIME to another DATETIME with a different precision, truncation from the left or
right can occur. When then target type has more fields as the source type, the year, month and day fields
are filled with the current date.

When converting a DATE to a DATETIME, the datetime fields are filled with year, month and day from the
date value and time fields are set to zero.

When converting a DATETIME to a DATE, an implicit EXTEND(datetime-value, YEAR TO DAY) is
performed.

MAIN
 DEFINE da DATE,
 dt1 DATETIME YEAR TO SECOND,
 dt2 DATETIME HOUR TO MINUTE
 LET da = MDY(12,24,2012)
 LET dt1 = da
 DISPLAY dt1 -- displays 2012-12-24 00:00:00
 LET dt2 = "23:45"
 LET dt1 = dt2
 DISPLAY dt1 -- displays <current date> 00:00:00
END MAIN

Unsupported type conversions

Other data type conversions not mentioned in this topic are not allowed and will result in a runtime error.

Handling type conversion errors

By default, in case of type conversion error or overflow errors, the program continues, the target variable is
set to NULL and the global STATUS variable is not set.

In order to detect data conversion and overflow errors, use the WHENEVER ANY ERROR statement.

Language basics | 217

The next code example:

MAIN -- DBDATE set to Y4MD-
 DEFINE v VARCHAR(50), d DATE
 LET v = "2012-99-99" -- invalid date string
 LET d = v
 DISPLAY status, "/", NVL(d,"NULL") -- displays 0/NULL
 WHENEVER ANY ERROR CONTINUE
 LET d = v
 DISPLAY status, "/", NVL(d,"NULL") -- displays -1205/NULL
 WHENEVER ANY ERROR STOP
 LET d = "2012-11-23" -- valid date, ok
 DISPLAY status, "/", NVL(d,"NULL") -- displays 0/2012-11-23
 LET d = v -- program execution stopped with error -1205
END MAIN

Above code will produce the following output:

 0/NULL
 -1218/NULL
Program stopped at 'x.4gl', line number 10.
FORMS statement error number -1218.
String to date conversion error.

Conversion and overflow errors are implicitly trapped in TRY/CATCH blocks.

In the next example, the INTERVAL variable is not large enough to hold the result of d2 - d1:

MAIN
 DEFINE d1, d2 DATETIME YEAR TO FRACTION(5)
 DEFINE i INTERVAL SECOND(2) TO SECOND
 LET d1 = "2015-11-06 17:40:21.436"
 LET d2 = "2015-11-06 10:40:21.436"
 TRY
 LET i = d2 - d1
 CATCH
 DISPLAY STATUS, " / ", err_get(STATUS)
 END TRY
END MAIN

Above code will produce the following output:

 -1265 / Overflow occurred on a datetime or interval operation.

Formatting numeric values

When does numeric formatting take place?

Numeric formatting occurs when converting a number to a string with the USING operator, for example in
a LET, DISPLAY or PRINT instruction, and when displaying numeric values in form fields defined with the
FORMAT attribute.

Numeric values can be of type such as INTEGER, FLOAT, DECIMAL, MONEY, etc.

This example formats a DECIMAL(10,2) value with the USING operator:

MAIN
 DEFINE d DECIMAL(10,2)
 LET d = -123456.78
 DISPLAY d USING "-,---,--&.&& @"
END MAIN

Language basics | 218

Front currency symbol, thousands separator, decimal separator and back currency symbol are defined
with the DBFORMAT (or DBMONEY) environment variable. For example, if DBFORMAT is defined as
":.:,:E", the previous code example will produce the following output:

 -123,456.78 E

Default formatting occurs when USING or FORMAT are not used, and a numeric value has to be converted
to a character string, for example when passing a DECIMAL(p,s) to a function expecting a VARCHAR(n).
For more details about default formatting, see Data type conversion reference on page 212.

This topic describes the syntax of the format-string in the USING "format-string" operator and
FORMAT = "format-string" form field attribute.

Formatting symbols for numbers

When formatting numeric values, the format-string of the USING operator or FORMAT attribute consists
of a set of place holders that represent digits, currency symbols, thousands and decimal separators. For
example, "###.##@" defines three places to the left of the decimal point and exactly two to the right, plus
a "back" currency symbol at the end of the string.

Note: The USING operator or FORMAT attribute are required to display the thousands separator
defined in DBFORMAT.

The format-string must use normalized placeholders described in Table 99: Format-string symbols for
Numeric data types on page 218. The placeholders will be replaced by digits, blanks or by the elements
defined in the DBFORMAT (or DBMONEY) environment variables. Any other character will be interpreted
as a literal, and can be used at any place in the format string.

If the numeric value is too large to fit in the number of characters defined by the format, the result string is
filled with a set of star characters (********), indicating an overflow.

The minus sign (-), plus sign (+), parentheses (()), and dollar sign ($) float. This means that when
you specify multiple leading occurrences of one of these characters, the result string gets only a single
character immediately to the left of the first digit.

Table 99: Format-string symbols for Numeric data types

Placeholder Description

* The star placeholder fills with asterisks any position that would otherwise be blank.

&
The ampersand placeholder is used to define the position of a digit, and is replaced
by a zero if that position would otherwise be blank.

#
The sharp placeholder is used to define the position of a digit, it is used to specify a
maximum width for the resulting string. The # is replaced by a blank, if no digit is to
be displayed at that position.

< Consecutive "less than" characters cause left alignment and define digit positions.

-
Displays a minus sign if the value is negative, or a blank if the value is positive.
When you group several minus signs in the format string, a single minus sign floats
immediately to the left of the first digit.

+
Displays a minus sign if the value is negative, or a plus sign if the value is positive.
When you group several plus signs in the format string, a single plus sign floats
immediately to the left of the first digit.

(
Displayed as left parenthesis for negative numbers. It is used to display "accounting
parentheses" instead of a minus sign for negative numbers. Consecutive left
parentheses display a single left parenthesis to the left of the first digit.

Language basics | 219

Placeholder Description

)
Displayed as right parenthesis for negative numbers. This wildcard character is
used in conjunction with a open brace to display "accounting parentheses" for
negative numbers.

, (comma)
The comma placeholder is used to define the position for the thousand separator
defined in DBFORMAT. The thousand separator will only be displayed if there is a
number on the left of it.

. (period)
The period placeholder is used to define the position for the decimal separator
defined in DBFORMAT. You can only have one decimal separator in a number
format string.

$

The dollar sign is the placeholder for the front currency symbol defined in
DBFORMAT. When you group several consecutive dollar signs, a single front
currency symbol floats immediately to the left of the first digit. The front currency
symbol can be defined in DBFORMAT with more than one character (EUR, USD).

@
The "at" sign is the placeholder for the back currency symbol defined in
DBFORMAT. Put several consecutive @ signs at the end of the format string to
display a currency symbol defined in DBFORMAT with more than one character.

Table 100: Numeric formatting examples

Format String Numeric value DBFORMAT Result string

[######.##] 0 :.:,: [,]

[######.##] -1234.56 :.:,: [1234,56] (no sign!)

[######.##] -1234567.89 :.:,: [*********] (overflow)

[######.##] +1234.56 :.:,: [1234,56]

[#####&.&&] 0 :.:,: [0,00]

[******.**] 0 :.:,: [******,00]

[******.**] -12.34 :.:,: [****12,34] (no sign!)

[******.**] +12.34 :.:,: [****12,34]

[<<<<<<.<<] -12.34 :.:,: [12,34] (no sign!)

[<<<<<<.<<] +12.34 :.:,: [12,34]

[---,--&.&&] -1234.56 :.:,: [-1.234,56]

[+++,++&.&&] -1234.56 :.:,: [-1.234,56]

[+++,++&.&&] +1234.56 :.:,: [+1.234,56]

[$---,--&.&&] -1234.56 E:.:,: [E -1.234,56]

[$---,--&.&&] +1234.56 E:.:,: [E 1.234,56]

[$$$---,--&.&&] +1234.56 E:.:,: [E 1.234,56]

[$$$---,--&.&&] +1234.56 EUR:.:,: [EUR 1.234,56]

[-,---,-$&.&&] -12.34 E:.:,: [-E12,34]

[-,---,-$&.&&] -1234.56 E:.:,: [-E1.234,56]

[-,-$$,$$&.&&] -12.34 E:.:,: [- E12,34]

Language basics | 220

Format String Numeric value DBFORMAT Result string

[-,-$$,$$&.&&] -1234.56 E:.:,: [-E1.234,56]

[---,--&.&&@] -1234.56 :.:,:E [-1.234,56E]

[---,--&.&&@] +1234.56 :.:,:E [1.234,56E]

[---,--&.&&@@@] +1234.56 :.:,:EUR [1.234,56EUR]

[($---,--&.&&)] -1234.56 E:.:,: [(E -1.234,56)]

[($###,##&.&&)] -1234.56 E:.:,: [(E 1.234,56)]

[((((,(($.&&)] 0 E:.:,: [E,00]

[((((,(($.&&)] -12.34 E:.:,: [(E12,34)] (no sign!)

[((((,(($.&&)] +12.34 E:.:,: [E12,34]

[((((,(($.&&)] -1234.56 E:.:,: [(E1.234,56)] (no
sign!)

[((((,(($.&&)] +1234.56 E:.:,: [E1.234,56]

Formatting DATE values

When does DATE formatting take place?

Date formatting occurs when converting a DATE to a string with the USING operator, for example in a LET,
DISPLAY or PRINT instruction, and when displaying date values in form fields defined with the FORMAT
attribute.

This example formats a DATE value with the USING operator:

MAIN
 DEFINE d DATE
 LET d = MDY(12,24,2014)
 DISPLAY d USING "mmm ddd yyyy"
END MAIN

This code example produces the following output:

Dec Wed 2014

Default formatting occurs when USING or FORMAT are not used, and a date value has to be converted to
a character string, for example when passing a DATE to a function expecting a VARCHAR(n). Default date
formatting is based on the date format defined with the DBDATE environment variable. For more details
about default formatting, see Data type conversion reference on page 212.

This topic describes the syntax of the format-string in the USING "format-string" operator and
FORMAT = "format-string" form field attribute.

Formatting symbols for DATE values

When formatting DATE values, the format-string of the USING operator or FORMAT attribute consists of a
set of place holders that represent the day of the month as digits or as abbreviated name of the month, the
month of the year as digits or as abbreviated name of the month, and the year as 2, 3 or 4 digits.

Table 101: Format-string symbols for DATE values on page 221 shows the formatting symbols for DATE
expressions. Any character different from the placeholders described in this table is interpreted as a literal
and will appear as-is in the resulting string.

Language basics | 221

The calendar used for date formatting is the Gregorian calendar. The c1 placeholder is a formatting
symbol used to adapt the date to the Ming Guo calendar.

Table 101: Format-string symbols for DATE values

Placeholder Description

dd Day of the month as a 2-digit integer.

ddd
Three-letter English-language abbreviation of the
day of the week. For example: Mon, Tue.

mm Month as a 2-digit integer.

mmm
Three-letter English-language abbreviation of the
month. For example: Jan, Feb.

yy
Year, as a 2-digits integer representing the 2 trailing
digits.

yyy Year as a 3-digit number (Ming Guo format only)

yyyy Year as a 4-digit number.

c1
Ming Guo format modifier, see Using the Ming Guo
date format on page 323.

Table 102: Date formatting examples

Format String Date value Result string

dd/mm/yyyy 2011-10-24 24/10/2011

[dd/mm/yy] 2011-10-24 [24/10/11]

[ddd-mmm-yyyy] 0141-10-24 [Tue-Oct-0141]

(ddd.) mmm. dd, yyyy 1999-09-23 (Thu.) Sep. 23, 1999

Formatting DATETIME values

When does DATETIME formatting take place?

Datetime formatting occurs when converting a DATETIME to a string, for example in a LET, DISPLAY or
PRINT instruction, and when displaying datetime values in form fields.

By default, DATETIME values are formatted in the ISO format:

yyyy-mm-dd hh:mm:ss.fffff

The next example formats a DATETIME value by using the util.Datetime.format() method:

IMPORT util
MAIN
 DEFINE dt DATETIME YEAR TO SECOND
 LET dt = CURRENT
 DISPLAY util.Datetime.format(dt, "%Y-%m-%d %H:%M:%S")
END MAIN

This code example produces the following output:

2015-12-23 11:45:33

Language basics | 222

A datetime value can be formatted with the util.Datetime.format() method.

Converting strings to DATETIME values

When a string represents a datetime value is ISO format, it can be directly converted to a DATETIME:

DEFINE dt DATETIME YEAR TO FRACTION(5)
LET dt = "2015-12-24 11:34:56.82373"

If you need to convert a string that does not follow the ISO format, use the util.Datetime.parse()
method, by specifying a format string:

DEFINE dt DATETIME YEAR TO MINUTE
LET dt = util.Datetime.parse("2014-12-24 23:45", "%Y-%m-%d %H:%M")

Formatting symbols for DATETIME values

When formatting DATETIME values, the format-string of the util.Datetime.parse() and
util.Datetime.format() methods consists of a set of place holders that represent the different parts
of a datetime value (year, month, day, hour, minute, second and fraction).

s shows the formatting symbols for DATETIME expressions. Any character different from the placeholders
described in this table is interpreted as a literal and will appear as-is in the resulting string.

The calendar used for date formatting is the Gregorian calendar.

Table 103: Format-string symbols for DATETIME values

Placeholder Description

%a

The abbreviated name of the day of the week.

Note: When parsing a datetime string, %a
and %A are equivalent to detect the name of
the day of the week in abbreviated form or
full day name.

%A The full name of the day of the week.

%b or %h

The abbreviated month name.

Note: When parsing a datetime string,
%b/%h and %B are equivalent to detect the
month name in abbreviated form or full
month name.

%B The full month name.

%c The date and time representation.

%C The century number (0-99)

%D Equivalent to %m/%d/%y

%d The day of month with 2 digits (01-31)

%e The day of month with one or 2 digits (1-31)

%F The fractional part of a second

%H The hour with 2 digits (00-23).

%I The hour on a 12-hour clock (1-12)

Language basics | 223

Placeholder Description

%y The year on 2 digits (91)

%Y The year on 4 digits (1991)

%m The month as 2 digits (01-12)

%M The minutes (00-59)

%n A newline character

%p The locale's equivalent of AM or PM

%r
The 12-hour clock time. In the POSIX locale
equivalent to %I:%M:%S %p

%R Equivalent to %H:%M

%S The seconds (00-59)

%t A tab character

%T Equivalent to %H:%M:%S

%x The date, using the locale's date format.

%X The time, using the locale's time format.

%w
The ordinal number of the day of the week (0-6),
with Sunday = 0.

%y The year within century (0-99)

%Y The year, including the century (for example, 1991)

Table 104: Datetime formatting examples

Format String Datetime value Result string

%d/%m/%Y %H:%M 2011-10-24 11:23:45 24/10/2011 11:23

[%d %b %Y %H:%M:%S] 2011-10-24 11:23:45 [24 Oct 2011 11:23:45]

(%a.) %b. %d, %Y 1999-09-23 (Thu.) Sep. 23, 1999

Formatting INTERVAL values

When does INTERVAL formatting take place?

Interval formatting occurs when converting a INTERVAL to a string, for example in a LET, DISPLAY or
PRINT instruction, and when displaying interval values in form fields.

By default, INTERVAL values are formatted in the ISO format:

[+|-]yyyy-mm

or:

[+|-]dddd hh:mm:ss.fffff

The next example formats a INTERVAL value by using the util.Interval.format() method:

IMPORT util

Language basics | 224

MAIN
 DEFINE iv INTERVAL DAY(6) TO MINUTE
 LET iv = "-157 11:23"
 DISPLAY util.Interval.format(iv, "%d %H:%M")
END MAIN

This code example produces the following output:

-157 11:23

And interval value can be formatted with the util.Interval.format() method.

Converting strings to INTERVAL values

When a string represents a interval value is ISO format, it can be directly converted to a INTERVAL:

DEFINE iv INTERVAL HOUR(6) TO FRACTION(5)
LET iv = "20234:34:56.82373"

If you need to convert a string that does not follow the ISO format, use the util.Interval.parse()
method, by specifying a format string:

DEFINE iv INTERVAL DAY(6) TO FRACTION(5)
LET iv = util.Interval.parse("-7467 + 23:45:34.12345", "%d + %H:%M:%S%F5")

Formatting symbols for INTERVAL values

When formatting INTERVAL values, the format-string of the util.Interval.parse() and
util.Interval.format() methods consists of a set of place holders that represent the different parts
of a interval value (year, month, day, hour, minute, second and fraction).

Table 105: Format-string symbols for INTERVAL values on page 224 shows the formatting symbols for
INTERVAL expressions. Any character different from the placeholders described in this table is interpreted
as a literal and will appear as-is in the resulting string.

Table 105: Format-string symbols for INTERVAL values

Placeholder Description

%Y Years (0-999999999)

%m Month (00-11) or (0-999999999)

%d Days (0-999999999)

%H Hours (00-23) or (0-999999999)

%M Minutes (00-59) or (0-999999999)

%S Secondes (00-59) or (0-999999999)

%F[n]
The fractional part of a second, where n specifies
the number of digits in the fractional part (1 to 5)

%t A tab character

%n A newline character

Language basics | 225

Table 106: Interval formatting examples

Format String Interval value Result string

%d days %H:%M 54561 11:23 54561 days 11:23

%d days %H:%M:%S%F5 54561 11:23:45.12345 54561 days 11:23:45.12345

[%Y years and %m months] 1023-03
[1023 years and 03
months]

Literals
Describes the syntax of literals (constant values) to be used in sources.

• Integer literals on page 225
• Numeric literals on page 225
• Text literals on page 226
• Datetime literals on page 227
• Interval literals on page 228

Integer literals
Integer literals define a whole number in an expression.

Syntax

[+|-] digit[...]

1. digit is a digit character from '0' to '9'.

Usage

Integer literals are in base-10 notation, without blank spaces and commas and without a decimal point.

Integer literals can be used to specify values for DECIMAL(P,0), BIGINT, INTEGER, SMALLINT and
TINYINT data types.

Example

MAIN
 DEFINE n INTEGER
 LET n = 1234567
END MAIN

Numeric literals
Numeric literals define values with a decimal part in an expression.

Syntax

[+|-] digit[...] . digit[...] [{e|E} [+|-] digit[...]]

1. digit is a digit character from '0' to '9'.
2. Note that the decimal separator is always a dot, independently from DBMONEY.
3. The E notation can be used to specify the exponent.

Language basics | 226

Usage

Numeric/decimal literals in base-10 notation, without blank spaces and commas, with a decimal part after a
dot.

Numeric literals can be used to specify values for DECIMAL(P,S), MONEY(P,S), FLOAT and
SMALLFLOAT data types.

Example

MAIN
 DEFINE n DECIMAL(10,2)
 LET n = 12345.67
 LET n = -1.23456e-10
END MAIN

Text literals
Text literals define a character string in an expression.

Syntax 1 (using double quotes)

" char [...] "

Syntax 2 (using single quotes)

' char [...] '

1. char is any character supported in the current locale, or a \ backslash escape character as described
below:

• \\ : the backslash character.
• \" : double-quote character.
• \' : single-quote character.
• \n : newline character.
• \r : carriage-return character.
• \0 : null character.
• \f : form-feed character.
• \t : tab character.
• \xNN : ASCII character defined by the hexadecimal code NN.

Usage

A text literal (or character string literal) defines a character string constant containing valid characters in the
current application character set. The application character set is defined by the current locale.

A text literal can be written on multiple lines, the compiler merges lines by removing the newline character.

An empty string ("") is equivalent to NULL.

The escape character is the backslash character (\).

When using single quotes as delimiters, double quotes can be used as is inside the string, while single
quotes must be doubled or escaped with a backslash:

DISPLAY ' 2 double quotes: " " 2 single quotes: '' \' '
displays as:
 2 double quotes: " " 2 single quotes: ' '

Language basics | 227

When using double quotes as delimiters, single quotes can be used as is inside the string, while double
quotes must be doubled or escaped with a backslash:

DISPLAY " 2 double quotes: "" \" 2 single quotes: ' ' "
displays as:
 2 double quotes: " " 2 single quotes: ' '

Special characters can be specified with backslash escape symbols. Use for example \n to insert a new-
line character in a string literal:

DISPLAY "First line\nSecond line"

The \xNN hexadecimal notation allows you to specify control characters in a string literal. Only ASCII
codes (<=0x7F) are allowed.

Example

MAIN
 DISPLAY "Some text in double quotes"
 DISPLAY 'Some text in single quotes'
 DISPLAY "Include double quotes: \" "" "
 DISPLAY 'Include single quotes: \' '' '
 DISPLAY 'Insert a newline character here: \n and continue with
 text.'
 DISPLAY "This is a text
 on multiple
 lines.\
 You can insert a newline with back-slash at the end of the
 line."
 IF "" IS NULL THEN
 DISPLAY 'Empty string is NULL'
 END IF
END MAIN

Datetime literals
Datetime literals define date/time value in an expression.

Syntax

DATETIME (dtrep) qual1 TO qual2[(scale)]

where qual1 can be one of:

 YEAR
 MONTH
 DAY
 HOUR
 MINUTE
 SECOND
 FRACTION

and qual2 can be one of:

 YEAR
 MONTH
 DAY
 HOUR
 MINUTE

Language basics | 228

 SECOND
 FRACTION
 FRACTION(1)
 FRACTION(2)
 FRACTION(3)
 FRACTION(4)
 FRACTION(5)

1. dtrep is the datetime value representation in normalized format (YYYY-MM-DD hh:mm:ss.fffff).
2. scale defines the number of significant digits of the fractions of a second.
3. qual1 and qual2 qualifiers define the precision of the DATETIME literal.

Usage

A datetime literal is specified with the DATETIME() notation, and is typically used in interval or datetime
expressions, or to assign a DATETIME variable. In order to get the current date and time, use the
CURRENT operator.

Example

MAIN
 DEFINE d1 DATETIME YEAR TO SECOND
 DEFINE d2 DATETIME HOUR TO FRACTION(5)
 LET d1 = DATETIME(2002-12-24 23:55:56) YEAR TO SECOND
 LET d2 = DATETIME(23:44:55.34532) HOUR TO FRACTION(5)
END MAIN

Interval literals
Interval literals define an interval value in an expression.

Syntax 1: year-month class interval

 INTERVAL (inrep) YEAR[(precision)] TO MONTH
|INTERVAL (inrep) YEAR[(precision)] TO YEAR
|INTERVAL (inrep) MONTH[(precision)] TO MONTH

Syntax 2: day-time class interval

 INTERVAL (inrep) DAY[(precision)] TO FRACTION[(scale)]
|INTERVAL (inrep) DAY[(precision)] TO SECOND
|INTERVAL (inrep) DAY[(precision)] TO MINUTE
|INTERVAL (inrep) DAY[(precision)] TO HOUR
|INTERVAL (inrep) DAY[(precision)] TO DAY

|INTERVAL (inrep) HOUR[(precision)] TO FRACTION[(scale)]
|INTERVAL (inrep) HOUR[(precision)] TO SECOND
|INTERVAL (inrep) HOUR[(precision)] TO MINUTE
|INTERVAL (inrep) HOUR[(precision)] TO HOUR

|INTERVAL (inrep) MINUTE[(precision)] TO FRACTION[(scale)]
|INTERVAL (inrep) MINUTE[(precision)] TO SECOND
|INTERVAL (inrep) MINUTE[(precision)] TO MINUTE

|INTERVAL (inrep) SECOND[(precision)] TO FRACTION[(scale)]
|INTERVAL (inrep) SECOND[(precision)] TO SECOND

|INTERVAL (inrep) FRACTION TO FRACTION[(scale)]

Language basics | 229

1. inrep is the interval value representation in normalized format (YYYY-MM or DD hh:mm:ss.fffff,
according to the interval class).

Usage

An interval literal is specified with the INTERVAL() notation, and is typically used to assign in interval or
datetime expressions, or to assign an interval variable.

Example

MAIN
 DEFINE i1 INTERVAL YEAR TO MONTH
 DEFINE i2 INTERVAL HOUR(5) TO SECOND
 LET i1 = INTERVAL(345-5) YEAR TO MONTH
 LET i2 = INTERVAL(34562:22:33) HOUR(5) TO SECOND
END MAIN

Expressions
Shows the possible expressions supported in the language.

• Understanding expressions on page 229
• Boolean expressions on page 230
• Integer expressions on page 231
• Numeric expressions on page 231
• String expressions on page 232
• Date expressions on page 232
• Datetime expressions on page 233
• Interval expressions on page 233

Understanding expressions

What is an expression ?

An expression is a sequence of operands, operators, and parentheses that the runtime system can
evaluate as a single value. Operands are program variables, constants, functions returning a single value
and literal values. Operators are used for arithmetic or string manipulation, and the parentheses are used
to overwrite precedence of operators.

Language and SQL expressions

Expressions in SQL statements are evaluated by the database server, not by the runtime system. The set
of operators that can appear in SQL expressions resembles the set of language operators, but they are
not identical. A program can include SQL operators, but these are restricted to SQL statements. Similarly,
most SQL operands are not valid in program expressions. The SQL identifiers of databases, tables, or
columns can appear in a LIKE clause or field name in program instructions, provided that these SQL
identifiers comply with the naming rules of language. Here are some examples of SQL operands and
operators that cannot appear in other language expressions:

• SQL identifiers, such as column names
• The SQL keywords USER and ROWID
• Built-in or aggregate SQL functions that are not part of the language
• The BETWEEN and IN operators
• The EXISTS, ALL, ANY, or SOME keywords of SQL expressions

Language basics | 230

Conversely, you cannot include language-specific operators in SQL expressions. For example:

• Arithmetic operators for exponentiation (**) and modulus (MOD)
• String operators ASCII, COLUMN, SPACE, SPACES, and WORDWRAP
• Field operators FIELD_TOUCHED(), GET_FLDBUF(), and INFIELD()
• The report operators LINENO and PAGENO

Parentheses in expressions

Parentheses are used as in algebra, to override the default order of precedence of operators. In
mathematics, this use of parentheses represents the "associative" operator. It is, however, a convention
in computer languages to regard this use of parentheses as delimiters rather than as operators. (Do not
confuse this use of parentheses to specify operator precedence with the use of parentheses to enclose
arguments in function calls or to delimit other lists.)

In this example, the variable y is assigned the value of 2.

LET y = 15 MOD 3 + 2

In this example, y is assigned the value of 0 because the parentheses change the sequence of operations.

LET y = 15 MOD (3 + 2)

Boolean expressions

A boolean expressions evaluates to an INTEGER value that can be TRUE, FALSE and in some cases,
NULL.

MAIN
 DEFINE r, c INTEGER
 LET c = 4
 LET r = (c!=5) AND (c==2 OR c==4)
 IF (r AND canReadFile("config.txt")) THEN
 DISPLAY "OK"
 END IF
END MAIN

Boolean expressions are a combination of logical operators and boolean comparison operators such as
==, >= or !=. The result type of a boolean expression is an INTEGER. Any integer value different from zero
is defined as true, while zero is defined as false. You can use an INTEGER or a BOOLEAN variable to store
the result of a boolean expression.

MAIN
 DEFINE b BOOLEAN
 LET b = ("a" == "b") -- result is FALSE (0)
END MAIN

If an expression that returns NULL is the operand of the IS NULL operator, the value of the boolean
expression is TRUE.

MAIN
 DEFINE r INTEGER
 LET r = NULL
 IF r IS NULL THEN
 DISPLAY "TRUE"
 END IF
END MAIN

Language basics | 231

If you include a boolean expression in a context where the runtime system expects a number, the
expression is evaluated, and is then converted to an integer by the rules TRUE=1 and FALSE=0.

MAIN
 DEFINE r INTEGER
 LET c = 4
 LET r = 4 + (1==0) -- result is 4.
END MAIN

The boolean expression evaluates to TRUE if the value is a non-zero real number or any of the following
items:

• Character string representing a non-zero number
• Non-zero INTERVAL
• Any DATE or DATETIME value
• A TRUE value returned by a boolean function like INFIELD()
• The built-in integer constant TRUE

If a boolean expression includes an operand whose value is not an integer data type, the runtime system
attempts to convert the value to an integer according to the data conversion rules.

A boolean expression evaluates to NULL if the value is NULL and the expression does not appear in any of
the following contexts:

• The IS [NOT] NULL test.
• Boolean Comparisons.
• Any conditional statement (IF, CASE, WHILE).

The syntax of boolean expressions in programs is not the same as Boolean conditions in SQL statements.

Boolean expressions in CASE, IF, or WHILE statements return FALSE if any element of the comparison is
NULL, except for operands of the IS NULL and the IS NOT NULL operator.

Integer expressions

An integer expression evaluates to a whole number.

MAIN
 DEFINE r, c INTEGER
 LET c = 4
 LET r = c * (2 + c MOD 4) / getRowCount("customers")
END MAIN

The operands of an integer expression can be:

• An integer literal.
• A variable or constant of type TINYINT, SMALLINT, INTEGER or BIGINT.
• A function returning a single integer value.
• A boolean expression.
• The result of a DATE subtraction, as a number of days.

If an integer expression includes an operand whose value is not an integer data type, the runtime system
attempts to convert the value to an integer according to the data conversion rules.

If an element of an integer expression is NULL, the expression is evaluated to NULL.

Numeric expressions

A numeric expression evaluates to a decimal value.

MAIN

Language basics | 232

 DEFINE r, c DECIMAL(10,2)
 LET c = 456.22
 LET r = c * 2 + (c / 4.55)
END MAIN

The operands of a numeric expression can be one of:

• An integer literal.
• A decimal literal.
• A variable or constant of numeric data type.
• A function returning a single numeric value.
• A boolean expression.
• The result of a DATE subtraction, as a number of days.

If a number expression includes an operand whose value is not a numeric data type, the runtime system
attempts to convert the value to a number according to the data conversion rules.

If an element of a number expression is NULL, the expression is evaluated to NULL.

String expressions

A string expression includes at least one character string value and evaluates to a string data type value.

MAIN
 DEFINE r, c VARCHAR(100)
 LET c = "abcdef"
 LET r = c[1,3] || ": " || TODAY USING "YYYY-MM-DD" || " " || length(c)
END MAIN

The data type of string expression result is STRING.

At least one of the operands in a string expression must be one of:

• A string literal.
• A variable or constant of CHAR, VARCHAR or STRING data type.
• A function returning a single character value.

Other operands whose values are not character string data types are converted to strings according to the
data conversion rules.

If an element of a string expression is NULL, the expression is evaluated to NULL.

An empty string ("") is equivalent to NULL.

Date expressions

A date expression evaluates to a DATE data type value.

MAIN
 DEFINE r, c DATE
 LET c = TODAY + 4
 LET r = (c - 2)
END MAIN

The operands of a date expression can be one of:

• A string literal that can be evaluated to a date according to DBDATE environment variable.
• A variable or constant of type DATE.
• A function returning a single Date value.
• A unary + or - associated to an integer expression representing a number of days.
• The TODAY constant.

Language basics | 233

• A CURRENT expression with YEAR TO DAY qualifiers.
• An EXTEND expression with YEAR TO DAY qualifiers.

If a date expression includes an operand whose value is not a date data type, the runtime system attempts
to convert the value to a date value according to the data conversion rules.

If an element of an date expression is NULL, the expression is evaluated to NULL.

Datetime expressions

A datetime expression evaluates to a DATETIME data type.

MAIN
 DEFINE r, c DATETIME YEAR TO SECOND
 LET c = CURRENT YEAR TO SECOND
 LET r = c + INTERVAL(234-02) YEAR TO MONTH
END MAIN

The operands of a datetime expression can be one of:

• A datetime literal.
• A string literal representing a datetime with the format YYYY-MM-DD hh:mm:ss.fffff.
• A variable or constant of DATETIME type.
• A function returning a single Datetime value.
• A unary + or - associated to an interval expression.
• A CURRENT expression.
• An EXTEND expression.

If a datetime expression includes an operand whose value is not a datetime data type, the runtime system
attempts to convert the value to a datetime value according to the data conversion rules.

If an element of an integer expression is NULL, the expression is evaluated to NULL.

Interval expressions

An interval evaluates to an INTERVAL data type.

MAIN
 DEFINE r, c INTERVAL HOUR TO MINUTE
 LET c = "12:45"
 LET r = c + (DATETIME(14:02) HOUR TO MINUTE - DATETIME(10:43) HOUR TO
 MINUTE)
END MAIN

The operands of an interval expression must be one of:

• An interval literal.
• A string literal representing an Interval with the format YYYY-MM-DD hh:mm:ss.fffff.
• An integer expression using the UNITS operator.
• A variable or constant of INTERVAL type.
• A function returning a single interval value.
• The result of a DATETIME subtraction.

If an interval expression includes an operand whose value is not an interval data type, the runtime system
attempts to convert the value to an interval value according to the data conversion rules.

If an element of an integer expression is NULL, the expression is evaluated to NULL.

Language basics | 234

Operators
This section describes basic syntax elements that can appear in expressions.

There are different sort of basic syntax elements such as operators for arithmetics, string and comparison,
predefined variables and registers like SQLSTATE, and utility operators like SFMT() or TODAY.

Elements of an expressions are evaluated according to their precedence, from highest to lowest, as
described in the order of precedence list. Use () parentheses to instruct the runtime system to evaluate
the expression in a different way than the default order of precedence.

• Order of precedence on page 234
• General warnings regarding expressions on page 236
• List of expression elements on page 236

Order of precedence

The following list describes the precedence order of expression elements. The order of precedence defines
in which order the elements of an expression are evaluated.

For example, the MOD operator has a higher precedence as the * operator. When computing an expression
like (33 MOD 2 * 5), the runtime system first evaluates (33 MOD 2) = 1 and then evaluates (1 *
5) = 5. The order of evaluation can be changed this by using parentheses: (33 MOD (2 * 5)) =
3.

Table 107: Order of precedence list

P Syntax Element A Description Example

14 CAST(v AS type) N Type casting CAST(var AS
fgl.FglRecord)

14 INSTANCEOF L Type checking
var INSTANCEOF

Language basics | 235

P Syntax Element A Description Example

java.lang.Boolean

13 UNITS L
Single-qualifier
interval

(integer) UNITS DAY

12 + R Unary plus + number

12 - R Unary minus - number

11 ** L Exponentiation x ** 5

11 MOD L Modulus x MOD 2

10 * L Multiplication x * y

10 / L Division x / y

9 + L Addition x + y

9 - L Subtraction x - y

8 || L Concatenation "Amount:" || amount

7 LIKE R String comparison mystring LIKE "A%"

7 MATCHES R String comparison mystring MATCHES "A*"

6 < L Less than var < 100

6 <= L
Less then or equal
to

var <= 100

6 > L Greater than var > 100

6 >= L
Greater than or
equal to

var >= 100

6 == L Equals var == 100

6 <> or != L Not equal to var <> 100

5 IS NULL L Test for NULL var IS NULL

5 IS NOT NULL L Test for NOT NULL var IS NOT NULL

4 NOT L Logical inverse NOT (a = b)

3 AND L Logical intersection expr1 AND expr2

2 OR L Logical union expr1 OR expr2

1 ASCII() R ASCII Character ASCII(32)

1 CLIPPED R
Delete trailing
blanks

DISPLAY string
 CLIPPED

1 COLUMN (reports) R
Begin line mode
display

PRINT COLUMN 32, "a"

1 (integer) SPACES R Insert blank spaces DISPLAY "a" (5)
 SPACES

1 SQLSTATE R SQL State Code IF SQLSTATE="IX000"

1 SQLERRMESSAGE R SQL Error Message DISPLAY SQLERRMESSAGE

1 USING R
Format character
string

TODAY USING "yy/mm/
dd"

1 := L Assignment var:= "abc"

Language basics | 236

In this table, the P column defines the precedence, from highest (14) to lowest (1). Note that some
operators have the same precedence (i.e. are equivalent in evaluation order). The A column defines the
direction of association (L=Left, R=Right, N=None).

General warnings regarding expressions

Pure SQL Syntax Elements

The following are related to SQL syntax and not part of the language:

• BETWEEN expr AND expr

• IN (expr [, ..'])

Report Routine Syntax Elements

The following are only available in the FORMAT section of report routines:

• PAGENO

• WORDWRAP

See Report Definition for more details.

List of expression elements

Comparison operators
Comparison operators allow you to compare two values, to include the greater than, less than and equal to
functions.

Table 108: Comparison operators

Operator Description

IS NULL on page 237 The IS NULL operator checks for NULL values.

LIKE on page 237 The LIKE operator returns TRUE if a string matches
a given mask.

MATCHES on page 238 The MATCHES operator returns TRUE if a string
matches a given mask.

Equal to (==) on page 239 The == operator checks for equality of two
expressions or for two record variables.

Different from (!=) on page 240 The != operator checks for non-equality of two
expressions or for two record variables.

Lower (<) on page 241 The < operator is provided to test whether a value
or expression is lower than another.

Lower or equal (<=) on page 241 The <= operator is provided to test whether a value
or expression is lower than or equal to another.

Greater (>) on page 242 The > operator is provided to test whether a value
or expression is greater than another.

Greater or equal (>=) on page 242 The >= operator is provided to test whether a value
or expression is greater than or equal to another.

NVL() on page 242 The NVL() operator returns the second parameter
if the first argument evaluates to NULL.

Language basics | 237

Operator Description

IIF() on page 243 The IIF() operator returns the second or third
parameter according to the boolean expression
given as first argument.

IS NULL
The IS NULL operator checks for NULL values.

Syntax

expr IS NULL

1. expr can be any expression supported by the language.

Usage

The IS NULL operator can be used to test whether the left-hand expression is NULL.

This operator applies to most data types, except complex types like BYTE and TEXT.

Example

MAIN
 DEFINE n INTEGER
 LET n = NULL
 IF n IS NULL THEN
 DISPLAY "The variable is NULL."
 END IF
END MAIN

LIKE
The LIKE operator returns TRUE if a string matches a given mask.

Syntax

expr [NOT] LIKE mask [ESCAPE "char"]

1. expr is any character string expression.
2. mask is a character string expression defining the filter.
3. char is a single char specifying the escape symbol.

Usage

The mask can be any combination of characters, including the % and _ wildcards:

• The % percent character matches any string of zero or more characters.
• The _ underscore character matches any single character.

The ESCAPE clause can be used to define an escape character different from the default backslash. It must
be enclosed in single or double quotes.

A backslash (or the escape character specified by the ESCAPE clause) makes the operator treat the next
character as a literal character, even if it is one of the special symbols in the mask list. This allows you to
search for %,_ or \ characters.

Do not confuse with the LIKE clause of the DEFINE instruction .LIKE operators used in SQL statements
are evaluated by the database server. This may have a different behavior than the LIKE operator of the
language.

Language basics | 238

If you need to escape a wildcard character, keep in mind that a string constant must also escape the
backslash character. As a result, if you want to pass a backslash to the LIKE operator (by using backslash
as default escape character), you need to write four backslashes in the original string constant.

The next table shows some examples of string constants used in the source code and their equivalent
LIKE pattern:

Table 109: Examples of string constants used in the source code and their equivalent LIKE pattern

Original String Constant Equivalent MATCHES pattern Description

"%" %
Matches any character in a non-
empty string.

"_" _ Matches a single character.

"abc%" abc% Starts with abc.

"*abc" %abc Ends with abc.

"%abc%" %abc% Contains abc.

"abc__" abc__
Strings equals abc followed by
two additional characters.

"\\%" \%
Contains a single star character
(the % wildcard is escaped)

"%abc\\\\def%" %abc\\def%
Contains abc followed by a
backslash followed by def (the
backslash is escaped)

Example

MAIN
 IF "abcdef" LIKE "a%e_" THEN
 DISPLAY "The value matches."
 END IF
END MAIN

MATCHES
The MATCHES operator returns TRUE if a string matches a given mask.

Syntax

expr [NOT] MATCHES mask [ESCAPE "char"]

1. expr is any character string expression.
2. mask is a character string expression defining the filter.
3. char is a single char specifying the escape symbol.

Usage

The mask can be any combination of characters, including the *, ?, [,], - and ^ wildcards:

• The * star character matches any string of zero or more characters.
• The ? question mark matches any single character.
• The [] brackets match any enclosed character.
• Inside [], the - (hyphen) between characters means a range of characters.

Language basics | 239

• Inside [], the ^ An initial caret matches any character that is not listed.

The ESCAPE clause can be used to define an escape character different from the default backslash. It must
be enclosed in single or double quotes.

A backslash (or the escape character specified by the ESCAPE clause) makes the operator treat the next
character as a literal character, even if it is one of the special symbols in the mask list. This allows you to
search for wildcard charachers such as *, ?, [,] or \.

If you need to escape a wildcard character, keep in mind that a string constant must also escape the
backslash character. As a result, if you want to pass a backslash to the MATCHES operator (by using
backslash as default escape character), you need to write four backslashes in the original string constant.

The next table shows some examples of string constants used in the source code and their equivalent
MATCHES pattern:

Table 110: String constants used in the source code and their equivalent MATCHES pattern

Original String Constant Equivalent MATCHES pattern Description

"*" * Matches any character in a non-
empty string.

"?" ? Matches a single character.

"abc*" abc* Starts with abc.

"*abc" *abc Ends with abc.

"*abc*" *abc* Contains abc.

"abc??" abc?? Starts with abc, followed by two
additional characters.

"[a-z]*" [a-z]* Starts with a letter in the range a
to z.

"[^0-9]*" [^0-9]* Must not start with a digit.

"*" * Contains a single star character
(the * wildcard is escaped)

"*abc\\\\def*" *abc\\def* Contains abc followed by a
backslash followed by def (the
backslash is escaped)

Example

MAIN
 IF "55f-plot" MATCHES "55[a-z]-*" THEN
 DISPLAY "Item reference format is correct."
 END IF
END MAIN

Equal to (==)
The == operator checks for equality of two expressions or for two record variables.

Syntax 1: Expression comparison

expr == expr

Language basics | 240

Syntax 2: Record comparison

record1.* == record2.*

1. expr can be any expression supported by the language.
2. record1 and record2 are records with the same structure.

Usage

The == operator evaluates whether two expressions or two records are identical.

A single equal sign (=) can be used as an alias for the == operator.

When comparing expressions using the first syntax, the result of the operator is FALSE when one of the
operands is NULL. This first syntax applies to most data types, except complex types like BYTE and TEXT.

When comparing two records using the second syntax, the runtime system compares all corresponding
members of the records. If a pair of members are different, the result of the operator is FALSE. When
two corresponding members are NULL, they are considered as equal. This second syntax allows you to
compare all members of records, but records must have the same structure.

Example

MAIN
 DEFINE n INTEGER
 LET n=512
 IF n==512 THEN
 DISPLAY "The variable equals 512."
 END IF
END MAIN

Different from (!=)
The != operator checks for non-equality of two expressions or for two record variables.

Syntax 1: Expression comparison

expr != expr

Syntax 2: Record comparison

record1.* != record2.*

1. <> is a synonym for!=
2. expr can be any expression supported by the language.
3. record1 and record2 are records with the same structure.

Usage

The != operator evaluates whether two expressions or two records are different.

A less-than sign followed by a greater-than sign (<>) can be used as an alias for the != operator.

When comparing expressions with the first syntax, the result of the operator is FALSE when one of the
operands is NULL. This syntax applies to most data types except complex types like BYTE and TEXT.

When comparing two records with the second syntax, the runtime system compares all corresponding
members of the records. If one pair of members are different, the result of the operator is TRUE. When
two corresponding members are NULL, they are considered as equal. This second syntax allows you to
compare all members of records, but records must have the same structure.

Language basics | 241

Example

MAIN
 DEFINE n INTEGER
 LET n==512
 IF n!=32 THEN
 DISPLAY "The variable is not equal to 32."
 END IF
END MAIN

Lower (<)
The < operator is provided to test whether a value or expression is lower than another.

Syntax

expr < expr

Usage

Applies to most data types, except complex types such as BYTE and TEXT.

If one of the operands is NULL, the comparison expression evaluates to FALSE.

Example

MAIN
 DEFINE n INT
 LET n = 45
 IF n < 100 THEN
 DISPLAY "The variable is lower than 100."
 END IF
END MAIN

Lower or equal (<=)
The <= operator is provided to test whether a value or expression is lower than or equal to another.

Syntax

expr <= expr

Usage

Applies to most data types, except complex types such as BYTE and TEXT.

If one of the operands is NULL, the comparison expression evaluates to FALSE.

Example

MAIN
 DEFINE n INT
 LET n = 100
 IF n <= 100 THEN
 DISPLAY "The variable is lower than or equal to 100."
 END IF
END MAIN

Language basics | 242

Greater (>)
The > operator is provided to test whether a value or expression is greater than another.

Syntax

expr > expr

Usage

Applies to most data types, except complex types such as BYTE and TEXT.

If one of the operands is NULL, the comparison expression evaluates to FALSE.

Example

MAIN
 DEFINE n INT
 LET n = 200
 IF n > 100 THEN
 DISPLAY "The variable is greater than 100."
 END IF
END MAIN

Greater or equal (>=)
The >= operator is provided to test whether a value or expression is greater than or equal to another.

Syntax

expr >= expr

Usage

Applies to most data types, except complex types such as BYTE and TEXT.

If one of the operands is NULL, the comparison expression evaluates to FALSE.

Example

MAIN
 DEFINE n INT
 LET n = 100
 IF n >= 100 THEN
 DISPLAY "The variable is greater than or equal to 100."
 END IF
END MAIN

NVL()
The NVL() operator returns the second parameter if the first argument evaluates to NULL.

Syntax

NVL(main-expr, subst-expr)

1. main-expr and subst-expr are any expression supported by the language.

Language basics | 243

Usage

The NVL() operator evaluates the first argument, and returns the result if the value is not null, otherwise
it returns the second argument. This allows you to write the equivalent of the following IF statement, in a
simple scalar expression:

IF main-expr IS NOT NULL THEN
 RETURN main-expr
ELSE
 RETURN subst-expr
END IF

Example

MAIN
 DEFINE var VARCHAR(100)
 LET var = arg_val(1)
 DISPLAY "The argument value is: ", NVL(var, "NULL")
END MAIN

IIF()
The IIF() operator returns the second or third parameter according to the boolean expression given as
first argument.

Syntax

IIF(bool-expr, true-expr, false-expr)

1. bool-expr is a boolean expression.
2. true-expr and false-expr are language expressions.

Usage:

The IIF() operator evaluates the first argument, the returns the second argument if the first argument
is true, otherwise it returns the third argument. This allows you to write the equivalent of the following IF
statement, in a simple scalar expression:

IF bool-expr THEN
 RETURN true-expr
ELSE
 RETURN false-expr
END IF

Example

MAIN
 DEFINE var VARCHAR(10)
 LET var = arg_val(1)
 DISPLAY IIF(var == "A", "Accepted", "Rejected")
END MAIN

Language basics | 244

Logical operators
Logical operators include NOT, AND and OR.

Table 111: Logical operators

Operator Description

NOT on page 244 The NOT operator performs a logical negation to
invert a boolean expression.

AND on page 244 The AND operator is the logical intersection
operator.

OR on page 245 The OR operator is the logical union operator.

NOT
The NOT operator performs a logical negation to invert a boolean expression.

Syntax

NOT bool-expr

1. bool-expr is a boolean expression.

Usage

The NOT operator is typically used to invert the value of a boolean expression.

If the operand is NULL, the negation expression evaluates to NULL.

Example

MAIN
 IF NOT (256 == 257) THEN
 DISPLAY "This line should display"
 END IF
END MAIN

AND
The AND operator is the logical intersection operator.

Syntax

bool-expr AND bool-expr

1. bool-expr is a boolean expression.

Usage

If one of the operands is NULL, the logical expression evaluates to FALSE.

By default, the runtime system evaluates both operands on the left and right side of the AND keyword.
This is the traditional behavior of the Genero language, but in fact the right operand does not need to be
evaluated if the first operand evaluates to FALSE. This method is called short-circuit evaluation, and can be
enabled by adding the OPTIONS SHORT CIRCUIT clause at the beginning of the module.

Example

MAIN

Language basics | 245

 IF 256!=257 AND 257==257 THEN
 DISPLAY "This line should display"
 END IF
END MAIN

OR
The OR operator is the logical union operator.

Syntax

bool-expr OR bool-expr

1. bool-expr is a boolean expression.

Usage

If one of the operands is NULL, the logical expression evaluates to FALSE.

By default, the runtime system evaluates both operands on the left and right side of the OR keyword.
This is the traditional behavior of the Genero language, but in fact the right operand does not need to be
evaluated if the first operand evaluates to TRUE. This method is called short-circuit evaluation, and can be
enabled by adding the OPTIONS SHORT CIRCUIT clause at the beginning of the module.

Example

MAIN
 IF TRUE OR FALSE THEN
 DISPLAY "This line should display"
 END IF
END MAIN

Arithmetic operators
Arithmetic operators allow you to complete numeric operations, such as addition and subtraction.

Table 112: Arithmetic operators

Operator Description

Addition (+) on page 245 The + operator adds a number to another.

Subtraction (-) on page 246 The - operator subtracts a number from another.

Multiplication (*) on page 246 The * operator multiplies a number with another.

Division (/) on page 247 The / operator divides a number by another.

Exponentiation (**) on page 247 The ** operator calculates an exponentiation.

MOD on page 247 The MOD operator calculates the modulus.

Addition (+)
The + operator adds a number to another.

Syntax

num-expr + num-expr

1. num-expr is a numeric expression.

Language basics | 246

Usage

Use the + operator to add two numeric values.

If one of the operands is NULL, the arithmetic expression evaluates to NULL.

Example

MAIN
 DISPLAY 100 + 200
END MAIN

Subtraction (-)
The - operator subtracts a number from another.

Syntax

num-expr - num-expr

1. num-expr is a numeric expression.

Usage

Use the - operator to subtract a numeric value from another numeric value.

If one of the operands is NULL, the arithmetic expression evaluates to NULL.

Example

MAIN
 DISPLAY 100 - 200
END MAIN

Multiplication (*)
The * operator multiplies a number with another.

Syntax

num-expr * num-expr

1. num-expr is a numeric expression.

Usage

Use the * operator to multiply a numeric value to another numeric value.

If one of the operands is NULL, the arithmetic expression evaluates to NULL.

Example

MAIN
 DISPLAY 100 * 200
END MAIN

Language basics | 247

Division (/)
The / operator divides a number by another.

Syntax

num-expr / num-expr

1. num-expr is a numeric expression.

Usage

Use the / operator to divide a numeric value by another numeric value.

If one of the operands is NULL, the arithmetic expression evaluates to NULL.

Example

MAIN
 DISPLAY 100 / 200
END MAIN

Exponentiation (**)
The ** operator calculates an exponentiation.

Syntax

num-expr ** int-expr

1. num-expr is a numeric expression.

Usage

The ** operator returns a value calculated by raising the left-hand operand to a power corresponding to
the integer part of the right-hand operand.

If the right operand is a number with a decimal part, it is rounded to a whole integer before computing the
exponentiation.

Example

MAIN
 DISPLAY 2 ** 8
 DISPLAY 10 ** 4
END MAIN

MOD
The MOD operator calculates the modulus.

Syntax

int-expr MOD int-expr

1. int-expr is an integer expression.

Usage

The MOD operator returns the remainder, as an integer, from the division of the integer part of two numbers.

Language basics | 248

If the right operand is a number with a decimal part, it is rounded to a whole integer before computing the
modulus.

Example

MAIN
 DISPLAY 256 MOD 16
 DISPLAY 26 MOD 2
 DISPLAY 27 MOD 2
END MAIN

Character string operators
Character string operators allow you to work with and manipulate character strings.

Table 113: Character string operators

Operator Description

ASCII() on page 248 The ASCII() operator produces an ASCII
character.

COLUMN on page 249 The COLUMN operator generates blanks.

Concatenate (||) on page 250 The || operator makes a string concatenation.

Append (,) on page 250 The , (comma) appends an expression to a string.

Substring ([s,e]) on page 250 The [] (square braces) extract a substring.

USING on page 251 The USING operator converts date and numeric
values to a string, according to a formatting mask.

CLIPPED on page 252 The CLIPPED operator removes trailing blanks of a
string expression.

ORD() on page 252 The ORD() operator returns the code point of a
character in the current locale.

SPACES on page 252 The SPACES operator returns a character string
with blanks.

LSTR() on page 253 The LSTR() operator returns a localized string.

SFMT() on page 253 The SFMT() operator replaces place holders in a
string with values.

ASCII()
The ASCII() operator produces an ASCII character.

Syntax

ASCII (int-expr)

1. int-expr is an integer expression, in the range 0-255 or 0-127, according to the current locale.

Usage

The ASCII() operator returns the character corresponding to the ASCII code passed as a parameter.

ASCII() is typically used to generate a non-printable character such as newline or escape. You should
avoid to use this function for other characters.

Language basics | 249

The possible values of the integer parameter passed to ASCII() depends on the locale settings:

• For single byte encodings (like ISO8859-1), the argument must be in the range of 0 to 255.
• For UTF-8, using char length semantics, the argument must be any valid 16bit code point.
• For any other locale setting (any multibyte character set, or UTF-8 with byte length semantics), the

argument must be in the range 0 to 127.

When the argument is zero, ASCII() has a different behavior, according to the context:

• ASCII(0) only displays the NULL character within the PRINT statement.
• If you specify ASCII(0) in other contexts, it returns a blank space.

Example

MAIN
 DISPLAY ASCII(65), ASCII(66), ASCII(7)
END MAIN

COLUMN
The COLUMN operator generates blanks.

Syntax

COLUMN position

1. position is the column position (starts at 1).

Usage

The COLUMN operator is typically used in report routines to align data in PRINT statements and move the
character position forward within the current line. This operator makes sense when used in an expression
with the comma append operator: Spaces will be generated according to the number of characters that
have been used in the expression, before the COLUMN operator.

The COLUMN operator can be used outside report routines, in order to align data to be displayed with a
proportional font, typically in a TUI context. For example, the next lines will always display the content
of the lastname variable starting from column 30 of the terminal, no matters the number of characters
contained in the firstname variable. The example defines VARCHAR variables, since CHAR variables are
blank-padded, we would need to use the CLIPPED operator:

DEFINE firstname, lastname VARCHAR(50)
DISPLAY firstname, COLUMN(30), lasttname

The pos operand must be a non-negative integer that specifies a character position offset (from the left
margin) no greater than the line width (that is, no greater than the difference (right margin - left margin).
This designation moves the character position to a left-offset, where 1 is the first position after the left
margin. If current position is greater than the operand, the COLUMN specification is ignored.

Example

PAGE HEADER
 PRINT "Number", COLUMN 12,"Name", COLUMN 35,"Location"
ON EVERY ROW
 PRINT customer_num, COLUMN 12, fname, COLUMN 35,city

Language basics | 250

Concatenate (||)
The || operator makes a string concatenation.

Syntax

expr || expr

1. expr can be a character, numeric or date time expression.

Usage

The || operator is the concatenation operator that produces a string expression from the expression
elements on both sides of the operator.

This operator has a high precedence; it can be used in parameters for function calls. The precedence of
this operator is higher than LIKE and MATCHES, but less than arithmetic operators. For example, a || b
+ c is equivalent to (a||(b+c)).

If any of the members of a concatenation expression is NULL, the result string will be NULL.

Example

MAIN
 DISPLAY "Length: " || length("ab" || "cdef")
END MAIN

Append (,)
The , (comma) appends an expression to a string.

Syntax

char-expr, expr

Usage

The comma operator formats and concatenates expressions together.

This operator can only be used in some instructions such as LET, PRINT, MESSAGE, ERROR and DISPLAY
instructions.

As an alternative, use the || concatenation operator.

Use the comma concatenation operator when data needs to be formatted for printing and display.

Example

MAIN
 DISPLAY "Today:", TODAY, " and a number: ", 12345.67
END MAIN

Substring ([s,e])
The [] (square braces) extract a substring.

Syntax

char-variable [start [, end]]

1. char-variable must be a character data type variable.

Language basics | 251

2. start defines the position of the first character of the substring to be extracted.
3. end defines the position of the last character of the substring to be extracted.
4. If end is not specified, only one character is extracted.

Usage

The [] (square braces) notation following a CHAR or VARCHAR variable extracts a substring from that
character variable.

The start and end arguments can be expressed in bytes or characters, depending on the length semantics
used in your programs.

Important: Substring expressions in SQL statements are evaluated by the database server. This
may have a different behavior than the substring operator of the language.

Example

MAIN
 DEFINE s CHAR(10)
 LET s = "abcdef"
 DISPLAY s[3,4]
END MAIN

USING
The USING operator converts date and numeric values to a string, according to a formatting mask.

Syntax

expr USING format

1. expr is a language expression.
2. format is a string expression that defines the formatting mask to be used.

Usage

The USING operator applies a formatting string to the left operand.

The left operand must be a valid date, integer or decimal number. Note that DATETIME and INTERVAL
expressions cannot be formatted with the USING operator.

The format string can be any valid string expression using formatting characters as described in Formatting
numeric values on page 217 and Formatting DATE values on page 220.

The USING operator has a low order of precedence: if you use operators with a higher precedence, the
resulting string might not be what you are expecting.

For example, the || concatenation operator is evaluated before USING. As a result:

LET x = a || b USING "format"

will first concatenate a and b, then apply the USING format.

To solve this issue, use braces around the USING expression:

LET x = a || (b USING "format")

Example

MAIN
 DEFINE d DECIMAL(12,2)

Language basics | 252

 LET d = -12345678.91
 DISPLAY d USING "$-##,###,##&.&&"
 DISPLAY TODAY USING "yyyy-mm-dd"
END MAIN

CLIPPED
The CLIPPED operator removes trailing blanks of a string expression.

Syntax

expr CLIPPED

1. expr is a language expression.

Usage

This operator removes all trailing spaces of a string expression.

The CLIPPED operator is typically used to remove the trailing blanks of a CHAR value, which would be
printed otherwise.

Example

MAIN
 DISPLAY "Some text " CLIPPED
END MAIN

ORD()
The ORD() operator returns the code point of a character in the current locale.

Syntax

ORD(source STRING)

1. source is a string expression.

Usage

The value returned by ORD() is the code point in the current locale of the character passed as argument.

Only the first character of the argument is evaluated.

When using UTF-8 with character length semantics, the ORD() operator returns the UNICODE code point
of the character.

ORD returns NULL if the argument passed is not valid.

SPACES
The SPACES operator returns a character string with blanks.

Syntax

int-expr SPACES

1. int-expr is an integer expression.
2. SPACE (without S) is an alias for this operator.

Language basics | 253

Usage

The SPACE operator is typically used in reports to print spaces to align data in the report output.

Example

MAIN
 DISPLAY 20 SPACES || "xxx"
END MAIN

LSTR()
The LSTR() operator returns a localized string.

Syntax

LSTR(str-expr)

1. str-expr is a string expression.

Usage

The LSTR() operator returns a localized string corresponding to the identifier passed as parameter.

Normally localized strings are automatically replaced when using the %"ident" notation in the source
code. When the localized string identifier is not known at compile time, use the LSTR() function.

Example

MAIN
 DISPLAY LSTR ("str"||123) -- loads string 'str123'
END MAIN

SFMT()
The SFMT() operator replaces place holders in a string with values.

Syntax

SFMT(str-expr , param [, param [...]])

1. str-expr is a string expression.
2. param is any valid expression used to replace parameter place holders (%n).
3. At least one parameter is required.

Usage

The SFMT() operator can be used with parameters that will be automatically set in the string at the
position defined by parameter placeholders. The parameters used with the SFMT() operator can be any
valid expressions. Numeric and date/time expressions are evaluated to strings according to the current
format settings (DBDATE, DBMONEY).

A placeholder a is special marker in the string, that is defined by the percent character followed by the
parameter number. For example, %4 represents the parameter #4. You are allowed to use the same
parameter placeholder several times in the string. If you want to use the percent sign in the string, you
must escape it with %%.

Predefined placeholders can be used to insert information about last runtime system error that occurred.
Note that these are only available in the context of a runtime error trapped with a WHENEVER ERROR
GOTO / CALL handler:

Language basics | 254

Table 114: Predefined placeholders for runtime system error information

Predefined parameter Description

%(ERRORFILE)
Name of the module where last runtime error
occurred.

%(ERRORLINE)
Line number in the module where last runtime error
occurred.

%(ERRNO) Last operating system error number.

%(STRERROR) Last operating system error text.

Example

MAIN
 DEFINE n INTEGER
 LET n = 234
 DISPLAY SFMT("Order #%1 has been %2.",n,"deleted")
END MAIN

In this example, %1 is replaced by the value of the variable n, while %2 is replaced by the
string "deleted", resulting in: Order #234 has been deleted.

Associative syntax operators
Associative syntax operators allow you to group together objects.

Table 115: Associative syntax operators

Operator Description

Parentheses (()) on page 254 Parentheses (()) force the evaluation of an
expression before other operators.

Membership (object.member) on page 255 Separator for object members.

Variable parameter list ([]) on page 255 Variable parameter list delimiters.

Parentheses (())
Parentheses (()) force the evaluation of an expression before other operators.

Syntax

(expr [...])

1. expr is a language expression.

Usage

Parentheses can be used to change the order in which expression elements are evaluated, to bypass the
precedence of operators.

Parentheses can also be used to ease the readability of the code in a complex expression.

Example

MAIN
 DEFINE n INTEGER

Language basics | 255

 LET n = ((3 + 2) * 2)
 IF n=10 AND (n<=0 OR n>=20) THEN
 DISPLAY "OK"
 END IF
END MAIN

Membership (object.member)
Separator for object members.

Syntax

setname.element

Usage

The period expression element specifies that its right-hand operand is a member of the set whose name is
its left-hand operand.

This notation is used to reference RECORD members, object and class methods, as well as module
elements.

Example

IMPORT FGL customer_module
...
MAIN
 DEFINE rec RECORD
 n INTEGER,
 c CHAR(10)
 END RECORD
 DEFINE form ui.Form
 LET rec.n = 12345
 LET rec.c = "abcdef"
 ...
 CALL form.setElementHidden("page1")
 ...
 CALL customer_module.check(345)
 ...
END MAIN

Variable parameter list ([])
Variable parameter list delimiters.

Syntax

[variable [,...]]

Usage

The square brace notation in function parameters defines a variable list of arguments for a built-in function
or a built-in class method.

The elements of a variable parameter list are program variables which are passed by reference. As result,
the called function can modify the content of the passed variables, to return values in output parameters.

It is not possible to define user functions with variable parameter lists.

For real usage examples, see the read and write methods of the base.Channel class.

Language basics | 256

Example

MAIN
 DEFINE id INTEGER, name STRING,
 count INTEGER, stat INTEGER
 LET id = 12345
 LET name = "Forman"
 -- Warning: This is a fake call, the function does not exist!
 -- Here, id and name are passed as input values, while count
 -- and stat are used as output parameters...
 CALL built_in_function([id,name], [count, stat])
END MAIN

SQL related operators
SQL related operators allow you to retrieve the SQL state and the SQL error message.

Table 116: SQL related operators

Operator Description

SQLSTATE on page 256 The SQLSTATE variable returns the code
corresponding to the last SQL error.

SQLERRMESSAGE on page 257 The SQLERRMESSAGE variable holds the error
message corresponding to the last SQL error.

SQLSTATE
The SQLSTATE variable returns the code corresponding to the last SQL error.

Syntax

SQLSTATE

Usage

The SQLSTATE predefined variable returns the ANSI/ISO SQLSTATE code when an SQL error occurred.

The SQLSTATE error code is a standard ANSI specification, but not all database engines support this
feature. Check the database server documentation for more details.

The variable is NULL if the last SQL statement was successfull.

Example

MAIN
 DATABASE stores
 WHENEVER ERROR CONTINUE
 SELECT foo FROM bar
 DISPLAY SQLSTATE
END MAIN

Language basics | 257

SQLERRMESSAGE
The SQLERRMESSAGE variable holds the error message corresponding to the last SQL error.

Syntax

SQLERRMESSAGE

Usage

The SQLERRMESSAGE predefined variable returns the error message if an SQL error occurred.

The variable is NULL if the last SQL statement was successfull.

Example

MAIN
 DATABASE stores
 WHENEVER ERROR CONTINUE
 SELECT foo FROM bar
 DISPLAY SQLERRMESSAGE
END MAIN

Data type operators
Data type operators allow you cast a data type or create an instance of a data type.

Table 117: Data type operators

Operator Description

CAST on page 257 The CAST operator converts a Java™ object to the
user-defined type or Java class specified.

INSTANCEOF on page 258 The INSTANCEOF checks the class of an object.

CAST
The CAST operator converts a Java™ object to the user-defined type or Java class specified.

Syntax

CAST(obj AS type)

1. obj is a Java object.
2. type is a user-defined type or a Java class.

Usage

The CAST() operator is required when you want to assign an object reference to variable defined with a
user-defined type or Java class which requires narrowing reference conversion.

Example

In this example, when assigning a java.lang.StringBuffer reference to a java.lang.Object
variable, widening reference conversion occurs and no CAST() operator is needed, but when assigning
an java.lang.Object reference to a java.lang.StringBuffer variable, you must cast the object
reference to a java.lang.StringBuffer:

IMPORT JAVA java.lang.Object

Language basics | 258

IMPORT JAVA java.lang.StringBuffer
MAIN
 DEFINE sb1, sb2 java.lang.StringBuffer
 DEFINE o java.lang.Object
 LET sb1 = StringBuffer.create()
 LET o = sb1 -- Widening Reference Conversion does not need CAST()
 LET sb2 = CAST(o AS java.lang.StringBuffer) -- Narrowing
 -- Reference Conversion needs CAST()
END MAIN

In order to cast an fgl.FglRecord object to a regular RECORD, you need to specify a user-defined type
(TYPE definition):

IMPORT JAVA com.fourjs.fgl.lang.FglRecord
TYPE mytype RECORD f1, f2 INTEGER END RECORD
MAIN
 DEFINE r mytype
 DEFINE jr fgl.FglRecord
 LET jr = r
 LET r = CAST(jr AS mytype)
 -- This is denied:
 -- CAST(jr AS RECORD f1, f2 INTEGER END RECORD)
END MAIN

INSTANCEOF
The INSTANCEOF checks the class of an object.

Syntax

expr INSTANCEOF type

1. expr can be any expression supported by the language.
2. type is a structured user defined type or a Java™ class.

Usage
The INSTANCEOF operator evaluates to TRUE if the object reference is of the type or class specified.

The INSTANCEOF operator is used to check if an expression (usually, an object reference) is one of the
type or class specified by type.

Example

IMPORT JAVA java.lang.Object
IMPORT JAVA java.lang.StringBuffer
IMPORT JAVA java.lang.Number
MAIN
 DEFINE o java.lang.Object
 DEFINE sb java.lang.StringBuffer
 LET sb = StringBuffer.create()
 LET o = sb
 DISPLAY sb INSTANCEOF java.lang.StringBuffer -- shows 1
 DISPLAY o INSTANCEOF java.lang.StringBuffer -- shows 1
 DISPLAY o INSTANCEOF java.lang.Number -- shows 0
END MAIN

Language basics | 259

Assignment operators
An assignment operator allows you to assign a variable with an expression.

Table 118: Assignment operators

Operator Description

Assignment (:=) on page 259 The := operator assigns a variable with an
expression and returns the result.

Assignment (:=)
The := operator assigns a variable with an expression and returns the result.

Syntax

variable := expr

Usage

The := assignment operator puts a value in the left-hand variable and the resulting value can again be
used in an expression.

Do not confuse with the LET instruction.

The := assignment operator has the lowest precedence, it can be used at many places and can simplify
coding.

Example

In the next example, the := operator is used to increment the array index before usage:

MAIN
 DEFINE arr DYNAMIC ARRAY OF STRING,
 idx INTEGER
 LET idx = 0
 LET arr[idx:=idx+1] = "One"
 LET arr[idx:=idx+1] = "Two"
 LET arr[idx:=idx+1] = "Three"
END MAIN

Date and time operators
Date and time operators allow you to work with date and time values.

Table 119: Date and time operators

Operator Description

CURRENT on page 260 The CURRENT operator returns the current system
date and time.

EXTEND() on page 260 The EXTEND() operator adjusts a date time value
according to the qualifier.

DATE() on page 261 The DATE() operator converts an expression to a
DATE value.

TIME() on page 261 The TIME() operator returns a time part of the date
time expression.

Language basics | 260

Operator Description

TODAY on page 262 The TODAY operator returns the current calendar
date.

YEAR() on page 262 The YEAR() operator extracts the year of a date
time expression.

MONTH() on page 263 The MONTH() operator extracts the month of a date
time expression.

DAY() on page 263 The DAY() operator extracts the day of the month
of a date time expression.

WEEKDAY() on page 263 The WEEKDAY() operator extracts the day of the
week of a date time expression.

MDY() on page 264 The MDY() operator creates a date from month,
day and year units.

UNITS on page 264 The UNITS operator converts an integer to an
interval.

CURRENT
The CURRENT operator returns the current system date and time.

Syntax

CURRENT [qual1 TO qual2 [(scale)]]

1. qual1, qual2 and scale define the date time qualifier.

Usage

The CURRENT operator returns the system date/time in the current local timezone.

This operator can be used to assign the current system date and time to a DATETIME variable.

Use optional datetime qualifiers to specify the precision of the returned value. The possible qualifiers are
the same as in a DATETIME data type definition.

If the datetime qualifiers are not specified after the CURRENT keyword, the precision defaults to YEAR TO
FRACTION(3) precision.

Example

MAIN
 DISPLAY CURRENT YEAR TO FRACTION(4)
 DISPLAY CURRENT HOUR TO SECOND
 DISPLAY CURRENT
END MAIN

EXTEND()
The EXTEND() operator adjusts a date time value according to the qualifier.

Syntax

EXTEND (dt-expr, qual1 TO qual2 [(scale)])

1. dt-expr is a date / time expression.
2. qual1, qual2 and scale define the date time qualifier.

Language basics | 261

Usage

The EXTEND() operator is used to convert a date time expression to a DATETIME value with a different
precision.

The default qualifier is YEAR TO DAY.

The possible qualifiers are the same as in a DATETIME data type definition.

The expressions passed as first parameter must be a valid datetime value. If it is a character string, it must
consist of valid and unambiguous time-unit values and separators, but with these restrictions:

• It cannot be a character string in date format, such as "12/12/99".
• It cannot be an ambiguous numeric datetime value, such as "05:06" or "05".
• It cannot be a time expression that returns an INTERVAL value.

Example

MAIN
 DISPLAY EXTEND (TODAY, YEAR TO FRACTION(4))
END MAIN

DATE()
The DATE() operator converts an expression to a DATE value.

Syntax

DATE [(expr)]

1. expr is the expression to be converted to a date.

Usage

DATE() converts a character string, an integer or datetime expression to a DATE value.

When expr is a character string expression, it must properly formatted according to datetime format
settings like DBDATE.

If expr is an integer expression, it is used as the number of days since December 31, 1899.

If you supply no operand, it returns a character representation of the current date in the format "weekday
month day year".

Example

MAIN
 DISPLAY DATE (34000)
 DISPLAY DATE ("12/04/1978")
 DISPLAY DATE (CURRENT)
END MAIN

TIME()
The TIME() operator returns a time part of the date time expression.

Syntax

TIME [(datetime-expr)]

1. datetime-expr is a datetime expression.

Language basics | 262

Usage

TIME() converts the time-of-day portion of its datetime operand to a character string.

This operator converts a date time expression to a character string representing the time-of-day part of its
operand.

The format of the returned string is always "hh:mm:ss".

If you supply no operand, it returns a character representation of the current time. You can use the
CURRENT operator to get a datetime result of the current system time.

Example

MAIN
 DISPLAY TIME (CURRENT)
END MAIN

TODAY
The TODAY operator returns the current calendar date.

Syntax

TODAY

Usage

TODAY returns the current system date as a DATE value, in the current local timezone.

This operator can be used to assign the current system date to a DATE variable.

The TODAY operator is the DATE equivalent for the CURRENT operator used for DATETIME.

Example

MAIN
 DISPLAY TODAY
END MAIN

YEAR()
The YEAR() operator extracts the year of a date time expression.

Syntax

YEAR (expr)

1. expr is a date / time expression.

Usage

Returns an integer corresponding to the year portion of its operand.

Example

MAIN
 DISPLAY YEAR (TODAY)
 DISPLAY YEAR (CURRENT)

Language basics | 263

END MAIN

MONTH()
The MONTH() operator extracts the month of a date time expression.

Syntax

MONTH (expr)

1. expr is a date / time expression.

Usage

Returns a positive whole number between 1 and 12 corresponding to the month of its operand.

Example

MAIN
 DISPLAY MONTH (TODAY)
 DISPLAY MONTH (CURRENT)
END MAIN

DAY()
The DAY() operator extracts the day of the month of a date time expression.

Syntax

DAY (expr)

1. expr is a date / time expression.

Usage

Returns a positive whole number between 1 and 31 corresponding to the day of the month of its operand.

Example

MAIN
 DISPLAY DAY (TODAY)
 DISPLAY DAY (CURRENT)
END MAIN

WEEKDAY()
The WEEKDAY() operator extracts the day of the week of a date time expression.

Syntax

WEEKDAY (expr)

1. expr is a date / time expression.

Usage

Returns a positive whole number between 0 and 6 corresponding to the day of the week implied by its
operand.

Language basics | 264

The integer 0 (Zero) represents Sunday.

Example

MAIN
 DISPLAY WEEKDAY(TODAY)
 DISPLAY WEEKDAY(CURRENT)
END MAIN

MDY()
The MDY() operator creates a date from month, day and year units.

Syntax

MDY (expr1, expr2, expr3)

1. expr1 is an integer representing the month (from 1 to 12).
2. expr2 is an integer representing the day (from 1 to 28, 29, 30 or 31 depending on the month).
3. expr3 is an integer representing the year (four digits).

Usage

The MDY() operator builds a date value with 3 integers representing the month, day and year.

The result is a DATE value.

This function is sensitive to the C1 modifier of the DBDATE environment variable, defining a Ming Guo date
format.

Example

MAIN
 DISPLAY MDY (12, 3+2, 1998)
END MAIN

UNITS
The UNITS operator converts an integer to an interval.

Syntax

expr UNITS qual[(scale)]

where qual can be one of:

 YEAR
 MONTH
 DAY
 HOUR
 MINUTE
 SECOND
 FRACTION(1-6)

1. expr is an integer expression.

Usage

The UNITS operator converts an integer expression to an INTERVAL value expressed in a single unit of
time that you specify after the UNITS keyword.

Language basics | 265

For the qualifiers YEAR, MONTH, DAY, HOUR and SECOND, if the left-hand expression evaluates to a decimal
number, any fractional part is discarded before the UNITS operator is applied. However, when using
UNITS FRACTION, the expression can be a decimal number where the integer part is interpreted as a
number of seconds, and the decimal part as the fraction of a second.

UNITS has a higher precedence than any arithmetic or boolean operator. As a result, a left-hand arithmetic
expression that uses a UNITS operator must be enclosed in parentheses. For example, 10 + 20 UNITS
MINUTES will be evaluated as 10 + (20 UNITS MINUTES) and give a conversion error. It must be
written (10 + 20) UNITS MINUTES to get the expected result.

Because the difference between two DATE values is an integer count of days rather than an INTERVAL
data type, you might want to use the UNITS operator to convert such differences explicitly to INTERVAL
values.

Example

MAIN
 DEFINE d DATE
 LET d = TODAY + 200
 DISPLAY (d - TODAY) UNITS DAY
END MAIN

Dialog handling operators
Dialog handling operators allow you to handle variables in a DIALOG statement.

Table 120: Dialog handling operators

Operator Description

GET_FLDBUF() on page 265 The GET_FLDBUF() operator returns as character
strings the current values of the specified fields.

INFIELD() on page 266 The INFIELD() operator checks for the current
screen field.

FIELD_TOUCHED() on page 266 The FIELD_TOUCHED() operator checks if fields
were modified during the dialog execution.

GET_FLDBUF()
The GET_FLDBUF() operator returns as character strings the current values of the specified fields.

Syntax

GET_FLDBUF ([group.]field [,...])

1. group can be a table name, a screen record, a screen array or FORMONLY.
2. field is the name of the screen field.

Usage

The GET_FLDBUF() operator is used to get the value of a screen field before the input buffer is copied into
the associated variable.

Note: This operator should only be used in dialogs allowing field input (INPUT, INPUT ARRAY,
CONSTRUCT). The behavior is undefined when used in DISPLAY ARRAY.

Language basics | 266

The GET_FLDBUF() operator takes the field names as identifiers, not as string expressions:

LET v = GET_FLDBUF(customer.custname)

If multiple fields are specified between parentheses, use the RETURNING clause:

CALL GET_FLDBUF(customer.*) RETURNING rec_customer.*

When used in a INPUT ARRAY instruction, the runtime system assumes that you are referring to the
current row.

The values returned by this operator are context dependent; it must be used carefully. If possible, use the
variable associated to the input field instead.

When using the UNBUFFERED mode, program variables are automatically assigned, and the GET_FLDBUF
operator is not required in most cases.

Example

INPUT BY NAME ...
 ...
 ON KEY(CONTROL-Z)
 LET v = GET_FLDBUF(customer.custname)
 IF check_synonyms(v) THEN
 ...

INFIELD()
The INFIELD() operator checks for the current screen field.

Syntax

INFIELD ([group.]field)

1. group can be a table name, a screen record, a screen array or FORMONLY.
2. field is the name of the field in the form.

Usage

INFIELD checks for the current field in a CONSTRUCT, INPUT or INPUT ARRAY dialog.

When used in an INPUT ARRAY instruction, the runtime system assumes that you are referring to the
current row.

For a generic coding equivalent, use the DIALOG.getCurrentItem() method.

Example

INPUT ...
 IF INFIELD(customer.custname) THEN
 MESSAGE "The current field is customer's name."
 ...

FIELD_TOUCHED()
The FIELD_TOUCHED() operator checks if fields were modified during the dialog execution.

Syntax

FIELD_TOUCHED (

Language basics | 267

 { [group.]field.*
 | group.*
 | *
 } [,...])

1. group can be a table name, a screen record, a screen array or FORMONLY.
2. field is the name of the field in the form.

Usage

FIELD_TOUCHED returns TRUE if the value of a screen field (or multiple fields) has changed since the
beginning of the interactive instruction.

The operator accepts a list of explicit field names, and supports the [group.]* notation in order to check
multiple fields in a single evaluation. When passing a simple asterisk (*) to the operator, the runtime
system will check all fields used by the current dialog.

When used in an INPUT ARRAY instruction, the runtime system assumes that you are referring to the
current row.

The FIELD_TOUCHED operator can only be used inside an INPUT, INPUT ARRAY and CONSTRUCT
interaction block.

For more details about the FIELD_TOUCHED operator usage and the understand the "touched flag"
concept, refer to the definition of the DIALOG instruction.

Do not confuse the FIELD_TOUCHED operator withFGL_BUFFERTOUCHED built-in function; which checks
a different field modification flag, that is reset when entering the field. The global touched flag controlled by
FIELD_TOUCHED is reset when the dialog starts or when DIALOG.setFieldTouched() is used.

Example

INPUT ...
 ...
 AFTER FIELD custname
 IF FIELD_TOUCHED(customer.custname) THEN
 MESSAGE "Customer name was changed."
 END IF
 ...
 AFTER INPUT
 IF FIELD_TOUCHED(customer.*) THEN
 MESSAGE "Customer record was changed."
 END IF
 ...

Flow control
Definition of language elements and instructions that control the flow of a program.

• CALL on page 268
• RETURN on page 270
• CASE on page 270
• CONTINUE block-name on page 272
• EXIT block-name on page 273
• FOR on page 274
• GOTO on page 275
• IF on page 276
• LABEL on page 276

Language basics | 268

• SLEEP on page 277
• WHILE on page 277

CALL
The CALL instruction invokes a specified function or method.

Syntax

CALL [prefix.] function ([parameter [,...]])
 [RETURNING variable [,...]]

1. prefix can be an imported module, an imported C-Extension module, a built-in class, a variable
referencing an object of a built-in class, a Java™ class, a variable referencing a Java™ object.

2. function can a function defined in one of the modules of the program, a function defined in one of
the modules of the program, a C function defined in a C extension module, a built-in function of the
language, a built-in class or object method of the language or a Java™ class or object method of an
imported Java™ class.

3. parameter can be any valid expression, including object references of built-in classes or Java™ classes.
4. variable is a variable receiving a value returned by the function.

Usage

The CALL instruction invokes the function or class/object method specified and passes the program flow
control to that function/method. After the called function was executed, the flow control goes back to the
caller, the runtime system executing the next statement that appears after the CALL instruction.

Function arguments can be any expression supported by the language. Use a double-pipe operator || to
pass the concatenation of character string expressions as a parameter.

CALL my_function(TODAY, 20*0.5435, 'abc'||'def'||var1)

The RETURNING clause assigns values returned by the function to variables in the calling routine. The
RETURNING clause is only needed when the function returns parameters.

MAIN
 DEFINE var1 CHAR(15)
 DEFINE var2 CHAR(15)
 CALL foo() RETURNING var1, var2
 DISPLAY var1, var2
END MAIN

FUNCTION foo()
 DEFINE r1 CHAR(15)
 DEFINE r2 CHAR(15)
 LET r1 = "return value 1"
 LET r2 = "return value 2"
 RETURN r1, r2
END FUNCTION

If the function returns a unique parameter, the function can be used in an expression and can be directly
assigned to a variable with LET var = function(...) statement.

MAIN
 DEFINE var1 CHAR(10)
 DEFINE var2 CHAR(2)
 LET var1 = foo()
 DISPLAY "var1 = " || var1
 CALL foo() RETURNING var2

Language basics | 269

 DISPLAY "var2 = " || var2
END MAIN

FUNCTION foo()
 RETURN "Hello"
END FUNCTION

The value of a receiving variable may be different from the value returned by the function, following the
data conversion rules.

MAIN
 DEFINE s STRING
 LET s = div(10,2)
END MAIN

FUNCTION div(x,y)
 DEFINE x,y INTEGER
 RETURN x / y
END FUNCTION

Records can be passed to and returned from functions, but the record structure must be flat and each
member is passed or returned individually by value. Records are not passed by reference.

MAIN
 DEFINE r RECORD
 x INT,
 y INT,
 z INT
 END RECORD
 CALL foo(r.*) RETURNING r.*
 DISPLAY r.*
END MAIN

FUNCTION foo(x,y,z)
 DEFINE x,y,z INT
 RETURN z,y,x
END FUNCTION

If the IMPORT FGL instruction was used to import a module, function can be prefixed with the name of the
module followed by a dot (i.e. module.function). The module prefix is required to fully-qualify the function in
case of conflicts (i.e. when functions with the same name are defined in several modules).

-- main.4gl
IMPORT FGL module1
IMPORT FGL module2
MAIN
 CALL module1.show("aaa")
 CALL module2.show("aaa")
END MAIN

-- module1.4gl
FUNCTION show(s)
 DEFINE s STRING
 DISPLAY s
END FUNCTION

-- module2.4gl
FUNCTION show(s)
 DEFINE s STRING
 DISPLAY s

Language basics | 270

END FUNCTION

RETURN
The RETURN instruction returns flow control to the function caller.

Syntax

RETURN [value [,...]]

1. value can be any valid expression, an object reference or dynamic array reference.

Usage

The RETURN instruction transfers the control back from a function with optional return values.

Record members can be returned with the .* or THRU notation. Each member is returned as an
independent variable.

A function may have several RETURN points (not recommended in structured programming) but they must
all return the same number of values.

The number of returned values must correspond to the number of variables listed in the RETURNING
clause of the CALL statement invoking this function.

A function cannot return a static array, but can return the reference of a dynamic array.

Example

MAIN
 DEFINE fname, lname VARCHAR(30)
 CALL foo(NULL) RETURNING fname, lname
 DISPLAY fname CLIPPED, " ", upshift(lname) CLIPPED
 CALL foo(1) RETURNING forname, surname
 DISPLAY fname CLIPPED, " ", upshift(lname) CLIPPED
END MAIN

FUNCTION foo(code)
 DEFINE code INTEGER
 DEFINE person RECORD
 fname VARCHAR(30),
 lname VARCHAR(30)
 END RECORD
 IF code IS NULL THEN
 RETURN NULL, NULL
 ELSE
 LET person.fname = "John"
 LET person.lname = "Smith"
 RETURN person.*
 END IF
END FUNCTION

CASE
The CASE instruction specifies statement blocks that must be executed conditionally.

Syntax 1

CASE expression-1
 WHEN expression-2

Language basics | 271

 { statement | EXIT CASE }
 [...]
 [OTHERWISE
 { statement | EXIT CASE }
 [...]
]
END CASE

Syntax 2

CASE
 WHEN boolean-expression
 { statement | EXIT CASE }
 [...]
 [OTHERWISE
 { statement | EXIT CASE }
 [...]
]
END CASE

1. expression-1 is any expression supported by the language.
2. expression-2 is an expression that is tested against expression-1.
3. expression-1 and expression-2 should have the same data type.
4. boolean-expression is any boolean expression supported by the language.
5. statement is any instruction supported by the language.

Usage

In a CASE flow control block, the first matching WHEN block is executed. If there is no matching WHEN block,
then the OTHERWISE block is executed. If there is no matching WHEN block and no OTHERWISE block, the
program execution continues with the next statement following the END CASE keyword.

The EXIT CASE statement transfers the program control to the statement following the END CASE
keyword. There is an implicit EXIT CASE statement at the end of each WHEN block and at the end of the
OTHERWISE block. The OTHERWISE block must be the last block of the CASE instruction.

A null expression is considered as false: When doing a CASE expr ... WHEN [NOT] NULL using the
syntax 1, it always evaluates to FALSE. Use syntax 2 as CASE ... WHEN expr IS NULL to test if an
expression is null.

Make sure that expression-2 is not a boolean expression when using the first syntax. The compiler will not
raise an error in this case, but you might get unexpected results at runtime.

If there is more than one expression-2 matching expression-1 (syntax 1), or if two boolean expressions
(syntax 2) are true, only the first matching WHEN block will be executed.

Example

MAIN
 DEFINE v CHAR(10)
 LET v = "C1"
 -- CASE Syntax 1
 CASE v
 WHEN "C1"
 DISPLAY "Value is C1"
 WHEN "C2"
 DISPLAY "Value is C2"
 WHEN "C3"
 DISPLAY "Value is C3"
 OTHERWISE

Language basics | 272

 DISPLAY "Unexpected value"
 END CASE
 -- CASE Syntax 2
 CASE
 WHEN (v="C1" OR v="C2")
 DISPLAY "Value is either C1 or C2"
 WHEN (v="C3" OR v="C4")
 DISPLAY "Value is either C3 or C4"
 OTHERWISE
 DISPLAY "Unexpected value"
 END CASE
END MAIN

CONTINUE block-name
The CONTINUE block-name instruction resumes execution of a loop or dialog statement.

Syntax

CONTINUE
 { FOR
 | FOREACH
 | WHILE
 | MENU
 | CONSTRUCT
 | INPUT
 | DIALOG
 }

Usage

The CONTINUE block-name instruction transfers the program execution from a statement block to
another location in the compound statement that is currently being executed.

CONTINUE block-name can only be used within the statement block specified by block-name. For
example, CONTINUE FOR can only be used within a FOR ... END FOR statement block.

The CONTINUE FOR, CONTINUE FOREACH, or CONTINUE WHILE keywords cause the current FOR,
FOREACH, or WHILE loop (respectively) to begin a new cycle immediately. If conditions do not permit a new
cycle, however, the looping statement terminates.

The CONTINUE CONSTRUCT, CONTINUE INPUT and CONTINUE DIALOG statements cause the program
to skip all subsequent statements in the current control block. The screen cursor returns to the most
recently occupied field in the current form, giving the user another chance to enter data in that field.

The CONTINUE MENU statement causes the program to ignore the remaining statements in the current
MENU control block and re-display the menu. The user can then choose another menu option.

CONTINUE INPUT is valid in INPUT and INPUT ARRAY statements.

Example

MAIN
 DEFINE i INTEGER
 LET i = 0
 WHILE i < 5
 LET i = i + 1
 DISPLAY "i=" || i
 CONTINUE WHILE
 DISPLAY "This will never be displayed!"
 END WHILE

Language basics | 273

END MAIN

EXIT block-name
The EXIT block instruction transfers control out of the current program block.

Syntax

EXIT
 { CASE
 | FOR
 | FOREACH
 | WHILE
 | MENU
 | CONSTRUCT
 | REPORT
 | DISPLAY
 | INPUT
 | DIALOG }

Usage

The EXIT block-name instruction transfers control out of a control structure (a block, a loop, a CASE
statement, or an interface instruction).

The EXIT block-name instruction must be used inside the control structure specified by block-name. For
example, EXIT FOR can only appear inside a FOR ... END FOR iteration block.

EXIT DISPLAY exits the DISPLAY ARRAY instruction and EXIT INPUT exits an INPUT or an INPUT
ARRAY block.

EXIT CONSTRUCT exits current CONSTRUCT block.

EXIT DIALOG exits current DIALOG block.

To exit a function, use the RETURN instruction. To terminate a program, use the EXIT PROGRAM
instruction.

Example

MAIN
 DEFINE i INTEGER
 LET i = 0
 WHILE TRUE
 DISPLAY "This is an infinite loop. How would you get out of
 here?"
 LET i = i + 1
 IF i = 100 THEN
 EXIT WHILE
 END IF
 END WHILE
 DISPLAY "Done."
END MAIN

Language basics | 274

FOR
The FOR instruction executes a statement block a specified number of times.

Syntax

FOR counter = start TO finish [STEP value]
 { statement
 | EXIT FOR
 | CONTINUE FOR }
 [...]
END FOR

1. counter is the loop counter and must be an integer variable.
2. start is an integer expression used to set an initial counter value.
3. finish is any valid integer expression used to specify an upper limit for counter.
4. value is any valid integer expression whose value is added to counter after each iteration of the

statement block.
5. When the STEP keyword is not given, counter increments by 1.
6. statement is any instruction supported by the language.
7. If value is less than 0, counter is decreased. In this case, start should be higher than finish.

Usage

The FOR instruction block executes the statements up to the END FOR keyword a specified number of
times, or until EXIT FOR terminates the FOR statement. The CONTINUE FOR instruction skips the next
statements and continues with the next iteration.

On the first iteration through the loop, the counter is set to the initial expression at the left of the TO
keyword. For all further iterations, the value of the increment expression in the STEP clause specification
(1 by default) is added to the counter in each pass through the block of statements. When the sign of the
difference between the values of counter and the finish expression at the right of the TO keyword changes,
the runtime system exits from the FOR loop.

The FOR loop terminates after the iteration for which the left- and right-hand expressions are equal.
Execution resumes at the statement following the END FOR keywords. If either expression returns NULL,
the loop cannot terminate, because the boolean expression "left = right" cannot become TRUE.

A value that equals 0 causes an unending loop unless there is an adequate EXIT FOR statement.

Using NULL for start, finish or value is treated as 0. There is no way to catch this as an error.

If statement modifies the value of counter, you might get unexpected results at runtime. In this case, it is
recommended that you use a WHILE loop instead.

It is highly recommended that you ensure that statement does not modify the values of start, finish or
value.

Example

MAIN
 DEFINE i, i_min, i_max INTEGER
 LET i_min = 1
 LET i_max = 10
 DISPLAY "Count from " || i_min || " to " || i_max
 DISPLAY "Counting forwards..."
 FOR i = i_min TO i_max
 DISPLAY i
 END FOR
 DISPLAY "... and backwards."
 FOR i = i_max TO i_min STEP -1

Language basics | 275

 DISPLAY i
 END FOR
END MAIN

GOTO
The GOTO instruction transfers program control to a labeled line within the same program block.

Syntax

GOTO [:] label-id

1. label-id is the name of the LABEL statement to jump to.

Usage

A GOTO statement continues program execution in the line following the LABEL instruction using the label-
id identifier specified in the GOTO instruction.

The LABEL jump point can be defined before or after the GOTO statement.

The LABEL and GOTO statements must use the label-id within a single MAIN, FUNCTION, or REPORT
program block.

The : colon after the GOTO keyword is optional.

GOTO statements can reduce the readability of your program source and result in infinite loops. It is
recommended that you use FOR, WHILEand CASE statements instead.

The GOTO statement can be used in a WHENEVER statement to handle exceptions.

Example

MAIN
 DEFINE exit_code INTEGER
 DEFINE l_status INTEGER

 WHENEVER ANY ERROR GOTO _error
 DISPLAY 1/0
 GOTO _noerror

LABEL _error:
 LET l_status = STATUS
 DISPLAY "The error number ", l_status, " has occurred."
 DISPLAY "Description: ", err_get(l_status)
 LET exit_code = -1
 GOTO _exit

LABEL _noerror:
 LET exit_code = 0
 GOTO _exit

LABEL _exit:
 EXIT PROGRAM exit_code

END MAIN

Language basics | 276

IF
The IF instruction executes a group of statements conditionally.

Syntax

IF condition THEN
 statement
 [...]
[ELSE
 statement
 [...]
]
END IF

1. condition is a boolean expression.
2. statement is any instruction supported by the language.

Usage

If condition is TRUE, the runtime system executes the block of statements following the THEN keyword,
until it reaches either the ELSE keyword or the END IF keywords and resumes execution after the END IF
keywords.

If condition is FALSE, the runtime system executes the block of statements between the ELSE keyword and
the END IF keywords. If ELSE is absent, it resumes execution after the END IF keywords.

By default, the runtime system evaluates all part of the condition. The semantics of boolean expressions
can be controlled by the OPTIONS SHORT CIRCUIT compiler directive, to reduce expression evaluation
when using AND / OR operators.

A NULL expression is considered as FALSE. Use the IS NULL keyword to test if an expression is null.

Example

MAIN
 DEFINE name CHAR(20)
 LET name = "John Smith"
 IF name MATCHES "John*" THEN
 DISPLAY "The name starts with [John]!"
 ELSE
 DISPLAY "The name is " || name || "."
 END IF
END MAIN

LABEL
The LABEL instruction declares a jump point that can be reached by a GOTO.

Syntax

LABEL label-id:

1. label-id is a unique identifier in a MAIN, REPORT, or FUNCTION program block.
2. The label-id must be followed by a colon (:).

Language basics | 277

Usage

The LABEL instruction declares a statement label, making the next statement one to which a GOTO
statement can transfer program control.

Example

MAIN
 DISPLAY "Line 2"
 GOTO line5
 DISPLAY "Line 4"
 LABEL line5:
 DISPLAY "Line 6"
END MAIN

SLEEP
The SLEEP instruction causes the program to pause for the specified number of seconds.

Syntax

SLEEP seconds

1. seconds must be an integer expression.

Usage

The SLEEP instruction is typically invoked to let the end user read a message displayed on a character
terminal.

With graphical applications, the SLEEP command is seldom used.

When seconds is lower than zero or is null, the program continues immediately with the next statement.

Example

MAIN
 DISPLAY "Please wait 5 seconds..."
 SLEEP 5
 DISPLAY "Thank you."
END MAIN

WHILE
The WHILE statement executes a block of statements until the specified condition becomes false.

Syntax

WHILE condition
 { statement | EXIT WHILE | CONTINUE WHILE }
 [...]
END WHILE

1. condition must be a boolean expression.
2. statement is any instruction supported by the language.

Language basics | 278

Usage

As long as the condition specified after a WHILE keyword is TRUE, all statements inside the WHILE ...
END WHILE block are executed. After executing the last statement of the block, the runtime system again
evaluates the condition, and if it is still TRUE, continues with the first statement in the block.

The loop stops when the condition becomes FALSE or when an EXIT WHILE is reached.

Use the CONTINUE WHILE instruction to skip the next statements and continue with the loop.

To avoid unending loops, make sure that the condition will become FALSE at some point, or that an EXIT
WHILE statement will be executed.

Example

MAIN
 DEFINE cnt INTEGER
 LET cnt = 1
 WHILE cnt <= 100
 DISPLAY "Iter: " || cnt
 LET cnt = cnt + 1
 IF int_flag THEN
 EXIT WHILE
 END IF
 END WHILE
END MAIN

Functions
Describes the basics of user defined functions in the language.

• Understanding functions on page 278
• FUNCTION blocks on page 278
• Using functions in programs on page 279
• Examples on page 280

Understanding functions

Functions are named program blocks containing a set of statements to be executed when the function
is invoked with a CALL statement, or when the function is used in an expression, or when the function is
registered in a callback mechanism like WHENEVER ERROR CALL.

A functions is defined in a program module, and is by default visible to all modules (i.e. a function is global
by default), but it can also be declared as private to the module where it is defined.

FUNCTION blocks
A FUNCTION block defines a named procedure with a set of statements.

Syntax

[PUBLIC|PRIVATE] FUNCTION function-name ([argument [,...]])
 [declaration [...]]
 [statement [...]]
 [return-clause]
END FUNCTION

Language basics | 279

where return-clause is:

RETURN expression [,...]

1. function-name is the function identifier.
2. argument is the name of a formal argument of the function.
3. declaration is a DEFINE, CONSTANT or TYPE instruction.
4. statement is any instruction supported by the language.

Using functions in programs

The FUNCTION block defines the body and the signature (i.e. declaration) of a function. The function
declaration specifies the name of the function and the identifiers of its formal arguments (if any).

Function names, like other identifiers are case-insensitive. If the function name is also the name of a built-
in function, an error occurs at link time, even if the program does not reference the built-in function.

A FUNCTION block cannot appear within the MAIN block, in a REPORT block, or within another FUNCTION
block.

A function can be invoked with the CALL statement, it can be used in an expression when returning a
unique value, or it can be invoked automatically when registered by a callback mechanism like WHENEVER
ERROR CALL.

If no argument is needed in a function call, an empty argument list must still be supplied, enclosed between
the parentheses.

By default, functions are public; They can be called by any other module of the program. If a function is
only used by the current module, you may want to hide that function to other modules, to make sure that it
will not be called by mistake. To keep a function local to the module, add the PRIVATE keyword before the
function header. Private functions are only hidden to external modules, all function of the current module
can still call local private functions.

PRIVATE FUNCTION check_number(n)
 ...
END FUNCTION

The data type of each formal argument of the function must be specified by a DEFINE statement that
immediately follows the argument list. The actual argument in a call to the function need not be of the
declared data type of the formal argument. If data type conversion is not possible, a runtime error occurs.

FUNCTION check_address(zipcode, street, city)
 DEFINE zipcode CHAR(5),
 street VARCHAR(100),
 city VARCHAR(50)
 ...
END FUNCTION

Function arguments are passed by value (i.e. value is copied on the stack) for basic data types and
records, while dynamic arrays and objects are passed by reference (i.e. a handle to the original data is
copied on the stack and thus allows modification of the original data inside the function).

-- The following code is useless:
-- Variable x will not be modified by the function
MAIN
 DEFINE x INTEGER
 LET x = 123
 CALL increment(x)
 DISPLAY x -- displays 123
END MAIN

Language basics | 280

FUNCTION increment(x)
 DEFINE x INTEGER
 LET x = x + 1
END FUNCTION

Local variables are not visible in other program blocks. The identifiers of local variables must be unique
among the variables that are declared in the same FUNCTION definition. Any global or module variable that
has the same identifier as a local variable, however, is not visible within the scope of the local variable.

DEFINE x INTEGER -- Declares a module variable

FUNCTION func_a()
 DEFINE x INTEGER -- Declares a local variable
 LET x = 123 -- Assigns local variable
END FUNCTION

FUNCTION func_b()
 LET x = 123 -- Changes the module variable
END FUNCTION

A function that returns one or more values to the calling routine must include the return-statement . Values
specified in RETURN must correspond in number and position, and must be of the same or of compatible
data types , to the variables in the RETURNING clause of the CALL statement. If the function returns a
single value, it can be invoked as an operand within a expression. Otherwise, you must invoke it with the
CALL statement with a RETURNING clause. An error results if the list of returned values in the RETURN
statement conflicts in number or in data type with the RETURNING clause of the CALL statement that
invokes the function.

MAIN
 DEFINE zipcode CHAR(5),
 street VARCHAR(100),
 city VARCHAR(50)
 CALL get_address() RETURNING zipcode, street, city
END MAIN

FUNCTION get_address()
 ...
 RETURN "23500", "461 Ocean blvd", "Kreistone"
END FUNCTION

A function can invoke itself recursively with a CALL statement. This will result in a recursive call.

Examples

Example 1: Function fetching customer number

FUNCTION findCustomerNumber(name)
 DEFINE name VARCHAR(50)
 DEFINE num INTEGER
 CONSTANT sqltxt = "SELECT cust_num FROM customer WHERE cust_name = ?"
 PREPARE stmt FROM sqltxt
 EXECUTE stmt INTO num USING name
 IF SQLCA.SQLCODE = 100 THEN
 LET num = -1
 END IF
 RETURN num
END FUNCTION

Language basics | 281

Example 2: Private function definition

This function will not be visible to other modules:

PRIVATE FUNCTION checkIdentifier(name)
 DEFINE name VARCHAR(50)
 IF length(name) == 0 THEN
 RETURN FALSE
 ELSE
 RETURN TRUE
 END IF
END FUNCTION

Variables
Explains how to define program variables.

• Understanding variables on page 281
• DEFINE on page 281
• Declaration context on page 282
• Structured types on page 283
• Database column types on page 283
• User defined types on page 284
• Variable initialization values on page 284
• INITIALIZE on page 285
• LOCATE (for TEXT/BYTE) on page 286
• FREE (for TEXT/BYTE) on page 287
• LET on page 288
• VALIDATE on page 288
• THRU operator on page 289
• Examples on page 290

Understanding variables

A variable is a program element that can hold volatile data. The following list summarizes variables usage:

• Variables are declared in programs with the DEFINE instruction.
• After definition, variables get default values according their type.
• The scope of a variable can be global, local to a module, or local to a function.
• When defined at the module level, a variable can be declare it as PRIVATE or PUBLIC.
• You can define structured variables with records, and with arrays.
• Default values (or NULL) can be assigned with the INITIALIZE instruction.
• Direct value assignment is done with the LET instruction.
• Database validation rules can be applied with the VALIDATE instruction.
• Variables can be used as SQL parameters or fetch buffers in SQL statements.
• Interactive instructions use program variables as model to hold the data.

DEFINE
A variable contains volatile information of a specific data type.

Syntax

[PUBLIC|PRIVATE] DEFINE variable-definition [,...]

Language basics | 282

where variable-definition is:

identifier [,...]
 {
 datatype
 |
 LIKE [dbname:]tabname.colname
 }
 [ATTRIBUTES(attribute [= "value"] [,...])]

1. identifier is the name of the variable to be defined.
2. datatype can be a data type, a record definition, an array definition, a user defined type, a built-in class,

an imported package class, or a Java™ class.
3. dbname identifies a specific database schema file.
4. tabname.colname can be any column reference defined in the database schema file.
5. attribute is an attribute to extend the variable definition with properties.
6. value is the value for the variable attribute, it is optional for boolean attributes.

Usage

A variable is a named location in memory that can store a single value, or an ordered set of values.
Variables can be global to the program, module-specific, or local to a function.

You cannot reference any program variable before it has been declared by the DEFINE statement.

By default, module-specific variables are private; They cannot be used by an other module of the program.
In order to improve code re-usability by data encapsulation, we recommend you to keep module variables
private, except if you want to share large data (like arrays) between modules. To make a module variable
public, add the PUBLIC keyword before DEFINE. When a module variable is declared as public, it can be
referenced by another module by using the IMPORT instruction.

When defining variables with the LIKE clause, the data types are taken from the database schema file at
compile time. Make sure that the schema file of the database schema during development corresponds to
the database schema of the production database; otherwise the variables defined in the compiled version
of your modules will not match the table structures of the production database.

To write well-structured programs, avoid global variables. If you need persistent data storage during a
program's execution, use variables local to the module and give access to them with functions, or make the
module variables PUBLIC to other modules.

Variables can be defined with the ATTRIBUTES() clause, to specify meta-data information for the variable.
This feature is especially used when defining variables for XML-based Web Services. For more details
about XML attributes, see Attributes to customize XML serialization on page 2517.

Declaration context

The DEFINE statement declares the identifier of one or more variables, that will be visible to other program
blocks according to the declaration context of the variables. The scope of reference of a variable defines
where it can be referenced in the program. According to the location of the variable definition, memory will
be allocated when the program starts, or during the program execution.

The context of a variable declaration in the source module determines where a variable can be referenced
by other language statements, and when storage is allocated for the variable in memory. The DEFINE
statement can appear in three contexts:

1. Within a FUNCTION, MAIN, or REPORT program block, DEFINE declares local variables, and causes
memory to be allocated on the runtime stack when the function is called. These DEFINE declarations
of local variables must precede any procedural statements within the same program block. The scope
of reference of a local variable is restricted to the same program block. The variable is not visible
elsewhere. Functions can be called recursively, and each recursive entry creates its own set of local

Language basics | 283

variables. The variable is unique to that invocation of its program block. Each time the block is entered,
a new copy of the variable is created.

2. Outside any FUNCTION, REPORT, or MAIN program block, the DEFINE statement declares module
variables. Module variables have a persistent state during program execution. Memory for module
variables is allocated when the module is loaded. Module variable declarations (DEFINE) must appear
before any program blocks. By default, the scope of reference is the whole module (module variables
are private to the module), but it can be extended to the whole program when the variable is declared
with the PUBLIC qualifier.

3. Inside a GLOBALS block, the DEFINE statement declares global variables that are visible to the whole
program. Global variables have a persistent state during program execution. Memory for global
variables is allocated when the program starts. Multiple GLOBALS blocks can be defined for a given
module. Use one module to declare all global variables and reference that module within other modules
by using the GLOBALS "filename.4gl" statement as the first statement in the module, outside any
program block.

A compile-time error occurs if you declare the same name for two variables that have the same scope. You
can, however, declare the same name for variables that differ in their scope. For example, you can use the
same identifier to reference different local variables in different program blocks.

You can also declare the same name for two or more variables whose scopes of reference are different
but overlapping. Within their intersection, the compiler interprets the identifier as referencing the variable
whose scope is smaller, and therefore the variable whose scope is a superset of the other is not visible.

If a local variable has the same identifier as a global variable, then the local variable takes precedence
inside the program block in which it is declared. Elsewhere in the program, the identifier references the
global variable.

A module variable can have the same name as a global variable that is declared in a different module.
Within the module where the module variable is declared, the module variable takes precedence over the
global variable. Statements in that module cannot reference the global variable.

A module variable cannot have the same name as a global variable that is declared in the same module.

If a local variable has the same identifier as a module variable, then the local identifier takes precedence
inside the program block in which it is declared. Elsewhere in the same source-code module, the name
references the module variable.

If a variable needs to be persistent during program execution, instead of using global variables, consider
defining that variable in the module it belongs to, by specifying the PUBLIC or PRIVATE modifiers,
depending on the scope you want to give to your variable, for other modules.

Structured types

Variables can be defined as RECORD or ARRAY keywords to declare a structured object.

For example:

MAIN
 DEFINE myarr ARRAY[100] OF RECORD
 id INTEGER,
 name VARCHAR(100)
 END RECORD
 LET myarr[2].id = 52
END MAIN

Database column types

Variable defined with the LIKE keyword get the same data type of the column specified column in a
database schema.

Language basics | 284

For example:

SCHEMA stores
DEFINE cname LIKE customer.cust_name
MAIN
 DEFINE cr RECORD LIKE customer.*
 ...
END MAIN

A SCHEMA statement must define the database name identifying the database schema files to be used.

The column data types are read from the schema file during compilation. Make sure that your schema files
correspond exactly to the production database.

The database schema files must exist and must be located in one of the diretories specified in the
FGLDBPATH environment variable.

When using database views, the column cannot be based on an aggregate function like SUM().

If LIKE references a SERIAL column, the variable will be defined with the INTEGER data type. If LIKE
references an INT8, SERIAL8 or BIGSERIAL column, the variable will be defined with the BIGINT data
type.

The table qualifier must specify owner if table.column is not a unique column identifier within its database,
or if the database is ANSI-compliant and any user of your application is not the owner of table.

Database schema files must be generated with the fgldbsch tool before compiling the source module using
a DEFINE LIKE instruction.

User defined types

Variables can be defined with a user defined type:

TYPE custlist DYNAMIC ARRAY OF RECORD LIKE customer.*
MAIN
 DEFINE cl custlist
 ...
END MAIN

The scope of a type can be global, local to a module or local to a function. Variables can be defined with a
type defined in the same scope, or in a higher level of scope.

Variable initialization values

When a variable is defined, it is automatically initialized by the runtime system to a default value. The
default value the variable is assigned with depends on the data type.

Table 121: data type specific default values for variables

data type Default Value

CHAR NULL

VARCHAR NULL

STRING NULL

INTEGER Zero

SMALLINT Zero

FLOAT Zero

SMALLFLOAT Zero

Language basics | 285

data type Default Value

DECIMAL NULL

MONEY NULL

DATE 1899-12-31 (= Zero in number of days)

DATETIME NULL

INTERVAL NULL

TEXT NULL, must use LOCATE

BYTE NULL, must use LOCATE

INITIALIZE
The INITIALIZE instruction intializes program variables with NULL or default values.

Syntax

INITIALIZE target [,...]
 {
 TO NULL
 |
 LIKE {table.*|table.column}
 }

1. target is the name of the variable to be initialized.
2. table.column can be any column reference defined in the database schema files.

Usage

The INITIALIZE instruction assigns NULL or default values to variables.

The argument of the INITIALIZE instruction can be a simple variable, a record (with .* notation),
a record member, a range of record members specified with the THRU keyword, an array or an array
element.

The TO NULL clause initializes the variable to null.

When initializing a static array TO NULL, all elements will be initialized to null. When initializing a dynamic
array TO NULL, all elements will be removed (i.e. the dynamic array is cleared).

The LIKE clause initializes the variable to the default value defined in the database schema validation file.
This clause works only by specifying the table.column schema entry corresponding to the variable.

To initialize a complete record, you can use the star to reference all members:

INITIALIZE record.* LIKE table.*

You cannot initialize variables defined with a complex data type (like TEXT or BYTE) to a non-NULL value.

Example

SCHEMA stores
MAIN
 DEFINE cr RECORD LIKE customer.*
 DEFINE a1 ARRAY[100] OF INTEGER
 INITIALIZE cr.cust_name TO NULL
 INITIALIZE cr.cust_name THRU cr.cust_address TO NULL
 INITIALIZE cr.* LIKE customer.*

Language basics | 286

 INITIALIZE a1 TO NULL
 INITIALIZE a1[10] TO NULL
END MAIN

LOCATE (for TEXT/BYTE)
The LOCATE statement specifies where to store data of TEXT and BYTE variables.

Syntax 1: Locate in memory

LOCATE target [,...] IN MEMORY

Syntax 2: Locate in a specific file

LOCATE target [,...] IN FILE filename

Syntax 3: Locate in a temporary file

LOCATE target [,...] IN FILE

1. target is the name of a TEXT or BYTE variable to be located.
2. filename is a string expression defining the name of a file.

Usage

Before using TEXT and BYTE large objects, the data storage location must be specified with the LOCATE
instruction. After defining the data storage, the variable can be used as input parameter or as a fetch buffer
in SQL statements, as well as in interaction statements and reports.

The first syntax using the IN MEMORY clause specifies that the large object data must be located in
memory.

The second syntax using the IN FILE filename clause specifies that the large object data must be
located in a specific file.

The third syntax using the IN FILE clause specifies that the large object data must be located in a
temporary file. The location of the temporary file can be defined with the DBTEMP environment variable. If
DBTEMP is not defined, the default temporary directory dependents from the platform used.

The FREE instruction can be used to free the resources allocated to the large object variable.

Example

The following code example defines two TEXT variables. The first located in memory and
the second located in a named file. The variables are then used in SQL statements:

MAIN
 DEFINE ctext1, ctext2 TEXT
 DATABASE stock
 LOCATE ctext1 IN MEMORY
 LOCATE ctext2 IN FILE "/tmp/data1.txt"
 CREATE TABLE lobtab (key INTEGER, col1 TEXT, col2 TEXT)
 INSERT INTO lobtab VALUES (123, ctext1, ctext2)
END MAIN

The next code example illustrates the storage semantics of BYTE and TEXT, by fetching
large objects from the database into an array. Each member of the array needs to get an
individual storage location, before the data is actually fetched into the LOB handler of the

Language basics | 287

array element. By using LOCATE IN FILE, a temporary file will be created for each large
object:

MAIN
 DEFINE arr DYNAMIC ARRAY OF RECORD
 id INTEGER,
 cmt TEXT
 END RECORD,
 t TEXT, i INTEGER

 DATABASE test1

 LOCATE t IN MEMORY
 CREATE TEMP TABLE tt1 (id INTEGER, cmt TEXT)
 LET t = "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa"
 INSERT INTO tt1 VALUES (1, t)
 LET t = "bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb"
 INSERT INTO tt1 VALUES (2, t)

 DECLARE c1 CURSOR FOR SELECT * FROM tt1
 LET i=1
 LOCATE arr[i].cmt IN FILE
 FOREACH c1 INTO arr[i].*
 LOCATE arr[i:=i+1].cmt IN FILE
 END FOREACH
 CALL arr.deleteElement(i)

 FOR i=1 TO arr.getLength()
 DISPLAY arr[i].*
 END FOR

END MAIN

FREE (for TEXT/BYTE)
The FREE statement releases resources allocated to the specified variable.

Syntax

FREE target

1. target is the name of a TEXT or BYTE variable to be freed.

Usage

When followed by a variable name, the FREE statement releases resources allocated to store the data of
TEXT and BYTE variables.

If the TEXT/BYTE variable was located in memory, the runtime system releases the memory. If the variable
was located in a file, the runtime system deletes the file.

For variables declared in a local scope of reference, the resources are automatically freed by the runtime
system when returning from the function or MAIN block.

After freeing a TEXT or BYTE variable, it must be re-configured with a new LOCATE call.

Temporary files of large object are automatically deleted when the program ends.

Example

MAIN

Language basics | 288

 DEFINE ctext TEXT
 DATABASE stock
 LOCATE ctext IN FILE "/tmp/data1.txt"
 SELECT col1 INTO ctext FROM lobtab WHERE key=123
 FREE ctext
END MAIN

LET
The LET statement assigns values to variables.

Syntax

LET target = expr [,...]

1. target is the name of the variable to be assigned.
2. expr is any valid expression supported by the language.

Usage

The LET statement assigns a value to a variable, or a set of values to all members of a RECORD by using
the .* notation.

The runtime system applies data type conversion rules if the data type of expression does not correspond
to the data type of target.

When assigning a numeric of date/time value to a character string variable, the values are formatted for
display (for example, the numeric data is right-aligned).

When specifying a comma-separated list of expressions for the right operand, the LET statement
concatenates all expressions together. Unlike the || operator, if an expression in the comma-separated
list evaluates to NULL, the concatenation result will not be null, except if all expressions to the right of the
equal sign are null.

The target variable can be record followed by dot + star (record.*), to reference all record members of
the record. In this case, the right operand must also be a record using this notation, and all members will
be assigned individually.

Variables defined with a complex data type (like TEXT or BYTE) can only be assigned to NULL.

Example

SCHEMA stores
MAIN
 DEFINE c1, c2 RECORD LIKE customer.*
 -- Single variable assignment
 LET c1.customer_num = 123
 -- Complete RECORD assignment
 LET c1.* = c2.*
END MAIN

VALIDATE
The VALIDATE instructions checks a variable value according to schema validation rules.

Syntax

VALIDATE target [,...] LIKE

Language basics | 289

 {
 table.*
 |
 table.column
 }

1. target is the name of the variable to be validated.
2. If target is a record, you can use the star notation to validate all members in the record.
3. table.column can be any column reference defined in the database schema.

Usage

The VALIDATE statement tests whether the value of the specified variable is within the range of values for
a corresponding column in .val database schema file referenced by a SCHEMA clause. If the value does not
match any value defined in the INCLUDE attribute of the corresponding column, the runtime system raises
error -1321.

The argument of the VALIDATE instruction can be a simple variable, a record, or an array element. If the
target is a record, you can use the dot + star notation to reference all record members in the validation, or
specify a range of record members with the THRU clause.

Example

SCHEMA stores
MAIN
 DEFINE cname LIKE customer.cust_name
 LET cname = "aaa"
 VALIDATE cname LIKE customer.cust_name
END MAIN

THRU operator
The THRU keyword can be used to specify a range of members of a record.

Syntax

record.first-member [THRU | THROUGH] record.last-member

1. record defines the record to be used.
2. first-member defines the member of the record starting the group of variables.
3. last-member defines the member of the record ending the group of variables.
4. THROUGH is a synonym for THRU.

Usage

The THRU keyword can be used in several instructions such as INITIALIZE, VALIDATE, LOCATE, to
specify a list of record members.

Example

SCHEMA stores
MAIN
 DEFINE cust LIKE customer.*
 INITIALIZE cust.cust_name THRU customer.cust_address TO NULL
END MAIN

Language basics | 290

Examples

Example 1: Local function variables

FUNCTION myfunc()
 DEFINE i INTEGER
 FOR i=1 TO 10
 DISPLAY i
 END FOR
END FUNCTION

Example 2: PRIVATE module variables

PRIVATE DEFINE s VARCHAR(100)

FUNCTION myfunc()
 DEFINE i INTEGER
 FOR i=1 TO 10
 LET s = "item #" || i
 END FOR
END FUNCTION

Example 3: PUBLIC module variables

This example declares public and private module variables. Public variables can be shared with other
modules.

File "mydebug.4gl":

PUBLIC DEFINE level INTEGER,
 logfile STRING
PRIVATE DEFINE count INTEGER

FUNCTION message(m)
 DEFINE m STRING
 IF level THEN
 -- Write message to debug_logfile
 DISPLAY m
 END IF
 LET count = count + 1
END FUNCTION

File "mymain.4gl":

IMPORT FGL mydebug

MAIN
 LET mydebug.level = 4
 LET mydebug.logfile = "myfile.log"
 CALL mydebug.message("Some debug info...")
END MAIN

Example 4: Global variables

File "myglobs.4gl":

GLOBALS
 DEFINE userid CHAR(20)
 DEFINE extime DATETIME YEAR TO SECOND
END GLOBALS

Language basics | 291

File "mylib.4gl":

GLOBALS "myglobs.4gl"

DEFINE s VARCHAR(100)

FUNCTION myfunc()
 DEFINE i INTEGER
 DISPLAY "User Id = " || userid
 FOR i=1 TO 10
 LET s = "item #" || i
 END FOR
END FUNCTION

File "mymain.4gl":

GLOBALS "myglobs.4gl"

MAIN
 LET userid = fgl_getenv("LOGNAME")
 LET extime = CURRENT YEAR TO SECOND
 CALL myfunc()
END MAIN

Constants
The definition of constants allows to centralize common static values.

• Understanding constants on page 291
• CONSTANT on page 291
• Examples on page 293

Understanding constants

A constant defines a read-only value identified by a name. A constant is similar to a variable, except that its
value cannot be modified by program code.

Constants as typically used to define common invariable values that will be used at several place in a
program:

CONSTANT PI DECIMAL(12,10) = 3.1415926,
 MAX_SIZE INT = 10000,
 ERRMSG = "PROGRAM ERROR: %1" -- type defaults to STRING

A good practice is to define constants that belong to the same domain in a single .4gl module, define the
constant as PUBLIC, and import the module where the constants are needed.

CONSTANT
The CONSTANT instruction defines a program constant.

Syntax

[PRIVATE|PUBLIC] CONSTANT constant-definition [,...]

where constant-definition is:

identifier [datatype] = literal

Language basics | 292

1. identifier is the name of the constant to be defined.
2. datatype can be any data type except complex types like TEXT or BYTE.
3. literal must be an integer, decimal, string, or date/time literal, or an MDY() expression.
4. literal cannot be NULL.

Usage:

Constants define final static values that can be used in other instructions.

Constants can be defined with global, module, or function scope.

By default, module constants are private; They cannot be used by an other module of the program. To
make a module constant public, add the PUBLIC keyword before CONSTANT. When a module constant is
declared as public, it can be referenced by another module by using the IMPORT instruction.

When declaring a constant, the data type specification can be omitted. The literal value automatically
defines the data type:

CONSTANT c1 = "Drink" -- Declares a STRING constant
CONSTANT c2 = 4711 -- Declares an INTEGER constant

However, in some cases, you may need to specify the data type:

CONSTANT c1 SMALLINT = 12000 -- Would be an INTEGER by default

Constants can be used in variable, records, and array definitions:

CONSTANT n = 10
DEFINE a ARRAY[n] OF INTEGER

Constants can be used at any place in the language where you normally use literals:

CONSTANT n = 10
FOR i=1 TO n
 ...

Constants can be passed as function parameters, and returned from functions.

Define public constants in a module to be imported by others:

PUBLIC CONSTANT pi = 3.14159265

For date time constants, the value must be specified as an MDY(), DATETIME or INTERVAL literal:

CONSTANT my_date DATE = MDY(12,24,2011)
CONSTANT my_datetime DATETIME YEAR TO SECOND
 = DATETIME(2011-12-24 11:22:33) YEAR TO SECOND
CONSTANT my_interval INTERVAL HOUR(5) TO FRACTION(3)
 = INTERVAL(-54351:50:24.234) HOUR(5) TO FRACTION(3)

A constant cannot be used in the ORDER BY clause of a static SELECT statement, because the compiler
considers identifiers after ORDER BY as part of the SQL statement (i.e. column names), not as constants:

CONSTANT pos = 3
-- Next line will produce an error at runtime
SELECT * FROM customers ORDER BY pos

Automatic data type conversion can take place in some cases:

CONSTANT c1 CHAR(10) = "123"

Language basics | 293

CONSTANT c2 CHAR(10) = "abc"
DEFINE i INTEGER
FOR i = 1 TO c1 -- Constant "123" is converted to 123 integer
 ...
FOR i = 1 TO c2 -- Constant "abc" is converted to zero!
 ...

Character constants defined with a string literal that is longer than the length of the data type are truncated:

CONSTANT s CHAR(3) = "abcdef"
DISPLAY s -- Displays "abc"

The compiler throws an error when an undefined symbol is used in a constant declaration:

CONSTANT s CHAR(c) = "abc"
-- Compiler error: c is not defined.

The compiler throws an error when a variable is used in a constant declaration:

DEFINE c INTEGER
CONSTANT s CHAR(c) = "abc"
-- Compiler error: c is a variable, not a constant.

The compiler throws an error when you try to assign a value to a constant:

CONSTANT c INTEGER = 123
LET c = 345
-- Runtime error: c is a constant.

The compiler throws an error when the symbol used is not defined as an integer constant:

CONSTANT c CHAR(10) = "123"
DEFINE s CHAR(c)
-- Compiler error: c is a not an integer constant.

You typically define common special characters with constants:

CONSTANT c_esc = '\x1b'
CONSTANT c_tab = '\t'
CONSTANT c_cr = '\r'
CONSTANT c_lf = '\n'
CONSTANT c_crlf = '\r\n'

Examples

Example 1: Defining and using constants

CONSTANT
 c1 ="Drink", # Declares a STRING constant
 c2 = 4711, # Declares an INTEGER constant
 n = 10, # Declares an INTEGER constant
 x SMALLINT=1 # Declares a SMALLINT constant

DEFINE a ARRAY[n] OF INTEGER

MAIN
 CONSTANT c1 = "Hello"
 DEFINE i INTEGER
 FOR i=1 TO n
 ...

Language basics | 294

 END FOR
 DISPLAY c1 || c2 # Displays "Hello4711"
END MAIN

Records
Records allow structured program variables definitions.

• DEFINE ... RECORD on page 294
• Examples on page 296

Understanding records

A record defines a structured variable, where each member can be defined with a specific data type.
Records can contain other records, or arrays.

DEFINE person RECORD
 id INTEGER,
 name VARCHAR(100),
 birth DATE
 END RECORD

Records are typically used to store the values of a database row. Records can be defined according to the
columns of a database table as defined in a database schema. Records are used in interactive instructions
such as INPUT or DIALOG for user input, and can be used in INSERT and UPDATE SQL instructions to
update the database table.

SCHEMA stores
DEFINE cust RECORD customer.*
-- cust is defined with the column of the customer table

DEFINE ... RECORD
Records define structured variables.

Syntax 1 (explicit record definition)

DEFINE variable RECORD
 [ATTRIBUTES(attribute [= "value"] [,...])]
 member {
 datatype
 |
 LIKE [dbname:]tabname.colname
 }
 [ATTRIBUTES(attribute [= "value"] [,...])]
 [,...]
END RECORD

Syntax 2 (database column based record)

DEFINE variable RECORD
 [ATTRIBUTES(attribute [= "value"] [,...])]
 LIKE [dbname:]tabname.*

1. variable defines the name of the record.
2. member is an identifier for a record member variable.

Language basics | 295

3. datatype can be any data type, a record definition, a user defined type, an array definition, a built-in
class, an imported package class, or a Java™ class.

4. dbname identifies a specific database schema file.
5. tabname identifies a database table defined in the database schema file specified by SCHEMA.
6. colname identifies a database column defined in the database schema file specified by SCHEMA.
7. attribute is an attribute to extend the record or record member definition with properties.
8. value is the value for the record definition attribute, it is optional for boolean attributes.

Usage

A record is an ordered set of variables (called members), where each member is defined with a specific
type or in turn, structured type.

Records whose members correspond in number, order, and data type compatibility to a database table can
be useful for transferring data from the database to the screen, to reports, or to functions.

In the first form (Syntax 1), record members are defined explicitly:

DEFINE rec RECORD
 cust_id INT,
 cust_name VARCHAR(50),
 cust_address VARCHAR(100),
 ...
 END RECORD

In the second form (Syntax 2), record members are created implicitly from the table definition found in the
database schema file specified by the SCHEMA instruction:

SCHEMA stock
...
DEFINE rec RECORD LIKE customer.*

Important: When using the LIKE clause, the data types are taken from the database schema
file during compilation. Make sure that the database schema file of the development database
corresponds to the production database, otherwise the records defined in the compiled version
of your programs will not match the table structures of the production database. Statements like
SELECT * INTO record.* FROM table would fail.

In the rest of the program, record members are accessed by a dot notation (record.member). The
notation record.member refers to an individual member of a record. The notation record.* refers to the
entire list of record members. The notation record.first THRU record.last refers to a consecutive
set of members. (THROUGH is a synonym for THRU):

DISPLAY rec.*

Records can be passed as function parameters, and can be returned from functions. However, when
passing records to functions, you must keep in mind that the record is expanded as if each individual
member would have been passed as parameter:

CALL myfunction(rec.*)

It is possible to assign and compare records having the same structure, by using the dot star notation:

LET rec2.* = rec3.*
...
IF rec1.* == rec2.* THEN
 ...
END IF

Language basics | 296

When comparing records, all members will be compared. If two members are NULL, the result of this
member comparison results in TRUE.

Records can be defined with the ATTRIBUTES() clause, to specify meta-data information for the record.
This feature is especially used when defining records for XML-based Web Services. For more details about
XML attributes, see Attributes to customize XML serialization on page 2517.

Examples

Example 1: Defining a record with explicit member types

MAIN
 DEFINE rec RECORD
 id INTEGER,
 name VARCHAR(100),
 birth DATE
 END RECORD
 LET rec.id = 50
 LET rec.name = 'Scott'
 LET rec.birth = TODAY
 DISPLAY rec.*
END MAIN

Example 2: Defining a record with a database table structure

SCHEMA stores
DEFINE cust RECORD LIKE customer.*
MAIN
 DATABASE stores
 SELECT * INTO cust.* FROM customer WHERE customer_num=2
 DISPLAY cust.*
END MAIN

Example 3: Assigning an comparing records

SCHEMA stores
TYPE t_cust RECORD LIKE customer.*
MAIN
 DEFINE cust1, cust2 t_cust
 ...
 INITIALIZE cust1.* TO NULL
 ...
 LET cust2.* = cust1.*
 ...
 IF cust1.* != cust2.* THEN
 DISPLAY "Records are different!"
 END IF
 ...
END MAIN

Arrays
Arrays (static or dynamic) allow to handle an ordered collection of elements.

• Understanding arrays on page 297
• DEFINE ... ARRAY on page 297
• Static arrays on page 298
• Dynamic arrays on page 300

Language basics | 297

• Array methods on page 302
• Copying complete arrays on page 302
• Examples on page 302

Understanding arrays

Arrays can store a one-, two- or three-dimensional set of elements.

The language supports three kind of array types:

• Static arrays - introduced in early versions of the language.
• Dynamic arrays - to be used in new developments.
• Java™ arrays - to define an array referencing Java™ objects.

DEFINE ... ARRAY
An array defines a vector variable with a list of elements.

Syntax 1: Static array definition

DEFINE variable ARRAY [size [,size [,size]]]
 [ATTRIBUTES(attribute [= "value"] [,...])]
 OF datatype

Syntax 2: Dynamic array definition

DEFINE variable DYNAMIC ARRAY
 [ATTRIBUTES(attribute [= "value"] [,...])]
 [WITH DIMENSION rank]
 OF datatype

Syntax 3: Java™ array definition

DEFINE variable ARRAY [] OF javatype

1. variable defines the name of the array.
2. size can be an integer literal or an integer constant. The upper limit is 65535.
3. rank an be an integer literal of 1, 2, or 3. Default is 1.
4. datatype can be a data type, a record definition, a user defined type, a built-in class, an imported

package class, or a Java™ class.
5. javatype must be a Java™ class or a simple data type that has a corresponding primitive type in Java™,

such as INTEGER (int), FLOAT (double).
6. attribute is an attribute to extend the array definition with properties.
7. value is the value for the array definition attribute, it is optional for boolean attributes.

Usage

The DEFINE ... ARRAY instruction creates a program variable as an array. The elements of the array
can be of a simple type or structured records.

Consider using dynamic arrays instead of static arrays.

Java™-style arrays will only be useful to interface with Java calls.

Static and dynamic arrays can be defined with the ATTRIBUTES() clause, to specify meta-data
information for the variable. This feature is especially used when defining variables for XML-based Web

Language basics | 298

Services. For more details about XML attributes, see Attributes to customize XML serialization on page
2517.

Example

DEFINE arr DYNAMIC ARRAY OF RECORD
 p_num INTEGER,
 p_name VARCHAR(50),
 p_phone VARCHAR(20)
 END RECORD
LET arr[1].p_num = 84335
LET arr[1].p_name = "Scott McCallum"
LET arr[1].p_phone = NULL
DISPLAU arr[1].*

Static arrays

Defining static arrays

Static arrays can store a one-, two- or three-dimensional array of variables, all of the same type. An array
member can be any type except another array (ARRAY ... OF ARRAY).

MAIN
 DEFINE custlist ARRAY[100] OF RECORD
 id INTEGER,
 name VARCHAR(50)
 END RECORD
 LET custlist[50].id = 12456
 LET custlist[50].name = "Beerlington"
END MAIN

Multi-dimentional static arrays

The multi-dimensional array syntax (ARRAY[i[,j[,k]]]) specifies static arrays defined with an explicit
size for all dimensions. Static arrays have a size limit. The biggest static array size you can define is
65535.

A single array element can be referenced by specifying its coordinates in each dimension of the array.

Avoid using large static arrays; All elements of static arrays are allocated and initialized when the program
starts, even if the array is not used.

MAIN
 DEFINE a1 ARRAY[100] OF INTEGER
 LET a1[50] = 12456
 LET a1[5000] = 12456 -- Runtime error!
END MAIN

Element types

The elements of a static array variable can be of any data type except an array definition, but elements can
be defined as a record containing an array member.

MAIN
 DEFINE arr ARRAY[50] OF RECORD
 key INTEGER,
 name CHAR(10),
 address VARCHAR(200),

Language basics | 299

 contacts ARRAY[50] OF VARCHAR(20)
 END RECORD
 LET arr[1].key = 12456
 LET arr[1].name = "Scott"
 LET arr[1].contacts[1] = "Bryan COX"
 LET arr[1].contacts[2] = "Mike FLOWER"
END MAIN

Passing static arrays to functions

Static arrays are passed by value to functions. This is not recommended, as all array members will be
copied on the stack.

A static array cannot be returned from a function.

Consider using dynamic arrays if you need to pass/return a list of elements to/from functions.

Using array methods

Array methods can be used on static arrays; However these methods are designed for dynamic arrays and
are not appropriate for static arrays.

Controlling out of bound in static arrays

Controlling of out of bounds index error

By default, when an array index is out of range, fglrun raises error -1326. This is only the case for static
arrays: When using a dynamic array, new elements are allocated if the index is greater than the actual
array size.

Raising an index out of bounds error is natural for static arrays. However, in some situations, code must
execute without error and evaluate expressions using indexes that are greater than the size of the array,
especially with boolean expressions in IF statements:

IF index <= max_index OR arr[index] == some_value THEN
 ...
END IF

In this example, as all parts of a boolean expression needs to be evaluated, the runtime system must get
the value of the arr[index] element.

You can use an FGLPROFILE entry to control the behavior of the runtime system when an array index is
out of bounds for a static array:

fglrun.arrayIgnoreRangeError = true

When this FGLPROFILE entry is set to true, the runtime system will return the first element of the array if
the index is <=0 or greater than the size of the array and continue with the normal program flow.

Unless existing code is relying on this behavior, it is better to let the default get array out of bounds errors
when the index is invalid.

You may also want to use the compiler directive to control boolean expression evaluation, with the
OPTIONS SHORT CIRCUIT instruction.

Language basics | 300

Dynamic arrays

Defining dynamic arrays

Dynamic arrays are defined with the DYNAMIC ARRAY syntax and specify an array with a variable size.
Dynamic arrays have no theoretical size limit. The elements of dynamic arrays are allocated automatically
by the runtime system, according to the indexes used.

MAIN
 DEFINE a1 DYNAMIC ARRAY OF INTEGER
 LET a2[5000] = 12456 -- Automatic allocation for element 5000
END MAIN

Element types

The elements of a dynamic array variable can be of any data type except an array definition, but elements
can be defined as a record containing an array member.

MAIN
 DEFINE arr DYNAMIC ARRAY OF RECORD
 key INTEGER,
 name VARCHAR(30),
 address VARCHAR(200),
 contacts ARRAY[50] OF VARCHAR(20)
 END RECORD
 LET arr[1].key = 12456
 LET arr[1].name = "Scott"
 LET arr[1].contacts[1] = "Bryan COX"
 LET arr[1].contacts[2] = "Mike FLOWER"
END MAIN

Automatic element allocation

When a dynamic array element does not exist, it is automatically allocated before it is used. For example,
when you assign an array element with the LET instruction by specifying an array index greater as the
current length of the array, the new element is created automatically before assigning the value. This is
also true when using a dynamic array in aFOREACH loop or when dynamic array elements are used as r-
values, for example in a DISPLAY.

MAIN
 DEFINE a DYNAMIC ARRAY OF INTEGER
 LET a[50] = 33 -- Extends array size to 50 and assigns 33 to element #50
 DISPLAY a[100] -- Extends array size to 100 and displays NULL
END MAIN

Important:

Pay attention to automatic element allocation in dynamic arrays. The following code example
creates an additional element because at each iteration, the runtime system must allocate a new
element to fetch the row from the database. As result, you need to remove the last element of the
array after the FOREACH loop:

DEFINE arr DYNAMIC ARRAY OF RECORD
 key INTEGER,
 name VARCHAR(30)
 END RECORD,
 x INTEGER
DECLARE c1 CURSOR FOR SELECT ckey, cname FROM mytable
LET x=1

Language basics | 301

FOREACH c1 INTO arr[x].*
 LET x=x+1
END FOREACH
CALL arr.deleteElement(x)

-- A more elegant way to fetch rows into an array:
TYPE my_type RECORD LIKE mytable.*
DEFINE arr DYNAMIC ARRAY OF my_type,
 rec my_type,
 x INTEGER
DECLARE c1 CURSOR FOR SELECT * FROM mytable
LET x=1
FOREACH c1 INTO rec.*
 LET arr[x:=x+1].* = rec.*
END FOREACH

Passing and returning dynamic arrays to functions

Dynamic arrays are passed (or returned) by reference to/from functions.

The dynamic array can be modified inside the called function, and the caller will see the modifications.

MAIN
 DEFINE a DYNAMIC ARRAY OF INTEGER
 CALL fill(a)
 DISPLAY a.getLength() -- shows 2
END MAIN

FUNCTION fill(x)
 DEFINE x DYNAMIC ARRAY OF INTEGER
 CALL x.appendElement()
 CALL x.appendElement()
END FUNCTION

Dynamic array size

The getLength() array method method returns the number of allocated elements:

MAIN
 DEFINE a DYNAMIC ARRAY OF INTEGER
 LET a[5000] = 12456
 DISPLAY a.getLength()
END MAIN

Dynamic array methods

A set of methods is available to manipulate dynamic arrays. For a complete list, see DYNAMIC ARRAY
methods on page 1697.

Using multi-dimentional dynamic arrays

Multi-dimentional dynamic arrays can be defined by using the WITH DIMENSION syntax.

Array methods can be used on multi-dimensional arrays with the brackets notation:

MAIN
 DEFINE a2 DYNAMIC ARRAY WITH DIMENSION 2 OF INTEGER
 DEFINE a3 DYNAMIC ARRAY WITH DIMENSION 3 OF INTEGER
 LET a2[50,100] = 12456
 LET a2[51,1000] = 12456
 DISPLAY a2.getLength() -- shows 51

Language basics | 302

 DISPLAY a2[50].getLength() -- shows 100
 DISPLAY a2[51].getLength() -- shows 1000
 LET a3[50,100,100] = 12456
 LET a3[51,101,1000] = 12456
 DISPLAY a3.getLength() -- shows 51
 DISPLAY a3[50].getLength() -- shows 100
 DISPLAY a3[51].getLength() -- shows 101
 DISPLAY a3[50,100].getLength() -- shows 100
 DISPLAY a3[51,101].getLength() -- shows 1000
 CALL a3[50].insertElement(10) -- inserts at 50,10
 CALL a3[50,10].insertElement(1)-- inserts at 50,10,1
END MAIN

Array methods

Native BDL arrays and Java arrays can be used to invoke built-in methods.

For the list of native array methods, see DYNAMIC ARRAY methods on page 1697.

For the list of Java array methods, see Java Array type methods on page 1701.

Copying complete arrays

The compiler allows the .* notation to assign an array to another array with the same structure. Static
array elements are copied by value (except objects and LOB members), while elements of dynamic arrays
are copied by reference, even for simple data types. This means that after assigning a dynamic array with
the .* notation, if you modify an element in one of the arrays, the change will be visible in the other array.
You must pay attention to this behavior if you are used to the .* notation for simple records.

Note: When assigning a dynamic array with the .* notation, all elements are copied by reference:

MAIN
 DEFINE a1, a2 DYNAMIC ARRAY OF RECORD
 key INTEGER
 END RECORD
 LET a1[1].key = 123
 LET a2.* = a1.*
 DISPLAY a2[1].key -- shows 123
 LET a2[1].key = 456
 DISPLAY a1[1].key -- shows 456
END MAIN

Examples

Example 1: Using static and dynamic arrays

MAIN
 DEFINE a1 DYNAMIC ARRAY OF INTEGER
 DEFINE a2 DYNAMIC ARRAY WITH DIMENSION 2 OF INTEGER
 DEFINE a3 ARRAY[10,20] OF RECORD
 id INTEGER,
 name VARCHAR(100),
 birth DATE
 END RECORD
 LET a1[5000] = 12456
 LET a2[5000,300] = 12456
 LET a3[5,1].id = a1[50]
 LET a3[5,1].name = 'Scott'
 LET a3[5,1].birth = TODAY
END MAIN

Language basics | 303

Example 2: Fetching database rows into a dynamic array

Automatic allocation of dynamic array element in the FOREACH statement creates an additional element
that needs to be deleted after the loop:

SCHEMA stores

MAIN
 DEFINE custarr DYNAMIC ARRAY OF RECORD LIKE customer.*
 DEFINE index INTEGER

 DATABASE stores

 DECLARE curs CURSOR FOR SELECT * FROM customer
 LET index = 1
 FOREACH curs INTO custarr[index].*
 LET index = index+1
 END FOREACH
 CALL custarr.deleteElement(custarr.getLength())

 DISPLAY "Number of rows found: ", custarr.getLength()
 FOR index=1 TO custarr.getLength()
 DISPLAY custarr[index].*
 END FOR

END MAIN

Types
Types can be defined by the programmer to centralize the definition of complex/structured variables.

• Understanding type definition on page 303
• TYPE on page 303
• Using types in programs on page 304
• Examples on page 305

Understanding type definition

The TYPE instruction declares a user defined type, which is based on native data types, records or arrays.
Once declared, a type can be referenced in the declaration of program variables, or in other types. Types
are typically defined to avoid the repetition of complex structured types. Consider user PUBLIC TYPE
definitions to share types accross modules, with IMPORT FGL.

TYPE
Types define a synonym for a base or structured data type.

Syntax:

[PUBLIC|PRIVATE] TYPE type-definition [,...]

where type-definition is:

identifier {
 {
 datatype
 |
 LIKE [dbname:]tabname.colname
 }

Language basics | 304

 [ATTRIBUTES(attribute [= "value"] [,...])]

1. identifier is the name of the type to be defined.
2. datatype is any data type, record structure, or array definition supported by the language.
3. attribute is an attribute to extend the type definition with properties.
4. value is the value for the type attribute, it is optional for boolean attributes.

Usage

User-defined types enforce reusability and simplify programming, by centralizing data structure definitions
at a single place.

When defining types with the LIKE clause, the data types are taken from the database schema file at
compile time. Make sure that the schema file of the database schema during development corresponds to
the database schema of the production database; otherwise the types defined in the compiled version of
your modules will not match the table structures of the production database.

Types can be defined with the ATTRIBUTES() clause, to specify meta-data information for the type. This
feature is especially used when defining types for XML-based Web Services. For more details about XML
attributes, see Attributes to customize XML serialization on page 2517.

Using types in programs

Define a type as a synonym for an existing data type, or as a shortcut for records and array structures.

After declaring a type, it can be used as a normal data type to define variables.

TYPE t_customer RECORD
 cust_num INTEGER,
 cust_name VARCHAR(50),
 cust_addr VARCHAR(200)
 END RECORD
...
 DEFINE c1 t_customer
...
 DEFINE o1 RECORD
 order_num INTEGER,
 customer t_customer,
 ...
 END RECORD
...
 DEFINE custlist DYNAMIC ARRAY OF t_customer

The scope of a type is the same as for variables and constants. Types can be global, module-specific, or
local to a function.

A good practice is to define types that belong to the same domain in a single .4gl module, and import that
module in the modules where the types are needed.

By default, module-specific types are private; They cannot be used by an other module of the program. To
make a module type public, add the PUBLIC keyword before TYPE. When a module type is declared as
public, it can be referenced by another module by using the IMPORT FGL instruction:

-- customers.4gl
PUBLIC TYPE t_ord RECORD
 ord_id INTEGER,
 ord_date DATE,
 ord_total DECIMAL(10,2)
 END RECORD
PUBLIC TYPE t_cust RECORD
 cust_id INTEGER,
 cust_name VARCHAR(50),

Language basics | 305

 orders DYNAMIC ARRAY OF t_ord,
 ...
 END RECORD
...

-- main.4gl
IMPORT FGL customers
MAIN
 DEFINE custlist DYNAMIC ARRAY OF t_cust
 ...
END MAIN

Examples

Example 1: Defining a type with a record structure

TYPE t_customer RECORD
 cust_num INTEGER,
 cust_name VARCHAR(50),
 cust_addr VARCHAR(200)
 END RECORD

MAIN
 DEFINE custrec t_customer
 DEFINE custarr DYNAMIC ARRAY OF t_customer
 DEFINE index INTEGER

 LET custrec.cust_num = 123
 ...

 LET custarr[index].* = custrec.*
 ...

END MAIN

Example 2: Defining a type an using it in another module

The following example defines a type in first module, and then uses the type in a report program:

type_order.4gl:

PUBLIC TYPE rpt_order RECORD
 order_num INTEGER,
 store_num INTEGER,
 order_date DATE,
 cust_num INTEGER,
 fac_code CHAR(3)
 END RECORD

report.4gl:

IMPORT FGL type_order

MAIN
 DEFINE o type_order.rpt_order

 CONNECT TO "custdemo"

 DECLARE order_c CURSOR FOR
 SELECT orders.*
 FROM orders ORDER BY cust_num
 START REPORT order_list

Language basics | 306

 FOREACH order_c INTO o.*
 OUTPUT TO REPORT order_list(o.*)
 END FOREACH
 FINISH REPORT order_list

END MAIN

REPORT order_list(ro)
 DEFINE ro rpt_order
 FORMAT
 ON EVERY ROW
 PRINT ro.order_num, ...
 ...

Advanced features | 307

Advanced features

These topics cover advanced features of the Genero Business Development Language

• Localization on page 307
• Runtime stack on page 336
• Exceptions on page 340
• OOP support on page 349
• XML support on page 351
• Globals on page 353
• Database schema on page 355
• Programs on page 368
• Program execution on page 390
• Deploying mobile apps on page 2572
• Front calls on page 395

Localization
Localization support allows you to implement programs that follow specific language and cultural rules.

Programs execute in a specific application locale. Beside the support of a locale specification which
defines the character set used by programs, the internationalization of an application requires all strings
in the sources that are subject to translation to be extracted and centralized. Localized strings are used to
keep application messages and form labels in external resource files, which can be provided in different
languages.

• Application locale on page 307
• Localized strings on page 327

Application locale
The application locale defines the language (for messages), country or territory (for currency symbols and
date formats) and code set (for character set encoding). A program needs to be able to determine its locale
and act accordingly, to be portable across different languages and character sets.

This section describes how to define the locale for your programs.

Important: The same code point can represent different characters in different character sets.
An invalid locale configuration in one of the components can result in invalid characters in the
database. For example, a client application is configured to display glyphs (font) for CP437. If the
application gets a 0xA2 (decimal 162) code point, it displays an o-acute character. Now imagine
that the DB client is configured with character set CP1252. In this character set, the code point
0xA2 is actually the cent currency sign. As a result, if you insert the o-acute char (0xA2 in CP437)
in the database, it will actually be seen as cent sign (0xA2 in CP1252) by the database server.
When fetching that character back to the client, the database server returns the 0xA2 code point,
which displays correctly as o-acute on the CP437 configured client, and the end user sees what
was entered before. But with a different application configured properly with CP1252 and DB client
codeset, the end user will see the cent currency sign instead of the o-acute character.

Quickstart guide for locale settings
This is a quick step-by-step guide to properly configure locale settings for your Genero application.

Setting the locale involves different components, which all must be properly configured.

Tip: This is a quickstart guide for locale settings. It is highly recommended that you read the
complete set of articles regarding localization.

Advanced features | 308

1. The application locale is defined by the character set used in your source files (.4gl, .per, .str). The
same character set will be used in the compiled files (.42m, .42f, .42s).

2. Set the operating system locale corresponding to the application locale.

• On UNIX™ based systems (including Mac OS-X™), define the LANG (or LC_ALL) environment
variable. Use locale -a command to check if the locale exists on the machine. If not, it must be
installed. If not set, LANG defaults to POSIX (ASCII).

• On Windows™ platforms, check if the regional settings for non-UNICODE applications
match the application locale. If the regional settings do no match, you can define the LANG
environment variable with a locale name supported by Microsoft™ C Runtime Library, such as
French_France.1252, or set LANG=.fglutf8 for the UTF-8 character set.

• On iOS mobile devices, the application locale is always UTF-8, it cannot be changed.
• On Android™ mobile devices, the application locale is always UTF-8, it cannot be changed.

3. When using UTF-8 as character encoding, define the length semantics with the
FGL_LENGTH_SEMANTICS={BYTE|CHAR} environment variable. On server platforms, Genero is
using Byte Length Semantics by default for compatibility reasons. It's highly recommended to set
FGL_LENGTH_SEMANTICS=CHAR to use Character Length Semantics. On mobile platforms,
character length semantics is the default (i.e. FGL_LENGTH_SEMANTICS does not need to be defined
when running on a mobile device, it defaults to CHAR, and cannot be set to BYTE).

4. Set the database client locale with a character set corresponding to the application locale. For
example, with Informix®, this is defined with the CLIENT_LOCALE environment variable. The name of
the database client locale is certainly different from the application locale. But remember the application
and database client character sets must match. The database server locale might be different from the
db client locale.

5. Check the length semantics used by the database. For example, with Oracle, you might want to set the
database option NLS_LENGTH_SEMANTICS='CHAR', if the application uses CLS (typically with UTF-8).

6. With UTF-8, use the proper SQL character data type to store UTF-8 data: This data type might be
different according to the type of database server. For more details, see SQL character type for
Unicode/UTF-8 on page 418.

7. Set the front-end locale and font. By front-end, we mean the program the end user interacts with. This
can be a Genero front-end or a terminal emulator like Gnome-term, Putty, or a Windows™ Console.
When using a Genero front-end, the front-end character set is fixed by the type of the front end and
conversion from/to application character set is automatic, but you may need to select a font different
from the system default. If you want to execute a TUI application in a terminal emulator, you must be
sure that the terminal is configured to display the correct character set. This is for example defined with
the chcp command on Windows™, or in the "Set Character Encoding" menu option of a Gnome-term.

8. Define the date, numeric and monetary formats with the DBDATE, DBMONEY, DBFORMAT
environment variables. On server platforms such as Unix and Windows, these default to US formats
(month/day/year for dates, the dot as decimal separator and $ as currency symbol). On mobile
platforms, these default to the regional settings defines on the device.

Locale and character set basics

Before starting with application/database design, configuration and settings, you must know some basics
concerning language and character sets on computers. In this section, we attempt to describe these
basics, but we strongly recommend you to carefully read the operating system and database server
manuals covering localization or character set handling. You can also find a lot of information about
character sets and character encoding on the internet.

Why do I need to care about the locale and character set?

If you don't know what you are doing with character sets, the end user might get strange characters
displayed on the screen, and will probably not be able to input non-ASCII characters. In the worst case, as
character set conversion can be symmetric for single-byte character sets, the end user might see correct
characters on the workstation, but on the back-end you can get invalid characters in the database files.
By upgrading to a newer OS, Genero Business Development Language runtime or database system, or

Advanced features | 309

if a character set mapping utility was used somewhere in the chain, you can even get mixed character
encoding in the database files.

Characters, code points, character sets, glyphs and fonts

In computers, a character is the unit of information corresponding to a symbol of a natural language.
This can be a letter, a digit, a punctuation mark, a mathematic or even musical symbol. To represent a
character in memory or in a file, computers must encode the character in a specific numeric value called
code point. This code point uniquely identifies a character in a given character set. Mapping a character
to a code point is called character encoding. The same code point might represent a different character in
several character sets. The glyph is the graphical representation of the character. In other words, it's the
way the character is drawn on the screen or on a printer. Computers implement the glyph of characters
with fonts, by mapping a code point to a bitmap image or drawing instructions based on math formulas or
vector graphics.

The ASCII character set

ASCII stands for the American Standard Code for Information Interchange. ASCII is a well-known
character encoding based on the English alphabet. Characters are encoded in a single byte, using the 7
lower bits only. Up to 127 characters, printable and not printable (like control characters), are defined in
ASCII. Nearly all other character sets (using 8 bits or multiple bytes) define the first 127 characters as the
ASCII character set. Aliases for ASCII include ISO646-US, ANSI_X3.4-1968, IBM367, cp367, and more.

Single-byte character sets (SBCS)

A single-byte character set defines the encoding for characters on a unique byte. The size of a character is
always one byte.

Example of single-byte character sets include ISO-8859-1, MS code page CP1252.

Genero Business Development Language supports single-byte character sets.

Double-byte character sets (DBCS)

A double-byte character set defines the encoding for characters on two bytes. The size of a character is
always two bytes.

Example of double-byte character sets include UCS-2, used by SQL Server in NCHAR and NVARCHAR
columns. Note that UTF-16 is not a (fixed) double-byte character set: You can have characters encoded on
2 or 4 bytes. UCS-2 is actually a subset of UTF-16.

Note that Genero Business Development Language does not support double-byte character sets.

Multibyte character sets (MBCS)

A multibyte character set defines the encoding for characters on a variable number of bytes. The size of a
character can be one (usually ASCII chars), two, three or more bytes, depending on the character set.

Example of multibyte character sets are BIG5, EUC-JP, and UTF-8. BIG5 and EUC-JP characters can be
one or two bytes long, while UTF-8 characters can be 1, 2, 3 or 4 bytes long (usually a maximum of 3 is
sufficient).

Genero Business Development Language supports multibyte character sets.

Character size unit and length semantics

When programming an application for a Latin-based language sush as English, a single-byte character set
can be used, and the logical size, storage size and print width of characters is the same. For example, in
ISO-8859-1, the ê character takes one logical position, has a storage size of one byte and a print width of
one.

When programming an international application using multiple languages and a multibyte character set
encoding, you must distinguish three size units:

1. The size in character unit, to count or position logical characters used in a string. For example, the
strings abc and åôë have both a length of 3, in character units.

Advanced features | 310

2. The size in byte unit, used to encode the character in a given character set. For example, a Latin ê
acute character will use a unique byte in the ISO-8859-1 character set, but needs two bytes in UTF-8.

3. The size in width unit, used in formatting and alignments. The width is the length of the glyph/font of
characters, especially in a fixed font. For example, a latin character will take one width unit, while an
asian ideogram will take 2 width units.

Working with byte units in a multibyte character set can be difficult: You need to calculate sizes, lengths
and substring offsets in a number of bytes, when the natural way is to count in characters.

Length semantics define the unit to be used for character data type definition, charcater string lengths and
positions.

With Byte Length Semantics, a length is expressed in bytes, while Character Length Semantics counts in
characters.

The UNICODE Standard

UNICODE is a standard specification to map all possible characters to a numeric value, in order to cover
all possible languages in a unique character set. UNICODE defines the mapping of characters to integer
codes, but it does not define the exact implementation (i.e. encoding) for a character. Several character
sets are based on the UNICODE standard, such as UTF-7, UTF-8, UTF-16, UTF-32, UCS-2, and UCS-4.
Each of these character sets use a different encoding method. For example, with UTF-8, the letter Æ
is encoded with two bytes as 0xC3 and 0xB6, while the same character will be encoded 0x00C6 with
UTF-16.

When Microsoft™ Windows™ users talk about UNICODE, they typically mean UCS-2 or UTF-16, while
UNIX™ users typically mean UTF-8.

When do I need a UNICODE character set?

With internationalization, people want to use different languages within the same application; for example,
to have Chinese, Japanese, English, French and German addresses of customers in their database.
UNICODE is a character encoding specification that defines characters for all languages. More and more
databases will use a UNICODE character set on the database server, because it "standardizes" all data
from different client applications. If needed, the client application can then use a different character set like
ISO-8859-1 or BIG5: The database software takes care of character set conversions. However, if the end
user needs to deal with different languages, all components of the system (from database backend to GUI
front-end) must work in UNICODE.

The UNICODE character set supported by Genero Business Development Language is UTF-8. Double-
byte based UNICODE character sets such as UCS-2 or UTF-16 are not supported. The database server
can however store character data in another UNICODE character set, as long as the database client is
able to handle to convertion to/from UTF-8 for the Genero runtime system.

What is the standard?

At this time, UNICODE tends to be the standard, but unfortunately not all platforms/systems use the same
UNICODE character set. Recent UNIX™ distributions define UTF-8 as the default character set locale,
XML files are UTF-8 by default, while Microsoft™ Windows™ standard is UTF-16 (NTFS) / UCS-2 (SQL
Server).

What is my current character set?

On a UNIX™ box, you have the LANG / LC_ALL environment variables to define the locale. Each process /
terminal can set its own locale. By default this is en_US.utf8 on recent UNIX™ systems. You can query for
available locales with the locale -a command. Some systems come with only a few locales installed, you
must then install an additional package to get more languages. You must also define the correct character
set in the terminal (xterm or gnome-term), otherwise non-ASCII characters will not display properly.

On Windows™ platforms, for non-UNICODE (i.e. non-UTF-16/UCS-2) applications, you have ACP and
OEMCP code pages. ACP stands for ANSI Code Page and were designed by Microsoft™ for first GUI
applications, while OEMCP defines old code pages for MS/DOS console applications. You can select the
default ACP/OEMCP code pages for non-UNICODE application in the language and regional settings

Advanced features | 311

panel of Windows™ (make sure you define the settings for non-UNICODE applications, this is done in the
"Advanced" panel on Windows™ XP). Code page can be changed in each console window with the chcp
command. With Genero Business Development Language, you can use the LANG environment variable
on Windows™ to define the character set for BDL. However, it is strongly recommended to use the default
Windows™ system locale and avoid to set LANG on Windows™.

Understanding locale settings

It is critical to understand how the different components of a program handle locale settings. Each
component (i.e. runtime system, database client software, front-end, terminal) has to be configured
properly to get the correct character set conversions through the whole chain. The chain starts on the end-
user workstation with front-end windows and ends in the database storage files.

Figure 20: The Locale Settings schema on page 312 shows the different components of a Genero
Business Development Language process.

• The red rectangles show where character set conversion occurs. Conversion can happen in the front-
end side, for C-based Web Services extension and in the database client. No conversion is done by the
fglrun runtime system.

• In the runtime system (fglrun), the locale and code set support is based on the POSIX C runtime
libraries driven by the setlocale() standard function. This locale setting is defined by the LC_ALL (or
LANG) environment variable. The locale of the runtime system must match the code set of the deployed
program modules (42m and 42f files).

• The terminal (for TUI applications) and the C runtime library are represented in magenta rectangles.
These elements will use the locale of the runtime system.

• The locale of the database client must match the locale of the runtime system. Each database vendor
uses it's own locale configuration system.

• The database server uses it's own locale settings, which can be different from the runtime system / db
client locale. You can for example store the data in UTF-8 but have programs using ISO-8859-1.

Advanced features | 312

Figure 20: The Locale Settings schema

The typical mistake is to forget to set the runtime system locale (LANG/LC_ALL), or the database client
software locale. Systems cannot detect that the current locale is appropriate and don't raise any error,
except when a set of bytes does not represent a valid code point in the current codeset. A character
string is just a set of bytes; The same code might represent different characters in different code sets. For
example, the Latin letter é with acute (UNICODE: U+00E9) will be encoded as 0xE9/233 in CP1252 but
will get the code 0x82/130 in CP437. The codes 233 or 130 are valid characters in both code sets, so if
the database uses CP1252, 233 will represent an é and 130 will represent a curved quote. If the client
application used CP437, the é will be encoded as 130, stored as curved quotes but are retrieved from the
database as is and displayed back as é in the CP437 code page. From the front-end side, you can't see
that the character in the database in wrong.

Pay attention that on recent UNIX™ systems, the default locale is set to UTF-8. If your application has been
developed on an older system, it is probably using a single-byte character set like ISO-8859-1 or CP1252,
and program need to be executed in this locale, not in the UTF-8 locale.

It is also important to identify database server character set (i.e. in what code set the characters are stored
in the database). Usually the database character set is defined when creating a database entity.

Advanced features | 313

The best way to test if the characters inserted in the database are correct is to use the database vendor
SQL interpreter and select rows inserted from a BDL program. The rows most hold non-ASCII data
to check if the code of the characters is correct. Some databases support the ASCII() or better, the
UNICODE() SQL function to check the code of a character. Use such function to determine the value of
a character in the database field. If the character code does not correspond to the expected value in the
character set of the database server, there is a configuration mistake somewhere.

If you run a BDL application in TUI mode (or a batch program doing DISPLAYs), you must properly
configure the code set in the terminal window (X11 xterm, Windows™ CMD, putty, etc). If the terminal code
set does not match the runtime system locale, you will get invalid characters displayed on the screen.
On Windows™ platforms, the OEM code page of the CMD window can be queried/changed with the chcp
command. On a Gnome terminal, go to the menu "Terminal" - "Set Character Encoding".

Defining the application locale

This section describes the settings defining the application locale, changing the behavior of the compilers
and runtime system.

Language and character set settings

Purpose of application locale definition

The locale settings matters at compile time and at runtime. At runtime, the locale changes the behavior of
the character handling functions, such as UPSHIFT and DOWNSHIFT. It also changes the handling of the
character strings, which can be single byte or multibyte encoded. Compilation errors will occur if the source
files contain characters that do not exist in the encoding defined by the current locale.

Always check that the local environment variable matches the locale of your Genero application, during
development and at runtime:

$ fglrun -i mbcs
Charmap : UTF-8
Multibyte : yes
Stateless : yes
Length Semantics : CHAR

Mobile plaforms

On iOS and Android™ mobile platforms, the locale is automatically defined to be UTF-8. This cannot be
changed.

The language conventions and system messages are defined by the device settings.

Windows™ plaforms

On Windows™ platforms, if you don't specify the LANG environment variable, the language and character
set defaults to the system locale which is defined by the regional settings for non-Unicode applications.
For example, on a US-English Windows™, this defaults to the 1252 code page. You typically leave the
default on Windows™ platforms (i.e. you should not set the LANG variable, except if your application uses
a different character set as the Windows™ system locale).

On Windows™ platforms, the syntax of the LANG variable is:

 language[_territory[.codeset]]
| .codeset

For example:

C:\ set LANG=English_USA.1252

Advanced features | 314

UNIX™ plaforms

On UNIX™-based platforms, The LC_ALL (or LANG) environment variable defines the global settings for
the language used by the application.

With the LANG environment variable (or LC_ALL, on UNIX™), you define the language, the territory
(aka country) and the codeset (aka character set or code page) to be used. The format of the value is
normalized as follows, but may be specific on some operating systems:

language_territory.codeset

For example:

$ LC_ALL=en_US.iso88591; export LC_ALL

What are possible locales on my platform?

Usually OS vendors define a specific set of values for the language, territory and codeset. For example,
on a UNIX™ platform, you typically have the value "en_US.ISO8859-1" for a US English locale, while
Microsoft™ Windows™ requires the "English_USA.1252" value. For more details about supported locales,
refer to the operating system documentation.

A list of available locales can be found on UNIX™ platform by running the locale -a command. You may
also want to read the man pages of the locale command and the setlocale function. On Windows™

platforms, search the Microsoft™ MSDN documentation for "Language and Country/Region Strings".

UNICODE support (UTF-8)

To support multiple languages in your application, you must use UNICODE. The encoding supported by
Genero for UNICODE applications is UTF-8.

On UNIX™ platforms, UTF-8 locales are natively supported with LANG/LC_ALL.

On Windows™ platforms, UTF-8 is not well supported by the operating system: Defining the LANG
environment variable to code page 65001 will not work. To workaround this limitation, Genero implements
UTF-8 support on Windows™ by setting the LANG environment variable to the value .fglutf8 :

C:\ set LANG=.fglutf8

Length semantics settings

Understanding length semantics

The length semantics of character string data matters when using a multibyte character set. Length
semantics involves data type length specification for database column and program variable definitions, as
well as string manipulations (for string lengths, character positions, offsets and substring ranges).

In a single-byte characters set like ISO-8859-1, a character is encoded on one byte. The length of a string
can be counted in bytes or characters, the unit does not matter. In other words, the length semantics is
identical in bytes or characters, with a single byte encoding. However, with a multibyte character set like
UTF-8 or BIG5, a character can be encoded on several bytes. In such case, the unit regarding length
semantics matters, because the number of bytes of a character string can be different from the number of
characters.

For multibyte characters sets, the language supports Byte Length Semantics (BLS) and Character Length
Semantics (CLS) specification. BLS or CLS usage depends on the current character set of the application.
BLS is typically used with a character set such as BIG5, because for historical reasons programmers are
used to count 2 bytes for each Asian ideogram. For UTF-8, which is a variable size encoding, CLS should
be used instead. CLS simplifies data type definition and string handling when using UTF-8.

Advanced features | 315

Programming areas concerned by length semantics are illustrated in the following code example:

SCHEMA shop

CREATE TABLE mytable (
k INT,
vc VARCHAR(10)
-- what is the unit for the column size and how many
-- characters can be stored in this column?
)

MAIN
 DEFINE buf, tmp VARCHAR(50) -- what is the unit for the size?
 DEFINE rec RECORD LIKE mytable -- what is the size of vc member?
 DEFINE str STRING, len INT

 DATABASE shop

 SELECT LENGTH(vc) INTO len -- What unit use string functions in SQL?
 FROM mytable WHERE k = 45

 LET buf = "abcdef..." -- How many chars can this variable hold?

 DISPLAY length(buf) -- In what unit is the length expressed?

 LET tmp = buf[1,5] -- What is the unit for char positions?

 LET str = buf
 DISPLAY str.getLength() -- What is the unit for the length?
 DISPLAY str.getIndexOf("def") -- What is the unit for the offset?

END MAIN

Using Byte Length Semantics

Byte Length Semantics must be used if the current locale defines a multibyte character set different from
UTF-8.

Important:

• Byte Length Semantics is the default on UNIX™ and Windows™ platforms.
• Byte Length Semantics cannot be set on mobile platforms.

With BLS, the size of CHAR/VARCHAR program variables is expressed in byte units. In a single-byte
character set like ISO-8859-1, every character is encoded on a unique byte, so the number of bytes equals
the number of characters. When using BLS with a multibyte character set, you must be aware of the
storage size in byte units: Character encoding requires more than one byte, so the number of bytes to
store a multibyte string is bigger than the number of characters. For example, in a BIG5 encoding, one
Chinese character needs 2 bytes, so if you want to hold a BIG5 string with a maximum of 10 Chinese
characters, you must define a CHAR(20). When using UTF-8, characters can take one or several bytes
which can use two or three times more storage space as character count. You need to choose the right
expansion factor to define CHAR or VARCHAR variables in byte units.

-- Using Byte Length Semantics
DEFINE var VARCHAR(10) -- Can store 10 bytes / 10 single-byte chars.

In order to use BLS, you can define the FGL_LENGTH_SEMANTICS environment variable to "BYTE", or
just leave it unset, if BLS is the default on your platform. For example, on UNIX™:

$ FGL_LENGTH_SEMANTICS="BYTE"
$ export FGL_LENGTH_SEMANTICS

Advanced features | 316

Using Char Length Semantics

Character Length Semantics should be used with multibyte character sets such as UTF-8: Migrating to
UTF-8 by using CLS will allow you to leave the source code untouched, even when doing complex string/
substring manipulations.

The database should typically also use UTF-8 and CLS. If the database uses UTF-8 and only supports
BLS, the programs can still use CLS with UTF-8.

Important: Char Length Semantics is the default on iOS and Android™ mobile platforms, and
cannot be changed (Byte Length Semantics cannot be used on mobile: only UTF-8 character set is
allowed).

With CLS, the size of a CHAR/VARCHAR program variable is expressed in character units, and the
number of bytes needed to store these characters is allocated automatically. A VARCHAR(10) variable
will hold 10 characters, of any byte length. Further, language functions and class methods dealing with
character string length and positions will use character units.

-- Using Character Length Semantics
DEFINE var VARCHAR(10) -- Can store 10 chars in UTF-8, or any encoding.
LET var = "Forêt" -- 5 chars, that take 6 bytes in UTF-8
DISPLAY length(var) -- Displays a length of 5 (characters)
DISPLAY "[",var[4,5],"]" -- Displays [êt]

To enable Char Length Semantics, define the FGL_LENGTH_SEMANTICS environment variable to
"CHAR". For example, on UNIX™:

$ FGL_LENGTH_SEMANTICS="CHAR"
$ export FGL_LENGTH_SEMANTICS

Length Semantics in SQL

On the database server side, the length semantics used for character data types varies from a vendor
to another. Some databases use BLS, other use CLS, and other support both semantics. For example,
Informix® uses BLS only (with a special server configuration parameter SQL_LOGICAL_CHAR to define a
size conversion ratio). Oracle supports both CLS and BLS at the database, session and even column level,
with the CHAR(10 BYTE|CHAR) syntax. SQL Server supports non-UCS-2 character sets (Latin1, BIG5) in
CHAR/VARCHAR/TEXT columns using BLS the size, while NCHAR/NVARCHAR/NTEXT columns store
double-byte UCS-2 characters and use CLS.

This table shows the character data type length semantics of support database servers:

Table 122: Character data type length semantics of supported database servers

Database Engine
Length semantics in character
data types

Summary

Oracle Supports both Byte or Character
Length Semantics in character
type definition, can be defined
globally for the database or at
column level.

Character string data is stored
in database character set for
CHAR /VARCHAR columns
and in national character set for
NCHAR /NVARCHAR columns.

BLS/CLS

Advanced features | 317

Database Engine
Length semantics in character
data types

Summary

Informix®
Uses Byte Length Semantics for
the size of character columns.
Can apply a ratio when creating
columns, according to the
SQL_LOGICAL_CHARS server
configuration parameter.

Character string data is stored
in the database character set
defined by DB_LOCALE.

BLS

IBM® DB2®
Uses Byte Length Semantics for
the size of character columns.

Character data is stored in the
database character set defined
by the CODESET of CREATE
DATABASE.

BLS

Microsoft™ SQL Server CHAR / VARCHAR sizes are
specified in bytes; Data is stored
in the character set defined by the
database collation.

NCHAR / NVARCHAR sizes are
specified in characters; Data is
stored in UCS-2.

See SQL adaptation guide for
SQL SERVER 2005, 2008, 2012,
2014 on page 592 for more
details.

BLS/CLS

PostgreSQL Uses Character Length
Semantics for the size of
character columns.

Character string data is stored
in the database character set
defined by WITH ENCODING of
CREATE DATABASE.

CLS

MySQL Uses Character Length
Semantics for the size of
character columns.

Character string data is stored in
the server character set defined
by a configuration parameter.

CLS

SQLite Uses Character Length
Semantics for the size of
character columns.

Character string data is stored in
UTF-8.

CLS

Advanced features | 318

Database Engine
Length semantics in character
data types

Summary

Sybase Adaptive Server
Enterprise (ASE)

CHAR / VARCHAR sizes are
specified in bytes; Data is stored
in the db character set.

NCHAR / NVARCHAR sizes are
specified in characters; Data is
stored the db character set.

UNICHAR / UNIVARCHAR sizes
are specified in characters; Data
is stored in UTF-16.

See SQL adaptation guide for
SAP Sybase ASE 16.x on page
723 for more details.

BLS/CLS

Other SQL elements like functions and operators are affected by the length semantic. For example,
Informix® LENGTH() function always returns a number of bytes, while Oracle's LENGTH() function returns
a number of characters (use LENGTHB() to get the number of bytes with Oracle).

It is important to understand properly how the database servers handle multibyte character sets. Check
your database server reference manual: In most documentations you will find a "Localization" chapter
which describes those concepts in detail.

Extracting database schemas

Database schema files (.sch) are used to resolve column data types when compiling .4gl modules and .per
form files. This file contains size information for CHAR and VARCHAR types. It is important to identify the
unit used by the database columns, to properly define CHAR/VARCHAR variables in programs and fields
in forms.

Most database engines (like Oracle, SQL Server, PostgreSQL, Sybase, SQLite) provide catalog tables
with column size information in character units. In this case, the fgldbsch tool extracts the column sizes
in character units, without further conversion. If the column sizes is provided in bytes by catalog tables,
fgldbsch will try to detect character length semantics usage in the database and apply a reduction factor to
convert the number of bytes to chars.

As result - independently from the length semantics used in your programs - the CHAR/VARCHAR type
sizes in the schema file are always expressed in character units. When using Byte Length Semantics, this
makes no difference in a single-byte locale, because one character occupies a single byte. In a multibyte
encoding (UTF-8) with BLS, this method garanties that the program variable will not hold more ASCII
characters than the database column can hold. When using Character Length Semantics with a multibyte
character set, the size in characters will define character type variables in the same unit.

For example, with BLS, a VARCHAR(10 (bytes or chars)) column will define a VARCHAR(10 (bytes)) in
programs. With CLS, a VARCHAR(10 (chars)) column will define a VARCHAR(10 (chars)) in programs.

Moving from single-byte to UTF-8

Migration to Unicode (UTF-8) is facilitated with Char Length Semantics:

1. Verify that your database uses Char Length Semantics.
2. Convert your sources and string files from your single-byte locale to UTF-8 (iconv).
3. Turn on Char Length Semantics with FGL_LENGTH_SEMANTICS=CHAR.
4. Compile and run your programs untouched.

Advanced features | 319

Collation ordering settings

The runtime system supports a sorting functionality in tables. To sort the data rows, the runtime systems
uses the standard C library functions to order character strings.

The environment variable LC_COLLATE can be used to control sort order in Genero. You can for example
define this variable as "C" or "POSIX" to get a binary sort order.

When using LC_COLLATE, set the LANG environment variable to define the global locale, if you use
LC_ALL, it will overwrite all other LC_* variables defined.

Numeric and currency locale settings

The environment variables LC_MONETARY and LC_NUMERIC are ignored. To perform decimal to/from
string conversions, the runtime system uses the DBMONEY or DBFORMAT environment variables. These
variables define hundreds / decimal separators and currency symbols for MONEY data types.

Date and time locale settings

The environment variable LC_TIME is ignored. To perform date to/from string conversions, the runtime
system uses by default the DBDATE environment variable.

Database client settings

This section describes the settings defining the locale for the database client. Each database software has
its own client character set configuration.

You must properly configure the database client locale in order to send/receive data to the database
server, according to the locale used by your application. Both database client locale and application
locale settings must match (you cannot have a database client locale in Japanese and a runtime locale in
Chinese).

Here is the list of environment variables defining the locale used by the application, for each supported
database client:

Table 123: Environment variables defining the locale used by the application for each database
client

Database Client Settings

Oracle database server The client locale settings can be set with
environment variables like NLS_LANG, or after
connection, with the ALTER SESSION instruction.
By default, the client locale is set from the database
server locale.

IBM® Informix® The client locale is defined by the
CLIENT_LOCALE environment variable. For
backward compatibility, if CLIENT_LOCALE is
not defined, other settings are used if defined
(DBDATE / DBTIME / GL_DATE / GL_DATETIME,
as well as standard LC_* variables).

IBM® DB2® The client locale is defined by the DB2CODEPAGE
profile variable. You cat set this variable with the
db2set command. However, you usually do not
need to set this variable: If DB2CODEPAGE is not
set, DB2® uses the operating system code page on
Windows™ and the LANG/LC_ALL locate setting on
UNIX™. When using a UTF-8 locale on Windows™,
DB2CODEPAGE must be set to 1208.

Advanced features | 320

Database Client Settings

Microsoft™ SQL Server For MSV and SNC drivers on Windows™ platforms,
the database client locale is defined by the
language settings for non-Unicode applications.
The current ANSI code page (ACP) is used by the
SQL Server client and the Genero runtime system.

When using the FTM (FreeTDS) driver, the client
character set is defined by the client charset
parameter in freetds.conf or with the ClientCharset
parameter in the DSN of the odbc.ini file.

When using the ESM (EasySoft) driver, the client
character set is defined by the Client_CSet
parameter in the DSN of the odbc.ini file. When
using CHAR/VARCHAR types in the database
and when the database collation is different
from the client locale, you must also set the
Server_CSet parameter to an iconv name
corresponding to the database collation. For
example, if Client_CSet=BIG5 and the db collation
is Chinese_Taiwan_Stroke_BIN, you must set
Server_CSet=BIG5HKSCS, otherwise invalid data
will be returned from the server.

PostgreSQL The client locale can be set with the
PGCLIENTENCODING environment variable,
with the client_encoding configuration parameter
in postgresql.conf, or after connection, with the
SET CLIENT_ENCODING instruction. Check the
pg_conversion system table for available character
set conversions.

Oracle MySQL The client locale is defined by the default-
character-set option in the MySQL configuration
file. The character set could also be changed by
program after the connection, with the SET NAMES
or SET CHARACTER SET statements, but this not
supported: The driver needs to know the character
set at connection initialization, and you would have
to add this statement in all your programs.

Sybase Adaptive Server Enterprise (ASE) By default, the Sybase database client character
set is defined by the operating system locale
where the database client runs. On Windows™,
it is the ANSI code page of the login session
(can be overwritten by setting the LANG
environment variable), on UNIX™ it is defined by
the LC_CTYPE, LC_ALL or LANG environment
variable. You may need to edit the $SYBASE/
locales/locales.dat file to map the OS locale name
to a known Sybase character set.

See Sybase ODBC documentation for more details
regarding character set configuration.

See database vendor documentation for more details.

Advanced features | 321

Front-end settings

The host operating system on the front-end workstation must be able to handle the character set and fonts.
For instance, a Western-European Windows™ is not configured to handle Arabic applications. If you start
an Arabic application, some graphical problems may occur (for instance the title bar won't display Arabic
characters, but unwanted characters instead).

The GUI front-end software must support the conversion of the runtime system character set to/from the
character set used internally by the client, and must be configured with the correct font to display the
characters used by the application. For example, the default font for a front-end installed on an English
Windows™ system might not be able to display Japanese characters. You must then change the font in the
front-end configuration panel. Refer to the front-end documentation to see how character set conversion
and fonts can be configured.

When using a TUI program in a terminal emulator such as Putty, XTerm or even the Windows™ Console,
make sure the terminal is configured properly to display the characters of the application locale. For
example, on a Windows™ Console you can use the chcp command to change the current code page.

Writing programs

Development and runtime character set must match

When writing a form or program source file, you use a specific character set. This character set depends
upon the text editor or operating system settings you are using on the development platform. For example,
when writing a string constant in a .4gl module, containing Arabic characters, you probably use the
ISO-8859-6 character set. The character set used at runtime (during program execution) must match the
character set used to write programs.

At runtime, a Genero program can only work in a specific character set. However, by using localized
strings, you can start multiple instances of the same compiled program using different locales. For a given
program instance the character set used by the strings resource files must correspond to the locale. Make
sure the string identifiers use ASCII only.

Byte length semantics and substring expressions

When using Byte Length Semantics (BLS), all character positions in strings are actually byte positions. In
a multibyte environment, if you don't pay attention to this, you can end up with invalid characters in strings.
For example, an expression using a subscript operator [x,y] might refer to a byte position which is in fact
in the middle of a multibyte character. If possible, use Character Length Semantics (CLS) with a multibyte
locale to avoid such problems, or use only STRING methods to parse character strings.

Runtime system messages

While it is recommended to use localized strings to internationalize application messages, runtime system
error messages are provided in .iem message files. The system message files use the same technique
as user defined message files. The default message files (msg) are located in the FGLDIR/msg/en_US
directory.

For backward compatibility with IBM® Informix® 4GL, some of these system error messages are used
by the runtime system to display messages during a dialog instruction. For example, end users may get
the error message -1309 "There are no more rows in the direction you are going" when scrolling an a
DISPLAY ARRAY list in TUI mode.

If your application language is not English, you will need to translate some of the system messages to a
specific locale and language. If your application language is English, you might just want to customize the
default messages.

Here are some examples of system messages that can appear at runtime:

Advanced features | 322

Table 124: Examples (subset) of system messages for localized strings

Number Description

-1204 Invalid year in date.

-1304 Error in field.

-1305 This field requires an entered value.

-1306 Please type again for verification.

-1307 Cannot insert another row - the input array is full.

-1309 There are no more rows in the direction you are
going.

To use your own customized system messages, do this:

1. Create a new directory under $FGLDIR/msg, using the same name as your current locale. For example,
if LANG=fr_FR.ISO8859-1, you must create $FGLDIR/msg/fr_FR.ISO8859-1.

2. Copy the original system message source files (.msg) from $FGLDIR/msg/en_US to the locale-specific
directory.

3. Edit the source files with the .msg suffix and translate the messages.
4. Recompile the message files with the fglmkmsg tool to produce .iem files. Make sure you have set the

correct locale!
5. Run a program to check if the new messages are used.

With this technique, you can deploy multiple message files in different languages and locales in the same
FGLDIR/msg directory.

You can use the fglmkmsg tool with the -r option to revert a .iem file to a source .msg file.

There is no need to translate all messages of the .msg files: Most of the error messages are unexpected
during a program execution and therefore can stay in English. The messages subject of translation can be
found in the 4glusr.msg and rds.msg files.

The locale can be set with different environment variables (see setlocale manual pages for more details).
To identify the locale name, the runtime system first looks for the LC_ALL value, then LC_CTYPE and
finally LANG.

Pay attention to locale settings when editing message files and compiling with fglmkmsg: The current
locale must match the locale used in the .msg files.

The .iem files used at runtime must match the current locale used by programs. This should be automatic,
as long as you put the correct files in the corresponding $FGLDIR/msg/$LANG directory.

Using the charmap.alias file

The name of the character set defined within the LANG/LC_ALL environment variables can wary from
system to system. For example, on a given platform, the ISO-8859-1 character set may be named
"iso88591", while others platform will use "8859-1".

An example of locale configuration on HP/UX:

$ export LANG=en_US.iso88591
$ locale
LANG=en_US.iso88591
LC_CTYPE="en_US.iso88591"
LC_COLLATE="en_US.iso88591"
LC_MONETARY="en_US.iso88591"
LC_NUMERIC="en_US.iso88591"
LC_TIME="en_US.iso88591"
LC_MESSAGES="en_US.iso88591"

Advanced features | 323

LC_ALL=
$ locale charmap
"iso88591.cm"

To communicate with other components like front-ends, or identify the encoding of XML files, Genero
programs must use a normalized name for character sets. This normalized name must follow the IANA
specifications [RFC2978].

In order to convert the operating system specific locale codeset name to an IANA name, the runtime
system uses the charmap.alias mapping file, located in $FGLDIR/etc.

You can add your operating system specific locale, if not listed in the s file.

Date, numeric and monetary formats

Dates, numbers and monetary values must be displayed and entered in a format used in the country/
region. These formats can be defined with the DBDATE and DBFORMAT environment variables.

Date and numeric format settings matter for data display and data input. For example, when displaying a
DATE value to a form field, it will implicitely be formatted according to DBDATE. When the user enters a
date in a form field bound to a DATE variable, the entered digits will be interpreted according the DBDATE.

The default value of these environment variables depends on the type of platform where the program
executes:

When using the FORMAT field attribute or the USING operator to format dates with abbreviated day and
month names- by using ddd / mmm markers - the system uses English-language based texts for the
conversion. This means, day (ddd) and month (mmm) abbreviations are not localized according to the
locale settings, they will always be in English.

• On destkop/server platforms, the default formats are set for the United States of America:

• Dates are formatted as mm/dd/yyyy.
• The decimal separator is a dot.
• The currency symbol is the $ dollar sign.

• On mobile platforms, the default formats are set according to the regional settings defined on the
device.

• Dates are formatted according to the regional settings.
• The decimal separator is defined according to the regional settings.
• The currency symbol is not defined. No currency symbol will display.

Note: While it is possible to define environment settings for date and numeric formats with
FGLPROFILE entries, it is strongly recommended to leave the defaults, to get the expected
formats, if the user changes the regional settings on the mobile device.

Using the Ming Guo date format

The Ming Guo (or Minguo) calendar is still used in some Asian regions like Taiwan. This calendar is
equivalent to the Gregorian calendar, except that the years are numbered with a different base: In the Ming
Guo calendar, the first year (1) corresponds to the Gregorian year 1912, the year the Republic Of China
was founded.

Digit-based year Ming Guo date format can be enabled by adding the C1 modifier at the end of the value
set for the DBDATE environment variable:

$ DBDATE="Y3MD/C1"
$ export DBDATE

With this DBDATE setting, dates will be displayed with a year following the Ming Guo calendar, and
date input will also be interpreted based on that calendar. For example, if the user enters 90/3/24, it is

http://www.ietf.org/rfc/rfc2978.txt

Advanced features | 324

equivalent to an input of 2002/3/24 when using the Gregorian calendar. Basically, the runtime system will
subtract 1912 or add 1912 respectively when displaying or reading date values).

When using the C1 modifier, the possible values for the Yn symbol are Y4, Y3, Y2.

The MDY() operator is sensitive to the C1 modifier usage in DBDATE. For example, if DBDATE=Y3MD/
C1, MDY(3,24,1) will build a date the corresponds in the Gregorian to MDY(3,24,1912).

The USING operator supports the c1 modifier as well. The c1 modifier must be specified at the end of the
format. You can for example use the following format string: "yyyy-mm-ddc1".

The C2 modifier to use Era names is not supported.

Unlike Informix® 4gl, when using negative years, the minus sign is placed over the left-most zero of the
year, to avoid miss-aligned dates.

For example, if DBDATE=Y3MD/C1:

MDY(3,2, 1) USING "yyy/mm/ddc1"
MDY(3,2,-1) USING "yyy/mm/ddc1"

Will align properly as follows:

0001/03/02
-001/03/02

Note: Front-ends may not support the Ming Guo calendar for widgets like DATEEDIT.

Troubleshooting locale issues
Locale settings (LANG) corrupted on Microsoft™ platforms

On Microsoft™ Windows™ XP / 2000 platforms, some system updates (Services Pack 2) or Office versions
do set the LANG environment variable with a value for Microsoft™ applications (for example 1033). Such
value is not recognized by Genero as a valid locale specification. Make sure that the LANG environment
variable is properly set in the context of Genero applications.

A form is displayed with invalid characters

You may have different codesets on the client workstation and the application server. The typical mistake
that can happen is the following: You have edited a form-file with the encoding CP1253; you compile
this form-file on a UNIX-server (encoding ISO-8859-7). When displaying the form, invalid characters will
appear. This is usually the case when you write your source file under a Windows™ system (that uses
Microsoft™ Code Page encodings), and use a Linux™ server (that uses ISO codepages).

Keep in mind that all source files must be created/edited in the encoding of the server (where fglcomp and
fglrun will be executed).

Checking the locale configuration on UNIX™ platforms

On UNIX™ systems, the locale command without parameters outputs information about the current locale
environment.

Once the LANG environment variable is set, check that the locale environment is correct:

$ export LANG=en_US.ISO8859-1
$ locale
LANG=en_US.ISO8859-1
LC_CTYPE="en_US.ISO8859-1"
LC_NUMERIC="en_US.ISO8859-1"
LC_TIME="en_US.ISO8859-1"
LC_COLLATE="en_US.ISO8859-1"
LC_MONETARY="en_US.ISO8859-1"
LC_MESSAGES="en_US.ISO8859-1"

Advanced features | 325

LC_PAPER="en_US.ISO8859-1"
LC_NAME="en_US.ISO8859-1"
LC_ADDRESS="en_US.ISO8859-1"
LC_TELEPHONE="en_US.ISO8859-1"
LC_MEASUREMENT="en_US.ISO8859-1"
LC_IDENTIFICATION="en_US.ISO8859-1"
LC_ALL=

If the locale environment is not correct, then you should check the value of the following environment
variables: LC_ALL, LC_CTYPE, LC_NUMERIC, LC_TIME, LC_COLLATE, ... value.

The following examples show the effect of LC_ALL and LC_CTYPE on locale configuration. The LC_ALL
variable overrides all other LC_.... variables values.

$ export LANG=en_US.ISO8859-1
$ export LC_ALL=POSIX
$ export LC_CTYPE=fr_FR.ISO8859-15
$ locale
LANG=en_US.ISO8859-1
LC_CTYPE="POSIX"
LC_NUMERIC="POSIX"
LC_TIME="POSIX"
LC_COLLATE="POSIX"
LC_MONETARY="POSIX"
LC_MESSAGES="POSIX"
LC_PAPER="POSIX"
LC_NAME="POSIX"
LC_ADDRESS="POSIX"
LC_TELEPHONE="POSIX"
LC_MEASUREMENT="POSIX"
LC_IDENTIFICATION="POSIX"
LC_ALL=POSIX
$ fglrun -i mbcs
LANG honored: yes
Charmap : ANSI_X3.4-1968
Multibyte : no
Stateless : yes

The charset used is the ASCII charset. Clearing the LC_ALL environment variable produces the following
output:

$ unset LC_ALL
$ locale
LANG=en_US.ISO8859-1
LC_CTYPE=fr_FR.ISO8859-15
LC_NUMERIC="en_US.ISO8859-1"
LC_TIME="en_US.ISO8859-1"
LC_COLLATE="en_US.ISO8859-1"
LC_MONETARY="en_US.ISO8859-1"
LC_MESSAGES="en_US.ISO8859-1"
LC_PAPER="en_US.ISO8859-1"
LC_NAME="en_US.ISO8859-1"
LC_ADDRESS="en_US.ISO8859-1"
LC_TELEPHONE="en_US.ISO8859-1"
LC_MEASUREMENT="en_US.ISO8859-1"
LC_IDENTIFICATION="en_US.ISO8859-1"
LC_ALL=
$ fglrun -i mbcs
Error: locale not supported by C library, check LANG.
$ locale charmap
ANSI_X3.4-1968

Advanced features | 326

After clearing the LC_ALL value, the value of the variable LC_CTYPE is used. It appears that it is not
correct. After clearing this value we get the following output:

$ unset LC_CTYPE
$ locale
LANG=en_US.ISO8859-1
LC_CTYPE="en_US.ISO8859-1"
LC_NUMERIC="en_US.ISO8859-1"
LC_TIME="en_US.ISO8859-1"
LC_COLLATE="en_US.ISO8859-1"
LC_MONETARY="en_US.ISO8859-1"
LC_MESSAGES="en_US.ISO8859-1"
LC_PAPER="en_US.ISO8859-1"
LC_NAME="en_US.ISO8859-1"
LC_ADDRESS="en_US.ISO8859-1"
LC_TELEPHONE="en_US.ISO8859-1"
LC_MEASUREMENT="en_US.ISO8859-1"
LC_IDENTIFICATION="en_US.ISO8859-1"
LC_ALL=
$ locale charmap
ISO-8859-1
$ fglrun -i mbcs
LANG honored: yes
Charmap : ISO-8859-1
Multibyte : no
Stateless : yes

Verifying if the locale is properly supported by the runtime system

You can check if the LANG/LC_ALL locale is supported properly by using the -i mbcs option of the
compilers and runner programs:

$ fglcomp -i mbcs
Charmap : UTF-8
Multibyte : yes
Stateless : yes
Length Semantics : CHAR

The lines printed with this option indicate if the locale can be supported by the operating system libraries.
Here is a short description of each line:

Table 125: -i info line descriptions

Verification Parameter Description

Charmap This is the normalized IANA name of the character
set used by the runtime system to communicate
with external components (front-end, I/O of XML
files). The mapping from the system locale name
to a normalized name is defined in FGLDIR/etc/
charmap.alias.

Multibyte This line indicates if the character set is multibyte.

Stateless A few character sets are using an internal state
that can change during the character flow. Only
stateless character sets can be supported (the
value must be 'yes').

Advanced features | 327

How to retrieve the list of available locales on the system

On UNIX™ systems, the locale command with the parameter '-a' writes the names of available locales.

$ locale -a
...
en_US
en_US.iso885915
en_US.utf8
en_ZA
en_ZA.utf8
en_ZW
...

How to retrieve the list of available codesets on the system

On UNIX™ systems, the locale command with the parameter '-m' writes the names of available codesets.

$ locale -m
...
ISO-8859-1
ISO-8859-10
ISO-8859-13
ISO-8859-14
ISO-8859-15
...

Localized strings
Localized strings provide a means of writing applications in which the text of strings can be customized on
site.

This string localization feature is a simple way to define external resource files which the runtime system
can search, in order to assign text to elements displayed by programs. It can be used to implement
internationalization in your application, or to use site-specific text, for example, when business terms are
specific to the territory where the application is used.

The localized string resource files (.42s) are loaded at runtime and shared by all fglrun processes.
Localized strings are used to replace the original strings found in the p-code modules (.42m), in the
compiled form (.42f), and in any XML resource files loaded in the abstract user interface tree (.4ad ,
.4st , .4tb , etc).

• Steps for application internationalization on page 327
• Creating source string files on page 328
• Localized strings in program sources on page 329
• Localized strings in XML resource files on page 330
• Extracting strings from sources on page 331
• Compiling string files on page 331
• Using localized strings at runtime on page 331
• Predefined application strings on page 334
• Example on page 334

Steps for application internationalization
Follow these steps to internationalize your application.

1. Identify the current character set used in your sources and make sure the application locale (LANG/
LC_ALL) is set correctly.

2. In .4gl sources, add a % prefix to the strings that must be localized (i.e. translated).
3. In .per sources LAYOUT section, replace hard-coded form elements like text labels by static LABEL

form items and define the TEXT attributes with a % prefix in the ATTRIBUTES section.

Advanced features | 328

4. Extract the strings from the .4gl sources with fglcomp -m and use fglform -m for .per sources.
5. Organize the generated .str source string files (identify duplicated strings and put them in a common

file).
6. At this point, the string identifiers (on the left) are the same as the string texts (on the right). These

localized strings could be used as is, but it's better to define a normalized identifier for each string, by
using ASCII characters only. For example, replace:

"Customer List" = "Customer List"

with:

"customer.list.title" = "Customer List"

7. In sources, replace the original string text with the new string identifiers. Strings to be replaced can be
located by their % prefix. You can, for example, use a script with an utility like the sed UNIX™ command
to read the .str files and apply the changes automatically.

8. Recompile the .4gl and .per sources (these should be ASCII now, so the locale should not matter).
9. Compile the .str files in the locale used by these files, and check whether the application displays the

text properly.
10.Copy the existing .str files, and translate the string text into another language (making sure the locale

is correct).
11.Compile the new .str files, and copy the .42s files into another distribution directory, defined with the

FGLRESOURCEPATH environment variable.

A set of .42s files using the same language and codeset is typically copied in a distribution directory
with a name identifying the locale.

For example:

/opt/app/resource/strings/en_US.iso8859-1
 -- English strings in iso8859-1 code-set
/opt/app/resource/strings/fr_FR.iso8859-1
 -- French strings in iso8859-1 code-set
/opt/app/resource/strings/jp_JP.utf8
 -- Japanese strings in utf-8 code-set

Future edits to the .per and .4gl source files should be done in the ASCII locale, and .str string files
must be edited with their specific locale.

Creating source string files
A source string file contains localized string definitions for a given language (or localization context).

What is a source string file?

A source string file is basically a mapping table that defines an identifier for each string.

After compiling source string files, the programs can load and use a string found according to its identifier
(or key).

By convention, the source files of localized strings have the .str extension.

Syntax

Define a list of string identifiers, and the corresponding text, by using the following syntax:

"string-identifier" = "string-text"

Advanced features | 329

For example:

"common.button.cancel" = "Cancel"

Note: Localized string keys are case sensitive. Consider using lower case characters only to avoid
mistakes.

As an alternative, you can define string identifiers as a dot-separated list of identifiers:

identifier. [...] = "string-text"

For example:

common.button.cancel = "Cancel"

If needed, you can add comment lines with the # or -- markers, like in other Genero source files:

a comment
-- another comment

Special characters

The fglmkstr compiler accepts the backslash "\" as the escape character, to define non-printable
characters:

\l \n \r \t \\

Example

A comment line
"Original text" = "Original text"
"forms.customer.list" = "Customer List"
"special.characters.backslash" = "\\"
"special.characters.newline" = "\n"

Localized strings in program sources
A localized string is specified in the source code of program modules or form specification files with the
%"string" notation, to identify a string that must be replaced at runtime by the corresponding text found
in compiled string files. In programs, localized strings can be loaded dynamically with the LSTR() operator.

Syntax 1: Static localized string

%"sid"

1. sid is a character string literal that defines both the string identifier and the default text.

Syntax 2: Dynamic localized string

LSTR(eid)

1. eid is a character string expression used at runtime as the string identifier to load the text.

Static localized strings

A static localized string specification begins with a percent sign (%), followed by the identifier of the string
which will be used to find the text to be loaded. Since the identifier is a string, you can use any type of

Advanced features | 330

characters, but it is recommended that you use a naming convention. For example, you can specify a path
by using several names separated by a dot:

MAIN
 DISPLAY %"common.message.welcome"
END MAIN

The string after the percent sign defines both the localized string identifier and the default text to be used
for extraction, or the default text when no string resource files are provided at runtime.

You can use this notation in form specification files any place where a string literal can be used.

LAYOUT
 VBOX
 GROUP g1 (TEXT=%"group01")
...

It is not possible to specify a static localized string directly in the area of containers like GRID, TABLE,
TREE or SCROLLGRID. You can use static label form items to define localized strings in layout labels:

LAYOUT
 GRID
 {
 [lab01 |f001]
 {
 END
END
ATTRIBUTES
LABEL lab01: TEXT=%"myform.label01";
EDIT f001 = FORMONLY.field01;
END

Dynamic localized strings

The language provides a special operator to load a localized string dynamically, using an expression as
string identifier. The name of this operator is LSTR().

The following code example builds a localized string identifier with an integer and loads the corresponding
string with the LSTR() operator:

MAIN
 DEFINE n INTEGER
 LET n = 234
 DISPLAY LSTR("str"||n) -- loads string 'str234'
END MAIN

Localized strings in XML resource files
In XML resource files, localized string specification must follow the XML syntax and therefore must be
defined as an XML node.

Syntax: Localized string in XML files

 <ParentNode attribute = "default" [...] >
 <LStr attribute = "sid" [...] />
 </ParentNode>

1. ParentNode is the node type of the parent where the localized strings must be applied.
2. attribute is the attribute in the parent node that will get the localized string identified by sid.
3. default is the default text of an attribute, if not localized string is found for sid.

Advanced features | 331

4. sid is a character string literal that defines both the string identifier and the default text.

Description

In .42m p-code modules, the localized strings are coded in a proprietary binary format. But, for XML files
such as action defaults files (.4ad), the localized strings must be written with a specific node, following the
XML standards. To support localized strings in XML files, any file loaded into the Abstract User Interface
tree is parsed to search for <LStr> nodes. The <LStr> nodes define the same attributes as in the parent
node with localized string identifiers, for example:

<Label text="Hello!" >
 <LStr text="label01" />
</Label>

The runtime system automatically replaces corresponding attributes in the parent node (text="Hello!"),
with the localized text found in the compiled string files, according to the string identifier (label01). After
interpretation, the <LStr> nodes are removed from the XML data.

To take effect, a localized attribute in the <LStr> node must have a corresponding attribute in the parent
node.

Extracting strings from sources
Localized strings can be easily extracted from .4gl and .per source files.

Use the fglcomp and fglform compilers with the -m option to extract localized strings.

$ fglcomp -m mymodule.4gl

The compilers dumps all localized string to stdout. This output can be redirected to a file to generate the
default source string file with all the localized strings used in the source file. Source string files should
then be re-organized, to centralize common messages in a unique .str file, and can then be compiled by
fglmkstr into .4st files to be used by the runtime system.

Compiling string files
The source string files (with .str extension) must be compiled to binary files (with .42s extension) in
order to be loaded by the runtime system.

To compile a source string file, use the fglmkstr compiler.

$ fglmkstr filename.str

The fglmkstr tool generates a .42s file with the filename prefix.

Important: When compiling a .str source string file, you must set the locale (character set)
corresponding to the encoding used in the .str file.

Using localized strings at runtime
Understand the rules for using localized strings at runtime.

Distributing compiled string files

The compiled string files (.42s) must be distributed with the program files in a directory specified in the
DBPATH/FGLRESOURCEPATH environment variable.

Setting the correct locale

The locale (LANG/LC_ALL) corresponding to the encoding used in the .42s files must be set before
starting the application. If the locale is wrong, the strings will not be loaded properly.

Advanced features | 332

How does the runtime system load the strings?

The .42s compiled string resource files are loaded in following order of precedence:

1. The files defined in FGLPROFILE,
2. A file having the same name as the current program (myprog.42m loads myprog.42s),
3. A file with the name "default.42s".

For each string file, the runtime system looks in the following directories:

1. The current directory,
2. The path list defined in the DBPATH/FGLRESOURCEPATH environment variable,
3. The FGLDIR/lib directory.

String resource file sharing

Like .42m program pcode files, the .42s string resource files are shared by all fglrun processes running
on the computer: The string file is loaded into memory with the mmap operating system function.

Defining a list of string files in FGLPROFILE

Specify a list of compiled string files with entries in the FGLPROFILE configuration file with the
fglrun.localization entries.

First, define the total number of files with:

fglrun.localization.file.count = integer

For each file, define the filename (with the .42s extension), including an index number (start index must
be 1):

fglrun.localization.file.index.name = "filename.42s"

Warning switches can be specified in FGLPROFILE.

If the text of a string is not found at runtime, the runtime system can show a warning, for development
purposes.

fglrun.localization.warnKeyNotFound = boolean

By default, this warning switch is disabled.

What happens if a 42s string file is not found?

If the 42s string file was defined with fglrun.localization.* FGLPROFILE entries, it is considered as
mandatory, and the runtime system will raise error -8006 if the file is not found. If the progname.42s and
default.42s string files are not found, no error is raised, because these are fallback string resource files.

What happens if a string is not defined in a resource file?

If a localized string is not defined in one of the compiled string files, the runtime system uses the string
identifier as default text.

What happens if a string is defined more that once?

When a localized string is defined in several compiled string files, the runtime system uses the first string
found.

For example, if the string "hello" is defined in program.42s as "hello from program", and in
default.42s as "hello from default", the runtime system will use the text "hello from program".

Advanced features | 333

Organizing .42s resource files in distribution directories

A set of .42s files using the same language and codeset is typically copied in a distribution directory with
a name identifying the locale.

For example:

/opt/app/resource/strings/en_US.iso8859-1 -- English strings in iso8859-1
 code-set
/opt/app/resource/strings/fr_FR.iso8859-1 -- French strings in iso8859-1
 code-set
/opt/app/resource/strings/jp_JP.utf8 -- Japanese strings in utf-8
 code-set

At runtime, specify the string file search path in the DBPATH/FGLRESOURCEPATH environment variable by
adding the name of current locale as sub-directory. For example, to find the correct string files in one of the
locale-specific directories shown above, set the FGLRESOURCEPATH variable as follows (UNIX™ shell):

$ echo $LC_ALL
jp_JP.utf8
$ FGLRESOURCEPATH="$FGLRESOURCEPATH:/opt/app/resource/strings/$LC_ALL"
$ export FGLRESOURCEPATH
$ echo $FGLRESOURCEPATH
/opt/app/forms:/opt/app/resource/strings/jp_JP.utf8

Localized string files on mobile devices

On mobile devices, the language is determined by the operating system regional settings.

• On iOS devices (version 8.1), the language is determined by Settings >> General >> International >>
Language

• On Android™ devices (version 4.4), the language is determined by Settings >> Language & Input >>
Language

The selected language is identified by a locale code following the ISO 639 standard. Below are some
language code examples; see the mobile OS documentation for information about available languages and
their corresponding ISO 639-x codes.

• en - English (for all regions)
• en_US - English in the United States
• en_GB - English in the United Kingdom

On startup, the mobile app will by default search for localized string files (.42s) in appdir/locale-
code, the application sub-directory having the same name as the locale identifier (with language and
category/region codes) (for an English-US locale: appdir/en_US). If the 42s files are not found in this
sub-directory, the runtime system tries to load the files from a sub-directory with the language identified
only (for an English-US locale: appdir/en). Finally, if the string files are not found in locale-specific
directories, the files are loaded directly from appdir.

In order to localize your application, you simply need to place your .42s localized string files in the
appropriate language sub-directory.

Note: If the .42s file names do not match the main program name, define the list of localized
strings files in app's fglprofile file.

If you want to distinguish language categories (Simplified/Tradition Chinese), or if you want to use different
texts according to the territory for the same language (English in USA or Great Britain), create language
sub-directories with the exact OS locale identifier:

• For English in the USA, use "en_US"
• For English in the United Kingdom, use "en_GB"

Advanced features | 334

• For English in Canada, use "en_CA"
• etc...

appdir/en_US/mystrings.42s
appdir/en_GB/mystrings.42s
appdir/en_CA/mystrings.42s

If the language category or region can be ignored, create language sub-directories with names matching
the language identifier only:

• For English, use "en"
• For French, use "fr"
• For German, use "de"
• etc...

appdir/en/mystrings.42s
appdir/fr/mystrings.42s
appdir/de/mystrings.42s

Consider providing a default set of string files (in English) directly under appdir, in case if the regional
settings of the device do not match one of the locale directories you provide, otherwise the application will
stop with error -8006:

appdir/mystrings.42s

For more details about the mobile app directory structures (appdir), see Directory structure for GMA apps
on page 2572 and Directory structure for GMI apps on page 2584.

Predefined application strings
The runtime system may need to display text to the user.

For example, the runtime system library includes a report viewer, which displays a form. By default the text
is in English, and you may need to localize the text in another language. So the strings of this component
must be 'localizable', as in other application strings.

To customize the built-in strings, the runtime system uses the mechanism of localized strings.

All strings used by the runtime system are centralized in a unique file:

$FGLDIR/src/default.str

which is compiled into:

$FGLDIR/lib/default.42s

This file is always loaded by the runtime system.

To overwrite the defaults, you can redefine these strings in your own localized string files.

Example
Here is an example using localized strings.

The source string file "common.str" (to be compiled with fglmkstr):

"common.accept" = "OK"
"common.cancel" = "Cancel"
"common.yes" = "Yes!"
"common.no" = "No!"

Advanced features | 335

The source string file "customer.str" (to be compiled with fglmkstr):

"customer.mainwindow.title" = "Customers"
"customer.listwindow.title" = "Customer List"
"customer.l_custnum" = "Number:"
"customer.l_custname" = "Name:"
"customer.c_custname" = "The customer name"
"customer.q_delete" = "Do you want to delete this customer?"

The FGLPROFILE configuration file parameters:

fglrun.localization.file.count = 1
fglrun.localization.file.1.name = "common.42s"

Remark: The 'customer' string file does not have to listed in FGLPROFILE since it is loaded as it has the
same name as the program.

The form specification file "customer.per":

ACTION DEFAULTS
 ACTION accept (TEXT=%"common.accept")
 ACTION cancel (TEXT=%"common.cancel")
END
LAYOUT (TEXT=%"customer.mainwindow.title")
GRID
{
[lab1] [f01]
[lab2] [f02]
}
END
END
ATTRIBUTES
 LABEL lab1: TEXT=%"customer.l_custnum";
 EDIT f01 = FORMONLY.custnum;
 LABEL lab2: TEXT=%"customer.l_custname";
 EDIT f02 = FORMONLY.custname, COMMENT=%"customer.c_custname";
END

The program "customer.4gl" using the strings file:

MAIN
 DEFINE rec RECORD
 custnum INTEGER,
 custname CHAR(20)
 END RECORD
 OPEN FORM f1 FROM "customer"
 DISPLAY FORM f1
 INPUT BY NAME rec.*
 ON ACTION delete
 MENU %"customer.mainwindow.title"
 ATTRIBUTES(STYLE="dialog", COMMENT=%"customer.q_delete")
 COMMAND %"common.yes"
 COMMAND %"common.no"
 END MENU
 END INPUT
END MAIN

Advanced features | 336

Runtime stack
The runtime stack is used to pass/return values to/from functions.

When passing arguments to a function or when returning values from a function, you are using the runtime
stack. When you call a function, parameters are pushed on the stack; before the function code executes,
parameters are popped from the stack in the local variables defined in the function. On the other hand,
each parameter returned by a function is pushed on the stack and popped into variables specified in the
RETURNING clause of the caller.

Elements are pushed on the stack in a given order, then popped from the stack in the reverse order. This
is transparent to the programmer. However, if you want to implement a C extension, you must keep this in
mind.

According to the data type, parameters are passed and returned by value or by reference. When an
element is passed/returned by value, a complete copy of the value is passed. When an element is passed
by reference, only the handle of the object is passed/returned. If the types allows it, elements passed by
reference can be manipulated in the called function to modify the value.

Table 126: Function parameter and returning rules by language element type

Mode Data type or data structure

By value
BOOLEAN, BIGINT, INTEGER , SMALLINT, TINYINT, FLOAT , SMALLFLOAT,
DECIMAL, MONEY, CHAR, VARCHAR, DATE, DATETIME, INTERVAL, records and
static arrays (cannot be returned).

By reference
Dynamic arrays, objects (from Java™, built-in or extension classes), BYTE/TEXT,
STRING (but cannot be modified)

• Passing simple typed values as parameter on page 336
• Passing a record as parameter on page 337
• Passing a static array as parameter on page 337
• Passing a dynamic array as parameter on page 338
• Passing objects as parameter on page 338
• Passing a TEXT/BYTE as parameter on page 339
• Returning simple typed values from functions on page 339
• Returning dynamic arrays from functions on page 339
• Returning TEXT/BYTE values from functions on page 340
• Implicit data type conversion on the stack on page 340

Passing simple typed values as parameter

Simple data types such as INTEGER, DECIMAL, VARCHAR are passed by value in function parameters.
When passing a function parameter by value, the runtime system pushes a copy of the data on the stack.

The STRING data type is an exception to this rule for simple types: elements of this type are passed by
reference. In fact the runtime system passes a reference to the string value, so the actual string data is
not copied on the stack as for other simple types. However, the value of the caller cannot be modified: If
a STRING parameter gets a new value in a function, a new string reference is created. Passed STRING
parameters improve performances compared to CHAR/VARCHAR, with the same semantics as VARCHAR().

When passing a simple typed value to a function, the local variable receiving the value can be changed
without affecting the variable used by the caller:

MAIN
 DEFINE c CHAR(10), s STRING
 LET c = "abc"

Advanced features | 337

 LET s = "def"
 CALL func(c,s)
 DISPLAY c -- Shows "abc"
 DISPLAY s -- Shows "def"
END MAIN

FUNCTION func(pc,ps)
 DEFINE pc CHAR(10), ps STRING
 DISPLAY c -- Shows "abc" (this is a copy of the string)
 DISPLAY s -- Shows "def" (this is the original string)
 LET pc = "zz" -- Assigns new value to local variable
 LET ps = "zz" -- Assigns new value to local variable
END FUNCTION

Passing a record as parameter

You can pass a RECORD structure as a function parameter with the dot star (.*) notation. In this case, the
record is expanded and each member of the structure is pushed on the stack. The receiving local variables
in the function can then be defined individually or with the same record structure as the caller. The next
example illustrates this:

MAIN
 DEFINE rec RECORD
 a INT,
 b VARCHAR(50)
 END RECORD
 CALL func_r(rec.*)
 CALL func_ab(rec.*)
END MAIN

-- Function defining a record like that in the caller
FUNCTION func_r(r)
 DEFINE r RECORD
 a INT,
 b VARCHAR(50)
 END RECORD
 ...
END FUNCTION

-- Function defining two individual variables
FUNCTION func_ab(a, b)
 DEFINE a INT, b VARCHAR(50)
 ...
END FUNCTION

Passing a static array as parameter

It is possible to pass a complete static array as a function parameter, but this is not recommended. When
passing a static array to a function, the complete array is copied on the stack and every element is passed
by value. The receiving local variables in the function must be defined with the same static array definition
as the caller:

MAIN
 DEFINE arr ARRAY[5] OF INT
 CALL func(arr)
END MAIN

-- function defining same static array as the caller
FUNCTION func(x)
 DEFINE x ARRAY[5] OF INT
 ...

Advanced features | 338

END FUNCTION

Note that dynamic arrays are passed by reference.

Passing a dynamic array as parameter

Passing a dynamic array as a function parameter is legal and efficient. When passed as parameter, the
runtime system pushes a reference of the dynamic array on the stack, and the receiving local variables in
the function can then manipulate the original data.

Returning a dynamic array from a function is also possible: The runtime system pushes the reference of
the dynamic array on the stack.

MAIN
 DEFINE arr DYNAMIC ARRAY OF INT
 DISPLAY arr.getLength()
 LET arr = init(10)
 DISPLAY arr.getLength()
 CALL modify(arr)
 DISPLAY arr[50]
 DISPLAY arr[51]
 DISPLAY arr.getLength()
END MAIN

FUNCTION init(c)
 DEFINE c INT
 DEFINE x DYNAMIC ARRAY OF INT
 FOR i=1 TO c
 LET x[i] = i
 END FOR
 RETURN x
END FUNCTION

FUNCTION modify(x)
 DEFINE x DYNAMIC ARRAY OF INT
 LET x[50] = 222
 LET x[51] = 333
END FUNCTION

Output of the program:

0
10
222
333
51

Passing objects as parameter

Like other object oriented programming languages, objects of built-in classes or Java™ classes are passed
by reference. It would not make much sense to pass an object by value, actually. The runtime pushes the
reference of the object on the stack (i.e. the object handler is passed by value), and the reference is then
popped to the receiving object variable in the function. The function can then be used to manipulate the
original object.

MAIN
 DEFINE ch base.Channel
 LET ch = base.Channel.create()
 CALL open(ch)
 CALL ch.close()
END MAIN

Advanced features | 339

FUNCTION open(x)
 DEFINE x base.Channel -- Channel object reference
 CALL x.openFile("filename","r")
END FUNCTION

Passing a TEXT/BYTE as parameter

BYTE or TEXT data types define large data object (LOB) handlers internally implemented as "locators".
When you pass a BYTE or TEXT to a function, the locator is pushed on the stack and popped to the
receiving BYTE or TEXT variable in the function. The actual LOB data is not copied, only the locator is
passed by value.

Important: Since the information of the locator structure is copied (like the file name specified with
a LOCATE IN FILE instruction). If you modify the locator storage information inside the function
with a LOCATE instruction, the locator in the caller will become invalid. Therefore, only read and
write the actual data of BYTE and TEXT parameters in functions, do not modify the storage.

Returning simple typed values from functions

Simple data types such as INTEGER, DECIMAL, VARCHAR are returned by value. When returning a simple
typed value, the runtime system pushes a copy of the data on the stack. The STRING data type is an
exception to this rule: elements of this type are return by mutable reference: the whole string value is not
copied on the stack, only the reference to the string value is copied.

MAIN
 DEFINE x INTEGER
 LET x = int_add(10,20)
END MAIN

FUNCTION int_add(n1,n2)
 DEFINE n1, n2 INTEGER
 RETURN (n1+n2)
END FUNCTION

Returning dynamic arrays from functions

When returned by a function, dynamic arrays are pushed on the stack by reference. Therefore you can
create a dynamic array in a function and return it to the caller for usage:

MAIN
 DEFINE arr DYNAMIC ARRAY OF INTEGER
 LET arr = create_array(10)
 DISPLAY arr.getLength()
END MAIN

FUNCTION create_array(n)
 DEFINE n, i INTEGER
 DEFINE arr DYNAMIC ARRAY OF INTEGER
 FOR i=1 TO n
 LET arr[i] = i
 END FOR
 RETURN arr
END FUNCTION

Advanced features | 340

Returning TEXT/BYTE values from functions

When returning a TEXT or BYTE value from a function, the locator is pushed in on the stack. Storage
information of the TEXT/BYTE is defined in the locator structure, therefore you can define the storage of the
large object variable in a function, initialize the object with a value, and return it.

MAIN
 DEFINE arr DYNAMIC ARRAY OF INTEGER
 LET arr = create_array(10)
 DISPLAY arr.getLength()
END MAIN

FUNCTION create_array(n)
 DEFINE n, i INTEGER
 DEFINE arr DYNAMIC ARRAY OF INTEGER
 FOR i=1 TO n
 LET arr[i] = i
 END FOR
 RETURN arr
END FUNCTION

Implicit data type conversion on the stack

When a value or a reference is popped from the stack, implicit data conversion takes place. This means,
for example, that you can pass a string value to a function that defines the receiving variable as a numeric
data type; no compilation error will occur, but you can get a runtime error if the string cannot be converted
to a numeric. The same principle applies to values returned from functions, since the stack is also used in
this case.

MAIN
 DEFINE s STRING
 LET s = "123"
 CALL display_integer(s) -- Will be accepted
 LET s = "abc"
 CALL display_integer(s) -- Will fail with conversion error
END MAIN

FUNCTION display_integer(x)
 DEFINE x INTEGER
 DISPLAY x
END FUNCTION

Exceptions
Describes exception (error) handling in the programs.

• Understanding exceptions on page 341
• Exception classes on page 341
• Exception actions on page 341
• WHENEVER instruction on page 342
• TRY - CATCH block on page 344
• Tracing exceptions on page 345
• Default exception handling on page 346
• Non-trappable errors on page 346
• Examples on page 346

Advanced features | 341

Understanding exceptions
Exceptions are abnormal runtime events that can be trapped for control.

If an instruction executes abnormally, the runtime system throws exceptions that can be handled by the
program.

Specific exception actions can be taken based on the class of the exception.

Runtime errors (i.e. exceptions) can be trapped by a WHENEVER exception handler or by a TRY/CATCH
block. Note that some specific errors cannot be trapped.

A Genero exception is identified by its number and has a description. For a complete list of BDL errors, see
Genero BDL errors on page 2297.

Exception handlers are typically used to detect database errors when executing SQL statement. For more
details, see SQL execution diagnostics on page 398

Exception classes
Exception classes indirectly define the exception type.

The default action can be changed by specifying the exception class in the WHENEVER instruction.

Table 127: Exception classes

Class Error reason Default Action

ERROR (or SQLERROR)
Language or SQL statement
error.

STOP

ANY ERROR (or ANY
SQLERROR)

Language, SQL statement and
expression error.

CONTINUE (1)

NOT FOUND
SQL statements returning status
NOTFOUND.

CONTINUE

WARNING
SQL statements setting
SQLCA.SQLAWARN flags.

CONTINUE

For example, the following WHENEVER instruction defines the behavior for the ANY ERROR exception class:

WHENEVER ANY ERROR CONTINUE

Exception actions
Exception actions define the type of action to be taken when an exception occurs.

There are five exception actions that can be executed if an exception is raised:

STOP The program is immediately terminated. A message
is displayed to the standard error with the location
of the related statement, the error number, and the
details of the exception.

CONTINUE The program continues normally. The exception
is ignored, but can be checked by testing the
STATUSregister, or the SQLCA.SQLCODE register
for SQL errors.

CALL exception-function The function exception-function is called by the
runtime system. The function can be defined in any
module, and must have zero parameters and zero

Advanced features | 342

return values. The STATUS variable will be set to
the corresponding error number.

GOTO exception-label The program execution continues at the label
identified by exception-label, as if a GOTO instruction
was issued after trapping the exception.

RAISE This statement instructs the runtime system that the
exception must propagated to the calling function.

Important: Note that WHENEVER[ANY]
ERROR RAISE is not supported in a
REPORT routine.

WHENEVER instruction
Use the WHENEVER instruction to define how exceptions must be handled for the rest of the module.

Syntax

WHENEVER exception-class
 exception-action

where exception-class is one of:

{ [ANY] ERROR
| [ANY] SQLERROR
| NOT FOUND
| WARNING
}

and exception-action is one of:

{ CONTINUE
| STOP
| CALL function
| RAISE
| GOTO label
}

1. function can be any function name defined in the program.
2. label must be a label defined in the current program block (main, function or report routine).

Usage

The WHENEVER instruction defines the exception handling by associating an exception class with an
exception action.

Important: The scope of a WHENEVER instruction is similar to a C preprocessor macro: It is local
to the module defines the error handling for the rest of the module, unless a new WHENEVER
instruction is encountered by the compiler, or a TRY/CATCH block is used.

This code example shows a typical WHENEVER instruction usage:

WHENEVER ERROR CONTINUE
DROP TABLE mytable -- SQL error will be ignored
CREATE TABLE mytable (k INT, c VARCHAR(20))
WHENEVER ERROR STOP
IF SQLCA.SQLCODE != 0 THEN
 ERROR "Could not create the table..."

Advanced features | 343

END IF

Exception classes ERROR and SQLERROR are synonyms (compatibility issue). The previous example could
have used WHENEVER SQLERROR instead of WHENEVER ERROR.

Actions for classes ERROR, WARNING and NOT FOUND can be set independently:

WHENEVER ERROR STOP
WHENEVER WARNING CONTINUE
WHENEVER NOT FOUND GOTO not_found_handler
...

When using the WHENEVER ... CALL function instruction, the program flow will go to the specified
function and the return to the code block where the exception occured:

MAIN
 DEFINE x INTEGER
 WHENEVER ANY ERROR CALL error_handler
 -- WHENEVER handler takes effect
 LET x = 1/0
 DISPLAY "Back in MAIN..."
END MAIN

FUNCTION error_handler()
 DISPLAY "error_handler: ", STATUS
END FUNCTION

-- output:

error_handler: -1202
Back in MAIN...

Note: In a WHENEVER ... CALL instruction, you do not handle to specify braces after the function
name.

A TRY/CATCH blocks takes precedence over the last WHENEVER instruction, see the following example:

MAIN
 DEFINE x INTEGER
 WHENEVER ANY ERROR CONTINUE
 -- WHENEVER handler takes effect
 LET x = 1/0
 DISPLAY "WHENEVER: ", STATUS
 -- WHENEVER handler is hidden by TRY/CATCH block
 TRY
 LET x = 1/0
 CATCH
 DISPLAY "CATCH : ", STATUS
 END TRY
 -- WHENEVER handler takes again effect
 CALL func()
END MAIN

FUNCTION func()
 DEFINE x INTEGER
 LET x = 1/0
 DISPLAY "WHENEVER: ", STATUS
END FUNCTION

-- Output:

WHENEVER: -1202
CATCH : -1202

Advanced features | 344

WHENEVER: -1202

The RAISE option can be used to propagate exceptions to the caller, which typically traps the error in a
TRY/CATCH block:

-- main.4gl
IMPORT FGL myutils
MAIN
 TRY
 -- Pass a NULL form name to get error -1110
 CALL mutils.open_form(NULL)
 CATCH
 DISPLAY "Error: ", status
 END TRY
END MAIN

-- myutils.4gl
FUNCTION open_form(fn)
 DEFINE fn STRING
 WHENEVER ERROR RAISE -- Propagate exceptions to caller
 OPEN FORM f1 FROM fn
END FUNCTION

Important: WHENEVER [ANY] ERROR RAISE is not supported in a REPORT routine.

TRY - CATCH block
Use TRY / CATCH blocks to trap runtime exceptions in a delimited code block.

Syntax:

TRY
 instruction
 [...]
CATCH
 instruction
 [...]
END TRY

Usage:

Any language instruction in the TRY block will be executed until an exception is thrown. After an exception
the program execution continues in the CATCH block. If no CATCH block is provided, the execution
continues after END TRY.

If no exception is raised by the statements between the TRY and CATCH keywords, the instructions in the
CATCH section are ignored and the program flow continues after END TRY.

This code example shows a TRY block executing an SQL statement:

TRY
 SELECT COUNT(*) INTO num_cust FROM customers WHERE ord_date <= max_date
CATCH
 ERROR "Error caught during SQL statement execution:", SQLCA.SQLCODE
END TRY

A TRY block be compared with WHENEVER ANY ERROR GOTO. Here is the equivalent of the previous code
example:

WHENEVER ANY ERROR GOTO catch_error

Advanced features | 345

 SELECT COUNT(*) INTO num_cust FROM customers WHERE ord_date <= max_date
 GOTO no_error
LABEL catch_error:
WHENEVER ERROR STOP
 ERROR "Error caught during SQL statement execution:", SQLCA.SQLCODE
LABEL no_error

The TRY statement can be nested in other TRY statements. In this example, the instruction in line #5 will be
executed in case of SQL error:

TRY
 TRY
 SELECT COUNT(*) INTO num_cust FROM customers
 CATCH
 ERROR "Try block 2: ", SQLCA.SQLCODE
 END TRY
CATCH
 ERROR "Try block 1: ", SQLCA.SQLCODE
END TRY

The WHENEVER ERROR RAISE instruction can be used module-wide to define the behavior when
an exception occurs in a function that is called from a TRY / CATCH block. If an exception occurs in a
statement after the WHENEVER ERROR RAISE instruction, the program flow returns from the function and
raises the exception as if it had occurred in the code of the caller. If the exception in thrown in the MAIN
block, the program stops because the exception cannot be processed by a caller. In this example, the
instruction in line #5 will be executed if an exception occurs in the cust_report() function:

MAIN
 TRY
 CALL cust_report()
 CATCH
 ERROR "An error occurred during report execution: ", STATUS
 END TRY
END MAIN

FUNCTION cust_report()
 WHENEVER ERROR RAISE
 START REPORT cust_rep ...
 ...
END FUNCTION

Important: It is not possible to set a debugger break point at TRY, CATCH or END TRY: The TRY
statement is a pseudo statement, the compiler does not generate p-code for this statement.

Tracing exceptions
Exception can be logged in a file when using the STARTLOG() function.

Exceptions will be automatically logged in a file, if all the following conditions are true:

• The STARTLOG function has been previously called to specify the name of the exception logging file.
• The exception action is set to CALL, GOTO or STOP. Exceptions are not logged when the action is

CONTINUE or RAISE.
• The exception class is an ERROR, ANY ERROR or WARNING. NOT FOUND exceptions cannot be logged.

In other words, errors will not be logged in the case of WHENEVER { [ANY] ERROR | WARNING }
CONTINUE, or when controlled by a TRY/CATCH block.

Each log entry contains:

• The system-time
• The location of the related instruction (source-file, line)

Advanced features | 346

• The error-number
• The text of the error message, giving human-readable details for the exception

Default exception handling
By default, WHENEVER ANY ERROR action is to CONTINUE the program flow.

You can force the runtime system to execute the action defined with WHENEVER ERROR exception class
with the following FGLPROFILE entry:

fglrun.mapAnyErrorToError = true

When this entry is set to true, ET_EXPRESSION expression errors such as a division by zero will be
trapped and execute the action defined by the last WHENEVER ERROR instruction, the default being STOP
the program with error display.

-- FGLPROFILE env var is defined to file with:
-- fglrun.mapAnyErrorToError = true

MAIN
 DEFINE x INT
 WHENEVER ERROR CALL my_error_handler
 LET x = 1 / 0 -- error handler will be called here
 DISPLAY "It continues...."
END MAIN

FUNCTION my_error_handler()
 DISPLAY "Handler: ", STATUS
END FUNCTION

Non-trappable errors
Some specific Genero runtime errors are not trappable.

If a non-trappable error occurs, neither WHENEVER instructions, nor TRY/CATCH blocks can trap the
error: The runtime system will display the error message to the standard error stream, file an error log
record if STARTLOG was previously called, and the program is stopped.

Non-trappable errors are typically fatal errors that generally deny further program execution. For example,
the errors -1320, -1328 cannot be trapped.

Examples

Example 1: Defining a error handler function

This code example defines a WHENEVER ERROR handler function called my_error_handler. After
connecting to the database, a SELECT statements tries to fetch a row from a table that does not exist, and
raises SQL error -217 when connected to Informix®:

MAIN
 WHENEVER ERROR CALL my_error_handler
 DATABASE stores
 SELECT dummy FROM systables WHERE tabid=1
END MAIN

FUNCTION my_error_handler()
 DISPLAY "Error:", STATUS
 EXIT PROGRAM 1
END FUNCTION

Advanced features | 347

Program output:

Error: -217

Example 2: SQL error handling with WHENEVER

This code shows a typical SQL error handling block. It uses WHENEVER ERROR CONTINUE before
executing SQL statements, tests the SQLCA.SQLCODE register for errors after each SQL instruction, and
resets the default exception handler with WHENEVER ERROR STOP after the set of SQL commands to be
controlled:

MAIN
 DEFINE
 tabname VARCHAR(50),
 sqlstmt STRING,
 rowcount INTEGER

 # In the DATABASE statement, no error should occur...
 DATABASE stores

 # But next SELECT may fail, if the user enters an invalid table name.
 WHENEVER ERROR CONTINUE
 PROMPT "Enter a table name:" FOR tabname
 LET sqlstmt = "SELECT COUNT(*) FROM " || tabname
 PREPARE s FROM sqlstmt
 IF sqlca.sqlcode THEN
 DISPLAY "SQL Error occurred:", sqlca.sqlcode
 EXIT PROGRAM 1
 END IF
 EXECUTE s INTO rowcount
 IF sqlca.sqlcode THEN
 DISPLAY "SQL Error occurred:", sqlca.sqlcode
 EXIT PROGRAM 1
 END IF
 WHENEVER ERROR STOP

 ... (more instructions, stopping the program in case of error)

END MAIN

Program output in case of invalid table name:

SQL Error occurred: -217

Example 3: Typical TRY / CATCH block

This example uses a TRY/CATCH block to trap errors. In this case, we try to connect to an invalid
database, which will raise an SQL error and make the program flow go to the line after the CATCH
statement:

MAIN
 TRY
 DATABASE invalid_database_name
 DISPLAY "Will not be displayed"
 CATCH
 DISPLAY "Exception caught, SQL error: ", SQLCA.SQLCODE
 END TRY
END MAIN

Advanced features | 348

Program output (with Informix®):

Exception caught, SQL error: -329

Example 4: TRY / CATCH in conjuction with WHENEVER

This code illustrates the fact that a TRY/CATCH block can be used in conjunction with a WHENEVER
instruction: The program first executes a WHENEVER ANY ERROR to define an error handler named foo
and later it uses a TRY/CATCH block to trap expression errors. In this example, we intentionally force a
division by zero. After the TRY/CATCH block, we force another division by zero error, which will call the foo
error handler:

MAIN
 DEFINE i INTEGER
 WHENEVER ANY ERROR CALL foo
 TRY
 DISPLAY "Next exception should be handled by the catch statement"
 LET i = i / 0
 CATCH
 DISPLAY "Exception caught, status: ", STATUS
 END TRY
 -- Previous error handler is restored after the TRY - CATCH block
 LET status = 0
 DISPLAY "Next exception should be handled by the foo function"
 LET i = i / 0
END MAIN

FUNCTION foo()
 DISPLAY "Function foo called, status: ", STATUS
END FUNCTION

Program output:

Next exception should be handled by the catch statement
Exception caught, status: -1202
Next exception should be handled by the foo function
Function foo called, status: -1202

Example 5: WHENEVER RAISE expection propagation

This example shows the usage of WHENEVER ... RAISE to propagate a potential exception to the caller.
First the program defines the foo function as exception handler with WHENEVER ANY ERROR CALL foo,
then it calls the do_exception function, which instructs the runtime system to propagate a potential error to
the caller. As result, the division by zero in line #13 will be caught by the error handler defined in the MAIN
block and call the foo function:

MAIN
 DEFINE i INTEGER
 WHENEVER ANY ERROR CALL foo
 DISPLAY "Next function call will generate an exception"
 DISPLAY do_exception(100, 0)
 WHENEVER ANY ERROR STOP -- reset default handler for rest of program
 ...
END MAIN

FUNCTION do_exception(a, b)
 DEFINE a, b INTEGER
 WHENEVER ANY ERROR RAISE
 RETURN a / b
END FUNCTION

Advanced features | 349

FUNCTION foo()
 DISPLAY "Exception caught, status: ", STATUS
END FUNCTION

Program output:

Next function call will generate an exception
Exception caught, status: -1202

OOP support
Describes Object Oriented Programming basics in the language.

• Understanding classes and objects on page 349
• DEFINE ... package.class on page 349
• Distinguish class and object methods on page 349
• Working with objects on page 350
• What class packages exist? on page 351

Understanding classes and objects
The Genero language supports basic Object Oriented Programming (OOP) concepts.

Classes are grouped into packages which are: a) build in and directly usable, b) available as libraries which
need to be imported with the IMPORT instruction.

It is not possible to define classes with the language.

DEFINE ... package.class
Object reference variables allow to manipulate class instances.

Syntax:

DEFINE object package.class

1. object is the variable that references the object.
2. package is the name of the package the class comes from.
3. class is the name of the class.

Distinguish class and object methods
Class methods can be invoked from the class, while object methods can only be invoked from the variable
referencing the object.

Methods can be invoked like regular functions, by passing parameters and/or returning values, and can be
used in expressions when they return a scalar value.

Class methods

Class methods are called by using the class identifier as prefix, with the period as separator. The class
identifier includes the package name and class name.

package.classname.method(parameter [,...])

For example, to call the refresh() method of the Interface class, which is part of the ui package:

CALL ui.Interface.refresh()

Advanced features | 350

Object methods

Object methods are called through the variable referencing the object. To use object methods, the object
must exist. Call the object methods by using the object variable as a prefix, with a period as the separator.

object.method(parameter [,...])

For example, to call the setFieldActive() method of an object of the Dialog class, which is part of
the ui package:

DEFINE d ui.Dialog
LET d = ui.Dialog.getCurrent()
CALL d.setFieldActive("cust_addr", FALSE)

Working with objects
This topic introduces to basic object usage in Genero BDL.

In order to use an object in your program:

1. define an object variable using the class identifier.
2. instantiate the object; this is usually done by invoking a class method.
3. call object methods to manipulate the created object.

DEFINE n om.DomDocument, b DomNode
LET n = om.DomDocument.create("Stock")
LET b = n.getDocumentElement()

The object n is instantiated using the create() class method of the DomDocument class. The object b is
instantiated using the getDocumentElement() object method of the DomDocument class. This method
returns the DomNode object that is the root node of the DomDocument object n.

The object variable only contains the reference to the object. For example, when passed to a function, only
the reference to the object is copied onto the stack.

You do not have to destroy objects. This is done automatically by the runtime system for you, based on a
reference counter.

MAIN
 DEFINE d om.DomDocument
 LET d = om.DomDocument.create("Stock") -- Reference counter = 1
END MAIN -- d is removed, reference counter = 0 => object is destroyed.

You can pass object variables to functions or return them from functions. Objects are passed by reference
to functions. In this example, the function creates the object and returns its reference on the stack:

FUNCTION createStockDomDocument()
 DEFINE d om.DomDocument
 LET d = om.DomDocument.create("Stock") -- Reference counter = 1
 RETURN d
END FUNCTION -- Reference counter is still 1 because d is on the stack

Another part of the program can get the result of that function and pass it as a parameter to another
function.

Example

MAIN
 DEFINE x om.DomDocument
 LET x = createStockDomDocument()
 CALL writeStockDomDocument(x)

Advanced features | 351

END MAIN

FUNCTION createStockDomDocument()
 DEFINE d om.DomDocument
 LET d = om.DomDocument.create("Stock")
 RETURN d
END FUNCTION

FUNCTION writeStockDomDocument(d)
 DEFINE d om.DomDocument
 DEFINE r om.DomNode
 LET r = d.getDocumentElement()
 CALL r.writeXml("Stock.xml")
END FUNCTION

What class packages exist?
A set of utility packages including useful classes are part of the distribution.

Built-in packages such as ui, om and base, are part of the runtime system and can be referenced directly.
Extension packages such as util, os, com and xml need to be loaded explicitly with the IMPORT
instruction, at the beginning of program modules.

Recent versions of the language support Java™ classes. Note however that using Java™ will create a
Java™ Virtual Machine (JVM) that will be part of the runtime system process.

XML support
Introduces to DOM and SAX standards and describes the XML utility classes built-in the language.

These classes are useful to perform basic XML processing and manipulate the abstract user interface tree.

Use the full-featured XML classes provided in the web services extension for other needs.

• DOM and SAX standards on page 351
• DOM and SAX built-in classes on page 351
• Limitations of XML built-in classes on page 352
• Exception handling with XML classes on page 352
• Controlling the user interface with XML classes on page 352

DOM and SAX standards
DOM and SAX are both programming interfaces that can work with XML.

The DOM (Document Object Model) is a programming interface specification being developed by the
World Wide Web Consortium (W3C) that lets a programmer create and modify HTML pages and XML
documents as full-fledged program objects. DOM is a full-fledged object-oriented, complex but complete
API, providing methods to manipulate the full XML document as a whole. DOM is designed for small XML
trees manipulation.

The SAX (Simple API for XML) is a programming interface for XML, simpler than DOM. SAX is event-
driven, streamed-data based, and designed for large trees.

DOM and SAX built-in classes
The DOM and SAX APIs both contain a set of built-in classes.

The DOM API is composed of:

http://www.w3.org/DOM/
http://www.w3.org
http://www.w3.org/MarkUp/
http://www.w3.org/XML/
http://sax.sourceforge.net/

Advanced features | 352

• The om.DomDocument class, that defines the interface to a DOM document. Instances of this class can
be used to identify and manipulate an XML tree. DomNode object manipulation methods are provided
by this class.

• The om.DomNode class, that defines the interface to an DOM node. Instances of this class can be
used to identify and manipulate a branch of an XML tree. Child nodes and node attributes management
methods are provided by this class.

• The om.NodeList class, to handle a list of DomNode objects.

The SAX API is composed of:

• The om.SaxAttributes class represents a set of element attributes. It is used with an
om.XmlReader or an om.XmlWriter object.

• The om.XmlReader class, that is defined to read XML. The XML document processing is based on
SAX events.

• The om.XmlWriter class, that is defined to write XML. The XML document processing is based on
SAX events.

• The om.SaxDocumentHandler class, which provides an interface to implement a SAX driver using
functions defined in a .4gl module loaded dynamically.

Limitations of XML built-in classes
The built-in XML classes are provided for convenience, to help you manipulate XML content easily without
loading a complete external XML library such as Java™ XML classes or a C-based XML libraries.

The features of these built-in classes are limited to basic XML usage. For example, there is no DTD / XML
Schema validation done; you can create the same attribute twice or set an invalid attribute value. You must
take care to follow the definition of the XML document when using these classes.

For a complete XML support, use the full-featured XML classes provided in the web services extension.

Exception handling with XML classes
Errors can occur while using XML built-in classes.

For example, calling methods of a SAX handler in an invalid order raises the runtime error -8004.

By default, the program stops in case of exception. XML errors can be trapped with the WHENEVER ERROR
or TRY/CATCH exception handlers of Genero. If an error occurs during a method call of an XML class, the
runtime system sets the STATUS variable.

This code example shows the trapping of XML classes errors.

MAIN
 DEFINE w om.SaxDocumentHandler
 LET w = om.SaxDocumentHandler.createFileWriter("sample.xml")
 TRY
 CALL w.endDocument()
 CATCH
 DISPLAY "ERROR: ", STATUS
 END TRY
END

Controlling the user interface with XML classes
The runtime system represents the user interface of a program with a DOM tree. User interface elements
can be manipulated with the DOM and SAX built-in classes.

However, you must pay attention when modifying the AUI tree directly through the use of these classes.
Invalid node or attribute creation can lead to unpredictable results.

Advanced features | 353

Globals
Global variables can be shared among all modules of a program.

• Understanding global blocks on page 353
• GLOBALS on page 353
• Rules for globals usage on page 353
• Database schema in globals on page 354
• Content of a globals file on page 354
• Examples on page 354

Understanding global blocks
Global symbols can be defined with the GLOBALS instruction

The GLOBALS instruction can be used to declare variables, constants and types for the whole program.

Important: Defining global elements shared by all modules of a program is an old programming
concept. To increase code re-usability and readability, avoid global elements in your programs. Use
modular concepts instead, by defining PUBLIC variables, constants and types in modules that will
be imported into other modules with the IMPORT FGL instruction.

GLOBALS
The GLOBALS / END GLOBALS block and the GLOBALS instruction.

Syntax 1: Global block declaration

GLOBALS
 declaration-statement
 [,...]
END GLOBALS

1. declaration-statement is a variable, constant or type declaration.

Syntax 2: Importing definitions from a globals file

GLOBALS "filename"

1. filename is the name of a file containing the definition of globals.
2. Use this syntax to include global declarations in the current module.

Rules for globals usage
Follow the rules described in this topic in order to use globals properly.

In order to extend the scope of variables, constants or user types to the whole program, define a module
containing a GLOBALS ... END GLOBALS block and including this global module with the GLOBALS
"filename" statement in other modules.

The filename must contain the .4gl suffix. It can be a relative or an absolute path. To specify a path, the
slash (/) directory separator can be used for UNIX™ and Windows™ platforms.

If you modify the globals file, you must recompile all the modules that include the file.

If a local element has the same name as another variable that you declare in the GLOBALS statement, only
the local variable is visible within its scope of reference.

You can declare several GLOBALS .. END GLOBALS blocks in the same module.

A GLOBALS file must not contain any executable statement.

Advanced features | 354

Do not write a declaration statement outside a GLOBALS ... END GLOBALS block in a GLOBALS file.

You do not need to compile the source file containing the GLOBALS block. However, it is recommended to
compile the globals file to detect errors.

You can declare several GLOBALS "filename" instructions in the same module.

Although you can include multiple GLOBALS ... END GLOBALS statements in the same application, do
not declare the same identifier within more than oneGLOBALS declaration. Even if several declarations of a
global elements defined in multiple places are identical, declaring any global element more than once can
result in compilation errors or unpredictable runtime behavior.

A GLOBALS block can hold GLOBALS "filename" instructions. In such case, the specified files will be
included recursively.

Using global elements is not recommended, prefer to export module elements with the PUBLIC keyword,
and include the module into other modules with the IMPORT FGL instruction.

Database schema in globals
Globals files can define the database schema to be used by the compiler to resolve DEFINE ... LIKE
statements.

The schema specification must appear before the GLOBALS keyword starting the globals block.

The schema specification is propagated to the modules including the globals file defining the database
schema. These modules can use DEFINE ... LIKE without an explicit SCHEMA instruction.

Further, when using the DATABASE instruction instead of SCHEMA, if the module including the globals
contains the MAIN block, the DATABASE specification of the globals file will be propagated and result in an
implicit database connection at runtime.

Example

SCHEMA stores
GLOBALS
 DEFINE cust_rec LIKE customer.*
 ...
END GLOBALS

Content of a globals file
A globals file should only contain a GLOBALS ... END GLOBALS block.

Because the GLOBALS block can also be defined in regular modules, it is possible to include a source
containing more than a GLOBALS block. When including such module, the sections before and after the
GLOBALS block are ignored by the compiler. The source defining the global elements can be compiled
individually.

For example, it is legal to define a module A with a GLOBALS ... END GLOBALS block, followed by
function definitions. This module can be compiled and functions will be taken into account. Module A can
then be included in module B with a GLOBALS "filename" instruction, and when compiling module
B the function definitions of the included module A will be ignored. IMPORT instructions before the a
GLOBALS ... END GLOBALS block will also be ignored in such case.

Examples

Example 1: Multiple GLOBALS file

Module "labels.4gl": This module defines the text that should be displayed on the screen

GLOBALS

Advanced features | 355

 CONSTANT g_lbl_val = "Index:"
 CONSTANT g_lbl_idx = "Value:"
END GLOBALS

Module "globals.4gl": Declares a global array and a constant containing its size

GLOBALS "labels.4gl" -- this statement could be line 2 of main.4gl

GLOBALS
 DEFINE g_idx ARRAY[100] OF CHAR(10)
 CONSTANT g_idxsize = 100
END GLOBALS

Module "database.4gl": This module could be dedicated to database access

GLOBALS "globals.4gl"

FUNCTION get_id()
 DEFINE li INTEGER
 FOR li = 1 TO g_idxsize -- this could be a FOREACH statement
 LET g_idx[li] = g_idxsize - li
 END FOR
END FUNCTION

Module "main.4gl": Fill in the global array and display the result

GLOBALS "globals.4gl"

MAIN
 DISPLAY "Initializing constant values for this application..."
 DISPLAY "Filling the data from function get_idx in module database.4gl..."
 CALL get_id()
 DISPLAY "Retrieving a few values from g_idx"
 CALL display_data()
END MAIN

FUNCTION display_data()
 DEFINE li INTEGER
 LET li = 1
 WHILE li <= 10 AND li <= g_idxsize
 DISPLAY g_lbl_idx CLIPPED || li || " " || g_lbl_val CLIPPED ||
 g_idx[li]
 LET li = li + 1
 END WHILE
END FUNCTION

Database schema
Defines database table structures with column type information to be reused in program variable
definitions.

• Understanding database schemas on page 356
• SCHEMA on page 356
• Structure of database schema files on page 357
• Database schema extractor options on page 364

Advanced features | 356

Understanding database schemas
Database schemas hold the definition of the database tables and columns.

In program sources or form specification files, you must specify the database schema file with the SCHEMA
instruction. When the database schema is specified, you can define program variables by referencing the
database table or column name. The program variables will get the type of the database column as defined
in the schema file.

Note: To improve compilation time, the fglcomp compiler will automatically generate a .42d
index file from the .sch schema file, in the same directory as the .sch file. When the .sch file
changes, the .42d index file is re-generated, and can be safely removed, if you want to cleanup
your projet.

The FGLDBPATH environment variable can be used to define a list of directories where the compiler can
find database schema files.

The schema files contain the column data types (.sch file), validation rules (.val file), and tty display
attributes (.att) for columns.

Note: The .val and .att files are supported for backward compatibility and should not be used in
new developments.

The data types, display attributes, and validation rules are taken from the database schema files during
compilation. Make sure that the schema files of the development database correspond to the production
database, otherwise the elements defined in the compiled version of your modules and forms will not
match the table structures of the production database.

Program variables can be defined with the LIKE keyword to get the data type defined in the schema files:

SCHEMA stores
MAIN
 DEFINE custrec RECORD LIKE customer.*
 DEFINE name LIKE customer.cust_name
 ...
END MAIN

The database schema files are generated with the fgldbsch tool from the system tables of an existing
database.

Note: It is strongly recommended that you regenerate the schema files when upgrading to a new
compiler version. Bug fixes and new data type support can required schema file changes. If the
schema file holds data type codes that are unknown to the current version, the compilers will raise
the error -6634.

The fgldbsch must connect to the database server, with a db user allowed to query the database system
tables (for example, INFORMATION_SCHEMA in a MySQL database).

Note: For some type of databases, the table owner is mandatory to extract schema information.
If you do not specify the -ow option in the comment line, fgldbsch will take the -un user name as
default. If you do not use the -un/-up options because you are using indirect database connection
with FGLPROFILE settings to identify the database user, or if the database user is authenticated by
the operating system, the fgldbsch tool will try to identify the current database user after connection
and use this name as table owner to extract the schema.

SCHEMA
Identifies the database schema files to be used for compilation.

Syntax 1

SCHEMA dbname

Advanced features | 357

Syntax 2

[DESCRIBE] DATABASE dbname

1. dbname identifies the name of the database schema file to be used.

Usage

The SCHEMA dbname instruction defines the database schema files to be used for compilation, where
dbname identifies the name of the database schema file to be used.

[DESCRIBE] DATABASE is supported for backward compatibility, use the SCHEMA instruction instead. The
[DESCRIBE] DATABASE defines the compilation database schema and the default connection when the
program starts, while SCHEMA defines only the compilation database schema.

The dbname database name must be expressed explicitly; it cannot be a variable as in a regular
DATABASE instruction inside a program block.

Use the SCHEMA instruction outside any program block, before a variable declaration with DEFINE LIKE
instructions. SCHEMA must precede any program block in each module that includes a DEFINE...LIKE
declaration or INITIALIZE...LIKE and VALIDATE...LIKE statements. It must also precede any
DEFINE...LIKE declaration of module variables.

Database schema information such as data types for DEFINE...LIKE are taken from the schema files
during compilation. Make sure that the database schema file of the development database corresponds
to the production database; otherwise the program variables defined in the p-code modules will not match
the table structures of the production database.

The dbname can be written with different syntaxes:

 database
| database @ server
| "string" -- for ex: "//server/database"

Such database specification is IBM® Informix® specific and should be avoided. Use simple database
identifiers only, in lowercase.

When using a simple identifier for the database name, the compiler converts the name to lowercase before
searching the schema file. However, if a double quoted string is used as database name, the name will be
used as is to find the schema file.

With the SCHEMA instruction, the name of the database schema during development can be different from
the name of the database source used at runtime.

Note: To handle uppercase characters in the database name you must quote the name: SCHEMA
"myDatabase"

Example

SCHEMA dev_db -- Compilation database schema
DEFINE rec RECORD LIKE customer.*
MAIN
 DATABASE prod_db -- Runtime database specification
 SELECT * INTO rec.* FROM customer WHERE custno=1
END MAIN

Structure of database schema files
A database schema is composed by three files (.sch, .val, .att)

• Column Definition File (.sch) on page 358

Advanced features | 358

• Column Validation File (.val) on page 361
• Column Video Attributes File (.att) on page 363

Column Definition File (.sch)
The .sch database schema file contains the data types of database table columns.

Description

The data type of program variables or form fields used to hold data of a given database column must
match the data type used in the database. The definition of these elements is simplified by centralizing the
information in external .sch files, which contain column data types.

In form files, you can directly specify the table and column name in the field definition in the ATTRIBUTES
section of forms.

In programs, you can define variables with the data type of a database column by using the LIKE keyword.

As column data types are extracted from the database system tables, you may get different results with
different database servers. For example, Informix® provides the DATE data type to store simple dates
in year, month, and day format (= DATE FGL type), while Oracle stores dates as year to second (=
DATETIME YEAR TO SECOND FGL type).

The table describes the fields you will find in a row of the .sch file:

Table 128: Structure of the .sch file

Pos Type Description

1 STRING Database table name.

2 STRING Column name.

3 SMALLINT Coded column data type. If the
column is NOT NULL, you must
add 256 to the value.

4 SMALLINT Coded data type length.

5 SMALLINT Ordinal position of the column in
the table.

Next table shows the data types and their corresponding type code that can be present in a .sch schema
file:

Table 129: Database Schema file (.sch) data type codes

Data type name Data type
code (field
#3)

Data type length (field #4)

CHAR 0 Maximum number of characters or bytes (see note)

SMALLINT 1 Fixed length of 2

INTEGER 2 Fixed length of 4

FLOAT / DOUBLE
PRECISION

3
Fixed length of 8

SMALLFLOAT / REAL 4 Fixed length of 4

DECIMAL 5 If the decimal is defined with a precision and scale, the
length is computed using this formula:

Advanced features | 359

Data type name Data type
code (field
#3)

Data type length (field #4)

length = (precision * 256) + scale

If the decimal is defined as a floating point decimal (i.e. with
no scale), the length is computed as follows:

length = (precision * 256) + 255

SERIAL 6 Fixed length of 4

DATE 7 Fixed length of 4

MONEY 8 The length is computed using this formula:

length = (precision * 256) + scale

A MONEY cannot be defined with a floating point, is has
always a scale.

Unused 9 N/A

DATETIME 10 For DATETIME types, the length is determined using the
next formula:

length = (digits * 256) + (qual1 * 16)
+ qual2

where digits is the total number of digits used when
displaying the datetime value. For example, a DATETIME
YEAR TO MINUTE (YYYY-MM-DD hh:mm) uses 12 digits.

The qual1 and qual2 elements identify datetime qualifiers
according to this list:

• 0 = YEAR
• 2 = MONTH
• 4 = DAY
• 6 = HOUR
• 8 = MINUTE
• 10 = SECOND
• 11 = FRACTION(1)
• 12 = FRACTION(2)
• 13 = FRACTION(3)
• 14 = FRACTION(4)
• 15 = FRACTION(5)

For example, a DATETIME YEAR TO MINUTE size length
is computed as follows:

(12 * 256) + (0 * 16) + 8 = 3080

BYTE 11 Length of descriptor

TEXT 12 Length of descriptor

VARCHAR 13 Maximum number of characters or bytes (see note)

If the length is positive:

length = (min_space * 256) + max_size

Advanced features | 360

Data type name Data type
code (field
#3)

Data type length (field #4)

If length is negative:

length + 65536 = (min_space * 256) +
max_size

INTERVAL 14 For INTERVAL types, the length is determined using the
next formula:

length = (digits * 256) + (qual1 * 16)
+ qual2

where digits is the total number of digits used when
displaying the interval value. For example, a INTERVAL
HOUR(5) TO FRACTION(3) (hhhhh:mm:ss.fff) uses 12
digits.

The qual1 and qual2 elements identify datetime qualifiers
according to this list:

• 0 = YEAR
• 2 = MONTH
• 4 = DAY
• 6 = HOUR
• 8 = MINUTE
• 10 = SECOND
• 11 = FRACTION(1)
• 12 = FRACTION(2)
• 13 = FRACTION(3)
• 14 = FRACTION(4)
• 15 = FRACTION(5)

For example, a INTERVAL HOUR(5) TO FRACTION(3)
size length is computed as follows:

(12 * 256) + (6 * 16) + 13 = 3181

NCHAR 15 Maximum number of characters or bytes (see note)

NVARCHAR 16 Maximum number of characters or bytes (see note)

INT8 17 Fixed length of 10 (size of int8 structure)

In programs, will be converted to a BIGINT type.

SERIAL8 18 Fixed length of 10 (size of int8 structure)

In programs, will be converted to BIGINT type.

BOOLEAN (SQLBOOL) 45 Boolean type, in the meaning of Informix® front-end
SQLBOOL (sqltype.h)

BIGINT 52 Fixed length of 8 (bytes)

BIGSERIAL 53 Fixed length of 8 (bytes)

VARCHAR2 201 Maximum number of characters

In programs, will be converted to a VARCHAR type.

Advanced features | 361

Data type name Data type
code (field
#3)

Data type length (field #4)

NVARCHAR2 202 Maximum number of characters

In programs, will be converted to a VARCHAR type.

Note: Data type length (field #4) is a SMALLINT value encoding the length or composite length
of the type. For character string types, the unit of the length used to define character program
variables and form fields depends on the length semantics.

Informix® SERIAL types

When the database schema defines SERIAL, BIGSERIAL or SERIAL8 types, form fields referencing the
serial column with get the NOENTRY attribute automatically, except if defined with the TYPE LIKE syntax.

Informix® DISTINCT types

Informix® IDS version 9.x and higher allow you to define DISTINCT types from a base types with the
CREATE DISTINCT TYPE instruction. In the syscolumns table, Informix® identifies distinct types in the
coltype column by adding the 0x0800 bit (2048) to the base type code. For example, a distinct type defined
with the VARCHAR built-in type (i.e. code 13) will be identified with the code 2061 (13 + 2048). Informix®

sets additional bits when the distinct type is based on the LVARCHAR or BOOLEAN opaque types: If the
base type is an LVARCHAR, the type code used in coltype gets the 0x2000 bit set (8192) and when the
base type is BOOLEAN, the type code gets the 0x4000 bit (16384).

When extracting a schema from an Informix® database defining columns with DISTINCT types, the
schema extractor will keep the original type code of the distinct type in the .sch file for columns using
distinct types based on built-in types (with the 0x0800 bit set). Regarding the exception of opaque
types, BOOLEAN-based distinct types get the code 45 (+ 256 if NOT NULL), and LVARCHAR-based
distinct types are mapped to the code 201 (+ 256 if NOT NULL) if the -cv option enables conversion from
LVARCHAR to VARCHAR2.

The fglcomp and fglform compilers understand the distinct type code bit 0x0800, so you can define
program variables with a DEFINE LIKE instruction based on a column that was created with a distinct
Informix® type.

Example

customer^customer_num^258^4^1^
customer^customer_name^256^50^2^
customer^customer_address^0^100^3^
order^order_num^258^4^1^
order^order_custnum^258^4^2^
order^order_date^263^4^3^
order^order_total^261^1538^4^

Column Validation File (.val)
The .val database schema file holds functional and display attributes of database table columns.

Description

The .val file holds default attributes and validation rules for database columns.

Important: The form field attribute definition in the .val file is supported for backward compatibility.
Do not use this feature in new developments.

Advanced features | 362

In form files, the attributes are taken from the .val file as defaults if the corresponding attribute is not
explicitly specified in the field definition of the ATTRIBUTES section. The attributes in the .val file can be
considered as a default configuration for a form field.

In programs, you can validate variable values in accordance with the INCLUDE attribute by using the
VALIDATE instruction.

The .val file can be generated by fgldbsch from the IBM® Informix® specific syscolval table, or can be
edited by an external column attributes editor.

This table describes the structure of the .val file:

Table 130: Structure of the .val file

Pos Type Description

1 STRING Database table name.

2 STRING Column name.

3 STRING Column property name.

4 STRING Column property value.

The supported attribute definitions are:

Table 131: Supported attribute definitions of the .val file

Attribute Name Description

AUTONEXT
Defines the AUTONEXT attribute.

When this attribute is defined, value is YES.

CENTURY
Defines the CENTURY attribute.

The value must be one of: R, C, F, or P.

COLOR

Defines the COLOR attribute.

The value is a color identifier (RED, GREEN,
BLUE, ...)

COMMENTS

Defines the COMMENTS attribute.

The value is a quoted string or Localized String
(%"xxx").

DEFAULT
Defines the DEFAULT attribute.

Number, quoted string or identifier (TODAY).

FORMAT Defines the FORMAT attribute.

Advanced features | 363

Attribute Name Description

The value is a quoted string.

INCLUDE

Defines an include list as the INCLUDE attribute.

Value must be a list: (value [,...]), where
value can be a number, quoted string or identifier
(TODAY).

INVISIBLE
Defines the INVISIBLE attribute.

When this attribute is defined, value is YES.

JUSTIFY

Defines the JUSTIFY attribute.

The value must be one of: LEFT, CENTER or
RIGHT.

PICTURE
Defines the PICTURE attribute.

The value is a quoted string.

SHIFT

Corresponds to the UPSHIFT and DOWNSHIFT
attributes.

Values can be UP or DOWN.

VERIFY
Defines the VERIFY attribute.

When this attribute is defined, value is YES.

Example

customer^customer_name^SHIFT^UP^
customer^customer_name^COMMENTS^"Name of the customer"^
order^order_date^DEFAULT^TODAY^
order^order_date^COMMENTS^"Creation date of the order"^

Column Video Attributes File (.att)
The .att database schema file contains the default video attributes of database table columns.

Description:

The .att file is generated by fgldbsch from the IBM® Informix® specific syscolatt table.

Important: The form field video attributes definition in the .att file is supported for backward
compatibility. Do not use this feature in new developments.

This table describes the structure of the .att file:

Advanced features | 364

Table 132: Structure of the .att file

Pos Type Description

1 STRING Database table name.

2 STRING Column name.

3 SMALLINT
Ordinal number of the attribute
record.

4 STRING COLOR attribute (coded).

5 CHAR(1) INVERSE attribute (y/n).

6 CHAR(1) UNDERLINE attribute (y/n).

7 CHAR(1) BLINK attribute (y/n).

8 CHAR(1) LEFT attribute (y/n).

9 STRING FORMAT attribute.

10 STRING Condition.

Database schema extractor options
The fgldbsch tool extracts the schema description for an existing database.

Schema information is extracted from the database catalog tables. fgldbsch detects the type of the
database server after connection and queries the appropriated system catalog tables.

The database system must be available and the database client environment must be set properly in order
to connect to the database engine and generate the schema files.

Generate the database schema files in the directory when the source code resided or in one of the
directories listed in the FGLDBPATH environment variable.

• Specifying the database source on page 365
• Specifying the database driver on page 365
• Passing database user login and password on page 365
• Data type conversion control on page 365
• Specifying the table owner on page 366
• Force extraction of system tables on page 366
• Specifying the output file name on page 366
• Extracting definition of a single table on page 366
• Controlling the character case on page 366
• Using the verbose mode on page 367

Advanced features | 365

• IBM Informix synonym tables on page 367
• IBM Informix shadow columns on page 367
• Running schema extractor in old mode on page 367

Specifying the database source

Run fgldbsch with the -db dbname option to identify the database source to which to connect. The
dbname and related options can be present in the FGLPROFILE file. Otherwise, related options have to be
provided with the fgldbsch command.

fgldbsch -db test1

Specifying the database driver

The database driver can be specified with the -dv dbdriver option, if the default driver is not
appropriate.

fgldbsch -db test1 -dv dbmora

Passing database user login and password

If the operating system user is not the database user, you can provide a database user name and
password respectively with the -un and -up options.

fgldbsch -db test1 -un scott -up fourjs

Data type conversion control

The fglcomp and fglform compilers expect known language data types (FGL types) in the schema
file. While most data types correspond to IBM® Informix® SQL data types, some databases (including
Informix®) can use specific types that do not map to an FGL type. Therefore, data types in the schema file
are generated from the system catalog tables according to some conversion rules.

Type conversion can be controlled with the -cv option. Each character position of the string passed by this
option represents a line in the conversion table of the corresponding source database. Give a conversion
code for each data type (for example: -cv AABAAAB).

When using X as conversion code, the columns using the corresponding data types will be ignored and not
written to the .sch file. This is particularly useful in the case of auto-generated columns like SQL Server's
uniqueidentifier data type, when using a DEFAULT NEWID() clause.

Run the tool with the -ct option to see all the data type conversion tables, or use the -cx dbtype option
to display the conversion table for a given database type (dbtype must be ifx, ora, db2, msv, pgs, mys, ...).

fgldbsch -cx ifx
...
--
Informix Informix A Informix B
--
1 BOOLEAN BOOLEAN (t=45) CHAR(1)
2 INT8 INT8 DECIMAL(19,0)
3 SERIAL8 SERIAL8 DECIMAL(19,0)
4 LVARCHAR(m) VARCHAR2(m) VARCHAR2(m)
5 BIGINT BIGINT DECIMAL(19,0)
6 BIGSERIAL BIGSERIAL DECIMAL(19,0)
--
(ns) = Not supported in 4gl.
...

fgldbsch -db test1 -cv BAAABB

Advanced features | 366

 123456

In the above example, the -cv option instructs fgldbsch to use the types of the "Informix® A" column for
all original column types except for BOOLEAN, BIGINT and BIGSERIAL, which must be converted to a
VARCHAR2(m) FGL type.

The IBM® Informix® LVARCHAR(m) type can be converted by default to a VARCHAR2(m) pseudo type
(code 201), which will be identified as a VARCHAR(m) by compilers.

In schema files, VARCHAR2(m) (type code 201) is equivalent to VARCHAR(m) (type code 13), without the
255 bytes limitation of the original Informix® VARCHAR type.

Not all native data types can be converted to FGL types. For example, user-defined types or spatial types
are not supported by the language. When a table column with such unsupported data type is found,
fgldbsch stops and displays an error to bring the problem to your eyes. Use the -ie option of fgldbsch to
ignore the database tables having columns with unsupported types. When this option is used, none of the
table columns definition will be written to the schema file.

Specifying the table owner

With some databases, the owner of tables is mandatory to extract a schema, otherwise you could get
multiple definitions of the same table in the .sch schema file if tables with the same name exist in different
database user schemas. To prevent such mistakes, you can specify the schema owner with the -ow
owner option. If this option is not used, fgldbsch will use the database login name passed with the -un
user option. This is usually the case with SQL Server and Sybase, where the owner of tables is "dbo".

fgldbsch -db test1 -un scott -up fourjs -ow dbo

Force extraction of system tables

By default fgldbsch does not generate system table definitions. You may want to use the -st option to
extract schema information of system tables.

fgldbsch -db test1 -st

Specifying the output file name

By default, the generated schema files get the name of the database source specified with the -db option.
If needed, you can force the name of the schema file with the -of name option. Specify the output file
name without the .sch extension. This name will also be used to generate the files containing column
validation rules and column attributes (extracted from IBM® Informix® syscolval and syscolatt tables).

fgldbsch -db test1 -of myschema

Extracting definition of a single table

In some cases, you may just want to extract schema file of new created tables. You can achieve this by
using the -tn tabname option, to extract schema information of a specific table.

fgldbsch -db test1 -tn customers

Controlling the character case

By default, table and column names are converted to lower case letters to enforce compatibility with IBM®

Informix®. You can force lower case, upper case or case-sensitive generation by using the -cl, -cu or -
cc options.

fgldbsch -db test1 -cc

Advanced features | 367

As a general rule, it is strongly recommended to keep table and column names in lowercase, in all areas
(including the objects created in the database entity).

Using the verbose mode

Use the -v option to get verbose output from fgldbsch:

fgldbsch -db test1 -v

Do not base other tools or development procedures on the output format, the output can change in later
versions.

IBM® Informix® synonym tables

When using an IBM® Informix® database, fgldbsch extracts synonyms. By default, only PUBLIC synonyms
are extracted to avoid duplicates in the .sch file when the same name is used by several synonyms by
different owners.

If you want to extract PRIVATE synonyms, you must use the -ow option to specify the owner of the tables
and synonyms.

IBM® Informix® shadow columns

Starting with IBM® Informix® IDS version 11.50.xC1, you can create shadow columns on tables by using
DDL options such as ADD VERCOLS. These columns are visible in the system catalog tables and would
be listed in the column descriptions of the .sch schema file. However, as shadow columns are not part of
the SELECT * list, it is not expected to get these columns in the schema file.

By default, the fgldbsch tool will not extract shadow columns from an IBM® Informix® database. You can
use the -sc option to force the extraction of shadow columns:

fgldbsch -db test1 -sc

Running schema extractor in old mode

The fgldbsch program can be executed in old mode by specifying the -om option as first parameter,
followed by the database source. You can pass the -c and -r options after the database source:

fgldbsch -om test1 -c -r

Use this mode for IBM® Informix® databases only.

The -c option is equivalent to -cv BBBBBBBBB in the default mode: Columns defined with an SQL type
that is not a native Genero type will be converted to an equivalent type (see -cv and -ct options for more
details).

If the -r option is specified, the schema extractor will ignore columns defined with unsupported SQL types.
Unsupported types have no equivalent FGL type to store and handle the value, such as BLOB or CLOB
for example. Understand that unlike the -ie option, which skips the whole table definition, -r will exclude
table columns with unsupported types, but the other columns defined with supported types will be written to
the .sch file. Thus, a record declared with DEFINE RECORD rec LIKE table.* (from a partial schema
definition of a table) cannot be used in a SELECT * INTO rec.* statement, because the number of
columns in the database table is different from the record definition.

Note also that when using the old mode, fgldbsch will extract system catalog tables (informix.sys*) for IBM®

Informix® databases.

Advanced features | 368

Programs
Explains program structure basics and global instructions/registers.

• Structure of a program on page 368
• Structure of a module on page 368
• The MAIN block on page 370
• Importing modules on page 371
• Predefined constants on page 376
• Configuration options on page 378
• Program registers on page 387
• Program execution on page 390

Structure of a program
The structure of a program consists of MAIN and FUNCTION blocks defined in several modules.

The program starts from the MAIN block. The instruction blocks contain statements that are be executed
by the runtime system in the order that they appear in the code. Program blocks cannot be nested, nor any
program block divided among more than one source code module.

Some instructions can include other instructions. Such instructions are called compound statements.
Every compound statement of the language supports the END statement keyword (where statement
is the name of the compound statement), to mark the end of the compound statement construct within
the source code module. Most compound statements also support the EXIT statement keywords, to
transfer control of execution to the statement that follows the END statement keywords. By definition,
every compound statement can contain at least one statement block, a group of one or more consecutive
statements. In the syntax diagram of a compound statement, a statement block always includes this
element.

Structure of a module
A module defines a set of program elements such as functions, report routines, types, constants and
variables.

Syntax

The declaration order of elements defined in a program module is constrained. Define module elements in
the following way:

[compiler-options
| import-statement [...]
| schema-statement
| globals-inclusion
| constant-definition [...]
| type-definition [...]
| variable-definition [...]
]

[MAIN-block]

[dialog-block
| function-block
| report-routine
 [...]]
]

1. compiler-options are described in OPTIONS (Compilation) on page 378.
2. import-statement imports an external module, see Importing modules on page 371.

Advanced features | 369

3. schema-statement defines a database schema for the compilation.
4. globals-inclusion includes a globals file.
5. constant-definition defines constants.
6. type-definition defines user types.
7. variable-definition defines variables.
8. MAIN-block declares the main block of the program.
9. dialog-block declares a declarative dialog.
10.function-block declares a function.
11.report-routine declares a report routine.

Usage

A module defines a set of program elements that can be used by other modules when defined as PUBLIC,
or to be local to the current module when defined as PRIVATE. Program elements are user-defined types,
variables, constants, functions, report routines, and declarative dialogs.

A module can import other modules with the IMPORT FGL instruction. A module can define functions,
reports, module variables, constants and types, as well as declarative dialogs.

Program modules are written as .4gl source files and a compiled to .42m files. Compiled modules (.42m
files) can be linked together to create a program. However, linking is supported for backward compatibility
only. The preferred way is to define module dependencies with the IMPORT FGL instruction. For better
code re-usability, module elements can be shared by each other with by qualifying module variables,
constants, types and function with PRIVATE or PUBLIC keywords. PUBLIC module elements can be
referenced in other modules.

Example

OPTIONS SHORT CIRCUIT
IMPORT FGL cust_data
SCHEMA stores

PRIVATE CONSTANT c_title = "Customer data form"
PUBLIC TYPE t_cust RECORD LIKE customer.*
PRIVATE DEFINE cust_arr DYNAMIC ARRAY OF t_cust

MAIN
 ...
END MAIN

DIALOG cust_dlg()
 INPUT BY NAME cust_rec.*
 ...
 END INPUT
END DIALOG

FUNCTION cust_display()
 ...
END FUNCTION

FUNCTION cust_input()
 ...
END FUNCTION

REPORT cust_rep(row)
 ...
END REPORT

Advanced features | 370

The MAIN block
The MAIN block is the starting point of the program.

Syntax

MAIN
 [define-statement
 | constant-statement
 | type-statement
]
 { [defer-statement]
 | fgl-statement
 | sql-statement
 }
 [...]
END MAIN

1. define-statement defines function arguments and local variables.
2. constant-statement can be used to declare local constants.
3. type-statement can be used to declare local user defined type.
4. defer-statement defines how to handle signals in the program.
5. fgl-statement is any instruction supported by the language.
6. sql-statement is any static SQL instruction supported by the language.

Usage

When the runtime system executes a program, after some initialization, it gives control to the MAIN
program block.

The MAIN block typically consists of a set of interruption handling instructions, runtime configuration
options, database connection and a call to the main function of the program.

Example

IMPORT cust_module

MAIN
 DEFINE uname, upswd STRING

 DEFER INTERRUPT
 DEFER QUIT

 OPTIONS FIELD ORDER FORM,
 INPUT WRAP,
 HELP FILE "myhelp"

 CALL get_login() RETURNING uname, upswd
 WHENEVER ERROR CONTINUE
 CONNECT TO "stores" USER uname USING upswd
 WHENEVER ERROR STOP
 IF SQLCA.SQLCODE < 0 THEN
 DISPLAY "Error: Could not connect to database."
 EXIT PROGRAM 1
 END IF

 CALL cust_module.customer_input()

END MAIN

Advanced features | 371

Importing modules
Use the IMPORT ... instruction to import BDL, C or Java external modules in the current module.

The IMPORT {JAVA|FGL} instruction can be used to declare the usage of an external module. All (public)
symbols of the external module can be referenced in the current module.

The IMPORT {JAVA|FGL} instruction must be the first instruction in the current module. If you specify this
instruction after DEFINE, CONSTANT or GLOBALS, fglcomp will report a syntax error.

The IMPORT {JAVA|FGL} instruction can import a compiled Genero module, a Java™ class or a C
extension library:

• IMPORT FGL modulename: Imports a Genero module implementing functions, reports, types and
variables.

• IMPORT JAVA classname: Imports a Java™ class or class element.
• IMPORT libname: Imports a C extension implementing functions and variables.

Note: The name specified after the IMPORT FGL or IMPORT JAVA instruction is case-sensitive:
Program module (.4gl) or Java™ class must exactly match the file name. However, for backward
compatibility, C extension library names are converted to lowercase by the compiler (therefore, we
recommend you to use lowercase file names for C extensions). A character case mismatch will be
detected on UNIX™ platforms, but not on Windows™ where the file system is not case-sensitive.
Regarding the usage of imported symbols in the rest of the code (i.e. not the IMPORT instruction): C
extensions and Genero symbols are case-insensitive, while Java™ symbols are case-sensitive.

IMPORT C-Extension
The IMPORT instruction imports c extension module elements to be used by the current module.

Syntax

IMPORT filename

1. filename is the identifier (without the file extension) of the C extension module to be imported.

Usage

Using IMPORT libname instructs the compiler and runtime system to use the libname C extension for the
current module.

Important: At runtime, all imported C extension modules are loaded when the program starts.

The name of the module specified after the IMPORT keyword is converted to lowercase by the compiler.
Therefore it is recommended to use lowercase file names only.

The C extension must exist as a shared library (.DLL or .so) and be loadable (environment variables must
be set properly). C extension modules used with the IMPORT instruction do not have to be linked to fglrun:
The runtime system loads dependent C extension modules dynamically.

The FGLLDPATH environment variable specifies the directories to search for the C extension
modules. You may also have to setup the system environment properly (i.e. PATH on Windows™ and
LD_LIBRARY_PATH on UNIX™) if the C extension library depends from other libraries.

By default, the runtime system tries to load a C extension module with the name userextension, if
it exists. This simplifies the migration of existing C extensions; you just need to create a shared library
named userextension.so (or userextension.dll on Windows™), and copy the file to one of the directories
defined in FGLLDPATH.

Advanced features | 372

IMPORT FGL module
The IMPORT FGL instruction imports module symbols.

Syntax

IMPORT FGL modulename

1. modulename is the identifier (without the file extension) of the module to be imported.

Usage

With IMPORT FGL modulename, the symbols of the named .42m module can be referenced in the
current module.

Important: At runtime, the imported modules are only loaded on demand, when the program flow
reaches an instruction that uses an element of the imported module. For example, when calling a
function or when assigning a (public) module variable of the imported module.

The name specified after the IMPORT FGL instruction is case-sensitive.

The imported module symbols that can be referenced are:

• Public functions
• Public constants
• Public types
• Public module variables

The PRIVATE/PUBLIC modifiers can be used to hide / publish symbols to other modules. Functions are by
default public, for backward compatibility. The next example declares a module variable that can be used
by other modules, and a private function to be used only locally:

PUBLIC DEFINE custlist DYNAMIC ARRAY OF RECORD
 id INT,
 name VARCHAR(50),
 address VARCHAR(200)
END RECORD
...
PRIVATE FUNCTION myfunction()
...

When importing modules with the IMPORT FGL instruction, you instruct the fglcomp compiler and fglrun
runtime system to load/check the specified modules, and there is no longer a need to link programs or use
libraries.

With IMPORT FGL, the compiler can check the number of parameters and returning values in functions
calls, and the completion in source code editors is improved as it can suggest all imported symbols.

Imported modules should be compiled before compiling the importing module. The FGLLDPATH
environment variable specifies the directories to search for the .42m modules used by IMPORT FGL.

However, if the 42m file of the imported module is not existing, or is older as the corresponding source file,
fglcomp will automatically compile the imported module. To avoid implicit compilation of imported modules,
use the --implicit=none option of fglcomp. If the .42m file exists but the .4gl source file cannot be
found, fglcomp imports the .42m file as is.

Important: Auto-compilation of imported modules is only supported if the imported module is in the
current directory. Modules located in other directories and found width FGLLDPATH must alredy be
compiled.

No circular references are allowed. For example when module A imports module B, which in turn imports
module A, you cannot compile one of the modules because the 42m file of the imported module is needed.
Thus fglcomp will give error -8403, indicating that the imported module cannot be found:

Advanced features | 373

Module "mod_a.4gl":

IMPORT FGL module_b
FUNCTION func_a()
 CALL func_b()
END FUNCTION

Module "mod_b.4gl":

IMPORT FGL module_a
FUNCTION func_b()
 CALL func_a()
END FUNCTION

Traditional linking is still supported for backward compatibility. To ease migration from traditional linking to
imported modules, you can mix IMPORT FGL usage with fgllink. By default, even when IMPORT FGL is
used, fglcomp does not raise an error if a referenced function is not found in the imported modules. This is
mandatory to compile the 42m file to be linked later with the module defining the missing function. Use the
-W implicit or the --resolve-calls option to check for imported functions.

When the -W implicit option is used and at least one IMPORT FGL is defined in the module, fglcomp
will print warning -8406 for any referenced function that cannot be found in the imported modules. This
option is silently ignored if no IMPORT FGL is used in the module.

To enable full symbol resolution by the compiler, use the --resolve-calls option. This option will force
the compiler to check all function symbols referenced in a module, and raise error -8406, if a symbol could
not be found in the imported modules. This option is typically used in programs that are only using IMPORT
FGL and do not longer use the link phase.

When migrating existing projects using traditional linking, after compiling all the .4gl sources, consider
using the --print-imports option of fglrun to print the IMPORT FGL suggestions for all the modules
specified in the command line. This option will try to resolve all symbols as during linking, but instead of
producing a .42r program, it will list the import instructions to be added in each module, and thus avoid
linking:

$ cat main.4gl
MAIN
 CALL func1()
END MAIN
$ cat mod1.4gl
FUNCTION func1()
 CALL func2()
END FUNCTION
$ cat mod2.4gl
FUNCTION func2()
 CALL func1()
END FUNCTION

$ fglrun --print-imports main.42m mod1.42m mod2.42m
-- in main.4gl
IMPORT FGL mod1

-- in mod1.4gl
IMPORT FGL mod2

-- in mod2.4gl
Cyclic import: IMPORT FGL mod1
caused by CALL func1

If a symbol is defined twice with the same name in two different modules, the symbol must be qualified
by the name of the module. This feature overcomes the traditional 4gl limitation requiring unique function

Advanced features | 374

names within a program. In the next example, both imported modules define the same "init()" function, but
this can be resolved by adding the module name followed by a dot before the function names:

IMPORT FGL orders
IMPORT FGL customers
MAIN
 CALL orders.init()
 CALL customers.init()
 ...
END MAIN

If a symbol is defined twice with the same name in the current and the imported module, an unqualified
symbol will reference the current module symbol. The next example calls the "init()" function with and
without a module qualifier, the second call will reference the local function:

IMPORT FGL orders
MAIN
 CALL orders.init() -- orders module function
 CALL init() -- local function
 ...
END MAIN
FUNCTION init()
 ...
END FUNCTION

Example

Module "account.4gl":

PRIVATE DEFINE current_account VARCHAR(20)

PUBLIC FUNCTION set_account(id)
 DEFINE id VARCHAR(20)
 LET current_account = id
END FUNCTION
... -- File: myutils.4gl
PRIVATE DEFINE initialized BOOLEAN

PUBLIC TYPE t_prog_info RECORD
 name STRING,
 version STRING,
 author STRING
 END RECORD

PUBLIC FUNCTION init()
 LET initialized = TRUE
 ...
END FUNCTION

PUBLIC FUNCTION fini()
 LET initialized = FALSE
 ...
END FUNCTION

Module "myutils.4gl":

PRIVATE DEFINE initialized BOOLEAN

PUBLIC TYPE t_prog_info RECORD
 name STRING,
 version STRING,

Advanced features | 375

 author STRING
 END RECORD

PUBLIC FUNCTION init()
 LET initialized = TRUE
 ...
END FUNCTION

PUBLIC FUNCTION fini()
 LET initialized = FALSE
 ...
END FUNCTION

Module "program.4gl":

IMPORT FGL myutils
IMPORT FGL account
DEFINE filename STRING
DEFINE proginfo t_prog_info -- Type is defined in myutils
MAIN
 LET proginfo.name = "program"
 LET proginfo.version = "0.99"
 LET proginfo.author = "scott"
 CALL myutils.init() -- with module prefix
 CALL set_account("CFX4559") -- without module prefix
END MAIN

IMPORT JAVA classname
The IMPORT JAVA instruction imports Java™ module elements.

Syntax

IMPORT JAVA classname

1. classname is the identifier of the Java™ class to be imported.

Usage

Using IMPORT JAVA classname, you can import and use a Java™ class.

Important: At runtime, the imported Java™ classes are only loaded on demand, when the program
flow reaches an instruction that uses the class. For example, when the reaching the declaration of a
variable defined to reference an object of a Java™ class.

The name specified after the IMPORT JAVA instruction is case-sensitive.

The CLASSPATH environment variable defines the directories for Java™ packages. See the Java™

documentation for more details.

Actually classname must be a path with package names separated by a dot, so the actual syntax for
IMPORT JAVA is:

IMPORT JAVA [packagename . [...]] filename

It is allowed to write several IMPORT JAVA instruction with the same class; Compilation will succeed to
mimic the Java™ import rules. However, you should avoid this:

IMPORT JAVA java.util.regex.Matcher
 IMPORT JAVA java.util.regex.Matcher

Advanced features | 376

Predefined constants
The language defines a set of global constants that can be used in the programs.

• NULL on page 376
• TRUE on page 376
• FALSE on page 377
• NOTFOUND on page 377

NULL
The NULL constant is provided as the "nil" value.

Syntax

NULL

Usage

When comparing variables to NULL, use the IS NULL operator, not the equal operator.

If an element of an expression is null, the expression is evaluated to NULL.

Variables are initialized to NULL or to zero, according to their data type.

Empty character string literals ("") are equivalent to NULL.

NULL cannot be used with the = equal comparison operation, you must use IS NULL.

Example

MAIN
 DEFINE s CHAR(5)
 LET s = NULL
 DISPLAY "s IS NULL evaluates to:"
 IF s IS NULL THEN
 DISPLAY "TRUE"
 ELSE
 DISPLAY "FALSE"
 END IF
END MAIN

TRUE
TRUE is a predefined constant to be used in boolean expressions.

Syntax

TRUE

Usage

TRUE is a predefined constant that can be used as a boolean value in boolean expressions.

The TRUE constant is equal to 1 (one).

TRUE and FALSE are typically used as return values of functions that give a binary result.

Example

MAIN

Advanced features | 377

 DEFINE short BOOLEAN
 LET short = is_short("abcdef")
 IF short THEN
 DISPLAY "String is short."
 END IF
END MAIN

FUNCTION is_short(s)
 DEFINE s STRING
 IF s.getLength() < 10 THEN
 RETURN TRUE
 ELSE
 RETURN FALSE
 END IF
END FUNCTION

FALSE
FALSE is a predefined constant to be used in boolean expressions.

Syntax

FALSE

Usage

FALSE is a predefined constant that can be used as a boolean value in boolean expressions.

The FALSE constant is equal to 0 (zero).

TRUE and FALSE are typically used as return values of functions that give a binary result.

Example

MAIN
 DEFINE odd BOOLEAN
 LET odd = is_odd(125763)
 IF odd THEN
 DISPLAY "Number is odd."
 END IF
END MAIN

FUNCTION is_odd(value)
 DEFINE value INTEGER
 IF value MOD 2 = 1 THEN
 RETURN TRUE
 ELSE
 RETURN FALSE
 END IF
END FUNCTION

NOTFOUND
NOTFOUND is a predefined constant used to check if an SQL statement returns rows.

Syntax

NOTFOUND

Advanced features | 378

Usage

The NOTFOUND constant is used to test the execution status of an SQL statement returning a result, to
check whether rows have been found.

The NOTFOUND constant is equal to 100.

You typically compare SQLCA.SQLCODE to NOTFOUND, after a SELECT statement execution.

Example

MAIN
 DATABASE stores
 SELECT tabid FROM systables WHERE tabid = 1
 IF SQLCA.SQLCODE = NOTFOUND THEN
 DISPLAY "No row was found"
 END IF
END MAIN

Configuration options
Compiler and runtime system can be controlled with several configuration settings.

• OPTIONS (Compilation) on page 378
• OPTIONS (Runtime) on page 379
• Runtime configuration in FGLPROFILE on page 386
• DEFER INTERRUPT / QUIT on page 387

OPTIONS (Compilation)
OPTIONS outside program blocks defines semantics of the language for the compiler.

Syntax

OPTIONS
{ SHORT CIRCUIT
} [,...]

Usage

The OPTIONS statement used before any MAIN, FUNCTION or REPORT program block defines language
semantics options, that will take effect for the current module only. Unlike runtime options, compiler options
cannot be changed during program execution.

The statement to define compiler options must be placed before the MAIN block in the main module, or
before the first FUNCTION / REPORT block in other modules:

The OPTIONS compiler directive allows to control following features:

• Controlling semantics of AND / OR operators on page 379

Example

OPTIONS SHORT CIRCUIT
MAIN
 DISPLAY "Global Options example"
END MAIN

Advanced features | 379

Controlling semantics of AND / OR operators
The OPTIONS SHORT CIRCUIT defines the semantics of AND/OR operators.

When using OPTIONS SHORT CIRCUIT at the beginning of a module, the runtime system will optimize
the evaluation of boolean expressions involving AND and OR operators, by using the short-circuit evaluation
method (also called minimal evaluation method). This behavior is enabled for the whole module.

By default, the behavior of AND and OR operators is to evaluate all operands on the left and right side of the
operator. In fact this is not required: If the left operand of the AND evaluates to FALSE, there is no need to
evaluate the right operand, because the result of the AND operator will be false, anyway. Similarly, when
the left operand of an OR expression evaluates to TRUE, there is not need to evaluate the right operand,
since the result of the boolean expression will be true, anyway.

This method can improve performances and simplify programming. However, existing code may rely on
the fact that all parts of a boolean expression are evaluated, especially when calling functions that do some
processing. By using the short-circuit evaluation method, it is unsure that the function used in the right
operand of AND/OR will be called, because it depends on the result of the left operand.

By using short-circuit evaluation, it is possible to reference a dynamic array in the same boolean
expression, after checking that the index is in the current array element range:

IF x<=arr.getLength() AND arr[x].order_date > TODAY THEN
 ...
END IF

With the default AND semantics, in this code, the right operand is also evaluated. If the x index is greater
as the array length, new array elements will be automatically created in the expression on the right of
the AND operator. To avoid this situation, you are forced to write following code, when OPTIONS SHORT
CIRCUIT is not used:

IF x<=arr.getLength() THEN
 IF arr[x].order_date > TODAY THEN
 ...
 END IF
END IF

OPTIONS (Runtime)
The OPTIONS instruction inside program blocks controls program behavior at runtime.

Syntax

OPTIONS options-clause [,...]

Usage

Use the OPTIONS instruction inside a function block to control the behavior of the runtime system for rest
of the program execution.

A program can execute successive OPTIONS statements at different places in the code.

The runtime OPTIONS statement allows to control following runtime features:

• Defining the position of reserved lines on page 380
• Defining default TTY attributes on page 381
• Defining field tabbing order on page 382
• Defining the field input loop on page 381
• Application termination on page 383
• Front-end termination on page 383
• Defining the message file on page 384

Advanced features | 380

• Defining control keys on page 384
• Setting default screen modes for sub-programs on page 385
• Enabling/disabling SQL interruption on page 386

Defining the position of reserved lines
The OPTIONS element LINE defines position of dedicated screen lines.

Syntax

OPTIONS
{ MENU LINE line-value
| MESSAGE LINE line-value
| COMMENT LINE {OFF|line-value}
| PROMPT LINE line-value
| ERROR LINE line-value
| FORM LINE line-value
}

Usage

The OPTIONS statement can define the positions of reserved lines for menus, forms and messages.
Reserved window lines are used in TUI mode. These options are not required in GUI mode, as most have
no effect on the display, except when using the traditional mode, where program windows are rendered as
in a dumb terminal.

• COMMENT LINE specifies the position of the comment line. The comment line displays messages
defined with the COMMENT attribute in the form specification file. The default is (LAST-1) for the
SCREEN, and LAST for all other windows. You can hide the comment line with COMMENT LINE OFF.

• ERROR LINE specifies the position on the screen of the error line that displays the text of the ERROR
statement. The default is the LAST line of the SCREEN window.

• FORM LINE specifies the window line where forms are displayed. The default is (FIRST+2), or line 3 of
the current window.

• MENU LINE specifies the position of the menu line. This line displays the menu name and options, as
defined by the MENU statement. The default is the FIRST line in the window.

• MESSAGE LINE specifies the position of the message line. This reserved line displays the text of the
MESSAGE statement. The default is (FIRST+1), or line 2 of the current window.

• PROMPT LINE specifies the position of the prompt line where the text of PROMPT statements is
displayed. The default value is the FIRST line in the window.

You can specify any of the following positions for each reserved line:

Table 133: Reserved line expressions

Expression Description

FIRST The first line of the screen or window.

FIRST + integer A relative line position from the first line.

integer An absolute line position in the screen or window.

LAST - integer A relative line position from the last line.

LAST The last line of the screen or window.

Advanced features | 381

Defining default TTY attributes
The OPTIONS {INPUT|DISPLAY} ATTRIBUTES defines default TTY attributes for dialogs and display
statements.

Syntax

OPTIONS { INPUT | DISPLAY } ATTRIBUTES ({FORM|WINDOW|attributes)

Usage

OPTIONS INPUT ATTRIBUTES defines the default color and terminal effect attributes that will be used in
subsequent dialog statement.

OPTIONS DISPLAY ATTRIBUTES defines the default attributes for display statements.

The display attributes are based on dumb terminal (i.e. TTY) possibilities, but will be rendered accordingly
on GUI mode. Graphical front-ends can be configured to render TTY attributes is a specific way. Instead of
TTY based attributes, consider using presentation styles in new developments.

Any display attribute defined by the OPTIONS statement remains in effect until the runtime system
encounters a statement that redefines the same attribute. This can be another OPTIONS statement, or an
ATTRIBUTE clause in one of the following statements:

• CONSTRUCT

• INPUT

• DISPLAY

• DIALOG

• INPUT ARRAY

• DISPLAY ARRAY

• OPEN WINDOW

The ATTRIBUTE clause in these statements only redefines the attributes temporarily. After the window
closes or after the dialog statement terminates, the runtime system restores the attributes from the most
recent OPTIONS statement.

The FORM keyword in INPUT ATTRIBUTE or DISPLAY ATTRIBUTE clauses instructs the runtime system
to use the input or display attributes of the current form. Similarly, you can use the WINDOW keyword of
the same clauses to instruct the program to use the input or display attributes of the current window. You
cannot combine the FORM or WINDOW attributes with any other attributes.

This table shows the valid input and display attributes:

Table 134: Input and display attributes

Attribute Description

BLACK, BLUE, CYAN, GREEN, MAGENTA,
RED, WHITE, YELLOW

The TTY color of the displayed text.

BOLD, DIM, INVISIBLE, NORMAL The TTY font attribute of the displayed text.

REVERSE, BLINK, UNDERLINE The TTY video attribute of the displayed text.

Defining the field input loop
The OPTIONS INPUT [NO] WRAP instructions defines field wrapping in dialogs.

Syntax

OPTIONS INPUT [NO] WRAP

Advanced features | 382

Usage

By default, an interactive statement such as CONSTRUCT or INPUT terminates when the focus leaves the
last field controlled by the dialog instruction.

The OPTIONS INPUT WRAP instruction can change this behavior, causing the cursor to move from the
last field to the first, repeating the sequence of fields until the dialog is validated or canceled.

The INPUT NO WRAP option restores the default input loop behavior.

Example

MAIN
 OPTIONS INPUT WRAP
 ...
END MAIN

Defining field tabbing order

Syntax

OPTIONS FIELD ORDER { CONSTRAINED | UNCONSTRAINED | FORM }

Usage

Tabbing order is used in interactive instructions such as INPUT, INPUT ARRAY or CONSTRUCT, where
individual fields can get the focus.

The FIELD ORDER runtime option defines the default behavior when moving from field to field with the
TAB and SHIFT-TAB keys in GUI mode, and with the Up / Down arrow keys in TUI mode.

By default, the tabbing order is defined by the list of fields used by the program instruction. This
corresponds to FIELD ORDER CONSTRAINED option, which is the default.

When using FIELD ORDER UNCONSTRAINED in TUI mode, the Up and Down arrow keys will move
the cursor to the field above or below the current field, respectively. When using the default FIELD
ORDER CONSTRAINED option, the Up and Down arrow keys move the cursor to the previous or next field,
respectively. If FIELD ORDER UNCONSTRAINED is used, the Dialog.fieldOrder FGLPROFILE entry
is ignored.

The UNCONSTRAINED option can only be supported in TUI mode, with a simple form layout. It is not
recommended to use this option in sGUI mode.

The FIELD ORDER FORM option instructs interactive instructions to use the tabbing order defined by the
TABINDEX attributes of the current form fields. With this option, tabbing order can be defined in the layout
of the form, independently from the program instruction. This is the preferred way in GUI mode. When
FIELD ORDER FORM is used, the Dialog.fieldOrder FGLPROFILE entry is ignored.

Example

Form "form1.per":

LAYOUT
GRID
{
 First name: [f001] Last name: [f002
]
 Address: [f003
]
}
END

Advanced features | 383

END

ATTRIBUTES
EDIT f001 = FORMONLY.fname, TABINDEX = 2;
EDIT f002 = FORMONLY.lname, TABINDEX = 1;
EDIT f003 = FORMONLY.address, TABINDEX = 0;
END

Module "main.4gl":

MAIN
 DEFINE fname, lname CHAR(20), address CHAR(50)

 OPTIONS INPUT WRAP

 OPEN FORM f1 FROM "f1"
 DISPLAY FORM f1

 OPTIONS FIELD ORDER CONSTRAINED
 INPUT BY NAME fname, address, lname

 OPTIONS FIELD ORDER UNCONSTRAINED
 INPUT BY NAME fname, address, lname

 OPTIONS FIELD ORDER FORM
 INPUT BY NAME fname, address, lname

END MAIN

Application termination
The OPTIONS TERMINATE SIGNAL defines a callback function in case of SIGTERM signal.

Syntax

OPTIONS ON TERMINATE SIGNAL CALL function

Usage

The OPTIONS ON TERMINATE SIGNAL CALL function defines the function that must be called when
the application receives the SIGTERM signal. With this option, you can control program termination. If this
statement is not called, the program is stopped with an exit value of SIGTERM (15).

On Microsoft™ Windows™ platforms, the function will be called in the following cases:

• The console window that the program was started from is closed.
• The current user session is terminated (i.e. the user logs off).
• The system is shut down.

Use the OPTIONS ON TERMINATE SIGNAL CALL function instruction with care, and do not execute
complex code in the callback function. The code should only contain simple and short cleanup operations;
Any interactive instruction must be avoided.

Front-end termination
The OPTIONS CLOSE APPLICATION instruction defines the callback function in case of front-end
termination.

Syntax

OPTIONS ON CLOSE APPLICATION CALL function

Advanced features | 384

Usage

The OPTIONS ON CLOSE APPLICATION CALL function can be used to execute specific code when
the front-end stops. For example, when the front-end program is stopped, when the user workstation
session is ended, or when the workstation is shut down.

Before stopping, the front-end sends a internal event that is trapped by the runtime system. When a
callback function is specified with this program option command, the application code that was executing is
canceled, and the callback function is executed before the program stops.

Use the OPTIONS ON CLOSE APPLICATION CALL function instruction with care, and do not execute
complex code in the callback function. The code should only contain simple and short cleanup operations;
Any interactive instruction must be avoided.

A front-end program crash or network failure is not detected and cannot be handled by this instruction.

Defining the message file
The OPTIONS HELP FILE instruction defines the name of the message file.

Syntax

OPTIONS HELP FILE filename

Usage

The OPTIONS HELP FILE instruction specifies an expression that returns the filename of a help file. This
filename can also include a pathname. Messages in this file can be referenced by number in form-related
statements, and are displayed at runtime when the user presses the Help key.

By default, message files are searched in the current directory, then DBPATH / FGLRESOURCEPATH
environment variable is scanned to find the file.

Defining control keys
The OPTIONS action KEY instruction defines physical keys for common dialog actions.

Syntax

OPTIONS
{ INSERT
| DELETE
| NEXT
| PREVIOUS
| ACCEPT
| HELP
} KEY key-name

Usage

This OPTIONS clause can specify physical keys to support logical key functions in the interactive
instructions.

The physical key definition options are only provided for backward compatibility with the TUI mode. Use the
action defaults configuration to define accelerator keys for actions.

Description of the keys:

• The ACCEPT KEY specifies the key that validates a CONSTRUCT, INPUT, DIALOG, INPUT ARRAY, or
DISPLAY ARRAY statement.

The default ACCEPT KEY is ESCAPE.
• The DELETE KEY specifies the key in INPUT ARRAY statements that deletes a screen record.

Advanced features | 385

The default DELETE KEY is F2.
• The INSERT KEY specifies the key that opens a screen record for data entry in INPUT ARRAY.

The default INSERT KEY is F1.
• The NEXT KEY specifies the key that scrolls to the next page of a program array of records in an INPUT

ARRAY or DISPLAY ARRAY statement.

The default NEXT KEY is F3.
• The PREVIOUS KEY specifies the key that scrolls to the previous page of program records in an INPUT

ARRAY or DISPLAY ARRAY statement.

The default PREVIOUS KEY is F4.
• The HELP KEY specifies the key to display help messages.

The default HELP KEY is CONTROL-W.

You can specify the following keywords for the physical key names:

Table 135: Keywords for physical key names

Key Name Description

ESC or ESCAPE
The ESC key (not recommended, use ACCEPT
instead).

INTERRUPT The interruption key (on UNIX™, interruption signal).

TAB The TAB key (not recommended).

CONTROL-char
A control key where char can be any character
except A, D, H, I, J, K, L, M, R, or X

F1 through F255 A function key.

LEFT The left arrow key.

RETURN or ENTER The return key.

RIGHT The right arrow key.

DOWN The down arrow key.

UP The up arrow key.

PREVIOUS or PREVPAGE The previous page key.

NEXT or NEXTPAGE The next page key.

You might not be able to use other keys that have special meaning to your version of the operating system.
For example, CONTROL-C, CONTROL-Q, and CONTROL-S specify the Interrupt, XON, and XOFF signals on
many UNIX™ systems.

Setting default screen modes for sub-programs
The OPTIONS RUN IN instruction defines the TTY mode to run sub-programs.

Syntax

OPTIONS RUN IN {FORM|LINE} MODE

Advanced features | 386

Usage

When using character terminals, the runtime system recognizes two screen display modes: line mode (IN
LINE MODE) and formatted mode (IN FORM MODE). The OPTIONS and RUN statements can explicitly
specify a screen mode. The OPTIONS statement can set separate defaults for these statements.

After IN LINE MODE is specified, the terminal is in the same state (in terms of stty options) as when the
program began. This usually means that the terminal input is in cooked mode, with interruption enabled,
and input not available until after a newline character has been typed.

The IN FORM MODE keywords specify raw mode, in which each character of input becomes available to
the program as it is typed or read.

By default, a program operates in line mode, but so many statements take it into formatted mode (including
OPTIONS statements that set keys, DISPLAY, OPEN WINDOW, DISPLAY FORM, and other screen
interaction statements), that typical programs are actually in formatted mode most of the time.

When the OPTIONS statement specifies RUN IN FORM MODE, the program remains in formatted mode if it
currently is in formatted mode, but it does not enter formatted mode if it is currently in line mode.

When the OPTIONS statement specifies RUN IN LINE MODE, the program remains in line mode if it is
currently in line mode, and it switches to line mode if it is currently in formatted mode.

Enabling/disabling SQL interruption
The OPTIONS SQL INTERRUPT instruction enables or disables SQL statement interruption.

Syntax

OPTIONS SQL INTERRUPT { ON | OFF }

Usage

The OPTIONS SQL INTERRUPT instruction controls interruption event detection during the execution of
long running SQL statements.

Pay attention to the fact that not all database servers support SQL interruption.

By default, SQL interruption is off.

Runtime configuration in FGLPROFILE

The behavior of the runtime system can be controlled with FGLPROFILE configuration parameters.

• Responding to CTRL_LOGOFF_EVENT on page 386

Responding to CTRL_LOGOFF_EVENT
FGLPROFILE fglrun.ignoreLogoffEvent controls program behavior in case of logoff events on
Windows™ platforms.

Syntax

fglrun.ignoreLogoffEvent = true

Usage

On Windows™ platforms, when the user disconnects, the system sends a CTRL_LOGOFF_EVENT event
to all console applications. When the runtime system receives this event, it stops immediately.

On a Windows™ Terminal Server, if an Administrator user closes his session, a CTRL_LOGOFF_EVENT
is sent to all console applications started by ANY user connected to the machine (even if these applications
were not started by the administrator).

Advanced features | 387

To prevent the runtime system from stopping on a logoff event, you can use the
fglrun.ignoreLogoffEvent entry in the FGLPROFILE configuration file. If this entry is set to true,
the CTRL_LOGOFF_EVENT event is ignored by the runtime system.

As a result, when the administrator user disconnects on a Windows™ Terminal Server, programs started by
remote users would not stop.

DEFER INTERRUPT / QUIT
The DEFER instruction defines the program behavior when interruption or quit signals are received.

Syntax

DEFER { INTERRUPT | QUIT }

Usage

The DEFER instruction controls the behavior of the program when an interruption or quit signal has been
received.

DEFER INTERRUPT and DEFER QUIT instructions can only appear in the MAIN block.

DEFER INTERRUPT indicates that the program must continue when it receives an interrupt signal. By
default, the program stops when it receives an interrupt signal.

Once deferred, you cannot reset to the default behavior.

When an interrupt signal is caught by the runtime system and DEFER INTERRUPT is used, the INT_FLAG
global variable is set to true by the runtime system.

Interrupt signals are raised on terminal consoles when the user presses a key like CTRL-C, depending
on the stty configuration. When a program is displayed through a front end, no terminal console is used;
therefore, users cannot send interrupt signals with the CTRL-C key. To send an interruption request from
the front end, you must define an 'interrupt' action view.

DEFER QUIT indicates that the program must continue when it receives a quit signal. By default, the
program stops when it receives a quit signal.

When a quit signal is caught by the runtime system and DEFER QUIT is used, the QUIT_FLAG global
variable is set to true by the runtime system.

Program registers
Predefined global registers can be used in programs to detect errors, signals and events.

• STATUS on page 387
• INT_FLAG on page 388
• QUIT_FLAG on page 389

STATUS
STATUS is a predefined variable that contains the execution status of the last instruction.

Syntax

STATUS

Usage

STATUS is a predefined variable that contains the execution status of the last program instruction.

STATUS allows to get diagnostic of procedural, interactive, and SQL instructions.

Advanced features | 388

The data type of STATUS is INTEGER.

Note: While STATUS can be modified by hand, it is not recommended except in specific situations
as shown in the STATUS example.

STATUS is typically used with WHENEVER ERROR CONTINUE or WHENEVER ERROR CALL, or TRY/CATCH
blocks, to identify the type of error that occurred.

STATUS will be set for expression evaluation errors only when WHENEVER ANY ERROR is used.

After an SQL statement execution, STATUS contains the value of SQLCA.SQLCODE.

STATUS is set to an error code when an instruction produces an error, or it is reset to zero when non-
assignment instructions succeed. A typical mistake is to test STATUS after a DISPLAY STATUS instruction,
written after an SQL statement:

WHENEVER ERROR CONTINUE
DELETE FROM _invalid_table_name_ where col = 1
WHENEVER ERROR STOP
DISPLAY "STATUS:", STATUS -- this DISPLAY instruction reset STATUS to zero
IF STATUS<0 THEN -- Will never be the case, since STATUS==0
 DISPLAY "SQL Error!"
 EXIT PROGRAM 1
END IF

Tip: Use SQLCA.SQLCODE for SQL error detection, and use STATUS for other language
instructions.

Example

MAIN
 DISPLAY is_number(NULL)
 DISPLAY is_number("abc")
 DISPLAY is_number("-12.45")
END MAIN

FUNCTION is_number(s)
 DEFINE s STRING
 DEFINE f FLOAT, l_status INTEGER
 IF length(s)==0 THEN
 RETURN FALSE
 END IF
 WHENEVER ANY ERROR CONTINUE
 LET STATUS=0 # Needed, as STATUS won't be set if succeeds
 LET f = s
 LET l_status = STATUS
 WHENEVER ANY ERROR CONTINUE
 IF l_status == 0 THEN
 RETURN TRUE
 ELSE
 RETURN FALSE
 END IF
END FUNCTION

INT_FLAG
INT_FLAG is a predefined variable set to TRUE when an interruption event is detected.

Syntax

INT_FLAG

Advanced features | 389

Usage

INT_FLAG is set to TRUE by the runtime system when an interruption event is detected by the runtime
system. The interruption event is raised when the user presses the interruption key, or when the graphical
front-end sends an interruption event while the program is running in a procedure or SQL query.

INT_FLAG must be used with the DEFER INTERRUPT configuration instruction. If the DEFER INTERRUPT
instruction is not specified, and interruption signal will stop the program execution.

When the interruption event arrives during a procedural instruction (FOR loop), the runtime system sets
INT_FLAG to TRUE. It is up to the program to check the INT_FLAG variable.

When the interruption event arrives during an interactive instruction (INPUT, CONSTRUCT), the runtime
system sets INT_FLAG to TRUE and exits from the interactive instruction. It is recommended that you test
INT_FLAG after an interactive instruction to check whether the input has been cancelled.

Once INT_FLAG is set to TRUE, it must be reset to FALSE in order to detect a new interruption event.

INT_FLAG will also be used by the runtime system as diagnostic flag for predefined action block execution
such as ON INSERT in DISPLAY ARRAY.

Example

MAIN
 DEFER INTERRUPT
 LET INT_FLAG = FALSE
 INPUT BY NAME ...
 AFTER INPUT
 IF INT_FLAG THEN
 MESSAGE "The input is canceled."
 END IF
 ...
 END INPUT
 ...
END MAIN

QUIT_FLAG
QUIT_FLAG is a predefined variable set to TRUE when a quit event is detected.

Syntax

QUIT_FLAG

Usage

QUIT_FLAG is set to TRUE when a quit event is detected by the runtime system. The quit event is raised
when the user presses the quit signal key ([Ctrl]+[Backslash]), or when another process sends the quit
signal to the runtime system process.

QUIT_FLAG must be used with the DEFER QUIT configuration instruction. If the DEFER QUIT instruction
is not specified, and quit signal will stop the program execution.

When the quit event arrives during a procedural instruction (FOR loop), the runtime system sets
QUIT_FLAG to TRUEand continues the program execution. It is up to the program to check the QUIT_FLAG
variable.

When the quit event arrives during an interactive instruction (INPUT, CONSTRUCT), the runtime system sets
QUIT_FLAG to TRUE and continues with the execution of the interactive instruction.

Once QUIT_FLAG is set to TRUE, it must be reset to FALSE to detect a new quit event.

Advanced features | 390

Example

MAIN
 DEFINE n INTEGER
 DEFER QUIT
 LET QUIT_FLAG = FALSE
 FOR n = 1 TO 1000
 IF QUIT_FLAG THEN EXIT FOR END IF
 ...
 END FOR
END MAIN

Program execution
This section describes program execution and language instructions related to program execution.

• Executing programs on page 390
• RUN on page 391
• EXIT PROGRAM on page 394
• BREAKPOINT on page 394

Executing programs
There are different ways to execute compiled programs, according to the configuration and the
development or production context.

Prerequisites before executing a program

Make sure that all required environment variables are properly defined, such as FGLPROFILE, FGLGUI,
FGLSERVER, FGLLDPATH, LANG/LC_ALL.

To display program forms in graphical mode, the GUI front-end must run on the computer defined by
FGLSERVER, and all network security components (i.e. firewalls) must allow TCP connections on the port
defined by this environment variable.

Verify the database client environment settings, and check that the database server is running and can be
accessed, for example by using a database vendor specific tool to execute SQL commands.

Starting a program from the command line on the server

A program can be executed with the fglrun tool from the server command line:

fglrun myprogram

This method is typically used in development context. After compiling the programs and forms, for example
with the make utility, execute the programs with fglrun.

Note: The file extension (.42m or .42r) can be omitted. If no file extension is specified, fglrun
will try to load progname.42r, then progname.42m.

Executing sub-programs from a parent program with RUN

Sub-programs can be executed from the main program with the RUN instruction. There can be limitations,
according to the platform where the parent program executes.

Advanced features | 391

Starting a program from the front-end

It is also possible to start programs on the application server from the platform where the front-end resides.

This is actually the typical way to start applications in a production environment.

• For a desktop front-end (GDC) application, define application shortcuts and use rlogin/ssh network
protocols to start programs on the server or by using HTTP through a web server (GAS).

• For a web-browser application (GWC), configure the application server (GAS) to run applications from
an URL.

• For a mobile device application (GMI/GMA), in a configuration where the programs run on a GAS
application server, use the "runOnServer" front call, to start a program from the GAS.

Starting programs on a mobile device

After deploying program files on a mobile device, it can be executed as a local application, typically with a
tap on the application icon.

• For a GMA (Android™) application, program files and GMA must be bundled together in an .apk
Android package to be deployed. For more details, see Deploying mobile apps on Android devices on
page 2572.

• For a GMI (iOS) application, program files and GMI must be bundled together in an .ipa package to be
deployed. For more details, see Deploying mobile apps on iOS devices on page 2584.

• To start programs on an application server from a small embedded mobile application (starter), use the
runOnServer front call. For more details, see Running mobile apps on an application server on page
2595.

Common app directories on mobile platforms

On mobile devices, you can use the following APIs to get common directories:

1. base.Application.getProgramDir on page 1705 returns the directory path where the main
.42m is located. Consider this location read-only and safe (no other app can access it).

2. os.Path.pwd on page 2004 returns the path to the current working directory. When a mobile
application is started, the GMA and the GMI set the working directory to the default application
directory. Consider this location read-write and safe (no other app can access it).

3. The front call standard.feInfo/dataDirectory returns the front-end side temporary directory.
Storage on this directory may be erased by the OS. On an embedded mobile application, as the
runtime and the front-end run on the same system, the program can use this front call to retrieve
a temporary directory and use the path to store temporary files. Consider this location read-write
and unsafe. Applications executed remotely through a runOnServer front call, can use the
sandboxRunOnServer directory under the directory returned by the feInfo/dataDirectory front
call, to exchange files with the embedded application.

RUN
The RUN instruction executes the command passed as argument.

Syntax

RUN command
 [IN {FORM|LINE} MODE]
 [RETURNING variable | WITHOUT WAITING]

1. command is a string expression with the command to be executed.
2. variable is an integer variable receiving the execution status of the command.

Advanced features | 392

Understanding the RUN command

The RUN instruction hands the argument command to the command interpreter. When not specifying the
WITHOUT WAITING clause, the calling process waits for the called process to finish execution. Otherwise,
the calling process waits the command termination.

Important: The RUN instruction has limited support on mobile platforms.

• The RUN instruction is not supported on mobile devices, because of operating system limitations.
• RUN command WITHOUT WAITING is not supported when programs run on an application

server and display on a mobile device, because the Genero GUI protocol is not able to handle
multiple connections at the same time.

Defining the command execution shell

In order to execute the command line, the RUN instruction uses the OS-specific shell defined in the
environment of the current user. On UNIX™, this is defined by the SHELL environment variable. On
Windows™, this is defined by COMSPEC. On Windows™, the program defined by the COMSPEC variable
must support the /c option as CMD.EXE.

Waiting for the subprocess

By default, the runtime system waits for the end of the execution of the command, suspending the
execution of the current program. After executing the command, the display of the parent program is
restored.

If you specify WITHOUT WAITING, the specified command line is executed as a background process, and
generally does not affect the visual display. This clause can be used when the command takes some time
to execute, and the parent program does not need the result to continue. It is also typically used in GUI
mode to start another program. Do not use this clause in TUI mode when the sub-program displays forms,
otherwise both programs would run simultaneously on the same terminal.

Catching the execution status

The RETURNING clause saves the termination status code of the command that RUN executes in a
program variable of type SMALLINT. Examine the variable after execution to determine the next action to
take. A status code of zero usually indicates that the command has terminated normally. A non-zero exit
status indicates an error.

Important:

The execution status provided by the RETURNING clause is platform-dependent. On UNIX™

systems, the value is composed of two bytes having different meanings. On Windows™ platforms,
the execution status is usually zero for success, not zero if an error occurred.

On UNIX™ systems, the lower byte (x mod 256) of the return status defines the termination status of
the RUN command. The higher byte (x / 256) of the return status defines the execution status of the
program. On Windows™ systems, the value of the return status defines the execution status of the
program.

IN LINE MODE and IN FORM MODE

When using the TUI mode, programs operate by default in line mode, but as many statements take it into
form mode (including OPTIONS statements that set keys, DISPLAY, OPEN WINDOW, DISPLAY FORM>, and
other screen interaction statements), typical interactive TUI programs are actually in form mode most of the
time.

According to the type of command to be executed, you may need to use the IN {LINE|FORM} MODE
clause with the RUN instruction. It defines how the terminal or the graphical front-end behaves when
running the child process.

Advanced features | 393

Besides RUN, the OPTIONS, START REPORT and REPORT statements can explicitly specify a screen mode.
If no screen mode is specified in the RUN command, the current value from the OPTIONS statement is
used. This is, by default, IN LINE MODE. The default screen mode for PIPE specifications in reports is IN
FORM MODE.

When the RUN statement specifies IN FORM MODE, the program remains in form mode if it is currently in
form mode, but it does not enter form mode if it is currently in line mode. When the prevailing RUN option
specifies IN LINE MODE, the program remains in line mode if it is currently in line mode, and it switches
to line mode if it is currently in form mode. This also applies to the PIPE option.

Typically, if you need to run another interactive program, you must use the IN LINE MODE clause:

• In TUI mode, the terminal is in the same state (in terms if tty options) as when the program began.
Usually the terminal input is in cooked mode, with interrupts enabled and input not becoming available
until after a newline character is typed.

• In GUI mode, if the WITHOUT WAITING clause in used, the front-end is warned before the child
process is started (this causes a first network round-trip) After the child is started, the front-end is
warned that the command was executed (second network round-trip). If the RUN command must wait for
child termination (i.e. no WITHOUT WAITING clause is used), no particular action is taken.

However, if you want to execute a subprocess running silently (batch program without output), you must
use the IN FORM MODE clause:

• In TUI mode, the screen stays in form mode if it was in form mode, which saves a clear / redraw of the
screen. The FORM mode specifies the terminal raw mode, in which each character of input becomes
available to the program as it is typed or read.

• In GUI mode, no particular action is taken to warn the front-end (there is no need to warn the front-end
for batch program execution).

To summarize, no matter if you are in TUI or GUI mode, run silent (batch) programs in FORM MODE, and
if the program to run is interactive, displays messages to the terminal, or if you don't known what it does,
use the LINE MODE (witch is the default).

A good practice is to encapsulate child program and system command execution in functions.

Example

MAIN
 DEFINE result SMALLINT
 CALL runApplication("app2 -p xxx")
 CALL runBatch("ls -l", FALSE) RETURNING result
 CALL runBatch("ls -l > /tmp/files", TRUE) RETURNING result
END MAIN

FUNCTION runApplication(pname)
 DEFINE pname, cmd STRING
 LET cmd = "fglrun " || pname
 IF fgl_getenv("FGLGUI") == 0 THEN
 RUN cmd
 ELSE
 RUN cmd WITHOUT WAITING
 END IF
END FUNCTION

FUNCTION runBatch(cmd, silent)
 DEFINE cmd STRING
 DEFINE silent STRING
 DEFINE result SMALLINT
 IF silent THEN
 RUN cmd IN FORM MODE RETURNING result
 ELSE
 RUN cmd IN LINE MODE RETURNING result

Advanced features | 394

 END IF
 IF fgl_getenv("OS") MATCHES "Win*" THEN
 RETURN result
 ELSE
 RETURN (result / 256)
 END IF
END FUNCTION

EXIT PROGRAM
The EXIT PROGRAM instruction terminates the execution of the program.

Syntax

EXIT PROGRAM [exit-code]

1. exit-code is a valid integer expression that can be read by the process which invoked the program.

Usage

Use the EXIT PROGRAM instruction to stop the execution of the current program instance.

exit-code must be zero by default for normal, successful program termination.

exit-code is converted into a positive integer between 0 and 255 (8 bits).

Example

MAIN
 DISPLAY "Emergency exit."
 EXIT PROGRAM -1
 DISPLAY "This will never be displayed."
END MAIN

BREAKPOINT
The BREAKPOINT instruction sets a program breakpoint when running in debug mode.

Syntax

BREAKPOINT

Usage

Normally, to set a breakpoint when you debug a program, you must use the break command of the
debugger. But in some situations, you might need to set the breakpoint in program sources. Therefore, the
BREAKPOINT instruction has been added to the language.

When you start fglrun in debug mode with the -d option, if the program flow encounters a BREAKPOINT
instruction, the program execution stops and the debug prompt is displayed, to let you enter a debugger
command. The BREAKPOINT instruction is ignored when not running in debug mode.

Example

MAIN
 DEFINE i INTEGER
 LET i=123

Advanced features | 395

 BREAKPOINT
 DISPLAY i
END MAIN

Front calls
Front call functions execute on the platform where the front-end is installed.

• Understanding front calls on page 395
• ui.Interface.frontCall on page 395
• User-defined front calls on page 397

Understanding front calls
Front calls execute a native function on the front-end platform.

In your Genero program, use the ui.Interface.frontCall() class method to invoke front-end
functions. When calling a user function from programs, specify a module name and a function name.
Input and output parameters can be passed/returned in order to transmit/receive values to/from the front-
end. A typical example is an "open file" dialog window that allows you to select a file from the front-end
workstation file system.

Important: Some front calls are specific to the platform or front-end technology and may not by
supported. For example, it is not possible to execute a shell command (shellexec) with the Web
Browser front-end.

A set of front-end functions is built-in by default in front-ends. However, it is possible to write your own
functions in order to extend the front-end possibilities.

Tip: While you can use DDE/OLE APIs to manipulate Microsoft™ Office documents, there are
freeware alternatives such as the Apache POI Java™ library which can be used with the Java™

Interface. For an example, see Java™ Interface: Example 2 .

ui.Interface.frontCall
ui.Interface.frontCall performs a function call to the current front-end.

Syntax

ui.Interface.frontCall(
 module STRING,
 function STRING,
 [parameter-list],
 [returning-list])

1. module defines the shared library or classpath where the function is implemented.
2. function defines the name of the function to be called.
3. parameter-list is a list of input parameters.
4. returning-list is a list of output parameters.

Important: The returning-list variables are passed by reference to the frontCall() method.

Usage

The ui.Interface.frontCall() class method can be used to execute a procedure on the front-end
workstation through the front-end software component. You can for example launch a front-end specific
application like a browser or a text editor, or manage the clipboard content.

Advanced features | 396

The method takes four parameters:

1. The module, identifying the shared library (.so or .DLL) or the Java class (GMA) implementing the front
call function.

2. The function of the module the be executed.
3. The list of input parameters, using the square brace notation.
4. The list of output parameters, using the square brace notation.

Input and output parameters are provided as a variable list of parameters, by using the square braces
notation ([param1,param2,...]). Input parameters can be an expression supported by the language;
output parameters must be variables only, to receive the returning values. An empty list is specified with []
. Output parameters are optional: If the front call returns values, they will be ignored by the runtime system.

Simple front call example:

FUNCTION call()
 DEFINE info STRING
 CALL ui.Interface.frontCall("standard", "feInfo", ["feName"], [info])
END FUNCTION

Some front calls need a file path as parameter. File paths must follow the syntax of the front end
workstation file system. You may need to escape backslash characters in such parameters. The next
example shows how to pass a file path with a space in a directory name to a front-end running on a
Microsoft™ Windows™ workstation:

FUNCTION call()
 DEFINE path STRING, res INTEGER
 LET path = "\"c:\\work dir\\my report.doc\""
 -- This is: "c:\work dir\my report.doc"
 CALL ui.Interface.frontCall("standard", "shellExec", [path], [res])
END FUNCTION

Front call error handling

Exception handling instructions can be used to check the execution status of a front call. Both WHENEVER
ERROR directives or TRY/CATCH block can surround the front call to avoid program stop in case of error,
and check the error number returned in the STATUS variable.

Note: There is not need to surround front calls with exception handlers such as TRY/CATCH, if the
front call is always supposed to execute without error. For example, the feInfo front call will never
produce an exception.

Example of front call error handling with a TRY/CATCH block:

FUNCTION takePhoto()
 DEFINE path STRING
 TRY -- This front call may fail if the front-end is not a mobile device:
 CALL ui.Interface.frontCall("mobile", "takePhoto", [], [path])
 CATCH
 MESSAGE "Cannot take photo: ", STATUS, " ", err_get(STATUS)
 LET path = NULL
 END TRY
 RETURN path
END FUNCTION

If the front call module name or the function name is invalid, the errors -6331 or -6332 will be raised,
respectively.

If the front call execution failed for some reason, the error -6333 will be raised. The description of the
problem can be found in the second part of the error message, returned by a call to the ERR_GET()
function.

Advanced features | 397

The error -6334 can be raised in case of input or output parameter mismatch. The control of the number of
input and output parameters is in the hands of the front-end. Most of the standard front calls have optional
returning parameters and will not raise error -6334, if the output parameter list is left empty. However,
front-end specific extensions or user-defined front-end functions may return an invalid execution status in
case of input or output parameter mismatch, raising error -6334. If the front-end sends an call execution
status of zero (OK), and the number of returned values does not match the number of program variables,
the runtime system will set unmatched program variables to NULL. As a general rule, the program should
provide the expected input and output parameters as specified in the documentation.

User-defined front calls
Extend the Genero language possibilities by implementing your own front-end functions.

For more details, see User-defined front calls on page 1615.

SQL support | 398

SQL support

These topics cover SQL support in the Genero Business Development Language.

• SQL programming on page 398
• Database connections on page 457
• Database transactions on page 480
• Static SQL statements on page 486
• Dynamic SQL management on page 500
• Result set processing on page 504
• Positioned updates/deletes on page 514
• SQL insert cursors on page 517
• SQL load and unload on page 524
• SQL adaptation guides on page 529

SQL programming
Covers topics about interacting with a database server using SQL.

• SQL basics on page 398
• SQL security on page 410
• SQL portability on page 412
• SQL performance on page 452

SQL basics

• SQL execution diagnostics on page 398
• The SQLCA diagnostic record on page 401
• SQL error identification on page 402
• SQL interruption on page 405
• Debugging SQL on page 406
• Cursors and connections on page 406
• Implicit database connection on page 407
• The database utility library on page 408
• Handling nested transactions on page 408
• Transaction blocks across connections on page 409
• The base.SQLHandle built-in class on page 410

SQL execution diagnostics
If an SQL statement execution failed, error description can be found in the SQLCA.SQLCODE, SQLSTATE,
STATUS and SQLERRMESSAGE predefined registers.

Trapping SQL errors

By default, SQL errors stop program execution and display the error message to the standard output. Most
SQL statements executed by a program should not return an error and thus do not require error trapping.
However, in some cases, a program must keep the control when an SQL error occurs. For example, when
connecting to the database, the user might enter an invalid password that will raise a login denied error.
The program must trap such SQL connection error to return to the login dialog and let the user enter a new
login and password.

SQL support | 399

To trap potential SQL errors, surround the SQL statements to be checked either with a WHENEVER ERROR
exception handler or with a TRY / CATCH block:

-- WHENEVER ERROR handler
WHENENEVER ERROR CONTINUE
 INSERT INTO orders VALUES (rec_ord. *)
 IF SQLCA.SQLCODE = -75623 THEN
 ...
 END IF
WHENEVER ERROR STOP -- restore the default

-- TRY/CATCH block
TRY
 INSERT INTO orders VALUES (rec_ord. *)
CATCH
 IF SQLCA.SQLCODE = -75623 THEN
 ...
 END IF
END TRY

Using SQLCA.SQLCODE

SQL error codes are provided in the SQLCA.SQLCODE register. This register always contains an IBM®

Informix® error code, even when connected to a database different from IBM® Informix®.

STATUS is the global language error code register, set for any kind of error (even non-SQL). When an SQL
error occurs, the error held in SQLCA.SQLCODE is copied into STATUS.

Use SQLCA.SQLCODE for SQL error management, and STATUS to detect errors with other language
instructions.

When connecting to a database different from IBM® Informix®, the database driver tries to convert the
native SQL error to an IBM® Informix® error which will be copied into the SQLCA.SQLCODE and STATUS
registers. If the native SQL error cannot be converted, SQLCA.SQLCODE and STATUS will be set to -6372
(a general SQL error), you can then check the native SQL error in SQLCA.SQLERRD[2]. The native
SQL error code is always available in SQLCA.SQLERRD[2], even if it could not be converted to an IBM®

Informix® error.

Using SQLSTATE

SQLSTATE contains an error code that follows ISO/ANSI standard error specification, but not all database
servers support this register. Using SQLSTATE for SQL error checking should be the preferred way for
portable SQL programming, as long as the target databases support this feature.

The SQLSTATE codes are defined by the ANSI/ISO standard specification, however not all database types
support this standard.

Table 136: SQLSTATE error codes support per database server type

Database Server Type Supports SQLSTATE errors

IBM® DB2® UDB (UNIX™) Yes, since version 7.1

IBM® Informix® Yes, since IDS 10

Microsoft™ SQL Server Yes, since version 8 (2000)

MySQL Yes

Oracle Database Server Not in version 10.2

PostgreSQL Yes, since version 7.4

SQL support | 400

Database Server Type Supports SQLSTATE errors

Sybase ASE Yes

Centralize SQL error checking

SQL error identification sometimes requires complex code, checking different error numbers that can be
RDBMS-specific. Therefore, it is strongly recommended that you centralize SQL error identification in a
function. This will allow you to write RDBMS-specific code, when needed, only once.

For maximum SQL portability, centralize SQL error checking in functions, to test either SQLCA.SQLCODE or
SQLSTATE, according to the target database, and define your own error identifiers with constants:

CONSTANT SQLERR_INVALID_DATABASE = -1001,
 SQLERR_INVALID_USER = -1002,
 ...

FUNCTION do_connect()
 DEFINE uname, upswd VARCHAR(100)
 WHILE TRUE
 CALL login() RETURNING uname, upswd
 TRY
 CONNECT TO "stores" USER uname USING upswd
 CATCH
 CASE check_sql_error()
 WHEN SQLERR_INVALID_DATABASE
 DISPLAY SQLERRMESSAGE
 EXIT PROGRAM 1 -- Fatal error: Stop!
 WHEN SQLERR_INVALID_USER
 ERROR "Invalid login, try again"
 CONTINUE WHILE
 END CASE
 END TRY
 EXIT WHILE
 END WHILE
END FUNCTION

SQL error messages

SQLERRMESSAGE contains the database-specific error message. These messages are different for every
database type and should only be used to print or log SQL execution diagnostic information.

SQL warnings

Some SQL instructions can produce SQL Warnings. Compared to SQL Errors which do normally stop the
program execution, SQL Warnings indicate a minor issue that can often be ignored. For example, when
connecting to an IBM® Informix® database, a warning is returned to indicate that a database was opened,
and an other warning might be returned if that database supports transactions. None of these facts are
critical problems, but knowing that information can help for further program execution.

If an SQL Warning is raised, SQLCA.SQLCODE / STATUS remain zero, and the program flow continues. To
detect if an SQL Warning occurs, the SQLCA.SQLAWARN register must be used. SQLCA.SQLAWARN is
defined as a CHAR(7) variable. If SQLCA.SQLAWARN[1] contains the W letter, it means that the last SQL
instruction has returned a warning. The other character positions (SQLCA.SQLAWARN[2-8]) may contain
W letters. Each position from 2 to 8 has a special meaning according to the database server type, and the
SQL instructions type.

If SQLCA.SQLAWARN is set, you can also check the SQLSTATE and SQLCA.SQLERRD[2] registers to get
more details about the warning. The SQLERRMESSAGE register might also contain the warning description.

SQL support | 401

In the next example, the program connects to a database and displays the content of the
SQLCA.SQLAWARN register. When connecting to an IBM® Informix® database with transactions, the
program will display [WW W]:

MAIN
 DATABASE stores
 DISPLAY "[", sqlca.sqlawarn, "]"
END MAIN

By default SQL Warnings do not stop the program execution. To trap SQL Warnings with an exception
handle, use the WHENEVER WARNING instruction, as shown in this example.

MAIN
 DEFINE cust_name VARCHAR(50)
 DATABASE stores
 WHENEVER WARNING STOP
 SELECT cust_lname, cust_address INTO cust_name
 FROM customer WHERE cust_id = 101
 WHENEVER WARNING CONTINUE
END MAIN

The SELECT statement in this example uses two columns in the select list, but only one INTO variable is
provided. This is legal and does not raise an SQL Error, however, it will set the SQLCA.SQLAWARN register
to indicate that the number of target variables does not match the select-list items.

See also WHENEVER WARNING exception.

Display detailed debug information in case of internal driver error

If an unexpected problem happens within the database driver, the driver will return the error -6319 (internal
error in the database library). When this SQL error occurs, set the FGLSQLDEBUG environment variable
to get more details about the internal error.

The SQLCA diagnostic record
The SQLCA variable is a predefined record containing SQL statement execution information.

The SQLCA record definition

The SQLCA record is defined as follows:

DEFINE SQLCA RECORD
 SQLCODE INTEGER,
 SQLERRM VARCHAR(71),
 SQLERRP CHAR(7),
 SQLERRD ARRAY[6] OF INTEGER,
 SQLAWARN CHAR(7)
END RECORD

1. SQLCODE contains the SQL execution code (0 = OK, 100 = not row found, <0 = error).
2. SQLERRM contains the error message parameter.
3. SQLERRP is not used at this time.
4. SQLERRD[1] is not used at this time.
5. SQLERRD[2] contains the last SERIAL or the native SQL error code.
6. SQLERRD[3] contains the number of rows processed in the last statement (server dependent).
7. SQLERRD[4] contains the estimated CPU cost for the query (server dependent).
8. SQLERRD[5] contains the offset of the error in the SQL statement text (server dependent).
9. SQLERRD[6] contains the ROWID of the last row that was processed (server dependent).
10.SQLAWARN contains the ANSI warning represented by a W character at a given position in the string.

SQL support | 402

11.SQLAWARN[1] is set to W when any of the other warning characters have been set to W.
12.SQLAWARN[2-7] have specific meanings, see database server documentation for more details.

Usage

SQLCA stands for the SQL Communication Area variable.

The SQLCA can be used to get an SQL execution diagnostic. Error and warning information can be found in
this structure.

The SQLCA record is filled after each SQL statement execution.

SQLCA is not designed to be modified by user code, it must be used as a read-only record.

Portability

SQLCA.SQLCODE will be set to a specific IBM® Informix® SQL error code, if the database driver can
convert the native SQL error to an IBM® Informix® SQL error. In case of error, SQLCA.SQLERRD[2] will
hold the native SQL error produced by the database server.

Other SQLCA record members are specific to IBM® Informix® databases. For example, after inserting a
row in a table with a SERIAL column, SQLCA.SQLERRD[2] contains the new generated serial number.
After an SQL error, SQLCA.SQLERRD[2] contains the native SQL error. The SQLCA.SQLERRD[3]
member may be set with the number of processed rows, if the database client provides the API. Other
SQLCA.SQLERRD[n] members must be considered as not portable.

Example

MAIN
 WHENEVER ERROR CONTINUE
 DATABASE stores
 SELECT COUNT(*) FROM foo -- Table should not exist!
 DISPLAY SQLCA.SQLCODE, SQLCA.SQLERRD[2]
END MAIN

SQL error identification
Identify SQL exceptions in your programs with SQLCA.SQLCODE.

Every database type has its own error numbers. Portable SQL code must take care of this when checking
for SQL errors in programs.

The IBM® Informix® compatible error code is stored in the SQLCA.SQLCODE register. This is done to
simplify migration to another database type. Existing code based on Informix® error numbers does not
need to be modified.

Database drivers map native SQL errors to Informix SQL errors, as listed in the following table:

Table 137: Native SQL error to Informix SQL error mappings

Informix
SQL

Oracle DB SQL
Server

IBM DB2 PostgreSQLMySQL Sybase
ASE

SQLite Netezza

-201 900:902,
905:911,
914, 917,
920:931,
933:936,
938:940,
946, 950,

102, 170,
101, 1103,
3005,
3014

-101, -104,
-106, -108,
-109, -127,
-142, -143

03000,
42000,
42501,
42601

1064,
1121

102, 156 N/A 21

SQL support | 403

Informix
SQL

Oracle DB SQL
Server

IBM DB2 PostgreSQLMySQL Sybase
ASE

SQLite Netezza

954, 957,
958,
962, 964,
966:971,
978:979,
982, 984,
985, 990,
992:996,
998:999

-204 N/A 3016 -103 N/A N/A N/A N/A N/A

-206 903, 942 3701,
4004

-204 42P01 1146,
1051

207, 208,
3701

N/A 29

-217 904 4005 -205, -206 42703 1054 N/A N/A 31

-236 913, 947 1200 -117 N/A N/A 213 N/A N/A

-244 N/A 1222 N/A N/A N/A 12205 N/A N/A

-251 N/A N/A -125 N/A N/A N/A N/A N/A

-253 972 2014 -107 N/A N/A N/A N/A N/A

-254 1008,
1475

N/A N/A N/A N/A N/A N/A N/A

-255 N/A N/A N/A 25P01 N/A N/A N/A N/A

-257 1000 N/A N/A N/A N/A N/A N/A N/A

-263 54 N/A N/A N/A N/A N/A N/A N/A

-268 1 2601,
2627

-803 23505 1062 2601 N/A N/A

-280 N/A N/A -102 N/A N/A N/A N/A N/A

-282 N/A N/A -105 N/A N/A N/A N/A N/A

-294 937 N/A -119, -122 N/A N/A N/A N/A N/A

-316 N/A N/A -605 N/A N/A N/A N/A N/A

-324 960 N/A -203 N/A N/A N/A N/A N/A

-350 1408 N/A N/A N/A N/A N/A N/A N/A

-360 N/A N/A -118 N/A N/A N/A N/A N/A

-371 1452 N/A -603, -673 N/A N/A N/A N/A N/A

-382 1756 N/A N/A N/A N/A N/A N/A N/A

-387 1017,
1045

715, 4002,
4003,
4008

-1403,
-1404

N/A 1045 N/A N/A 24

-388 1536 N/A N/A N/A N/A N/A N/A N/A

-391 1400,
1407

N/A -407 22004,
23502

N/A N/A N/A N/A

SQL support | 404

Informix
SQL

Oracle DB SQL
Server

IBM DB2 PostgreSQLMySQL Sybase
ASE

SQLite Netezza

-400 1002 N/A N/A N/A N/A N/A N/A N/A

-517 N/A N/A -602 N/A N/A N/A N/A N/A

-530 2290 N/A -193 23514 N/A 548 N/A N/A

-551 N/A N/A -613 N/A N/A N/A N/A N/A

-674 N/A 2812 N/A N/A N/A 14216 N/A N/A

-681 N/A 2812 -121 N/A N/A N/A N/A N/A

-691 2291 547 -530 23503 1452 546 19 N/A

-743 955 6000,
6006,
6008

N/A N/A N/A 2714 N/A N/A

-930 1033,
1034,
12154,
12203,
12224,
12500,
12560

11, 17,
708, 709,
711, 4014,
17142

-1013 08000,
08001,
08004,
08006,
08007,
08000

1044 4002 N/A N/A

-942 N/A N/A -903 N/A N/A N/A N/A N/A

-1202 N/A N/A -801 N/A N/A N/A N/A N/A

-1218 N/A 3048,
3049,
3050

-180, -181 N/A N/A N/A N/A N/A

-1260 932 N/A -190 N/A N/A N/A N/A N/A

-1279 1401 N/A -433,
-99998

N/A N/A N/A N/A N/A

-1349 1722 N/A N/A N/A N/A N/A N/A N/A

Sometimes the native error code of the database cannot be converted to an Informix® error code. In such
case, the SQLCA.SQLCODE register will be set to -6372. To properly identify an SQL error, the native SQL
error code is also provided in the SQLCA.SQLERRD[2] register.

Centralize SQL error identification in a function:

-- sqlerr.4gl module

PUBLIC CONSTANT SQLERRTYPE_FATAL = -1
PUBLIC CONSTANT SQLERRTYPE_LOCK = -2
PUBLIC CONSTANT SQLERRTYPE_CONN = -3

FUNCTION lastSqlErrorType()
 CASE
 WHEN SQLCA.SQLCODE == -201
 OR SQLCA.SQLERRD[2] == ...
 RETURN SQLERR_FATAL
 WHEN SQLCA.SQLCODE == -263
 OR SQLCA.SQLCODE == -244
 OR SQLCA.SQLERRD[2] == ...

SQL support | 405

 RETURN SQLERR_LOCK
 ...
 END CASE
END FUNCTION

You can then easily use this function after every SQL statement in your programs:

IMPORT FGL sqlerr
MAIN
 DATABASE stores
 WHENEVER ERROR CONTINUE
 UPDATE customer SET cust_address = NULL
 WHEN cust_name IS NULL
 IF lastSqlErrorType() == SQLERRTYPE_LOCK THEN
 ...
 END IF
 ...
END MAIN

SQL interruption
Interrupt long running SQL queries, or interrupt waiting queries because data is locked.

If the database server supports SQL interruption, a program can interrupt a long running SQL statement.

SQL interruption is not enabled by default. use the OPTIONS SQL INTERRUPT ON program option to turn
on SQL interruption.

With OPTIONS SQL INTERRUPT ON, when the program gets an interruption event (a SIGINT signal from
the system, or an interrupt event from the front-end), the running SQL statement is stopped, the INT_FLAG
global variable is set to TRUE, and SQLCA.SQLCODE is set with error -213.

SQL interrupt must be used in conjunction with signal handling instructions DEFER INTERRUPT and
DEFER QUIT, otherwise the program would stop immediately in case of interruption event.

SQL interruption results in abnormal SQL statement execution and raises a runtime error. Therefore, the
SQL statement that can be subject of interruption must be protected by a WHENEVER ERROR exception
handler.

MAIN
 DEFINE n INTEGER
 DEFER INTERRUPT
 OPTIONS SQL INTERRUPT ON
 DATABASE test1
 WHENEVER ERROR CONTINUE
 -- Start long query (self join takes time)
 -- From now on, user can hit CTRL-C in TUI mode to stop the query
 SELECT COUNT(*) INTO n FROM customers a, customers b
 WHERE a.cust_id <> b.cust_id
 IF SQLCA.SQLCODE == -213 THEN
 DISPLAY "Statement was interrupted by user..."
 EXIT PROGRAM 1
 END IF
 WHENEVER ERROR STOP
 ...
END MAIN

When SQL interruption is supported by the database server type that is different from IBM® Informix®, the
database drivers will return error -213 in case of interruption, to behave as in IBM® Informix®.

Important: Not all database servers support SQL interruption.

SQL support | 406

Table 138: Database server support of SQL interruption

Database Server Type SQL Interruption API
SQL error code for interrupted
query

IBM® DB2® UDB (Since version
9.x)

SQLCancel() Native error -952

IBM® Informix® sqlbreak() Native error -213

Microsoft™ SQL Server (Only
2005+ with SNC driver)

SQLCancel() SQLSTATE HY008

MySQL KILL QUERY command Native error -1317

Oracle Database Server OCIBreak() Native error -1013

PostgreSQL PQCancel() SQLSTATE 57014

Sybase ASE ct_cancel() SQLSTATE HY008

SQLite sqlite3_interrupt() Native error SQLITE_ABORT

Debugging SQL
Set the FGLSQLDEBUG environment variable to print SQL debug info.

SQL debug information is printed by the runtime system when the FGLSQLDEBUG environment variable
is defined. This variable can be set to an integer value from 0 to 10, according to the debugging details you
want to see. The debug messages are sent to the standard error stream. If needed, you can redirect the
standard error output into a file.

UNIX™ (shell) example:

FGLSQLDEBUG=3
export FGLSQLDEBUG
fglrun myprog 2>sqldbg.txt

An SQL debug header is printed before executing the underlying ODI driver code. If the driver code
crashes or raises an assertion, you can easily find the last SQL instruction that was executed by the
program, and report to you support center.

Cursors and connections
Several database connections can be opened simultaneously with the CONNECT TO instruction. Once
connected, you can DECLARE cursors or PREPARE statements to be used in parallel within different
connection contexts. This section describes how to use SQL cursors and SQL statements in a multiple-
connection program.

When you DECLARE a cursor or when you PREPARE a statement, you actually create an SQL statement
handle; the runtime system allocates resources for that statement handle before sending the SQL text to
the database server via the database driver.

The SQL statement handle is created in the context of the current connection, and must be used in
that context, until it is freed or recreated with another DECLARE or PREPARE statement. Using an SQL
statement handle in a different connection context than the one for which it was created will produce a
runtime error.

The SET CONNECTION instruction changes the connection context. Connections are identified by a name.
The AS clause of the CONNECT TO instruction allows to specify a connection name. If the AS clause is
omitted, the connection gets a default name based on the data source name.

This small program example illustrates the use of two cursors with two different connections:

MAIN

SQL support | 407

 CONNECT TO "db1" AS "s1"
 CONNECT TO "db2" AS "s2"
 SET CONNECTION "s1"
 DECLARE c1 CURSOR FOR SELECT tab1.* FROM tab1
 SET CONNECTION "s2"
 DECLARE c2 CURSOR FOR SELECT tab1.* FROM tab1
 SET CONNECTION "s1"
 OPEN c1
 SET CONNECTION "s2"
 OPEN c2
 ...
END MAIN

The DECLARE and PREPARE instructions are a type of creator instructions; if an SQL statement handle is
recreated in a connection other than the original connection for which it was created, old resources are
freed and new resources are allocated in the current connection context.

This allows you to re-execute the same cursor code in different connection contexts, as in this example:

MAIN
 CONNECT TO "db1" AS "s1"
 CONNECT TO "db2" AS "s2"
 SET CONNECTION "s1"
 IF checkForOrders() > 0 ...
 SET CONNECTION "s2"
 IF checkForOrders() > 0 ...
 ...
END MAIN

FUNCTION checkForOrders(d)
 DEFINE d DATE, i INTEGER
 DECLARE c1 CURSOR FOR SELECT COUNT(*) FROM orders WHERE ord_date = d
 OPEN c1
 FETCH c1 INTO i
 CLOSE c1
 FREE c1
 RETURN i
END FUNCTION

If the SQL statement handle was created in a different connection, the resources used in the old
connection context are freed automatically, and new statement handle resources are allocated in the
current connection context.

Implicit database connection
An implicit database connection is made with the DATABASE instruction used before MAIN; use SCHEMA to
avoid the implicit connection.

The DATABASE statement can be used in two distinct ways, depending on the context of the statement
within its source module:

• To specify a default database.

Typically used in a GLOBALS module, to define variables with the DEFINE ... LIKE, but it is also
used for the INITIALIZE and VALIDATE statements. Using the DATABASE statement in this way
results in that database being opened automatically at run time.

• To specify a current database.

In MAIN or in a FUNCTION, used to connect to a database. A variable can be used in this context (
DATABASE varname).

SQL support | 408

A default database is almost always used, because many programs contain DEFINE ... LIKE
statements. A problem occurs when the production database name differs from the development database
name, because the default database specification will result in an automatic connection (just after MAIN):

DATABASE stock_dev -- Default database, used at compile time
DEFINE
 p_cust RECORD LIKE customer.*
MAIN -- Connection to default database occurs at MAIN
 DEFINE dbname CHAR(30)
 LET dbname = "stock1"
 DATABASE dbname -- Real database used in production
 ...
END MAIN

In order to avoid the implicit connection, you can use the SCHEMA instruction instead of DATABASE:

SCHEMA stock_dev -- Schema specification only
DEFINE
 p_cust RECORD LIKE customer.*
MAIN -- No default connection occurs...
 DEFINE dbname CHAR(30)
 LET dbname = "stock1"
 DATABASE dbname
END MAIN

This instruction will define the database schema for compilation only, and will not make an implicit
connection at runtime.

The database utility library
The fgldbutl.4gl library provides several database-related utility functions.

You find this library in the FGLDIR/src directory.

The DB utility library implements helpers for the following areas:

• Database type identification
• Sequence number generation
• Nested transaction control

See the fgldbutl.4gl source file for more details.

Handling nested transactions
You can manage nested transactions in different parts of a program.

A program can become very complex if it contains a lot of nested functions calls, doing SQL processing
within transactions. You may want to centralize transaction control commands in wrapper functions. The
fgldbutl.4gl library contains special functions to manage the beginning and the end of a transaction
with an internal counter, in order to implement nested function calls inside a unique transaction.

MAIN
 IF a() <> 0 THEN
 ERROR "..."
 END IF
 IF b() <> 0 THEN
 ERROR "..."
 END IF
END MAIN

FUNCTION a()
 DEFINE s INTEGER
 LET s = db_start_transaction()
 UPDATE ...

SQL support | 409

 LET s = SQLCA.SQLCODE
 IF s = 0 THEN
 LET s = b()
 END IF
 LET s = db_finish_transaction((s==0))
 RETURN s
END FUNCTION

FUNCTION b()
 DEFINE s INTEGER
 LET s = db_start_transaction()
 UPDATE ...
 LET s = SQLCA.SQLCODE
 LET s = db_finish_transaction((s==0))
 RETURN s
END FUNCTION

In this example, you see in the MAIN block that both functions a() and b() can be called separately.
However, the transaction SQL commands will be used only if needed: When function a() is called, it starts
the transaction, then calls b(), which does not start the transaction since it was already started by a().
When function b() is called directly, it starts the transaction.

The function db_finish_transaction() is called with the expression (s==0), which is evaluated
before the call. This allows you to write in one line the equivalent of the following IF statement:

IF s==0 THEN
 LET s = db_finish_transaction(1)
ELSE
 LET s = db_finish_transaction(0)
END IF

Transaction blocks across connections
Transaction blocks manage transactions when connected to several database servers.

In some cases, you need to copy data from a database to another. Database vendor export / import tools
exist for this task and should be used when a large amount of data needs to be transferred. However, it
is also possible to achieve this with a BDL program connected to both databases, reading data from the
source database and inserting rows into the target database.

If the rows created in the target database need to be committed as a whole, you must open a transaction
with the BEGIN WORK instruction, use SET CONNECTION to switch between the connections to read/write
rows, and terminate the transaction with a COMMIT WORK.

In order to keep a transaction open when switching to another database connection, the connection must
be initiated with the WITH CONCURRENT TRANSACTION clause. If this option is not used, databases
servers might raise an error when changing the connection context. For example IBM® Informix® will return
the SQL error -1801: Multiple-server transaction not supported.

The example below opens two database connections, reads rows from a table of the first database, and
uses a transaction to insert rows in a table of the second database:

MAIN
 DEFINE rec RECORD
 pk INTEGER,
 name VARCHAR(50)
 END RECORD

 CONNECT TO "test1+driver='dbmifx'" AS "s1"
 USER "ifxuser" USING "fourjs"
 WITH CONCURRENT TRANSACTION
 CREATE TEMP TABLE tt1 (pk INT, name VARCHAR(50))
 INSERT INTO tt1 VALUES (1, "Item 1")

SQL support | 410

 INSERT INTO tt1 VALUES (2, "Item 2")

 CONNECT TO "test1+driver='dbmmys'" AS "s2"
 USER "mysuser" USING "fourjs"
 WITH CONCURRENT TRANSACTION
 CREATE TEMP TABLE tt2 (pk INT, name VARCHAR(50))

 SET CONNECTION "s1"
 DECLARE c1 CURSOR FOR SELECT * FROM tt1

 SET CONNECTION "s2"
 BEGIN WORK

 SET CONNECTION "s1"
 FOREACH c1 INTO rec.*
 SET CONNECTION "s2"
 INSERT INTO tt2 VALUES (rec.*)
 SET CONNECTION "s1"
 END FOREACH

 SET CONNECTION "s2"
 COMMIT WORK

END MAIN

The base.SQLHandle built-in class
Handle SQL queries with a 3GL API.

Genero BDL provides a 3GL API to execute SQL queries and introspect result set column information with
the base.SqlHandle built-in class.

The class implements typical SQL statement execution methods existing in well-known APIs, such as:

• prepare("sql-text")

• setParameter()

• execute()

• open(), openScrollCursor()
• fetch(), fetchFirst(), fetchLast(), ...

The class also implements introspection methods for the result set columns:

• getResultCount()

• getResultType(index)

• getResultName(index)

• getResultValue(index)

This class is provided to allow generic code implementation for specific needs. Consider using traditional
static and dynamic SQL instruction for regular code implementing your business rules; the 3GL code based
on the SqlHandle class is not as readable as static or dynamic SQL.

SQL security

• Database user authentication on page 410
• Avoiding SQL injection on page 411

Database user authentication
Understanding how users are authenticated to the database server.

When connecting to a database server, the user must be identified by the server. Once connected, the
current user is authenticated and identified by the db server, and the database system can then apply
specific privileges, audit user activity, and so on.

SQL support | 411

Database user authentication is typically achieved by specifying a login and password in the CONNECT TO
instruction. However, most database servers support additional user authentication methods, such as OS
user authentication, trusted connections, LDAP authentication, Single Sign-On authentication and even
specific pluggable authentication methods.

Follow these simple security patterns to avoid basic user authentication problems:

• Make sure that application files installed on your production server have the appropriate file system
permissions set. Regular users should have read-only access to program and resource files. If any OS
user can replace a program file with another program, it could harm your database or retrieve sensitive
private data.

• Each physical end user must have a specific database account. If several end users connect as the
same db application account, they cannot be distinguished in the security and auditing system.

• For normal application users, always use database accounts with the minimum database privileges
required to achieve the daily work (GRANT/REVOKE). For example, regular users should not be able to
execute Data Definition Language statements (drop tables).

• Instead of asking a name and password in a login dialog when an application starts, some applications
hard code the db user names and passwords in the program code, in scripts or configurations files such
as FGLPROFILE. This is not a good practice and must be avoided. If a login dialog is not appropriate,
you must set up another user authentication method supported by the database server, such as Single
Sign-On.

Avoiding SQL injection
Prevent SQL injection attacks in your programs.

SQL injection is a well-known attack that started to appear with Web applications, where the end user
enters SQL statement fragments in form fields that are normally designed to hold simple data. When
the entered text is used to complete a SQL statement without further checking, there is a risk of SQL
statements being injected by the user to intentionally harm the database.

To illustrate the problem, see the following code:

MAIN
 DEFINE sql CHAR(200), cn CHAR(50), n INTEGER
 OPEN FORM f FROM "custform"
 DISPLAY FORM f
 INPUT BY NAME cn
 LET sql = "SELECT COUNT(*) FROM customers WHERE custname = '", cn, "'"
 PREPARE stmt FROM sql
 EXECUTE stmt INTO n
 DISPLAY "Count = ", n
END MAIN

If the end user enters for example:

[xxx' ; delete from customers]

The resulting SQL statement will contain an additional DELETE command that will drop all rows of the
customers table:

SELECT COUNT(*) FROM customers WHERE custname = 'xxx'; DELETE FROM customers

In some applications, you may also want to let the end user choose sort columns to be added in an ORDER
BY clause. The code for such a feature should control the user input. For example, by providing a list of
columns to choose from, instead of allowing free text input that will be added to the ORDER BY clause.

To avoid SQL injection attacks, do not build SQL instructions dynamically by concatenating user input
that is not checked. Instead of basic concatenation, use static SQL statements with program variables
(if dynamic SQL is not needed), use parameterized queries (with ? parameter placeholders), or use the
CONSTRUCT instruction to implement a query by example form.

SQL support | 412

Simple static SQL example:

MAIN
 DEFINE cn CHAR(50), n INTEGER
 OPEN FORM f FROM "custform"
 DISPLAY FORM f
 INPUT BY NAME cn
 SELECT COUNT(*) INTO n FROM customers WHERE custname = cn
 DISPLAY "Count = ", n
END MAIN

Parameterized query example:

MAIN
 DEFINE sql CHAR(200), cn CHAR(50), n INTEGER
 OPEN FORM f FROM "custform"
 DISPLAY FORM f
 INPUT BY NAME cn
 LET sql = "SELECT COUNT(*) FROM customers WHERE custname = ?"
 PREPARE stmt FROM sql
 EXECUTE stmt USING cn INTO n
 DISPLAY "Count = ", n
END MAIN

CONSTRUCT example:

MAIN
 DEFINE sql CHAR(200), cond CHAR(50), n INTEGER
 OPEN FORM f FROM "custform"
 DISPLAY FORM f
 CONSTRUCT BY NAME cond ON custname
 LET sql = "SELECT COUNT(*) FROM customers WHERE ", cond
 PREPARE stmt FROM sql
 EXECUTE stmt INTO n
 DISPLAY "Count = ", n
END MAIN

SQL portability

Writing portable SQL is mandatory if you want to succeed with different kind of database servers. This
section gives you some hints to solve SQL incompatibility problems in your programs. Read this section
carefully and review your program source code if needed. You should also read carefully the ODI
adaptation guides which contain database specific information about SQL compatibility issues.

To easily detect SQL statements with specific syntax, you can use the -W stdsql option of fglcomp:

$ fglcomp -W stdsql orders.4gl
module.4gl:15: SQL Statement or language instruction with specific SQL
 syntax.

This compiler option can only detect non-portable SQL syntax in static SQL statements.

• Database entities on page 413
• Database users and security on page 414
• Creating a database from programs on page 414
• Data definition statements on page 416
• Using portable data types on page 416
• Data manipulation statements on page 417
• CHAR and VARCHAR types on page 418
• Concurrent data access on page 422

SQL support | 413

• Scrollable cursors on page 422
• Optimistic locking on page 423
• Auto-incremented columns (serials) on page 424
• IBM Informix SQL ANSI Mode on page 428
• Positioned updates/deletes on page 428
• WITH HOLD and FOR UPDATE on page 429
• Insert cursors on page 430
• String literals in SQL statements on page 431
• Date and time in SQL statements on page 432
• Naming database objects on page 433
• Temporary tables on page 434
• Outer joins on page 435
• Substring expressions on page 436
• Using ROWIDs on page 437
• MATCHES and LIKE operators on page 438
• GROUP BY clause on page 439
• The LENGTH() function in SQL on page 439
• Transaction savepoints on page 440
• Stored procedures on page 441

Database entities
The database entity concept across different database engines.

Most database servers can handle multiple database entities (you can create multiple 'databases'), but this
is not possible with all engines:

Table 139: Multiple database entities by Database server type

Database Server Type Multiple Database Entities

IBM® DB2® UDB Yes

IBM® Informix® Yes

Microsoft™ SQL Server Yes

MySQL Yes

Oracle Database Server No

PostgreSQL Yes

Sybase ASE Yes

SQLite Yes

When using a database server that does not support multiple database entities, you can emulate different
databases with schema entities, but this requires you to check for the database user definition. Each
database user must have privileges to access any schema, and to see any table of any schema without
needing to set a schema prefix before table names in SQL statements.

Some database drivers allow to select a specific schema at connection with the following FGLPROFILE
entry:

dbi.database.dbname.dbtype.schema = "schema-name"

Some databases also allow you to define a default schema for each database user. When the user
connects to the database, the default schema is automatically selected.

SQL support | 414

Database users and security
Properly identifying database users allows to use database security and audit features.

To get the benefit of the database server security features, you should identify each physical user as a
database user.

Some applications use a single database user for different end users, to avoid user management and
connection issues in the database. This is not good practice because all user-related features of the
database are unusable. Further, the single db user often has all database privileges and thus can lead in
security issues.

According to the type of server, you must do this steps to create a database user:

1. Define the user as an operating system user.
2. Declare the user in the database server.
3. Grant database access privileges.

Each database server has its specific users management and data access privilege mechanisms. Check
the vendor documentation for security features and make sure you can define the users, groups, and
privileges in all database servers you want to use.

Creating a database from programs
Creating a database from within a program requires special consideration.

Understanding database creation statements

The Genero language syntax supports database creation statements such as:

CREATE DATABASE mydb WITH BUFFERED LOG

Such instruction performs an implicit connection to the database server (i.e., no CONNECT TO or
DATABASE is required before a CREATE DATABASE), and leads to a default connection.

Creating a database in a database server

When using a database server engine, the creation of a database entity is not a trivial operation. The
process usually requires additional tasks such as data storage configuration, database user creation, data
access policy, and so on. These tasks are typically left to the database administrator.

Database creation statements such as CREATE DATABASE, CREATE DBSPACE, and DROP DATABASE
can be used in programs connected to an IBM® Informix® server, but these statements are not portable.
Use database creation statements only for development or testing purpose.

Creating a database on mobile devices (SQLite)

Mobile applications usually create their database at first execution. Database creation on a mobile device
is a much simpler operation than database creation on a database server. For example, with SQLite,
creating a database only requires creating an empty file.

The SQLite database file must be created in the application sandbox, in a writable directory. This directory
is specific to the type of mobile device, and can be found in programs with the os.Path.pwd on page
2004 method.

To build the full path to the database file, get the current working directory (os.Path.pwd()) and add
this path to the database file name. This defines the source specification in the database connection
parameters, to build the string used for the CONNECT instruction:

IMPORT os
...
DEFINE dbfile, source, connstr VARCHAR(256)

SQL support | 415

FUNCTION init_connection_strings()
 LET dbfile = "contacts.dbs"
 LET source = os.Path.join(os.Path.pwd(), dbfile)
 LET connstr = SFMT("contacts+source='%1'", source)
 IF NOT base.Application.isMobile() THEN
 -- Add db driver spec when in development mode
 LET connstr = connstr, ",driver='dbmsqt'"
 END IF
END FUNCTION

If not specified, the source connection parameter (i.e., the path to the database file) defaults to the
database name specification in the CONNECT instruction. Thus, the source='dbpath' parameter is
usually omitted, and dbpath is specified directly as the database name. In this case, however, the identifier
of the database connection is the complete path to the SQLite database file. For more details about
database connection parameters, see Database connections on page 457.

Before executing the CONNECT instruction, check if the database file already exists with
os.Path.exists(source). Create the database file and tables only if needed:

IMPORT os
...
 CALL init_connection_strings()
 IF os.Path.exists(source) THEN
 CONNECT TO connstr AS "c1"
 ELSE
 CALL create_empty_file(source)
 CONNECT TO connstr AS "c1"
 CALL create_database_tables()
 END IF
 ...

FUNCTION create_empty_file(fn)
 DEFINE fn STRING
 DEFINE ch base.Channel()
 LET ch = base.Channel.create()
 CALL ch.openFile(fn,"w")
 CALL ch.close()
END FUNCTION

Instead of creating an empty database file, it is also possible to prepare a template (pre-configured) SQLite
database file on the development platform, deploy the template database with the other program files,
and copy the template file from the program files directory (base.Application.getProgramDir on
page 1705) into the working directory (os.Path.pwd on page 2004) on the first application execution
(i.e. when the database file in the working directory does not yet exist):

IMPORT os
...
 CALL init_connection_strings()
 IF NOT prepare_database("template.dbs", source) THEN
 ERROR "Could not prepare database"
 EXIT PROGRAM 1
 END IF
 CONNECT TO connstr AS "c1"
 ...

FUNCTION prepare_database(template, target)
 DEFINE template, target STRING
 DEFINE tplpath STRING
 IF os.Path.exists(target) THEN
 RETURN TRUE
 END IF
 LET tplpath = os.Path.join(base.Application.getProgramDir(), template)

SQL support | 416

 IF NOT os.Path.exists(tplpath) THEN
 ERROR "Database template file not found"
 RETURN FALSE
 END IF
 RETURN os.Path.copy(tplpath, target)
END FUNCTION

Important: When creating an initial database file into the working directory from a template file
deployed in the program files directory, different file names should be used for the template and
actual database file, as folders pointed by base.Application.getProgramDir on page 1705
and os.Path.pwd on page 2004 could be the same on some devices.

Data definition statements
DDL statements should be avoided in programs.

When using Data Definition Statements like CREATE TABLE, ALTER TABLE, DROP TABLE, only a limited
SQL syntax works on all database servers. Most databases support NOT NULL, CHECK, PRIMARY KEY,
UNIQUE, FOREIGN KEY constraints, but the syntax for naming constraints is different.

The following statement works with most database servers and creates a table with equivalent properties in
all cases:

 CREATE TABLE customer (
 cust_id INTEGER NOT NULL,
 cust_name CHAR(50) NOT NULL,
 cust_lastorder DATE NOT NULL,
 cust_group INTEGER,
 PRIMARY KEY (cust_id),
 UNIQUE (cust_name),
 FOREIGN KEY (cust_group) REFERENCES group (group_id)
)

Some engines like SQL Server have a different default behavior for NULL columns when you create a
table. You may need to set up database properties to make sure that a column allows nulls if the NOT
NULL constraint is not specified.

When you want to create tables in programs using non-standard clauses (for example to define storage
options), you must use dynamic SQL and adapt the statement to the target database server.

Using portable data types
Only a limited set of data types are really portable across several database engines.

The ANSI SQL specification defines standard data types, but for historical reasons most databases
vendors have implemented native (non-standard) data types. You can usually use a synonym for ANSI
types, but the database server will uses the native types behind the scenes. For example, when you create
a table with an INTEGER column in Oracle, the native NUMBER data type is used.

In your programs, avoid data types that do not have a native equivalent in the target database. This
includes simple types like floating point numbers, as well as complex data types like INTERVAL. Numbers
may cause rounding or overflow problems, because the values stored in the database have different
limits. For the DECIMAL types, always use the same precision and scale for the program variables and the
database columns.

To write portable applications, we strongly recommend using the following data types only:

• CHAR(n)

• VARCHAR(n)

• BIGINT

• INTEGER

• SMALLINT

• DECIMAL(p,s)

SQL support | 417

• DATE

• DATETIME HOUR TO MINUTE

• DATETIME HOUR TO SECOND

• DATETIME YEAR TO MINUTE

• DATETIME YEAR TO FRACTION(n)

Data manipulation statements
Make sure that SQL statement syntaxes are supported by all target database engines.

Several SQL syntaxes for the INSERT, UPDATE and DELETE statements are supported by the compiler.
Some of the syntaxes are IBM® Informix® specific, but will be converted to standard SQL at compile time.

The following statements are standard SQL and work with all database servers:

(1) INSERT INTO table (column-list) VALUES (value-list)
(2) UPDATE table SET column = value, ... [WHERE condition]
(3) DELETE FROM table [WHERE condition]

The next statements are not standard SQL, but are converted by the compiler to standard SQL, working
with all database servers:

(4) INSERT INTO table VALUES record.*
 -- where record is defined LIKE a table from db schema
(5) UPDATE table SET (column-list) = (value-list) [WHERE condition]
(6) UPDATE table SET {[table.]*|(column-list)}
 = record.* ... [WHERE condition]
 -- where record is defined LIKE a table from db schema

The next statement is not standard SQL and will not be converted by the compiler, so it must be reviewed:

(7) UPDATE table SET [table.]* = (value-list) [WHERE condition]

You can easily search for non-portable SQL statements in your sources by compiling with the -W stdall
fglcomp option.

For maximum SQL portability, INSERT statements should be reviewed to avoid the SERIAL column from
the value list.

For example, the following statement:

INSERT INTO tab (col1, col2, ...) VALUES (0, p_value2, ...)

should be converted to:

INSERT INTO tab (col2, ...) VALUES (p_value2, ...)

A static SQL INSERT statement using records defined from the schema file should also be reviewed:

DEFINE rec LIKE tab.*
INSERT INTO tab VALUES (rec.*) -- will use the serial column

should be converted to:

INSERT INTO tab VALUES rec.* -- without braces, serial column is removed

For more details about supported SQL DML statements, see static SQL.

SQL support | 418

CHAR and VARCHAR types
Using the CHAR and VARCHAR data types with different sort of databases.

The CHAR and VARCHAR types are designed to store character strings, but all database servers do not
have the same semantics for these types.

The behavior of database servers may defer in the following areas related to CHAR/VARCHAR types.

• Byte or Character Length semantics? on page 418
• SQL character type for Unicode/UTF-8 on page 418
• Empty strings and NULLs on page 419
• Trailing blanks in CHAR/VARCHAR on page 419
• What should you do? on page 421

Byte or Character Length semantics?

When defining a CHAR/VARCHAR database column or program variable, you must specify a size. When
using a multibyte character set, the unit of this size matters: it can be specified in bytes or characters.
In programs, the size unit of CHAR/VARCHAR variables depends on the length semantics defined by the
FGL_LENGTH_SEMANTICS environment variable. In databases, the size unit of the CHAR/VARCHAR
columns can be expressed in bytes or characters, depending on the database server and its configuration.

SQL character type for Unicode/UTF-8
This section explains database server specifics regarding Unicode / UTF-8 support with character string
SQL types.

All database servers can store UNICODE data in character strings types, but there are some specifics
you must be aware of. Genero BDL programs typically use the CHAR and VARCHAR types to store UTF-8
strings. But the correspond SQL type may have a different name, according to the database server
type. Use the correct SQL type when creating you database tables. When the database uses a different
UNICODE codeset as UTF-8 to store the character string data, the database client or the Genero database
driver take care of the codeset conversion, as long as the runtime system and database client locale are
properly defined.

Table 140: Database server character types for Unicode / UTF-8 data

Database Server Type Char types to be used for Unicode/UTF-8

IBM® DB2® UDB

CHAR / VARCHAR if the database was created with
UTF-8 codeset. Otherwise, you must use GRAPHIC,
VARGRAPHIC types.

For more details, see CHARACTER data types on
page 547.

IBM® Informix® CHAR / VARCHAR, the database must be created with
UTF-8 locale.

IBM® Netezza

NCHAR / NVARCHAR (data always stored in UTF-8).

For more details, see CHARACTER data types on
page 577.

Microsoft™ SQL Server

NCHAR / NVARCHAR, to store UTF-16 data (drivers
make the conversion for application codeset UTF-8)

The CHAR/VARCHAR types can only store non-unicode
data.

For more details, see CHARACTER data types on
page 600.

SQL support | 419

Database Server Type Char types to be used for Unicode/UTF-8

Oracle MySQL

CHAR / VARCHAR if the database locale is UTF-8.

NCHAR / NVARCHAR if you need to use the national
character set.

For more details, see CHARACTER data types on
page 630.

Oracle Database Server

CHAR / VARCHAR2 if the database locale is UTF-8.

NCHAR / NVARCHAR2 if you need to use the national
character set.

For more details, see CHARACTER data types on
page 653.

PostgreSQL

CHAR / VARCHAR, the database locale must be UTF-8.

For more details, see CHARACTER data types on
page 689.

Sybase ASE

CHAR / VARCHAR if the database locale is UTF-8.

NCHAR / NVARCHAR or UNICHAR / UNIVARCHAR if you
need to use the national character set.

For more details, see CHARACTER data types on
page 729.

SQLite

CHAR / VARCHAR (data always stored in UTF-8).

For more details, see CHARACTER data types on
page 712.

Empty strings and NULLs

At the SQL level, most databases distinguish '' empty strings from NULL (with some exceptions like
Oracle DB). However, in programs, an empty string is the equivalent to NULL in program variables. As
result, it is not possible to distinguish an empty string from a NULL when such values are fetched from
the database. This limitation is only visible when fetching VARCHAR columns and expressions fetched into
VARCHAR variables, because CHAR columns get filled with blanks if the database returns a CHAR column
value that was filled with an empty string; CHAR columns get blanks up to the max size.

Trailing blanks in CHAR/VARCHAR

Trailing blanks in CHAR/VARCHAR database columns

With all kinds of databases servers, CHAR columns are always filled with blanks up to the size of the
column (this is called blank padding). However, trailing blanks are not significant in comparisons:

CHAR('abc ') = CHAR('abc')

With all database servers except IBM® Informix®, trailing blanks are significant when comparing VARCHAR
values:

VARCHAR('abc ') != VARCHAR('abc')

SQL support | 420

This is a major issue if you mix CHAR and VARCHAR columns and variables in your SQL statements,
because the result of an SQL query can be different depending on whether you are using IBM® Informix®

or another database server.

Further, the semantics of the SQL LIKE operator regarding trailing blanks and CHAR/VARCHAR types
can differ from database to database. For example, try the following expressions with you database, with a
CHAR(5) column containing a row with the value 'abc':

CREATE TABLE t1 (k INT, c CHAR(5), vc VARCHAR(5))
INSERT INTO t1 VALUES (1, 'abc', 'abc')
SELECT * FROM t1 WHERE c LIKE 'ab_'
SELECT * FROM t1 WHERE vc LIKE 'ab_'
SELECT * FROM t1 WHERE RTRIM(c) LIKE 'ab_'
SELECT * FROM t1 WHERE c LIKE '%c'
SELECT * FROM t1 WHERE vc LIKE '%c'
SELECT * FROM t1 WHERE RTRIM(c) LIKE '%c'

See discussion about MATCHES and LIKE operators in adaption guides for more details.

Trailing blanks in CHAR/VARCHAR program variables

In programs, CHAR variables are filled with blanks, even if the value used does not contain all spaces.

The following example:

DEFINE c CHAR(5)
LET c = "abc"
DISPLAY c || "."

shows the value "abc ." (5 chars + dot).

VARCHAR variables are assigned with the exact value specified, with significant trailing blanks.

For example, this code:

DEFINE v VARCHAR(5)
LET v = "abc "
DISPLAY v || "."

shows the value "abc ." (4 chars + dot).

Assigning an empty string to a CHAR or VARCHAR variable will set the variable to NULL:

DEFINE v VARCHAR(5)
LET v = ""
IF v IS NULL THEN
 DISPLAY "is null" -- will be displayed
END IF

When comparing CHAR or VARCHAR variables in an expression, the trailing blanks are not significant:

DEFINE c CHAR(5)
DEFINE v1, v2 VARCHAR(5)
LET c = "abc"
LET v1 = "abc "
LET v2 = "abc "
IF c == v1 THEN
 DISPLAY "c==v1"
END IF
IF c == v2 THEN
 DISPLAY "c==v2"
END IF

SQL support | 421

IF v1 == v2 THEN
 DISPLAY "v1==v2"
END IF

All three messages are shown.

Additionally, when you assign a VARCHAR variable from a CHAR, the target variable gets the trailing blanks
of the CHAR variable:

DEFINE pc CHAR(50)
DEFINE pv VARCHAR(50)
LET pc = "abc"
LET pv = pc
DISPLAY pv || "."

"abc <47 spaces>. " (50 chars + dot) is shown.

To avoid this, use the CLIPPED operator:

LET pv = pc CLIPPED

Trailing blanks in SQL statement parameters

When you insert a row containing a CHAR variable into a CHAR or VARCHAR column, the database interface
removes the trailing blanks to avoid overflow problems, (insert CHAR(100) into CHAR(20) when value is
"abc" must work).

In this example:

DEFINE c CHAR(5)
LET c = "abc"
CREATE TABLE t (v1 CHAR(10), v2 VARCHAR(10))
INSERT INTO tab VALUES (c, c)

The value in column v1 and v2 would be "abc" (3 chars in both columns).

When you insert a row containing a VARCHAR variable into a VARCHAR column, the VARCHAR value in the
database gets the trailing blanks as set in the variable. When the column is a CHAR(N), the database
server fills the value with blanks so that the size of the string is N characters.

In this example:

DEFINE vc VARCHAR(5)
LET vc = "abc " -- note 2 spaces at end of string
CREATE TABLE t (v1 CHAR(10), v2 VARCHAR(10))
INSERT INTO tab VALUES (vc, vc)

The value in column v1 would be "abc " (10 chars) and v2 would be "abc " (5 chars).

What should you do?

Make sure that you have correctly defined the locale and length semantics for your character string data
types.

When designing your database tables, consider using CHAR(N) for fixed-length string data (such as
codes) and VARCHAR(N) for variable-length string data, such as names, address and comments.

Use VARCHAR variables for VARCHAR columns, and CHAR variables for CHAR columns to achieve portability
across all kinds of database servers.

Avoid storing empty strings in VARCHAR columns, or make sure that your program is prepared to get nulls
while the database stores empty strings.

SQL support | 422

Using byte or character length semantics depends mainly on the character set of your application.
When using a single-byte character set, keep the default byte length semantics. When using a multibyte
character set such as UTF-8, use character length semantics in both the database and the programs. The
database column definition and the program variable definition must match, this can be simplified by using
a database schema.

Concurrent data access
Understanding concurrent data access and data consistency.

Data concurrency is the simultaneous access of the same data by many users. On the other hand, data
consistency means that each user sees a consistent view of the database. Without adequate concurrency
and consistency controls, data could be changed improperly, compromising data integrity. To write inter-
operable applications, you must adapt the program logic to the behavior of the database server regarding
concurrency and consistency management. This issue requires good knowledge of multiuser application
programming, transactions, locking mechanisms, isolation levels and wait mode. If you are not familiar with
these concepts, carefully read the documentation of each database server which covers this subject.

Processes accessing the database can change transaction parameters such as the isolation level. Existing
programs might have to be adapted in order to work with this new behavior.

The following is the best configuration to get common behavior with all types of database engines:

• The database must support transactions; this is usually the case.
• Transactions must be as short as possible (under a second is fine, 3 or more seconds is a long

transaction).
• The isolation Level should be set to COMMITTED READ or CURSOR STABILITY. IBM® Informix® IDS

11 has introduced the LAST COMMITTED option for the COMMITTED READ isolation level, which makes
IDS behave like other database server using row-versioning, returning the most recently committed
version of the row, rather than wait for a lock to be released. This option can also be turned on implicitly
with the USELASTCOMMITTED configuration parameter, saving code changes.

• The wait mode for locks must be WAIT or WAIT n (timeout). Wait mode can be adapted to wait for the
longest transaction.

Remarks: With this configuration, the locking granularity does not have to be at the row level. To improve
performance with IBM® Informix® databases, you can use the LOCK MODE PAGE locking level, which is the
default.

Scrollable cursors
How scrollable cursors can be supported on different databases.

Scrollable cursors can be used to go forward and backward in an SQL query result set:

DEFINE cust_rec RECORD LIKE customer.*
DECLARE sc SCROLL CURSOR
 FOR SELECT * FROM customer
OPEN sc
FETCH NEXT sc INTO cust_rec.*
FETCH LAST sc INTO cust_rec.*
FETCH FIRST sc INTO cust_rec.*
CLOSE sc

This is a useful feature, to implement record set navigation in applications. Scrollable cursors are typically
implemented in the database server. But not all database servers support scrollable cursors.

When scrollable cursors are not supported by the target database server, the database driver will emulate
it with temporary files.

The temporary files are create in a temporary directory, that can be defined with the DBTEMP environment
variable. If DBTEMP is not defined, the default temporary directory dependents from the platform used.

You should consider to avoid scroll cursor usage if the target database does not support this feature:

SQL support | 423

With emulated scrollable cursors, when scrolling to the last row, all rows will be fetched into the temporary
file. This can generate a lot of network traffic and can produce a large temporary file if the result-set
contains a lot of rows. Additionally, programs are dependent on the file system resource allocated to the
OS user (ulimit).

The following table lists the native scroll cursor availability for each supported database:

Table 141: Database server support for scrollable cursors

Database Server Type Native scroll cursors?

IBM® DB2® UDB Yes

IBM® Informix® Yes

IBM® Netezza No, emulated by the drivers.

Microsoft™ SQL Server Yes

Oracle MySQL No, emulated by the drivers.

Oracle Database Server Yes

PostgreSQL Yes

Sybase ASE Yes

SQLite No, emulated by the drivers.

Optimistic locking
Implementing optimistic locking to handle access concurrently to the same database records.

This section describes how to implement optimistic locking in applications. Optimistic locking is a portable
solution to control simultaneous modification of the same record by multiple users.

Traditional IBM® Informix® applications use a SELECT FOR UPDATE to set a lock on the row to be
edited by the user. This is called pessimistic locking. The SELECT FOR UPDATE is executed before the
interactive part of the code, as described in here:

1. When the end user chooses to modify a record, the program declares and opens a cursor with a
SELECT FOR UPDATE. At this point, an SQL error might be raised if the record is already locked by
another process. Otherwise, the lock is acquired and user can modify the record.

2. The user edits the current record in the input form.
3. The user validates the dialog.
4. The UPDATE SQL instruction is executed.
5. The transaction is committed or the SELECT FOR UPDATE cursor is closed. The lock is released.

If the IBM® Informix® database was created with transaction logging, you must either start a transaction or
define the SELECT FOR UPDATE cursor WITH HOLD option.

Unfortunately, this is not a portable solution. The lock wait mode should preferably be WAIT for portability
reasons. Pessimistic locking is based on a NOT WAIT mode to return control to the program if a record is
already locked by another process. Therefore, following the portable concurrency model, the pessimistic
locking mechanisms must be replaced by the optimistic locking technique.

Basically, instead of locking the row before the user starts to modify the record data, the optimistic locking
technique makes a copy of the current values (i.e. before modification values (BVM)), lets the user edit the
record, and when it's time to write data into the database, checks if the BMVs still correspond to the current
values in the database:

1. A SELECT is executed to fill the record variable used by the interactive instruction for modifications.
2. The record variable is copied into a backup record to keep Before Modification Values.
3. The user enters modifications in the input form; this updates the values in the modification record.

SQL support | 424

4. The user validates the dialog.
5. A transaction is started with BEGIN WORK.
6. Declare a cursor with a SELECT FOR UPDATE, to select the row to be updated.
7. Open the SELECT FOR UPDATE cursor and fetch the row into the temporary record.
8. If the SQL status is NOTFOUND, the row has been deleted by another process, and the transaction can

stop with ROLLBACK WORK.
9. If the row was found, the program compares the temporary record values with the backup record values

with the (rec1.*==rec2.*) notation.
10.If these values have changed, the row has been modified by another process, and the transaction can

stop with ROLLBACK WORK.
11.If the values in the database have not changed, the UPDATE statement is executed to apply the last

changes of the user.
12.The transaction is committed with a COMMIT WORK.

To compare 2 records (with NULL checking), simply write:

IF new_record.* != bmv_record.* THEN
 LET values_have_changed = TRUE
END IF

The optimistic locking technique could be implemented with a unique SQL instruction: an UPDATE could
compare the column values to the BMVs directly (UPDATE ... WHERE kcol = kvar AND col1 =
bmv.var1 AND ...). But, this is not possible when BMVs can be NULL. The database engine always
evaluates conditional expressions such as "col=NULL" to FALSE. Therefore, you must use "col IS
NULL" when the BMV is NULL. This means dynamic SQL statement generation based on the DMV values.
Additionally, to use the same number of SQL parameters (? markers), you would have to use "col=?"
when the BMV is not null and "col IS NULL and ? IS NULL" when the BMV is null. Unfortunately,
the expression " ? IS [NOT] NULL " is not supported by all database servers (DB2® raises error
SQL0418N).

If you are designing a new database application from scratch, you can also use the row versioning method.
Each tables of the database must have a column that identifies the current version of the row. The column
can be a simple INTEGER (to hold a row version number) or it can be a timestamp (DATETIME YEAR
TO FRACTION(5) for example). To guaranty that the version or timestamp column is updated each
time the row is updated, you should implement a trigger to increment the version or set the timestamp
when an UPDATE statement is issued. If this is in place, you just need to check that the row version or
timestamp has not changed since the user modifications started, instead of testing all field of the BMV
record. If you are only using one specific database type, you may check if the server supports a versioning
column natively. For example, IBM® Informix® IDS 11.50.xC1 introduced the ALTER TABLE ... ADD
VERCOLS option to get a version + checksum column to a table, you can then query the table with the
ifx_insert_checksum and ifx_row_version columns.

Auto-incremented columns (serials)
How to implement automatic record keys?

IBM® Informix® provides the SERIAL, BIGSERIAL or SERIAL8 data types which can be emulated with
database drivers for most non-Informix database engines by using native sequence generators (when
"ifxemul.serial" FGLPROFILE setting is true). But, this requires additional configuration and
maintenance tasks. If you plan to review the programming pattern of sequences, you should use a portable
implementation instead of the serial emulation provided by the database drivers. This section describes
different solutions to implement auto-incremented fields. The preferred implementation is the solution using
SEQUENCES.

SQL support | 425

Solution 1: Use database specific serial generators

Principle

In accordance with the target database, you must use the appropriate native serial generation method.
Get the database type with the fgl_db_driver_type() built-in function and use the appropriate SQL
statements to insert rows with serial generation.

This solution uses the native auto-increment feature of the target database and is fast at execution,
but is not very convenient as it requires to write different code for each database type. However, it is
covered here to make you understand that each database vendor has it's own specific solution for auto-
incremented columns. It is of course not realistic to use this solution in a large application with hundreds of
tables.

Implementation

1. Create the database objects required for serial generation in the target database (for example, create
tables with SERIAL columns in IBM® Informix®, tables with IDENTITY columns in SQL Server and
SEQUENCE database objects in Oracle).

2. Adapt your programs to use the native sequence generators in accordance with the database type.

Example

DEFINE t1rec RECORD
 id INTEGER,
 name CHAR(50),
 cdate DATE
 END RECORD

CASE fgl_db_driver_type()
 WHEN "ifx"
 INSERT INTO t1 (id, name, cdate)
 VALUES (0, t1rec.name, t1rec.cdate)
 LET t1rec.id = SQLCA.SQLERRD[2]
 WHEN "ora"
 INSERT INTO t1 (id, name, cdate)
 VALUES (t1seq.nextval, t1rec.name, t1rec.cdate)
 SELECT t1seq.currval INTO t1rec.id FROM dual
 WHEN "msv"
 INSERT INTO t1 (name, cdate)
 VALUES (t1rec.name, t1rec.cdate)
 PREPARE s FROM "SELECT @@IDENTITY"
 EXECUTE s INTO t1rec.id
END CASE

As you can see in this example, this solution requires database engine specific coding.
Querying the last generated serial can be centralized in a function, but the insert
statements would still need to be specific to the type of database.

Solution 2: Generate serial numbers from your own sequence table

Purpose

The goal is to generate unique INTEGER or BIGINT numbers. These numbers will usually be used for
primary keys.

SQL support | 426

Prerequisites

1. The database must use transactions. This is usually the case with non-INFORMIX databases, but IBM®

Informix® databases default to auto commit mode. Make sure your IBM® Informix® database allows
transactions.

2. The sequence generation must be called inside a transaction (BEGIN WORK / COMMIT WORK).
3. The transaction isolation level must guarantee that a row UPDATEd in a transaction cannot be read

or written by other db sessions until the transaction has ended (typically, COMMITTED READ is ok, but
some db servers require a higher isolation level)

4. The lock wait mode must be WAIT. This is usually the case in non-INFORMIX databases, but
INFORMIX defaults to NOT WAIT. You must change the lock wait mode with "SET LOCK MODE TO
WAIT" or "WAIT seconds" when using IBM® Informix®.

5. Other applications or stored procedures must implement the same technique when inserting records in
the table having auto-incremented columns.

Principle

A dedicated table named "SEQREG" is used to register sequence numbers. The key is the name of the
sequence. This name will usually be the table name the sequence is generated for. In short, this table
contains a primary key that identifies the sequence and a column containing the last generated number.

The uniqueness is granted by the concurrency management of the database server. The first executed
instruction is an UPDATE that sets an exclusive lock on the SEQREG record. When two processes try to get
a sequence at the same time, one will wait for the other until its transaction is finished.

Implementation

The "fgldbutl.4gl" utility library implements a function called "db_get_sequence()" which generates
a new sequence. You must create the SEQREG table as described in the fgldbutl.4gl source found in
FGLDIR/src, and make sure that every user has the privileges to access and modify this table.

In order to guarantee the uniqueness of the generated number, the call to db_get_sequence() must be
done inside a transaction block that includes the INSERT statement. Concurrent db sessions must wait for
each other in case of conflict and the transaction isolation level must be high enough to make sure that the
row of the sequence table will not be read or written by other db sessions until the transaction end.

Example

IMPORT FGL fgldbutl
DEFINE rec RECORD
 id INTEGER,
 name CHAR(100)
 END RECORD
...
BEGIN WORK
LET rec.id = db_get_sequence("CUSTID")
INSERT INTO CUSTOMER (CUSTID, CUSTNAME) VALUES (rec.*)
COMMIT WORK

Solution 3: Use native SEQUENCE database objects

Principle

Most recent database engines support SEQUENCE database objects; If all database server types you want
to use do support sequences, you should use this solution.

SQL support | 427

Implementation

1. Create a SEQUENCE object for each table using previously a SERIAL column in the IBM® Informix®

database.
2. In database creation scripts (CREATE TABLE), replace all SERIAL types by INTEGER (or BIGINT if you

need large integers).
3. Adapt your programs to retrieve a new sequence before inserting a new row. Consider writing a

function to retrieve a new sequence number, using dynamic SQL to pass the name of the sequence as
parameter, and adapt to the target database specifics to retrieve a single row (see example below).

Example

MAIN
 DEFINE item_rec RECORD
 item_num BIGINT,
 item_name VARCHAR(40)
 END RECORD
 DEFINE i INT
 DATABASE test1
 CREATE TABLE item (
 item_num BIGINT NOT NULL PRIMARY KEY,
 item_name VARCHAR(50)
)
 CALL sequence_create("item")
 LET item_rec.item_num = sequence_next("item")
 DISPLAY "New sequence: ", item_rec.item_num
 LET item_rec.item_name = "Item#" || item_rec.item_num
 INSERT INTO item VALUES (item_rec.*)
 DROP TABLE item
 DROP SEQUENCE item_seq
END MAIN

PRIVATE FUNCTION is_sql_server()
 RETURN (fgl_db_driver_type()=="esm" OR
 fgl_db_driver_type()=="snc")
END FUNCTION

FUNCTION sequence_create(tabname)
 DEFINE tabname STRING
 IF is_sql_server() THEN
 EXECUTE IMMEDIATE "CREATE SEQUENCE item_seq START WITH 1"
 ELSE
 CREATE SEQUENCE item_seq
 END IF
END FUNCTION

FUNCTION sequence_next(tabname)
 DEFINE tabname STRING
 DEFINE sql STRING, newseq BIGINT
 CASE
 WHEN fgl_db_driver_type()=="pgs"
 LET sql = "SELECT nextval('"||tabname||"_seq')"||
unique_row_condition()
 WHEN is_sql_server()
 LET sql = "SELECT NEXT VALUE FOR "||tabname||"_seq"
 OTHERWISE
 LET sql = "SELECT "||tabname||"_seq.nextval "||
unique_row_condition()
 END CASE
 PREPARE seq FROM sql
 IF SQLCA.SQLCODE!=0 THEN RETURN -1 END IF
 EXECUTE seq INTO newseq

SQL support | 428

 IF SQLCA.SQLCODE!=0 THEN RETURN -1 END IF
 RETURN newseq
END FUNCTION

FUNCTION unique_row_condition()
 CASE fgl_db_driver_type()
 WHEN "ifx" RETURN " FROM systables WHERE tabid=1"
 WHEN "db2" RETURN " FROM sysibm.systables WHERE
 name='SYSTABLES'"
 WHEN "pgs" RETURN " FROM pg_class WHERE
 relname='pg_class'"
 WHEN "ora" RETURN " FROM dual"
 OTHERWISE RETURN " "
 END CASE
END FUNCTION

IBM® Informix® SQL ANSI Mode
Understanding the impact of the SQL ANSI mode of IBM® Informix®.

IBM® Informix® allows you to create databases in ANSI mode, which is supposed to be closer to ANSI
standard behavior. Other databases like ORACLE and DB2® are 'ANSI' by default.

If you are not using the ANSI mode with IBM® Informix®, we suggest you keep the database as is, because
turning an IBM® Informix® database into ANSI mode can result in unexpected behavior of the programs.

Here are some ANSI mode issues extracted from the IBM® Informix® books:

• Some actions, like CREATE INDEX will generate a warning but will not be forbidden.
• Buffered logging is not allowed to enforce data recovery. (Buffered logging provides better

performance)
• The table-naming scheme allows different users to create tables without having to worry about name

conflicts.
• Owner specification is required in database object names (SELECT ... FROM "owner".table).

You must quote the owner name to prevent automatic translation of the owner name into uppercase:
SELECT ... FROM owner.table becomes SELECT .. FROM OWNER.table and thus, the table is
not found in the database.

• Default privileges differ: When creating a table, the server grants privileges to the table owner and the
DBA only. The same thing happens for the 'Execute' privilege when creating stored procedures.

• Default isolation level is REPEATABLE READ.
• An error is generated if any character field is filled with a value that is longer than the field width.
• DECIMAL(p) (floating point decimals) are automatically converted to DECIMAL(p,0) (fixed point

decimals).
• Closing a closed cursor generates an SQL error.

It will take more time to adapt the programs to the IBM® Informix® ANSI mode than using the database
interface to simulate the native mode of IBM® Informix®.

Positioned updates/deletes
Using positioned updates/deletes with named database cursors.

The "WHERE CURRENT OF cursor-name" clause in UPDATE and DELETE statements is not supported by
all database engines.

Table 142: Database server support of WHERE CURRENT OF

Database Server Type WHERE CURRENT OF supported?

IBM® DB2® UDB Yes

SQL support | 429

Database Server Type WHERE CURRENT OF supported?

IBM® Informix® Yes

Microsoft™ SQL Server Yes

MySQL Yes

Oracle Database Server No, emulated by driver with ROWIDs

PostgreSQL No, emulated by driver with OIDs

Sybase ASE Yes

SQLite No

Some database drivers can emulate WHERE CURRENT OF mechanisms by using rowids, but this requires
additional processing. You should review the code to disable this option.

The standard SQL solution is to use primary keys in all tables and write UPDATE / DELETE statements with
a WHERE clause based on the primary key:

DEFINE rec RECORD
 id INTEGER,
 name CHAR(100)
 END RECORD
BEGIN WORK
 SELECT CUSTID FROM CUSTOMER
 WHERE CUSTID=rec.id FOR UPDATE
 UPDATE CUSTOMER SET CUSTNAME = rec.name
 WHERE CUSTID = rec.id
COMMIT WORK

WITH HOLD and FOR UPDATE
Hold cursors and not portable.

IBM® Informix® supports WITH HOLD cursors using the FOR UPDATE clause. Such cursors can remain
open across transactions (when using FOR UPDATE, locks are released at the end of a transaction, but
the WITH HOLD cursor is not closed). This kind of cursor is IBM® Informix-specific and not portable. The
SQL standards recommend closing FOR UPDATE cursors and release locks at the end of a transaction.
Most database servers close FOR UPDATE cursors when a COMMIT WORK or ROLLBACK WORK is done. All
database servers release locks when a transaction ends.

Table 143: Database server support of WITH HOLD FOR UPDATE

Database Server Type WITH HOLD FOR UPDATE supported?

IBM® DB2® UDB No

IBM® Informix® Yes

Microsoft™ SQL Server No

MySQL No

Oracle Database Server No

PostgreSQL No

Sybase ASE No

SQLite No

SQL support | 430

It is mandatory to review code using WITH HOLD cursors with a SELECT statement having the FOR
UPDATE clause.

The standard SQL solution is to declare a simple FOR UPDATE cursor outside the transaction and open the
cursor inside the transaction:

DECLARE c1 CURSOR FOR SELECT ... FOR UPDATE
BEGIN WORK
 OPEN c1
 FETCH c1 INTO ...
 UPDATE ...
COMMIT WORK

If you need to process a complete result set with many rows including updates of master and detail rows,
first fetch the primary keys of all master rows into a program array, declare a cursor with the SELECT FOR
UPDATE, then for all rows in the array, start a transaction and perform the UPDATE WHERE CURRENT OF
for the current master record and the UPDATE for detail rows, then commit the transaction and continue
with the next master record:

DEFINE x, mkeys DYNAMIC ARRAY OF INTEGER
DECLARE c1 CURSOR FOR SELECT key FROM master ...
FOREACH c1 INTO x
 LET mkeys[mkeys.getLength()+1] = x
END FOREACH
DECLARE c2 CURSOR FOR SELECT * FROM master WHERE key=? FOR UPDATE
FOR x = 1 TO mkeys.getLength()
 BEGIN WORK
 OPEN c2 USING mkeys[x]
 FETCH c2 INTO mrec.*
 IF STATUS==NOTFOUND THEN
 ROLLBACK WORK
 CONTINUE FOREACH
 END IF
 UPDATE master SET ... WHERE CURRENT OF c2
 UPDATE detail SET ... WHERE master_key=mkeys[x]
 COMMIT WORK
END FOR

Insert cursors
Using insert cursors with non-Informix databases.

Database cursors defined with "DECLARE cursor-name CURSOR FOR INSERT ..." are designed for
IBM® Informix® databases, to optimize row insertion when a lot of data must be loaded in the table.

This is an IBM® Informix® specifc feature. With non-Informix databases, insert cursors are emulated by
executing the INSERT

DEFINE rec RECORD
 id INTEGER,
 name CHAR(100)
 END RECORD,
 i INTEGER
DECLARE c1 CURSOR FOR INSERT INTO customer VALUES (?,?)
BEGIN WORK
 OPEN c1
 FOR i=1 TO 100
 LET rec.id = i
 LET rec.name = "name"||i
 PUT c1 FROM rec.*
 END FOR
 FLUSH c1
 CLOSE c1

SQL support | 431

COMMIT WORK

Insert cursors are an IBM® Informix® specifc feature. The IBM® Informix® insert cursors buffers the
provided rows and flushes blocks of rows into the database after a given number of rows, or when the
program explicitly executes a FLUSH or CLOSE. In can of errors, for example when inserting a character
string value for a numeric column, the SQL error is returned at "flush time" with Informix®.

With non-Informix databases, the rows are not buffered: insert cursors are emulated in db drivers by
executing the INSERT statement on every PUT instruction. As result, this can lead to poor performances,
and SQL errors can be returned earlier at PUT time.

Note that the LOAD instruction is based on an insert cursor. The same performance issue applies to the
LOAD instruction when using a non-Informix database.

If you need to feed your database with a lot of data, coming for example from external sources, we
recommend to use database vendor specific tools to load the data. This option is much more efficient as
using a Genero program to load data.

String literals in SQL statements
Single quotes is the standard for delimiting string literals in SQL.

Some database servers like IBM® Informix® allow single and double quoted string literals in SQL
statements, both are equivalent:

SELECT COUNT(*) FROM table
 WHERE col1 = "abc'def""ghi"
 AND col1 = 'abc''def"ghi'

Most database servers do not support this specific feature.

Table 144: Database servers support of double-quoted string literals

Database Server Type Double quoted string literals

IBM® DB2® UDB No

IBM® Informix® Yes

Microsoft™ SQL Server Yes

MySQL No

Oracle Database Server No

PostgreSQL No

Sybase ASE No

SQLite Yes

The ANSI SQL standards define doubles quotes as database object names delimiters, while single quotes
are dedicated to string literals:

CREATE TABLE "my table" ("column 1" CHAR(10))
SELECT COUNT(*) FROM "my table" WHERE "column 1" = 'abc'

If you want to write a single quote character inside a string literal, you must write 2 single quotes:

... WHERE comment = 'John''s house'

SQL support | 432

When writing static SQL in your programs, the double quoted string literals as converted to ANSI single
quoted string literals by the fglcomp compiler. However, dynamic SQL statements are not parsed by the
compiler and therefore need to use single quoted string literals.

We recommend that you always use single quotes for string literals and, if needed, double quotes for
database object names.

Date and time in SQL statements
Good practices for date and time handling in SQL.

Date and time strings in SQL Statements

IBM® Informix® allows you to specify date and time values as a quoted character string in a specific format,
depending upon DBDATE and GLS environment variables. For example, if DBDATE=DMY4, the following
statement specifies a valid DATE represented by a string literal:

SELECT COUNT(*) FROM table WHERE date_col = '24/12/2005'

Other database servers do support date/time literals as quoted character strings, but the date/time format
specification is quite different. The parameter to specify the date/time format can be a database parameter,
an environment variable, or a session option.

In order to write portable SQL, use SQL parameters instead of string literals for date-time values:

DEFINE cnt INTEGER
DEFINE adate DATE
LET adate = MDY(12,24,2005)
SELECT COUNT(*) INTO cnt FROM table
 WHERE date_col = adate

Or, when using dynamic SQL:

DEFINE cnt INTEGER
DEFINE adate DATE
LET adate = MDY(12,24,2005)
PREPARE s1 FROM "SELECT COUNT(*) FROM table WHERE date_col = ?"
EXECUTE s1 USING adate INTO cnt

Date-time literals

IBM® Informix® DATETIME and INTERVAL literals are not converted automatically by the SQL translator of
the database driver:

SELECT COUNT(*) FROM order WHERE ord_when > DATETIME (1999-10-12) YEAR TO
 DAY

Check your code, to detect where you are using such expressions in the SQL statements, and use an SQL
parameter instead.

Informix-specific keywords

SQL Statements using expressions such as TODAY, CURRENT and EXTEND must be reviewed and
adapted to the native syntax of the target database engine.

Check your code, to detect where you are using such expressions in the SQL statements.

Date-time expressions with parameters

Date-time arithmetic expressions using SQL parameters (USING variables) are not portable.

SQL support | 433

For example:

PREPARE s1 FROM "SELECT ... WHERE datecol < ? + 1"

Might generate an error with non-Informix databases.

DATEs as a number of days

IBM® Informix® can automatically convert integers to a DATE values, as a number of days since
12/31/1899 (1 = 01/01/1900). This is however not supported by other database engines.

Check your code, to detect where you are using integers with DATE columns.

Naming database objects
Name syntax
Database object naming conventions are different for each database engine.

The table below describes the naming conventions for database objects (i.e. tables, sequences, stored
procedures):

Table 145: Database server naming conventions for database objects

Database Server Type Naming Syntax

IBM® DB2® UDB [[database.]owner.]identifier

IBM® Informix® [database[@dbservername]:][owner.]identifier

Microsoft™ SQL Server [[[server.][database].][owner_name].]object_name

MySQL [database.]identifier

Oracle Database Server [schema.]identifier[@database-link]

PostgreSQL [owner.]identifier

Sybase ASE [database.]identifier

SQLite [database.]identifier

Case-sensitivity
Handling case-sensitivity with different database engines.

Most database engines have case-sensitive object identifiers. In most cases, when you do not specify
identifiers in double quotes, the SQL parser automatically converts names to uppercase or lowercase, so
that the identifiers match if the objects are also created without double quoted identifiers.

CREATE TABLE Customer (cust_ID INTEGER)

In ORACLE, this statement would create a table named "CUSTOMER" with a "CUST_ID" column.

SQL support | 434

This table shows the behavior of each database engine regarding case sensitivity and double quoted
identifiers:

Table 146: Database server support of case sensitivity and double-quoted identifiers

Database Server Type Un-quoted names Double-quoted names

IBM® DB2® UDB Converts to uppercase Case sensitive

IBM® Informix® (1) Converts to lowercase
Syntax disallowed (non-ANSI
mode)

Microsoft™ SQL Server (2) Not converted, kept as is Case sensitive

MySQL Not converted, kept as is Syntax disallowed

Oracle Database Server Converts to uppercase Uppercase

PostgreSQL Converts to lowercase Lowercase

Sybase ASE Converts to lowercase Lowercase

SQLite Not converted, kept as is Case insensitive

(1) If not ANSI database mode.

(2) When case-sensitive charset/collation used.

Take care with database servers marked in red, because object identifiers are case sensitive and are not
converted to uppercase or lowercase if not delimited by double-quotes. This means that, by error, you can
create two tables with a similar name:

CREATE TABLE customer (cust_id INTEGER) -- first table
CREATE TABLE Customer (cust_id INTEGER) -- second table

It is recommended to design databases with lowercase table and column names.

Size of identifiers
Avoid using long database object names.

The maximum size of a table or column name depends on the database server type. Some database
engines allow very large names (256c), while others support only short names (30c max). Therefore, using
short names is required for writing portable SQL. Short names also simplify SQL programs.

We recommend that you use simple and short (<30c) database object names, without double quotes and
without a schema/owner prefix:

CREATE TABLE customer (cust_id INTEGER)
SELECT customer.cust_id FROM table

You may need to set the database schema after connection, so that the current database user can see the
application tables without specifying the owner/schema prefix each time.

Tip: Even if all database engines do not required unique column names for all tables, we
recommend that you define column names with a small table prefix (for example, CUST_ID in
CUSTOMER table).

Temporary tables
Syntax for temporary table creation is not unique across all database engines.

Not all database servers support temporary tables. The engines supporting this feature often provide it with
a specific table creation statement:

SQL support | 435

Table 147: Database server support of temporary tables

Database Server
Type

Temp table creation syntax
Local to SQL
session?

IBM® DB2® UDB

DECLARE GLOBAL TEMPORARY TABLE tablename
 (column-defs)
DECLARE GLOBAL TEMPORARY TABLE tablename AS
(SELECT ...)

Yes

IBM® Informix® CREATE TEMP TABLE tablename (column-defs)
SELECT ... INTO TEMP tablename Yes

Microsoft™ SQL
Server

CREATE TABLE #tablename (column-defs)
SELECT select-list INTO #tablename FROM ... Yes

MySQL

CREATE TEMPORARY TABLE tablename (column-defs
)
CREATE TEMPORARY TABLE tablename LIKE other-
table

Yes

Oracle Database
Server

CREATE GLOBAL TEMPORARY
TABLE tablename (column-defs)
CREATE GLOBAL TEMPORARY TABLE tablename AS
 SELECT ...

No: only data is local
to session

PostgreSQL
CREATE TEMP TABLE tablename (column-defs)
SELECT select-list INTO TEMP tablename
 FROM ...

Yes

Sybase ASE CREATE TABLE #tablename (column-defs)
SELECT select-list INTO #tablename FROM ... Yes

SQLite CREATE TEMP TABLE tablename (column-defs) Yes

Some databases even have a different behavior when using temporary tables. For example, ORACLE 9i
supports a kind of temporary table, but it must be created as a permanent table. The table is not specific to
an SQL session: it is shared by all processes - only the data is local to a database session.

You must review the programs using temporary tables, and adapt the code to use database-specific
temporary tables.

Outer joins
Use standard ISO outer join syntax instead of the old IBM® Informix® OUTER() syntax.

Old IBM® Informix® SQL outer joins specified with the OUTER keyword in the FROM part are not standard:

SELECT * FROM master, OUTER (detail)
 WHERE master.mid = detail.mid
 AND master.cdate IS NOT NULL

SQL support | 436

Table 148: Database server support of OUTER JOIN syntax

Database Server Type Supports IBM® Informix® OUTER join syntax

IBM® DB2® UDB No (but translated by driver)

IBM® Informix® (1) Yes

Microsoft™ SQL Server (2) No (but translated by driver)

MySQL No (but translated by driver)

Oracle Database Server No (but translated by driver)

PostgreSQL No (but translated by driver)

Sybase ASE No (but translated by driver)

SQLite No (but translated by driver)

Most recent database servers now support the standard ANSI outer join specification:

SELECT * FROM master LEFT OUTER JOIN detail ON (master.mid = detail.mid)
 WHERE master.cdate IS NOT NULL

You should use recent database servers and use ANSI outer joins only.

Substring expressions
Handle substrings expressions with different database engines.

Only IBM® Informix® supports substring specification with square brackets:

SELECT * FROM item WHERE item_code[1,4] = "XBFG"

However, most database servers support a function that extracts substrings from a character string:

SQL support | 437

Table 149: Database server support of extraction of substrings

Database Server Type
Supports col[x,y]
substrings?

Provides substring function?

IBM® DB2® UDB No SUBSTR(expr,start,length)

IBM® Informix® (1) Yes SUBSTR(expr,start,length)

Microsoft™ SQL Server (2) No SUBSTRING(expr,start,length)

MySQL No SUBSTR(expr,start,length)

Oracle Database Server No SUBSTRING(expr,start,length)

PostgreSQL No SUBSTRING(expr FROM start FOR
 length)

Sybase ASE No SUBSTRING(expr,start,length)

SQLite No SUBSTR(expr,start,length)

Informix® allows you to update some parts of a CHAR and VARCHAR column by using the substring
specification (UPDATE tab SET col[1,2] ='ab'). This is not possible with other databases.

Review the SQL statements using substring expressions and use the database specific substring function.

You could also create your own SUBSTRING() user function in all databases that do not support this
function, to have a common way to extract substrings. In Microsoft™ SQL Server, when you create a user
function, you must specify the owner as prefix when using the function. Therefore, you should create a
SUBSTRING() user function instead of SUBSTR().

Using ROWIDs
Automatic ROWIDs is not a common database feature.

Rowids are implicit primary keys generated by the database engine. Not all database servers support
rowids:

Table 150: Database server support of rowid

Database Server Type Rowid keyword? Rowid type?

IBM® DB2® UDB none none

IBM® Informix® (1) ROWID INTEGER

Microsoft™ SQL Server (2) none none

MySQL none none

Oracle Database Server ROWID CHAR(18)

SQL support | 438

Database Server Type Rowid keyword? Rowid type?

PostgreSQL OID internal type

Sybase ASE none none

SQLite ROWID BIGINT

Informix® fills the SQLCA.SQLERRD[6] register with the ROWID of the last updated row. This register is an
INTEGER and cannot be filled with rowids having CHAR(*) type.

Search for ROWID and SQLCA.SQLERRD[6] in your code and review the code to remove the usage of
rowids.

MATCHES and LIKE operators
Use the standard LIKE operator instead of the MATCHES operator.

The MATCHES operator allows you to scan a string expression:

SELECT * FROM customer WHERE customer_name MATCHES "A*[0-9]"

Here is a table listing the database servers which support the MATCHES operator:

Table 151: Database server support for MATCHES operator

Database Server Type Support for SQL MATCHES operator?

IBM® DB2® UDB No

IBM® Informix® (1) Yes

Microsoft™ SQL Server (2) No

MySQL No

Oracle Database Server No

PostgreSQL No

Sybase ASE No

SQLite No

The MATCHES operator is specific to IBM® Informix® SQL. The equivalent standard operator is LIKE.
For maximum portability, replace MATCHES expressions in your SQL statements with a standard LIKE
expression. MATCHES uses * and ? as wildcards. The equivalent wildcards in the LIKE operator are % and
_. Character ranges [a-z] are not supported by the LIKE operator.

Note that the Genero language includes a MATCHES operator. For example, in expressions such as: IF
custname MATCHES "S*". Do not confuse the language MATCHES operator with the SQL MATCHES
operator, used in SQL statements. There is no problem in using the MATCHES operator of the language.

A program variable can be used as parameter for the MATCHES or LIKE operator, but you must pay
attention to blank padding semantics of the target database. If the program variable is defined as a
CHAR(N), it is filled by the runtime system with trailing blanks, in order to have a size of N. For example,
when a CHAR(10) variable is assigned with "ABC%", it contains actually "ABC% " (with 6 additional
blanks). If this variable is used in a LIKE expression in an SQL statement, the database server will
search for column values matching "ABC"+ some characters + 6 blanks. To avoid automatic blanks, use a
VARCHAR(N) data type instead of CHAR(N) to hold LIKE patterns.

Pay also attention to database specific semantics of the LIKE operation, especially when using CHAR(N)
data types. For example, with Oracle DB, the expression custname LIKE '%h', if custname is defined
as CHAR(30), Oracle will only find the rows when the custname values end with a 'h' at the last character

SQL support | 439

position (30), values such as 'Smith' will not be found. Similarly, when doing custname LIKE 'ab_',
rows where the column type is CHAR(N>3), with values such as 'abc' will not match in Oracle, IBM®

DB2® and PostgreSQL, because of the significant trailing blanks.

As a general advice, use the VARCHAR type for variable string data, and leave CHAR usage for fixed-
length character string data such as codes.

GROUP BY clause

Some databases allow you to specify a column index in the GROUP BY clause:

SELECT a, b, sum(c) FROM table GROUP BY 1,2

This is not possible with all database servers:

Table 152: Database server support of GROUP BY column index

Database Server Type GROUP BY colindex, ... ?

IBM® DB2® UDB No

IBM® Informix® (1) Yes

Microsoft™ SQL Server (2) No

MySQL Yes

Oracle Database Server No

PostgreSQL Yes

Sybase ASE No

SQLite Yes

Search for GROUP BY in your SQL statements and use explicit column names.

The LENGTH() function in SQL
The semantics of the LENGTH() SQL function differs according to the database engine.

The SQL LENGTH() function must be used with care: Each database server has different semantics for
this function, regarding length and trailing blanks handling.

Note: The language provides a LENGTH built-in function which is part of the runtime system. Do
not confuse this with the SQL LENGTH() function, used in SQL statements. The LENGTH() function
of the language returns zero when the string expression is NULL.

SQL support | 440

Table 153: Database server support of LENGTH()

Database Server
Type

Function name
Counting unit Significant trailing

blanks for CHAR()
columns

Return value
when NULL

IBM® DB2® UDB LENGTH(expr)
Octets

Yes NULL

IBM® Informix® (1) LENGTH(expr)
Octets

No NULL

Microsoft™ SQL
Server (2)

LEN(expr)
Characters

No NULL

MySQL LENGTH(expr)
Characters

No NULL

Oracle Database
Server

LENGTH(expr)
Characters

Yes NULL

PostgreSQL LENGTH(expr)
Characters

Yes NULL

Sybase ASE (2) LEN(expr)
Characters

No NULL

SQLite LENGTH(expr)
Characters

Yes NULL

Search for LENGTH() usage in your SQL statements and review the code of the database-specific
function.

Transaction savepoints
Using transaction savepoints with different database engines.

IBM® Informix® IDS 11.50 introduced transaction savepoints, following the ANSI SQL standards. While
most recent database severs support savepoints, you must pay attention and avoid Informix® specific
features. For example, Oracle (11), SQL Server (2008 R2), Sybase ASE (15.5) do not support the
RELEASE SAVEPOINT instruction. The UNIQUE clause of SAVEPOINT is only supported by IBM® Informix®

and IBM® DB2® UDB.

Database Server Type
SAVEPOINT &
ROLLBACK WORK TO
SAVEPOINT

RELEASE SAVEPOINT SAVEPOINT UNIQUE

IBM® DB2® UDB Yes Yes Yes

IBM® Informix® Yes Yes Yes

Microsoft™ SQL Server
(Only 2005+ with SNC
driver)

Yes No No

MySQL Yes Yes No

Oracle Database Server Yes No No

PostgreSQL Yes Yes No

SQL support | 441

Database Server Type
SAVEPOINT &
ROLLBACK WORK TO
SAVEPOINT

RELEASE SAVEPOINT SAVEPOINT UNIQUE

Sybase ASE Yes No No

SQLite Yes Yes No

Stored procedures
Executing stored procedures with different database engine types.

Stored procedures execution needs to be addressed specifically according to the database type. There are
different ways to execute a stored procedure. This section describes how to execute stored procedures on
the supported database engines.

Tip: In order to write reusable code, you should encapsulate each stored procedure execution in
a FUNCTION performing database-specific SQL based on a global database type variable. The
program function would just take the input parameters and return the output parameters of the
stored procedure, hiding database-specific execution steps from the caller.

Specifying input and output parameters

Input and ouput parameters can be specified in SQL statement execution to pass and return values to/from
stored procedures, according to the database type:

EXECUTE stmt USING param1 IN, param2 INOUT, param3 INOUT

Stored procedures returning a result set

With some database servers it is possible to execute stored procedures that produce a result set, and fetch
the rows as normal SELECT statements, by using DECLARE, OPEN, FETCH. Some databases can return
multiple result sets and cursor handles declared in a stored procedure as output parameters, but Genero
supports only unique and anonymous result sets. See the examples.

Calling stored procedures with supported databases

• Stored procedure call with IBM Informix on page 441
• Stored procedure call with Oracle DB on page 443
• Stored procedure call with IBM DB2 on page 444
• Stored procedure call with Microsoft SQL Server on page 445
• Stored procedure call with PostgreSQL on page 447
• Stored procedure call with Oracle MySQL on page 449

Stored procedure call with IBM® Informix®

IBM® Informix® stored procedures are written in the SPL, C or Java™ programming languages, also known
as User Defined Routines.

See Informix IDS documentation for more details.

Stored functions returning values

To return values from an IBM® Informix® SPL routine, execute the routine and fetch the output values, as
you would for a regular SELECT statement producing a result set.

Note: Informix distinguishes between stored functions from stored procedures. Only stored
functions (with a RETURNING clause) can return values. Stored procedures do not return values.

To execute an Informix stored function from a BDL program, use the EXECUTE FUNCTION SQL
instruction:

PREPARE stmt FROM "execute function proc1(?)"

SQL support | 442

In order to retrieve returning values into program variables, use an INTO clause in the EXECUTE
instruction.

This example shows how to call a stored function:

MAIN
 DEFINE n INTEGER
 DEFINE d DECIMAL(6,2)
 DEFINE c VARCHAR(200)
 DATABASE test1
 EXECUTE IMMEDIATE "create function proc1(p1 integer)"
 || " returning decimal(6,2), varchar(200);"
 || " define p2 decimal(6,2);"
 || " define p3 varchar(200);"
 || " let p2 = p1 + 0.23;"
 || " let p3 = 'Value = ' || p1;"
 || " return p2, p3;"
 || " end function;"
 PREPARE stmt FROM "execute function proc1(?)"
 LET n = 111
 EXECUTE stmt USING n INTO d, c
 DISPLAY d
 DISPLAY c
END MAIN

Stored functions defined with output parameters

Starting with IDS 10.00, IBM® Informix® introduced the concept of output parameters for stored functions.

To retrieve the output parameters, you must execute the routine in a SELECT statement defining Statement
Local Variables. These variables will be listed in the select clause to be fetched as regular column values.
See Informix documentation for more details.

In order to retrieve returning values into program variables, use an INTO clause in the EXECUTE
instruction.

This example shows how to call a stored function with output parameters:

MAIN
 DEFINE pi, pr INTEGER
 DATABASE test1
 EXECUTE IMMEDIATE "create function proc2(i INT, OUT r INT)"
 ||" returning int;"
 ||" let r=i+10;"
 ||" return 1;"
 ||" end function"
 PREPARE s FROM "select r from systables where tabid=1 and
 proc2(?,r#int)==1"
 LET pi = 33
 EXECUTE s USING pi INTO pr
 DISPLAY "Output value: ", pr
 EXECUTE IMMEDIATE "drop function proc2"
END MAIN

Stored functions returning a result set

To retrieve the rows of a result set produced by an IBM® Informix® stored function, you must create a
cursor, as you would for a regular SELECT statement.

This example shows how to execute a stored function producing a result set:

MAIN
 DEFINE m, p_pk INT, p_name VARCHAR(10)
 DATABASE test1

SQL support | 443

 CREATE TABLE t1 (pk INT, name VARCHAR(10))
 INSERT INTO t1 VALUES (1, 'aaaa')
 INSERT INTO t1 VALUES (2, 'bbbbbb')
 INSERT INTO t1 VALUES (3, 'cccc')
 EXECUTE IMMEDIATE "create function proc3(v_max INT)"
 ||" returning int, lvarchar;"
 ||" define r_pk integer;"
 ||" define r_name lvarchar;"
 ||" foreach c1 for select pk,name into r_pk, r_name from
 t1 where pk <= v_max"
 ||" return r_pk,r_name with resume;"
 ||" end foreach;"
 ||" end function"
 DECLARE c CURSOR FROM "EXECUTE FUNCTION proc3(?)"
 LET m = 100
 FOREACH c USING m INTO p_pk, p_name
 DISPLAY p_pk, p_name
 END FOREACH
 EXECUTE IMMEDIATE "drop function proc3"
 DROP TABLE t1
END MAIN

Stored procedure call with Oracle DB

Oracle supports stored procedures and stored functions as a group of PL/SQL statements that you can
call by name. Oracle stored functions are very similar to stored procedures, except that a function returns a
value to the environment in which it is called. Functions can be used in SQL expressions.

Stored procedures with output parameters

Oracle stored procedures or stored functions must be called with the input and output parameters
specification in the USING clause of the EXECUTE, OPEN or FOREACH instruction. As in normal dynamic
SQL, parameters must correspond by position, and the IN/OUT/INOUT options must match the parameter
definition of the stored procedure.

To execute the stored procedure, you must include the procedure in an anonymous PL/SQL block with
BEGIN and END keywords:

PREPARE stmt FROM "begin proc1(?,?,?); end;"

Remark: Oracle stored procedures do not specify the size of number and character parameters. The size
of output values (especially character strings) are defined by the calling context (i.e. the data type of the
variable used when calling the procedure). When you pass a CHAR(10) to the procedure, the returning
value will be filled with blanks to reach a size of 10 bytes.

Note that for technical reasons, the Oracle driver uses dynamic binding with OCIBindDynamic(). The
Oracle Call Interface does not support stored procedures parameters with the CHAR data type when using
dynamic binding. You must use VARCHAR2 instead of CHAR to define character string parameters for
stored procedures.

Here is a complete example creating and calling a stored procedure with output parameters:

MAIN
 DEFINE n INTEGER
 DEFINE d DECIMAL(6,2)
 DEFINE c VARCHAR(200)
 DATABASE test1
 EXECUTE IMMEDIATE
 "create procedure proc1("
 || " p1 in int,"
 || " p2 in out number,"
 || " p3 in out varchar2"
 || ")"

SQL support | 444

 || " is begin"
 || " p2:= p1 + 0.23;"
 || " p3:= 'Value = ' || to_char(p1);"
 || "end;"
 PREPARE stmt FROM "begin proc1(?,?,?); end;"
 LET n = 111
 EXECUTE stmt USING n IN, d INOUT, c INOUT
 DISPLAY d
 DISPLAY c
END MAIN

Stored functions with a return value

To execute the stored function returning a value, you must include the function in an anonymous PL/SQL
block with BEGIN and END keywords, and use an assignment expression to specify the place holder for the
returning value:

PREPARE stmt FROM "begin ?:= func1(?,?,?); end;"

Stored procedures producing a result set

Oracle supports result set generation from stored procedures with the concept of cursor variables (REF
CURSOR).

Note that Genero does not support cursor references produced by Oracle stored procedures or functions.

Stored procedure call with IBM® DB2®

IBM® DB2® implements stored procedures as a saved collection of SQL statements, which can accept
and return user-supplied parameters. IBM® DB2® stored procedures can also produce one or more result
sets. Beside stored procedures, IBM® DB2® supports user defined functions, typically used to define scalar
functions returning a simple value which can be part of SQL expressions.

Stored procedures with output parameters

IBM® DB2® stored procedures must be called with the input and output parameters specification in the
USING clause of the EXECUTE, OPEN or FOREACH instruction. As in normal dynamic SQL, parameters must
correspond by position and the IN/OUT/INOUT options must match the parameter definition of the stored
procedure.

To execute the stored procedure, you must use the CALL SQL instruction:

PREPARE stmt FROM "call proc1(?,?,?)"

Here is a complete example creating and calling a stored procedure with output parameters:

MAIN
 DEFINE n INTEGER
 DEFINE d DECIMAL(6,2)
 DEFINE c VARCHAR(200)
 DATABASE test1
 EXECUTE IMMEDIATE
 "create procedure proc1("
 || " in p1 int,"
 || " out p2 decimal(6,2),"
 || " inout p3 varchar(20)"
 || ")"
 || " language sql begin"
 || " set p2 = p1 + 0.23;"
 || " set p3 = 'Value = ' || char(p1);"
 || "end"
 PREPARE stmt FROM "call proc1(?,?,?)"
 LET n = 111

SQL support | 445

 EXECUTE stmt USING n IN, d OUT, c INOUT
 DISPLAY d
 DISPLAY c
END MAIN

Stored procedures producing a result set

With DB2® UDB, you can execute stored procedures returning a result set. To do so, you must declare a
cursor and fetch the rows:

MAIN
 DEFINE i, n INTEGER
 DEFINE d DECIMAL(6,2)
 DEFINE c VARCHAR(200)
 DATABASE test1
 CREATE TABLE tab1 (c1 INTEGER, c2 DECIMAL(6,2), c3 VARCHAR(200))
 INSERT INTO tab1 VALUES (1, 123.45, 'aaaaaa')
 INSERT INTO tab1 VALUES (2, 123.66, 'bbbbbbbbb')
 INSERT INTO tab1 VALUES (3, 444.77, 'cccccc')
 EXECUTE IMMEDIATE "create procedure proc2(in key integer)"
 || " result sets 1"
 || " language sql"
 || " begin"
 || " declare c1 cursor with return for"
 || " select * from tab1 where c1 > key;"
 || " open c1;"
 || " end"
 DECLARE curs CURSOR FROM "call proc2(?)"
 LET i = 1
 FOREACH curs USING i INTO n, d, c
 DISPLAY n, d, c
 END FOREACH
END MAIN

Stored procedures with output parameters and result set

It is possible to execute DB2® UDB stored procedures with output parameters and a result set.

The output parameter values are available after the OPEN cursor instruction:

 OPEN curs USING n IN, d OUT, c INOUT
 FETCH curs INTO rec.*

Stored procedure call with Microsoft™ SQL Server

SQL Server implements stored procedures, which are a saved collection of Transact-SQL statements that
can take and return user-supplied parameters.

SQL Server stored procedures can also produce one or more result sets.

Stored procedures with output parameters

SQL Server stored procedures must be called with the input and output parameters specification in the
USING clause of the EXECUTE, OPEN or FOREACH instruction. As in normal dynamic SQL, parameters must
correspond by position and the IN/OUT/INOUT options must match the parameter definition of the stored
procedure.

To execute the stored procedure, you must use an ODBC call escape sequence:

PREPARE stmt FROM "{ call proc1(?,?,?) }"

Here is a complete example creating and calling a stored procedure with output parameters:

MAIN

SQL support | 446

 DEFINE n INTEGER
 DEFINE d DECIMAL(6,2)
 DEFINE c VARCHAR(200)
 DATABASE test1
 EXECUTE IMMEDIATE
 "create procedure proc1"
 || " @v1 integer,"
 || " @v2 decimal(6,2) output,"
 || " @v3 varchar(20) output"
 || " as begin"
 || " set @v2 = @v1 + 0.23"
 || " set @v3 = 'Value = ' || cast(@v1 as varchar)"
 || "end"
 PREPARE stmt FROM "{ call proc1(?,?,?) }"
 LET n = 111
 EXECUTE stmt USING n IN, d OUT, c OUT
 DISPLAY d
 DISPLAY c
END MAIN

Stored procedures producing a result set

With SQL Server, you can execute stored procedures returning a result set. To do so, you must declare a
cursor and fetch the rows.

The next example uses a stored procedure with a simple SELECT statement. If the stored procedure
contains additional Transact-SQL statements such as SET or IF (which is the case in complex stored
procedures), SQL Server generates multiple result sets. By default the Genero SQL Server driver uses
"server cursors" to support multiple active SQL statements. But SQL Server stored procedures generating
multiple result sets cannot be used with server cursors: The server cursor is silently converted to a "default
result set" cursor by the ODBC driver. Since Default result set cursors do not support multiple active
statements, you cannot use another SQL statement while processing the results of such stored procedure.
You must CLOSE the cursor created for the stored procedure before continuing with other SQL statements.

MAIN
 DEFINE i, n INTEGER
 DEFINE d DECIMAL(6,2)
 DEFINE c VARCHAR(200)
 DATABASE test1
 CREATE TABLE tab1 (c1 INTEGER, c2 DECIMAL(6,2), c3 VARCHAR(200))
 INSERT INTO tab1 VALUES (1, 123.45, 'aaaaaa')
 INSERT INTO tab1 VALUES (2, 123.66, 'bbbbbbbbb')
 INSERT INTO tab1 VALUES (3, 444.77, 'cccccc')
 EXECUTE IMMEDIATE "create procedure proc2 @key integer"
 || " as select * from tab1 where c1 > @key"
 DECLARE curs CURSOR FROM "{ call proc2(?) }"
 LET i = 1
 FOREACH curs USING i INTO n, d, c
 DISPLAY n, d, c
 END FOREACH
END MAIN

It is possible to fetch large objects (text/image) from stored procedure generating a result set, however,
if the stored procedure executes other statements as the SELECT (like SET/IF commands), the SQL
Server ODBC driver will convert the server cursor to a regular default result set cursor, requiring the LOB
columns to appear at the end of the select list. Thus, in most cases (stored procedures typically use SET /
IF statements), you will have to move the LOB columns and the end of the column list.

Stored procedures returning a cursor as output parameter

SQL Server supports "cursor output parameters": A stored procedure can declare/open a cursor and return
a reference of the cursor to the caller.

SQL support | 447

SQL Server stored procedures returning a cursor as output parameter are not supported. There are two
reasons for this: The language does not have a data type to store a server cursor reference, and the
underlying ODBC driver does not support this anyway.

Stored procedures with return code

SQL Server stored procedures can return integer values. To get the return value of a stored procedure,
you must use an assignment expression in the ODBC call escape sequence:

PREPARE stmt FROM "{ ? = call proc3(?,?,?) }"

Stored procedures with output parameters, return code and result set

With SQL Server you can call stored procedures with a return code, output parameters and producing a
result set.

Return codes and output parameters are the last items returned to the application by SQL Server; they
are not returned until the last row of the result set has been fetched, after the SQLMoreResults() ODBC
function is called. If output parameters are used, the SQL Server driver executes a SQLMoreResults()
call when closing the cursor instead of SQLCloseCursor(), to get the return code and output parameter
values from SQL Server.

MAIN
 DEFINE r, i, n INTEGER
 DEFINE d DECIMAL(6,2)
 DEFINE c VARCHAR(200)
 DATABASE test1
 CREATE TABLE tab1 (c1 INTEGER, c2 DECIMAL(6,2), c3 VARCHAR(200))
 INSERT INTO tab1 VALUES (1, 123.45, 'aaaaaa')
 INSERT INTO tab1 VALUES (2, 123.66, 'bbbbbbbbb')
 INSERT INTO tab1 VALUES (3, 444.77, 'cccccc')
 EXECUTE IMMEDIATE "create procedure proc3 @key integer output"
 || " as begin"
 || " set @key = @key - 1"
 || " select * from tab1 where c1 > @key"
 || " return (@key * 3)"
 || " end"
 DECLARE curs CURSOR FROM "{ ? = call proc3(?) }"
 LET i = 1
 OPEN curs USING r INOUT, i INOUT
 DISPLAY r, i
 FETCH curs INTO n, d, c
 FETCH curs INTO n, d, c
 FETCH curs INTO n, d, c
 DISPLAY r, i
 CLOSE curs
 DISPLAY r, i -- Now the returned values are available
END MAIN

The return code and output parameter variables must be defined as INOUT in the OPEN instruction.

Stored procedure call with PostgreSQL

PostgreSQL implements stored functions that can return values. If the function returns more that one
value, you must specify the returning values as function parameters with the OUT keyword. If the function
returns a unique value, you can use the RETURNS clause.

Pay attention to the function signature; PostgreSQL allows function overloading. For example, func(int)
and func(char) are two different functions. To drop a function, you must specify the parameter type to
identify the function signature properly.

Stored functions with output parameters

SQL support | 448

To execute a stored function with PostgreSQL, you must use SELECT * FROM function, as shown in
this line:

PREPARE stmt FROM "select * from proc1(?)"

In order to retrieve returning values into program variables, you must use an INTO clause in the EXECUTE
instruction.

The following example shows how to call a stored function with PostgreSQL:

MAIN
 DEFINE n INTEGER
 DEFINE d DECIMAL(6,2)
 DEFINE c VARCHAR(200)
 DATABASE test1
 EXECUTE IMMEDIATE
 "create function proc1("
 || " p1 integer,"
 || " out p2 numeric(6,2),"
 || " out p3 varchar(200)"
 || ")"
 || " as $$"
 || " begin"
 || " p2:= p1 + 0.23;"
 || " p3:= 'Value = ' || cast(p1 as text);"
 || " end;"
 || " $$ language plpgsql"
 PREPARE stmt FROM "select * from proc1(?)"
 LET n = 111
 EXECUTE stmt USING n INTO d, c
 DISPLAY d
 DISPLAY c
END MAIN

Stored functions producing a result set

With PostgreSQL, you can execute stored procedures returning a result set. To do so, you must declare a
cursor and fetch the rows:

MAIN
 DEFINE i, n INTEGER
 DEFINE d DECIMAL(6,2)
 DEFINE c VARCHAR(200)
 DATABASE test1
 CREATE TABLE tab1 (c1 INTEGER, c2 DECIMAL(6,2), c3 VARCHAR(200))
 INSERT INTO tab1 VALUES (1, 123.45, 'aaaaaa')
 INSERT INTO tab1 VALUES (2, 123.66, 'bbbbbbbbb')
 INSERT INTO tab1 VALUES (3, 444.77, 'cccccc')
 EXECUTE IMMEDIATE "create function proc2(integer)"
 || " returns setof tab1"
 || " as $$"
 || " select * from tab1 where c1 > $1;"
 || " $$ language sql"
 DECLARE curs CURSOR FROM "select * from proc2(?)"
 LET i = 1
 FOREACH curs USING i INTO n, d, c
 DISPLAY n, d, c
 END FOREACH
END MAIN

Stored functions with output parameters and result set

SQL support | 449

With PostgreSQL you cannot return output parameters and a result set from the same stored procedure;
both use the same technique to return values to the client, in the context of result columns to be fetched.

Stored procedure call with Oracle MySQL

MySQL implements stored procedures and stored functions as a collection of SQL statements that can
take and return user-supplied parameters. Functions are very similar to procedures, except that they return
a scalar value and can be used in SQL expressions.

Stored procedures with output parameters

Since MySQL C API (version 5.0) does not support an output parameter specification, the IN/OUT/INOUT
technique cannot be used.

In order to return values from a MySQL stored procedure or stored function, you must use SQL variables.
There are three steps to execute the procedure or function:

1. With the SET SQL statement, create and assign an SQL variables for each parameter.
2. CALL the stored procedure or stored function with the created SQL variables.
3. Perform a SELECT statement to return the SQL variables to the application.

In order to retrieve returning values into program variables, you must use an INTO clause in the EXECUTE
instruction.

The following example shows how to call a stored procedure with output parameters:

MySQL version 5.0 does not allow you to prepare the CREATE PROCEDURE statement; you may need to
execute this statement from the mysql command line tool.

MySQL version 5.0 cannot execute "SELECT @variable" with server-side cursors. Since the MySQL
driver uses server-side cursors to support multiple active result sets, it is not possible to execute the
SELECT statement to return output parameter values.

MySQL version >=5.0 evaluates "@variable" user variables assigned with a string as large text
(CLOB) expressions. That type of values must normally be fetched into TEXT variable. To workaround this
behavior, you can use the substring(@var,1,255) function to return a VARCHAR() expression from
MySQL and fetch into a VARCHAR() variable.

MAIN
 DEFINE n INTEGER
 DEFINE d DECIMAL(6,2)
 DEFINE c VARCHAR(200)
 DATABASE test1
 EXECUTE IMMEDIATE
 "create procedure proc1("
 || " p1 integer,"
 || " out p2 numeric(6,2),"
 || " out p3 varchar(200)
 || ")"
 || " no sql begin"
 || " set p2 = p1 + 0.23;"
 || " set p3 = concat('Value = ', p1);"
 || " end;"
 LET n = 111
 EXECUTE IMMEDIATE "set @p1 = ", n
 EXECUTE IMMEDIATE "set @p2 = NULL"
 EXECUTE IMMEDIATE "set @p3 = NULL"
 EXECUTE IMMEDIATE "call proc1(@p1, @p2, @p3)"
 PREPARE stmt FROM "select @p2, substring(@p3,1,200)"
 EXECUTE stmt INTO d, c
 DISPLAY d
 DISPLAY c
END MAIN

SQL support | 450

Stored functions returning values

The following example shows how to retrieve the return value of a stored function with MySQL:

MySQL version 5.0 does not allow you to prepare the CREATE FUNCTION statement; you may need to
execute this statement from the mysql command line tool.

MAIN
 DEFINE n INTEGER
 DEFINE c VARCHAR(200)
 DATABASE test1
 EXECUTE IMMEDIATE "create function func1(p1 integer)"
 || " no sql begin"
 || " return concat('Value = ', p1);"
 || " end;"
 PREPARE stmt FROM "select func1(?)"
 LET n = 111
 EXECUTE stmt USING n INTO c
 DISPLAY c
END MAIN

Stored procedures producing a result set

Note that MySQL version 5.0 stored procedures and stored functions cannot return a result set.

Stored procedure call with SAP Sybase ASE

Sybase ASE supports stored procedures, which can take and return user-supplied parameters.

Sybase ASE stored procedures can also produce one or more result sets.

Stored procedures with output parameters

Sybase ASE stored procedures must be called with the input and output parameters specification in the
USING clause of the EXECUTE, OPEN or FOREACH instruction. As in normal dynamic SQL, parameters must
correspond by position and the IN/OUT/INOUT options must match the parameter definition of the stored
procedure.

To execute the stored procedure, you must use a specific syntax to have the database driver identify the
statement as an RPC call. The syntax of an RPC call must be:

!rpc procedure-name ([@param-name [,...]])

The parameter names must be specified, with the same names as the arguments of the stored procedure,
because the ODI driver must bind stored procedure parameters by name.

Example:

PREPARE stmt FROM "!rpc update_account (@custid, @old, @new)"

Here is a complete example creating and calling a stored procedure with output parameters:

MAIN
 DEFINE n INTEGER
 DEFINE d DECIMAL(6,2)
 DEFINE c VARCHAR(200)
 DATABASE test1
 EXECUTE IMMEDIATE
 "create procedure proc1"
 || " @v1 integer,"
 || " @v2 decimal(6,2) output,"
 || " @v3 varchar(20) output"
 || " as begin"
 || " set @v2 = @v1 + 0.23"

SQL support | 451

 || " set @v3 = 'Value = ' || cast(@v1 as varchar)"
 || "end"
 PREPARE stmt FROM "!rpc proc1(@v1, @v2, @v3)"
 LET n = 111
 EXECUTE stmt USING n IN, d OUT, c OUT
 DISPLAY d
 DISPLAY c
END MAIN

Stored procedures producing a result set

With Sybase, you can execute stored procedures returning a result set. To do so, you must declare a
cursor and fetch the rows.

When the stored procedure generates multiple active statements, you cannot use another SQL statement
while processing the results of such stored procedure. You must CLOSE the cursor created for the stored
procedure before continuing with other SQL statements.

MAIN
 DEFINE i, n INTEGER
 DEFINE d DECIMAL(6,2)
 DEFINE c VARCHAR(200)
 DATABASE test1
 CREATE TABLE tab1 (c1 INTEGER, c2 DECIMAL(6,2), c3 VARCHAR(200))
 INSERT INTO tab1 VALUES (1, 123.45, 'aaaaaa')
 INSERT INTO tab1 VALUES (2, 123.66, 'bbbbbbbbb')
 INSERT INTO tab1 VALUES (3, 444.77, 'cccccc')
 EXECUTE IMMEDIATE "create procedure proc2 @key integer"
 || " as select * from tab1 where c1 > @key"
 DECLARE curs CURSOR FROM "!rpc proc2(@key)"
 LET i = 1
 FOREACH curs USING i INTO n, d, c
 DISPLAY n, d, c
 END FOREACH
END MAIN

Stored procedures with output parameters, return code and result set

With Sybase ASE stored procedures, you call stored procedures with a return code, output parameters and
producing a result set.

Return codes and output parameters are the last items returned to the application by Sybase; they are not
returned until the last row of the result set has been fetched.

MAIN
 DEFINE r, i, n INTEGER
 DEFINE d DECIMAL(6,2)
 DEFINE c VARCHAR(200)
 DATABASE test1
 CREATE TABLE tab1 (c1 INTEGER, c2 DECIMAL(6,2), c3 VARCHAR(200))
 INSERT INTO tab1 VALUES (1, 123.45, 'aaaaaa')
 INSERT INTO tab1 VALUES (2, 123.66, 'bbbbbbbbb')
 INSERT INTO tab1 VALUES (3, 444.77, 'cccccc')
 EXECUTE IMMEDIATE "create procedure proc3 @key integer output"
 || " as begin"
 || " set @key = @key - 1"
 || " select * from tab1 where c1 > @key"
 || " return (@key * 3)"
 || " end"
 DECLARE curs CURSOR FROM "!rpc proc3(@key) }"
 LET i = 1
 OPEN curs USING r OUT, i OUT
 DISPLAY r, i

SQL support | 452

 FETCH curs INTO n, d, c
 FETCH curs INTO n, d, c
 FETCH curs INTO n, d, c
 DISPLAY r, i
 CLOSE curs
 DISPLAY r, i -- Now the returned values are available
END MAIN

SQL performance

• Performance with dynamic SQL on page 452
• Performance with transactions on page 453
• Avoiding long transactions on page 454
• Declaring prepared statements on page 454
• Saving SQL resources on page 454
• Optimizing scrollable cursors on page 455

Performance with dynamic SQL
Comparing static SQL statements and dynamc SQL statements used in a loop.

Although SQL statements can be directly specified in the program source as a part of the language as
static SQL, it is sometimes more efficient to use dynamic SQL instead, when you are executing SQL
statements repeatedly.

Dynamic SQL allows you to PREPARE the SQL statements once and EXECUTE N times, improving
performance.

Note however that implementing prepared statements with dynamic SQL has a cost in terms of database
resources and code readability: When a simple static SQL statement is executed, database client and
server resources are allocated for the statement and are reused for the next Static SQL statement. With
dynamic SQL, you define a statement handle and allocate database resources that last until you FREE the
handle. Regarding code readability, static SQL statements can be written directly in the source code (as
another language statement), while Dynamic SQL uses several instructions and takes the SQL text as a
string expression. Additionally, static SQL statements are parsed at compile time so you can detect syntax
errors in the SQL text before executing the programs.

Therefore, dynamic SQL should only be used if the SQL statement is created at runtime (with a where part
generated by a CONSTRUCT for example) or if the execution time is too long with static SQL (assuming that
it's only a statement preparation issue).

To perform static SQL statement execution, the database interface must use the basic API functions
provided by the database client. These are usually equivalent to the PREPARE and EXECUTE instructions.
So when you write a static SQL statement in your program, it is actually converted to a PREPARE +
EXECUTE behing the scene.

For example, the following code:

FOR n=1 TO 100
 INSERT INTO tab VALUES (n, c)
END FOR

is actually equivalent to:

FOR n=1 TO 100
 PREPARE s FROM "INSERT INTO tab VALUES (?, ?)"
 EXECUTE s USING n, c
END FOR

SQL support | 453

To improve the performance of the preceding code, use a PREPARE instruction before the loop and put an
EXECUTE instruction inside the loop:

PREPARE s FROM "INSERT INTO tab VALUES (?, ?)"
FOR n=1 TO 100
 EXECUTE s USING n, c
END FOR

Performance with transactions
Commit database changes by blocks of transaction speeds performance with some database servers.

To mimic the IBM® Informix® auto-commit behavior with an ANSI compliant RDBMS like Oracle or DB2®

UDB, the database driver must perform an implicit commit after each statement execution, if the SQL
statement is not inside a transaction block. This generates unnecessary database operations and can slow
down big loops. To avoid this implicit commit, you can control the transaction with BEGIN WORK / COMMIT
WORK around the code containing a lot of SQL statement execution.

This technique is especially recommended with SQLite, because the SQLite database library performs a lot
of operations during a commit.

For example, the following loop will generate 2000 basic SQL operations (1000 inserts plus 1000
commits):

PREPARE s FROM "INSERT INTO tab VALUES (?, ?)"
FOR n=1 TO 100
 EXECUTE s USING n, c -- Generates implicit COMMIT
END FOR

You can improve performance if you put a transaction block around the loop:

PREPARE s FROM "INSERT INTO tab VALUES (?, ?)"
BEGIN WORK
FOR n=1 TO 100
 EXECUTE s USING n, c -- In transaction -> no implicit COMMIT
END FOR
COMMIT WORK

With this code, only 1001 basic SQL operations will be executed (1000 inserts plus 1 commit).

However, you must take care when generating large transactions because all modifications are registered
in transaction logs. This can result in a lack of database server resources ("transaction too long" errors,
for example) when the number of operations is very big. If the SQL operation does not require a unique
transaction for database consistency reasons, you can split the operation into several transactions, as in
this example:

PREPARE s FROM "INSERT INTO tab VALUES (?, ?)"
BEGIN WORK
FOR n=1 TO 100
 IF n MOD 10 == 0 THEN
 COMMIT WORK
 BEGIN WORK
 END IF
 EXECUTE s USING n, c -- In transaction -> no implicit COMMIT
END FOR
COMMIT WORK

Note that the LOAD instruction automatically starts a transaction, if not yet initiated. Therefore there is
no need to enclose the LOAD statement within a BEGIN WORK / COMMIT WORK, except if other SQL
statements are part of the transaction and need to be processed as a single atomic database change.

SQL support | 454

Avoiding long transactions
Long transactions consume resources and decrease concurrent data access.

Old applications based on IBM® Informix® database without transaction logging might perform long running
SQL modifications.

With recent database engines, using huge transactions can lead to errors because of transaction log buffer
overflow. For example, if a table holds many rows, a "DELETE FROM table" might produce a "snapshot
too old" error in Oracle, if the rollback segments are too small.

Therefore, you must avoid long transactions when connected to a database using transactions:

• keep transactions as short as possible.
• access the least amount of data possible while in a transaction.
• split a long transaction into many short transactions. Use a loop to handle each block.
• to delete all rows from a table use the "TRUNCATE TABLE" instruction instead of "DELETE FROM" (Not

for all vendors).
• In the end, increase the size of the transaction log to avoid filling it up.

Declaring prepared statements
Optimize prepared cursor statements by using the FROM clause of DECLARE CURSOR.

Line 2 of this example shows a cursor declared with a prepared statement:

PREPARE s FROM "SELECT * FROM table WHERE ", condition
DECLARE c CURSOR FOR s

While this has no performance impact with IBM® Informix® database drivers, it can become a bottleneck
when using non-IBM Informix® databases:

Statement preparation consumes a lot of memory and processor resources. Declaring a cursor with
a prepared statement is a native IBM® Informix® feature, which consumes only one real statement
preparation. Non-IBM Informix® databases do not support this feature, so the statement is prepared
twice (once for the PREPARE, and once for the DECLARE). When used in a big loop, this code can cause
performance problems.

To optimize the code, use the FROM clause in the DECLARE statement:

DECLARE c CURSOR FROM "SELECT * FROM table WHERE " || condition

By using this solution only one statement preparation will be done by the database server.

Note: This performance problem does not occur with DECLARE statements using static SQL.

Saving SQL resources
SQL cursors and prepared statement consume resources that should be freed when useless.

To write efficient SQL in your programs, you can use dynamic SQL. However, when using dynamic SQL,
you allocate an SQL statement handle on the client and server side, consuming resources. According to
the database type, this can be a few bytes or a significant amount of memory. When executing several
static SQL statements, the same statement handle is reused and thus less memory is needed.

The language allows you to use either static SQL or dynamic SQL, so it's in your hands to choose memory
or performance. However, in some cases the same code will be used by different kinds of programs,
needing either low resource usage or good performance. In many OLTP applications you can actually
distinguish two type of programs:

• Programs where memory usage is not a problem but good performance is needed (typically, batch
programs executed as a unique instance during the night).

• Programs where performance is less important but memory usage must be limited (typically, interactive
programs executed as multiple instances for each application user).

SQL support | 455

To reuse the same code for interactive programs and batch programs, you can do this:

1. Define a local module variable as an indicator for the prepared statement.
2. Write a function returning the type of program (for example, 'interactive' or 'batch' mode).
3. Then, in a reusable function using SQL statements, prepare and free the statement according to the

indicators, as shown in the next example.

PRIVATE DEFINE up_prepared BOOLEAN

FUNCTION getUserPermissions(username)
 DEFINE username VARCHAR(20)
 DEFINE cre, upd, del CHAR(1)

 IF NOT up_prepared THEN
 PREPARE up_stmt FROM "SELECT can_create, can_update, cab_delete"
 || " FROM user_perms WHERE name = ?"
 LET up_prepared = TRUE
 END IF

 EXECUTE up_stmt USING username INTO cre, upd, del

 IF isInteractive() THEN
 FREE up_stmt
 LET up_prepared = FALSE
 END IF

 RETURN cre, upd, del

END FUNCTION

The first time this function is called, the up_prepared value will be FALSE, so the statement will be
prepared. The next time the function is called, the statement will be re-prepared only if up_prepared
is TRUE. The statement is executed and values are fetched into the variables returned. If the program
is interactive, the statement is freed and set the up_prepared module variable back to FALSE, forcing
statement preparation in the next call of this function.

Optimizing scrollable cursors
A programming pattern to get fresh data from scrollable cursors.

Generally, when using scrollable cursors, the database server or the database client software (i.e. the
application) will make a static copy of the result set produced by the SELECT statement. For example,
when using an IBM® Informix® database engine, each scrollable cursor will create a temporary table to
hold the result set. Thus, if the SELECT statement returns all columns of the table(s) in the FROM clause,
the database software will make a copy of all these values. This practice has two disadvantages: A lot of
resources are consumed, and the data is static.

A good programming pattern to save resources and always get fresh data from the database server is to
declare two cursors based on the primary key usage, if the underlying database table has a primary key (or
unique index constraint): The first cursor must be a scrollable cursor that executes the SELECT statement,
but returns only the primary keys. The SELECT statement of this first cursor is typically assembled at
runtime with the where-part produced by a CONSTRUCT interactive instruction, to give a subset of the rows
stored in the database. The second cursor (actually, a PREPARE/EXECUTE statement handle) performs
a single-row SELECT statement listing all columns to be fetched for a given record, based on the primary
key value of the current row in the scrollable cursor list. The second statement must use a ? question mark
place holder to execute the single-row SELECT with the current primary key as SQL parameter.

If the primary key SELECT statement needs to be ordered, check that the database engine allows that
columns used in the ORDER BY clause do not need to appear in the SELECT list. For example, this was
the case with IBM® Informix® servers prior to version 9.4. If needed, the SELECT list can be completed with

SQL support | 456

the columns used in ORDER BY, you can then just list the variable that holds the primary key in the INTO
clause of FETCH.

Note also that the primary key result set is static. That is, if new rows are inserted in the database or if
rows referenced by the scroll cursor are deleted after the scroll cursor was opened, the result set will be
outdated. In this case, you can refresh the primary key result set by re-executing the scroll cursor with
CLOSE/OPEN commands.

This code example illustrates this programming pattern:

MAIN
 DEFINE wp VARCHAR(500)
 DATABASE test1
 -- OPEN FORM / DISPLAY FORM with c_id and c_name fields
 ...
 -- CONSTRUCT generates wp string...
 ...
 LET wp = "c_name LIKE 'J%'"
 DECLARE clist SCROLL CURSOR FROM "SELECT c_id FROM customer WHERE " || wp
 PREPARE crec FROM "SELECT * FROM customer WHERE c_id = ?"
 OPEN clist
 MENU "Test"
 COMMAND "First" CALL disp_cust("F")
 COMMAND "Next" CALL disp_cust("N")
 COMMAND "Previous" CALL disp_cust("P")
 COMMAND "Last" CALL disp_cust("L")
 COMMAND "Refresh" CLOSE clist OPEN clist
 COMMAND "Quit" EXIT MENU
 END MENU
 FREE crec
 FREE clist

END MAIN

FUNCTION disp_cust(m)
 DEFINE m CHAR(1)
 DEFINE rec RECORD
 c_id INTEGER,
 c_name VARCHAR(50)
 END RECORD
 CASE m
 WHEN "F" FETCH FIRST clist INTO rec.c_id
 WHEN "N" FETCH NEXT clist INTO rec.c_id
 WHEN "P" FETCH PREVIOUS clist INTO rec.c_id
 WHEN "L" FETCH LAST clist INTO rec.c_id
 END CASE
 INITIALIZE rec.* TO NULL
 IF SQLCA.SQLCODE == NOTFOUND THEN
 ERROR "You reached to top or bottom of the result set."
 ELSE
 EXECUTE crec USING rec.c_id INTO rec.*
 IF SQLCA.SQLCODE == NOTFOUND THEN
 ERROR "Row was not found in the database, refresh the result set."
 END IF
 END IF
 DISPLAY BY NAME rec.*
END FUNCTION

SQL support | 457

Database connections
Explains how to manage database connections in a program.

• Understanding database connections on page 457
• Opening a database connection on page 458
• Database client environment on page 459
• Connection parameters on page 461
• Connection parameters in database specification on page 464
• Direct database specification method on page 465
• Indirect database specification method on page 466
• IBM Informix emulation parameters in FGLPROFILE on page 466
• Database vendor specific parameters in FGLPROFILE on page 469
• Database user authentication on page 473
• Unique session mode connection instructions on page 476
• Multi-session mode connection instructions on page 477
• Miscellaneous SQL statements on page 480

Understanding database connections

A database connection is a session of work, opened by the program to communicate with a specific
database server, in order to execute SQL statements as a specific user.

Before working with database connections, make sure you have properly installed and configured all
software, using the correct database client software/environment, and BDL database driver. It is very
important to understand database client settings, regarding user authentication as well as database client
character set configuration.

Note that on some platforms like on mobile devices, Genero BDL includes the SQLite lightweight database
library, which is the default. Therefore, when executing programs on these platforms, there is no need to
install a database client sowftare and configure the database driver for the runtime system.

Figure 21: Schema example of a program using three database connections

The database user can be identified explicitly for each connection. Usually, the user is identified by a login
and a password, or by using the authentication mechanism of the operating system (or even from a tier
security system).

SQL support | 458

Database connection instructions DATABASE / CONNECT TO can not be prepared and executed as
dynamic SQL statements.

There are two kind of connection modes: unique-session and multi-session mode. When using the
DATABASE and CLOSE DATABASE instructions, the program is in unique-session mode. When using the
CONNECT TO, SET CONNECTION and DISCONNECT instructions, the program is in multi-session mode.
These connection modes are not compatible.

In unique-session mode, the DATABASE instruction initiates a connection the the database server and
creates the current session. The database connection is terminated with the CLOSE DATABASE instruction,
or when another DATABASE instruction is executed, or when the program ends.

In multi-session mode, open a database session with the CONNECT TO instruction. Other connections
can be created with subsequent CONNECT TO instructions. To switch to a specific session, use the SET
CONNECTION instruction; this suspends other opened connections. Disconnect from a specific or from all
sessions with the DISCONNECT instruction. The end of the program disconnects all sessions automatically.

Once connected to a database server, the program uses the current session to execute SQL statements in
that context.

Opening a database connection

A database connection identifies the SQL database server and the database entity the program connects
to, in order to execute SQL statements.

To connect to a database server, the database driver needs to be loaded, and the SQL data source most
be provided. Additionally, user authentication with user name / password may also be needed. All these
parameters define connection information.

There are different ways to give connection information, and it is possible to mix the different methods to
specify connection parameters. However, if provided, the database user name and password have to be
specified together with the same method.

A database connection is performed in programs with the DATABASE or CONNECT TO instruction:

CONNECT TO dbspec [USER username USING password]

or

DATABASE dbspec

Prefer the CONNECT TO instruction, as it allows to specify a user name and password.

For portability reasons, it is not recommended that you use database vendor specific syntax (such as
'dbname@dbserver') in the DATABASE or CONNECT TO instructions: Connections must be identified in
programs by a single name, while connection parameters are provided in external files.

Indirect database specification uses entries in the FGLPROFILE configuration file: When a DATABASE
or CONNECT TO instruction is executed with the parameter dbspec, the runtime system first looks into
FGLPROFILE for entries starting with dbi.database.dbspec, and uses these connection parameters
if found. Otherwise, the runtime system will do direct database specification, by using the dbspec string to
connect to the server.

Important: When using FGLPROFILE entries for database connection parameters, keep in mind
that entries must be written in lowercase.

Use a string variable with the DATABASE or CONNECT TO statement, in order to specify the database
source at runtime. This solution gives you the best flexibility.

The string variable can be set from your own configuration file, from a program argument or from an
environment variable.

SQL support | 459

Example

MAIN
 DEFINE db, us, pwd CHAR(50)
 LET db = fgl_getenv("MYDBSOURCE")
 LET us = arg_val(2)
 LET pwd = arg_val(3)
 CONNECT TO db USER us USING pwd
 ...
END MAIN

Database client environment

To connect to a database server, the programs must be executed in the correct database client
environment. The database client software is usually included in the database server software, so you
do not need to install it when your programs are executed on the same machine as the database server.
However, you must install the database client software in three-tier configurations, when applications and
database servers run on different systems.

This section describes basic configuration elements of the database client environment for some well-
known database servers.

IBM® DB2 Universal Database™

1. The DB2DIR environment variable must define the DB2® software installation path.
2. The PATH environment variable must define the access path to database client programs.
3. On UNIX™, LD_LIBRARY_PATH (or equivalent) must hold the path to $DB2DIR/lib.
4. The DB2® client library 'DB2DIR/lib/libdb2*' must be available.
5. The remote server node and the remote database must be declared locally with the CATALOG db2

command.
6. Make sure the database client locale is properly defined.
7. You can make a connection test with the IBM® db2 tool.

IBM® Informix® Dynamic Server

1. The INFORMIXDIR environment variable must define the IBM® Informix® software installation path.
2. The PATH environment variable must define the access path to database client programs.
3. On UNIX™, LD_LIBRARY_PATH (or equivalent) must hold the path to $INFORMIXDIR/lib:

$INFORMIXDIR/lib/esql.
4. The IBM® Informix® client libraries 'INFORMIXDIR/lib/*' must be available.
5. The INFORMIXSERVER environment variable can be used to define the name of the database server.
6. The sqlhost file must define the database server identified by INFORMIXSERVER.
7. Make sure the database client locale is properly defined.
8. You can make a connection test with the IBM® Informix® dbaccess tool.

Oracle MySQL

1. The MYSQL_HOME environment variable must define the MySQL software installation path.
2. The PATH environment variable must define the access path to database client programs.
3. On UNIX™, LD_LIBRARY_PATH (or equivalent) must hold the path to $MYSQL_HOME/lib.
4. Make sure the database client locale is properly defined.
5. You can make a connection test with the MySQL tool.

Oracle database

1. The ORACLE_HOME environment variable must define the Oracle software installation path.

SQL support | 460

2. The ORACLE_SID environment variable can be used to define the name of the local database
instance.

3. The PATH environment variable must define the access path to database client programs.
4. On UNIX™, LD_LIBRARY_PATH (or equivalent) must hold the path to $ORACLE_HOME/lib.
5. The Oracle client library 'ORACLE_HOME/lib/libclntsh*' must be available.
6. The TNSNAMES.ORA file must define the database server identifiers for remote connections (the

Oracle Listener must be started on the database server to allow remote connections).
7. The SQLNET.ORA file must define network settings for remote connections.
8. Make sure the database client locale is properly defined.
9. You can make a connection test with the Oracle sqlplus tool.

PostgreSQL

1. The PGDIR environment variable must define the PostgreSQL software installation path.
2. The PATH environment variable must define the access path to database client programs.
3. On UNIX™, LD_LIBRARY_PATH (or equivalent) must hold the path to $PGDIR/lib.
4. The PostgreSQL client library 'PGDIR/lib/libpq*' must be available.
5. On the database server, the pg_hba.conf file must define security policies.
6. Make sure the database client locale is properly defined.
7. You can make a connection test with the PostgreSQL psql tool.

Microsoft™ SQL Server

1. Make sure that ODBC data source is defined on database client and database server systems, with the
correct ODBC driver. Note that Genero FGL provides different sort of SQL Server drivers:

• The SNC driver is based on the SQL Native Client ODBC driver (SQLNCLI*.DLL). The version of the
SQL Native Client must match the ODI driver.

• The FTM driver is based on the FreeTDS ODBC driver (libtdsodbc.so). This driver can be used if
you want to connect to SQL Server from a UNIX™ machine.

• The ESM driver is based on the EasySoft ODBC driver (libessqlsrv.so). This driver can be used if
you want to connect to SQL Server from a UNIX™ machine.

2. On Windows™ platforms, the PATH environment variable must define the access path to database
client programs (ODBC32.DLL). On UNIX/Linux platforms, check database client software
documentation for environment settings (LD_LIBRARY_PATH, ldconfig).

3. On Windows™, Check the SQL Server Client configuration with the Client Network Utility tool: Verify
that the ANSI to OEM conversion corresponds to the execution of applications in a CONSOLE
environment.

4. Make sure the database client locale is properly defined. On UNIX/Linux platforms, check that the client
character set parameter of the ODBC data source corresponds the the locale used by the application
(LANG/LC_ALL).

5. On Windows™, you can make a connection test with the Microsoft™ Query Analyzer tool. On UNIX/
Linux, see client software documentation for available SQL command tools (isql for example).

SQLite

1. The SQLite database driver includes the SQLite library, except on systems where that library is
commonly available, like Linux distributions, Mac OS X and mobile devices.

2. Make sure the database client locale is properly defined. The SQLite library uses UTF-8. If the current
character set (LANG/LC_ALL) is not UTF-8, like plain ASCII or UTF-8, the database driver will make
appropriate character set conversions.

3. You can make a connection test with the sqlite3 command line tool.

Sybase Adaptive Server Enterprise (ASE)

1. The SYBASE environment variable must define the Sybase ASE software installation path.

SQL support | 461

2. The PATH environment variable must define the access path to database client programs.
3. On UNIX™, LD_LIBRARY_PATH (or equivalent) must hold the path to the client libraries libsybct.so

and libsybcs.so. On Windows™, the path to the DLLs must be defined in PATH.
4. Check the Sybase Client configuration, especially server name definition in connection's directory

source, see DSQUERY environment variable.
5. Make sure the database client locale is properly defined.
6. You can make a connection test with the Sybase ISQL tool.

Connection parameters

This section describes the different parameters which need to be specified in order to connect to
a database. The parameters can be provided with different methods (in the connection string or in
FGLPROFILE settings). Some of these parameters are optional. For example, if the database user is
authenticated by the operating system, username/password parameters are not needed.

Database source specification (source)

In database connection parameters, the source parameter identifies the data source name.

If the source parameter is defined with an empty value (""), the database interface connects to the default
database server, which is usually the local server.

If the source entry is not present in FGLPROFILE, direct database specification method takes place.

Table 154: Meaning of the source connection parameter for supported databases

Database Type Value of "source" entry Description

Generic ODBC datasource ODBC Data Source

IBM® Informix® dbname[@dbserver]
IBM® Informix® database
specification

IBM® DB2® dsname
DB2® Catalogued
Database

Oracle MySQL / MariaDB

dbname[@host[:port]]

or

dbname[@localhost~socket]

Database Name @ Host
Name: TCP Port

or

Database Name @ Local
host ~ UNIX™ socket file

Oracle Database tnsname Oracle TNS Service name

PostgreSQL dbname[@host[:port]][?options]

Database Name @
Host Name : TCP Port ?
PostgreSQL URI-style
query string options

SQL Server datasource ODBC Data Source

SQLite

filename

or

:memory:

Database file path, or
simple file name to be
found with DBPATH, or
:memory: to create a
database in memory.

Sybase Adaptive Server
Enterprise (ASE)

dbname[@engine]
Database Name @
Engine Name

SQL support | 462

Database driver specification (driver)

In database connection parameters, the driver parameter identifies the type of database driver to be
used.

The driver must correspond to the database client software.

Important: Pay attention to the binary architecture of the database client software: Genero runtime
system and database client binaries must match. For example, a 32 bit Oracle client can not be
used with a Genero 64 bit runtime system.

We distinguish two sort of database driver names:

• Generic driver names ("dbmora", "dbmsnc"), and aliases ("oracle", "sqlserver")
• Version-stamped driver names ("dbmora_12", "dbmsnc_10", "dbmsnc_11")

A driver name "dbmxxx" identifies a generic driver name for the database server identified by the code
xxx.

For example, in FGLPROFILE, to define the database driver for the Oracle OCI client (code "ora"), use
the name "dbmora":

dbi.database.stores.driver = "dbmora"

For convenience, it is also possible to specify a long name (alias) such as "oracle" or "sqlserver", as
defined in the database driver table below.

Use generic named drivers (with the latest database client software available on the platform), instead of
version-stamped driver names. Use the version-stamped driver name only if the most recent database
client software is not available on the platform.

Check for library dependency on your system, to identify the database client library required by the driver
with the generic name. The driver definition table below lists the driver names for each supported database
client types and versions. For example, on Linux platform, use the ldd command:

$ ldd $FGLDIR/dbdrivers/dbmmys.so
 ...
 libmysqlclient.so.18 => ...
 ...

Drivers with generic name are compatible with the latest database client version available on the platform.
Thus, according to the platform, the same generic driver name can refer for different database client
software. For example, on a platform where only MySQL 5.1 is available, dbmmys will match the MySQL
5.1 client, while on a more recent platform, dbmmys will match the MySQL 5.5 client.

To limit the number of drivers, if the database client software allows it, the drivers are build with the oldest
database client version that is compatible with the latest available database client versions. For example,
the dbmmys_5_5 driver is build with the MySQL Client 5.5, but is compatible with MySQL 5.6 and 5.7
clients.

Note that given driver (combined with the corresponding database client software) can connect to a
database server of an older version, if the database vendor client/server protocol supports the combination.
For example, you can use an Oracle client version 12c to connect to an Oracle 11g server.

A default driver can be specified with the dbi.default.driver FGLPROFILE entry. This driver will be
used for all database connections that do not specify the driver explicitely:

dbi.default.driver = "dbmora"

If this entry is not defined, and if no driver parameter is specified for the data source, the driver name
defaults to dbmdefault. This default driver is a copy of the database driver that was chosen during
installation.

SQL support | 463

Table 155: Database driver names according to database client type

Name with
db client
version

Generic
name / alias

Code Database
client
software
version

UNIX™

shared
objects

Microsoft™

Windows™

DLLs

Mac OS X™

dynamic
libraries

dbmase_16 dbmase /
sybase_ase

ase Sybase ASE
Open Client
Library 16.x

libsybct[64].so,
libsybcs[64].so

libsybct[64].dll,
libsybcs[64].dll

N/A

dbmdb2_10 dbmdb2 / db2 db2 IBM® DB2®

UDB Client
10.x

libdb2.so.1 db2cli.dll N/A

dbmesm_1 dbmesm /
easysoft_sqlserver

esm EasySoft
ODBC for
SQL Server

libessqlsrv.so N/A N/A

dbmifx_9 dbmifx /
informix

ifx IBM®

Informix®

CSDK 2.80
and higher

libifsql.so,
libifasf.so,
libifgen.so,
libifos.so,
libifgls.so,
libifglx.so

isqlt09a.dll libifsql.dylib,
libifasf.dylib,
libifgen.dylib,
libifos.dylib,
libifgls.dylib,
libifglx.dylib

dbmmys_5_1 mys MySQL Client
5.1.x

libmysqlclient.so.16libmysql.dll libmysqlclient.16.dylib

dbmmys_5_5 dbmmys /
mysql

mys MySQL
Client 5.5.x
and higher /
MariaDB 10.x
and higher

libmysqlclient.so.18libmysql.dll libmysqlclient.18.dylib

dbmntz_6 dbmntz /
netezza

ntz IBM®

Netezza® (6.x)
libnzodbc.so odbc32.dll N/A

dbmodc_3 dbmodc /
odbc

odc Generic
ODBC (ODBC
3.x)

libodbc.so odbc32.dll libodbc.dylib

dbmora_11 ora OCI Client
V11

libclntsh.so.11.1oci.dll N/A

dbmora_12 dbmora /
oracle

ora OCI Client
V12

libclntsh.so.12.1oci.dll N/A

dbmpgs_9 dbmpgs /
postgresql

pgs PostgreSQL
Client 9.x

libpq.so.5 libpq.dll libpq.5.dylib

dbmsnc_9 snc SQL Native
client 2005
(V9)

N/A odbc32.dll /
SQLNCLI.DLL

N/A

dbmsnc_10 snc SQL Native
client 2008
(V10)

N/A odbc32.dll /
SQLNCLI10.DLL

N/A

SQL support | 464

Name with
db client
version

Generic
name / alias

Code Database
client
software
version

UNIX™

shared
objects

Microsoft™

Windows™

DLLs

Mac OS X™

dynamic
libraries

dbmsnc_11 dbmsnc /
sqlserver

snc SQL Native
Client 2012
(V11)

N/A odbc32.dll /
SQLNCLI11.DLL

N/A

dbmftm_0 dbmftm /
freetds_sqlserver

ftm FreeTDS
ODBC version
0.82 to 0.95

libtdsodbc.so.0 N/A N/A

dbmsqt_3 dbmsqt /
sqlite

sqt SQLite 3.x libsqlite3.so.0 N/A (statically
linked)

libsqlite3.dylib

Default database driver

The dbi.default.driver FGLPROFILE entry defines a default database driver to be loaded, if the
driver is not specified by the connection parameters.

dbi.default.driver = "driver-name"

The driver name must be specified without the .so or .DLL extension.

If this configuration entry is not defined, the driver name defaults to dbmdefault.

User name and password (username/password)

In database connection parameters, the username and password parameters define the default
database user, when the program uses the DATABASE instruction or the CONNECT TO instruction without
the USER/USING clause.

The username and password FGLPROFILE entries are not encrypted. These parameters are provided to
simplify migration and should not be used in production. You better use CONNECT TO with a USER / USING
clause to avoid any security hole, setup OS user authentication or use the connection callback method.
Example of database servers supporting OS user authentication: IBM® Informix®, Oracle and SQL Server.

Important: Do not write clear user passwords in your sources! The username and password
parameters should be set from a variables.

For backward compatibility reasons, when using the IBM® Informix® driver, the username / password
specification is ignored by the DATABASE instruction, only the CONNECT TO instruction takes external (or
callback) login parameters into account.

Connection parameters in database specification

For development or testing purpose, connection parameters can be provided in the database specification
string passed to the DATABASE and CONNECT TO instructions. Do not hard code connection specification
parameters in programs to be installed on a production site, use the indirect database specification method
instead, or build the connection string at runtime, to keep the database connection flexible.

The connection specification parameters override the dbi.database connection parameters defined in
FGLPROFILE.

A + plus sign in the database specification starts the list of connection parameters. Each parameter
is defined with a name followed by an equal sign an a value enclosed in single quotes. Connection
specification parameters must be separated by a comma:

dbname+parameter='value'[,...]

SQL support | 465

In this syntax, parameter can be one of the following:

Table 156: Connection parameters in the database specification string

Parameter Description

resource Specifies which 'dbi.database' entries have to be
read from the FGLPROFILE configuration file.

When this property is set, the database interface
reads dbi.database.name.* entries, where
name is the value specified for the resource
parameter.

driver Defines the database driver library to be loaded
(filename without extension).

source Specifies the data source of the database.

username Defines the name of the database user.

password Defines the password of the database user.

Important: Do not write clear user
passwords in your sources! This
parameter should be set from a variable
value.

In the next example, driver, source and resource are specified in the connection string:

MAIN
 DEFINE db CHAR(50)
 LET db = "stores+driver='dbmora',source='orcl',resource='myconfig'"
 DATABASE db
 ...
END MAIN

Direct database specification method

Direct database specification method takes place when the database name used in a DATABASE or
CONNECT TO instruction is not defined in FGLPROFILE with a 'dbi.database.dbname.source' entry.
In this case, the database specification used in the connection instruction is used as the data source.

This method is well known for IBM® Informix® databases, for example to specify the IBM® Informix® server:

MAIN
 DATABASE stores@orion
 ...
END MAIN

In the next example, the database server is PostgreSQL. The string used in the connection instruction
defines the PostgreSQL database (stock), the host (localhost), and the TCP service (5432) the postmaster
is listening to. As PostgreSQL syntax is not allowed in the language, a CHAR variable must be used:

MAIN
 DEFINE db CHAR(50)
 LET db = "stock@localhost:5432"
 DATABASE db
 ...

SQL support | 466

END MAIN

This method tieds the compiler programs to a given database server configuration. Prefer indirect database
specification method instead of direct database specification.

Indirect database specification method

Indirect database specification method takes place when the database name used in the DATABASE
or CONNECT TO instruction corresponds to a 'dbi.database.dbname.source' entry defined in the
FGLPROFILE configuration file. In this case, the dbname database specification is used as a key to read
the connection information from the configuration file.

In FGLPROFILE, the entries starting with 'dbi.database' group information defining connection
parameters for indirect database specification:

dbi.database.dbname.source = "value"
dbi.database.dbname.driver = "value"
dbi.database.dbname.username = "value"
dbi.database.dbname.password = "value"
-- Warning: Password is not encrypted, do not use in production!

Keep in mind that FGLPROFILE entry names are converted to lower case when loaded by the runtime
system. In order to avoid any mistakes, it is recommended to write FGLPROFILE entry names and
program database names in lower case.

In the next example, the program specifies a data source with the name stores, and FGLPROFILE
defines the source and driver parameters for the stores data source:

Program:

MAIN
 DATABASE stores
 ...
END MAIN

FGLPROFILE:

dbi.database.stores.source = "stock@localhost:5432"
dbi.database.stores.driver = "dbmpgs"

The indirect database specification technique is a flexible technique to define the database source: The
database name in programs is a kind of alias for the real data source, which is defined in an external
configuration file (i.e. FGLPROFILE), where entries can be easily changed on production sites without
needing program recompilation.

IBM® Informix® emulation parameters in FGLPROFILE

What are Informix SQL emulation settings used for?

To simplify the migration process to other database servers as IBM® Informix®, the database drivers can
emulate some IBM® Informix-specific features like SERIAL columns and temporary tables; the drivers can
also do some SQL syntax translation.

Avoid using IBM® Informix® emulations; write portable SQL code instead. IBM® Informix® emulations
are only provided to help you in the migration process. Disabling IBM® Informix® emulations improves
performance, because SQL statements do not have to be parsed to search for IBM® Informix-specific
syntax.

Emulations can be controlled with FGLPROFILE parameters. You can disable all possible switches step-
by-step, in order to test your programs for SQL compatibility.

SQL support | 467

dbi.database.dsname.ifxemul

This is a global switch to enable or disable IBM® Informix® emulations.

Values can be true or false. Default is true.

dbi.database.stores.ifxemul = false

dbi.database.dsname.ifxemul.datatype.type

The 'ifxemul.datatype' switches define whether the specified data type must be converted to a native
type (for example, when creating a table with the CREATE TABLE statement).

Where type can be one of char, varchar, datetime, decimal, money, float, real,
integer, smallint, serial, text, byte, bigint, bigserial, int8, serial8,
boolean.

Default is true for all types.

dbi.database.stores.ifxemul.datatype.serial = false

dbi.database.dsname.ifxemul.datatype.serial.emulation

This parameter can be used to control the SERIAL generation technique used by the driver to generate
auto-incremented values.

The value can be one of following:

• native uses database's native sequence generator directly in the table definitions (depends on the db
type).

• native2 uses a secondary native sequence generator directly in the table definitions (depends on the
db type).

• regtable uses the SERIALREG table with triggers. It is slower than the native emulation.
• trigseq", uses database sequence generator with triggers (not supported by all drivers).

Default is "native".

dbi.database.stores.ifxemul.datatype.serial.emulation = "native"

SERIAL emulations depend on the type of database server used. See SQL adaptation guides on page
529 for more details.

dbi.database.dsname.ifxemul.temptables

This switch can be used to control temporary table emulation.

Defaults is true.

dbi.database.stores.ifxemul.temptables = false

dbi.database.dsname.ifxemul.temptables.emulation

This parameter can be used to specify what technique must be used to emulate temporary tables in the
database server.

Possible values are "default" and "global".

dbi.database.stores.ifxemul.temptables.emulation = "global"

See SQL adaptation guides on page 529 for more details.

SQL support | 468

dbi.database.dsname.ifxemul.dblquotes

This switch can be used to define whether double quoted strings must be converted to single quoted
strings.

Default is true.

dbi.database.stores.ifxemul.dblquotes = false

If this emulation is enabled, all double quoted strings are converted, including database object names.

dbi.database.dsname.ifxemul.outers

This switch can be used to control IBM® Informix® OUTER translation to native SQL outer join syntax.

Default is true.

dbi.database.stores.ifxemul.outers = false

Note: Consider using standard ISO outer joins in your SQL statements (LEFT OUTER).

dbi.database.dsname.ifxemul.today

This switch can be used to convert the TODAY keyword to a native expression returning the current date.

Default is true.

dbi.database.stores.ifxemul.today = false

dbi.database.dsname.ifxemul.current

This switch can be used to convert the CURRENT X TO Y expressions to a native expression returning the
current time.

Default is true.

dbi.database.stores.ifxemul.current = false

dbi.database.dsname.ifxemul.selectunique

This switch can be used to convert the SELECT UNIQUE to SELECT DISTINCT.

Default is true.

dbi.database.stores.ifxemul.selectunique = false

Note: Consider replacing all UNIQUE keywords by DISTINCT.

dbi.database.dsname.ifxemul.colsubs

This switch can be used to control column substrings expressions (col[x,y]) to native substring expressions.

Default is true.

dbi.database.stores.ifxemul.colsubs = false

Note: Consider using substring SQL functions instead of [x,y] expressions in SQL.

SQL support | 469

dbi.database.dsname.ifxemul.matches

This switch can be used to define whether MATCHES expressions must be converted to LIKE expressions.

Default is true.

dbi.database.stores.ifxemul.matches = false

Note: Consider using LIKE expressions instead of MATCHES in SQL.

dbi.database.dsname.ifxemul.length

This switch can be used to define whether LENGTH() function names have to be converted to the native
equivalent.

Default is true.

dbi.database.stores.ifxemul.length = true

dbi.database.dsname.ifxemul.rowid

This switch can be used to define whether ROWID keywords have to be converted to native equivalent (for
example, OID in PostgreSQL).

Default is true.

dbi.database.stores.ifxemul.rowid = false

Note: Consider using primary keys instead of ROWIDs.

dbi.database.dsname.ifxemul.listupdate

This switch can be used to convert the UPDATE statements using non-ANSI syntax.

Default is true.

dbi.database.stores.ifxemul.listupdate = false

dbi.database.dsname.ifxemul.extend

This switch can be used to convert simple EXTEND() expressions to native date/time expressions.

Default is true.

dbi.database.stores.ifxemul.extend = true

Database vendor specific parameters in FGLPROFILE

Database vendor specific connection parameters can be configured by using FGLPROFILE entries with
the following syntax:

dbi.database.dsname.dbtype.param.[.subparam] = "value"

Where dbtype identifies the database vendor type, such as "ifx", "ora", "db2".

• IBM DB2 specific FGLPROFILE parameters on page 470
• Oracle DB specific FGLPROFILE parameters on page 470
• Oracle MySQL / MariaDB specific FGLPROFILE parameters on page 471

SQL support | 470

• SQL Server (Native Client driver) specific FGLPROFILE parameters on page 471
• SQL Server (Native Client driver) specific FGLPROFILE parameters on page 471
• SQL Server (EasySoft driver) specific FGLPROFILE parameters on page 473
• SQL Server (FreeTDS driver) specific FGLPROFILE parameters on page 472
• Sybase ASE specific FGLPROFILE parameters on page 473

IBM® DB2® specific FGLPROFILE parameters

dbi.database.dsname.db2.schema

Name of the database schema to be selected after connection is established.

dbi.database.stores.db2.schema = "store2"

Set this parameter to a specific schema in order to share the same table with all users.

dbi.database.dsname.db2.prepare.deferred

True/False boolean to enable/disable deferred prepare.

dbi.database.stores.db2.prepare.deferred = true

Set this parameter to true if you do not need to get SQL errors during PREPARE statements: SQL
statements will be sent to the server when executing the statement (OPEN or EXECUTE). The default is
false (SQL statements are sent to the server when doing the PREPARE).

Default is false .

Oracle DB specific FGLPROFILE parameters

dbi.database.dsname.ora.schema

Name of the database schema to be selected after connection is established.

dbi.database.stores.ora.schema = "store2"

Set this parameter to a specific schema in order to share the same table with all users.

dbi.database.dsname.ora.prefetch.rows

Maximum number of rows to be pre-fetched.

dbi.database.stores.ora.prefetch.rows = 50

Use this parameter to increase performance by defining the maximum number of rows to be fetched into
the db client buffer. However, the bigger this parameter is, the more memory is used by each program.
This parameter applies to all cursors in the program.

The default is 10 rows.

dbi.database.dsname.ora.prefetch.memory

Maximum buffer size for pre-fetching (in bytes).

dbi.database.stores.ora.prefetch.memory = 4096

This parameter is equivalent to prefetch.rows, but here you can specify the memory size instead of the
number of rows. Like prefetch.rows, this parameter applies to all cursors in the program.

SQL support | 471

The default is 0, which means that memory size is not included in computing the number of rows to pre-
fetch.

dbi.database.dsname.ora.sid.command

SQL command (SELECT) to generate a unique session id (used for temp table names).

dbi.database.stores.ora.sid.command =
 "SELECT TO_CHAR(SID)||'_'||TO_CHAR(SERIAL#)
 FROM V$SESSION WHERE AUDSID=USERENV('SESSIONID')"

By default the driver uses "SELECT USERENV('SESSIONID') FROM DUAL". This is the standard
session identifier in Oracle, but it can become a very large number and can't be reset.

This parameter gives you the freedom to provide your own way to generate a session id.

The SELECT statement must return a single row with one single column.

Value can be an integer or an identifier.

dbi.database.dsname.ora.date.ifxfetch

Controls the way an Oracle DATE is fetched into program variables, especially CHAR/VARCHAR targets.

dbi.database.stores.ora.date.ifxfetch = true

By default, since ORACLE DATE type is equivalent to DATETIME YEAR TO SECOND, values are fetched
into CHAR/VARCHAR with time information and are formatted with the style YYYY-MM-DD hh:mm:ss If you
need to get the IBM® Informix® behavior, to fetch DATEs only with the YMD part following the DBDATE
environment variable, set this parameter to true. Note however that this parameter is useless when
fetching ORACLE DATEs into DATE or DATETIME variables, which is the recommended way to hold date
and time values in programs.

Default is false (with time information, using normalized format).

Oracle MySQL / MariaDB specific FGLPROFILE parameters

dbi.database.dsname.mys.config

Defines an explicit configration to read MySQL options from

dbi.database.stores.mys.config = "/opt/myapp/etc/my.cnf"

Set this parameter will be passed to the MySQL API function mysql_options((MYSQL*),
MYSQL_READ_DEFAULT_FILE, filename).

It can be used to bypass the default MySQL configuration files reading, to define database client settings in
the [client] group, such as the client character set with the default-character-set option.

Note:

On Microsoft™ Windows™ platforms, the configuration file must be in DOS format.

SQL Server (Native Client driver) specific FGLPROFILE parameters

dbi.database.dsname.snc.logintime

Connection timeout (in seconds).

dbi.database.stores.snc.logintime = 5

SQL support | 472

Set this parameter to raise an SQL error if the connection can not be established after the given number of
seconds.

The default is 5 seconds.

dbi.database.dsname.snc.prefetch.rows

Maximum number of rows to be pre-fetched.

dbi.database.stores.snc.prefetch.rows = 50

Use this parameter to increase performance by defining the maximum number of rows to be fetched into
the db client buffer. However, the bigger this parameter is, the more memory is used by each program.

The default is 10 rows.

dbi.database.dsname.snc.widechar

Control wide char usage for character string data.

Set this parameter to false if you use char/varchar columns in the SQL Server database.

dbi.database.stores.snc.widechar = false

By default the SNC driver uses wide char ODBC functions, by converting the character data from the
current locale to UCS/2, by adding the N prefix before string literals and by binding SQL parameters with
SQL_C_WCHAR and SQL_WCHAR/SQL_WVARCHAR types.

If you set this parameter to false, the driver will pass the character strings as is without character
set conversion, leave the string literals without N prefix and bind character string parameters with
SQL_C_CHAR and SQL_CHAR/SQL_VARCHAR.

The default is true (use wide chars).

SQL Server (FreeTDS driver) specific FGLPROFILE parameters

dbi.database.dsname.ftm.logintime

Connection timeout (in seconds).

dbi.database.stores.ftm.logintime = 5

Set this parameter to raise an SQL error if the connection can not be established after the given number of
seconds.

The default is 5 seconds.

dbi.database.dsname.ftm.prefetch.rows

Maximum number of rows to be pre-fetched.

dbi.database.stores.ftm.prefetch.rows = 50

Use this parameter to increase performance by defining the maximum number of rows to be fetched into
the db client buffer. However, the bigger this parameter is, the more memory is used by each program.

The default is 10 rows.

SQL support | 473

SQL Server (EasySoft driver) specific FGLPROFILE parameters

dbi.database.dsname.esm.logintime

Connection timeout (in seconds).

dbi.database.stores.esm.logintime = 5

Set this parameter to raise an SQL error if the connection can not be established after the given number of
seconds.

The default is 5 seconds.

dbi.database.dsname.esm.prefetch.rows

Maximum number of rows to be pre-fetched.

dbi.database.stores.esm.prefetch.rows = 50

Use this parameter to increase performance by defining the maximum number of rows to be fetched into
the db client buffer. However, the bigger this parameter is, the more memory is used by each program.

The default is 10 rows.

Sybase ASE specific FGLPROFILE parameters

dbi.database.dsname.ase.logintime

Connection timeout (in seconds).

dbi.database.stores.ase.logintime = 10

Set this parameter to raise an SQL error if the connection can not be established after the given number of
seconds.

The default is 5 seconds.

dbi.database.dsname.ase.prefetch.rows

Maximum number of rows to be pre-fetched.

dbi.database.stores.ase.prefetch.rows = 50

Use this parameter to increase performance by defining the maximum number of rows to be fetched into
the db client buffer. However, the bigger this parameter is, the more memory is used by each program.

The default is 10 rows.

Database user authentication

Connecting to a database server is not just specifying a database name: The current user must be
identified by the database server. Database users must be declared in the database server and must be
authenticated.

The typical user authentication is done by passing a login name and password at connection time. Some
database servers support external authentication methods, that do not require login/password information
(for example when db users as based on operating system users), as well as delegated user authentication
via credential tokens (for example, when using an LDAP dinstinguished name). See database vendor
specific documentation for more details.

SQL support | 474

Additional user authentication solutions are provided to simplify migration from IBM® Informix®databases,
but should not be used in production for security reasons.

See also SQL adaptation guides for database vendor specific notes regarding user authentication.

Specifying a user name and password with CONNECT

In order to specify a user name and password, use the CONNECT instruction with the USER/USING clause:

MAIN
 DEFINE uname, upswd STRING
 CALL login_dialog() RETURNING uname, upswd
 CONNECT TO "stock" USER uname USING upswd
 ...
END MAIN

This is the recommended way to connect to a database server.

With some database types, it is possible to use an external user authentication service, such as Kerberos /
SSL / LDAP-based directory services. To connect as an external user, configure database client settings
to authenticate the external user and perform the CONNECT TO instruction without specifying a login/
password:

CONNECT TO "stock"

For more details, see for example database user handling in the Oracle SQL Adaptation Guide.

Specifying a user name and password with DATABASE

The DATABASE instruction does not support the USER/USING clause as CONNECT TO does. If you don't
use an automatic user authentication method of the database server, you must provide a user name and
password in some way.

The best way to identify database users is to replace every DATABASE instruction by a CONNECT TO with
USER/USING clause. However, it is also possible to provide the user name and password with the user
authentication callback function, by defining a global FGLPROFILE entry.

In a development environment, a default login and password can be specified with the
dbi.database.dbname.username and dbi.database.dbname.password FGLPROFILE entries.
This solution must not be used in a production environment because the password is not encrypted. For
backward compatibility reasons, when using the IBM® Informix® driver, these FGLPROFILE entries are
ignored by the DATABASE instruction, only the CONNECT TO instruction takes external (or callback) login
parameters into account.

Login parameters can also be provided in the connection string used in the database name specification in
DATABASE instruction.

User authentication callback function

When using the DATABASE connection instruction, you can define an FGLPROFILE entry with the name
of a function to be called when the DATABASE instruction is executed, in order to provide a user name and
password dynamically.

dbi.default.userauth.callback = "[module-name.]function-name"

This callback method is not a password encryption solution, it is only provided as workaround to provide
a user credentials for programs using the DATABASE instructions. If possible, use the CONNECT TO
instruction with the USER/USING clause instead. This callback method is provided to connect to databases
different from IBM® Informix®, when a lot of existing code uses the DATABASE instruction. With the IBM®

Informix® driver, the callback method is also called, but the user name and password are ignored by the
DATABASE instruction: Only CONNECT TO will take the login parameters into account for IBM® Informix®.

SQL support | 475

The callback function must have the following signature:

CALL function-name(dbspec STRING)
 RETURNING STRING (username), STRING (password)

If you do not specify the module name, the callback function must be linked to the 42r program. By using
the "module-name.function-name" syntax in the FGLPROFILE entry, the runtime system will automatically
load the module. In both cases, the module must be located in a directory where the runtime system can
find it, defined by the FGLLDPATH environment variable.

In the callback function body, the value of dbspec can be used to identify the database source, read user
name and encrypted password from FGLPROFILE entries with the fgl_getResource() function, then
decrypt password with the algorithm of your choice and return user name and decrypted password.

User authentication callback function for DATABASE:

FUNCTION getUserAuth(dbspec)
 DEFINE dbspec STRING
 DEFINE un, ep STRING
 LET un = fgl_getResource("dbi.database."||
dbspec||".username")
 LET ep = fgl_getResource("dbi.database."||
dbspec||".password.encrypted")
 RETURN un, decrypt_user_password(dbspec, un, ep)
END FUNCTION

Order of precedence for database user specification

Database user login can be specified with different methods, as show in this table. Precedence order if
defined from top to bottom:

Table 157: Database user login methods

Connection Instruction FGLPROFILE Effect

CONNECT TO "dbname" USER
"user" USING "pswd"

or

DEFINE db VARCHAR(200)
LET db = "dbname
+username='username',
password='pswd'" DATABASE db

N/A (ignored) The user information in the
USER/USING clause of the
CONNECT TO instruction or
in the connection string of
the DATABASE instruction
are used to identify the
actual user. are used to
identify the actual user.

Connection string can also
be used with CONNECT TO.

DATABASE dbname

or

CONNECT TO "dbname"

No specific dbi.* entry No user login and
password is provided to the
database server. Usually,
the Operating System
authentication takes place.

DATABASE dbname

or
dbi.default.userauth.callback
 = "fx"

Callback function fx is
called to get user name and
password when connection
instruction is executed.

SQL support | 476

Connection Instruction FGLPROFILE Effect

CONNECT TO "dbname"

DATABASE dbname

or

CONNECT TO "dbname"

dbi.database.dbname.username
 = ...
dbi.database.dbname.password
 = ...

The FGLPROFILE default
user name and password
are used to connect to the
database server.

Important: NOT
RECOMMENDED
IN PRODUCTION!

Unique session mode connection instructions
Opening and closing a database for a unique session.

• DATABASE on page 476
• CLOSE DATABASE on page 477

DATABASE
Opens a new database connection in unique-session mode.

Syntax

DATABASE { dbname[@dbserver] | variable | string } [EXCLUSIVE]

1. dbname identifies the database name.
2. dbserver identifies the IBM® Informix® database server (INFORMIXSERVER).
3. variable can be any character string defined variable containing the database specification.
4. string can be a string literal containing the database specification.

Usage

The DATABASE instruction opens a connection to the database server, like CONNECT TO, but without user
and password specification.

MAIN
 DATABASE stores
 ...
END MAIN

It is possible to use a program variable containing the database specification.

MAIN
 DEFINE dbname VARCHAR(100)
 LET dbname = arg_val(1)
 DATABASE dbname
 ...
END MAIN

If a current connection exists, it is automatically closed before connecting to the new database.

The connection is closed with the CLOSE DATABASE instruction, or when the program ends.

The DATABASE instruction raises an exception if the connection could not be established, for example, if
you specify a database that the runtime system cannot locate, or cannot open, or for which the user of your
program does not have access privileges.

SQL support | 477

The EXCLUSIVE keyword can be used to open an IBM® Informix® database in exclusive mode to prevent
access by anyone but the current user. This keyword is IBM® Informix® specific and should be avoided
when writing a portable SQL application.

The CONNECT TO instructions allow better control over database connections; you should use these
instructions instead of DATABASE and CLOSE DATABASE.

When used outside a program block, the DATABASE instruction defines the database schema for
compilation. See SCHEMA on page 356 for more details.

CLOSE DATABASE
Closes the current database connection created by a DATABASE instruction.

Syntax

CLOSE DATABASE

Usage

The CLOSE DATABASE instruction closes the current database connection opened by a DATABASE
instruction.

The current connection is automatically closed when the program ends.

Example

MAIN
 DATABASE stores1
 CLOSE DATABASE
 DATABASE stores2
 CLOSE DATABASE
END MAINs

Multi-session mode connection instructions
Opening and closing a database for a unique session.

• CONNECT TO on page 477
• SET CONNECTION on page 478
• DISCONNECT on page 479

CONNECT TO
Opens a new database session in multi-session mode.

Syntax

CONNECT TO { dbname | DEFAULT } [AS session]
 [USER login USING auth]
 [WITH CONCURRENT TRANSACTION]

1. dbname is the database specification.
2. session identifies the database session. By default, it is dbname.
3. login is the name of the database user.
4. auth is a string to authenticate the database user, like a password.

SQL support | 478

Usage

The CONNECT TO instruction opens a database connection. If the instruction successfully connects to the
database environment, the connection becomes the current database session for the program.

The session name is case-sensitive.

A program can connect to several database environments at the same time (using different database
drivers), and it can establish multiple connections to the same database environment, provided each
connection has a unique connection name.

The connection is closed with the DISCONNECT instruction, or when the program ends.

When the USER login USING auth clause is specified, the database user is identified by login and
auth, ignoring all other user settings defined in FGLPROFILE or as connection string parameters.

The auth parameter can be a simple password for internal dabase users, but for some type of database
engines, it can be used to specify an external authentication token, such as a distinguished name (DN).
For more details, see the SQL adaptation guide of you database type.

The WITH CONCURRENT TRANSACTION clause allows a program to open several transactions
concurrently in different database sessions: The transaction can be started with the BEGIN WORK
statement in a given connection context, then the program can switch to another connection with SET
CONNECTION, and when done, switch back to the first connection to issue a COMMIT WORK or ROLLBACK
WORK. This is supported for IBM® Informix® database servers. The option is ignored with other database
server types, but it can be used in the CONNECT statement for consistency with Informix.

A CONNECT TO statement cannot be executed with dynamic SQL (i.e. PREPARE + EXECUTE).

With IBM® Informix® database servers, when using the CONNECT TO DEFAULT, you connect to the default
IBM® Informix® database server, identified by the INFORMIXSERVER environment variable, without any
database selection.

When using IBM® Informix® databases on UNIX™, the only restriction on establishing multiple connections
to the same database environment is that an program can establish only one connection to each local
server that uses the shared-memory connection mechanism. To find out whether a local server uses
the shared-memory connection mechanism or the local-loopback connection mechanism, examine the
$INFORMIXDIR/etc/sqlhosts file.

Example

MAIN
 DEFINE uname, upswd VARCHAR(50)
 CONNECT TO "stores1" -- Session name is "stores1"
 CONNECT TO "stores1" AS "SA" -- Session name is "SA"
 CALL login_dialog() RETURNING uname, upswd
 CONNECT TO "stores2" AS "SB" USER uname USING upswd
END MAIN

SET CONNECTION
Selects the current session when in multi-session mode.

Syntax

SET CONNECTION {
 { session | DEFAULT } [DORMANT]
 | CURRENT DORMANT }

1. session is a string expression identifying the name of the database session to be set as current.

SQL support | 479

Usage

The SET CONNECTION instruction makes a given connection current.

The session name is case-sensitive.

When using the DEFAULT keyword, it identifies the default database server connection established with a
CONNECT TO DEFAULT or a DATABASE instruction. This clause is specific to IBM® Informix® databases.

To make the current connection dormant, use CURRENT DORMANT keyword. This clause is specific to
IBM® Informix® databases.

A SET CONNECTION statement cannot be executed with dynamic SQL (i.e. PREPARE + EXECUTE).

Example

MAIN
 DEFINE c1, c2, c3 INT
 CONNECT TO "stores1"
 CONNECT TO "stores2" AS "SA"
 CONNECT TO "stores3" AS "SB"
 SET CONNECTION "stores1" -- Select first session
 SELECT COUNT(*) INTO c1 FROM customers
 SET CONNECTION "SA" -- Select second session
 SELECT COUNT(*) INTO c2 FROM customers
 SET CONNECTION "SB" -- Select third session
 SELECT COUNT(*) INTO c3 FROM customers
 SET CONNECTION "stores1" -- Select first session again
END MAIN

DISCONNECT
Terminates database sessions when in multi-session mode.

Syntax

DISCONNECT { ALL | CURRENT | session }

1. session is a string expression identifying the name of the database session to be terminated.

Usage

The DISCONNECT instruction closes a given database connection.

The session name is case-sensitive.

When using the DEFAULT keyword, it identifies the default database server connection established with a
CONNECT TO DEFAULT or a DATABASE instruction. This clause is specific to IBM® Informix® databases.

Use the ALL keyword to terminate all opened connections. From that point, you must establish a new
connection to execute SQL statements.

Use the CURRENT keyword to terminate the current connection only. From that point, in order to execute
SQL statements, you must select another connection with SET CONNECTION, or establish a new
connection with CONNECT TO.

A DISCONNECT statement cannot be executed with dynamic SQL (i.e. PREPARE + EXECUTE).

If a DISCONNECT statement is used while a database transaction is active, the transaction is automatically
rolled back.

SQL support | 480

Example

MAIN
 CONNECT TO "stores1" -- Will be identified by "stores1"
 CONNECT TO "stores1" AS "SA"
 CONNECT TO "stores2" AS "SB" USER "scott" USING "tiger"
 DISCONNECT "stores1"
 DISCONNECT "SB"
 SET CONNECTION "SA"
END MAIN

Miscellaneous SQL statements
These are particular SQL statements supported in the static SQL syntax.

• SET EXPLAIN on page 480
• UPDATE STATISTICS on page 480

SET EXPLAIN
Turns on/off SQL report of the optimizer plan.

Syntax:

SET EXPLAIN { ON | OFF }

Usage:

Important: This SQL instruction is specific to IBM® Informix® databases.

UPDATE STATISTICS
Updates the statistics for all or for the specified table in the database.

Syntax:

UPDATE STATISTICS [FOR TABLE table-specification]

Usage:

Important: This SQL instruction is specific to IBM® Informix® databases.

Database transactions
Database transaction concepts and handling.

• Understanding database transactions on page 481
• BEGIN WORK on page 482
• SAVEPOINT on page 483
• COMMIT WORK on page 483
• ROLLBACK WORK on page 484
• RELEASE SAVEPOINT on page 484
• SET ISOLATION on page 485
• SET LOCK MODE on page 486

SQL support | 481

Understanding database transactions

A database transaction delimits a set of database operations (i.e. SQL statements), that are processed as
a whole.

Database operations included inside a transaction are validated or canceled as a unique operation.

Figure 22: Database transaction

The database server is in charge of data concurrency and data consistency. Data concurrency allows the
simultaneous access of the same data by many users, while data consistency gives each user a consistent
view of the database.

Without adequate concurrency and consistency control, data can be changed improperly, compromising
integrity of your database. If you want to write applications that can work with different kinds of database
servers, you must adapt the program logic to the behavior of the database servers, regarding concurrency
and consistency management. This requires good knowledge of multiuser database application
programming, transactions, locking mechanisms, isolation levels and wait mode. If you are not familiar with
these concepts, carefully read the documentation of each database server that covers this subject.

Usually, database servers set exclusive locks on rows that are modified or deleted inside a transaction.
These locks are held until the end of the transaction to control concurrent access to that data. Some
database servers implement row versioning (before modifying a row, the server makes a copy of the
original row). This technique allows readers to see a consistent copy of the rows that are updated during
a transaction not yet committed. When the isolation level is high (REPEATABLE READ) or when using a
SELECT FOR UPDATE statement, the database server sets shared locks on fetched rows, to prevent other
users from changing the rows fetched by the reader. These locks are held until the end of the transaction.
Some database servers allow read locks to be held regardless of the transactions (WITH HOLD cursor
option), but this is not a standard.

Programs accessing the database can change transaction parameters such as the isolation level or lock
wait mode. To write portable applications, you must use a configuration that produces the same behavior
on every database engine.

The recommended programming pattern regarding transactions is following:

• The database must support transactions; this is usually the case.
• Transactions must be as short as possible (a few seconds).
• The isolation level must be at least COMMITTED READ.
• The wait mode for locks must be WAIT or WAIT n (lock timeout).

SQL support | 482

To write portable SQL applications, programmers use the BEGIN WORK, COMMIT WORK and ROLLBACK
WORK instructions described in this section to delimit transaction blocks and define concurrency parameters
with SET ISOLATION and SET LOCK MODE. These instructions are part of the language syntax. At
runtime, the database driver generates the appropriate SQL commands to be used with the target
database server. This allows you to use the same source code for different kinds of database servers.

If you initiate a transaction with a BEGIN WORK statement, you must issue a COMMIT WORK at the end
of the transaction. If one of the SQL statement fails in the transaction, you typically issue a ROLLBACK
WORK to force the database server to cancel any modifications that the transaction made to the database.
If you do not issue a BEGIN WORK statement to start a transaction, each statement executes within its
own transaction. These single-statement transactions do not require either a BEGIN WORK statement or a
COMMIT WORK statement.

Recent database engines support transaction savepoints, which allowing to set markers in the current
transaction, in order to rollback to a specific point without canceling the complete transaction. The
transaction savepoint instructions SAVEPOINT, ROLLBACK TO SAVEPOINT and RELEASE SAVEPOINT
are part of the language syntax and can be directly used in the code.

Some database servers do not support a Data Definition Language (DDL) statements (like CREATE
TABLE) inside transactions, and some commit automatically the transaction when such a statement is
executed. Therefore, it is strongly recommended that you avoid DDL statements inside transactions.

A transaction that processes many rows can exceed the limits that your operating system or the database
server configuration imposes on the maximum number of simultaneous locks. Include a limited number of
SQL operations in a transaction blocks.

When a program is using several database connections, and if transactions are not terminated before
switching to another connection (SET CONNECTION), it is mandatory to use the WITH CONCURRENT
TRANSACTION option in the CONNECT instruction.

BEGIN WORK
Starts a database transaction in the current connection.

Syntax

BEGIN WORK

Usage

Use the BEGIN WORK instruction to indicate where the database transaction starts in your program. Each
row that an UPDATE, DELETE, or INSERT statement affects during a transaction is locked and remains
locked throughout the transaction.

BEGIN WORK is part of the language syntax, the underlying database driver executes the native SQL
statement corresponding to this SQL instruction.

In order the

Example

The next code example starts a transaction block, inserts a row and updates the row, then
commits the transaction. To other users, the INSERT and UPDATE instruction will be seen
as an single atomic database modification:

MAIN
 DATABASE stock
 BEGIN WORK
 INSERT INTO items VALUES (...)
 UPDATE items SET ...
 COMMIT WORK

SQL support | 483

END MAIN

SAVEPOINT
Defines or resets the position of a rollback point in the current transaction.

Syntax

SAVEPOINT spVname [UNIQUE]

1. spname is the savepoint identifier.

Usage

The SAVEPOINT instruction declares a new rollback label at the current position in the lexical order within
the current transaction. After defining a savepoint, you can rollback to the specified point in the transaction
by using the ROLLBACK WORK TO SAVEPOINT instruction.

If the same savepoint name was used in a prior SAVEPOINT instruction, the previous savepoint is
destroyed and the name is reused to flag the new rollback position. The optional UNIQUE keyword
specifies that you do not want to reuse the same savepoint name in a subsequent SAVEPOINT instruction.
Reusing the same name after a SAVEPOINT spname UNIQUE will raise an SQL error.

Example

In this example, a first savepoint is defined before the INSERT statement, then reset
before the UPDATE statement. The ROLLBACK TO SAVEPOINT instruction will cancel the
UPDATE statement only:

MAIN
 DATABASE stock
 BEGIN WORK
 DELETE FROM items
 SAVEPOINT sp1
 INSERT INTO items VALUES (...)
 SAVEPOINT sp1 -- releases previous savepoint named sp1
 UPDATE items SET ...
 ROLLBACK WORK TO SAVEPOINT sp1
 COMMIT WORK
END MAIN

COMMIT WORK
Validates and terminates a database transaction in the current connection.

Syntax

COMMIT WORK

Usage

Use the COMMIT WORK instruction to commit all modifications made to the database from the beginning
of a transaction. The database server takes the required steps to make sure that all modifications that the
transaction makes are completed correctly and saved to disk.

COMMIT WORK is part of the language syntax, the underlying database driver executes the native SQL
statement corresponding to this SQL instruction.

SQL support | 484

The COMMIT WORK statement releases all exclusive locks that have been set during the transaction. With
some databases, shared locks are not released if the FOR UPDATE cursor is declared WITH HOLD option.
However, the COMMIT WORK statement closes all cursors not declared with the WITH HOLD option.

ROLLBACK WORK
Cancels and terminates a database transaction in the current connection.

Syntax

ROLLBACK WORK [TO SAVEPOINT [spname]]

• spname is the savepoint identifier.

Usage

Use ROLLBACK WORK to cancel the current transaction and invalidate all changes since the beginning of
the transaction. After the execution of this instruction, the database is restored to the state that it was in
before the transaction began. All row and table locks that the canceled transaction holds are released. If
you issue this statement when no transaction is pending, an error occurs.

ROLLBACK WORK is part of the language syntax, the underlying database driver executes the native SQL
statement corresponding to this SQL instruction.

When specifying a savepoint with the TO SAVEPOINT clause, all SQL statements executed since the
specified savepoint will be canceled. The transaction is not canceled, however, and you can continue to
execute other SQL statements.

Example

This example checks for a potential SQL error after the DELETE statement and cancels the
complete transaction with a ROLLBACK instruction:

MAIN
 DATABASE stock
 WHENEVER ERROR CONTINUE
 BEGIN WORK
 INSERT INTO orders_hist VALUES (...)
 DELETE FROM orders WHERE ...
 IF SQLCA.SQLCODE < 0 THEN
 ROLLBACK WORK
 ELSE
 COMMIT WORK
 END IF
END MAIN

RELEASE SAVEPOINT
Destroys the specified savepoint in the current transaction.

Syntax

RELEASE SAVEPOINT spname

• spname is the savepoint identifier.

SQL support | 485

Usage

Use the RELEASE SAVEPOINT instruction to delete a savepoint defined by the SAVEPOINT instruction.
See database documentation for more details about the behavior of this SQL statement. Note for example
that IBM® Informix® IDS will also release any savepoint that has been declared between the specified
savepoint and the RELEASE SAVEPOINT instruction.

Example

In the next example, the RELEASE SAVEPOINT instruction cancels the UPDATE and
INSERT statements and destroys the sp1 and sp2 savepoints. Only the DELETE statement
will take effect at the end of the transaction:

MAIN
 DATABASE stock
 BEGIN WORK
 DELETE FROM items
 SAVEPOINT sp1
 INSERT INTO items VALUES (...)
 SAVEPOINT sp2
 UPDATE items SET ...
 RELEASE SAVEPOINT sp1
 ROLLBACK WORK TO SAVEPOINT
 COMMIT WORK
END MAIN

SET ISOLATION
Defines the transaction isolation level for the current connection.

Syntax

SET ISOLATION TO
 { DIRTY READ
 | COMMITTED READ [LAST COMMITTED] [RETAIN UPDATE LOCKS]
 | CURSOR STABILITY
 | REPEATABLE READ }

Usage

The SET ISOLATION instruction sets the transaction isolation level for the current connection. See
database concepts in your database server documentation for more details about isolation levels and
concurrency management.

When possible, the underlying database driver sets the corresponding transaction isolation level. If the
isolation level cannot be set, the runtime system generates an exception.

When using the DIRTY READ isolation level, the database server might return a phantom row, which is an
uncommitted row that was inserted or modified within a transaction that has subsequently rolled back. No
other isolation level allows access to a phantom row.

On most database servers, the default isolation level is COMMITTED READ, which is appropriate to
portable database programming.

The LAST COMMITTED and RETAIN UPDATE LOCKS options have been added to the language syntax for
conformance with IBM® Informix® IDS 11. The LAST COMMITTED option can be turned on implicitly with a
server configuration parameter, saving unnecessary code changes.

SQL support | 486

Example

MAIN
 DATABASE stock
 SET ISOLATION TO COMMITTED READ
 ...
END MAIN

SET LOCK MODE
Defines the behavior of the program that tries to access a locked row or table.

Syntax

SET LOCK MODE TO { NOT WAIT | WAIT[seconds] }

Usage

The SET LOCK MODE instruction defines the timeout for lock acquisition for the current connection.

When possible, the underlying database driver sets the corresponding connection parameter to define
the timeout for lock acquisition. But some database servers may not support setting the lock timeout
parameter. In this case, the runtime system generates an exception.

When using the NOT WAIT clause, the timeout is set to zero. If the resource is locked, the database server
ends the operation immediately and raises an exception with the SQL error.

seconds defines the number of seconds to wait for lock acquisition. If the resource is locked, the database
server ends the operation after the elapsed time and raises an exception with the SQL error.

When using the WAIT clause without a number of seconds, the database server waits for lock acquisition
for an infinite time.

With most database servers, the default is to wait for locks to be released.

Make sure that the database server and corresponding database driver both support a lock acquisition
timeout option, otherwise the program will raise an exception.

Example

MAIN
 DATABASE stock
 SET LOCK MODE TO WAIT 20
 ...
END MAIN

Static SQL statements
Describes static SQL statements supported in the language.

• Understanding static SQL statements on page 487
• Using program variables in static SQL on page 487
• Table and column names in static SQL on page 488
• SQL texts generated by the compiler on page 488
• INSERT on page 489
• DELETE on page 492

SQL support | 487

• UPDATE on page 490
• SELECT on page 493
• SQL ... END SQL on page 495
• CREATE SEQUENCE on page 496
• ALTER SEQUENCE on page 496
• DROP SEQUENCE on page 497
• CREATE TABLE on page 497
• ALTER TABLE on page 497
• DROP TABLE on page 498
• CREATE INDEX on page 498
• ALTER INDEX on page 499
• DROP INDEX on page 499
• CREATE VIEW on page 499
• DROP VIEW on page 499
• CREATE SYNONYM on page 499
• DROP SYNONYM on page 499
• RENAME on page 500

Understanding static SQL statements

Static SQL statements are SQL instructions that are a part of the language syntax. Static SQL statements
can be used directly in the source code as a normal procedural instruction. The static SQL statements are
parsed and validated at compile time. At runtime, these SQL statements are automatically prepared and
executed by the runtime system.

Program variables can be used inside static SQL statements; Variabales are detected by the compiler and
handled as SQL parameters at runtime.

The following example defines two variables that are directly used in an INSERT statement:

MAIN
 DEFINE iref INTEGER, name CHAR(10)
 DATABASE stock
 LET iref = 65345
 LET name = "Kartopia"
 INSERT INTO item (item_ref, item_name) VALUES (iref, name)
 SELECT item_name INTO name
 FROM item WHERE item_ref = iref
END MAIN

Become it is integrated in the language syntax, static SQL statement usage clarifies the source code, but
the SQL text is hard-coded and cannot be modified at runtime as it is possible with PREPARE / EXECUTE
instructions.

Limited SQL syntax is part of the language, only common SQL statements such as INSERT, UPDATE,
DELETE, SELECT are supported.

The compiler supports also SQL ... END SQL blocks to write free SQL text in your programs.

Using program variables in static SQL

The syntax of static SQL statements supports the usage of program variables directly as SQL parameters.
This gives a better understanding of the source code and requires less lines as when using SQL
parameters in dynamic SQL statements.

MAIN
 DEFINE c_num INTEGER
 DEFINE c_name CHAR(10)

SQL support | 488

 DATABASE stock
 SELECT cust_name INTO c_name FROM customer WHERE cust_num = c_num
END MAIN

If a database column name conflicts with a program variable, you can use the @ sign as the column prefix.
The compiler will treat the identifier following the @ as a table column:

MAIN
 DEFINE cust_name CHAR(10)
 DEFINE cnt INTEGER
 DATABASE stock
 SELECT COUNT(*) INTO cnt FROM customer WHERE @cust_name = cust_name
END MAIN

The @ sign will not figure in the resulting SQL statement stored in the .42m compiled module.

Table and column names in static SQL

In static SQL statements, table and column names will be converted to lowercase by the fglcomp compiler.
The SQL keywords are always converted to uppercase.

For example:

UPDATE CUSTOMER set CUST_name = 'undef' WHERE cust_name is null

Will be converted to:

UPDATE customer SET cust_name = 'undef' WHERE cust_name IS NULL

While SQL keywords are not case sensitive for database servers, table names and column names can be
case-sensitive.

You can dump the static SQL statement texts with the -S option of fglcomp.

SQL texts generated by the compiler

The fglcomp compiler parses the static SQL statements and modifies them before writing the resulting SQL
text to the .42m module.

You can extract all static SQL statements from the source by using the -S option of fglcomp:

Example

MAIN
 DEFINE c_name CHAR(10)
 DEFINE cnt INTEGER
 DATABASE stock
 SELECT COUNT(*) INTO cnt FROM customer WHERE
 customer.cust_name = c_name
END MAIN

$ fglcomp -S test.4gl
test.4gl^5^SELECT COUNT(*) FROM customer WHERE cust_name = ?

SQL support | 489

INSERT
Creates a new row in a database table.

Syntax 1:

This is the most standard syntax, working with all type of database engines.

INSERT INTO table-specification [(column [,...])]
{
 VALUES ({ variable | sql-expression } [,...])
|
 select-statement
}

Syntax 2:

The fglcomp compiler will automatically generate a standard INSERT statement with the complete list of
members of the record. The generated SQL will depend from the definition of the record.

INSERT INTO table-specification VALUES (record.*)

Syntax 3:

This syntax requires a database schema specification with the SCHEMA instruction, and the corresponding
database schema file.

INSERT INTO table-specification VALUES record.*

where table-specification is:

[dbname[@dbserver]:][owner.]table

1. dbname identifies the database name.
2. dbserver identifies the database server (INFORMIXSERVER).
3. owner identifies the owner of the table, with optional double quotes.
4. table is the name of the database table.
5. column is a name of a table column.
6. variable is a program variable, a record member or an array member used as a parameter buffer to

provide values.
7. sql-expression is an expression supported by the database server, this can be a literal or NULL for

example.
8. select-statement is a static SELECT statement with or without parameters as variables.
9. record is the name of a record (followed by dot star in this syntax).

Usage

The INSERT SQL statement can be used to create a row i specified database table.

The dbname, dbserver and owner prefix of the table name should be avoided for maximum SQL portability.

When using the VALUES clause, the statement inserts a row in the table with the values specified in
variables, as literals, or with NULL. If a record is available, you can specify all record members with the star
notation (record.*).

The third syntax can be used to avoid serial column usage in the value list: The record member
corresponding to a column defined as SERIAL, SERIAL8 or BIGSERIAL in the schema file will be removed

SQL support | 490

by the compiler. This is useful when using databases like Microsoft™ SQL Server, where IDENTITY
columns must be omitted in INSERT statements.

When using a select-statement, the statement insert all rows returned in the result set of the SELECT
statement. The columns returned by the result set must match the column number and data types of the
target table. For SQL portability, it is not recommended that you use this syntax.

Example

MAIN
 DEFINE myrec RECORD
 key INTEGER,
 name CHAR(10),
 cdate DATE,
 comment VARCHAR(50)
 END RECORD
 DATABASE stock
 LET myrec.key = 123
 LET myrec.name = "Katos"
 LET myrec.cdate = TODAY
 LET myrec.comment = "xxxxxx"
 INSERT INTO items VALUES (123, 'Practal', NULL,
 myrec.comment)
 INSERT INTO items VALUES (myrec.*)
 INSERT INTO items VALUES myrec.* -- without serial (if one
 is used)
 INSERT INTO items SELECT * FROM histitems WHERE name =
 myrec.name
END MAIN

UPDATE
Modifies rows of a database table.

Syntax 1:

This is the most standard syntax, working with all type of database engines.

UPDATE table-specification
 SET
 column = { variable | sql-expression }
 [,...]
 [sql-condition]

Syntax 2:

This syntax is not standard, but will be converted by compiler to a portable UPDATE syntax.

UPDATE table-specification
 SET (column [,...])
 = ({ variable | sql-expression } [,...])
 [sql-condition]

Syntax 3:

This syntax is not portable, and is not converted by the compiler.

UPDATE table-specification
 SET [table.]*

SQL support | 491

 = ({ variable | sql-expression } [,...])
 [sql-condition]

Syntax 4:

The last syntax requires a database schema specification with SCHEMA instruction, and the corresponding
database schema file.

UPDATE table-specification
 SET { [table.]* | (column [,...]) }
 = record.*
 [sql-condition]

where table-specification is:

[dbname[@dbserver]:][owner.]table

And sql-condition is:

WHERE { condition | CURRENT OF cursor }

1. dbname identifies the database name.
2. dbserver identifies the database server (INFORMIXSERVER).
3. owner identifies the owner of the table, with optional double quotes.
4. table is the name of the database table.
5. column is a name of a table column.
6. variable is a program variable, a record member or an array member used as a parameter buffer to

provide values.
7. sql-expression is an expression supported by the database server, this can be a literal or NULL for

example.
8. record is the name of a record (followed by dot star in this syntax).
9. condition is an SQL expression to select the rows to be updated.
10.cursor is the identifier of a database cursor.

Usage

The UPDATE SQL statement can be used to modify one or more rows in the specified database table.

The dbname, dbserver and owner prefix of the table name should be avoided for maximum SQL portability.

The third syntax should be avoided, this syntax is not standard and will not work will all database types.

The fourth syntax can be used if the database schema file has been generated with the correct data types.
This is especially important when using SERIAL columns or equivalent auto-incremented columns. The
fglcomp compiler will automatically extend the SQL text with the columns identified by the record variable.
The columns defined in the database schema file as SERIAL (code 262) will be omitted in the generated
column list.

column with a subscript expression (column[a,b]) is not recommended because most database servers
do not support this notation.

For more details about the WHERE CURRENT OF clause, see Positioned updates/deletes on page 514.

Example

MAIN
 DEFINE myrec RECORD
 key INTEGER,
 name CHAR(10),

SQL support | 492

 cdate DATE,
 comment VARCHAR(50)
 END RECORD
 DATABASE stock
 LET myrec.key = 123
 LET myrec.name = "Katos"
 LET myrec.cdate = TODAY
 LET myrec.comment = "xxxxxx"
 UPDATE items SET
 name = myrec.name,
 cdate = myrec.cdate,
 comment = myrec.comment
 WHERE key = myrec.key
END MAIN

DELETE
Removes rows from a database table.

Syntax

DELETE FROM table-specification
 [WHERE { condition | CURRENT OF cursor }]

where table-specification is:

[dbname[@dbserver]:][owner.]table

1. dbname identifies the database name.
2. dbserver identifies the database server (INFORMIXSERVER).
3. owner identifies the owner of the table, with optional double quotes.
4. table is the name of the database table.
5. condition is an SQL expression to select the rows to be deleted.
6. cursor is the identifier of a database cursor.

Usage

The DELETE SQL statement can be used to delete one or more rows from the specified database table.

The dbname, dbserver and owner prefix of the table name should be avoided for maximum SQL portability.

If you do not specify the WHERE clause, all rows in the table will be deleted. No warning will be generated
by the compiler.

For more details about the WHERE CURRENT OF clause, see Positioned updates/deletes on page 514.

Example

MAIN
 DATABASE stock
 DELETE FROM items WHERE name LIKE 'A%'
END MAIN

SQL support | 493

SELECT
Produces a result set from a query on database tables.

Syntax

select-statement [UNION [ALL] select-statement
] [...]

where select-statement is:

SELECT [subset-clause] [duplicates-option] { * | select-list }
 [INTO variable [,...]]
 FROM table-list [,...]
 [WHERE condition]
 [GROUP BY column-list [HAVING condition]]
 [ORDER BY column [{ASC|DESC}] [,...]]

where subset-clause is:

[SKIP { integer | variable }]
[{FIRST|MIDDLE|LIMIT} { integer | variable]

where duplicates-option is:

{ ALL
| DISTINCT
| UNIQUE
}

where select-list is:

{ [@]table-specification.*
| [table-specification.]column
| literal
} [[AS] column-alias]
[,...]

where table-list is:

{ table-name
| OUTER table-name
| OUTER (table-name [,...])
}
[,...]

where table-name is:

table-specification [[AS] table-alias]

where table-specification is:

[dbname[@dbserver]:][owner.]table

where column-list is:

column-name [,...]

SQL support | 494

where column-name is:

[table.]column

1. dbname identifies the database name.
2. dbserver identifies the database server (INFORMIXSERVER).
3. owner identifies the owner of the table, with optional double quotes.
4. table is the name of the database table.
5. table-alias defines a new name to reference the table in the rest of the statement.
6. integer is an integer constant.
7. variable is a program variable.
8. column is a name of a table column.
9. column-alias defines a new name to reference the column in the rest of the statement.
10.condition is an SQL expression to select the rows to be deleted.

Usage

The dbname, dbserver and owner prefix of the table name should be avoided for maximum SQL portability.

If the SELECT statement returns only one row of data, you can write it directly as a procedural instruction.
However, you must use the INTO clause to provide the list of variables where column values will be
fetched. The INTO clause provides the list of fetch buffers. This clause is not part of the SQL language
sent to the database server; it is extracted from the statement by the compiler.

MAIN
 DEFINE myrec RECORD
 key INTEGER,
 name CHAR(10),
 cdate DATE,
 comment VARCHAR(50)
 END RECORD
 DATABASE stock
 LET myrec.key = 123
 SELECT name, cdate
 INTO myrec.name, myrec.cdate
 FROM items
 WHERE key=myrec.key
END MAIN

If the SELECT statement returns more than one row of data, you must declare a database cursor to
process the result set.

MAIN
 DEFINE myrec RECORD
 key INTEGER,
 name CHAR(10),
 cdate DATE,
 comment VARCHAR(50)
 END RECORD
 DATABASE stock
 LET myrec.key = 123
 DECLARE c1 CURSOR FOR
 SELECT name, cdate
 FROM items
 WHERE key=myrec.key
 OPEN c1
 FETCH c1 INTO myrec.name, myrec.cdate
 CLOSE c1
END MAIN

SQL support | 495

The SELECT statement can include the INTO clause, but it is strongly recommended that you use that
clause in the FETCH instruction only.

The SELECT INTO TEMP statement creates temporary tables. Such statement does not return a result
set.

SQL ... END SQL
Performs an SQL that is not part of the static SQL syntax.

Syntax

SQL
 sql-statement
END SQL

where sql-statement is:

 sql-keyword
| identifier
| INTO $host-variable [,...]
| $host-variable
| {+ sql-directive }
| --+ sql-directive
| --# fgl-comment
[...]

1. sql-keyword is any keyword of the SQL language.
2. identifier is a regular SQL identifier such as a table or column name.
3. host-variable is a program variable defined in the current scope.
4. sql-directive is a special comment to be kept in the SQL statement.
5. fgl-comment defines a comment that will be interpreted as a regular syntax element.

Usage

SQL blocks provide a convenient way to execute specific SQL statements that are not supported in the
language as static SQL statements.

SQL blocks start with the SQL keyword and end with the END SQL keywords. The content of the SQL block
is parsed by the fglcomp compiler to extract host variables, but the SQL statement syntax is not checked.
This is actually the main purpose of SQL blocks, compared to regular static SQL statements; with SQL
blocks, you can use any recent SQL statement introduced by the latest version of your database server.
Note however, that you can achieve the same result using dynamic SQL instructions.

Only one SQL statement can be included in an SQL block. Using the ; semicolon statement separator is
forbidden.

Program variables can be used inside the SQL statement. However, unlike static SQL statements, each
host variable must be identified with a $ dollar prefix. The list of fetch targets must be preceded by the
INTO keyword, as in static SELECT statements. Complete records can be used in SQL blocks by using the
dot star notation ($record.*), you can also use the THROUGH or THRU keywords), as well as array elements.

SQL blocks can also be used to declare a cursor with the DECLARE mycursor CURSOR FOR SQL ...
END SQL syntax.

SQL directives can be used inside SQL blocks as special comments with the {+} or --+ syntax. The SQL
directives will be kept in the SQL text that will be executed by the database server. You typically write
optimizer hints with the SQL directives syntax.

SQL support | 496

The --# specific comment is supported for backward compatibility. The SQL text following this marker will
be parsed as regular SQL text, but will be ignored by other compilers. It is not recommended to use this
feature.

You can check the resulting SQL statement after parsing by using the -S option of fglcomp.

Example

MAIN
 DEFINE myrec RECORD
 key INTEGER,
 name CHAR(10)
 END RECORD
 DATABASE stock
 LET myrec.key = 123
 SQL
 SELECT (+EXPLAIN) items.* INTO $myrec.*
 FROM items WHERE key=$myrec.key
 END SQL
END MAIN

CREATE SEQUENCE
Creates a new sequence object in the database.

Syntax:

CREATE SEQUENCE [IF NOT EXISTS] sequence-name
[INCREMENT BY integer
| START WITH integer
| NOMAXVALUE
| MAXVALUE integer
| NOMINVALUE
| MINVALUE integer
| CYCLE
| NOCYCLE
| CACHE integer
| NOCACHE
| ORDER
| NOORDER
]

ALTER SEQUENCE
Modifies the definition of an existing sequence in the database.

Syntax:

ALTER SEQUENCE sequence-name
[INCREMENT BY integer
| RESTART WITH integer
| NOMAXVALUE
| MAXVALUE integer
| NOMINVALUE
| MINVALUE integer
| CYCLE
| NOCYCLE
| CACHE integer
| NOCACHE
| ORDER

SQL support | 497

| NOORDER
]

DROP SEQUENCE
Drops a sequence object from the database.

Syntax:

DROP SEQUENCE [IF EXISTS] sequence-name

CREATE TABLE
Creates a new table object in the database.

Syntax:

CREATE [TEMP] TABLE [IF NOT EXISTS] table-specification
(
[column-name data-type
 [DEFAULT default-value] [NOT NULL]
 [PRIMARY KEY [contraint-name]
 | UNIQUE [contraint-name]
 | CHECK (sql-condition) [contraint-name]
 | REFERENCES table-name
 [(column-name [,...])]
 [ON DELETE CASCADE]
 [contraint-name]
]
| PRIMARY KEY (column-name [,...]) [contraint-name]
| UNIQUE (column-name [,...]) [contraint-name]
| CHECK (sql-condition) [contraint-name]
| FOREIGN KEY (column-name [,...])
 REFERENCES table-name
 [(column-name [,...])]
 [ON DELETE CASCADE]
 [contraint-name]
] [,...]
)
[WITH NO LOG]
[IN tablespace-name]
[EXTENT SIZE integer]
[NEXT SIZE integer]
[LOCK MODE { PAGE | ROW }]

ALTER TABLE
Modifies the definition of an existing table in the database.

Syntax:

ALTER TABLE table-specification
(
[DROP (column-name [,...])
| ADD (column-name data-type
 [DEFAULT default-value] [NOT NULL]
 [PRIMARY KEY [contraint-name]
 | UNIQUE [contraint-name]
 | CHECK (sql-condition) [contraint-name]
 | REFERENCES table-name

SQL support | 498

 [(column-name [,...])]
 [ON DELETE CASCADE]
 [contraint-name]
]
 [BEFORE column-name
 [,...]
)
| MODIFY (column-name data-type
 [DEFAULT default-value] [NOT NULL]
 [PRIMARY KEY [contraint-name]
 | UNIQUE [contraint-name]
 | CHECK (sql-condition) [contraint-name]
 | REFERENCES table-name
 [(column-name [,...])]
 [ON DELETE CASCADE]
 [contraint-name]
]
 [,...]
)
| DROP CONSTRAINT constraint-name
| ADD CONSTRAINT
 { PRIMARY KEY (column-name [,...]) [contraint-name]
 | UNIQUE (column-name [,...]) [contraint-name]
 | CHECK (sql-condition) [contraint-name]
 | FOREIGN KEY (column-name [,...])
 REFERENCES table-name
 [(column-name [,...])]
 [ON DELETE CASCADE]
 [contraint-name]
 }
| LOCK MODE ({ PAGE | ROW })
| MODIFY NEXT SIZE integer
] [,...]
)

DROP TABLE
Drops a table object from the database.

Syntax:

DROP TABLE [IF EXISTS] table-specification

CREATE INDEX
Creates a new index object in the database.

Syntax:

CREATE [UNIQUE | CLUSTER | UNIQUE CLUSTER] INDEX
 [IF NOT EXISTS] index-name
 ON table-specification
 (column-name [ASCENCDING | DESCENDING] [,...])

SQL support | 499

ALTER INDEX
Modifies the definition of an existing index in the database.

Syntax:

ALTER INDEX index-name TO [NOT] CLUSTER

DROP INDEX
Drops an index object from the database.

Syntax:

DROP INDEX [IF EXISTS] index-name

CREATE VIEW
Creates a new view object in the database.

Syntax:

CREATE VIEW [IF NOT EXISTS] view-name
[(column-alias-name [,...])]
 AS sub-query
[WITH CHECK OPTION]

where sub-query is a limited syntax of the SELECT statement.

DROP VIEW
Drops a view object from the database.

Syntax:

DROP VIEW [IF EXISTS] view-name

CREATE SYNONYM
Creates a new synonym object in the database.

Syntax:

CREATE SYNONYM [IF NOT EXISTS] synonym-name
 FOR table-specification

DROP SYNONYM
Drops a synonym object from the database.

Syntax:

DROP SYNONYM [IF EXISTS] synonym-name

SQL support | 500

RENAME
Renames an object in the database.

Syntax:

RENAME { TABLE | COLUMN | INDEX | SEQUENCE }
 old-name TO new-name

Dynamic SQL management
Explains how to execute and manage SQL statements at runtime.

• Understanding dynamic SQL on page 500
• PREPARE (SQL statement) on page 501
• EXECUTE (SQL statement) on page 502
• FREE (SQL statement) on page 503
• EXECUTE IMMEDIATE on page 504

Understanding dynamic SQL

Basic SQL instructions are part of the language syntax as static SQL statements, but only a limited number
of SQL instructions are supported this way. Dynamic SQL management allows you to execute any kind
of SQL statement, hard coded or created at runtime, with or without SQL parameters, returning or not
returning a result set.

In order to execute an SQL statement dynamically, you must first prepare the SQL statement to initialize a
statement handle, then you execute the prepared statement one or more times:

Figure 23: Dynamic SQL management diagram

When you no longer need the prepared statement, you can free the statement handle to release allocated
resources:

SQL support | 501

Figure 24: FREE statement diagram

When using insert cursors or SQL statements that produce a result set (like SELECT), you must declare a
cursor with a prepared statement handle.

Prepared SQL statements can contain SQL parameters by using ? placeholders in the SQL text. In this
case, the EXECUTE or OPEN instruction supplies input values in the USING clause.

To increase performance efficiency, you can use the PREPARE instruction, together with an EXECUTE
instruction in a loop, to eliminate overhead caused by redundant parsing and optimizing. For example,
an UPDATE statement located within a WHILE loop is parsed each time the loop runs. If you prepare the
UPDATE statement outside the loop, the statement is parsed only once, eliminating overhead and speeding
statement execution.

PREPARE (SQL statement)
Prepares an SQL statement for execution.

Syntax

PREPARE sid FROM sqltext

1. sid is an identifier to handle the prepared SQL statement.
2. sqltext is a string expression containing the SQL statement to be prepared.

Usage

The PREPARE instruction allocates resources for an SQL statement handle, in the context of the current
database connection. The SQL text is sent to the database server for parsing, validation and to generate
the execution plan.

Prepared SQL statements can be executed with the EXECUTE instruction, or, when the SQL statement
generates a result set, the prepared statement can be used to declare cursors with the DECLARE
instruction.

A statement identifier (sid) can represent only one SQL statement at a time. You can execute a new
PREPARE instruction with an existing statement identifier if you wish to assign the text of a different SQL
statement to the statement identifier. The scope of reference of the sid statement identifier is local to the
module where it is declared. That is, the identifier of a statement that was prepared in one module cannot
be referenced from another module.

SQL support | 502

The SQL statement can have parameter placeholders, identified by the question mark (?) character. You
cannot directly reference a variable in the text of a prepared SQL statement. You cannot use question
mark (?) placeholders for SQL identifiers such as a table name or a column name; you must specify these
identifiers in the statement text when you prepare it.

Resources allocated by PREPARE can be released later by the FREE instruction.

The number of prepared statements in a single program is limited by the database server and the available
memory. Make sure that you free the resources when you no longer need the prepared statement.

Some database servers support multiple SQL statement preparation in a unique PREPARE instruction, but
most database servers deny multiple statements. You should only prepare one SQL statement at a time.

Example

FUNCTION deleteOrder(n)
 DEFINE n INTEGER
 PREPARE s1 FROM "DELETE FROM order WHERE key=?"
 EXECUTE s1 USING n
 FREE s1
END FUNCTION

See EXECUTE for more code examples.

EXECUTE (SQL statement)
This instruction runs an SQL statement previously prepared.

Syntax

EXECUTE sid
 [USING pvar {IN|OUT|INOUT} [,...]]
 [INTO fvar [,...]]

1. sid is an identifier to handle the prepared SQL statement.
2. pvar is a variable containing an input value for an SQL parameter.
3. fvar is a variable used as fetch buffer.

Usage

The EXECUTE instruction performs the execution of a prepared SQL statement. Once prepared, an SQL
statement can be executed as often as needed.

If the SQL statement has (?) parameter placeholders, you must specify the USING clause to provide a list
of variables as parameter buffers. Parameter values are assigned by position.

If the SQL statement returns a result set with one row, you can specify the INTO clause to provide a list
of variables to receive the result set column values. Fetched values are assigned by position. If the SQL
statement returns a result set with more than one row, the instruction raises an exception.

The IN, OUT or INOUT options can only be used for simple variables, you cannot specify those options for
a complete record with the record.* notation.

The IN, OUT or INOUT options can be used to call stored procedures having input / output parameters.
Use the IN, OUT or INOUT options to indicate if a parameter is respectively for input, output or both.

You cannot execute a prepared SQL statement based on database tables if the table structure has
changed (ALTER TABLE) since the PREPARE instruction; you must re-prepare the SQL statement.

SQL support | 503

Example

MAIN
 DEFINE var1 CHAR(20)
 DEFINE var2 INTEGER

 DATABASE stores

 PREPARE s1 FROM "UPDATE tab SET col=? WHERE key=?"
 LET var1 = "aaaa"
 LET var2 = 345
 EXECUTE s1 USING var1, var2

 PREPARE s2 FROM "SELECT col FROM tab WHERE key=?"
 LET var2 = 564
 EXECUTE s2 USING var2 INTO var1

 PREPARE s3 FROM "CALL myproc(?,?)"
 LET var1 = 'abc'
 EXECUTE s3 USING var1 IN, var2 OUT

END MAIN

FREE (SQL statement)
Releases the resources allocated to a prepared statement.

Syntax

FREE sid

1. sid is the identifier of the prepared SQL statement.

Usage

The FREE instruction takes the name of a statement as parameter.

All resources allocated to the SQL statement handle are released.

After resources are released, the statement identifier cannot be referenced by a cursor, or by the EXECUTE
statement, until you prepare the statement again.

Free the statement if it is not needed anymore, this saves resources on the database client and database
server side.

Example

FUNCTION update_customer_name(key, name)
 DEFINE key INTEGER
 DEFINE name CHAR(10)
 PREPARE s1 FROM "UPDATE customer SET name=? WHERE
 customer_num=?"
 EXECUTE s1 USING name, key
 FREE s1
END FUNCTION

SQL support | 504

EXECUTE IMMEDIATE
Performs a simple SQL execution without SQL parameters or result set.

Syntax

EXECUTE IMMEDIATE sqltext

1. sqltext is a string expression containing the SQL statement to be executed.

Usage

The EXECUTE IMMEDIATE instruction passes an SQL statement to the database server for execution in
the current database connection.

The SQL statement used by EXECUTE IMMEDIATE must be a single statement without SQL parameters
and must not produce a result set.

This instruction is equivalent to PREPARE, EXECUTE and FREE in one step.

Example

MAIN
 DATABASE stores
 EXECUTE IMMEDIATE "UPDATE tab SET col='aaa' WHERE key=345"
END MAIN

Result set processing
Shows how to fetch rows from a database query.

• Understanding database result sets on page 504
• DECLARE (result set cursor) on page 506
• OPEN (result set cursor) on page 509
• FETCH (result set cursor) on page 510
• CLOSE (result set cursor) on page 511
• FREE (result set cursor) on page 512
• FOREACH (result set cursor) on page 512

Understanding database result sets

A database result set is a group of rows produced by an SQL statement such as SELECT. The result set is
maintained by the database server. In a program, you handle a result set with a database cursor.

First you must declare the database cursor with the DECLARE instruction. This instruction sends the SQL
statement to the database server for parsing, validation and to generate the execution plan.

SQL support | 505

Figure 25: Database result set

The result set is produced after execution of the SQL statement, when the database cursor is associated
with the result set by the OPEN instruction. At this point, no data rows are transmitted to the program. You
must use the FETCH instruction to retrieve data rows from the database server.

Figure 26: FETCH instruction

When finished with the result set processing, you must CLOSE the cursor to release the resources
allocated for the result set on the database server. The cursor can be reopened if needed. If the SQL
statement is no longer needed, you can free the resources allocated to statement execution with the FREE
instruction.

SQL support | 506

Figure 27: FREE instruction

The scope of reference of a database cursor is local to a module, so a cursor that was declared in one
source file cannot be referenced in a statement in another file.

The language supports sequential cursors and scrollable cursors. Sequential cursors, which are
unidirectional, are used to retrieve rows for a REPORT, for example. Scrollable cursors allow you to move
backwards or to an absolute or relative position in the result set. Specify whether a cursor is scrollable with
the SCROLL option of the DECLARE instruction.

DECLARE (result set cursor)
Associates a database cursor with an SQL statement producing a result set.

Syntax 1: Cursor declared with a static SQL statement.

DECLARE cid [SCROLL] CURSOR [WITH HOLD] FOR select-statement

Syntax 2: Cursor declared with a prepared statement.

DECLARE cid [SCROLL] CURSOR [WITH HOLD] FOR sid

Syntax 3: Cursor declared with a string expression.

DECLARE cid [SCROLL] CURSOR [WITH HOLD] FROM expr

Syntax 4: Cursor declared with an SQL Block.

DECLARE cid [SCROLL] CURSOR [WITH HOLD] FOR SQL sql-statement END SQL

1. cid is the identifier of the database cursor.
2. select-statement is a SELECT statement defined in static SQL.
3. sid is the identifier of a prepared SQL statement.
4. expr is any expression that evaluates to a string.
5. sql-statement is a statement defined in an SQL block.

SQL support | 507

Usage

The DECLARE instruction allocates resources for an SQL statement handle, in the context of the current
connection. The SQL text is sent to the database server for parsing, validation and to generate the
execution plan.

After declaring the cursor, you can use the OPEN instruction to execute the SQL statement and produce the
result set.

DECLARE must precede any other statement that refers to the cursor during program execution.

The scope of reference of the cid cursor identifier is local to the module where it is declared.

Resources allocated by the DECLARE cursor-name can be released later by the FREE cursor-name
instruction.

The static select-statement used in the DECLARE can contain ? (question mark) parameter placeholders,
that can be bound to program variables with the USING clause of the OPEN instruction.

The maximum number of declared cursors in a single program is limited by the database server and the
available memory. Make sure that you free the resources when you no longer need the declared cursor.

When declaring a cursor with a static select-statement, the statement can include an INTO clause.
However, to be consistent with prepared statements you better omit the INTO clause in the SQL text and
use the INTO clause of the FETCH statement to retrieve the values from the result set.

You can add the FOR UPDATE clause in the SELECT statement to declare an update cursor. You can use
the update cursor to modify (update or delete) the current row.

You should use the WITH HOLD option with care, because this feature is specific to IBM® Informix®

servers. Other database servers do not behave as Informix® does with this type of cursor. For example,
if the SELECT is not declared FOR UPDATE, most database servers keep cursors open after the end of a
transaction, but IBM® DB2® automatically closes all cursors when the transaction is rolled back.

Forward only cursors

If you use only the DECLARE CURSOR keywords, you create a sequential cursor, which can fetch only the
next row in sequence from the result set. The sequential cursor can read through the result set only once
each time it is opened. If you are using a sequential cursor for a select cursor, on each execution of the
FETCH statement, the database server returns the contents of the current row and locates the next row in
the result set.

Cursors can be declare with a static SELECT statement:

MAIN
 DATABASE stores
 DECLARE c1 CURSOR FOR SELECT * FROM customer
END MAIN

Cursors can also be declared with a SELECT statement defined in a character string:

MAIN
 DEFINE key INTEGER
 DEFINE cust RECORD
 num INTEGER,
 name CHAR(50)
 END RECORD
 DATABASE stores
 PREPARE s1
 FROM "SELECT customer_num, cust_name FROM customer WHERE
 customer_num>?"
 DECLARE c1 CURSOR FOR s1
 LET key=101
 FOREACH c1 USING key INTO cust.*

SQL support | 508

 DISPLAY cust.*
 END FOREACH
END MAIN

Scrollable cursors

Use the DECLARE SCROLL CURSOR keywords to create a scrollable cursor, which can fetch rows of the
result set in any sequence. Until the cursor is closed, the database server retains the result set of the
cursor in a static data set (for example, in a temporary table like Informix®). You can fetch the first, last, or
any intermediate rows of the result set as well as fetch rows repeatedly without having to close and reopen
the cursor. On a multiuser system, the rows in the tables from which the result set rows were derived might
change after the cursor is opened and a copy of the row is made in the static data set. If you use a scroll
cursor within a transaction, you can prevent copied rows from changing, either by setting the isolation
level to REPEATABLE READ or by locking the entire table in share mode during the transaction. Scrollable
cursors cannot be declared FOR UPDATE.

With most database servers, scrollable cursors take quite a few resources to hold a static copy of the
result set. Therefore you should consider optimizing scrollable cursor usage by fetching only the primary
keys of rows, and execute a secondary SELECT statement to fetch other fields for each row that must be
displayed.

The DECLARE [SCROLL] CURSOR FROM syntax allows you to declare a cursor directly with a string
expression, so that you do not have to use the PREPARE instruction. This simplifies the source code and
speeds up the execution time for non-Informix databases, because the SQL statement is not parsed twice.

MAIN
 DEFINE key INTEGER
 DEFINE cust RECORD
 num INTEGER,
 name CHAR(50)
 END RECORD
 DATABASE stores
 DECLARE c1 SCROLL CURSOR
 FROM "SELECT customer_num, cust_name FROM customer WHERE
 customer_num>?"
 LET key=101
 FOREACH c1 USING key INTO cust.*
 DISPLAY cust.*
 END FOREACH
END MAIN

Hold cursors

Use the WITH HOLD option with Informix® databases to create a hold cursor. A hold cursor allows
uninterrupted access to a set of rows across multiple transactions. Ordinarily, all cursors close at the end
of a transaction. A hold cursor does not close; it remains open after a transaction ends. A hold cursor can
be either a sequential cursor or a scrollable cursor. Hold cursors are only supported by Informix® database
engines.

You can use the ? question mark place holders with prepared or static SQL statements, and provide the
parameters at execution time with the USING clause of the OPEN or FOREACH instructions.

MAIN
 DEFINE key INTEGER
 DEFINE cust RECORD
 num INTEGER,
 name CHAR(50)
 END RECORD
 DATABASE stores
 DECLARE c1 CURSOR WITH HOLD

SQL support | 509

 FOR SELECT customer_num, cust_name FROM customer WHERE customer_num > ?
 LET key=101
 FOREACH c1 USING key INTO cust.*
 BEGIN WORK
 UPDATE cust2 SET name=cust.cust_name WHERE num=cust.num
 COMMIT WORK
 END FOREACH
END MAIN

OPEN (result set cursor)
Executes the SQL statement with result set associated to the specified database cursor

Syntax

OPEN cid
 [USING pvar {IN|OUT|INOUT} [,...]]
 [WITH REOPTIMIZATION]

1. cid is the identifier of the database cursor.
2. pvar is a variable containing an input value for an SQL parameter.

Usage:

The OPEN instruction executes the SQL statement of a declared cursor. The result set is produced on the
server side and rows can be fetched.

The USING clause is required to provide the SQL parameters as program variables, if the cursor was
declared with a prepared statement that includes (?) question mark placeholders.

A subsequent OPEN statement closes the cursor and then reopens it. When the database server reopens
the cursor, it creates a new result set, based on the current values of the variables in the USING clause.
If the variables have changed since the previous OPEN statement, reopening the cursor can generate an
entirely different result set.

The IN, OUT or INOUT options can be used to call stored procedures having input / output parameters
and generating a result set. Use the IN, OUT or INOUT options to indicate if a parameter is respectively for
input, output or both.

Sometimes, query execution plans need to be re-optimized when SQL parameter values change. Use
the WITH REOPTIMIZATION clause to indicate that the query execution plan has to be re-optimized on
the database server (this operation is normally done during the DECLARE instruction). If this option is not
supported by the database server, it is ignored.

In a IBM® Informix® database that is ANSI-compliant, you receive an error code if you try to open a cursor
that is already open. Informix® only!

A cursor is closed with the CLOSE instruction, or when the parent connection is terminated (typically, when
the program ends). By using the CLOSE instruction explicitly, you release resources allocated for the result
set in the db client library and on the database server.

The database server evaluates the values that are named in the USING clause of the OPEN statement only
when it opens the cursor. While the cursor is open, subsequent changes to program variables in the OPEN
clause do not change the result set of the cursor; you must re-open the cursor to re-execute the statement.

If you release cursor resources with a FREE instruction, you cannot use the cursor unless you declare the
cursor again.

The IN, OUT or INOUT options can only be used for simple variables, you cannot specify those options for
a complete record with the record.* notation.

SQL support | 510

Example

MAIN
 DEFINE k INTEGER
 DEFINE n VARCHAR(50)
 DATABASE stores
 DECLARE c1 CURSOR FROM "SELECT cust_name FROM customer WHERE
 cust_id > ?"
 LET k = 102
 OPEN c1 USING k
 FETCH c1 INTO n
 LET k = 103
 OPEN c1 USING k
 FETCH c1 INTO n
END MAIN

FETCH (result set cursor)
Moves a cursor to a new row in the corresponding result set and retrieves the row values into fetch buffers.

Syntax

FETCH [direction] cid
 [INTO fvar [,...]]

where direction is one of:

{
 NEXT
| { PREVIOUS | PRIOR }
| CURRENT
| FIRST
| LAST
| ABSOLUTE position
| RELATIVE offset
}

1. cid is the identifier of the database cursor.
2. fvar is a variable used as fetch buffer.
3. direction options different from NEXT can only be used with scrollable cursors.
4. position is an positive integer expression.
5. offset is a positive or negative integer expression.

Usage

The FETCH instruction retrieves a row from a result set of an opened cursor. The cursor must be opened
before using the FETCH instruction.

The INTO clause can be used to provide the fetch buffers that receive the result set column values.

A sequential cursor can fetch only the next row in sequence from the result set.

The NEXT clause (the default) retrieves the next row in the result set. If the row pointer was on the last row
before executing the instruction, the SQL code is set to 100 (NOTFOUND), and the row pointer remains on
the last row. (if you issue a FETCH PREVIOUS at this time, you get the next-to-last row).

The PREVIOUS clause retrieves the previous row in the result set. If the row pointer was on the first row
before executing the instruction, the SQL code is set to 100 (NOTFOUND), and the row pointer remains on
the first row. (if you issue a FETCH NEXT at this time, you get the second row).

SQL support | 511

The CURRENT clause retrieves the current row in the result set.

The FIRST clause retrieves the first row in the result set.

The LAST clause retrieves the last row in the result set.

The ABSOLUTE clause retrieves the row at position in the result set. If the position is not correct, the SQL
code is set to 100 (NOTFOUND). Absolute row positions are numbered from 1.

The RELATIVE clause moves offset rows in the result set and returns the row at the current position. The
offset can be a negative value. If the offset is not correct, the SQL code is set to 100 (NOTFOUND). If offset
is zero, the current row is fetched.

Fetching rows can have specific behavior when the cursor was declared FOR UPDATE to perform a
positioned update or delete.

Example

MAIN
 DEFINE cust_rec RECORD
 cnum INTEGER,
 cname CHAR(20)
 END RECORD
 DATABASE stores
 DECLARE c1 SCROLL CURSOR FOR SELECT customer_num, cust_name
 FROM customer
 OPEN c1
 FETCH c1 INTO cust_rec.*
 FETCH LAST c1 INTO cust_rec.*
 FETCH PREVIOUS c1 INTO cust_rec.*
 FETCH FIRST c1 INTO cust_rec.*
 FETCH LAST c1 -- INTO clause is optional
 FETCH FIRST c1 -- INTO clause is optional
END MAIN

CLOSE (result set cursor)
Closes a database cursor and frees resources allocated on the database server for the result set.

Syntax

CLOSE cid

1. cid is the identifier of the database cursor.

Usage

The CLOSE instruction releases the resources allocated for the result set on the database server.

After using the CLOSE instruction, you must reopen the cursor with OPEN before retrieving values with
FETCH.

You should close the cursor when the result set is no longer used, this saves resources on the database
client and database server side.

Example

MAIN
 DATABASE stores
 DECLARE c1 CURSOR FOR SELECT * FROM customer
 OPEN c1

SQL support | 512

 CLOSE c1
 OPEN c1
 CLOSE c1
END MAIN

FREE (result set cursor)
Releases SQL cursor resources allocated by the DECLARE instruction.

Syntax

FREE cid

1. cid is the identifier of the database cursor.

Usage

The FREE instruction takes the name of a cursor as parameter.

All resources allocated to the database cursor are released.

If not done, the cursor is automatically closed when doing a FREE.

When cursor resources are released with FREE, the cursor must be declared again before usage.

Free the cursor when the result set is no longer used by the program; this saves resources on the
database client and database server side.

Example

MAIN
 DEFINE i, j INTEGER
 DATABASE stores
 FOR i=1 TO 10
 DECLARE c1 CURSOR FOR SELECT * FROM customer
 FOR j=1 TO 10
 OPEN c1
 FETCH c1
 CLOSE c1
 END FOR
 FREE c1
 END FOR
END MAIN

FOREACH (result set cursor)
Processes a series data rows returned from a database cursor.

Syntax

FOREACH cid
 [USING pvar {IN|OUT|INOUT} [,...]]
 [INTO fvar [,...]]
 [WITH REOPTIMIZATION]
 {
 statement
 | CONTINUE FOREACH
 | EXIT FOREACH
 }

SQL support | 513

 [...]
END FOREACH

1. cid is the identifier of the database cursor.
2. pvar is a variable containing an input value for an SQL parameter.
3. fvar is a variable used as fetch buffer.

Usage

Use the FOREACH instruction to retrieve and process database rows that were selected by a query. This
instruction is equivalent to using the OPEN, FETCH and CLOSE cursor instructions:

1. Open the specified cursor
2. Fetch the rows selected
3. Close the cursor (after the last row has been fetched)

You must declare the cursor (by using the DECLARE instruction) before the FOREACH instruction can
retrieve the rows. A compile-time error occurs unless the cursor was declared prior to this point in the
source module. You can reference a sequential cursor, a scroll cursor, a hold cursor, or an update cursor,
but FOREACH only processes rows in sequential order.

The FOREACH statement performs successive fetches until all rows specified by the SELECT statement are
retrieved. Then the cursor is automatically closed. It is also closed if a WHENEVER NOT FOUND exception
handler within the FOREACH loop detects a NOTFOUND condition.

After a FOREACH loop, STATUS and SQLCA.SQLCODE will not be set to NOTFOUND(100) if no rows are
returned by the query: If no error occurred, these registers will hold the value zero.

The USING clause is required to provide the SQL parameter buffers, if the cursor was declared with a
prepared statement that includes (?) question mark placeholders.

The IN, OUT or INOUT options can be used to call stored procedures having input / output parameters and
generating a result set. Use the IN, OUT, or INOUT options to indicate if a parameter is respectively for
input, output, or both.

The INTO clause can be used to provide the fetch buffers that receive the row values.

Use the WITH REOPTIMIZATION clause to indicate that the query execution plan has to be re-optimized.

The CONTINUE FOREACH instruction interrupts processing of the current row and starts processing the
next row. The runtime system fetches the next row and resumes processing at the first statement in the
block.

The EXIT FOREACH instruction interrupts processing and ignores the remaining rows of the result set.

The IN, OUT, or INOUT options can only be used for simple variables; you cannot specify those options for
a complete record with the record.* notation.

Example

MAIN
 DEFINE clist ARRAY[200] OF RECORD
 cnum INTEGER,
 cname CHAR(50)
 END RECORD
 DEFINE i INTEGER
 DATABASE stores
 DECLARE c1 CURSOR FOR SELECT customer_num, cust_name FROM
 customer
 LET i=0
 FOREACHc1 INTO clist[i+1].*
 LET i=i+1
 DISPLAY clist[i].*

SQL support | 514

 END FOREACH
 DISPLAY "Number of rows found: ", i
END MAIN

Positioned updates/deletes
Describes row modification based on a FOR UPDATE cursor.

• Understanding positioned update or delete on page 514
• DECLARE (SELECT ... FOR UPDATE) on page 515
• UPDATE ... WHERE CURRENT OF on page 516
• DELETE ... WHERE CURRENT OF on page 517
• Examples on page 517

Understanding positioned update or delete

When declaring a database cursor with a SELECT statement using a unique table and ending with the FOR
UPDATE keywords, you can update or delete database rows by using the WHERE CURRENT OF keywords
in the UPDATE or DELETE statements. Such an operation is called positioned update or positioned delete.

Some database servers do not support hold cursors (WITH HOLD) declared with a SELECT statement
including the FOR UPDATE keywords. The SQL standards require for update cursors to be automatically
closed at the end of a transaction. Therefore, it is strongly recommended that you use positioned updates
in a transaction block.

Do not confuse positioned update with the use of SELECT FOR UPDATE statements that are not
associated with a database cursor. Executing SELECT FOR UPDATE statements is supported by the
language, but you cannot perform positioned updates since there is no cursor identifier associated to the
result set.

To perform a positioned update or delete, you must declare the database cursor with a SELECT FOR
UPDATE statement.

Figure 28: SELECT FOR UPDATE statement

Then, start a transaction, open the cursor and fetch a row.

SQL support | 515

Figure 29: Open a cursor

Finally, you update or delete the current row and you commit the transaction.

Figure 30: Delete the row

DECLARE (SELECT ... FOR UPDATE)
Associate a database cursor with a SELECT statement to perform positioned updates and deletes

Syntax

DECLARE cid [SCROLL] CURSOR [WITH HOLD]
 FOR { select-statement | sid }

1. cid is the identifier of the database cursor.
2. select-statement is a SELECT statement defined in static SQL, with the FOR UPDATE keywords.
3. sid is the identifier of a prepared SELECT statement including the FOR UPDATE keywords.

SQL support | 516

Usage

DECLARE ... FOR UPDATE will define a cursor that can be used to do positioned updates and deletes
with the WHERE CURRENT OF clause.

DECLARE must precede any other statement that refers to the cursor during program execution.

To perform positioned updates, the select-statement must include the FOR UPDATE keywords.

The scope of reference of the cid cursor identifier is local to the module where it is declared. Therefore, you
must execute the DECLARE, UPDATE or DELETE instructions in the same module.

The static select-statement used in the DECLARE can contain ? (question mark) parameter placeholders,
that can be bound to program variables with the USING clause of the OPEN instruction.

Use the WITH HOLD option carefully, because this feature is specific to IBM® Informix® servers. Other
database servers do not behave as Informix® does with such cursors. For example, if the SELECT is not
declared FOR UPDATE, most database servers keep cursors open after the end of a transaction, but IBM®

DB2® automatically closes all cursors when the transaction is rolled back.

UPDATE ... WHERE CURRENT OF
Updates the current row in a result set of a database cursor declared for update.

Syntax

UPDATE table-specification
 SET
 column = { variable | sql-expression }
 [,...]
 WHERE CURRENT OF cid

1. table-specification identifies the target table (see UPDATE for more details).
2. column is a name of a table column.
3. variable is a program variable, a record member or an array member used as a parameter buffer to

provide values.
4. sql-expression is an expression supported by the database server, this can be a literal or NULL for

example.
5. cid is the identifier of the database cursor declared for update.

Usage

Use UPDATE ... WHERE CURRENT OF to modify the values of the row currently pointed by the
associated FOR UPDATE cursor.

The UPDATE statement does not advance the cursor to the next row, so the current row position remains
unchanged.

The scope of reference of the cid cursor identifier is local to the module where it is declared. Therefore, you
must execute the DECLARE,UPDATE or DELETE instructions in the same module.

There must be a current row in the result set. Make sure that the SQL status returned by the last FETCH is
equal to zero.

If the DECLARE statement that created the cursor specified one or more columns in the FOR UPDATE
clause, you are restricted to updating only those columns in a subsequent UPDATE ... WHERE CURRENT
OF statement.

SQL support | 517

DELETE ... WHERE CURRENT OF
Deletes the current row in a result set of a database cursor declared for update.

Syntax

DELETE FROM table-specification
 WHERE CURRENT OF cid

1. table-specification identifies the target table
2. cid is the identifier of the database cursor declared for update.

Usage

Use DELETE ... WHERE CURRENT OF to remove the row currently pointed by the associated FOR
UPDATE cursor.

After the deletion, no current row exists; you cannot use the cursor to delete or update a row until you
reposition the cursor with a FETCH statement.

The scope of reference of the cid cursor identifier is local to the module where it is declared. Therefore, you
must execute the DECLARE, UPDATE or DELETE instructions in the same module.

There must be a current row in the result set. Make sure that the SQL status returned by the last FETCH is
equal to zero.

Examples

Example 1: Positioned UPDATE statement

MAIN
 DEFINE pname CHAR(30)
 DATABASE stock
 DECLARE uc CURSOR FOR
 SELECT name FROM item WHERE key=123 FOR UPDATE
 BEGIN WORK
 OPEN uc
 FETCH uc INTO pname
 IF sqlca.sqlcode=0 THEN
 LET pname = "Dummy"
 UPDATE item SET name=pname WHERE CURRENT OF uc
 END IF
 CLOSE uc
 COMMIT WORK
 FREE uc
END MAIN

SQL insert cursors
Explains how to insert a log of rows into a table efficiently.

• Understanding SQL insert cursors on page 518
• DECLARE (insert cursor) on page 520
• OPEN (insert cursor) on page 521
• PUT (insert cursor) on page 521
• FLUSH (insert cursor) on page 521
• CLOSE (insert cursor) on page 522
• FREE (insert cursor) on page 522

SQL support | 518

• Examples on page 522

Understanding SQL insert cursors

An insert cursor is a database cursor declared with a restricted form of the INSERT statement, designed to
perform buffered row insertion in database tables.

The insert cursor simply inserts rows of data; it cannot be used to fetch data. When an insert cursor is
opened, a buffer is created in memory to hold a block of rows. The buffer receives rows of data as the
program executes PUT statements. The rows are written to disk only when the buffer is full. You can use
the CLOSE , FLUSH , or COMMIT WORK statement to flush the buffer when it is less than full. You must
close an insert cursor to insert any buffered rows into the database before the program ends. You can lose
data if you do not close the cursor properly.

When the database server supports buffered inserts, an insert cursor increases processing efficiency
(compared with embedding the INSERT statement directly). This process reduces communication between
the program and the database server and also increases the speed of the insertions.

Before using the insert cursor, you must declare it with the DECLARE instruction using an INSERT
statement.

Figure 31: Declaring a cursor

Once declared, you can open the insert cursor with the OPEN instruction. This instruction prepares
the insert buffer. When the insert cursor is opened, you can add rows to the insert buffer with the PUT
statement.

SQL support | 519

Figure 32: OPEN and PUT statements

Rows are automatically added to the database table when the insert buffer is full. To force row insertion in
the table, you can use the FLUSH instruction.

Figure 33: FLUSH statement

Finally, when all rows are added, you can CLOSE the cursor and if you no longer need it, you can de-
allocate resources with the FREE instruction.

SQL support | 520

Figure 34: CLOSE and FREE statements

By default, insert cursors must be opened inside a transaction block, with BEGIN WORK and COMMIT
WORK, and they are automatically closed at the end of the transaction. If needed, you can declare insert
cursors with the WITH HOLD clause, to allow uninterrupted row insertion across multiple transactions.

DECLARE (insert cursor)
The DECLARE with an INSERT instruction defines an insert cursor.

Syntax

DECLARE cid CURSOR [WITH HOLD] FOR { insert-statement | sid }

1. cid is the identifier of the insert cursor.
2. insert-statement is an INSERT statement defined in static SQL.
3. sid is the identifier of a prepared INSERT statement.

Usage

Use the DECLARE instruction with an INSERT instruction to define a new insert cursor in the current
database session.

The INSERT statement is parsed, validated and the execution plan is created.

DECLARE must precede any other statement that refers to the cursor during program execution.

The scope of reference of the cid cursor identifier is local to the module where it is declared.

The static insert-statement statement can include a list of variables in the VALUES clause. These variables
are automatically read by the PUT statement; you do not have to provide the list of variables in that
statement. As an alternative, use the ? (question mark) SQL parameter placeholder in the VALUE clause to
bind program variables provided in the FROM clause of the PUT instruction.

When declaring a cursor with a prepared sid statement, the statement can include ? (question mark)
placeholders for SQL parameters. In this case you must provide a list of variables in the FROM clause of the
PUT statement.

Use the WITH HOLD option to declare cursors that have uninterrupted inserts across multiple transactions.

Resources allocated by the DECLARE can be released later by the FREE instruction.

SQL support | 521

The number of declared cursors in a single program is limited by the database server and the available
memory. Make sure that you free the resources when you no longer need the declared insert cursor.

The identifier of a cursor that was declared in one module cannot be referenced from another module.

OPEN (insert cursor)
Initializes an insert cursor.

Syntax

OPEN cid

1. cid is the identifier of the insert cursor.

Usage

The OPEN statement initializes the insert cursor if the specified cursor was declared with an INSERT
statement.

Once the insert cursor is opened, you can add rows with the PUT statement.

When used with an insert cursor, the OPEN instruction cannot include a USING clause.

A subsequent OPEN statement closes the cursor and then reopens it.

If the insert cursor was not declared WITH HOLD option, theOPEN instruction generates an SQL error if
there is no current transaction started.

If you release cursor resources with a FREE instruction, you cannot use the cursor unless you declare the
cursor again.

PUT (insert cursor)
Adds a new row to the insert cursor buffer.

Syntax

PUT cid FROM pvar [,...]

1. cid is the identifier of the insert cursor.
2. pvar is a variable containing an input value for the new row.

Usage

The PUT instruction adds a row to the insert cursor buffer.

If the insert cursor was not declared WITH HOLD option, the PUT instruction generates an SQL error if
there is no current transaction started.

If the insert buffer has no room for the new row when the statement executes, the buffered rows are written
to the database in a block, and the buffer is emptied. As a result, some PUT statement executions cause
rows to be written to the database, and some do not.

FLUSH (insert cursor)
Flushes the buffer of an insert cursor.

Syntax

FLUSH cid

SQL support | 522

1. cid is the identifier of the insert cursor.

Usage

When flushing an insert cursor, all buffered rows are inserted into the target database table and the insert
buffer is cleared.

The insert buffer may be automatically flushed by the runtime system if there no room when a new row is
added with the PUT instruction.

CLOSE (insert cursor)
Flushes and closes an insert cursor.

Syntax

CLOSE cid

1. cid is the identifier of the insert cursor.

Usage

If rows are present in the insert buffer, they are inserted into the target table.

Closing the insert cursor releases the resources allocated for the insert buffer on the database server.

After using the CLOSE instruction, you must reopen the cursor with OPEN before adding new rows with
PUT/FLUSH.

FREE (insert cursor)
Releases resources allocated for an insert cursor.

Syntax

FREE cid

1. cid is the identifier of the insert cursor.

Usage

After executing the FREE statement, all resources allocated to the insert cursor are released.

The cursor should be explicitly closed before it is freed.

If you release cursor resources with this instruction, you cannot use the cursor unless you declare the
cursor again.

Examples

Example 1: Insert Cursor declared with a Static INSERT

MAIN
 DEFINE i INTEGER
 DEFINE rec RECORD
 key INTEGER,
 name CHAR(30)
 END RECORD
 DATABASE stock
 DECLARE ic CURSOR FOR
 INSERT INTO item VALUES (rec.*)

SQL support | 523

 BEGIN WORK
 OPEN ic
 FOR i=1 TO 100
 LET rec.key = i
 LET rec.name = "Item #" || i
 PUT ic
 IF i MOD 50 = 0 THEN
 FLUSH ic
 END IF
 END FOR
 CLOSE ic
 COMMIT WORK
 FREE ic
END MAIN

Example 2: Insert Cursor declared with an SQL text

MAIN
 DEFINE i INTEGER
 DEFINE rec RECORD
 key INTEGER,
 name CHAR(30)
 END RECORD
 DATABASE stock
 DECLARE ic CURSOR FROM "INSERT INTO item VALUES (?,?)"
 BEGIN WORK
 OPEN ic
 FOR i=1 TO 100
 LET rec.key = i
 LET rec.name = "Item #" || i
 PUT ic FROM rec.*
 IF i MOD 50 = 0 THEN
 FLUSH ic
 END IF
 END FOR
 CLOSE ic
 COMMIT WORK
 FREE ic
END MAIN

Example 3: Insert Cursor declared with 'hold' option

MAIN
 DEFINE name CHAR(30)
 DATABASE stock
 DECLARE ic CURSOR WITH HOLD FOR
 INSERT INTO item VALUES (1,name)
 OPEN ic
 LET name = "Item 1"
 PUT ic
 BEGIN WORK
 UPDATE refs SET name="xyz" WHERE key=123
 COMMIT WORK
 PUT ic
 PUT ic
 FLUSH ic
 CLOSE ic
 FREE ic
END MAIN

SQL support | 524

SQL load and unload
Describes the instructions to export/import information from/to a database.

• LOAD on page 524
• UNLOAD on page 527

LOAD
Inserts data from a file into an existing database table.

Syntax

LOAD FROM filename [DELIMITER delimiter]
{
 INSERT INTO table-specification [(column [,...])]
|
 insert-string
}

where table-specification is:

[dbname[@dbserver]:][owner.]table

1. filename is a string expression containing the name of the file the data is read from.
2. delimiter is the character used as the value delimiter.
3. The INSERT clause is a pseudo INSERT statement (without the VALUES clause), where you can

specify the list of columns in braces.
4. dbname identifies the database name.
5. dbserver identifies the database server (INFORMIXSERVER).
6. owner identifies the owner of the table, with optional double quotes.
7. table is the name of the database table.
8. column is a name of a table column.
9. insert-string is a string expression containing the pseudo-INSERT statement.

Usage

The LOAD instruction reads serialized data from an input file and inserts new rows in a database table
specified in the INSERT clause. A file created by the UNLOAD statement can be used as input for the LOAD
statement if its values are compatible with the schema of table.

The LOAD statement must include a pseudo-INSERT statement (either directly or as text in a variable) to
specify where to store the data. LOAD appends the new rows to the specified table, synonym, or view, but
does not overwrite existing data. It cannot add a row that has the same key as an existing row.

The dbname, dbserver and owner prefix of the table name should be avoided for maximum SQL portability.

The number and the order of columns in the INSERT statement must match the values of the input file.

The LOAD instruction cannot be prepared with a PREPARE statement, however LOAD can take a string
literal as parameter, that allows to build the INSERT statement at runtime.

The variable or string following the LOAD FROM keywords must specify the name of a file of ASCII
characters (or characters that are valid for the current locale) that holds the data values that are to be
inserted.

Each set of data values in filename that represents a new row is called an input record. Each input record
must contain the same number of delimited data values. If the INSERT clause has no list of columns, the

SQL support | 525

sequence of values in each input record must match the columns of table in number and order. Each value
must have the literal format of the column data type, or of a compatible data type.

If LOAD is executed within a transaction block (BEGIN WORK / COMMIT WORK), the rows inserted by the
LOAD instruction are part of the transaction. With some database servers the insert rows remain locked
until the COMMIT WORK or ROLLBACK WORK statement terminates the transaction. Consider locking the
whole table to

If the database does not support transactions, a failing LOAD statement cannot remove any rows that were
loaded before the failure occurred. You must manually remove the already loaded records from either the
load file or from the receiving table, repair the erroneous records, and rerun LOAD.

If the database supports transactions, you can do the following actions:

• Run LOAD as a singleton transaction, so that any error causes the entire LOAD statement to be
automatically rolled back.

• Run LOAD within an explicit BEGIN WORK / COMMIT WORK transaction block, so that a data error merely
stops the LOAD statement in place with the transaction still open.

A single character delimiter instructs LOAD to read data in the default format. When using "CSV" as
delimiter specification, the LOAD instruction will read the data in CSV format. If the DELIMITER clause is
not specified, the delimiter is defined by the DBDELIMITER environment variable. If the DBDELIMITER
environment variable is not set, the default is a | pipe. The field delimiter can be a blank character.
It cannot be backslash or any hexadecimal digit (0-9, A-F, a-f). If the delimiter specified in the LOAD
command is NULL, the runtime system will use the default delimiter or DBDELIMITER if the variable is
defined.

At this time, data type description of the input file fields is implicit; in order to create the SQL parameter
buffers to hold the field values for inserts, the LOAD instruction uses the current database connection to
get the column data types of the target table. Those data types depend on the type of database server.
For example, IBM® Informix® DATE columns do not store the same data as the Oracle DATE data type.
Therefore, be careful when using the LOAD/UNLOAD instructions; if the application connects to different
kinds of database servers, it can result data conversion errors.

Pay attention to numeric (DECIMAL, MONEY) and date/time values (DATE, DATETIME): These must match
the current format settings (DBMONEY, DBDATE). As a general programming pattern, use simple INSERT
statements to load default and configuration data into your database, in order to be independent from the
numeric and date format settings.

Default LOAD format

The next table describes how data values should be represented in the input file used by the LOAD
instruction. Values must be serialized with a character string following the SQL data type of the receiving
column of the table.

Table 158: Data representation for the default LOAD format

Data type Input Format

CHAR, VARCHAR,
TEXT

Values can have more characters than the declared maximum length of the column,
but any extra characters are ignored. A backslash (\) is required before any literal
backslash or any literal delimiter character, and before any NEWLINE character
anywhere in character value. Blank values can be represented as one or more
blank characters between delimiters, but leading blanks must not precede other
CHAR, VARCHAR, or TEXT values.

DATE In the default locale, values must be in month/day/year format unless another
format is specified by DBDATE environment variable. The day and month must be a
2-digit number, and the year must be a 4-digit number.

DATETIME DATETIME values must be in the format:

SQL support | 526

Data type Input Format

year-month-day hour:minute:second.fraction or a contiguous subset,
without the DATETIME keyword or qualifiers. Time units outside the declared
column precision can be omitted. The year must be a four-digit number; all other
time units (except fraction) require two digits.

INTERVAL INTERVAL values must be formatted:

year-month

or

day hour:minute:second.fraction

or a contiguous subset thereof, without the INTERVAL keyword or qualifiers. Time
units outside the declared column precision can be omitted. All time units (except
year and fraction) require two digits.

DECIMAL, MONEY Values must use the decimal separator defined by DBFORMAT/DBMONEY. For
MONEY, values can include currency symbols, but these are not required.

BYTE Values must be ASCII-hexadecimals; no leading or trailing blanks.

SERIAL,
BIGSERIAL,
SERIAL8

Values can be represented as 0 to tell the database server to supply a new serial
value. You can specify a literal integer greater than zero, but if the column has a
unique index, an error results if this number duplicates an existing value.

The NEWLINE character must terminate each input record in filename. Specify only values that the
language can convert to the data type of the database column. For database columns of character data
types, inserted values are truncated from the right if they exceed the declared length of the column.

NULL values of any data type must be represented by consecutive delimiters in the input file; you cannot
include anything between the delimiter symbols.

The LOAD statement expects incoming data in the format specified by environment variables like
DBFORMAT, DBMONEY, DBDATE, GL_DATE, and GL_DATETIME. The precedence of these format
specifications is consistent with forms and reports. If there is an inconsistency, an error is reported and the
LOAD is canceled.

The backslash symbol (\) serves as an escape character in the input file to indicate that the next character
in a data value is a literal. The LOAD statement scans for backslash escaped elements to read special
characters in the following contexts:

• The backslash character appears anywhere in the value.
• The delimiter character appears anywhere in the value.
• The NEWLINE character appears anywhere in a value.

CSV LOAD format

The CSV (comma separated values) format is similar to the default format when using a simple comma
delimiter, with the following differences:

• Input values might be surrounded with " double quotes.
• If an input value contains a comma or a NEWLINE, it is not escaped be the value must be quoted in the

file.
• Double-quote characters in input values are doubled and will be converted to a unique " character; the

value must be quoted.
• Backslash characters are not escaped in the input file and are read as; the value must be quoted.
• Leading and trailing blanks are kept (no truncation).
• No ending delimiter is expected at the end of the input record.

SQL support | 527

Example

MAIN
 DATABASE stores
 BEGIN WORK
 DELETE FROM items
 LOAD FROM "items01.unl" INSERT INTO items
 LOAD FROM "items02.unl" INSERT INTO items
 COMMIT WORK
END MAIN

UNLOAD
Copies data from the database tables into a file.

Syntax

UNLOAD TO filename [DELIMITER delimiter]
{
 select-statement
|
 select-string
}

1. filename is a string expression containing the name of the file the data is written to.
2. delimiter is the character used as the value delimiter.
3. select-statement is static SELECT statement.
4. select-string is string expression containing the SELECT statement.

Usage

The UNLOAD instruction serializes into a file the SQL data produced by a SELECT statement.

You cannot use the PREPARE statement to pre-process an UNLOAD statement, you can however use a
string literal to build the SELECT statement at runtime.

The filename after the TO keyword identifies an output file in which to store the rows retrieved from the
database by the SELECT statement. In the default (U.S. English) locale, this file contains only ASCII
characters. (In other locales, output from UNLOAD can contain characters from the codeset of the locale.)

The UNLOAD statement must include a SELECT statement (directly, or in a variable) to specify what rows to
copy into filename. UNLOAD does not delete the copied data.

A single character delimiter instruct UNLOAD to write data in the default format. When using "CSV" as
delimiter specification, the UNLOAD instruction will write the data in CSV format. If the DELIMITER clause
is not specified, the delimiter is defined by the DBDELIMITER environment variable. If the DBDELIMITER
environment variable is not set, the default is a | pipe. The field delimiter can be a blank character. It
cannot be backslash or any hexadecimal digit (0-9, A-F, a-f). If the delimiter specified in the UNLOAD
command is NULL, the runtime system will use the default delimiter or DBDELIMITER if the variable is
defined.

When using a select-string , do not attempt to substitute question marks (?) in place of host variables to
make the SELECT statement dynamic, because this usage has binding problems.

At this time, data type description of the output file fields is implicit; in order to create the fetch buffers to
hold the column values, the UNLOAD instruction uses the current database connection to get the column
data types of the generated result set. Those data types depend on the type of database server. For
example, IBM® Informix® INTEGER columns are 4-bytes integers, while the Oracle INTEGER data type

SQL support | 528

is actually a NUMBER(10,0) type. Therefore, you should take care when using this instruction; if your
application connects to different kinds of database servers, you may get data conversion errors.

Default UNLOAD format

A set of values in output representing a row from the database is called an output record. A NEWLINE
character (ASCII 10) terminates each output record.

The UNLOAD statement represents each value in the output file as a character string by using the current
locale, according to the data type of the database column:

Table 159: Default UNLOAD format

Data type Output Format

CHAR, VARCHAR,
TEXT

Trailing blanks are dropped from CHAR and TEXT (but not from VARCHAR) values.
A backslash (\) is inserted before any literal backslash or delimiter character and
before a NEWLINE character in a character value.

DECIMAL,
FLOAT,
INTEGER,
MONEY,
SMALLFLOAT,
SMALLINT

Values are written as literals with no leading blanks. MONEY values are represented
with no leading currency symbol. Zero values are represented as 0 for INTEGER or
SMALLINT columns, and as 0.00 for FLOAT, SMALLFLOAT, DECIMAL, and MONEY
columns.

DATE Values are written in the format month/day/year unless some other format is
specified by the DBDATE environment variable.

DATETIME DATETIME values are formatted year-month-day
hour:minute:second.fraction or a contiguous subset, without DATETIME
keyword or qualifiers. Time units outside the declared precision of the database
column are omitted.

INTERVAL INTERVAL values are formatted

year-month

or

day hour:minute:second.fraction

or a contiguous subset, without INTERVAL keyword or qualifiers. Time units outside
the declared precision of the database column are omitted.

BYTE BYTE Values are written in ASCII hexadecimal form, without any added blank or
NEWLINE characters. The logical record length of an output file that contains BYTE
values can be very long, and thus might be very difficult to print or to edit.

NULL values of any data type are represented by consecutive delimiters in the output file, without any
characters between the delimiter symbols.

The backslash symbol (\) serves as an escape character in the output file to indicate that the next
character in a data value is a literal. The UNLOADstatement automatically inserts a preceding backslash to
prevent literal characters from being interpreted as special characters in the following contexts:

• The backslash character appears anywhere in the value.
• The delimiter character appears anywhere in the value.
• The NEWLINE character appears anywhere in a value.

SQL support | 529

CVS UNLOAD format

The CSV (comma separated values) format is similar to the standard format when using a simple comma
delimiter, with the following differences:

• A comma character generates a quoted output value, and the comma is written as is (not escaped).
• A " double-quote character generate quoted output value and the quote in the value is doubled.
• NEWLINE characters generate a quoted output value, and the NEWLINE is written as is (not escaped).
• Backslash characters are written as is in the output value (i.e. not escaped).
• Leading and trailing blanks are not truncated in the output value.
• No ending delimiter is written at the end of the output record.

Example

MAIN
 DEFINE var INTEGER
 DATABASE stores
 LET var = 123
 UNLOAD TO "items.unl"
 SELECT * FROM items WHERE item_num > var
END MAIN

SQL adaptation guides
This section includes the SQL adaptation guides for various supported databases. The adaptation guides
provide you with information about installation and configuration requirements, as well as details on what is
and is not supported when using database-specific SQL.

• SQL guide for IBM Informix database servers 5.x, 7.x, 8.x, 9.x, 10.x, 11.x on page 529
• SQL adaptation guide for IBM DB2 UDB 10.x on page 540
• SQL adaptation guide for IBM Netezza 6.x on page 572
• SQL adaptation guide for SQL SERVER 2005, 2008, 2012, 2014 on page 592
• SQL adaptation guide for Oracle MySQL 5.x, MariaDB 10.x on page 625
• SQL adaptation guide for Oracle Database 11, 12 on page 643
• SQL adaptation guide for PostgreSQL 9.x on page 683
• SQL adaptation guide for SQLite 3.x on page 709
• SQL adaptation guide for SAP Sybase ASE 16.x on page 723
• SQL adaptation guide for SAP HANA DB (SPS09+)

SQL guide for IBM® Informix® database servers 5.x, 7.x, 8.x, 9.x, 10.x, 11.x

Purpose of the Informix® SQL guide

This section contains information to configure your Genero runtime system to work with an Informix®

database engine, and describes the IBM® Informix® SQL features that are not supported (or partially
supported) by Genero BDL.

Understand that Genero BDL was designed to work with IBM® Informix® databases, so most of the IBM®

Informix® SQL features are supported. However, new features implemented in recent server versions need
modifications in the Genero BDL compilers and runtime system to be supported.

Some topics show an enhancement reference note with a number, identifying the request id as filed in our
internal "TODO" database. If the SQL feature is mission critical for your application, contact the support
center and mention the enhancement identifier.

SQL support | 530

Installation (Runtime Configuration)
ODI adaptation guide Installation topics.
Supported IBM® Informix® server and CSDK versions

1. Genero BDL is certified with all IBM® Informix® servers from version 5.x to the latest 11.x version,
including the Standard Engine, On-Line and IDS server families, as long as the IBM® Informix® Client
SDK is compatible with the server.

2. Genero BDL is certified with IBM® Informix® SDK version 3.50 or higher.

Install IBM® Informix® and create a database - database configuration/design tasks

1. Install the IBM® Informix® database software (IDS for example) on your database server.

2. Install the IBM® Informix® Software Development Kit (SDK) on your application server.

With some IBM® Informix® distributions (IDS 11), this package is included in the server bundle. You
should check the IBM® web site for SDK upgrades or patches. Genero BDL is certified with IBM®

Informix® SDK version 3.50 or higher.

3. Setup the IDS server (onconfig file, etc)

a) Starting with IDS version 11, the TEMPTAB_NOLOG is set to 1 by default.

Consider setting this parameter to 0, if you want to log temporary table changes. This can affect the
behavior of programs expecting that a ROLLBACK WORK cancels changes done on a temporary
table.

4. Define a database user dedicated to your application: the application administrator.

This user will manage the database schema of the application (all tables will be owned by it). With IBM®

Informix®, database users reference Operating System users, and must be part of the IBM® Informix®

group. See IBM® Informix® documentation.

5. Connect to the server as IBM® Informix® user (for example with the dbaccess tool) and give all
requested database administrator privileges to the application administrator.

GRANT CONNECT TO appadmin;
GRANT RESOURCE TO appadmin;
GRANT DBA TO appadmin;

6. Define the database locale before creating the database.

According to the language(s) supported in your application, consider using UTF-8 locale by setting the
Informix environment variables defining the locale for the database server and data: CLIENT_LOCALE,
DB_LOCALE, SERVER_LOCALE.

7. Connect as application administrator and create an IBM® Informix® database entity, for example with
the following SQL statement:

CREATE DATABASE dbname WITH BUFFERED LOG;

8. Create the application tables.

Prepare the runtime environment - connecting to the database

1. In order to connect to IBM® Informix®, you must have a database driver "dbmifx" in FGLDIR/dbdrivers.

2. Make sure the IBM® Informix® client environment variables are properly set.

Check for example INFORMIXDIR (the path to the installation directory), INFORMIXSERVER
(the name of the server defined in the sqlhosts list), etc. For more details, see the IBM® Informix®

documentation.

3. In order to connect to an IBM® Informix® server, you must define a line in the $INFORMIXDIR/etc/
sqlhosts file, referencing the server name specified in the INFORMIXSERVER environment variable.

On Windows™ platforms, the sqlhost entries are defined in the registry database. See IBM® Informix®

documentation.

4. Verify the environment variable defining the search path for IBM® Informix® SDK database client shared
libraries.

SQL support | 531

Table 160: Shared library environment setting for IBM® Informix® SDK version

IBM® Informix® SDK version Shared library environment setting

All versions UNIX™: Add $INFORMIXDIR/lib, $INFORMIXDIR/
lib/esql, $INFORMIXDIR/lib/tools and
$INFORMIXDIR/lib/cli to LD_LIBRARY_PATH (or
its equivalent).

Windows™ : Add %INFORMIXDIR%\bin to PATH.

5. Check the database client locale settings (CLIENT_LOCALE, DB_LOCALE, etc).

The database client locale must match the locale used by the runtime system (LC_ALL, LANG).

6. To verify if the IBM® Informix® client environment is correct, you can start the SQL command
interpreter:

$ dbaccess - -
> CONNECT TO "dbname" USER "appadmin";
ENTER PASSWORD: password

7. Set up the fglprofile entries for database connections.

Important: Make sure that you are using the ODI driver corresponding to the database client
and server version.

Fully supported IBM® Informix® SQL features
Fully supported IBM® Informix® SQL features.
What are the supported IBM® Informix® SQL features?

Genero BDL was first designed for IBM® Informix® databases. The answer to this question is: Every SQL
feature that is not listed in the other sections of this chapter.

The following list gives an idea of the IBM® Informix® SQL elements you can use with Genero BDL:

• Database connection control instructions (DATABASE, CONNECT). See Connections.
• Transaction control instructions and concurrency settings (BEGIN WORK, SET ISOLATION). See

Transactions.
• Basic, portable data types (lNT, BIGINT, DECIMAL, CHAR, VARCHAR, DATE, DATETIME, TEXT,

BYTE, etc). See data types.
• Common Data Definition Language statements (CREATE TABLE, DROP TABLE, etc). See Static SQL.
• Common Data Manipulation Language statements (SELECT, INSERT, UPDATE, DELETE, etc). See

Static SQL.
• Result set handling with cursors (DECLARE / OPEN / FETCH / CLOSE / FREE). See Result Sets.
• Positioned UPDATEs and DELETEs (UPDATE/DELETE WHERE CURRENT OF). See Positioned

Updates.
• Cursors to insert rows (DECLARE / OPEN / PUT / FLUSH). See Insert Cursors.
• Stored procedure calls. See SQL Programming.
• SQL execution status and error messages (SQLCA, SQLSTATE). See Connections.
• Global Language Support with single and multibyte character sets for CHAR/ VARCHAR data storage.

See Localization.
• LOAD and UNLOAD utility statements. See I/O SQL instructions.
• Database schema extraction to define program variables LIKE database columns. See Database

Schema.

SQL support | 532

Partially supported IBM® Informix® SQL features
Partially supported IBM® Informix® SQL features.
The BIGSERIAL / SERIAL8 data types

IBM® Informix® database supports the BIGSERIAL and SERIAL8 data types for auto-generated 64 bit
integer sequences.

The BIGINT data type can be used to store data from BIGSERIAL SERIAL8 values.

Note however that SQLCA.SQLERRD[2] is defined as an INTEGER and therefore cannot be used to
get the last generated serial. To retrieve the last generated BIGSERIAL or SERIAL8, you must use the
dbinfo() SQL function as in the following code example:

MAIN
 DEFINE new_val BIGINT
 INSERT INTO mytable VALUES (0, 'aaaa')
 SELECT dbinfo('bigserial') INTO new_val
 FROM systables WHERE tabid=1
 DISPLAY new_val
END MAIN

The NCHAR / NVARCHAR data types

IBM® Informix® supports the standard NCHAR and NVARCHAR data types. These types are equivalent
to CHAR and VARCHAR (the same character set is used), except that the collation order is locale specific
with NCHAR/NVARCHAR types.

With Genero BDL, you can handle character strings of NCHAR/NVARCHAR database columns by
using program variables defined with the CHAR/VARCHAR types. Since the character set is identical
for NCHAR/NVARCHAR and CHAR/VARCHAR, not specific consideration needs to be given for the "N"
character types.

When extracting a database schema with fgldbsch, NCHAR/NVARCHAR types will be identified in the .sch
file by the native Informix® type codes 15 and 16. When compiling .4gl or .per sources referencing NCHAR/
NVARCHAR columns in the schema file, the compilers will automatically use the CHAR and VARCHAR
Genero BDL types for the type codes 15 and 16.

However, Genero BDL is missing full support of NCHAR and NVARCHAR types as it is not possible to
declare program variables directly with the NCHAR / NVARCHAR keywords. Further, sorting features of
Genero should follow the same collation order as the IBM® Informix® database when using "N" character
types.

Enhancement reference: 20004

The LVARCHAR data type

IBM® Informix® supports the LVARCHAR type as a "large" VARCHAR type. The LVARCHAR type was
introduced to bypass the 255 bytes size limitation of the standard VARCHAR type. Starting with IDS
version 9.4, the LVARCHAR size limit is 32739 bytes. In older versions the limit was 2048 bytes.

Genero BDL does not support the LVARCHAR type natively, but it has the VARCHAR type which can
hold up to 65535 bytes. IBM® Informix® LVARCHAR values can be inserted or fetched by using the BDL
VARCHAR type.

Static SQL statements such as CREATE TABLE can include the LVARCHAR column type.

When extracting a schema with fgldbsch, LVARCHAR(N) columns will by default be converted to
VARCHAR2(N) in the schema file. VARCHAR2 is a Genero BDL-only pseudo type identified with the type
code 201, and allows define VARCHAR variables with a size that can be greater than 255 bytes.

Enhancement reference: 3464

SQL support | 533

DISTINCT data types

IBM® Informix® supports DISTINCT data types as User Defined Types based on a source data type, but
with different casts and functions than those on the source data type.

Genero BDL partially supports the IBM® Informix® DISTINCT data types:

The fgldbsch schema extractor can extract columns defined with a distinct type and write the distinct type
code in the .sch schema file. For more details, see the list of distinct types in the Column Definition File
(.sch) on page 358

However, there are some restrictions you must be aware of:

• It is not possible to define BDL variables explicitly with the name of a distinct type. Variables must be
defined indirectly with the schema by using the DEFINE LIKE statement.

• The static SQL syntax does not support OPAQUE-related syntax elements:

• The DDL statements CREATE DISTINCT TYPE, DROP TYPE, CREATE CAST, and DROP CAST
are not allowed,

• In CREATE TABLE / ALTER TABLE DDL statements, the data type must be a built-in type.
• The :: cast operator is not supported.

Enhancement reference: 20003

Stored Procedures

With IBM® Informix® database servers, you can write stored procedures with the SPL (Stored Procedure
Language) or with an external language in C or JAVA.

If you plan to support different types of database servers, you must be aware that each DB vendor
has defined its own stored procedure language. In such cases, you may consider writing most of your
business logic in BDL, and implementing only some stored procedures in the database, mainly to get better
performance or to use database features that only exist with stored procedures.

Genero BDL partially supports SP creation, but has full support of SP invocation:

• The Genero BDL static SQL syntax does not include CREATE FUNCTION and CREATE PROCEDURE
with a body block. However, you can create stored procedures with an body block by using dynamic
SQL (EXECUTE IMMEDIATE), or with CREATE PROCEDURE and the FROM filename clause, which
is supported by Genero BDL static SQL.

• The EXECUTE FUNCTION or EXECUTE PROCEDURE instruction is not allowed in the static
SQL syntax. To invoke a stored procedure with Informix®, you must use the PREPARE instruction,
followed by EXECUTE or OPEN. The PREPARE instruction must initiate the EXECUTE FUNCTION/
PROCEDURE instruction.

For more details about stored procedure invocation, see SQL Programming.

Database Triggers

Triggers can be created for IBM® Informix® database tables with the CREATE TRIGGER instruction.

If you plan to support different types of database servers, you must be aware that each DB vendor has
defined its own trigger creation syntax and stored procedure language. In such cases, you may consider
writing most your business logic in BDL, and implementing only some triggers in the database, mainly to
get better performance or use database features that only exist with stored procedures.

Genero BDL partially supports trigger creation:

• The Genero BDL static SQL syntax does not include the CREATE TRIGGER and DROP TRIGGER
instructions. However, you can create database triggers by using dynamic SQL (EXECUTE
IMMEDIATE).

SQL support | 534

Optimizer directives

IBM® Informix® SQL allows you to specify query optimization directives to force the query optimizer to
use a different path than the implicit plan. With IBM® Informix®, optimizer directives are specified with the
following SQL comment markers followed by a plus sign:

/*+ optimizer-directives */
{+ optimizer-directives }
--+ optimizer-directives

Genero BDL partially supports optimizer directives:

• The static SQL syntax does not allow the C-style optimizer syntax.
• The curly-brace and dash-dash optimizer directive syntaxes cannot be used in static SQL statements,

because these correspond to the 4GL language comments.
• However, you can execute queries with optimization directives with Dynamic SQL.

Tip: Optimization directives are not portable. If you plan to use different types of database servers,
you should avoid the usage of query plan hints.

XML publishing support

IBM® Informix® IDS 11.10 introduced a set of XML built-in functions when the idsxmlvp virtual processor
is turned on. Built-in XML functions are of two types: Those returning LVARCHAR values, and those
returning CLOB values. For example, genxml() returns an LVARCHAR(32739), while genxmlclob() returns
a CLOB. XML data is typically stored in LVARCHAR or CLOB columns.

Genero BDL partially supports XML functions:

• Because Genero BDL does not support BLOB/CLOB types, functions returning CLOB values cannot be
used. You can however use the XML functions returning LVARCHAR values, and fetch the result into a
VARCHAR variable of the appropriate size.

• Some of the XML functions such as genxml() take ROW() values as parameters. Because literal
unnamed ROW() expressions are like regular function calls, you can use XML functions in static SQL
statements.

Example:

FUNCTION get_cust_data(id)
 DEFINE id INT, v VARCHAR(5000)
 SELECT genxml(ROW(cust_name, cust_address), "custdata") INTO v
 FROM customers WHERE cust_id = id
 RETURN v
END FUNCTION

DataBlade® modules

IBM® Informix® IDS provides several database extensions implemented with the DataBlade® Application
Programming Interface, such as MQ Messaging, Large OBjects management, Text Search DataBlades,
Spatial DataBlade® Module, etc.

Genero BDL partially supports DataBlade® modules:

• DataBlade® extensions are based on User Defined Functions and User Defined Types. It is not possible
to define program variables with specific User Defined Types. For example, you cannot define a
program variable with the ST_Point type implemented by the Spatial DataBlade® module.

• The static SQL grammar does not support DataBlade® specific syntax. For example, it is not possible to
create a Basic Text Search index with the USING bts clause of the CREATE INDEX statement.

SQL support | 535

However, as long as the syntax of the DataBlade® functions follows basic SQL expressions, it can be used
in static SQL statements. For example, the next query uses the bts_contains() function of the Basic Text
Search extension:

SELECT id FROM products WHERE bts_contains(brands, 'standard')

You can also use Dynamic SQL to perform queries with a syntax that is not allowed in the static SQL
grammar.

Specific CREATE INDEX clauses

In addition to the standard index-key specification using a column list, the CREATE INDEX statement
supported by IBM® Informix® SQL allows specific clauses, for example to define storage options.

Genero BDL partially supports the CREATE INDEX statement; the following are not supported in static
SQL grammar:

• The IF NOT EXISTS clause.
• Functional index specification is now allowed in the index-key list.
• Storage options such as IN dbspace, EXTEND SIZE, NEXT SIZE.
• The index mode clauses such as FILTERING WITH/WITHOUT ERROR.
• The USING clause.
• The HASH ON clause.
• The FILLFACTOR clause.

You can use Dynamic SQL to execute CREATE INDEX statements with clauses that are not allowed in the
static SQL grammar.

Other SQL instructions

Genero BDL static SQL syntax implements common Data Manipulation Statements such as SELECT,
INSERT, UPDATE and DELETE. Data Definition Language statements such as CREATE TABLE,
CREATE INDEX, CREATE SEQUENCE and their corresponding ALTER and DROP statements are also
part of the static SQL grammar. These are supported with a syntax limited to the standard SQL clauses.
For example, Genero BDL might not support the most recent CREATE TABLE storage options supported
by IBM® Informix® SQL.

Since the first days of the 4GL language the SQL language has been extended, and it has become so
large that it's impossible to embed all the existing new statements without introducing grammar conflicts
with the 4GL language. In addition, each DB vendor has improved the standard SQL language with
proprietary SQL statements that are not portable; it would not be a good idea to use these specific
instructions if you plan to make your application run with different types of database engines.

However, the Genero BDL static SQL is constantly improved with standard SQL syntax that works
with most types of database servers. For example, Genero BDL supports the ANSI outer join syntax,
constraints definition in DDL statements, sequence instructions, BIGINT and BOOLEAN data types, and
there is more to come.

If a statement is unsupported in static SQL, that does not mean that you cannot execute it. If you want
to execute an SQL instruction that is not part of the static SQL grammar, you can use Dynamic SQL as
follows:

• Use PREPARE + EXECUTE for statements that do not generated a result set
• Use (PREPARE/) DECLARE + OPEN for statements returning a result set
• Use EXECUTE IMMEDIATE if no SQL parameters are required and no result set is generated

Dynamic SQL instructions take a string as the input, so there is no limitation regarding the SQL text you
can execute; however, only one statement can be executed at a time. It is better, however, to write your
SQL statements directly in static SQL when possible, because it makes the code more readable and the
syntax is checked at compiled time.

For more details about statements supported in the static SQL syntax, see Static SQL.

SQL support | 536

Below is a list of the IBM® Informix® SQL statements that are not allowed in the static SQL syntax (last
updated from IDS 11.50 SQL instructions). The IBM® Informix® SQL Syntax manual includes ESQL/C
specific statements such as ALLOCATE DESCRIPTOR, which are not part of the basic SQL statements
supported by the engines. ESQL/C specific statements are not listed here:

ALTER ACCESS_METHOD
ALTER FRAGMENT
ALTER FUNCTION
ALTER PROCEDURE
ALTER ROUTINE
ALTER SECURITY LABEL COMPONENT
CREATE ACCESS_METHOD
CREATE AGGREGATE
CREATE CAST
CREATE DISTINCT TYPE
CREATE EXTERNAL TABLE Statement
CREATE FUNCTION (with body)
CREATE OPAQUE TYPE
CREATE OPCLASS
CREATE PROCEDURE (with body)
CREATE ROLE
CREATE ROUTINE FROM
CREATE ROW TYPE
CREATE SCHEMA
CREATE SECURITY LABEL
CREATE SECURITY LABEL COMPONENT
CREATE SECURITY POLICY
CREATE TRIGGER
CREATE VIEW
CREATE XADATASOURCE
CREATE XADATASOURCE TYPE
DROP ACCESS_METHOD
DROP AGGREGATE
DROP CAST
DROP FUNCTION
DROP OPCLASS
DROP PROCEDURE
DROP ROLE
DROP ROUTINE
DROP ROW TYPE
DROP SECURITY
DROP TRIGGER
DROP TYPE
DROP XADATASOURCE
DROP XADATASOURCE TYPE
EXECUTE FUNCTION
EXECUTE PROCEDURE
GRANT FRAGMENT
INFO
MERGE
OUTPUT
RELEASE SAVEPOINT
RENAME COLUMN
RENAME DATABASE
RENAME SECURITY
REVOKE FRAGMENT
SAVE EXTERNAL DIRECTIVES
SAVEPOINT
SET AUTOFREE
SET COLLATION
SET CONSTRAINTS
SET DATASKIP
SET DEBUG FILE

SQL support | 537

SET ENCRYPTION PASSWORD
SET ENVIRONMENT
SET INDEXES
SET LOG
SET OPTIMIZATION
SET PDQPRIORITY
SET ROLE
SET SESSION AUTHORIZATION
SET STATEMENT CACHE
SET TRANSACTION
SET TRIGGERS
START VIOLATIONS TABLE
STOP VIOLATIONS TABLE

Unsupported IBM® Informix® SQL features
Unsupported IBM® Informix® SQL features.
CLOB and BLOB data types

In addition to the TEXT and BYTE data types (known as Simple Large Objects), IBM® Informix® servers
support the CLOB and BLOB types to store large objects. CLOB/BLOB are known as Smart Large Objects.
The main difference is that Smart Large Objects support random access to the data - seek, read and write
through the LOB as if it was a OS file.

Genero BDL does not support the CLOB and BLOB types:

• It is not possible to define BDL variables with the CLOB or BLOB types, so you cannot manipulate
CLOB/BLOB objects within programs.

• Defining a TEXT / BYTE variable to hold CLOB / BLOB column data is not supported; you will get error
-609 (Illegal attempt to use a Text/Byte host variable).

• The static SQL syntax for DDL statements like CREATE TABLE does not allow the CLOB / BLOB
keywords for column types.

• The fgldbsch schema extractor will report an invalid data type if you try to get the schema for a table
with a CLOB or BLOB column.

You can, however:

• Create a table with CLOB/BLOB columns by using Dynamic SQL.
• Use the Smart Large Object functions FILETOBLOB(), FILETOCLOB(), LOCOPY(), LOTOFILE() in

static SQL statements.

Enhancement reference: 476

The LIST data type

In IBM® Informix® databases, the LIST type is a collection type that can store ordered elements of a
specific base type. Unlike the MULTISET type, the elements of a LIST have ordinal positions. Elements
can be duplicated.

Genero BDL does not support the IBM® Informix® LIST data type.

• It is not possible to define BDL variables with the LIST type.
• The static SQL syntax does not support collection-related syntax elements:

• DDL statements like CREATE TABLE cannot use the LIST keyword for column types,
• The collection-derived notation TABLE() is not allowed,
• The INSERT AT position instruction is not supported,
• The LIST { } literal syntax is not allowed.
• The value IN identifier syntax is not allowed.

• The fgldbsch schema extractor will report an invalid data type if you try to get the schema for a table
with a LIST column.

SQL support | 538

The MULTISET data type

The MULTISET IBM® Informix® data type is a collection type that can store non-ordered elements of a
specific base type. Unlike the LIST type, the elements of a MULTISET have no ordinal positions. Elements
can be duplicated.

Genero BDL does not support the IBM® Informix® MULTISET data type:

• It is not possible to define BDL variables with the MULTISET type.
• The static SQL syntax does not support collection-related syntax elements:

• DDL statements like CREATE TABLE cannot use the MULTISET keyword for column types,
• The collection-derived notation TABLE() is not allowed,
• The MULTISET { } literal syntax is not allowed.
• The value IN identifier syntax is not allowed.

• The fgldbsch schema extractor will report an invalid data type if you try to get the schema for a table
with a MULTISET column.

The SET data type

The SET IBM® Informix® data type is a collection type that stores non-ordered unique elements of a
specific base type. Unlike the LIST type, the elements of a LIST have no ordinal positions. Elements
cannot be duplicated.

Genero BDL does not support the IBM® Informix® SET data type:

• It is not possible to define BDL variables with the SET type.
• The static SQL syntax does not support collection-related syntax elements:

• DDL statements like CREATE TABLE cannot use the SET keyword for column types,
• The collection-derived notation TABLE() is not allowed,
• The SET { } literal syntax is not allowed.
• The value IN identifier syntax is not allowed.

• The fgldbsch schema extractor will report an invalid data type if you try to get the schema for a table
with a SET column.

The ROW data types

IBM® Informix® supports the named and unnamed ROW data types. A ROW type is a complex type that
combines several table columns. You create a ROW type with the CREATE ROW TYPE instruction, and
then you can reuse the type definition for a table column.

Genero BDL does not support the IBM® Informix® ROW data types:

• It is not possible to define BDL variables with a named ROW type. The equivalent would be a RECORD
variable, but data is not mapped directly from a structured ROW column, you must list individual fields
of the ROW column.

• The static SQL syntax does not support ROW-related syntax elements:

• The DDL statements CREATE ROW TYPE, DROP ROW TYPE, CREATE CAST and DROP CAST
are not allowed,

• In CREATE TABLE / ALTER TABLE DDL statements, the data type must be a built-in type.
• The :: cast operator is not supported when specifying a ROW() literal. However, the CAST()

expressions are allowed.
• The fgldbsch schema extractor will report an invalid data type if you try to get the schema for a table

with a column defined with a ROW type.

However:

• Static SQL allows multilevel single-dot notation, so you can, for example, identify a ROW field as
employee.address.city.

• Dynamic SQL can be used to insert or update rows with ROW type columns.

SQL support | 539

• Individual ROW column fields can be fetched to BDL program variables, as long as the basic types
match.

Enhancement reference: 19159

OPAQUE data types

Opaque User Defined Types can be implemented in IBM® Informix® with the CREATE OPAQUE TYPE
statement. The storage structure of an OPAQUE type is unknown to the database server, data can only be
accessed through user-defined routines.

Genero BDL does not support the IBM® Informix® OPAQUE data types:

• It is not possible to define BDL variables with an opaque type.
• The static SQL syntax does not support OPAQUE-related syntax elements:

• The DDL statements CREATE OPAQUE TYPE, DROP TYPE, CREATE CAST and DROP CAST
are not allowed,

• In CREATE TABLE / ALTER TABLE DDL statements, the data type must be a built-in type.
• The :: cast operator is not supported. However, the CAST() expressions are allowed.

• The fgldbsch schema extractor will report an invalid data type if you try to get the schema for a table
with a column defined with a OPAQUE type.

The :: cast operator

IBM® Informix® SQL implements the :: cast operator and the CAST() expressions to do an explicit cast of a
value:

CREATE TABLE tab (v INTEGER)
INSERT INTO tab VALUES (123456::INTEGER)
SELECT 'abcdef'::CHAR(20)||'.' FROM tab
SELECT CAST('abcdef' AS CHAR(20))||'.' FROM tab

Genero BDL does not support the :: cast operator in the static SQL grammar. However, the CAST()
expressions are allowed. If you need to use the :: cast operator, you must use Dynamic SQL to perform
such queries.

Enhancement reference: 19190

Table inheritance

IBM® Informix® SQL allows you to define a table hierarchy through named row types. Table inheritance
allows a table to inherit the properties of the supertable in the meaning of constraints, storage options,
triggers. You must first create the types with CREATE ROW TYPE, then you can create the tables with the
UNDER keyword to define the hierarchy relationship.

CREATE ROW TYPE person_t (name VARCHAR(50) NOT NULL,
 address VARCHAR(200), birthdate DATE)
CREATE ROW TYPE employee_t (salary INTEGER, manager VARCHAR(50))
CREATE TABLE person OF TYPE person_t
CREATE TABLE employee OF TYPE employee_t UNDER person

A table hierarchy allows you to do SQL queries whose row scope is the supertable and its subtables. For
example, after inserting one row in the person table and another one in the employee table, if you UPDATE
the name column without a WHERE clause, it will update all rows from both tables. To limit the set of rows
affected by the statement to rows of the supertable, you must use the ONLY keyword:

UPDATE ONLY(person) SET birthdate = NULL
SELECT * FROM ONLY(person)

Genero BDL static SQL grammar does not include the syntax elements related to table hierarchy
management. You can however use Dynamic SQL to perform such queries.

SQL support | 540

Enhancement reference: 19200

SQL adaptation guide for IBM® DB2® UDB 10.x

Installation (Runtime Configuration)
IBM® DB2® related installation topics.
Install DB2® and create a database - database configuration/design tasks

If you are tasked with installing and configuring the database, here is a list of steps to be taken:

1. Install the IBM® DB2® Universal Server on your database server.

2. Create a DB2® database entity: dbname

To create the database entity in DB2, use the graphical tool provided by IBM® called "DB2 Data
Studio", or from the command line, use the db2 command interpreter in a DB2 operating system user
session (db2inst). Consider creating your database with the correct database locale (codeset and
territory), for example:

$ db2
...
db2 => CREATE DATABASE dbname
 AUTOMATIC STORAGE YES
 USING CODESET UTF-8 TERRITORY EN_US
DB20000I The CREATE DATABASE command completed successfully.

3. Connect to the new created database with the DB2 administrator user.

Open a database connect in the DB2 Data Studio, or use the db2 command interpreter as in the
following example:

db2 => connect to dbname

 Database Connection Information

 Database server = DB2/LINUX 10.1.0
 SQL authorization ID = DB2INST
 Local database alias = dbname

4. Declare a database user dedicated to your application: the application administrator. This user will
manage the database schema of the application (all tables will be owned by it).

Create the user with the DB2 Data Studio, or use the db2 command interpreter as follows:

db2 => GRANT CONNECT ON DATABASE TO USER appadmin
DB20000I The SQL command completed successfully.

5. Give all requested database administrator privileges to the application administrator.

Grant the privileges to the new created user in the DB2 Data Studio, or use the db2 command
interpreter as follows:

db2 => GRANT CREATETAB ON DATABASE TO USER appadmin
DB20000I The SQL command completed successfully.

6. If you plan to use temporary table emulation, you must setup the database for DB2® global temporary
tables (create a user temporary tablespace and grant privileges to all users).

See Temporary tables on page 560.

7. Connect as the application administrator:

Open a new database connect in the DB2 Data Studio, or use the db2 command interpreter as follows:

db2 => connect to dbname user appadmin using password

SQL support | 541

 Database Connection Information

 Database server = DB2/LINUX 10.1.0
 SQL authorization ID = DB2INST
 Local database alias = dbname

8. Create the application tables with CREATE TABLE statements.

Convert Informix® data types to DB2® data types. See issue Data Type Conversion Table for more
details.

9. If you plan to use SERIAL column emulation, you must prepare the database.

See SERIAL data types on page 551.

Prepare the runtime environment - connecting to the database

1. In order to connect to IBM® DB2®, you must have the database driver "dbmdb2" in FGLDIR/
dbdrivers.

2. If you want to connect to a remote DB2® server, the "IBM® DB2® Client Application Enabler" must be
installed and configured on the computer running the BDL applications.

You must declare the data source set up as follows:

a) Login as root.

1. Create a user dedicated to the db2 client instance environment, for example, "db2cli1".
2. Create a client instance environment with the db2icrt tool as in following example:

db2dir /instance/db2icrt -a server -s client instance-user

b) Login as the instance user (environment should be set automatically, verify DB2DIR).

1. Catalog the remote server node:

db2 "catalog tcpip node db2node remote hostname server tcp-service"

2. Catalog the remote database:

db2 "catalog database datasource at node db2node authentication
 server"

3. Test the connection to the remote database:

db2 "connect to datasource user dbuser using password"

(where dbuser is a database user declared on the remote database server)

See IBM® DB2® documentation for more details.

3. Important: If you have a non-English environment, you may need to set the PATCH2=15 configuration
parameter in the DB2CLI.INI file to ensure that DECIMAL values will be properly inserted or fetched:

[datasource]
PATCH2=15

For more details, see the DB2® README.TXT file in the SQLLIB directory.

4. Make sure that the DB2® client environment variables are properly set.

Check variables such as DB2DIR (the path to the installation directory), DB2INSTANCE (the name of
the DB2® instance), INSTHOME (the path to the home directory of the instance owner). On UNIX™,
you will find environment settings in the file $INSTHOME/sqllib/db2profile. See IBM® DB2®

documentation for more details.

5. Check the database client locale settings (DB2CODEPAGE, etc).

SQL support | 542

The database client locale must match the locale used by the runtime system (LC_ALL, LANG).

6. Verify the environment variable defining the search path for DB2 CLI database client shared libraries
(libdb2.so on UNIX™, DB2CLI.DLL on Windows™).

Table 161: Shared library environment setting for DB2® UDB version

DB2® UDB version Shared library environment setting

DB2® UDB 9.x and higher UNIX™: Add $DB2DIR/lib32 (for 32 bit) or
$DB2DIR/lib64 (for 64 bit) to LD_LIBRARY_PATH
(or its equivalent).

Windows™: Add %DB2DIR%\bin to PATH.

7. To verify if the DB2® client environment is correct, you can, for example, start the db2 command
interpreter and connect to the server:

$ db2
db2 => CONNECT TO dbname USER username USING password

8. Setup the fglprofile entries for database connections.

a) Define the IBM DB2 database driver:

dbi.database.dbname.driver = "dbmdb2"

b) The "source" parameter defines the name of the IBM DB2 database name.

dbi.database.dbname.source = "test1"

c) Define the database schema selection if needed:

Use the following entry to define the database schema to be used by the application. The database
interface will automatically perform a SET SCHEMA name instruction to switch to a specific schema:

dbi.database.dbname.db2.schema = 'name'

Here dbname identifies the database name used in the BDL program (DATABASE dbname) and
name is the schema name to be used in the SET SCHEMA instruction. If this entry is not defined, no
"SET SCHEMA" instruction is executed and the current schema defaults to the user's name.

Database concepts
IBM® DB2® related database concept topics.
Database concepts

As with Informix®, an IBM® DB2® database server can handle more than one database entity. Informix®

servers have an ID (INFORMIXSERVER) and databases are identified by name. IBM® DB2® instances
are identified by the DB2INSTANCE environment variable and databases have to be cataloged as data
sources (see IBM® DB2® documentation for more details).

Data storage concepts

An attempt should be made to preserve as much of the storage information as possible when converting
from Informix® to IBM® DB2®. Most important storage decisions made for Informix® database objects (like
initial sizes and physical placement) can be reused for the IBM® DB2® database.

Storage concepts are quite similar in Informix® and in IBM® DB2®, but the names are different.

These tables compares Informix® storage concepts to IBM® DB2® storage concepts:

SQL support | 543

Table 162: Physical units of storage (Informix® vs. DB2®)

Informix® IBM® DB2®

The largest unit of physical disk space is a "chunk",
which can be allocated either as a cooked file (I/
O is controlled by the OS) or as raw device (=UNIX
partition, I/O is controlled by the database engine).
A "dbspace" uses at least one "chunk" for storage.

You must add "chunks" to "dbspaces" in order to
increase the size of the logical unit of storage.

One or more "containers" are created for each
"tablespace" to physically store the data of
all logical structures. Like Informix® "chunks",
"containers" can be an OS file or a raw device.

You can add "containers" to a "tablespace" in order
to increase the size of the logical unit of storage or
you can define EXTEND options.

A "page" is the smallest physical unit of disk
storage that the engine uses to read from and write
to databases.

A "chunk" contains a certain number of "pages".

The size of a "page" must be equal to the operating
system's block size.

At the finest level of granularity, IBM® DB2® stores
data in "data blocks" with size corresponding to a
multiple of the operating system's block size.

You set the "data block" size when creating the
database.

An "extent" consists of a collection of contiguous
"pages" that the engine uses to allocate both initial
and subsequent storage space for database tables.

When creating a table, you can specify the first
extent size and the size of future extents with the
EXTENT SIZE and NEXT EXTENT options.

For a single table, "extents" can be located in
different "chunks" of the same "dbspace".

An "extent" is a specific number of contiguous
"data blocks", obtained in a single allocation.

When creating a table, you can specify the first
extent size and the size of future extents with the
STORAGE() option.

For a single table, "extents" can be located in
different "data files" of the same "tablespace".

Table 163: Logical units of storage (Informix® vs. DB2®)

Informix® IBM® DB2®

A "table" is a logical unit of storage that contains
rows of data values.

Same concept as Informix®.

A "database" is a logical unit of storage that
contains table and index data. Each database also
contains a system catalog that tracks information
about database elements like tables, indexes,
stored procedures, integrity constraints and user
privileges.

Same concept as Informix®.

An IBM® DB2® instance can manage several
databases.

Database tables are created in a specific
"dbspace", which defines a logical place to store
data.

If no dbspace is given when creating the table,
Informix® defaults to the current database dbspace.

Database tables are created in a specific
"tablespace", which defines a logical place to
store data. The main difference with Informix®

"dbspaces", is that IBM® DB2® tablespaces belong
to a "database", while Informix® "dbspaces" are
external to a database.

SQL support | 544

Table 164: Other storage concepts (Informix® vs. DB2®)

Informix® IBM® DB2®

When initializing an Informix® engine, a "root
dbspace" is created to store information about all
databases, including storage information (chunks
used, other dbspaces, etc.).

Each IBM® DB2® database uses a set of "control
files" to store internal information. These
files are located in a dedicated directory: ".../
$DB2INSTANCE/NODEnnnn"

The "physical log" is a set of continuous disk
pages where the engine stores "before-images"
of data that has been modified during processing.
The "logical log" is a set of "logical-log files"
used to record logical operations during on-line
processing. All transaction information is stored in
the logical log files if a database has been created
with transaction log. Informix® combines "physical
log" and "logical log" information when doing fast
recovery. Saved "logical logs" can be used to
restore a database from tape.

DB2® uses "database log files" to record SQL
transactions.

Data consistency and concurrency

Data consistency involves readers that want to access data currently modified by writers and concurrency
data access involves several writers accessing the same data for modification. Locking granularity defines
the amount of data concerned when a lock is set (row, page, table, ...).

Informix®

Informix® uses a locking mechanism to manage data consistency and concurrency. When a process
modifies data with UPDATE, INSERT or DELETE, an exclusive lock is set on the affected rows. The
lock is held until the end of the transaction. Statements performed outside a transaction are treated as
a transaction containing a single operation and therefore release the locks immediately after execution.
SELECT statements can set shared locks according the isolation level. In case of locking conflicts (for
example, when two processes want to acquire an exclusive lock on the same row for modification or when
a writer is trying to modify data protected by a shared lock), the behavior of a process can be changed by
setting the lock wait mode.

Control:

• Isolation level: SET ISOLATION TO ...
• Lock wait mode: SET LOCK MODE TO ...
• Locking granularity: CREATE TABLE ... LOCK MODE {PAGE|ROW}
• Explicit locking: SELECT ... FOR UPDATE

Defaults:

• The default isolation level is read committed.
• The default lock wait mode is "not wait".
• The default locking granularity is on per page.

IBM® DB2®

As in Informix®, IBM® DB2® uses locks to manage data consistency and concurrency. The database
manager sets exclusive locks on the modified rows and shared locks when data is read, according to the
isolation level. The locks are held until the end of the transaction. When multiple processes want to access
the same data, the latest processes must wait until the first finishes its transaction. The lock granularity is
at the row or table level. For more details, see DB2's Administration Guide, "Application Consideration".

SQL support | 545

Control:

• Lock wait mode: Always WAIT. Only the Lock Timeout can be changed, but this is a global database
parameter.

• Isolation level: Can be set through an API function call or with a database client configuration
parameter.

• Locking granularity: Row level or Table level.
• Explicit locking: SELECT ... FOR UPDATE

Defaults:

• The default isolation level is Cursor Stability (readers cannot see uncommitted data, no shared lock is
set when reading data).

Solution

The SET ISOLATION TO ... Informix® syntax is replaced by an ODBC API call setting the
SQL_ATTR_TXN_ISOLATION connection attribute. The next table shows the isolation level mappings
done by the database driver:

Table 165: Isolation level mappings done by the IBM® DB2® UDB database driver

SET ISOLATION instruction in program
ODBC SQL_ATTR_TXN_ISOLATION connection
attribute

SET ISOLATION TO DIRTY READ SQL_TXN_READ_UNCOMMITTED

SET ISOLATION TO COMMITTED READ

[READ COMMITTED] [RETAIN UPDATE LOCKS]
SQL_TXN_READ_COMMITTED

SET ISOLATION TO CURSOR STABILITY SQL_TXN_REPEATABLE_READ

SET ISOLATION TO REPEATABLE READ SQL_TXN_SERIALIZABLE

For portability, it is recommended that you work with Informix® in the read committed isolation level, to
make processes wait for each other (lock mode wait) and to create tables with the "lock mode row" option.

See Informix® and IBM® DB2® documentation for more details about data consistency, concurrency and
locking mechanisms.

Transactions handling

Informix® and IBM® DB2® handle transactions differently. The differences in the transactional models can
affect the program logic.

• Informix® native mode (non ANSI):

• DDL statements can be executed (and canceled) in transactions.
• Transactions must be started with BEGIN WORK. Statements executed outside of a transaction are

automatically committed.
• IBM® DB2®:

• DDL statements can be executed (and canceled) in transactions.
• Beginning of transactions are implicit; two transactions are delimited by COMMIT or ROLLBACK.

Transactions in stored procedures:

Avoid using transactions in stored procedures to allow the client applications to handle transactions, in
accordance with the transaction model.

Savepoints:

SQL support | 546

• Informix® version 11.50 introduces savepoints with the following instructions:

 SAVEPOINT name [UNIQUE]
 ROLLBACK [WORK] TO SAVEPOINT [name]]
 RELEASE SAVEPOINT name

• IBM® DB2® supports savepoints too. However, there are differences:

1. Savepoints must be declared with the ON ROLLBACK RETAIN CURSORS clause
2. Rollback must always specify the savepoint name

Solution

The Informix® behavior is simulated with an autocommit mode in the IBM® DB2® interface. A switch to
the explicit commit mode is done when a BEGIN WORK is performed by the BDL program. Regarding the
transaction control instructions, the BDL applications do not have to be modified in order to work with IBM®

DB2®.

Note: If you want to use savepoints, always specify the savepoint name in ROLLBACK TO
SAVEPOINT.

See also SELECT FOR UPDATE

Database users

Until version 11.70.xC2, Informix® database users had to be created at the operating system level and be
members of the 'informix' group. Starting with 11.70.xC2, Informix® supports database-only users with the
CREATE USER instruction, as in most other db servers. Any database user must have sufficient privileges
to connect and use resources of the database; user rights are defined with the GRANT command.

IBM® DB2® users are operating system users with a specific DB2® environment. The database
administrator must grant the CONNECT authority to these users.

• Database authorities involve actions on a database as a whole. When a database is created, some
authorities are automatically granted to anyone who accesses the database. For example, CONNECT,
CREATETAB, BINDADD and IMPLICIT_SCHEMA authorities are granted to all users.

• Database privileges involve actions on specific objects within the database. When a database is
created, some privileges are automatically granted to anyone who accesses the database. For
example, SELECT privilege is granted on catalog views and EXECUTE and BIND privilege on each
successfully bound utility is granted to all users.

Together, privileges and authorities act to control access to an instance and its database objects. Users
can access only those objects for which they have the appropriate authorization, that is, the required
privilege or authority.

Note: As in Informix®, DB2® user names that connect to the database server must be a maximum
of eight characters long.

Solution

Set up the IBM® DB2® environment for each user as described in the documentation.

Setting privileges

Informix® and IBM® DB2® user privileges management is quite similar.

• IBM® DB2® provides user groups to define.
• IBM® DB2® users must have at least the CONNECT authority to access the database.

GRANT CONNECT ON DATABASE TO (PUBLIC|user|group)

• Informix® users must have at least the CONNECT privilege to access the database:

GRANT CONNECT TO (PUBLIC|user)

SQL support | 547

Solution

Make sure DB2® users have the right privileges to access the database.

See also Temporary Tables

Data dictionary
IBM® DB2® related data dictionary topics.
BOOLEAN data type

Informix® supports the BOOLEAN data type, which can store 't' or 'f' values. Genero BDL implements the
BOOLEAN data type in a different way: As in other programming languages, Genero BOOLEAN stores
integer values 1 or 0 (for TRUE or FALSE). The type was designed this way to assign the result of a
boolean expression to a BOOLEAN variable.

IBM® DB2® 9.x does not implement a BOOLEAN SQL type.

Solution

The DB2® database interface converts BOOLEAN type to CHAR(1) columns and stores '1' or '0' values in
the column.

CHARACTER data types

Informix® supports the following character data types:

• CHAR(N) with N<= 32767 bytes
• VARCHAR(N[,M]) with N<=255 bytes
• NCHAR(N) with N<= 32767 bytes
• NVARCHAR(N[,M]) with N<=255 bytes
• LVARCHAR(N), without the 255 bytes limit (max size varies according to IDS version)

In Informix®, both CHAR/VARCHAR and NCHAR/NVARCHAR data types can be used to store single-
byte or multibyte encoded character strings. The only difference between CHAR/VARCHAR and NCHAR/
NVARCHAR is for sorting: N[VAR]CHAR types use the collation order, while [VAR]CHAR types use the
byte order. The character set used to store strings in CHAR/VARCHAR/NCHAR/NVARCHAR columns is
defined by the DB_LOCALE environment variable. The character set used by applications is defined by
the CLIENT_LOCALE environment variable. Informix® uses Byte Length Semantics (the size N that you
specify in [VAR]CHAR(N) is expressed in bytes, not characters as in some other databases)

IBM® DB2® implements the following character data types:

• CHAR(N) with N<= 254 bytes
• VARCHAR(N) with N <= 32672 bytes
• GRAPHIC(N) with N <= 127 characters
• VARGRAPHIC(N) with N <=16336 characters

Like Informix®, IBM® DB2® uses Byte Length Semantics to define the length of CHAR/VARCHAR columns.
However, GRAPHIC and VARGRAPHIC lengths are specified in characters (i.e. max number of double-
byte characters).

The character set used by DB2® to store CHAR and VARCHAR data is defined in the database locale
section when creating a new database. If your application uses UTF-8, consider creating the DB2 database
with the UTF-8 codeset.

DB2® can automatically convert from/to the client and server characters sets. In the client applications, you
define the character set with the DB2CODEPAGE profile variable.

Solution

Informix® CHAR(N) types must be mapped to DB2® CHAR(N) types, and Informix® VARCHAR(N) or
LVARCHAR(N) columns must be mapped to DB2® VARCHAR(N).

SQL support | 548

Important:

• DB2® does not support NCHAR/NVARCHAR types. If your programs create tables with these
types, you must review your code. The DB2® driver does not automatically convert the NCHAR/
NVARCHAR Informix® types to GRAPHIC/VARGRAPHIC, because the meaning of the length is
different.

• Check that your database schema does not use CHAR or VARCHAR types with a length
exceeding the DB2® limits. Especially, the Informix® CHAR type has a very long size limit
compared to DB2® CHAR.

When using a multibyte character set (such as UTF-8), if the DB2 database was created with the
appropriate codeset (UTF-8), you can use the CHAR/VARCHAR columns, and user byte length semantics
in programs. If the database code set is non multi-byte, you must use the GRAPHIC and VARGRAPHIC
data types to store multi-byte character data, and use character length semantics in BDL programs with
FGL_LENGTH_SEMANTICS=CHAR.

When extracting a database schema from a DB2® database, the schema extractor uses the size of the
column in characters, not the octet length. If you have created a CHAR(10 (characters)) column a in DB2®

database using the UTF-8 character set, the .sch file will get a size of 10, that will be interpreted according
to FGL_LENGTH_SEMANTICS as a number of bytes or characters.

Do not forget to properly define the database client character set, which must correspond to the runtime
system character set.

See also the section about Localization.

NUMERIC data types

Informix® provides the following data types to store numbers:

Table 166: Informix® numeric data types

Informix® data type Description

SMALLINT 16 bit signed integer

INT / INTEGER 32 bit signed integer

BIGINT 64 bit signed integer

INT8 64 bit signed integer (replaced by BIGINT)

DEC / DECIMAL Equivalent to DECIMAL(16)

DEC(p) / DECIMAL(p) Floating-point decimal number

DEC(p,s) / DECIMAL(p,s) Fixed-point decimal number

MONEY Equivalent to DECIMAL(16,2)

MONEY(p) Equivalent to DECIMAL(p,2)

MONEY(p,s) Equivalent to DECIMAL(p,s)

REAL / SMALLFLOAT 32-bit floating point decimal (C float)

DOUBLE PRECISION / FLOAT[(n)] 64-bit floating point decimal (C double)

Most data types supported by IBM® DB2® UDB are compatible to Informix® data types. DB2® V 9.1
introduces the DECFLOAT(16) and DECFLOAT(34) floating point decimal types to store large decimals.
The next table lists the Informix® types and DB2® equivalents.

SQL support | 549

Table 167: Informix® numeric data types and DB2® equivalents

Informix® data type IBM® DB2® equivalent

INT8 Use BIGINT instead

DECIMAL(p)

With DB2® V9.1, DECIMAL(p<=16) can be stored
in DECFLOAT(16) and DECIMAL(p>16) can be
stored in DECFLOAT(34).

With older versions of DB2®, we can use
DECIMAL(p*2,p), but with a limitation of 15 for the
original Informix® DECIMAL precision.

DECIMAL(32,s) DB2® decimals maximum precision is 31 digits!

MONEY DECIMAL(16,2)

MONEY(p) DECIMAL(p,2)

MONEY(p,s) DECIMAL(p,s)

SMALLFLOAT REAL

FLOAT[(n)] FLOAT[(n)] (DOUBLE)

Solution

SQL scripts to create databases must be converted manually. Tables created from BDL programs do not
have to be converted; the database interface detects the MONEY data type and uses the DECIMAL type
for DB2®.

The maximum precision for DB2® decimals is 31 digits, while Informix® supports 32 digits.

• When using DB2® V8 and prior:

There is no DB2® equivalent for the Informix® DECIMAL(p) floating point decimal (i.e. without a scale).
If your application is using such data types, you must review the database schema in order to use DB2®

compatible types. To workaround the DB2® limitation, the DB2® database drivers convert DECIMAL(p)
types to a DECIMAL(2*p, p), to store all possible numbers an Informix® DECIMAL(p) can store.
However, the original Informix® precision cannot exceed 15 ((2*15) = 30), since DB2® maximum
DECIMAL precision is 31. If the original precision is bigger than 15, a CREATE TABLE statement
executed from a Genero program will fail with a DB2® SQLSTATE 42611.

• When using DB2® V9.1 and higher:

The DECIMAL(p) data type is converted to DECFLOAT(16) (for p<=16) or DECFLOAT(34) (for p>16)
to store floating point decimals. If you create tables with DECFLOAT columns, you will lose the original
DECIMAL precision when extracting the schema with fgldbsch, because IBM® DB2® supports only two
precision specifications (16 or 34). Note also the DECFLOAT(34) will be extracted as DECIMAL(32),
since the Genero DECIMAL type has a maximum precision of 32 digits.

DATE and DATETIME data types

Informix® provides two data types to store date and time information:

• DATE = for year, month and day storage.
• DATETIME = for year to fraction(1-5) storage.

IBM® DB2® provides following data type to store dates:

• DATE = for year, month, day storage.
• TIME = for hour, minute, second storage.

SQL support | 550

• TIMESTAMP = for year, month, day, hour, minute, second, fraction storage.

String representing date time information

Informix® is able to convert quoted strings to DATE / DATETIME data if the string content matches
environment parameters (i.e. DBDATE, GL_DATETIME). As Informix®, IBM® DB2® can convert quoted
strings to dates, times or timestamps. Only one format is possible: 'yyyy-mm-dd' for dates, 'hh:mm:ss' for
times and'yyyy-mm-dd hh:mm:ss:f' for timestamps.

Date time arithmetic

• Informix® supports date arithmetic on DATE and DATETIME values. The result of an arithmetic
expression involving dates/times is a number of days when only DATEs are used and an INTERVAL
value if a DATETIME is used in the expression.

• In IBM® DB2®, the result of an arithmetic expression involving DATE values is a NUMBER of days, the
decimal part is the fraction of the day (0.5 = 12H00, 2.00694444 = (2 + (10/1440)) = 2 days and 10
minutes)).

• Informix® automatically converts an integer to a date when the integer is used to set a value of a date
column. IBM® DB2® does not support this automatic conversion.

• Complex DATETIME expressions (involving INTERVAL values for example) are Informix® specific and
have no equivalent in IBM® DB2®.

Solution

DB2® has the same DATE data type as Informix® DATE columns.

DB2® TIME data type can be used to store Informix® DATETIME HOUR TO SECOND values. The
database interface makes the conversion automatically.

Informix® DATETIME values with any precision from YEAR to FRACTION(5) can be stored in DB2®

TIMESTAMP columns. The database interface makes the conversion automatically. Missing date or time
parts default to 1900-01-01 00:00:00.0. For example, when using a DATETIME HOUR TO MINUTE with
the value of "11:45", the DB2® TIMESTAMP value will be "1900-01-01 11:45:00.0".

Important:

• Using integers as a number of days in an expression with dates is not supported by IBM® DB2®.
Check your code to detect where you are using integers with DATE columns.

• Literal DATETIME and INTERVAL expressions (i.e. DATETIME (1999-10-12) YEAR TO DAY)
are not converted.

• It is strongly recommended that you use BDL variables in dynamic SQL statements instead of
quoted strings representing DATEs. For example:

LET stmt = "SELECT ... FROM customer WHERE creat_date >'", adate,"'"

is not portable, use a question mark place holder instead and OPEN the cursor USING adate:

LET stmt = "SELECT ... FROM customer WHERE creat_date > ?"

• DATE arithmetic expressions using SQL parameters (USING variables) are not fully supported.
For example:

"SELECT ... WHERE datecol < ? +1" generates an error at PREPARE time.

• SQL Statements using expressions with TODAY / CURRENT / EXTEND must be reviewed and
adapted to the native syntax.

INTERVAL data type

Informix® INTERVAL data type stores a value that represents a span of time. INTERVAL types are divided
into two classes: year-month intervals and day-time intervals.

DB2® does not provide a data type corresponding the Informix® INTERVAL data type.

SQL support | 551

Solution

The INTERVAL data type is not well supported because the database server has no equivalent native data
type. However, BDL INTERVAL values can be stored into and retrieved from CHAR columns.

SERIAL data types

Informix® supports the SERIAL, SERIAL8 and BIGSERIAL data types to produce automatic integer
sequences. SERIAL is based on INTEGER (32 bit), while SERIAL8 and BIGSERIAL can store 64 bit
integers:

• The table column must be of type SERIAL, SERIAL8 or BIGSERIAL.
• To generate a new serial, no value or a zero value is specified in the INSERT statement:

INSERT INTO tab1 (c) VALUES ('aa')
INSERT INTO tab1 (k, c) VALUES (0, 'aa')

• After INSERT, the new SERIAL value is provided in SQLCA.SQLERRD[2], while the new SERIAL8 and
BIGSERIAL value must be fetched with a SELECT dbinfo('bigserial') query.

Informix® allows you to insert rows with a value different from zero for a serial column. Using an explicit
value will automatically increment the internal serial counter, to avoid conflicts with future INSERTs that are
using a zero value:

CREATE TABLE tab (k SERIAL); -- internal counter = 0
INSERT INTO tab VALUES (0); -- internal counter = 1
INSERT INTO tab VALUES (10); -- internal counter = 10
INSERT INTO tab VALUES (0); -- internal counter = 11
DELETE FROM tab; -- internal counter = 11
INSERT INTO tab VALUES (0); -- internal counter = 12

IBM® DB2® version 7.1 supports IDENTITY columns:

CREATE TABLE tab (k INTEGER GENERATED ALWAYS AS IDENTITY);

To get the last generated IDENTITY value after an INSERT, DB2® provides the following function:

IDENTITY_VAL_LOCAL()

IBM® DB2® version 8.1 supports SEQUENCES:

CREATE SEQUENCE sq1 START WITH 100;

To create a new sequence number, you must use the "NEXTVAL FOR" operator:

INSERT INTO table VALUES (NEXTVAL FOR sq1, ...)

To get the last generated sequence number, you must use the "PREVVAL FOR" operator:

SELECT PREVVAL FOR sq1 ...

Solution

To emulate Informix® serials with IBM® DB2®, you can use IDENTITY columns (1), or insert triggers using
sequences (2). The first solution is faster, but does not allow explicit serial value specification in insert
statements; the second solution is slower but allows explicit serial value specification.

Important: The trigger-based solution is provided to simplify the conversion from Informix, but
is slower as the solution using identity columns. We strongly recommend that you use native
IDENTITY columns instead to get best performances.

The method used to emulate SERIAL types is defined by the ifxemul.datatype.serial.emulation
FGLPROFILE parameter:

dbi.database.dbname.ifxemul.datatype.serial.emulation = {"native"|"trigseq"}

SQL support | 552

• native: uses IDENTITY columns.
• trigseq: uses insert triggers with sequences.

The default emulation technique is "native".

This entry must be used in conjonction with:

dbi.database.dbname.ifxemul.datatype.serial = {true|false}

If the datatype.serial entry is set to false, the emulation method is ignored.

Using the native serial emulation
In database creation scripts, all SERIAL[(n)] data types must be converted by hand to:

INTEGER GENERATED ALWAYS AS IDENTITY[(START WITH n, INCREMENT BY 1)]

while the SERIAL8 and BIGSERIAL[(n)] types must be converted to:

BIGINT GENERATED ALWAYS AS IDENTITY[(START WITH n, INCREMENT BY 1)]

Tables created from the BDL programs can use the SERIAL data type: When a BDL program executes
a CREATE [TEMP] TABLE with a SERIAL column, the database interface automatically converts the
"SERIAL[(n)]" data type to an IDENTITY specification.

In BDL, the new generated SERIAL value is available from the SQLCA.SQLERRD[2] variable. This is
supported by the database interface which performs a call to the IDENTITY_VAL_LOCAL() function.
However, SQLCA.SQLERRD[2] is defined as an INTEGER, it cannot hold values from BIGINT identity
columns. If you are using BIGINT IDENTITY columns, you must use the IDENTITY_VAL_LOCAL()
function.

Since IBM® DB2® does not allow you to specify the value of IDENTITY columns, it is mandatory to convert
all INSERT statements to remove the SERIAL column from the list. For example, the following statement:

INSERT INTO tab (col1,col2) VALUES (0, p_value)

must be converted to:

INSERT INTO tab (col2) VALUES (p_value)

Static SQL INSERT using records defined from the schema file must also be reviewed:

DEFINE rec LIKE tab.*
INSERT INTO tab VALUES (rec.*) -- will use the serial column

must be converted to:

INSERT INTO tab VALUES rec.* -- without braces, serial column is removed

Using the trigseq serial emulation

In database creation scripts, all SERIAL[(n)] data types must be converted to INTEGER data types,
SERIAL8/BIGSERIAL must be converted to BIGINT, and you must create a sequence and a trigger for
each table using a SERIAL. To know how to write those triggers, you can create a small Genero program
that creates a table with a SERIAL column. Set the FGLSQLDEBUG environment variable and run the
program. The debug output will show you the native SQL commands to create the sequence and the
trigger.

Tables created from the BDL programs can use the SERIAL data type: When a BDL program executes
a CREATE [TEMP] TABLE with a SERIAL column, the database interface automatically converts the
"SERIAL[(n)]" data type to "INTEGER" and creates the sequence and the insert trigger.

Note:

SQL support | 553

IBM® DB2® performs NOT NULL data controls before the execution of triggers. If the serial column
must be NOT NULL (for example, because it is part of the primary key), you cannot specify a NULL
value for that column in INSERT statements.

For example, the following statement:

INSERT INTO tab VALUES (NULL,p_value)

must be converted to:

INSERT INTO tab (col2) VALUES (p_value)

Important:

• IBM® DB2® triggers are not automatically dropped when the corresponding table is dropped.
They become inoperative instead. Database administrators must take care of this behavior
when managing schemas.

• With IBM® DB2®, INSERT statements using NULL for the SERIAL column will produce a new
serial value:

INSERT INTO tab (col_serial, col_data) VALUES (NULL, 'data')

This behavior is mandatory in order to support INSERT statements which do not use the serial
column:

INSERT INTO tab (col_data) VALUES ('data')

Check if your application uses tables with a SERIAL column that can contain a NULL value.
• With DB2®, trigger creation is not allowed on temporary tables. Therefore, the "trigseq" method

cannot work with temporary tables using serials.

ROWIDs

When creating a table, Informix® automatically adds a "ROWID" integer column (applies to non-fragmented
tables only). The ROWID column is auto-filled with a unique number and can be used like a primary key to
access a given row.

IBM® DB2® ROWID columns were introduced in version 9.7. Unlike Informix® integer row ids, DB2®

row ids are based on VARCHAR(16) FOR BIT DATA (128 bit integer) that are usually represented as
a 32 char hexadecimal representation of the value. The IBM® DB2® ROWID is actually an alternative
syntax for RID_BIT(), and a qualified reference to ROWID like tablename.ROWID is equivalent to
RID_BIT(tablename).

For example: x'070000000000000000000065CE770000'

In DB2® SQL, to find a row with a rowid, you must specify the rowid value as an hexadecimal value:

SELECT * FROM customer WHERE ROWID = x'070000000000000000000065CE770000'

or convert the ROWID to an hexadecimal representation and then you can compare to a simple string:

SELECT * FROM customer WHERE HEX(ROWID) ='070000000000000000000065CE770000'

With Informix®, SQLCA.SQLERRD[6] contains the ROWID of the last INSERTed or UPDATEd row. This is
not supported with DB2 because DB2 are not INTEGERs.

Solution

If the BDL application uses ROWIDs, the program logic should be reviewed in order to use the real primary
keys (usually, serials which can be supported).

The DB2® database driver will convert the ROWID keyword to HEX(ROWID), so it can be used as a
VARCHAR(32) with the hexadecimal representation of the BIT DATA. You need however to replace all
INTEGER variable definitions by VARCHAR(32) or CHAR(32).

SQL support | 554

To emulate Informix® integer ROWIDs, you can also use the DB2® GENERATE_UNIQUE built-in function,
or the IDENTITY attribute of the INTEGER or BIGINT data types.

All references to SQLCA.SQLERRD[6] must be removed because this variable will not hold the ROWID of
the last INSERTed or UPDATEd row when using the IBM® DB2® interface.

Large OBject (LOB) types

IBM® Informix® and Genero support the TEXT and BYTE types to store large objects: TEXT is used to
store large text data, while BYTE is used to store large binary data like images or sound.

IBM® DB2® supports the LONG VARCHAR/CLOB and BLOB/VARGRAPHIC/DBCLOB types for large
objects storage

Solution

The DB2® database interface can convert BDL TEXT data to CLOB and BYTE data to BLOB. Note that
DB2® CLOB and BLOB columns are created with a size of 500K, while Genero TEXT/BYTE program
variables have a limit of 2 gigabytes; make sure that the large object data does not exceed this limit.

Constraints

Constraint naming syntax

Both Informix® and DB2® support primary key, unique, foreign key, default and check constraints. But the
constraint naming syntax is different: DB2® expects the "CONSTRAINT" keyword before the constraint
specification, and Informix® expects it after .

UNIQUE constraint example:

Table 168: UNIQUE constraint example (Informix® vs IBM® DB2®)

Informix® IBM® DB2®

CREATE TABLE emp (
 ...
 emp_code CHAR(10) UNIQUE
 CONSTRAINT pk_emp,

CREATE TABLE emp (
 ...
 emp_code CHAR(10)
 CONSTRAINT pk_emp UNIQUE,
 ...

Primary keys

Like Informix®, DB2® creates an index to enforce PRIMARY KEY constraints (some RDBMS do not create
indexes for constraints). Using "CREATE UNIQUE INDEX" to define unique constraints is obsolete (use
primary keys or a secondary key instead).

Note: DB2® primary key constraints do not allow NULLs; make sure your tables do not contain
NULLs in the primary key columns.

Unique constraints

Like Informix®, DB2® creates an index to enforce UNIQUE constraints (some RDBMS do not create
indexes for constraints).

Note: DB2® unique constraints do not allow NULLs; make sure your tables do not contain NULLs
in the unique columns.

Foreign keys

Both Informix® and DB2® support the ON DELETE CASCADE option.

SQL support | 555

Check constraints

The check condition may be any valid expression that can be evaluated to TRUE or FALSE,including
functions and literals. You must verify that the expression is not Informix-specific.

Null constraints

Informix® and DB2® support NOT NULL constraints, but Informix® does not allow you to give a name to
"NOT NULL" constraints.

Solution

Constraint naming syntax: The database interface does not convert constraint naming expressions when
creating tables from BDL programs. Review the database creation scripts to adapt the constraint naming
clauses for DB2®.

Triggers

Informix® and IBM® DB2® provide triggers with similar features, but the trigger creation syntax and the
programming languages are totally different.

Informix® triggers define which stored procedures must be called when a database event occurs (before |
after insert | update | delete ...), while IBM® DB2® triggers can hold a procedural block.

IBM® DB2® provides specific syntax to define triggers. See documentation for more details.

Solution

Informix® triggers must be converted to IBM® DB2® triggers "by hand".

Stored procedures

Both Informix® and IBM® DB2® support stored procedures and user functions, but the programming
languages are totally different.

Solution

Informix® stored procedures must be converted to IBM® DB2® "by hand".

See SQL Programming for more details about executing stored procedures with DB2®.

Name resolution of SQL objects

Case sensitivity in object names:

• Informix® database object names are not case-sensitive in non-ANSI databases.

CREATE TABLE Tab1 (Key INT, Col1 CHAR(20))
SELECT COL1 FROM TAB1

• IBM® DB2® database object names are case-sensitive. When a name is used without double quotes,
it is automatically converted to uppercase letters. When using double quotes, the names are not
converted:

CREATE TABLE tab1 (Key INT, Col1 CHAR(20))
-- Table name is "TAB1", column names are "KEY" and "COL1"
CREATE TABLE "Tab1" ("Key" INT, "Col1" CHAR(20))
-- Table name is "Tab1", column names are "Key" and "Col1"

The DB2® schema concept:

With non-ANSI Informix® databases, you do not have to give a schema name before the tables when
executing an SQL statement.

SQL support | 556

SELECT ... FROM table-name WHERE ...

In an IBM® DB2® database, tables always belong to a database schema. When executing a SQL
statement, a schema name must be used as the high-order part of a two-part object name, unless the
current schema corresponds to the table's schema.

The default (implicit) schema is the current user's name but it can be changed with the "SET SCHEMA"
instruction.

Example: The table "TAB1" belongs to the schema "SCH1". User "MARK" (implicit schema is "MARK")
wants to access "TAB1" in a SELECT statement:

SELECT ... FROM TAB1 WHERE ...
-- Error "MARK"."TAB1" is an undefined name. SQLSTATE=42704
SELECT ... FROM SCH1.TAB1 WHERE ...
-- OK.
SET SCHEMA SCH1
-- Changes the current schema to SCH1.
SELECT ... FROM TAB1 WHERE ...
-- OK.

Note: When executing the "SET SCHEMA" instruction, the database interface does not use double
quotes around the schema name (= name is converted to uppercase letters). Make sure that the
schema name is created with uppercase letters in the database.

DB2® provides "aliases", but they cannot be used to make a database object name public because aliases
belong to schemas also.

Solution

Case sensitivity in object names:

Avoid the usage of double quotes around the database object names. All names will be converted to
uppercase letters.

The DB2® schema concept:

After a connection, the database interface can automatically execute a SET SCHEMA name instruction if
the following FGLPROFILE entry is defined:

dbi.database.dbname.db2.schema= "name"

Here dbname identifies the database name used in the BDL program (DATABASE dbname) and name
is the schema name to be used in the SET SCHEMA instruction. If this entry is not defined, no "SET
SCHEMA" instruction is executed and the current schema defaults to the user's name.

Examples:

dbi.database.stores.db2.schema= "STORES1"
dbi.database.accnts.db2.schema= "ACCSCH"

Note: DB2® does not check the schema name when the SET SCHEMA instruction is executed.
Setting a wrong schema name results in "undefined name" errors when performing subsequent
SQL instructions like SELECT, UPDATE, INSERT.

In accordance with this automatic schema selection, you must create a DB2® schema for your application:

1. Connect as a user with the DBADM authority.
2. Create an administrator user dedicated to your application. For example, "STORESADM". Make sure

this user has the IMPLICIT_SCHEMA privilege (this is the default in DB2®).
3. Connect as the application administrator "STORESADM" to create all database objects (tables,

indexes, ...). In our example, a "STORESADM" schema will be created implicitly and all database
objects will belong to this schema.

SQL support | 557

As a second option you can create a specific schema with the following SQL command:

CREATE SCHEMA "name" AUTHORIZATION "appadmin"

See the IBM® DB2® manuals for more details about schemas.

The ALTER TABLE instruction

Informix® and IBM® DB2® use different implementations of the ALTER TABLE instruction. For example:

• Informix® allows you to use multiple ADD clauses separated by commas. DB2® does not expect
parentheses and the comma separator:

Informix®:

ALTER TABLE customer ADD(col1 INTEGER), ADD(col2 CHAR(20))

IBM® DB2®:

ALTER TABLE customer ADD col1 INTEGER ADD col2 CHAR(20)

• Depending on the values currently stored, Informix® can change the data type of a column, while DB2®

only supports changing the size of CHAR and VARCHAR columns:

Informix®:

ALTER TABLE customer MODIFY (col1 INTEGER)

IBM® DB2®:

ALTER TABLE customer ALTER COLUMN col1 SET data type VARCHAR(200)

Solution

No automatic conversion is done by the database interface. Read the SQL documentation and review the
SQL scripts or the BDL programs in order to use the database server specific syntax for ALTER TABLE.

Data type conversion table: Informix to DB2

Table 169: Data type conversion table (Informix to DB2 UDB)

Informix® data types DB2® data types (V<9.1) DB2® data types (V>=9.1)

CHAR(n) CHAR(n) (limit = 254c!) CHAR(n) (limit = 254c!)

VARCHAR(n[,m]) VARCHAR(n) (limit = 32672c!) VARCHAR(n) (limit = 32672c!)

LVARCHAR(n) VARCHAR(n) (limit = 32672c!) VARCHAR(n) (limit = 32672c!)

NCHAR(n) N/A N/A

NVARCHAR(n[,m]) N/A N/A

BOOLEAN CHAR(1) CHAR(1)

SMALLINT SMALLINT SMALLINT

INT / INTEGER INTEGER INTEGER

BIGINT BIGINT BIGINT

INT8 BIGINT BIGINT

SERIAL[(start)] INTEGER (see note 1) INTEGER (see note 1)

BIGSERIAL[(start)] BIGINT (see note 1) BIGINT (see note 1)

SERIAL8[(start)] BIGINT (see note 1) BIGINT (see note 1)

SQL support | 558

Informix® data types DB2® data types (V<9.1) DB2® data types (V>=9.1)

DOUBLE PRECISION /
FLOAT[(n)]

FLOAT[(n)] / DOUBLE FLOAT[(n)] / DOUBLE

REAL / SMALLFLOAT REAL REAL

NUMERIC / DEC / DECIMAL(p,s) DECIMAL(p,s) (limit = 31 digits) DECIMAL(p,s) (limit = 31 digits)

NUMERIC / DEC / DECIMAL(p)
with p<=15

DECIMAL(2*p,p) DECFLOAT(16)

NUMERIC / DEC / DECIMAL(p)
with p>15

N/A
DECFLOAT(16) if p=16,
DECFLOAT(34) if p>16

NUMERIC / DEC / DECIMAL N/A DECFLOAT(34)

MONEY(p,s) DECIMAL(p,s) (limit = 31 digits) DECIMAL(p,s) (limit = 31 digits)

MONEY(p) DECIMAL(p,2) (limit = 31 digits) DECIMAL(p,2) (limit = 31 digits)

MONEY DECIMAL(16,2) DECIMAL(16,2)

DATE DATE DATE

DATETIME HOUR TO SECOND TIME TIME

DATETIME q1 TO q2 (different
from above)

TIMESTAMP TIMESTAMP

INTERVAL q1 TO q2 CHAR(50) CHAR(50)

TEXT CLOB(500K) CLOB(500K)

BYTE BLOB(500K) BLOB(500K)

Notes:

1. For more details about serial emulation, see SERIAL data types on page 551.

Data manipulation
IBM® DB2® related data manipulation topics.
Reserved words

Even if IBM® DB2® allows SQL reserved keywords as SQL object names ("create table table (column
int)"), you should take care in your existing database schema and check that you do not use DB2® SQL
words. An example of a common word which is part of DB2® SQL grammar is 'alias '.

Solution

See IBM® DB2® documentation for reserved keywords.

Outer joins

The original OUTER join syntax of Informix® is different from the IBM® DB2® outer join syntax:

• In Informix® SQL, outer tables are defined in the FROM clause with the OUTER keyword:

SELECT ... FROM cust, OUTER(order)
 WHERE cust.key = order.custno

SELECT ... FROM cust,OUTER(order,OUTER(item))
 WHERE cust.key = order.custno
 AND order.key = item.ordno
 AND order.accepted = 1

SQL support | 559

• IBM® DB2® supports the ANSI outer join syntax:

SELECT ... FROM cust LEFT OUTER JOIN order
 ON cust.key = order.custno

SELECT ...
 FROM cust LEFT OUTER JOIN order
 LEFT OUTER JOIN item
 ON order.key = item.ordno
 ON cust.key = order.custno
 WHERE order.accepted = 1

See the IBM® DB2® SQL reference for a complete description of the syntax.

Solution

For better SQL portability, you should use the ANSI outer join syntax instead of the old Informix® OUTER
syntax.

The IBM® DB2® interface can convert most Informix® OUTER specifications to IBM® DB2® outer joins.

Prerequisites:

1. In the FROM clause, the main table must be the first item and the outer tables must figure from left to
right in the order of outer levels. Example which does not work: "FROM OUTER(tab2), tab1".

2. The outer join in the WHERE clause must use the table name as prefix. Example: "WHERE tab1.col1 =
tab2.col2".

Restrictions:

1. Additional conditions on outer table columns cannot be detected and therefore are not supported:

Example: "... FROM tab1, OUTER(tab2) WHERE tab1.col1 = tab2.col2 AND tab2.colx
> 10"

2. Statements composed by 2 or more SELECT instructions using OUTERs are not supported.

Example: "SELECT ... UNION SELECT" or "SELECT ... WHERE col IN (SELECT...)"

Note:

• Table aliases are detected in OUTER expressions.

OUTER example with table alias: "OUTER(tab1 alias1)"

• In the outer join, outer table.column-name can be placed on both right or left sides of the equal
sign.

OUTER join example with table on the left: "WHERE outertab.col1 =
maintab.col2 "

• Table names detection is not case-sensitive.

Example: "SELECT ... FROM tab1, TAB2 WHERE tab1.col1 = tab2.col2"
• Temporary tables are supported in OUTER specifications.

Transactions handling

Informix® and IBM® DB2® handle transactions differently. The differences in the transactional models can
affect the program logic.

• Informix® native mode (non ANSI):

• DDL statements can be executed (and canceled) in transactions.
• Transactions must be started with BEGIN WORK. Statements executed outside of a transaction are

automatically committed.
• IBM® DB2®:

SQL support | 560

• DDL statements can be executed (and canceled) in transactions.
• Beginning of transactions are implicit; two transactions are delimited by COMMIT or ROLLBACK.

Transactions in stored procedures:

Avoid using transactions in stored procedures to allow the client applications to handle transactions, in
accordance with the transaction model.

Savepoints:

• Informix® version 11.50 introduces savepoints with the following instructions:

 SAVEPOINT name [UNIQUE]
 ROLLBACK [WORK] TO SAVEPOINT [name]]
 RELEASE SAVEPOINT name

• IBM® DB2® supports savepoints too. However, there are differences:

1. Savepoints must be declared with the ON ROLLBACK RETAIN CURSORS clause
2. Rollback must always specify the savepoint name

Solution

The Informix® behavior is simulated with an autocommit mode in the IBM® DB2® interface. A switch to
the explicit commit mode is done when a BEGIN WORK is performed by the BDL program. Regarding the
transaction control instructions, the BDL applications do not have to be modified in order to work with IBM®

DB2®.

Note: If you want to use savepoints, always specify the savepoint name in ROLLBACK TO
SAVEPOINT.

See also SELECT FOR UPDATE

Temporary tables

Informix® temporary tables are created through the CREATE TEMP TABLE DDL instruction or through a
SELECT ... INTO TEMP statement. Temporary tables are automatically dropped when the SQL session
ends, but they can also be dropped with the DROP TABLE command. There is no name conflict when
several users create temporary tables with the same name.

Informix® allows you to create indexes on temporary tables. No name conflict occurs when several users
create an index on a temporary table by using the same index identifier.

Note: BDL reports create a temporary table when the rows are not sorted externally (by the source
SQL statement).

IBM® DB2® 7 supports the DECLARE GLOBAL TEMPORARY TABLE instruction. Native DB2® temporary
tables are quite similar to Informix® temporary tables with some exceptions:

• A 'user temporary table space' must exist for the database.
• Users must have 'USE' privilege on a 'user temporary table space'.
• For usage, the temporary table name must be prefixed by 'SESSION'.
• No constraints or indexes can be created on temporary tables.

For more details, see the DB2® documentation.

Solution

In accordance with some prerequisites, temporary tables creation in BDL programs can be supported by
the database interface.

SQL support | 561

How does it work ?

• Informix-specific statements involving temporary table creation are automatically converted to IBM®

DB2® "DECLARE GLOBAL TEMPORARY TABLE" statements.
• Once the temporary table has been created, all other SQL statements performed in the current SQL

session are parsed to add the SESSION prefix to the table name automatically.

Prerequisites

• Fulfill the DB2® prerequisites to create global temporary tables, at minimum you must create a user
temporary table space and grant the usage to database users:

CREATE USER TEMPORARY TABLESPACE tempspace01 MANAGED BY AUTOMATIC STORAGE
GRANT USE OF TABLESPACE tempspace01 TO PUBLIC

See DB2® documentation for more details.

Limitations

• Tokens matching the original table names are converted to unique names in all SQL statements. Make
sure you are not using a temp table name for other database objects, like columns. The following
example illustrates this limitation:

CREATE TEMP TABLE tmp1 (col1 INTEGER, col2 CHAR(20))
SELECT tmp1 FROM table_x WHERE ...

• Only the 'native' serial emulation mode is supported with temporary tables. See the issue about
SERIALs for more details.

Substrings in SQL

Informix® SQL statements can use subscripts on columns defined with the character data type:

SELECT ... FROM tab1 WHERE col1[2,3] = 'RO'
SELECT ... FROM tab1 WHERE col1[10] = 'R' -- Same as col1[10,10]
UPDATE tab1 SET col1[2,3] = 'RO' WHERE ...
SELECT ... FROM tab1 ORDER BY col1[1,3]

IBM® DB2® provides different functions (SUBSTR, SUSTR2, SUBSTRING), to extract a substring from a
string expression:

SELECT FROM tab1 WHERE SUBSTR(col1,2,2) = 'RO'
SELECT SUBSTR('Some text',6,3) ...
SELECT SUBSTRING(col,1,3,CODEUNITS32) ...

Solution

You must replace all Informix® col[x,y] expressions by SUBSTRING(col,x,y-x+1,CODEUNITS32).

Important:

• In UPDATE instructions, setting column values through subscripts will produce an error with
IBM® DB2®:

UPDATE tab1 SET col1[2,3] = 'RO' WHERE ...

is converted to:

UPDATE tab1 SET SUBSTR(col1,2,3-2+1) = 'RO' WHERE ...

• Column subscripts in ORDER BY expressions produce an error with IBM® DB2®:

SELECT ... FROM tab1 ORDER BY col1[1,3]

SQL support | 562

is converted to:

SELECT ... FROM tab1 ORDER BY SUBSTR(col1,1,3-1+1)

String delimiters

The ANSI string delimiter character is the single quote ('string'). Double quotes are used to delimit
database object names ("object-name").

Example: WHERE "tabname"."colname" = 'string'

Informix® allows double quotes as string delimiters, but IBM® DB2® doesn't. This is important since many
BDL programs use that character to delimit the strings in SQL commands.

This problem concerns only double quotes within SQL statements. Double quotes used in pure BDL string
expressions are not subject to SQL compatibility problems.

Solution

The IBM® DB2® database interface can automatically replace all double quotes by single quotes. However,
we recommend that you use only single quotes to enforce portability.

Escaped string delimiters can be used inside strings as in the following:

'This is a single quote: '''
'This is a single quote: \''
"This is a double quote: """
"This is a double quote: \""

Database object names cannot be delimited by double quotes because the database interface cannot
determine the difference between a database object name and a quoted string!

For example, if the program executes the SQL statement:

WHERE "tabname"."colname" = "string"

replacing all double quotes by single quotes would produce:

WHERE 'tabname'.'colname' = 'string'

This would produce an error since 'tabname'.'colname' is not allowed by IBM® DB2®.

Getting one row with SELECT

With Informix®, you must use the system table with a condition on the table id:

SELECT user FROM systables WHERE tabid=1

With IBM® DB2®, you have to do this:

SELECT user FROM SYSIBM.SYSTABLES WHERE NAME='SYSTABLE'

Solution

Check the BDL sources for "FROM systables WHERE tabid=1" and use dynamic SQL to resolve this
problem.

MATCHES and LIKE in SQL conditions

Informix® supports MATCHES and LIKE in SQL statements, while IBM® DB2® supports the LIKE
statement only.

MATCHES requires * and ? wild-card characters, and LIKE uses the % and _ wild-cards was equivalents.

(col MATCHES 'Smi*' AND col NOT MATCHES 'R?x')
(col LIKE 'Smi%' AND col NOT LIKE 'R_x')

SQL support | 563

MATCHES allows you to use brackets to specify a set of matching characters at a given position:

(col MATCHES '[Pp]aris')
(col MATCHES '[0-9][a-z]*')

The IBM® DB2® LIKE operator has no operator for [] brackets character ranges.

With IBM® DB2® , columns defined as CHAR(N) are blank padded, and trailing blanks are significant in the
LIKE expressions. As result, with a CHAR(5) value such as 'abc ' (with 2 trailing blanks), the expression
(colname LIKE 'ab_') will not match. To workaround this behavior, you can do (RTRIM(colname)
LIKE 'pattern'). However, consider adding the condition AND (colname LIKE 'patten%') to
force the DB server to optimize the query of the column is indexed. The CONSTRUCT instruction uses this
technique when the entered criteria does not end with a * star wildcard.

Solution

The database driver is able to translate Informix® MATCHES expressions to LIKE expressions, when no
[] bracket character ranges are used in the MATCHES operand.

However, for maximum portability, consider replacing the MATCHES expressions to LIKE expressions in
all SQL statements of your programs.

Avoid using CHAR(N) types for variable length character data (such as name, address).

See also: MATCHES and LIKE operators on page 438.

SQL functions

Both Informix® and DB2® provide numerous built-in SQL functions. Most Informix® SQL functions have the
same name and purpose in DB2® (DAY(), MONTH(), YEAR(), UPPER(), LOWER(), LENGTH()).

Table 170: Informix® and IBM® DB2® built-in SQL functions

Informix® IBM® DB2®

today current date

current hour to second current time

current year to fraction(5) current timestamp

trim([leading | trailing | both "char" FROM] "string") ltrim() and rtrim()

pow(x,y) power(x,y)

Solution

You must review the SQL statements using TODAY / CURRENT / EXTEND expressions.

You can create user defined functions (UFs) in the DB2® database.

Querying system catalog tables

As in Informix®, IBM® DB2® provides system catalog tables (systables, syscolumns, etc.) in each
database, but the table names and their structures are quite different.

Solution

No automatic conversion of Informix® system tables is provided by the database interface.

The GROUP BY clause

Informix® allows you to use column numbers in the GROUP BY clause

SQL support | 564

SELECT ord_date, sum(ord_amount) FROM order GROUP BY 1

IBM® DB2® does not support column numbers in the GROUP BY clause.

Solution

Use column names instead:

SELECT ord_date, sum(ord_amount) FROM order GROUP BY ord_date

The star (asterisk) in SELECT statements

Informix® allows you to use the star character in the select list along with other expressions:

SELECT col1, * FROM tab1 ...

IBM® DB2® does not support this. You must use the table name as a prefix to the star:

SELECT col1, tab1.* FROM tab1 ...

Solution

Always use the table name with stars.

The LENGTH() function

Informix® provides the LENGTH() function:

SELECT LENGTH("aaa"), LENGTH(col1) FROM table

IBM® DB2® has a equivalent function with the same name, but there is some difference:

• Informix® does not count the trailing blanks neither for CHAR not for VARCHAR expressions, while
IBM® DB2® counts the trailing blanks.

• With the IBM® DB2® LENGTH function, when using a CHAR column, values are always blank padded,
so the function returns the size of the CHAR column. When using a VARCHAR column, trailing blanks
are significant, and the function returns the number of characters, including trailing blanks.

Solution

You must check if the trailing blanks are significant when using the LENGTH()function.

If you want to count the number of characters by ignoring the trailing blanks, you must use the RTRIM()
function:

SELECT LENGTH(RTRIM(col1)) FROM table

BDL programming
IBM® DB2® related programming topics.
Informix® specific SQL statements in BDL

The BDL compiler supports several Informix-specific SQL statements that have no meaning when using
IBM® DB2®:

• CREATE DATABASE
• DROP DATABASE
• START DATABASE (SE only)
• ROLLFORWARD DATABASE
• SET [BUFFERED] LOG
• CREATE TABLE with special options (storage, lock mode, etc.)

Solution

Review your BDL source and remove all static SQL statements that are Informix-specific.

SQL support | 565

INSERT cursors

Informix® supports insert cursors. An "insert cursor" is a special BDL cursor declared with an INSERT
statement instead of a SELECT statement. When this kind of cursor is open, you can use the PUT
instruction to add rows and the FLUSH instruction to insert the records into the database.

For Informix® databases with transactions, OPEN, PUT and FLUSH instructions must be executed within a
transaction.

IBM® DB2® does not support insert cursors.

Solution

Insert cursors are emulated by the IBM® DB2® database interface.

Cursors WITH HOLD

Informix® provides the WITH HOLD option to prevent cursors being closed when a transaction ends.

This feature is well supported when using the DB2® interface, except when a transaction is canceled with a
ROLLBACK, because DB2® automatically closes all cursors when you rollback a transaction.

Solution

Check that your source code does not use WITH HOLD cursors after transactions canceled with
ROLLBACK.

SELECT FOR UPDATE

A lot of BDL programs use pessimistic locking in order to prevent several users editing the same rows at
the same time.

DECLARE cc CURSOR FOR
SELECT ... FROM tab WHERE ... FOR UPDATE
OPEN cc
FETCH cc <-- lock is acquired
...
CLOSE cc <-- lock is released

In both Informix® and DB2®, locks are released when closing the cursor or when the transaction ends;
DB2's locking granularity is at the row level.

To control the behavior of the program when locking rows:

• Informix® provides a specific instruction to set the wait mode:

SET LOCK MODE TO { WAIT | NOT WAIT | WAIT seconds }

The default mode is NOT WAIT. This as an Informix-specific SQL statement.
• DB2® has no equivalent for "SET LOCK MODE TO NOT WAIT". The "Lock timeout" can be changed

but this is a database parameter (global to all processes)!

Solution

The database interface is based on an emulation of an Informix® engine using transaction logging.
Therefore, opening a SELECT ... FOR UPDATE cursor declared outside a transaction will raise an SQL
error -255 (not in transaction).

You must review the program logic if you use pessimistic locking because it is based on the NOT WAIT
mode which is not supported by IBM® DB2®.

SQL parameters limitation

The IBM® DB2® SQL parser does not allow some uses of the '?' SQL parameter marker.

SQL support | 566

The following SQL expressions are not supported:

? IS [NOT] NULL
? operator ?
function(?)

SQL instructions containing these expressions raise an error during the statement preparation.

Solution

Check that your BDL programs do not use these types of conditional expressions.

If you really need to test a BDL variable during the execution of a SQL statement, you must use the
CAST() function for DB2® only:

WHERE CAST(? AS INTEGER) IS NULL

See the DB2® documentation for more details.

The LOAD and UNLOAD instructions

Informix® provides two SQL instructions to export / import data from / into a database table: The UNLOAD
instruction copies rows from a database table into an text file, and the LOAD instruction inserts rows from
an text file into a database table.

IBM® DB2® does not provide LOAD and UNLOAD instructions.

Solution

LOAD and UNLOAD instructions are supported.

SQL Interruption

With Informix®, it is possible to interrupt a long running query if the SQL INTERRUPT ON option.

DB2® UDB 9 supports SQL Interruption in a similar way as Informix®. The db client must issue an
SQLCancel() ODBC call to interrupt a query.

Solution

The DB2® database driver supports SQL interruption and converts the native SQL error code -952 to the
Informix® error code -213.

Scrollable Cursors

The Genero programming language supports scrollable cursors.

DB2® UDB supports native scrollable cursors.

Solution

The DB2® database driver uses the native DB2® scrollable cursors by setting the CLI statement attribute
SQL_ATTR_CURSOR_TYPE to SQL_CURSOR_STATIC.

Connecting to DB2® OS/400®

Note: Some of the following actions can be taken via the OS/400® Operations Navigator.

DB2® Architecture on OS/400®

On OS/400® machines, the DB2 Universal Database™ is integrated to the operating system. Therefore,
some concepts change. For example, the physical organization of the database is quite different from
UNIX™ or Windows™ platforms.

SQL support | 567

Table 171: Common terms for the physical organization of the database with DB2® OS/400®

SQL Terms DB2® OS/400® Terms

Table Physical file

Row Record

Column Field

Index Keyed logical file, access path

View Non keyed logical file

Schema Library, Collection, Schema (OS/400® V5R1 only)

Log Journal

Isolation Level Commitment control level

A Collection is a library containing a Journal, Journal Receivers, Views on the database catalogs.

Login to the AS/400® server

First, login to the AS/400® machine with a 5250 display emulation. All the commands are executed in the
5250 display emulation (or telnet connection).

Collection (Schema) Creation

A collection or library in DB2® for OS/400® is equivalent to a schema in DB2® for UNIX™.

1. Launch "Interactive SQL"

STRSQL COMMIT(*NONE)

2. Create a Collection

CREATE COLLECTION

Press F4

Enter field values:

LIBRARY: name of the collection (Schema)

ASP: 1

WITH DATA DICTIONARY: Y

Press ENTER

Press F3 to quit (choose Option 1 (save and exit)).

Note: The name of the Schema should not begin with “Q”; libraries beginning with “Q” are system
libraries.

This procedure creates:

• A library for your new database,
• A catalog with a data dictionary,
• A journal (QSQJRN),
• A journal receiver (QSQJRN0001).

Source Physical File Creation

Each table in the database is stored in a Physical file. They can be created in the control center with SQL
scripts (CREATE TABLE), or with OS/400® commands.

The table creation script file must be copied in the library in the form: library/sourcefile.member

SQL support | 568

Creation of a physical file:

Type:

CRTSRCPF

Enter field values:

FILE = name of the table (10 characters max).

LIBRARY = name of the library in which the table is created (schema).

RECORD LENGTH = length of the script creation file (in bytes)

MEMBER = *FILE

Execution of the SQL creation script:

Type

RUNSQLSTM

Press F10 for additional parameters

Enter field values:

SOURCE FILE = name of the source file of the script creation file

LIBRARY = name of the library (schema)

SOURCE MEMBER = name of the member of the script creation file

NAMING FIELD = *SQL (SQL Naming convention library.table)

COMMITMENT CONTROL = *NONE

IBM® SQL FLAGGING FIELD = *FLAG

If errors occur, you can use WRKSPLF to display error information saved in the spool file. Use option 5 in
the Opt Field on the line of the script file you tried to execute.

Trigger Creation

With DB2® on OS/400®, triggers need to be external programs written in a high level language such as C,
COBOL, RPG, or PL/I.

To create a trigger, use the following steps:

1. Create an OS/400® Source file for the trigger programs

Create a source physical file on your AS/400® for the trigger programs. Each trigger program will be
stored in a separate member within this source file.

Type:

CRTSRCPF FILE(library/file)

where:

• library: name of the library you created for your new database
• file: name you want to call the trigger source physical file

The file name should be ten characters or fewer.
2. Create a member for each trigger program

Create a source file member for each trigger program. After the creation of trigger programs (in the next
step), the programs will be forwarded to these members.

Type:

ADDPFM

SQL support | 569

Enter field values:

FILE = name of the source file you just created

LIBRARY = name of the library you created for your database

MEMBER = name you want to give the trigger source member

Repeat this operation for each trigger.
3. Create trigger programs in an OS/400® supported high level language

The OS/400-compatible languages include: ILE C/400®, ILE COBOL, ILE RPG, COBOL, PL/I, and
RPG.

The script creation file of the trigger should be send via FTP into library/sourcefile.member, where
sourcefile and member are the values specified in the previous step.

4. Compile the trigger programs

Once the trigger programs are in AS/400® members, you can compile them. Use whichever compiler is
appropriate for the language you used to create the trigger program.

5. Bind the trigger programs

After you compile the trigger programs, "bind" each compiled program file. Binding will establish a
relationship between the program and any tables or views the program specifies.

Type:

CRTPGM PGM (library/program) ACTGRP(*CALLER)

where:

library is the name of the library you created for your new database

program is the name of the compiled trigger program

Repeat this operation for each trigger.
6. Add the trigger programs to physical files

The final step for migrating triggers is to add each program to a physical file. This will tie the trigger
program to the table that calls it.

Type:

ADDPFTRG

Enter field values:

PHYSICAL FILE = name of the table you want to attach the trigger to

PHYSICAL FILE LIBRARY = name of the database library

TRIGGER TIME = either *BEFORE or *AFTER.

TRIGGER EVENT = *INSERT, *DELETE, or *UPDATE.

PROGRAM = name of the compiled program file

PROGRAM LIBRARY = name of the database library.

REPLACE TRIGGER = *YES.

ALLOW REPEATED CHANGES = *YES.

Note: The trigger program should be in the same library as the database.

The trigger program is now tied to the table specified in the Physical File field and will be called each time
the database action you specified occurs. The trigger program may be called from interactive SQL, another
AS/400® program, or an ODBC insert, delete, update, or procedure call.

SQL support | 570

Permission Definition

On OS/400®, database security is managed at the operating system level, not at the database level. When
you set up permissions for the database, you determine the degree of access (read, add, delete, etc.)
individual users, groups, and authorization lists may have. This operation can easily be done via Operation
Navigator.

The privileges must include the following system authorities:

• *USE to the Create Physical File (CRTPF) command.
• *EXECUTE and *ADD to the library into which the table is created.
• *OBJOPR and *OBJMGT to the journal.
• *CHANGE to the data dictionary if the library into which the table is created is an SQL collection with a

data dictionary.

To define a foreign key, the privileges must include the following on the parent table:

• The REFERENCES privilege or object management authority for the table.
• The REFERENCES privilege on each column of the specified parent key.
• Ownership of the table.

The REFERENCES privilege on a table consists of:

• Being the owner of the table.
• Having the REFERENCES privilege to the table.
• Having the system authorities of either *OBJREF or *OBJMGT to the table.

The REFERENCES privilege on a column consists of:

• Being the owner of the table.
• Having the REFERENCES privilege to the column.
• Having the system authority of *OBJREF to the column or the system authority of *OBJMGT to the

table.

To EXECUTE a user-defined function, the privilege consists of:

• Being owner of the user-defined function.
• Having EXECUTE privilege to the user-defined function.
• Having the system authorities of *OBJOPR and *EXECUTE to the user-defined function.

Relational DB Directory Entry Creation

The relational database directory is equivalent to the database directory of the DB2® client. This is
necessary to access the database with DRDA® clients (Distributed Relational Database Architecture™) like
DB2® client.

Use the WRKRDBDIRE tool to add the entry in the database directory:

• Type

WRKDBDIRE
• Type Option 1 (add)
• Enter field values:

ADDRESS = *LOCAL

TYPE = *IP

Start the DDM server on the OS/400® which listens on the DRDA® 446 port:

• Type STRTCPSVR *DDM

Start the database server:

• Type STRHOSTSVR

SQL support | 571

• Enter field values:

SERVER TYPE = *DATABASE

REQUIRED PROTOCOL: *ANY

The DDM/DRDA server that listens on TCP/IP port 446 handles requests from a DRDA® client (examples
are DB2 Connect™ or another AS/400®).

The database server is not needed for DRDA® clients, but it is needed for Client Access.

If a TCP/IP connection is desired, then your AS/400® server cannot have a release prior to V4R2 installed.

To manually configure the connection via the DB2® command line, you will need to enter catalog
commands:

> db2 catalog tcpip node <node-name> remote <as400-adress> server 446
> db2 catalog db <db-name-alias> at node <node-name> authentication dcs
> db2 catalog dcs db <db-name-alias> as <local-RDB-name-of-AS400>

If you catalogue the DB2® UDB for iSeries® server incorrectly, you may get an SQL5048N error message.
SQL7008N is another common error in that the DB2® UDB for iSeries® tables being accessed on the
server are not being journaled. To correct the SQL7008N error, you need to start journaling your tables or
change the isolation level to No Commit.

The proper CCSID value (normally 37 for US English customers) is needed for any tables on the iSeries®

accessed via DB2 Connect™. You can view the CCSID value with the DSPFD CL command or Operations
Navigator. CCSID values can be changed with the ALTER TABLE statement or CHGPF CL command.
Furthermore, to successfully connect, you may need to change one of the following: the CCSID of the job,
the CCSID of the user profile used, or the system CCSID value (QCCSID) if it's the default 65535.

DB2® Client Configuration on Windows™

To configure a DB2® client on Windows™ platforms, use the Client Configuration Assistant. This tool
is available only under Microsoft™ Windows™. Under UNIX™, you have to use the command line as
described in the previous chapter.

1. Source:

• Select “Manually configure a connection to a database”.
2. Protocol:

• Select “TCP/IP”.
• Check “The database physically resides on a host or AS/400® System”.

3. TCP/IP:

• Host Name: AS/400® system name.
• Port Number: Port where DDM/DRDA server is listening (default: 446).

4. Database:

• Database name: name defined in the relational database directory entries (with WRKRDBDIRE).
5. ODBC:

• You can register the database as an ODBC data source. Not needed for DRDA® connection used by
ODI.

6. Node Options:

• Optional, but needed to access the database via the control center.
• System name: AS/400® system name.
• Instance name: not used for a connection to AS400 (because only one instance is running on an

AS/400®).
• Operating System: OS/400®.

SQL support | 572

7. Security Options:

• Optional.
8. Host or AS400 Options:

• Optional.

Differences Between DB2® UNIX™ & DB2® OS/400®

Some of the differences between DB2® for UNIX™ / Windows™ and DB2® for OS/400® are:

• There is only one database on a system; you can not create two instances on the same database
server. The database is a single system-wide database. The database name used for the connect
statement is the name of the system. Schemas (Collections) can be used to manage different logical
databases on the same OS/400® machine.

• There is no TABLESPACE concept on DB2® for iSeries®. All the storage is controlled by the database
manager and operating system.

• The identity column is not supported (for serial emulation).
• The SET SCHEMA SQL command is not supported.
• NUMERIC data type is defined as zoned decimal on DB2® for iSeries® and packed decimal on other

platforms.
• The FLOAT data type does not use the same storage. For portability across platforms, do not use

FLOAT(n).
• Not all features of the CREATE FUNCTION statement are supported on each platform (see

documentation).
• iSeries® prior to V5R1 requires the statement to be processed by a special schema processor. iSeries®

as of V5R1 would require this only if the statement includes other DDL statements.
• OS/400® supports “SET DEFAULT” clause ON DELETE.
• OS/400® supports DROP statement with CASCADE behavior.
• Syntaxes of CREATE, ALTER and RENAME TABLE are different on the two systems.

Naming Conventions

The naming convention defines how database tables are identified.

DB2® OS/400® can use two kinds of naming conventions:

• The *SQL naming convention.

The table has to be qualified with the name of the collection (schema) which must be the same name as
the user connected to the database. All tables have to be in the same database.

• The *SYS naming convention.

If a table is unqualified, it will be searched for in the *CURLIB collection. You can change the library
list with the ADDLIBLE command. You may create a small CL program attached to the profile that will
change the library list on sign on. You can also globally change the user portion of the library list using
the QUSRLIBL system variable, but this would affect all users on the system.

SQL adaptation guide for IBM® Netezza® 6.x

Installation (Runtime Configuration)
IBM® Netezza® related installation topics.
Install IBM® Netezza® and create a database - database configuration/design tasks

If you are tasked with installing and configuring the database, here is a list of steps to be taken:

1. An IBM® Netezza® appliance (the server) must be available.

2. Install the IBM® Netezza® client software with the IBM® Netezza® ODBC driver on the application
server.

3. Create an IBM® Netezza® database with the nzsql utility.

SQL support | 573

You must connect to the "system" database:

$ nzsql -h hostname system username password

4. Create your database with the following SQL command:

CREATE DATABASE mydatabase ...

5. Create a database user dedicated to the administration of the new database and grant privileges:

CREATE USER myadmin WITH PASSWORD 'password' ...
GRANT ALL PRIVILEGES on mydatabase TO myadmin

6. Create the application tables.

Convert Informix® data types to Netezza® data types. See Data type conversion table: Informix to
Netezza on page 584 for more details.

7. If you plan to use the SERIAL emulation, you must prepare the database.

See SERIAL data types on page 581 for more details.

Prepare the runtime environment - connecting to the database

1. In order to connect to IBM® Netezza®, you must have the "dbmntz" driver in FGLDIR/dbdrivers.

2. The IBM® Netezza® client software with ODBC driver is required to connect to a server.

Check if the ODBC client library (libnzodbc.*) is installed on the machine where the BDL programs
run.

3. Make sure that the IBM® Netezza® client environment variables are properly set.

Check for example NZ_DIR (the path to the installation directory), NZ_ODBC_INI_PATH (the path to
the ODBC data source file), etc. See IBM® Netezza® documentation for more details.

4. Verify the environment variable defining the search path for Netezza database client shared libraries
(libnzodbc.so on UNIX™, ODBC32.DLL on Windows™).

Table 172: Shared library environment setting for IBM® Netezza®

IBM® Netezza® version Shared library environment setting

IBM® Netezza® 6 and higher UNIX™: Add $NZ_DIR/lib (for 32 bit) or $NZ_DIR/
lib64 (for 64 bit) to LD_LIBRARY_PATH (or its
equivalent).

Windows™: Add %NZ_DIR%\bin to PATH.

5. Check the database client locale settings.

The database client locale must match the locale used by the runtime system (LC_ALL, LANG).

6. You can test the client environment by trying to connect to the server with the SQL command line tool:

$ nzsql -h hostname system username password

7. Set up the fglprofile entries for database connections.

a) Define the Netezza database driver:

dbi.database.dbname.driver = "dbmntz"

b) The "source" parameter defines the name of the ODBC source.

dbi.database.dbname.source = "test1"

SQL support | 574

Database concepts
IBM® Netezza® related database concepts topics.
Database concepts

Like Informix® servers, Netezza® can handle multiple database entities. Tables created by a user can be
accessed without the owner prefix by other users as long as they have access privileges to these tables.

Solution

Create a Netezza® database for each Informix® database.

Data consistency and concurrency

Data consistency involves readers that want to access data currently modified by writers, and concurrency
data access involves several writers accessing the same data for modification. Locking granularity defines
the amount of data concerned when a lock is set (row, page, table, ...).

Informix®

Informix® uses a locking mechanism to handle data consistency and concurrency. When a process
changes database information with UPDATE, INSERT or DELETE, an exclusive lock is set on the
touched rows. The lock remains active until the end of the transaction. Statements performed outside
a transaction are treated as a transaction containing a single operation and therefore release the locks
immediately after execution. SELECT statements can set shared locks according to the isolation level.
In the case of locking conflicts (for example, when two processes want to acquire an exclusive lock on
the same row for modification, or when a writer is trying to modify data protected by a shared lock), the
behavior of a process can be changed by setting the lock wait mode.

Control:

• Lock wait mode: SET LOCK MODE TO ...
• Isolation level: SET ISOLATION TO ...
• Locking granularity: CREATE TABLE ... LOCK MODE {PAGE|ROW}
• Explicit exclusive lock: SELECT ... FOR UPDATE

Defaults:

• The default isolation level is read committed.
• The default lock wait mode is "not wait".
• The default locking granularity is per page.

Netezza®

Netezza® servers are designed for Data Warehouse applications, not for OLTP applications: Concurrent
data access is not the best thing that a Netezza® server can do. There are a bunch of limitations that you
must be aware of. You must not expect to be able to migrate an existing OLTP application running against
Informix® or Oracle to a Netezza® database server. The purpose of a Netezza-based application is mostly
to do queries, with few insert or updates. Typically a Netezza® database is fed with data by using tools
such as nzload, not by Genero BDL programs.

Some limitations of Netezza®:

• An application can only execute one cursor (or statement handle) at a time.
• Singular data modification statements (INSERT, UPDATE, DELETE) are much slower than with

traditional OLTP database servers. Netezza® is, however, very good when it comes to loading a huge
amount of data with special tools like the nzload utility.

• SELECT ... FOR UPDATE is not supported. Regular SELECTs never lock rows.
• Locks can only be set for an entire table with LOCK TABLE.
• A maximum of 31 concurrent INSERT processes are allowed (Netezza® V6), and there must be only

INSERTs in a transaction block.

SQL support | 575

• UPDATE/DELETE statements lock the entire table, but don't prevent SELECTs. Other processes doing
UPDATEs/DELETEs will wait until the first session has committed.

• Netezza® (V6) understands the SET TRANSACTION ISOLATION statement, but currently implements
only the SERIALIZABLE level.

• There is no way to define the LOCK WAIT mode. With Netezza®, processes always wait for locks to be
released.

Solution

Understand that the main difference with Informix® is that Netezza® is not good at concurrent data
modification. Note also that readers do not have to wait for writers in Netezza®.

Genero applications should mainly do queries against a Netezza® server. You must review your program
logic that modifies data, having in mind that only one process can modify a table at the time. Note however,
that if you write short transactions this is not visible to the end users, except that an INSERT / UPDATE /
DELETE of a single row takes more time than with another database server.

The SET ISOLATION TO ... Informix® syntax is replaced by SET TRANSACTION ISOLATION LEVEL ... in
Netezza®. However, only the REPEATABLE READ level is supported with Netezza®.

The next table shows the isolation level mappings done by the Netezza® database driver:

Table 173: Isolation level mappings done by the Netezza® database driver

SET ISOLATION instruction in program Native SQL command

SET ISOLATION TO DIRTY READ Not supported (SQL Error)

SET ISOLATION TO COMMITTED READ

[READ COMMITTED] [RETAIN UPDATE LOCKS]
Not supported (SQL Error)

SET ISOLATION TO CURSOR STABILITY Not supported (SQL Error)

SET ISOLATION TO REPEATABLE READ
SET TRANSACTION ISOLATION LEVEL
SERIALIZABLE

Important: Since Netezza® does not support the lock wait mode, you must check that your
programs do not include a SET LOCK MODE instruction. This instruction will fail with error -6370 if
it is executed when connected to Netezza®.

See the Informix® and Netezza® documentation for more details about data consistency, concurrency and
locking mechanisms.

Transactions handling

Compared to Informix®, Netezza® has some limitations regarding transactions and concurrent data access.

Informix® native mode (non-ANSI):

• Transactions are started with BEGIN WORK.
• Transactions are validated with COMMIT WORK.
• Transactions are canceled with ROLLBACK WORK.
• Savepoints can be set with SAVEPOINT name [UNIQUE].
• Transactions can be rolled back to a savepoint with ROLLBACK [WORK] TO SAVEPOINT [name].
• Savepoints can be released with RELEASE SAVEPOINT name.
• Statements executed outside of a transaction are automatically committed.
• DDL statements can be executed (and canceled) in transactions.

Netezza®:

SQL support | 576

• Transactions are started with BEGIN WORK.
• Transactions are validated with COMMIT WORK.
• Transactions are canceled with ROLLBACK WORK.
• Statements executed outside of a transaction are automatically committed.
• DDL statements can be executed (and canceled) in transactions.
• If an SQL error occurs in a transaction, the whole transaction is aborted.
• A transaction must only contain INSERTs if you want concurrent processes to insert rows at the same

time (UPDATEs/DELETEs lock the whole table).
• Only the SERIALIZABLE isolation level is implemented by Netezza®.

Note: Netezza® cancels the entire transaction if an SQL error occurs in one of the statements
executed inside the transaction. The following code example illustrates this difference:

CREATE TABLE tab1 (k INT PRIMARY KEY, c CHAR(10))
WHENEVER ERROR CONTINUE
BEGIN WORK
INSERT INTO tab1 (1, 'abc')
SELECT FROM unexisting WHERE key = 123 -- unexisting table = sql error
COMMIT WORK

With Informix®, this code will leave the table with one row inside, since the first INSERT statement
succeeded. With Netezza®, the table will remain empty after executing this piece of code, because the
server will rollback the whole transaction.

Solution

Regarding the transaction control instructions, the BDL applications do not have to be modified in order to
work with Netezza®: Informix® transaction handling commands are automatically converted to Netezza®

instructions to start, validate or cancel transactions. However, since Netezza® is not designed for OLTP
applications, you must review any code doing complex data modifications. See the concurrency topic for
more details.

You must review the SQL statements inside BEGIN WORK / COMMIT WORK instruction and check if
these can raise an SQL error. To get the same behavior in case of error when connected to a different
database than Netezza®, you must issue a ROLLBACK to cancel all the SQL statements that succeeded in
the transaction, for example with a TRY/CATCH block.

TRY
 BEGIN WORK
 ...
 COMMIT WORK
CATCH
 ROLLBACK WORK
END TRY

Database users

Until version 11.70.xC2, Informix® database users must be created at the operating system level and be
members of the 'informix' group. Starting with 11.70.xC2, Informix® supports database-only users with the
CREATE USER instruction, as in most other db servers. Any database user must have sufficient privileges
to connect and use the resources of the database; user rights are defined with the GRANT command.

Netezza® users must be registered in the database with the CREATE USER command, for example:

CREATE USER name WITH PASSWORD 'pswd' IN GROUP ...

See the Netezza® documentation for more details about user creation and database access/security.

SQL support | 577

Solution

According to the application logic (is it a multiuser application?), you have to create one or several
Netezza® users.

Data dictionary
IBM® Netezza® related data dictionary topics.
BOOLEAN data type

Informix® supports the BOOLEAN data type, which can store 't' or 'f' values; Genero BDL implements the
BOOLEAN data type in a different way. As in other programming languages, Genero BOOLEAN stores
integer values 1 or 0 (for TRUE or FALSE). The type was designed this way to assign the result of a
boolean expression to a BOOLEAN variable.

Netezza® supports the BOOLEAN data type and stores 't' or 'f' values for TRUE and FALSE
representation. It is not possible to insert the integer values 1 or 0: Values must be true, false, 't', 'f', '1' or
'0'.

Solution

The Netezza® database interface supports the BOOLEAN data type, and converts the BDL BOOLEAN
integer values to a CHAR(1) of '1' or '0'.

CHARACTER data types

Informix® supports the following character data types:

• CHAR(N) with N<= 32767 bytes
• VARCHAR(N[,M]) with N<=255 bytes
• NCHAR(N) with N<= 32767 bytes
• NVARCHAR(N[,M]) with N<=255 bytes
• LVARCHAR(N), without the 255 bytes limit (max size varies according to IDS version)

In Informix®, both CHAR/VARCHAR and NCHAR/NVARCHAR data types can be used to store single-
byte or multibyte encoded character strings. The only difference between CHAR/VARCHAR and NCHAR/
NVARCHAR is for sorting: N[VAR]CHAR types use the collation order, while [VAR]CHAR types use the
byte order. The character set used to store strings in CHAR/VARCHAR/NCHAR/NVARCHAR columns is
defined by the DB_LOCALE environment variable. The character set used by applications is defined by
the CLIENT_LOCALE environment variable. Informix® uses Byte Length Semantics (the size N that you
specify in [VAR]CHAR(N) is expressed in bytes, not characters as in some other databases.)

Netezza® supports the following character data types:

• CHAR(N) with N <= 64000 characters
• VARCHAR(N) with N <= 64000 characters
• NCHAR(N) with N <= 16000 characters
• NVARCHAR(N) with N <= 16000 characters

Netezza® stores single-byte character data in CHAR/VARCHAR columns, and stores UNICODE (UTF-8
encoded) character strings in NCHAR/NVARCHAR columns. You cannot store UTF-8 strings in CHAR/
VARCHAR columns.

NCHAR/NVARCHAR data is always stored in UTF-8. The database character defines the encoding for
CHAR and VARCHAR columns and is defined when creating the database with the CREATE DATABASE
command; the default is latin9. Note that, at the time of writing these lines, Netezza® V6 does not yet
support a different database character set than latin9.

No automatic character set conversion is done by the Netezza® software, this means that the application/
client character set must match the database character set.

SQL support | 578

Solution

If your application uses a single-byte character set (i.e. latin9), you can create tables with the CHAR and
VARCHAR types. However, if you want to store UNICODE (UTF-8) strings, you must use the NCHAR/
NVARCHAR types instead when creating tables. In program sources you can use CHAR/VARCHAR; these
types can hold single and multibyte character sets, according to the C POSIX locale.

Important: Netezza® (V6 while writing these lines) supports only the latin9 database character
set for CHAR / VARCHAR types. Since character set conversion is not supported, you can only
implement either latin9 or UTF-8 based applications.

When using a multibyte character set (such as UTF-8), define database columns as NCHAR and
NVARCHAR, with the size in character units, and use character length semantics in BDL programs with
FGL_LENGTH_SEMANTICS=CHAR.

When extracting a database schema from a Netezza® database, the schema extractor uses the size of
the column in characters, not the octet length. If you have created a CHAR(10 (characters)) column a in
Netezza® database using the UTF-8 character set, the .sch file will get a size of 10, that will be interpreted
according to FGL_LENGTH_SEMANTICS as a number of bytes or characters.

Do not forget to properly define the database client character set, which must correspond to the runtime
system character set.

See also the section about Localization.

NUMERIC data types

Informix® supports several data types to store numbers:

Table 174: Informix® numeric data types

Informix® data type Description

SMALLINT 16 bit signed integer

INT / INTEGER 32 bit signed integer

BIGINT 64 bit signed integer

INT8 64 bit signed integer (replaced by BIGINT)

DEC / DECIMAL Equivalent to DECIMAL(16)

DEC / DECIMAL(p)
Floating-point exact decimal number, with p
significant digits

DEC / DECIMAL(p,s)
Fixed-point exact decimal number, with p significant
digits as s decimals

MONEY Equivalent to DECIMAL(16,2)

MONEY(p) Equivalent to DECIMAL(p,2)

MONEY(p,s) Equivalent to DECIMAL(p,s)

REAL / SMALLFLOAT 32-bit floating point decimal (C float)

DOUBLE PRECISION / FLOAT[(n)] 64-bit floating point decimal (C double)

Solution

Netezza® supports the following data types to store numbers:

SQL support | 579

Table 175: Netezza® numeric data types

Netezza® data type Description

BYTEINT 8-bit value with the range -128 to 127

SMALLINT 16 bit signed integer

INTEGER 32 bit signed integer

BIGINT 64 bit signed integer

NUMERIC(p,s) / DECIMAL(p,s)
Exact decimal number with p significant digits and s
decimals (1<=p<=38)

NUMERIC(p) / DECIMAL(p) Integer with precision p (1<=p<=38)

NUMERIC / DECIMAL Integer, same as NUMERIC(18,0)

FLOAT(p) with 1 <= p <= 6 16 bit approx floating point (C float)

FLOAT(p) with 7 <= p <= 15 32 bit approx floating point (C double)

REAL same as FLOAT(6)

DOUBLE PRECISION same as FLOAT(15)

Important:

There is no Netezza® equivalent for the Informix® DECIMAL(p) floating point decimal (i.e. without a
scale). If your application uses such data types, you must review the database schema in order to
use Netezza® compatible types.

To workaround the Netezza® limitation, the NTZ database drivers converts DECIMAL(p) types to a
DECIMAL(2*p, p), to store all possible numbers that an Informix® DECIMAL(p) can store. However,
the original Informix® precision cannot exceed 19, since the Netezza® maximum DECIMAL precision is
38(2*19). If the original precision is bigger than 19, a CREATE TABLE statement executed from a Genero
program will fail with an SQL error.

DATE and DATETIME data types

Informix® provides two data types to store dates and time information:

• DATE = for year, month and day storage.
• DATETIME = for year to fraction(1-5) storage.

Netezza® provides the following data type to store date and time information:

• DATE = for year, month, day storage.
• TIME = for hour, minute, second, fraction with (6 decimal positions).
• TIME WITH TIME ZONE / TIMETZ = same as TIME, with time zone information.
• TIMESTAMP = for year, month, day, hour, minute, second, fraction (with 6 decimal positions).

String representing date time information

Informix® is able to convert quoted strings to DATE / DATETIME data if the string contents matches
environment parameters (i.e. DBDATE, GL_DATETIME). As in Informix®, Netezza® can convert quoted
strings to date time data. Netezza® accepts different date formats, including ISO date time strings, and you
can specify the cast operator (::date, ::time, ::timestamp) after the string literal.

SQL support | 580

Date arithmetic

• Informix® supports date arithmetic on DATE and DATETIME values. The result of an arithmetic
expression involving dates/times is a number of days when only DATEs are used and an INTERVAL
value if a DATETIME is used in the expression.

• In Netezza®, the result of an arithmetic expression involving DATE values is an INTEGER representing
a number of days.

• Informix® automatically converts an integer to a date when the integer is used to set a value of a date
column. Netezza® does not support this automatic conversion.

• Complex DATETIME expressions (involving INTERVAL values for example) are Informix® specific and
have no equivalent in Netezza®.

Using DATE/DATETIME variables in SQL statements

Informix® supports implicit DATE/DATETIME conversions, for example you can use a DATE variable when
the target column is a DATETIME. This is not possible with Netezza®: The type of the SQL parameter must
match the type of the column in the database table.

Solution

Netezza® has the same DATE data type as Informix® (year, month, day). So you can use Netezza®

DATE data type for Informix® DATE columns.

Netezza® TIME data type can be used to store Informix® DATETIME HOUR TO SECOND values. The
database interface makes the conversion automatically.

Informix® DATETIME values with any precision from YEAR to FRACTION(5) can be stored in Netezza®

TIMESTAMP columns. The database interface makes the conversion automatically. Missing date or time
parts default to 1900-01-01 00:00:00.0. For example, when using a DATETIME HOUR TO MINUTE with
the value of "11:45", the Netezza® TIMESTAMP value will be "1900-01-01 11:45:00.0".

Note:

• Make sure that you are using the same type for the SQL parameter and the target column,
DATE/DATETIME implicit conversion is not supported by Netezza®.

See also Date and time in SQL statements on page 432 for good SQL programming practices.

INTERVAL data type

Informix® INTERVAL data type stores a value that represents a span of time. INTERVAL types are divided
into two classes: year-month intervals and day-time intervals.

Netezza® implements the INTERVAL data type in a different way than Informix® does.

• Netezza® allows you to specify interval qualifiers (YEAR, MONTH, DAY, ...) but internally it always uses
the same base type, storing values of any combination of units. Thus, there is no way to distinguish
year-month intervals and day-time intervals with Netezza®.

• The precision of Netezza® intervals includes fraction of seconds with up to 6 significant digits. However,
it is not possible to specify the scale of a Netezza® interval as with the Informix® FRACTION(N)
qualifier.

• With Netezza®, interval literals must be include the units, as "-923 days 11 hours 22 minutes", while
Informix® interval literals have the form INTERVAL(999-99...) qualifier1 TO qualifier2.

• Netezza® normalizes all INTERVAL values to units of seconds, and considers a month to be thirty days
for the purpose of interval comparisons. This approximation can lead to inaccuracies.

Solution

The Informix® INTERVAL types of the day-time class can be mapped to the native Netezza® INTERVAL
type, for day to second time interval storage.

SQL support | 581

Since Netezza® does not clearly distinguish year-month interval class, such types are converted to
CHAR(50) by the Netezza® driver.

Important: Netezza® (V6 at the time of writing) has several bugs regarding the INTERVAL type;
we do not recommend using this type until Netezza® has fixed these problems.

SERIAL data types

Informix® supports the SERIAL, SERIAL8 and BIGSERIAL data types to produce automatic integer
sequences. SERIAL is based on INTEGER (32 bit), while SERIAL8 and BIGSERIAL can store 64 bit
integers:

• The table column must be of type SERIAL, SERIAL8 or BIGSERIAL.
• To generate a new serial, no value or a zero value is specified in the INSERT statement:

INSERT INTO tab1 (c) VALUES ('aa')
INSERT INTO tab1 (k, c) VALUES (0, 'aa')

• After INSERT, the new SERIAL value is provided in SQLCA.SQLERRD[2], while the new SERIAL8 and
BIGSERIAL value must be fetched with a SELECT dbinfo('bigserial') query.

Informix® allows you to insert rows with a value different from zero for a serial column. Using an explicit
value will automatically increment the internal serial counter, to avoid conflicts with future INSERT
statements that are using a zero value:

CREATE TABLE tab (k SERIAL); -- internal counter = 0
INSERT INTO tab VALUES (0); -- internal counter = 1
INSERT INTO tab VALUES (10); -- internal counter = 10
INSERT INTO tab VALUES (0); -- internal counter = 11
DELETE FROM tab; -- internal counter = 11
INSERT INTO tab VALUES (0); -- internal counter = 12

However, Netezza® does not have a SERIAL data type. Version 6 of the database supports SEQUENCEs,
but not triggers. The lack of triggers support makes it impossible to emulate Informix® SERIALs.

Solution

If you are using Informix® SERIALs or BIGSERIALs, you must review the application logic and database
schema to replace SERIAL/BIGSERIAL columns with INTEGER/BIGINT columns, and generate the new
keys from a SEQUENCE as described in the SQL Programming page.

ROWIDs

When creating a table, Informix® automatically adds a ROWID integer column (applies to non-fragmented
tables only). The ROWID column is auto-filled with a unique number and can be used like a primary key to
access a given row.

Netezza® implements ROWIDs like Informix®, except that the rowids are stored in a 64 bit integer in
Netezza®.

Solution

ROWIDs can be used with Netezza® as with Informix®, as long as you fetch rowid values into a BIGINT
variable. But you should avoid ROWID-based code and use primary key constraints instead.

The SQLCA.SQLERRD[6] register cannot be supported, because Netezza® rowids are 64 bit integers
(BIGINT) while SQLCA.SQLERRD[6] is a 32 bit integer (INTEGER). Therefore, all references to
SQLCA.SQLERRD[6] must be removed because this variable will not contain the ROWID of the last
INSERTed or UPDATEd row.

SQL support | 582

Indexes

Like most database servers, Informix® supports index creation on table columns. Indexes can be used to
make the server find rows rapidly:

CREATE INDEX cust_ix1 ON customer (cust_name)

Netezza® does not support index creation on tables. There is no need for indexes in a Netezza® database
because performance is achieved by distributing data rows over several disks. Netezza® tracks min/
max values of each column per disk extent to ignore extents which do not contain the values the query is
looking for. See Netezza® documentation for more details.

Solution

You must remove all CREATE INDEX instructions from your programs and SQL scripts that create
database tables.

Large OBject (LOB) types

IBM® Informix® and Genero support the TEXT and BYTE types to store large objects: TEXT is used to
store large text data, while BYTE is used to store large binary data like images or sound.

Netezza® (V6) does not support large objects in the database.

Solution

If your application need to store large objects with TEXT and BYTE data types, you cannot use a Netezza®

server.

Constraints

Constraint naming syntax

Both Informix® and Netezza® support primary key, unique, foreign key, default and check constraints,
but the constraint naming syntax is different. Netezza® expects the "CONSTRAINT" keyword before the
constraint specification and Informix® expects it after.

UNIQUE constraint example

Table 176: UNIQUE constraint example (Informix® vs Netezza®)

Informix® Netezza®

CREATE TABLE emp (
 ...
 emp_code CHAR(10) UNIQUE
 CONSTRAINT pk_emp,

CREATE TABLE emp (
 ...
 emp_code CHAR(10)
 CONSTRAINT pk_emp UNIQUE,
 ...

Important: Netezza® allows you to create tables with the UNIQUE and PRIMARY KEY and
FOREIGN KEY syntax, but the constraints are not enforced.

Solution

The database interface does not convert constraint naming expressions when creating tables from BDL
programs. Review the database creation scripts to adapt the constraint-naming clauses for Netezza®.

Since Netezza® does not enforce constraints, you must test for unique values and foreign key references
at the program level.

SQL support | 583

Triggers

Informix® supports triggers on database tables.

Netezza® does not support triggers.

Solution

Informix® triggers must be re-written in 4GL.

Stored procedures

Informix® supports stored procedures with the SPL language, and with Java/ C as User Defined Routines.

Netezza® supports stored procedures with the NZPLSQL language.

In Netezza® (V6), a stored procedure must always return a value (see the RETURNS clause). The
value returned from a stored procedure can be either a simple scalar value, or a result set (REFTABLE).
Netezza® has a limited support for stored procedures producing result sets (you must use dynamic SQL in
the stored procedure). See the Netezza® documentation for more details.

Note: Netezza® does not support OUTPUT parameters for stored procedures, only one single
value or a result set can be returned.

Solution

Informix® stored procedures must be re-written in the Netezza® language, and the call from programs is
slightly different from Informix®.

To call a stored procedure returning a simple scalar value, do following:

PREPARE s1 FROM "SELECT myproc(?,?,?)"
EXECUTE s1 USING var1, var2, var3 INTO res

To call a stored procedure returning a result set:

PREPARE s1 FROM "SELECT myproc(?,?,?)"
OPEN s1 USING var1, var2, var3
FETCH s1 INTO record.*
FETCH s1 INTO record.*
...

See SQL Programming for more details about executing stored procedures with Netezza.

Name resolution of SQL objects

Informix® uses the following form to identify an SQL object:

[database[@dbservername]:][{owner|"owner"}.]identifier

With Netezza®, an object name takes the following form:

[database.[schema].]identifier

Solution

As a general rule, to write portable SQL, you should only use simple database object names without any
database, server or owner qualifier and without quoted identifiers.

SQL support | 584

Data type conversion table: Informix to Netezza

Table 177: Data type conversion table (Informix to Netezza)

Informix® data types Netezza® data types

CHAR(n) CHAR(n) or NCHAR(n) if UTF-8

VARCHAR(n[,m]) VARCHAR(n) or NVARCHAR if UTF-8

NCHAR(n) NCHAR(n) (UTF-8)

NVARCHAR(n[,m]) NVARCHAR(n) (UTF-8)

BOOLEAN BOOLEAN

SMALLINT SMALLINT

INT / INTEGER INTEGER

BIGINT BIGINT

INT8 BIGINT

SERIAL[(start)] N/A (see note 1)

BIGSERIAL[(start)] N/A (see note 1)

SERIAL8[(start)] N/A (see note 1)

DOUBLE PRECISION / FLOAT[(n)] DOUBLE

REAL / SMALLFLOAT REAL

NUMERIC / DEC / DECIMAL(p,s) DECIMAL(p,s)

NUMERIC / DEC / DECIMAL(p) DECIMAL(p*2,p)

NUMERIC / DEC / DECIMAL DECIMAL(32,16)

MONEY(p,s) DECIMAL(p,s)

MONEY(p) DECIMAL(p,2)

MONEY DECIMAL(16,2)

TEXT N/A

BYTE N/A

DATE DATE

DATETIME HOUR TO SECOND TIME

DATETIME YEAR TO FRACTION(p) TIMESTAMP

INTERVAL YEAR[(p)] TO MONTH CHAR(50)

INTERVAL YEAR[(p)] TO YEAR CHAR(50)

INTERVAL MONTH[(p)] TO MONTH INTERVAL

INTERVAL DAY[(p)] TO FRACTION(n) INTERVAL

INTERVAL DAY[(p)] TO SECOND INTERVAL

INTERVAL DAY[(p)] TO MINUTE INTERVAL

INTERVAL DAY[(p)] TO HOUR INTERVAL

SQL support | 585

Informix® data types Netezza® data types

INTERVAL DAY[(p)] TO DAY INTERVAL

INTERVAL HOUR[(p)] TO FRACTION(n) INTERVAL

INTERVAL HOUR[(p)] TO SECOND INTERVAL

INTERVAL HOUR[(p)] TO MINUTE INTERVAL

INTERVAL HOUR[(p)] TO HOUR INTERVAL

INTERVAL MINUTE[(p)] TO FRACTION(n) INTERVAL

INTERVAL MINUTE[(p)] TO SECOND INTERVAL

INTERVAL MINUTE[(p)] TO MINUTE INTERVAL

INTERVAL SECOND[(p)] TO FRACTION(n) INTERVAL

INTERVAL SECOND[(p)] TO SECOND INTERVAL

INTERVAL FRACTION[(p)] TO FRACTION(n) INTERVAL

Notes:

1. For more details about serial emulation, see SERIAL data types on page 581.

Data manipulation
IBM® Netezza® related data manipulation topics.
Reserved words

Informix® allows the use of SQL language keywords for database object names (tables, columns):

CREATE TABLE table (int INT, date DATE)

In Netezza®, SQL object names like table and column names cannot be SQL reserved keywords.

Solution

Table or column names which are Netezza® reserved keywords must be renamed.

See the Netezza® SQL Reference guide for a list of reserved keywords.

Outer joins

In Informix® SQL, outer tables can be defined in the FROM clause with the OUTER keyword:

SELECT ... FROM a, OUTER (b)
 WHERE a.key = b.akey

SELECT ... FROM a, OUTER(b,OUTER(c))
 WHERE a.key = b.akey
 AND b.key1 = c.bkey1
 AND b.key2 = c.bkey2

Netezza® supports the ANSI outer join syntax:

SELECT ... FROM cust LEFT OUTER JOIN order
 ON cust.key = order.custno
SELECT ...
 FROM cust LEFT OUTER JOIN order
 LEFT OUTER JOIN item
 ON order.key = item.ordno
 ON cust.key = order.custno

SQL support | 586

 WHERE order.cdate > current date

See the Netezza® reference for a complete description of the syntax.

Solution

For better SQL portability, use the ANSI outer join syntax instead of the old Informix® OUTER syntax.

The Netezza® interface can convert most Informix® OUTER specifications to ANSI outer joins.

Prerequisites:

1. In the FROM clause, the main table must be the first item, and the outer tables must be listed from left
to right in the order of outer levels.

Example which does not work: "FROM OUTER(tab2), tab1"
2. The outer join in the WHERE part must use the table name as prefix.

Example: c_fgl_odiagntz_009.dita.

Restrictions:

1. Additional conditions on outer table columns cannot be detected and therefore are not supported:

Example: "... FROM tab1, OUTER(tab2) WHERE tab1.col1 = tab2.col2 AND tab2.colx
> 10"

2. Statements composed of 2 or more SELECT instructions using OUTERs are not supported.

Example: "SELECT ... UNION SELECT" or "SELECT ... WHERE col IN (SELECT...)"

Remarks:

1. Table aliases are detected in OUTER expressions.

OUTER example with table alias: "OUTER(tab1 alias1)"
2. In the outer join, <outer table>.<col> can be placed on both right or left sides of the equal sign.

OUTER join example with table on the left: "WHERE outertab.col1 = maintab.col2 "
3. Table names detection is not case-sensitive.

Example: "SELECT ... FROM tab1, TAB2 WHERE tab1.col1 = tab2.col2"
4. Temporary tables are supported in OUTER specifications.

Transactions handling

Compared to Informix®, Netezza® has some limitations regarding transactions and concurrent data access.

Informix® native mode (non-ANSI):

• Transactions are started with BEGIN WORK.
• Transactions are validated with COMMIT WORK.
• Transactions are canceled with ROLLBACK WORK.
• Savepoints can be set with SAVEPOINT name [UNIQUE].
• Transactions can be rolled back to a savepoint with ROLLBACK [WORK] TO SAVEPOINT [name].
• Savepoints can be released with RELEASE SAVEPOINT name.
• Statements executed outside of a transaction are automatically committed.
• DDL statements can be executed (and canceled) in transactions.

Netezza®:

• Transactions are started with BEGIN WORK.
• Transactions are validated with COMMIT WORK.
• Transactions are canceled with ROLLBACK WORK.
• Statements executed outside of a transaction are automatically committed.

SQL support | 587

• DDL statements can be executed (and canceled) in transactions.
• If an SQL error occurs in a transaction, the whole transaction is aborted.
• A transaction must only contain INSERTs if you want concurrent processes to insert rows at the same

time (UPDATEs/DELETEs lock the whole table).
• Only the SERIALIZABLE isolation level is implemented by Netezza®.

Note: Netezza® cancels the entire transaction if an SQL error occurs in one of the statements
executed inside the transaction. The following code example illustrates this difference:

CREATE TABLE tab1 (k INT PRIMARY KEY, c CHAR(10))
WHENEVER ERROR CONTINUE
BEGIN WORK
INSERT INTO tab1 (1, 'abc')
SELECT FROM unexisting WHERE key = 123 -- unexisting table = sql error
COMMIT WORK

With Informix®, this code will leave the table with one row inside, since the first INSERT statement
succeeded. With Netezza®, the table will remain empty after executing this piece of code, because the
server will rollback the whole transaction.

Solution

Regarding the transaction control instructions, the BDL applications do not have to be modified in order to
work with Netezza®: Informix® transaction handling commands are automatically converted to Netezza®

instructions to start, validate or cancel transactions. However, since Netezza® is not designed for OLTP
applications, you must review any code doing complex data modifications. See the concurrency topic for
more details.

You must review the SQL statements inside BEGIN WORK / COMMIT WORK instruction and check if
these can raise an SQL error. To get the same behavior in case of error when connected to a different
database than Netezza®, you must issue a ROLLBACK to cancel all the SQL statements that succeeded in
the transaction, for example with a TRY/CATCH block.

TRY
 BEGIN WORK
 ...
 COMMIT WORK
CATCH
 ROLLBACK WORK
END TRY

Temporary tables

Informix® temporary tables are created through the CREATE TEMP TABLE DDL instruction or through a
SELECT ... INTO TEMP statement. Temporary tables are automatically dropped when the SQL session
ends, but they can be dropped with the DROP TABLE command. There is no name conflict when several
users create temporary tables with the same name.

Informix® allows you to create indexes on temporary tables. No name conflict occurs when several users
create an index on a temporary table by using the same index identifier.

Netezza® support temporary tables as Informix® does, with a little syntax difference in the SELECT INTO
TEMP instruction.

Solution

Temporary tables are well supported with native Netezza® temp tables.

SQL support | 588

Substrings in SQL

Informix® SQL statements can use subscripts on columns defined with the character data type:

SELECT ... FROM tab1 WHERE col1[2,3] = 'RO'
SELECT ... FROM tab1 WHERE col1[10] = 'R' -- Same as col1[10,10]
UPDATE tab1 SET col1[2,3] = 'RO' WHERE ...
SELECT ... FROM tab1 ORDER BY col1[1,3]

Netezza® provides the SUBSTRING(... from ... to ...) function, to extract a substring from a string
expression:

SELECT FROM tab1 WHERE SUBSTRING(col1 from 2 for 2) = 'RO'
SELECT SUBSTRING('Some text' from 6 for 3) ... -- Gives 'tex'

Solution

You must replace all Informix® col[x,y] expressions by SUBSTRING(col from x for (y-x+1)).

Note:

• In UPDATE instructions, setting column values through subscripts will produce an error with
PostgreSQL:

UPDATE tab1 SET col1[2,3] = 'RO' WHERE ...

is converted to:

UPDATE tab1 SET SUBSTRING(col1 from 2 for (3-2+1)) = 'RO' WHERE ...

• Column subscripts in ORDER BY expressions are also converted and produce an error with
PostgreSQL:

SELECT ... FROM tab1 ORDER BY col1[1,3]

is converted to:

SELECT ... FROM tab1 ORDER BY SUBSTRING(col1 from 1 for(3-1+1))

The LENGTH() function

In Informix®, the LENGTH() function counts the number of bytes of a string expression by ignoring the
trailing blanks.

Netezza® supports LENGTH() and CHARACTER_LENGTH() functions, but these count the number of
characters (not bytes), and trailing blanks are significant.

Netezza® returns NULL if the LENGTH() parameter is NULL. Informix® returns zero instead.

Solution

The Netezza® database interface cannot simulate the behavior of the Informix® LENGTH() SQL function.
Review the program logic and make sure you do not pass NULL values to the LENGTH() SQL function.

Name resolution of SQL objects

Informix® uses the following form to identify an SQL object:

[database[@dbservername]:][{owner|"owner"}.]identifier

With Netezza®, an object name takes the following form:

[database.[schema].]identifier

SQL support | 589

Solution

As a general rule, to write portable SQL, you should only use simple database object names without any
database, server or owner qualifier and without quoted identifiers.

String delimiters

The ANSI string delimiter character is the single quote ('string'). Double quotes are used to delimit
database object names ("object-name").

Example: WHERE "tabname"."colname" = 'string'

Informix® allows double quotes as string delimiters, but Netezza® doesn't. This is important since many
BDL programs use that character to delimit the strings in SQL commands.

Note: This problem concerns only double quotes within SQL statements. Double quotes used in
pure BDL string expressions are not subject to SQL compatibility problems.

Solution

The Netezza® database interface can automatically replace all double quotes by single quotes.

Escaped string delimiters can be used inside strings like following:

'This is a single quote: '''
'This is a single quote: \''
"This is a double quote: """
"This is a double quote: \""

Important: Database object names cannot be delimited by double quotes because the database
interface cannot determine the difference between a database object name and a quoted string!

For example, if the program executes the SQL statement:

WHERE "tabname"."colname" = "string"

replacing all double quotes by single quotes would produce:

WHERE 'tabname'.'colname' = 'string'

This would produce an error since 'tabname'.'colname' is not allowed by Netezza®.

Although double quotes are replaced automatically in SQL statements, you should use only single quotes
to enforce portability.

MATCHES and LIKE in SQL conditions

Informix® supports MATCHES and LIKE in SQL statements. Netezza® supports the LIKE statement as in
Informix®, plus the ~ operators that are similar but different from the Informix® MATCHES operator.

MATCHES requires * and ? wildcard characters, and LIKE uses the % and _ wildcards was equivalents.

(col MATCHES 'Smi*' AND col NOT MATCHES 'R?x')
(col LIKE 'Smi%' AND col NOT LIKE 'R_x')

MATCHES allows brackets to specify a set of matching characters at a given position:

(col MATCHES '[Pp]aris')
(col MATCHES '[0-9][a-z]*')

The Netezza® LIKE operator has no operator for [] brackets character ranges.

The Netezza® ~ operator expects regular expressions as follows: (col ~ 'a.*')

With Netezza® , columns defined as CHAR(N) are blank padded, and trailing blanks are significant in the
LIKE expressions. As result, with a CHAR(5) value such as 'abc ' (with 2 trailing blanks), the expression

SQL support | 590

(colname LIKE 'ab_') will not match. To workaround this behavior, you can do (RTRIM(colname)
LIKE 'pattern'). However, consider adding the condition AND (colname LIKE 'patten%') to
force the DB server to optimize the query of the column is indexed. The CONSTRUCT instruction uses this
technique when the entered criteria does not end with a * star wildcard.

Solution

The database driver is able to translate Informix® MATCHES expressions to LIKE expressions, when no
[] bracket character ranges are used in the MATCHES operand.

However, for maximum portability, consider replacing the MATCHES expressions to LIKE expressions in
all SQL statements of your programs.

Avoid using CHAR(N) types for variable length character data (such as name, address).

See also: MATCHES and LIKE operators on page 438.

Querying system catalog tables

As in Informix®, Netezza® provides system catalog tables (actually, system views). But the table names
and their structure are quite different.

Solution

No automatic conversion of Informix® system tables is provided by the database interface.

Syntax of UPDATE statements

Informix® allows a specific syntax for UPDATE statements:

UPDATE table SET (col-list) = (val-list)

or

UPDATE table SET table.* = myrecord.*

UPDATE table SET * = myrecord.*

Solution

Static UPDATE statements using this syntax are converted by the compiler to the standard form:

UPDATE table SET column = value [,...]

BDL programming
IBM® Netezza® related programming topics.
UPDATE limitations in Netezza

Netezza® has some limitations regarding the UPDATE statement:

• Like DELETE, an UPDATE statement locks the entire table.
• It is not possible to UPDATE distribution columns:

• Netezza® database tables get distributed across all of the nodes using the distribution column. You
can specify the distribution column(s) when you create the table. See Netezza® documentation for
more details.

• If you try to update a distribution column, you get error 46 "Attempt to UPDATE a distribution
column".

Solution

Review the program logic if the UPDATE statements in your programs use distribution columns, and keep
in mind that an UPDATE will lock the entire table.

SQL support | 591

Informix® specific SQL statements in BDL

The BDL compiler supports several Informix-specific SQL statements that have no meaning when using
Netezza®.

• CREATE DATABASE
• DROP DATABASE
• START DATABASE (SE only)
• ROLLFORWARD DATABASE
• SET [BUFFERED] LOG
• CREATE TABLE with special options (storage, lock mode, etc.)

Solution

Review your BDL source and review all SQL statements which are Informix-specific.

INSERT cursors

Informix® supports insert cursors. An "insert cursor" is a special BDL cursor declared with an INSERT
statement instead of a SELECT statement.

• When this type of cursor is open, you can use the PUT instruction to add rows and the FLUSH
instruction to insert the records into the database.

• For Informix® database with transactions, OPEN, PUT and FLUSH instructions must be executed within
a transaction.

Netezza® does not support insert cursors.

Solution

Insert cursors are emulated by the Netezza® database interface.

Cursors WITH HOLD

Informix® closes opened cursors automatically when a transaction ends, unless the WITH HOLD option is
used in the DECLARE instruction.

With Netezza®, cursors can be kept open when a transaction ends. However, cursors declared with a
SELECT FOR UPDATE are not supported with Netezza®.

Solution

Since WITH HOLD cursors are usually declared with SELECT FOR UPDATE and because Netezza® does
not support SELECT FOR UPDATE, you must review the program logic if you are using cursors declared
WITH HOLD.

SELECT FOR UPDATE

A lot of BDL programs use pessimistic locking in order to avoid several users editing the same rows at the
same time.

DECLARE cc CURSOR FOR
SELECT ... FROM tab WHERE ... FOR UPDATE
OPEN cc
FETCH cc <-- lock is acquired
...
CLOSE cc <-- lock is released

In both Informix® and Netezza®, locks are released when closing the cursor or when the transaction ends.

Netezza® does not support SELECT FOR UPDATE statements.

SQL support | 592

Solution

You must review the program logic if you use SELECT FOR UPDATE statements. Actually Netezza®

systems are designed for data warehouse applications, not for OLTP applications. In a DW context,
concurrent data access is not required or a priority.

UPDATE/DELETE WHERE CURRENT OF

Informix® allows positioned UPDATEs and DELETEs with the "WHERE CURRENT OF cursor" clause, if
the cursor has been DECLARED with a SELECT ... FOR UPDATE statement.

Netezza® servers do no support SELECT FOR UPDATE, and does not set locks. Thus, positioned
UPDATEs/DELETEs with the WHERE CURRENT OF<cursor> clause cannot be supported with Netezza®.

Solution

You must review the program logic and rewrite all positioned UPDATEs/DELETEs with a WHERE
condition based on primary keys or rowids.

The LOAD and UNLOAD instructions

Informix® provides two SQL instructions to export / import data from / into a database table: The UNLOAD
instruction copies rows from a database table into a text file and the LOAD instructions insert rows from a
text file into a database table.

Netezza® does not provide LOAD and UNLOAD instructions, but provides external tools like the nzload
utility.

Solution

LOAD and UNLOAD instructions are supported.

SQL Interruption

With Informix®, it is possible to interrupt a long running query if the SQL INTERRUPT ON option.

Netezza® supports SQL Interruption in a way similar to Informix®. However, when the statement is
interrupted, Netezza® rolls the transaction back and returns a "Transaction rolled back by user", SQL error
number 46.

Solution

The Netezza® database driver supports SQL interruption and converts the native SQL error 46 to the
Informix® error code -213.

Scrollable Cursors

The Genero programming language supports scrollable cursors.

Netezza® does support native scrollable cursors.

Solution

The Netezza® database driver emulates scrollable cursors by fetching rows in a temporary file.

See Scrollable cursors on page 422 for more details about scroll cursor emulation.

SQL adaptation guide for SQL SERVER 2005, 2008, 2012, 2014

Installation (Runtime Configuration)
Microsoft™ SQL Server related installation topics.
Install SQL SERVER and create a database - database configuration/design tasks

If you are tasked with installing and configuring the database, here is a list of steps to be taken:

SQL support | 593

1. Install the Microsoft™ SQL SERVER on your computer.

Important: Make sure that you select the correct collation when installing SQL Server:
The default collation will apply to the tempdb database and will also be used for
temporary tables, instead of inheriting the collation of the current database. If the default
server collation does not match the collation of the current database, you will experience
character set conflicts between permanent tables and temporary tables (SQL Server error
message 468).

2. Create a SQL SERVER database entity with the SQL SERVER Management Studio.

In the database properties:

a) Choose the right code page / collation to get a case-sensitive database; this cannot be changed
later.

Remember collation defines the character set for CHAR/VARCHAR columns, while NCHAR/
NVARCHAR columns are always storing UNICODE (UCS-2) characters. Informix® collation order is
codeset based for CHAR/VARCHAR/TEXT columns. If you want to get the same sort order with SQL
Server, you will need to use a binary collation such as Latin1_General_BIN.

b) Make sure the "ANSI NULL Default" option is true if you want to have the same default NULL
constraint as in Informix® (i.e. a column created without a NULL constraint will allow null values,
users must specify NOT NULL to deny nulls).

c) Make sure the "Quoted Identifiers Enabled" option is false to use database object names without
quotes as in Informix®.

3. Create and declare a database user dedicated to your application: the application administrator .

4. If you plan to use SERIAL emulation based on triggers using a registration table, create the
SERIALREG table and create the serial triggers for all tables using a SERIAL.

See SERIAL data types on page 606.

5. Create the application tables.

Convert Informix® data types to SQL SERVER data types. See Data type conversion table: Informix to
SQL Server on page 615. In order to make application tables visible to all users, make sure that the
tables are created with the 'dbo' owner.

Prepare the runtime environment - connecting to the database

1. Genero BDL provides several database drivers based on different ODBC clients. This list describes
each of them:

• For Windows™ platforms, use the SNC database driver based on SQL Native Client ODBC driver
(SQLNCLI*.DLL) for Microsoft™ SQL SERVER 2005 and higher. Make sure that the dbmsnc* driver
matches the SQNCLI*.DLL.

The SNC driver is supported starting from Genero 2.10.
• For Unix platforms, Genero supports the FTM driver is based on the FreeTDS ODBC client

(www.freetds.org).

This driver can be used with FreeTDS to connect from a UNIX™ platform to a Windows™ platform
running SQL SERVER.

You need at least FreeTDS version 0.83, recommended version is 0.95 to connect to recent SQL
Server versions such as 2014.

The FTM driver is supported starting from Genero 2.11.
• For Unix platforms, Genero supports the ESM driver is based on the EasySoft ODBC driver for SQL

Server (www.easysoft.com).

This driver can be used with EasySoft to connect from a UNIX™ platform to a Windows™ platform
running SQL SERVER.

You need at least EasySoft version 1.2.3.

http://www.freetds.org
http://www.easysoft.com

SQL support | 594

The ESM driver is supported starting from Genero 2.21.

2. Check that the Genero distribution package has installed the SQL SERVER database driver you need
(i.e. a "dbmsnc", "dbmftm" or "dbmesm" driver must exist in FGLDIR/dbdrivers.

3. An ODBC data source must be configured to allow the BDL program to establish connections to SQL
SERVER.

Make sure you select the correct ODBC driver (SNC = "SQL Native Client", FTM = "FreeTDS", ESM =
"EasySoft").

Important: When using the FTM (FreeTDS) or ESM (EasySoft) database driver, you have
to define the ODBCINI and ODBCINST environment variable to point to the odbc.ini and
odbcinst.ini files.

4. Install and configure the database client software:

a) When using the SNC database driver, you must have the "Microsoft™ SQL SERVER Native Client"
software installed on the computer running Genero applications.

Since the SNC driver is using ODBC32.DLL, there is no need to set the PATH environment variable
to a specific database client library path.

The database client locale is defined by the regional settings of the application server and must
match the locale used by the BDL application. Character set conversion (current code set <=> Wide-
Char) is done by the SNC ODI driver according to the LANG environment variable. If the LANG
environment variable is not defined, the application character set defaults to the ANSI code page
(ACP).

b) When using the FTM database driver, you must install FreeTDS (www.freetds.org).

Make sure the FreeTDS environment variables are properly set. Check for example FREETDS (the
path to the configuration file). See FreeTDS documentation for more details.

With the FTM driver, there is no need to install a driver manager like unixODBC: The FTM database
driver is linked directly with the libtdsodbc.so shared library. Verify the environment variable
defining the search path for that database client shared library (LD_LIBRARY_PATH or equivalent).

You must create the odbc.ini and odbcinst.ini files to defined the data source.

Do not forget to define the client character set for FreeTDS (client charset parameter in
freetds.conf or ClientCharset parameter in odbc.ini). You may need to link FreeTDS with the
libiconv library to support character set conversions.

Important: You must set the TDS protocol version according to the SQL Server version
(2005, 2008, etc), by setting the tds version parameter in freetds.conf or TDS_Version
in odbc.ini. For example, when using SQL Server 2005, you must use the TDS protocol
version 7.1. For SQL Server version 2008, 2012 and 2014, use TDS_Version=7.3.

See FreeTDS documentation for more details about installation and data source configuration in
ODBC files.

c) When using the ESM database driver, you must install EasySoft ODBC for SQL Server
(www.easysoft.com).

Make sure the EasySoft environment variables are properly set. Check for example
EASYSOFT_ROOT (the path to the installation directory). See FreeTDS documentation for more
details.

With the ESM driver, there is no need to install a driver manager like unixODBC: The ESM database
driver is linked directly with the libessqlsrv.so shared library. Verify the environment variable
defining the search path for that database client shared library (LD_LIBRARY_PATH or equivalent)

You must create the odbc.ini and odbcinst.ini files to defined the data source.

Do not forget to define the client character set for EasySoft with the Client_CSet parameter
in odbc.ini. The client character set is an iconv name and must match the locale of your Genero
application.

http://www.freetds.org
http://www.easysoft.com

SQL support | 595

When using CHAR/VARCHAR types in the database and when the database collation is
different from the client locale, you must also set the Server_CSet parameter to an iconv name
corresponding to the database collation. For example, if Client_CSet=BIG5 and the db collation is
Chinese_Taiwan_Stroke_BIN, you must set Server_CSet=BIG5HKSCS, otherwise invalid data
will be returned from the server.

You must also set the following DSN parameters:

AnsiNPW=Yes
Mars_Connection=No
QuotedId=No

See EasySoft documentation for more details about installation and data source configuration in
ODBC files.

5. On Windows™ platforms, BDL programs are executed in a CONSOLE environment, not a GUI
environment. CONSOLE and GUI environments may use different code pages on your system. Start
the "SQL SERVER Configuration Manager" to setup your client environment and make sure no wrong
character conversion occurs. See Microsoft™ SQL SERVER documentation for more details.

6. Set up the fglprofile entries for database connections.

a) Define the SQL Server database driver according to the database client used:

dbi.database.dbname.driver = { "dbmsnc" | "dbmesm" | "dbmftm" }

b) The "source" parameter defines the name of the ODBC source.

dbi.database.dbname.source = "test1"

c) With the SNC driver you might consider setting the snc.widechar FGLPROFILE parameter to
false if your database columns are defined with the CHAR/VARCHAR/TEXT types (by default
the driver is prepared to work with the "UNICODE" types NCHAR/NVARCHAR/NTEXT). See
CHARACTER data types on page 600 for more details.

dbi.database.dbname.snc.widechar = false

d) If required, define the serial emulation method to "trigseq", when the INSERT statements use all
columns of the table, including the serial column. For more details, see SERIAL data types on page
606.

dbi.database.dbname.ifxemul.datatype.serial.emulation = "trigseq"

Database concepts
Microsoft™ SQL Server related database concepts topics.
Database concepts

As in Informix®, an SQL SERVER engine can manage multiple database entities. When creating a
database object like a table, Microsoft™ SQL SERVER allows you to use the same object name in different
databases.

Data storage concepts

An attempt should be made to preserve as much of the storage information as possible when converting
from Informix® to Microsoft™ SQL SERVER. Most important storage decisions made for Informix®

database objects (like initial sizes and physical placement) can be reused in an SQL SERVER database.

Storage concepts are quite similar in Informix® and in Microsoft™ SQL SERVER, but the names are
different.

These table compares Informix® storage concepts to Microsoft™ SQL SERVER storage concepts:

SQL support | 596

Table 178: Physical units of storage

Informix® Microsoft™ SQL SERVER

The largest unit of physical disk space is a "chunk",
which can be allocated either as a cooked file (I/O
is controlled by the OS) or as raw device (= UNIX™

partition, I/O is controlled by the database engine).
A "dbspace" uses at least one "chunk" for storage.

You must add "chunks" to "dbspaces" in order to
increase the size of the logical unit of storage.

SQL SERVER uses "filegroups", based on
Windows NT™ operating system files and therefore
define the physical location of data.

A "page" is the smallest physical unit of disk
storage that the engine uses to read from and
writeto databases.

A "chunk" contains a certain number of "pages".

The size of a "page" must be equal to the operating
system's block size.

As in Informix®, SQL SERVER stores data in
"pages" with a size fixed at 2Kb in V6.5 and 8Kb in
V7 and later.

An "extent" consists of a collection of continuous
"pages" that the engine uses to allocate both initial
and subsequent storage space for database tables.

When creating a table, you can specify the first
extent size and the size of future extents with the
EXTENT SIZE and NEXT EXTENT options.

For a single table, "extents" can be located in
different "chunks" of the same "dbspace".

An "extent" is a specific number of 8 contiguous
pages, obtained in a single allocation.

Extents are allocated in the filegroup used by the
database.

Table 179: Logical units of storage

Informix® Microsoft™ SQL SERVER

A "table" is a logical unit of storage that contains
rows of data values.

Same concept as Informix®.

A "database" is a logical unit of storage that
contains table and index data. Each database also
contains a system catalog that tracks information
about database elements like tables, indexes,
stored procedures, integrity constraints and user
privileges.

Same concept as Informix®.

When creating a "database", you must specify
which "database devices" (V6.5) or "filegroup" (V7)
has to be used for physical storage.

Database tables are created in a specific
"dbspace", which defines a logical place to store
data.

If no dbspace is given when creating the table,
Informix® defaults to the current database dbspace.

Database tables are created in a database based
on "database devices" (V6.5) or a "filegroup" (V7),
which defines the physical storage.

The total disk space allocated for a table is the
"tblspace", which includes "pages" allocated for
data, indexes, blobs, tracking page usage within
table extents.

No equivalent.

SQL support | 597

Table 180: Other concepts relating to storage

Informix® Microsoft™ SQL SERVER

When initializing an Informix® engine, a "root
dbspace" is created to store information about all
databases, including storage information (chunks
used, other dbspaces, etc.).

SQL SERVER uses the "master" database to hold
system stored procedures, system messages,
SQL SERVER logins, current activity information,
configuration parameters of other databases.

The "physical log" is a set of continuous disk
pages where the engine stores "before-images" of
data that has been modified during processing.

The "logical log" is a set of "logical-log files"
used to record logical operations during on-line
processing. All transaction information is stored in
the logical log files if a database has been created
with transaction log.

Informix® combines "physical log" and "logical
log" information when doing fast recovery. Saved
"logical logs" can be used to restore a database
from tape.

Each database has its own "transaction log"
that records all changes to the database. The
"transaction log" is based on a "database
device" (V6.5) or "filegroup" (V7) which is specified
when creating the database.

SQL SERVER checks the "transaction logs" for
automatic recovery.

Data consistency and concurrency

Data consistency involves readers which want to access data currently modified by writers and
concurrency data access involves several writers accessing the same data for modification. Locking
granularity defines the amount of data concerned when a lock is set (row, page, table, ...).

Informix®

Informix® uses a locking mechanism to manage data consistency and concurrency. When a process
modifies data with UPDATE, INSERT or DELETE, an exclusive lock is set on the affected rows. The
lock is held until the end of the transaction. Statements performed outside a transaction are treated as
a transaction containing a single operation and therefore release the locks immediately after execution.
SELECT statements can set shared locks according to the isolation level . In case of locking conflicts (for
example, when two processes want to acquire an exclusive lock on the same row for modification or when
a writer is trying to modify data protected by a shared lock), the behavior of a process can be changed by
setting the lock wait mode .

Control:

• Isolation level: SET ISOLATION TO ...
• Lock wait mode: SET LOCK MODE TO ...
• Locking granularity: CREATE TABLE ... LOCK MODE {PAGE|ROW}
• Explicit locking: SELECT ... FOR UPDATE

Defaults:

• The default isolation level is READ COMMITTED.
• The default lock wait mode is NOT WAIT.
• The default locking granularity is per page.

SQL SERVER

As in Informix®, SQL SERVER uses locks to manage data consistency and concurrency. The database
manager sets exclusive locks on the modified rows and shared locks or update locks when data is
read, according to the isolation level . The locks are held until the end of the transaction. When multiple

SQL support | 598

processes want to access the same data, the latest processes must wait until the first finishes its
transaction or the lock timeout occurred. The locking strategy of SQL SERVER is row locking with possible
promotion to page or table locking. SQL SERVER dynamically determines the appropriate level at which to
place locks for each Transact-SQL statement.

Starting with SQL Server 2005, you can enhance concurrency by turning on snapshot isolation
level, to make SQL Server use a copy of the row when it is changed by a transaction. To turn this
feature on, you must set the database property ALLOW_SNAPSHOT_ISOLATION ON. Setting the
READ_COMMITTED_SNAPSHOT ON option allows access to versioned rows under the default READ
COMMITTED isolation level (otherwise, snapshot isolation must be specified by every SQL Session).

Control:

• Lock wait mode: SET LOCK_TIMEOUT <milliseconds> (returns error 1222 on time out).
• Isolation level: SET TRANSACTION ISOLATION LEVEL ...
• Locking granularity: Row, Page or Table level (Automatic - See Dynamic Locking).
• Explicit locking: SELECT ... FROM ... WITH (UPDLOCK) (See Locking Hints)

Defaults:

• The default isolation level is READ COMMITTED (readers cannot see uncommitted data).
• The default LOCK_TIMEOUT is -1 (indicates no timeout period, wait forever).

Solution

The SET ISOLATION TO ... in programs is converted to SET TRANSACTION ISOLATION LEVEL ...for
SQL Server. The next table shows the isolation level mappings done by the database driver:

Table 181: Isolation level mappings done by the Microsoft™ SQL Server database driver

SET ISOLATION instruction in program Native SQL command

SET ISOLATION TO DIRTY READ
SET TRANSACTION ISOLATION LEVEL READ
UNCOMMITTED

SET ISOLATION TO COMMITTED READ

[READ COMMITTED] [RETAIN UPDATE LOCKS]

SET TRANSACTION ISOLATION LEVEL READ
COMMITTED

SET ISOLATION TO CURSOR STABILITY
SET TRANSACTION ISOLATION LEVEL
REPEATABLE READ

SET ISOLATION TO REPEATABLE READ
SET TRANSACTION ISOLATION LEVEL
SERIALIZABLE

For portability, it is recommended that you work with Informix® in the read committed isolation level, to
make processes wait for each other (lock mode wait) and to create tables with the "lock mode row" option.

When using SET LOCK MODE ... in the programs, it will be converted to a SET LOCK_TIMEOUT
instruction for SQL SERVER:

Table 182: SET LOCK MODE as handled by the Microsoft™ SQL Server database driver

SET LOCK MODE instruction in program Native SQL command

SET LOCK MODE TO WAIT SET LOCK_TIMEOUT -1 (wait forever)

SET LOCK MODE TO WAIT seconds
SET LOCK_TIMEOUT seconds * 1000 (wait N
milliseconds)

SET LOCK MODE TO NOT WAIT SET LOCK_TIMEOUT 0 (do not wait)

SQL support | 599

See Informix® and SQL SERVER documentation for more details about data consistency, concurrency and
locking mechanisms.

Transactions handling

Informix® and Microsoft™ SQL SERVER handle transactions in a similar manner.

Informix® native mode (non ANSI):

• Transactions are started with BEGIN WORK.
• Transactions are validated with COMMIT WORK.
• Transactions are canceled with ROLLBACK WORK.
• Savepoints can be set with SAVEPOINT name [UNIQUE].
• Transactions can be rolled back to a savepoint with ROLLBACK [WORK] TO SAVEPOINT [name].
• Savepoints can be released with RELEASE SAVEPOINT name.
• Statements executed outside of a transaction are automatically committed.
• DDL statements can be executed (and canceled) in transactions.

Microsoft™ SQL SERVER supports named and nested transactions:

• Transactions are started with BEGIN TRANSACTION [name].
• Transactions are validated with COMMIT TRANSACTION [name].
• Transactions are canceled with ROLLBACK TRANSACTION [name].
• Savepoints can be placed with SAVE TRANSACTION name.
• Transactions can be rolled back to a savepoint with ROLLBACK TRANSACTION TO name.
• Savepoints can not be released.
• Statements executed outside of a transaction are automatically committed (autocommit mode). This

behavior can be changed with "SET IMPLICIT_TRANSACTION ON".
• DDL statements are not supported in transactions blocks.

Transactions in stored procedures: avoid using transactions in stored procedure to allow the client
applications to handle transactions, according to the transaction model.

Solution

Informix® transaction handling commands are automatically converted to Microsoft™ SQL SERVER
instructions to start, validate or cancel transactions.

Regarding the transaction control instructions, the BDL applications do not have to be modified in order to
work with Microsoft™ SQL SERVER.

Important: If you want to use savepoints, do not use the UNIQUE keyword in the savepoint
declaration, always specify the savepoint name in ROLLBACK TO SAVEPOINT, and do not drop
savepoints with RELEASE SAVEPOINT.

Database users

Until version 11.70.xC2, Informix® database users must be created at the operating system level and be
members of the 'informix' group. Starting with 11.70.xC2, Informix® supports database-only users with the
CREATE USER instruction, as most other db servers. Any database user must have sufficient privileges to
connect and use resources of the database; user rights are defined with the GRANT command.

Before a user can access an SQL SERVER database, the system administrator (SA) must add the
user's login to the SQL SERVER Login list and add a user name for that database. The user name is a
name that is assigned to a login ID for the purpose of allowing that user to access a specified database.
Database users are members of a user group; the default group is 'public'.

Microsoft™ SQL SERVER offers two authentication modes: The SQL SERVER authentication mode,
which requires a login name and a password, and the Windows NT™ authentication mode, which uses
the security mechanisms within Windows NT™ when validating login connections. With this mode, user

SQL support | 600

do not have to enter a login ID and password - their login information is taken directly from the network
connection.

Solution

Both SQL SERVER and Windows NT™ authentication methods can be used to allow BDL program users
to connect to Microsoft™ SQL SERVER and access a specific database.

If you don't specify the USER/USING clause in the CONNECT TO instruction, operating system
authentication takes place.

See SQL SERVER documentation for more details on database logins and users.

Setting privileges

Informix® and Microsoft™ SQL SERVER user privileges management are quite similar.

Microsoft™ SQL SERVER provides user groups to grant or revoke permissions to more than one user at
the same time.

Data dictionary
Microsoft™ SQL Server related data dictionary topics.
BOOLEAN data type

Informix® supports the BOOLEAN data type, which can store 't' or 'f' values. Genero BDL implements the
BOOLEAN data type in a different way: As in other programming languages, Genero BOOLEAN stores
integer values 1 or 0 (for TRUE or FALSE). The type was designed this way to assign the result of a
boolean expression to a BOOLEAN variable.

SQL SERVER provides the BIT data type to store boolean values.

Solution

The SQL SERVER database interfaces converts BOOLEAN type to BIT columns and stores 1 or 0 values
in the column.

CHARACTER data types

Informix® supports following character data types:

• CHAR(N) with N<= 32767 bytes
• VARCHAR(N[,M]) with N<=255 bytes
• NCHAR(N) with N<= 32767 bytes
• NVARCHAR(N[,M]) with N<=255 bytes
• LVARCHAR(N), without the 255 bytes limit (max size varies according to IDS version)

In Informix®, both CHAR/VARCHAR and NCHAR/NVARCHAR data types can be used to store single-
byte or multibyte encoded character strings. The only difference between CHAR/VARCHAR and NCHAR/
NVARCHAR is for sorting: N[VAR]CHAR types use the collation order, while [VAR]CHAR types use the
byte order. The character set used to store strings in CHAR/VARCHAR/NCHAR/NVARCHAR columns is
defined by the DB_LOCALE environment variable. The character set used by applications is defined by
the CLIENT_LOCALE environment variable. Informix® uses Byte Length Semantics (the size N that you
specify in [VAR]CHAR(N) is expressed in bytes, not characters as in some other databases)

SQL Server provides the following data types to store character data:

• CHAR(N) with N<= 8000 bytes (single or multibyte charset)
• VARCHAR(N) with N<= 8000 bytes (single or multibyte charset)
• VARCHAR(MAX) with a limit of 2^31-1 bytes (single or multibyte charset)
• NCHAR(N) with N<= 4000 (Unicode/UCS-2) characters
• NVARCHAR(N) with N<= 4000 (Unicode/UCS-2) characters
• NVARCHAR(MAX) with a limit of 2^31-1 bytes (Unicode/UCS-2)

SQL support | 601

To store large text data (LOBs), Microsoft™ SQL Server version 2005 introduced the VARCHAR(MAX)
type as a replacement for the old TEXT type.

The use of NCHAR, NVARCHAR character types is the same as CHAR, VARCHAR, TEXT respectively,
except:

• The encoding is UCS-2 (an UTF-16 subset).
• The length N in N[VAR]CHAR(N) defines a number of characters, not bytes.
• Since each character occupies 2 bytes, twice the space is needed to store the same strings as with

CHAR/VARCHAR.
• The maximum size of NCHAR and NVARCHAR column is 4000 characters, compared to 8000 chars for

CHAR/VARCHAR using a single-byte character set.
• Unicode string literals are specified with a leading N. For example: N'###'
• The LIKE statement behaves differently with CHAR and NCHAR columns when using the N prefix

before the search pattern.

Note that SQL Server uses Byte Length Semantics to define the size of CHAR/VARCHAR columns, while
NCHAR and NVARCHAR sizes are expressed in character units.

SQL Server defines the character encoding for CHAR and VARCHAR columns with the database collation.
The database collation can be specified when creating a new database. Character strings are always
stored in the UCS-2 encoding for NCHAR/NVARCHAR columns.

Automatic charset conversion is supported by SQL Server between the client application and the server.
The client charset is defined by the Windows™ operating system, in the language settings for non-Unicode
applications.

Solution

According to the character set used by your application, you must either use CHAR/VARCHAR or NCHAR/
NVARCHAR columns with SQL Server. If the charset is single-byte , you can use CHAR/VARCHAR
columns. If the charset set is multibyte or Unicode (i.e. UTF-8), you must use NCHAR/NVARCHAR
columns in SQL Server.

See also the section about Localization.

Make sure that the regional language settings for non-Unicode applications corresponds to the locale used
by Genero programs.

Check that your database tables does not use CHAR or VARCHAR types with a length exceeding the SQL
SERVER limit.

When using a multibyte character set (such as UTF-8), define database columns as NCHAR and
NVARCHAR, with the size in character units, and use character length semantics in BDL programs with
FGL_LENGTH_SEMANTICS=CHAR.

When extracting a database schema from a SQL Server database, the schema extractor uses the
size of the column in characters, not the octet length. If you have created a NCHAR(10 (characters))
column a in SQL Server database, the .sch file will get a size of 10, that will be interpreted according to
FGL_LENGTH_SEMANTICS as a number of bytes or characters.

Do not forget to properly define the database client character set, which must correspond to the runtime
system character set.

Using the SNC driver

The SNC driver can work in char or in wide-char mode. The character size mode can be controlled by the
following FGLPROFILE entry:

dbi.database.dbname.snc.widechar= { true | false }

By default the SNC database driver works in Wide Char mode (true).

SQL support | 602

Using SNC driver in char mode

The char mode can be used with applications defining character string columns with CHAR/VARCHAR/
TEXT types. It is not mandatory (i.e. the wide-char mode could be used), but it appears that SQL Server
behaves in different ways when wide-char bindings are used for CHAR/VARCHAR/TEXT columns.

When defining CHAR(n)/VARCHAR(n) columns in SQL Server, you specify n as a number of
bytes, therefore you should use byte length semantics (the default) in Genero programs, with
FGL_LENGTH_SEMANTICS=BYTE.

Using SNC driver in wide-char mode

NCHAR / NVARCHAR and NTEXT SQL Server column data types must be used to store Unicode data.
The wide-char mode should be used for applications using these types. And in such case, the runtime
system must use a UTF-8 locale, with character length semantics (FGL_LENGTH_SEMANTICS=CHAR).

In wide-char mode, all string literals of an SQL statement are automatically changed to get the N prefix.
Thus, you don't need to add the N prefix by hand in all of your programs. This solution makes your Genero
code portable to other databases.

Using the ESM driver

When using the ESM (EasySoft) database driver, string literals get the N prefix only if the current locale
(LANG / LC_ALL) defines a multibyte code set such as .big5 or .utf8. String literals are not touched if the
locale uses a single-byte character set.

When using the ESM (EasySoft) database driver, SQL Statements are prepared with SQLPrepare(),
by using the current character set. EasySoft takes in charge the conversion from the client charset to
UCS-2 before sending the SQL text to the server. ODBC SQL parameters with character string data are
bound (SQLBindParameter) with the C type SQL_C_CHAR and with the SQL type SQL_W[VAR]CHAR
(=UNICODE) type. As a result, the necessary character set conversion is taken in charge by EasySoft.
However, it is critical to declare the correct client character set in EasySoft configuration files. The
EasySoft client character set is defined by the "Client_CSet" parameter in odbc.ini.

Using the FTM driver

When using the FTM (FreeTDS) database driver, string literals get the N prefix only if the current locale
(LANG / LC_ALL) defines a multibyte code set such as .big5 or .utf8. String literals are not touched if the
locale uses a single-byte character set.

With the FTM (FreeTDS) database driver, SQL Statements are prepared with SQLPrepare(), by using
the current character set. FreeTDS takes in charge the conversion from the client charset to UCS-2
before sending the SQL text to the server. ODBC SQL parameters with character string data are
bound (SQLBindParameter) with the C type SQL_C_CHAR and with the SQL type SQL_W[VAR]CHAR
(=UNICODE) or with SQL_[VAR]CHAR, according to the current locale. The SQL_W[VAR]CHAR type
is used if the current locale is a multibyte encoding. When using a single-byte encoding, parameters are
bound with the SQL_[VAR]CHAR type. As a result, the necessary character set conversion is taken in
charge by FreeTDS and is optimized when using a single-byte character set.

Important: It is critical to declare the correct client character set in FreeTDS configuration files.

The FreeTDS client character set is defined with "ClientCharset" parameter in odbc.ini.

NUMERIC data types

Microsoft™ SQL SERVER offers numeric data types which are quite similar to Informix® numeric data
types. This table shows general conversion rules for numeric data types:

SQL support | 603

Table 183: Numeric data types (Informix® vs. Microsoft™ SQL Server)

Informix® Microsoft™ SQL SERVER

SMALLINT SMALLINT

INTEGER (synonym: INT) INTEGER (synonym: INT)

BIGINT BIGINT

INT8 BIGINT

DECIMAL[(p[,s])] (synonyms: DEC, NUMERIC)

DECIMAL(p,s) defines a fixed point decimal where
p is the total number of significant digits and s the
number of digits that fall on the right of the decimal
point.

DECIMAL(p) defines a floating point decimal where
p is the total number of significant digits.

The precision p can be from 1 to 32.

DECIMAL is treated as DECIMAL(16).

DECIMAL[(p[,s)] (synonyms: DEC, NUMERIC)

DECIMAL[(p[,s])] defines a fixed point decimal
where p is the total number of significant digits and
s the number of digits that fall on the right of the
decimal point. The maximum precision is 38.

Without any decimal storage specification, the
precision defaults to 18 and the scale defaults to
zero:

• DECIMAL in SQL SERVER = DECIMAL(18,0) in
Informix®

• DECIMAL(p) in SQL SERVER = DECIMAL(p,0)
in Informix®

MONEY[(p[,s])

SQL SERVER provides the MONEY and
SMALLMONEY data types, but the currency
symbol handling is quite different. Therefore,
Informix® MONEY columns should be implemented
as DECIMAL columns in SQL SERVER.

SMALLFLOAT (synonyms: REAL) REAL

FLOAT[(n)] (synonyms: DOUBLE PRECISION)

The precision (n) is ignored.

FLOAT(n) (synonyms: DOUBLE PRECISION)

Where n must be from 1 to 15.

Solutions

In BDL programs

When creating tables from BDL programs, the database interface automatically converts Informix® numeric
data types to corresponding Microsoft™ SQL SERVER data types.

Important: There is no SQL Server equivalent for the Informix® DECIMAL(p) floating point decimal
(i.e. without a scale). If your application is using such data types, you must review the database
schema in order to use SQL Server compatible types. To workaround the SQL Server limitation,
the SQL Server database drivers convert DECIMAL(p) types to a DECIMAL(2*p, p), to store all
possible numbers an Informix® DECIMAL(p) can store. However, the original Informix® precision
cannot exceed 19, since SQL Server maximum DECIMAL precision is 38(2*19). If the original
precision is bigger as 19, a CREATE TABLE statement executed from a Genero program will fail
with an SQL Server error 2750.

In database creation scripts

• SMALLINT, INTEGER and BIGINT columns do not have to use another data type in SQL SERVER.
• For DECIMALs, check the precision limit. Always use a precision and a scale.

SQL support | 604

• Convert MONEY columns to DECIMAL(p,s) columns. Always use a precision and a scale.
• Convert SMALLFLOAT columns to REAL columns.
• Since FLOAT precision is ignored in Informix®, convert this data type to FLOAT(15).

DATE and DATETIME data types

Informix® provides two data types to store dates and time information:

• DATE = for year, month and day storage.
• DATETIME = for year to fraction(1-5) storage.

Microsoft™ SQL SERVER provides two data type to store dates:

• DATETIME = for year, month, day, hour, min, second, fraction(3) storage (from January 1, 1753
through December 31, 9999). Values are rounded to increments of .000, .003, or .007 seconds.

• SMALLDATETIME = for year, month, day, hour, minutes storage (from January 1, 1900, through June
6, 2079). Values with 29.998 seconds or lower are rounded down to the nearest minute; values with
29.999 seconds or higher are rounded up to the nearest minute.

Starting with Microsoft™ SQL SERVER 2008, following new date data types are available:

• DATE = for year, month, day storage as Informix® DATEs.
• TIME(n) = for hour, minute, second and fraction(7) storage. Here n defines the precision of fractional

seconds.
• DATETIME2(n) = for year, month, day, hour, minute, second and fraction(7) storage. Here n defines the

precision of fractional seconds.
• DATETIMEOFFSET(n) = for year, month, day, hour, minute, second, fraction(7) and time zone

information storage. Here n defines the precision of fractional seconds.

String representing date time information

Informix® is able to convert quoted strings to DATE / DATETIME data if the string contents matches
environment parameters (i.e. DBDATE, GL_DATETIME). As in Informix®, Microsoft™ SQL SERVER can
convert quoted strings to DATETIME data. The CONVERT() SQL function allows you to convert strings to
dates.

Date time arithmetic

• Informix® supports date arithmetic on DATE and DATETIME values. The result of an arithmetic
expression involving dates/times is a number of days when only DATEs are used and an INTERVAL
value if a DATETIME is used in the expression.

• Informix® automatically converts an integer to a date when the integer is used to set a value of a date
column. Microsoft™ SQL SERVER does not support this automatic conversion.

• Complex DATETIME expressions (involving INTERVAL values for example) are Informix® specific and
have no equivalent in Microsoft™ SQL SERVER.

• Microsoft™ SQL SERVER does not allow direct arithmetic operations on datetimes; the date handling
SQL functions must be used instead (DATEADD & DATEDIFF).

• The SQL SERVER provides equivalent functions for YEAR(), MONTH() and DAY(). Be careful with the
DAY(n) function on SQL SERVER because it begins from January 1, 1900 while Informix® begins from
December 31, 1899.

Table 184: Select first day example (Informix® vs. Microsoft™ SQL Server)

Informix® Microsoft™ SQL SERVER

SELECT day(0), month(0), year(0)
 FROM systables WHERE tabid=1;
------ ------ ------

SELECT day(0), month(0), year(0)
----------- ----------- -----------

SQL support | 605

Informix® Microsoft™ SQL SERVER

 31 12 1899 1 1 1900

• The SQL SERVER equivalent for WEEKDAY() is the DATEPART(dw,<date>) function. The weekday
date part depends on the value set by SET DATEFIRST n, which sets the first day of the week
(1=Monday ... 7=Sunday (default)).

• SQL SERVER uses a different basis for the day of the week. In SQL SERVER, Sunday is day 7 and
Monday is day 1 while Informix® defines Sunday as the day 0 (zero) and Monday as 1.

Solution

The SQL SERVER database drivers will automatically map Informix® date/time types to native SQL
SERVER type, according the server version. Conversions are described in this table:

Table 185: Date/time mapping between Informix® and Microsoft™ SQL Server

Informix® date/time type
Microsoft™ SQL SERVER date/
time type before SQL SERVER
2008

Microsoft™ SQL SERVER date/
time type since SQL SERVER
2008

DATE DATETIME DATE

DATETIME HOUR TO SECOND
DATETIME (filled with
1900-01-01)

TIME(0)

DATETIME HOUR TO
FRACTION(n)

DATETIME (filled with
1900-01-01)

TIME(n)

DATETIME YEAR TO SECOND DATETIME DATETIME2(0)

Any other sort of DATETIME type
DATETIME (filled with
1900-01-01)

DATETIME2(n)

With SQL SERVER 2005 and lower, Informix® DATETIME with any precision from YEAR to FRACTION(3)
is stored in SQL SERVER DATETIME columns.

For heterogeneous DATETIME types like DATETIME HOUR TO MINUTE, the database interface fills
missing date or time parts to 1900-01-01 00:00:00.0. For example, when using a DATETIME HOUR TO
MINUTE with the value of "11:45", the SQL SERVER datetime value will be "1900-01-01 11:45:00.0".

Important:

• SQL SERVER SMALLDATETIME can store dates from January 1, 1900, through June 6, 2079.
Therefore, we do not recommend using this data type.

• With SQL SERVER 2005 and lower, the fractional second part of a SQL SERVER DATETIME
has a precision of 3 digits while Informix® has a precision up to 5 digits. Do not try to insert
a datetime value in a SQL SERVER DATETIME with a precision more than 3 digits or a
conversion error could occur. You can use the MS SUBSTRING() function to truncate the
fraction part of the Informix® datetimes or another BDL solution. The fraction part of a SQL
SERVER DATETIME is an approximate value. For example, when you insert a datetime value
with a fraction of 111, the database actually stores 110. This may cause problems because
Informix® DATETIMEs with a fraction part are exact values with a precision up to 5 digits.
Starting with SQL SERVER 2008, the DATETIME2 native type will be used. This new type can
store fraction of seconds with a precision of 7 digits, so Informix® DATETIME values can be
stored without precision lost.

• When migrating to SQL SERVER 2008, you must pay attention if the database has DATETIME
columns used to store Informix® DATETIME HOUR TO SECOND or DATETIME HOUR TO
FRACTION(n) types: Before version 2008, those types were stored in SQL SERVER DATETIME

SQL support | 606

columns (filling missing date part with 1900-01-01). The SNC database driver for SQL SERVER
2008 maps now DATETIME HOUR TO SECOND / FRACTION(n) to a TIME data type, which is
not compatible with an SQL SERVER DATETIME type. To solve this problem, SQL SERVER
DATETIME columns used to store DATETIME HOUR TO SECOND/FRACTION(n) must be
converted to TIME columns (ALTER TABLE).

• When fetching a TIME or DATETIME2 with a precision that is greater as 5 (the DATETIME
precision limit), the database interface will allocate a buffer of VARCHAR(16) for the TIME and
VARCHAR(27) for the DATETIME2 column. As a result, you can fetch such data into a CHAR or
VARCHAR variable.

• Review the program logic if you are using the Informix® WEEKDAY() function because SQL
SERVER uses a different basis for the days numbers (Monday = 1).

• Use the SQL SERVER's GETDATE() function to get the system current date.

See also Date and time in SQL statements on page 432 for good SQL programming practices.

INTERVAL data type

Informix's INTERVAL data type stores a value that represents a span of time. INTERVAL types are divided
into two classes: year-month intervals and day-time intervals.

SQL SERVER does not provide a data type corresponding to the Informix® INTERVAL data type.

Solution

The INTERVAL data type is not well supported because the database server has no equivalent native data
type. However, you can store into and retrieve from CHAR columns BDL INTERVAL values.

SERIAL data types

Informix® supports the SERIAL, SERIAL8 and BIGSERIAL data types to produce automatic integer
sequences. SERIAL is based on INTEGER (32 bit), while SERIAL8 and BIGSERIAL can store 64 bit
integers:

• The table column must be of type SERIAL, SERIAL8 or BIGSERIAL.
• To generate a new serial, no value or a zero value is specified in the INSERT statement:

INSERT INTO tab1 (c) VALUES ('aa')
INSERT INTO tab1 (k, c) VALUES (0, 'aa')

• After INSERT, the new SERIAL value is provided in SQLCA.SQLERRD[2], while the new SERIAL8 and
BIGSERIAL value must be fetched with a SELECT dbinfo('bigserial') query.

Informix® allows you to insert rows with a value different from zero for a serial column. Using an explicit
value will automatically increment the internal serial counter, to avoid conflicts with future INSERTs that are
using a zero value:

CREATE TABLE tab (k SERIAL); -- internal counter = 0
INSERT INTO tab VALUES (0); -- internal counter = 1
INSERT INTO tab VALUES (10); -- internal counter = 10
INSERT INTO tab VALUES (0); -- internal counter = 11
DELETE FROM tab; -- internal counter = 11
INSERT INTO tab VALUES (0); -- internal counter = 12

Microsoft™ SQL SERVER IDENTITY columns:

• When creating a table, the IDENTITY keyword must be specified after the column data type:

CREATE TABLE tab1 (k integer identity, c char(10))

• You can specify a start value and an increment with "identity(start,incr)".

CREATE TABLE tab1 (k integer identity(100,2), ...

• A new number is automatically created when inserting a new row:

SQL support | 607

INSERT INTO tab1 (c) VALUES ('aaa')

• To get the last generated number, Microsoft™ SQL SERVER provides following function:

SELECT SCOPE_IDENTITY()

The @@IDENTITY global T-SQL variable is not recommended, as it is scope-less.
• To put a specific value into a IDENTITY column, the SET command must be used:

SET IDENTITY_INSERT tab1 ON
INSERT INTO tab1 (k, c) VALUES (100, 'aaa')
SET IDENTITY_INSERT tab1 OFF

Informix® SERIALs and MS SQL SERVER IDENTITY columns are quite similar; the main difference is that
MS SQL SERVER does not allow you to use the zero value for the identity column when inserting a new
row.

Starting with version 2012, Microsoft™ SQL SERVER supports sequences:

-- To create a sequence object:
CREATE SEQUENCE myseq START WITH 100 INCREMENT BY 1;

-- To get a new sequence value:
SELECT NEXT VALUE FOR myseq;

-- To find the current sequence value (last generated)
SELECT convert(bigint, current_value) FROM sys.sequences WHERE name =
 'myseq';

-- To reset the sequence with a new start number:
ALTER SEQUENCE myseq START WITH 100;

Solution

To emulation Informix® serials with SQL SERVER, you can use three different solutions:

1. Native SQL SERVER IDENTITY columns.
2. Insert triggers based on sequences (requires SQL SERVER 2012 and +).
3. Insert triggers based on the SERIALREG table (for SQL SERVER prior to 2012).

The method used to emulate SERIAL types is defined by the ifxemul.datatype.serial.emulation
FGLPROFILE parameter:

dbi.database.dbname.ifxemul.datatype.serial.emulation =
{"native"|"trigseq"|"regtable"}

1. native: uses IDENTITY columns.
2. trigseq: uses insert triggers with SEQUENCEs.
3. regtable: uses insert triggers with the SERIALREG table.

The default emulation technique is "native".

This entry must be used in conjonction with:

dbi.database.dbname.ifxemul.datatype.serial = {true|false}

If the datatype.serial entry is set to false, the emulation method is ignored.

The native IDENTITY-based solution is faster, but does not allow explicit serial value specification in
insert statements; the others solution are slower but allow explicit serial value specification in INSERT
statements.

SQL support | 608

Important: The trigger-based solutions are provided to simplify the conversion from Informix,
but are slower as the solution using IDENTITY columns. To get best performances, we strongly
recommend that you use native IDENTITY columns instead of triggers.

1. Using the native serial emulation

Make sure that the following FGLPROFILE entry is not defined, in order to use the default "native"
emulation:

dbi.database.dbname.ifxemul.datatype.serial.emulation ...

In database creation scripts, all SERIAL[(n)] data types must be converted by hand to INTEGER
IDENTITY[(n,1)] data types, while BIGSERIAL[(n)] data types must be converted by hand to BIGINT
IDENTITY[(n,1)] data types.

Tables created from the BDL programs can use the SERIAL data type: When a BDL program executes
a CREATE [TEMP] TABLE with a SERIAL column, the database interface automatically converts the
"SERIAL[(n)]" data type to "INTEGER IDENTITY[(n,1)]".

In BDL, the new generated SERIAL value is available from the SQLCA.SQLERRD[2] variable. This
is supported by the database interface which performs a "SELECT SCOPE_IDENTITY()". However,
SQLCA.SQLERRD[2] is defined as an INTEGER, it cannot hold values from BIGINT identity columns.
If you are using BIGINT IDENTITY columns, you must retrieve the last generated serial with the
SCOPE_IDENTITY() SQL function.

By default (see SET IDENTITY_INSERT), MS SQL SERVER does not allow you to specify the IDENTITY
column in INSERT statements; You must convert all INSERT statements to remove the identity column
from the list.

For example, the following statement:

INSERT INTO tab (col1,col2) VALUES (0, p_value)

must be converted to:

INSERT INTO tab (col2) VALUES (p_value)

Static SQL INSERT using records defined from the schema file (DEFINE rec LIKE tab.*) must also be
reviewed:

INSERT INTO tab VALUES (rec.*) -- will use the serial column

must be converted to:

INSERT INTO tab VALUES rec.* -- without braces, serial column is removed

Since 2.10.06, SELECT * FROM table INTO TEMP with original table having an IDENTITY column is
supported: The database driver converts the Informix® SELECT INTO TEMP to the following sequence of
statements:

1. SELECT selection-items INTO #table FROM ... WHERE 1=2

2. SET IDENTITY_ INSERT #table ON

3. INSERT INTO #table (column-list) SELECT original select clauses

4. SET IDENTITY_ INSERT #table OFF

See also temporary tables.

2. Using the trigseq serial emulation (SQL SERVER 2012 and +)

In order to use the serial emulation based on triggers and sequences, make sure that all database users
creating tables in program have permissions to create/drop sequences and triggers.

SQL support | 609

Define the FGLPROFILE entry to enable "trigseq" serial emulation:

dbi.database.dbname.ifxemul.datatype.serial.emulation = "trigseq"

In database creation scripts, all SERIAL[(n)] data types must be converted to INTEGER data types,
BIGSERIAL must be converted to BIGINT and you must create one trigger for each table. To know how to
write those triggers, you can create a small Genero program that creates a table with a SERIAL column.
Set the FGLSQLDEBUG environment variable and run the program. The debug output will show you the
native trigger creation command using a sequence.

Tables created from the BDL programs can use the SERIAL data type. When a BDL program executes
a CREATE [TEMP] TABLE with a SERIAL column, the database interface automatically converts the
"SERIAL[(n)]" data type to "INTEGER" and creates the insert triggers. When using BIGSERIAL[(n)], the
column is converted to a BIGINT.

Important:

• SQL SERVER does not allow you to create triggers on temporary tables. Therefore, you cannot
create temp tables with a SERIAL column when using this solution.

• SELECT ... INTO TEMP statements using a table created with a SERIAL column do not
automatically create the SERIAL triggers in the temporary table. The type of the column in the
new table is INTEGER. Similarly, a BIGSERIAL column becomes BIGINT.

• When a table is dropped, all associated triggers are also dropped.
• INSERT statements using NULL for the SERIAL column will produce a new serial value, instead

of using NULL:

INSERT INTO tab (col1, col2) VALUES (NULL, 'data')

This behavior is mandatory in order to support INSERT statements which do not use the serial
column:

INSERT INTO tab (col2) VALUES ('data')

Check if your application uses tables with a SERIAL column that can contain a NULL value.

3. Using the regtable serial emulation (SQL SERVER versions prior to 2012)

Note: This solution is supported for SQL SERVER versions prior to 2012, if your server is a SQL
SERVER 2012 or +, consider using the "trigseq" emulation instead.

In order to use the serial emulation based on triggers and the SERIALREG table, make sure that all
database users creating tables in program have permissions to create/drop triggers.

Then, prepare the database and create the SERIALREG table as follows:

CREATE TABLE serialreg (
 tablename VARCHAR(50) NOT NULL,
 lastserial BIGINT NOT NULL,
 PRIMARY KEY (tablename)
)

The SERIALREG table and columns have to be created with lower case names, since the SQL SERVER
database is created with case sensitive names, because triggers are using this table in lower case.

Define the FGLPROFILE entry to enable "regtable" serial emulation:

dbi.database.dbname.ifxemul.datatype.serial.emulation = "regtable"

In database creation scripts, all SERIAL[(n)] data types must be converted to INTEGER data types,
BIGSERIAL must be converted to BIGINT and you must create one trigger for each table. To know how to
write those triggers, you can create a small Genero program that creates a table with a SERIAL column.

SQL support | 610

Set the FGLSQLDEBUG environment variable and run the program. The debug output will show you the
native trigger creation command using the SERIALREG table.

Tables created from the BDL programs can use the SERIAL data type. When a BDL program executes
a CREATE [TEMP] TABLE with a SERIAL column, the database interface automatically converts the
"SERIAL[(n)]" data type to "INTEGER" and creates the insert triggers. When using BIGSERIAL[(n)], the
column is converted to a BIGINT.

Important:

• The serial production is based on the SERIALREG table which registers the last generated
number for each table. If you delete rows of this table, sequences will restart at 1 and you will
get unexpected data.

• SQL SERVER does not allow you to create triggers on temporary tables. Therefore, you cannot
create temp tables with a SERIAL column when using this solution.

• SELECT ... INTO TEMP statements using a table created with a SERIAL column do not
automatically create the SERIAL triggers in the temporary table. The type of the column in the
new table is INTEGER. Similarly, a BIGSERIAL column becomes BIGINT.

• When a table is dropped, all associated triggers are also dropped.
• INSERT statements using NULL for the SERIAL column will produce a new serial value, instead

of using NULL:

INSERT INTO tab (col1,col2) VALUES (NULL,'data')

This behavior is mandatory in order to support INSERT statements which do not use the serial
column:

INSERT INTO tab (col2) VALUES ('data')

Check if your application uses tables with a SERIAL column that can contain a NULL value.

SQL Server UNIQUEIDENTIFIER data type

SQL Server supports a special type named UNIQUEIDENTIFIER, which can be used to store "Globally
Unique Identifiers" (GUIDs). UNIQUEIDENTIFIER values can be generated with the NEWID() function.
When creating a table, you typically define a UNIQUEIDENTIFIER column with a DEFAULT clause where
the value is produced from a NEWID() call:

CREATE TABLE mytab (k INT, id UNIQUEIDENTIFIER DEFAULT NEWID(), c
 VARCHAR(10))

The UNIQUEIDENTIFIER type is based on the BINARY(16) SQL Server type. The Genero language
does not have an equivalent type for BINARY(16). However, BINARY values can be represented as
hexadecimal strings in CHAR or VARCHAR variables.

A UNIQUEIDENTIFIER value is usually represented as a GUID identifier, with the following hexadecimal
format:

XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX (where X can be 0-9, A-F)

You typically fetch UNIQUEIDENTIFIER data into a CHAR(36) Genero variable. The resulting value will be
expressed in hexadecimal string using the format. You can then reuse that value in an SQL statement, but
you have to convert the CHAR(36) hexadecimal string value back to a UNIQUEIDENTIFIER value with the
CONVERT() SQL Server function, as shown in this example:

DEFINE pi CHAR(36)
CREATE TABLE mytab (k INT, i UNIQUEIDENTIFIER DEFAULT NEWID(), c
 VARCHAR(10))
INSERT INTO mytab (k, c) VALUES (1, 'aaa')
SELECT i INTO pi FROM mytab WHERE k = 1
UPDATE mytab SET c = 'xxx' WHERE i = CONVERT(UNIQUEIDENTIFIER, pi)

SQL support | 611

When extracting a database schema, UNIQUEIDENTIFIER columns can be clearly distinguished
from BINARY(N) columns. The fgldbsch tool will produce a CHAR(36) type code in the .sch file for
UNIQUEIDENTIFIER columns.

You can also exclude the UNIQUEIDENTIFIER columns from the table definition in the schema file, by
using the x character at the appropriate position of the string passed with the -cv data type conversion
option of fgldbsch.

SQL Server ROWVERSION data type

SQL Server provides a special type named ROWVERSION, to stamp row modifications. The
ROWVERSION data type replaces the old TIMESTAMP column definition. When you define a column with
the ROWVERSION, SQL Server will automatically increment the version column when the row is modified.
ROWVERSION is just an incrementing number, it does not preserve date or time information. It be used to
control concurrent access to the same rows.

The ROWVERSION type is based on the BINARY(8) SQL Server type. The Genero language does not
have an equivalent type for BINARY(8). Therefore, you must fetch ROWVERSION data into a CHAR(16)
variable. The resulting value will be expressed in hexadecimal. You can then reuse that value in an
UPDATE statement to check that the row was not modified by another process, but you have to convert
the CHAR(16) hexadecimal value back to a BINARY(8) value with the CONVERT() SQL Server function,
as shown in this example:

DEFINE pv CHAR(16)
CREATE TABLE mytab (k INT, v ROWVERSION, c VARCHAR(10))
INSERT INTO mytab VALUES (1, NULL, 'aaa')
SELECT v INTO pv FROM mytab WHERE k = 1
UPDATE mytab SET c = 'xxx' WHERE k = 1 AND v =CONVERT(BINARY(8), pv, 2)

With SQL Server 2005, the CONVERT() function does not properly transform the hexadecimal string to a
binary value. Therefore, you should only use ROWVERSION as SQL parameter starting with SQL Server
2008. ROWVERSION values can however be fetched with SQL Server versions prior to 2008, for example
if you have to define record variables based on the table schema, including the ROWVERSION column.

Since ROWVERSION is a synonym for BINARY(8), ROWVERSION columns cannot be clearly identified in
ODBC. Therefore, the following conversion rule applies when fetching data from the server:

• If the column is defined as BINARY(N), with N<=128, the data will be fetched as a CHAR(N*2), as an
hexadecimal string.

• If the column is defined as BINARY(N), with N>128, the data will be fetched as a BYTE, as a regular
binary value.

When extracting a database schema, ROWVERSION columns are identified as TIMESTAMP columns and
can be clearly distinguished from BINARY(N) columns. The fgldbsch tool will produce a CHAR(16)type
code in the .sch file for ROWVERSION or TIMESTAMP columns.

ROWIDs

When creating a table, Informix® automatically adds a "ROWID" integer column (applies to non-fragmented
tables only). The ROWID column is auto-filled with a unique number and can be used like a primary key to
access a given row.

Microsoft™ SQL SERVER tables have no ROWIDs.

Solution

If the BDL application uses ROWIDs, the program logic should be reviewed in order to use the real primary
keys (usually, serials which can be supported).

However, if your existing Informix® application depends on using ROWID values, you can use the
IDENTITY property of the DECIMAL, INT, NUMERIC, SMALLINT, BIGINT, or TINYINT data types, to
simulate this functionality.

SQL support | 612

All references to SQLCA.SQLERRD[6] must be removed because this variable will not hold the ROWID of
the last INSERTed or UPDATEd row when using the Microsoft™ SQL SERVER interface.

Case sensitivity

In Informix®, database object names like table and column names are not case sensitive:

CREATE TABLE Customer (Custno INTEGER, ...)
SELECT CustNo FROM cuSTomer ...

In SQL SERVER, database object names and character data are case-insensitive by default:

CREATE TABLE Customer (Custno INTEGER, CustName CHAR(20))
INSERT INTO CUSTOMER VALUES (1, 'TECHNOSOFT')
SELECT CustNo FROM cuSTomer WHERE custname = 'techNOSoft'

The installation program of SQL SERVER allows you to customize the sort order. The sort order specifies
the rules used by SQL SERVER to collate, compare, and present character data. It also specifies
whether SQL SERVER is case-sensitive.

Genero compilers convert table and column names to lower case. For example, when writing following
static SQL statement:

SELECT COUNT(*) FROM CUSTOMER WHERE CUSTNAME LIKE 'S%'

The SQL text stored in the pcode module will be:

SELECT COUNT(*) FROM customer WHERE custname LIKE 'S%'

Solution

Select the case-sensitive sort order when installing SQL SERVER to make queries case-sensitive.

Define the database tables and columns in lower case only, because Genero compilers convert them to
lower case.

Large OBject (LOB) types

IBM® Informix® and Genero support the TEXT and BYTE types to store large objects: TEXT is used to
store large text data, while BYTE is used to store large binary data like images or sound.

Microsoft™ SQL SERVER 2005 and higher provides the VARCHAR(MAX), NVARCHAR(MAX) and
VARBINARY(MAX) data types to store large object data. The text, ntext and image data types still exist,
but are considered as obsolete and will be removed in a future version.

In SQL Server, the VARCHAR(MAX), NVARCHAR(MAX) and VARBINARY(MAX) types have a limit of 2
gigabytes (2^31 -1 actually). The old text, ntext and image types have the same limit.

Solution

In Genero programs connecting to SQL SERVER, the TEXT and BYTE data types of DDL statements such
as CREATE TABLE are respectively converted to VARCHAR(MAX) and VARBINARY(MAX) types.

SQL SERVER database drivers make the appropriate bindings to use TEXT and BYTE Genero types as
SQL parameters and fetch buffers, and can be used for SQL SERVER text, image or VARCHAR(MAX),
NVARCHAR(MAX) and VARBINARY(MAX) columns.

Genero TEXT/BYTE program variables and the SQL SERVER large object types have the same a limit of
2 gigabytes.

Note: When using a stored procedure that has SET/IF statements and produces a result set with
LOBs, the LOB columns must appear at the end of the SELECT list. If LOB columns are followed by

SQL support | 613

other columns with regular types, the fetching rows will fail. Using SET NOCOUNT ON in the stored
procedure does not help, because the cursor type is changed from a server cursor to a default
result set cursor.

The ALTER TABLE instruction

Informix® and MS SQL SERVER use different implementations of the ALTER TABLE instruction. For
example, Informix® allows you to use multiple ADD clauses separated by comma. This is not supported by
SQL SERVER:

Informix®:

ALTER TABLE customer ADD(col1 INTEGER), ADD(col2 CHAR(20))

SQL SERVER:

ALTER TABLE customer ADD col1 INTEGER, col2 CHAR(20)

Solution

No automatic conversion is done by the database interface. There is even no real standard for this
instruction (that is, no common syntax for all database servers). Read the SQL documentation and review
the SQL scripts or the BDL programs in order to use the database server-specific syntax for ALTER
TABLE.

Constraints

Constraint naming syntax

Both Informix® and Microsoft™ SQL SERVER support primary key, unique, foreign key, default and check
constraints. But the constraint naming syntax is different: SQL SERVER expects the "CONSTRAINT"
keyword before the constraint specification and Informix® expects it after.

Table 186: UNIQUE constraint example (Informix® vs. Microsoft™ SQL Server)

Informix® Microsoft™ SQL SERVER

CREATE TABLE emp(
 ...
 emp_code CHAR(10) UNIQUE
 [CONSTRAINT pk_emp],
 ...

CREATE TABLE emp (
 ...
 emp_code CHAR(10)
 [CONSTRAINT pk_emp] UNIQUE,
 ...

Important: SQL SERVER does not produce an error when using the Informix® syntax of constraint
naming.

The NULL / NOT NULL constraint

Note: Microsoft™ SQL SERVER creates columns as NOT NULL by default, when no NULL
constraint is specified (colname datatype {NULL | NOT NULL}). A special option is provided
to invert this behavior: ANSI_NULL_DFLT_ON. This option can be enabled with the SET command,
or in the database options of SQL SERVER Management Studio.

SQL support | 614

Solutions

Constraint naming syntax

The database interface does not convert constraint naming expressions when creating tables from BDL
programs. Review the database creation scripts to adapt the constraint naming clauses for Microsoft™ SQL
SERVER.

The NULL / NOT NULL constraint

Before using a database, you must check the "ANSI NULL Default" option in the database properties if you
want to have the same default NULL constraint as in Informix® databases.

Triggers

Informix® and Microsoft™ SQL SERVER provide triggers with similar features, but the programming
languages are totally different.

Microsoft™ SQL SERVER does not support "BEFORE" triggers.

Microsoft™ SQL SERVER does not support row-level triggers.

Solution

Informix® triggers must be converted to Microsoft™ SQL SERVER triggers "by hand".

Important: To ensure that SQL SERVER generates only necessary result sets in triggers, use the
SET NOCOUNT ON at the beginning of your triggers. See SQL SERVER documentation for more
details about SET NOCOUNT ON.

Stored procedures

Both Informix® and Microsoft™ SQL SERVER support stored procedures, but the programming languages
are totally different.

Solution

Informix® stored procedures must be converted to Microsoft™ SQL SERVER "by hand".

See SQL Programming for more details about executing stored procedures with SQL SERVER.

Name resolution of SQL objects

Informix® uses the following form to identify an SQL object:

[database[@dbservername]:][{owner|"owner"}.]identifier

With Microsoft™ SQL SERVER, an object name takes the following form:

[[database.]owner.]identifier

Object names are limited to 128 characters in SQL SERVER and cannot start with one of the following
characters: @ (local variable) # (temp object).

To support double quotes as string delimiters in SQL SERVER, you can switch OFF the database option
"Use quoted identifiers" in the database properties panel. But quoted table and column names are not
supported when this option is OFF.

Solution

As a general rule, to write portable SQL, you should only use simple database object names without any
database, server or owner qualifier and without quoted identifiers.

Check for single or double quoted table or column names in your source and remove them.

SQL support | 615

Data type conversion table: Informix to SQL Server

Table 187: Data type conversion table (Informix to SQL Server)

Informix® data types
SQL SERVER data types
(<2008)

SQL SERVER data types
(>=2008)

CHAR(n) CHAR(n) (limit = 8000b!) CHAR(n) (limit = 8000b!)

VARCHAR(n[,m]) VARCHAR(n) (limit = 8000b!) VARCHAR(n) (limit = 8000b!)

LVARCHAR(n) VARCHAR(n) (limit = 8000b!) VARCHAR(n) (limit = 8000b!)

NCHAR(n)
NCHAR(n) (UNICODE, limit =
4000c!)

NCHAR(n) (UNICODE, limit =
4000c!)

NVARCHAR(n[,m])
NVARCHAR(n) (UNICODE, limit
= 4000c!)

NVARCHAR(n) (UNICODE, limit
= 4000c!)

BOOLEAN BIT BIT

SMALLINT SMALLINT SMALLINT

INT / INTEGER INTEGER INTEGER

BIGINT BIGINT BIGINT

INT8 BIGINT BIGINT

SERIAL[(start)] INTEGER (see note 1) INTEGER (see note 1)

BIGSERIAL[(start)] BIGINT (see note 1) BIGINT (see note 1)

SERIAL8[(start)] BIGINT (see note 1) BIGINT (see note 1)

DOUBLE PRECISION /
FLOAT[(n)]

FLOAT(n) FLOAT(n)

REAL / SMALLFLOAT REAL REAL

NUMERIC / DEC / DECIMAL(p,s) DECIMAL(p,s) DECIMAL(p,s)

NUMERIC / DEC / DECIMAL(p)
with p<=19

DECIMAL(2*p,p) DECIMAL(2*p,p)

NUMERIC / DEC / DECIMAL(p)
with p>19

N/A N/A

NUMERIC / DEC / DECIMAL DECIMAL(32,16) DECIMAL(32,16)

MONEY(p,s) DECIMAL(p,s) DECIMAL(p,s)

MONEY(p) DECIMAL(p,2) DECIMAL(p,2)

MONEY DECIMAL(16,2) DECIMAL(16,2)

DATE DATETIME DATE

DATETIME HOUR TO MINUTE DATETIME TIME(0)

DATETIME HOUR TO
FRACTION(n)

DATETIME TIME(n)

DATETIME YEAR TO SECOND DATETIME DATETIME2(0)

DATETIME q1 TO q2 (different
from above)

DATETIME DATETIME2(n)

SQL support | 616

Informix® data types
SQL SERVER data types
(<2008)

SQL SERVER data types
(>=2008)

INTERVAL q1 TO q2 CHAR(50) CHAR(50)

TEXT VARCHAR(MAX) VARCHAR(MAX)

BYTE VARBINARY(MAX) VARBINARY(MAX)

Notes:

1. For more details about serial emulation, see SERIAL data types on page 606.

Data manipulation
Microsoft™ SQL Server related data manipulation topics.
Reserved words

Microsoft™ Transact-SQL does not allow you to use reserved words as database object names (tables,
columns, constraint, indexes, triggers, stored procedures, ...). An example of a common word which
is part of SQL SERVER grammar is 'go' (see the 'Reserved keywords' section in the SQL SERVER
Documentation).

Solution

Database objects having a name which is a Transact-SQL reserved word must be renamed.

All BDL application sources must be verified. To check if a given keyword is used in a source, you can use
UNIX™ 'grep' or 'awk' tools. Most modifications can be automatically done with UNIX™ tools like 'sed' or
'awk'.

You can use SET QUOTED_IDENTIFIER ON with double-quotes to enforce the use of keywords in the
database objects naming, but it is not recommended.

Outer joins

The original OUTER join syntax of Informix® is different from Microsoft™ SQL SERVER outer join syntax:

In Informix® SQL, outer tables can be defined in the FROM clause with the OUTER keyword:

SELECT ... FROM cust, OUTER(order)
 WHERE cust.key = order.custno

SELECT ... FROM cust, OUTER(order,OUTER(item))
 WHERE cust.key = order.custno
 AND order.key = item.ordno
 AND order.accepted = 1

Microsoft™ SQL SERVER supports the ANSI outer join syntax:

SELECT ... FROM cust LEFT OUTER JOIN order
 ON cust.key = order.custno

SELECT ...
 FROM cust LEFT OUTER JOIN order
 ON cust.key = order.custno
 LEFT OUTER JOIN item
 ON order.key = item.ordno
 WHERE order.accepted = 1

SQL support | 617

Remark: The old way to define outers in SQL SERVER looks like the following:

SELECT ... FROM a, b WHERE a.key *= b.key

See the SQL SERVER reference manual for a complete description of the syntax.

Solution

For better SQL portability, you should use the ANSI outer join syntax instead of the old Informix® OUTER
syntax.

The Microsoft™ SQL SERVER interface can convert simple Informix® OUTER specifications to Microsoft™
SQL SERVER ANSI outer joins.

Prerequisites:

1. The outer join in the WHERE part must use the table name as prefix. Example: "WHERE tab1.col1 =
tab2.col2 ".

2. Additional conditions on outer table columns cannot be detected and therefore are not supported:
Example: "... FROM tab1, OUTER(tab2) WHERE tab1.col1 = tab2.col2 AND tab2.colx > 10".

3. Statements composed of 2 or more SELECT instructions using OUTERs are not supported. Example :
"SELECT ... UNION SELECT" or "SELECT ... WHERE col IN (SELECT...)"

Remarks:

1. Table aliases are detected in OUTER expressions. OUTER example with table alias: "OUTER(tab1
alias1)".

2. In the outer join, <outer table>.<col> can be placed on both right or left sides of the equal sign. OUTER
join example with table on the left: "WHERE outertab.col1 = maintab.col2 ".

3. Table names detection is not case-sensitive. Example: "SELECT ... FROM tab1, TAB2 WHERE
tab1.col1 = tab2.col2".

4. Temporary tables are supported in OUTER specifications.

Transactions handling

Informix® and Microsoft™ SQL SERVER handle transactions in a similar manner.

Informix® native mode (non ANSI):

• Transactions are started with BEGIN WORK.
• Transactions are validated with COMMIT WORK.
• Transactions are canceled with ROLLBACK WORK.
• Savepoints can be set with SAVEPOINT name [UNIQUE].
• Transactions can be rolled back to a savepoint with ROLLBACK [WORK] TO SAVEPOINT [name].
• Savepoints can be released with RELEASE SAVEPOINT name.
• Statements executed outside of a transaction are automatically committed.
• DDL statements can be executed (and canceled) in transactions.

Microsoft™ SQL SERVER supports named and nested transactions:

• Transactions are started with BEGIN TRANSACTION [name].
• Transactions are validated with COMMIT TRANSACTION [name].
• Transactions are canceled with ROLLBACK TRANSACTION [name].
• Savepoints can be placed with SAVE TRANSACTION name.
• Transactions can be rolled back to a savepoint with ROLLBACK TRANSACTION TO name.
• Savepoints can not be released.
• Statements executed outside of a transaction are automatically committed (autocommit mode). This

behavior can be changed with "SET IMPLICIT_TRANSACTION ON".
• DDL statements are not supported in transactions blocks.

SQL support | 618

Transactions in stored procedures: avoid using transactions in stored procedure to allow the client
applications to handle transactions, according to the transaction model.

Solution

Informix® transaction handling commands are automatically converted to Microsoft™ SQL SERVER
instructions to start, validate or cancel transactions.

Regarding the transaction control instructions, the BDL applications do not have to be modified in order to
work with Microsoft™ SQL SERVER.

Important: If you want to use savepoints, do not use the UNIQUE keyword in the savepoint
declaration, always specify the savepoint name in ROLLBACK TO SAVEPOINT, and do not drop
savepoints with RELEASE SAVEPOINT.

Temporary tables

Informix® temporary tables are created through the CREATE TEMP TABLE DDL instruction or through a
SELECT ... INTO TEMP statement. Temporary tables are automatically dropped when the SQL session
ends, but they can also be dropped with the DROP TABLE command. There is no name conflict when
several users create temporary tables with the same name.

Remark: BDL reports create a temporary table when the rows are not sorted externally (by the source SQL
statement).

Informix® allows you to create indexes on temporary tables. No name conflict occurs when several users
create an index on a temporary table by using the same index identifier.

Microsoft™ SQL SERVER provides local (SQL session wide) or global (database wide) temporary tables
by using the '#' or '##' characters as table name prefix. No 'TEMP' keyword is required in CREATE TABLE,
and the INTO clause can be used within a SELECT statement to create and fill a temporary table in one
step:

CREATE TABLE #temp1 (kcol INTEGER,)
SELECT * INTO #temp2 FROM customers WHERE ...

Unfortunately, SQL Server temporary tables are created by default with the collation of the tempdb
database, instead of inheriting the collation of the current database you are connected to.

Solution

In BDL, Informix® temporary tables instructions are converted to generate native SQL SERVER temporary
tables.

Microsoft™ SQL SERVER does not support scroll cursors based on a temporary table.

You must install SQL Server with the same collation as your database, see Installation for more details.

Substrings in SQL

Informix® SQL statements can use subscripts on columns defined with the character data type:

SELECT ... FROM tab1 WHERE col1[2,3] = 'RO'
SELECT ... FROM tab1 WHERE col1[10] = 'R' -- Same as col1[10,10]
UPDATE tab1 SET col1[2,3] = 'RO' WHERE ...
SELECT ... FROM tab1 ORDER BY col1[1,3]

Microsoft™ SQL SERVER provides the SUBSTR() function, to extract a substring from a string expression:

SELECT FROM tab1 WHERE SUBSTRING(col1,2,2) = 'RO'
SELECT SUBSTRING('Some text',6,3) FROM tab1 -- Gives 'tex'

SQL support | 619

Solution

You must replace all Informix® col[x,y] expressions with SUBSTRING(col,x,y-x+1).

In UPDATE instructions, setting column values through subscripts will produce an error with Microsoft™
SQL SERVER:

UPDATE tab1 SET col1[2,3] = 'RO' WHERE ...

is converted to:

UPDATE tab1 SET SUBSTRING(col1,2,3-2+1) = 'RO' WHERE ...

Column subscripts in ORDER BY expressions are also converted and produce an error with Microsoft™
SQL SERVER:

SELECT ... FROM tab1 ORDER BY col1[1,3]

is converted to:

SELECT ... FROM tab1 ORDER BY SUBSTRING(col1,1,3-1+1)

String delimiters

The ANSI string delimiter character is the single quote ('string'). Double quotes are used to delimit
database object names ("object-name").

Example: WHERE "tabname"."colname" = 'string'

Informix® allows double quotes as string delimiters, but SQL SERVER doesn't. This is important, since
many BDL programs use that character to delimit the strings in SQL commands.

Note: This problem concerns only double quotes within SQL statements. Double quotes used in
BDL string expressions are not subject of SQL compatibility problems.

National character strings:

With SQL SERVER, all UNICODE strings must be prefaced with an N character:

UPDATE cust SET cust_name =N'###' WHERE cust_id=123

If you don't specify the N prefix, SQL SERVER will convert the characters from the current system locale to
the database locale. If the string is prefixed with N, the server can recognize a UNICODE string and use it
as is to insert into NCHAR or NVARCHAR columns.

Solution

The SQL SERVER database interface can automatically replace all double quotes by single quotes.

Escaped string delimiters can be used inside strings like the following:

'This is a single quote: '''
'This is a single quote: \''
"This is a double quote: """
"This is a double quote: \""

Important: Database object names cannot be delimited by double quotes because the database
interface cannot determine the difference between a database object name and a quoted string !

For example, if the program executes the SQL statement:

WHERE "tabname"."colname" = "string"

SQL support | 620

replacing all double quotes by single quotes would produce:

WHERE 'tabname'.'colname' = 'string'

This would produce an error since 'tabname'.'colname' is not allowed by ORACLE.

Although double quotes are replaced automatically in SQL statements, you should use only single quotes
to enforce portability.

National character strings

When using the SNC database driver, all string literals of an SQL statement are automatically changed
to get the N prefix. Thus, you don't need to add the N prefix by hand in all of your programs. This solution
makes by the way your Genero code portable to other databases.

With the SNC database driver, character string data is converted from the current Genero BDL
locale to Wide Char (Unicode UCS-2), before is it used in an ODBC call such as SQLPrepareW or
SQLBindParameter(SQL_C_WCHAR). When fetching character data, the SNC database driver converts
from Wide Char to the current Genero BDL locale. The current Genero BDL locale is defined by LANG,
and if LANG is not defined, the default is the ANSI Code Page of the Windows™ operating system. See
CHARACTER data types for more details.

When using the FTM (FreeTDS) or the ESM (EasySoft) database driver on UNIX™, string literals get the
N prefix if the current locale is a multibyte encoding like BIG5, EUC-JP or UTF-8. If the current locale is a
single-byte encoding like ISO-8859-1, no prefix will be added to the string literals.

Getting one row with SELECT

With Informix®, you must use the system table with a condition on the table id:

SELECT user FROM systables WHERE tabid=1

With SQL SERVER, you can omit the FROM clause to generate one row only:

SELECT user

Solution

Check the BDL sources for "FROM systables WHERE tabid=1" and use dynamic SQL to resolve this
problem.

MATCHES and LIKE in SQL conditions

Informix® supports MATCHES and LIKE in SQL statements, while Microsoft™ SQL SERVER supports the
LIKE statement only.

The MATCHES operator of Informix® uses the star (*), question mark (?) and square braces ([])
wildcard characters. The LIKE operator of SQL SERVER offers the percent (%), underscore (_) and square
braces ([]) wildcard characters:

(col MATCHES 'Smi*' AND col NOT MATCHES 'R?x[a-z]')
(col LIKE 'Smi%' AND col NOT LIKE 'R_x[a-z]')

The LIKE operator of SQL Server does not evaluate to true with CHAR/NCHAR columns, if the LIKE
pattern is provided as a UNICODE string literal (with the N prefix) and the search pattern matches the
value in the column (without an ending % wildcard for example). See the following test:

CREATE TABLE mytable (k INT, nc NCHAR(20))
INSERT INTO mytable VALUES (1, N'abc')
SELECT * FROM mytable WHERE nc = 'abc' -- one row is returned
SELECT * FROM mytable WHERE nc = N'abc' -- one row is returned
SELECT * FROM mytable WHERE nc LIKE 'abc' -- one row is returned

SQL support | 621

SELECT * FROM mytable WHERE nc LIKE N'abc' -- no rows are found
SELECT * FROM mytable WHERE nc LIKE N'abc%' -- one row is returned

This can be an issue because the SQL Server driver will by default automatically add an N prefix before
all string literals in SQL statements. See Microsoft™ SQL Server documentation for more details about the
LIKE semantics regarding blank padding and see also CHARACTER data types for the N prefix usage:
You might consider setting the snc.widechar FGLPROFILE parameter to false if you are using CHAR/
VARCHAR types.

Solution

The database driver is able to translate Informix® MATCHES expressions to LIKE expressions, when no
[] bracket character ranges are used in the MATCHES operand.

However, for maximum portability, consider replacing the MATCHES expressions to LIKE expressions in
all SQL statements of your programs.

Avoid using CHAR(N) types for variable length character data (such as name, address).

Pay attention to UNICODE string prefixes N'...' in the LIKE expressions when used with CHAR/NCHAR
columns. You might want to always add a % wildcard at the end of the LIKE condition, or use the equal
operator when doing a query with exact values.

See also: MATCHES and LIKE operators on page 438.

Querying system catalog tables

As in Informix®, Microsoft™ SQL SERVER provides system catalog tables (sysobjects, syscolumns, etc.) in
each database, but the table names and their structure are quite different.

Solution

Note: No automatic conversion of Informix® system tables is provided by the database interface.

Syntax of UPDATE statements

Informix® allows a specific syntax for UPDATE statements:

UPDATE table SET (col-list) = (val-list)

or

UPDATE table SET table.* = myrecord.*

UPDATE table SET * = myrecord.*

Solution

Static UPDATE statements using this syntax are converted by the compiler to the standard form:

UPDATE table SET column = value [,...]

The LENGTH() function

Informix® provides the LENGTH() function:

SELECT LENGTH("aaa"), LENGTH(col1) FROM table

Microsoft™ SQL SERVER has a equivalent function called LEN().

Do not confuse LEN() with DATALEN(), which returns the data size used for storage (number of bytes).

Both Informix® and SQL SERVER ignore trailing blanks when computing the length of a string.

SQL support | 622

Solution

You must adapt the SQL statements using LENGTH() and use the LEN() function.

Note:

If you create a user function in SQL SERVER as follows:

create function length(@s varchar(8000))
 returns integer
as
begin
 return len(@s)
end

You must qualify the function with the owner name:

SELECT dbo.length(col1) FROM table

String concatenation operator

The Informix® concatenation operator is the double pipe (||):

SELECT firstname || ' ' || lastname FROM employee

The Microsoft™ SQL SERVER concatenation operator is the plus sign:

SELECT firstname + ' ' + lastname FROM employee

Solution

The database interface detects double-pipe operators in SQL statements and converts them to a plus sign
automatically.

BDL programming
Microsoft™ SQL Server related programming topics.
Executing SQL statements

The database driver for Microsoft™ SQL SERVER is based on ODBC. The ODBC driver implementation
provided with SQL SERVER uses system stored procedures to prepare and execute SQL statements (You
can see this with the Profiler).

Some Transact-SQL statements like SET DATEFORMAT have a local execution context effect (for
example, when executed in a stored procedure, it is reset to the previous values when procedure execution
is finished).

To support such statements in BDL programs, the database driver uses the SQLExecDirect() ODBC API
function when the SQL statement is not a SELECT, INSERT, UPDATE or DELETE. This way the SET
statement is executed 'directly', without using the system stored procedures. The result is that the SET
statement has the expected effect (i.e. a permanent effect).

However, if the SQL statement uses parameters, the ODBC driver forces the use of system stored
procedures to execute the statement.

See the MSDN for more details about system stored procedures used by Microsoft™ APIs.

Informix® specific SQL statements in BDL

The BDL compiler supports several Informix® specific SQL statements that have no meaning when using
Microsoft™ SQL SERVER.

Examples:

SQL support | 623

• CREATE DATABASE dbname IN dbspace WITH BUFFERED LOG
• START DATABASE (SE only)
• ROLLFORWARD DATABASE
• CREATE TABLE ... IN dbspace WITH LOCK MODE ROW

Solution

Review your BDL source and remove all static SQL statements that are Informix-specific.

INSERT cursors

Informix® supports insert cursors. An "insert cursor" is a special BDL cursor declared with an INSERT
statement instead of a SELECT statement. When this kind of cursor is open, you can use the PUT
instruction to add rows and the FLUSH instruction to insert the records into the database.

For Informix® database with transactions, OPEN, PUT and FLUSH instructions must be executed within a
transaction.

Microsoft™ SQL SERVER does not support insert cursors.

Solution

Insert cursors are emulated by the Microsoft™ SQL SERVER database interface.

Cursors WITH HOLD

Informix® automatically closes opened cursors when a transaction ends unless the WITH HOLD option is
used in the DECLARE instruction.

Microsoft™ SQL SERVER does not close cursors when a transaction ends. You can change this behavior
using the SET CURSOR_CLOSE_ON_COMMIT ON.

Solution

BDL cursors that are not declared "WITH HOLD" are automatically closed by the database interface when
a COMMIT WORK or ROLLBACK WORK is performed by the BDL program.

SELECT FOR UPDATE

A lot of BDL programs use pessimistic locking in order to avoid several users editing the same rows at the
same time.

DECLARE cc CURSOR FOR
SELECT ... FROM tab WHERE ... FOR UPDATE
OPEN cc
FETCH cc <-- lock is acquired
...
CLOSE cc <-- lock is released

• A transaction must be started before opening cursors declared for update.
• The row must be fetched in order to set the lock.
• The lock is released when the transaction ends (if the cursor is not declared "WITH HOLD") or when the

cursor is closed.

Microsoft™ SQL SERVER allows individual and exclusive row locking by using the (UPDLOCK) hint after
the table names in the FROM clause:

SELECT ... FROM tab1 WITH (UPDLOCK) WHERE ...

The FOR UPDATE clause is not mandatory; the (UPDLOCK) hint is important.

• Individual locks are acquired when fetching the rows.

SQL support | 624

• When the cursor (WITH HOLD) is opened outside a transaction, locks are released when the cursor is
closed.

• When the cursor is opened inside a transaction, locks are released when the transaction ends.

SQL SERVER's locking granularity is at the row level, page level or table level (the level is automatically
selected by the engine for optimization).

To control the behavior of the program when locking rows, Informix® provides a specific instruction to set
the wait mode:

SET LOCK MODE TO { WAIT | NOT WAIT | WAIT seconds }

The default mode is NOT WAIT. This as an Informix® specific SQL statement.

Solution

The SQL SERVER database driver for MS SQL SERVER uses the SCROLL LOCKS concurrency options
for cursors (SQL_ATTR_CONCURRENCY = SQL_CONCUR_LOCK).

This option implements pessimistic concurrency control, in which the application attempts to lock the
underlying database rows at the time they are read into the cursor result set.

When using server cursors, an update lock is placed on the row when it is read into the cursor. If the cursor
is opened within a transaction, the transaction update lock is held until the transaction is either committed
or rolled back; the cursor lock is dropped when the next row is fetched.

If the cursor has been opened outside a transaction, the lock is dropped when the next row is fetched.

Therefore, a cursor should be opened in a transaction whenever the user wants full pessimistic
concurrency control.

An update lock prevents any other task from acquiring an update or exclusive lock, which prevents any
other task from updating the row.

An update lock, however, does not block a shared lock, so it does not prevent other tasks from reading the
row unless the second task is also requesting a read with an update lock.

SELECT FOR UPDATE statements are well supported in BDL as long as they are used inside a
transaction. Avoid cursors declared WITH HOLD.

Note: The database interface is based on an emulation of an Informix® engine using transaction
logging. Therefore, opening a SELECT ... FOR UPDATE cursor declared outside a transaction will
raise an SQL error -255 (not in transaction).

The SELECT FOR UPDATE statement cannot contain an ORDER BY clause if you want to perform
positioned updates/deletes with WHERE CURRENT OF.

Cursors declared with SELECT ... FOR UPDATE using the "WITH HOLD" clause cannot be supported with
SQL SERVER.

You must review the program logic if you use pessimistic locking because it is based on the NOT WAIT
mode which is not supported by SQL SERVER.

The LOAD and UNLOAD instructions

Informix® provides two SQL instructions to export / import data from / into a database table: The UNLOAD
instruction copies rows from a database table into a text file and the LOAD instruction inserts rows from a
text file into a database table.

Microsoft™ SQL SERVER has LOAD and UNLOAD instructions, but those commands are related to
database backup and recovery. Do not confuse with Informix® commands.

Solution

LOAD and UNLOAD instructions are supported; note the following;

SQL support | 625

• The LOAD instruction does not work with tables using emulated SERIAL columns because the
generated INSERT statement holds the "SERIAL" column which is actually a IDENTITY column in SQL
SERVER. See the limitations of INSERT statements when using SERIALs.

• With Microsoft™ SQL SERVER versions prior to 2008, Informix® DATE data is stored in DATETIME
columns, but DATETIME columns are similar to Informix® DATETIME YEAR TO FRACTION(3)
columns. Therefore, when using LOAD and UNLOAD, those columns are converted to text data with
the format "YYYY-MM-DD hh:mm:ss.fff". However, since SQL SERVER 2008, Informix® DATE data is
stored in SQL SERVER DATE columns, so the result of a LOAD or UNLOAD statement is equivalent
when using a DATE column with SQL SERVER 2008.

• With Microsoft™ SQL SERVER versions prior to 2008, Informix® DATETIME data is stored in
DATETIME columns, but DATETIME columns are similar to Informix® DATETIME YEAR TO
FRACTION(3) columns. Therefore, when using LOAD and UNLOAD, those columns are converted
to text data with the format "YYYY-MM-DD hh:mm:ss.fff". With SQL SERVER 2008, Informix®

DATETIME data is stored in SQL SERVER DATETIME2(n<=5) or TIME(n<=5) columns. Concerning
DATETIME2(n<=5) columns, the result of LOAD and UNLOAD is equivalent to Informix® DATETIME
columns, as long as the original Informix® type starts with the YEAR qualifier. The text data will be
"YYYY-MM-DD hh:mm:ss.<fraction-digits>", where fraction-digits depends on the precision (n) of the
DATETIME2(n) column. Concerning TIME(n) columns, the type is converted to an Informix® DATETIME
HOUR TO SECOND or FRACTION(n). The text data will be "hh:mm:ss.<fraction-digits>", where
fraction-digits depends on the precision (n) of the TIME(n) column.

• When using an Informix® database, simple dates are unloaded with the DBDATE format
(ex:"23/12/1998"). Therefore, unloading from an Informix® database for loading into a Microsoft™ SQL
SERVER database is not supported.

SQL Interruption

With Informix®, it is possible to interrupt a long running query if the SQL INTERRUPT ON option.

SQL SERVER 2005 supports SQL Interruption in a similar way as Informix®. The db client must issue an
SQLCancel() ODBC call to interrupt a query.

Solution

The SQL Server SNC and ESM database drivers support SQL interruption and return the Informix® error
code -213 if the statement is interrupted.

Important: Make sure you have SQL SERVER 2005 or higher installed and that you use the SNC
or ESM database driver.

Scrollable Cursors

The Genero programming language supports scrollable cursors.

SQL Server supports native scrollable cursors.

Solution

All the SQL SERVER database drivers use the native SQL Server scrollable cursors by setting the ODBC
statement attribute SQL_ATTR_CURSOR_SCROLLABLE to SQL_SCROLLABLE.

SQL adaptation guide for Oracle MySQL 5.x, MariaDB 10.x

Note: Genero programs can connect to Oracle MySQL and it's open source equivalent MariaDB,
by using the same database driver (dbmmys).

Installation (Runtime Configuration)
Oracle MySQL related installation topics.
Install MySQL/MariaDB and create a database - database configuration/design tasks

1. Install the MySQL Server (or MariaDB) on your computer.

SQL support | 626

2. Configure the server with the appropriate storage engine.

In order to have transaction support by default, you must use a storage engine that supports
transactional tables, such as INNODB. In recent versions of MySQL, this is the default storage engine.

3. Consider setting the sql-mode configuration parameter to get the appropriate behavior of the MySQL
server:

a) When the STRICT_TRANS_TABLES mode is used, you will get a -1406 error (data too long) when
inserting a character string that is too large for the target column.

If you don't use the STRICT_TRANS_TABLES mode, you get a -1265 warning (data truncated)
when the value is too large.

b) Blank padding of fetched CHAR data can be controlled with the PAD_CHAR_TO_FULL_LENGTH.

You can use this parameter to get CHAR values padded with blanks to their full length, but the result
of the SQL LENGTH() function will be different since trailing blanks are significant for that function in
MySQL.

4. The mysqld process must be started to listen to database client connections. See MySQL
documentation for more details about starting the database server process.

5. Create a database user dedicated to your application, the application administrator.

Connect as the MySQL root user and GRANT all privileges to this user:

$ mysql -u root
...
mysql> grant all privileges on *.*
 to 'myuser'@'localhost'
 identified by 'password'
...

6. Connect as the application administrator and create a MySQL database with the CREATE DATABASE
statement, and specify the character set to be used for this database:

$ mysql -u mysuser
...
mysql> create database mydatabase
 default character set utf8;

7. Create the application tables.

Do not forget to convert Informix® data types to MySQL data types. See Data type conversion table:
Informix to MySQL on page 636 for more details.

Prepare the runtime environment - connecting to the database

1. In order to connect to MySQL, you must have a MySQL database driver "dbmmys" in FGLDIR/
dbdrivers.

2. The MySQL client software is required to connect to a database server.

Check if the MySQL client library (libmysqlclient.*) is installed on the system. The shared
library version of the MySQL client library must match the libmysqlclient library version linked to the
dbmmys.so ODI driver.

3. Make sure that the MySQL client environment variables are properly set.

Check for example MYSQL_HOME (the path to the installation directory), DATADIR (the path to the
data files directory), etc. See MySQL documentation for more details about client environment variables
to be set.

4. Check the MySQL client configuration options in the my.cnf file. The driver will read the options
defined in the [client] group. Note that your can specify a particular configuration file with the
dbi.database.dbname.mys.optionsfile FGLPROFILE configuration parameter.

5. Check the database client locale settings (default-character-set option in the my.cnf
configuration file).

SQL support | 627

The database client locale must match the locale used by the runtime system (LC_ALL, LANG).

6. Verify the environment variable defining the search path for the database client shared library
(libmysqlclient.so on UNIX™, LIBMYSQL.dll on Windows™).

Table 188: Shared library environment setting for MySQL

MySQL version Shared library environment setting

MySQL 5.1 and higher UNIX™ : Add $MYSQL_HOME/lib to
LD_LIBRARY_PATH (or its equivalent).

Windows™ : Add %MYSQL_HOME%\bin to
PATH.

7. To verify if the MySQL client environment is correct, you can start the MySQL command interpreter:

$ mysql dbname -u appadmin -p

8. Set up the fglprofile entries for database connections.

a) Define the MySQL database driver:

dbi.database.dbname.driver = "dbmmys"

b) The "source" parameter defines the name of the MySQL database.

dbi.database.dbname.source = "test1"

Database concepts
Oracle MySQL related database concepts topics.
Database concepts

Like Informix® servers, MySQL can handle multiple database entities. Tables created by a user can be
accessed without the owner prefix by other users as long as they have access privileges to these tables.

Solution

Create a MySQL database for each Informix® database.

Data storage concepts

An attempt should be made to preserve as much of the storage information as possible when converting
from Informix® to MySQL. Most important storage decisions made for Informix® database objects (like
initial sizes and physical placement) can be reused for the MySQL database.

Storage concepts are quite similar in Informix® and in MySQL, but the names are different.

Data consistency and concurrency

Data consistency involves readers which want to access data currently modified by writers and
concurrency data access involves several writers accessing the same data for modification. Locking
granularity defines the amount of data concerned when a lock is set (row, page, table, ...).

Informix®

Informix® uses a locking mechanism to handle data consistency and concurrency. When a process
changes database information with UPDATE, INSERT or DELETE, an exclusive lock is set on the
touched rows. The lock remains active until the end of the transaction. Statements performed outside
a transaction are treated as a transaction containing a single operation and therefore release the locks
immediately after execution. SELECT statements can set shared locks according to the isolation level. In
case of locking conflicts (for example, when two processes want to acquire an exclusive lock on the same

SQL support | 628

row for modification or when a writer is trying to modify data protected by a shared lock), the behavior of a
process can be changed by setting the lock wait mode.

Control:

• Lock wait mode: SET LOCK MODE TO ...
• Isolation level: SET ISOLATION TO ...
• Locking granularity: CREATE TABLE ... LOCK MODE {PAGE|ROW}
• Explicit exclusive lock: SELECT ... FOR UPDATE

Defaults:

• The default isolation level is read committed.
• The default lock wait mode is "not wait".
• The default locking granularity is per page.

MySQL

When data is modified, exclusive locks are set and held until the end of the transaction. For data
consistency, MySQL uses a locking mechanism. Readers must wait for writers as in Informix®.

Control:

• No lock wait mode control is provided.
• Isolation level: SET TRANSACTION ISOLATION LEVEL ...
• Explicit exclusive lock: SELECT ... FOR UPDATE

Defaults:

• The default isolation level is Read Committed.
• The default locking granularity is per table (pre page when using BDB tables).

Solution

The SET ISOLATION TO ... Informix® syntax is replaced by SET SESSION TRANSACTION ISOLATION
LEVEL ... in MySQL. The next table shows the isolation level mappings done by the MySQL database
driver:

Table 189: Isolation level mappings done by the MySQL database driver

SET ISOLATION instruction in program Native SQL command

SET ISOLATION TO DIRTY READ
SET SESSION TRANSACTION ISOLATION
LEVEL READ UNCOMMITTED

SET ISOLATION TO COMMITTED READ

[READ COMMITTED] [RETAIN UPDATE LOCKS]

SET SESSION TRANSACTION ISOLATION
LEVEL READ COMMITTED

SET ISOLATION TO CURSOR STABILITY
SET SESSION TRANSACTION ISOLATION
LEVEL READ COMMITTED

SET ISOLATION TO REPEATABLE READ
SET SESSION TRANSACTION ISOLATION
LEVEL REPEATABLE READ

For portability, it is recommended that you work with Informix® in the read committed isolation level, make
processes wait for each other (lock mode wait), and create tables with the "lock mode row" option.

See Informix® and MySQL documentation for more details about data consistency, concurrency and
locking mechanisms.

SQL support | 629

Transactions handling

Informix® and MySQL handle transactions in a similar manner.

Informix® native mode (non ANSI):

• Transactions are started with BEGIN WORK.
• Transactions are validated with COMMIT WORK.
• Transactions are canceled with ROLLBACK WORK.
• Savepoints can be set with SAVEPOINT name [UNIQUE].
• Transactions can be rolled back to a savepoint with ROLLBACK [WORK] TO SAVEPOINT [name].
• Savepoints can be released with RELEASE SAVEPOINT name.
• Statements executed outside of a transaction are automatically committed.
• DDL statements can be executed (and canceled) in transactions.

MySQL:

• Transactions are started with START TRANSACTION.
• Transactions are validated with COMMIT [WORK].
• Transactions are canceled with ROLLBACK [WORK].
• Savepoints can be placed with SAVEPOINT name.
• Transactions can be rolled back to a savepoint with ROLLBACK [WORK] TO [SAVEPOINT] name.
• Savepoints can be released with RELEASE SAVEPOINT name.
• Statements executed outside of a transaction are automatically committed.
• DDL statements can be executed (and canceled) in transactions.

Solution

Informix® transaction handling commands are automatically converted to MySQL instructions to start,
validate or cancel transactions.

MySQL does not support transactions by default. You must set the server system parameter
table_type=InnoDB.

Regarding the transaction control instructions, the BDL applications do not have to be modified in order to
work with MySQL, as long as you have a transaction manager installed with MySQL.

If you want to use savepoints, do not use the UNIQUE keyword in the savepoint declaration, always
specify the savepoint name in ROLLBACK TO SAVEPOINT, and do not drop savepoints with RELEASE
SAVEPOINT.

Database users

Until version 11.70.xC2, Informix® database users must be created at the operating system level and be
members of the 'informix' group. Starting with 11.70.xC2, Informix® supports database-only users with the
CREATE USER instruction, as most other db servers. Any database user must have sufficient privileges to
connect and use resources of the database; user rights are defined with the GRANT command.

MySQL users must be registered in the database. They are created with the GRANT SQL instruction:

$ mysql -u root -pmanager --host orion test
mysql> GRANT ALL PRIVILEGES ON * TO mike IDENTIFIED BY 'pswd';

Solution

According to the application logic (is it a multiuser application?), you have to create one or several MySQL
users.

SQL support | 630

Data dictionary
Oracle MySQL related data dictionary topics.
BOOLEAN data type

Informix® supports the BOOLEAN data type, which can store 't' or 'f' values. Genero BDL implements the
BOOLEAN data type in a different way: As in other programming languages, Genero BOOLEAN stores
integer values 1 or 0 (for TRUE or FALSE). The type was designed this way to assign the result of a
boolean expression to a BOOLEAN variable.

MySQL supports the BOOLEAN data type and stores 1 or 0 integer values for TRUE and FALSE.

Solution

The MySQL database interface supports the BOOLEAN data type and stores 1 or 0 values in the column..

CHARACTER data types

Informix® supports following character data types:

• CHAR(N) with N<= 32767 bytes
• VARCHAR(N[,M]) with N<=255 bytes
• NCHAR(N) with N<= 32767 bytes
• NVARCHAR(N[,M]) with N<=255 bytes
• LVARCHAR(N), without the 255 bytes limit (max size varies according to IDS version)

In Informix®, both CHAR/VARCHAR and NCHAR/NVARCHAR data types can be used to store single-
byte or multibyte encoded character strings. The only difference between CHAR/VARCHAR and NCHAR/
NVARCHAR is for sorting: N[VAR]CHAR types use the collation order, while [VAR]CHAR types use the
byte order. The character set used to store strings in CHAR/VARCHAR/NCHAR/NVARCHAR columns is
defined by the DB_LOCALE environment variable. The character set used by applications is defined by
the CLIENT_LOCALE environment variable. Informix® uses Byte Length Semantics (the size N that you
specify in [VAR]CHAR(N) is expressed in bytes, not characters as in some other databases)

MySQL supports the following character data types:

• CHAR(N) with N<= 255 characters
• VARCHAR(N) with N<= 65535 characters
• NCHAR(N) with N<= 255 characters
• NVARCHAR(N) with N<= 65535 characters
• TEXT (a LOB data type)

With MySQL version 4, CHAR/VARCHAR with a size exceeding 255 characters are silently converted to
TEXT columns. With later versions, you now get an SQL error when trying to define a CHAR or VARCHAR
column with a size greater than the limit. Also, before version MySQL 5.0.3, VARCHAR limit was 255
characters, starting with 5.0.3 the limit is 65535 characters.

MySQL uses character length semantics to define the size of CHAR/VARCHAR columns, while Informix®

and Genero use Byte Length Semantics.

MySQL can support multiple character sets, you can run the SHOW CHARACTER SET statement to list
supported encodings. There are different configuration levels to define the character set used by MySQL
to store data. The server character set defines the default for database character sets if not specified in
the CREATE DATABASE command. You can even define a specific character set at the table and column
level, but this is not recommended with Genero applications. The database character set is used to store
CHAR and VARCHAR columns. The NCHAR and NATIONAL VARCHAR types use a predefined character
set which can be different from the database character set. In MySQL the national character set is UTF-8.

MySQL can automatically convert from/to the client and server characters sets. In the client applications,
you define the character set with the SET NAMES instruction.

Note that by default, when fetching CHAR columns from MySQL, trailing blanks are trimmed. This does
not matter as long as you fetch CHAR columns into CHAR variables, but this non-standard behavior will

SQL support | 631

impact CHAR fetch into VARCHAR, or other SQL areas such as string concatenation for example. You can
control the behavior of CHAR trailing blanks trimming with the PAD_CHAR_TO_FULL_LENGTH sql-mode
parameter. But when this mode is used, the result of the SQL LENGTH() function will be different since
trailing blanks are significant for that function in MySQL.

Solution

Informix® CHAR(N) types must be mapped to MySQL CHAR(N) types. Informix® VARCHAR(N) or
LVARCHAR(N) columns must be mapped to MySQL VARCHAR(N).

You can store single-byte or multibyte character strings in MySQL CHAR, VARCHAR and TEXT columns.

MySQL uses character length semantics: When you define a CHAR(20) and the database character
set is multibyte, the column can hold more bytes/characters than the Informix® CHAR(20) type, when
using byte length semantics. When using a multibyte character set (such as UTF-8), define database
columns with the size in character units, and use character length semantics in BDL programs with
FGL_LENGTH_SEMANTICS=CHAR.

When extracting a database schema from a MySQL database, the schema extractor uses the size of
the column in characters, not the octet length. If you have created a CHAR(10 (characters)) column a in
MySQL database using the UTF8 character set, the .sch file will get a size of 10, that will be interpreted
according to FGL_LENGTH_SEMANTICS as a number of bytes or characters.

Do not forget to properly define the database client character set, which must correspond to the runtime
system character set.

Review your database schema when using CHAR columns with a size exceeding the MySQL limits: If you
need to store CHAR character strings larger as the MySQL CHAR limit, you can use the MySQL TEXT
type. However, as of MySQL version 5.0.3 (supporting large VARCHAR sizes), as long as you use short
sizes for CHAR (<100c), the character types can be used as is in MySQL.

The CHAR(N>255) types are converted by the SQL Translator to a MySQL TEXT type, because MySQL
CHAR type has a limit of 255 characters. When designing a database, you should consider to use CHAR
only for short character string data storage (<50c), and use VARCHAR for larger character string data
storage (name, address, comments).

Note: For each TEXT column fetched from MySQL, the MySQL database driver needs to allocate
a temporary string buffer of 65535 bytes. The memory used by this temporary buffer is freed when
freeing the cursor.

When using VARCHAR types, the SQL Translator leaves the type definition as is, even for N > 255,
assuming that the target MySQL server version is at least 5.0.3 (supporting VARCHAR(N) up to 65535
characters).

See also the section about Localization.

NUMERIC data types

Informix® supports several data types to store numbers:

Table 190: Informix® numeric data types

Informix® data type Description

SMALLINT 16 bit signed integer

INT / INTEGER 32 bit signed integer

BIGINT 64 bit signed integer

INT8 64 bit signed integer (replaced by BIGINT)

DEC / DECIMAL Equivalent to DECIMAL(16)

SQL support | 632

Informix® data type Description

DEC(p) / DECIMAL(p) Floating-point decimal number

DEC(p,s) / DECIMAL(p,s) Fixed-point decimal number

MONEY Equivalent to DECIMAL(16,2)

MONEY(p) Equivalent to DECIMAL(p,2)

MONEY(p,s) Equivalent to DECIMAL(p,s)

REAL / SMALLFLOAT 32-bit floating point decimal (C float)

DOUBLE PRECISION / FLOAT[(n)] 64-bit floating point decimal (C double)

Solution

MySQL supports the following data types to store numbers:

Table 191: MySQL numeric data types

MySQL data type Description

DECIMAL(p)
Stores whole numeric numbers up to p digits (not
floating point)

DECIMAL(p,s)
Maximum precision depends on MySQL Version,
see documentation.

FLOAT[(M,D)] 4 bytes variable precision

DOUBLE[(M,D)] 8 bytes variable precision

SMALLINT 16 bit signed integer

INTEGER 32 bit signed integer

BIGINT 64 bit signed integer

Note: Before MySQL 5.0.3, the maximum range of DECIMAL values is the same as for DOUBLE.
Since MySQL 5.0.3, DECIMAL can store real precision numbers as in Informix®. However, the
maximum number of digits depends on the version of MySQL, see documentation for more details.
We strongly recommend that you make tests (INSERT+SELECT) to check whether large decimals
are properly inserted and fetched back.

DATE and DATETIME data types

Informix® provides two data types to store dates and time information:

• DATE = for year, month and day storage.
• DATETIME = for year to fraction(1-5) storage.

MySQL provides the following data type to store dates:

• DATE = for year, month, day storage.
• TIME[(N)] = for hour, minute, second and fraction of second storage.
• DATETIME[(N)] = for year, month, day, hour, minute, second and fraction of second storage.
• TIMESTAMP = Lilke DATETIME, but can automatically updated when row is touched.

SQL support | 633

String representing date time information

Informix® is able to convert quoted strings to DATE / DATETIME data if the string contents matches
environment parameters (i.e. DBDATE, GL_DATETIME). As in Informix®, MySQL can convert quoted
strings to datetime data according the ISO datetime format (YYYY-MM-DD hh:mm:ss').

Date arithmetic

• Informix® supports date arithmetic on DATE and DATETIME values. The result of an arithmetic
expression involving dates/times is a number of days when only DATEs are used and an INTERVAL
value if a DATETIME is used in the expression.

• In MySQL, the result of an arithmetic expression involving DATE values is an INTEGER representing a
number of days.

• Informix® automatically converts an integer to a date when the integer is used to set a value of a date
column. MySQL does not support this automatic conversion.

• Complex DATETIME expressions (involving INTERVAL values for example) are Informix® specific and
have no equivalent in MySQL.

Solution

MySQL has the same DATE data type as Informix® (year, month, day). So you can use MySQL DATE
data type for Informix® DATE columns.

The SQL Translator of the MySQL driver makes the following conversions automatically for the DATETIME
types:

• DATETIME HOUR TO MINUTE is converted to MySQL TIME (seconds set to 00).
• DATETIME HOUR TO SECOND is converted to MySQL TIME.
• DATETIME HOUR TO FRACTION(N) is converted to MySQL TIME(N).
• DATETIME YEAR TO MINUTE is converted to MySQL DATETIME (seconds set to 00).
• DATETIME YEAR TO SECOND is converted to MySQL DATETIME.
• DATETIME YEAR TO FRACTION(N) is converted to MySQL DATETIME(N).

Other DATETIME types will be mapped to MySQL DATETIME(N) columns. Missing date or time parts
default to 1900-01-01 00:00:00.

Important: MySQL version older than 5.6.4 and MariaDB versions older than 5.3.0 do not support
fractional part of DATETIME. If you try to store a DATETIME x TO FRACTION(P) with such old
server version, the fractional part is lost.

See also Date and time in SQL statements on page 432 for good SQL programming practices.

INTERVAL data type

Informix® INTERVAL data type stores a value that represents a span of time. INTERVAL types are divided
into two classes: year-month intervals and day-time intervals .

MySQL provides an INTERVAL data type, but it is totally different from the Informix® INTERVAL type. For
example, you specify an INTERVAL literal as follows:

25 years 2 months 23 days

Solution

The INTERVAL data type is not well supported because the database server has no equivalent native data
type. However, you can store into and retrieve from CHAR columns BDL INTERVAL values.

SQL support | 634

SERIAL data type

Informix® supports the SERIAL, SERIAL8 and BIGSERIAL data types to produce automatic integer
sequences. SERIAL is based on INTEGER (32 bit), while SERIAL8 and BIGSERIAL can store 64 bit
integers:

• The table column must be of type SERIAL, SERIAL8 or BIGSERIAL.
• To generate a new serial, no value or a zero value is specified in the INSERT statement:

INSERT INTO tab1 (c) VALUES ('aa')
INSERT INTO tab1 (k, c) VALUES (0, 'aa')

• After INSERT, the new SERIAL value is provided in SQLCA.SQLERRD[2], while the new SERIAL8 and
BIGSERIAL value must be fetched with a SELECT dbinfo('bigserial') query.

Informix® allows you to insert rows with a value different from zero for a serial column. Using an explicit
value will automatically increment the internal serial counter, to avoid conflicts with future INSERT
statements that are using a zero value:

CREATE TABLE tab (k SERIAL); -- internal counter = 0
INSERT INTO tab VALUES (0); -- internal counter = 1
INSERT INTO tab VALUES (10); -- internal counter = 10
INSERT INTO tab VALUES (0); -- internal counter = 11
DELETE FROM tab; -- internal counter = 11
INSERT INTO tab VALUES (0); -- internal counter = 12

MySQL supports the AUTO_INCREMENT column definition option as well as the SERIAL keyword:

• In CREATE TABLE, you specify a auto-incremented column with the AUTO_INCREMENT attribute
• Auto-incremented columns have the same behavior as Informix® SERIAL columns
• You define a start value with ALTER TABLE tabname AUTO_INCREMENT = value
• The column must be the primary key.
• When using the InnoDB engine, AUTO_INCREMENTED columns might reuse unused sequences after

a server restart. Actually, when the server restarts, it issues a SELECT MAX(auto_increment_column)
on each table with such as column to identify the next sequence to be generated. If you insert rows
that generate the numbers 101, 102 and 103, then you delete rows 102 and 103; When the server is
restarted next generated number will be 101 + 1 = 102.

• SERIAL is a synonym for BIGINT UNSIGNED NOT NULL AUTO_INCREMENT UNIQUE.

Solution

The Informix® SERIAL data type is emulated with MySQL AUTO_INCREMENT option. After an insert,
SQLCA.SQLERRD[2] holds the last generated serial value. However, SQLCA.SQLERRD[2] is defined as
an INTEGER, it cannot hold values from BIGINT auto incremented columns. If you are using BIGINT auto
incremented columns, you must use the LAST_INSERT_ID() SQL function.

AUTO_INCREMENT columns must be primary keys. This is handled automatically when you create a table
in a BDL program.

Like Informix®, MySQL allows to specify a zero for auto-incremented columns, however, for SQL
portability, INSERT statements should be reviewed to remove the SERIAL column from the list.

For example, the following statement:

INSERT INTO tab (col1,col2) VALUES (0, p_value)

can be converted to:

INSERT INTO tab (col2) VALUES (p_value)

SQL support | 635

Static SQL INSERT using records defined from the schema file must also be reviewed:

DEFINE rec LIKE tab.*
INSERT INTO tab VALUES (rec.*) -- will use the serial column

can be converted to:

INSERT INTO tab VALUES rec.* -- without braces, serial column is removed

ROWIDs

When creating a table, Informix® automatically adds a "ROWID" integer column (applies to non-fragmented
tables only). The ROWID column is auto-filled with a unique number and can be used like a primary key to
access a given row.

MySQL does not have an equivalent for the Informix® ROWID pseudo-column.

Solution

ROWIDs are not supported. You must review the code using ROWIDs and use primary key columns
instead.

Large OBject (LOB) types

IBM® Informix® and Genero support the TEXT and BYTE types to store large objects: TEXT is used to
store large text data, while BYTE is used to store large binary data like images or sound.

MySQL provides TINYTEXT, TEXT, MEDIUMTEXT, LONGTEXT, TINYBLOB, BLOB, MEDIUMBLOB and
LONGBLOB data types.

Solution

Starting with MySQL version 5.0, the database interface can convert BDL TEXT data to LONGTEXT and
BYTE data to LONG BLOB.

Genero TEXT/BYTE program variables have a limit of 2 gigabytes, make sure that the large object data
does not exceed this limit.

Because MySQL CHAR and VARCHAR cannot exceed 255 bytes, we recommend that you use the
MySQL TEXT type to store CHAR/VARCHAR values with a size larger than 255 bytes. When fetching
TEXT columns from a MySQL database, these will be treated as CHAR/VARCHAR types by the MySQL
database driver. See CHAR/VARCHAR types for more details.

Constraints

Constraint naming syntax

Both Informix® and MySQL support primary key, unique, foreign key and default, but the constraint naming
syntax is different: MySQL expects the "CONSTRAINT" keyword before the constraint specification and
Informix® expects it after.

UNIQUE constraint example

Table 192: UNIQUE constraint example (Informix® vs. MySQL)

Informix® MySQL

CREATE TABLE emp(
 ...
 emp_code CHAR(10) UNIQUE
 CONSTRAINT pk_emp,

CREATE TABLE emp (
 ...
 emp_code CHAR(10)
 CONSTRAINT pk_emp UNIQUE,

SQL support | 636

Informix® MySQL

Primary keys

Like Informix®, MySQL creates an index to enforce PRIMARY KEY constraints (some RDBMS do not
create indexes for constraints). Using "CREATE UNIQUE INDEX" to define unique constraints is obsolete
(use primary keys or a secondary key instead).

In MySQL, the name of a PRIMARY KEY is PRIMARY.

Unique constraints

Like Informix®, MySQL creates an index to enforce UNIQUE constraints (some RDBMS do not create
indexes for constraints).

When using a unique constraint, Informix® allows only one row with a NULL value, while MySQL allows
several rows with NULL! Using CREATE UNIQUE INDEX is obsolete.

Foreign keys

Both Informix® and MySQL support the ON DELETE CASCADE option. In MySQL, foreign key constraints
are checked immediately, so NO ACTION and RESTRICT are the same.

Check constraints

Check constraints are not yet supported in MySQL.

Solution

Constraint naming syntax

The database interface does not convert constraint naming expressions when creating tables from BDL
programs. Review the database creation scripts to adapt the constraint naming clauses for MySQL.

Name resolution of SQL objects

Informix® uses the following form to identify a SQL object:

[database[@dbservername]:][{owner|"owner"}.]identifier

With MySQL, an object name takes the following form:

[database.]identifier

Solution

As a general rule, to write portable SQL, you should only use simple database object names without any
database, server or owner qualifier and without quoted identifiers.

Data type conversion table: Informix to MySQL

Table 193: Data type conversion table (Informix to MySQL)

Informix® data types MySQL data types

CHAR(n) CHAR(n) or TEXT (see note 1)

VARCHAR(n[,m]) VARCHAR(n)

SQL support | 637

Informix® data types MySQL data types

LVARCHAR(n) VARCHAR(n)

NCHAR(n) NCHAR(n)

NVARCHAR(n[,m]) NVARCHAR(n)

BOOLEAN BOOLEAN

SMALLINT SMALLINT

INT / INTEGER INTEGER

BIGINT BIGINT

INT8 BIGINT

SERIAL[(start)] INTEGER (see note 2)

BIGSERIAL[(start)] BIGINT (see note 2)

SERIAL8[(start)] BIGINT (see note 2)

DOUBLE PRECISION / FLOAT[(n)] DOUBLE

REAL / SMALLFLOAT FLOAT

NUMERIC / DEC / DECIMAL(p,s) DECIMAL(p,s)

NUMERIC / DEC / DECIMAL(p) with p<=15 DECIMAL(p*2,p)

NUMERIC / DEC / DECIMAL(p) with >15 N/A

NUMERIC / DEC / DECIMAL DECIMAL(32,16) (unsupported!)

MONEY(p,s) DECIMAL(p,s)

MONEY(p) DECIMAL(p,2)

MONEY DECIMAL(16,2)

DATE DATE

DATETIME HOUR TO MINUTE TIME

DATETIME HOUR TO SECOND TIME

DATETIME HOUR TO FRACTION(p) TIME(p) (see note 3)

DATETIME YEAR TO MINUTE DATETIME

DATETIME YEAR TO SECOND DATETIME

DATETIME YEAR TO FRACTION(p) DATETIME(p) (see note 3)

DATETIME q1 TO q2 (others than above) DATETIME(p) (see note 3)

INTERVAL q1 TO q2 CHAR(50)

TEXT MEDIUMTEXT / LONGTEXT (using <= 2Gb!)

BYTE MEDIUMBLOB / LONGBLOB (using <= 2Gb!)

Notes:

1. The CHAR types with a size > 255 are converted TEXT types. For more details, see CHARACTER data
types on page 630.

2. For more details about serial emulation, see SERIAL data type on page 634.

SQL support | 638

3. Only with MySQL >= 5.6.4 and MariaDB >= 5.3.0, for older versions DATETIME cannot use a frational
part.

Data manipulation
Oracle MySQL related data manipulation topics.
Reserved words

SQL object names like table and column names cannot be SQL reserved words in MySQL.

Solution

Table or column names which are MySQL reserved words must be renamed.

Outer joins

In Informix® SQL, outer tables can be defined in the FROM clause with the OUTER keyword:

SELECT ... FROM a, OUTER(b)
 WHERE a.key = b.akey

SELECT ... FROM a, OUTER(b,OUTER(c))
 WHERE a.key = b.akey AND b.key1 = c.bkey1
 AND b.key2 = c.bkey2

MySQL 3.23 supports the ANSI outer join syntax:

SELECT ... FROM cust LEFT OUTER JOIN order
 ON cust.key = order.custno
SELECT ...
 FROM cust LEFT OUTER JOIN order
 LEFT OUTER JOIN item
 ON order.key = item.ordno
 ON cust.key = order.custno
 WHERE order.cdate > current date

See the MySQL reference for a complete description of the syntax.

Solution

For better SQL portability, you should use the ANSI outer join syntax instead of the old Informix® OUTER
syntax.

The MySQL interface can convert most Informix® OUTER specifications to ANSI outer joins.

Prerequisites:

1. In the FROM clause, the main table must be the first item and the outer tables must figure from left to
right in the order of outer levels.

Example which does not work: "FROM OUTER(tab2), tab1".
2. The outer join in the WHERE part must use the table name as prefix.

Example: "WHERE tab1.col1 = tab2.col2".

Restrictions:

1. Additional conditions on outer table columns cannot be detected and therefore are not supported:

Example: "... FROM tab1, OUTER(tab2) WHERE tab1.col1 = tab2.col2 AND tab2.colx > 10".
2. Statements composed by 2 or more SELECT instructions using OUTERs are not supported.

Example: "SELECT ... UNION SELECT" or "SELECT ... WHERE col IN (SELECT...)"

Note:

SQL support | 639

1. Table aliases are detected in OUTER expressions.

OUTER example with table alias: "OUTER(tab1 alias1)".
2. In the outer join, <outer table>.<col> can be placed on both right or left side of the equal sign.

OUTER join example with table on the left: "WHERE outertab.col1 = maintab.col2 ".
3. Table names detection is not case-sensitive.

Example: "SELECT ... FROM tab1, TAB2 WHERE tab1.col1 = tab2.col2".
4. Temporary tables

are supported in OUTER specifications.

Transactions handling

Informix® and MySQL handle transactions in a similar manner.

Informix® native mode (non ANSI):

• Transactions are started with BEGIN WORK.
• Transactions are validated with COMMIT WORK.
• Transactions are canceled with ROLLBACK WORK.
• Savepoints can be set with SAVEPOINT name [UNIQUE].
• Transactions can be rolled back to a savepoint with ROLLBACK [WORK] TO SAVEPOINT [name].
• Savepoints can be released with RELEASE SAVEPOINT name.
• Statements executed outside of a transaction are automatically committed.
• DDL statements can be executed (and canceled) in transactions.

MySQL:

• Transactions are started with START TRANSACTION.
• Transactions are validated with COMMIT [WORK].
• Transactions are canceled with ROLLBACK [WORK].
• Savepoints can be placed with SAVEPOINT name.
• Transactions can be rolled back to a savepoint with ROLLBACK [WORK] TO [SAVEPOINT] name.
• Savepoints can be released with RELEASE SAVEPOINT name.
• Statements executed outside of a transaction are automatically committed.
• DDL statements can be executed (and canceled) in transactions.

Solution

Informix® transaction handling commands are automatically converted to MySQL instructions to start,
validate or cancel transactions.

MySQL does not support transactions by default. You must set the server system parameter
table_type=InnoDB.

Regarding the transaction control instructions, the BDL applications do not have to be modified in order to
work with MySQL, as long as you have a transaction manager installed with MySQL.

If you want to use savepoints, do not use the UNIQUE keyword in the savepoint declaration, always
specify the savepoint name in ROLLBACK TO SAVEPOINT, and do not drop savepoints with RELEASE
SAVEPOINT.

Temporary tables

Informix® temporary tables are created through the CREATE TEMP TABLE DDL instruction or through a
SELECT ... INTO TEMP statement. Temporary tables are automatically dropped when the SQL session
ends, but they can be dropped with the DROP TABLE command. There is no name conflict when several
users create temporary tables with the same name.

SQL support | 640

Informix® allows you to create indexes on temporary tables. No name conflict occurs when several users
create an index on a temporary table by using the same index identifier.

MySQL support temporary tables with the following syntax:

CREATE TEMPORARY TABLE tablename (coldef [,...])

and:

CREATE TEMPORARY TABLE tablename LIKE other-table

Solution

In BDL, Informix® temporary tables instructions are converted to generate native SQL Server temporary
tables.

Substrings in SQL

Informix® SQL statements can use subscripts on columns defined with the character data type:

SELECT ... FROM tab1 WHERE col1[2,3] = 'RO'
SELECT ... FROM tab1 WHERE col1[10] = 'R' -- Same as col1[10,10]
UPDATE tab1 SET col1[2,3]= 'RO' WHERE ...
SELECT ... FROM tab1 ORDER BY col1[1,3]

MySQL provides the SUBSTRING() function, to extract a substring from a string expression:

SELECT FROM tab1 WHERE SUBSTRING(col1,2,3) = 'RO'
SELECT SUBSTRING('Some text',6,3) ... -- Gives 'tex'

Solution

You must replace all Informix® col[x,y] expressions by SUBSTRING(col,x,y-x+1).

In UPDATE instructions, setting column values through subscripts will produce an error with MySQL:

UPDATE tab1 SET col1[2,3] = 'RO' WHERE ...

is converted to:

UPDATE tab1 SET SUBSTRING(col1,2,(3-2+1)) = 'RO' WHERE ...

Column subscripts in ORDER BY expressions are also converted and produce an error with MySQL:

SELECT ... FROM tab1 ORDER BY col1[1,3]

is converted to:

SELECT ... FROM tab1 ORDER BY SUBSTRING(col1,1,(3-1+1))

Database object name delimiters

Informix® identifies database object names with double quotes, while MySQL does not use the double
quotes as database object identifiers.

Solution

Check your programs for database object names having double quotes:

WHERE "tabname"."colname" = "string"

should be written as follows:

WHERE tabname.colname = 'string'

SQL support | 641

MATCHES and LIKE in SQL conditions

Informix® supports MATCHES and LIKE in SQL statements. MySQL supports the LIKE statement as in
Informix®, plus the ~ operators that are similar but different from the Informix® MATCHES operator.

MATCHES requires * and ? wildcard characters, and LIKE uses the % and _ wildcards was equivalents.

(col MATCHES 'Smi*' AND col NOT MATCHES 'R?x')
(col LIKE 'Smi%' AND col NOT LIKE 'R_x')

MATCHES allows brackets to specify a set of matching characters at a given position:

(col MATCHES '[Pp]aris')
(col MATCHES '[0-9][a-z]*')

The MySQL LIKE operator has no operator for [] brackets character ranges.

Solution

The database driver is able to translate Informix® MATCHES expressions to LIKE expressions, when no
[] bracket character ranges are used in the MATCHES operand.

However, for maximum portability, consider replacing the MATCHES expressions to LIKE expressions in
all SQL statements of your programs.

Avoid using CHAR(N) types for variable length character data (such as name, address).

See also: MATCHES and LIKE operators on page 438.

Syntax of UPDATE statements

Informix® allows a specific syntax for UPDATE statements:

UPDATE table SET (col-list) = (val-list)

or

UPDATE table SET table.* = myrecord.*

UPDATE table SET * = myrecord.*

Solution

Static UPDATE statements using this syntax are converted by the compiler to the standard form:

UPDATE table SET column = value [,...]

BDL programming
Oracle MySQL related programming topics.
Informix-specific SQL statements in BDL

The BDL compiler supports several Informix® specific SQL statements that have no meaning when using
MySQL:

• CREATE DATABASE
• DROP DATABASE
• START DATABASE (SE only)
• ROLLFORWARD DATABASE
• SET [BUFFERED] LOG
• CREATE TABLE with special options (storage, lock mode, etc.)

Solution

Review your BDL source and remove all static SQL statements that are Informix-specific.

SQL support | 642

INSERT cursors

Informix® supports insert cursors. An "insert cursor" is a special BDL cursor declared with an INSERT
statement instead of a SELECT statement. When this kind of cursor is open, you can use the PUT
instruction to add rows and the FLUSH instruction to insert the records into the database.

For Informix® database with transactions, OPEN, PUT and FLUSH instructions must be executed within a
transaction.

MySQL does not support insert cursors.

Solution

Insert cursors are emulated by the MySQL database interface.

Cursors WITH HOLD

Informix® closes opened cursors automatically when a transaction ends unless the WITH HOLD option is
used in the DECLARE instruction. In MySQL, opened cursors using SELECT statements without a FOR
UPDATE clause are not closed when a transaction ends. Actually, all MySQL cursors are 'WITH HOLD'
cursors unless the FOR UPDATE clause is used in the SELECT statement.

Cursors declared FOR UPDATE and using the WITH HOLD option cannot be supported with MySQL
because FOR UPDATE cursors are automatically closed by MySQL when the transaction ends.

Solution

BDL cursors that are not declared "WITH HOLD" are automatically closed by the database interface when
a COMMIT WORK or ROLLBACK WORK is performed.

Since MySQL automatically closes FOR UPDATE cursors when the transaction ends, opening cursors
declared FOR UPDATE and WITH HOLD option results in an SQL error; in the same conditions, this does
not normally appear with Informix®. Review the program logic in order to find another way to set locks.

SELECT FOR UPDATE

A lot of BDL programs use pessimistic locking in order to avoid several users editing the same rows at the
same time.

DECLARE cc CURSOR FOR
SELECT ... FROM tab WHERE ... FOR UPDATE
OPEN cc
FETCH cc <-- lock is acquired
...
CLOSE cc <-- lock is released

MySQL locking mechanism depends upon the transaction manager. The default locking granularity is per
table when you use the default non-transactional configuration. You must use the InnoDB Storage Engine
to get transactions and locking mechanisms.

SELECT ... FOR UPDATE is only supported since MySQL version 6.0. Locks are released at the end of
the transaction.

Solution

Check if the MySQL storage engine supports SELECT FOR UPDATE, otherwise review the program logic.

UPDATE/DELETE WHERE CURRENT OF

Informix® allows positioned UPDATEs and DELETEs with the "WHERE CURRENT OF cursor" clause, if
the cursor has been DECLARED with a SELECT ... FOR UPDATE statement.

SQL support | 643

Solution

WHERE CURRENT OF is not supported by MySQL; review your code for occurrences.

The LOAD and UNLOAD instructions

Informix® provides two SQL instructions to export / import data from / into a database table: The UNLOAD
instruction copies rows from a database table into a text file and the LOAD instructions insert rows from a
text file into a database table.

MySQL does not provide LOAD and UNLOAD instructions.

Solution

LOAD and UNLOAD instructions are supported.

SQL Interruption

With Informix®, it is possible to interrupt a long running query if the SQL INTERRUPT ON option.

MySQL provides the KILL QUERY command to interrupt a running query on the server, but the client
program must open a second connection to execyte this statement.

Solution

SQL interruption is supported with MySQL. The database driver opens a second connection to the server
and sends a KILL QUERY command, with the MySQL process id of the current connection.

Important: Opening a second connection does not work when using Unix sockets, connect to
MySQL with a host name and TCP port.

Scrollable Cursors

The Genero programming language supports scrollable cursors.

MySQL 6.0 does not support native scrollable cursors.

Solution

The MySQL database driver emulates scrollable cursors with temporary files.

See Scrollable cursors on page 422 for more details about scroll cursor emulation.

SQL adaptation guide for Oracle Database 11, 12

Installation (Runtime Configuration)
Oracle Database related installation topics.
Install Oracle and create a database - database configuration/design tasks

If you are tasked with installing and configuring the database, here is a list of steps to be taken:

1. Install the ORACLE database software on your computer.

2. Create and setup the Oracle instance and database. Consider creating a multitenant database when
using Oracle 12c and higher, to create several pluggable databases (PDB) in the same Oracle instance.

Specify the database character set when creating the database instance. If you plan to create a
database a multi-byte character set like UTF-8, consider using character length semantics.

3. Create a database context dedicated to your application.

According the Oracle version, define a db user / schema to hold application tables, or create a
pluggable database (starting with Oracle 12c).

a) With Oracle version 11g and lower, group application tables in a schema by creating a dedicated
database user.

SQL support | 644

Connect as system user with:

$ sqlplus / AS SYSDBA

and execute the following SQL command to create the db user:

CREATE USER appadmin IDENTIFIED BY password;

Grant privileges to the application administrator user:

GRANT CONNECT, RESOURCE, UNLIMITED TABLESPACE TO appadmin;

b) With Oracle version 12c and higher, group application tables in a pluggable database (PDB).

Connect as system user with:

$ sqlplus / AS SYSDBA

and create a pluggable database and its PDB administrator user. This is a basic PDB creation
example using Oracle Managed Files, consider planing the PDB creation with the person in charge
of Oracle database administration:

CREATE PLUGGABLE DATABASE mypdb
 ADMIN USER pdbadmin IDENTIFIED BY password ROLES = (DBA)
 DEFAULT TABLESPACE mypdb_01
 DATAFILE 'path_01' SIZE 250M AUTOEXTEND ON ;

For now the PDB is only mounted, it must be opened for regular usage:

ALTER PLUGGABLE DATABASE mypdb OPEN;

PDBs must be identified as separate database services (i.e. different from the CDB service). By
default Oracle creates a database service with the same name as the PDB. To access the PDB
through TNS, create the mypdb record in TNSNAMES.ORA file in addition to the default database
service (ORC*):

tnsname =
 (DESCRIPTION =
 (ADDRESS = (PROTOCOL = TCP)(HOST = myhost)(PORT = 1521))
 (CONNECT_DATA =
 (SERVER = DEDICATED)
 (SERVICE_NAME = mypdb)
)
)

By default when Oracle starts, the PDBs are mounted but are not open for regular usage. With
Oracle 12c, you can create a database trigger to open all PDBs automatically:

CREATE OR REPLACE TRIGGER open_pdbs
 AFTER STARTUP ON DATABASE
BEGIN
 EXECUTE IMMEDIATE 'ALTER PLUGGABLE DATABASE ALL OPEN';
END open_pdbs;
/

Re-connect as PDB administrator and create a user dedicated to application tables administration:

CONNECT pdbadmin/password@localhost/mypdb
CREATE USER appadmin IDENTIFIED BY password;

SQL support | 645

GRANT CONNECT, RESOURCE, UNLIMITED TABLESPACE TO appadmin;

4. If programs create temporary tables, you must define the type of temporary table emulation to be used.

a) If you plan to use the default temporary table emulation, setup your database for the TEMPTABS
tablespace usage.

See Using the default temporary table emulation on page 670 for more details.
b) If you plan to use the temporary table emulation based on Oracle global temporary tables, setup the

database to use the TEMPTABS schema/user.

See Using the global temporary table emulation on page 672 for more details.

For more details about temporay table emulations, see Temporary tables on page 670.

5. Create the application tables by connecting to the database context as the application administrator:

$ sqlplus appadmin/password@tnsname

Convert Informix® data types to Oracle data types. See issue data type Conversion Tables for more
details.

6. If you plan to use SERIAL emulation, you must choose a serial emulation method.

Select the best emulation technique that matches your needs. You need to prepare the database
according to the emulation type. For more details, see SERIAL data types on page 658.

Prepare the runtime environment - connecting to the database

1. In order to connect to ORACLE, you must have a database driver "dbmora" in FGLDIR/dbdrivers.

2. If you want to connect to a remote Oracle server from an application server, you must install the
ORACLE Client Software on your application server and configure this.

3. Make sure that the ORACLE client environment variables are properly set.

Check variables such as ORACLE_HOME (the path to the installation directory), ORACLE_SID (the
server identifier when connecting locally), etc. See the Oracle documentation for more details.

4. Verify the environment variable defining the search path for database client shared libraries (libclntsh.so
on UNIX™, OCI.DLL on Windows™)

ORACLE version Shared library environment setting

Oracle 10g and higher UNIX™: Add $ORACLE_HOME/lib to
LD_LIBRARY_PATH (or its equivalent).

Windows™: Add %ORACLE_HOME%\bin to
PATH.

5. Check the database client locale settings (NLS_LANG, NLS_DATE_FORMAT, etc).

The database client locale must match the locale used by the runtime system (LC_ALL, LANG).

6. If you are using the TNS protocol, verify if the ORACLE listener is started on the server.

7. To test the client environment settings, you can try to connect to the ORACLE server with the SQL*Plus
tool:

$ sqlplus username/password@service

8. Set up the fglprofile entries for database connections.

a) Set up fglprofile for the SERIAL emulation method.

The following entry defines the SERIAL emulation method. You can use the SEQUENCE based
trigger or the SERIALREG based trigger method:

dbi.database.dbname.ifxemul.datatype.serial.emulation = "(native|
regtable)"

SQL support | 646

The value 'native' selects the SEQUENCE based method, and the value
'regtable' selects the SERIALREG based method. This entry has no effect if
dbi.database.dbname.ifxemul.datatype.serial is set to 'false'.

The default is SERIAL emulation enabled with native method (SEQUENCE-based). See issue
SERIAL data types on page 658 for more details.

b) The "source" parameter defines the TNS name of the Oracle database.

dbi.database.dbname.source = "stock"

c) Define the database schema selection if needed.

The following entry defines the database schema to be used by the application. The database
interface automatically executes an "ALTER SESSION SET CURRENT_SCHEMA owner" instruction
to switch to a specific schema:

dbi.database.dbname.ora.schema = "name"

Here dbname identifies the database name used in the BDL program (DATABASE dbname) and
name is the schema name to be used in the ALTER SESSION instruction. If this entry is not defined,
no ALTER SESSION instruction is executed and the current schema defaults to the user's name.

d) Define pre-fetch parameters.

Oracle offers high performance by pre-fetching rows in memory. The pre-fetching parameters can be
tuned with the following entries:

dbi.database.dbname.ora.prefetch.rows = integer
dbi.database.dbname.ora.prefetch.memory = integer # in bytes

These values will be applied to all application cursors.

The interface pre-fetches rows up to the prefetch.rows limit unless the prefetch.memory limit
is reached, in which case the interface returns as many rows as will fit in a buffer of size
prefetch.memory. By default, pre-fetching is on and defaults to 10 rows; the memory parameter is
set to zero, so the memory size is not included in computing the number of rows to prefetch.

e) If needed, define a specific command to generate session identifiers with this FGLPROFILE setting:

dbi.database.dbname.ora.sid.command = "SELECT ..."

This unique session identifier will be used to create table names for temporary table emulation.

By default, the database driver will use "SELECT USERENV('SESSIONID') FROM DUAL".
f) If needed, define a specific command to generate session identifiers with this FGLPROFILE setting:

dbi.database.dbname.ora.sid.command = "SELECT ..."

This unique session identifier will be used to create table names for temporary table emulation.

By default, the database driver will use "SELECT USERENV('SESSIONID') FROM DUAL".
g) The default temporary table emulation uses regular permanent tables.

If this does not fit your needs, you can use GLOBAL TEMPORARY TABLES with this FGLPROFILE
setting:

dbi.database.dbname.ifxemul.temptables.emulation = "global"

SQL support | 647

Database concepts
Oracle Database related database concepts topics.
Database concepts

Informix® servers can handle multiple database entities. By default an ORACLE instance can only handle
one database entity. Starting with Oracle 12c, you can use a multi-tenant database to define several
pluggable databases.

ORACLE can manage multiple schemas, but by default other users must give the owner name as prefix to
the table name:

SELECT * FROM stores.customer

Solution 1: With Oracle 12c and higher

Oracle 12c introduced the multi-tenant database concept, where you can create several pluggable
databases in a root container. Consider using this feature, if you need to create several copies of the same
database entity, that can be accessed/seen as individual data sources.

Solution 2: With Oracle 10g and 11g

In an Oracle database, each user can manage his own database schema. You can dedicate a database
user to administer each occurrence of the application database.

Any user can select the current database schema with the following SQL command:

ALTER SESSION SET CURRENT_SCHEMA = "schema"

Using this instruction, any user can access the tables without giving the owner prefix as long as the table
owner has granted the privileges to access the tables.

You can make the database interface select the current schema automatically with the following fglprofile
entry:

dbi.database.dbname.schema = "schema"

When using multiple database schemas, it is recommended that you create them in separated tablespaces
to enable independent backups and keep logical sets of tables together. The simplest way is to define a
default tablespace when creating the schema owner:

 CREATE USER user IDENTIFIED BY password
 DEFAULT TABLESPACE deftablespace
 TEMPORARY TABLESPACE tmptablespace

Data storage concepts

An attempt should be made to preserve as much of the storage specification as possible when converting
from Informix® to ORACLE. Most important storage decisions made for Informix® database objects (like
initial sizes and physical placement) can be reused for the ORACLE database.

Storage concepts are quite similar in Informix® and in ORACLE, but the names are different.

This table compares Informix® storage concepts to ORACLE storage concepts:

Table 194: Physical units of storage

Informix® ORACLE

The largest unit of physical disk space is a "chunk",
which can be allocated either as a cooked file (I/
O is controlled by the OS) or as raw device (=UNIX
partition, I/O is controlled by the database engine).
A "dbspace" uses at least one "chunk" for storage.

One or more "data files" are created for each
"tablespace" to physically store the data of all
logical structures. Like Informix® "chunks", a "data
file" can be an OS file or a raw device.

SQL support | 648

Informix® ORACLE

You must add "chunks" to "dbspaces" in order to
increase the size of the logical unit of storage.

You can add "data files" to a "tablespace" in order
to increase the size of the logical unit of storage or
you can use the AUTOEXTEND option when using
OS files.

A "page" is the smallest physical unit of disk
storage that the engine uses to read from and write
to databases.

A "chunk" contains a certain number of "pages".

The size of a "page" must be equal to the operating
system's block size.

At the finest level of granularity, ORACLE stores
data in "data blocks" which size corresponds to a
multiple of the operating system's block size.

You set the "data block" size when creating the
database.

An "extent" consists of a collection of contiguous
"pages" that the engine uses to allocate both initial
and subsequent storage space for database tables.

When creating a table, you can specify the first
extent size and the size of future extents with the
EXTENT SIZE and NEXT EXTENT options.

For a single table, "extents" can be located in
different "chunks" of the same "dbspace".

An "extent" is a specific number of contiguous
"data blocks", obtained in a single allocation.

When creating a table, you can specify the first
extent size and the size of future extents with the
STORAGE() option.

For a single table, "extents" can be located in
different "data files" of the same "tablespace".

Table 195: Logical units of storage

Informix® ORACLE

A "table" is a logical unit of storage that contains
rows of data values.

Same concept as Informix®.

A "database" is a logical unit of storage that
contains table and index data. Each database also
contains a system catalog that tracks information
about database elements like tables, indexes,
stored procedures, integrity constraints and user
privileges.

Same concept as Informix®, but one ORACLE
instance can manage only one database, in the
meaning of Informix®.

Database tables are created in a specific
"dbspace", which defines a logical place to store
data.

If no dbspace is given when creating the table,
Informix® defaults to the current database dbspace.

Database tables are created in a specific
"tablespace", which defines a logical place to store
data.

If no tablespace is given when creating the table,
ORACLE defaults to the user's default tablespace.

The total disk space allocated for a table is the
"tblspace ", which includes "pages" allocated for
data, indexes, blobs, tracking page usage within
table extents.

Do not confuse the Informix® "tblspace" concept
and ORACLE "tablespaces".

A "segment" is a set of "extents" allocated for a
certain logical structure. There are four different
types of segments, including data segments,
index segments, rollback segments and temporary
segments.

SQL support | 649

Table 196: Other concepts related to storage

Informix® ORACLE

When initializing an Informix® engine, a "root
dbspace" is created to store information about all
databases, including storages information (chunks
used, other dbspaces, etc.)

Each ORACLE database has a "control file" that
records the physical structure of the database,
like the database name, location and names of
"data files" and "redo log" files, and time stamp of
database creation.

The "physical log" is a set of continuous disk
pages where the engine stores "before-images" of
data that has been modified during processing.

The "logical log" is a set of "logical-log files"
used to record logical operations during online
processing. All transaction information is stored in
the logical log files if a database has been created
with transaction log.

Informix® combines "physical log" and "logical
log" information when doing fast recovery. Saved
"logical logs" can be used to restore a database
from tape.

A "rollback segment" records the actions of
SQL transactions that could be rolled back, and it
records the data as it existed before an operation in
a transaction.

The "redo log files" hold all changes made to the
database, in case the database experiences an
instance failure.

Each database has at least two "redo log files".

Redo entries record data that can be used to
reconstruct all changes made to the database,
including the rollback segments stored in the
database buffers of the SGA. Therefore, the online
redo log also protects rollback data.

Data consistency and concurrency

Data consistency involves readers that want to access data currently modified by writers, and concurrency
data access involves several writers accessing the same data for modification. Locking granularity
defines the amount of data concerned when a lock is set (row, page, table, ...).

Informix®

Informix® uses a locking mechanism to handle data consistency and concurrency. When a process
changes database information with UPDATE, INSERT or DELETE, an exclusive lock is set on the
touched rows. The lock remains active until the end of the transaction. Statements performed outside
a transaction are treated as a transaction containing a single operation and therefore release the locks
immediately after execution. SELECT statements can set shared locks according to the isolation level. In
case of locking conflicts (for example, when two processes want to acquire an exclusive lock on the same
row for modification, or when a writer is trying to modify data protected by a shared lock), the behavior of a
process can be changed by setting the lock wait mode.

Control:

• Lock wait mode: SET LOCK MODE TO ...
• Isolation level: SET ISOLATION TO ...
• Locking granularity: CREATE TABLE ... LOCK MODE {PAGE|ROW}
• Explicit exclusive lock: SELECT ... FOR UPDATE

Defaults:

• The default isolation level is read committed.
• The default lock wait mode is "not wait".
• The default locking granularity is page.

SQL support | 650

ORACLE

When data is modified, exclusive locks are set and held until the end of the transaction. For data
consistency, ORACLE uses a multi-version consistency model: a copy of the original row is kept for
readers before performing writer modifications. Readers do not have to wait for writers as in Informix®. The
simplest way to think of Oracle's implementation of read consistency is to imagine each user accessing
a private copy of the database, hence the multi-version consistency model. The lock wait mode cannot
be changed session wide as in Informix®; the waiting behavior can be controlled with a SELECT FOR
UPDATE NOWAIT only. Locks are set at the row level in ORACLE, and this cannot be changed.

Control:

• Lock wait mode (on SELECT only): SELECT ... FOR UPDATE NOWAIT
• Isolation level: SET TRANSACTION ISOLATION LEVEL TO ...
• Explicit exclusive lock: SELECT ... FOR UPDATE [NOWAIT]

Defaults:

• The default isolation level is Read Committed (readers cannot see uncommitted data, no shared lock is
set when reading data).

The main difference between Informix® and ORACLE is that readers do not have to wait for writers in
ORACLE.

Solution

The SET ISOLATION TO ... Informix® syntax is replaced by ALTER SESSION SET ISOLATION_LEVEL ...
in Oracle. The next table shows the isolation level mappings done by the database driver:

Table 197: Isolation level mappings done by the Oracle database driver

SET ISOLATION instruction in program Native SQL command

SET ISOLATION TO DIRTY READ
ALTER SESSION SET ISOLATION_LEVEL =
READ COMMITTED

SET ISOLATION TO COMMITTED READ

[READ COMMITTED] [RETAIN UPDATE LOCKS]

ALTER SESSION SET ISOLATION_LEVEL =
READ COMMITTED

SET ISOLATION TO CURSOR STABILITY
ALTER SESSION SET ISOLATION_LEVEL =
READ COMMITTED

SET ISOLATION TO REPEATABLE READ
ALTER SESSION SET ISOLATION_LEVEL =
SERIALIZABLE

ORACLE does not provide a dirty read mode, the (session wide) lock wait mode cannot be changed
and the locking precision is always at the row level. Based on this, it is recommended that you work with
Informix® in the read committed isolation level (default), make processes wait for each other (lock mode
wait), and use the default page-level locking granularity.

See the Informix® and ORACLE documentation for more details about data consistency, concurrency and
locking mechanisms.

Transactions handling

Informix® and ORACLE handle transactions differently. The differences in the transactional models can
affect the program logic.

Informix® native mode (non ANSI):

• DDL statements can be executed (and canceled) in transactions.

SQL support | 651

• Transactions must be started with BEGIN WORK. Statements executed outside of a transaction are
automatically committed.

ORACLE:

• Beginnings of transactions are implicit; two transactions are delimited by COMMIT or ROLLBACK.
• The current transaction is automatically committed when a DDL statement is executed.

Transactions in stored procedures: avoid using transactions in stored procedures to allow the client
applications to handle transactions, in accordance with the transaction model.

Informix® version 11.50 introduces savepoints with the following instructions:

 SAVEPOINT name [UNIQUE]
 ROLLBACK [WORK] TO SAVEPOINT [name]]
 RELEASE SAVEPOINT name

ORACLE supports savepoints too. However, there are differences:

1. Savepoints cannot be declared as UNIQUE
2. Rollback must always specify the savepoint name
3. You cannot release savepoints (RELEASE SAVEPOINT)

Solution

Regarding transaction control instructions, BDL applications do not have to be modified in order to work
with ORACLE. The Informix® behavior is simulated with an autocommit mode in the ORACLE interface. A
switch to the explicit commit mode is done when a BEGIN WORK is performed by the BDL program.

When executing a DDL statement inside a transaction, ORACLE automatically commits the transaction.
Therefore, you must extract the DDL statements from transaction blocks.

If you want to use savepoints, do not use the UNIQUE keyword in the savepoint declaration, always
specify the savepoint name in ROLLBACK TO SAVEPOINT, and do not drop savepoints with RELEASE
SAVEPOINT.

See also SELECT FOR UPDATE

Database users

Until version 11.70.xC2, Informix® database users must be created at the operating system level and
must be members of the 'informix' group. Starting with 11.70.xC2, Informix® supports database-only
users with the CREATE USER instruction, as in most other db servers. Any database user must have
sufficient privileges to connect and use resources of the database; user rights are defined with the GRANT
command.

Oracle users can be authenticated in different manner: as database users, as operating system users or by
delegating authentication to another service, like Kerberos or LDAP.

Oracle users must be created in the database with a CREATE USER command, to create a user
authenticated by the database server:

CREATE USER username IDENTIFIED BY password

Oracle users can also be created with the "IDENTIFIED EXTERNALLY" clause:

CREATE USER username IDENTIFIED EXTERNALLY

In this case, ORACLE trusts the operating system to authenticate the user. See the Oracle documentation
for OS user authentication configuration, especially the OS_AUTHENT_PREFIX (empty string) and
REMOTE_OS_AUTHENT (true) server parameters. Note also that the Oracle user name needs to be
specified in uppercase in the CREATE USER instruction, and gets an additional prefix, according to the
operating system (domain name on Windows platforms)

SQL support | 652

In ORACLE, is it also possible to define users that are defined in a central LDAP directory, with the
"IDENTIFIED GLOBALLY" clause:

CREATE USER username IDENTIFIED GLOBALLY AS 'distinguished_name'

Global users are registered and managed by an external LDAP service, and are identified by the
distinguished name (DN).

Solution

Based on the application logic, you must create one or several ORACLE users. Use RDBMS or external
authentication according to your needs. If you want to keep the same Informix® OS users, you must
configure Oracle for OS authentication, and create users with the IDENTIFIED EXTERNALLY option.
Consider however to use real RDBMS users instead, and ask for login/password when connecting a
program to Oracle.

To connect to an Oracle server from a program, use the CONNECT TO instruction. When the USER/USING
clause is not specified, external authentication takes place. You can check if external or rdbms
authentication takes place with the FGLSQLDEBUG output (check the line containing "Credential flag").

Tester with Oracle 11.2 on a Linux system (the Linux user login name is "sf" in lowercase):

$ sqlplys / as sysdba

SQL> show parameter os_authent_prefix;
NAME TYPE VALUE
--
os_authent_prefix string

SQL> show parameter remote_os_authent;
NAME TYPE VALUE
--
remote_os_authent boolean TRUE

SQL> create user "SF" identified externally;
User created.

SQL> grant connect, resource to "SF";
Grant succeeded.

To connect to Oracle as an external user declared with IDENTIFIED EXTERNALLY (authenticated by the
operating system), do not specify any login/password. For example, omit the USER/USING clause in the
CONNECT TO instruction:

CONNECT TO "orc1fox+driver='dbmora'"

If no db login is specified, the Oracle driver will open a database session with the OCI_CRED_EXT
credentials.

An Oracle connection can also be established as SYSDBA or SYSOPER users. This is possible by
specifying the following strings after the user name in the USER clause of the CONNECT TO instruction:

Table 198: Oracle connection as SYSDBA or SYSOPER

String passed to USER clause after user name Effect as Oracle connection

/SYSDBA Connection will be established as SYSDBA user.

/SYSOPER Connection will be established as SYSOPER user.

SQL support | 653

Specify the user login before the /SYSDBA or /SYSOPER strings:

CONNECT TO "orc1fox+driver='dbmora'"
 USER "orauser/SYSDBA" USING "fourjs"

Setting privileges

Informix® and ORACLE user privileges management are quite similar.

ORACLE provides roles to group privileges which then can be assigned to users. Starting with version
7.20, Informix® provides roles also. But users must execute the SET ROLE statement in order to enable a
role. ORACLE users do not have to explicitly set a role, they are assigned to a default privilege domain (set
of roles). More than one role can be enabled at a time with ORACLE.

Informix® users must have at least the CONNECT privilege to access the database:

GRANT CONNECT TO (PUBLIC|username)

ORACLE users must have at least the CREATE SESSION privilege to access the database. This privilege
is part of the CONNECT role.

GRANT CONNECT TO (PUBLIC|username)

Informix® database privileges do NOT correspond exactly to ORACLE CONNECT, RESOURCE and DBA
roles. However, roles can be created with equivalent privileges.

Solution

Create a role which groups Informix® CONNECT privileges, and assign this role to the application users:

CREATE ROLE ifx_connect IDENTIFIED BY oracle;
GRANT CREATE SESSION, ALTER SESSION, CREATE ANY VIEW, ... TO ifx_connect;
GRANT ifx_connect TO user1;

Data dictionary
Oracle Database related data dictionary topics.
BOOLEAN data type

Informix® supports the BOOLEAN data type, which can store 't' or 'f' values. Genero BDL implements the
BOOLEAN data type in a different way: As in other programming languages, Genero BOOLEAN stores
integer values 1 or 0 (for TRUE or FALSE). The type was designed this way to assign the result of a
boolean expression to a BOOLEAN variable.

Oracle does not implement a native BOOLEAN type in SQL types. However, a BOOLEAN type exists in
the PL/SQL language.

Solution
The Oracle database interface converts the BOOLEAN type to CHAR(1) columns and stores '1' or '0'
values in the column.
CHARACTER data types

Informix® supports the following character data types:

• CHAR(N) with N<= 32767 bytes
• VARCHAR(N[,M]) with N<=255 bytes
• NCHAR(N) with N<= 32767 bytes
• NVARCHAR(N[,M]) with N<=255 bytes
• LVARCHAR(N), without the 255 bytes limit (max size varies according to IDS version)

In Informix®, both CHAR/VARCHAR and NCHAR/NVARCHAR data types can be used to store single-
byte or multibyte encoded character strings. The only difference between CHAR/VARCHAR and NCHAR/

SQL support | 654

NVARCHAR is for sorting: N[VAR]CHAR types use the collation order, while [VAR]CHAR types use the
byte order. The character set used to store strings in CHAR/VARCHAR/NCHAR/NVARCHAR columns is
defined by the DB_LOCALE environment variable. The character set used by applications is defined by
the CLIENT_LOCALE environment variable. Informix® uses Byte Length Semantics; the size N that you
specify in [VAR]CHAR(N) is expressed in bytes, not characters as in some other databases.

ORACLE provides the following types to store character strings:

• CHAR(N) with N specified in bytes or characters according to the length semantics (max size is 2000
bytes)

• VARCHAR2(N) with N specified in bytes or characters according to the length semantics (max size is
4000 bytes - standard type)

• NCHAR(N) with N specified in characters (max size is 2000 bytes)
• NVARCHAR2(N) with N specified characters (max size is 4000 bytes - standard type)

Note: Oracle 12c introduced extended character types with the MAX_STRING_SIZE=EXTENDED
server parameter. You can use VARCHAR2 types with a size up to 32Kb when
MAX_STRING_SIZE=EXTENDED is set. (You need to close/upgrade/alter/reopen your database,
see Oracle documentation for details). However, the storage technique used by Oracle 12c for such
a large string type is different from the native/standard VARCHAR2(4000) type. Large character
strings will be stored as LOBs. Extended character types are not supported by Genero's Oracle
database driver.

In ORACLE CHAR(N)/VARCHAR2(N) types, the size N can be specified in character or byte units,
according to length semantics settings.

When comparing CHAR and VARCHAR2 values in ORACLE, the trailing blanks are significant; this is not
the case when using Informix® VARCHARs. However, before comparing string values, ORACLE blank-
pads CHAR(N) data to the maximum length of both operands. As result, it looks like trailing blanks are no
significant in CHAR(N) comparison. For example, a column defined as CHAR(5) with the value 'abc '
(with 2 trailing blanks) will not be equal to 'abc', but when comparing (col = 'abc'), ORACLE will
add 2 blanks to the right operand and values will match. Blank padding does not occur for VARCHAR2()
data, as result, the expression (col = 'abc') will be false, if col VARCHAR2 does not exactly contain
the value 'abc'. For more details, see blank-padded and non-padded comparison semantics in ORACLE
documentation.

ORACLE treats empty strings like NULL values; Informix® doesn't. See issue Empty Character Strings for
more details.

With ORACLE, you can define a Database Character Set and a National Character Set: ORACLE uses
the Database Character Set to store string data in the CHAR/VARCHAR2 columns, and uses the National
Character Set for NCHAR/NVARCHAR2 columns.

Solution

Informix® CHAR(N) types must be mapped to ORACLE CHAR(N) types, and Informix® VARCHAR(N) or
LVARCHAR(N) columns must be mapped to ORACLE VARCHAR2(N).

Check that your database tables does not use CHAR, VARCHAR or LVARCHAR types with a length
exceeding the ORACLE limits of CHAR/VARCHAR2.

When using a multibyte character set (such as UTF-8), configure ORACLE to use character length
semantics, define CHAR/VARCHAR2 database columns with a size in character units, and use character
length semantics in BDL programs with FGL_LENGTH_SEMANTICS=CHAR.

When extracting a database schema from an ORACLE database, the schema extractor uses the
size of the column in characters, not the octet length. If you have created a CHAR(10 (characters))
column a in the database, the .sch file will get a size of 10, that will be interpreted according to
FGL_LENGTH_SEMANTICS as a number of bytes or characters.

SQL support | 655

The ORACLE client character set must correspond to the Genero runtime system locale (LANG/LC_ALL).
You can define the ORACLE client character set with the NLS_LANG environment variable.

See also the section about Localization.

NUMERIC data types

Informix® supports several data types to store numbers:

Table 199: Informix® numeric data types

Informix® data type Description

SMALLINT 16 bit signed integer

INT / INTEGER 32 bit signed integer

BIGINT 64 bit signed integer

INT8 64 bit signed integer (replaced by BIGINT)

DEC / DECIMAL Equivalent to DECIMAL(16)

DEC / DECIMAL(p) Floating-point decimal number

DEC / DECIMAL(p,s) Fixed-point decimal number

MONEY Equivalent to DECIMAL(16,2)

MONEY(p) Equivalent to DECIMAL(p,2)

MONEY(p,s) Equivalent to DECIMAL(p,s)

REAL / SMALLFLOAT 32-bit floating point decimal (C float)

DOUBLE PRECISION / FLOAT[(n)] 64-bit floating point decimal (C double)

ORACLE supports only one data type to store numbers:

Table 200: Oracle numeric data types

ORACLE data type Description

NUMBER(p,s) (1<=p<= 38, -84<=s<=127) Fixed point decimal numbers.

NUMBER(p) (1<=p<= 38) Integer numbers with a precision of p.

NUMBER(*,s)
Fixed point decimal numbers with a precision of 38
digits.

NUMBER Floating point decimals with a precision of 38 digits.

FLOAT(b) (1<=b<= 126)
Floating point numbers with a binary precision b.
This is a sub-type of NUMBER.

BINARY_FLOAT (since Oracle 10g) 32-bit floating point number.

BINARY_DOUBLE (since Oracle 10g) 64-bit floating point number.

ANSI types like SMALLINT, INTEGER are supported by ORACLE but will be converted to the native
NUMBER type.

When dividing INTEGERs or SMALLINTs, Informix® rounds the result (7 / 2 = 3), while ORACLE doesn't,
because it does not have a native integer data type (7 / 2 = 3.5)

SQL support | 656

Solution

We recommend that you use the following conversion rules:

Table 201: Conversion rules (Informix® vs. Oracle)

Informix® data type ORACLE data type (before 10g) ORACLE data type (since 10g)

DECIMAL(p,s), MONEY(p,s) NUMBER(p,s) NUMBER(p,s)

DECIMAL(p) FLOAT(p * 3.32193) FLOAT(p * 3.32193)

DECIMAL (not recommended) FLOAT FLOAT

SMALLINT NUMBER(5,0) NUMBER(5,0)

INTEGER NUMBER(10,0) NUMBER(10,0)

BIGINT NUMBER(20,0) NUMBER(20,0)

INT8 NUMBER(20,0) NUMBER(20,0)

SMALLFLOAT NUMBER BINARY_FLOAT

FLOAT[(p)] NUMBER BINARY_DOUBLE

Avoid dividing integers in SQL statements. If you do divide an integer, use the TRUNC() function with
ORACLE.

When creating a table directly in Oracle's sqlplus, using ANSI data types INTEGER, SMALLINT, you do
actually create columns with the NUMBER type, which has a precision of 38 digits. As result, it is not
possible to distinguish the original types used in CREATE TABLE, nor can it be possible to distinguish the
columns created explicitely with the native NUMBER type, in the next example, all column with be of type
NUMBER:

$ sqlplus ...
sql> CREATE TABLE mytab (
 col1 INTEGER,
 col2 SMALLINT,
 col3 NUMBER,
 ...

When extracting the database schema with fgldbsch, NUMBER, NUMBER(p>32) and NUMBER(p>32,s)
types will by default give an extraction error. However, these types can be converted to DECIMAL(32) and
DECIMAL(32,s) with the -cv option, by using the "B" character at positions 22 (for NUMBER) and 23 (for
NUMBER(p>32[,s])).

Note: When fetching a NUMBER[(p>32,s)] into a BDL DECIMAL(32[,s]) type, if the value stored in
the NUMBER column has more than 32 digits, it will be rounded to fit into a DECIMAL(32), or the
overflow error -1226 will occur when fetching into a DECIMAL(32,s). Note that it must be allowed
to fetch numeric expressions such as 1/3 (=0.333333333333....) into a DECIMAL(p,s), even if such
expression will produce more than 32 digits with Oracle.

When creating a table in a BDL program with DECIMAL(p), this type is converted to native Oracle
FLOAT(p*3.32193). When creating a table in a BDL program with DECIMAL (without precision) this type
is converted to native Oracle FLOAT. The native Oracle FLOAT[(p)] type can be extracted by fgldbsch,
but Oracle's FLOAT has a higher precision than the BDL DECIMAL type, which can lead to value rounding
when fetching rows.

With Oracle versions older than 10g, when creating tables in a BDL program with SMALLFLOAT or FLOAT
types, these types are mapped to NUMBER (The native Oracle FLOAT(b) type could have been used, but
this type is reserved to map DECIMAL(p) types). Starting with Oracle 10g, SMALLFLOAT or FLOAT types

SQL support | 657

will respectively be converted to BINARY_FLOAT and BINARY_DOUBLE native Oracle types, which can
be extracted by fgldbsch and mapped back to BDL SMALLFLOAT and FLOAT respectively in the .sch file.

Note: As a general recommendation, do not use DECIMAL[(p)] or SMALLFLOAT/FLOAT floating
point types in business applications. These types should only be used for scientific data storage.

DATE and DATETIME data types

Informix® provides two data types to store date and time information:

• DATE = for year, month and day storage.
• DATETIME = for year to fraction(1-5) storage.

ORACLE provides only the following data types to store date and time data:

• DATE = for year, month, day, hour, min, second storage.
• TIMESTAMP= for year, month, day, hour, min, second, fraction storage.

String representing date time information

Informix® is able to convert quoted strings to DATE / DATETIME data if the string contains matching
environment parameters (i.e. DBDATE, GL_DATETIME).

As in Informix®, ORACLE can convert quoted strings to DATE or TIMESTAMP data if the contents of the
string matches the NLS date format parameters (NLS_DATE_FORMAT, NLS_TIMESTAMP_FORMAT).
The TO_DATE() and TO_TIMESTAMP() SQL functions convert strings to dates or timestamps, according
to a given format. The TO_CHAR() SQL function allows you to convert dates or timestamps to strings,
according to a given format.

Date arithmetic

• Informix® supports date arithmetic on DATE and DATETIME values. The result of an arithmetic
expression involving dates/times is a number of days when only DATEs are used, and an INTERVAL
value if a DATETIME is used in the expression. In ORACLE, the result of an arithmetic expression
involving DATE values is a NUMBER of days; the decimal part is the fraction of the day (0.5 = 12H00,
2.00694444 = (2 + (10/1440)) = 2 days and 10 minutes). The result of an expression involving Oracle
TIMESTAMP data is of type INTERVAL. See the Oracle documentation for more details.

• Informix® automatically converts an integer to a date when the integer is used to set a value of a date
column. ORACLE does not support this automatic conversion.

• Complex DATETIME expressions (involving INTERVAL values for example) are Informix-specific and
have no equivalent in ORACLE.

• To compare dates that have time data in ORACLE, you can use the ROUND() or TRUNC() SQL
functions.

Solution

Storing BDL DATE values

The ORACLE DATE type is used to store Genero BDL DATE values. However, keep in mind that the
ORACLE DATE type stores also time (hh:mm:ss) information. The database interface automatically sets
the time part to midnight (00:00:00) during input/output operations.

You must be very careful since manual modifications of the database might set the time part, for example:

UPDATE table SET date_col = SYSDATE

(SYSDATE is equivalent to CURRENT YEAR TO SECOND in Informix®).

After this type of update, when columns have date values with a time part different from midnight, some
SELECT statements might not return all the expected rows.

SQL support | 658

When fetching ORACLE DATE values into Genero BDL DATE or DATETIME variables, the date and time
information is directly set for the individual date/time parts and the conversion is straight forward. But when
fetching an ORACLE DATE into a CHAR or VARCHAR variable, date to string conversion occurs. Since
ORACLE DATEs are equivalent of Informix® DATETIME YEAR TO SECOND, the values are by default
converted with the ISO format (YYYY-MM-DD hh:mm:ss), which is not the typical Informix® behavior where
DATEs are formatted according to the DBDATE environment variable. If your application fetches DATE
values into CHAR/VARCHAR and you want to get the DBDATE conversion, you must set the following
FGLPROFILE entry:

dbi.database.dbname.ora.date.ifxfetch = true

Storing BDL DATETIME values

Informix® DATETIME data with any precision from YEAR to SECOND is stored in ORACLE DATE
columns. The database interface makes the conversion automatically. Missing date or time parts default
to 1900-01-01 00:00:00. For example, when using a DATETIME HOUR TO MINUTE with the value of
"11:45", the ORACLE DATE value will be "1900-01-01 11:45:00".

Informix® DATETIME YEAR TO FRACTION(n) data is stored in ORACLE TIMESTAMP columns. The
TIMESTAMP data type can store up to 9 digits in the fractional part, and therefore can store all precisions
of Informix® DATETIME.

Important:

• Most arithmetic expressions involving dates (for example, to add or remove a number of
days from a date) will produce the same result with ORACLE. But keep in mind that ORACLE
evaluates date arithmetic expressions to NUMBERs (days.fraction) while Informix® evaluates
to INTEGERs when only DATEs are used in the expression, or to INTERVALs if at least one
DATETIME is used in the expression.

• Even if a configuration parameter exists to get the Informix® behavior, avoid to fetch date values
into CHAR or VARCHAR, to bypass the DBDATE / ISO format conversion difference with
ORACLE.

See also Date and time in SQL statements on page 432 for good SQL programming practices.

INTERVAL data type

Informix's INTERVAL data type stores a value that represents a span of time. INTERVAL types are divided
into two classes: year-month intervals and day-time intervals.

ORACLE supports the INTERVAL data type similar to Informix®, with two classes (YEAR TO MONTH and
DAY TO SECOND), but Oracle's INTERVAL cannot be defined with a precision different from these two
classes (for example, you cannot define an INTERVAL HOUR TO MINUTE in Oracle). The class DAY TO
SECOND(n) is equivalent to the Informix® INTERVAL class DAY TO FRACTION(n).

Solution

Informix® INTERVAL YEAR(n) TO MONTH data is stored in Oracle INTERVAL YEAR(n) TO MONTH
columns. These data types are equivalent.

Informix® INTERVAL DAY(n) TO FRACTION(p) data is stored in Oracle INTERVAL DAY(n) TO
SECOND(p) columns. These data types are equivalent.

Other Informix® INTERVAL types must be stored in CHAR() columns as with Oracle 8i, because the
high qualifier precision cannot be specified with Oracle INTERVALs. For example, Informix® INTERVAL
HOUR(5) TO MINUTE has no native equivalent in Oracle.

SERIAL data types

Informix® supports the SERIAL, SERIAL8 and BIGSERIAL data types to produce automatic integer
sequences. SERIAL is based on INTEGER (32 bit), while SERIAL8 and BIGSERIAL can store 64 bit
integers:

SQL support | 659

• The table column must be of type SERIAL, SERIAL8 or BIGSERIAL.
• To generate a new serial, no value or a zero value is specified in the INSERT statement:

INSERT INTO tab1 (c) VALUES ('aa')
INSERT INTO tab1 (k, c) VALUES (0, 'aa')

• After INSERT, the new SERIAL value is provided in SQLCA.SQLERRD[2], while the new SERIAL8 and
BIGSERIAL value must be fetched with a SELECT dbinfo('bigserial') query.

Informix® allows you to insert rows with a value different from zero for a serial column. Using an explicit
value will automatically increment the internal serial counter, to avoid conflicts with future INSERT
statements that are using a zero value:

CREATE TABLE tab (k SERIAL); -- internal counter = 0
INSERT INTO tab VALUES (0); -- internal counter = 1
INSERT INTO tab VALUES (10); -- internal counter = 10
INSERT INTO tab VALUES (0); -- internal counter = 11
DELETE FROM tab; -- internal counter = 11
INSERT INTO tab VALUES (0); -- internal counter = 12

ORACLE provides several solutions to implement auto-incremented columns:

1. Sequence objects can be created to generate numbers (CREATE SEQUENCE, seqname.currval).
2. Since ORACLE 12c, it is possible to reference a sequence in DEFAULT ON NULL column clauses.
3. Since ORACLE 12c, you can define columns with the GENERATE ... AS IDENTITY clause.

Details about ORACLE sequences:

• Sequences are totally detached from tables.
• The purpose of sequences is to provide unique integer numbers.
• Sequences are identified by a sequence name.
• To create a sequence, you must use the CREATE SEQUENCE statement. Once a sequence is

created, it is permanent (like a table).
• To get a new sequence value, you must use the nextval keyword, preceded by the name of the

sequence. The seqname.nextval expression can be used in INSERT statements:

INSERT INTO tab1 VALUES (tab1_seq.nextval, ...)

• To get the last generated number, ORACLE provides the currval keyword:

SELECT seqname.currval FROM DUAL

• In order to improve performance, ORACLE can handle a set of sequences in the cache (See CREATE
SEQUENCE syntax in the ORACLE documentation).

Solution

The SERIAL data type can be emulated with sequences used in INSERT triggers or with the DEFAULT ON
NULL clause.

The method used to emulate SERIAL types is defined by the ifxemul.datatype.serial.emulation
FGLPROFILE parameter:

dbi.database.dbname.ifxemul.datatype.serial.emulation =
{"native"|"native2"|"regtable"}

• native: uses insert triggers with sequences.
• native2: uses DEFAULT ON NULL column clause with sequences.
• regtable: uses insert triggers with the SERIALREG table.

The default emulation technique is "native".

This entry must be used in conjunction with:

SQL support | 660

dbi.database.dbname.ifxemul.datatype.serial = {true|false}

If the datatype.serial entry is set to false, the emulation method is ignored.

Important: The "regtable" emulation based on the SERIALREG table is provided to simplify the
migration from Informix. We strongly recommend that you use the native or native2 method
instead. The "native2" method is the fastest solution when inserting a large number of rows in the
database.

Notes common to all serial emulation modes

When a BDL program executes a CREATE [TEMP] TABLE with a SERIAL column, the Oracle interface
automatically creates the additional SQL objects (column clauses, sequences or triggers) to generate
numbers when an INSERT statement is performed.

Users executing programs which create tables with SERIAL columns must have the CONNECT and
RESOURCE roles assigned to create triggers and sequences.

SERIAL[(n)] data types are converted to NUMBER(10,0), while SERIAL8[(n)] and BIGSERIAL[(n)] are
replaced by NUMBER(20,0).

For SERIAL types, the SQLCA.SQLERRD[2] register is filled as expected with the last generated serial
value. However, since SQLCA.SQLERRD[2] is defined as an INTEGER, it cannot hold values from
BIGSERIAL (NUMBER(20,0)) auto-incremented columns. If you are using BIGSERIAL columns, you
must the fetch the sequence pseudo-column CURR_VAL or fetch the LASTSERIAL column from the
SERIALREG table, if used.

Check whether your application uses tables with a SERIAL column that can contain a NULL value:
INSERT statements using NULL for the SERIAL column will produce a new serial value:

INSERT INTO tab (col1, col2) VALUES (NULL, 'data')

This behavior is mandatory in order to support INSERT statements that do not use the serial column:

INSERT INTO tab (col2) VALUES ('data')

For SQL portability, INSERT statements should be reviewed to remove the SERIAL column from the list.
For example, the following statement:

INSERT INTO tab (col1,col2) VALUES (0, p_value)

can be converted to:

INSERT INTO tab (col2) VALUES (p_value)

Static SQL INSERT using records defined from the schema file must also be reviewed:

DEFINE rec LIKE tab.* INSERT INTO tab VALUES (rec.*) -- will use the serial
column

can be converted to:

INSERT INTO tab VALUES rec.* -- without braces, serial column is removed

When using the Static SQL INSERT or UPDATE syntax using record.* without braces, make sure that you
database schema files contain information about serials: This information can be lost when extracting the
schema from an Oracle database. See Database Schema for more details about the serial flag in column
type encoding (data type code must be 6).

If the "native" or "regtable" emulation is used, inserting rows with ORACLE tools like SQL*Plus
or SQL*Loader will execute the INSERT triggers. When loading big tables, you can disable
triggers with ALTER TRIGGER [ENABLE | DISABLE] (see ORACLE documentation for more
details). After reactivation of the serial triggers, the SERIAL sequences must be re-initialized (use
serialpkg.create_sequence('tab','col')) or re-execute the PL/SQL script containing the
sequence and trigger creation.

SQL support | 661

Using the native serial emulation

Each table having a SERIAL column needs an INSERT TRIGGER and a SEQUENCE dedicated to
SERIAL generation.

To know how to write those sequences and triggers, you can create a small Genero program that creates
a table with a SERIAL column. Set the FGLSQLDEBUG environment variable and run the program. The
debug output will show you the native SQL commands to create the sequence and the trigger.

For temporary tables, the trigger and the sequence are dropped automatically after a "DROP TABLE
temptab" or when the program disconnects from the database.

Using the native2 serial emulation

With this emulation, a SERIAL type is converted to a DEFAULT ON NULL clause using a sequence is
created automatically by the database driver, for example:

CREATE TABLE t1 (mykey SERIAL(100),)

is converted to:

CREATE SEQUENCE t1_srl INCREMENT BY 1 START WITH 100

CREATE TABLE t1 (mykey NUMBER(10,0) DEFAULT ON NULL t1_srl.nextval , ...

For temporary tables, the sequence is dropped automatically after a "DROP TABLE temptab" or when the
program disconnects from the database.

Note: The native2 serial emulation uses the DEFAULT ON NULL clause, supported by Oracle,
starting from version 12.1.

Using the regtable serial emulation

Each table having a SERIAL column needs an INSERT TRIGGER which uses the SERIALREG table
dedicated to SERIAL registration.

First, you must prepare the database and create the SERIALREG table as follows:

CREATE TABLE serialreg (
 tablename VARCHAR2(50) NOT NULL,
 lastserial NUMBER(20,0) NOT NULL,
 PRIMARY KEY (tablename)
)

Important: This table must exist in the database before creating the serial triggers.

In database creation scripts, all SERIAL[(n)] data types must be converted to INTEGER data types
and you must create one trigger for each table. SERIAL8/BIGSERIAL columns must be converted to
NUMBER(20,0). To know how to write those triggers, you can create a small Genero program that creates
a table with a SERIAL column. Set the FGLSQLDEBUG environment variable and run the program. The
debug output will show you the native trigger creation command.

The serial production is based on the SERIALREG table which registers the last generated number
for each table. If you delete rows of this table, sequences will restart at start values and you might get
duplicated values.

For temporary tables, the trigger is dropped automatically after a "DROP TABLE temptab" or when the
program disconnects from the database.

ROWIDs

When creating a table, Informix® automatically adds a ROWID integer column (applies to non-fragmented
tables only). The ROWID column is auto-filled with a unique number and can be used like a primary key to
access a given row.

SQL support | 662

ORACLE supports ROWIDs, but the data type is different from Informix® ROWIDs: ORACLE rowids are
CHAR(18).

For example: AAAA8mAALAAAAQkAAA

Since ORACLE rowids are physical addresses, they cannot be used as permanent row identifiers (After a
DELETE, an INSERT statement might reuse the physical place of the deleted row, to store the new row).

With Informix®, SQLCA.SQLERRD[6] contains the ROWID of the last INSERTed or UPDATEd row. This is
not supported with ORACLE because ORACLE ROWID are not INTEGERs.

Solution

If the BDL application uses Informix® rowids as primary keys, the program logic should be reviewed
in order to use the real primary keys (usually, serials which can be supported) or ORACLE rowids as
CHAR(18) (Informix® rowids will fit in this char data type).

If you cannot avoid the use of rowids, you must change the type of the variables which hold ROWID
values. Instead of using INTEGER, you must use CHAR(18). Informix® rowids (INTEGERs) will
automatically fit into a CHAR(18) variable.

All references to SQLCA.SQLERRD[6] must be removed because this variable will not contain the ROWID
of the last INSERTed or UPDATEd row when using the ORACLE interface.

The RAW data type

ORACLE supports the RAW data type to hold binary data. This data type is for example used to return
values from the SYS_GUID() SQL function.

Solution

The ORACLE RAW values can be converted to a character string in the hexadecimal notation.

When fetching rows from the database, the database driver will automatically convert ORACLE RAW
values to hexadecimal. On the other hand, when using SQL parameters, the database driver will convert
hexadecimal VARCHAR strings to binary data.

Since each byte is represented with two characters in the hexadecimal notation, you must define a
VARCHAR(N*2) variable to hold the values of a native RAW(N) column.

When extracting a database schema with the fgldbsch tool, the ORACLE RAW(N) type is converted to
VARCHAR2(N*2).

Large OBject (LOB) types

Informix® uses the TEXT and BYTE data types to store very large texts or images. ORACLE 8 provides
CLOB, BLOB, and BFILE data types. Columns of these types store a kind of pointer (lob locator). This
technique allows you to use more than one CLOB / BLOB / BFILE column per a table.

Solution

The ORACLE database interface can convert BDL TEXT data to CLOB and BYTE data to BLOB.

Genero TEXT/BYTE program variables have a limit of 2 gigabytes, make sure that the large object data
does not exceed this limit.

ORACLE BFILEs are not supported.

The ALTER TABLE instruction

Informix® and ORACLE have different implementations of the ALTER TABLE instruction. For example,
Informix® allows you to use multiple ADD clauses separated by commas. This is not supported by
ORACLE:

SQL support | 663

Informix®:

ALTER TABLE customer ADD(col1 INTEGER), ADD(col2 CHAR(20))

ORACLE:

ALTER TABLE customer ADD(col1 INTEGER, col2 CHAR(20))

Solution

No automatic conversion is done by the database interface. There is no real standard for this instruction
(that is, no common syntax for all database servers). Read the SQL documentation and review the SQL
scripts or the BDL programs in order to use the database server specific syntax for ALTER TABLE.

Constraints

Constraint naming syntax
Both Informix® and ORACLE support primary key, unique, foreign key, default and check constraints,
but the constraint naming syntax is different: ORACLE expects the "CONSTRAINT" keyword before the
constraint specification and Informix® expects it after.

UNIQUE constraint example

Table 202: UNIQUE constraint example (Informix® vs ORACLE)

Informix® ORACLE

CREATE TABLE emp (
 ...
 emp_code CHAR(10) UNIQUE
 CONSTRAINT pk_emp,

CREATE TABLE emp (
 ...
 emp_code CHAR(10)
 CONSTRAINT pk_emp UNIQUE,
 ...

Primary keys

Like Informix®, ORACLE creates an index to enforce PRIMARY KEY constraints (some RDBMS do not
create indexes for constraints). Using "CREATE UNIQUE INDEX" to define unique constraints is obsolete
(use primary keys or a secondary key instead).

Unique constraints

Like Informix®, ORACLE creates an index to enforce UNIQUE constraints (some RDBMS do not create
indexes for constraints).

When using a unique constraint, Informix® allows only one row with a NULL value, while ORACLE allows
several rows with NULL! Using CREATE UNIQUE INDEX is obsolete.

Foreign keys
Both Informix® and ORACLE support the ON DELETE CASCADE option. To defer constraint checking,
Informix® provides the SET CONSTRAINT command while ORACLE provides the ENABLE and DISABLE
clauses.

Check constraints

The check condition may be any valid expression that can be evaluated to TRUE or FALSE, including
functions and literals. You must verify that the expression is not Informix® specific.

SQL support | 664

Null constraints
Informix® and ORACLE support not null constraints, but Informix® does not allow you to give a name to
"NOT NULL" constraints.

Solution

Constraint naming syntax

The database interface does not convert constraint naming expressions when creating tables from BDL
programs. Review the database creation scripts to adapt the constraint naming clauses for ORACLE.

Triggers

Informix® and ORACLE provide triggers with similar features, but the trigger creation syntax and the
programming languages are totally different.

Informix® triggers define the stored procedures to be called when a database event occurs (before | after
insert | update | delete ...), while ORACLE triggers can hold a procedural block.

In ORACLE, triggers can be created with 'CREATE OR REPLACE' to keep privileges settings. With
Informix®, you must drop and create again.

ORACLE V8 provides an 'INSTEAD OF' option to completely replace the INSERT, UPDATE or DELETE
statement. This is provided to implement complex storage operations, for example on views that are
usually read-only (you can attach triggers to views).

ORACLE allows you to create multiple triggers on the same table for the same trigger event, but it does not
guarantee the execution order.

Solution

Informix® triggers must be converted to ORACLE triggers "by hand".

Stored procedures

Both Informix® and ORACLE support stored procedures, but the programming languages are totally
different: SPL for Informix® versus PL/SQL for ORACLE.

In ORACLE, stored procedures and functions can be implemented in packages (similar to BDL modules).
This is a powerful feature which enables structured procedural programming in the database. ORACLE
itself implements system tools with packages (dbms_sql, dbms_output, dbms_lock). Procedures, functions
and packages can be created with 'CREATE OR REPLACE' to keep privileges settings. With Informix®,
you must drop and create again.

ORACLE uses a different privilege context when using dynamic SQL in PL/SQL; roles are not effective.
Users must have direct privileges settings in order to perform DDL or DML operations inside dynamic SQL.

Solution

Informix® stored procedures must be converted to ORACLE "by hand".

Try to use ORACLE packages in order to group stored procedures into modules.

See SQL Programming for more details about executing stored procedures with ORACLE.

Name resolution of SQL objects

Informix® uses the following form to identify an SQL object:

database[@dbservername]:][{owner|"owner"}.]identifier

The ANSI convention is to use double quotes for identifier delimiters (For example: "tabname"."colname").

SQL support | 665

When using double-quoted identifiers, both Informix® and ORACLE become case sensitive. Unlike
Informix®, ORACLE database object names are stored in UPPERCASE in system catalogs. That means
that SELECT "col1" FROM "tab1" will produce an error because those objects are identified by "COL1" and
"TAB1" in ORACLE system catalogs.

in Informix® ANSI compliant databases:

• The table name must include "owner", unless the connected user is the owner of the database object.
• The database server shifts the owner name to uppercase letters before the statement executes, unless

the owner name is enclosed in double quotes.

With ORACLE, an object name takes the following form:

[(schema|"schema").](identifier|"identifier")[@database-link]

ORACLE has separate namespaces for different classes of objects (tables, views, triggers, indexes,
clusters).

Object names are limited to 30 chars in ORACLE.

An ORACLE database schema is owned by a user (usually, the application administrator) and this user
must create PUBLIC SYNONYMS to provide a global scope for his table names. PUBLIC SYNONYMS can
have the same name as the schema objects they point to.

Solution

As a general rule, to write portable SQL, you should only use simple database object names without any
database, server or owner qualifier and without quoted identifiers.

Check that you do not use single-quoted or double-quoted table names or column names in your source.
Those quotes must be removed because the database interface automatically converts double quotes to
single quotes, and ORACLE does not allow single quotes as database object name delimiters.

See also the issue Database Concepts

NULLs in indexed columns

Oracle btree indexes do not store null values, while Informix® btree indexes do. This means that if you
index a single column and select all the rows where that column is null, Informix® will do an indexed
read to fetch just those rows, but Oracle will do a sequential scan of all rows to find them. Having an
index unusable for "is null" criteria can also completely change the behavior and performance of more
complicated selects without causing a sequential scan.

Solution

Declare the indexed columns as NOT NULL with a default value and change the program logic. If you do
not want to change the programs, partitioning the table so that the nulls have a partition of their own will
reduce the sequential scan to just the nulls (un-indexed) partition, which is relatively fast.

Data type conversion table: Informix to Oracle

Table 203: Data type conversion table (Informix to Oracle)

Informix® data types
ORACLE data types

(Versions 10.x and higher)

CHAR(n)
CHAR(n)

(limit = 2000b!)

VARCHAR(n[,m]) VARCHAR2(n)

SQL support | 666

Informix® data types
ORACLE data types

(Versions 10.x and higher)

(limit = 4000b!)

LVARCHAR(n)
VARCHAR2(n)

(limit = 4000b!)

NCHAR(n)
NCHAR(n)

(limit = 2000b!)

NVARCHAR(n[,m])
NVARCHAR2(n)

(limit = 4000b!)

BOOLEAN CHAR(1)

SMALLINT NUMBER(5,0)

INT / INTEGER NUMBER(10,0)

BIGINT NUMBER(20,0)

INT8 NUMBER(20,0)

SERIAL[(start)] NUMBER(10,0) (see note 1)

BIGSERIAL[(start)] NUMBER(20,0) (see note 1)

SERIAL8[(start)] NUMBER(20,0) (see note 1)

DOUBLE PRECISION / FLOAT[(n)] BINARY_DOUBLE

REAL / SMALLFLOAT BINARY_FLOAT

NUMERIC / DEC / DECIMAL(p,s) NUMBER(p,s)

NUMERIC / DEC / DECIMAL(p) FLOAT(p*3.32193)

NUMERIC / DEC / DECIMAL (not recommended) FLOAT

MONEY(p,s) NUMBER(p,s)

MONEY(p) NUMBER(p,2)

MONEY NUMBER(16,2)

TEXT CLOB (using <= 2Gb!)

BYTE BLOB (using <= 2Gb!)

DATE DATE

DATETIME YEAR TO YEAR DATE

DATETIME YEAR TO MONTH DATE

DATETIME YEAR TO DAY DATE

DATETIME YEAR TO HOUR DATE

DATETIME YEAR TO MINUTE DATE

DATETIME YEAR TO SECOND DATE

SQL support | 667

Informix® data types
ORACLE data types

(Versions 10.x and higher)

DATETIME YEAR TO FRACTION(n) TIMESTAMP(n)

DATETIME MONTH TO MONTH DATE

DATETIME MONTH TO DAY DATE

DATETIME MONTH TO HOUR DATE

DATETIME MONTH TO MINUTE DATE

DATETIME MONTH TO SECOND DATE

DATETIME MONTH TO FRACTION(n) TIMESTAMP(n)

DATETIME DAY TO DAY DATE

DATETIME DAY TO HOUR DATE

DATETIME DAY TO MINUTE DATE

DATETIME DAY TO SECOND DATE

DATETIME DAY TO FRACTION(n) TIMESTAMP(n)

DATETIME HOUR TO HOUR DATE

DATETIME HOUR TO MINUTE DATE

DATETIME HOUR TO SECOND DATE

DATETIME HOUR TO FRACTION(n) TIMESTAMP(n)

DATETIME MINUTE TO MINUTE DATE

DATETIME MINUTE TO SECOND DATE

DATETIME MINUTE TO FRACTION(n) TIMESTAMP(n)

DATETIME SECOND TO SECOND DATE

DATETIME SECOND TO FRACTION(n) TIMESTAMP(n)

DATETIME FRACTION TO FRACTION(n) TIMESTAMP(n)

INTERVAL YEAR[(p)] TO MONTH INTERVAL YEAR[(p)] TO MONTH

INTERVAL MONTH[(p)] TO MONTH CHAR(50)

INTERVAL DAY[(p)] TO FRACTION(n) INTERVAL DAY[(p)] TO SECOND(n)

INTERVAL HOUR[(p)] TO HOUR CHAR(50)

INTERVAL HOUR[(p)] TO MINUTE CHAR(50)

INTERVAL HOUR[(p)] TO SECOND CHAR(50)

INTERVAL HOUR[(p)] TO FRACTION(n) CHAR(50)

INTERVAL MINUTE[(p)] TO MINUTE CHAR(50)

INTERVAL MINUTE[(p)] TO SECOND CHAR(50)

INTERVAL MINUTE[(p)] TO FRACTION(n) CHAR(50)

INTERVAL SECOND[(p)] TO SECOND CHAR(50)

SQL support | 668

Informix® data types
ORACLE data types

(Versions 10.x and higher)

INTERVAL SECOND[(p)] TO FRACTION(n) CHAR(50)

INTERVAL FRACTION[(p)] TO FRACTION CHAR(50)

Notes:

1. For more details about serial emulation, see SERIAL data types on page 658.

Data manipulation
Oracle Database related data manipulation topics.
Reserved words

SQL object names like table and column names cannot be SQL reserved words in ORACLE.

An example of a common word which is part of the ORACLE SQL grammar is 'level'.

Solution

Table or column names which are ORACLE reserved words must be renamed.

ORACLE reserved keywords are listed in the ORACLE documentation, or Oracle 8i provides the V
$RESERVED_WORDS view to track Oracle reserved words. All BDL application sources must be
verified. To check if a given keyword is used in a source, you can use UNIX™ 'grep' or 'awk' tools. Most
modifications can be done automatically with UNIX™ tools like 'sed' or 'awk'.

Outer joins

In Informix® SQL, outer joins can be defined in the FROM clause with the OUTER keyword:

SELECT ... FROM a, OUTER (b) WHERE a.key = b.akey

SELECT ... FROM a, OUTER(b,OUTER(c)) WHERE a.key = b.akey
 AND b.key1 = c.bkey1 AND b.key2 = c.bkey2

ORACLE expects the (+) operator in the join condition. You must set a (+) after columns of the tables
which must have NULL values when no record matches the condition:

SELECT ... FROM a, b WHERE a.key = b.key (+)

SELECT ... FROM a, b, c WHERE a.key = b.akey (+)>
 AND b.key1 = c.bkey1 (+)
 AND b.key2 = c.bkey2 (+)

When using additional conditions on outer tables, the (+) operator also has to be used. For example:

SELECT ... FROM a, OUTER(b) WHERE a.key = b.akey AND b.colx > 10

Must be converted to:

SELECT ... FROM a, b WHERE a.key = b.akey (+)
 AND b.colx (+) > 10

The ORACLE outer joins restriction:

In a query that performs outer joins of more than two pairs of tables, a single table can only be the NULL
generated table for one other table. The following case is not allowed: WHERE a.col = b.col (+) AND b.col
(+) = c.col

SQL support | 669

Solution

For better SQL portability, you should use the ANSI outer join syntax instead of the old Informix® OUTER
syntax.

The Oracle interface can convert most Informix® OUTER specifications to Oracle outer joins.

Prerequisites:

1. In the FROM clause, the main table must be the first item and the outer tables must be listed from left to
right in the order of outer levels.

Example which does not work: "FROM OUTER(tab2), tab1 "
2. The outer join in the WHERE clause must use the table name as prefix.

Example: "WHERE tab1.col1 = tab2.col2 "

Restrictions:

1. Statements composed by 2 or more SELECT instructions are not supported.

Example: "SELECT ... UNION SELECT" or "SELECT ... WHERE col IN (SELECT...)"

Note:

1. Table aliases are detected in OUTER expressions.

OUTER example with table alias: "OUTER(tab1 alias1)".
2. In the outer join, <outer table>.<col> can be placed on both right or left sides of the equal sign.

OUTER join example with table on the left: "WHERE outertab.col1 = maintab.col2 "
3. Table names detection is not case-sensitive.

Example: "SELECT ... FROM tab1, TAB2 WHERE tab1.col1 = tab2.col2"
4. Temporary tables are supported in OUTER specifications.

Transactions handling

Informix® and ORACLE handle transactions differently. The differences in the transactional models can
affect the program logic.

Informix® native mode (non ANSI):

• DDL statements can be executed (and canceled) in transactions.
• Transactions must be started with BEGIN WORK. Statements executed outside of a transaction are

automatically committed.

ORACLE:

• Beginnings of transactions are implicit; two transactions are delimited by COMMIT or ROLLBACK.
• The current transaction is automatically committed when a DDL statement is executed.

Transactions in stored procedures: avoid using transactions in stored procedures to allow the client
applications to handle transactions, in accordance with the transaction model.

Informix® version 11.50 introduces savepoints with the following instructions:

 SAVEPOINT name [UNIQUE]
 ROLLBACK [WORK] TO SAVEPOINT [name]]
 RELEASE SAVEPOINT name

ORACLE supports savepoints too. However, there are differences:

1. Savepoints cannot be declared as UNIQUE
2. Rollback must always specify the savepoint name
3. You cannot release savepoints (RELEASE SAVEPOINT)

SQL support | 670

Solution

Regarding transaction control instructions, BDL applications do not have to be modified in order to work
with ORACLE. The Informix® behavior is simulated with an autocommit mode in the ORACLE interface. A
switch to the explicit commit mode is done when a BEGIN WORK is performed by the BDL program.

When executing a DDL statement inside a transaction, ORACLE automatically commits the transaction.
Therefore, you must extract the DDL statements from transaction blocks.

If you want to use savepoints, do not use the UNIQUE keyword in the savepoint declaration, always
specify the savepoint name in ROLLBACK TO SAVEPOINT, and do not drop savepoints with RELEASE
SAVEPOINT.

See also SELECT FOR UPDATE

Temporary tables

Informix® temporary tables are created through the CREATE TEMP TABLE DDL instruction or through a
SELECT ... INTO TEMP statement. Temporary tables are automatically dropped when the SQL session
ends, but they can also be dropped with the DROP TABLE command. There is no name conflict when
several users create temporary tables with the same name.

BDL reports create a temporary table when the rows are not sorted externally (by the source SQL
statement).

Informix® allows you to create indexes on temporary tables. No name conflict occurs when several users
create an index on a temporary table by using the same index identifier.

ORACLE does not support temporary tables as Informix® does. ORACLE 8.1 provides GLOBAL
TEMPORARY TABLEs which are shared among processes (only data is temporary and local to a SQL
process). Informix® does not shared temp tables among SQL processes; each process can create its own
temp table without table name conflicts.

Solution

In accordance with some prerequisites, temporary tables creation in BDL programs can be supported by
the database interface.

The temporary table emulation can use regular tables or GLOBAL TEMPORARY tables. The way the
driver converts Informix® temp table statements to Oracle regular tables or global temporary tables is
driven by the following FGLPROFILE entry:

dbi.database.<dbname>.ifxemul.temptables.emulation = {"default" | "global" }

By default, the database driver uses regular tables (default emulation). This default emulation provides
maximum compatibility with Informix® temporary tables, but requires real table creation which can be
a significant overhead with Oracle. The global emulation uses native Oracle Global Temporary Tables,
requiring only one initial table creation and thus making programs run faster. However, the global
emulation mode has to be used carefully because of some limitations and constraints.

When creating a temporary table, you perform a Data Definition Language statement. Oracle automatically
commits the current transaction when executing a DDL statement. Therefore, you must avoid temp table
creation/destruction in transactions.

Using the default temporary table emulation

How does the default emulation work?

• Informix® CREATE TEMP TABLE and SELECT INTO TEMP statements are automatically converted to
ORACLE "CREATE TABLE". The name of the temporary table is converted to a unique table name.

• Tables are created in the current schema.

SQL support | 671

• Temporary tables are created with the option TABLESPACE TEMPTABS so that data is stored in
a dedicated tablespace named "TEMPTABS". Of course the TEMPTABS tablespace must exist
before running programs, otherwise temporary table creation will fail. You create a tablespace with the
CREATE TABLESPACE SQL command. Using a specific tablespace for temporary tables allows you to
specify storage options, for example to use a physical device which can be different from the disk drive
used for real data storage. Additionally, backups of permanent application tables can be performed
without the data of temporary tables.

• Starting with Oracle 10g, dropped tables are saved in the recycle bin by default. You may want to avoid
the recycle bin feature at the database level or session level with:

ALTER SYSTEM SET recyclebin = OFF scope=both

or:

ALTER SESSION SET recyclebin = OFF

• Once the temporary table has been created, all other SQL statements performed in the current SQL
session are parsed to convert the original table name to the corresponding unique table name.

• When the BDL program disconnects from the database (for example, when it ends or when a CLOSE
DATABASE instruction is executed), the tables which have not been removed with an explicit "DROP
TABLE" are automatically removed by the database interface. However, if the program crashes, the
tables will remain in the database, so you may need to cleanup the database from time to time.

Prerequisites when using the default emulation

• Application users must have sufficient privileges to create database tables in their own schema
(usually, "CONNECT" and "RESOURCE" roles).

• Create a dedicated tablespace named "TEMPTABS".

The TEMPTABS tablespace must be of type "permanent", as it will hold permanent tables used to
emulate Informix® temp tables.

Make sure it is big enough to hold all the data, and check for automatic extension.

When using a PDB, the TEMPTABS table space must be created in the context of the PDB.

CREATE TABLESPACE temptabs
 DATAFILE 'file-path' SIZE 1M AUTOEXTEND ON;
-- Give privileges on temptabs tablespace to other users
ALTER USER dbuser QUOTA UNLIMITED ON TEMPTABS;

For more details, see "CREATE TABLESPACE" in the Oracle documentation.

Limitations of the default emulation

• When using the default emulation, the real name of an emulated temporary table will have the following
format:

ttnumber_original_name

Where <number> is the Oracle AUDSID session id returned by:

SELECT USERENV('SESSIONID') FROM DUAL

As Oracle 9i and 10g table names can't exceed 30 characters in length, and since session ids are
persistent over server shutdown, you must pay attention to the names of your temporary tables. For
example, if you create a temp table with the name TEMP_CUSTOMER_INVOICES (22c) it leaves 30 -
(3 + 22) = 5 characters left for the session id, which gives a limit of 99999 sessions.

SQL support | 672

To workaround this limitation, you can provide your own SQL command to generate a unique session id
with the following FGLPROFILE entry:

dbi.database.dbname.ora.sid.command = "select ..."

As an example, you can use the SID column value from V$SESSION:

SELECT SID FROM V$SESSION WHERE AUDSID = USERENV('SESSIONID')

• You are not allowed to use the unique table name format in your own database schema. Make sure you
are not using table or column names with the following format:

ttnumber_original_name

• Tokens matching the original table names are converted to unique names in all SQL statements. Make
sure you are not using the temp table name for other database objects, like columns. The following
example illustrates this limitation:

CREATE TABLE tab1 (key INTEGER, tmp1 CHAR(20))
CREATE TEMP TABLE tmp1 (col1 INTEGER, col2 CHAR(20))
SELECT tmp1 FROM tab1 WHERE ...

Maintenance of default emulation

• If you want to list the tables created by a specific user, do this:

SELECT * FROM ALL_TABLES WHERE OWNER = 'user_name'

As with other database object names, the user name is stored in uppercase letters if it has been
created without using double quotes (create user scott ... = stored name is "SCOTT").

Creating indexes on temporary tables with default emulation

• Indexes created on temporary tables must have unique names also. The database interface detects
CREATE INDEX statements which are using temporary tables and converts the index name to unique
names.

• DROP INDEX statements are also detected to replace the original index name by the real name.

SERIALs in temporary table creation with default emulation

• You can use the SERIAL data type when creating a temporary table.

Sequences and triggers will be created in the current schema.

See issue about SERIALs for more details.

Using the global temporary table emulation

The global temporary table emulation is provided to get benefit of the Oracle GLOBAL TEMPORARY
TABLES, by sharing the same table structure with multiple SQL sessions, reducing the cost of the
CREATE TABLE statement execution. However, this emulation does not provide the same level of
Informix® compatibility as the default emulation, and must be used carefully.

How does the global emulation work?

• Informix® CREATE TEMP TABLE and SELECT INTO TEMP statements are automatically converted
to ORACLE "CREATE GLOBAL TEMPORARY TABLE". The original table name is kept, but it gets a
"TEMPTABS" schema prefix, to share the underlying table structure with other database users.

• The Global Temporary Tables are created with the "ON COMMIT PRESERVE ROWS" option, to keep
the rows in the table when a transaction ends.

SQL support | 673

• The Global Temporary Tables are created in a specific schema called "TEMPTABS". If the table
exists already, error ORA-00955 will just be ignored by the database driver. This allows to do several
CREATE TEMP TABLE statements in your programs with no SQL error, to emulate the Informix®

behavior. This works fine as long as the table name is unique for a given structure (column count and
data types must match).

• Once the Global Temporary Table has been created, all other SQL statements performed in the current
SQL session are parsed to convert the original table name to TEMPTABS.original-tablename.

• When doing a DROP TABLE temp-table statement in the program, the database driver converts it to a
DELETE statement, to remove all data added by the current session. A next CREATE TEMP TABLE or
SELECT INTO TEMP will fail with error ORA-00955 but since this error is ignored, it will be transparent
for the program. We can't use TRUNCATE TABLE because that would required at least DROP ANY
TABLE privileges for all users.

• When the BDL program disconnects from the database (for example, when it ends or when a CLOSE
DATABASE instruction is executed), the tables that have not been dropped by the program with an
explicit DROP TABLE statement will be automatically cleaned by Oracle.

Prerequisites when using the global emulation

• You must create a database user (schema) dedicated to this emulation, with the name "TEMPTABS":

CREATE USER temptabs IDENTIFIED BY pswd;

• All database users must have sufficient privileges to use Global Temporary Tables in the TEMPTABS
schema: If you want programs to create Global Temporary Table on the fly, you must grant a CREATE
ANY TABLE + CREATE ANY INDEX system privilege to all users. But this means that all users
will be able to create/drop tables in any schema (Here Oracle (10g) is missing some fine-grained
system privilege to create/drop tables in a particular schema). You better "prepare" the database by
creating the Global Temporary Table with the TEMPTABS user (do not forget to specify ON COMMIT
PRESERVE ROWS option), and give INSERT, UPDATE, DELETE and SELECT object privileges to
PUBLIC, for example:

CREATE GLOBAL TEMPORARY TABLE temptabs.mytable
 (k INT PRIMARY KEY, c CHAR(10)) ON COMMIT PRESERVE ROWS;
CREATE UNIQUE INDEX temptabs.ix1 ON temptabs.mytable (c);
GRANT SELECT, UPDATE, INSERT, DELETE ON temptabs.mytable TO PUBLIC;

For testing purpose, consider using a user with DBA privileges, to simplify the configuration.

Limitations of the global emulation

• Global Temporary Tables are shared by multiple users/sessions. In order to have the global emulation
working properly with your application, each temporary table name must be unique for a given table
structure, for all programs. You must for example as tmp1. It is recommended to use table names as
follows:

CREATE TEMP TABLE custinfo_1 (
 cust_id INTEGER,
 cust_name VARCHAR(50)
);
CREATE TEMP TABLE custinfo_2 (
 cust_id INTEGER,
 cust_name VARCHAR(50),
 cust_addr VARCHAR(200)
);

CREATE TEMP TABLE custinfo_2 (
 cust_id INTEGER,
 cust_name VARCHAR(50),

SQL support | 674

 cust_addr VARCHAR(200)
);

• Tokens matching the original table names are converted to unique names in all SQL statements. Make
sure you are not using the temp table name for other database objects, like columns. The following
example illustrates this limitation:

CREATE TABLE tab1 (key INTEGER, tmp1 CHAR(20));
CREATE TEMP TABLE tmp1 (col1 INTEGER, col2 CHAR(20));
SELECT tmp1 FROM tab1 WHERE ...

Creating indexes on temporary tables with global emulation

• Indexes created on temporary tables get also the TEMPTABS schema prefix.
• When executing a DROP INDEX statement on a temporary table in a program, the database driver just

ignores the statement.

SERIALs in temporary table creation with global emulation

• You can use the SERIAL data type when creating a temporary table.

Sequences and triggers will be created in the TEMPTABS schema too.

See issue about SERIALs for more details.

Substrings in SQL

Informix® SQL statements can use subscripts on columns defined with the character data type:

SELECT ... FROM tab1 WHERE col1[2,3] = 'RO'
SELECT ... FROM tab1 WHERE col1[10] = 'R' -- Same as col1[10,10]
UPDATE tab1 SET col1[2,3] = 'RO' WHERE ...
SELECT ... FROM tab1 ORDER BY col1[1,3]

ORACLE provides the SUBSTR() function, to extract a substring from a string expression:

SELECT FROM tab1 WHERE SUBSTR(col1,2,2) = 'RO'
SELECT SUBSTR('Some text',6,3)FROM DUAL -- Gives 'tex'

Solution

You must replace all Informix® col[x,y] expressions by SUBSTR(col,x,y-x+1).

In UPDATE instructions, setting column values through subscripts will produce an error with ORACLE:

UPDATE tab1 SET col1[2,3]= 'RO' WHERE ...

is converted to:

UPDATE tab1 SET SUBSTR(col1,2,3-2+1)= 'RO' WHERE ...

The LENGTH() function

Informix® provides the LENGTH() function:

SELECT LENGTH("aaa"), LENGTH(col1) FROM table

Oracle has a equivalent function with the same name, but there is some difference:

Informix® does not count the trailing blanks for CHAR or VARCHAR expressions, while Oracle counts the
trailing blanks.

SQL support | 675

With the Oracle LENGTH function, when using a CHAR column, values are always blank padded, so
the function returns the size of the CHAR column. When using a VAR CHAR column, trailing blanks are
significant, and the function returns the number of characters, including trailing blanks.

The Informix® LENGTH() function returns 0 when the given string is empty. That means, LENGTH('') is 0.

Since ORACLE handles empty strings ('') as NULL values, writing "LENGTH('')" is equivalent to
"LENGTH(NULL)". In this case, the function returns NULL.

Solution

The ORACLE database interface cannot simulate the behavior of the Informix® LENGTH() function.

You must check if the trailing blanks are significant when using the LENGTH() function.

If you want to count the number of character by ignoring the trailing blanks, you must use the RTRIM()
function:

SELECT LENGTH(RTRIM(col1)) FROM table

SQL conditions which verify that the result of LENGTH() is greater that a given number do not have to be
changed, because the expression evaluates to false if the given string is empty (NULL>n):

SELECT * FROM x WHERE LENGTH(col)>0

Only SQL conditions that compare the result of LENGTH() to zero will not work if the column is NULL. You
must check your BDL code for such conditions:

SELECT * FROM x WHERE LENGTH(col)=0

In this case, you must add a test to verify if the column is null:

SELECT * FROM x WHERE (LENGTH(col)=0 OR col IS NULL)

In addition, when retrieving the result of a LENGTH() expression into a BDL variable, you must check that
the variable is not NULL.

In ORACLE, you can use the NVL() function in order to get a non-null value:

SELECT * FROM x WHERE NVL(LENGTH(c),0)=0

Informix® Dynamic Server 7.30 supports the NVL() function, as in ORACLE. You can write the same SQL
for both Informix® 7.30 and ORACLE, as shown in this example.

If the Informix® version supports stored procedures, you can create the following stored procedure in the
Informix® database in order to use NVL() expressions:

create procedure nvl(val char(512), def char(512))
 returning char(512);
 if val is null then return def;
 else return val;
 end if;
end procedure;

With this stored procedure, you can write NVL() expressions like NVL(LENGTH(c),0). This should work in
almost all cases and provides upward compatibility with Informix® Dynamic Server 7.30.

Empty character strings

Informix® SQL and ORACLE SQL handle empty quoted strings differently. ORACLE SQL does not
distinguish between '' and NULL, while Informix® SQL treats'' (or "") as a string with a length of zero.

SQL support | 676

Using literal string values that are empty ('') for INSERT or UPDATE statements will result in the storage of
NULLs with ORACLE, while Informix® would store the value as a string with a length of zero:

insert into tab1 (col1, col2) values (NULL, '')

Using the comparison expression (col='') with ORACLE has no meaning because an empty string is
equivalent to NULL; (col=NULL) expressions will always evaluate to FALSE because this is not a correct
expression: The expression should be (col IS NULL).

select * from tab1 where col2 IS NULL

With Informix® 4GL and Genero BDL, when setting a variable with an empty string constant, it is
automatically set to a NULL value. When using one or more space characters, the value is set to one
space character:

define x char(10)
let x = ""
if x is null then -- evaluates to TRUE
let x = " "
if x = " " then -- evaluates to TRUE

Solution

The ORACLE database interface cannot automatically convert comparison expressions like (col="") to (col
IS NULL) because this would require an SQL grammar parser. The interface could convert expressions like
(col=""), but it would do this for the whole SQL statement:

UPDATE tab1 SET col1 = "" WHERE col2 = ""

would be converted to an incorrect SQL statement:

UPDATE tab1 SET col1 IS NULL WHERE col2 IS NULL

To increase portability, you should avoid the usage of literal string values with a length of zero in SQL
statements; this would resolve storage and boolean expressions evaluation differences between Informix®

and ORACLE.

NULL or program variables can be used instead. Program variables set with empty strings (let x="")are
automatically converted to NULL by BDL and therefore are stored as NULL when using both Informix® or
ORACLE databases.

String delimiters and object names

The ANSI string delimiter character is the single quote ('string'). Double quotes are used to delimit
database object names ("object-name").

Example: WHERE "tabname"."colname" = 'a string value'

Informix® allows double quotes as string delimiters, but ORACLE doesn't. This is important, since many
BDL programs use that character to delimit the strings in SQL commands.

This problem concerns only double quotes within SQL statements. Double quotes used in pure BDL string
expressions are not subject to SQL compatibility problems.

Solution

The ORACLE database interface can automatically replace all double quotes by single quotes.

SQL support | 677

Escaped string delimiters can be used inside strings like the following:

'This is a single quote: '''
'This is a single quote: \''
"This is a double quote: """
"This is a double quote: \""

Database object names cannot be delimited by double quotes because the database interface cannot
determine the difference between a database object name and a quoted string ! For example, if the
program executes the SQL statement:

WHERE "tabname"."colname"= "a string value"

replacing all double quotes by single quotes would produce:

WHERE 'tabname'.'colname' = 'a string value'

This would produce an error since 'tabname'.'colname' is not allowed by ORACLE.

Although double quotes are replaced automatically in SQL statements, you should use only single quotes
to enforce portability.

Getting one row with SELECT

With Informix®, you must use the system table with a condition on the table id:

SELECT user FROM systables WHERE tabid=1

Oracle provides the DUAL table to generate one row only.

SELECT user FROM DUAL

Solution

Check the BDL sources for "FROM systables WHERE tabid=1" and use dynamic SQL to resolve this
problem.

MATCHES and LIKE in SQL conditions

Informix® supports MATCHES and LIKE in SQL statements, while ORACLE supports the LIKE statement
only.

MATCHES requires * and ? wildcard characters, and LIKE uses the % and _ wildcards was equivalents.

(col MATCHES 'Smi*' AND col NOT MATCHES 'R?x')
(col LIKE 'Smi%' AND col NOT LIKE 'R_x')

MATCHES allows you to use brackets to specify a set of matching characters at a given position:

(col MATCHES '[Pp]aris')
(col MATCHES '[0-9][a-z]*')

The LIKE operator has no operator for [] brackets character ranges.

With ORACLE, columns defined as CHAR(N) are blank padded, and trailing blanks as significant in the
LIKE expressions. As result, with a CHAR(5) value such as 'abc ' (with 2 trailing blanks), the expression
(colname LIKE 'ab_') will not match. To workaround this behavior, you can do (RTRIM(colname)
LIKE 'pattern'). However, consider adding the condition AND (colname LIKE 'patten%') to
force the DB server to optimize the query of the column is indexed. The CONSTRUCT instruction uses this
technique when the entered criteria does not end with a * star wildcard.

SQL support | 678

Solution

The database driver is able to translate Informix® MATCHES expressions to LIKE expressions, when no
[] bracket character ranges are used in the MATCHES operand.

However, for maximum portability, consider replacing the MATCHES expressions to LIKE expressions in
all SQL statements of your programs.

Avoid using CHAR(N) types for variable length character data (such as name, address).

See also: MATCHES and LIKE operators on page 438.

SQL functions

Almost all Informix® functions and SQL constants have a different name or behavior in ORACLE.

Here is a comparison list of functions and constants:

Table 204: SQL functions and constants (Informix® vs. Oracle)

Informix® ORACLE

today trunc(sysdate)

current year to second sysdate

day(value) to_number(to_char(value, 'dd'))

extend(dtvalue, first to last)
to_date(nvl(to_char(dtvalue, 'fmt-mask'),
'19000101000000'), 'fmt-mask')

mdy(m,d,y)
to_date(to_char(m,'09') || to_char(d,'09') ||

to_char(y,'0009'), 'MMDDYYYY')

month(date) to_number(to_char(date, 'mm'))

weekday(date) to_number(to_char(date, 'd')) -1

year(date) to_number(to_char(date, 'yyyy'))

date("string" | integer) No equivalent - Depends from DBDATE in IFX

user
user ! Uppercase/lowercase: See The User
Constant

trim([leading | trailing | both "char" FROM] "string") ltrim() and rtrim()

length(c)
length(c) ! Different behavior: See The Length
Function

pow(x,y) power(x,y)

Solution

You must review the SQL statements using TODAY / CURRENT / EXTEND expressions.

You can define stored functions in the ORACLE database, to simulate Informix® functions. This works only
for functions that are not already implemented by ORACLE:

create or replace function month(adate in date)
 return number
is
 v_month number;
begin
 v_month:= to_number(to_char(adate, 'mm'));

SQL support | 679

 return (v_month);
end month;

Querying system catalog tables

As in Informix®, ORACLE provides system catalog tables (actually, system views). But the table names
and their structure are quite different.

Solution

No automatic conversion of Informix® system tables is provided by the database interface.

Syntax of UPDATE statements

Informix® allows a specific syntax for UPDATE statements:

UPDATE table SET (<col-list>) = (<val-list>)

or

UPDATE table SET table.* = myrecord.*

UPDATE table SET * = myrecord.*

Solution

Static UPDATE statements using this syntax are converted by the compiler to the standard form:

UPDATE table SET column=value [,...]
The USER constant

Both Informix® and ORACLE provide the USER constant, which identifies the current user connected to
the database server.

Informix®:

SELECT USER FROM systables WHERE tabid=1

Oracle:

SELECT USER FROM DUAL

However, there is a difference:

• Informix® returns the user identifier as defined in the operating system, where it can be case-sensitive
(UNIX™) or not (NT).

• ORACLE returns the user identifier which is stored in the database. By default ORACLE converts the
user name to uppercase letters, if you do not put the user name in double quotes when creating it.

This is important if your application stores user names in database records (for example, to audit data
modifications). You can, for example, connect to ORACLE with the name 'scott', and perform the following
SQL operations:

(1) INSERT INTO mytab (creator, comment)
 VALUES(USER, 'example');
(2) SELECT * FROM mytab
 WHERE creator = 'scott';

The first command inserts 'SCOTT' (in uppercase letters) in the creator column. The second statement will
not find the row.

SQL support | 680

Solution

When creating a user in ORACLE, you can put double quotes around the user name in order to force
ORACLE to store the given user identifier as is:

CREATE USER "username" IDENTIFIED BY pswd

To verify the user names defined in the ORACLE database, connect as SYSTEM and list the records of the
ALL_USERS table as follows:

SELECT * FROM ALL_USERS;

USERNAME USER_ID CREATED
--
SYS 0 02-OCT-98
SYSTEM 5 02-OCT-98
DBSNMP 17 02-OCT-98
FBDL 20 03-OCT-98
Paul 21 03-OCT-98

The GROUP BY clause

Informix® allows you to use column numbers in the GROUP BY clause

SELECT ord_date, sum(ord_amount) FROM order GROUP BY 1

Oracle does not support column numbers in the GROUP BY clause.

Solution

Use column names instead:

SELECT ord_date, sum(ord_amount) FROM order GROUP BY ord_date

The star (asterisk) in SELECT statements

Informix® allows you to use the star character in the select list along with other expressions:

SELECT col1, * FROM tab1 ...

Oracle does not support this. You must use the table name as a prefix to the star:

SELECT col1, tab1.* FROM tab1 ...

Solution

Always use the table name before the star.

BDL programming
Oracle Database related programming topics.
Handling SQL errors when preparing statements

The ORACLE interface is implemented with the ORACLE Call Interface (OCI). This library does not provide
a way to send SQL statements to the database server during the BDL PREPARE instruction, as in the
Informix® interface. The statement is sent to the server only when opening the cursors or when executing
the statement.

Therefore, when preparing an SQL statement with the BDL PREPARE instruction, no SQL errors can be
returned if the statement has syntax errors, or if a column or a table name does not exist in the database.
However, an SQL error will occur after the OPEN or EXECUTE instructions.

SQL support | 681

Solution

Make sure your BDL programs do not test the STATUS or SQLCA.SQLCODE variable just after
PREPARE instructions.

Change the program logic in order to handle the SQL errors when opening the cursors (OPEN) or when
executing SQL statements (EXECUTE).

Informix® specific-SQL statements in BDL

The BDL compiler supports several Informix-specific SQL statements that have no meaning when using
ORACLE:

• CREATE DATABASE
• DROP DATABASE
• START DATABASE (SE only)
• ROLLFORWARD DATABASE
• SET [BUFFERED] LOG
• CREATE TABLE with special options (storage, lock mode, etc.)

Solution

Review your BDL source and remove all static SQL statements which are Informix® specific.

INSERT cursors

Informix® supports insert cursors. An "insert cursor" is a special BDL cursor declared with an INSERT
statement instead of a SELECT statement. When this kind of cursor is open, you can use the PUT
instruction to add rows and the FLUSH instruction to insert the records into the database.

For Informix® database with transactions, OPEN, PUT and FLUSH instructions must be executed within a
transaction.

ORACLE does not support insert cursors.

Solution

Insert cursors are emulated by the ORACLE database interface.

Cursors WITH HOLD

Informix® closes opened cursors automatically when a transaction ends unless the WITH HOLD option is
used in the DECLARE instruction. In ORACLE, opened cursors using SELECT statements without a FOR
UPDATE clause are not closed when a transaction ends. Actually, all ORACLE cursors are 'WITH HOLD'
cursors unless the FOR UPDATE clause is used in the SELECT statement.

Solution

BDL cursors that are not declared "WITH HOLD" are automatically closed by the database interface when
a COMMIT WORK or ROLLBACK WORK is performed.

Since ORACLE automatically closes FOR UPDATE cursors when the transaction ends, opening cursors
declared FOR UPDATE and WITH HOLD results in an SQL error that does not normally appear with
Informix® under the same conditions. Review the program logic in order to find another way to set locks.

SELECT FOR UPDATE

A lot of BDL programs use pessimistic locking in order to prevent several users editing the same rows at
the same time.

DECLARE cc CURSOR FOR
SELECT ... FROM tab WHERE ... FOR UPDATE
OPEN cc

SQL support | 682

FETCH cc <-- lock is acquired
...
CLOSE cc <-- lock is released

• The row must be fetched in order to set the lock.
• If the cursor is local to a transaction, the lock is released when the transaction ends. If the cursor is

declared "WITH HOLD", the lock is released when the cursor is closed.

ORACLE allows individual and exclusive row locking with:

SELECT ... FOR UPDATE [OF col-list]

• A lock is acquired for each selected row when the cursor is opened, before the first fetch.
• Cursors using SELECT ... FOR UPDATE are automatically closed when the transaction ends; Note that

locks are not released when a cursor is closed.

ORACLE's locking granularity is at the row level.

To control the behavior of the program when locking rows, Informix® provides a specific instruction to set
the wait mode:

SET LOCK MODE TO { WAIT | NOT WAIT | WAIT seconds }

The default mode is NOT WAIT. This is an Informix® specific-SQL statement.

In order to simulate the same behavior in ORACLE, your can use the NOWAIT keyword in the SELECT ...
FOR UPDATE statement, as follows:

SELECT ... FOR UPDATE [OF col-list] NOWAIT

With this option, ORACLE immediately returns an SQL error if the row is locked by another user.

Solution

The database interface is based on an emulation of an Informix® engine using transaction logging.
Therefore, opening a SELECT ... FOR UPDATE cursor declared outside a transaction will raise an SQL
error -255 (not in transaction).

Cursors declared with SELECT ... FOR UPDATE using the "WITH HOLD" clause cannot be supported with
ORACLE. See Cursors with Hold and UPDATE/DELETE WHERE CURRENT OF for more details.

If your BDL application uses pessimistic locking with SELECT ... FOR UPDATE, you must review the
program logic for OPEN cursor and CLOSE cursor statements inside transactions (BEGIN WORK +
COMMIT WORK / ROLLBACK WORK).

UPDATE/DELETE WHERE CURRENT OF

Informix® allows positioned UPDATEs and DELETEs with the "WHERE CURRENT OF cursor" clause, if
the cursor has been DECLARED with a SELECT ... FOR UPDATE statement.

UPDATE/DELETE ... WHERE CURRENT OF<cursor> is not support by the Oracle database API.
However, ROWIDs can be used for positioned updates/deletes.

Solution

UPDATE/DELETE ... WHERE CURRENT OF instructions are managed by the ORACLE database
interface. The ORACLE database interface replaces "WHERE CURRENT OF cursor" by "WHERE
ROWID=:rid" and sets the value of the ROWID returned by the last FETCH done with the given cursor.

The LOAD and UNLOAD instructions

Informix® provides two SQL instructions to export / import data from / into a database table: The UNLOAD
instruction copies rows from a database table into a text file and the LOAD instructions insert rows from a
text file into a database table.

SQL support | 683

ORACLE does not provide LOAD and UNLOAD instructions, but provides external tools like SQL*Plus and
SQL*Loader.

Solution

In BDL programs, the LOAD and UNLOAD instructions are supported with ORACLE, with some limitations:

• There is a difference when using ORACLE DATE columns. DATE columns created in the ORACLE
database are equivalent to Informix® DATETIME YEAR TO SECOND columns. In LOAD and UNLOAD,
all ORACLE DATE columns are treated as Informix® DATETIME YEAR TO SECOND columns and thus
will be unloaded with the "YYYY-MM-DD hh:mm:ss" format.

The same problem appears for Informix® INTEGER and SMALLINT values, which are stored in an
ORACLE database as NUMBER(?) columns. Those values will be unloaded as Informix® DECIMAL(10)
and DECIMAL(5) values, that is, with a trailing dot-zero ".0".

• When using an Informix® database, simple dates are unloaded using the DBDATE format
(ex:"23/12/1998"). Therefore, unloading from an Informix® database for loading into an ORACLE
database is not supported.

SQL Interruption

With Informix®, it is possible to interrupt a long running query if the SQL INTERRUPT ON option.

Oracle supports SQL Interruption in a similar way. The db client must issue an OCIBreak() OCI call to
interrupt a query.

Solution

The ORACLE database driver supports SQL interruption and converts the native SQL error code -1013 to
the Informix® error code -213.

Scrollable cursors

The Genero programming language supports scrollable cursors.

Oracle 9.0 and higher support native scrollable cursors.

Solution

By default, the Oracle database driver uses native scrollable cursors by setting the
OCI_STMT_SCROLLABLE_READONLY statement attribute.

See Scrollable cursors on page 422 for more details about scroll cursor emulation.

SQL adaptation guide for PostgreSQL 9.x

Installation (Runtime Configuration)
PostgreSQL related installation topics.
Install PostgreSQL and create a database - database configuration/design tasks

If you are tasked with installing and configuring the database, here is a list of steps to be taken:

1. Compile and install the PostgreSQL Server on your computer. PostgreSQL is a free database, you can
download the sources from www.postgresql.org.

2. Read PostgreSQL installation notes for details about the "data" directory creation with the initdb
utility.

3. Set configuration parameters in postgresql.conf:

a) PostgreSQL 9.1 and higher have by default the standard_conforming_strings parameter set
to on.

The ODI drivers for PostgreSQL 9.1 and + do no longer escape the backslash characters in string
literals with a second backslash.

http://www.postgresql.org

SQL support | 684

Start a postmaster process to listen to database client connections.

Important: If you want to connect through TCP (for example from a Windows™ PostgreSQL
client), you must start postmaster with the -i option and setup the "pg_hba.conf" file for
security (trusted hosts and users).

4. Create a PostgreSQL database with the createdb utility, by specifying the character set of the
database.

$ createdb -h hostname dbname --encoding encoding --locale locale

5. If you plan to use SERIAL emulation, you need the plpgsql procedure language, because the database
interface uses this language to create serial triggers.

Starting with PostgreSQL version 9.0, the plpgsql language is available by default. Prior to version 9.0,
you must create the language in your database with the following command:

$ createlang -h hostname plpgsql dbname

6. Connect to the database as the administrator user and create a database user dedicated to your
application, the application administrator:

dbname=# CREATE USER appadmin PASSWORD 'password';
CREATE USER
dbname=# GRANT ALL PRIVILEGES ON DATABASE dbname TO appadmin;
GRANT
dbname=# \q

7. Create the application tables.

Convert Informix® data types to PostgreSQL data types. See Data type conversion table: Informix to
PostgreSQL on page 698 for more details.

8. If you plan to use the SERIAL emulation, you must prepare the database.

See SERIAL data types on page 693 for more details.

Prepare the runtime environment - connecting to the database

1. In order to connect to PostgreSQL, you must have a PostgreSQL database driver "dbmpgs" in
FGLDIR/dbdrivers.

On HP/UX LP64, the PostgreSQL database driver must be linked with the libxnet library if you want to
use networking.

2. The PostgreSQL client software is required to connect to a database server.

Check whether the PostgreSQL client library (libpq.*) is installed on the machine where the BDL
programs run.

3. Make sure that the PostgreSQL client environment variables are properly set.

Check, for example, PGDIR (the path to the installation directory), PGDATA (the path to the data files
directory), etc. See the PostgreSQL documentation for more details.

4. Check the database client locale settings (for example, set the PGCLIENTENCODING environment
variable).

The database client locale must match the locale used by the runtime system (LC_ALL, LANG).

5. Verify the environment variable defining the search path for the PostgreSQL database client shared
libraries (libpq.so on UNIX™, LIBPQ.DLL on Windows™).

SQL support | 685

Table 205: Shared library environment setting for PostgreSQL

PostgreSQL version Shared library environment setting

PostgreSQL 9.0 and higher UNIX™: Add $PGDIR/lib to LD_LIBRARY_PATH
(or its equivalent).

Windows™: Add %PGDIR%\bin to PATH.

6. To verify if the PostgreSQL client environment is correct, you can start the PostgreSQL command
interpreter:

$ psql dbname -U appadmin -W

7. Set up the fglprofile entries for database connections.

a) Define the PostgreSQL database driver:

dbi.database.dbname.driver = "dbmpgs"

b) The 'source' parameter defines the name of the PostgreSQL database, as well as additional
connection parameters if needed, such as the server host name, the TCP port and specific
PostgresSQL connection options.

dbi.database.dbname.source = "test1"

The source parameter must have the following form:

dbname[@host[:port]][?options]

where:

• dbname defines the name of the PostgreSQL database
• host defines the server host name, or IP address (IPv6 host address needs to be enclosed it in

square brackets)
• port defines the TCP port
• options is a URI-style query string defining PostgreSQL connection parameters

For example:

mydb@orion:5433?connect_timeout=10&application_name=myapp

Database concepts
PostgreSQL related database concepts topics.
Database concepts

Like Informix® servers, PostgreSQL can handle multiple database entities. Tables created by a user can be
accessed without the owner prefix by other users as long as they have access privileges to these tables.

Solution

Create a PostgreSQL database for each Informix® database.

Data storage concepts

An attempt should be made to preserve as much of the storage information as possible when converting
from Informix® to PostgreSQL. Most important storage decisions made for Informix® database objects (like
initial sizes and physical placement) can be reused for the PostgreSQL database.

Storage concepts are quite similar in Informix® and in PostgreSQL, but the names are different.

SQL support | 686

Data consistency and concurrency

Data consistency involves readers that want to access data currently modified by writers, and concurrency
data access involves several writers accessing the same data for modification. Locking granularity
defines the amount of data concerned when a lock is set (row, page, table, ...).

Informix®

Informix® uses a locking mechanism to handle data consistency and concurrency. When a process
changes database information with UPDATE, INSERT or DELETE, an exclusive lock is set on the
touched rows. The lock remains active until the end of the transaction. Statements performed outside
a transaction are treated as a transaction containing a single operation and therefore release the locks
immediately after execution. SELECT statements can set shared locks according to the isolation level. In
case of locking conflicts (for example, when two processes want to acquire an exclusive lock on the same
row for modification or when a writer is trying to modify data protected by a shared lock), the behavior of a
process can be changed by setting the lock wait mode.

Control:

• Lock wait mode: SET LOCK MODE TO ...
• Isolation level: SET ISOLATION TO ...
• Locking granularity: CREATE TABLE ... LOCK MODE {PAGE|ROW}
• Explicit exclusive lock: SELECT ... FOR UPDATE

Defaults:

• The default isolation level is read committed.
• The default lock wait mode is "not wait".
• The default locking granularity is per page.

PostgreSQL

When data is modified, exclusive locks are set and held until the end of the transaction. For data
consistency, PostgreSQL uses a multi-version consistency model: A copy of the original row is kept
for readers before performing writer modifications. Readers do not have to wait for writers as in Informix®.
The simplest way to think of the PostgreSQL implementation of read consistency is to imagine each user
operating a private copy of the database, hence the multi-version consistency model. The lock wait mode
cannot be changed as in Informix®. Locks are set at the row level in PostgreSQL and this cannot be
changed.

Control:

• No lock wait mode control is provided.
• Isolation level: SET TRANSACTION ISOLATION LEVEL ...
• Explicit exclusive lock: SELECT ... FOR UPDATE

Defaults:

• The default isolation level is Read Committed.

The main difference between Informix® and PostgreSQL is that readers do not have to wait for writers in
PostgreSQL.

Solution

The SET ISOLATION TO ... Informix® syntax is replaced by SET SESSION CHARACTERISTICS AS
TRANSACTION ISOLATION LEVEL ... in PostgreSQL. The next table shows the isolation level mappings
done by the PostgreSQL database driver:

SQL support | 687

Table 206: Isolation level mappings done by the PostgreSQL database driver

SET ISOLATION instruction in program Native SQL command

SET ISOLATION TO DIRTY READ

SET SESSION CHARACTERISTICS AS

TRANSACTION ISOLATION LEVEL READ
COMMITTED

SET ISOLATION TO COMMITTED READ

[READ COMMITTED] [RETAIN UPDATE LOCKS]

SET SESSION CHARACTERISTICS AS

TRANSACTION ISOLATION LEVEL READ
COMMITTED

SET ISOLATION TO CURSOR STABILITY

SET SESSION CHARACTERISTICS AS

TRANSACTION ISOLATION LEVEL READ
COMMITTED

SET ISOLATION TO REPEATABLE READ

SET SESSION CHARACTERISTICS AS

TRANSACTION ISOLATION LEVEL
SERIALIZABLE

For portability, it is recommended that you work with Informix® in the read committed isolation level, make
processes wait for each other (lock mode wait), and create tables with the "lock mode row" option.

See the Informix® and PostgreSQL documentation for more details about data consistency, concurrency
and locking mechanisms.

Transactions handling

Informix® and PostgreSQL handle transactions in a similar manner.

Informix® native mode (non ANSI):

• Transactions are started with BEGIN WORK.
• Transactions are validated with COMMIT WORK.
• Transactions are canceled with ROLLBACK WORK.
• Savepoints can be set with SAVEPOINT name [UNIQUE].
• Transactions can be rolled back to a savepoint with ROLLBACK [WORK] TO SAVEPOINT [name].
• Savepoints can be released with RELEASE SAVEPOINT name.
• Statements executed outside of a transaction are automatically committed.
• DDL statements can be executed (and canceled) in transactions.

PostgreSQL supports transaction with savepoints:

• Transactions are started with BEGIN WORK.
• Transactions are validated with COMMIT WORK.
• Transactions are canceled with ROLLBACK WORK.
• Savepoints can be placed with SAVEPOINT name .
• Transactions can be rolled back to a savepoint with ROLLBACK TO SAVEPOINT name .
• Savepoints can be released with RELEASE SAVEPOINT name .
• Statements executed outside of a transaction are automatically committed.
• DDL statements can be executed (and canceled) in transactions.
• If an SQL error occurs in a transaction, the whole transaction is aborted.

Transactions in stored procedures: avoid using transactions in stored procedures to allow the client
applications to handle transactions, according to the transaction model.

SQL support | 688

The main difference between Informix® and PostgreSQL resides in the fact that PostgreSQL cancels the
entire transaction if an SQL error occurs in one of the statements executed inside the transaction. The
following code example illustrates this difference:

CREATE TABLE tab1 (k INT PRIMARY KEY, c CHAR(10))
WHENEVER ERROR CONTINUE
BEGIN WORK
INSERT INTO tab1 (1, 'abc')
INSERT INTO tab1 (1, 'abc')
 -- PK constraint violation = SQL Error, whole TX is aborted
COMMIT WORK

With Informix®, this code will leave the table with one row inside, since the first INSERT statement
succeeded. With PostgreSQL, the table will remain empty after executing this piece of code, because
the server will rollback the whole transaction. To workaround this problem in PostgreSQL you can use
SAVEPOINT as described in Solution on page 688.

Solution

Informix® transaction handling commands are automatically converted to PostgreSQL instructions to start,
validate or cancel transactions.

Regarding the transaction control instructions, the BDL applications do not have to be modified in order to
work with PostgreSQL.

You must review the SQL statements inside BEGIN WORK / COMMIT WORK instruction and check
if these can raise an SQL error. The SQL statements that can potentially raise an SQL error must be
protected with a SAVEPOINT. If an error occurs, just rollback to the savepoint:

CREATE TABLE tab1 (k INT PRIMARY KEY, c CHAR(10))
WHENEVER ERROR CONTINUE
BEGIN WORK
INSERT INTO tab1 (1, 'abc')
CALL sql_protect()
INSERT INTO tab1 (1, 'abc')
 -- PK constraint violation = SQL Error
CALL sql_unprotect()
COMMIT WORK
...
FUNCTION sql_protect()
 IF NOT dbtype == "PGS" THEN
 RETURN
 END IF
 SAVEPOINT _sql_protect_
END FUNCTION

FUNCTION sql_unprotect()
 IF NOT dbtype == "PGS" THEN
 RETURN
 END IF
 IF SQLCA.SQLCODE < 0 THEN
 ROLLBACK TO SAVEPOINT _sql_protect_
 ELSE
 RELEASE SAVEPOINT _sql_protect_
 END IF
END FUNCTION

Note: If you want to use savepoints, do not use the UNIQUE keyword in the savepoint declaration,
always specify the savepoint name in ROLLBACK TO SAVEPOINT, and do not drop savepoints
with RELEASE SAVEPOINT.

SQL support | 689

Database users

Until version 11.70.xC2, Informix® database users had to be created at the operating system level and be
members of the 'informix' group. Starting with 11.70.xC2, Informix® supports database-only users with the
CREATE USER instruction, as in most other db servers. Any database user must have sufficient privileges
to connect and use resources of the database; user rights are defined with the GRANT command.

PostgreSQL users must be registered in the database. They are created by the createuser utility:

$ createuser --username=username --password

Solution

Based on the application logic (is it a multiuser application ?), you have to create one or several
PostgreSQL users.

Setting privileges

Informix® and PostgreSQL user privileges management are quite similar.

PostgreSQL provides user groups to grant or revoke permissions to more than one user at the same time.

Data dictionary
PostgreSQL related data dictionary topics.
BOOLEAN data type

Informix® supports the BOOLEAN data type, which can store 't' or 'f' values. Genero BDL implements the
BOOLEAN data type in a different way; as in other programming languages, Genero BOOLEAN stores
integer values 1 or 0 (for TRUE or FALSE). The type was designed this way to assign the result of a
boolean expression to a BOOLEAN variable.

PostgreSQL supports the BOOLEAN data type and stores 't' or 'f' values for TRUE and FALSE
representation. It is not possible to insert the integer values 1 or 0; values must be true, false, '1' or '0'.

Solution

The PostgreSQL database interface supports the BOOLEAN data type, and converts the BDL BOOLEAN
integer values to a CHAR(1) of 't' or 'f'.

CHARACTER data types

Informix® supports the following character data types:

• CHAR(N) with N<= 32767 bytes
• VARCHAR(N[,M]) with N<=255 bytes
• NCHAR(N) with N<= 32767 bytes
• NVARCHAR(N[,M]) with N<=255 bytes
• LVARCHAR(N), without the 255 bytes limit (max size varies according to IDS version)

In Informix®, both CHAR/VARCHAR and NCHAR/NVARCHAR data types can be used to store single-
byte or multibyte encoded character strings. The only difference between CHAR/VARCHAR and NCHAR/
NVARCHAR is for sorting: N[VAR]CHAR types use the collation order, while [VAR]CHAR types use the
byte order. The character set used to store strings in CHAR/VARCHAR/NCHAR/NVARCHAR columns is
defined by the DB_LOCALE environment variable. The character set used by applications is defined by
the CLIENT_LOCALE environment variable. Informix® uses Byte Length Semantics (the size N that you
specify in [VAR]CHAR(N)is expressed in bytes, not characters as in some other databases)

PostgreSQL provides the following character types:

• CHAR(N) with N<= 10485760 characters
• VARCHAR(N) with N<= 10485760 characters; The length specification is optional.
• TEXT with a limit of 1GB

SQL support | 690

In PostgreSQL, CHAR, VARCHAR and TEXT types store data in single byte or multibyte character sets.
For CHAR and VARCHAR, the size is specified in a number of characters, not bytes. The character set
used to store data for these types is defined by the database character set, which can be specified when
you create the database with the createdb tool or the CREATE DATABASE SQL command.

Note: The VARCHAR type of PostgreSQL can be used without a length specification. If no size
is specified, the column accepts strings of any size. However, as Genero BDL needs to know the
size of CHAR and VARCHAR columns to define fields and program variables from a schema file,
you should not create tables in PostgreSQL having VARCHAR columns without size specification. If
you try to extract a schema with fgldbsch, this tool will report that the VARCHAR column cannot be
converted to a BDL type for the .sch file.

Automatic character set conversion between the PostgreSQL client and server is supported. You must
properly specify the client character set for PostgreSQL. This can be done in different ways, with the
SET CLIENT_ENCODING TO SQL command for example, or with configuration parameters. See the
PostgreSQL documentation for more details.

Solution

Informix® CHAR(N) types must be mapped to PostgreSQL CHAR(N) types, and Informix® VARCHAR(N) or
LVARCHAR(N) columns must be mapped to PostgreSQL VARCHAR(N).

Note: When creating a table from the BDL program with NCHAR or NVARCHAR types, the type
names will be left as is and produce an SQL error because these types are not supported by
PostgreSQL.

You can store single-byte or multibyte character strings in PostgreSQL CHAR, VARCHAR and TEXT
columns.

PostgreSQL uses character length semantics: When you define a CHAR(20) and the database character
set is multibyte, the column can hold more bytes/characters than the Informix® CHAR(20) type, when using
byte length semantics.

When using a multibyte character set (such as UTF-8), define database columns with the size in character
units, and use character length semantics in BDL programs with FGL_LENGTH_SEMANTICS=CHAR.

When extracting a database schema from a PostgreSQL database, the schema extractor uses the size
of the column in characters, not the octet length. If you have created a CHAR(10 (characters)) column
a in PostgreSQL database using the UTF-8 character set, the .sch file will get a size of 10, that will be
interpreted according to FGL_LENGTH_SEMANTICS as a number of bytes or characters.

Do not forget to properly define the database client character set, which must correspond to the runtime
system character set.

See also the section about Localization.

NUMERIC data types

Informix® supports several data types to store numbers:

Table 207: Informix® numeric data types

Informix® data type Description

SMALLINT 16 bit signed integer

INT / INTEGER 32 bit signed integer

BIGINT 64 bit signed integer

INT8 64 bit signed integer (replaced by BIGINT)

DEC / DECIMAL Equivalent to DECIMAL(16)

SQL support | 691

Informix® data type Description

DEC / DECIMAL(p) Floating-point decimal number

DEC / DECIMAL(p,s) Fixed-point decimal number

MONEY Equivalent to DECIMAL(16,2)

MONEY(p) Equivalent to DECIMAL(p,2)

MONEY(p,s) Equivalent to DECIMAL(p,s)

REAL / SMALLFLOAT 32-bit floating point decimal (C float)

DOUBLE PRECISION / FLOAT[(n)] 64-bit floating point decimal (C double)

Solution

PostgreSQL supports the following data types to store numbers:

Table 208: PostgreSQL numeric data types

PostgreSQL data type Description

NUMERIC(p,s) / DECIMAL(p,s) Decimals with precision and scale (fractional part)

NUMERIC(p) / DECIMAL(p) Integers with p digits (no fractional part)

NUMERIC / DECIMAL Floating point numbers (no limit)

FLOAT4 16 bit variable precision

FLOAT8 32 bit variable precision

INT2 16 bit signed integer

INT4 32 bit signed integer

INT8/BIGINT 64 bit signed integer

ANSI types like SMALLINT, INTEGER, FLOAT are supported by PostgreSQL as aliases to INT2, INT4 and
FLOAT8 native types.

Informix® DECIMAL(p) floating point types are converted to DECIMAL without precision/scale, to store any
floating point number in PostgreSQL.

DATE and DATETIME data types

Informix® provides two data types to store dates and time information:

• DATE = for year, month and day storage.
• DATETIME = for year to fraction(1-5) storage.

PostgreSQL provides the following data type to store date and time information:

• DATE = for year, month, day storage.
• TIME [(p)] [{with|without} time zone] = for hour, minute, second and fraction of second storage.
• TIMESTAMP [(p)] [{with|without} time zone] = for year, month, day, hour, minute, second and fraction of

second storage.

String representing date time information

Informix® is able to convert quoted strings to DATE / DATETIME data if the string contents matches
environment parameters (i.e. DBDATE, GL_DATETIME). As in Informix®, PostgreSQL can convert quoted

SQL support | 692

strings to date time data according to the DateStyle session parameter. PostgreSQL always accepts ISO
date time strings.

Date arithmetic

• Informix® supports date arithmetic on DATE and DATETIME values. The result of an arithmetic
expression involving dates/times is a number of days when only DATEs are used, and an INTERVAL
value if a DATETIME is used in the expression.

• In PostgreSQL, the result of an arithmetic expression involving DATE values is an INTEGER
representing a number of days.

• Informix® automatically converts an integer to a date when the integer is used to set a value of a date
column. PostgreSQL does not support this automatic conversion.

• Complex DATETIME expressions (involving INTERVAL values for example) are Informix-specific and
have no equivalent in PostgreSQL.

Solution

The DATE type of PostgreSQL is equivalent to the DATE type in Informix® (stores year, month, day). Use
PostgreSQL DATE data type for Informix® DATE columns.

PostgreSQL TIME(N) WITHOUT TIME ZONE data type can be used to store DATETIME HOUR TO ???
values.

PostgreSQL TIMESTAMP(N) WITHOUT TIME ZONE data type can be used to store DATETIME YEAR
TO ??? values.

The SQL Translator of the PostgreSQL driver makes the following conversions automatically for the
DATETIME types:

• DATETIME HOUR TO MINUTE is converted to PostgreSQL TIME(0) WITHOUT TIME ZONE (seconds
set to 00).

• DATETIME HOUR TO SECOND is converted to PostgreSQL TIME(0) WITHOUT TIME ZONE.
• DATETIME HOUR TO FRACTION(N) is converted to PostgreSQL TIME(N) WITHOUT TIME ZONE.
• DATETIME YEAR TO MINUTE is converted to PostgreSQL TIMSTAMP(0) WITHOUT TIME ZONE

(seconds set to 00).
• DATETIME YEAR TO SECOND is converted to PostgreSQL TIMESTAMP(0) WITHOUT TIME ZONE.
• DATETIME YEAR TO FRACTION(N) is converted to PostgreSQL TIMESTAMP(N) WITHOUT TIME

ZONE.

Other DATETIME types will be mapped to PostgreSQL TIMESTAMP(N) types. Missing date or time parts
default to 1900-01-01 00:00:00.

See also Date and time in SQL statements on page 432 for good SQL programming practices.

INTERVAL data type

The Informix® INTERVAL data type stores a value that represents a span of time. INTERVAL types are
divided into two classes: year-month intervals and day-time intervals.

Starting with version 8.4, PostgreSQL provides an INTERVAL data type which is equivalent to the
Informix® INTERVAL type. The following are some features of the PostgreSQL 8.4 interval type:

• It is possible to specify the interval class / precision with YEAR, MONTH, DAY, HOUR, MINUTE and
SECOND[(p)] fields.

• Fractional part of seconds can be defined with up to 6 digits.
• The INTERVALs value range is from -178000000 to +178000000 years.
• Input and output format can be controlled with the SET interval style command.

SQL support | 693

Solution

Starting with Genero 2.21, database drivers dbmpgs84x and higher convert the Informix-style INTERVAL
type to the native PostgreSQL INTERVAL type. See the data type conversion table for the exact
conversion rules.

Important: The PostgreSQL database driver forces the interval style session parameter to
'iso_8601', this is required to insert and fetch interval database with the libpq CAPI functions. You
must not change this setting during program execution.

While PostgreSQL INTERVALs support up to 9 digits for the higher unit like Informix®, YEAR values range
from -178000000 to +178000000 only. This limitation exists in PostgreSQL 8.4 and maybe solved in future
versions.

With PostgreSQL and driver versions prior to 8.4, the INTERVAL data type is converted to CHAR(50).

SERIAL data types

Informix® supports the SERIAL, SERIAL8 and BIGSERIAL data types to produce automatic integer
sequences. SERIAL is based on INTEGER (32 bit), while SERIAL8 and BIGSERIAL can store 64 bit
integers:

• The table column must be of type SERIAL, SERIAL8 or BIGSERIAL.
• To generate a new serial, no value or a zero value is specified in the INSERT statement:

INSERT INTO tab1 (c) VALUES ('aa')
INSERT INTO tab1 (k, c) VALUES (0, 'aa')

• After INSERT, the new SERIAL value is provided in SQLCA.SQLERRD[2], while the new SERIAL8 and
BIGSERIAL value must be fetched with a SELECT dbinfo('bigserial') query.

Informix® allows you to insert rows with a value different from zero for a serial column. Using an explicit
value will automatically increment the internal serial counter, to avoid conflicts with future INSERT
statements that are using a zero value:

CREATE TABLE tab (k SERIAL); -- internal counter = 0
INSERT INTO tab VALUES (0); -- internal counter = 1
INSERT INTO tab VALUES (10); -- internal counter = 10
INSERT INTO tab VALUES (0); -- internal counter = 11
DELETE FROM tab; -- internal counter = 11
INSERT INTO tab VALUES (0); -- internal counter = 12

PostgreSQL SERIAL data type:

• PostgreSQL's SERIAL data type has the same name as in Informix®, but it behaves differently.
• You cannot define a start value (SERIAL(100)).
• You cannot specify zero as serial value to get a new serial, the PostgreSQL serial is based on default

values, thus you must omit the serial column in the INSERT statement.
• When you INSERT a row with a specific value for the serial column, the underlying sequence will not

be incremented. As result, the next INSERT that does not specify the serial column may get a new
sequence that was already inserted explicitly.

• With some old versions of PostgreSQL, when you drop the table you must drop the sequence too.

PostgreSQL sequences:

• Sequences are totally detached from tables.
• The purpose of sequences is to provide unique integer numbers.
• Sequences are identified by a sequence name.
• To create a sequence, you must use the CREATE SEQUENCE statement.

Once a sequence is created, it is permanent (like a table).
• To get a new sequence value, you must use the nextval() function:

SQL support | 694

INSERT INTO tab1 VALUES (nextval('tab1_seq'), ...)

• To get the last generated number, PostgreSQL provides the currval() function:

SELECT currval('tab1_seq')

Solution

The Informix® SERIAL data type can be emulated with three different methods.

The method used to emulate SERIAL types is defined by the ifxemul.datatype.serial.emulation
FGLPROFILE parameter:

dbi.database.dbname.ifxemul.datatype.serial.emulation =
{"native"|"regtable"|"trigseq"}

• native: uses the native PostgreSQL serial data type.
• regtable: uses insert triggers with the SERIALREG table.
• trigseq: uses insert triggers with sequences.

The default emulation technique is "native".

This entry must be used in conjonction with:

dbi.database.dbname.ifxemul.datatype.serial = {true|false}

If the datatype.serial entry is set to false, the emulation method is ignored.

Using the native serial emulation

The "native" mode is the default serial emulation mode, using the native PostgreSQL SERIAL data
type. In this mode, the original type name will be left untouched by the SQL Translator and you will get the
behavior of the PostgreSQL SERIAL column type, based on sequences.

Note: INSERT statements cannot use the serial column, even with a value zero. When using a
NULL value, PostgreSQL will report an non-null constraint error. Therefore, the serial column must
be omitted from the INSERT statement.

The sqlca.sqlerrd[2] register is not set after an INSERT when using a PostgreSQL version prior to
version 8.3.

See also the PostgreSQL documentation for more details about the native SERIAL type.

Using the regtable serial emulation

With the "regtable" mode, the SERIAL data type is emulated with a PostgreSQL INTEGER data type
and INSERT triggers using the table SERIALREG which is dedicated to sequence production. After an
insert, sqlca.sqlerrd[2] register holds the last generated serial value. BIGSERIAL and SERIAL8 types
can be converted to BIGINT in PostgreSQL, but the sqlca.sqlerrd[2] register cannot be used since it
is defined as an INTEGER type.

The triggers can be created manually during the application database installation procedure, or
automatically from a BDL program: When a BDL program executes a CREATE [TEMP] TABLE with a
SERIAL column, the database interface automatically converts the SERIAL data type to INTEGER and
dynamically creates the triggers.

You must create the SERIALREG table as follows:

CREATE TABLE SERIALREG (
 TABLENAME VARCHAR(50) NOT NULL,
 LASTSERIAL DECIMAL(20,0) NOT NULL,
 PRIMARY KEY (TABLENAME)
)

SQL support | 695

Important: The SERIALREG table must be created before the triggers. The serial production is
based on the SERIALREG table which registers the last generated number for each table. If you
delete rows of this table, sequences will restart at 1 and you will get unexpected data.

In database creation scripts, all SERIAL[(n)] data types must be converted to INTEGER data types and you
must create one trigger for each table. To know how to write those triggers, you can create a small Genero
program that creates a table with a SERIAL column. Set the FGLSQLDEBUG environment variable and
run the program. The debug output will show you the native trigger creation command.

With this emulation mode, INSERT statements using NULL for the SERIAL column will produce a new
serial value:

INSERT INTO tab (col1, col2) VALUES (NULL, 'data')

This behavior is mandatory in order to support INSERT statements that do not use the serial column:

INSERT INTO tab (col2) VALUES ('data')

Check if your application uses tables with a SERIAL column that can contain a NULL value. Consider
removing the serial column from the INSERT statements.

Using the trigseq serial emulation

With "trigseq", the SERIAL data type is emulated with a PostgreSQL INTEGER data type and INSERT
triggers using a sequence tablename_seq. After an insert, sqlca.sqlerrd[2] register holds the last
generated serial value.

The triggers can be created manually during the application database installation procedure, or
automatically from a BDL program: When a BDL program executes a CREATE [TEMP] TABLE with a
SERIAL column, the database interface automatically converts the SERIAL data type to INTEGER and
dynamically creates the triggers.

In database creation scripts, all SERIAL[(n)] data types must be converted to INTEGER data types and you
must create one trigger for each table. To know how to write those triggers, you can create a small Genero
program that creates a table with a SERIAL column. Set the FGLSQLDEBUG environment variable and
run the program. The debug output will show you the native trigger creation command.

With this emulation mode, INSERT statements using NULL for the SERIAL column will produce a new
serial value:

INSERT INTO tab (col1, col2) VALUES (NULL, 'data')

This behavior is mandatory in order to support INSERT statements which do not use the serial column:

INSERT INTO tab (col2) VALUES ('data')

Check if your application uses tables with a SERIAL column that can contain a NULL value. Consider
removing the serial column from the INSERT statements.

Notes common to all serial emulation modes

Since sqlca.sqlerrd[2] is defined as an INTEGER, it cannot hold values from BIGSERIAL (BIGINT)
auto incremented columns. If you are using BIGSERIAL columns, you must query the sequence pseudo-
column CURRVAL() or fetch the LASTSERIAL column from the SERIALREG table if used.

For SQL portability, INSERT statements should be reviewed to remove the SERIAL column from the list.

For example, the following statement:

INSERT INTO tab (col1,col2) VALUES (0 , p_value)

can be converted to:

INSERT INTO tab (col2) VALUES (p_value)

SQL support | 696

Static SQL INSERT using records defined from the schema file must also be reviewed:

DEFINE rec LIKE tab.*
INSERT INTO tab VALUES (rec.*) -- will use the serial column

can be converted to:

INSERT INTO tab VALUES rec.* -- without braces, serial column is removed

Important: When using the Static SQL INSERT and UPDATE syntax using record.* without
braces, make sure that you database schema files contain information about serials: This
information can be lost when extracting the schema from a PostgreSQL database which does not
use native serial emulation. See Database Schema for more details about the serial flag in column
type encoding (data type code must be 6)

ROWIDs

When creating a table, Informix® automatically adds a ROWID integer column (applies to non-fragmented
tables only). The ROWID column is auto-filled with a unique number and can be used like a primary key to
access a given row.

When the feature is enabled, PostgreSQL tables are automatically created with a OID column (Object
Identifier) of type INTEGER. The behavior is equivalent to Informix® ROWID columns (see Solution).

Solution

The database automatically converts ROWID keywords to OID for PostgreSQL. You can execute
"SELECT ROWID FROM" and "UPDATE .. WHERE ROWID = ?" statements as with Informix®.

Note:

• Starting with PostgreSQL version 8.1, OIDs are no longer supported by default. You need to
define the default_with_oid parameter in postgresql.conf to get OID columns created for tables.
See Database configuration and design tasks.

• SQLCA.SQLERRD[6]is not supported. All references to SQLCA.SQLERRD[6] must be removed
because this variable will not hold the ROWID of the last INSERTed or UPDATEd row when
using the PostgreSQL interface.

Large OBject (LOB) types

IBM® Informix® and Genero support the TEXT and BYTE types to store large objects: TEXT is used to
store large text data, while BYTE is used to store large binary data like images or sound.

PostgreSQL provides the TEXT and BYTEA data types for large objects storage. With these data types,
large objects are handled as a whole. In fact PostgreSQL does also provide another way to store blobs,
through the large objects facility based on stream-style access. The large object facility is provided as a set
of C and SQL API functions to create / delete / modify large objects identified by a unique object id (OID).
For example, the lo_create(-1) SQL function will create a new large object and return a new object id
that will be used to handle the LOB. See PostgreSQL documentation for more details.

Solution

TEXT and BYTE data can be stored in PostgreSQL TEXT and BYTEA columns.

Genero BDL does not interface automatically with the PostgreSQL Large Object facility. However, the OID
values can be stored in BIGINT variables, and you can use server-side LOB functions to convert large
objects to BYTEA data, that can be fetched into BYTE variables. The next code example creates a table
with an OID column, imports a LOB from an image file, and then fetches the LOB back into a BYTE:

MAIN
 DEFINE img BYTE, obj_id BIGINT

SQL support | 697

 CONNECT TO "test1+driver='dbmpgs'" USER "postgres" USING "fourjs"

 # Need superuser privileges to create the LOB....
 WHENEVER ERROR CONTINUE
 DROP TABLE t1
 WHENEVER ERROR STOP
 EXECUTE IMMEDIATE "create table t1 (k int, image oid)"
 GRANT SELECT ON t1 TO PUBLIC
 INSERT INTO t1 VALUES (1, lo_import("/var/images/landscape.png"))
 SELECT image INTO obj_id FROM t1 WHERE k=1
 DISPLAY "obj_id = ", obj_id
 EXECUTE IMMEDIATE "grant select on large object "||obj_id||" to public"

 # Next block can be executed by any user:
 LOCATE img IN FILE -- a temp file will be used
 SELECT loread(lo_open(image, 262144), 1000000)
 INTO img FROM t1 WHERE k=1
 DISPLAY length(img)

 # Delete the object
 SELECT lo_unlink(obj_id) FROM t1 WHERE k=1

 DROP TABLE t1

END MAIN

Constraints

Constraint naming syntax

Both Informix® and PostgreSQL support primary key, unique, foreign key, default and check constraints,
but the constraint naming syntax is different. PostgreSQL expects the "CONSTRAINT" keyword before the
constraint specification and Informix® expects it after.

UNIQUE constraint example

Table 209: UNIQUE constraint example (Informix® vs. PostgreSQL)

Informix® PostgreSQL

CREATE TABLE emp (
 ...
 emp_code CHAR(10)
 UNIQUE CONSTRAINT pk_emp,
 ...

CREATE TABLE emp (
 ...
 emp_code CHAR(10)
 CONSTRAINT pk_emp UNIQUE,
 ...

Unique constraints

Note: When using a unique constraint, Informix® allows only one row with a NULL value, while
PostgreSQL allows several rows with NULL!

Solution

The database interface does not convert constraint naming expressions when creating tables from BDL
programs. Review the database creation scripts to adapt the constraint naming clauses for PostgreSQL.

SQL support | 698

Triggers

Informix® and PostgreSQL provide triggers with similar features, but the trigger creation syntax and the
programming languages are totally different.

Solution

Informix® triggers must be converted to PostgreSQL triggers "by hand".

Stored procedures

Both Informix® and PostgreSQL support stored procedures, but the programming languages are totally
different. With PostgreSQL you must create the stored procedure language before writing triggers or stored
procedures.

Solution

Informix® stored procedures must be converted to PostgreSQL manually.

See SQL Programming for more details about executing stored procedures with PostgreSQL.

Name resolution of SQL objects

Informix® uses the following form to identify an SQL object:

[database[@dbservername]:][{owner|"owner"}.]identifier

With PostgreSQL, an object name takes the following form:

[owner.]identifier

Solution

As a general rule, to write portable SQL, you should only use simple database object names without any
database, server or owner qualifier and without quoted identifiers.

Data type conversion table: Informix to PostgreSQL

Table 210: Data type conversion table (Informix to PostgreSQL)

Informix® data types
PostgreSQL data types (before
8.4)

PostgreSQL data types (since
8.4)

CHAR(n) CHAR(n) CHAR(n)

VARCHAR(n[,m]) VARCHAR(n) VARCHAR(n)

LVARCHAR(n[,m]) VARCHAR(n) VARCHAR(n)

NCHAR(n) N/A N/A

NVARCHAR(n[,m]) N/A N/A

BOOLEAN BOOLEAN BOOLEAN

SMALLINT INT2 INT2

INT / INTEGER INT4 INT4

BIGINT BIGINT BIGINT

INT8 BIGINT BIGINT

SERIAL[(start)] INTEGER (see note 1) INTEGER (see note 1)

BIGSERIAL[(start)] BIGINT (see note 1) BIGINT (see note 1)

SQL support | 699

Informix® data types
PostgreSQL data types (before
8.4)

PostgreSQL data types (since
8.4)

SERIAL8[(start)] BIGINT (see note 1) BIGINT (see note 1)

DOUBLE PRECISION /
FLOAT[(n)]

FLOAT4 FLOAT4

REAL / SMALLFLOAT FLOAT8 FLOAT8

NUMERIC / DEC / DECIMAL(p,s) DECIMAL(p,s) DECIMAL(p,s)

NUMERIC / DEC / DECIMAL(p)
DECIMAL (no precision = floating
point)

DECIMAL (no precision = floating
point)

NUMERIC / DEC / DECIMAL DECIMAL DECIMAL

MONEY(p,s) DECIMAL(p,s) DECIMAL(p,s)

MONEY(p) DECIMAL(p,2) DECIMAL(p,2)

MONEY DECIMAL(16,2) DECIMAL(16,2)

DATE DATE DATE

DATETIME HOUR TO MINUTE TIME(0) WITHOUT TIME ZONE TIME(0) WITHOUT TIME ZONE

DATETIME HOUR TO SECOND TIME(0) WITHOUT TIME ZONE TIME(0) WITHOUT TIME ZONE

DATETIME HOUR TO
FRACTION(p)

TIME(p) WITHOUT TIME ZONE TIME(p) WITHOUT TIME ZONE

DATETIME YEAR TO MINUTE
TIMESTAMP(0) WITHOUT TIME
ZONE

TIMESTAMP(0) WITHOUT TIME
ZONE

DATETIME YEAR TO SECOND
TIMESTAMP(0) WITHOUT TIME
ZONE

TIMESTAMP(0) WITHOUT TIME
ZONE

DATETIME YEAR TO
FRACTION(p)

TIMESTAMP(p) WITHOUT TIME
ZONE

TIMESTAMP(p) WITHOUT TIME
ZONE

DATETIME q1 TO q2 (other than
above)

TIMESTAMP(p) WITHOUT TIME
ZONE

TIMESTAMP(p) WITHOUT TIME
ZONE

INTERVAL YEAR[(p)] TO
MONTH

CHAR(50) INTERVAL YEAR TO MONTH

INTERVAL YEAR[(p)] TO YEAR CHAR(50) INTERVAL YEAR

INTERVAL MONTH[(p)] TO
MONTH

CHAR(50) INTERVAL MONTH

INTERVAL DAY[(p)] TO
FRACTION(n)

CHAR(50) INTERVAL DAY TO SECOND(n)

INTERVAL DAY[(p)] TO
SECOND

CHAR(50) INTERVAL DAY TO SECOND(0)

INTERVAL DAY[(p)] TO MINUTE CHAR(50) INTERVAL DAY TO MINUTE

INTERVAL DAY[(p)] TO HOUR CHAR(50) INTERVAL DAY TO HOUR

INTERVAL DAY[(p)] TO DAY CHAR(50) INTERVAL DAY

INTERVAL HOUR[(p)] TO
FRACTION(n)

CHAR(50)
INTERVAL HOUR TO
SECOND(n)

SQL support | 700

Informix® data types
PostgreSQL data types (before
8.4)

PostgreSQL data types (since
8.4)

INTERVAL HOUR[(p)] TO
SECOND

CHAR(50)
INTERVAL HOUR TO
SECOND(0)

INTERVAL HOUR[(p)] TO
MINUTE

CHAR(50) INTERVAL HOUR TO MINUTE

INTERVAL HOUR[(p)] TO HOUR CHAR(50) INTERVAL HOUR

INTERVAL MINUTE[(p)] TO
FRACTION(n)

CHAR(50)
INTERVAL MINUTE TO
SECOND(n)

INTERVAL MINUTE[(p)] TO
SECOND

CHAR(50)
INTERVAL MINUTE TO
SECOND(0)

INTERVAL MINUTE[(p)] TO
MINUTE

CHAR(50) INTERVAL MINUTE

INTERVAL SECOND[(p)] TO
FRACTION(n)

CHAR(50) INTERVAL SECOND(n)

INTERVAL SECOND[(p)] TO
SECOND

CHAR(50) INTERVAL SECOND(0)

INTERVAL FRACTION[(p)] TO
FRACTION(n)

CHAR(50) INTERVAL SECOND(n)

TEXT TEXT TEXT

BYTE BYTEA BYTEA

Notes:

1. For more details about serial emulation, see SERIAL data types on page 693.

Data manipulation
PostgreSQL related data manipulation topics.
Reserved words

SQL object names like table and column names cannot be SQL reserved words in PostgreSQL.

Solution

Table or column names which are PostgreSQL reserved words must be renamed.

Outer joins

In Informix® SQL, outer tables can be defined in the FROM clause with the OUTER keyword:

SELECT ... FROM a, OUTER(b)
 WHERE a.key = b.akey

SELECT ... FROM a, OUTER(b,OUTER(c))
 WHERE a.key = b.akey
 AND b.key1 = c.bkey1
 AND b.key2 = c.bkey2

PostgreSQL supports the ANSI outer join syntax:

SELECT ... FROM cust LEFT OUTER JOIN order

SQL support | 701

 ON cust.key = order.custno

SELECT ...
 FROM cust LEFT OUTER JOIN order
 LEFT OUTER JOIN item
 ON order.key = item.ordno
 ON cust.key = order.custno
WHERE order.cdate > current date

See the PostgreSQL reference for a complete description of the syntax.

Solution

For better SQL portability, use the ANSI outer join syntax instead of the old Informix® OUTER syntax.

The PostgreSQL interface can convert most Informix® OUTER specifications to ANSI outer joins.

Prerequisites:

1. In the FROM clause, the main table must be the first item and the outer tables must be listed from left to
right in the order of outer levels.

Example which does not work: " FROM OUTER(tab2), tab1".
2. The outer join in the WHERE part must use the table name as prefix.

Example: " WHERE tab1.col1 = tab2.col2".

Restrictions:

1. Additional conditions on outer table columns cannot be detected and therefore are not supported:

Example: "... FROM tab1, OUTER(tab2) WHERE tab1.col1 = tab2.col2 AND tab2.colx >
10".

2. Statements composed of 2 or more SELECT instructions using OUTERs are not supported.

Example: " SELECT ... UNION SELECT" or "SELECT ... WHERE col IN (SELECT...)"

Remarks:

1. Table aliases are detected in OUTER expressions.

OUTER example with table alias: " OUTER(tab1 alias1)".
2. In the outer join, outertab.col can be placed on both right or left sides of the equal sign.

OUTER join example with table on the left: " WHERE outertab.col1 = maintab.col2".
3. Table names detection is not case-sensitive.

Example: " SELECT ... FROM tab1, TAB2 WHERE tab1.col1 = tab2.col2".
4. Temporary tables are supported in OUTER specifications.

Transactions handling

Informix® and PostgreSQL handle transactions in a similar manner.

Informix® native mode (non ANSI):

• Transactions are started with BEGIN WORK.
• Transactions are validated with COMMIT WORK.
• Transactions are canceled with ROLLBACK WORK.
• Savepoints can be set with SAVEPOINT name [UNIQUE].
• Transactions can be rolled back to a savepoint with ROLLBACK [WORK] TO SAVEPOINT [name].
• Savepoints can be released with RELEASE SAVEPOINT name.
• Statements executed outside of a transaction are automatically committed.

SQL support | 702

• DDL statements can be executed (and canceled) in transactions.

PostgreSQL supports transaction with savepoints:

• Transactions are started with BEGIN WORK.
• Transactions are validated with COMMIT WORK.
• Transactions are canceled with ROLLBACK WORK.
• Savepoints can be placed with SAVEPOINT name .
• Transactions can be rolled back to a savepoint with ROLLBACK TO SAVEPOINT name .
• Savepoints can be released with RELEASE SAVEPOINT name .
• Statements executed outside of a transaction are automatically committed.
• DDL statements can be executed (and canceled) in transactions.
• If an SQL error occurs in a transaction, the whole transaction is aborted.

Transactions in stored procedures: avoid using transactions in stored procedures to allow the client
applications to handle transactions, according to the transaction model.

The main difference between Informix® and PostgreSQL resides in the fact that PostgreSQL cancels the
entire transaction if an SQL error occurs in one of the statements executed inside the transaction. The
following code example illustrates this difference:

CREATE TABLE tab1 (k INT PRIMARY KEY, c CHAR(10))
WHENEVER ERROR CONTINUE
BEGIN WORK
INSERT INTO tab1 (1, 'abc')
INSERT INTO tab1 (1, 'abc')
 -- PK constraint violation = SQL Error, whole TX is aborted
COMMIT WORK

With Informix®, this code will leave the table with one row inside, since the first INSERT statement
succeeded. With PostgreSQL, the table will remain empty after executing this piece of code, because
the server will rollback the whole transaction. To workaround this problem in PostgreSQL you can use
SAVEPOINT as described in Solution on page 702.

Solution

Informix® transaction handling commands are automatically converted to PostgreSQL instructions to start,
validate or cancel transactions.

Regarding the transaction control instructions, the BDL applications do not have to be modified in order to
work with PostgreSQL.

You must review the SQL statements inside BEGIN WORK / COMMIT WORK instruction and check
if these can raise an SQL error. The SQL statements that can potentially raise an SQL error must be
protected with a SAVEPOINT. If an error occurs, just rollback to the savepoint:

CREATE TABLE tab1 (k INT PRIMARY KEY, c CHAR(10))
WHENEVER ERROR CONTINUE
BEGIN WORK
INSERT INTO tab1 (1, 'abc')
CALL sql_protect()
INSERT INTO tab1 (1, 'abc')
 -- PK constraint violation = SQL Error
CALL sql_unprotect()
COMMIT WORK
...
FUNCTION sql_protect()
 IF NOT dbtype == "PGS" THEN
 RETURN
 END IF
 SAVEPOINT _sql_protect_

SQL support | 703

END FUNCTION

FUNCTION sql_unprotect()
 IF NOT dbtype == "PGS" THEN
 RETURN
 END IF
 IF SQLCA.SQLCODE < 0 THEN
 ROLLBACK TO SAVEPOINT _sql_protect_
 ELSE
 RELEASE SAVEPOINT _sql_protect_
 END IF
END FUNCTION

Note: If you want to use savepoints, do not use the UNIQUE keyword in the savepoint declaration,
always specify the savepoint name in ROLLBACK TO SAVEPOINT, and do not drop savepoints
with RELEASE SAVEPOINT.

Temporary tables

Informix® temporary tables are created through the CREATE TEMP TABLE DDL instruction or through a
SELECT ... INTO TEMP statement. Temporary tables are automatically dropped when the SQL session
ends, but they can be dropped with the DROP TABLE command. There is no name conflict when several
users create temporary tables with the same name.

Informix® allows you to create indexes on temporary tables. No name conflict occurs when several users
create an index on a temporary table by using the same index identifier.

PostgreSQL support temporary tables as Informix® does, with a little syntax difference in the SELECT
INTO TEMP instruction.

Solution

Temporary tables are well supported with native PostgreSQL temp tables.

Substrings in SQL

Informix® SQL statements can use subscripts on columns defined with the character data type:

SELECT ... FROM tab1 WHERE col1[2,3] = 'RO'
SELECT ... FROM tab1 WHERE col1[10] = 'R' -- Same as col1[10,10]
UPDATE tab1 SET col1[2,3] = 'RO' WHERE ...
SELECT ... FROM tab1 ORDER BY col1[1,3]

PostgreSQL provides the SUBSTRING() function, to extract a substring from a string expression:

SELECT FROM tab1 WHERE SUBSTRING(col1 from 2 for 2) = 'RO'
SELECT SUBSTRING('Some text' from 6 for 3) ... -- Gives 'tex'

Solution

You must replace all Informix® col[x,y] expressions by SUBSTRING(col from x for (y-x+1)).

Note:

• In UPDATE instructions, setting column values through subscripts will produce an error with
PostgreSQL:

UPDATE tab1 SET col1[2,3] = 'RO' WHERE ...

is converted to:

UPDATE tab1 SET SUBSTRING(col1 from 2 for (3-2+1)) = 'RO' WHERE ...

SQL support | 704

• Column subscripts in ORDER BY expressions are also converted and produce an error with
PostgreSQL:

SELECT ... FROM tab1 ORDER BY col1[1,3]

is converted to:

SELECT ... FROM tab1 ORDER BY SUBSTRING(col1 from 1 for(3-1+1))

String delimiters

The ANSI string delimiter character is the single quote ('string'). Double quotes are used to delimit
database object names ("object-name").

Example: WHERE "tabname"."colname" = 'string'

Informix® allows double quotes as string delimiters, but PostgreSQL doesn't. This is important since many
BDL programs use that character to delimit the strings in SQL commands.

Note: This problem concerns only double quotes within SQL statements. Double quotes used in
pure BDL string expressions are not subject to SQL compatibility problems.

Solution

The PostgreSQL database interface can automatically replace all double quotes by single quotes.

Escaped string delimiters can be used inside strings like following:

'This is a single quote: '''
'This is a single quote: \''
"This is a double quote: """
"This is a double quote: \""

Database object names cannot be delimited by double quotes because the database interface cannot
determine the difference between a database object name and a quoted string. For example, if the
program executes the SQL statement:

WHERE "tabname"."colname" = "string"

replacing all double quotes by single quotes would produce:

WHERE 'tabname'.'colname' = 'string'

This would produce an error since 'tabname'.'colname' is not allowed by PostgreSQL.

Although double quotes are replaced automatically in SQL statements, you should use only single quotes
to enforce portability.

Using column aliases in SELECT

PostgreSQL expects the ANSI notation for column aliases:

SELECT col1 AS col1_alias FROM ...

Informix® supports the ANSI notation.

Solution

The database interface cannot convert Informix® alias specification to the ANSI notation.

Review your programs and replace the Informix® notation with the ANSI form.

MATCHES and LIKE in SQL conditions

Informix® supports MATCHES and LIKE in SQL statements. PostgreSQL supports the LIKE statement as
in Informix®, plus the ~ operators that are similar but different from the Informix® MATCHES operator.

SQL support | 705

MATCHES requires * and ? wildcard characters, and LIKE uses the % and _ wildcards was equivalents.

(col MATCHES 'Smi*' AND col NOT MATCHES 'R?x')
(col LIKE 'Smi%' AND col NOT LIKE 'R_x')

MATCHES allows brackets to specify a set of matching characters at a given position:

(col MATCHES '[Pp]aris')
(col MATCHES '[0-9][a-z]*')

The PostgreSQL LIKE operator has no operator for [] brackets character ranges.

The PostgreSQL ~ operator expects regular expressions as follows: (col ~ 'a.*')

With PostgreSQL, columns defined as CHAR(N) are blank padded, and trailing blanks are significant in the
LIKE expressions. As result, with a CHAR(5) value such as 'abc ' (with 2 trailing blanks), the expression
(colname LIKE 'ab_') will not match. To workaround this behavior, you can do (RTRIM(colname)
LIKE 'pattern'). However, consider adding the condition AND (colname LIKE 'patten%') to
force the DB server to optimize the query of the column is indexed. The CONSTRUCT instruction uses this
technique when the entered criteria does not end with a * star wildcard.

Solution
The database driver is able to translate Informix® MATCHES expressions to LIKE expressions, when no
[] bracket character ranges are used in the MATCHES operand.

However, for maximum portability, consider replacing the MATCHES expressions to LIKE expressions in
all SQL statements of your programs.

Avoid using CHAR(N) types for variable length character data (such as name, address).

See also: MATCHES and LIKE operators on page 438.

Querying system catalog tables

As in Informix®, PostgreSQL provides system catalog tables (actually, system views). But the table names
and their structure are quite different.

Solution

No automatic conversion of Informix® system tables is provided by the database interface.

Syntax of UPDATE statements

Informix® allows a specific syntax for UPDATE statements:

UPDATE table SET (col-list) = (val-list)

Or

UPDATE table SET table.* = codeph.*

UPDATE table SET * = myrecord.*

Solution

Static UPDATE statements using this syntax are converted by the compiler to the standard form:

UPDATE table SET column=value [,...]

The LENGTH() function

Informix® provides the LENGTH() function:

SELECT LENGTH("aaa"), LENGTH(col1) FROM table

SQL support | 706

PostgreSQL has a equivalent function with the same name, but there is some difference:

Informix® does not count the trailing blanks for CHAR or VARCHAR expressions, while PostgreSQL counts
the trailing blanks.

With the PostgreSQL LENGTH function, when using a CHAR column values are always blank padded, so
the function returns the size of the CHAR column. When using a VARCHAR column, trailing blanks are
significant, and the function returns the number of characters, including trailing blanks.

PostgreSQL raises an error if the LENGTH() parameter is NULL. Informix® returns zero instead.

Solution
The PostgreSQL database interface cannot simulate the behavior of the Informix® LENGTH() SQL
function.

Review the program logic and make sure you do not pass NULL values to the LENGTH() SQL function.

You must check if the trailing blanks are significant when using the LENGTH() function.

If you want to count the number of character by ignoring the trailing blanks, you must use the RTRIM()
function.

BDL programming
PostgreSQL related programming topics.
Handling SQL errors when preparing statements

The PostgreSQL connector is implemented with the PostgreSQL libpq API. This library does not provide
a way to send SQL statements to the database server during the BDL PREPARE instruction, like the
Informix® interface does. The statement is sent to the server only when opening the cursors or when
executing the statement, because the database driver needs to provide the data types of the SQL
parameters (only known at OPEN / EXECUTE time).

Therefore, when preparing an SQL statement with the BDL PREPARE instruction, no SQL errors can be
returned if the statement has syntax errors or if a column or a table name does not exist in the database.
However, an SQL error will occur after the OPEN or EXECUTE instructions.

Solution

Check that your BDL programs do not test STATUS or SQLCA.SQLCODE variable just after PREPARE
instructions.

Change the program logic in order to handle the SQL errors when opening the cursors (OPEN) or when
executing SQL statements (EXECUTE).

Informix® specific SQL statements in BDL

The BDL compiler supports several Informix® specific SQL statements that have no meaning when using
PostgreSQL.

• CREATE DATABASE
• DROP DATABASE
• START DATABASE (SE only)
• ROLLFORWARD DATABASE
• SET [BUFFERED] LOG
• CREATE TABLE with special options (storage, lock mode, etc.)

Solution

Review your BDL source and remove all static SQL statements which are Informix® specific.

SQL support | 707

INSERT cursors

Informix® supports insert cursors. An "insert cursor" is a special BDL cursor declared with an INSERT
statement instead of a SELECT statement. When this kind of cursor is open, you can use the PUT
instruction to add rows and the FLUSH instruction to insert the records into the database.

For Informix® database with transactions, OPEN, PUT and FLUSH instructions must be executed within a
transaction.

PostgreSQL does not support insert cursors.

Solution

Insert cursors are emulated by the PostgreSQL database interface.

Cursors WITH HOLD

Informix® closes opened cursors automatically when a transaction ends unless the WITHHOLD option is
used in the DECLARE instruction. In PostgreSQL, opened cursors using SELECT statements without a
FOR UPDATE clause are not closed when a transaction ends. Actually, all PostgreSQL cursors are 'WITH
HOLD' cursors unless the FOR UPDATE clause issued in the SELECT statement.

Cursors declared FOR UPDATE and using the WITH HOLD option cannot be supported with PostgreSQL
because FOR UPDATE cursors are automatically closed by PostgreSQL when the transaction ends.

Solution

BDL cursors that are not declared "WITH HOLD" are automatically closed by the database interface when
a COMMIT WORK or ROLLBACK WORK is performed.

Since PostgreSQL automatically closes FOR UPDATE cursors when the transaction ends, opening cursors
declared FOR UPDATE and the WITH HOLD option results in an SQL error that does not normally appear
with Informix® under the same conditions. Review the program logic in order to find another way to set
locks.

SELECT FOR UPDATE

A lot of BDL programs use pessimistic locking in order to avoid several users editing the same rows at the
same time.

DECLARE cc CURSOR FOR
SELECT ... FROM tab WHERE ... FOR UPDATE
OPEN cc
FETCH cc <-- lock is acquired
...
CLOSE cc <-- lock is released

In both Informix® and PostgreSQL, locks are released when closing the cursor or when the transaction
ends.

PostgreSQL locking granularity is at the row level.

To control the behavior of the program when locking rows, Informix® provides a specific instruction to set
the wait mode:

SET LOCK MODE TO { WAIT | NOT WAIT | WAIT seconds }

The default mode is NOT WAIT. This as an Informix-specific SQL statement; PostgreSQL has no
equivalent for "SET LOCK MODE TO NOT WAIT".

SQL support | 708

Solution

The database interface is based on an emulation of an Informix® engine using transaction logging.
Therefore, opening a SELECT ... FOR UPDATE cursor declared outside a transaction will raise an SQL
error -255 (not in transaction).

You must review the program logic if you use pessimistic locking because it is based on the NOT WAIT
mode which is not supported by PostgreSQL.

UPDATE/DELETE WHERE CURRENT OF

Informix® allows positioned UPDATEs and DELETEs with the "WHERE CURRENT OF cursor" clause, if
the cursor has been DECLARED with a SELECT ... FOR UPDATE statement.

UPDATE/DELETE ... WHERE CURRENT OF is supported by PostgreSQL with server-side cursors
created with a DECLARE statement.

Solution

UPDATE/DELETE ... WHERE CURRENT OF instructions are executed as is. Since SELECT FOR
UPDATE statements are now executed with a server cursor by using a DECLARE PostgreSQL statement,
native positioned update/delete takes place.

The LOAD and UNLOAD instructions

Informix® provides two SQL instructions to export / import data from / into a database table: The UNLOAD
instruction copies rows from a database table into a text file and the LOAD instructions insert rows from a
text file into a database table.

PostgreSQL does not provide LOAD and UNLOAD instructions.

Solution

LOAD and UNLOAD instructions are supported.

SQL Interruption

With Informix®, it is possible to interrupt a long running query if the SQL INTERRUPT ON option.

PostgreSQL supports SQL Interruption in a similar way. The db client must issue an PQcancel() libPQ call
to interrupt a query.

Solution

The PostgreSQL database driver supports SQL interruption and converts the SQLSTATE code 57014 to
the Informix® error code -213.

Scrollable Cursors

The Genero programming language supports scrollable cursors.

PostgreSQL supports native scrollable cursors.

Solution

The PostgreSQL database driver uses native scrollable cursors by declaring server cursors with the
SCROLL clause.

SQL support | 709

SQL adaptation guide for SQLite 3.x

Installation (Runtime Configuration)
SQLite related installation topics.
Install SQLite and create a database - database configuration/design tasks

If you are tasked with installing and configuring the database, here is a list of steps to be taken:

1. If the dbmsqt database driver is linked dynamically with the SQLite library, you must install the SQLite
software on your computer. However, on most platforms, the driver has an embedded version of the
SQLite library, and on platforms such as Linux™ as Mac OS X™, the SQLite library is usually present.

The minimum required version is SQLite 3.6.

2. Create a new SQLite database.

To create a new database with tables, start the sqlite3 command line tool and execute SQL statements:

$ sqlite3 /var/data/stores.db
sqlite> CREATE TABLE customer (cust_id INT PRIMARY KEY, ...);
$.exit

To create an empty database, you can also issue the following command:

$ sqlite3 /var/data/stores.db ""

or create an empty file with operating system command:

$ touch /var/data/stores.db

And empty file can also be created from a program by using a base.Channel object:

DEFINE ch base.Channel
LET ch = base.Channel.create()
CALL ch.openFile("/var/data/stores.db","w")
CALL ch.close

Prepare the runtime environment - connecting to the database

1. In order to connect to SQLite, you must have a database driver "dbmsqt" in FGLDIR/dbdrivers. On
most platforms, the SQLite driver is linked statically with the SQLite library, in other word SQLite is
embedded in the ODI driver. However, on some platforms such as Linux™ and Max OS X, where the
SQLite library is usually present.

2. Make sure that the SQLite environment variables are properly set. You may want to define an
environment variable such as SQLITEDIR the hold the installation directory of SQLite, which can then
be used to set PATH and LD_LIBRARY_PATH. See SQLite documentation for more details.

3. If the SQLite library is not embedded in the the dbmsqt* driver, the environment must be set to find the
SQLite library. Verify the environment variable defining the search path for the SQLite shared library.

Table 211: Shared library environment setting for SQLite

SQLite version
Shared library environment setting (if SQLite
lib not built-in driver)

SQLite 3.6 and higher UNIX™: Add $SQLITEDIR/lib to
LD_LIBRARY_PATH (or its equivalent).

Windows™: Add %SQLITEDIR%\bin to PATH.

4. Make sure that all operating system users running the application have read/write access to the
database file.

SQL support | 710

5. SQLite uses UTF-8 encoding. If the locale used by the runtime system (LANG/LC_ALL) is not
compatible to UTF-8 (for example, fr_FR.iso88591), Genero will do the appropriate character set
conversions.

6. Set up the fglprofile entries for database connections.

a) Define the SQLite database driver:

dbi.database.dbname.driver = "dbmsqt"

b) The "source" parameter defines the path to the SQLite database file. Note that the database file
must reside on the local disk (SQLite does not support network file systems). SQLite also supports
in-memory database creation with the :memory: db specification. See SQLite documentation
(sqlite3_open) for more details.

dbi.database.dbname.source = "/opt/myapp/stock.dbs"

c) If the "source" parameter defines a relative path or a simple file name and the SQLite database
file does not reside in that location according to the current directory of the fglrun process, define
the DBPATH environment variable to find the database file. See DBPATH documentation for more
details about this environment variable.

DBPATH="/opt/myapp"

Database concepts
SQLite related database concepts topics.
Database concepts

Informix® servers can handle multiple database entities, while SQLite can manage several database files.

Solution

Map each Informix® database to a SQLite database file.

Consider creating the SQLite database file before using the connection instruction. The database file
can be created as an empty file, with a OS shell command (touch) or by program by using the file utility
classes.

It is possible to specify an SQLite database file name in the database specification in CONNECT TO or
DATABASE instructions:

DATABASE "/opt/myapp/database/stock1.dbs"

However, it is recommended to use an indirection by using an abstract name identifier in the program, and
by defining the real database file with the "source" connection parameter. The file defined by "source" is
then found directly (can be a relative or absolute path), or according to DBPATH settings if not found from
the current directory of fglrun (when it's not an absolute path).

In the program:

DATABASE stock

In the FGLPROFILE configuration file, define the SQLite driver and the database file:

dbi.database.stock.driver = "dbmsqt"
dbi.database.stock.source = "/opt/myapp/database/stock1.dbf"

FGLPROFILE could also define the file name only:

dbi.database.stock.source = "stock1.dbf"

SQL support | 711

And the file would be found by using DBPATH:

DBPATH="/opt/myapp/database"

When specifying :memory: as database file name, an empty SQLite database is created in memory. This
can be useful if the persistence of the data is not required after the program has terminated:

DATABASE ":memory:"

Concurrency management

Informix® is a multiuser database engine, while SQLite is typically used for a single-user application.
SQLite 3 supports multiuser access to the same database file, but it is not designed for large multiuser
applications.

SQLite 3 supports two isolation levels: SERIALIZABLE (the default), and READ UNCOMMITTED. The
isolation level can be changed with the PRAGMA command.

By default in the SERIALIZABLE isolation level, SQLite will raise an SQL error if a program tries to access
a database resource in use by another program. To avoid the SQL error and force programs to wait for
each other, programs define the behavior when the SQLite database is busy (SQLITE_BUSY), with a
specific API call. No SQL command exists for this.

Solution

We recommend that you use SQLite for single-user DB applications. If several programs must access the
same SQLite database, each program must perform a SET LOCK MODE TO WAIT instruction after the
connection: SET LOCK MODE will be mapped to a call to the sqlite3_busy_timeout() SQLite API function
to get the same behavior as Informix®, while SET ISOLATION instructions will be ignored.

Transactions handling

Informix® and SQLite have similar commands to begin, commit or rollback transaction. There are however
some important differences you must be aware of.

With SQLite, DDL statements can be executed (and canceled) in transaction blocks, as with Informix®.

Informix® version 11.50 introduces savepoints with the following instructions:

SAVEPOINT name [UNIQUE]
ROLLBACK [WORK] TO SAVEPOINT [name]]
RELEASE SAVEPOINT name

SQLite supports savepoints too. However, there are differences:

1. SAVEPOINT can be used instead of BEGIN TRANSACTION. In this case, RELEASE is like a COMMIT.
2. The syntax of a rollback to the savepoint is ROLLBACK [TRANSACTION] TO [SAVEPOINT] name .
3. The syntax of a release of the savepoint is RELEASE [SAVEPOINT] name .
4. Rollback must always specify the savepoint name.
5. You cannot rollback to a savepoint if cursors are opened.
6. In SQLite versions prior to 3.7, you cannot rollback are transaction if a cursor is open.

Solution

Regarding transaction control instructions, BDL applications do not have to be modified in order to work
with SQLite. The BEGIN WORK, COMMIT WORK and ROLLBACK WORK commands are translated the
native commands of SQLite.

Note: If you want to use savepoints, always specify the savepoint name in ROLLBACK TO
SAVEPOINT and do not open cursors during transactions using savepoints. If you are using an

SQL support | 712

SQLite versions prior to 3.7, it is not possible to perform a ROLLBACK WORK if a cursor (with hold)
is currently open.

See also SELECT FOR UPDATE

Database users

Informix® supports database users that must be explicitly declared to the database by granting privileges.

SQLite does not have the database users concept. However, the operating system user must have read/
write access to the database file.

Solution

SQLite is mainly designed for single-user applications.

Data dictionary
SQLite related data dictionary topics.
BOOLEAN data type

Informix® supports the BOOLEAN data type, which can store 't' or 'f' values. Genero BDL implements the
BOOLEAN data type in a different way. As in other programming languages, Genero BOOLEAN stores
integer values 1 or 0 (for TRUE or FALSE). The type was designed this way to assign the result of a
boolean expression to a BOOLEAN variable.

SQLite does not implement a native BOOLEAN type, but accepts BOOLEAN in the SQL syntax.

Solution

The SQLite database interface supports the BOOLEAN data type, and converts the BDL BOOLEAN
integer values to a CHAR(1) of '1' or '0'.

CHARACTER data types

Informix® supports the following character data types:

• CHAR(N) with N<= 32767 bytes
• VARCHAR(N[,M]) with N<=255 bytes
• NCHAR(N) with N<= 32767 bytes
• NVARCHAR(N[,M]) with N<=255 bytes
• LVARCHAR(N), without the 255 bytes limit (max size varies according to IDS version)

In Informix®, both CHAR/VARCHAR and NCHAR/ NVARCHAR data types can be used to store single-
byte or multibyte encoded character strings. The only difference between CHAR/VARCHAR and NCHAR/
NVARCHAR is for sorting: N[VAR]CHAR types use the collation order, while [VAR]CHAR types use the
byte order. The character set used to store strings in CHAR/VARCHAR/NCHAR/NVARCHAR columns is
defined by the DB_LOCALE environment variable. The character set used by applications is defined by
the CLIENT_LOCALE environment variable. Informix® uses Byte Length Semantics (the size N that you
specify in [VAR]CHAR(N) is expressed in bytes, not characters as in some other databases)

SQLite 3 provides the TEXT native data type with no strict size limitation. SQLite allows the CHAR(n),
VARCHAR(n), NCHAR(n) and NVARCHAR(n) type names to be used, but actually stores the data in a
TEXT native type.

SQLite treats empty strings as NOT NULL values like Informix®.

Note: With the default BINARY collation, SQLite compares VARCHAR and CHAR values by
taking trailing blanks into account. Informix® always ignores trailing blanks when comparing CHAR/
VARCHAR values.

SQLite supports only the UTF-8 character encoding. Thus, client applications must provide UTF-8 encoded
strings.

SQL support | 713

Solution

The database interface supports character string variables in SQL statements for input (BDLUSING) and
output (BDL INTO).

Important: With the default BINARY collation, CHAR and VARCHAR comparison in SQLite
takes trailing blanks into account. As result, some queries returning rows with Informix® may not
return the same result set with SQLite. When creating a table in SQLite, you can change the
default collation rule to force the database engine to trim trailing blanks before comparing CHAR/
VARCHAR values, by specifying COLLATION RTRIM in the column definitions. When creating a
table from a Genero program, if Informix® emulation is enabled for the CHAR/VARCHAR types, the
SQLite database driver adds automatically COLLATE RTRIM after the CHAR(N) or VARCHAR(N)
type, to get the same comparison semantics as Informix®.

Regarding character sets, the SQLite database driver automatically converts character strings used in the
programs to/from UTF-8 for SQLite.

SQLite uses character length semantics: When you define a CHAR(20) and the database character set is
multibyte, the column can hold more bytes/characters than the Informix® CHAR(20) type, when using byte
length semantics.

When using a multibyte character set (such as UTF-8), define database columns with the size in character
units, and use character length semantics in BDL programs with FGL_LENGTH_SEMANTICS=CHAR.

When extracting a database schema from a SQLite database, the schema extractor uses the size of the
column in characters, not the octet length. If you have created a CHAR(10 (characters)) column a in
SQLite database using the UTF-8 character set, the .sch file will get a size of 10, that will be interpreted
according to FGL_LENGTH_SEMANTICS as a number of bytes or characters.

See also the section about Localization.

NUMERIC data types

Informix® supports several data types to store numbers:

Table 212: Informix® numeric data types

Informix® data type Description

SMALLINT 16 bit signed integer

INT / INTEGER 32 bit signed integer

BIGINT 64 bit signed integer

INT8 64 bit signed integer (replaced by BIGINT)

DEC / DECIMAL Equivalent to DECIMAL(16)

DEC / DECIMAL(p) Floating-point decimal number

DEC / DECIMAL(p,s) Fixed-point decimal number

MONEY Equivalent to DECIMAL(16,2)

MONEY(p) Equivalent to DECIMAL(p,2)

MONEY(p,s) Equivalent to DECIMAL(p,s)

REAL / SMALLFLOAT 32-bit floating point decimal (C float)

DOUBLE PRECISION / FLOAT[(n)] 64-bit floating point decimal (C double)

SQLite 3 supports INTEGER (8 byte integer) and REAL (8 byte floating point) as native types to store
numbers, but allows synonyms:

SQL support | 714

Table 213: SQLite numeric data types and supported synonyms

Supported synonyms SQLite type affinity

INT, INTEGER, TINYINT, SMALLINT,
MEDIUMINT, BIGINT, UNSIGNED BIG INT, INT2,
INT8

INTEGER (8 bytes!)

REAL, DOUBLE, DOUBLE PRECISION, FLOAT REAL (8 bytes!)

DECIMAL(p,s), NUMERIC NUMERIC (based on REAL)

Important: Exact decimal types like DECIMAL(p,s) may be stored as floating point numbers
(REAL), INTEGERs or TEXT, according to the type affinity selected by SQLite. When converted to
floating point type, data loss and rounding rule differences are possible with SQLite.

Solution

Informix® numeric types are not translated by the database driver.

Since SQLite 3 does not have exact decimal types like DECIMAL(p,s), you must pay attention to the
rounding rules and data loss when using numbers with many significant digits. Arithmetic operations
like division have different results than with Informix®. It is better to fetch the original column value into a
DECIMAL variable, and do arithmetic operations in the application program.

DATE and DATETIME data types

Informix® provides two data types to store date and time information:

• DATE = for year, month and day storage.
• DATETIME = for year to fraction(1-5) storage.

SQLite 3 does not have a native type for date/time storage, but you can use data/time type names and
functions based on the string representation of dates and times. The date/time values are stored in the
TEXT native type. The date/time functions of SQLite are based on standard DATE (YYYY-MM-DD), TIME
(hh:mm:ss) and TIMESTAMP (YYYY-MM-DD hh:mm:ss) concepts.

For maximum flexibility with other RDBMS SQL languages, SQLite allows to define table columns with your
own type names. You can for example use the SMALLDATETIME, SMALLTIME, TIME(N), DATETIME(N)
type names.

Solution

The following conversions are done by the ODI SQLite driver for date/time types:

• DATE type is not translated, it will be used as is by SQLite.
• DATETIME HOUR TO MINUTE is translated to SMALLTIME.
• DATETIME HOUR TO SECOND is translated to TIME.
• DATETIME HOUR TO FRACTION(n) is transalated to TIME(n).
• DATETIME YEAR TO DAY is translated to TINYDATETIME.
• DATETIME YEAR TO MINUTE is translated to SMALLDATETIME.
• DATETIME YEAR TO SECOND is translated to DATETIME.
• DATETIME YEAR TO FRACTION(n) is translated to DATETIME(n).
• DATETIME with another precision as above are translated to TIMESTAMP.

See also Date and time in SQL statements on page 432 for good SQL programming practices.

INTERVAL data type

Informix's INTERVAL data type stores a value that represents a span of time. INTERVAL types are divided
into two classes: year-month intervals and day-time intervals.

SQL support | 715

SQLite 3 does not provide a data type similar to Informix® INTERVAL.

Solution

It is not recommended that you use the INTERVAL data type because SQLite 3 has no equivalent native
data type. This would cause problems when doing INTERVAL arithmetic on the database server side.
However, INTERVAL values can be stored in CHAR(50) columns.

SERIAL data types

Informix® supports the SERIAL, SERIAL8 and BIGSERIAL data types to produce automatic integer
sequences. SERIAL is based on INTEGER (32 bit), while SERIAL8 and BIGSERIAL can store 64 bit
integers:

• The table column must be of type SERIAL, SERIAL8 or BIGSERIAL.
• To generate a new serial, no value or a zero value is specified in the INSERT statement:

INSERT INTO tab1 (c) VALUES ('aa')
INSERT INTO tab1 (k, c) VALUES (0, 'aa')

• After INSERT, the new SERIAL value is provided in SQLCA.SQLERRD[2], while the new SERIAL8 and
BIGSERIAL value must be fetched with a SELECT dbinfo('bigserial') query.

Informix® allows you to insert rows with a value different from zero for a serial column. Using an explicit
value will automatically increment the internal serial counter, to avoid conflicts with future INSERT
statements that are using a zero value:

CREATE TABLE tab (k SERIAL); -- internal counter = 0
INSERT INTO tab VALUES (0); -- internal counter = 1
INSERT INTO tab VALUES (10); -- internal counter = 10
INSERT INTO tab VALUES (0); -- internal counter = 11
DELETE FROM tab; -- internal counter = 11
INSERT INTO tab VALUES (0); -- internal counter = 12

SQLite supports the AUTOINCREMENT attribute for columns:

• Only one column must be declared as INTEGER PRIMARY KEY AUTOINCREMENT.
• To get the last generated number, SQLite provides the sqlite_sequence table:

SELECT seq FROM sqlite_sequence WHERE name='table_name';

• When inserting a zero in the auto-increment column, SQLite will not generate a new sequence like
Informix® does.

• When inserting a NULL in the auto-increment column, SQLite generates a new sequence; Informix®

denies NULLs in SERIALs.

Solution

When using SQLite, the SERIAL data type is converted to INTEGER PRIMARY KEY AUTOINCREMENT.

The SQLCA.SQLERRD[2] register is filled automatically after each INSERT with the last generated
number, by fetching the value from the sqlite_sequence table.

SQLite (V 3.6) does not support auto-incremented BIGINTs. Therefore, BIGSERIAL or SERIAL8 cannot be
converted.

Because SQLite does not behave like Informix® regarding zero and NULL value specification for auto-
incremented columns, all INSERT statements must be reviewed to remove the SERIAL column from the
list.

For example, the following statement:

INSERT INTO tab (col1,col2) VALUES (0 , p_value)

SQL support | 716

Can be converted to:

INSERT INTO tab (col2) VALUES (p_value)

Static SQL INSERT using records defined from the schema file must also be reviewed:

DEFINE rec LIKE tab.*
INSERT INTO tab VALUES (rec.*) -- will use the serial column

Can be converted to:

INSERT INTO tab VALUES rec.* -- without braces, serial column is removed

ROWIDs

When creating a table, Informix® automatically adds a ROWID integer column (applies to non-fragmented
tables only). The ROWID column is auto-filled with a unique number and can be used like a primary key to
access a given row.

SQLite supports ROWID columns as 64-bit integers. Informix® ROWIDs are 16-bit integers.

With Informix®, SQLCA.SQLERRD[6] contains the ROWID of the last INSERTed or UPDATEd row. This is
not supported with SQLite because SQLite ROWIDs are not INTEGERs.

Solution

If the BDL application uses Informix® ROWIDs as primary keys, the program logic should be reviewed in
order to use the real primary keys.

If you cannot avoid the use of rowids, you must change the type of the variables which hold ROWID
values. Instead of using INTEGER, you must use DECIMAL(20).

Note: All references to SQLCA.SQLERRD[6] must be removed because this variable will not
contain the ROWID of the last INSERTed or UPDATEd row when using the SQLite interface.

Foreign key support

Foreign keys are an important feature in modern database design, to enforce database integrity:

CREATE TABLE orders (
 ... ,
 FOREIGN KEY(ord_customer) REFERENCES customer(cust_num))
)

SQLite (3.6.19 and +) implements foreign key support, but this feature is not enabled by default. In fact, it
is possible to define foreign keys on tables, but when doing database operations, the constraints are not
enforced until you enable it explicitely with a PRAGMA command.

Solution

In order to turn on foreign key constraint checking, you must issue a PRAGMA command, which can for
example be executed with a EXECUTE IMMEDIATE instruction:

EXECUTE IMMEDIATE "PRAGMA foreign_keys = ON"

Future releases of SQLite might change this, so that foreign key constraints enabled by default.

Large OBject (LOB) types

IBM® Informix® and Genero support the TEXT and BYTE types to store large objects: TEXT is used to
store large text data, while BYTE is used to store large binary data like images or sound.

SQLite 3 provides TEXT and BLOB native data types for large objects storage.

SQL support | 717

Solution

The SQLite database interface can convert BDL TEXT data to TEXT and BYTE data to BLOB.

Data type conversion table: Informix to SQLite

Table 214: Data type conversion table between Informix® and SQLite

Informix® data types SQLite data types

CHAR(n) CHAR(n) COLLATE RTRIM

VARCHAR(n[,m]) VARCHAR(n) COLLATE RTRIM

LVARCHAR(n) VARCHAR(n) COLLATE RTRIM

NCHAR(n) NCHAR(n)

NVARCHAR(n) NVARCHAR(n)

BOOLEAN BOOLEAN

SMALLINT SMALLINT

INT / INTEGER INTEGER

BIGINT BIGINT

INT8 BIGINT

SERIAL[(start)] INTEGER (see note 1)

BIGSERIAL[(start)] N/A (see note 1)

INT8[(start)] N/A (see note 1)

DOUBLE PRECISION / FLOAT[(n)] FLOAT

REAL / SMALLFLOAT SMALLFLOAT

NUMERIC / DEC / DECIMAL(p,s) DECIMAL(p,s)

NUMERIC / DEC / DECIMAL(p) DECIMAL(p,s)

NUMERIC / DEC / DECIMAL DECIMAL

MONEY(p,s) DECIMAL(p,s)

MONEY(p) DECIMAL(p,2)

MONEY DECIMAL(16,2)

TEXT TEXT

BYTE BLOB

DATE DATE

DATETIME HOUR TO MINUTE SMALLTIME

DATETIME HOUR TO SECOND TIME

DATETIME HOUR TO FRACTION(n) TIME(n)

DATETIME YEAR TO DAY TINYDATETIME

DATETIME YEAR TO MINUTE SMALLDATETIME

DATETIME YEAR TO SECOND DATETIME

SQL support | 718

Informix® data types SQLite data types

DATETIME YEAR TO FRACTION(n) DATETIME(n)

DATETIME q1 TO q2 (different from above) TIMESTAMP

INTERVAL q1 TO q2 CHAR(50)

Notes:

1. For more details about serial emulation, see SERIAL data types on page 715.

Data manipulation
SQLite related data manipulation topics.
Outer joins

The original syntax of OUTER joins of Informix® is different from the SQLite outer join syntax:

In Informix® SQL, outer tables are defined in the FROM clause with the OUTER keyword:

SELECT ... FROM a, OUTER(b)
 WHERE a.key = b.akey

SELECT ... FROM a, OUTER(b,OUTER(c))
 WHERE a.key = b.akey
 AND b.key1 = c.bkey1
 AND b.key2 = c.bkey2

SQLite 3 supports the ANSI outer join syntax:

SELECT ... FROM cust LEFT OUTER JOIN order
 ON cust.key = order.custno

SELECT ...
FROM cust LEFT OUTER JOIN order
 LEFT OUTER JOIN item
 ON order.key = item.ordno
 ON cust.key = order.custno
WHERE order.accepted = 1

See the SQLite 3 SQL reference for a complete description of the syntax.

Solution

For better SQL portability, you should use the ANSI outer join syntax instead of the old Informix® OUTER
syntax.

The SQLite 3 interface can convert most Informix® OUTER specifications to SQLite 3 outer joins.

Prerequisites:

1. In the FROM clause, the main table must be the first item and the outer tables must be listed from left to
right in the order of outer levels.

Example which does not work: "FROM OUTER(tab2), tab1".
2. The outer join in the WHERE clause must use the table name as prefix.

Example: "WHERE tab1.col1 = tab2.col2".

Restrictions:

1. Additional conditions on outer table columns cannot be detected and therefore are not supported:

Example: "... FROM tab1, OUTER(tab2) WHERE tab1.col1 = tab2.col2 AND tab2.colx > 10".

SQL support | 719

2. Statements composed by 2 or more SELECT instructions using OUTERs are not supported.

Example: "SELECT ... UNION SELECT" or "SELECT ... WHERE col IN (SELECT...)"

Remarks:

1. Table aliases are detected in OUTER expressions.

OUTER example with table alias: "OUTER(tab1 alias1)".
2. In the outer join, <outer table>.<col> can be placed on both right or left sides of the equal sign.

OUTER join example with table on the left: "WHERE outertab.col1 = maintab.col2 ".
3. Table names detection is not case-sensitive.

Example: "SELECT ... FROM tab1, TAB2 WHERE tab1.col1 = tab2.col2".
4. Temporary tables are supported in OUTER specifications.

Transactions handling

Informix® and SQLite have similar commands to begin, commit or rollback transaction. There are however
some important differences you must be aware of.

With SQLite, DDL statements can be executed (and canceled) in transaction blocks, as with Informix®.

Informix® version 11.50 introduces savepoints with the following instructions:

SAVEPOINT name [UNIQUE]
ROLLBACK [WORK] TO SAVEPOINT [name]]
RELEASE SAVEPOINT name

SQLite supports savepoints too. However, there are differences:

1. SAVEPOINT can be used instead of BEGIN TRANSACTION. In this case, RELEASE is like a COMMIT.
2. The syntax of a rollback to the savepoint is ROLLBACK [TRANSACTION] TO [SAVEPOINT] name .
3. The syntax of a release of the savepoint is RELEASE [SAVEPOINT] name .
4. Rollback must always specify the savepoint name.
5. You cannot rollback to a savepoint if cursors are opened.
6. In SQLite versions prior to 3.7, you cannot rollback are transaction if a cursor is open.

Solution

Regarding transaction control instructions, BDL applications do not have to be modified in order to work
with SQLite. The BEGIN WORK, COMMIT WORK and ROLLBACK WORK commands are translated the
native commands of SQLite.

Note: If you want to use savepoints, always specify the savepoint name in ROLLBACK TO
SAVEPOINT and do not open cursors during transactions using savepoints. If you are using an
SQLite versions prior to 3.7, it is not possible to perform a ROLLBACK WORK if a cursor (with hold)
is currently open.

See also SELECT FOR UPDATE

Temporary tables

Informix® temporary tables are created through the CREATE TEMP TABLE DDL instruction or through a
SELECT ... INTO TEMP statement. Temporary tables are automatically dropped when the SQL session
ends, but they can also be dropped with the DROP TABLE command. There is no name conflict when
several users create temporary tables with the same name.

Note: BDL reports create a temporary table when the rows are not sorted externally (by the source
SQL statement).

Informix® allows you to create indexes on temporary tables. No name conflict occurs when several users
create an index on a temporary table by using the same index identifier.

SQL support | 720

SQLite supports temporary tables with the CREATE TEMP TABLE statement.

Solution

Informix® CREATE TEMP TABLE statements are kept as is and SELECT INTO TEMP statements are
converted to SQLite native SQL CREATE TEMP TABLE AS SELECT ...

MATCHES and LIKE in SQL conditions

Informix® supports MATCHES and LIKE in SQL statements, while SQLite supports the LIKE statement
only.

MATCHES requires * and ? wildcard characters, and LIKE uses the % and _ wildcards was equivalents.

(col MATCHES 'Smi*' AND col NOT MATCHES 'R?x')
(col LIKE 'Smi%' AND col NOT LIKE 'R_x')

MATCHES allows you to use brackets to specify a set of matching characters at a given position:

(col MATCHES '[Pp]aris')
(col MATCHES '[0-9][a-z]*')

The SQLite LIKE operator has no operator for [] brackets character ranges.

Solution

The database driver is able to translate Informix® MATCHES expressions to LIKE expressions, when no
[] bracket character ranges are used in the MATCHES operand.

However, for maximum portability, consider replacing the MATCHES expressions to LIKE expressions in
all SQL statements of your programs.

Avoid using CHAR(N) types for variable length character data (such as name, address).

See also: MATCHES and LIKE operators on page 438.

Syntax of UPDATE statements

Informix® allows a specific syntax for UPDATE statements:

UPDATE table SET (col-list) = (val-list)

Or

UPDATE table SET table.* = codeph.*

UPDATE table SET * = myrecord.*

Solution

Static UPDATE statements using this syntax are converted by the compiler to the standard form:

UPDATE table SET column=value [,...]

BDL programming
SQLite related programming topics.
Informix-specific SQL statements in BDL

The BDL compiler supports several Informix® specific SQL statements that have no meaning when using
SQLite:

• CREATE DATABASE
• DROP DATABASE
• START DATABASE (SE only)

SQL support | 721

• ROLLFORWARD DATABASE
• SET [BUFFERED] LOG
• CREATE TABLE with special options (storage, lock mode, etc.)

Solution

Review your BDL source and remove all static SQL statements which are Informix® specific.

INSERT cursors

Informix® supports insert cursors. An "insert cursor" is a special BDL cursor declared with an INSERT
statement instead of a SELECT statement. When this kind of cursor is open, you can use the PUT
instruction to add rows and the FLUSH instruction to insert the records into the database.

For Informix® database with transactions, OPEN, PUT and FLUSH instructions must be executed within a
transaction.

SQLite does not support insert cursors.

Solution

Insert cursors are emulated by the SQLite database interface.

SELECT FOR UPDATE

A lot of BDL programs use pessimistic locking in order to prevent several users editing the same rows at
the same time.

DECLARE cc CURSOR FOR
SELECT ... FROM tab WHERE ... FOR UPDATE
OPEN cc
FETCH cc <-- lock is acquired
...
CLOSE cc <-- lock is released

• The row must be fetched in order to set the lock.
• If the cursor is local to a transaction, the lock is released when the transaction ends. If the cursor is

declared "WITH HOLD", the lock is released when the cursor is closed.

SQLite does not support the FOR UPDATE close in SELECT syntax.

Solution

Review the program logic and remove SELECT ... FOR UPDATE statements, as SQLite doesn't support
them.

UPDATE/DELETE WHERE CURRENT OF

Informix® allows positioned UPDATEs and DELETEs with the "WHERE CURRENT OF cursor" clause, if
the cursor has been DECLARED with a SELECT ... FOR UPDATE statement.

SELECT ... FOR UPDATE is not supported by SQLite.

Solution

Review the program logic and use primary keys to update the rows.

The LOAD and UNLOAD instructions

Informix® provides two SQL instructions to export / import data from / into a database table: The UNLOAD
instruction copies rows from a database table into a text file and the LOAD instructions insert rows from a
text file into a database table.

SQLite 3.0 does not natively provide LOAD / UNLOAD instructions.

SQL support | 722

Solution

LOAD and UNLOAD instructions are supported.

Scrollable Cursors

The Genero programming language supports scrollable cursors.

SQLite 3.x does not support native scrollable cursors.

Solution

The SQLite database driver emulates scrollable cursors with temporary files.

See Scrollable cursors on page 422 for more details about scroll cursor emulation.

Modifying many rows in a table

SQLite is very slow when doing commits, because of the technique used to ensure data integrity (see
SQLite documentation for details).

When a program executes a DML statement like INSERT, it will be automatically committed by SQLite. As
result, there will be as many transactions/commits as data manipulation statements.

It takes for example about 10 seconds to insert 1000 rows on an Intel core i7 2.60GHz CPU / 5400.0 RPM
HDD computer.

Solution

If a program must modify many rows in a table, execute the SQL statement within a transaction block
delimited by BEGIN WORK / COMMIT WORK instructions. This will dramatically speed up the process.

See Performance with transactions on page 453.

Optimizing database file usage

By default, when deleting a large amount of data in an SQLite database it leaves behind empty space,
causing the database file to be larger than stricly necessary.

This might be an issue with some mobile applications, when the disk space of the mobile device is limited.

Solution

Execute the VACUUM SQL command, to truncate the database file and reduce the disk usage.

According to the application, the VACUUM command can be executed:

• when starting the application,
• after doing a large db operation (like a synchronization with a central db),
• as a manual option that the user can trigger.

Note that SQLite also supports "PRAGMA auto_vacuum", but it appears that it's not as efficient as the
VACUUM command, regarding page fragmentation.

Pay attention to the fact that VACUUM needs twice the disk space of the actual database file, because it
rebuilds totally the db file.

VACUUM is not Informix SQL syntax, thus you can't write it directly in the BDL code: You must use
EXECUTE IMMEDIATE:

EXECUTE IMMEDIATE "VACUUM"

SQL support | 723

SQL adaptation guide for SAP Sybase ASE 16.x

Installation (Runtime Configuration)
Sybase ASE related installation topics.
Install Sybase ASE and create a database - database configuration/design tasks

If you are tasked with installing and configuring the database, here is a list of steps to be taken:

1. Install Sybase ASE software on your computer, with the Sybase client software.

Make sure that the server is started and environment variables are properly set (On UNIX™, you will
find SYBASE.* shell scripts to source in the installation directory).

2. Try to connect to the server with the isql command line tool.

If needed, change the password of the "sa" database administrator:

$ isql -S server_name -U sa
1> sp_password old_password, new_password
2> go
Password correctly set.
(return status = 0)

Starting with Sybase ASE 15.7, the password of the sa user is defined at installation time.

3. Define server's default character set: You must identify what server character set you want to use
(typically, utf8) and re-configure the server if needed.

With Sybase ASE, the db character set cannot be specified at the database level, it is defined at the
server level, typically during the installation. It is also possible to change the srever character set with
the charset utility and with the sp_configure stored procedure. You have to shutdown the server,
start a first time to have the server take the new character set into account and then restart a second
time for use. See Sybase documentation for more details or more recent versions of Sybase ASE.

Make sure that you select a case-sensitive character set / sort order.

Note: Check the $SYBROOT/locales/locales.dat file, to make sure that your current
locale (LANG/LC_ALL) is listed in the file. You may want to add the following lines for UTF-8
support, under the section of your operating system:

 locale = POSIX, us_english, utf8
 locale = en_US.utf8, us_english, utf8
; Windows only:
 locale = .fglutf8, us_english, utf8

Example:

$ export DSQUERY=servername
$ charset -Usa -P binary.srt utf8
Please enter sa's Password:
Loading file 'binary.srt'.

Found a [sortorder] section.

This is Class-1 sort order.

Finished loading the Character Set Definition.

Finished loading file 'binary.srt'.

1 sort order loaded successfully

$ isql -Usa -P
1> sp_configure 'default sortorder id', 50, 'utf8'
2> go

SQL support | 724

3> shutdown
4> go
Server SHUTDOWN by request.
ASE is terminating this process.
.......

$ $SYBROOT/ASE_*/install/RUN_servername
... (server makes some initialization / setup and stops) ...

$ $SYBROOT/ASE_*/install/RUN_servername
...

4. Create a new Sybase database entity, with sufficient storage devices for data and transaction log.

Use either the Sybase Central, the Sybase Control Center GUI tool or use isql with SQL commands.

Connect to the server with the sa user.

First create database devices for data and transaction log. Define a transaction that can hold the
biggest transaction your application can do to avoid administrative tasks to dump the log when the
server hangs. When creating the database, use the new created database devices as database
segments:

 use master
 go
 disk init
 name = "devname",
 physname = "filename",
 size = devsize ...
 go
 create database dbname
 on devname
 with ...
 go

5. Leave the default transaction mode ("unchained" mode), to force explicit transaction start and end
commands.

See the set chained command for more details.

6. The database allows NULLs by default when creating columns.

This is controlled by the 'allow nulls by default' option. If this option is set to OFF, columns
created without NULL or NOT NULL keywords are NOT NULL by default:

 master..sp_dboption dbname, 'allow nulls by default', true
 go

7. The database must allow Data Definition Language (DDL) statements in transaction blocks.

To turn this on, use following commands:

 master..sp_dboption dbname, 'ddl in tran', true
 go
 checkpoint
 go

8. For development purpose, consider to set the database option to truncate the transaction log when a
checkpoint occurs, otherwise you will have to dump the transaction log when it is full.

Command to automatically truncate the transaction log on checkpoint:

 master..sp_dboption dbname, 'trunc log on chkpt', true
 go

9. Create a new login dedicated to your application: the application administrator.

SQL support | 725

Assign the new created database as default database for this user:

 use dbname
 go
 sp_addlogin 'username', 'password', dbname, ... options ...
 go

10.Create a new database user linked to the new application administrator login:

In Sybase Central, open to the "Databases" node, select "Users" and right-click "New" ...

 use dbname
 go
 sp_adduser 'username', 'group', ... options ...
 go

See documentation for more details about database users and privileges. You must create groups to
make tables visible to all users.

11.If you plan to use SERIAL emulation based on triggers using a registration table, create the
SERIALREG table.

Create the triggers for each table using a SERIAL. See issue SERIAL data types for more details.

12.Create the application tables.

Do not forget to convert Informix® data types to Sybase ASE data types. See topic data type
Conversion Table for more details. In order to make application tables visible to all users, make sure
that all users are members of the group of the owner of the application tables. For more details, see
ASE documentation ("Database object names and prefixes").

Prepare the runtime environment - connecting to the database

1. In order to connect to Sybase ASE, you must have a Sybase ASE database driver "dbmase" in
FGLDIR/dbdrivers.

2. If you want to connect to a remote database server, you must have the Sybase ASE Client Software
installed on the computer running BDL applications.

The Sybase Open Client Library is required.

3. Make sure that the Sybase ASE client environment variables are properly set.

Check for example SYBASE (the path to the installation directory), SYBASE_ASE (the name of the
server sub-directory), SYBASE_OCS (the name of the client sub-directory), etc. See Sybase ASE
documentation for more details.

4. Verify the environment variable defining the search path for Sybase OCS database client shared
libraries (libsybct[64].so, libsybcs[64].so UNIX™, LIBSYBCT[64].DLL and LIBSYBCS[64].DLL on
Windows™).

Table 215: Shared library environment setting for Sybase ASE

Sybase ASE version Shared library environment setting

Sybase ASE 16.0 and higher UNIX: Add $SYBASE_OCS/lib to
LD_LIBRARY_PATH (or its equivalent).

Windows: Add %SYBASE_OCS%\dll to PATH.

Where SYBASE_OCS is the directory of the
Sybase Open Client Software.

5. The name of the Sybase server must be registered in a configuration file.

On UNIX™, the server name must be defined in the "interfaces" file located in $SYBASE. On
Windows™, the server name must be defined in the "sql.ini" file located in %SYBASE%\ini. You

SQL support | 726

may want to define the DSQUERY environment variable to the name of the server. See Sybase
documentation for more details.

When connecting from a Genero program, both database and server names can be specified with:

database@server

For more details see the description for the connection data source parameter in DATABASE and
CONNECT instructions.

6. Check the database client locale settings of Sybase.

The Sybase client locale must match the locale used by the runtime system (LC_ALL, LANG on UNIX™,
ANSI code page on Windows™).

By default, Sybase OCS uses the character set defined by the operating system. On Windows™, this is
the ANSI code page, on UNIX™ it is defined by LC_CTYPE, LC_ALL or LANG environment variables.
Note that Genero BDL allows to define the LANG environment variable also on Windows™. The value
of the LANG environment variable must be listed in the "locales.dat" file under the $SYBASE/
locales directory, otherwise you will get an error when connecting to the database.

Note: Check the $SYBROOT/locales/locales.dat file, to make sure that your current
locale (LANG/LC_ALL) is listed in the file. You may want to add the following lines for UTF-8
support, under the section of your operating system:

 locale = POSIX, us_english, utf8
 locale = en_US.utf8, us_english, utf8
; Windows only:
 locale = .fglutf8, us_english, utf8

See also Sybase OCS documentation regarding localization and character set definition.

7. Test the Sybase ASE Client Software: Make sure the server is started and try to connect to a database
by using the Sybase ASE command interpreter:

$ isql -S server -U appadmin -P password

8. Set up the fglprofile entries for database connections:

a) Define the Sybase ASE database driver:

dbi.database.dbname.driver = "dbmase"

b) Define the connection timeout with the following fglprofile entry:

dbi.database.dbname.ase.logintime = integer

This entry defines the number of seconds to wait for a connection.

Default is 5 seconds.
c) Define the number of rows to be pre-fetched for result sets:

dbi.database.dbname.ase.prefetch.rows = integer

Default is 10 rows.

Database concepts
Sybase ASE related database concepts topics.
Database concepts

As in Informix®, a Sybase ASE engine can manage multiple database entities. When creating a database
object such as a table, Sybase ASE allows you to use the same object name in different databases.

SQL support | 727

Data consistency and concurrency

Data consistency involves readers which want to access data currently modified by writers and
concurrency data access involves several writers accessing the same data for modification. Locking
granularity defines the amount of data concerned when a lock is set (row, page, table, ...).

Informix®:

Informix® uses a locking mechanism to manage data consistency and concurrency. When a process
modifies data with UPDATE, INSERT or DELETE, an exclusive lock is set on the affected rows. The
lock is held until the end of the transaction. Statements performed outside a transaction are treated as
a transaction containing a single operation and therefore release the locks immediately after execution.
SELECT statements can set shared locks according to the isolation level. In case of locking conflicts (for
example, when two processes want to acquire an exclusive lock on the same row for modification or when
a writer is trying to modify data protected by a shared lock), the behavior of a process can be changed by
setting the lock wait mode.

Control:

• Isolation level: SET ISOLATION TO ...
• Lock wait mode: SET LOCK MODE TO ...
• Locking granularity: CREATE TABLE ... LOCK MODE {PAGE|ROW}
• Explicit locking: SELECT ... FOR UPDATE

Defaults:

• The default isolation level is read committed.
• The default lock wait mode is "not wait".
• The default locking granularity is per page.

Sybase ASE:

As in Informix®, Sybase ASE uses locks to manage data consistency and concurrency. The database
manager sets exclusive locks on the modified rows and shared locks when data is read, according to
the isolation level. The locks are held until the end of the transaction. When multiple processes want
to access the same data, the latest processes must wait until the first finishes its transaction or the lock
timeout occurred. The lock granularity is at the row or table level. For more details, see Sybase ASE's
Documentation.

Control:

• The lock wait mode can be controlled with: SET LOCK {WAIT seconds | NOWAIT}
• Isolation level: Can be set with: SET TRANSACTION ISOLATION LEVEL = {0|1|2|3}
• Locking granularity: Row level.
• Explicit locking: SELECT ... FOR UPDATE

Defaults:

• The default isolation level is Read Committed (readers cannot see uncommitted data; no shared lock is
set when reading data).

Solution

The SET ISOLATION TO ... Informix® syntax is replaced by SET TRANSACTION ISOLATION LEVEL ... in
Sybase ASE. The next table shows the isolation level mappings done by the Sybase ASE database driver:

SQL support | 728

Table 216: Isolation level mappings done by the Sybase ASE database driver

SET ISOLATION instruction in program Native SQL command

SET ISOLATION TO DIRTY READ SET TRANSACTION ISOLATION LEVEL = 0

SET ISOLATION TO COMMITTED READ

[READ COMMITTED] [RETAIN UPDATE LOCKS]
SET TRANSACTION ISOLATION LEVEL = 1

SET ISOLATION TO CURSOR STABILITY SET TRANSACTION ISOLATION LEVEL = 2

SET ISOLATION TO REPEATABLE READ SET TRANSACTION ISOLATION LEVEL = 3

For portability, it is recommended that you work with Informix® in the read committed isolation level, to
make processes wait for each other (lock mode wait) and to create tables with the "lock mode row" option.

The SET LOCK MODE TO ... Informix® syntax is replaced by SET LOCK ... in Sybase ASE. If SET LOCK
MODE TO WAIT is used in programs (i.e. wait forever), the driver will simulate this with a SET LOCK WAIT
5000 in Sybase ASE:

Table 217: SET LOCK MODE instruction for Sybase ASE

SET LOCK MODE instruction in program Native SQL command

SET LOCK MODE TO NOT WAIT SET LOCK NOWAIT

SET LOCK MODE TO WAIT n SET LOCK WAIT n

SET LOCK MODE TO WAIT SET LOCK WAIT 5000

See the Informix® and Sybase ASE documentation for more details about data consistency, concurrency
and locking mechanisms.

Transactions handling

Informix® and Sybase ASE handle transactions in a similar manner.

Informix® native mode (non ANSI):

• Transactions are started with "BEGIN WORK".
• Transactions are validated with "COMMIT WORK".
• Transactions are canceled with "ROLLBACK WORK".
• Statements executed outside of a transaction are automatically committed.
• DDL statements can be executed (and canceled) in transactions.

Sybase ASE:

• Sybases supports two transaction modes:

1. The SQL standards-compatible mode, called chained mode, to get implicit transaction.
2. The default mode, called unchained mode, where transactions have to be started/ended explicitly.

• Transactions are started with "BEGIN TRANSACTION [name]".
• Transactions are validated with "COMMIT TRANSACTION [name]".
• Transactions are canceled with "ROLLBACK TRANSACTION [name]".
• Transactions save points can be placed with "SAVEPOINT [name]".
• Sybase ASE supports named and nested transactions.
• DDL statements can be executed in transactions blocks when the 'ddl in tran' option is set to true with:

master..sp_dboption dbname, 'ddl in tran', true
go

SQL support | 729

checkpoint
go

Solution

Informix® transaction handling commands are automatically converted to Sybase ASE instructions to start,
commit or rollback transactions.

Make sure that the database uses the default unchained mode (set chained off) and allows DDLs in
transactions ('ddl in tran' option is true).

Regarding the transaction control instructions, the BDL applications do not have to be modified in order to
work with Sybase ASE.

Database users

Until version 11.70.xC2, Informix® database users must be created at the operating system level and be
members of the 'informix' group. Starting with 11.70.xC2, Informix® supports database-only users with the
CREATE USER instruction, as most other db servers. Any database user must have sufficient privileges to
connect and use resources of the database; user rights are defined with the GRANT command.

Before a user can access an Sybase ASE database, the system administrator (DBA) must declare the
application users in the database with the GRANT statement. You may also need to define groups in order
to make tables visible to other users.

Solution

See Sybase ASE documentation for more details on database logins and users.

Setting privileges

Informix® and Sybase ASE user privileges management are quite similar.

Sybase ASE provides user groups to grant or revoke permissions to more than one user at the same
time.

Data dictionary
Sybase ASE related data dictionary topics.
BOOLEAN data type

Informix® supports the BOOLEAN data type, which can store 't' or 'f' values. Genero BDL implements the
BOOLEAN data type in a different way: As in other programming languages, Genero BOOLEAN stores
integer values 1 or 0 (for TRUE or FALSE). The type was designed this way to assign the result of a
boolean expression to a BOOLEAN variable.

Sybase ASE provides the BIT data type to store boolean values. However, unlike Informix® types, BIT
columns cannot be NULL and thus you must specify the NOT NULL constraint when creating the table.

Solution

The Sybase ASE database interface converts BOOLEAN type to BIT columns and stores 1 or 0 values in
the column.

You must explicitly specify the NOT NULL constraint in the CREATE TABLE statement.

CHARACTER data types

Informix® supports following character data types:

• CHAR(N) with N<= 32767 bytes
• VARCHAR(N[,M]) with N<=255 bytes
• NCHAR(N) with N<= 32767 bytes
• LVARCHAR(N), without the 255 bytes limit (max size varies according to IDS version)

SQL support | 730

In Informix®, both CHAR/VARCHAR and NCHAR/NVARCHAR data types can be used to store single-
byte or multibyte encoded character strings. The only difference between CHAR/VARCHAR and NCHAR/
NVARCHAR is for sorting: N[VAR]CHAR types use the collation order, while [VAR]CHAR types use the
byte order. The character set used to store strings in CHAR/VARCHAR/NCHAR/NVARCHAR columns is
defined by the DB_LOCALE environment variable. The character set used by applications is defined by
the CLIENT_LOCALE environment variable. Informix® uses Byte Length Semantics (the size N that you
specify in [VAR]CHAR(N)is expressed in bytes, not characters as in some other databases)

Sybase ASE implements the following character data types:

• CHAR(N) with N <= 16384 bytes
• VARCHAR(N) with N <= 16384 bytes
• NCHAR(N) with N <= 16384 characters
• NVARCHAR(N) with N <= 16384 characters
• UNICHAR(N) with N <= 16384 characters
• UNIVARCHAR(N) with N <= 16384 characters

Like Informix®, Sybase ASE can store multibyte characters in CHAR / VARCHAR columns, according to
the database character set. For example, Sybase can store UTF-8 strings in CHAR/VARCHAR columns.
For multibyte character sets, you could also use the NCHAR / NVARCHAR or UNICHAR / UNIVARCHAR
Sybase ASE types, the only difference with CHAR / VARCHAR is that the length is specified in characters
instead of bytes. The UNICHAR / UNIVARCHAR store characters in 16bit UCS-2 charset only, but this is
transparent to the database client.

Sybase supports automatic character set conversion between the client application and the server. By
default, the Sybase database client character set is defined by the operating system locale where the
database client runs. On Windows™, it is the ANSI code page of the login session (can be overwritten
by setting the LANG environment variable), on UNIX™ it is defined by the LC_CTYPE, LC_ALL or LANG
environment variable. You may need to edit the $SYBASE/locales/locales.dat file to map the OS
locale name to a known Sybase character set.

Unlike most other database engines, Sybase ASE trims trailing blanks when inserting character strings in a
VARCHAR column.

For example:

CREATE TABLE t1 (k INT, vc VARCHAR(5))
INSERT INTO t1 VALUES (1, 'abc ')
SELECT '['||vc||']' FROM t1 WHERE k = 1
--
[abc]

With other database servers you would get 1 blank after abc:

[abc]

Solution

If your application must support multibyte character sets like BIG5 or UTF-8, you should use CHAR /
VARCHAR Sybase data types, where the length is specified in bytes like with Informix®.

Check that your database schema does not use CHAR, VARCHAR or LVARCHAR types with a length
exceeding the Sybase ASE limit.

If your application creates tables with NCHAR/NVARCHAR types, the same type name will be used in
Sybase. Keep in mind that the size of NCHAR/NVARCHAR in Sybase is specified in characters, while
Informix® uses a number of bytes.

When using a multibyte character set (such as UTF-8), define database columns with the size in character
units, and use character length semantics in BDL programs with FGL_LENGTH_SEMANTICS=CHAR.

SQL support | 731

When extracting a database schema from a Sybase database, the schema extractor uses the size of
the column in characters, not the octet length. If you have created a CHAR(10 (characters)) column a in
Sybase database using the UTF-8 character set, the .sch file will get a size of 10, that will be interpreted
according to FGL_LENGTH_SEMANTICS as a number of bytes or characters.

Do not forget to properly define the database client character set, which must correspond to the runtime
system character set.

Since trailing blanks are trimmed for VARCHARs, make sure that your application does not rely on this
non-standard behavior.

See also the section about Localization

NUMERIC data types

Sybase ASE offers numeric data types which are quite similar to Informix® numeric data types. This table
shows general conversion rules for numeric data types:

Table 218: Numeric data types (Informix® vs. Sybase ASE)

Informix® Sybase ASE

SMALLINT SMALLINT

INTEGER (synonym: INT) INTEGER (synonym: INT)

BIGINT BIGINT

INT8 BIGINT

DECIMAL[(p[,s)] (synonyms: DEC, NUMERIC)

DECIMAL(p,s) defines a fixed point decimal where
p is the total number of significant digits and s the
number of digits that fall on the right of the decimal
point.

DECIMAL(p) defines a floating point decimal where
p is the total number of significant digits.

The precision p can be from 1 to 32.

DECIMAL is treated as DECIMAL(16).

DECIMAL[(p[,s)] (synonyms: DEC, NUMERIC)

DECIMAL[(p[,s])] defines a fixed point decimal
where p is the total number of significant digits and
s the number of digits that fall on the right of the
decimal point.

The precision p can be from 1 to 38.

The default precision is 18 and the default scale is
0:

• DECIMAL in Sybase ASE = DECIMAL(18,0) in
Informix®

• DECIMAL(p) in Sybase ASE = DECIMAL(p,0) in
Informix®

MONEY[(p[,s])

Sybase ASE provides the MONEY and
SMALLMONEY data types, but the currency
symbol handling is quite different. Therefore,
Informix® MONEY columns should be implemented
as DECIMAL columns in Sybase ASE.

SMALLFLOAT (synonyms: REAL) REAL

FLOAT[(n)] (synonyms: DOUBLE PRECISION)

The precision (n) is ignored.
DOUBLE PRECISION

Sybase ASE does not support implicit character string to numeric conversions. For example, if you
compare an integer column to '123' in a WHERE clause, Sybase will raise a conversion error. The problem
exists also when using CHAR or VARCHAR SQL parameters.

SQL support | 732

Solution

In BDL programs

When creating tables from BDL programs, the database interface automatically converts Informix® data
types to corresponding Sybase ASE data types.

There is no Sybase ASE equivalent for the Informix® DECIMAL(p) floating point decimal (i.e. without a
scale). If your application is using such data types, you must review the database schema in order to use
Sybase ASE compatible types. To workaround the Sybase ASE limitation, the Sybase ASE database
drivers convert DECIMAL(p) types to a DECIMAL(2*p, p), to store all possible numbers an Informix®

DECIMAL(p) can store. However, the original Informix® precision cannot exceed 19, since Sybase ASE
maximum DECIMAL precision is 38(2*19). If the original precision is bigger as 19, a CREATE TABLE
statement executed from a Genero program will fail with an Sybase ASE error 2756.

Database creation scripts

• SMALLINT and INTEGER columns do not have to use another data type in Sybase ASE.
• For DECIMALs, check the precision limit. Always use a precision and a scale.
• Convert MONEY columns to DECIMAL(p,s) columns. Always use a precision and a scale.
• Convert SMALLFLOAT columns to REAL columns.
• Since FLOAT precision is ignored in Informix®, convert this data type to FLOAT(15).

Since Sybase ASE does not support implicit character string to numeric conversions, you must check that
your programs do not use string literals or CHAR/VARCHAR SQL parameters in integer expressions, as in
this example:

DEFINE pv CHAR(1)
CREATE TABLE mytable (v1 INT, v2 INT)
LET pv = '1'
SELECT * FROM mytable WHERE v1 = '1' AND v2 = pv

DATE and DATETIME data types

Informix® provides two data types to store dates and time information:

• DATE = for year, month and day storage.
• DATETIME = for year to fraction(1-5) storage.

Sybase ASE provides these data type to store dates:

• DATE = for year, month, day storage.
• TIME = for hour, minutes, seconds, fraction(3) storage.
• SMALLDATETIME = for hour, minutes, seconds, fraction(3) storage.
• DATETIME = for hour, minutes, seconds, fraction(3) storage.
• BIGTIME = for hour, minutes, seconds, fraction(6) storage.
• BIGDATETIME = for year, month, day, hour, minutes, seconds, fraction(6) storage.

String representing date time information

Informix® is able to convert quoted strings to DATE / DATETIME data if the string contents matches
environment parameters (i.e. DBDATE, GL_DATETIME). As in Informix®, Sybase ASE can convert quoted
strings representing datetime data in the ANSI format. The CONVERT() SQL function allows you to convert
strings to dates.

SQL support | 733

Date time arithmetic

• Informix® supports date arithmetic on DATE and DATETIME values. The result of an arithmetic
expression involving dates/times is a number of days when only DATEs are used and an INTERVAL
value if a DATETIME is used in the expression.

• Informix® automatically converts an integer to a date when the integer is used to set a value of a date
column. Sybase ASE does not support this automatic conversion.

• Complex DATETIME expressions (involving INTERVAL values for example) are Informix® specific and
have no equivalent in Sybase ASE.

• With Sybase ASE you must use built-in functions to do date/time computing (for example, see
dateadd() function).

• Informix® converts automatically an integer to a date when the integer is used to set a value of a date
column. Sybase ASE does not support this automatic conversion.

Solution

Sybase ASE has the same DATE data type as Informix® (year, month, day). So you can use Sybase ASE
DATE data type for Informix® DATE columns.

Sybase ASE BIGTIME data type can be used to store Informix® DATETIME HOUR TO SECOND and
DATETIME HOUR TO FRACTION(5) values. The database interface makes the conversion automatically.

Informix® DATETIME values with any precision from YEAR to FRACTION(5) can be stored in Sybase ASE
BIGDATETIME columns. The database interface makes the conversion automatically. Missing date or time
parts default to 1900-01-01 00:00:00.0. For example, when using a DATETIME HOUR TO MINUTE with
the value of "11:45", the ASE TIMESTAMP value will be "1900-01-01 11:45:00.0".

See also Date and time in SQL statements on page 432 for good SQL programming practices.

INTERVAL data type

Informix's INTERVAL data type stores a value that represents a span of time. INTERVAL types are divided
into two classes: year-month intervals and day-time intervals.

Sybase ASE does not provide a data type corresponding to the Informix® INTERVAL data type.

Solution

The INTERVAL data type is not well supported because the database server has no equivalent native data
type. However, you can store into and retrieve from CHAR columns BDL INTERVAL values.

SERIAL data type

Informix® supports the SERIAL, SERIAL8 and BIGSERIAL data types to produce automatic integer
sequences. SERIAL is based on INTEGER (32 bit), while SERIAL8 and BIGSERIAL can store 64 bit
integers:

• The table column must be of type SERIAL, SERIAL8 or BIGSERIAL.
• To generate a new serial, no value or a zero value is specified in the INSERT statement:

INSERT INTO tab1 (c) VALUES ('aa')
INSERT INTO tab1 (k, c) VALUES (0, 'aa')

• After INSERT, the new SERIAL value is provided in SQLCA.SQLERRD[2], while the new SERIAL8 and
BIGSERIAL value must be fetched with a SELECT dbinfo('bigserial') query.

Informix® allows you to insert rows with a value different from zero for a serial column. Using an explicit
value will automatically increment the internal serial counter, to avoid conflicts with future INSERTs that are
using a zero value:

CREATE TABLE tab (k SERIAL); -- internal counter = 0
INSERT INTO tab VALUES (0); -- internal counter = 1

SQL support | 734

INSERT INTO tab VALUES (10); -- internal counter = 10
INSERT INTO tab VALUES (0); -- internal counter = 11
DELETE FROM tab; -- internal counter = 11
INSERT INTO tab VALUES (0); -- internal counter = 12

Sybase ASE IDENTITY columns:

• When creating a table, the IDENTITY keyword must be specified after the column data type:

CREATE TABLE tab1 (k integer identity, c char(10))

• You cannot specify a start value
• A new number is automatically created when inserting a new row:

INSERT INTO tab1 (c) VALUES ('aaa')

• To get the last generated number, Sybase ASE provides a global variable:

SELECT @@IDENTITY

• When IDENTITY_INSERT is ON, you can set a specific value into a IDENTITY column, but zero does
not generate a new serial:

 SET IDENTITY_INSERT tab1 ON
 INSERT INTO tab1 (k, c) VALUES (100, 'aaa')

Informix® SERIALs and MS Sybase ASE IDENTITY columns are quite similar; the main difference is that
MS Sybase ASE does not generate a new serial when you specify a zero value for the identity column.

Solution

With Sybase ASE, the SERIAL emulation can use IDENTITY columns (1) or insert triggers based on the
SERIALREG table (2). The first solution is faster, but does not allow explicit serial value specification
in insert statements; the second solution is slower but allows explicit serial value specification. You can
initially use the second solution to have unmodified BDL programs working on Sybase ASE, but you should
update your code to use native IDENTITY columns for performance.

The method used to emulate SERIAL types is defined by the ifxemul.datatype.serial.emulation
FGLPROFILE parameter:

dbi.database.dbname.ifxemul.datatype.serial.emulation = {"native"|"regtable"}

• native: uses IDENTITY columns.
• regtable: uses insert triggers with the SERIALREG table.

The default emulation technique is "native".

This entry must be used in conjonction with:

dbi.database.dbname.ifxemul.datatype.serial = {true|false}

If the datatype.serial entry is set to false, the emulation method is ignored.

Using the native serial emulation

In database creation scripts, all SERIAL data types must be converted by hand to INTEGER IDENTITY
data types, while BIGSERIAL must be converted to BIGINT IDENTITY.

Start values SERIAL(n) / BIGSERIAL(n) cannot be converted, there is no INTEGER IDENTITY(n) in
Sybase ASE.

SQL support | 735

Tables created from the BDL programs can use the SERIAL data type: When a BDL program executes
a CREATE [TEMP] TABLE with a SERIAL column, the database interface automatically converts the
"SERIAL[(n)]" data type to "INTEGER IDENTITY[(n,1)]".

In BDL, the new generated SERIAL value is available from the SQLCA.SQLERRD[2] variable.
This is supported by the database interface which performs a "SELECT @@IDENTITY". However,
SQLCA.SQLERRD[2] is defined as an INTEGER, it cannot hold values from BIGINT identity columns. If
you are using BIGINT IDENTITY columns, you must use @@IDENTITY.

When you insert a row with zero as serial value, the serial column gets the value zero. You must review all
INSERT statements using zero for the serial column. For example, the following statement:

INSERT INTO tab (col1, col2)VALUES (0, p_value)

must be converted to:

INSERT INTO tab (col2) VALUES (p_value)

Static SQL INSERT using records defined from the schema file must also be reviewed:

DEFINE rec LIKE tab.*
INSERT INTO tab VALUES (rec.*) -- will use the serial column

can be converted to:

INSERT INTO tab VALUES rec.* -- without braces, serial column is removed

Using the regtable serial emulation

First, you must prepare the database and create the SERIALREG table as follows:

CREATE TABLE serialreg (
 tablename VARCHAR(50) NOT NULL,
 lastserial BIGINT NOT NULL,
 PRIMARY KEY (tablename)
)

In database creation scripts, all SERIAL[(n)] data types must be converted to INTEGER data types,
BIGSERIAL column types must be changed to BIGINT, and you must create one trigger for each table.
To know how to write those triggers, you can create a small Genero program that creates a table with a
SERIAL column. Set the FGLSQLDEBUG environment variable and run the program. The debug output
will show you the native trigger creation command.

Tables created from the BDL programs can use the SERIAL data type. When a BDL program executes
a CREATE [TEMP] TABLE with a SERIAL column, the database interface automatically converts the
"SERIAL[(n)]" data type to "INTEGER" and creates the insert triggers.

Sybase ASE does not allow you to create triggers on temporary tables. Therefore, you cannot create temp
tables with a SERIAL column when using this solution.

Note:

• SELECT ... INTO TEMP statements using a table created with a SERIAL column do not
automatically create the SERIAL triggers in the temporary table. The type of the column in the
new table is INTEGER.

• Sybase ASE triggers are not automatically dropped when the corresponding table is dropped.
Database administrators must be aware of this behavior when managing schemas.

• INSERT statements using NULL for the SERIAL column will produce a new serial value:

INSERT INTO tab (col1, col2) VALUES (NULL, 'data')

SQL support | 736

This behavior is mandatory in order to support INSERT statements which do not use the serial
column:

INSERT INTO tab (col2) VALUES('data')

Check if your application uses tables with a SERIAL column that can contain a NULL value.
• The serial production is based on the SERIALREG table which registers the last generated

number for each table. If you delete rows of this table, sequences will restart at 1 and you will
get unexpected data.

ROWIDs

When creating a table, Informix® automatically adds a "ROWID" integer column (applies to non-fragmented
tables only). The ROWID column is auto-filled with a unique number and can be used like a primary key to
access a given row.

Sybase ASE tables have no ROWIDs.

Solution

If the BDL application uses ROWIDs, the program logic should be reviewed in order to use the real primary
keys (usually, serials which can be supported).

All references to SQLCA.SQLERRD[6] must be removed because this variable will not hold the ROWID of
the last INSERTed or UPDATEd row when using the Sybase ASE interface.

Case sensitivity

In Informix®, database object names like table and column names are not case sensitive:

CREATE TABLE Customer (Custno INTEGER, ...)
SELECT CustNo FROM cuSTomer ...

In Sybase ASE, database object names and character data are case-insensitive by default:

CREATE TABLE Customer (Custno INTEGER, CustName CHAR(20))
INSERT INTO CUSTOMER VALUES (1, 'TECHNOSOFT')
SELECT CustNo FROM cuSTomer WHERE custname = 'techNOSoft'

Solution

When you create a Sybase ASE database with dbinit, you can use the -c option to make the database
case-sensitive.

Large OBject (LOB) types

IBM® Informix® and Genero support the TEXT and BYTE types to store large objects: TEXT is used to
store large text data, while BYTE is used to store large binary data like images or sound.

Sybase ASE provides the TEXT and IMAGE data types for large objects storage.

Important: Sybase ASE 16.0 does not support TEXT/IMAGE expressions in WHERE clauses.

The ASE driver is implemented with the Sybase Open Client Library C API. In Sybase version 16.0, this
API has a limited support for LOBs, especially when it comes to update LOB data in the database: You
cannot directly INSERT large LOB data, you must first INSERT nulls and then UPDATE the row with
the real data. Additionally, UPDATE can only take one LOB parameter at a time. Fetching LOB data is
supported, with the following limitation: LOB columns must appear at the end of the SELECT list.

SQL support | 737

Solution

TEXT and BYTE character data types are supported by the Sybase ASE database interface, with some
limitation.

When INSERTing TEXT/BYTE in a table, you must first insert with nulls, the update the new row, and only
with one TEXT/BYTE parameter at a time:

DEFINE ptext TEXT, pbyte BYTE
...
LOCATE ptext IN ...
LOCATE pbyte IN ...
CREATE TABLE tab (k INT, t TEXT, b BYTE)
-- First INSERT a new row with NULLs
INSERT INTO tab VALUES (123,null,null)
-- Then UPDATE first TEXT column
UPDATE tab SET t = ptext WHERE k = 123
-- Then UPDATE second BYTE column
UPDATE tab SET b = pbyte WHERE k = 123

Fetching TEXT and BYTE columns is possible as long as the columns appear at the end of the SELECT
list. For example, if you have a statement such as (where pdata is a TEXT or BYTE column):

SELECT pid, pdata, ptimestamp FROM pic WHERE ...

Put the BYTE column at the end of the SELECT list:

SELECT pid, ptimestamp, pdata FROM pic WHERE ...

The ALTER TABLE instruction

Informix® and MS Sybase ASE use different implementations of the ALTER TABLE instruction. For
example, Informix® allows you to use multiple ADD clauses separated by comma. This is not supported by
Sybase ASE:

Informix®:

ALTER TABLE customer ADD(col1 INTEGER), ADD(col2 CHAR(20))

Sybase ASE:

ALTER TABLE customer ADD col1 INTEGER, col2 CHAR(20)

Solution

No automatic conversion is done by the database interface. There is no real standard for this instruction
(that is, no common syntax for all database servers). Read the SQL documentation and review the SQL
scripts or the BDL programs in order to use the database server specific syntax for ALTER TABLE.

Constraints

Constraint naming syntax

Both Informix® and Sybase ASE support primary key, unique, foreign key, default and check constraints.
But Sybase ASE does not support constraint naming syntax:

CREATE TABLE emp (
 emp_code CHAR(10) UNIQUE CONSTRAINT pk_emp,
 ...)

SQL support | 738

Solution: Constraint naming syntax

The database interface does not convert constraint naming expressions when creating tables from BDL
programs. Review the database creation scripts to adapt the constraint naming clauses for Sybase ASE.

Triggers

Informix® and Sybase ASE provide triggers with similar features, but the programming languages are
totally different.

Sybase ASE does not support triggers on temporary tables.

Solution

Informix® triggers must be converted to Sybase ASE triggers "by hand".

Stored procedures

Both Informix® and Sybase ASE support stored procedures, but the programming languages are totally
different.

Solution

Informix® stored procedures must be converted to Sybase ASE"by hand".

See SQL Programming for more details about executing stored procedures with Sybase ASE.

Name resolution of SQL objects

Informix® uses the following form to identify an SQL object:

[database[@dbservername]:][{owner|"owner"}.]identifier

With Sybase ASE, an object name takes the following form:

[{database|[database]}.[{owner|[owner]}.]]{identifier|[identifier]}

Informix® database object names are not case sensitive in non-ANSI databases.

Sybase ASE database objects names are case sensitive by default.

Solution

As a general rule, to write portable SQL, you should only use simple database object names without any
database, server or owner qualifier and without quoted identifiers.

Always create and use tables and columns names in lower case.

Data type conversion table: Informix to Sybase ASE

Table 219: Data type conversion table (Informix to Sybase ASE)

Informix® data types Sybase ASE data types

CHAR(n) CHAR(n) (limit = page size, ex:16384 bytes)

VARCHAR(n[,m]) VARCHAR(n) (limit = page size, ex:16384 bytes)

LVARCHAR(n) VARCHAR(n) (limit = page size, ex:16384 bytes)

NCHAR(n) NCHAR(n) (length in characters)

NVARCHAR(n[,m]) NVARCHAR(n) (length in characters)

BOOLEAN BIT (must be NOT NULL!)

SMALLINT SMALLINT

SQL support | 739

Informix® data types Sybase ASE data types

INT / INTEGER INTEGER

BIGINT BIGINT

INT8 BIGINT

SERIAL without start value! INTEGER (see note 1)

BIGSERIAL without start value! BIGINT (see note 1)

SERIAL8 without start value! BIGINT (see note 1)

DOUBLE PRECISION / FLOAT[(n)] DOUBLE PRECISION

REAL / SMALLFLOAT REAL

NUMERIC / DEC / DECIMAL(p,s) DECIMAL(p,s)

NUMERIC / DEC / DECIMAL(p) with p<=19 DECIMAL(2*p,p)

NUMERIC / DEC / DECIMAL(p) with p>19 N/A

NUMERIC / DEC / DECIMAL DECIMAL(32,16)

MONEY(p,s) DECIMAL(p,s)

MONEY(p) DECIMAL(p,2)

MONEY DECIMAL(16,2)

DATE DATE(yyyy-mm-dd)

DATETIME HOUR TO FRACTION(n) BIGTIME(hh:mm:ss.ffffff)

DATETIME HOUR TO SECOND BIGTIME(hh:mm:ss.ffffff)

Other sort of DATETIME type BIGDATETIME(yyyy-mm-dd hh:mm:ss.ffffff)

INTERVAL q1 TO q2 CHAR(50)

TEXT TEXT

BYTE IMAGE

Notes:

1. For more details about serial emulation, see SERIAL data type on page 733.

Data manipulation
Sybase ASE related data manipulation topics.
Reserved words

Even if Sybase ASE allows SQL reserved keywords as SQL object names if enclosed in square braces
(create table [table] (col1 int)), you should take care of your existing database schema and check that you
do not use Sybase ASE SQL words.

Solution

Database objects having a name which is a Sybase ASE SQL reserved word must be renamed.

All BDL application sources must be verified. To check if a given keyword is used in a source, you can use
UNIX™ 'grep' or 'awk' tools. Most modifications can be automatically done with UNIX™ tools like 'sed' or
'awk'.

SQL support | 740

Outer joins

The original OUTER join syntax of Informix® is different from the Sybase ASE outer join syntax:

In Informix® SQL, outer tables can be defined in the FROM clause with the OUTER keyword:

SELECT ... FROM cust, OUTER(order)
 WHERE cust.key = order.custno

SELECT ... FROM cust, OUTER(order,OUTER(item))
 WHERE cust.key = order.custno
 AND order.key = item.ordno
 AND order.accepted = 1

Sybase ASE Version 7 supports the ANSI outer join syntax:

SELECT ... FROM cust LEFT OUTER JOIN order
 ON cust.key = order.custno

SELECT ...
 FROM cust LEFT OUTER JOIN order
 LEFT OUTER JOIN item
 ON order.key = item.ordno
 ON cust.key = order.custno
 WHERE order.accepted = 1

The old way to define outer joins in Sybase ASE looks like the following:

SELECT ... FROM a, b WHERE a.key *= b.key

See the Sybase ASE reference manual for a complete description of the syntax.

Solution

For better SQL portability, you should use the ANSI outer join syntax instead of the old Informix® OUTER
syntax.

The Sybase ASE interface can convert simple Informix® OUTER specifications to Sybase ASE ANSI outer
joins.

Prerequisites:

1. The outer join in the WHERE part must use the table name as prefix.

Example: "WHERE tab1.col1 = tab2.col2 "
2. Additional conditions on outer table columns cannot be detected and therefore are not supported:

Example: "... FROM tab1, OUTER(tab2) WHERE tab1.col1 = tab2.col2 AND tab2.colx
> 10"

3. Statements composed of 2 or more SELECT instructions using OUTERs are not supported.

Example: "SELECT ... UNION SELECT" or "SELECT ... WHERE col IN (SELECT...)"

Note:

1. Table aliases are detected in OUTER expressions.

OUTER example with table alias: "OUTER(tab1 alias1)"
2. In the outer join, <outer table>.<col> can be placed on both right or left sides of the equal sign.

OUTER join example with table on the left: "WHERE outertab.col1 = maintab.col2 "
3. Table names detection is not case-sensitive.

Example: "SELECT ... FROM tab1, TAB2 WHERE tab1.col1 = tab2.col2"

SQL support | 741

4. Temporary tables are supported in OUTER specifications.

Transactions handling

Informix® and Sybase ASE handle transactions in a similar manner.

Informix® native mode (non ANSI):

• Transactions are started with "BEGIN WORK".
• Transactions are validated with "COMMIT WORK".
• Transactions are canceled with "ROLLBACK WORK".
• Statements executed outside of a transaction are automatically committed.
• DDL statements can be executed (and canceled) in transactions.

Sybase ASE:

• Sybases supports two transaction modes:

1. The SQL standards-compatible mode, called chained mode, to get implicit transaction.
2. The default mode, called unchained mode, where transactions have to be started/ended explicitly.

• Transactions are started with "BEGIN TRANSACTION [name]".
• Transactions are validated with "COMMIT TRANSACTION [name]".
• Transactions are canceled with "ROLLBACK TRANSACTION [name]".
• Transactions save points can be placed with "SAVEPOINT [name]".
• Sybase ASE supports named and nested transactions.
• DDL statements can be executed in transactions blocks when the 'ddl in tran' option is set to true with:

master..sp_dboption dbname, 'ddl in tran', true
go
checkpoint
go

Solution

Informix® transaction handling commands are automatically converted to Sybase ASE instructions to start,
commit or rollback transactions.

Make sure that the database uses the default unchained mode (set chained off) and allows DDLs in
transactions ('ddl in tran' option is true).

Regarding the transaction control instructions, the BDL applications do not have to be modified in order to
work with Sybase ASE.

Temporary tables

Informix® temporary tables are created through the CREATE TEMP TABLE DDL instruction or through a
SELECT ... INTO TEMP statement. Temporary tables are automatically dropped when the SQL session
ends, but they can also be dropped with the DROP TABLE command. There is no name conflict when
several users create temporary tables with the same name.

The CREATE TEMP TABLE and SELECT INTO TEMP statements are not supported in Sybase ASE.

Sybase ASE supports temporary tables by using the # pound sign before the table name:

CREATE TABL #temp1 (kcol INTEGER,)
SELECT * INTO #temp2 FROM customers WHERE ...

Solution

In BDL, Informix® temporary tables instructions are converted to generate native Sybase ASE temporary
tables.

SQL support | 742

SELECT INTO TEMP statements cannot be converted, because Sybase ASE does not provide a way to
create a temporary table from a result set, such as CREATE TABLE xx AS (SELECT ...).

Substrings in SQL

Informix® SQL statements can use subscripts on columns defined with the character data type:

SELECT ... FROM tab1 WHERE col1[2,3] = 'RO'
SELECT ... FROM tab1 WHERE col1[10] = 'R' -- Same as col1[10,10]
UPDATE tab1 SET col1[2,3] = 'RO' WHERE ...
SELECT ... FROM tab1 ORDER BY col1[1,3]

Sybase ASE provides the SUBSTRING() function, to extract a substring from a string expression:

SELECT FROM tab1 WHERE SUBSTRING(col1,2,2) = 'RO'
SELECT SUBSTRING('Some text',6,3) FROM DUAL -- Gives 'tex'

Solution

You must replace all Informix® col[x,y] expressions by SUBSTRING(col from x for (y-x+1)).

Note:

• In UPDATE instructions, setting column values through subscripts will produce an error with
PostgreSQL:

UPDATE tab1 SET col1[2,3] = 'RO' WHERE ...

is converted to:

UPDATE tab1 SET SUBSTRING(col1 from 2 for (3-2+1)) = 'RO' WHERE ...

• Column subscripts in ORDER BY expressions are also converted and produce an error with
PostgreSQL:

SELECT ... FROM tab1 ORDER BY col1[1,3]

is converted to:

SELECT ... FROM tab1 ORDER BY SUBSTRING(col1 from 1 for(3-1+1))

String delimiters

The ANSI string delimiter character is the single quote ('string'). Double quotes are used to delimit
database object names ("object-name").

Example: WHERE"tabname"."colname" = 'a string value'

As Informix®, Sql Server Anywhere allows to use double quotes as string delimiters, if the
QUOTED_IDENTIFIER session option is OFF (the default):

SET QUOTED_IDENTIFIER OFF

Remark: This problem concerns only double quotes within SQL statements. Double quotes used in BDL
string expressions are not subject of SQL compatibility problems.

Solution

When the dbi.database.dbname.ifxemul.dblquotes FGLPROFILE option is set, the Sybase
ASE database interface converts all double quotes to single quotes in SQL statements. The Sybase ASE
database driver does not set the QUOTED_IDENTIFIER option implicitly.

Getting one row with SELECT

With Informix®, you must use the system table with a condition on the table id:

SELECT user FROM systables WHERE tabid=1

SQL support | 743

With Sybase ASE, you can omit the FROM clause to generate one row only:

SELECT user

Solution

Check the BDL sources for "FROM systables WHERE tabid=1" and use dynamic SQL to resolve this
problem.

MATCHES and LIKE in SQL conditions

Informix® supports MATCHES and LIKE in SQL statements, while Sybase ASE supports the LIKE
statement only.

The MATCHES operator of Informix® uses the star (*), question mark (?) and square braces ([])
wildcard characters. The LIKE operator of SQL SERVER offers the percent (%), underscore (_) and square
braces ([]) wildcard characters:

(col MATCHES 'Smi*' AND col NOT MATCHES 'R?x[a-z]')
(col LIKE 'Smi%' AND col NOT LIKE 'R_x[a-z]')

Solution
The database driver is able to translate Informix® MATCHES expressions to LIKE expressions, when no
[] bracket character ranges are used in the MATCHES operand.

However, for maximum portability, consider replacing the MATCHES expressions to LIKE expressions in
all SQL statements of your programs.

Avoid using CHAR(N) types for variable length character data (such as name, address).

See also: MATCHES and LIKE operators on page 438.

Querying system catalog tables

As in Informix®, Sybase ASE provides system catalog tables (sysobjects, syscolumns, etc.) in each
database, but the table names and their structure are quite different.

Solution

No automatic conversion of Informix® system tables is provided by the database interface.

Syntax of UPDATE statements

Informix® allows a specific syntax for UPDATE statements:

UPDATE table SET (col-list) = (val-list)

Or

UPDATE table SET table.* = codeph.*

UPDATE table SET * = myrecord.*

Solution

Static UPDATE statements using this syntax are converted by the compiler to the standard form:

UPDATE table SET column=value [,...]

SQL support | 744

BDL programming
Sybase ASE related programming topics.
Informix-specific SQL statements in BDL

The BDL compiler supports several Informix® specific SQL statements that have no meaning when using
Sybase ASE.

Examples:

• CREATE DATABASE dbname IN dbspace WITH BUFFERED LOG
• START DATABASE (SE only)
• ROLLFORWARD DATABASE
• CREATE TABLE ... IN dbspace WITH LOCK MODE ROW

Solution

Review your BDL source and remove all static SQL statements that are Informix-specific.

Insert cursors

Informix® supports insert cursors. An "insert cursor" is a special BDL cursor declared with an INSERT
statement instead of a SELECT statement. When this kind of cursor is open, you can use the PUT
instruction to add rows and the FLUSH instruction to insert the records into the database.

For Informix® database with transactions, OPEN, PUT and FLUSH instructions must be executed within a
transaction.

Sybase ASE does not support insert cursors.

Solution

Insert cursors are emulated by the Sybase ASE database interface.

Cursors WITH HOLD

Informix® automatically closes opened cursors when a transaction ends unless the WITH HOLD option is
used in the DECLARE instruction.

Sybase ASE does not close cursors when a transaction ends, as long as the global parameter
close_on_endtrans is off.

Solution

BDL cursors that are not declared "WITH HOLD" are automatically closed by the database interface when
a COMMIT WORK or ROLLBACK WORK is performed by the BDL program.

SELECT FOR UPDATE

A lot of BDL programs use pessimistic locking in order to avoid several users editing the same rows at the
same time.

DECLARE cc CURSOR FOR
SELECT ... FROM tab WHERE ... FOR UPDATE
OPEN cc
FETCH cc <-- lock is acquired
...
CLOSE cc <-- lock is released

• A transaction must be started before opening cursors declared for update.
• The row must be fetched in order to set the lock.
• The lock is released when the transaction ends (if the cursor is not declared "WITH HOLD") or when the

cursor is closed.

SQL support | 745

Sybase ASE ignores the FOR UPDATE clause when not used in a native Sybase SQL DECLARE
command. In order to lock rows when doing a SELECT, with Sybase you must add the holdlock hint or
the at isolation repeatable read clause. Sybase supports SELECT locking outside transactions (i.e. WITH
HOLD cursors).

• Locks are acquired when opening the cursor.
• When the cursor (WITH HOLD) is opened outside a transaction, locks are released when the cursor is

closed.
• When the cursor is opened inside a transaction, locks are released when the transaction ends.

Sybase ASE's locking granularity is at the row level, page level or table level (the level is automatically
selected by the engine for optimization).

To control the behavior of the program when locking rows, Informix® provides a specific instruction to set
the wait mode:

SET LOCK MODE TO { WAIT | NOT WAIT | WAIT seconds}

The default mode is WAIT. SET LOCK MODE is as an Informix® specific SQL statement which is
translated by the driver.

Solution

SELECT FOR UPDATE statements are supported: The Sybase ASE driver adds the "at isolation
repeatable read" keywords to the end of any SELECT FOR UPDATE statement.

Sybase ASE requires a PRIMARY KEY or UNIQUE INDEX on the table using in the SELECT .. FOR
UPDATE statement.

Sybase ASE locks the rows when you open the cursor. You will have to test SQLCA.SQLCODE after doing
an OPEN.

The database interface is based on an emulation of an Informix® engine using transaction logging.
Therefore, opening a SELECT ... FOR UPDATE cursor declared outside a transaction will raise an SQL
error -255 (not in transaction).

The SELECT FOR UPDATE statement cannot contain an ORDER BY clause if you want to perform
positioned updates/deletes with WHERE CURRENT OF.

The LOAD and UNLOAD instructions

Informix® provides two SQL instructions to export / import data from / into a database table: The UNLOAD
instruction copies rows from a database table into an text file and the LOAD instruction inserts rows from
an text file into a database table.

Sybase ASE has LOAD and UNLOAD instructions, but those commands are related to database backup
and recovery. Do not confuse with Informix® commands.

Solution

LOAD and UNLOAD instructions are supported.

The LOAD instruction does not work with tables using emulated SERIAL columns because the generated
INSERT statement holds the "SERIAL" column which is actually a IDENTITY column in Sybase ASE. See
the limitations of INSERT statements when using SERIALs.

In Sybase ASE, Informix® DATETIME data is stored in BIGDATETIME columns, but DATETIME columns
are similar to Informix® DATETIME YEAR TO FRACTION(5) columns. Therefore, when using LOAD and
UNLOAD, those columns are converted to text data with the format "YYYY-MM-DD hh:mm:ss.fffff".

SQL Interruption

With Informix®, it is possible to interrupt a long running query if the SQL INTERRUPT ON option.

SQL support | 746

Solution

The Sybase ASE database driver supports SQL interruption and raises error code -213 if the statement is
interrupted.

Scrollable Cursors

The Genero programming language supports scrollable cursors.

Sybase ASE supports native scrollable cursors.

Solution

The Sybase ASE database driver uses the native Sybase ASE Open Client Library scrollable cursors.

User interface | 747

User interface

These topics cover programming the user interface (UI) with the Genero Business Development Language.

• User interface basics on page 747
• Form definitions on page 769
• Dialog instructions on page 1034
• User interface programming on page 1249

User interface basics
This section introduces to the foundation of the Genero user interface.

• The user interface on page 27
• Genero user interface modes on page 752
• The dynamic user interface on page 747
• Establish a GUI front-end connection on page 755
• The abstract user interface tree on page 749
• Special user interface features on page 759
• Configuring a text terminal on page 762

The dynamic user interface
The dynamic user interface is the base concept of the Genero user interaction components.

The dynamic user interface (DUI) concept implements a flexible graphical user interface programming
toolkit, based on the usage of XML standards to define an abstract representation of the application forms,
that can be displayed by different sort of display devices called front ends, which execute on the user
workstation or on the same platform as the runtime system.

By using the same program source code, the abstract definition of the user interface that can be
manipulated at runtime as a tree of interface objects. This tree is called the abstract user interface tree.

The runtime system is in charge of the abstract user interface tree and the front end is in charge
of rendering this abstract tree visible on the screen. The front end gets a copy of that tree which is
automatically synchronized by the runtime system by using the front end protocol.

In development, application screens are defined by form specification files. These files are compiled by the
fglform form compiler to produce the runtime form files that can be deployed in production environments.

The following schema describes the dynamic user interface concept, showing how the abstract user
Interface tree is shared by the runtime system and the front end.

http://www.w3c.org/XML

User interface | 748

Figure 35: AUI tree shared between the runtime system and front end

The abstract user interface tree (AUI tree) on the front-end is synchronized with the runtime system AUI
tree when a user interaction instruction takes the control. This means that the user will not see any display
as long as the program is doing batch processing, until an interactive statement is reached.

For example, the following program shows nothing:

MAIN
 DEFINE cnt INTEGER
 OPEN WINDOW w WITH FORM "myform"
 FOR cnt=1 TO 10
 DISPLAY BY NAME cnt
 SLEEP 1
 END FOR
END MAIN

If you want to show something on the screen while the program is running in a batch procedure, you must
force synchronization with the front-end, by calling the refresh() method of the ui.Interface built-in
class:

MAIN
 DEFINE cnt INTEGER
 OPEN WINDOW w WITH FORM "myform"
 FOR cnt=1 TO 10
 DISPLAY BY NAME cnt
 CALL ui.Interface.refresh() -- Sync the front-end!
 SLEEP 1
 END FOR
END MAIN

Note that the refresh() method must only be called when really needed: By default, the AUI tree will be
automatically synchronized when the control goes back to the runtime system dialog instruction.

Keep in mind that when the AUI trees are synchronized, only the changes are sent to the front-end. If a
modification has been made that does not result in a change in the values of the attributes of a node of the
tree (for example, you change the contents of an image file but keep the same name), that modification will
not be sent to the front-end.

User interface | 749

Note that when running on a mobile device, both front-end and runtime system execute on the same
platform. Still the AUI tree protocol takes place, and both component perform the tasks they are dedicated
to.

The abstract user interface tree
The abstract user interface tree is the XML representation of the application forms displayed to the end
user.

The abstract user interface tree (AUI tree) is a DOM tree describing the objects of the user interface
elements of a program at a given time.

A copy of the AUI tree is held by both the front end and the runtime system.

AUI tree synchronization is automatically done by the runtime system using the front end protocol.

The programs can manipulate the AUI tree element by using XML utility classes or high-level built-in
classes such as ui.Dialog and ui.Form.

What does the abstract user interface tree contain?

The abstract user interface defines a tree of objects organized by parent/child relationship. The different
kinds of user interface objects are defined by attributes. The AUI tree can be serialized as text according to
the XML standard notation.

The following example shows a part of an AUI tree defining a toolbar serialized with the XML notation:

<ToolBar>
 <ToolBarItem name="f5" text="List" image="list" />
 <ToolBarSeparator/>
 <ToolBarItem name="Query" text="Query" image="search" />
 <ToolBarItem name="Add" text="Append" image="add" />
 ...
</ToolBar>

Manipulating the abstract user interface tree

Modifying the AUI tree with user interface specific built-in classes

The objects of the abstract user interface tree can be queried and modified at runtime with specific built-in
classes like ui.Form, provided to manipulate form elements.

The next code example gets the current window object, then gets the current form in that window, and
hides a group-box form element identified by the name "gb1":

DEFINE w ui.Window
DEFINE f ui.Form
LET w = ui.Window.getCurrent()
LET f = w.getForm()
CALL f.setElementHidden("gb1",1)

Using the user interface specific built-in classes is the recommended way to modify the AUI tree in your
programs.

Using low-level APIs to modify the AUI tree

In very special cases, you can also directly access the nodes of the AUI tree by using DOM built-in classes
like om.DomDocument and om.DomNode.

Important: As we continue to add new features to the product we encounter situations that may
force us to modify the AUI Tree in order to add new elements types and attributes. If you are using
the low level API's to directly modify the tree, your code may be slightly impacted when we release

http://www.w3.org/DOM/
http://www.w3c.org/XML

User interface | 750

a change in the AUI Tree structure. In order to minimize the impact of any such AUI tree definition
changes, we would like to suggest the following course of action with regards to use of the DOM/
SAX API's:

1. Place all custom calls to the DOM/SAX API within centralized Library functions that are accessible to all
modules, as opposed to scattering function calls throughout your code base.

2. Do not create nodes or change attributes that are not explicitly documented as modifiable. For example,
TopMenu or ToolBar nodes can be created and configured dynamically, but you should not add
FormField nodes to existing forms, or modify yourself the active attribute of fields or actions.

To get the user interface nodes at runtime, the language provides different kinds of API functions
or methods, according to the context. For example, to get the root of the AUI tree, call the
ui.Interface.getRootNode() method. You can also get the current form node with
ui.Form.getNode() or search for an element by name with the ui.Form.findNode() method.

XML node types and attribute names

By tradition the language uses uppercase keywords, such as LABEL in form files, and the examples in
this documentation reflect that convention. The language itself is not case-sensitive. However, XML is
case-sensitive, and by convention node types use uppercase/lowercase combinations to indicate word
boundaries. Therefore, the nodes and attributes of an abstract user interface tree are handled as follows:

• Node types - the first letter of the node type is always capitalized. Subsequent letters are lowercase,
unless the type consists of multiple words joined together. In that case, the first letter of each of the
multiple words is capitalized (the camel-case convention). Examples: Label, FormField, DateEdit,
Edit.

• Attribute names - the first letter of the name is always lowercase; subsequent letters are also
lowercase, unless the name consists of multiple words joined together. In that case, the first letter of
each subsequent word is capitalized (the Lower camel-case convention). Examples: text, colName,
width, tabIndex

• Attribute values - the values are enclosed in quotes, and the runtime system does not convert them.

If you reference AUI tree XML nodes or attributes in your code, you must always respect the naming
conventions.

Actions in the abstract user interface tree

The abstract user interface identifies all possible actions that can be received by the current interactive
instruction with a list of Action nodes. The list of possible actions are held by a Dialog node. An Action
node is identified by the 'name' attribute and defines common properties such as the accelerator key,
default image, and default text.

Interactive elements are bound to Action nodes by the 'name' attribute. For example, a toolbar button
(a.k.a toolbar item) with the name 'cancel' is bound to the Action node having the name 'cancel', which in
turn defines the accelerator key, the default text, and the default image for the button.

User interface | 751

Figure 36: AUI Tree binding

When an interactive element is used (such as a form field input, toolbar button click, or menu option
selection), an ActionEvent node is sent to the runtime system. The name of the ActionEvent node
identifies what Action occurred and the 'idRef' attribute indicates the source element of the action.

Inspecting the AUI tree of a front end
The abstract user interface tree build on a front end side can be inspected

When executing a program displaying on a front end, it is possible to inspect the content of the abstract
user interface built on the front end side. The way to show the AUI tree depends on the type of front end.

Genero Desktop Client

The GDC must have been started in debug mode (-aD option).

In the current window of the running program, do a control-right-click with the mouse: This will open the
AUI tree debug window.

You can then browse the AUI tree created on the GDC side.

Genero Web Client - JavaScript

The GAS / GWC-JS must have been started with debug option. In the as.xcf configuration file, add the
following line:

<CONFIGURATION ...>
 <APPLICATION_SERVER>
 ...
 <RESOURCE Id="res.uaproxy.param" Source="INTERNAL">--development</
RESOURCE>
 ...

Start your application in a web browser: a debug icon should appear on the right of the window. Click the
icon to display the AUI debug tree.

You can then browse the AUI tree created on the GMA side.

Genero Mobile for Android

The GMA must execute with debug mode enabled in the settings panel.

User interface | 752

Open a web browser an enter the following URL:

http://device-ip-address:6480

You can then browse the AUI tree created on the GMA side.

Genero Mobile for iOS

The GMI must have been started in debug mode: the debug option needs to be enabled in GMI app
settings on the device.

Open a web browser an enter the following URL:

http://device-ip-address:6480 (or 6400)

You can then browse the AUI tree created on the GMI side.

Genero user interface modes
User interface modes allow to adapt the application form rendering to different sort of displays.

There supported user interface modes are:

• Text mode rendering on page 752
• Graphical mode rendering on page 753
• Traditional GUI mode on page 753

Text mode rendering

The text user interface (TUI) has been designed for character-based terminals. This mode can be used to
run your application on a text terminal hardware or in a terminal emulator.

In order to run a Genero program on text mode, set the FGLGUI environment variable to 0 (zero).

In TUI mode, the application windows/forms will display within the current console/terminal window as
shown.

Figure 37: Text mode rendering

User interface | 753

On UNIX™ platforms, you need to configure you terminal capabilities with environment variables with
TERM, TERMINFO or TERMCAP environment variables.

Graphical mode rendering

Genero supports the graphical user interface (GUI) to provide a real graphical look and feel, for desktop
workstation, web browsers and mobile front-end platforms.

When set to 1, the FGLGUI environment variable defines the graphical mode usage. This is the default.
In graphical mode, the application forms are displayed on the front-end workstation identified with the
FGLSERVER environment variable. Application forms will be rendered with real graphical widgets
providing a nice look-and-feel as shown.

Figure 38: Graphical mode rendering

To simplify migration from text mode to graphical mode with legacy applications, you can use the traditional
GUI mode option to render application windows in a single front end GUI window.

Traditional GUI mode

What is the Traditional GUI mode designed for?

With the graphical mode, you immediately get the benefit of standard GUI widgets and windows. Forms
are rendered as real movable and re-sizeable windows, form labels and fields become widgets using
variable fonts, toolbars and pull-down menus are displayed, and error messages are displayed in the
status bar. However, that can be annoying if you have to migrate from a project that was developed for
dumb terminals (i.e. TUI mode).

User interface | 754

You can use the traditional GUI mode to ease migration from TUI based applications to GUI mode.

With the traditional mode, application windows bound to forms using a SCREEN section will be displayed as
simple boxes in a main front end window. Other windows bound to forms defined with the LAYOUT section
will be displayed as new GUI windows.

Figure 39: Traditional GUI mode rendering

Enabling the traditional GUI mode

The traditional GUI mode can be enabled with the following FGLPROFILE entry:

gui.uiMode = "traditional"

By default, the traditional GUI mode is off.

Window rendering rules

If the traditional GUI mode is enabled, the OPEN WINDOW statement works differently depending on the
layout type of bound forms.

On the front end side, there is one unique main graphical window (a top-level widget called "compatibility
window container") created to host all the windows created by a program. Traditional forms are form files
which have a SCREEN section instead of the LAYOUT section. When migrating from an TUI mode project,
all forms initially contain a SCREEN section; hence all windows opened in traditional mode will appear in the
compatibility window container.

User interface | 755

To rebuild a form file with graphical items such as group boxes, buttons and tables, use a LAYOUT section.
If the rebuilt form file is loaded via OPEN WINDOW ... WITH FORM form-file then, even in traditional
mode, the newly created window will appear as a new top-level widget on the front end side. This opens
a smooth migration path using the traditional mode; as a first step, it is possible to migrate and enhance
some application forms like typical search lists, while keeping the rest of the application forms running in
the traditional rendering.

Note, however, that following instructions do not work in traditional GUI mode:

1. OPEN WINDOW window_id AT line, column WITH height ROWS, width COLUMNS

2. OPEN FORM form_id FROM "form_file"

(where form_file is defined with a LAYOUT section)
3. DISPLAY FORM form_id

A runtime error results, because you cannot display a form with dynamic geometry in a fixed geometry
container. Only forms with a SCREEN section can be displayed at a later stage in a window that was initially
opened inside the compatibility window container.

Function key shifting

When the traditional mode is enabled, you can map Shift-Fx and Ctrl-Fx key strokes to F(x+offset) actions.
The offset is defined with the gui.key.add_function entry:

gui.key.add_function = 12

This entry defines the number of function keys of the keyboard (default is 12). When defined as 12, a Shift-
F1 will be received as an F13 (12+1) action event by the program, and a Control-F1 will be F25 (12*2+1).

Establish a GUI front-end connection
This section explains runtime to front-end connection in it's simplest form.

Connecting with a front-end

In graphical mode, according to the front-end technology that is used (i.e. desktop client, mobile client, web
server client), there are different solutions to establish the connection between the runtime system and the
front-end.

This topic describes the development context case, where programs are executed directly with fglrun. In
a production environment, programs will typically be started with another technology, since the execution
of programs will be triggered by the end user interacting with the front-end. Read front-end specific
documentation for more details.

From the point of view of the runtime system, the front-end acts as a graphical server and thus the
programs must connect to that GUI server in order to display forms and get user input.

The runtime system will try to connect to the front-end only when the first interactive instruction like MENU
or INPUT is reached.

For the runtime system, the front end is identified by the FGLSERVER environment variable. This variable
defines the host name of the machine where the front end resides, and the number of the front end
instance to be used.

The syntax for FGLSERVER is:

{hostname|ip-address}[:servernum]

For example:

$ FGLSERVER=fox:1
$ fglrun myprog

User interface | 756

The servernum parameter is a whole number that defines the instance of the front-end. It is actually
defining a TCP port number the front-end is listening to, starting from 6400. For example, if servernum
equals 2, the TCP port number used is 6402 (6400+2).

This is the standard/basic connection technique, but you can set up different types of configurations. For
example, you can have the front end connect to an application server via ssh, to pass through firewalls
over the internet. Refer to the front end documentation for more details.

There can an exception to the standard FGLSERVER specification, if the front-end is denied to listen to a
port. If you need to revert the connection principle in this particular case, use the --gui-listen option of
fglrun. With this option, the runtime system will listen to the specified port, so the front-end can bind to the
program and start to use the GUI protocol. The procedure to work in such configuration is the following:

1. Start the program with:

 fglrun --gui-listen tcp-port prog-name

2. Connection from the front-end, for example, with an URL with the following format:

fgl://host-name:tcp-port

The front end protocol

The front end protocol (FEP) is an internal protocol used by the runtime system to synchronize the abstract
user interface (AUI) representation on the front end side. This protocol defines a simple set of operations
to modify the AUI tree. This protocol is based on a command processing principle (send command, receive
answer) and can be serialized to be transported over any network protocol, like HTTP for example.

Figure 40: Typical communication between the Runtime System and the Front End

1. Initialization phase: The runtime system sends the initial AUI tree.
2. The front end builds the graphical user interface according to the AUI tree.
3. The front end waits for a user interaction (mouse click, keyboard typing).
4. When the user performs some interaction, the front end sends front end events corresponding to the

modifications made by the user.
5. Front end events are analyzed and validated by the runtime system.
6. The runtime system sends back the result of the front end requests, by the way of AUI tree

modifications commands.

User interface | 757

7. When receiving these commands, the front end modifies its version of the AUI tree and updates the
graphical user interface. It then waits for new user interactions (step 3).

Front-end identification

To start a program from the front-end platform, the front-end can open a terminal session on the
application server. This is done for example by using a ssh, rlogin, or telnet terminal session. When the
terminal session is open, the front end sends a couple of shell commands to set environment variables
like FGLSERVER before starting the program to display the application forms on the front end where the
terminal session was initiated.

In this configuration, front end identification takes place. The front end identification prevents the display
of application forms on a front end that did not start the program on the server. If the front-end was not
identified, it would result in an important security problem, as anyone could run a fake program that would
display on any front-end and ask for a password.

Important: Front end identification is achieved automatically by an initial protocol
handshake. However, there can be a security hole if regular operating system users on
the application server can overwrite the program or the shell script started by the front
end terminal session. Malicious programs can try to display the application on another
workstation to read confidential data. As long as basic application users do not have read
and write privileges on the program files, there is no risk. To make sure that program files
on the server side are protected from basic users, create a special user on the server to
manage the application program files, and give other users only read access to those files.
As long as basic users cannot modify programs on the server side, there is no security
issue.

Configure the GUI connection timeout

When initiating the connection to the front end, if the front end software is stopped, the host machine is
down, or a firewall drops connections for the TCP port used for the GUI connection, the program will stop
with an error after a given timeout.

This timeout can be specified with the following FGLPROFILE entry:

gui.connection.timeout = seconds

The default timeout is 30 seconds.

Wait for front end ping timeout

You can configure the wait-for-ping timeout with the following FGLPROFILE entry:

gui.protocol.pingTimeout = 800

Important: This feature is not supported when running or mobile devices, or when displaying
applications on mobile devices.

It can happen that the user leaves the program for a while without using it. The network policy (firewall)
might force a close of the TCP connection after a given period of inactivity. To avoid such connection
shutdown when there is no GUI exchange, the front end sends a 'ping' event every N minutes (this is
usually configurable in the front-ends) to keep the TCP connection alive. The front end ping is a normal
situation and part of the GUI client/server protocol.

Important: With this "keep alive" technique, a front-end connection remains always open, even if
the user leaves the workstation for several hours. If your network connection has a cost, you should
consider to configure the front-end to turn off the ping event or stop it after a given number of pings.
Check the front-end configuration documentation for more details.

User interface | 758

If the front end program is not stopped properly (when killed by a system reboot, for example), the TCP
connection is lost and the runtime system does not receive any more 'ping' events. In this case, the runtime
system waits for a specified time before it stops with fatal error -8063.

By default, the runtime system waits for 600 seconds (10 minutes).

Important: If you set the wait-for-ping timeout to a value lower than the ping delay of the front-end,
the program will stop with a fatal error after that timeout, even if the TCP connection is still alive. For
example, with a front end having a ping delay of 5 minutes, the minimum value for this parameter
should be about 330 seconds (5 minutes + 30 seconds to make sure the client ping arrives).

GUI protocol compression

GUI protocol compression might be used to reduce the amount of data exchanged between the front-end
and the runtime system. Compression is typically useful on slow networks. The compression algorithm is
provided by the standard ZLIB library of the system.

When using the Genero Web Client (GWC/GAS), compression is not useful and is automatically disabled.

Compression makes sense on slow networks (for example, with a phone-line dialup modem, or broadband
modem based networks); On fast networks, compression is not required and will in fact use unnecessary
processor time.

Compression is disabled by default, and can be enabled with this FGLPROFILE entry:

gui.protocol.format = "zlib"

If this parameter is defined, but the ZLIB library is not installed on your system or if the ZLIB version is not
compatible with the version needed by the runtime system, compression cannot be supported, and the
program will stop with error -6317. The ZLIB version must be 1.2.5 (or compatible with version 1.2.5). On
Microsoft™ Windows™ platforms, the name of the library must be ZLIB1.DLL; Precompiled binary packages
can easily be found on the internet. On UNIX™ platforms, the name of the shared library must be libz.so
(normally located in /usr/lib). Note that on Linux™ distributions, you typically have to install the zlib (or
zlib1g) package and create a symbolic link for libz.so. The libz.so file is part of zlib-devel package, though.

Front-end errors

When the front end receives an invalid order, it stops the application. The runtime system then stops and
displays error -6313 with an additional message, for example:

Program stopped at 'myprog.4gl', line number 675.
 FORMS statement error number -6313.
 The User Interface has been destroyed: Unexpected interface version sent
 by the runtime system.

Debugging the front-end protocol

When setting the FGLGUIDEBUG environment variable to 1, information about GUI communication will
be printed to stderr by the runtime system, and the GUI protocol exchange will be indented for a better
readability in the front-end log window.

UNIX™ (shell) example:

$ FGLGUIDEBUG=1
$ export FGLGUIDEBUG
$ fglrun myprog 2>guidbg.txt

Note that in TUI mode, displayed screens can be dumped by setting the DBSCREENDUMP or
DBSCREENOUT environment variables. This can be used to take a snapshot of the current TUI screen,
for debugging or testing purpose.

User interface | 759

Front-end protocol logging

GUI protocol exchanges can be logged to a file with the --start-guilog=filename option of fglrun,
and replayed with the --run-guilog=filename option.

This feature can be used to log .

The options take the log file as parameter:

UNIX™ (shell) example:

$ fglrun --start-guilog=mylog.txt myprogram

When the program is started, all user interaction and AUI tree updates will be logged to the file specified by
the --start-guilog option.

The log file can then be replayed with the --run-guilog option, to mimic the user interaction, and
reproduce potential issues:

$ fglrun --run-guilog=mylog.txt

Special user interface features
This section describes special features regarding the user interface domain.

The special GUI supported features are:

• Setting key labels on page 759
• Automatic front end startup on page 761
• Text mode screen dump on page 762

Setting key labels
Labels can be defined to decorate buttons controlled by ON KEY/COMMAND KEY action handlers.

Syntax

Key label configuration can take place at different levels.

• FGLPROFILE definitions

key.key-name.text = "label"

• Program-level key labels

CALL fgl_setkeylabel("key-name", "label")

• Form level key labels (in KEYS section)

KEYS key-name = [%]"label"
[...]
[END]

• Dialog level key labels

CALL fgl_dialog_setkeylabel("key-name", "label")

• Form field level key labels (in field definition)

KEY key-name = [%]"label"

1. key-name is the name of the key.
2. label is the text to be displayed in the default action view (button).

User interface | 760

Usage

When using the graphical mode, ON KEY and COMMAND KEY action handlers in dialogs can be shown as
form buttons when a label text is defined for the key. By defining a label for a key, the runtime system will
automatically show a default button for the key action.

Important: Key label configuration is provided for backward compatibility. Consider using action
configuration in new programs.

In the next example, the function key F10 is used to show a detail window in this interactive dialog:

INPUT BY NAME myrecord.*
 ON KEY (F10)
 CALL ShowDetail()
END INPUT

By default, if you do not specify a label, no default action button is displayed for a function key or control
key.

If the text provided for the key label is empty or null, the default action button will not be displayed.

Table 220: Key names recognized by the runtime system

Key Name Description

f1 to f255 Function keys.

control-a to control-z Control keys.

accept Predefined dialog validation action.

interrupt
Predefined dialog cancellation action. The action name is cancel, not
interrupt.

insert Predefined INPUT ARRAY dialog row insertion action.

append Predefined INPUT ARRAY dialog row addition action.

delete Predefined INPUT ARRAY dialog row deletion action.

help Predefined help action.

Key labels can be defined at different levels. The order of precedence for key label definition is the
following:

1. The label defined with the KEY attribute of the form field.
2. The label defined for the current dialog, using the FGL_DIALOG_SETKEYLABEL function.
3. The label defined in the KEYS section of the form specification file.
4. The label defined as default for a program, using the FGL_SETKEYLABEL function.
5. The label defined in the FGLPROFILE configuration file (key.key-name.text entries).

In Genero, you typically define action labels with action attributes. However, if key labels are defined, they
will overwrite the text defined in action attributes for the corresponding key action. In BDS 3.xx versions,
default key labels are defined in FGLDIR/etc/fglprofile. These defaults have been commented out in
Genero to have action attribute text applied (In Genero, by default, fgl_getkeylabel() returns NULL for all
keys). If you want to get the same default key labels as in BDS 3.xx, uncomment the key.* lines in FGLDIR/
etc/fglprofile.

You can query the label defined at the program level with the FGL_GETKEYLABEL function and, for the
current interactive instruction, with the FGL_DIALOG_GETKEYLABEL function.

User interface | 761

Automatic front end startup
This section describes how to start a graphical front-end automatically when the runtime system and the
front-end reside on the same computer.

When a program starts in graphical mode, the runtime system tries to open a connection to the graphical
front end according to the FGLSERVER environment variable. This requires having the front end already
started and listening to the TCP port defined according to FGLSERVER.

In some configurations, such as X11 workstations or METAFRAME/Citrix Winframe or Microsoft™

Windows™ Terminal Server, each user may want to start his own front end to have a dedicated process.
This can be done by starting the front end automatically when the program executes, according to the
DISPLAY (X11) or SESSIONNAME/CLIENTNAME (WTSE) environment variables.

Automatic front end startup settings are defined with gui.server.autostart.* entries in
FGLPROFILE. In these FGLPROFILE entries, the term "GUI server" refers to the graphical front end.

In a first time, the runtime system tries to establish the connection without starting the front end (in a
normal usage, it is already started). The front end is identified by the FGLSERVER environment variable.
If FGLSERVER is not defined, it defaults to localhost:0, except if gui.server.autostart.wsmap
entries are defined in FGLPROFILE. When wsmap entries are defined, workstation id to GUI server id
mapping takes place and FGLSERVER defaults to localhost:n, where n is the GUI server number
found from wsmap entries.

If this first connection fails and the gui.server.autostart.cmd entry is defined, the runtime
system executes the command to start the GUI server, then waits for n seconds as defined by
gui.server.autostart.wait entry, and after this delay tries to connect to the front end. If the
connection fails, it tries again for a number of attempts defined by the gui.server.autostart.repeat
entry. Finally, it the last try failed, the runtime system stops with a GUI connection error -6300.

If the gui.server.autostart.cmd entry is not defined, neither workstation id to GUI id mapping, nor
automatic front-end startup is done.

Here is a detailed description of each gui.server.autostart FGLPROFILE entry:

The cmd entry is used to define the command to be executed to start the front-end:

gui.server.autostart.cmd = "/opt/app/gdc-2.30/bin/gdc -p %d -q -M"

Here, %d will be replaced by the TCP port the front-end must listen to.

By default the runtime system waits for two seconds before it tries to connect to the front-end. You can
change this delay with the wait entry:

gui.server.autostart.wait = 5 -- wait five seconds

The runtime system tries to connect to the front-end ten times. You can change this with the repeat entry:

gui.server.autostart.repeat = 3 -- repeat three times

The following FGLPROFILE entries can be used to define workstation id to front-end id mapping:

gui.server.autostart.wsmap.max = 3
gui.server.autostart.wsmap.0.names = "fox:1.0,fox.sxb.4js.com:1.0"
gui.server.autostart.wsmap.1.names = "wolf:1.0,wolf.sxb.4js.com:1.0"
gui.server.autostart.wsmap.2.names = "wolf:2.0,wolf.sxb.4js.com:2.0"

The first wsmap.max entry defines the maximum number of front-end identifiers to look for. The
wsmap.N.names entries define a mapping for each GUI server, where N is the front-end identifier. The
value of those entries defines a comma-separated list of workstation names to match. If no wsmap entries
are defined, the GUI server number will default to zero.

For gui.server.autostart.wsmap entries, the first GUI server number starts at zero.

User interface | 762

On X11 configurations, a workstation is identified by the DISPLAY environment variable. In this example,
fox:1.0 identifies a workstation that will make the runtime start a front end with the number 1.

On Windows™ Terminal Server, the CLIENTNAME environment variable identifies the workstation. If no
corresponding front end id can be found in the wsmap entries, the front end number defaults to the id of the
session defined by the SESSIONNAME environment variable, plus one. The value of this variable has the
form protocol#id; for example, RDP-Tcp#4 would automatically define a front end id of 5 (4+1).

If the front end processes are started on the same machine as the runtime system, you do not need to set
the FGLSERVER environment variable. This will then default to localhost:id, where id will be detected
according to the wsmap workstation mapping entries.

If the front end is executed on a middle-tier machine that is different from the application server, MIDHOST
for example, you can set FGLSERVER to MIDHOST without a GUI server id. The workstation mapping will
automatically find the id according to wsmap settings.

Some front ends such as the Genero Desktop Client (GDC), raise the control panel to the top of the
window stack when you try to restart it. In this case the program window might be hidden by the GDC
control panel. To avoid this problem, you can use the -M option to start the GDC in minimized mode.

Text mode screen dump

For compatibility with IBM® Informix® 4GL, Genero supports the DBSCREENDUMP and DBSCREENOUT
environment variables for debugging purpose, to let you do a screen shot when running in TUI mode and
write the result into a file.

To enable TUI screen shot, set either DBSCREENDUMP or DBSCREENOUT to the name of the output
file, then run your Genero program with FGLGUI=0 set and press the Ctrl-P key to dump the current
screen. Each time you press Ctrl-P the output file will be overwritten.

The DBSCREENDUMP variable writes the screen with escape sequences of TTY attributes, while
DBSCREENOUT writes only the characters displayed on the screen, which makes the output more
readable.

If both variables are set, the runtime will generate both output files. You should however use different file
names, otherwise the output is undefined.

Configuring a text terminal
This section covers topics about text terminal configuration when using the TUI mode (when the FGLGUI
environment variable is set to zero).

Terminal type and terminal capabilities definition is not a Genero-specific configuration: TERM, TERMCAP
and TERMINFO are also used by other UNIX™ applications and commands.

On UNIX™ platforms, the TERM environment variable must be set to define the terminal type/name. For
example, if you execute the application in an xterm X11 window, set TERM=xterm.

On Windows™ platforms, you can run applications in text mode inside a CMD console window. You must
not set the TERM environment variable in this case.

Genero supports both termcap and terminfo implementations of text terminal capabilities. The
INFORMIXTERM environment variable defines the type of library used to interact with the terminal. When
INFORMIXTERM is set to termcap (the default), the runtime system reads terminal capabilities from
the file defined by the TERMCAP environment variable. When INFORMIXTERM is set to terminfo, the
runtime system uses the ncurses library of the operating system to interact with the terminal. We strongly
recommend you to use the terminfo solution.

TERMINFO terminal capabilities

When the INFORMIXTERM environment variable is set to terminfo, the runtime system will use the
ncurses or curses library of the UNIX™ system to display and interact with the terminal device, according to
the TERM environment variable.

User interface | 763

Make sure that the libncurses.so or the libcurses.so library is installed on your UNIX™ operating
system.

The TERMINFO environment variable can be used to define a different terminal capabilities database
as the default. If your UNIX™ system is properly configured, you should not have to set the TERMINFO
environment variable.

TERMCAP terminal capabilities

When the INFORMIXTERM environment variable is set to termcap or when this variable is undefined, the
runtime system will use the termcap terminal capabilities database.

The termcap solution is provided for backward compatibility. You should use terminfo instead, by setting
the INFORMIXTERM variable to terminfo.

The default termcap database is in the /etc/termcap file. If this file is not found, the runtime system will
use its default file $FGLDIR/etc/termcap. Use the TERMCAP environment variable to specify a different
termcap file as the defaults. If you plan to modify the default termcap file, we strongly recommend that you
make a copy of the original file and point to the new file with the TERMCAP variable.

In this section we will briefly describe the syntax of the termcap file. For a complete definition please refer
to your operating system documentation (see man pages describing the termcap file syntax).

Termcap syntax

All termcap entries contain a list of terminal names, followed by a list of terminal capabilities, in the
following format:

• Each capability, including the last one in the entry, is followed by a colon (:).
• ESCAPE is specified as a backslash (\) followed by the letter E. CTRL is specified as a caret (^). Do

not use the ESCAPE or CTRL keys to indicate escape sequences or control characters in a termcap
entry.

• Entries must be defined on a single logical line; a backslash (\) appears at the end of each line that
wraps to the next line.

• Comment lines begin with a sharp sign (#).

Example: xterm terminal definition:

xterm|xterm terminal emulator:\
:km:mi:ms:xn:pt:\
:co#80:li#24:\
:is=\E[r\E[m\E[2J\E[H\E[?7h\E[?1;3;4;6l:\
...

Terminal Names

Termcap entries begin with one or more names for the terminal, each separated by a vertical (|) bar. Any
one of these names can be used for access to the termcap entry.

Boolean capabilities

Boolean capabilities are two-character codes indicating whether a terminal has a specific feature. If the
boolean capability exists in the termcap entry, the terminal has that particular feature.

For example:

:bs:am:
bs backspace with CTRL-H
am automatic margins

User interface | 764

Numeric Capabilities

Numeric capabilities are two-character codes followed by a sharp symbol (#) and a value.

For example:

:co#80:li#24:
co number of columns in a line
li number of lines on the screen

The runtime system assumes that the value is zero for any numeric capabilities that are not listed.

String Capabilities

String capabilities specify a sequence that can be used to perform a terminal operation.

A string capability is a two-character code, followed by an equal sign (=) and a string ending at the next
delimiter (:).

Most termcap entries include string capabilities for clearing the screen, arrow keys, cursor movement,
underscore, function keys, etc.

For example, this shows some string capabilities for a Wyse 50 terminal:

:ce=\Et:cl=\E*:\
:nd=^L:up=^K:\
:so=\EG4:se=\EG0:
ce=\Et clear to end of line
cl=\E* clear the screen
nd=^L non-destructive cursor right
up=^K up one line
so=\EG4 start stand-out
se=\EG0 end stand-out

Genero-specific termcap definitions

Extending Function Key Definitions

In TUI mode, the runtime system recognizes function keys F1 through F36. These keys correspond to the
termcap capabilities k0 through k9, followed by kA through kZ.

The termcap entry for these capabilities is the sequence of ASCII characters your terminal sends when you
press the function keys (or any other keys you choose to use as function keys).

This example shows some function key definitions for the xterm terminal:

k0=\E[11~:k1=\E[12~:k2=\E[13~:k3=\E[14~:\
...
k9=\E[21~:kA=\E[23~:kB=\E[24~:\

Defining dialog action keys

Dialog action keys for insert, delete and list navigation can be defined with the following capabilities:

• ki : Insert line (default is CTRL-J)
• kj : Delete line (default is CTRL-K)
• kf : Next page (default is CTRL-M)
• kg : Previous page (default is CTRL-N)

Note: You can also use the OPTIONS statement to name other function keys or CTRL keys for
these operations.

User interface | 765

Specifying Characters for Window Borders

The runtime system uses the graphics characters in the termcap file when you specify a window border in
an OPEN WINDOW statement.

The runtime system uses characters defined in the termcap file to draw the border of a window. If no
characters are defined in this file, the runtime system uses the hyphen (-) for horizontal lines, the vertical
bar (|) for vertical lines, and the plus sign (+) for corners.

Steps to define the graphical characters for window borders for your terminal type:

1. Determine the escape sequences for turning the terminal graphics mode ON and OFF (Refer to the
manual of your terminal). For example, on Wyse 50 terminals, the escape sequence for entering
graphics mode is ESC H^B, and the escape sequence for leaving graphics mode is ESC H^C.

2. Identify the ASCII equivalents for the six graphics characters that Genero requires to draw the window
borders. The ASCII equivalent of a graphics character is the key you would press in graphics mode to
obtain the indicated character. The six graphical characters needed by Genero are:

a. The upper left corner
b. The lower left corner
c. The upper right corner
d. The lower right corner
e. The horizontal line
f. The vertical line

3. Edit the termcap entry for your terminal, and define the following string capabilities:

• gs : The escape sequence for entering graphics mode. In the termcap file, ESCAPE is represented
as a backslash (\) followed by the letter E; CTRL is represented as a caret (^). For example, the
Wyse 50 escape sequence ESC-H CTRL-B is represented as \EH^B.

• ge : The escape sequence for leaving graphics mode. For example, the Wyse 50 escape sequence
ESC-H CTRL-C is represented as \EH^C.

• gb : The concatenated, ordered list of ASCII equivalents for the six graphics characters used to draw
the border. Using the order as listed in (2).

For example, if you are using a Wyse 50 terminal, you would add the following, in a linear sequence:

:gs=\EH^B:ge=\EH^C:gb=2135z6:\

For terminals without graphics capabilities, you must enter a blank value for the gs and ge capabilities.
For gb, enter the characters you want Genero to use for the window border. The following example shows
possible values for gs, ge, and gb in an entry for a terminal without graphics capabilities:

:gs=:ge=:gb=.|.|_|:

With these settings, window borders would be drawn using underscores (_) for horizontal lines, vertical
bars (|) for vertical lines, periods (.) for the top corners, and vertical bars (|) for the lower corners.

Adding Color and Intensity

In TUI mode, a Genero program can be written either for a monochrome or a color terminal, and then
you can run the program on either type of terminal. If you set up the termcap files as described, the color
attributes and the intensity attributes are related.

Table 221: Relationship between color attributes and intensity attributes

Number Color Intensity Note

0 WHITE NORMAL

1 YELLOW BOLD

User interface | 766

Number Color Intensity Note

2 MAGENTA BOLD

3 RED BOLD (*)

If the keyword BOLD
is indicated as the
attribute, the field will be
RED on a color terminal

4 CYAN DIM

5 GREEN DIM

6 BLUE DIM (*)

If the keyword DIM
is indicated as the
attribute, the field will be
BLUE on a color terminal

7 BLACK INVISIBLE

The background for colors is BLACK in all cases. In either color or monochrome mode, you can add the
REVERSE, BLINK, or UNDERLINE attributes if your terminal supports them.

The ZA String Capability

Genero uses a parameterized string capability named ZA in the termcap file to determine color
assignments. Unlike other termcap string capabilities that you set to a literal sequence of ASCII characters,
ZA is a function string that depends on the following four parameters:

Table 222: ZA function parameters

Parameter Name Description

1 p1
Color number between 0 and 7 (see Table 221:
Relationship between color attributes and intensity
attributes on page 765).

2 p2 0 = Normal; 1 = Reverse.

3 p3 0 = No-Blink; 1 = Blink.

4 p3 0 = No-underscore; 1 = Underscore.

ZA uses the values of these four parameters and a stack machine to determine which characters to send
to the terminal. The ZA function is called, and these parameters are evaluated, when a color or intensity
attribute is encountered in a Genero program. Use the information in your terminal manual to set the ZA
parameters to the correct values for your terminal.

The ZA string uses stack operations to push values onto the stack or to pop values off the stack. Typically,
the instructions in the ZA string push a parameter onto the stack, compare it to one or more constants,
and then send an appropriate sequence of characters to the terminal. More complex operations are often
necessary; by storing the display attributes in static stack machine registers (named a through z), you can
have terminal-specific optimizations.

The different stack operators that you can use to write the descriptions are summarized here. For a
complete discussion of stack operators, see your operating system documentation.

Operators That Send Characters to the Terminal

• %d pops a numeric value from the stack and sends a maximum of three digits to the terminal. For
example, if the value 145 is at the top of the stack, %d pops the value off the stack and sends the ASCII

User interface | 767

representations of 1, 4, and 5 to the terminal. If the value 2005 is at the top of the stack, %d pops the
value off the stack and sends the ASCII representation of 5 to the terminal.

• %2d pops a numeric value from the stack and sends a maximum of two digits to the terminal, padding
to two places. For example, if the value 145 is at the top of the stack, %2d pops the value off the stack
and sends the ASCII representations of 4 and 5 to the terminal. If the value 5 is at the top of the stack,
%2d pops the value off the stack and sends the ASCII representations of 0 and 5 to the terminal.

• %3d pops a numeric value from the stack and sends a maximum of three digits to the terminal, padding
to three places. For example, if the value 7 is at the top of the stack, %3d pops the value off the stack
and sends the ASCII representations of 0, 0, and 7 to the terminal.

• %c pops a single character from the stack and sends it to the terminal.

Operators That Manipulate the Stack

• %p[1-9] pushes the value of the specified parameter on the stack. The notation for parameters is p1,
p2, ... p9. For example, if the value of p1 is 3, %p1 pushes 3 on the stack.

• %P[a-z] pops a value from the stack and stores it in the specified variable. The notation for variables is
Pa, Pb, ... Pz. For example, if the value 45 is on the top of the stack, %Pb pops 45 from the stack and
stores it in the variable Pb.

• %g[a-z] gets the value stored in the corresponding variable (P[a-z]) and pushes it on the stack. For
example, if the value 45 is stored in the variable Pb, %gb gets 45 from Pb and pushes it on the stack.

• %'c' pushes a single character on the stack. For example, %'k' pushes k on the stack.
• %{n} pushes an integer constant on the stack. The integer can be any length and can be either positive

or negative. For example, %{0} pushes the value 0 on the stack.
• %S[a-z] pops a value from the stack and stores it in the specified static variable. (Static storage is

nonvolatile since the stored value remains from one attribute evaluation to the next.) The notation for
static variables is Sa, Sb, ... Sz. For example, if the value 45 is on the top of the stack, %Sb pops 45
from the stack and stores it in the static variable Sb. This value is accessible for the duration of the
Genero program.

• %G[a-z] gets the value stored in the corresponding static variable (S[a-z]) and pushes it on the stack.
For example, if the value 45 is stored in the variable Sb, %Gb gets 45 from Sb and pushes it on the
stack.

Arithmetic Operators

Each arithmetic operator pops the top two values from the stack, performs an operation, and pushes the
result on the stack.

• %+ Addition.

For example, %{2}%{3}%+ is equivalent to 2+3.
• %- Subtraction.

For example, %{7}%{3}%- is equivalent to 7-3.
• %* Multiplication.

For example, %{6}%{3}%* is equivalent to 6*3.
• %/ Integer division.

For example, %{7}%{3}%/ is equivalent to 7/3 and produces a result of 2.
• %m Modulus (or remainder).

For example, %{7}%{3}%m is equivalent to (7 mod 3) and produces a result of 1.

Bit Operators

The following bit operators pop the top two values from the stack, perform an operation, and push the
result on the stack:

• %& Bit-and.

User interface | 768

For example, %{12}%{21}%& is equivalent to (12 and 21) and produces a result of 4.
• %| Bit-or.

For example, %{12}%{21}%| is equivalent to (12 or 21) and produces a result of 29.
• %^ Exclusive-or.

For example, %{12}%{21}%^ is equivalent to (12 exclusive-or 21) and produces a result of 25.

The following unary operator pops the top value from the stack, performs an operation, and pushes the
result on the stack:

• %~ Bitwise complement.

For example, %{25}%~ results in a value of -26.

Logical Operators

The following logical operators pop the top two values from the stack, perform an operation, and push the
logical result (0 for false or 1 for true) on the stack:

• %= Equal to.

For example, if the parameter p1 has the value 3, the expression %p1%{2}%= is equivalent to 3=2 and
produces a result of 0 (false).

• %> Greater than.

For example, if the parameter p1 has the value 3, the expression %p1%{0}%> is equivalent to 3>0 and
produces a result of 1 (true).

• %< Less than.

For example, if the parameter p1 has the value 3, the expression %p1%{4}%< is equivalent to 3<4 and
produces a result of 1 (true).

The following unary operator pops the top value from the stack, performs an operation, and pushes the
logical result (0 or 1) on the stack.

• %! Logical negation.

This operator produces a value of zero for all nonzero numbers and a value of 1 for zero. For example,
%{2}%! results in a value of 0, and %{0}%! results in a value of 1.

Conditional Statements

The conditional statement has the following format:

%? expr %t thenpart %e elsepart %;

The %e elsepart is optional. You can nest conditional statements in the thenpart or the elsepart .

When Genero evaluates a conditional statement, it pops the top value from the stack and evaluates it
as either true or false. If the value is true, the runtime performs the operations after the %t; otherwise it
performs the operations after the %e (if any).

For example, the expression:

%?%p1%{3}%=%t;31%;

is equivalent to:

if p1 = 3 then print ";31"

Assuming that p1 in the example has the value 3, Genero would perform the following steps:

User interface | 769

• %? does not perform an operation but is included to make the conditional statement easier to read.
• %p1 pushes the value of p1 on the stack.
• %{3} pushes the value 3 on the stack.
• %= pops the value of p1 and the value 3 from the stack, evaluates the boolean expression p1=3, and

pushes the resulting value 1 (true) on the stack.
• %t pops the value from the stack, evaluates 1 as true, and executes the operations after %t. (Since

";31" is not a stack machine operation, Genero prints ";31" to the terminal.)
• %; terminates the conditional statement.

ZA example

The ZA sequence for the ID Systems Corporation ID231 (color terminal) is:

ZA =
\E[0; # Print lead-in
%?%p1%{0}%=%t%{7} # Encode color number (translate color number
 # to number for the ID231 term)
%e%p1%{1}%=%t%{3} #
%e%p1%{2}%=%t%{5} #
%e%p1%{3}%=%t%{1} #
%e%p1%{4}%=%t%{6} #
%e%p1%{5}%=%t%{2} #
%e%p1%{6}%=%t%{4} #
%e%p1%{7}%=%t%{0}%; #
%?%p2%t30;%{40}%+%2d # if p2 is set, print '30' and '40' + color number
 (reverse)
%e40;%{30}%+%2d%; # else print '40' and '30' + color number (normal)
%?%p3%t;5%; # if p3 is set, print 5 (blink)
%?%p4%t;4%; # if p4 is set, print 4 (underline)
m # print 'm' to end character sequence

Form definitions
This section describes how to define application forms and program resources related to the presentation
layer.

• Windows and forms on page 769
• Using images on page 782
• Accessibility guidelines on page 791
• Message files on page 794
• Action defaults files on page 796
• Presentation styles on page 799
• Form specification files on page 853
• Form rendering on page 1002
• Toolbars on page 1021
• Topmenus on page 1027

Windows and forms
The section describes the concept of windows and forms in the language.

• Understanding windows and forms on page 770
• OPEN WINDOW on page 772

• Window position and size on page 773
• OPEN WINDOW attributes on page 774
• The WITH FORM clause on page 775

User interface | 770

• Window styles on page 775
• Window titles on page 776
• Window icons on page 776
• Window types on page 777

• CLOSE WINDOW on page 777
• CURRENT WINDOW on page 778
• OPEN FORM on page 779
• DISPLAY FORM on page 780
• CLOSE FORM on page 781
• CLEAR WINDOW on page 779
• CLEAR SCREEN on page 781
• DISPLAY AT on page 781

Understanding windows and forms

Programs manipulate windows and forms, to define display and input areas controlled by interactive
instructions such as the INPUT dialog. When a dialog is started, it uses the form associated with the
current window. Forms are defined in .42f compiled form files and are loaded and displayed in windows.

Window objects

The windows are created from programs; they define a display context for sub-elements like forms, menus,
message and error lines. A window can contain only one form at a time, but you can display different forms
successively in the same window.

When using a the text mode (FGLGUI=0), windows are displayed in the character terminal as fixed-
size boxes, at a given line/column position, width and height. When using a graphical desktop front end
(FGLGUI=1), windows are displayed as independent re-sizeable windows by default. Note that a GUI
application can run in traditional mode (gui.uiMode="traditional" FGLPROFILE setting), displaying
windows as simple static areas inside a real graphical parent window. When using a mobile device front-
end, only one window is visible at the time, because of device platform GUI standards and the limited
screen sizes (smartphones). Split views is the exception, and allows to display two windows side by side
for a typical list-detail display on tablets.

A program creates a new window with the OPEN WINDOW instruction, which also defines the window
identifier. A window is destroyed with the CLOSE WINDOW instruction:

OPEN WINDOW mywindow WITH FORM "myform"
...
CLOSE WINDOW mywindow

If there is a current window, it is possible to display several forms successively in that same window. The
previous form is removed automatically by the runtime system when displaying a new form to the window:

OPEN WINDOW mywindow WITH FORM "form1"
INPUT BY NAME ... -- uses form1 elements
...
OPEN FORM f1 FROM "form2"
DISPLAY FORM f1 -- removes "form1" from the window
INPUT BY NAME ... -- uses form2 elements
...

When a program starts, the runtime system creates a default window named SCREEN. This default window
can be used as a regular window: it can hold a menu and a form. If needed, it can be closed with CLOSE
WINDOW SCREEN. You typically display the main form of your program in the SCREEN window, by using
OPEN FORM + DISPLAY FORM:

MAIN

User interface | 771

 -- The SCREEN window exists by default
 ...
 OPEN FORM f_main FROM "customers"
 DISPLAY FORM f_main -- displays in SCREEN
 ...
END MAIN

Several windows can be created, but there can be only one current window when using modal dialogs
(only one dialog is active at the time, thus only the current window can be active). By using parallel dialogs,
several windows can be active concurrently. Parallel dialogs were introduced to implement split views, for
mobile devices.

There is always a current window. The last created window becomes the current window. When the last
created window is closed, the previous window in the window stack becomes the current window. Use
the CURRENT WINDOW instruction to make a specific window current before executing the corresponding
dialog that is controling the window content:

OPEN WINDOW w_customers ...
OPEN WINDOW w_orders ...
...
CURRRENT WINDOW IS w_customers
...
CLOSE WINDOW w_customers
CURRRENT WINDOW IS w_orders
...

By default, a window has no particular type and displays as a modal window on the front-end, to be
controlled by a modal dialog instruction. In some situations, you must specify the type of the window to
get a specific rendering and behavior. This is achieved by defining the TYPE attribute in the ATTRIBUTES
clause of the OPEN WINDOW instruction:

OPEN WINDOW w_cust WITH FORM "f_cust" ATTRIBUTES(TYPE=LEFT)
...
OPEN WINDOW w_pref WITH FORM "f_pref" ATTRIBUTES(TYPE=POPUP)
...

Specify decoration options with a presentation style for the window, identified the STYLE attribute of
the ATTRIBUTES section of OPEN WINDOW. Window styles can also be specified at form level, with the
WINDOWSTYLE form attribute in the LAYOUT of the form definition:

OPEN WINDOW w_cust WITH FORM "f_cust" ATTRIBUTES(STYLE="dialog2")

The ui.Window built-in class can be used to manipulate windows as objects. The common practice is to
get the current form of the window and use it as ui.Form object to manipulate its content.

The windows can be displayed in an WCI container application, by using the ui.Interface methods to
define parent / child relationship.

Form objects

Forms define the layout and presentation of areas used by the dialogs (INPUT), to display or input data.
Forms are loaded by programs from external files with the .42f extension, the compiled version of .per form
specification files.

Forms can be stamped with the VERSION attribute. The form version attribute is used to indicate that the
form content has changed. The front end is then able to distinguish different form versions and avoid saved
settings being applied for new form versions.

User interface | 772

Forms can be loaded with the OPEN FORM instruction followed by a DISPLAY FORM, to display the
form into the current window, or forms can be used directly as window creation argument with the OPEN
WINDOW ... WITH FORM instruction:

OPEN FORM f_cust FROM "f_cust"
DISPLAY FORM f_cust -- into current window
...
OPEN WINDOW w_cust WITH FORM "f_cust"

The form that is used by interactive instructions like INPUT is defined by the current window containing the
form. Switching between existing windows (and thus, between forms associated to the windows) is done
with the CURRENT WINDOW instruction.

Several forms can be successively displayed in the same (current) window. The last displayed form will be
used by the next dialog, while the form displayed before will be automatically removed from the window:

OPEN WINDOW w_common WITH 20 ROW, 60 COLUMNS
...
OPEN FORM f1 FROM "f_cust"
DISPLAY FORM f1 -- f_cust is shown
INPUT BY NAME rec_cust.* ...
...
OPEN FORM f2 FROM "f_ord"
DISPLAY FORM f2 -- f_ord is shown (f_cust is removed)
INPUT BY NAME rec_ord.* ...

The ui.Form built-in class is provided to handle form elements. You can, for example, hide some parts of
a form with the setElementHidden() method. Get a ui.Form object with the ui.Window.getForm()
method.

OPEN WINDOW
Creates and displays a new window.

Syntax

OPEN WINDOW identifier
 [AT line, column]
 WITH { FORM form-file
 | height ROWS, width COLUMNS
 }
 [ATTRIBUTES (window-attributes)]

where display-attribute is:

{ BLACK | BLUE | CYAN | GREEN
| MAGENTA | RED | WHITE | YELLOW
| BOLD | DIM | INVISIBLE | NORMAL
| REVERSE | BLINK | UNDERLINE
| BORDER
| TEXT = "string"
| TYPE = { RIGHT | LEFT | POPUP | NAVIGATOR }
| STYLE = "string"
| PROMPT LINE = integer
| MENU LINE = integer
| MESSAGE LINE = integer
| ERROR LINE = integer
| COMMENT LINE = { OFF | integer }
}

1. identifier is the name of the window. It is always converted to lowercase by the compiler.

User interface | 773

2. line is the integer defining the top position of the window. The first line in the screen is 1, while the
relative line number inside the window is zero.

3. column is the integer defining the position of the left margin. The first column in the screen is 1, while
the relative column number inside the window is zero.

4. form-file defines the .42f compiled form specification file to be used, without the file extension.
5. height defines the number of lines of the window in character units; includes the borders in character

mode.
6. width defines the number of lines of the window in character units; includes the borders in character

mode.

Usage

An OPEN WINDOW statement can have the following effects:

• Declares a name (the identifier) for the window.
• Indicates which form has to be used in that window.
• Specifies the display attributes of the window.
• When using character mode, specifies the position and dimensions of the window, in character units.

For graphical applications, use this instruction without the AT clause, and with the WITH FORMclause.

The window identifier must follow the rules for identifiers and be unique among all windows defined in the
program. Its scope is the entire program. You can use this identifier to reference the same Window in other
modules with other statements (for example, CURRENT WINDOW and CLOSE WINDOW).

The compiler converts the window identifier to lowercase for internal storage. When using functions or
methods receiving the window identifier as a string parameter, the window name is case-sensitive. We
recommend that you always specify the window identifier in lowercase letters.

The runtime system maintains a stack of all open windows. If you execute OPEN WINDOW to open a new
window, it is added to the window stack and becomes the current window. Other statements that can
modify the window stack are CURRENT WINDOW and CLOSE WINDOW.

Example

MAIN
 OPEN WINDOW w1 WITH FORM "customer"
 MENU "Test"
 COMMAND KEY(INTERRUPT) "exit" EXIT MENU
 END MENU
 CLOSE WINDOW w1
END MAIN

Window position and size
Window objects can be created with a position and size for the TUI mode.

When using the full GUI mode (without the traditional mode), the AT line, column clause is optional
and if used, the WITH lines ROWS, characters COLUMNS clause is ignored, because the size of the
window is automatically calculated according to its contents.

When using the TUI mode, the AT line, column clause defines the position of the top-left corner of the
window on the terminal screen and WITH lines ROWS,characters COLUMNS clause specifies explicit
vertical and horizontal dimensions for the window. The expression at the left of the ROWS keyword specifies
the height of the window, in character unit lines. This must be an integer between 1 and max, where max is
the maximum number of lines that the screen can display. The integer expression after the comma at the
left of the COLUMNS keyword specifies the width of the window, in character unit columns. This must return
a whole number between 1 and length, where length is the number of characters that your monitor can
display on one line. In addition to the lines needed for a form, allow room for the COMMENT line, the MENU
line, the MENU comment line and the ERROR line. The runtime system issues a runtime error if the window

User interface | 774

does not include sufficient lines to display both the form and these additional reserved lines. The minimum
number of lines required to display a form in a window is the number of lines in the form, plus an additional
line below the form for prompts, messages, and comments.

OPEN WINDOW attributes
List if attributes for the OPEN WINDOW instruction.

Table 223: Window-attributes supported by the OPEN WINDOW statement

Attribute Description

TEXT = string Defines the default title of the window.
When a form is displayed, the form title
(LAYOUT(TEXT="mytitle")) will be used as
window title.

Tip: We recommend that you define the
window title in the form file.

STYLE = string Defines the default style of the window.
If the form defines a window style,
(LAYOUT(WINDOWSTYLE="mystyle")), it
overwrites the default window style.

Tip: We recommend that you define the
window style in the form file.

TYPE = [LEFT|RIGHT| POPUP|NAVIGATOR] Defines the window type. According to the type
specified, the window will appear differently,
following front-end platform GUI standards. For
example, on iOS devices, a window created with
TYPE=POPUP will show up from the bottom of the
screen. See Window types on page 777.

BLACK, BLUE, CYAN, GREEN, MAGENTA,
RED, WHITE, YELLOW

Default TTY color of the data displayed in the
window.

BOLD, DIM, INVISIBLE, NORMAL Default TTY font attribute of the data displayed in
the window.

REVERSE, BLINK, UNDERLINE Default TTY video attribute of the data displayed in
the window.

PROMPT LINE integer In character mode, indicates the position of the
prompt line for this window. The position can be
specified with FIRST and LAST predefined line
positions.

FORM LINE integer In character mode, indicates the position of the
form line for this window. The position can be
specified with FIRST and LAST predefined line
positions.

MENU LINE integer In character mode, indicates the position of the
ring menu line for this window. The position can
be specified with FIRST and LAST predefined line
positions.

User interface | 775

Attribute Description

MESSAGE LINE integer In character mode, indicates the position of the
message line for this window. The position can be
specified with FIRST and LAST predefined line
positions.

ERROR LINE integer In character mode, indicates the position of the
error line for this window. The position can be
specified with FIRST and LAST predefined line
positions.

COMMENT LINE {OFF|integer} In character mode, indicates the position of the
comment line or no comment line at all, for this
window. The position can be specified with FIRST
and LAST predefined line positions.

BORDER Indicates if the window must be created with a
border in character mode. A border frame is drawn
outside the specified window. This means, that the
window needs 2 additional lines and columns on
the screen.

The following list describes the default line positions in character mode:

• First line: Prompt line (output from PROMPT statement) and Menu line (command value from MENU
statement).

• Second line: Message line (output from MESSAGE statement; also the descriptions of MENU options).
• Third line: Form line (output from DISPLAY FORM statement).
• Last line: Error line (output from ERROR statement). Also comment line in any window except SCREEN.

The WITH FORM clause
Creating a window object with a form.

As an alternative to specifying explicit dimensions for a window, the WITH FORM clause can specify the
name of a compiled form file, without the .42f file extension. A window object is automatically opened
and sized to the screen layout of the form. When using the TUI mode, the width of the window is from the
left-most character on the screen form (including leading blank spaces) to the right-most character on the
screen form (truncating trailing blank spaces). The length of the window is calculated as (form line) + (form
length).

OPEN WINDOW w1 WITH FORM "custlist"

It is recommended that you use the WITH FORM clause, especially in the default GUI mode, because the
window is created in accordance with the form. If you use this clause, you do not need the OPEN FORM,
DISPLAY FORM, or CLOSE FORM statement to open and close the form. The CLOSE WINDOW statement
closes the window and the form.

Window styles
Use the STYLE attribute to set a style for a window.

By default, windows are displayed as normal application windows, but you can use the window style to
show a window at the top of all other windows, as a "modal window".

The window style defines the type of the window (normal, modal) and its decoration, via a presentation
style. The presentation style specifies a set of attributes in an external file (.4st).

There are different ways to define the style of a window: The STYLE attribute can be used in the OPEN
WINDOW instruction to define the default style for a window, but it is better to specify the window style in the

User interface | 776

form file, with the WINDOWSTYLE attribute of the LAYOUT section. This avoids decoration-specific code in
the programs.

Table 224: Standard window styles defined in the default presentation style file

Style name in 4st file Description

Window Defines presentation attributes for common
application windows. When using MDI containers,
normal windows are displayed as MDI children.

Window.main, Window.main2 Defines presentation attributes for starter
applications, where the main window shows a
startmenu if one is defined by the application.

Window.dialog, Window.dialog2,
Window.dialog3, Window.dialog4

Defines presentation attributes for typical OK/
Cancel modal windows.

On iOS mobile devices, opening a new window with
the predefined style 'dialog' causes the window to
slide up from the bottom:

OPEN WINDOW w_opt WITH FORM "f_opt"
 ATTRIBUTES(STYLE="dialog")

Window.naked Defines presentation attributes for windows that
should not show the default view for ring menus
and action buttons (OK/Cancel).

Window.viewer Defines presentation attributes for viewers as the
report pager (fglreport.per).

It is recommended that you not change the default settings of windows styles in the FGLDIR/lib/
default.4st file. If you create your own style file, copy the default styles into your own file in a different
directory.

It is not possible to change the presentation style attributes of windows dynamically in the AUI tree. The
style is applied when the window and form are loaded.

If you open and display a second form in an existing window, the window style of the second form is not
applied.

Window titles
Use the TEXT attribute to define a title for a window.

The TEXT attribute in the ATTRIBUTE clause of OPEN WINDOW defines the default title of the window. If the
window is opened with a form (WITH FORM clause) that defines a TEXT attribute in the LAYOUT section,
the default is ignored. Subsequent OPEN FORM / DISPLAY FORM instructions may change the window title
if the new form defines a different title in the LAYOUT section.

It is recommended that you specify the window title in the form file, instead of using the TEXT attribute of
the OPEN WINDOW instruction.

If you want to set a window title dynamically, you can use the setText() method of the ui.Window built-
in class.

Window icons
Use a IMAGE attribute to define the icon for a window.

If the window is opened with OPEN WINDOW WITH FORM, by using a form file that defines an IMAGE
attribute in the LAYOUT section, the window will use this image as icon. Subsequent OPEN FORM /

User interface | 777

DISPLAY FORM instructions may change the window icon if the new form defines a different image in the
LAYOUT section.

If you want to set a window icon dynamically, you can use the setImage() method of the ui.Window
built-in class.

Window types
Use the TYPE attribute to define the type of a window.

Important: This feature is only for mobile platforms.

The type of a window can be specified with the TYPE attribute in the OPEN WINDOW instruction:

OPEN WINDOW w_main WITH FORM "navi"
 ATTRIBUTES(TYPE = NAVIGATOR)

This attribute was introduced to implement split-views on mobile front-ends.

Possible values for the TYPE attribute are described in the following table:

Table 225: Supported window types

Name Description

LEFT Defines the window as the left pane when implementing split views.

The window will be the parent window of a window cascade displayed on the left-
hand side.

NAVIGATOR Defines the window as the action pane (i.e. iOS Tab bar) when implementing split
views.

This type of window will be used as top-level navigator window, showing the options
to switch between different windows controlled by parallel dialogs.

POPUP Defines the window as popup (modal) window, to open on the top of other windows.

RIGHT Defines the window as the right pane when implementing split views.

The window will be the parent window of a window cascade displayed on the right-
hand side.

CLOSE WINDOW
Closes and destroys a window.

Syntax

CLOSE WINDOW { identifier | SCREEN }

1. identifier is the name of the window.

Usage

If the OPEN WINDOW statement includes the WITH FORM clause, it closes both the form and the window.

Closing a window has no effect on variables that were set while the window was open.

Closing the current window makes the next window on the stack the new current window. If you close any
other window, the runtime system deletes it from the stack, leaving the current window unchanged.

If the window is currently being used for input, CLOSE WINDOW generates a runtime error.

You can close the default screen window with the CLOSE WINDOW SCREEN instruction.

User interface | 778

Example

MAIN
 OPEN WINDOW w1 WITH FORM "customer"
 MENU "Test"
 COMMAND KEY(INTERRUPT) "exit" EXIT MENU
 END MENU
 CLOSE WINDOW w1
END MAIN

CURRENT WINDOW
Makes a specified window the current window.

Syntax

CURRENT WINDOW IS { identifier | SCREEN }

1. identifier is the name of the window.

Usage

Programs with multiple windows might need to switch to a different open window so that input and output
occur in the appropriate window. To make a window the current window, use the CURRENT WINDOW
statement.

When a program starts, the screen is the current window. Its name is SCREEN. To make this the current
window, specify the keyword SCREEN instead of a window identifier.

If the window contains a form, that form becomes the current form when a CURRENT WINDOW statement
specifies the name of that window. All interactive instruction such as CONSTRUCT, INPUT use only the
current window for input and output. If the user displays another form (for example, through an ON KEY
clause) in one of these statements, the window containing the new form becomes the current window.
When an interactive instruction resumes, its original window becomes the current window.

The CURRENT WINDOW instruction is typically used in TUI based applications, when distinct areas of the
screen are reserved for different usage. In a GUI application, windows are rather opened and closed
sequentially or on a stack of windows.

Example

MAIN
 OPEN WINDOW w1 WITH FORM "customer"
 ...
 OPEN WINDOW w2 WITH FORM "custlist"
 ...
 CURRENT WINDOW IS w1
 ...
 CURRENT WINDOW IS w2
 ...
 CLOSE WINDOW w1
 CLOSE WINDOW w2
END MAIN

User interface | 779

CLEAR WINDOW
Clears the contents of a window.

Syntax

CLEAR WINDOW { identifier | SCREEN }

1. identifier is the name of the window.

Usage

The CLEAR WINDOW instruction clears the content of the specified window that was declared in an OPEN
WINDOW. If the window was created with borders, these are left untouched (only the content of the window
is cleared).

If you specify CLEAR WINDOW SCREEN, the root screen will be cleared, except areas occupied by an
existing window. CLEAR WINDOW SCREEN will not change the current window setting.

The CLEAR WINDOW instruction is typically used in TUI based applications, as it clears the whole content
of the window, including static labels and messages.

OPEN FORM
Declares a compiled form in the program.

Syntax

OPEN FORM identifier FROM filename

1. identifier is an identifier that defines the name of the form object.
2. filename is a string expression defining the name of the compiled form file, without .42f extension.

Usage

In order to use a .42f compiled version of a form specification file, the programs must declare the form with
the OPEN FORM instruction and then display the form in the current window by using the DISPLAY FORM
instruction.

OPEN FORM / DISPLAY FORM are typically used at the beginning of programs to display the main form in
the default SCREEN window:

OPEN FORM custform FROM "customer"
DISPLAY FORM custform

The form identifier does not need to match the name of the form specification files, but it must be unique
among form names in the program. Its scope of reference is the entire program.

The quoted string that follows the FROM keyword must specify the name of the file that contains the
compiled screen form. This filename can include a pathname, but this is not recommended.

Form files are found by using the directory paths defined in the DBPATH or FGLRESOURCEPATH
environment variable. It is not recommended that you provide a path for filename; Instead, use simple file
names in programs and put the compiled forms in a directory defines in DBPATH / FGLRESOURCEPATH
environment variable.

If you execute an OPEN FORM with the name of an open form, the runtime system first closes the existing
form before opening the new form.

The scope of reference of form identifier is the entire program.

When the window is dedicated to the form, use the OPEN WINDOW WITH FORM instruction to create the
window and the form object in one statement.

User interface | 780

In TUI mode, the form is displayed in the current window at the position defined by the FORM LINE
attribute that can be specified in the ATTRIBUTE clause of OPEN WINDOW or as default with the OPTIONS
instruction.

After the form is loaded, you can activate the form by executing a CONSTRUCT, DISPLAY ARRAY, INPUT,
INPUT ARRAY, or DIALOG statement. When the runtime system executes the OPEN FORM instruction, it
allocates resources and loads the form into memory. To release the allocated resources when the form is
no longer needed, the program must execute the CLOSE FORM instruction. This is a memory-management
feature to recover memory from forms that the program no longer displays on the screen. If the form was
loaded with a window by using the WITH FORM clause, it is automatically closed when the window is
closed with a CLOSE WINDOW instruction.

Example

MAIN
 OPEN FORM f1 FROM "customer"
 DISPLAY FORM f1
 CALL input_customer()
 CLOSE FORM f1
 OPEN FORM f2 FROM "custlist"
 DISPLAY FORM f2
 CALL input_custlist()
 CLOSE FORM f2
END MAIN

DISPLAY FORM
Displays and associates a form with the current window.

Syntax

DISPLAY FORM identifier
[ATTRIBUTES (display-attributes)]

1. identifier is the name of the form.
2. window-attributes defines the display attributes of the form.

where display-attribute is:

{ BLACK | BLUE | CYAN | GREEN
| MAGENTA | RED | WHITE | YELLOW
| BOLD | DIM | INVISIBLE | NORMAL
| REVERSE | BLINK | UNDERLINE
}

Usage

The DISPLAY FORM instruction creates a form element in the current window, from a form resource
loaded by the OPEN FORM instruction.

Important: The INVISIBLE display attribute is ignored.

The runtime system applies display attributes that you specify in the ATTRIBUTES clause to any fields
that have not been assigned attributes by the ATTRIBUTES section of the form specification file, or by
the database schema files, or by the OPTIONS runtime configuration statement. If the form is displayed
in a window, color attributes from the DISPLAY FORM statement supersede any from the OPEN WINDOW
statement. If subsequent CONSTRUCT, DISPLAY, or DISPLAY ARRAY statements that include an

User interface | 781

ATTRIBUTES clause reference the form, however, their attributes take precedence over those specified in
the DISPLAY FORM instruction.

CLOSE FORM
Closes the resources allocated by OPEN FORM.

Syntax

CLOSE FORM identifier

1. identifier is the name of the form.

Usage

The CLOSE FORM instruction releases the memory allocated to the form.

A form associated with a window by the OPEN WINDOW WITH FORM instruction is automatically closed
when the program closes the window with a CLOSE WINDOW instruction.

CLEAR SCREEN
Clears the complete application screen.

Syntax

CLEAR SCREEN

Usage

The CLEAR SCREEN instruction is typically used in TUI mode to clear the complete screen and make the
root screen window the current window on the stack.

The whole screen will be cleared, including prompt, error and message lines (the menu line is not cleared).

DISPLAY AT
Displays text at a given line/column position in the current window.

Syntax

DISPLAY text AT line, column [ATTRIBUTES (display-attributes)]

1. text is any expression to be evaluated and displayed at the given position in the current window.
2. line is an integer expression defining the line position in the current window.
3. column is an integer expression defining the column position on the screen.
4. display-attributes defines the display attributes for the text.

Usage

The DISPLAY AT instruction evaluates a string expression and displays the result at a given line and
column in the current window. This instruction is typically used in text-based applications to display static
text on the screen such as messages or decoration lines with - (dash) or _(underscore) characters.

The DISPLAY AT instruction should only be used in TUI mode. To display data at a given place in a
graphical form, use form fields and the DISPLAY BY NAME or DISPLAY TO instructions, or use interative
instructions with the UNBUFFERED mode to automatically display program variable data to form fields.

When using DISPLAY AT in GUI mode, the text will only be displayed if the current window contains no
form, or contains a form defined with the SCREEN layout.

User interface | 782

Table 226: Display-attributes supported by the DISPLAY AT statement

Attribute Description

BLACK, BLUE, CYAN, GREEN, MAGENTA,
RED, WHITE, YELLOW

The TTY color of the displayed text.

BOLD, DIM, INVISIBLE, NORMAL The TTY font attribute of the displayed text.

REVERSE, BLINK, UNDERLINE The TTY video attribute of the displayed text.

Using images
Describes how to use pictures in the forms of your application.

• Image handling basics on page 782
• Controlling the image layout on page 783
• Providing the image resource on page 784
• Static images on page 787
• Runtime images on page 787

Image handling basics
This is an introduction to image handling in Genero.

Purpose of images in applications

Graphical applications typically use images for different purpose:

• Application icon for the operating system taskbar / window manager.
• Icons in popup messages, menu options, form buttons, toolbars, list elements, treeview nodes.
• Decoration pictures in forms like background images, company logo, etc.
• Application photos, to get a visual identification for objects or people.

Images can be static (like toolbar icons, logos), or can change during the program execution (images
related to application data).

In .per form definition files, specify static or dynamic image form items, with the IMAGE item type on page
888.

Sources for image data

An image can come from different sources:

• An image file located on the system where the program executes (available on the platform, or from
your own application).

• An URL (or URI) resource: the image file is located on a web server an can be downloaded from the
internet.

• Image data stored in a database within Binary Large Object (BLOB) typed columns.
• Pictures coming from a mobile device photo gallery, or camera.

In all cases, the image data must be available locally on the front-end platform to be displayed. Since the
program can run on a different platform as the front-end, Genero provides several solutions to transmit the
image data to the front-end, when the image is not available as a local file. For more details, see Providing
the image resource on page 784.

User interface | 783

Image triggering actions

If needed, it is possible to associate an action to an image by defining the ACTION attribute. The
associated action handler will then be executed in the program code, for example to react on mouse clicks
on the image for desktop front-ends:

IMAGE i1: logo,
 IMAGE = "genero_logo",
 ACTION = show_about_box;

For more details about action handling, see Dialog actions on page 1276.

Controlling the image layout
Explains how image form items can be sized, according to the type of front-end layout system.

Image sizing basics

How an IMAGE item renders on the front-end screen depends on these factors:

• The type of layout used (grid-based or stack-based layout).
• The size of the form item tag in the LAYOUT section, or the WIDTH and HEIGHT attributes defined for

the IMAGE item.
• The combination of image item attributes (SIZEPOLICY, AUTOSCALE, STRETCH). These attributes may

have a limited effect based on the front-end platform.
• The image resource (actual picture file) size when displayed (especially when SIZEPOLICY=DYNAMIC/

INITIAL).
• The scaleIcon presentation style attribute, for elements using icons such as BUTTON or TOOLBAR

items.

Image size in grid-based layout

The AUTOSCALE attribute indicates if the picture must be scaled to the available space in the image item.
The space is defined by the SIZEPOLICY attribute, the STRETCH attribute, and the form item size (the
form item tag in the layout or the WIDTH and HEIGHT attributes).

The STRETCH attribute defines how the image item adapts to the parent container when it is re-sized. The
default is NONE.

The SIZEPOLICY attribute defines how the image widget gets its size, according to the context:

• When SIZEPOLICY is INITIAL (the default) and AUTOSCALE is not used, the size of the widget is
defined by the first picture displayed in the form element. The size will not change if other pictures with
different sizes display in the widget.

• When SIZEPOLICY is DYNAMIC, the size of the widget is automatically adapted to the size of the
pictures displayed in the image form item. The AUTOSCALE attribute makes no sense and will have no
effect.

• If SIZEPOLICY attribute is set to FIXED, the size of the widget is defined by the form specification file,
either by the size of the item-tag in the layout, or by the WIDTH and HEIGHT attributes. With a fixed
image widget size, if AUTOSCALE is not used, scrollbars may appear if the picture is greater than the
widget.

By default, the size of the image widget defaults to the relative width and height defined by the item-tag
in the form layout section. The size of an image widget can also be specified in the WIDTH and HEIGHT
attributes, but these attributes will only have an effect when SIZEPOLICY=FIXED.

Note: On some platforms, the image widgets automatically add a border to the source picture. For
these platforms, if the image form item is the same size as the image, you may need to increase the
size of the image form item to avoid automatic scrollbars. For example, if your image source has
a size of 500x500 pixels and the widget displays a border with as size of 1 pixel, you will have to
set WIDTH and HEIGHT to 502 pixels. If you do not, scrollbars will appear or the image will shrink

User interface | 784

if AUTOSCALE is used. Alternatively, you can avoid the image border with the borderpresentation
style attribute.

Image size in stack-based layout

With a stacked layout, where form items display vertically on each other, by default the image is auto-
scaled with the correct aspect/ratio into the available form space.

The image size can be controlled by the HEIGHT attribute.

If the HEIGHT attribute is set, it is expressed in CHARACTERS as for grid-based layout, and the width is
determined by the correct aspect/ratio.

Providing the image resource
There are several things you need to know about providing an image resource in a Genero program.

Supported image formats

Genero supports several image data formats, typically PNG, JPEG and SVG. Check the front-end platform
documentation for supported image formats. True Type Font (TTF) files are also supported, the TTF format
is used when image-to-font-glyph mapping is enabled by specifying a mapping file in the FGLIMAGEPATH
environment variable.

Image resolution

Consider using the appropriate image resolution for the target front-end platform. For example, mobile
devices have a much higher pixel density (a higher resolution) than desktop monitors. An image which
looks nice on a desktop can appear small or as an upscaled image on a mobile device.

Static and dynamic image resources

The image resource specification is different for static and dynamic images:

• For static images (such as button icons), set the image resource in the image attribute (IMAGE,
IMAGELEAF, and so on). See Static images on page 787.

• For dynamic images (such as image fields displaying photos from a database), the image resource is
specified with the field/variable value, to be rendered in a form field. The form field is typically defined
as an IMAGE item, or an IMAGECOLUMN in a table view. For more details, see Runtime images on page
787.

Image resource lookup

The image data can be provided in different ways, according to the image resource specification:

1. As a Uniform Resource Locator (URL).
2. As a simple image name (typical for icons).
3. As a simple file name, typically with a .png or .jpg extension, or a relative or absolute file path .

Using an URL image resource

If the image specification starts with a URL prefix, the front-end will try to download the image from the
location specified by the URL.

The network access to the web server must exist and network bandwidth must be sufficient to rapidly
download the images.

User interface | 785

Table 227: Supported image resource locations (URLs)

Image resource location (URL) Description

http://location-specification HTTP server

https://location-specification HTTPS server (HTTP over SSL)

Using a simple image name (centralized icons)

If the image specification is a simple name (without a file extension), and the FGLIMAGEPATH
environment variable defines an icon mapping file for the runtime system, the image name is converted to
a font file and font glyph according to the mapping file entries, and the image form item displays that glyph/
icon. The mapping file and the font definition file are centralized on the application server.

A line in the image-to-font-glyph mapping file must have the following format:

image-name=font-file:hexa-ordinal[:color-spec]

For example, if the image mapping file defines the following lines:

smiley=FontAwesome.ttf:f118
red_smiley=FontAwesome.ttf:f118:#8B0000

An image resource (IMAGE attribute, IMAGECOLUMN value, and so on) with the name "smiley" will be
mapped to the glyph with ordinal position 0xf118 in the FontAwesome.ttf font file, and the image
resources using "red_smiley" will use the same glyph, but will get a red color.

Important: The directory to the font file must be specified in FGLIMAGEPATH, except if the font
file is located in the same directory as the mapping file.

A default color can be defined for all TTF icons of a window, by using the defaultTTFColor style
attribute:

<StyleList>
 <Style name="Window.important">
 <StyleAttribute name="defaultTTFColor" value="red" />
 </Style>
 ...

A default mapping file named "image2font.txt" and the "FontAwesome.ttf" font file are provided in
FGLDIR/lib. If FGLIMAGEPATH is not defined, the runtime system will use these files to make the image
to font glyph mapping.

Important: When providing your own customized font file, it must be a valid TTF file. For example,
changing the file name is not sufficient to turn it into another different font: In order to produce a
valid TTF file, use font management tools such as FontForge (http://fontforge.github.io/en-US/)
or Fontello (http://fontello.com). Further, to target Microsoft Internet Explorer (version 11), you will
need to patch the generated TTF file to remove embedding limitations from TrueType fonts, by
setting the fsType field in the OS/2 table to zero. This modification can be done with freeware tools
like ttembed

It is possible to mix several plain image file directories with several image-to-font glyph mapping files in
FGLIMAGEPATH. The list of mapping files and directories defines the order of precedence, for example:

$ export FGLIMAGEPATH="/var/myapp/myimages:/var/myapp/myicons.txt:/var/
myapp/fontfiles:$FGLDIR/lib/image2font.txt:$FGLDIR/lib"
-- /var/myapp/myimages: Directory where plain image files can be
 found
-- /var/myapp/myicons.txt: custom image-to-font-glyph mapping file
 (icons)

http://fontforge.github.io/en-US/
http://fontello.com
https://github.com/hisdeedsaredust/ttembed

User interface | 786

-- /var/myapp/fontfiles: Font files used by the myicons.txt mapping
 file
-- $FGLDIR/lib/image2font.txt: Genero default icon mapping files
 (using FontAwesome.ttf)

Consider defining your own image mapping file and make FGLIMAGEPATH point to your own files.

Note: When executing the application on a mobile device, you must define the FGLIMAGEPATH
environment variable with the mobile.environment.FGLIMAGEPATH entry in FGLPROFILE.
Use $FGLAPPDIR and $FGLDIR placeholders to include the current appdir (i.e. program file
directory) and the FGL runtime system directory, respectively.

See FGLIMAGEPATH on page 182 for more details about this environment variable.

Using file names or paths

If the image specification is a simple file path (without an URL prefix, and typically with an image file
extension), the front-end gets the image file from the runtime system. The image file is searched on
the platform where the program executes. The runtime system uses FGLIMAGEPATH on page 182
environment variable when searching for the images. If FGLIMAGEPATH is not set, the current working
directory is searched for the image files.

The front-end provides the name of the image file, and a list of supported file extensions. The runtime
system searches for image files in different locations as described here: The search depends on the
name of the image file, the list of directories defined in FGLIMAGEPATH, and the expected file extensions
provided by the front-end.

For example:

• Name of the image file: "mycalendar"
• FGLIMAGEPATH="/var/myapp/myicons/common:business"
• Extensions provided by front-end: ".jpg, .png"

The search for the image file would be as follows:

1. /var/myapp/myicons/common/mycalendar

2. /var/myapp/myicons/common/mycalendar.jpg

3. /var/myapp/myicons/common/mycalendar.png

4. business/mycalendar

5. business/mycalendar.jpg

6. business/mycalendar.png

This search procedure using a proposal of file extensions was implemented to allow different type of front-
ends to pass the type of image compression format required, so you can define the image name in your
forms without any extension. However, it is much more efficient to specify the image file with a portable
extension.

When FGLIMAGEPATH is defined, the current working directory is not searched. If you want to look for
image files in the current working directory and in other directories, add "." to the FGLIMAGEPATH path
list.

Note: When specifying a file name as an image resource, consider using the extension (.png,
.jpg), to avoid unnecessary file searching, trying different combinations with all supported formats
(FGLIMAGEPATH). The file extension will also be used by the front-end to easily identify the
compression format (for example, to define the Content-Type in an HTML entity).

Application images in Web Components

Web Components can display static images (part of the Web Component assets), and application images
provided at runtime (for example, a photo gallery web component). In order to provide application images

User interface | 787

to a Web Component, the program must use the ui.Interface.filenameToURI() method to convert
the local file name to a URI that can be accessed by the front-end.

For more details, see Using image resources with the gICAPI web component on page 1430.

Static images
Describes how to decorate forms with icons.

Static image usage context

Static images are application pictures that do not change during program executing, like icons in toolbar
buttons and window icons.

Static images can be defined in different contexts withing form definition, or configuration files:

• Global application icon for platform window managers (taskbars), by using the ui.Interface.setImage
on page 1766 method. For mobile devices, the application icon should be provided in the installation
package (.apk for Android™, .ipa for iOS).

• Window specific icons, with the IMAGE attribute in the LAYOUT definition of a form (recommended) or
at runtime, with the ui.Window.setImage on page 1773 method (if it must be changed during program
execution).

• As default icon for action action views, with the IMAGE action configuration attribute (in action defaults
for example).

• As specific action view icons, directly in the form item definition with the IMAGE attribute (for toolbars,
menu items, buttons, buttonedits, etc).

• Image form items (logos), defined by the IMAGE item-tag : item-name syntax, using the IMAGE
attribute.

• Default treeview node icons, with the IMAGEEXPANDED, IMAGECOLLAPSED, IMAGELEAF attributes of a
TREE container.

Static image examples

The following code example, defines an ITEM toolbar element using a icon, that is specified with the
IMAGE attribute:

TOOLBAR
 ITEM print (TEXT="Print", IMAGE="printer")

Next example defines a BUTTONEDIT form field with an icon named "listchoice":

ATTRIBUTES
BUTTONEDIT f05 = customer.cust_city,
 ACTION=get_city,
 IMAGE="listchoice",
 ... ;

Runtime images
Explains how to display pictures at runtime.

Dynamic image usage context

Application images like photos or variable icons (in list views) are only known at runtime, and will be
displayed during program execution. Such images are typically centralized on a server, as BLOBs in a
database, or on the file system, as regular files.

For simple files (not URLs), images to be displayed are automatically handled by Genero: the program just
needs to specify the name of the file to be displayed.

User interface | 788

This section describes programming patterns to handle application images. For a complete description of
the mechanisms to provide images to front-ends, see Providing the image resource on page 784.

IMAGE form fields

To display a picture dynamically in a form area, you must define a form field with the IMAGE item type:

LAYOUT
GRID
{
[img1]
[]
[]
}
END
END
ATTRIBUTES
IMAGE img1 = FORMONLY.image_field, AUTOSCALE, ...

The program can then display an image dynamically by assigning the image resource to the form field, for
example, with a DISPLAY TO instruction:

DEFINE image_field STRING
LET image_field = "local_image_file.png"
DISPLAY BY NAME image_field

It is also possible to use the program variable containing the image resource in a dialog using the
UNBUFFERED option:

DEFINE rec RECORD
 pk INT,
 name VARCHAR(30),
 image_field VARCHAR(50)
 END RECORD
INPUT BY NAME rec.* ATTRIBUTES(UNBUFFERED)
 ON ACTION set_picture
 LET rec.image_field = "local_image_file.png"
...

IMAGECOLUMN attribute of TABLE/TREE

The IMAGECOLUMN attribute can be used to define a PHANTOM field that will hold the image resource for a
TABLE or TREE column:

...
ATTRIBUTES
PHANTOM FORMONLY.item_icon;
EDIT FORMONLY.item_desc, IMAGECOLUMN=item_icon;
...
END
INSTRUCTIONS
SCREEN RECORD sr(FORMONLY.item_icon, FORMONLY.item_desc, ...);
...

In the program code, the image resource will be specified in the array member attached to the icon field.
Each row can define a different image for the cell:

LET arr[1].item_icon = "honda_logo.png"
LET arr[1].item_desc = "Honda CB600 Hornet (red)"
LET arr[2].item_icon = "honda_logo.png"

User interface | 789

LET arr[2].item_desc = "Honda CB1000r (black)"
LET arr[3].item_icon = "ducati_logo.png"
LET arr[3].item_desc = "Ducati Diavel Carbon"
DISPLAY ARRAY arr TO sr.*
 ...

Displaying images contained in BYTE variables

Application images managed by a program can be held in a BYTE variable. You need to use this data type
to interface with databases storing images in Binary Large OBject (BLOB) columns.

When using an IMAGE field, if the BYTE variable holding the image data is located in a file (LOCATE IN
FILE), the runtime system can automatically send the content of the BYTE file to the front-end when doing
a DISPLAY BY NAME, DISPLAY TO field, or if the BYTE variable is controlled by a dialog using the
UNBUFFERED option.

DEFINE pb BYTE
LOCATE pb IN FILE -- temp file used
...
OPEN FORM f1 FROM "myform"
DISPLAY FORM f1
...
SELECT image_col INTO pb FROM mytable WHERE pk = ...
DISPLAY pb TO image_field
...

Further, if the image data is modified, without changing the name of the file (i.e., without a new LOCATE IN
FILE instruction), the runtime system detects the file modification time, and if needed, re-sends the image
data to the front-end. For example, consider the following program flow:

DEFINE pb BYTE
LOCATE pb IN FILE -- temp file used
...
-- A first SELECT fetches image data from row 345 into the BYTE
SELECT image_col INTO pb FROM mytable WHERE pk = 345
-- And displays the BYTE image to a field
DISPLAY pb TO image_field
-- A second SELECT fetches new image data from row 672 into the BYTE
SELECT image_col INTO pb FROM mytable WHERE pk = 672
-- And displays the BYTE image to a field
DISPLAY pb TO image_field
-- The BYTE file name has not changed, only the image data has changed
...

Images on mobile devices

When executing the application on a mobile device, it is possible to use a front call to choose or take a
photo. Those front calls return an opaque file identifier referencing an image in the device photo gallery (or
database).

On all mobile platforms, you can directly display the returned opaque file path to an IMAGE form field:

DEFINE path STRING
-- Here we use "choosePhoto" front call, could be "takePhoto"
CALL ui.Interface.frontCall("mobile", "choosePhoto", [], [path])
DISPLAY path TO ff_image

Consider the path returned by such a front call as an opaque local file identifier, and do not use it as a
persistent file name for the picture. For example, if you store such a path name in a database, and if the
mobile photo gallery storage technology changes, the stored file names will no longer be valid.

User interface | 790

If you need to keep the image data in the application (to store it in a local file or in the database), grab the
image data into the runtime system context with a fgl_getfile() call. The mobile picture path can be
used in a fgl_getfile() call to the photo from the mobile device into the file storage context where the
runtime system executes. When the runtime system executes on the mobile device, the fgl_getfile()
call will copy the picture to the application sandbox. If the program executes on an application server, the
call will transfer the picture to the application server file system. It is possible to load the picture data into
a BYTE variable, by transferring the image data directly into the file used by the BYTE variable locates in
byte_file, by doing a fgl_getfile(mobile_path, byte_file). It is also possible to keep the
transferred files on the file system where the VM executes, if you do not want to use BYTE variables to
store images in your database.

CONSTANT vm_fn = "mypic.tmp"
DEFINE md_fn STRING, image BYTE
CALL ui.Interface.frontCall(
 "mobile",
 "choosePhoto", -- could be "takePhoto"
 [], [md_fn])
CALL fgl_getfile(md_fn,vm_fn)
LOCATE image IN FILE vm_fn
DISPLAY image TO ff_image
UPDATE mytab SET pic = image WHERE ...

Note: When using fgl_getfile() in conjunction with BYTE variables located in files, pay
attention to the fact that INITIALIZE byte_var TO NULL will set the internal null indicator of the
BYTE variable, and a subsequent fgl_getfile(mobile_path, byte_file) will only modify
the file without touching the null flag. The recommended pattern is to re-locate the BYTE variable
after the fgl_getfile() call:

CALL fgl_getfile(mobile_path, byte_file)
LOCATE byte_var IN FILE byte_file

Videos on mobile devices

Let the user take videos or choose videos from the gallery with the takeVideo on page 1939 and
chooseVideo on page 1927 front calls.

Similar to photo front calls, the video front calls return an opaque path to the video file, which can then
be used in the fgl_getfile() function to transfer the video file from the device context to the runtime
system context in a BYTE variable for persistent storage.

Note: The opaque path can, however, be used to show the video with the "launchURL" front call.

For example:

IMPORT os

CONSTANT VM_MOVIES = "./movies"

MAIN
 DEFINE r INTEGER,
 mb_path STRING,
 vm_path STRING

 LET r = os.Path.delete(VM_MOVIES)
 LET r = os.Path.mkDir(VM_MOVIES)

 MENU
 COMMAND "take_video"
 CALL ui.Interface.Frontcall("mobile", "takeVideo", [], [mb_path])
 IF mb_path IS NOT NULL THEN

User interface | 791

 LET vm_path = SFMT("%1/%2", VM_MOVIES, os.Path.baseName(mb_path))
 CALL fgl_getfile(mb_path, vm_path)
 END IF
 COMMAND "choose_video"
 CALL ui.Interface.Frontcall("mobile", "chooseVideo", [], [mb_path])
 IF mb_path IS NOT NULL THEN
 LET vm_path = SFMT("%1/%2", VM_MOVIES, os.Path.baseName(mb_path))
 CALL fgl_getfile(mb_path, vm_path)
 END IF
 COMMAND "show_video"
 IF mb_path IS NOT NULL THEN
 CALL ui.Interface.Frontcall("standard", "launchURL", [mb_path], [])
 END IF
 COMMAND "quit"
 EXIT MENU
 END MENU

END MAIN

Accessibility guidelines
This section describes the best practices to make a your application accessible to disabled people.

• Keyboard access on page 791
• Form description for screen readers on page 792
• Usability and ergonomics on page 793

Keyboard access

Defining keyboard accelerators for every action

Since a mouse or other pointing devices may not be used by people with reduced vision, an accessible
application must be usable with the keyboard alone. Therefore, all the possible actions that could be
triggered by a user must have a keyboard shortcut.

We strongly suggest that you define consistent keyboard shortcuts for all actions through the use of action
defaults. Developers can avoid overriding the system default shortcuts by checking the target platform
guidelines, especially for system shortcuts that trigger accessible actions (for example, Ctrl-Shift-Enter,
which triggers spoken information about the currently selected item). Overriding system shortcuts is
generally a bad practice, even for non-accessible applications, although overriding may be unavoidable
due to compatibility issues.

Keyboard focus and action views

Generally, keyboard navigation in an application may be easier if you keep the MENU actions in the menu
frame; the actions can have the keyboard focus and the user can navigate through them using the up and
down arrows.

You can also use a TOPMENU, because you can pull it down with the keyboard (for example, the Alt key
on Windows™) and then navigate using arrow keys, but it may be less accessible than the menu panel.
You must also be sure that every item of the menu can be activated by a keyboard shortcut. You may
use the & (ampersand) in menu items to specify character which letter should be used, to let the front-end
automatically create a shortcut to trigger the action with that letter.

Avoid using toolbars only in an accessible application, because toolbars by default are not accessible using
the keyboard. Toolbars cannot have the keyboard focus, and there is no way to navigate through all toolbar
items or to activate one of them using the keyboard. If you do use toolbars, provide keyboard shortcuts and
duplicate them in a topmenu.

User interface | 792

Form description for screen readers

Understanding screen readers

Screen readers are special system applications that transform the application's graphical user interface
into speech. The behavior may change between screen reader implementations, but, basically, each
widget is named and described by speech. On some workstation operating systems, special keyboard
shortcuts are available to trigger the complete enumeration of all the components of a window, or to
describe only the component having the current focus.

Providing form item descriptions to screen readers

Screen readers use special bindings to get the information that they need (name, full description,
hierarchy, triggered actions, and so on) about each graphical component of the entire graphical user
interface. It is up to the programmer to provide these bindings to the screen reader, but most of the work is
already done by the front-end.

Programmers can provide two things for each widget to provide speech information to screen readers:

• an accessible name, using the TEXT form attribute if available, otherwise with the COMMENT form
attribute.

• an accessible description, with the COMMENT form attribute.

This can be tedious, but it absolutely must be done carefully, keeping in mind that the text will be spoken.
As such, customer's name is preferable to cust_name_str.

Spaces and punctuation are allowed.

Most of the form items are supported: All kind of form field, static labels, static images, and action-based
items (such as buttons); some containers (GROUP and FOLDER) should work out of the box as soon as their
TEXT attributes are set.

Examples

In an action defaults file (mydefaults.4ad)

<ActionDefaultList>
 <ActionDefault name="new" text="New..." image="new.svg"
 comment="Create a new database"
 acceleratorName="control-n" />
 <ActionDefault name="open" text="Open..." image="open.svg"
 comment="Open an existing database"
 acceleratorName="control-o" />
 <ActionDefault name="save" text="Save" image="save.svg"
 comment="Save the current database"
 acceleratorName="control-s" />
 ...

In field definitions on a form specification file (myform.per)

ATTRIBUTES
 EDIT login_name = formonly.login_name, NOT NULL,
 COMMENT="Login name of the current user";
 EDIT password = formonly.password, NOT NULL, INVISIBLE,
 VERIFY,
 COMMENT="Password of the current user";
 EDIT first_name = formonly.first_name, NOT NULL,
 COMMENT="First name of the current user";
 EDIT last_name = formonly.last_name, NOT NULL,
 COMMENT="Last name of the current user";
 DATEEDIT birthdate = formonly.birthdate, FORMAT="mm/dd/yyyy",
 COMMENT="Date of birth of the current user";

User interface | 793

 EDIT email = formonly.email,
 COMMENT="E-mail of the current user";
END -- ATTRIBUTES

In this form specification file, the COMMENT attribute is used for both the accessible name
and the accessible description.

Usability and ergonomics

Design simple application forms

Keep your forms as simple as possible. Because everything will be described by the screen reader
software, it is preferable to have a lot of small and concise forms with a few fields. With forms containing a
lot of labels and fields, the screen reader will take a long time to enumerate every name and description.
The end user must be able to make a picture of the form in their mind, according to the form description.

Make form content bigger

Consider using a special .4st presentation styles file defining big fonts, big icons, and high contrast color
themes; This will make your application a lot more efficient for users who are partially sited. Forms will take
more space on the screen, assuming that the forms have a limited number of fields to have sufficient room
for large widgets.

Use large icons (such as 64x64 pixel icons), for people with impaired vision. Do not forget that most of the
default sizes (font, icons, gui components, and so on) were set when the default resolution was 640*640
pixels in 16 colors. Now, even if the user has very good eyes, with the screen resolution available today,
old-style icons look small.

Use a high contrast color theme. Although support of the system high contrast theme is only partial,
nothing prevents you from setting up the correct theme using a specific presentation style attributes.

Example

Presentation styles file defining larger, bolder fonts and large icons:

<StyleList>

 <Style name="*" >
 <StyleAttribute name="fontSize" value="10" />
 </Style>

 <Style name="Action" >
 <StyleAttribute name="scaleIcon" value="28px"/>
 <StyleAttribute name="fontSize" value="12" />
 </Style>

 <Style name="Window" >
 <StyleAttribute name="actionPanelPosition" value="bottom"/>
 <StyleAttribute name="actionPanelButtonSpace" value="huge"/>
 <StyleAttribute name="actionPanelHAlign" value="center"/>
 <StyleAttribute name="ringMenuPosition" value="bottom"/>
 <StyleAttribute name="ringMenuButtonSpace" value="huge"/>
 <StyleAttribute name="ringMenuHAlign" value="center"/>
 </Style>

 <Style name="ToolBar" >
 <StyleAttribute name="scaleIcon" value="32px"/>
 </Style>

 <Style name="Edit:focus" >
 <StyleAttribute name="fontWeight" value="bold" />

User interface | 794

 <StyleAttribute name="backgroundColor" value="darkBlue" />
 <StyleAttribute name="textColor" value="white" />
 </Style>

</StyleList>

Message files
Message files centralize strings and larger texts identified by a number, that can be used in programs.

• Understanding message files on page 794
• Syntax of message files (.msg) on page 794
• Using message files on page 795

• Compiling message files on page 795
• Using message files at runtime on page 795

• Examples on page 796

• Example 1: Help message file used in a MENU on page 796

Understanding message files

Message files define text messages with a unique integer identifier.

Several message files can be created and loaded by the same program.

Message files are typically used to implement application help system, and are especially designed for the
the TUI mode.

In order to use a message file, do the following:

1. Create the .msg source message file with a text editor.
2. Compile the source message file with fglmkmsg to create the .iem binary format.
3. Copy the binary file to a distribution directory.
4. In programs, specify the message file with the OPTIONS HELP FILE instruction.
5. Use a specific message with the HELP clause of dialogs, or load a given message with the

SHOWHELP() function.

Message files provide a simple way to implement a help system in your application.

For other application messages and texts, consider using localized strings instead of message files.

Syntax of message files (.msg)
A message file contains a set of messages identified by an integer number.

filename.msg

1. filename is the name of the message source file.

Syntax of a message file

{
 message-definition
| include-directive
}[...]

where message-definition is:

.message-number
message-line | new-page

User interface | 795

[...]

where include-directive is:

.include filename

And where new-page is:

^L (Control-L, ASCII 12)

1. message-number is an integer in the range -2147483648 to 2147483647.
2. You can split the message into pages by adding the ^L (Control-L / ASCII 12) in a line.
3. Note that multi-line messages will include the newline (ASCII 10) characters.

Using message files
To use message files, you must understand how they work and how to structure the code.
Compiling message files

In order to use message files in a program, the message source files (with .msg extension) must be
compiled with the fglmkmsg utility to produce compiled message files (with .iem extension).

The following command line compiles the message source file mess01.msg:

fglmkmsg mess01.msg

This creates the compiled message file mess01.iem.

For backward compatibility, you can specify the output file as second argument:

fglmkmsg mess01.msg mess01.iem

The .iem compiled version of the message file must be distributed on the machine where the programs are
executed.

Using message files at runtime

In order to use compiled message files (.iem) in programs, specify the current message file with the
OPTIONS HELP FILE command:

OPTIONS HELP FILE "mymessages.iem"

The message file will first be searched with the string passed to the OPTIONS HELP FILE command
(i.e. the current directory if the file is specified without a path), and if not found, the DBPATH /
FGLRESOURCEPATH environment variable with be used.

After the message file is defined, you can start the help viewer by calling the SHOWHELP() function:

CALL showhelp(1242)

Use the HELP clause in a dialog instruction such as INPUT to define particular message number for that
the dialog:

INPUT BY NAME ... HELP 455

The help viewer will automatically display the message text corresponding to the number when the user
pressed the help key. By default, the help key is Ctrl-W in TUI mode and F1 in GUI mode.

Note that you can implement your own help viewer by overloading the SHOWHELP() function defined in
FGLDIR/src/fglhelp.4gl. This allows you to customize the help system for your application.

User interface | 796

Examples
Example 1: Help message file used in a MENU

The message source file help.msg:

.101
This is help about option 1
.102
This is help about help
.103
This is help about My Menu

Compiling the message file:

$ fglmkmsg help.msg

Program using the .iem compiled message file.

MAIN
 OPTIONS
 HELP FILE "help.iem"
 MENU "Sample"
 COMMAND "Option 1" HELP 101
 DISPLAY "Option 1 chosen"
 COMMAND "Help"
 CALL showhelp(103)
 END MENU
END MAIN

Action defaults files
Action defaults files allow to centralize action configuration parameters such as text, icon, accelerators and
behavior options in XML format.

• Understanding action defaults files on page 796
• Syntax of action defaults file (.4ad) on page 796
• Action default attributes reference (.4ad) on page 797
• Examples on page 799

• Example 1: Loading a global action defaults file on page 799

Understanding action defaults files

Action defaults files define the defaults for action attributes in an XML file. These defaults can be
overwritten with form item attributes, or with dialog action handler attributes, when using default action
views.

This section describes only the .4ad action defaults file reference, for more details see Configuring actions
on page 1318.

Syntax of action defaults file (.4ad)

Action defaults are defined in the .4ad file with this syntax:

<ActionDefaultList>
 <ActionDefault name="action-name" [attribute=value [...]] />
 [...]
</ActionDefaultList>

1. action-name identifies the action.
2. attribute is the name of an attribute.

User interface | 797

3. value defines the value to be assigned to attribute.

Action default attributes reference (.4ad)

Table 228: Action default attributes

Attribute Description

name = "action-name" This attribute identifies the action.

text = "action-label" The default label to be displayed in action views
(typically, the text of buttons).

See also: TEXT attribute on page 987

comment = "action-comment" The default help text for this action (typically,
displayed as bubble help).

See also: COMMENT attribute on page 959

image = "action-icon" The default image file to be displayed in the action
view.

See also: IMAGE attribute on page 967

acceleratorName = "key-name" The default accelerator key that can trigger the
action, as defined in Keyboard accelerator names
on page 1343.

See also: ACCELERATOR attribute on page 953

acceleratorName2 = "key-name" The second default accelerator key that can trigger
the action, as defined in Keyboard accelerator
names on page 1343.

See also: ACCELERATOR2 attribute on page
953

acceleratorName3 = "key-name" The third default accelerator key that can trigger the
action, as defined in Keyboard accelerator names
on page 1343.

See also: ACCELERATOR3 attribute on page
954

acceleratorName4 = "key-name" The fourth default accelerator key that can trigger
the action, as defined in Keyboard accelerator
names on page 1343.

See also: ACCELERATOR4 attribute on page
954

defaultView = {"yes"|"no"|"auto"} Defines whether the front-end must show the
default action view (buttons in control frame).

Values can be:

• "no" the default action view is never visible.
• "yes" the default action view is

always visible, if the action is visible
(ui.Dialog.setActionHidden).

User interface | 798

Attribute Description

• "auto" the default action view is
visible if no other action view is explicitly
defined and the action is visible
(ui.Dialog.setActionHidden).

The default is "auto".

See also: DEFAULTVIEW attribute on page 961

contextMenu = {"yes"|"no"|"auto"} Defines whether the front-end must render the
action in the default context menu.

Values can be:

• "no" the context menu option is never visible.
• "yes" the context menu option is

always visible, if the action is visible
(ui.Dialog.setActionHidden).

• "auto" the context menu option
is visible if no other action view is
explicitly defined and the action is visible
(ui.Dialog.setActionHidden).

The default is "yes".

See also: CONTEXTMENU attribute on page 958

validate = "no" Defines the behavior of data validation when the
action is invoked.

Values can be:

• "no" no data validation is done (field text only
available in input buffer).

By default, data validation is driven by the dialog
mode (UNBUFFERED or default mode).

For more details, see Data validation at action
invocation on page 1331.

See also: VALIDATE attribute on page 991

Using action defaults files
To use action default files, you must understand how they work and how to structure the code.
Using action defaults files at runtime

Global action defaults are defined in an XML file with the 4ad extension. By default, the runtime system
searches for a file named default.4ad in the current directory. If the file does not exist, it searches in the
directories defined by the FGLRESOURCEPATH (or DBPATH) environment variable. If no file was found
using the environment variable(s), standard action default settings are loaded from the FGLDIR/lib/
default.4ad file.

Action defaults files usage is related to action configuration concepts. For more details, see Configuring
actions on page 1318.

User interface | 799

Examples
Example 1: Loading a global action defaults file

Some Action Defaults in XML format (exit action has Localized Strings):

<ActionDefaultList>
 <ActionDefault name="print" text="Print" image="printer"
 comment="Print report" />
 <ActionDefault name="modify" text="Update"
 comment="Update the record" />
 <ActionDefault name="exit" text="Quit" image="byebye"
 comment="Exit the program" validate="no" >
 <LStr text="common.exit.text" />
 </ActionDefault>
</ActionDefaultList>

The program loading the action defaults file:

MAIN
 CALL ui.Interface.loadActionDefaults("mydefaults")
 OPEN FORM f FROM "myform"
 DISPLAY FORM f
 ...
END MAIN

Presentation styles
Use presentation styles to specify decoration attributes for window and form elements.

• Understanding presentation styles on page 799
• Syntax of presentation styles file on page 801
• Using presentation styles on page 801
• Predefined attribute values on page 807
• Style attributes reference on page 818
• Examples on page 849

Understanding presentation styles
Presentation styles centralize the attributes related to the decoration of the graphical user interface
elements.

The decoration attributes are defined in a separate file, which can be easily modified to customize the
application.

Presentation styles are only supported for the GUI front-ends. If you design an application for the TUI
mode, you can use TTY attributes.

Styles are applied implicitly by using global styles, or explicitly by naming a specific style in the style
attribute of the element.

Common presentation attributes define font properties, foreground colors and background colors.
Some presentation attributes are specific to a given class of widgets (like the first day of the week in a
DATEEDIT).

Presentation styles are defined in a resource file having an extension of .4st. The .4st file must be
distributed with the other runtime files.

Presentation styles are inspired from the cascading style sheets (CSS) used in HTML, with the following
deviations:

1. The elements using style definitions are AUI tree elements; CSS styles apply to HTML elements.
2. To specify a style for an AUI tree element, you must use the "style" attribute; HTML/CSS use the "class"

attribute.

User interface | 800

3. Inline-style definition is not supported in the AUI tree.
4. Some pseudo selectors, such as "query, are specific to Genero.

Figure 41: Form without presentation styles (GDC) on page 800 shows a desktop application without
presentation styles:

Figure 41: Form without presentation styles (GDC)

Figure 42: Form using presentation styles (GDC) on page 800 shows a desktop application without
presentation styles:

Figure 42: Form using presentation styles (GDC)

User interface | 801

Syntax of presentation styles file
A presentation styles file (4st) is an XML file comprised of StyleList, Style, and StyleAttribute
elements.

Syntax (.4st)

<StyleList>
 <Style name="style-identifier" >
 <StyleAttribute name="attribute-name" value="attribute-value" />
 [...]
 </Style>
 [...]
</StyleList>

where style-identifier is:

{ [element-type] [.style-name] [:pseudo-selector]
| *
}

1. element-type is a type of AUI tree element, such as Edit, Window.
2. style-name is an explicit style name, that can be referenced in STYLE attributes of form items.
3. pseudo-selector indicates in what context the style should apply.
4. attribute-name defines the name of the style attribute.
5. attribute-value defines the value to be assigned to attribute-name.

Syntax of attribute values

Presentation style attribute values are always specified as strings, for example:

<StyleAttribute name="fontFamily" value="Serif" />

Numeric values must be specified in quotes:

<StyleAttribute name="completionTimeout" value="60" />

Boolean values must be specified with the values "yes" or "no":

<StyleAttribute name="forceDefaultSettings" value="yes" />

Note: Some front-ends may also support the boolean values 0/1 and true/false. However, it is
recommended to use yes/no values only.

Using presentation styles
Use presentation styles to centralize the decoration of your user interface.

• Understanding presentation styles on page 799
• Defining a style on page 802
• Pseudo selectors on page 802
• Using a style on page 804
• Order of precedence on page 804
• Combining styles on page 805
• Style attribute inheritance on page 805
• Presentation styles in the AUI tree on page 805
• Loading presentation styles on page 805
• Combining TTY and style attributes on page 806

User interface | 802

• Element types on page 807

Defining a style
Styles can be defined to be global (for all elements), for an element in general, or for specific types of an
element.

The style is identified by the name attribute, that can be a combination of element type, style name and
pseudo selector, or the star character. See Syntax of presentation styles file on page 801 for a complete
description of the presentation style definition syntax.

In the definition of a style, the name attribute is used as a selector to apply style attributes to graphical
elements.

You can define a style as global or specific to a class of graphical object:

• A style identified by a star (*) is a global style that is automatically applied to all elements:

<Style name="*" >

• A style identified by an element-type is a global style that is automatically applied to all objects of this
type:

<Style name="ComboBox" >

• A style identified by a style-name is a specific style that can be applied to any element types using that
style name in a STYLE attribute:

<Style name=".important" >

• A style identified by an element-type followed by a dot and a style-name is a specific style that will only
be applied to elements of the given type and using the style name in a STYLE attribute:

<Style name="Window.main" >

• A style identified by an element-type followed by a colon and a pseudo-selector is a style that will only
be applied to elements of the given type, if the condition defined by the pseudo-selector is satisfied:

<Style name="Edit:focus" >

• A style identified by an element-type followed by a dot and a style-name, and a colon with a pseudo-
selector, is a specific style that will only be applied to elements of the given type, using the style name
in a STYLE attribute, if the condition defined by the pseudo-selector is satisfied:

<Style name="Edit.important:focus" >

• It is possible to combine pseudo-selectors:

<Style name="Edit:query:focus" >

Pseudo selectors
Pseudo selectors can be used to apply only when some conditions are fulfilled.

Pseudo selectors are preceded with a colon and can be combined:

<Style name="Table:even:input" >
<Style name="Edit:focus" >
<Style name="Edit.important:focus" >

When combining several pseudo selectors, the style will be applied if all pseudo selector conditions are
fulfilled.

User interface | 803

Note: Depending on the type of the front-end, some pseudo selectors are meaningless, or
unsupported. See the table below to check which pseudo selectors are supported on your front-end
platform.

Pseudo selectors have different priorities; the style with the most important pseudo selector will be used
when several styles match.

Table 229: Pseudo selectors for presentation styles

Priority
Pseudo
selectors

Condition
GDC HTML5 GMA GMI

1 focus The widget has the focus
Yes Yes Yes Yes

2 query The widget is in construct mode
Yes Yes Yes Yes

3 display The widget is in a display array
Yes Yes Yes Yes

4 input
The widget is in an input array, input or
construct

Yes Yes Yes Yes

5 even
This widget is on an even row if an list
(Table or Tree)

Yes Yes No No

6 odd
This widget is on an odd row if an list
(Table or Tree)

Yes Yes No No

7 inactive The widget is inactive
Yes Yes Yes Yes

8 active The widget is active
Yes Yes Yes Yes

9 message
Applies only to text displayed with the
MESSAGE instruction

Yes Yes Yes Yes

10 error
Applies only to text displayed with the
ERROR instruction

Yes Yes Yes Yes

11 summaryLine
Applies only to text displayed in
AGGREGATE fields of tables

Yes Yes No No

Pseudo selectors also define the priority of your styles. A more generic style will be used when the pseudo-
selector has a higher priority.

For instance: you want all important edits to have red text, but you want the current field to be displayed in
blue:

<Style name="Edit.important" >
<Style name=":focus" >

The style ":focus" is more generic than "Edit.important"; therefore, it will be used for the focused
item, as the pseudo selector is more precise.

User interface | 804

Using a style
To apply a specific style, set the style-name in the style attribute of the node representing the graphical
element in the abstract user interface tree.

There are different ways to set the style attribute of a element:

• As a form element attribute, with a STYLE attribute in the form specification file.
• In the ATTRIBUTES clause of instructions such as OPEN WINDOW, MESSAGE, ERROR.
• Dynamically by a program, using the ui.Form.setElementStyle() method.

For example, to define a style in a form file for a input field:

EDIT f001 = customer.fname, STYLE = "info";

Note: The string used to define the STYLE attribute must be a style-name only, it must not contain
the element-type that is typically used to define the style in a .4st file (as CheckBox.important
for example)

Order of precedence
Style definitions are applied according to the order of precedence.

If different styles can be applied to an element, the following priority is used to determine the style definition
to be applied:

1. element-type.style-name:pseudo-selector

2. .style-name:pseudo-selector

3. element-type.style-name

4. element-type:pseudo-selector

5. :pseudo-selector

6. .style-name

7. element-type

8. *

Note: The precedence rules to apply styles may vary according to the front-end type. As a general
rule, Genero presentation styles precedence rules are similar HTML/CSS precedence rules.

For example, consider an Edit element with the style attribute set to 'mandatory':

EDIT f1 = FORMONLY.cust_name, STYLE="mandatory"

With the following style definitions (mystyles.4st):

<?xml version="1.0" encoding="ANSI_X3.4-1968"?>
<StyleList>
 <Style name="Edit.mandatory:focus">
 <StyleAttribute name="backgroundColor" value="yellow" />
 </Style>
 <Style name=".mandatory:focus">
 <StyleAttribute name="backgroundColor" value="blue" />
 </Style>
 <Style name="Edit.mandatory">
 <StyleAttribute name="backgroundColor" value="green" />
 </Style>
 <Style name="Edit:focus">
 <StyleAttribute name="backgroundColor" value="red" />
 </Style>
 <Style name=":focus">
 <StyleAttribute name="backgroundColor" value="cyan" />
 </Style>
 <Style name=".mandatory">
 <StyleAttribute name="backgroundColor" value="magenta" />

User interface | 805

 </Style>
 <Style name="*">
 <StyleAttribute name="backgroundColor" value="orange" />
 </Style>
</StyleList>

The style definitions are scanned in the following order:

1. Edit.mandatory:focus

2. .mandatory:focus

3. Edit.mandatory

4. Edit:focus

5. :focus

6. .mandatory

7. Edit

8. *

If the Edit field f1 has the focus, with the mystyles.4st definition file, the field background color will be
yellow. If the Edit field f1 does not have the focus, the field background color will be green.

Combining styles
You can combine several styles, by using the space character as a separator in the STYLE attribute.

In the following example, the STYLE attribute defines three different style names:

EDIT f001 = customer.fname, STYLE = "info highlight mandatory";

When several styles are combined, the same presentation attribute might be defined by different styles. In
this case, the first style listed that defines the attribute takes precedence over the other styles.

For example, if the textColor presentation attribute is defined as follows by the info, highlight and
mandatory styles:

• info style does not define textColor.
• highlight style defines textColor as blue.
• mandatory style defines textColor as red.

The widgets having a style set to "info highlight mandatory" will get a blue text color, because
highlight is listed before mandatory.

Style attribute inheritance
A style attribute may be inherited by the descendants of a given node in the abstract user interface tree.

For example, when using a style defining a fontFamily in a window container, you would expect that all
the children in that group box get the same font.

However, some style attributes should are not inherited, when specific to a given type of form element.
Style inheritance is implicitly defined by the attribute.

Presentation styles in the AUI tree
Presentation styles are loaded in the abstract user interface tree, under the UserInterface node, in a
StyleList node following the presentation style syntax.

The StyleList node holds a list of Style nodes that define a set of attribute values. Attribute values are
defined in StyleAttribute nodes, with a name and a value attribute.

Loading presentation styles
Presentation styles are defined in an XML file with a 4st extension. In order to load the presentation
styles, the engine needs to locate the appropriate style file.

By default, the runtime system searches for a file named default.4st in the current directory. If this file
does not exist, it searches in the directories defined by the FGLRESOURCEPATH / DBPATH environment

User interface | 806

variables. If the file was not found using the FGLRESOURCEPATH / DBPATH environment variables, default
presentation styles are loaded from the FGLDIR/lib/default.4st file.

Overwrite the default search by loading a specific presentation style file with the
ui.Interface.loadStyles() method:

MAIN
 CALL ui.Interface.loadStyles("mystyles")
 ...
END MAIN

This method accepts an absolute path with the 4st extension, or a simple file name without the 4st
extension. If you give a simple file name, for example "mystyles", the runtime system searches for the
mystyles.4st file in the current directory. If the file does not exist, it searches in the directories defined
by the FGLRESOURCEPATH environment variable. If FGLRESOURCEPATH is not defined, it searches in the
directories defined by the DBPATH environment variable.

The presentation styles must be defined in a unique 4st file. When loading a styles file with the
ui.Interface.loadStyles() method, current styles created from the default file or from a prior load
will be replaced. The styles will not be combined when loading several files.

The default styles file located in FGLDIR/lib should not be modified directly: your changes would be lost
if you upgrade the product. Make a copy if the original file into the program directory of your application,
then modify the copied file.

Combining TTY and style attributes
TTY attributes can be specific to a form element or can be inherited by an element from a parent node
(such as the form or window).

Specific element TTY attributes are directly set in the element node in the AUI tree; they can, for example,
be defined with the COLOR attribute of form items. Inherited TTY attributes are taken from the parent nodes
of the leaf element to be displayed. For example, when a form is displayed with DISPLAY FORM followed
by an ATTRIBUTE clause containing TTY color, font option and/or video attributes, all static labels will be
displayed with the TTY attributes of the form. Note however that the form elements controlled by interactive
instructions (i.e. form fields) will explicitly get the TTY attributes defined by the ATTRIBUTE clause of OPEN
WINDOW, OPEN FORM, DISPLAY TO / BY NAME or the current dialog statement, and must be considered
specific TTY attributes for the element.

Specific TTY attributes defined for a form element have a higher priority than style attributes, while
inherited TTY attributes (set on one of the parent elements) have a lower priority than style attributes
defined for the element.

To illustrate this rule, imagine a form defining two static labels and two fields, with all items using
the mystyle presentation style, and one of the labels and fields defining a specific TTY attribute with
COLOR=BLUE:

LABEL lab01: TEXT="Field 1:", COLOR = BLUE, STYLE = "mystyle";
EDIT fld01 = FORMONLY.field01, COLOR = BLUE, STYLE = "mystyle";
LABEL lab02: TEXT="Field 2:", STYLE = "mystyle";
EDIT fld02 = FORMONLY.field02, STYLE = "mystyle";

The program displays the form (or window) with an ATTRIBUTES clause using a red color, and the fields
are used by an INPUT dialog, with no ATTRIBUTES clause, so the default TTY attributes are gotten from
the OPEN FORM instruction:

OPEN FORM f FROM "ttyform"
DISPLAY FORM f ATTRIBUTES(RED)
INPUT BY NAME field01, field02 WITHOUT DEFAULTS

User interface | 807

The .4st styles file defines the mystyle attributes as follows:

<StyleList>
 <Style name="Edit.mystyle">
 <StyleAttribute name="textColor" value="green" />
 </Style>
 <Style name="Label.mystyle">
 <StyleAttribute name="textColor" value="magenta" />
 </Style>
</StyleList>

The text in the form field fld01 is displayed in blue (from the specific COLOR attribute), while fld02 is
displayed in red (the TTY attribute of the form, the style Edit.mystyle being ignored).

Since labels are not used by the interactive instructions, lab01 is displayed in blue (from the specific COLOR
attribute), while lab02 is displayed in magenta (from the style Label.mystyle, the form TTY attribute red
being ignored).

Element types
Styles may apply to any graphical elements of the user interface, such as Button, Edit, ComboBox,
ButtonEdit, Table, Window.

The name of the element when used in a style file is case-sensitive (use CheckBox, not checkbox).

For example, in the following style definition uses the "Window" element type in the style name:

<Style name="Window.dialog">
 <StyleAttribute name="position" value="center" />
</Style>

The supported element types is defined by the style attributes, for more details, see Style attributes
reference on page 818.

Predefined attribute values
This section decribes the values that must be used for some style attributes.

• Colors on page 807
• Fonts on page 812
• Statusbar types on page 817

Colors
When providing a value for style attributes that define a color, you can specify a generic color name or its
RGB value.

This section describes how to specify a value for style attributes defining colors, such as textColor.

Syntax

{ generic-color | #rrggbb }

1. generic-color is any of the predefined colors supported by the language.
2. #rrggbb is a numerical color defined by a red/green/blue specification.

Usage

In most cases it is not possible to know what a potential end-user might expect regarding the font
family. Therefore, your application should avoid the usage of explicit font families and use only the
fontWeight/fontStyle/fontSize properties. A specific font family should be used only if the client
can't determine a proper default font family for the desired platform.

User interface | 808

The language defines a set of generic color names, interpreted by the front end according to the graphical
capability of the workstation.

Generic color names

Use generic color names, to keep your style definitions portable accros several front-end types.

Table 230: Generic color names

Generic color name
Visual result
(1)

RGB value

black

#000000

blue

#0000FF

cyan

#00FFFF

darkBlue

#00008B

darkCyan

#008B8B

darkGray

#A9A9A9

darkGreen

#006400

darkMagenta

#8B008B

User interface | 809

Generic color name
Visual result
(1)

RGB value

darkOlive

#505000

darkOrange

#FF8C00

darkRed

#8B0000

darkTeal

#005050

darkYellow

#AAAA00

gray

#808080

green

#008000

lightBlue

#ADD8E6

lightCyan

#E0FFFF

lightGray #D3D3D3

User interface | 810

Generic color name
Visual result
(1)

RGB value

lightGreen

#90EE90

lightMagenta

#FFC0FF

lightOlive

#AAAA44

lightOrange

#FFCC00

lightRed

#FF8080

lightTeal

#33CCCC

lightYellow

#FFFFE0

magenta

#FF00FF

olive

#808000

User interface | 811

Generic color name
Visual result
(1)

RGB value

orange

#FFA500

red

#FF0000

teal

#008080

white

#FFFFFF

yellow

#FFFF00

Note:

1. The exact rendered color depends on front-end type.

System color names

System color names can be used to get a color from the current theme of the workstation windowing
system:

User interface | 812

Table 231: System color names

System color name Meaning

appWorkSpace
Background color of multiple document interface

background
Desktop background

buttonFace
Face color for three-dimensional display elements.

buttonText
Text on push buttons.

grayText
Grayed (disabled) text.

highLight
Item(s) selected in a control.

highLightText
Text of item(s) selected in a control

infoBackground
Background color for tooltip controls.

infoText
Text color for tooltip controls.

systemAlternateBackground
Background color of the alternate row in listviews

window
Window background.

windowText
Text in windows.

RGB notation

In some cases, you may also specify a color with the RGB notation, starting with a # hash character.

Each value of the RGB color specification must be provided in hexadecimal, in the range [00-FF].

Example

<StyleAttribute name="textColor" value="blue" />
<StyleAttribute name="textColor" value="#00FF45" />

Fonts
A graphical application should follow the front-end platform theme. The front-end tries to determine the
default font for the application screens.

• Font families on page 813
• Font sizes on page 814

User interface | 813

• Font styles on page 815
• Font weights on page 816

Font families
Use the fontFamily style attribute to define a generic or specific font family.

This section describes the possible values of the fontFamily style attribute.

Syntax

font-family [,...]

1. font-family defines a generic or a native font family.

Usage

A set of generic font families is supported, that are interpreted by the front end according to the graphical
capability of the paltform.

If the fontFamily is not a generic font family, it is interpreted as a native font family, which identifies
a local font supported by the front-end. Usually, it is one of the fonts installed on the platform operating
system. See front-end documentation for a list of supported native fonts.

A native font family should be used only if the front-end can't determine a proper default font family for the
desired platform.

Important: A font family containing white-spaces must be single quoted. In the XML definition of
the style, this leads to a single quoted string that is, in turn, enclosed in double quotes:

<StyleAttribute name="fontFamily" value="'Courier New'" />

When specifying a comma-separated list of font families, the front-end will use the best matching font
available on the platform. You can mix generic and native font families:

<StyleAttribute name="fontFamily" value="'Times New Roman',Times,serif" />

Table 232: Generic font families to front-end platform fonts

Generic font
family name

GDC HTML5 GMA GMI

serif Times serif (CSS) Serif Times New Roman

sans-serif Arial sans-serif (CSS) Sans-Serif Helvetica Neue

cursive Comic Sans Ms cursive (CSS)
N/A (keeps defauft
font)

Marker Felt

fantasy Algerian fantasy (CSS)
N/A (keeps defauft
font)

Papyrus

monospace Courier New monspace (CSS) Monospace Courier

Note:

User interface | 814

• The HTML5 front-end used the font family as font-family property in a CSS style. For more
details, see CSS generic-font-families

• The GMI front-end tries to find a font family in the available fonts of the application (i.e. the iOS
built-in fonts and any application specific fonts) which matches the fontFamily given in the
styles. If none is found, the fallback is "Helvetica Neue".

• The GMA front-end maps generic font family names to Android™ generic font names (Serif,
Monospace), these are then mapped to real font names. The real font name depends from the
Android brand. For example Sans-serif is usually implemented with the "Roboto" font.

Example

<StyleAttribute name="fontFamily" value="sans-serif" />
<StyleAttribute name="fontFamily" value="'Courier New'" />
<StyleAttribute name="fontFamily" value="'Times New
 Roman',Times,serif" />

Font sizes
Use the fontSize style attribute to influence the size of a font.

Syntax

{ generic-size | pointspt | sizeem }

1. generic-size is one of the generic font size names (such as 'small' or 'xx-large) listed in Table 233:
Generic font sizes on page 815.

2. points defines an absolute size in points. Specify a number followed immediately by pt, e.g., 3pt.
3. size defines an relative size. Specify a number followed immediately by em, e.g., 3em.

Usage

Specify either a generic font size, an absolute size in points with the "pt" unit, or a relative size with the
"em" unit.

Absolute sizes (using the "pt" suffix) define a font size in physical points. Physical points are much like
pixels, in that they are fixed-size units and cannot scale in size. For example, on HTML pages using CSS
styles, one point is equal to 1/72 of an inch.

Relative sizes (using the "em" suffix) define a font size in a scalable size unit that adapts to the front-end
platform, where one "em" unit results in the same size as the size of the default font on the platform. For
example, if the size of the platform default font is 16 points, 1em = 16pt, 2em = 32pt, etc.

Generic font sizes are interpreted by the front end according to the graphical capability of the platform.

Note: Use generic font sizes such as medium, large, small, or sizes relative to the user-chosen
font (using em units), rather than absolute point values. In an HTML browser you can choose two
fonts (proportional/fixed), and a well-designed document should not use more than 2 fonts. This is
also valid for applications.

http://www.w3.org/TR/CSS2/fonts.html#generic-font-families

User interface | 815

Table 233: Generic font sizes

Generic font size name Definition

xx-small Tiny font size

x-small Extra-small font size

small Small font size

medium Medium font size

large Large font size

x-large Extra-large font size

xx-large Huge font size

You can also specify an absolute font size, by giving a numeric value followed by the units such as pt or
em:

Example

<StyleAttribute name="fontSize" value="medium" />
<StyleAttribute name="fontSize" value="xx-large" />
<StyleAttribute name="fontSize" value="12pt" />
<StyleAttribute name="fontSize" value="1em" />

Font styles
Use the fontSize style attribute to define the style of a font.

Syntax

{ italic | roman | oblique }

Usage

The style of a font can be specified with a generic name, interpreted by the front end according to the
graphical capabilities of the platform. For example, on "Android™ devices, italic and oblique result in
the same font aspect.

User interface | 816

Table 234: Generic font style

Generic font style name Definition

italic
Specifies an italic font style, using a typefact that
slants slightly to the right. Uses a different glyph as
the roman style.

oblique
Specifies an oblique font style. This style is similar
to italic, except that it uses the same glyphs as the
roman type, but distorted.

roman
Specifies a roman font style. This is the typical
default font style in Latin-script typography.

Example

<StyleAttribute name="fontStyle" value="italic" />

Font weights
Use the fontWeight style attribute to define the aspect of a font.

Syntax

{ black
| bold
| book
| condensed
| condensedbold
| condensedlight
| demibold
| extrablack
| heavy
| light
| medium
| normal
| regular
| semibold
| thin
}

Usage

The availability of the weight depends on the chosen font family. For example, if the font family is
defined as AmericanTypewriter, and the front-end platform supports the following set of font
names (for this font family): AmericanTypewriter, AmericanTypewriter-Light, AmericanTypewriter-Bold,
AmericanTypewriter-CondensedLight, AmericanTypewriter-CondensedBold, AmericanTypewriter-
Condensed, you can only use the condensed, light and bold font weights.

Before using a font weight, make sure that the target platform supports the value. For example, on
"Android™ devices, only normal and bold are supported.

Example

<StyleAttribute name="fontWeight" value="bold" />

User interface | 817

Statusbar types
Possible values for Window status bar type.

This section describes how to specify a value for the Window.statusBarType style attribute.

Syntax

{ statusbar-type }

1. statusbar-type is a predefined status bar type name.

Usage

The statusBarType style attribute can get one of the values listed in the following table, to customize the
rendering of error and message texts.

Important: This style attribute is mainly used for desktop application using the GDC front-end.

Table 235: Possible status bar types for the statusBarType attribute

Value Screenshot

default

lines1

lines2

lines3

lines4

lines5

lines6

panels1

panels2

panels3

panels4

panels5

User interface | 818

Value Screenshot

panels6

panels7

none

Example

<StyleAttribute name="Windows.statusBarType" value="panels2" />

Style attributes reference
A presentation style attribute may be a common attribute that can be applied to any graphical element.
Other presentation style attributes apply only to a specific graphical element.

• Common style attributes on page 818
• Button style attributes on page 821
• ButtonEdit style attributes on page 822
• CheckBox style attributes on page 822
• ComboBox style attributes on page 823
• DateEdit style attributes on page 824
• Default action view style attributes on page 825
• Edit style attributes on page 826
• Folder style attributes on page 827
• Grid style attributes
• Group style attributes
• HBox style attributes on page 827
• Image style attributes on page 828
• Label style attributes on page 828
• Menu style attributes on page 829
• Message style attributes on page 829
• ProgressBar style attributes on page 830
• RadioGroup style attributes on page 831
• Scrollgrid style attributes
• Table style attributes on page 831
• TextEdit style attributes on page 834
• Toolbar style attributes on page 838
• Window style attributes on page 839

Common style attributes
Common style presentation attributes apply to any graphical element, such as windows, layout containers,
or form items.

For a complete list of AUI element types, refere to the FGLDIR/src/aui.xa definition file.

Important: Common style attribute apply to basic layout elements such as containers (Group)
and form widgets (Label, Button, Edit, CheckBox). According to the front-end platform, common
style attributes typically do not apply to advanced graphical elements such as TopMenu or ToolBar,
especially when such widget can be configured with the a user interface theme of the front-end
platform. Consider using common style attribute only for elements inside the form layout.

User interface | 819

Table 236: Common style attributes

Attribute GDC GWC-JS GMA GMI

backgroundColor

Defines the color to be used to fill the background of the
object.

For possible values, see Colors on page 807.

Default is no value (default color of the object).

Note: To set the background color of GMI/iOS
specific GUI elements like toolbars, tab bars and
navigation bars, use the ios*TintColor attributes
for Windows.

Yes Yes Yes Yes (see
note)

border

Defines the border for the widget.

If Value is "none", it removes the border.

Default is no value (the widget gets its default appearance).

This attribute especially applies to widgets such as Image,
Edit, ButtonEdit, Button.

Yes Yes No No

fontFamily

Defines the name of the font.

For possible values, see Font families on page 813.

Default is no value (default object font or inherited font).

Yes Yes Yes Yes

fontSize

Defines the size of the characters.

For possible values, see Font sizes on page 814.

Default is no value (default object font or inherited font).

Yes Yes Yes Yes

fontStyle

Defines the style of characters.

For possible values, see Font styles on page 815.

Default is no value (default object font or inherited font).

Yes Yes Yes Yes

fontWeight

Defines the weight of the characters.

Possible values for font weights depend from the front-
end native font names, see Font weights on page 816 for
details.

Default is no value (default object font or inherited font).

Yes Yes Yes Yes

imageCache

For form items displaying an image, defines if the image can
be cached of not by the front end.

Yes No No No

User interface | 820

Attribute GDC GWC-JS GMA GMI

If value is "yes" the front-end can cache the image locally.
By default, Image for image fields are not cached and image
for form items (Button, TopMenu item, Toolbar item) are
cached.

localAccelerators

For form items using shortcuts, defines how the widget must
behave regarding keyboard accelerators.

If value is "yes" (default), the local accelerators have higher
priority.

Ex: "HOME" key moves the cursor to the first position.

If value is "no", the application accelerators have higher
priority.

Ex: "HOME" key selects the first row of the current array.

The following keys are managed "locally" if attribute defined
to "yes".

TEXTEDIT: left, right, up, down, (control
+)home, (control+)end, (control+)backspace,
(control+)delete

EDIT, BUTTONEDIT, DATEEDIT, etc: left, right,
home, end, (control+)backspace, (control
+)delete

TABLE, TREE: (control+)left, (control+)right

Yes No No No

showAcceleratorInToolTip

Defines if the accelerator key(s) for an action should be
shown in the tooltip of the corresponding action view (Button,
Toolbar Item, and so on.)

If value is "yes" the tooltip shows the accelerator key(s)
after the action name, between brackets. By default, the
tooltip only shows the action name.

Yes No No No

textColor

Defines the color to be used to paint the text of the object.

For possible values, see Colors on page 807.

Default is no value (default object color or inherited color).

Note: In GMI, textColor affects the widgets they
are defined on, not the labels in the form used to
display the widgets. It is also used to set the tint of
checkbox, radio group (horizontal) and spin edit.

Yes Yes Yes Yes (see
note)

textDecoration

Defines the decoration for the text.

Values can be "overline", "underline" or "line-
through".

Default is no value (default object font or inherited font).

Yes Yes No No

User interface | 821

Button style attributes
Button style presentation attributes apply to a button element.

Note: This topic lists presentation style attributes for a specific class of form element, common
presentation style attributes can also be used for this type of element.

Table 237: Button style attributes

Attribute GDC GWC-JS GMA GMI

buttonType

Defines the rendering of a button.

Values can be:

• "normal" (default): The button is rendered as a regular
push button.

• "link": the button is rendered as an HTML hyper-link.
In contrast to the label hyper-link support, clicking on
a "link" button does not start the default browser, but
triggers the corresponding action, like a normal button.

• "commandLink": the button is rendered as a "Command
Link" button on Microsoft™ Windows™ Vista and
Windows™ 7.

Yes Yes No No

scaleIcon

Defines the scaling behaviors of the associated icon, if the
source image size is bigger than the place reserved for it in
the widget.

Note: On GDC and GWC, if the scaleIcon
attribute is undefined, the behavior depends on the
kind of action view: toolbar button icons and action
panel button icons are scaled down to match the
size of the widget. For other widgets, by default no
scaling occurs, as for scaleIcon="no".

Values can be:

• "no": No scaling occurs and the image is taken as-is. It
is up to the developer to resize the source image to avoid
misalignment. This is the default on GDC/GWC.

• "yes": Image are scaled down according to the height
of the widget (button or edit field). Setting a big font can
result in a big icon. This is the default on GMA/GMI.

• "nnnpx": Image are scaled down according to the
specified size. For example, scaleIcon="128px" will make
every icon a maximum of 128*128 pixels. At least one
side equal to 128 pixels, depending if the source image is
square or not.

Independently of the style value, the source image is never
upscaled to avoid pixelization or blurring of the image. The
exception is when the image come from an SVG file which
can be upscaled without any penalty. If the icon must be
enlarged, the image is centered and a transparent border is
added to "fill" the empty space. This allows a mix of larger
and smaller icons while keeping widget alignment.

Yes Yes No No

User interface | 822

Attribute GDC GWC-JS GMA GMI

If scaling takes place, the aspect ratio of the original image is
kept. A non-square source image displays as a non-square
scaled icon.

ButtonEdit style attributes
ButtonEdit style presentation attributes apply to a buttonedit element.

Note: This topic lists presentation style attributes for a specific class of form element, common
presentation style attributes can also be used for this type of element.

Table 238: ButtonEdit style attributes

Attribute GDC GWC-JS GMA GMI

scaleIcon

Defines the scaling behaviors of the associated icon, if the
source image size is bigger than the place reserved for it in
the widget.

Note: On GDC and GWC, if the scaleIcon
attribute is undefined, the behavior depends on the
kind of action view: toolbar button icons and action
panel button icons are scaled down to match the
size of the widget. For other widgets, by default no
scaling occurs, as for scaleIcon="no".

Values can be:

• "no": No scaling occurs and the image is taken as-is. It
is up to the developer to resize the source image to avoid
misalignment. This is the default on GDC/GWC.

• "yes": Image are scaled down according to the height
of the widget (button or edit field). Setting a big font can
result in a big icon. This is the default on GMA/GMI.

• "nnnpx": Image are scaled down according to the
specified size. For example, scaleIcon="128px" will make
every icon a maximum of 128*128 pixels. At least one
side equal to 128 pixels, depending if the source image is
square or not.

Independently of the style value, the source image is never
upscaled to avoid pixelization or blurring of the image. The
exception is when the image come from an SVG file which
can be upscaled without any penalty. If the icon must be
enlarged, the image is centered and a transparent border is
added to "fill" the empty space. This allows a mix of larger
and smaller icons while keeping widget alignment.

If scaling takes place, the aspect ratio of the original image is
kept. A non-square source image displays as a non-square
scaled icon.

Yes Yes No No

CheckBox style attributes
CheckBox style presentation attributes apply to a checkbox element.

Note: This topic lists presentation style attributes for a specific class of form element, common
presentation style attributes can also be used for this type of element.

User interface | 823

Table 239: CheckBox style attributes

Attribute GDC GWC-JS GMA GMI

iosCheckBoxOnTintColor

On iOS devices, defines the color for the checkbox marker
when on. This is different from backgroundColor, which is
used for the tint of the whole switch.

N/A N/A N/A Yes

ComboBox style attributes
ComboBox style presentation attributes apply to a combobox element.

Note: This topic lists presentation style attributes for a specific class of form element, common
presentation style attributes can also be used for this type of element.

Table 240: ComboBox style attributes

Attribute GDC GWC-JS GMA GMI

autoSelectionStart

Defines the item from which the auto-selection will start,
when pressing keys.

Valid can be:

• "current" (default): the auto-selection looks for the first
corresponding item after the current item of the object.

• "first": the auto-selection looks for the first
corresponding item after the first item of the object.

Yes No No No

comboboxCompleter

Activate the ComboBox completer mode.

Possible values are "yes" and "no" (default).

When this attribute is set to yes, the ComboBox will have the
following behavior:

• The ComboBox is editable, but only characters that
match an item in the list are allowed (if the list contains
the item "aa" and the item "ab", you can type "a",
"aa", "ab", but nothing else. If you paste text in the
field, it will be truncated until the rule is fulfilled.

• The drop-down list will only display item which starts with
the same characters as the edit field. It is dynamically
updated as you type (if the list contains the item "aa"
and the item "ab" and you type "a", you will see both
item displayed, but if you continue to type another "a",
you will only see "aa" in the list.

• The best match is automatically selected when leaving
the field (thus performing an "on change") as soon as
you hit "TAB" key, even if the input is not complete.

Yes No No No

completionTimeout

Defines the timeout (in milliseconds) to build the character
sequence for item lookup when the user presses several
keys successively. When pressing multiple keys, a character

Yes No No No

User interface | 824

Attribute GDC GWC-JS GMA GMI

sequence is build for item lookup. After the timeout delay
has expired, the character sequence is reset.

DateEdit style attributes
DateEdit style presentation attributes apply to a dateedit element.

Note: This topic lists presentation style attributes for a specific class of form element, common
presentation style attributes can also be used for this type of element.

Table 241: DateEdit style attributes

Attribute GDC GWC-JS GMA GMI

buttonIcon

Defines the icon name to use for the button.

Yes Yes No No

daysOff

Defines the days of the week that are grayed out.

Possible values are "monday", "tuesday",
"wednesday", "thursday", "friday", "saturday",
"sunday".

Default is "saturday sunday". The days of week can be
combined, as shown.

Yes Yes No No

firstDayOfWeek

Defines the first day of the week to be displayed in the
calendar.

Possible values are "monday", "tuesday",
"wednesday", "thursday", "friday", "saturday",
"sunday".

Default depends on the front-ends platform language
settings: For example, the default first day of week will be
Sunday for an English/US locale, Monday for a French or
German locale.

Yes Yes No No

showCurrentMonthOnly

Defines if dates of the previous and next months are shown.

Values can be "yes", "no" (default).

Yes Yes No No

showGrid

Indicates if the grid lines between dates must be visible in
the calendar.

Values can be "yes", "no" (default).

Yes No No No

showWeekNumber

Defines if the week numbers are displayed.

Values can be "yes", "no" (default).

Yes No No No

User interface | 825

Default action view style attributes
These style attributes apply to default action views (MenuAction and Action classes).

Note: This topic lists presentation style attributes for a specific class of form element, common
presentation style attributes can also be used for this type of element.

Table 242: Action style attributes

Attribute GDC GWC-JS GMA GMI

androidActionPosition

On Android™, defines if the option corresponding to the
action must be displayed in the menu bar.

Values can be:

• "button": The action view will be displayed in the
Android action bar as a button, if there is no room in the
action bar, the action view is not displayed.

• "overflow": The action view will be displayed in the
Android action bar overflow dropdown list.

• "default": The action view will be displayed in the
Android action bar, or in the overflow dropdown, if there is
no room in the action bar.

Note: See also Default action views decoration on
Android devices on page 1288.

N/A N/A Yes N/A

androidActionWithIcon

On Android, defines if the icon (default icon or icon specified
with the IMAGE attribute) must be displayed for the action
view.

Values can be:

• "yes" (default): The icon is visible (default).
• "no": The icon is not shown.

N/A N/A Yes N/A

androidActionWithText

On Android, defines if a label (specified with the TEXT
attribute) must be displayed for the action view.

Values can be:

• "yes" (default): Option text is visible (if there is an icon)
• "no": Option text is not shown.

Note: If the device orientation is in portrait mode,
Android may not display the text, even if you force it
with this attribute.

N/A N/A Yes N/A

scaleIcon

Defines the scaling behaviors of the associated icon, if the
source image size is bigger than the place reserved for it in
the widget.

Note: On GDC and GWC, if the scaleIcon
attribute is undefined, the behavior depends on the

Yes Yes No No

User interface | 826

Attribute GDC GWC-JS GMA GMI

kind of action view: toolbar button icons and action
panel button icons are scaled down to match the
size of the widget. For other widgets, by default no
scaling occurs, as for scaleIcon="no".

Values can be:

• "no": No scaling occurs and the image is taken as-is. It
is up to the developer to resize the source image to avoid
misalignment. This is the default on GDC/GWC.

• "yes": Image are scaled down according to the height
of the widget (button or edit field). Setting a big font can
result in a big icon. This is the default on GMA/GMI.

• "nnnpx": Image are scaled down according to the
specified size. For example, scaleIcon="128px" will make
every icon a maximum of 128*128 pixels. At least one
side equal to 128 pixels, depending if the source image is
square or not.

Independently of the style value, the source image is never
upscaled to avoid pixelization or blurring of the image. The
exception is when the image come from an SVG file which
can be upscaled without any penalty. If the icon must be
enlarged, the image is centered and a transparent border is
added to "fill" the empty space. This allows a mix of larger
and smaller icons while keeping widget alignment.

If scaling takes place, the aspect ratio of the original image is
kept. A non-square source image displays as a non-square
scaled icon.

Edit style attributes
Edit style presentation attributes apply to an edit element.

Note: This topic lists presentation style attributes for a specific class of form element, common
presentation style attributes can also be used for this type of element.

Table 243: Edit style attributes

Attribute GDC GWC-JS GMA GMI

dataTypeHint

Defines the type of the input, to let the front-end render
a field behavior suitable for the particular data type. This
attribute is especially useful on mobile devices.

Values can be:

• "email" (for email addresses)
• "url" (for URLs)
• "tel" (for telephone numbers)
• "search" (for search box fields)

For example, on a smart phone, entering data into an edit
field with datatypeHint="tel" makes the numeric
keyboard appear.

<Style name="Edit.hintPhone">

No Yes No No

User interface | 827

Attribute GDC GWC-JS GMA GMI

 <StyleAttribute
 name="dataTypeHint"
 value="tel"/>
</Style>

spellCheck

Defines if the edit field includes a spelling checker.

Note:

• With GDC, the possible values are the two
dictionary files needed for each language
(one .aff and one .dic). These files can be
downloaded here. Only the files available
for OpenOffice.org 2.x are working (files
for OpenOffice.org 3.x are not supported
yet). Specify in the style the two files for
the "spellCheck" StyleAttribute, using one
of the file formats. The local directory of
dictionary files can be asked to the GDC with
the standard.feInfo frontcall with the
dictionariesDirectory parameter.

• With GWC-JS, the attribute is not applicable: Edit
fields use the web browser spellchecker.

• With GMI, available values are "yes", "no".
If this attribute is not set, iOS will decide if
spellchecking is enabled, depending on the global
auto-correction setting on the device.

No (see
note)

No (see
note)

No Yes (see
note)

HBox style attributes
HBox style presentation attributes apply to an HBox element.

Note: This topic lists presentation style attributes for a specific class of form element, common
presentation style attributes can also be used for this type of element.

Table 244: HBox style attributes

Attribute GDC GWC-JS GMA GMI

splitViewRendering

Indicates if the HBox must be displayed as a splitview.

• in landscape mode, panes are side by side and scroll
independently

• in portrait mode, user navigates between the panes by
swiping left or right

Values can be "yes", "no" (default is no)

No No Yes No

Folder style attributes
Folder style presentation attributes apply to a folder tab element.

Note: This topic lists presentation style attributes for a specific class of form element, common
presentation style attributes can also be used for this type of element.

http://wiki.services.openoffice.org/wiki/Dictionaries

User interface | 828

Table 245: Folder style attributes

Attribute GDC GWC-JS GMA GMI

position

Defines the position of the folder tabs.

Values can be "top" (default), "left", "right",
"bottom".

Yes Yes No No

Image style attributes
Image style presentation attributes apply to an image element.

Note: This topic lists presentation style attributes for a specific class of form element, common
presentation style attributes can also be used for this type of element.

Table 246: Image style attributes

Attribute GDC GWC-JS GMA GMI

alignment

Defines the image alignment when the container is bigger
than the image itself.

Possible values are a pair of horizontal ("left",
"horizontalCenter", "right") and vertical alignments
("top", "verticalCenter", "bottom"). To combine
alignment options, use a space as separator.

Value can also be "center", which is equivalent to
"horizontalCenter verticalCenter".

The default value is "top left".

Yes Yes No No

imageContainerType

Important: This attribute is deprecated. Consider
using URL-based Web Components instead of
IMAGE fields with the imageContainerType style
attribute: URL Web Components are much easier to
use and more powerful.

When set to "browser", defines an image container as a
browser. To use the image field as a browser, set a URL
instead of an image name.

Note: This feature uses the WebKit Open Source
project as provided with Qt, and has limitations
such as no Java™ or ActiveX support. It will display
HTML / rich text, but may encounter difficulties with
more complex Web pages.

Yes No No No

Label style attributes
Label style presentation attributes apply to a label.

Note: This topic lists presentation style attributes for a specific class of form element, common
presentation style attributes can also be used for this type of element.

User interface | 829

Table 247: Label style attributes

Attribute GDC GWC-JS GMA GMI

textFormat

Defines the rendering of the content of the label widget.

Possible values are:

• "plain" (default): the value assigned to this widget is
interpreted as plain text.

• "html": it is interpreted as HTML (with hyperlinks).

Yes Yes No No

Menu style attributes
Menu style presentation attributes apply to a menu element.

Note: This topic lists presentation style attributes for a specific class of form element, common
presentation style attributes can also be used for this type of element.

This table shows the presentation attributes for Menu:

Table 248: Menu style attributes

Attribute GDC GWC-JS GMA GMI

position

Defines the position of the automatic menu for "popup"
menus.

Values can be:

• "cursor" (default): the popup menu appears at the
cursor position.

• "field", the popup menu appears below the current
field.

• "center", the popup menu appears at the center of the
screen.

• "center2", the popup menu appears at the center of
the current window.

Yes No No No

Message style attributes
Message style presentation attributes apply to an error or message.

The element type for both ERROR and MESSAGE is Message. To distinguish ERROR from MESSAGE,
the ":error" or ":message" pseudo-selectors can be used to specify a different style for the rendereing
of each instruction: "Message:error" corresponds to the ERROR instruction, and "Message:message"
corresponds to the MESSAGE instruction.

The ERROR and MESSAGE instructions can get a STYLE attribute in the ATTRIBUTES clause, to specify a
particular style name:

MESSAGE "No rows have been found." ATTRIBUTES(STYLE="info")

A limited set of common style attributes are supported for error/message display. In addition to the
attributes described in the section, you can only define font style attributes for messages.

Like simple form fields, TTY attributes have a higher priority than style attributes. By default, ERROR has
the TTY attribute REVERSE, which explains why ERROR messages have a reverse background, even

User interface | 830

when you use a backgroundColor style attribute. Use the NORMAL attribute in ERROR, to avoid the default
REVERSE TTY attribute and define your own background color with a style.

Consider centralizing your ERROR and MESSAGE instruction calls in a function, to simplify global
modifications:

FUNCTION my_error(m, s)
 DEFINE m, s STRING
 IF s IS NULL THEN
 ERROR m ATTRIBUTES(NORMAL)
 ELSE
 ERROR m ATTRIBUTES(NORMAL, STYLE=s)
 END IF
END FUNCTION

This table shows the presentation attributes for ERROR and MESSAGE instructions:

Table 249: Presentation attributes for ERROR and MESSAGE instructions

Attribute GDC GWC-JS GMA GMI

position

Defines the output type of the status bar message field.

Values can be:

• "statusbar" (default): will display the text in the regular
statusbar of the window.

• "popup": will bring a window popup to the front; it should
be used with care, since it can annoy the user.

• "statustip": will add a small "down" arrow button that
will show the popup once the user clicks on it. This can
be useful to display very long text.

• "both": will display the text in a popup window and then
in the status bar.

Yes No No No

textFormat

Defines the rendering of the content of the widget.

Possible values are:

• "plain" (default): the value assigned to this widget is
interpreted as plain text.

• "html", it is interpreted as HTML (with hyper-links).

Yes No No No

ProgressBar style attributes
ProgressBar style presentation attributes apply to a progressbar element.

Note: This topic lists presentation style attributes for a specific class of form element, common
presentation style attributes can also be used for this type of element.

Table 250: ProgressBar style attributes

Attribute GDC GWC-JS GMA GMI

percentageVisible

Defines whether the current progress value is displayed.

Possible values are:

Yes Yes (see
note)

No No

User interface | 831

Attribute GDC GWC-JS GMA GMI

• "no" (default): no progress value is displayed.
• "center": the progress will be displayed in the middle of

the progressbar.
• "system": it will follow the system theme.

Note: GWC-JS: This attribute is only supported if
the browser allows this option in the progressbar
widget.

RadioGroup style attributes
RadioGroup style presentation attributes apply to a radiogroup element.

Note: This topic lists presentation style attributes for a specific class of form element, common
presentation style attributes can also be used for this type of element.

Table 251: RadioGroup style attributes

Attribute GDC GWC-JS GMA GMI

autoSelectionStart

Defines the item from which the auto-selection will start,
when pressing keys.

Possible values are:

• "current" (default): it will look for the first
corresponding item after the current item of the object.

• "first", the auto-selection will look for the first
corresponding item after the first item of the object.

Yes No No No

completionTimeout

Defines the timeout (in milliseconds) to build the character
sequence for item lookup when the user presses several
keys successively. When pressing multiple keys, a character
sequence is build for item lookup. After the timeout delay
has expired, the character sequence is reset.

Yes No No No

Table style attributes
Table style presentation attributes apply to a table element.

Note: This topic lists presentation style attributes for a specific class of form element, common
presentation style attributes can also be used for this type of element.

Table 252: Table style attributes

Attribute GDC GWC-JS GMA GMI

forceDefaultSettings

By default, tables are reopened with column positions,
visibility and sizes they had when the window was closed. By
setting this attribute to true, the saved settings are ignored
and the table gets the initial column layout. Note that the
saved settings include also the sort columns, that will impact
on the order of the rows in the table.

Yes No No No

User interface | 832

Attribute GDC GWC-JS GMA GMI

Values can be "yes","no" (default).

headerAlignment

Defines the column header alignment in a table.

Values can be:

• "default" (default): will use the system default. In most
case it is left aligned.

• "left" will force all column headers to be left aligned.
• "center" will force all column headers to be centered.
• "right" will force all column headers to be right aligned.
• "auto" will first try to align each column header

according to the "justify" attribute of the column. If
no "justify" attribute is set, the column header will be
aligned according to the type of data: right for numeric
data, left for text data.

Yes Yes No No

headerHidden

Defines if the horizontal header must be visible in a table.

Values can be "yes","no" (default).

Yes Yes No No

highlightColor

Defines the highlight color of rows for the table, used for
selected rows.

For possible values, see Colors.

Yes Yes No No

highlightCurrentCell

Indicates if the current cell must be highlighted in a table.

Values can be "yes","no" (default).

By default the current edit cell in table has a white
background. You can change this behavior by setting
this attribute to "yes", to use the same color as when
highlightCurrentRow is used. Only some type of cells,
checkboxes for example, can be highlighted. Normal editor
cells stay in white, because this is the editor background
color.

Yes Yes No No

highlightCurrentRow

Indicates if the current row must be highlighted in a table
during an INPUT ARRAY.

Values can be "yes","no" (default).

By default, when a table is in read-only mode (DISPLAY
ARRAY), the front-end automatically highlights the current
row. But in editable mode (INPUT ARRAY), no row
highlighting is done by default. You can change this behavior
by setting this attribute to "yes".

Yes Yes No No

highlightTextColor Yes Yes No No

User interface | 833

Attribute GDC GWC-JS GMA GMI

Defines the highlighted text color of rows for the table, used
for selected rows.

For possible values, see Colors.

leftFrozenColumns

Requires "tableType" set to "frozenTable".

Defines how many columns are frozen, starting from the left
of the Table.

Values can be any numeric value matching with the number
of columns.

Default is "0".

Yes Yes No No

resizeFillsEmptySpace

Defines if the resize of the table adapts the size of the last
column to avoid unused space.

Values can be "yes","no" (default).

Yes No No No

rightFrozenColumns

Requires "tableType" set to "frozenTable".

Defines how many columns are frozen, starting from the
right of the Table.

Values can be any numeric value matching with the number
of columns.

Default is "0".

Yes Yes No No

showGrid

Indicates if the grid lines must be visible in a table.

Values can be "yes" (default when INPUT ARRAY),"no"
(default when DISPLAY ARRAY).

By default, when a Table is in editable mode (INPUT
ARRAY), the front-end displays grid lines in the table. You
can change this behavior by setting this attribute to "no".

By default, when a Table is in editable mode (DISPLAY
ARRAY), the front-end does not display grid lines in the table.
You can change this behavior by setting this attribute to
"yes".

Yes Yes No No

summaryLineAlwaysAtBottom

Defines the placement of the summary row containing
aggregate fields.

When set to "yes", the row containing aggregate fields is
rendered in the last line of the table.

When set to "no", the row containing aggregate fields is
rendered immediately after the values being aggregated.
This is the default.

Yes No No No

User interface | 834

Attribute GDC GWC-JS GMA GMI

tableType

Defines the rendering type of the table.

Values can be:

• "normal" (default): Regular table rendering.
• "pictureFlow": The first column of the table will be

used to define the list of images to be used in the picture
flow.

• "frozenTable": Users can "freeze" some
columns from scrolling, so that they always
remain visible. Default frozen columns can be
defined with "leftFrozenColumns" and
"rightFrozenColumns" attributes.

Yes Yes No No

TextEdit style attributes
Textedit style presentation attributes apply to a textedit element.

Note: This topic lists presentation style attributes for a specific class of form element, common
presentation style attributes can also be used for this type of element.

Table 253: TextEdit style attributes

Attribute GDC GWC-JS GMA GMI

customWidget

Defines a specific widget to be used by the front end for the
textedit field.

Values can be:

• "TinyMCE": Uses a specific HTML text editor (for
HTML5, uses the TinyMCE™ HTML editor when set).

No Yes No No

integratedSearch

Defines if the textedit field allows search facility (Control-F).

Values can be "yes", "no" (default).

Yes No No No

showEditToolBox

Defines if the toolbox for the rich text editing should be
shown.

Possible values are "auto"(default), "yes", "no".

Only available if textFormat style attribute is set to
"html".

Yes Yes No No

spellCheck

Defines if the textedit field includes a spelling checker.

Note:

• With GDC, the possible values are the two
dictionary files needed for each language
(one .aff and one .dic). These files can be
downloaded here. Only the files available

Yes (see
note)

No (see
note)

No Yes (see
note)

http://wiki.services.openoffice.org/wiki/Dictionaries

User interface | 835

Attribute GDC GWC-JS GMA GMI

for OpenOffice.org 2.x are working (files
for OpenOffice.org 3.x are not supported
yet). Specify in the style the two files for
the "spellCheck" StyleAttribute, using one
of the file formats. The local directory of
dictionary files can be asked to the GDC with
the standard.feInfo frontcall with the
dictionariesDirectory parameter.

• With GWC-JS, the attribute is not applicable: Edit
fields use the web browser spellchecker.

• With GMI, available values are "yes", "no".
If this attribute is not set, iOS will decide if
spellchecking is enabled, depending on the global
auto-correction setting on the device.

textFormat

Defines the rendering of the content of the widget.

Values can be:

• "plain" (default): the value assigned to this widget is
interpreted as plain text.

• "html", the value is interpreted as HTML (with hyper-
links), with rich text input feature enabled.

Note that a specific HTML editor widget can be specified
with the customWidget style attribute.

Yes Yes No No

wrapPolicy

Defines where the text can be wrapped in word wrap mode.

Values can be:

• "atWordBoundary" (default): the text will wrap at word
boundaries.

• "anywhere": the text breaks anywhere, splitting words if
needed.

Yes Yes No No

File Formats for spellCheck:

• "my_affix_file.aff|my_dictionnary_file.dic"

• an absolute path such as "file:///c:/dics/my_dictionnary_file.aff|file:///c:/dics/
my_dictionnary_file.dic"

• a Web server path such as http://mywebserver.com/my_affix_file.aff|http://
mywebserver.com/my_dictionnary_file.dic

User interface | 836

Rich Text Editing
Some Genero clients support a rich text editing interface, which can display a toolbox with classic editing
actions (bold, italic, font size, and so on). Local actions are also created.

Figure 43: Rich text editing interface

Rich text editing provides:

• Text format: bold, italic, underline
• Paragraph alignment: left, center, right, justify
• Lists: bullet, decimal
• Paragraph indentation
• Font size

To enable rich text editing, set the textFormat styleAttribute to html .

<Style name="TextEdit.richText">
 <StyleAttribute name="textFormat" value="html" />
</Style>

If you are using the Genero Web Client for HTML5, you can specify the TinyMCE™ editor for rich text
editing with the customWidget style attribute. If the customWidget attribute is not specified, the default
editor is used.

<Style name="TextEdit.richText">
 <StyleAttribute name="textFormat" value="html" />
 <StyleAttribute name="customWidget" value="TinyMCE" />
</Style>

Richtext toolbox

By default, when the mouse reaches the top border of the textedit field where rich text editing has been
enabled, a toolbox appears. The toolbox disappears when the mouse leaves the top border area. This
implementation is useful if you only use the textedit field to display rich text, as the toolbox is only visible in
input.

If you want always display the toolbox, you can set the showEditToolBox styleAttribute.

<Style name="TextEdit.richText">

User interface | 837

 <StyleAttribute name="textFormat" value="html" />
 <StyleAttribute name="showEditToolBox" value="yes" />
</Style>

Figure 44: Rich text editing interface with toolbox always displayed.

Tip: The textedit will be wide enough to display the toolbox in its entirety, even if you define a small
width in your form definition file. Take this in account when designing your form.

Tip: The textedit will be high enough to display the number of lines defined in the form definition file
(using the textedit font) and the toolbox when required. A textedit with a height of 1 will display the
toolbox and one line, which is much higher than without the toolbox.

Important: The behavior of the attribute showEditToolBox with the value auto differs between
the Genero Desktop Client and the Genero Web Client. With the Genero Desktop client, 'auto' is
interpreted as 'no'. With the Genero Web Client, 'auto' is interpreted as 'yes'.

Rich text local actions

Local actions have been created for each rich text capability. As with any local action, you can configure
accelerator keys, or you can bind them to action views like toolbar buttons.

Table 254: Local action names, accelerators, and icons

Name
Default

Accelerator
Icon Name Icon

richtextbold Ctrl-b textbold

richtextitalic Ctrl-i textitalic

richunderline Ctrl-u textunder

richtextalignleft Ctrl-l textleft

richtextaligncenter Ctrl-e textcenter

User interface | 838

Name
Default

Accelerator
Icon Name Icon

richtextalignright Ctrl-r textright

richtextalignjustify Ctrl-j textjustify

richtextlistbullet None textlistbullet

richtextlistdecimal None textlistnumbered

richtextdecreaseident None textindentdecrease

richtextincreaseident None textindentincrease

richtextdecreasefontsize None textfontsizedown

richtextincreasefontsize None textfontsizeup

You can hide the toolbox using the showEditToolBox styleAttribute.

<StyleAttribute name="textFormat" value="html" />
<StyleAttribute name="showEditToolBox" value="no" />

Toolbar style attributes
Toolbar style presentation attributes apply to a toolbar.

Note: This topic lists presentation style attributes for a specific class of form element, common
presentation style attributes can also be used for this type of element.

Table 255: ToolBar style attributes

Attribute GDC GWC-JS GMA GMi

iosSeparatorStretch

Stretches the SEPARATORs between toolbar items on iOS
devices. When this attribute is set to yes, separators are
acting like springs between the individual toolbar items.

Values can be:

• "no" (default): do not stretch toolbar item separators.
• "yes": stretch toolbar item separators.

N/A N/A N/A Yes

scaleIcon

Defines the scaling behaviors of the associated icon, if the
source image size is bigger than the place reserved for it in
the widget.

Note: On GDC and GWC, if the scaleIcon
attribute is undefined, the behavior depends on the
kind of action view: toolbar button icons and action
panel button icons are scaled down to match the
size of the widget. For other widgets, by default no
scaling occurs, as for scaleIcon="no".

Values can be:

Yes Yes No No

User interface | 839

Attribute GDC GWC-JS GMA GMi

• "no": No scaling occurs and the image is taken as-is. It
is up to the developer to resize the source image to avoid
misalignment. This is the default on GDC/GWC.

• "yes": Image are scaled down according to the height
of the widget (button or edit field). Setting a big font can
result in a big icon. This is the default on GMA/GMI.

• "nnnpx": Image are scaled down according to the
specified size. For example, scaleIcon="128px" will make
every icon a maximum of 128*128 pixels. At least one
side equal to 128 pixels, depending if the source image is
square or not.

Independently of the style value, the source image is never
upscaled to avoid pixelization or blurring of the image. The
exception is when the image come from an SVG file which
can be upscaled without any penalty. If the icon must be
enlarged, the image is centered and a transparent border is
added to "fill" the empty space. This allows a mix of larger
and smaller icons while keeping widget alignment.

If scaling takes place, the aspect ratio of the original image is
kept. A non-square source image displays as a non-square
scaled icon.

toolBarTextPosition

Defines the text position of a ToolBarItem.

Values can be:

• "textBesideIcon"

• "textUnderIcon" (default)

Yes Yes No No

Window style attributes
Window style presentation attributes apply to a window.

Note: This topic lists presentation style attributes for a specific class of form element, common
presentation style attributes can also be used for this type of element.

Table 256: Window style attributes

Attribute GDC GWC-JS GMA GMI

actionPanelButtonSize

Defines the width of buttons.

Values can be "normal", "shrink", "tiny", "small",
"medium", "large" or "huge".

When using "normal" and "shrink", buttons are sized
according to the text or image, where "shrink" uses the
minimum size needed to display the content of the button.

Default is "normal".

Yes No No No

actionPanelButtonSpace

Defines the space between buttons.

Yes No No No

User interface | 840

Attribute GDC GWC-JS GMA GMI

Values can be "none", "tiny", "small", "medium",
"large" or "huge".

Default is "medium".

actionPanelButtonTextAlign

Defines the text alignment inside buttons.

Values can be "left", "center", "right".

Default is "left" when the button have an icon, "center"
otherwise.

Yes Yes No No

actionPanelButtonTextHidden

Defines the text visibility inside buttons.

Values can be "yes" or "no".

Default is "yes".

Yes Yes No No

actionPanelDecoration

Defines the decoration of the action panel.

Values can be "auto", "yes", "no" and "dockable".

Default is "auto".

Yes No No No

actionPanelHAlign

Defines the alignment of the action panel when
actionPanelPosition is "top" or "bottom".

Values can be "left", "right" or "center".

Default is "left".

Yes No No No

actionPanelPosition

Defines the position of the action button frame (OK/Cancel).

Values can be "none", "top", "left", "bottom" or
"right".

Default is "right".

Yes Yes No No

actionPanelScroll

Defines if the action panel is "ring" - that is, when the last
button is shown, pressing on the "down" button will show the
first one again.

Values can be "0" or "1". Default is "1".

Yes No No No

actionPanelScrollStep

Defines how the action panel should scroll when clicking the
"down" button, to shown the next visible buttons.

Values can be:

• "line" (default): the panel will scroll by one line, and
then show only the next button.

Yes No No No

User interface | 841

Attribute GDC GWC-JS GMA GMI

• "page": the scrolling will be done page by page.

allowedOrientations

Defines possible orientations for modile device.

Values can be:

• "all": Any orientations are allowed.
• "landscape": Landscape orientation (the display is

wider than it is tall).
• "portrait": Portrait orientation (the display is taller

than it is wide).
• "landscape_reverse": Landscape orientation in the

opposite direction from normal landscape.
• "portrait_reverse": Portrait orientation in the

opposite direction from normal portrait.
• "landscape_all": Normal and reverse landscape

orientations are allowed.
• "portrait_all": Normal and reverse portrait

orientation are allowed.

Default is "all".

Note: This attribute is supported at the Window
level only by GMA.

N/A N/A Yes No

border

Defines the border type of the window.

Values can be:

• "normal" (default): the border is standard, with a normal
window header with a caption.

• "frame": only a frame appears, typically without a
window header.

• "tool": a small window header is used.
• "none": the window gets no border.

On Mac platforms, using "tool" is not effective.

Yes No No No

commentPosition

Defines the rendering for field comments.

Values can be:

• "statusbar" (default): displays the comment in the
window status bar.

• "popup" will bring a window popup to the front; to be
used with care, as it can annoy the end user.

• "statustip" will add a small "down" arrow button that
will show the popup once the user clicks on it; useful to
display very long text.

• "both" will display the comment text in a popup window
and then in the status bar.

Yes No No No

defaultTTFColor Yes Yes Yes Yes

User interface | 842

Attribute GDC GWC-JS GMA GMI

Defines the default color to be used for TTF icons.

All icons displayed in the window using this style will by
default get the color specified in the defaultTTFColor
attribute.

The value for this attribute must and RGB specification or a
named color as listed in Colors on page 807.

For more details about TTF icon usage see Using a simple
image name (centralized icons) on page 785.

errorMessagePosition

Defines the rendering of program errors displayed with the
ERROR instruction.

Values can be:

• "statusbar" (default): displays the comment in the
window status bar.

• "popup" will bring a window popup to the front; to be
used with care, as it can annoy the end user.

• "statustip" will add a small "down" arrow button that
will show the popup once the user clicks on it; useful to
display very long text.

• "both" will display the comment text in a popup window
and then in the status bar.

Yes No No No

forceDefaultSettings

Indicates if the window content must be initialized with
the saved positions and sizes. By default, windows are
reopened at the position and with the size they had when
they were closed. You can force the use of the initial settings
with this attribute. This applies also to column position and
width in tables.

Values can be "yes" or "no".

Default is "no".

Yes Yes No No

formScroll

Defines if scrollbars should always be displayed when the
form is bigger than the screen, or only when the window is
maximized.

Values can be "yes" or "no".

Default is "yes".

Yes No No No

ignoreMinimizeSetting

Defines if the stored settings "state=minimize" must be
ignored when loading settings.

To be used when minimized windows should not be shown
minimized when reopened.

Values can be "yes" or "no".

Yes No No No

User interface | 843

Attribute GDC GWC-JS GMA GMI

Default is "no".

iosTintColor

On iOS devices, defines the color for items used in the
navigation bar, toolbar, and some items in the forms
(Buttons, SpinEdit, Radiogroups, and row checkmark and
disclosure indicators in list views).

This style attribute does not apply to MENU with
STYLE=dialog/popup.

N/A N/A N/A Yes

iosNavigationBarTextColor

On iOS devices, defines the text color of the navigation bar.

N/A N/A N/A Yes

iosNavigationBarTintColor

On iOS devices, defines the background color of the
navigation bar.

N/A N/A N/A Yes

iosToolBarTintColor

On iOS devices, defines background color of the toolbar.

N/A N/A N/A Yes

iosTabBarTintColor

On iOS devices, defines the background color of the tab bar.

The iOS tab bar is created with a TYPE=NAVIGATOR
window.

N/A N/A N/A Yes

materialFABActionList

Defines a comma-separated list of action names that will
be bound to the Floating Action Button (FAB button), on a
device following the material design guidelines. To be used
in conjunction with the materialFABType attribute. The
order of the actions will define which action is triggered when
the FAB button is tapped, and several matching actions are
active.

The default list of actions is:
"new,append,insert,update,edit"

No No Yes No

materialFABType

Controls the Floating Action Button (FAB button), on a
device following the material design guidelines.

Possible values are:

• "single" (default) - the FAB button is shown
and maps to the first active action defined in the
materialFABActionList attribute.

• "none" - no FAB button must be displayed.

No No Yes No

menuPopupPosition

Defines the position of the automatic menu for "popup"
menus.

Values can be:

Yes No No No

User interface | 844

Attribute GDC GWC-JS GMA GMI

• "cursor" (default) - the popup menu appears at the
cursor position.

• "field" - the popup menu appears below the current
field.

• "center" - the popup menu appears at the center of the
screen.

• "center2" - the popup menu appears at the center of
the current window.

messagePosition

Defines the rendering for program messages displayed with
the MESSAGE instruction.

Values can be:

• "statusbar" (default): displays the comment in the
window status bar.

• "popup" will bring a window popup to the front; to be
used with care, as it can annoy the end user.

• "statustip" will add a small "down" arrow button that
will show the popup once the user clicks on it; useful to
display very long text.

• "both" will display the comment text in a popup window
and then in the status bar.

Yes No No No

position

Indicates the initial position of the window.

Values can be:

• "default" (default): the windows are displayed
according to the window manager rules.

• "field": the window is displayed below the current field
(works as "default", when current field does not exist).

• "previous" the window is displayed at the same
position (top left corner) as the previous window. (works
as "default" when there is no previous window).

• "center": the window is displayed in the center of the
screen.

• "center2": the window is displayed in the center of the
current window.

For front-ends using stored settings, "field",
"previous" and "previous" have higher priority than the
settings.

Yes No No No

ringMenuButtonSize

Defines the width of buttons.

Values can be "normal", "shrink", "tiny", "small",
"medium", "large" or "huge".

When using "normal" and "shrink", buttons are sized
according to the text or image, where "shrink" uses the
minimum size needed to display the content of the button.

Yes No No No

User interface | 845

Attribute GDC GWC-JS GMA GMI

Default is "normal".

ringMenuButtonSpace

Defines the space between buttons.

Values can be "none", "tiny", "small", "medium",
"large" or "huge".

Default is "medium".

Yes No No No

ringMenuButtonTextAlign

Defines the text alignment inside buttons.

Values can be "left", "center", "right"

Default is "left" when the button have an icon, "center"
otherwise.

Yes Yes No No

ringMenuButtonTextHidden

Defines the text visibility inside buttons.

Values can be "yes" or "no".

Default is "yes".

Yes Yes No No

ringMenuDecoration

Defines the decoration of the menu panel.

Values can be "auto", "yes", "no" and "dockable".

Default is "auto".

Yes No No No

ringMenuHAlign

Defines the alignment of the ring menu when
ringMenuPosition is "top" or "bottom".

Values can be "left", "right" or "center".

Default is "left".

Yes No No No

ringMenuPosition

Defines the position of the ring menu frame for a MENU
instruction.

Values can be "none", "top", "left", "bottom" or
"right".

Default is "right".

Yes Yes No No

ringMenuScroll

Defines if the focus can wrap in the ring menu default
actions when pressing up or down keys.

Values can be "0" or "1".

Default is "1".

Yes No No No

ringMenuScrollStep Yes No No No

User interface | 846

Attribute GDC GWC-JS GMA GMI

Defines how the ring menu must scroll when moving to a
next button that is not visible.

Values can be:

• "line" (default): the menu will scroll by one line, and
show only the next button.

• "page", the scrolling will be done page by page.

sizable

Defines if the window can be resized by the user.

Values can be "yes", "no" or "auto".

With the GDC, when using "auto", the window becomes
resizeable if the content of the first displayed form has
resizeable elements, for example when using a form with a
TABLE container or an TEXTEDIT with STRETCH attribute.

With GWC, the behavior is applied to the form instead of the
window. When set to "no", the form content is not stretched
even if the form contains stretchable items.

Note: On Linux™ and Mac platforms, most of
window managers don't take into account sizable
when it is set to "no".

Default is "yes".

Yes Yes No No

startMenuAccelerator

Defines the shortcut keys to execute the selected start
menu item, when the position is defined as "tree" or
"poptree".

By default, "space", "enter" and "return" start the
application linked to the current item.

Yes No No No

startMenuExecShortcut2

Defines the shortcut keys to execute the selected start
menu item, when the position is defined as "tree" or
"poptree".

By default, "space", "enter" and "return" start the
application linked to the current item.

Yes No No No

startMenuPosition

Indicates the position of the start menu, when one is defined.

Values can be:

• "none" (default): the startmenu is not displayed.
• "tree": the start menu is displayed as a treeview,

always visible on the right side of the window.
• "menu": the start menu is displayed as a pull-down

menu, always visible at the top of the window.
• "poptree": the start menu is displayed as a tree view in

a popup window that can be opened with a shortcut (see
startMenuShortcut).

Yes Yes No No

User interface | 847

Attribute GDC GWC-JS GMA GMI

startMenuShortcut

Defines the shortcut key to open a start menu, when the
position is defined as "poptree".

Default is "control-shift-F12".

Yes No No No

startMenuSize

Defines the size of the start menu, when one is defined and
the position is defined as "tree" or "poptree".

Values can be "tiny", "small", "medium", "large" or
"huge".

Default is "medium".

Note: The size will also depend on the font used for
the startmenu.

Yes No No No

statusBarType

Defines the type of status bar the window will display.

See Statusbar types on page 817 for all possible values.

Default is "default".

Yes No No No

tabbedContainer

For the GDC, defines if the WCI container must display the
child application windows in a folder tab.

For the GWC, this attribute specifies whether child
applications are to be displayed inside the same browser
window as the parent, or in a new window. WCI is not
supported by GWC.

Values can be "yes" or "no".

Default is "no".

Yes Yes No No

tabbedContainerCloseMethod

Defines the folder tab method of the container when
tabbedContainer is set to "yes".

Values can be:

• "container" (default): container gets a close button in
the tab.

• "page": each page has its own close button.
• "both": each page and the container has its close

button.
• "none": no close button is shown.

Yes No No No

thinScrollbarDisplayTime

Defines the display time (in seconds) of the automatic
scrollbar displayed when scrolling on fixed screen array
(a.k.a. "Matrix") and SCROLLGRIDs (for some front-ends).
After the delay, the scrollbar will disappear. A value of
zero specifies an infinite time: The thin scrollbar remains

Yes Yes No No

User interface | 848

Attribute GDC GWC-JS GMA GMI

visible while the record list can be scrolled (i.e. during dialog
execution).

Default is 1 second.

toolBarDocking

Defines if the toolbar is movable and floatable.

Values can be "yes" or "no".

Default is "yes".

Yes No No No

toolBarPosition

Indicates the position of the toolbar, when a toolbar is
defined.

Values can be "none", "top", "left", "bottom" or
"right".

Default is "top".

Yes No No No

windowMenu

Defines if the WCI container should display an automatic
"Window" menu, with Cascade and Tile features, and list of
child windows.

Values can be "yes" or "no".

Default is "no".

Yes No No No

windowOptionClose

Defines if the window can be closed with a system menu
option or window header button.

Values can be "yes", "no" or "auto".

Default is "auto".

When value is "auto", the option is enabled according to
the window type.

This attribute may have different behavior depending on the
front end operating system. For example, when no system
menu is used, it may not be possible to have this option
enabled.

Yes Yes No No

windowOptionMaximize

Defines if the window can be maximized with a system menu
option or window header button.

Values can be "yes", "no" or "auto".

Default is "auto".

When value is "auto", the option is enabled according to
the window type.

This attribute may have different behavior depending on the
front end operating system. For example, when no system

Yes No No No

User interface | 849

Attribute GDC GWC-JS GMA GMI

menu is used, it may not be possible to have this option
enabled.

windowOptionMinimize

Defines if the window can be minimized with a system menu
option or window header button.

Values can be "yes", "no" or "auto".

Default is "auto".

When value is "auto", the option is enabled according to
the window type.

This attribute may have different behavior depending on the
front end operating system. For example, when no system
menu is used, it may not be possible to have this option
enabled.

Yes No No No

windowState

Defines the initial state of a window.

Values can be "normal", "maximized" or "minimized".

Default is "normal".

Yes No No No

windowSystemMenu

Defines if the window shows a system menu.

Values can be "yes", "no" or "auto".

Default is "auto".

When value is "auto", the system menu is enabled
according to the window type.

Note: HTML5: Only "auto" is supported.

Yes No (see
note)

No No

windowType

Defines the basic type of the window.

Values can be:

• "normal" (default): Normal windows are displayed as
typical application windows.

• "modal": Modal windows are displayed at the top of all
other windows, typically used for temporary dialogs.

Yes Yes No No

Examples
Code examples that use style file entries, form definition files, and source code to illustrate how
presentation styles are applied.
Example 1: Defining styles for grid elements
This example shows how to define styles for grid elements.

The presentation style definition file:

<?xml version="1.0" encoding="ANSI_X3.4-1968"?>
<StyleList>
 <!-- Applies to all type of elements -->

User interface | 850

 <Style name=".bigfont">
 <StyleAttribute name="fontSize" value="large" />
 </Style>
 <!-- Default text color and font family for all labels -->
 <Style name="Label">
 <StyleAttribute name="textColor" value="blue" />
 <StyleAttribute name="fontFamily" value="sans-serif" />
 </Style>
 <!-- Background color for Edits having focus -->
 <Style name="Edit:focus">
 <StyleAttribute name="backgroundColor" value="yellow" />
 </Style>
 <!-- Text color for Edits with STYLE="mandatory" -->
 <Style name="Edit.mandatory">
 <StyleAttribute name="textColor" value="red" />
 </Style>
</StyleList>

The form definition file:

LAYOUT
GRID
{
[l1][f1]
[l2][f2]
[l3][f3]
}
END
ATTRIBUTES
LABEL l1: TEXT="Label 1:";
EDIT f1 = FORMONLY.field1;
LABEL l2: TEXT="Label 2:";
EDIT f2 = FORMONLY.field2;
LABEL l3: TEXT="Label 3:", STYLE="bigfont";
EDIT f3 = FORMONLY.field3, STYLE="bigfont mandatory";
END

Program source file:

MAIN
 DEFINE rec RECORD
 field1 STRING,
 field2 STRING,
 field3 STRING
 END RECORD

 LET rec.field1 = "Field 1"
 LET rec.field2 = "Field 2"
 LET rec.field3 = "Field 3"

 CALL ui.Interface.loadStyles("styles")

 OPEN FORM f1 FROM "form"
 DISPLAY FORM f1

 INPUT BY NAME rec.* WITHOUT DEFAULTS

END MAIN

Graphical result:

User interface | 851

Figure 45: Form displayed based on styles applied

How the styles were applied

1. All labels get a blue text color and sans-serif font family because of the name="Label" style.
2. Label 3 and Edit 3 defined with the bigfont style name get a large font because of the

name=".bigfont" style.
3. The Edit field having the focus gets a yellow background color because of the name="Edit:focus"

style (using the focus pseudo-selector).
4. Edit fields defined with the mandatory style name get a red text color because of the

name="Edit.mandatory" style.

Example 2: Defining styles for table rows
This example shows how to define styles for tables and table rows.

The presentation style definition file:

<?xml version="1.0" encoding="ANSI_X3.4-1968"?>
<StyleList>
 <!-- Applies to all type of elements -->
 <Style name=".bigfont">
 <StyleAttribute name="fontSize" value="large" />
 </Style>
 <!-- Background color form odd rows in tables -->
 <Style name="Table:odd">
 <StyleAttribute name="backgroundColor" value="yellow" />
 </Style>
</StyleList>

The form definition file:

LAYOUT
TABLE
{
[c1 |c2 |c3]
[c1 |c2 |c3]
[c1 |c2 |c3]
[c1 |c2 |c3]
}
END
ATTRIBUTES
EDIT c1 = FORMONLY.col1, TITLE="C1";
EDIT c2 = FORMONLY.col2, TITLE="C2";
EDIT c3 = FORMONLY.col3, TITLE="C3", STYLE="bigfont";
END

User interface | 852

INSTRUCTIONS
SCREEN RECORD sr(FORMONLY.*);
END

Program source file:

MAIN
 DEFINE arr DYNAMIC ARRAY OF RECORD
 col1 INTEGER,
 col2 STRING,
 col3 STRING
 END RECORD,
 i INTEGER

 FOR i=1 TO 20
 LET arr[i].col1 = i
 LET arr[i].col2 = "Item #"||i
 LET arr[i].col3 = IIF(i MOD 2, "odd", "even")
 END FOR

 CALL ui.Interface.loadStyles("styles")

 OPEN FORM f1 FROM "form"
 DISPLAY FORM f1

 DISPLAY ARRAY arr TO sr.*

END MAIN

Graphical result:

Figure 46: Form displayed based on styles applied

hat has the focus and

User interface | 853

How the styles were applied

1. The odd rows get a yellow background because of the name="Table:odd" style (using the odd
pseudo-selector).

2. Column 3 defined with the bigfont style name gets a large font because of the name=".bigfont"
style.

Form specification files
Form specification files are the source files defining the layout and content of application forms.

• Understanding form files on page 853
• Form file concepts on page 853
• Form file structure on page 901
• Form item attributes on page 951
• Form rendering on page 1002
• Examples on page 1001

Understanding form files
A form specification file is a source file that defines an application form, to let the end user interact with the
program.

The form file defines the disposition, presentation (i.e. decoration), and behavior of screen elements called
form items.

The source file must have the .per file extension: myform.per. Programs load the .42f compiled
version of the form files, and use interactive instructions (dialogs) to control the form.

To compile a .per source file to a .42f format, use the fglform form compiler. When a SCHEMA is
specified in the form file, fglform requires that the database schema files already exist. Compiled form files
depend on both the source files and the database schema files.

Compiled forms will be loaded by the programs with the OPEN FORM or the OPEN WINDOW WITH FORM
instructions. The FGLRESOURCEPATH environment variable must contain the directory where the
compiled form files are located at runtime, if the form file is not in the current directory.

Once a form is loaded, the program can manipulate forms to display or let the user edit data, with
interactive instructions such as INPUT or DISPLAY ARRAY. Program variables are used as display and/or
input buffers.

The content of a .per form file must follow a specific syntax as described in Form file structure on page
901.

Form file concepts
To write a form specification file, you need to understand the concepts described in this section.

• Form items on page 853
• External form inclusion on page 900
• Boolean expressions in forms on page 901

Form items
The concept of form item includes all elements used in the definition of a form.

Definition

A form item can be an input field such as an EDIT field, a push BUTTON or a GROUPBOX or TABLE
container. A form item can also be an element of a TOOLBAR, TOPMENU and ACTION DEFAULTS definition.

A form item can be:

• A satellite item
• A static item

User interface | 854

• A layout item
• A stack item
• An action view
• A form field

Form item types

A form item is defined by its type, called a form item type. For example, a form field can be an EDIT, or
a COMBOBOX, a form layout container can be a GROUP, or a GRID, a toolbar item can be an ITEM or a
SEPARATOR.

For a detailed description, see Form item types on page 878.

Form items in grid-based containers

In a grid-based container such as GRID, form items (typically, form fields) must be defined with a form tag
in the LAYOUT section, bound by the tag name to a definition in the ATTRIBUTES section.

The form tag defines the position and length of the form item, while the appearance and the behavior the
form item is defined by a set of attributes in the ATTRIBUTES section:

LAYOUT
GRID
{
 [f1]
 ...
}
END
END
...
ATTRIBUTES
EDIT f1 = customer.cust_name, ... ;
END

Form items in stack-based forms

In a stack-based container (STACK), form items (typically, form fields), are grouped and arranged in a given
order, that will define their position in the stacked layout. The appearance and the behavior the form item is
defined by a list of attributes in the stack item definition:

LAYOUT
 STACK
 GROUP
 EDIT customer.cust_name, ... ;
 END
 END
END

Satellite form items

Other kind of form items are defined in the section it belongs to (for example, an ITEM element of a
TOOLBAR definition).

Satellite items
Satellite items are display elements defined outside the LAYOUT section.

Satellite items like the TOOLBAR section are form elements independent from the main form layout, and
are defined additionally to the LAYOUT section.

TOOLBAR -- Toolbar section

User interface | 855

...
END
LAYOUT -- Main layout section
...
END

Static items
A static item defines a simple form item as a final grid element (i.e. that does not change).

A static item is a form element that is defined directly in a grid of the form LAYOUT section, such as a text
(typically, a field label).

Static items are identified by the fglform compiler and converted to a AUI tree node element in the
resulting .42f file.

Simple texts

It is possible to define simple texts and field labels in the form layout:

LAYOUT
GRID
{
A simple text
}
END
END

Note: To simplify internationalization, consider using named static labels instead of hard-coded
text in the form layout.

Horizontal lines

You define a horizontal line with a sequence of hyphen-minus (-) characters in a grid:

LAYOUT
GRID
{
This is a horizontal line: ------------
}
END
END

Note: Horizontal lines are mainly provided for TUI mode applications. While horizontal lines will be
represented by some GUI front-ends, it is not a typical practice in common graphical applications.

Layout items
Layout items are containers with a body that can hold other form items, in a grid-based layout form.

Layout items can be specified as a tree of nested containers, or as layout tags within a single GRID
container.

The next example shows a tree of nested containers, where a GRID and TABLE are included in a VBOX:

LAYOUT
VBOX
 GRID ...
 {
 }
 END
 TABLE ...
 {
 }

User interface | 856

 END
END

The next example shows a GRID container including layout tags. The layout tags group form fields in
dedicated areas. This syntax is usually more convenient to describe application forms:

LAYOUT
GRID
{
<g g1 >
 Name: [f01]
< >
<t t1 >
[c1 |c2]
< >
}
END
END

Stack items
Stack items are form elements used to define a stack-based layout in a STACK container.

To define a stacked layout within a STACK container, leaf stack items (typically, form fields, labels, buttons)
are specified inside grouping stack items such as GROUP or TABLE.

The next example shows a stack-based form definition with a GROUP stack item containing two EDIT stack
items:

LAYOUT
 STACK
 GROUP g1
 EDIT customer.cust_num, NOENTRY;
 EDIT customer.cust_name, REQUIRED;
 END
 END
END

Action views
An action view defines a form item that can trigger an action in the program.

Action views as satellite items

Below is TOOLBAR section defining a toolbar button using the close action name. Here no layout tag is
used because the toolbar item is part of the toolbar graphical object (it will not appear in the form layout
area):

TOOLBAR
 ITEM close (TEXT="Close")
END

Action views in grid-based container

The position and size of the element is defined with an item tag, while the rendering and behavior is
defined in the ATTRIBUTES section. Both parts are bound by the name of the item tag. The item tag name
is local to the .per file and is not available at runtime.

The next example defines a BUTTON form item, where the item tag name is "b_close", and the button
name (and the action name) is "close":

LAYOUT
GRID

User interface | 857

{
 ...
 [b_close]
}
END
END
...
ATTRIBUTES
BUTTON b_close: close, TEXT="Close";
END

Action views in stack-based layout

In a stack-based container, action views are defined as stack items, with the attribute defining the
rendering and behavior:

LAYOUT
STACK
 GROUP group1 (TEXT="Customer")
 ...
 BUTTON print, TEXT="Print Report", IMAGE="printer";
 ...

Form fields
Form fields are form elements designed for data input and/or data display.

Purpose of form fields

A form field is a form item dedicated to data management. It associates a form item with a screen record
field. The screen record field will be used to bind program variables in interaction instructions (i.e. dialogs).
The program variables will be the data models for the form fields.

There are different sort for form fields:

• Database column fields on page 858
• Formonly fields on page 860
• Phantom fields on page 861
• Aggregate fields on page 863

Form fields can be used in a grid-based layout or in a stack-based layout.

Form fields are identified by the field name in programs, and are grouped in screen records (or screen
arrays in case of list containers). The interactive instruction must mediate between screen record fields and
database columns by using program variables.

Form fields are usually related to database column, which types are defined in the database schema file.

Forms fields in grid-based containers

In a grid-based container, the position and size of a form field is defined with an item tag in the form layout,
while the rendering and behavior is defined in the ATTRIBUTES section. Both parts are bound by the name
of the item tag. The item tag name is local to the .per file and is not available at runtime: It is just the key
to bind the item tag (position) with the item definition (attributes).

In the next example, the "f1" item tag (in the LAYOUT section) is linked to the "vehicle.num" form field
definition (in the ATTRIBUTES section), which references a column of the "vehicle" table, defined in the
"carstore" database schema:

SCHEMA carstore
LAYOUT
GRID

User interface | 858

{
Number: [f1]
Name: [f2]
}
END
END
TABLES
 vehicle
END
ATTRIBUTES
 EDIT f1 = vehicle.num, STYLE="keycol";
 EDIT f2 = vehicle.name, UPSHIFT;
END

Forms fields in stack-based containers

In a stack-based container, the visual position of a form field is defined by the ordinal position of the stack
item in the stack definition, while the rendering and behavior are defined with stack item attributes.

In the next example, the "vehicle.num" form field definition references a column of the "vehicle" table,
defined in the "carstore" database schema:

SCHEMA carstore
LAYOUT
 STACK
 GROUP
 EDIT vehicle.num, REQUIRED, STYLE="keycol";
 END
 END
END
TABLES
 vehicle
END

Database column fields
Form fields defined with a table and column name get data type from the database schema file.

Syntax 1: In grid-based container

item-type item-tag = [table.]column
 [, attribute-list] ;

Syntax 2: In stack-based container

item-type [table.]column
 [, attribute-list] ;

1. item-type references an item type like EDIT.
2. item-tag identifies the layout location of the field.
3. table is the name or alias of a table, synonym, or view, as declared in the TABLES section.
4. column is the name of a database column.
5. attribute-list is a list of field attributes.

Usage

A form field is typically based on the definition of a database column found in the database schema
specified with the SCHEMA clause at the beginning of the form file. The database column defines the data
type of the form field.

User interface | 859

Important: The data type of a form field is only used by the CONSTRUCT interactive statement to
do database queries. When using the form field with an INPUT, INPUT ARRAY or DISPLAY ARRAY
dialog, the type of the program variable defines the data type of the form field.

In order to reference database columns, the table name must be listed in the TABLES section of the form.

Fields are associated with database columns only during the compilation of the form specification file: The
form compiler examines the database schema file to identify the data type of the column, and defines the
form field with this type. This technique allows to centralize form field data types in the schema files: If the
data type of a column changes, extract the schema again and recompile your forms to take the new type
into account.

Note: The compilers do also grab other field attributes like validation rules and video display
attributes from .val and .att schema files. However, this is supported for backward compatibility
only (formerly stored in syscolval and syscolatt database tables). Consider reviewing programs
using this feature.

After the form compiler identifies data types from the schema file, the association between fields and
database columns is broken, and the form cannot distinguish the name or synonym of a table or view from
the name of a screen record.

The programs only have access to screen record fields, in order to display or input data using program
variables. Regardless of how you define them, there is no implicit relationship between the values of
program variables, form fields, and database columns. Even, for example, if you declare a variable
lname LIKE customer.lname, the changes that you make to the variable do not imply any change
in the column value. Functional relationships among these entities must be specified in the program
code, through screen interaction statements, and through SQL statements. It is up to the programmer to
determine what data a form displays and what to do with data values that the user enters into the fields
of a form. You must indicate the binding explicitly in any statement that connects variables to forms or to
database columns.

If a form field is declared with a table column using the SERIAL, SERIAL8 or BIGSERIAL SQL type, the
field will automatically get the NOENTRY attribute, except if the field is defined with the TYPE LIKE syntax.

Example

Grid-based container database form field definition:

SCHEMA stores -- Database schema
LAYOUT
GRID
{
 [f001]
 ...
}
END
END
TABLES
 customer -- Database table
END
ATTRIBUTES
EDIT f001 = customer.fname, -- DB-col form field
 REQUIRED, COMMENTS="Customer name";
...

Stack-based container database form field definition:

SCHEMA stores -- Database schema
TABLES
 customer -- Database table
END
LAYOUT

User interface | 860

 STACK
 GROUP
 EDIT customer.fname, -- DB-col form field
 REQUIRED, COMMENTS="Customer name";
 ...

Formonly fields
FORMONLY form fields define their data type explicitly, with or without referencing a database columns.

Syntax 1: In grid-based container

item-type item-tag = FORMONLY.field-name
 [TYPE
 { LIKE [table.]column
 | data-type [NOT NULL] }
]
 [, attribute-list] ;

Syntax 2: In stack-based container

item-type FORMONLY.field-name
 [TYPE
 { LIKE [table.]column
 | data-type [NOT NULL] }
]
 [, attribute-list] ;

where data-type is one of:

{ CHAR
| DECIMAL [(p[,s])]
| SMALLFLOAT
| REAL
| FLOAT
| MONEY [(p[,s])]
| INTEGER
| SMALLINT
| DATE
| VARCHAR
| TEXT
| BYTE
| INTERVAL interval-qualifier
| DATETIME datetime-qualifier
| BIGINT
| BOOLEAN
}

1. table is the name or alias of a table, synonym, or view, as declared in the TABLES section.
2. column is the name of a database column.
3. field-name is the identifier that will be used in programs to handle the field.
4. interval-qualifier is an INTERVAL qualification clause such as HOUR(5) TO SECOND.
5. datetime-qualifier is a DATETIME qualification clause such as DAY TO SECOND.

Usage

Form fields can be specified with the FORMONLY prefix, when there is no corresponding database column,
or when the field must be defined with another name as the database column.

User interface | 861

Important: The data type of a form field is only used by the CONSTRUCT interactive statement to
do database queries. When using the form field with an INPUT, INPUT ARRAY or DISPLAY ARRAY
dialog, the type of the program variable defines the data type of the form field.

When using the LIKE [table.]column syntax, the form field will get the data type of the specific table
column as defined in the database schema. The table name must be specified in the TABLES section.

When using the TYPE data-type clause, you explicitly specify the type of the field. Note that for
CHAR/VARCHAR data types, the size is defined by the item tag length in the layout.

If no data type is specified, and no database column is referenced, the default data type is CHAR.

Specifying a data type followed by the NOT NULL keywords is equivalent to the NOT NULL attribute.

The STRING data type is not supported in formonly form field definitions.

The definition of FORMONLY fields can be completed by using the DISPLAY LIKE and VALIDATE LIKE
attributes, to get the display and validation attributes from the .att and .val database schema files.

Example

Grid-based container FORMONLY form field definition (in the ATTRIBUTES section):

LAYOUT
GRID
{
 [f001]
 [f002]
 ...
}
END
END
ATTRIBUTES
EDIT f001 = FORMONLY.total TYPE DECIMAL(10,2), NOENTRY ;
EDIT f002 = FORMONLY.name TYPE LIKE customer.cust_name,
 VALIDATE LIKE customer.cust_name ;

Stack-based container FORMONLY form field definition:

LAYOUT
 STACK
 GROUP
 EDIT FORMONLY.total TYPE DECIMAL(10,2), NOENTRY ;
 EDIT FORMONLY.name TYPE LIKE customer.cust_name, REQUIRED;

Phantom fields
A PHANTOM field defines a screen-record field which is not rendered in the layout (it acts as a hidden field).

Syntax

PHANTOM { [table.]column
 | FORMONLY.field-name
 [TYPE
 { LIKE [table.]column
 | data-type [NOT NULL] }
]
 } ;

where data-type is one of:

{ CHAR
| DECIMAL [(p[,s])]

User interface | 862

| SMALLFLOAT
| REAL
| FLOAT
| MONEY [(p[,s])]
| INTEGER
| SMALLINT
| DATE
| VARCHAR
| TEXT
| BYTE
| INTERVAL interval-qualifier
| DATETIME datetime-qualifier
| BIGINT
| BOOLEAN
}

1. table is the name or alias of a table, synonym, or view, as declared in the TABLES section.
2. column is the name of a database column.
3. field-name is the identifier that will be used in programs to handle the field.
4. interval-qualifier is an INTERVAL qualification clause such as HOUR(5) TO SECOND.
5. datetime-qualifier is a DATETIME qualification clause such as DAY TO SECOND.

Usage:

A PHANTOM field defines a form field listed in a screen-record or screen-array, that has no corresponding
layout element. It is only used for the screen-record (or screen-array) definition, to bind with program
variables used by dialogs, typically to match a given database table definition.

Phantom fields will be used by dialog instructions as regular form fields, but will not be displayed to the
end user, and the end user will not be able to enter values for these fields. Data hold by phantom fields is
never send to the front-ends: They can be used to store critical data that must not go out of the application
server.

Phantom fields can be based on columns defined in a database schema file, or as FORMONLY field.

For example, if you want to implement a screen-array with all the columns of a database table defined
in the database schema file, but you don't want to display all the columns in the TABLE container of the
LAYOUT section, you must use PHANTOM fields. With the screen-array matching the database table, you
can easily write program code to fetch all columns into an array defined with a LIKE clause.

Example (grid-based layout)

Form file:

SCHEMA carstore
LAYOUT(TEXT = "Vehicles")
GRID
{
<T t1 >
 Num Name Price
[c1 |c2 |c3]
[c1 |c2 |c3]
[c1 |c2 |c3]
}
END
END
TABLES
 vehicle
END
ATTRIBUTES
 TABLE t1: table1;
 EDIT c1 = vehicle.num;

User interface | 863

 EDIT c2 = vehicle.name;
 EDIT c3 = vehicle.price;
 PHANTOM vehicle.available; -- not used in layout
END
INSTRUCTIONS
 SCREEN RECORD sr(vehicle.*);
END

Program code:

SCHEMA carstore
...
DEFINE vl DYNAMIC ARRAY OF RECORD LIKE vehicle.*
...
DISPLAY ARRAY vl TO sr.*
...

Aggregate fields
An AGGREGATE field defines a screen-record field to display summary information for a TABLE column.

Syntax

AGGREGATE item-tag = field-name [, attribute-list] ;

1. item-tag is an identifier that defines the name of the item tag in the layout section.
2. field-name identifies the name of the screen record field.
3. attribute-list defines the aspect and behavior of the form item.

Usage

An AGGREGATE field defines a form field that is used to display a summary cell for a given column of a
TABLE container. The aggregate fields are displayed after the last data line of the table. Such fields are
typically used to show computed values for the corresponding column which appears above the aggregate
cell.

Important: This feature is not supported on mobile platforms.

An aggregate field can be based on a database column defined in a schema file, or as FORMONLY field.

The AGGREGATETYPE attribute defines how the value of the field will be computed. For example, the SUM
keyword (the default) can be used to instruct the runtime system to automatically compute the total of the
associated column. By using the PROGRAM keyword, you indicate that the value of the aggregate field will
be computed and displayed by program code. A simple DISPLAY BY NAME or DISPLAY TO can be used
to show the summary value.

The value displayed in the AGGREGATE field follows the FORMAT attribute of the corresponding column, if
defined. The FORMAT attribute is applied for automatically computed values, as well as for values displayed
by user code with DISPLAYBY NAME or DISPLAY TO.

The label of an aggregate field can be specified with the AGGREGATETEXT attribute. The text defined with
this attribute will be displayed on the left of the aggregate value (in the aggregate cell), except if there is
no room to display the label (for example if the aggregate value is too large or if the column values are
aligned to the left). An aggregate label can be a localized string with the %"..." string syntax. You can
also specify an AGGREGATETEXT attribute at the TABLE level, to get a global label for the summary line.
If no text is defined for an aggregate field, the global aggregate text will appear on the left in the summary
line.

Table aggregate decoration can be modified with a presentation style. Use the summaryLine pseudo-
selector to change the font type and color, as well as the background of the summary line. Use the

User interface | 864

summaryLineAlwaysAtBottom table style attribute to force the summary line to stay on the bottom of
the table.

Aggregate fields in grid-based layout

The item tag of an aggregate field must appear in the last line in the layout block of theTABLE container,
and must be aligned vertically with a table column item tag. You can specify several aggregate item tags
for the same table:

TABLE
{
[c1 |c2 |c3 |c4 |c5]
[c1 |c2 |c3 |c4 |c5]
[c1 |c2 |c3 |c4 |c5]
[c1 |c2 |c3 |c4 |c5]
 [cnt] [tot_c4 |tot_c5]
}
END

Aggregate fields in stack-based layout

Important: Aggregate fields are not supported in tables defined in a STACK container.

Example (grid-based layout)

SCHEMA stores
LAYOUT(TEXT = "Orders")
GRID
{
<T t1 >
 Num Date Order total
[c1 |c2 |c3]
[c1 |c2 |c3]
[c1 |c2 |c3]
[c1 |c2 |c3]
 [total]
}
END
END
TABLES
 orders
END
ATTRIBUTES
 TABLE t1: table1;
 EDIT c1 = orders.o_num;
 EDIT c2 = orders.o_date;
 EDIT c3 = orders.o_tot;
 AGGREGATE total = FORMONLY.o_total,
 AGGREGATETEXT = "Total:",
 AGGREGATETYPE = SUM;
END
INSTRUCTIONS
 SCREEN RECORD sr(orders.*);
END

Identifying form items
Elements defined in a form file can be identified with a name, to be used in programs.

Form fields are implicitely identified by the tabname.colname specification after the equal sign, while
other (non-field) form items such as static labels and group boxes can get an optional item name.

User interface | 865

The form item name defined in the form file will be copied to the name attribute of the corresponding node
in the .42f file. It can then be used by programs to select a form element at runtime, to introspect or
modify its attributes.

For example, specify the name for a GROUP container by writing an identifier after the layout container type:

GROUP group1 (TEXT="Customer")

Here the group name is 'group1', and it can be used in a program to identify the group element:

DEFINE w ui.Window
DEFINE g om.DomNode
LET w = ui.Window.getCurrent()
LET g = w.findNode("Group","group1")
CALL g.setAttribute("text","Another text")

Helper methods are provided for common tasks on form elements. For example, to hide a group with the
identifier group1, you can use the setElementHidden() method on a ui.Form object:

DEFINE f ui.Form
...
 LET f = DIALOG.getForm()
 ...
 CALL f.setElementHidden("group1", TRUE)

Note: Consider defining unique names to form elements to be identified, to simplify the search at
runtime. A good practice is the use a prefix based on the type of form element (g_ for groups, l_
for labels for example).

Static items in a grid-based layout container cannot get a name, because these are self-defined with the
layout part of the item:

GRID
{
Name: [f1]
...
}
END

In the above example, the label "Name:" cannot be identified. In order to give a name to such label, use
an item tag and add a LABEL line in the ATTRIBUTES section, and specify the name of the label after the
colon:

GRID
{
[l1][f1]
...
}
END
...
ATTRIBUTES
LABLE l1: l_name, TEXT="Name:";
...

User interface | 866

Screen records
Form fields can be grouped in a screen record or screen array definition. A screen array is a screen record
with a dimension, to handle a list of records.

Syntax

SCREEN RECORD record-name [size] (field-list)

where field-list is:

{ table.*
| field-name
| first-field [{THROUGH|THRU} last-field]
[,...] }

1. record-name is the name of an explicit screen record or screen array.
2. size is an integer representing the number of records in the screen array.
3. field-name is a field identifier as defined in the right operand of a field definition in the ATTRIBUTES

section.
4. first-field and last-field are field identifiers like field-name. This notation instructs the form compiler to

take all the fields defined between the first and last field (inclusive).
5. table is the name or alias of a table, synonym, or view, as declared in the TABLES section. This notation

instructs the form compiler to build the screen record with all fields declared in the ATTRIBUTES section
for the given table.

Usage

Screen records and screen arrays are defined with the SCREEN RECORD keywords in the INSTRUCTIONS
section of a form specification file to name a group of fields.

Screen records

A screen record is a named group of fields that screen interaction statements of the program can reference
as a single object. By establishing a correspondence between a set of screen fields (the screen record)
and a set of program variables (typically a program record), you can pass values between the program
and the fields of the screen record. In many applications, it is convenient to define a screen record that
corresponds to a row of a database table.

Like the name of a screen field, the identifier of a screen record must be unique within the form, and it has
a scope that is restricted to when its form is open. Interactive statements can reference record-name only
when the screen form that includes it is being displayed. The form compiler returns an error if record-name
is the same as the name or alias of a table in the TABLES section.

SCHEMA videoshop
LAYOUT
GRID
{
 Customer id: [f001]
 Name: [f002]
 Create date: [f003]
}
END
END
TABLES
customer
END
INSTRUCTIONS
SCREEN RECORD sr_customer
(

User interface | 867

 customer.cust_id,
 customer.cust_name,
 customer.cust_crea
);
END

Default screen records

The form compiler builds default screen records that consist of all the screen fields linked to the same
database table within a given form. A default screen record is automatically created for each table that is
used to reference a field in the ATTRIBUTES section.

The components of the default record correspond to the set of display fields that are linked to columns in
that table. The name of the default screen record is the table name (or the alias, if you have declared an
alias for that table in the TABLES section). For example, all the fields linked to columns of the "customer"
table constitute a default screen record whose name is "customer".

If a form includes one or more FORMONLY fields, those fields constitute a default screen record called
"formonly".

Screen arrays

A screen array is similar to a screen record, except that it defines a additional size. Screen arrays are
typically used to reference rows in a static list of fields defined in the LAYOUT section. Each row of a screen
array is a screen record. Each column of a screen array consists of fields with the same field tag in the
LAYOUT section.

The size value must be equal to the number of lines of the static list of field tags in the layout of the form.
For example, a GRID container might represent a set fields organized in columns like this:

LAYOUT
GRID
{
 OrdId Date Total Price
 [f001 |f002 |f003]
 [f001 |f002 |f003]
 [f001 |f002 |f003]
 [f001 |f002 |f003]
}
END
END

This example requires a size of 4 when defining the corresponding screen array:

INSTRUCTIONS
SCREEN RECORD sr_orders[4]
(
 order.ord_id,
 order.ord_date,
 order.ord_total
);
END

You cannot define multiple screen arrays for the same TABLE definition. Only one SCREEN RECORD
specification is allowed.

Screen arrays must specify a size when referencing fields that define a static list in the layout. When
referencing the columns of a variable-size record list container such as a TABLE or a TREE, the
corresponding screen array must be defined without a size:

LAYOUT

User interface | 868

TABLE
{
 OrdId Date Total Price
 [f001 |f002 |f003]
 [f001 |f002 |f003]
 [f001 |f002 |f003]
 [f001 |f002 |f003]
}
END
END

This TABLE layout does not require a size specification when defining the corresponding screen array:

INSTRUCTIONS
SCREEN RECORD sr_orders
(
 order.ord_id,
 order.ord_date,
 order.ord_total
);
END

Using screen records and screen arrays in programs

Screen records and screen arrays can display program records. If the fields in the screen record have
the same sequence of data types as the columns in a database table, you can use the screen record to
simplify operations that pass values between program variables and rows of the database.

Screen records are usually not referenced in programs within single record input statements, because
program variable to form field binding is typically done by name with the INPUT BY NAME instruction.

Screen array names are typicaly referenced in programs within interactive dialog controlling a list of
records such as DISPLAY ARRAY and INPUT ARRAY. The current form must include that named screen
array.

Form tags
Form tags define layout elements inside a grid-based container.

Form tags are place holders used inside a grid of the layout section, to define the position and the relation
between form items.

The syntax and purpose of a form tag depends on the type of form tag.

The different sort of form tags are:

• Layout tags on page 868
• Item tags on page 873
• Hbox tags on page 875

Layout tags
Layout tags define layout areas for containers inside the frame of a grid-based container.

Syntax

 <type [identifier] >
 content
[< >]

1. type defines the kind of layout tag to be inserted at this position.
2. identifier references a form item definition in the ATTRIBUTES section, it must be unique, but is

optional.
3. content defines other form items inside the layout tag.

User interface | 869

4. The (< >) ending the layout tag body is optional.

Usage

A layout tag defines a layout region of a container, in the body frame of a GRID container.

While complex layout with nested frames can be defined with HBOX and VBOX containers, it is sometimes
more convenient to define a form with a complex layout by using layout tags within a GRID container.

A layout tag has a type that defines what kind of container will be generated in the compiled form.

A layout tag is delimited by angle braces (<>), and contains the tag type (G/GROUP, T/TABLE, etc) and an
optional identifier.

Table 257: Types of layout tags

Tag Type Abbr. Description

GROUP G Defines a group box layout tag,
resulting in the same presentation
as the GROUP container.

TABLE T Defines a table view layout tag,
resulting in the same presentation
as the TABLE container.

TREE N/A Defines a tree-view list view
layout tag, resulting in the same
presentation as the TREE
container.

SCROLLGRID S Defines a scrollable grid
layout tag, resulting in the
same presentation as the
SCROLLGRID container.

The details of the layout tag definition are specified in the ATTRIBUTE section. Layout tags must
be identified by an item tag name. In the next example, the layout tag named "g1" is defined in the
ATTRIBUTE section with the GROUP form item type to set the name and text:

LAYOUT
GRID
{
<GROUP g1 >
[text1]
[]
[]
< >
}
END
END
ATTRIBUTES
GROUP g1:group1, TEXT="Description";
TEXTEDIT text1=FORMONLY.text1;
END

The layout region is a rectangle, in which the width is defined by the length of the layout tag, and the height
by a closing tag (< >) . In the next example, the layout region is defined by the layout tag named "group1".

<GROUP group1 >

User interface | 870

< >

Form items must be placed inside the layout region. The [] square brackets are not part of the form item
width and can be place at the same X position as the layout tag delimiters:

<GROUP group1 >
 Item: [f001]
 Quantity: [f002]
 Date: [f003]
< >

The [] square brace delimiters are not counted to define the width of an item tag. The width of the item
is defined by the number of character between the square braces. Thus, this layout is valid and can be
compiled:

<GROUP group1 >
[f001]
[f002]
 Static labels must fit!!
< >
<TABLE table1 >
[colA |colB]
[colA |colB]
[colA |colB]
[colA |colB]

You can place several layout tags on the same layout line in order to split the frame horizontally. This
example defines six layout regions (four group boxes and two tables):

<GROUP group1 ><GROUP group2 ><GROUP group4 >
 FName: [f001] Phone: [f004][f012]
 LName: [f002] EMail: [f005][]
< >< >[]
<GROUP group3 >[]
[f010][]
< >< >
<TABLE table1 ><TABLE table2 >
[c11 |c12 |c13][c21 |c22]
[c11 |c12 |c13][c21 |c22]
[c11 |c12 |c13][c21 |c22]
[c11 |c12 |c13][c21 |c22]
< >< >

The < > closing layout tag is optional. When not specified, the end of the layout region is defined by the
underlying layout tag or by the end of the current grid. However, the ending tag must be specified if the
form compiler cannot detect the end of the layout region. This is usually the case with group layout tags.
In the next example, the table does not need an ending layout tag because it is defined by the starting
tag of the group, but the group needs and ending tag otherwise it would include the last field (field3).
Additionally, if field3 would have a different size, the form compiler would raise an error because the group
and the last field geometry would conflict.

<TABLE table1 >
[colA |colB]
[colA |colB]
[colA |colB]
[colA |colB]
[colA |colB]
[colA |colB]
<GROUP group2 >
[field1]

User interface | 871

[field2]
< >
[field3]

It is possible to mix container layout tags with singular form items. You typically put form items using a
large area of the form, such as IMAGE fields or TEXTEDIT fields. The [] square brace delimiters are not
used to compute the size of the singular form items:

<GROUP group1 >[image1]
 FName: [f001][]
 LName: [f002][]
< >[]
[textedit1 |]
[|]
[|]

Table layout tags can be embedded inside group layout tags:

<GROUP group1 >
 <TABLE table1 >
 [colA |colB]
 [colA |colB]
 [colA |colB]
 [colA |colB]
< >

Hbox or vbox containers with splitter are automatically created by the form compiler in these conditions:

• Hbox is created when two or more stretchable elements are stacked side by side and touch each other
(no space between).

• Vbox is created when two or more stretchable elements are stacked vertically and touch each other (no
space between).

Stretchable elements are containers such as TABLE containers, or form items like IMAGE fields with the
STRETCH attribute.

No hbox or vbox object will be created if the elements are in a SCROLLGRID container.

This example defines two tables stacked vertically, generating a VBox with splitter (note that ending tags
are omitted):

<TABLE table1 >
[colA |colB]
[colA |colB]
[colA |colB]
[colA |colB]
<TABLE table2 >
[colC |colD]
[colC |colD]

In this example, the layout defines two stretchable TEXTEDIT fields placed side by side which would
generate an automatic hbox with splitter. To make both textedits touch you need to use a pipe delimiter in
between:

[textedit1 |textedit2]
[|]
[|]
[|]

User interface | 872

The next layout example would make the form compiler create an automatic vbox with splitter to hold
table2 and textedit1 , plus an hbox with splitter to hold table1 and the first VBox (We must use a pipe
character to delimit the end of colB and textedit1 so that both tables can be placed side by side):

<TABLE table1 ><TABLE table2 >
[colA |colB][colC|colD]
[colA |colB][colC|colD]
[colA |colB][colC|colD]
[colA |colB |textedit1]
[colA |colB |]
[colA |colB |]

If you want to avoid automatic hbox or vbox with splitter creation, you must add blanks between elements:

<TABLE table1 > <TABLE table2 >
[colA |colB] [colC|colD]
[colA |colB] [colC|colD]
[colA |colB] [colC|colD]
[colA |colB]
[colA |colB] [textedit1]
[colA |colB] []
[colA |colB] []

Examples

The typical OK/Cancel window:

LAYOUT
GRID
{
<GROUP g1 >
[com]
< >
[:bok |bno]
}
END
END
ATTRIBUTES
LABEL com: comment;
BUTTON bok: accept;
BUTTON bno: cancel;
...

This example shows multiple uses of layout tags:

LAYOUT
GRID
{
<GROUP g1 ><GROUP g2 >
 Ident: [f001] [f002] [text1]
 Addr: [f003] []
< >< >
<GROUP g3 >
[text2]
[]
[]
< >
<TABLE t1 >
 Num Name State Value
[col1 |col2 |col3 |col4]
[col1 |col2 |col3 |col4]
[col1 |col2 |col3 |col4]

User interface | 873

[col1 |col2 |col3 |col4]
< >
}
END
END
ATTRIBUTES
GROUP g1:group1, TEXT="Customer";
GROUP g2:group2, TEXT="Comments";
TABLE t1:table1, UNSORTABLECOLUMNS;
...

Item tags
Item tags define the position and size in a grid-based container.

An item tag defines the position and size of a simple form item in a grid-area of a GRID or SCROLLGRID
container. Form item defined with item tags are leafs in the structure of a form definition, such as a form
field (i.e. it is not a container form item).

Syntax

[identifier [-] [|...]]

1. identifier references a form item definition in the ATTRIBUTES section.
2. The optional - dash defines the real width of the element.
3. The | pipe can be used as item tag separator (equivalent to][).

Usage

An item tag is delimited by square braces ([]) or pipes (|) and contains an identifier used to reference the
description of the form item in the ATTRIBUTES section. In the next example, the identifier of the form item
is "f01", and the form item type is BUTTONEDIT:

LAYOUT
GRID
{
 ...
 [f01]
 ...
}
END
...
ATTRIBUTES
BUTTONEDIT f01 = customer.cust_name, ACTION=zoom;
...

Each item tag must be indicated by left and right delimiters to show the length of the item and its position
within the container layout. Both delimiters must appear on the same line. You must use left and right
braces ([]) to delimit item tags. The number of characters and the delimiters define the width of the region
to be used by the item:

GRID
{
 Name: [f001]
}
END

User interface | 874

The form item position starts after the open square brace and the length is defined by the number of
characters between the square braces. The following example defines a form item starting at position 3,
with a length of 2:

GRID
{
1234567890
 [f1]
}
END

By default, the real width of the form item is defined by the number of characters used between the tag
delimiters.

For some special items like BUTTONEDIT, COMBOBOX and DATEEDIT, the width of the field is adjusted to
include the button. The form compiler computes the width as: width=nbchars-2 if nbchars>2:

GRID
{
 1234567
[f1] -- this EDIT gets a width of 7
[f2] -- this BUTTONEDIT gets a width of 5 (7-2)
}
END

If the default width generated by the form compiler does not fit, the - dash symbol can be used to define
the real width of the item. In this example, the form item occupies 7 grid cells, but gets a real width of 5 (i.e.
for an EDIT field, you would be able to enter 5 characters):

GRID
{
 1234567
[f1 -]
}
END

To make two items appear directly next to each other, you can use the pipe symbol (|) to indicate the end
of the first item and the beginning of the second item:

GRID
{
 Info: [f001 |f002 |f003]
}
END

If you need the form to support items with a specific height (more that one line), you can specify multiple-
segment item tags that occupy several lines of a grid-area. To create a multiple-segment item, repeat the
item tag delimiters without the item identifier on successive lines:

GRID
{
 Multi-segment: [f001]
 []
 []
 []
 []
}
END

User interface | 875

The notation applies to the new LAYOUT section only. For backward compatibility (when using a SCREEN
section), multiple-segment items can be specified by repeating the identifier in sub-lines.

If the same item tag (i.e. using the same identifier) appears more than once in the layout, it defines a
column of a screen array:

GRID
{
 Single-line static screen array:
 [f001] [f002] [f003]
 [f001] [f002] [f003]
 [f001] [f002] [f003]
 [f001] [f002] [f003]
}
END

You can even define a multi-line list of fields:

GRID
{
 Multi-line static screen array:
 [f001] [f002]
 [f003]
 [f001] [f002]
 [f003]
 [f001] [f002]
 [f003]
 [f001] [f002]
 [f003]
}
END

Hbox tags
Hbox tags group several item tags within the same horizontal layout box, in a grid-based container.

An hbox tag defines the position and size in a GRID container for an horizontal box containing several
leaf form items. The elements in the hbox tag can use additional alignment rules to get the required visual
affect.

Syntax

[element: [...]]

where element can be:

{ identifier [-] | string-list }

where string-list is:

{ string-literal | spacer } [...]

1. identifier references a form item definition in the ATTRIBUTES section.
2. The optional - dash defines the real width of the element.
3. string-list is a combination of string-literals
4. string-literal is a quoted text that defines a static label.
5. spacer is one or more blanks that define an invisible element that expands automatically.
6. The colon is the delimiter for hbox tag elements.

User interface | 876

Usage

Hbox tags are provided to control the alignment of form items in a grid. Hbox tags allow you to stack form
items horizontally without the elements being influenced by elements above or below. In an hbox, you can
mix form fields, static labels and spacers. A typical use of the hbox is to have zip-code / city form fields side
by side with predictable spacing in-between.

An hbox tag is delimited by square braces ([]) and must contain at least one string-list or an identifier
preceded or followed by a colon (:). A string-list is combination of string-literals (quoted text) and spacers
(blank characters). The delimiter for hbox tag elements is the colon.

Hbox tags are not allowed for fields of screen arrays; you will get a form compiler error. The client needs
a matrix element directly in a grid or a scrollgrid to perform the necessary positioning calculations for the
individual fields.

The following example shows simple hbox tags:

GRID
{
 ["Customer info:":]
 [f001 :]
 [:f002]
 ["Name: " :f003]
}
END

In this example:

1. The first hbox tag contains two elements: a static label and a spacer.
2. The second hbox tag contains two elements: a form field and a spacer.
3. The third hbox tag contains two elements: a spacer and a form field.
4. The fourth hbox tag contains two elements: a static label and a form field.

An hbox tag defines the position and width (in grid cells) of several form items grouped inside an horizontal
box. The position and width (in grid cells) of the horizontal box is defined by the square braces ([])
delimiting the hbox tag.

When using an identifier, you define the position of a form item which is described in the ATTRIBUTES
section. When using a string-list, you can define static labels and/or spacers. The following example
defines an hbox tag generating 7 items (a static label, a spacer, a form item identified by num, a spacer, a
static label, a spacer and a form item identified by name):

GRID
{
 ["Num:" :num : :"Name:" :name]
}
END

A spacer is an invisible element that automatically expands. It can be used to align elements left, right or
center in the hbox. The following example defines 3 hboxes with the same width. Each hbox contains one
field. The first field is aligned to the left, the second is aligned to the right and third is centered:

GRID
{
 [left :]
 [:right]
 [:centered:]
}
END

ATTRIBUTES
 LABEL left: label1, TEXT="LEFT";

User interface | 877

 LABEL right: label2, TEXT="RIGHT";
 LABEL centered: label3, TEXT="CENTER";
END

When you use string literals, the quotes define where the label starts and stops. If there is free space after
the quote that ends the label, then it is filled by a spacer. Consider this example:

GRID
{
 [:"Label1"]
 [:"Label2"]
}
END

In this example:

1. The first line contains a spacer, followed by the static label, followed by another spacer. The quotation
marks end the string literal; a colon is not required to delimit the label from the final spacer.

2. The second line contains a spacer, followed by the static label. Because there is no empty space
between the end of the static label and the closing bracket of the hbox Tag (]).

A typical use of hbox tags is to vertically align some form items - that must appear on the same line - with
one or more form items that appear on the other lines:

GRID
{
 Id: [num :"Name: ":name]
 Address: [street :]
 [zip-code:city]
 Phones: [phone :fax]
}
END

In this example, the form compiler will generate a grid containing 7 elements (3 labels and 4 hboxes):

1. The label "Id:",
2. A first hbox which defines 3 cells, where:

• The field 'num' will occupy the cell (1,1),
• The label "Name:" will occupy the cell (2,1),
• The field 'name' will occupy the cell (3,1).

3. The label "Address:" will occupy cell (1,2),
4. A second hbox which defines 1 cell, where:

• The field 'street' will occupy the cell (1,1).
5. A third hbox which defines 2 cells, where:

• The field 'zip-code' will occupy the cell (1,1),
• The field 'city' will occupy the cell (2,1).

6. The label "Phones:" will occupy cell (1,4),
7. A fourth hbox which defines 2 cells, where:

• The field 'phone' will occupy the cell (1,1),
• The field 'fax' will occupy the cell (2,1).

Inside an hbox tag, the positions and widths of elements are independent of other hboxes. It is not possible
to align elements over hboxes. The position of items inside an hbox depends on the spacer and the real
size of the elements. The following example does not align the items as you would expect, following the
character positions in the layout definition:

GRID

User interface | 878

{
 ["Num: " :fnum :]
 ["Name: " :fname]
}
END

A big advantage in using elements in an hbox is that the fields gets their real sizes according to the .per
definition. The following example illustrates the case:

GRID
{
 MMMMM
[f1]
[f2 :]
}
END

Here all items will occupy the same number of grid columns (5). The MMMMM static label will have the
largest width and define the width of the 5 grid cells. The first field is defined with a normal item tag, and
expands to the width of the 5 grid cells. The line 5 defines an hbox that will expand to the size of the 5
grid cells, according to the static label, but its child element - the field f2 - gets a size corresponding to the
number of characters used before the ':' colon (i.e. 3 characters).

If the default width generated by the form compiler does not fit, the - dash symbol can be used to define
the real width of the item. In this example, the hbox tag occupies 20 grid cells, the first form item gets a
width of 5, and the second form item gets a width of 3:

GRID
{
 12345678901234567890
[f1 - :f2 - :]
}
END

The - dash size indicator is especially useful in BUTTONEDIT, DATEEDIT and COMBOBOX form fields, for
which the default width computed by the form compiler may not fit.

In the next example, a static label is positioned above a TEXTEDIT field. The label will be centered over
the TEXTEDIT field, and will remain centered as the field expands or contracts with the resizing of the
window.

GRID
{
 [:"label":]
 [textedit]
}
END

ATTRIBUTES
 TEXTEDIT textedit = formonly.textedit, STRETCH=BOTH;
END

Form item types
The form item types defines the purpose of form elements.

BUTTON item type
Defines a push-button that can trigger an action.

BUTTON item basics

The BUTTON form item type defines a standard push button with a label and/or an icon.

User interface | 879

Defining a BUTTON

The label of a BUTTON form item is defined with the TEXT attribute. The COMMENT attribute can be used to
define a hint for the button. Consider using localized strings for these attributes.

The picture is defined by the IMAGE attribute. Consider using centralized icons for button images.

BUTTON ...
 TEXT = %"common.button.text.ok",
 IMAGE = "accept",
 COMMENT = %"common.button.hint.ok";

BUTTON form items can inherit action default attributes, to avoid having to specify the TEXT, COMMENT and
IMAGE attributes in all elements bound to the same action. For more details, see Configuring actions on
page 1318.

Some front-ends support different presentation and behavior options, which can be controlled by a STYLE
attribute. For more details, see Common style attributes on page 818 and Button style attributes on page
821.

Detecting BUTTON action

A BUTTON form item acts as an action view for a dialog action, and is bound to the ON ACTION handler
by name. The action name can be prefixed with a sub-dialog identifier and/or a field name, to define a
qualified action view:

-- Form file (grid layout)
BUTTON b1: print;

-- Program file:
ON ACTION print
 -- Execute code related to the print action

Note: When controlled by a COMMAND action handler in a DIALOG interactive instruction, form
buttons can get the focus and thus be part of the tabbing list (TABINDEX attribute).

For more details, see Binding action views to action handlers on page 1278.

Where to use a BUTTON

A BUTTON form item can be defined in two different ways:

1. With an item tag and a BUTTON item definition on page 934 in a grid-layout container (GRID,
SCROLLGRID and TABLE).

2. As a BUTTON stack item on page 915 in a STACK container.

BUTTONEDIT item type
Defines a line-edit with a push-button that can trigger an action.

BUTTONEDIT item basics

The BUTTONEDIT form item defines an edit field that get user input, with an additional push button that can
fire an action.

This type of form field is typically used to open a secondary window, to let the user choose from a large list
of items and set the field value.

Defining a BUTTONEDIT

The IMAGE attribute of a BUTTONEDIT form item defines the picture to be displayed on the button.

User interface | 880

By default, the text editor of a BUTTONEDIT allows the user to change the field value. Use the
NOTEDITABLE attribute to deny text modification. The field still gets the focus, and the action button
remains active, if there is a corresponding action handler in the current dialog.

BUTTONEDIT ...
 IMAGE = "zoom",
 NOTEDITABLE;

The button of BUTTONEDIT form items can inherit action default attributes, to avoid having to specify the
IMAGE attributes in all elements bound to the same action. For more details, see Configuring actions on
page 1318.

Most of the attributes described in the EDIT item type on page 886 can also be used with the
BUTTONEDIT.

Some front-ends support different presentation and behavior options, which can be controlled by a STYLE
attribute. For more details, see Common style attributes on page 818 and ButtonEdit style attributes on
page 822.

Detecting BUTTONEDIT button action

The button of a BUTTONEDIT form element acts as an action view for a dialog action, and is bound to the
ON ACTION handler by the ACTION attribute. The ACTION attribute defines the name of the action to be
sent to the program when the user clicks on the button. It can be prefixed with a sub-dialog identifier and/or
field name, to define a qualified action view:

-- Form file
BUTTONEDIT ...
 ACTION = open_city_list;

-- Program file:
ON ACTION open_city_list
 -- Execute code related to the buttonedit button

For more details, see Binding action views to action handlers on page 1278.

Where to use a BUTTONEDIT

A BUTTONEDIT form item can be defined in two different ways:

1. With an item tag and a BUTTONEDIT item definition on page 935 in a grid-layout container (GRID,
SCROLLGRID and TABLE).

2. As a BUTTONEDIT stack item on page 916 in a STACK container.

Defining the widget size

In a grid-based layout, the size of a BUTTONEDIT widget is computed according to layout rules as
described in Widget size within hbox tags on page 1016.

In a stack-based layout, the widget will take the full width available in the parent container.

Field input length

In grid-based layout, the input length in a BUTTONEDIT fields is defined by the item tag and may need to
get the SCROLL attribute. For more details, see Field input length on page 1260.

CHECKBOX item type

User interface | 881

Defines a boolean or three-state checkbox field.

CHECKBOX item basics

The CHECKBOX form item defines a field with a check box and a text label.

Defining a CHECKBOX

The TEXT attribute defines the label to be displayed near the check box. Consider using localized strings
for this attribute.

The box shows a checkmark when the form field contains the value defined in the VALUECHECKED
attribute (for example: "Y"), and shows no checkmark if the field value is equal to the value defined
by the VALUEUNCHECKED attribute (for example: "N"). If you do not specify the VALUECHECKED or
VALUEUNCHECKED attributes, they respectively default to TRUE (integer 1) and FALSE (integer 0).

By default, during an INPUT dialog, a CHECKBOX field can have three states:

• Grayed (NULL value)
• Checked (VALUECHECKED value)
• Unchecked (VALUEUNCHECKED value)

If the field is declared as NOT NULL, the initial state can be grayed if the default value is NULL; once the
user has changed the state of the CHECKBOX field, it switches only between checked and unchecked
states.

During a CONSTRUCT, a CHECKBOX field always has three possible states (even if the field is NOT NULL),
to allow the end user to clear the search condition:

• Grayed (No search condition)
• Checked (Condition column = VALUECHECKED value)
• Unchecked (Condition column = VALUEUNCHECKED value)

Some front-ends support different presentation and behavior options, which can be controlled by a STYLE
attribute. For more details, see Common style attributes on page 818 and CheckBox style attributes on
page 822.

Detecting CHECKBOX modification

To inform the dialog immediately when the value changes, define an ON CHANGE block for the CHECKBOX
field. The program can then react immediately to user changes in the field:

-- Form file (grid layout)
CHECKBOX cb1 = order.ord_valid,
 ITEMS = ... ;

-- Program file:
ON CHANGE ord_valid
 -- The checkbox field has been modified

For more details, see Reacting to field value changes on page 1267.

Where to use a CHECKBOX

A CHECKBOX form item can be defined in two different ways:

1. With an item tag and a CHECKBOX item definition on page 936 in a grid-layout container (GRID,
SCROLLGRID and TABLE).

2. As a CHECKBOX stack item on page 916 in a STACK container.

COMBOBOX item type

User interface | 882

Defines a line-edit with a drop-down list of values.

COMBOBOX item basics

The COMBOBOX form item defines a field that can open a list of possible values the end user can choose
from.

Note: Such form field should be used for a short list of possible values (10 to 50, maximum).

Defining a COMBOBOX

The values of the drop-down list are defined by the ITEMS attribute. Define a simple list of values like
("A","B","C","D", ...) or a list of key/label pairs like in ((1,"Paris"),(2,"Madrid"),
(3,"London")). In the second case, the labels (i.e. the city names) display according to the key value
(the city number) held by the field.

COMBOBOX ...
 ITEMS=((1,"Paris"),(2,"Madrid"),(3,"London"));

Consider using localized strings when defining key/value pairs in the combobox items:

COMBOBOX ...
 ITEMS=((1,%"cities.paris"),
 (2,%"cities.madrid"),
 (3,%"cities.london"));

The INITIALIZER attribute allows you to define an initialization function for the COMBOBOX. This function
will be invoked at runtime when the form is loaded, to fill the item list dynamically, for example with
database records. It is recommended that you use the TAG attribute, so you can identify in the program the
kind of COMBOBOX form item to be initialized. The initialization function name is converted to lowercase by
fglform.

COMBOBOX ...
 TAG = "city", INITIALIZER=cmb_init;

If neither ITEMS nor INITIALIZER attributes are specified, the form compiler automatically fills the list of
items with the values of the INCLUDE attribute, when specified. However, the item list will not automatically
be populated with include range values (i.e. values defined using the TO keyword). The INCLUDE attribute
can be specified directly in the form or indirectly in the schema files.

COMBOBOX ...
 INCLUDE=("A","B","C","D","E");

During an input dialog, a COMBOBOX field value can only be one of the values specified in the ITEMS
attribute. If the field allows NULL values, consider adding an item to reference the NULL value.
However, the best practice is to deny nulls with the NOT NULL attribute, and add a special item such as
(0,"<Undefined>") to specify a non-specified-value:

COMBOBOX ...
 NOT NULL,
 ITEMS=((0,"<Undefined>"),
 (1,"Red"),
 (2,"Yellow"),
 (3,"Green"));

Note: If one of the items is explicitly defined with NULL; In INPUT, selecting the corresponding
combobox list item sets the field value to null. In CONSTRUCT, selecting the list item corresponding
to null will be equivalent to the = query operator, which will generate a "colname is null" SQL

User interface | 883

condition. During an CONSTRUCT, a COMBOBOX field gets an additional 'empty' item (even if the field
is NOT NULL), to let the user clear the search condition.

Some front-ends support different presentation and behavior options, which can be controlled by a STYLE
attribute. For more details, see Common style attributes on page 818 and ComboBox style attributes on
page 823.

Detecting COMBOBOX item selection

To inform the dialog when the value changes, define an ON CHANGE block for the COMBOBOX field. The
program can then react immediately to user changes in the field:

-- Form file (grid layout)
COMBOBOX cb1 = customer.cust_city,
 ITEMS = ... ;

-- Program file:
ON CHANGE cust_city
 -- An new item was selected in the combobox list

For more details, see Reacting to field value changes on page 1267.

Where to use a COMBOBOX

A COMBOBOX form item can be defined in two different ways:

1. With an item tag and a COMBOBOX item definition on page 937 in a grid-layout container (GRID,
SCROLLGRID and TABLE).

2. As a COMBOBOX stack item on page 917 in a STACK container.

Defining the widget size

In a grid-based layout, the size of a COMBOBOX widget is computed according to the SIZEPOLICY and
SAMPLE attributes, and according to layout rules as described in Widget size within hbox tags on page
1016.

In a stack-based layout, the widget will take the full width available in the parent container.

COMBOBOX on mobile devices

On a mobile devices, COMBOBOX form items should be used for a short list of values that can be displayed
on a single page; for example, 4 to 6 elements. When a list will expand to more than one page, it is
recommended that you use a BUTTONEDIT with a zoom, which you can improve with a search button to
find an exact item or to reduce the list of items to scroll.

DATEEDIT item type
Defines a line-edit with a calendar widget to pick a date.

DATEEDIT item basics

The DATEEDIT form item defines a field that can open a calendar to ease date input.

To store the field value, use a DATE program variable with this form item.

Important: DATEEDIT fields are dedicated for DATE value input. Some front-ends (especially on
mobile devices) deny data types different from DATE. If the front-end does not support the data type
used for the DATEEDIT field, the runtime system will raise an error and stop the program. Consider
testing your application with all types of front-ends.

User interface | 884

Defining a DATEEDIT

The DATEEDIT form item type allows the user to edit date values with a specific widget for date input. A
DATEEDIT field typically provides a calendar widget, to let the end user pick a date from it.

When using a DATE variable as recommended, with desktop front-ends, the format of DATEEDIT fields
is by default defined by the DBDATE environment variable as for other editor fields. Specific format can
be defined with the FORMAT attribute, but it is recommended to use the default date formatting. On mobile
platforms, the date format is defined by the device OS language settings.

On some front-end platforms, the native widget used for DATEEDIT fields allows only pure date value
input, and therefore cannot be used with a CONSTRUCT instruction, where it must be possible to enter
search filters like ">=24/03/2014".

Some front-ends support different presentation and behavior options, which can be controlled by a STYLE
attribute. For more details, see Common style attributes on page 818 and DateEdit style attributes on
page 824.

Detecting DATEEDIT calendar selection

To inform the dialog when a date is picked from the calendar widget, define an ON CHANGE block for the
DATEEDIT field. The program can then react immediately to user changes in the field:

-- Form file (grid layout)
DATEEDIT de1 = order.ord_shipdate,
 NOT NULL;

-- Program file:
ON CHANGE ord_shipdate
 -- An new date value was picked from the calendar

For more details, see Reacting to field value changes on page 1267.

Where to use a DATEEDIT

A DATEEDIT form item can be defined in two different ways:

1. With an item tag and a DATEEDIT item definition on page 938 in a grid-layout container (GRID,
SCROLLGRID and TABLE).

2. As a DATEEDIT stack item on page 917 in a STACK container.

Defining the widget size

In a grid-based layout, the size of a DATEEDIT widget is computed according to layout rules as described
in Widget size within hbox tags on page 1016.

In a stack-based layout, the widget will take the full width available in the parent container.

Field input length

The input length in a DATEEDIT fields is defined by the (DATE) program variable. In a grid-based layout,
define an item tag with 10 positions, to be able to display dates with 4 year digits. For more details, see
Field input length on page 1260.

DATETIMEEDIT item type
Defines a line-edit with a calendar widget to pick a datetime.

DATETIMEEDIT item basics

The DATETIMEEDIT form item defines a field that can open a calendar to ease date-time input.

User interface | 885

To store the field value, use a DATETIME YEAR TO MINUTE or DATETIME YEAR TO SECOND program
variable with such form item.

Important: DATEEDIT fields are dedicated for DATETIME value input. Some front-ends (especially
on mobile devices) deny data types different from DATE. If the front-end does not support the data
type used for the DATEEDIT field, the runtime system will raise an error and stop the program.
Consider testing your application with all types of front-ends.

Defining a DATETIMEEDIT

The DATETIMEEDIT form item type allows the user to edit date-time values with a specific widget for date-
time input. A DATETIMEEDIT field typically provides a calendar and clock widget, to let the end user pick a
date and time from it.

The display and input precision (time part with or without seconds) of the DATETIMEEDIT widget depends
from the front-end. On some platforms, native date-time editors do not handle the seconds. Further,
some front-ends (especially on mobile devices) deny data types different from DATETIME YEAR TO
{MINUTE|SECOND}.

On some front-end platforms, the native widget used for DATETIMEEDIT fields allows only pure date-time
value input, and therefore cannot be used with a CONSTRUCT instruction, where it must be possible to
enter search filters like ">= 2014-01-23 11:00".

Some front-ends support different presentation and behavior options, which can be controlled by a STYLE
attribute. For more details, see Common style attributes on page 818.

Detecting DATETIMEEDIT calendar selection

To inform the dialog when a date-time is picked from the calendar widget, define an ON CHANGE block for
the DATETIMEEDIT field. The program can then react immediately to user changes in the field:

-- Form file (grid layout)
DATETIMEEDIT dt1 = order.ord_shipdate,
 NOT NULL;

-- Program file:
ON CHANGE ord_shipdate
 -- An new date-time value was picked from the calendar

For more details, see Reacting to field value changes on page 1267.

Where to use a DATETIMEEDIT

A DATETIMEEDIT form item can be defined in two different ways:

1. With an item tag and a DATETIMEEDIT item definition on page 939 in a grid-layout container (GRID,
SCROLLGRID and TABLE).

2. As a DATETIMEEDIT stack item on page 918 in a STACK container.

Defining the widget size

In a grid-based layout, the size of a DATETIMEEDIT widget is computed according to layout rules as
described in Widget size within hbox tags on page 1016.

In a stack-based layout, the widget will take the full width available in the parent container.

Field input length

The input length in a DATETIMEEDIT fields is defined by the (DATETIME) program variable. In a grid-
based layout, define an item tag with enough positions, to be able to display dates with 4 year digits. For
more details, see Field input length on page 1260.

User interface | 886

EDIT item type
Defines a simple line-edit field.

EDIT item basics

The EDIT form item defines a field to enter a single-line text, for any data type.

This item type is typically used to define character string and numeric form fields.

Defining an EDIT

The EDIT item type can be used for any data type that can be converted to an editable text.

To show a hint to the user when the field has the focus, use the COMMENT attribute.

If the field is mandatory for an input, combine the NOT NULL with the REQUIRED attribute.

The value accepted for the field can be limited with the INCLUDE attribute.

To provide a default value, define the DEFAULT attribute for the field.

Use the DOWNSHIFT or UPSHIFT attributes to force the letter case during input.

Input can be hidden (for example for password fields), with the INVISIBLE attribute.

Especially for mobile devices, use the KEYBOARDHINT attribute to get a specific keyboard when entering
values into the field.

Input completion proposals can be implemented with the COMPLETER attribute.

Some front-ends support different presentation and behavior options, which can be controlled by a STYLE
attribute. For more details, see Common style attributes on page 818 and Edit style attributes on page
826.

Where to use an EDIT

An EDIT form item can be defined in two different ways:

1. With an item tag and a EDIT item definition on page 939 in a grid-layout container (GRID,
SCROLLGRID and TABLE).

2. As a EDIT stack item on page 918 in a STACK container.

Field input length

In grid-based layout, the input length in an EDIT fields is defined by the item tag and may need to get the
SCROLL attribute. For more details, see Field input length on page 1260.

FOLDER item type
Defines a layout area to hold folder pages.

FOLDER item basics

A FOLDER form item type groups folder pages together. Folder pages are defined with the PAGE form item.

Defining an FOLDER

The FOLDER form item is just a container for PAGE items.

FOLDER ...
 PAGE ...
 ...
 PAGE ...
 ...

User interface | 887

Some front-ends support different presentation and behavior options, which can be controlled by a STYLE
attribute. For more details, see Common style attributes on page 818.

Where to use a FOLDER
A FOLDER form item can be defined in two different ways:

1. In as a FOLDER container in a LAYOUT tree, within a grid-based layout.
2. As a FOLDER stack item, inside a STACK container, within a stack-based layout.

GRID item type
Defines a layout area based on a grid of cells.

GRID item basics

A GRID form item defines an area in the layout section to place children form items by X,Y position in
layout cells.

Defining an GRID

The GRID container declares a formatted text block defining the dimensions and the positions of the form
items contained in the grid.

You can specify the position of labels, form fields for data entry or additional interactive objects such as
buttons.

A GRID container can hold static text, item tags, field tags, hbox tags, and layout tags to define other
containers such as TABLE, TREE and SCROLLGRID.

A GRID can hold form items such as labels, fields, or buttons at a specific position. Form items are located
with item tags in the grid layout area. You can use layout tags to place some type of containers inside a
grid.

Some front-ends support different presentation and behavior options, which can be controlled by a STYLE
attribute. For more details, see Common style attributes on page 818 and Grid style attributes.

Where to use a GRID

A GRID form item can only be defined as a GRID container in a LAYOUT tree.

GRID layout definition

For more details about grid layout concept, see Grid-based layout on page 1004.

GROUP item type
Defines a layout area to group other layout elements together.

GROUP item basics

A GROUP form item type groups other form items together, typically in a groupbox widget.

Defining an GROUP

The GROUP form item typically gets a TEXT attribute, to define the title of the group. Consider using
localized strings for this attribute:

GROUP ...
 TEXT=%"customer.info";

Note: Some front-ends render group containers as a groupbox widget, displaying a title on the top
of the child elements, while other front-ends may not show a group title.

User interface | 888

Consider identifying group elements with a name, in order to manipulate the group during program
execution. For example use the ui.Form.setElementHidden() method to hide or show groups in a
form:

GROUP g1: g_cust_info, ... ; -- grid-based layout
GROUP g_cust_info, ... ; -- stack-based layout

Some front-ends support different presentation and behavior options, which can be controlled by a STYLE
attribute. For more details, see Common style attributes on page 818 and Group style attributes.

Groups in grid-based layout

In a LAYOUT tree with GROUP containers, if you want to include several children in a GROUP, you can add a
VBOX or HBOX into the GROUP, to define how these form items are aligned.

Note: When defining a GROUP container, you cannot set the GRIDCHILDRENINPARENT attribute.
This attribute makes sense only for a group item defined with a layout tag contained in a GRID area.

Consider using a group layout tag inside a GRID container, this layout specification technique is often more
appropriate to define forms:

GRID
{
<G g1 ><G g2 >
[l1 :f1][f4]
 ...
<G g3 >
 ...

Groups in stack-based layout

In a STACK container, GROUP form items are one of the base concepts used to put stack items together.
For more details see Stacked group rendering on page 1019.

Groups on mobile devices

On mobile devices, groups render according to the platform standards:

• With GMA/Android™, groups are visualized by a simple separator under the group title. Complex layout
construction is supported: groups in groups, groups in a grid, and so on.

• With GMI/iOS, the layout is limited by the platform GUI standards. The only visible grouping container
element is a group. Groups within groups are not allowed. GMI enforces each form item as a member in
a group. There can be group headers and footers, but no elements in between groups.

Where to use a GROUP

A GROUP form item can be defined in three different ways:

1. As a GROUP container in a LAYOUT tree, within a grid-based layout.
2. As a <GROUP > layout tag with a GROUP item definition in the ATTRIBUTES section, within a grid-based

layout.
3. As a GROUP stack item, inside a STACK container, within a stack-based layout.

IMAGE item type
Defines a area that can display an image resource.

IMAGE item basics

The IMAGE item type defines an area where a picture resource can be displayed.

User interface | 889

Defining an IMAGE

An IMAGE form item can be defined as a form field image or as a static image. Use a form field image
when the content of the image will change often during program execution (for example, to display images
from the database). Use a static image if the image remains the same during program execution.

Some front-ends support different presentation and behavior options, which can be controlled by a STYLE
attribute. For more details, see Common style attributes on page 818 and Image style attributes on page
828.

Form field IMAGE item

Use a form field image item to display values that change often during program execution, for example if
the image is stored in the database.

The picture resource is defined by the value of the field.

The value can be changed from the program by using the DISPLAY BY NAME / DISPLAY TO
instruction, or just by changing the value of the program variable bound to the image field when using the
UNBUFFERED mode in an interactive instruction.

When defining the IMAGE item in the form, use a field name to identify the element in programs:

-- Grid-based layout (ATTRIBUTES item definition)
IMAGE f001 = cars.picture, SIZEPOLICY=FIXED, AUTOSCALE;

-- Stack-based layout (STACK item)
IMAGE cars.picture, SIZEPOLICY=FIXED, AUTOSCALE;

Static IMAGE item

Use a static image item to display an image that does not change during program execution, such as form
decoration pictures and logos.

The resource of the image is defined by the IMAGE attribute; the item is not a form field. This kind of item is
not affected by instructions such as CLEAR FORM or the DISPLAY TO instruction.

-- Grid-based layout (ATTRIBUTES item definition)
IMAGE img1: logo, IMAGE="fourjs.png", STRETCH=BOTH;

-- Stack-based layout (STACK item)
IMAGE logo, IMAGE="fourjs.png", AUTOSCALE;

Providing the image resource

To display an image, the front-end needs the image data, which can be provided in different ways.

For example, you can specify an URL, a mapped icon, or a plain image file (centralized on the application
server).

For more details about image resource specification, see Providing the image resource on page 784.

Detecting IMAGE clicks

To inform the dialog immediately when an image was clicked, define the ACTION attribute in the IMAGE
item, and implement the corresponding ON ACTION handler in the dialog:

-- Form file (grid layout)
IMAGE : logo, IMAGE="fourjs.png",
 ACTION=show_about;

-- Program file:

User interface | 890

ON ACTION show_about
 -- The image was clicked

The program can then react immediately when the user selects the image element.

Where to use a IMAGE

A IMAGE form item can be defined in two different ways:

1. With an item tag and a IMAGE item definition on page 941 in a grid-layout container (GRID,
SCROLLGRID and TABLE).

2. As a IMAGE stack item on page 920 in a STACK container.

Defining the widget size

The size of an IMAGE widget can be controlled in grid-based or stack-based layout, according to several
attributes such as SIZEPOLICY, AUTOSCALE and STRETCH.

For more details about image sizing, see Controlling the image layout on page 783.

LABEL item type
Defines a simple text area to display a read-only value.

LABEL item basics

The LABEL form item defines a read-only text area.

Defining a LABEL

A LABEL form item can be defined as a form field image or as a static label. Use a form field label when
the text changes often during program execution (for example, to display text from the database). Use a
static label if the text remains the same during program execution.

Some front-ends support different presentation and behavior options, which can be controlled by a STYLE
attribute. For more details, see Common style attributes on page 818 and Label style attributes on page
828.

Form field LABEL item

Use a form field label item to display values that change often during program execution, for example if the
text is stored in the database.

The label text is defined by the value of the field.

The value can be changed from the program by using the DISPLAY BY NAME / DISPLAY TO
instruction, or just by changing the value of the program variable bound to the label field when using the
UNBUFFERED mode in an interactive instruction.

When defining the LABEL item in the form, use a field name to identify the element in programs:

-- Grid-based layout (ATTRIBUTES item definition)
LABEL f001 = cars.description;

-- Stack-based layout (STACK item)
LABEL cars.description;

Static LABEL item

Use a static label item to display a text that does not change during program execution.

User interface | 891

This kind of item is not affected by instructions such as CLEAR FORM or the DISPLAY TO instruction.

-- Grid-based layout (ATTRIBUTES item definition)
LABEL lab1: label1, TEXT="Name:";

-- Stack-based layout (STACK item)
LABEL label1, TEXT="Name:";

Consider using localized strings to ease application internationalization:

LABEL ...
 TEXT = %"label.customer.name";

Static labels display only character text values, and therefore do not follow any justification rule as form
field labels.

Multi-line text in LABELs

In order to display label text on several lines, the text must contain \n line-feed characters:

LABEL lab1: label1,
 TEXT="First line.\nSecond line.";

Where to use a LABEL

A LABEL form item can be defined in two different ways:

1. With an item tag and a LABEL item definition on page 942 in a grid-layout container (GRID,
SCROLLGRID and TABLE).

2. As a LABEL stack item on page 921 in a STACK container.

PAGE item type
Defines the content of a folder page.

PAGE item basics

A PAGE form item type groups other form elements together, to define a folder page of a parent FOLDER
form item.

Defining an PAGE

A PAGE form item can only be a child of a FOLDER form item.

By default, PAGE form items are used to group elements for decoration only.

Note: Use the TABINDEX attribute of form fields inside the folder page, to define which field gets
the focus when a folder page is selected.

The TEXT attributes defines the label of the folder page. Consider using localized strings for this attribute.

The IMAGE attribute can be used to specify which image to use as an icon.

Detecting folder page selection

If needed, you can use the ACTION attribute to bind an action to a folder page. When the page is selected,
the program gets the corresponding action event.

Note: This feature should be used with care: It exists to implement different singular dialog
statements (such as INPUT) in each folder page. You should use a DIALOG statement to control all
folder pages simultaneously.

User interface | 892

Bring a folder page to the top

To bring a folder page to the top, use the NEXT FIELD program instruction to give the focus to one of the
active fields of the page, or use the ui.Form.ensureFieldVisible() method if the fields are disabled/
unused, or use the ui.Form.ensureElementVisible() method if the page does not contain focusable
form items.

For more details, see Giving the focus to a form element on page 1272.

Where to use a PAGE
A PAGE form item can be defined in two different ways:

1. As a PAGE container in a LAYOUT tree, within a grid-based layout.
2. As a PAGE stack item, inside a STACK container, within a stack-based layout.

PROGRESSBAR item type
Defines a progress indicator field.

PROGRESSBAR item basics

The PROGRESSBAR form item defines a field that shows a progress indicator.

Note: Use a SMALLINT or INTEGER variable with a PROGRESSBAR form item. Larger types like
BIGINT or DECIMAL are not supported.

Defining a PROGRESSBAR

The VALUEMIN and VALUEMAX attributes define respectively the lower and upper integer limit of the
progress information. Any value outside this range will not be displayed. Default values are VALUEMIN=0
and VALUEMAX=100.

Some front-ends support different presentation and behavior options, which can be controlled by a STYLE
attribute. For more details, see Common style attributes on page 818 and ProgressBar style attributes on
page 830.

Displaying PROGRESSBAR values

The position of the progress bar indicator is defined by the value of the corresponding form field. The value
can be changed from the program by using the DISPLAY TO instruction, to set the value of the field, or by
changing the program variable bound to the field when using the UNBUFFERRED dialog mode.

Progress information is typically displayed during non-interactive program code. To show changes to the
end user in this context, you need to use the ui.Interface.refresh() method to force a refresh. To
provide the best feedback to the user, consider calling the refresh() method regularly but not to often,
otherwise you will overload the network traffic and bring down the front-end component.

For example, if you have to process 1000 rows, define VALUEMIN=0 and VALUEMAX=1000 in the
PROGRESSBAR item, and perform a refresh every 50 rows:

FOR row=1 TO 1000
 ...
 IF (row MOD 50) == 0 THEN
 LET myprogbar = row
 CALL ui.Interface.refresh()
 END IF
END FOR

Where to use a PROGRESSBAR

A PROGRESSBAR form item can be defined in two different ways:

User interface | 893

1. With an item tag and a PROGRESSBAR item definition on page 942 in a grid-layout container (GRID,
SCROLLGRID and TABLE).

2. As a PROGRESSBAR stack item on page 923 in a STACK container.

RADIOGROUP item type
Defines a mutual exclusive set of options field.

RADIOGROUP item basics

The RADIOGROUP form item defines a field that provides several options that the user can make a
selection from. Checking one radio button unchecks any previously checked button within the same group.

Defining a RADIOGROUP

A RADIOGROUP defines a set of radio buttons where each button is associated with a value defined in the
ITEMS attribute.

The text associated with each item value will be used as the label of the corresponding radio button,
for example: ITEMS=((1,"Beginner"), (2,"Normal"), (3,"Expert")) will create three radio
buttons with the texts Beginner, Normal and Expert, respectively.

RADIOGROUP ...
 ITEMS=((1,"Beginner"),(2,"Normal"),(3,"Expert"));

Consider using localized strings when defining key/value pairs in the radiogroup items:

COMBOBOX ...
 ITEMS=((1,%"skills.beginner"),
 (2,%"skills.normal"),
 (3,%"skills.expert"));

If the ITEMS attribute is not specified, the form compiler automatically fills the list of items with the values
of the INCLUDE attribute, when specified. However, the item list will not automatically be populated with
include range values (i.e. values defined using the TO keyword). The INCLUDE attribute can be specified
directly in the form or indirectly in the schema files.

During an INPUT, a RADIOGROUP field value can only be one of the values specified in the ITEMS
attribute. During an CONSTRUCT, a RADIOGROUP field allows to uncheck all items (even if the field is NOT
NULL), to let the user clear the search condition.

If one of the items is explicitly defined with NULL and the NOT NULL attribute is omitted: In INPUT,
selecting the corresponding radio button sets the field value to null. In CONSTRUCT, selecting the radio
button corresponding to null will be equivalent to the = query operator, which will generate a "colname is
null" SQL condition.

Use the ORIENTATION attribute to define if the radio group must be displayed vertically or horizontally:

COMBOBOX ...
 ITEMS=(...),
 ORIENTATION = HORIZONTAL;

Some front-ends support different presentation and behavior options, which can be controlled by a STYLE
attribute. For more details, see Common style attributes on page 818 and RadioGroup style attributes on
page 831.

User interface | 894

Detecting RADIOGROUP item selection

To inform the dialog when a value change, define an ON CHANGE block for the RADIOGROUP field. The
program can then react immediately to user changes in the field:

-- Form file (grid layout)
RADIOGROUP rg1 = user.user_skill,
 ITEMS = ... ;

-- Program file:
ON CHANGE user_skill
 -- An new item was selected in the radiogroup

For more details, see Reacting to field value changes on page 1267.

Where to use a RADIOGROUP

A RADIOGROUP form item can be defined in two different ways:

1. With an item tag and a RADIOGROUP item definition on page 943 in a grid-layout container (GRID,
SCROLLGRID and TABLE).

2. As a RADIOGROUP stack item on page 923 in a STACK container.

SCROLLGRID item type
Defines a scrollable grid view widget.

SCROLLGRID item basics

A SCROLLGRID form item type defines a grid to show a scrolling list of data records in a set of positioned
form fields.

Defining an SCROLLGRID

The SCROLLGRID form item declares a formatted text block defining the dimensions and the position of the
logical elements of a screen for a multi-record presentation.

A SCROLLGRID is similar to the GRID, except that you can only specify form fields, that repeat on several
"row-templates", in order to design a multiple-record view that appears with a vertical scrollbar.

Note: When using a SCROLLGRID container, you cannot set the GRIDCHILDRENINPARENT
attribute. This attribute makes sense only for a scrollgrid defined with a layout tag contained in a
GRID area.

The same layout rules apply as in a GRID container.

By default, a SCROLLGRID container is not resizable in height. Use the WANTFIXEDPAGESIZE=NO
attribute to allow the scrollgrid to stretch vertically.

Some front-ends support different presentation and behavior options, which can be controlled by a STYLE
attribute. For more details, see Common style attributes on page 818.

Where to use a SCROLLGRID

Within a grid-based layout, a SCROLLGRID form item can be defined in two different ways:

1. As a SCROLLGRID container in a LAYOUT tree.
2. As a <SCROLLGRID > layout tag with a SCROLLGRID item definition in the ATTRIBUTES section.

SCROLLGRID view programming

A SCROLLGRID is similar to a TABLE form item in terms of list programming. For more details about list
view programming, see Table views on page 1345.

User interface | 895

SLIDER item type
Defines a slider form item.

SLIDER item basics

The SLIDER form item defines a field where the user can set a value in a given range, such as a typical
audio volume control widget where you can grab the slider handle to change the value.

Use a SMALLINT or INTEGER variable with a SLIDER form item, larger types like BIGINT or DECIMAL are
not supported.

Defining a SLIDER

A SLIDER field lets the user move a handle along a horizontal or vertical groove and translates the
handle's position into a value within the legal range.

The VALUEMIN and VALUEMAX attributes define respectively the lower and upper integer limit of the slider
information. Any value outside this range will not be displayed. The step between two marks is defined by
the STEP attribute. If VALUEMIN and/or VALUEMAX are not specified, they default respectively to 0 (zero)
and 5.

The ORIENTATION attribute defines whether the SLIDER is displayed vertically or horizontally.

This item type is not designed for CONSTRUCT, as the user can only select one value.

Some front-ends support different presentation and behavior options, which can be controlled by a STYLE
attribute. For more details, see Common style attributes on page 818.

Detecting SLIDER item selection

To inform the dialog when a value changes, define an ON CHANGE block for the SLIDER field. The
program can then react immediately to user changes in the field:

-- Form file (grid layout)
SLIDER s1 = options.opts_volume,
 VALUEMIN=0, VALUEMAX=100;

-- Program file:
ON CHANGE opts_volume
 -- An value changed in the slider

For more details, see Reacting to field value changes on page 1267.

Where to use a SLIDER

A SLIDER form item can be defined in two different ways:

1. With an item tag and a SLIDER item definition on page 945 in a grid-layout container (GRID,
SCROLLGRID and TABLE).

2. As a SLIDER stack item on page 924 in a STACK container.

SPINEDIT item type
Defines a spin box widget to enter integer values.

SPINEDIT item basics

The SPINEDIT form item defines a field where the users can increase or decrease the number value by a
specific increment by clicking an up or down arrow button, or by typing the value directly into the text edit
box.

Use a SMALLINT or INTEGER variable with a SLIDER form item. Larger types like BIGINT or DECIMAL
are not supported.

User interface | 896

Defining a SPINEDIT

The increment between two values is defined by the STEP attribute:

SPINEDIT ...
 STEP = 5;

The VALUEMIN and VALUEMAX attributes define respectively the lower and upper integer limit of the spin-
edit range. There is no default minimum or maximum value for the SPINEDIT widget.

This widget is not designed for CONSTRUCT, as you can only enter an integer value.

Some front-ends support different presentation and behavior options, which can be controlled by a STYLE
attribute. For more details, see Common style attributes on page 818.

Detecting SPINEDIT modification

To inform the dialog when a value changes, define an ON CHANGE block for the SPINEDIT field. The
program can then react immediately to user changes in the field:

-- Form file (grid layout)
SLIDER s1 = options.opts_rate,
 VALUEMIN=0, VALUEMAX=100;

-- Program file:
ON CHANGE opts_rate
 -- The value of the spinedit has changed

For more details, see Reacting to field value changes on page 1267.

Where to use a SPINEDIT

A SPINEDIT form item can be defined in two different ways:

1. With an item tag and a SPINEDIT item definition on page 945 in a grid-layout container (GRID,
SCROLLGRID and TABLE).

2. As a SPINEDIT stack item on page 924 in a STACK container.

TABLE item type
Defines a list view widget.

TABLE item basics

A TABLE form item type defines a listview to show a scrolling list of data records in a set of columns.

Defining an TABLE

The TABLE form item defines list view widget to show a set of data records, bound to a screen array.

Some front-ends support different presentation and behavior options, which can be controlled by a STYLE
attribute. For more details, see Common style attributes on page 818 and Table style attributes on page
831.

Where to use a TABLE

A TABLE form item can be defined in three different ways:

1. As a TABLE container in a LAYOUT tree, within a grid-based layout.
2. As a <TABLE > layout tag with a TABLE item definition in the ATTRIBUTES section, within a grid-based

layout.
3. As a TABLE stack item, inside a STACK container, within a stack-based layout.

User interface | 897

TABLE view programming

For more details about table view programming, see Table views on page 1345.

TEXTEDIT item type
Defines a multi-line edit field.

TEXTEDIT item basics

The TEXTEDIT form item defines a text input field with multiple lines. This type of element is typically used
to handle large text values such as comments or addresses that would not fit in a single-line edit field.

Use a VARCHAR(N) or STRING variable to hold the data for a TEXTEDIT form item.

Defining a TEXTEDIT

Use the SCROLLBARS attribute to define vertical and/or horizontal scrollbars for the TEXTEDIT form field.
By default, this attribute is set to VERTICAL for TEXTEDIT fields.

The STRETCH attribute can be used to force the TEXTEDIT field to stretch when the parent container is re-
sized. Values can be NONE, X, Y or BOTH. By default, this attribute is set to NONE for TEXTEDIT fields.

Some front-ends support different presentation and behavior options, which can be controlled by a STYLE
attribute. For more details, see Common style attributes on page 818 and TextEdit style attributes on
page 834.

TAB and RETURN

By default, when the focus is in a TEXTEDIT field, the Tab key moves to the next field, while the Return
key adds a newline (ASCII 10) character in the text.

To control the user input when the Tab and Return keys are pressed, specify the WANTTABS and
WANTNORETURNS attributes.

With WANTTABS, the Tab key is consumed by the TEXTEDIT field, and a Tab character (ASCII 9) is added
to the text. The user can still jump out of the field with the Shift-Tab combination.

With WANTNORETURNS, the Return key is not consumed by the TEXTEDIT field, and the action
corresponding to the Return key is triggered. The user can still enter a newline character with Shift-Return
or Ctrl-Return.

Where to use a TEXTEDIT

A TEXTEDIT form item can be defined in two different ways:

1. With an item tag and a TEXTEDIT item definition on page 947 in a grid-layout container (GRID,
SCROLLGRID and TABLE).

2. As a TEXTEDIT stack item on page 925 in a STACK container.

Defining the widget size

In a grid-based layout, the layout behavior of the TEXTEDIT widget can be controlled with the STRETCH
and SCROLLBARS attributes.

In a stack-based layout, the TEXTEDIT widget always adapts to the field value to avoid scrollbars. You can
control the minimum height of the TEXTEDIT widget by using the HEIGHT attribute. If the field content is
null and the HEIGHT attribute is not defined, the minimum size defaults to one line.

Field input length

By default, the input length in an TEXTEDIT fields is defined by the program variable. There is no need to
define the SCROLL attribute, except if you explicitly specify SCROLLBARS=NONE (in a grid-based layout).

User interface | 898

For more details about the SCROLL attribute, see Field input length on page 1260.

Rich Text HTML support

Some front-ends can also support different text formattings, according to a style attribute. You can for
example display and input HTML content in a TEXTEDIT with the Genero Desktop Client. When this
feature is enabled, the TEXTEDIT support rich text editing. Depending on the front-end, different formatting
options are available (bold, font size, and so on) and can be controlled using either an integrated toolbox or
via local actions.

Note:

• Each front-end uses its own technology to provide HTML support in TEXTEDIT fields. The
HTML representation may vary between front-ends. As a result, the same HTML content may
display in a different way on another front-end.

• When using rich text, the FGL_DIALOG_SETCURSOR() and FGL_DIALOG_SETSELECTION()
functions must be called carefully. Because of the rich text format, having a corresponding
cursor position / selection between displayed text and HTML representation may be difficult,
especially in the case of hidden parts.

TIMEEDIT item type
Defines a line-edit with a clock widget to pick a time.

TIMEEDIT item basics

The TIMEEDIT form item defines a field that allows the user to edit 24H time values, or time duration
(intervals), with a specific clock widget for time input.

To store TIMEEDIT field values, consider using the appropriate DATETIME HOUR TO MINUTE or
DATETIME HOUR TO SECOND data type according to the target front-end.

Important: The display and input precision (with or without seconds) of the TIMEEDIT widget
depends from the front-end. On some platforms, native time editors do not handle the seconds.
Further, some front-ends (especially on mobile devices) deny data types different from DATETIME
HOUR TO {MINUTE|SECOND}. If the front-end does not support the data type used for the
TIMEEDIT field, the runtime system will raise an error and stop the program. Consider testing your
application with all types of front-ends.

On some front ends, TIMEEDIT fields can also be used to handle INTERVAL values of the class
HOUR TO {MINUTE|SECOND}, in order to input a time duration. Note however that in most cases
the time interval pickers are limited to 24H hours and allow only positive values. As result, not all
values allowed in an INTERVAL HOUR TO MINUTE variable (such as -86 hours 23 minutes) can
be displayed by such widgets.

Defining a TIMEEDIT

No specific attribute is needed to define the rendering and behavior of a TIMEEDIT field. Common data
validation attributes such NOT NULL, REQUIRED, DEFAULT are allowed.

Note: The time display format is automatically taken from the front-end platform settings. For
example, time values can display in the 0-12 hour clock format (with AM/PM indicators), or in the
0-24 hour clock format.

The native widget used for TIMEEDIT fields usually allows only exact time value input, and therefore
cannot be used with a CONSTRUCT instruction, where it must be possible to enter search filters like
">=11:00".

Some front-ends support different presentation and behavior options, which can be controlled by a STYLE
attribute. For more details, see Common style attributes on page 818.

User interface | 899

Detecting TIMEEDIT modification

To inform the dialog when a date is picked from the clock widget, define an ON CHANGE block for the
TIMEEDIT field. The program can then react immediately to user changes in the field:

-- Form file (grid layout)
TIMEEDIT de1 = order.ord_shiptime,
 NOT NULL;

-- Program file:
ON CHANGE ord_shiptime
 -- An new time value was picked from the clock widget

For more details, see Reacting to field value changes on page 1267.

Where to use a TIMEEDIT

A TIMEEDIT form item can be defined in two different ways:

1. With an item tag and a TIMEEDIT item definition on page 947 in a grid-layout container (GRID,
SCROLLGRID and TABLE).

2. As a TIMEEDIT stack item on page 926 in a STACK container.

Field input length

The input length in a TIMEEDIT fields is defined by the (DATETIME) program variable. In a grid-based
layout, define an item tag with enough positions, to be able to display all time value digits (5 positions for
HH:MM, 7 positions for HH:MM:SS). For more details, see Field input length on page 1260.

TREE item type
Defines a tree view widget.

TREE item basics

A TREE form item type defines a treeview to show a structured tree of data records with an optional a set of
columns.

Defining an TREE

The TREE form item defines tree view widget to show a structured set of data records, bound to a screen
array.

Tree view definitions are very similar to regular TABLE elements; before reading further about tree views,
you should be familiar with table elements.

The first column in the TREE must be the field defining the text of the tree-view nodes.

The screen array definition must have exactly the same number of columns as the TREE form item.

Some front-ends support different presentation and behavior options, which can be controlled by a STYLE
attribute. For more details, see Common style attributes on page 818 and Table style attributes on page
831.

Where to use a TREE

In a grid-based layout, a TREE form item can be defined in two different ways:

1. As a TREE container in a LAYOUT tree.
2. As a <TREE > layout tag with a TREE item definition in the ATTRIBUTES section.

User interface | 900

TREE view programming

For more details about tree view programming, see Tree views on page 1384.

WEBCOMPONENT item type
Defines a specialized form item that holds an external component.

WEBCOMPONENT item basics

The WEBCOMPONENT form item defines a form field that will hold an external component, implemented with
a front-end plug-in mechanism.

This topic describes the WEBCOMPONENT item type in form definition files, a complete section is dedicated
to web component programming.

Defining a WEBCOMPONENT

The COMPONENTTYPE attribute identifies gICAPI external objects to be used for the field. The
PROPERTIES attribute is typically used to define attributes that are specific to a given gICAPI-based web
component. For example, a chart component might have properties to define x-axis and y-axis labels. For
more details, see Using a gICAPI web component on page 1422.

If the COMPONENTTYPE attribute is not used, the web component will be a URL-based web component. For
more details, see Using a URL-based web component on page 1419.

Some front-ends support different presentation and behavior options, which can be controlled by a STYLE
attribute. For more details, see Common style attributes on page 818.

Where to use a WEBCOMPONENT

A WEBCOMPONENT form item can be defined in two different ways:

1. With an item tag and a WEBCOMPONENT item definition on page 949 in a grid-layout container
(GRID, SCROLLGRID and TABLE).

2. As a WEBCOMPONENT stack item on page 927 in a STACK container.

Defining the widget size

The size of a WEBCOMPONENT widget can be controlled in grid-based or stack-based layout, according to
several attributes such as SIZEPOLICY and STRETCH.

For more details about image sizing, see Controlling the web component layout on page 1418.

External form inclusion
Form inclusion allows to reuse the same form part in different forms.

In some cases, application forms can become very complex, or can have a common layout part that
repeats across forms. In such case, some parts of the form can be defined in a external .per file, that will
be included in the final forms by using the FORM clause inside the LAYOUT section.

Further, the external form parts can be controlled by a declarative dialog instruction that can be attached to
any procedural dialog instruction, with the SUBDIALOG clause of DIALOG.

LAYOUT
 VBOX
 GRID g1
 {
 Customer information
 Name: [f001]
 ...
 }
 END
 FORM "orders"

User interface | 901

 END
END

Boolean expressions in forms
Some form item definitions can include boolean expressions with a form file specific syntax.

Syntax

[(] bool-expr {AND|OR} bool-expr [)] [...]

where bool-expr is:

[NOT]
{ field-tag
 { = expression
 | <> expression
 | != expression
 | <= expression
 | >= expression
 | < expression
 | > expression
 | IS [NOT] NULL
 | [NOT] BETWEEN expression AND expression
 | [NOT] MATCHES "string"
 | [NOT] LIKE "string"
 }
}

1. field-tag is the name of the current field tag in form line with the attribute definition.
2. expression can be the a character string, numeric or date-time literal.

Usage

Some form specification file attributes such as COLOR WHERE require a boolean expression. These
boolean expressions are different from the language boolean expressions, and have a limited syntax which
is specific to the form files.

When a field-tag is used in the boolean expression, the runtime system replaces field-tag at runtime with
the current value in the screen field and evaluates the expression.

Example

EDIT f001 = item.price,
 COLOR=RED
 WHERE f001 >= 100 AND f001 < 1000;

Form file structure
A form specification file is defined by a set of sections.

The sections of a form specification file must appear in the following order:

1. SCHEMA section on page 902
2. ACTION DEFAULTS section on page 903
3. TOPMENU section on page 903
4. TOOLBAR section on page 905
5. TABLES section on page 931
6. LAYOUT section on page 907
7. ATTRIBUTES section on page 932

User interface | 902

8. INSTRUCTIONS section on page 950

Each section must begin with the keyword for which it is named, only the LAYOUT section is mandatory.

SCHEMA section
Defines the database schema file to be used to compile the form.

Each form specification file can begin with a SCHEMA section identifying the database schema (if any)
on which the form is based. This can be any database schema that is defined with a database schema
file. Form field data types can be automatically extracted from the schema file if you specify the table and
column name in the form field definition (see ATTRIBUTES section).

Syntax 1

SCHEMA { database[@dbserver] | string | FORMONLY }

1. database is the name of the database schema to be used for the form compilation.
2. dbserver identifies the Informix® database server (INFORMIXSERVER).
3. string can be a string literal containing the database name.

Syntax 2: (supported for backward compatibility)

DATABASE { database[@dbserver] | string | FORMONLY } [WITHOUT NULL INPUT]

The DATABASE syntax is supported for compatibility with Informix® 4gl; using SCHEMA is recommended.

1. database is the name of the database schema to be used for the form compilation.
2. dbserver identifies the Informix® database server (INFORMIXSERVER)
3. string can be a string literal containing the database name.

Usage

The SCHEMA (or DATABASE) defines the database schema to be used to resolve data types for database
column-based fields.

Note: The DATABASE instruction is supported for backward compatibility, we recommend using
SCHEMA instead.

The SCHEMA section must appear in the sequence described in form file structure.

The SCHEMA section is optional; if you do not specify it, database schema specification defaults to SCHEMA
FORMONLY.

You can create a form that is not related to any database schema by using the FORMONLY keyword after
SCHEMA/DATABASE. When using this option, you must omit the TABLES section and define field data types
explicitly in the ATTRIBUTES section.

The database and dbserver specifications are supported (but ignored) for backward compatibility with
Informix® form specifications.

When using a specific database schema, the field data types are taken from the schema file during
compilation. Make sure that the database schema file of the development database corresponds to the
production database; otherwise the form fields defined in the compiled version of your forms will not match
the table structures of the production database.

The use of the WITHOUT NULL INPUT option in the DATABASE syntax is supported for backward
compatibility, but is ignored.

Example

SCHEMA stores

User interface | 903

LAYOUT
 ...

ACTION DEFAULTS section
The ACTION DEFAULTS section defines local action view default attributes for the form elements.

Syntax

ACTION DEFAULTS
 ACTION action-identifier (action-attribute [,...])
 [...]
END

1. action-identifier defines the name of the action.
2. action-attribute defines an attribute for the action.

Attributes

ACCELERATOR, ACCELERATOR2, ACCELERATOR3, ACCELERATOR4, DEFAUTVIEW, COMMENT,
CONTEXTMENU, IMAGE, TEXT, VALIDATE.

Usage

The ACTION DEFAULTS section centralizes action view attributes (text, comment, image, accelerators) at
the form level.

The ACTION DEFAULTS section must appear in the sequence described in form file structure.

The ACTION DEFAULTS section is optional.

The section holds a list of ACTION elements and specify attributes for each action. The action is identified
by the name following the ACTION keyword, and attributes are specified in a list between parenthesis.

The attributes defined in this section are applied to form action views like buttons, toolbar buttons, or
topmenu options, if the individual action views do not explicitly define their own attributes.

Action attributes can be defined at different levels, see action configuration for more details.

Example

ACTION DEFAULTS
 ACTION accept (COMMENT="Commit order record changes",
 CONTEXTMENU=NO)
 ACTION cancel (TEXT="Stop", IMAGE="stop",
 ACCELERATOR=SHIFT-F2, VALIDATE=NO)
 ACTION print (COMMENT="Print order information",
 ACCELERATOR=CONTROL-P,
 ACCELERATOR2=F5)
 ACTION zoom1 (COMMENT="Open items list", VALIDATE=NO)
 ACTION zoom2 (COMMENT="Open customers list", VALIDATE=NO)
END

TOPMENU section
The TOPMENU section defines a pull-down menu with options that are bound to actions.

Syntax

TOPMENU [menu-identifier] (menu-attribute [,...])
 group
 [...]

User interface | 904

END

where group is:

GROUP group-identifier (group-attribute [,...])
 { command
 | group
 | separator
 } [...]
END

where command is:

COMMAND command-identifier (command-attribute [,...])

and separator is:

SEPARATOR [separator-identifier] (separator-attribute [,...])

1. menu-identifier defines the name of the top menu (optional).
2. group-identifier defines the name of the group.
3. command-identifier defines the name of the action to bind to.
4. separator-identifier defines the name of the separator (optional).
5. menu-attribute can be: STYLE, TAG.
6. group-attribute is one of: STYLE, TEXT, IMAGE, COMMENT, TAG, HIDDEN.
7. command-attribute is one of: STYLE, TEXT, IMAGE, COMMENT, TAG, HIDDEN, ACCELERATOR.
8. separator-attribute is one of: STYLE, TAG, HIDDEN.

Attributes

ACCELERATOR, COMMENT, HIDDEN, IMAGE, STYLE, TEXT, TAG.

Usage

The TOPMENU section is used to define a pull-down menu in a form.

The TOPMENU section must appear in the sequence described in form file structure.

The TOPMENU section is optional.

In a TOPMENU section, you build a tree of GROUP elements to design the pull-down menu. A GROUP can
contain COMMAND, SEPARATOR or GROUP children. A COMMAND defines a pull-down menu option that
triggers an action when it is selected. In the topmenu specification, command-identifier defines which
action a menu option is bound to. For example, if you define a topmenu option as "COMMAND zoom", it can
be controlled by an "ON ACTION zoom" clause in an interactive instruction.

The topmenu commands are enabled according to the actions defined by the current interactive instruction.
For example, you can define a topmenu option with the action name "cancel" to bind the pull-down item to
this predefined dialog action.

An accelerator name can be defined for a topmenu command; this accelerator name will be used for
display in the command item. You must define he same accelerator in the action defaults section for the
action name of the topmenu command.

TOPMENU elements can get a STYLE attribute in order to use a specific rendering/decoration following
presentation style definitions.

Example

TOPMENU tm (STYLE="mystyle")

User interface | 905

 GROUP form (TEXT="Form")
 COMMAND help (TEXT="Help", IMAGE="quest")
 COMMAND quit (TEXT="Quit")
 END
 GROUP edit (TEXT="Edit")
 COMMAND accept (TEXT="Validate", IMAGE="ok",
 TAG="acceptMenu")
 COMMAND cancel (TEXT="Cancel", IMAGE="cancel")
 SEPARATOR
 COMMAND editcut -- Gets its decoration from action
 defaults
 COMMAND editcopy -- Gets its decoration from action
 defaults
 COMMAND editpaste -- Gets its decoration from action
 defaults
 END
 GROUP records (TEXT="Records")
 COMMAND append (TEXT="Add", IMAGE="plus")
 COMMAND delete (TEXT="Remove", IMAGE="minus")
 COMMAND update (TEXT="Modify", IMAGE="accept")
 SEPARATOR (TAG="lastSeparator")
 COMMAND search (TEXT="Search", IMAGE="find")
 END
END

TOOLBAR section
The TOOLBAR section defines a toolbar with buttons that are bound to actions.

Syntax

TOOLBAR [toolbar-identifier] [(toolbar-attribute [,...])]
 { ITEM item-identifier [(item-attribute [,...])]
 | SEPARATOR [separator-identifier] [(separator-attribute [,...])]
 } [...]
END

1. toolbar-identifier defines the name of the toolbar (optional).
2. item-identifier defines the name of the action to bind to.
3. separator-identifier defines the name of the separator (optional).
4. toolbar-attribute is one of: STYLE, TAG, BUTTONTEXTHIDDEN.
5. item-attribute is one of: STYLE, TAG, TEXT, IMAGE, COMMENT, HIDDEN.
6. separator-attribute is one of: STYLE, TAG, HIDDEN.

Attributes

BUTTONTEXTHIDDEN, COMMENT, HIDDEN, IMAGE, STYLE, TEXT, TAG.

Usage

The TOOLBAR section defines a toolbar in a form.

The TOOLBAR section must appear in the sequence described in form file structure.

The TOOLBAR section is optional.

A TOOLBAR section defines a set of ITEM elements that can be grouped by using a SEPARATOR element.
Each ITEM defines a toolbar button associated to an action by name. The SEPARATOR keyword specifies a
vertical line.

User interface | 906

The toolbar buttons are enabled according to the actions defined by the current interactive instruction.
For example, you can define a toolbar button with the action name "cancel" to bind the toolbar item to this
predefined dialog action.

Toolbar button labels are visible by default. The TOOLBAR supports the BUTTONTEXTHIDDEN attribute to
hide the labels of buttons.

TOOLBAR elements can get a STYLE attribute in order to use a specific rendering/decoration following
presentation style definitions.

Example

TOOLBAR tb (STYLE="mystyle")
 ITEM accept (TEXT="Ok", IMAGE="ok")
 ITEM cancel (TEXT="Cancel", IMAGE="cancel")
 SEPARATOR
 ITEM editcut -- Gets its decoration from action defaults
 ITEM editcopy -- Gets its decoration from action defaults
 ITEM editpaste -- Gets its decoration from action defaults
 SEPARATOR (TAG="lastSeparator")
 ITEM append (TEXT="Append", IMAGE="add")
 ITEM update (TEXT="Update", IMAGE="modify")
 ITEM delete (TEXT="Delete", IMAGE="del")
 ITEM search (TEXT="Search", IMAGE="find")
END

SCREEN section
The SCREEN section defines the form layout for TUI mode forms.

Syntax

SCREEN [SIZE lines [BY chars]] [TITLE "title"]
{
 { text | [item-tag [| item-tag] [...]] }
 [...]
}
[END]

1. lines is the number of characters the form can display vertically. The default is 24.
2. chars is the number of characters the form can display horizontally. The default is the maximum number

of characters in any line of the screen definition.
3. title is the title for the top window.
4. item-tag and text define form elements in the layout.

Usage

The SCREEN section must be used to design TUI mode screens. For a GUI mode application, use a
LAYOUT or STACKED LAYOUT section instead.

The SCREEN section must appear in the sequence described in form file structure.

This section is mandatory, unless you use a LAYOUT section.

The END keyword is optional.

Inside the SCREEN section, you can define the position of text labels and form fields in the area delimited
by the {} curly braces.

Horizontal lines can be specified with a set of dash characters.

User interface | 907

Avoid Tab characters (ASCII 9) inside the curly-brace delimited area. If used, Tab characters will be
replaced by 8 blanks by fglform.

Example

SCREEN
{
 CustId : [f001] Name: [f002]
 Address: [f003]
 [f003]
 --
}
END

LAYOUT section
The LAYOUT section defines the graphical alignment of the form by using a tree of layout containers.

Syntax

LAYOUT [(layout-attribute [,...])]
 root-container
 child-container
 [...]
 END
[END]

1. layout-attribute is an attribute for the whole form.
2. root-container is the first container that holds child-containers.

Attributes

IMAGE, MINHEIGHT, MINWIDTH, SPACING, STYLE, TEXT, TAG, VERSION, WINDOWSTYLE.

Can hold

FORM, VBOX, HBOX, GROUP, FOLDER, GRID, SCROLLGRID, STACK, TABLE, TREE.

Usage

The LAYOUT section is used to define a a tree of layout containers, it can mix grid-based layout containers
(GRID), with stack-based layout containers (STACK).

The LAYOUT section must appear in the sequence described in form file structure.

This section is mandatory, unless you use a SCREEN section.

Indentation is supported in the LAYOUT section.

The END keyword is optional.

The layout tree of the form is defined by associating layout containers. Different kinds of layout containers
are provided, each of them having a specific role. Some containers such as VBOX, HBOX and FOLDER can
hold children containers, while others such as GRID and TABLE define a screen area. Containers using a
screen area define a formatted region containing static text labels, item tags and layout tags. External form
files can be included in the current layout with the FORM clause.

LAYOUT (VERSION="12", STYLE="regular")
 VBOX
 GRID grid1
 grid-area
 END

User interface | 908

 GROUP group1
 HBOX
 GRID grid2
 grid-area
 END
 TABLE table1
 table-area
 END
 END
 END
 END
END

The definition would result in a layout tree that looks like this:

-- VBOX
 |
 +-- GRID grid1
 |
 +-- GROUP group1
 |
 +-- HBOX
 |
 +-- GRID grid2
 |
 +-- TABLE table1

The layout section can also contain a simple GRID container (equivalent to a V3 SCREEN definition):

LAYOUT
 GRID
 grid-area
 END
END

Description of LAYOUT attributes

The VERSION attribute can be used to specify a version for the form. This allows you to indicate that the
form content has changed. Typically used to avoid having the front-end reload the saved window settings.

The MINHEIGHT, MINWIDTH attributes can be used to specify a minimum width and height for the form.
You typically use these attributes to force the form to get a bigger size as the default when it is first
rendered. If the front-end stores window sizes, these attributes will only be significant the first time the form
is opened, or each time the VERSION attribute is changed.

The IMAGE attribute can be used to define the icon of the window that will display the form. This attribute
will automatically be applied to the parent window node when a form is loaded.

The TEXT attribute can be used to define the title of the window that will display the form. This attribute will
automatically be applied to the parent window node when a form is loaded.

The SPACING attribute can be used to give a hint to the front-end to define the gad between form
elements.

The STYLE attribute defines the presentation style for form elements, you can for example define a font
property for all form elements.

With the WINDOWSTYLE attribute, you can define the window type and decoration. This attribute will
automatically be applied to the parent window when a form is loaded. For backward compatibility, the
STYLE attribute is used as the default WINDOWSTYLE if this attribute is not used.

User interface | 909

FORM clause
Reuse the definition of a form in the current form.

Syntax

FORM "form-file"

1. form-file is the form to be included (without .per extension).

Attributes

None.

Usage

The FORM clause includes an external form at the current layout position, enforcing form re-usability, or to
solve form complexity when using a DIALOG instruction. For example to define a common form header for
several application forms.

Wherever a layout container can be specified, the layout of an external form can be merged into the layout
of the current form, with the FORM clause.

The .per source of the included form must be readable. If the compiled version (.42f) does not exist, or is
older as the .per source, fglform will automatically compile the included form.

The form compiler searches for the external form relative to the path of the current compiled form.
For example, with fglform dir1/dir2/main.per, when the main form includes an external form
with FORM "../otherdir/subform", fglform will include the form file located in dir1/otherdir/
subform.per.

The form compiler performs an up to date test of the compiled form. Error -6842 will the thrown if the up to
date test fails.

If the external form contains a TOOLBAR or a TOPMENU section, error -6841 will be thrown.

The external form must not define a SCREEN RECORD or use a TABLE already been defined in the current
form, otherwise error -2024 will be thrown. Consider using the table alias syntax to avoid duplicate table
names in merged forms.

The external form can define its own ACTION DEFAULTS section. The action defaults of the external file
will be merged into the action defaults of the current form.

The TABINDEX attributes of the elements of the result form will be adjusted. As the result tabbing
(OPTIONS FIELD ORDER FORM in programs) keeps the visual order of the layout.

Example

LAYOUT
 FOLDER
 PAGE page1 (TEXT = "Customer")
 FORM "customer"
 END
 PAGE page2 (TEXT = "Orders")
 FORM "orders"
 END
 END
END

User interface | 910

HBOX container
Packs child layout elements horizontally.

Syntax

HBOX [identifier] [(attribute [,...])]
 layout-container
 [...]
END

1. identifier defines the name of the element.
2. attribute is an attribute for the element.
3. layout-container is another child container.

Attributes

COMMENT, FONTPITCH, HIDDEN, STYLE, SPLITTER, TAG.

Can hold

VBOX, HBOX, GROUP, FOLDER, GRID, SCROLLGRID, STACK, TABLE, TREE.

Usage

The HBOX container automatically packs the contained elements horizontally from left to right.

Contained elements are packed in the order in which they appear in the LAYOUT section of the form file.

No decoration is added when you use a HBOX container.

By combining VBOX and HBOX containers, you can define any alignment you choose.

Example

HBOX
 GROUP (TEXT = "Customer")
 {
 ...
 }
 END
 TABLE
 {
 ...
 }
 END
END

VBOX container
Packs child layout elements vertically.

Syntax

VBOX [identifier] [(attribute [,...])]
 layout-container
 [...]
END

1. identifier defines the name of the element.
2. attribute is an attribute for the element.

User interface | 911

3. layout-container is another child container.

Attributes

COMMENT, FONTPITCH, HIDDEN, STYLE, SPLITTER, TAG.

Can hold

VBOX, HBOX, GROUP, FOLDER, GRID, SCROLLGRID, STACK, TABLE, TREE.

Usage

The VBOX container automatically packs the contained elements vertically from top to bottom.

Contained elements are packed in the order in which they appear in the LAYOUT section of the form file.

No decoration is added when you use a VBOX container.

By combining VBOX and HBOX containers, you can define any alignment you choose.

Example

VBOX
 GROUP (TEXT = "Customer")
 {
 ...
 }
 END
 TABLE
 {
 ...
 }
 END
END

GROUP container
Defines a layout area to group other layout elements together, in a grid-based layout.

Syntax

GROUP [identifier] [(attribute [,...])]
 layout-container
 [...]
END

1. identifier defines the name of the element.
2. attribute is an attribute for the element.
3. layout-container is another child container.

Attributes

COMMENT, FONTPITCH, STYLE, TAG, HIDDEN, TEXT.

Can hold

VBOX, HBOX, GROUP, FOLDER, GRID, SCROLLGRID, TABLE, TREE.

User interface | 912

Usage

In a LAYOUT tree definition, use a GROUP container to hold other containers such as a VBOX with children,
or a GRID container.

For more details about this item type, see GROUP item type on page 887.

Example

GROUP (TEXT = "Customer")
 VBOX
 GRID
 {
 ...
 }
 END
 TABLE
 {
 ...
 }
 END
 END
END

FOLDER container
Defines the parent container for folder pages, in a grid-based layout.

Syntax

FOLDER [identifier] [(attribute [,...])]
 folder-page
 [...]
END

1. identifier defines the name of the element.
2. attribute is an attribute for the element.
3. folder-page defines a folder page that contains other form elements.

Attributes

COMMENT , FONTPITCH , STYLE , TAG , HIDDEN.

Can hold

PAGE

Usage

A FOLDER container including PAGE elements defines a folder tab widget.

Define each folder page with a PAGE container inside the FOLDER container.

For more details about this item type, see FOLDER item type on page 886.

PAGE container
Defines the content of a folder page, in a grid-based layout.

Syntax

PAGE [identifier] [(attribute [,...])]

User interface | 913

 layout-container
 [...]
END

1. identifier defines the name of the element.
2. attribute is an attribute for the element.
3. layout-container is another child container.

Attributes

ACTION, COMMENT, HIDDEN, IMAGE, STYLE, TAG, TEXT.

Can hold

VBOX, HBOX, GROUP, FOLDER, GRID, SCROLLGRID, TABLE, TREE.

Usage

In a LAYOUT tree definition, use a PAGE container to define a folder page that holds other containers such
as a VBOX with children, or a GRID container.

A PAGE container always belongs to a parent FOLDER container.

For more details about this item type, see PAGE item type on page 891.

Example

FOLDER
 PAGE p1 (TEXT="Global info")
 GRID
 {
 ...
 }
 END
 END
 PAGE p2 (IMAGE="list")
 TABLE
 {
 ...
 }
 END
 END
END

GRID container
Defines a layout area based on a grid of cells.

Syntax

GRID [identifier] [(attribute [,...])]
{
 { text
 | item-tag
 | hbox-tag
 | layout-tag
 | horizontal-line }
 [...]
}
END

User interface | 914

1. text is literal text that will appear in the form as a static label.
2. item-tag defines the position and length of a form item.
3. hbox-tag defines the position and length of several form items inside an horizontal box.
4. layout-tag defines the position and length of a layout tag.
5. horizontal-line is a set of dash characters defining a horizontal line.

Attributes

COMMENT, FONTPITCH, HIDDEN, STYLE, TAG.

Usage

The GRID container declares a formatted text block, defining the dimensions and the positions of children
form items.

Note: Avoid Tab characters (ASCII 9) inside the curly-brace delimited area. If used, Tab characters
will be replaced by 8 blanks by fglform.

For more details about this item type, see GRID item type on page 887.

Example

GRID
{
<GROUP g1 >
 Id: [f1] Name: [f2]
 Addr: [f3]
< >
}
END

STACK container
The STACK container holds stack items defining a logical alignment of form items.

Important: This feature is experimental, the syntax/name and semantics/behavior may change in a
future version.

Important: STACK layout was introduced for mobile application programming (GMA/GMI). This
type of layout is not supported by GWC-JS and GDC.

Syntax

STACK
 { scalable-item
 | container-list
 }
END

where container-list is:

grouping-item
 leaf-item
 [...]
END
[...]

1. scalable-item is a leaf element of the stacked layout, for widgets with a scalable width and height.
2. grouping-item is a stacked layout grouping element that holds a list of leaf-items.
3. leaf-item is a leaf element of the stacked layout, for widgets with a fixed size (non-scalable).

User interface | 915

Can hold

Scalable stack items: IMAGE, TEXTEDIT, WEBCOMPONENT.

or:

Grouping stack items: FOLDER, GROUP, TABLE.

Usage

The STACK container is used to define a stack-based layout.

Note: Unlike grid-based containers (GRID) where element definition is splitted in the LAYOUT and
ATTRIBUTES sections, the items in a STACK container define both the position and attributes.

The STACK container typically defines a list of elements (such as GROUP, FOLDER, TABLE), grouping leaf
stack items (such as form fields) together:

LAYOUT
 STACK
 GROUP custinfo (TEXT="Customer info")
 EDIT customer.cust_num, TITLE="Num:", NOENTRY;
 EDIT customer.cust_name, TITLE="Name:", SCROLL;
 ...
 END
 TABLE cust_orders (STYLE="compact_list", DOUBLECLICK=select)
 LABEL orders.ord_num, TITLE="Num";
 LABEL orders.ord_ship, TITLE="Ship date";
 LABEL orders.ord_value, TITLE="Value";
 ...
 END
 ...
 END
END

A stack container can also define a single scalable stack item, such as an IMAGE, TEXTEDIT or
WEBCOMPONENT:

STACK
 IMAGE FORMONLY.picture;
END

BUTTON stack item
Defines a push-button that can trigger an action, in a stack-based layout.

Syntax

BUTTON item-name [, attribute-list] ;

1. item-name defines the form item name and the action name.
2. attribute-list defines the aspect and behavior of the form item.

Attributes

COMMENT, DISCLOSUREINDICATOR, FONTPITCH, HIDDEN, IMAGE, SAMPLE, SIZEPOLICY, STYLE,
TABINDEX, TAG, TEXT.

Usage

Define the rendering and behavior of a button stack item, with a BUTTON element inside a STACK
container.

User interface | 916

For more details about this item type, see BUTTON item type on page 878.

Example

BUTTON print, TEXT="Print Report", IMAGE="printer";

BUTTONEDIT stack item
Defines a line-edit with a push-button that can trigger an action, in a stack-based layout.

Syntax

BUTTONEDIT field-name [, attribute-list] ;

1. field-name identifies the name of the screen record field.
2. attribute-list defines the aspect and behavior of the form item.

Attributes

ACTION, AUTONEXT, CENTURY, COLOR, COMPLETER, COLOR WHERE, COMMENT, DEFAULT, DISPLAY
LIKE, DOWNSHIFT, FONTPITCH, HIDDEN, FORMAT, IMAGE, INCLUDE, INVISIBLE, JUSTIFY, KEY,
KEYBOARDHINT, NOT NULL, NOTEDITABLE, NOENTRY, PICTURE, PROGRAM, REVERSE, SAMPLE, SCROLL,
STYLE, REQUIRED, TAG, TITLE, TABINDEX, UNSORTABLE, UNSIZABLE, UNHIDABLE, UNMOVABLE,
UPSHIFT, VALIDATE LIKE, VERIFY.

Usage

Define the rendering and behavior of a buttonedit stack item, with a BUTTONEDIT element inside a STACK
container.

For more details about this item type, see BUTTONEDIT item type on page 879.

Example

BUTTONEDIT customer.state,
 REQUIRED, IMAGE="smiley", ACTION=zoom;

CHECKBOX stack item
Defines a boolean or three-state checkbox field, in a stack-based layout.

Syntax

CHECKBOX field-name [, attribute-list] ;

1. field-name identifies the name of the screen record field.
2. attribute-list defines the aspect and behavior of the form item.

Attributes

COLOR, COLOR WHERE, COMMENT, DEFAULT, FONTPITCH, HIDDEN, INCLUDE, JUSTIFY, KEY, NOT NULL,
NOENTRY, REQUIRED, SAMPLE, SIZEPOLICY, STYLE, TAG, TABINDEX, TEXT, TITLE, VALIDATE LIKE,
UNSORTABLE, UNSIZABLE, UNHIDABLE, UNMOVABLE, VALUECHECKED, VALUEUNCHECKED.

Usage

Define the rendering and behavior of a checkbox stack item, with a CHECKBOX element inside a STACK
container.

User interface | 917

For more details about this item type, see CHECKBOX item type on page 880.

Example

CHECKBOX customer.active,
 REQUIRED, TEXT="Active",
 VALUECHECKED="Y", VALUEUNCHECKED="N";

COMBOBOX stack item
Defines a line-edit with a drop-down list of values, in a stack-based layout.

Syntax

COMBOBOX field-name [, attribute-list] ;

1. field-name identifies the name of the screen record field.
2. attribute-list defines the aspect and behavior of the form item.

Attributes

COLOR, COLOR WHERE, COMMENT, DEFAULT, DOWNSHIFT, FONTPITCH, HIDDEN, KEY, INCLUDE,
INITIALIZER, ITEMS, JUSTIFY, NOT NULL, NOENTRY, QUERYEDITABLE, REQUIRED, SAMPLE,
SCROLL, SIZEPOLICY, STYLE, UPSHIFT, TAG, TABINDEX, UNSORTABLE , UNSIZABLE , UNHIDABLE ,
UNMOVABLE, TITLE, VALIDATE LIKE.

Usage

Define the rendering and behavior of a combobox stack item, with a COMBOBOX element inside a STACK
container.

For more details about this item type, see COMBOBOX item type on page 881.

Example

COMBOBOX customer.city,
 ITEMS=((1,"Paris"),
 (2,"Madrid"),
 (3,"London"));
COMBOBOX customer.sector,
 REQUIRED,
 ITEMS=("SA","SB","SC");
COMBOBOX customer.state,
 NOT NULL,
 INITIALIZER=myinit;

DATEEDIT stack item
Defines a line-edit with a calendar widget to pick a date, in a stack-based layout.

Syntax

DATEEDIT field-name [, attribute-list] ;

1. field-name identifies the name of the screen record field.
2. attribute-list defines the aspect and behavior of the form item.

User interface | 918

Attributes

AUTONEXT, CENTURY, COLOR, COLOR WHERE, COMMENT, DEFAULT, FONTPITCH, FORMAT, HIDDEN,
IMAGECOLUMN, INCLUDE, JUSTIFY, KEY, NOT NULL, NOENTRY, REQUIRED, SAMPLE, STYLE, TAG,
TABINDEX, TITLE, UNSORTABLE, UNSIZABLE, UNHIDABLE, UNMOVABLE, VALIDATE LIKE.

Usage

Define the rendering and behavior of a date edit stack item, with a DATEEDIT element inside a STACK
container.

For more details about this item type, see DATEEDIT item type on page 883.

Example

DATEEDIT order.shipdate;

DATETIMEEDIT stack item
Defines a a line-edit with a calendar widget to pick a datetime, in a stack-based layout.

Syntax

DATETIMEEDIT field-name [, attribute-list] ;

1. field-name identifies the name of the screen record field.
2. attribute-list defines the aspect and behavior of the form item.

Attributes

AUTONEXT, COLOR, COLOR WHERE, COMMENT, DEFAULT, FONTPITCH, HIDDEN, INCLUDE, IMAGECOLUMN,
JUSTIFY, NOT NULL, NOENTRY, REQUIRED, SAMPLE, STYLE, TABINDEX, TAG, TITLE, UNSORTABLE,
UNSIZABLE, UNHIDABLE, UNMOVABLE, VALIDATE LIKE.

Usage

Define the rendering and behavior of a date-time edit stack item, with a DATETIMEEDIT element inside a
STACK container.

For more details about this item type, see DATETIMEEDIT item type on page 884.

Example

DATETIMEEDIT package.modts;

EDIT stack item
Defines an element to enter a single-line text, in a stack-based layout.

Syntax

EDIT [identifier] [, attribute-list] ;

1. field-name identifies the name of the screen record field.
2. attribute-list defines the aspect and behavior of the form item.

User interface | 919

Attributes

COLOR, COLOR WHERE, COMMENT, DEFAULT, DOWNSHIFT, FONTPITCH, HIDDEN, INCLUDE, JUSTIFY,
KEY, NOT NULL, NOENTRY, PROGRAM, REQUIRED, SAMPLE, SCROLLBARS, STYLE, STRETCH, TAG,
TABINDEX, TITLE, UPSHIFT, VALIDATE LIKE, WANTTABS, WANTNORETURNS.

Usage

Define the rendering and behavior of an edit stack item, with an EDIT element inside a STACK container.

For more details about this item type, see EDIT item type on page 886.

Example

EDIT customer.cust_name, NOT NULL;

FOLDER stack item
Defines a stack area to hold a set of folder pages, in a stack-based layout.

Syntax

FOLDER [identifier] [(attribute-list)]
 folder-page
 [...]
END

1. identifier defines the name of the element.
2. attribute-list defines the aspect and behavior of the form item.
3. folder-page is a page element in the folder definition.

Attributes

COMMENT , FONTPITCH , STYLE , TAG , HIDDEN.

Can hold
PAGE.

Usage

Use a FOLDER stack layout element to define a set of folder pages with a folder tab widget.

Define each folder page with a PAGE stack item inside the FOLDER container.

For more details about this item type, see FOLDER item type on page 886.

Example

FOLDER folder1 (STYLE="common")
 PAGE page1 (TEXT="Order details")
 ...
 END
 PAGE page2 (TEXT="Order items")
 ...
 END
 ...
END

GROUP stack item

User interface | 920

Defines a stack area to group other layout elements together, in a stack-based layout.

Syntax

GROUP [identifier] [(attribute-list)]
 stack-item
 [...]
END

1. identifier defines the name of the element.
2. attribute-list defines the aspect and behavior of the form item.
3. stack-item is child element in the stack container.

Attributes

COMMENT, FONTPITCH, HIDDEN, STYLE, TAG, TEXT.

Can hold
BUTTON, BUTTONEDIT, CHECKBOX, COMBOBOX, DATEEDIT, DATETIMEEDIT, EDIT, IMAGE, LABEL,
PROGRESSBAR, PHANTOM, SLIDER, SPINEDIT,TEXTEDIT, TIMEEDIT, RADIOGROUP, WEBCOMPONENT.

Usage

Use a GROUP stack layout element to group other stack items together.

For more details about this item type, see GROUP item type on page 887.

Example

GROUP group1 (TEXT="Customer info")
 EDIT ...
 BUTTONEDIT ...
 ...
END

IMAGE stack item
Defines an element to display an image resource, in a stack-based layout.

Syntax 1: Defining a form field image

IMAGE field-name [, attribute-list] ;

Syntax 2: Defining a static image

IMAGE : item-name [, attribute-list] ;

1. field-name identifies the name of the screen record field.
2. item-name identifies the form item for a static image.
3. attribute-list defines the aspect and behavior of the form item.

Attributes

ACTION, AUTOSCALE, COMMENT, HEIGHT, HIDDEN, STYLE, STRETCH, TAG, TITLE, UNSORTABLE,
UNSIZABLE, UNHIDABLE, UNMOVABLE, WIDTH.

Static image only: IMAGE.

User interface | 921

Image field only: JUSTIFY, SIZEPOLICY, SAMPLE.

Usage

Define the rendering and behavior of an image stack item, with a IMAGE element inside a STACK container.

Note: The IMAGE stack item can be used inside a stack container like a group, or as root element
of the STACK container: When used directly under the STACK container, the IMAGE stack item must
be the only element in the container. It will be rendered a scalable form item that can stretch to fit
the front-end screen size.

For more details about this item type, see IMAGE item type on page 888.

Example

IMAGE cars.picture, COMMENT="Picture of the car";

LABEL stack item
Defines a simple text area to display a read-only value, in a stack-based layout.

Syntax 1: Defining a form field label

LABEL field-name [, attribute-list] ;

Syntax 2: Defining a static label

LABEL : item-name [, attribute-list] ;

1. field-name identifies the name of the screen record field.
2. item-name identifies the form element (name attribute in .42f) of a static label.
3. attribute-list defines the aspect and behavior of the form item.

Attributes

COLOR, COLOR WHERE, COMMENT, FONTPITCH, HIDDEN, IMAGECOLUMN, JUSTIFY, REVERSE,
SIZEPOLICY, STYLE, TAG, TITLE, UNSORTABLE, UNSIZABLE, UNHIDABLE, UNMOVABLE.

Form field label only: FORMAT, SAMPLE.

Static label only: TEXT.

Usage

Define the rendering and behavior of an label stack item, with a LABEL element inside a STACK container.

For more details about this item type, see LABEL item type on page 890.

Example

LABEL vehicle.description, STYLE="normal";

PAGE stack item
Defines the content of a folder page stack item.

Syntax

PAGE [identifier] [(attribute-list)]
 { scalable-item

User interface | 922

 | grouping-item
 leaf-item
 [...]
 END
 }
END

1. identifier defines the name of the element.
2. attribute-list defines the aspect and behavior of the form item.
3. scalable-item is a stacked layout items that can grow and shrink.
4. grouping-item is a stacked layout grouping element that holds a list of stack-items.
5. leaf-item is a leaf element of the stacked layout, for widgets with a fixed size (non-scalable).

Attributes

ACTION, COMMENT, HIDDEN, IMAGE, STYLE, TAG, TEXT.

Can hold
GROUP, IMAGE, TABLE, TEXTEDIT, WEBCOMPONENT.

Usage

Use a PAGE stack layout element to group other stack items together.

A PAGE stack item always belongs to a parent FOLDER stack item.

For more details about this item type, see PAGE item type on page 891.

Example

FOLDER folder1 (STYLE="common")
 PAGE page1 (TEXT="Customer info")
 GROUP
 EDIT ...
 EDIT ...
 EDIT ...
 END
 END
 PAGE page2 (TEXT="Picture")
 IMAGE FORMONLY.cust_pic;
 END
 PAGE page3 (TEXT="Comments")
 TEXTEDIT customer.cust_desc;
 END
 ...
END

PHANTOM stack item
Defines a form field in a stack-based container, that must not be displayed to the end user.

Syntax

PHANTOM [field-name] ;

1. field-name identifies the name of the screen record field.

User interface | 923

Usage

Define a PHANTOM leaf element in a stack container, to declare a form field to be used by a dialog, without
beeing displayed to the user.

For more details, see Phantom fields on page 861.

Example

PHANTOM customer.cust_name;

PROGRESSBAR stack item
Defines a progress indicator field, in a stack-based layout.

Syntax

PROGRESSBAR field-name [, attribute-list] ;

1. field-name identifies the name of the screen record field.
2. attribute-list defines the aspect and behavior of the form item.

Attributes

COLOR, COLOR WHERE, COMMENT, FONTPITCH, HIDDEN, JUSTIFY, VALUEMIN, VALUEMAX, SAMPLE,
STYLE, TAG, TITLE, UNSORTABLE, UNSIZABLE, UNHIDABLE, UNMOVABLE.

Usage

Define the rendering and behavior of an progress bar stack item, with an PROGRESSBAR element inside a
STACK container.

For more details about this item type, see PROGRESSBAR item type on page 892.

Example

PROGRESSBAR workstate.position,
 VALUEMIN=-100, VALUEMAX=+100;

RADIOGROUP stack item
Defines a mutual exclusive set of options field, in a stack-based layout.

Syntax

RADIOGROUP field-name [, attribute-list] ;

1. field-name identifies the name of the screen record field.
2. attribute-list defines the aspect and behavior of the form item.

Attributes

COLOR, COLOR WHERE, COMMENT, DEFAULT, FONTPITCH, HIDDEN, INCLUDE, ITEMS, JUSTIFY, KEY,
NOT NULL, NOENTRY, ORIENTATION, REQUIRED, SAMPLE, SIZEPOLICY, STYLE, TAG, TABINDEX,
TITLE, UNSORTABLE, UNSIZABLE, UNHIDABLE, UNMOVABLE, VALIDATE LIKE.

User interface | 924

Usage

Define the rendering and behavior of a radio group stack item, with an EDIT element inside a STACK
container.

For more details about this item type, see RADIOGROUP item type on page 893.

Example

RADIOGROUP player.level,
 ITEMS=((1,"Beginner"),
 (2,"Normal"),
 (3,"Expert"));

SLIDER stack item
Defines a slider element, in a stack-based layout.

Syntax

SLIDER field-name [, attribute-list] ;

1. field-name identifies the name of the screen record field.
2. attribute-list defines the aspect and behavior of the form item.

Attributes

COLOR, COLOR WHERE, COMMENT, DEFAULT, FONTPITCH, HIDDEN, INCLUDE, JUSTIFY, ORIENTATION,
SAMPLE, STEP, STYLE, TABINDEX, TAG, TITLE, UNSORTABLE, UNSIZABLE, UNHIDABLE, UNMOVABLE,
VALIDATE LIKE, VALUEMIN, VALUEMAX.

Usage

Define the rendering and behavior of a slider stack item, with an SLIDER element inside a STACK
container.

For more details about this item type, see SLIDER item type on page 895.

Example

SLIDER workstate.duration,
 VALUEMIN=0, VALUEMAX=5,
 STEP=1;

SPINEDIT stack item
Defines a spin box widget to enter integer values, in a stack-based layout.

Syntax

SPINEDIT field-name [, attribute-list] ;

1. field-name identifies the name of the screen record field.
2. attribute-list defines the aspect and behavior of the form item.

Attributes

AUTONEXT, COLOR, COLOR WHERE, COMMENT, DEFAULT, FONTPITCH, HIDDEN, IMAGECOLUMN,
INCLUDE, JUSTIFY, NOT NULL, NOENTRY, REQUIRED, SAMPLE, STEP, STYLE, TABINDEX, TAG, TITLE,
UNSORTABLE, UNSIZABLE, UNHIDABLE, UNMOVABLE, VALIDATE LIKE, VALUEMIN, VALUEMAX.

User interface | 925

Usage

Define the rendering and behavior of a spin edit stack item, with an SPINEDIT element inside a STACK
container.

For more details about this item type, see SPINEDIT item type on page 895.

Example

SPINEDIT command.nbitems, STEP=5;

TABLE stack item
Defines a re-sizable table designed to display a list of records, in a stack-based layout.

Syntax

TABLE identifier [(attribute-list)]
 stack-item
 [...]
END

1. identifier defines the name of the element.
2. attribute-list defines the aspect and behavior of the form item.
3. stack-item is child element in the stack container defining a column in the table.

Attributes

AGGREGATETEXT, COMMENT, DOUBLECLICK, HIDDEN, FONTPITCH, STYLE, TAG, UNHIDABLECOLUMNS,
UNMOVABLECOLUMNS, UNSIZABLECOLUMNS, UNSORTABLECOLUMNS, WANTFIXEDPAGESIZE, WIDTH,
HEIGHT.

Can hold
BUTTONEDIT, CHECKBOX, COMBOBOX, DATEEDIT, DATETIMEEDIT, EDIT, IMAGE, LABEL, PROGRESSBAR,
PHANTOM, SLIDER, SPINEDIT, TIMEEDIT, RADIOGROUP.

Usage

The TABLE stack layout element defines defines a list view element, in a stack-based layout.

To create a table view in a stacked layout, define the following elements in the form file:

1. The layout of the list, with a TABLE stack item.
2. The columns definitions as stack items inside the TABLE item.

Note: The TABLE item must get an identifier, that will be used as screen-array in list dialogs.

For more details about table view programming, see Table views on page 1345

Example

TABLE custlist (STYLE="regular")
 EDIT ...
 BUTTONEDIT ...
 ...
END

TEXTEDIT stack item

User interface | 926

Defines an multi-line edit field, in a stack-based layout.

Syntax

TEXTEDIT [identifier] [, attribute-list] ;

1. field-name identifies the name of the screen record field.
2. attribute-list defines the aspect and behavior of the form item.

Attributes

COLOR, COLOR WHERE, COMMENT, DEFAULT, DOWNSHIFT, FONTPITCH, HIDDEN, INCLUDE, JUSTIFY,
KEY, NOT NULL, NOENTRY, PROGRAM, REQUIRED, SAMPLE, SCROLLBARS, STYLE, STRETCH, TAG,
TABINDEX, TITLE, UPSHIFT, VALIDATE LIKE, WANTTABS, WANTNORETURNS.

Usage

Define the rendering and behavior of a text edit stack item, with a TEXTEDIT element inside a STACK
container.

Note: The TEXTEDIT stack item can be used inside a stack container like a group, or as root
element of the STACK container: When used directly under the STACK container, the TEXTEDIT
stack item must be the only element in the container. It will be rendered a scalable form item that
can stretch to fit the front-end screen size.

For more details about this item type, see TEXTEDIT item type on page 897.

Example

TEXTEDIT customer.cust_address, HEIGHT=3, REQUIRED;

TIMEEDIT stack item
Defines a line-edit with a clock widget to pick a time, in a stack-based layout.

Syntax

TIMEEDIT field-name [, attribute-list] ;

1. field-name identifies the name of the screen record field.
2. attribute-list defines the aspect and behavior of the form item.

Attributes

AUTONEXT, COLOR, COLOR WHERE, COMMENT, DEFAULT, FONTPITCH, HIDDEN, IMAGECOLUMN, INCLUDE,
JUSTIFY, NOT NULL, NOENTRY, REQUIRED, SAMPLE, STYLE, TABINDEX, TAG, TITLE, UNSORTABLE,
UNSIZABLE, UNHIDABLE, UNMOVABLE, VALIDATE LIKE.

Usage

Define the rendering and behavior of a time edit stack item, with a TIMEEDIT element inside a STACK
container.

For more details about this item type, see TIMEEDIT item type on page 898.

User interface | 927

Example

TIMEEDIT package.arrtime;

WEBCOMPONENT stack item
Defines a generic form field that can receive an external widget, in a stack-based layout.

Syntax

WEBCOMPONENT [identifier] [, attribute-list] ;

1. field-name identifies the name of the screen record field.
2. attribute-list defines the aspect and behavior of the form item.

Attributes

COLOR, COLOR WHERE, COMPONENTTYPE, COMMENT, DEFAULT, FONTPITCH, HEIGHT, HIDDEN, INCLUDE,
JUSTIFY, NOT NULL, NOENTRY, PROPERTIES, REQUIRED, SCROLLBARS, SIZEPOLICY, STYLE,
STRETCH, TAG, TABINDEX, TITLE, VALIDATE LIKE, WIDTH.

Usage

Define the rendering and behavior of a web component stack item, with a WEBCOMPONENT element inside
a STACK container.

Note: The WEBCOMPONENT stack item can be used inside a stack container like a group, or
as root element of the STACK container: When used directly under the STACK container, the
WEBCOMPONENT stack item must be the only element in the container. It will be rendered a scalable
form item that can stretch to fit the front-end screen size.

For more details about this item type, see WEBCOMPONENT item type on page 900.

Example

-- URL-based web component (recommended):
WEBCOMPONENT FORMONLY.mymap;

-- gICAPI web component:
WEBCOMPONENT FORMONLY.mycal,
 COMPONENTTYPE="Calendar", -- lookup "Calendar.html"
 STYLE="regular";

SCROLLGRID container
Defines a scrollable grid view widget, in a grid-based layout.

Syntax

SCROLLGRID [identifier] [(attribute [,...])]
{
 row-template
 [...]
}
END

where row-template is a text block containing:

 item-tag

User interface | 928

[...]

1. item-tag defines the position and length of a form item. This item tag must define a form field.

Attributes

COMMENT, FONTPITCH, STYLE, TAG, HIDDEN, WANTFIXEDPAGESIZE.

Usage

The SCROLLGRID container declares a formatted text block defining the dimensions and the position of the
logical elements of a screen for a multi-record presentation.

Important: This feature is not supported on mobile platforms.

Scrollgrids are by default non-resizable; The number of visible rows is defined by the number of repeated
form items inside the SCROLLGRID area. To implement a resizable scrollgrid, define a single scrollgrid
row in the form layout, and use the WANTFIXEDPAGESIZE=NO attribute. Resizable scrollgrids is the
recommended way to implement scrollgrids.

Note: Avoid Tab characters (ASCII 9) inside the curly-brace delimited area. If used, Tab characters
will be replaced by 8 blanks by fglform.

For more details about this item type, see SCROLLGRID item type on page 894.

Example 1: Resizable scrollgrid (using WANTFIXEDPAGESIZE=NO):

SCROLLGRID (WANTFIXEDPAGESIZE=NO)
{
 [f001] [f002]
 [f003]
}
END

Example 2: Scrollgrid with fixed page size, using four rows:

SCROLLGRID
{
 [f001] [f002]
 [f003]

 [f001] [f002]
 [f003]

 [f001] [f002]
 [f003]

 [f001] [f002]
 [f003]

}
END

TABLE container
Defines a re-sizable table designed to display a list of records.

Syntax

TABLE [identifier] [(attribute [,...])]
{

User interface | 929

 title [...]
[col-name [|...]]
[...]
[aggr-name [|...]]
}
END

1. identifier defines the name of the element.
2. attribute is an attribute for the element.
3. title is the text to be displayed as column title.
4. col-name is an identifier that references a form field.
5. aggr-name is an identifier that references an aggregate Field.

Attributes

AGGREGATETEXT, COMMENT, DOUBLECLICK, HIDDEN, FONTPITCH, STYLE, TAG, UNHIDABLECOLUMNS,
UNMOVABLECOLUMNS, UNSIZABLECOLUMNS, UNSORTABLECOLUMNS, WANTFIXEDPAGESIZE, WIDTH,
HEIGHT.

Usage:

The TABLE container defines a list view element in a grid-based layout.

To create a table view in a grid layout, define the following elements in the form file:

1. The layout of the list, with a TABLE container in the LAYOUT section.
2. The column data types and field properties, in the ATTRIBUTES section.
3. The field list definition to group form fields together with a screen array, in the INSTRUCTIONS section.

For more details about this item type, see TABLE item type on page 896.

Example

SCHEMA videolab
LAYOUT (TEXT="Customer list")
TABLE (TAG="normal")
{
 [c1 |c2 |c3 |c4]
 [c1 |c2 |c3 |c4]
 [c1 |c2 |c3 |c4]
 [c1 |c2 |c3 |c4]
}
END
END
TABLES
 customer
END
ATTRIBUTES
 EDIT c1 = customer.cust_num, TITLE="Num";
 EDIT c2 = customer.cust_name, TITLE="Customer name";
 EDIT c3 = customer.cust_cdate, TITLE="Date";
 CHECKBOX c4 = customer.cust_status, TITLE="Status";
END
INSTRUCTIONS
 SCREEN RECORD custlist(cust_num, cust_name, cust_cdate,
 cust_status)
END

User interface | 930

TREE container
The TREE container defines the presentation of a list of ordered records in a tree-view widget.

Syntax

TREE [identifier] [(attribute [,...])]
{
 title [...]
 [name_column [|identifier [|...]]]
[...]
}
END

1. identifier defines the name of the element.
2. attribute is an attribute for the element.
3. title is the text to be displayed as column title.
4. name_column is a mandatory column referencing a form item defining the node text.
5. identifier references a form item.

Attributes

COMMENT, DOUBLECLICK, HIDDEN, FONTPITCH, STYLE, TAG, UNHIDABLECOLUMNS,
UNMOVABLECOLUMNS, UNSIZABLECOLUMNS, UNSORTABLECOLUMNS, WANTFIXEDPAGESIZE, WIDTH,
HEIGHT, PARENTIDCOLUMN, IDCOLUMN, EXPANDEDCOLUMN, ISNODECOLUMN, IMAGEEXPANDED,
IMAGECOLLAPSED, IMAGELEAF.

Usage

To create a tree view in a grid-based layout, you must define the following elements in the form file:

1. The layout of the tree-view, with a TREE container in the LAYOUT section.
2. The column data types and field properties, in the ATTRIBUTES section.
3. The field list definition to group form fields together with a screen array, in the INSTRUCTIONS section.

For more details about this item type, see TREE item type on page 899.

Example

LAYOUT
GRID
{
<Tree t1 >
 Name Index
[c1 |c2]
[c1 |c2]
[c1 |c2]
[c1 |c2]
}
END
END

ATTRIBUTES
LABEL c1 = FORMONLY.name;
LABEL c2 = FORMONLY.idx;
PHANTOM FORMONLY.pid;
PHANTOM FORMONLY.id;
TREE t1: tree1
 PARENTIDCOLUMN = pid,
 IDCOLUMN = id;
END

User interface | 931

INSTRUCTIONS
SCREEN RECORD sr_tree(name, pid, id, idx);
END

TABLES section
Defines the list of database tables referenced by form field definitions.

Syntax

TABLES
[alias = [database[@dbserver]:][owner.]] table [,...]
[END]

1. alias represents an alias name for the given table.
2. table is the name of the database table.
3. database is the name of the database of the table (see warnings).
4. dbserver identifies the Informix® database server (INFORMIXSERVER)
5. owner is the name of the table owner (see warnings).

Usage

The TABLES section lists every database table or view referenced the form specification file. This section is
mandatory when form fields reference database columns defined in the database schema file.

The TABLE section must appear in the sequence described in form file structure.

The END keyword is optional.

The SCHEMA section must also exist to define the database schema.

Field identifiers in programs or in other sections of the form specification file can reference screen fields as
column, alias.column, or table.column.

The same alias must also appear in screen interaction statements of programs that reference screen fields
linked to the columns of a table that has an alias.

If a table requires the name of an owner or of a database as a qualifier, the TABLES section must also
declare an alias for the table. The alias can be the same identifier as table.

For backward compatibility with the Informix® form specification, the comma separator is optional and the
database, dbserver and owner specifications are ignored.

Example

SCHEMA stores
LAYOUT
GRID
{
 ...
}
END
TABLES
 customer, orders
END
ATTRIBUTES
...
END

User interface | 932

ATTRIBUTES section
The ATTRIBUTES section describes properties of grid-based layout elements used in the form.

Syntax

ATTRIBUTES
 { form-field-definition
 | phantom-field-definition
 | form-item-definition }
[...]
[END]

where form-field-definition is:

item-type item-tag = field-name [, attribute-list] ;

where phantom-field-definition is:

PHANTOM field-name ;

where form-item-definition is:

item-type item-tag: item-name [, attribute-list] ;

1. item-type defines the type of the Form Item.
2. item-tag is the name of the screen element used in the LAYOUT section.
3. field-name defines the name of the screen record field.
4. item-name identifies the form item that is not a form field containing data.
5. attribute-list defines the aspect and behavior of the form item.

where attribute-list is:

attribute [,...]

1. The attribute list is a comma-separated list of attributes.

where attribute is:

attribute-name [= { value | value-list }]

1. attribute identifies the attribute of the form item.

where value-list is:

({ value | sub-value-list } [,...])

1. value is a string, date or numeric literal, or predefined constant like TODAY.
2. sub-value-list is a set of values separated by comma, to support subset definitions as in "(1,(21,22),

(31,32,33))".

Usage

The ATTRIBUTES section is required to define the attributes for the form items used in grid-based
containers of the LAYOUT section.

The ATTRIBUTES section must appear in the sequence described in form file structure.

The END keyword is optional.

Every item-tag used in the LAYOUT section must get an item definition in the ATTRIBUTES section.

User interface | 933

A form item definition is associated by name to an item tag or layout tag defined in the grid-based
container.

In order to define a form field, the form item definition must use the equal sign notation to associate a
screen record field with the form item. If the form item is not associated with a screen record field (for
example, a push button), you must use the colon notation.

To match the complete structure of a database table record, additional fields can be defined as phantom
fields, when no corresponding item tag is used in the layout.

Form item definitions can optionally include an attribute-list to specify the appearance and behavior of the
item. For example, you can define acceptable input values, on-screen comments, and default values for
fields.

When no screen record is defined in the INSTRUCTION section, a default screen record is built for each
set of form items declared with the same table name.

The order in which you list the form items determines the order of fields in the default screen records that
the form compiler creates for each table.

To define form items as form fields, you are not required to specify table unless the name column is not
unique within the form specification. However, it is recommended that you always specify table.column
rather than the unqualified column name. As you can refer to field names collectively through a screen
record built upon all the fields linked to the same table, your forms might be easier to work with if you
specify table for each field.

When used in a table, some widgets are rendered only when the user enters in the field. For example
RadioGroup, CheckBox, ComboBox, ProgressBar.

Example

SCHEMA game
LAYOUT
GRID
{
 ...
}
END
TABLES
 player
END
ATTRIBUTES
 EDIT f001 = player.name, REQUIRED,
 COMMENT="Enter player's name";
 EDIT f002 = player.ident, NOENTRY;
 COMBOBOX f003 = player.level, NOT NULL,
 ITEMS=((1,"Beginner"), (2,"Normal"),(3,"Expert"));
 CHECKBOX f004 = FORMONLY.winner,
 VALUECHECKED=1, VALUEUNCHECKED=0,
 TEXT="Winner";
 BUTTON b1: print, TEXT="Print Report";
 GROUP g1: print, TEXT="Description";
END

AGGREGATE item definition
Defines screen-record fields that hold computed values to be displayed as footer cells in a TABLE
container.

Syntax

AGGREGATE item-tag = field-name [, attribute-list] ;

User interface | 934

1. item-tag is an identifier that defines the name of the item tag in the layout section.
2. field-name identifies the name of the screen record field.
3. attribute-list defines the aspect and behavior of the form item.

Attributes

AGGREGATETEXT, AGGREGATETYPE.

Usage

Aggregate fields used as must be declared with an AGGREGATE element in the ATTRIBUTES section.

Important: This feature is not supported on mobile platforms.

For more details see Aggregate fields on page 863.

Example

AGGREGATE total = FORMONLY.o_total,
 AGGREGATETEXT = "Total:",
 AGGREGATETYPE = SUM;

PHANTOM item definition
Defines a form field in a grid-based container, that must not be displayed to the end user.

Syntax

PHANTOM [field-name] ;

1. field-name identifies the name of the screen record field.

Usage

Define a phantom form field (that will be used by a dialog, but not displayed in the form layout), with a
PHANTOM element in the ATTRIBUTES section.

For more details, see Phantom fields on page 861.

Example

PHANTOM customer.cust_name;

BUTTON item definition
Defines a push-button that can trigger an action, in a grid-based layout.

Syntax

BUTTON item-tag: item-name [, attribute-list] ;

1. item-tag is an identifier that defines the name of the item tag in the layout section.
2. item-name defines the form item name and the action name.
3. attribute-list defines the aspect and behavior of the form item.

Attributes

COMMENT, DISCLOSUREINDICATOR, FONTPITCH, HIDDEN, IMAGE, SAMPLE, SIZEPOLICY, STYLE,
TABINDEX, TAG, TEXT.

User interface | 935

Usage

Define the rendering and behavior of a button item tag, with a BUTTON element in the ATTRIBUTES
section.

For more details about this item type, see BUTTON item type on page 878.

Example

LAYOUT
GRID
{
[btn1]
 ...

}
END
END

ATTRIBUTES
BUTTON btn1: print, TEXT="Print Report", IMAGE="printer";
...

BUTTONEDIT item definition
Defines a line-edit with a push-button that can trigger an action, in a grid-based layout.

Syntax

BUTTONEDIT item-tag = field-name [, attribute-list] ;

1. item-tag is an identifier that defines the name of the item tag in the layout section.
2. field-name identifies the name of the screen record field.
3. attribute-list defines the aspect and behavior of the form item.

Attributes

ACTION, AUTONEXT, CENTURY, COLOR, COMPLETER, COLOR WHERE, COMMENT, DEFAULT, DISPLAY
LIKE, DOWNSHIFT, FONTPITCH, HIDDEN, FORMAT, IMAGE, INCLUDE, INVISIBLE, JUSTIFY, KEY,
KEYBOARDHINT, NOT NULL, NOTEDITABLE, NOENTRY, PICTURE, PROGRAM, REVERSE, SAMPLE, SCROLL,
STYLE, REQUIRED, TAG, TITLE, TABINDEX, UNSORTABLE, UNSIZABLE, UNHIDABLE, UNMOVABLE,
UPSHIFT, VALIDATE LIKE, VERIFY.

Usage

Define the rendering and behavior of a buttonedit item tag, with a BUTTONEDIT element in the
ATTRIBUTES section.

For more details about this item type, see BUTTONEDIT item type on page 879.

Example

LAYOUT
GRID
{
[f1]
 ...

}
END
END

User interface | 936

ATTRIBUTES
BUTTONEDIT f1 = customer.state,
 REQUIRED, IMAGE="smiley", ACTION=zoom;
...

CANVAS item definition
Defines an area in which you can draw shapes, in a grid-based layout.

Syntax

CANVAS item-tag: item-name [, attribute-list] ;

1. item-tag is an identifier that defines the name of the item tag in the layout section.
2. item-name identifies the form item.
3. attribute-list defines the aspect and behavior of the form item.

Attributes

COMMENT, HIDDEN, TAG.

Usage

Define the rendering and behavior of a canvas drawing area item tag, with a CANVAS element in the
ATTRIBUTES section.

Note: The CANVAS feature is deprecated, consider using a WEBCOMPONENT with SVG graphics.

Example

LAYOUT
GRID
{
[cvs1]
[]
[]
 ...

}
END
END

ATTRIBUTES
CANVAS cvs1: canvas1;
...

CHECKBOX item definition
Defines a boolean or three-state checkbox field, in a grid-based layout.

Syntax

CHECKBOX item-tag = field-name [, attribute-list] ;

1. item-tag is an identifier that defines the name of the item tag in the layout section.
2. field-name identifies the name of the screen record field.
3. attribute-list defines the aspect and behavior of the form item.

User interface | 937

Attributes

COLOR, COLOR WHERE, COMMENT, DEFAULT, FONTPITCH, HIDDEN, INCLUDE, JUSTIFY, KEY, NOT NULL,
NOENTRY, REQUIRED, SAMPLE, SIZEPOLICY, STYLE, TAG, TABINDEX, TEXT, TITLE, VALIDATE LIKE,
UNSORTABLE, UNSIZABLE, UNHIDABLE, UNMOVABLE, VALUECHECKED, VALUEUNCHECKED.

Usage

Define the rendering and behavior of a checkbox item tag, with a CHECKBOX element in the ATTRIBUTES
section.

For more details about this item type, see CHECKBOX item type on page 880.

Example

LAYOUT
GRID
{
[f1]
 ...

}
END
END

ATTRIBUTES
CHECKBOX f1 = customer.active,
 REQUIRED, TEXT="Active",
 VALUECHECKED="Y", VALUEUNCHECKED="N";
...

COMBOBOX item definition
Defines a COMBOBOX item in a grid-based layout, in a grid-based layout.

Syntax

COMBOBOX item-tag = field-name [, attribute-list] ;

1. item-tag is an identifier that defines the name of the item tag in the layout section.
2. field-name identifies the name of the screen record field.
3. attribute-list defines the aspect and behavior of the form item.

Attributes

COLOR, COLOR WHERE, COMMENT, DEFAULT, DOWNSHIFT, FONTPITCH, HIDDEN, KEY, INCLUDE,
INITIALIZER, ITEMS, JUSTIFY, NOT NULL, NOENTRY, QUERYEDITABLE, REQUIRED, SAMPLE,
SCROLL, SIZEPOLICY, STYLE, UPSHIFT, TAG, TABINDEX, UNSORTABLE , UNSIZABLE , UNHIDABLE ,
UNMOVABLE, TITLE, VALIDATE LIKE.

Usage

Define the rendering and behavior of a combobox item tag, with a COMBOBOX element in the ATTRIBUTES
section.

For more details about this item type, see COMBOBOX item type on page 881.

Example

LAYOUT

User interface | 938

GRID
{
[f1]
 ...

}
END
END

ATTRIBUTES
COMBOBOX f1 = customer.city,
 ITEMS=((1,"Paris"),
 (2,"Madrid"),
 (3,"London"));
...

DATEEDIT item definition
Defines a line-edit with a calendar widget to pick a date, in a grid-based layout.

Syntax

DATEEDIT item-tag = field-name [, attribute-list] ;

1. item-tag is an identifier that defines the name of the item tag in the layout section.
2. field-name identifies the name of the screen record field.
3. attribute-list defines the aspect and behavior of the form item.

Attributes

AUTONEXT, CENTURY, COLOR, COLOR WHERE, COMMENT, DEFAULT, FONTPITCH, FORMAT, HIDDEN,
IMAGECOLUMN, INCLUDE, JUSTIFY, KEY, NOT NULL, NOENTRY, REQUIRED, SAMPLE, STYLE, TAG,
TABINDEX, TITLE, UNSORTABLE, UNSIZABLE, UNHIDABLE, UNMOVABLE, VALIDATE LIKE.

Usage

Define the rendering and behavior of a date edit item tag, with a DATEEDIT element in the ATTRIBUTES
section.

For more details about this item type, see DATEEDIT item type on page 883.

Example

LAYOUT
GRID
{
[f1]
 ...

}
END
END

ATTRIBUTES
DATEEDIT f1 = order.shipdate;
...

User interface | 939

DATETIMEEDIT item definition
Defines a line-edit with a calendar widget to pick a datetime, in a grid-based layout.

Syntax

DATETIMEEDIT item-tag = field-name [, attribute-list] ;

1. item-tag is an identifier that defines the name of the item tag in the layout section.
2. field-name identifies the name of the screen record field.
3. attribute-list defines the aspect and behavior of the form item.

Attributes

AUTONEXT, COLOR, COLOR WHERE, COMMENT, DEFAULT, FONTPITCH, HIDDEN, INCLUDE, IMAGECOLUMN,
JUSTIFY, NOT NULL, NOENTRY, REQUIRED, SAMPLE, STYLE, TABINDEX, TAG, TITLE, UNSORTABLE,
UNSIZABLE, UNHIDABLE, UNMOVABLE, VALIDATE LIKE.

Usage

Define the rendering and behavior of a date edit item tag, with a DATETIMEEDIT element in the
ATTRIBUTES section.

For more details about this item type, see DATETIMEEDIT item type on page 884.

Example

LAYOUT
GRID
{
[f1]
 ...

}
END
END

ATTRIBUTES
DATETIMEEDIT f1 = package.modts;
...

EDIT item definition
Defines a simple line-edit field, in a grid-based layout.

Syntax

EDIT item-tag = field-name [, attribute-list] ;

1. item-tag is an identifier that defines the name of the item tag in the layout section.
2. field-name identifies the name of the screen record field.
3. attribute-list defines the aspect and behavior of the form item.

Attributes

AUTONEXT, CENTURY, COLOR, COMPLETER, COLOR WHERE, COMMENT, DEFAULT, DISPLAY LIKE,
DOWNSHIFT, HIDDEN, FONTPITCH, FORMAT, IMAGECOLUMN, INCLUDE, INVISIBLE, JUSTIFY,
KEYBOARDHINT, KEY, NOT NULL, NOENTRY, PICTURE, PROGRAM, REQUIRED, REVERSE, SAMPLE, STYLE,
SCROLL, TAG, TABINDEX, TITLE, UNSORTABLE, UNSIZABLE, UNHIDABLE, UNMOVABLE, UPSHIFT,
VALIDATE LIKE, VERIFY.

User interface | 940

Usage

Define the rendering and behavior of an edit item tag, with an EDIT element in the ATTRIBUTES section.

For more details about this item type, see EDIT item type on page 886.

Example

LAYOUT
GRID
{
[f1]
 ...

}
END
END

ATTRIBUTES
EDIT f1 = customer.cust_state,
 REQUIRED,
 COMMENT = %"customer.cust_state.comment",
 INCLUDE=(0,1,2);
...

GROUP item definition
Defines a groupbox layout tag, in a grid-based layout.

Syntax

GROUP layout-tag: item-name [, attribute-list] ;

1. layout-tag is an identifier that defines the name of the layout tag.
2. item-name identifies the form item.
3. attribute-list defines the aspect and behavior of the form item.

Attributes

COMMENT, FONTPITCH, GRIDCHILDRENINPARENT, HIDDEN, STYLE, TAG, TEXT.

Usage

Define the rendering and behavior of a group layout tag, with an GROUP element in the ATTRIBUTES
section.

For more details about this item type, see GROUP item type on page 887.

Example

LAYOUT
GRID
{
<GROUP g1 >
 Num: [f001]
 ...

}
END
END

User interface | 941

ATTRIBUTES
GROUP g1: group1,
 TEXT="Description",
 GRIDCHILDRENINPARENT;
...

IMAGE item definition
Defines an area that can display an image resource, in a grid-based layout.

Syntax 1: Defining a form field image

IMAGE item-tag = field-name [, attribute-list] ;

Syntax 2: Defining a static image

IMAGE item-tag: item-name [, attribute-list] ;

1. item-tag is an identifier that defines the name of the item tag in the layout section.
2. field-name identifies the name of the screen record field.
3. item-name identifies the form item for a static image.
4. attribute-list defines the aspect and behavior of the form item.

Attributes

ACTION, AUTOSCALE, COMMENT, HEIGHT, HIDDEN, STYLE, STRETCH, TAG, TITLE, UNSORTABLE,
UNSIZABLE, UNHIDABLE, UNMOVABLE, WIDTH.

Image field only: JUSTIFY, SIZEPOLICY, SAMPLE.

Static image only: IMAGE.

Usage

Define the rendering and behavior of an image item tag, with an IMAGE element in the ATTRIBUTES
section.

For more details about this item type, see IMAGE item type on page 888.

Example

LAYOUT
GRID
{
[f1]
[]
[]
[]
 ...

}
END
END

ATTRIBUTES
IMAGE f1 = cars.picture,
 SIZEPOLICY=FIXED, AUTOSCALE,
 COMMENT="Picture of the car";
...

User interface | 942

LABEL item definition
Defines a simple text area to display a read-only value, in a grid-based layout.

Syntax 1: Defining a form field label

LABEL item-tag = field-name [, attribute-list] ;

Syntax 2: Defining a static label

LABEL item-tag: item-name [, attribute-list] ;

1. item-tag is an identifier that defines the name of the item tag in the layout section.
2. field-name identifies the name of the screen record field.
3. item-name identifies the form element (name attribute in .42f) of a static label.
4. attribute-list defines the aspect and behavior of the form item.

Attributes

COLOR, COLOR WHERE, COMMENT, FONTPITCH, HIDDEN, IMAGECOLUMN, JUSTIFY, REVERSE,
SIZEPOLICY, STYLE, TAG, TITLE, UNSORTABLE, UNSIZABLE, UNHIDABLE, UNMOVABLE.

Form field label only: FORMAT, SAMPLE.

Static label only: TEXT.

Usage

Define the rendering and behavior of an label item tag, with an LABEL element in the ATTRIBUTES
section.

For more details about this item type, see LABEL item type on page 890.

Example

LAYOUT
GRID
{
[l1 :f1]
 ...

}
END
END

ATTRIBUTES
LABEL l1: label1, TEXT="Desc:"; -- This is a static label
LABEL f1 = vehicle.description; -- This is a form field label
...

PROGRESSBAR item definition
Defines a progress indicator field, in a grid-based layout.

Syntax

PROGRESSBAR item-tag = field-name [, attribute-list] ;

1. item-tag is an identifier that defines the name of the item tag in the layout section.
2. field-name identifies the name of the screen record field.

User interface | 943

3. attribute-list defines the aspect and behavior of the form item.

Attributes

COLOR, COLOR WHERE, COMMENT, FONTPITCH, HIDDEN, JUSTIFY, VALUEMIN, VALUEMAX, SAMPLE,
STYLE, TAG, TITLE, UNSORTABLE, UNSIZABLE, UNHIDABLE, UNMOVABLE.

Usage

Define the rendering and behavior of an progress bar item tag, with an PROGRESSBAR element in the
ATTRIBUTES section.

For more details about this item type, see PROGRESSBAR item type on page 892.

Example

LAYOUT
GRID
{
[f1]
 ...

}
END
END

ATTRIBUTES
PROGRESSBAR f1 = workstate.position,
 VALUEMIN=-100, VALUEMAX=+100;
...

RADIOGROUP item definition
Defines a mutual exclusive set of options field, in a grid-based layout.

Syntax

RADIOGROUP item-tag = field-name [, attribute-list] ;

1. item-tag is an identifier that defines the name of the item tag in the layout section.
2. field-name identifies the name of the screen record field.
3. attribute-list defines the aspect and behavior of the form item.

Attributes

COLOR, COLOR WHERE, COMMENT, DEFAULT, FONTPITCH, HIDDEN, INCLUDE, ITEMS, JUSTIFY, KEY,
NOT NULL, NOENTRY, ORIENTATION, REQUIRED, SAMPLE, SIZEPOLICY, STYLE, TAG, TABINDEX,
TITLE, UNSORTABLE, UNSIZABLE, UNHIDABLE, UNMOVABLE, VALIDATE LIKE.

Usage

Define the rendering and behavior of a radio group item tag, with a RADIOGROUP element in the
ATTRIBUTES section.

For more details about this item type, see RADIOGROUP item type on page 893.

Example

LAYOUT
GRID

User interface | 944

{
[f1]
 ...

}
END
END

ATTRIBUTES
RADIOGROUP f1 = player.level,
 ITEMS=((1,"Beginner"),
 (2,"Normal"),
 (3,"Expert"));
...

SCROLLGRID item definition
Defines a scrollgrid layout tag, in a grid-based layout.

Syntax

SCROLLGRID layout-tag: item-name [, attribute-list] ;

1. layout-tag is an identifier that defines the name of the layout tag.
2. item-name identifies the form item.
3. attribute-list defines the aspect and behavior of the form item.

Attributes

COMMENT, FONTPITCH, GRIDCHILDRENINPARENT, HIDDEN, STYLE, TAG.

Usage

The SCROLLGRID form item type to specify the attributes of a scrollgrid container defined with a layout tag.

Important: This feature is not supported on mobile platforms.

For more details about this item type, see SCROLLGRID item type on page 894.

Example

LAYOUT
GRID
{
<SCROLLGRID sg1 >
 [f001]
 ...

}
END
END

ATTRIBUTES
SCROLLGRID sg1: scrollgrid1,
 GRIDCHILDRENINPARENT;

User interface | 945

SLIDER item definition
Defines a slider element, in a grid-based layout.

Syntax

SLIDER item-tag = field-name [, attribute-list] ;

1. item-tag is an identifier that defines the name of the item tag in the layout section.
2. field-name identifies the name of the screen record field.
3. attribute-list defines the aspect and behavior of the form item.

Attributes

COLOR, COLOR WHERE, COMMENT, DEFAULT, FONTPITCH, HIDDEN, INCLUDE, JUSTIFY, ORIENTATION,
SAMPLE, STEP, STYLE, TABINDEX, TAG, TITLE, UNSORTABLE, UNSIZABLE, UNHIDABLE, UNMOVABLE,
VALIDATE LIKE, VALUEMIN, VALUEMAX.

Usage

Define the rendering and behavior of a slider item tag, with an SLIDER element in the ATTRIBUTES
section.

For more details about this item type, see SLIDER item type on page 895.

Example

LAYOUT
GRID
{
[f1]
 ...

}
END
END

ATTRIBUTES
SLIDER f1 = workstate.duration,
 VALUEMIN=0, VALUEMAX=50,
 STEP=1;
...

SPINEDIT item definition
Defines a spin box widget to enter integer values, in a grid-based layout.

Syntax

SPINEDIT item-tag = field-name [, attribute-list] ;

1. item-tag is an identifier that defines the name of the item tag in the layout section.
2. field-name identifies the name of the screen record field.
3. attribute-list defines the aspect and behavior of the form item.

Attributes

AUTONEXT, COLOR, COLOR WHERE, COMMENT, DEFAULT, FONTPITCH, HIDDEN, IMAGECOLUMN,
INCLUDE, JUSTIFY, NOT NULL, NOENTRY, REQUIRED, SAMPLE, STEP, STYLE, TABINDEX, TAG, TITLE,
UNSORTABLE, UNSIZABLE, UNHIDABLE, UNMOVABLE, VALIDATE LIKE, VALUEMIN, VALUEMAX.

User interface | 946

Usage

Define the rendering and behavior of a spin edit item tag, with an SPINEDIT element in the ATTRIBUTES
section.

For more details about this item type, see SPINEDIT item type on page 895.

Example

LAYOUT
GRID
{
[f1]
 ...

}
END
END

ATTRIBUTES
SPINEDIT f1 = command.nbitems, STEP=5;
...

TABLE item definition
Defines attributes for a table layout tag, in a grid-based layout.

Syntax

TABLE layout-tag: item-name [, attribute-list] ;

1. layout-tag is an identifier that defines the name of the layout tag.
2. item-name identifies the form item.
3. attribute-list defines the aspect and behavior of the form item.

Attributes

AGGREGATETEXT, COMMENT, DOUBLECLICK, FONTPITCH, HEIGHT, HIDDEN, STYLE, TAG,
UNHIDABLECOLUMNS, UNMOVABLECOLUMNS, UNSIZABLECOLUMNS, UNSORTABLECOLUMNS,
WANTFIXEDPAGESIZE, WIDTH.

Usage

Define a TABLE element in the ATTRIBUTES section, to configure a table layouted with a <TABLE > layout
tag.

For more details about this item type, see TABLE item type on page 896.

Example

LAYOUT
GRID
{
<TABLE t1 >
[c1 |c2 |c3]
[c1 |c2 |c3]
 ...

}
END
END

User interface | 947

ATTRIBUTES
TABLE t1: table1, UNSORTABLECOLUMNS;
...

TEXTEDIT item definition
Defines a multi-line edit field, in a grid-based layout.

Syntax

TEXTEDIT item-tag = field-name [, attribute-list] ;

1. item-tag is an identifier that defines the name of the item tag in the layout section.
2. field-name identifies the name of the screen record field.
3. attribute-list defines the aspect and behavior of the form item.

Attributes

COLOR, COLOR WHERE, COMMENT, DEFAULT, DOWNSHIFT, FONTPITCH, HIDDEN, INCLUDE, JUSTIFY,
KEY, NOT NULL, NOENTRY, PROGRAM, REQUIRED, SAMPLE, SCROLLBARS, STYLE, STRETCH, TAG,
TITLE, TABINDEX, UNSORTABLE, UNSIZABLE, UNHIDABLE, UNMOVABLE, UPSHIFT, VALIDATE LIKE,
WANTTABS, WANTNORETURNS.

Usage

Define the rendering and behavior of a text edit item tag, with an TEXTEDIT element in the ATTRIBUTES
section.

For more details about this item type, see TEXTEDIT item type on page 897.

Example

LAYOUT
GRID
{
[f1]
[]
[]
[]
 ...

}
END
END

ATTRIBUTES
TEXTEDIT f1 = customer.address,
 WANTTABS, SCROLLBARS=BOTH;
...

TIMEEDIT item definition
Defines a line-edit with a clock widget to pick a time, in a grid-based layout.

Syntax

TIMEEDIT item-tag = field-name [, attribute-list] ;

1. item-tag is an identifier that defines the name of the item tag in the layout section.

User interface | 948

2. field-name identifies the name of the screen record field.
3. attribute-list defines the aspect and behavior of the form item.

Attributes

AUTONEXT, COLOR, COLOR WHERE, COMMENT, DEFAULT, FONTPITCH, HIDDEN, IMAGECOLUMN, INCLUDE,
JUSTIFY, NOT NULL, NOENTRY, REQUIRED, SAMPLE, STYLE, TABINDEX, TAG, TITLE, UNSORTABLE,
UNSIZABLE, UNHIDABLE, UNMOVABLE, VALIDATE LIKE.

Usage

Define the rendering and behavior of a text edit item tag, with an TEXTEDIT element in the ATTRIBUTES
section.

For more details about this item type, see TIMEEDIT item type on page 898.

Example

LAYOUT
GRID
{
[f1]
 ...

}
END
END

ATTRIBUTES
TIMEEDIT f1 = package.arrtime;
...

TREE item definition
Defines attributes for a tree layout tag, in a grid-based layout.

Syntax

TREE layout-tag: item-name [, attribute-list] ;

1. layout-tag is an identifier that defines the name of the layout tag.
2. item-name identifies the form item.
3. attribute-list defines the aspect and behavior of the form item.

Attributes

COMMENT, DOUBLECLICK, HIDDEN, FONTPITCH, STYLE, TAG, UNHIDABLECOLUMNS,
UNMOVABLECOLUMNS, UNSIZABLECOLUMNS, UNSORTABLECOLUMNS, WANTFIXEDPAGESIZE, WIDTH,
HEIGHT, PARENTIDCOLUMN, IDCOLUMN, EXPANDEDCOLUMN, ISNODECOLUMN, IMAGEEXPANDED,
IMAGECOLLAPSED, IMAGELEAF.

Usage

The TREE form item type can be used to specify the attributes of a tree container defined with a layout tag.

For more details about this item type, see TREE item type on page 899.

User interface | 949

WEBCOMPONENT item definition
Defines a generic form field that can receive an external widget, in a grid-based layout.

Syntax

WEBCOMPONENT item-tag = field-name [, attribute-list] ;

1. item-tag is an identifier that defines the name of the item tag in the layout section.
2. field-name identifies the name of the screen record field.
3. attribute-list defines the aspect and behavior of the form item.

Attributes

COLOR, COLOR WHERE, COMPONENTTYPE, COMMENT, DEFAULT, FONTPITCH, HEIGHT, HIDDEN, INCLUDE,
JUSTIFY, NOT NULL, NOENTRY, PROPERTIES, REQUIRED, SCROLLBARS, SIZEPOLICY, STYLE,
STRETCH, TAG, TABINDEX, TITLE, UNSORTABLE, UNSIZABLE, UNHIDABLE, UNMOVABLE, VALIDATE
LIKE, WIDTH.

Usage

Define the rendering and behavior of a web component item tag, with an WEBCOMPONENT element in the
ATTRIBUTES section.

For more details about this item type, see WEBCOMPONENT item type on page 900.

Example

LAYOUT
GRID
{
[f1]
[]
[]
 ...
[f2]
[]
[]
 ...

}
END
END

ATTRIBUTES

-- URL-based web component (recommended):
WEBCOMPONENT f1 = FORMONLY.mymap,
 STRETCH=BOTH;

-- gICAPI web component:
WEBCOMPONENT f2 = FORMONLY.mycal,
 COMPONENTTYPE="Calendar", -- lookup "Calendar.html"
 STRETCH=BOTH, STYLE="regular";

User interface | 950

INSTRUCTIONS section
The INSTRUCTIONS section is used to define screen arrays, non-default screen records and global form
properties.

Syntax

INSTRUCTIONS
{ screen-record-definition [;...] }
[DELIMITERS AB [;]]
[DEFAULT SAMPLE = "string"]
[END]

1. screen-record-definition is the definition of a screen record or screen array.
2. A and B define the opening and closing field delimiters for character based terminals.

Usage
The INSTRUCTIONS section must appear in the sequence described in form file structure.

The INSTRUCTIONS section is optional in a form definition.

The END keyword is optional.

This section is mainly used to define screen records, to group fields using tables, tree views, scrollgrids or
traditional static field arrays.

Screen records (or screen arrays)

A screen record is a named group of form fields.

See Screen records on page 866 for more details.

Field delimiters

Use the DELIMITER keyword to specify the characters to be displayed as field delimiters on the screen.

This option is especially used for TUI mode applications.

Default sample
The DEFAULT SAMPLE directive defines the default sample text for all fields.

DEFAULT SAMPLE = "MMM"

See SAMPLE attribute on page 981 for more details.

Example

SCHEMA stores
LAYOUT
GRID
{
 ...
}
END
TABLES
 stock, items
END
ATTRIBUTES
...
END
INSTRUCTIONS
 SCREEN RECORD s_items[10]

User interface | 951

 (stock.*,
 items.quantity,
 FORMONLY.total_price)
 DELIMITERS "[]"
END

KEYS section
The KEYS section can be used to define default key labels for the current form.

Syntax

KEYS
key-name = [%]"label"
[...]
[END]

1. key-name is the name of a key (like F10, Control-z).
2. label is the text to be displayed in the button corresponding to the key.

Usage

The KEYS section can be used to define default key labels at the form level.

The KEYS section must appear in the sequence described in form file structure.

The KEYS section is optional in a form definition.

The END keyword is optional.

Note: This feature is supported for backward compatibility. Consider using action attributes to
define accelerator keys and decorate actions.

Example

KEYS
 F10 = "City list"
 F11 = "State list"
 F15 = "Validate"
END

Form item attributes
The form item attributes reference.

• ACCELERATOR attribute on page 953
• ACCELERATOR2 attribute on page 953
• ACCELERATOR3 attribute on page 954
• ACCELERATOR4 attribute on page 954
• ACTION attribute on page 954
• AGGREGATETEXT attribute on page 955
• AGGREGATETYPE attribute on page 955
• AUTONEXT attribute on page 956
• AUTOSCALE attribute on page 956
• BUTTONTEXTHIDDEN attribute on page 956
• CENTURY attribute on page 956
• CLASS attribute on page 957
• COLOR attribute on page 957
• COLOR WHERE Attribute on page 958

User interface | 952

• COMMENT attribute on page 959
• COMPONENTTYPE attribute on page 960
• CONFIG Attribute on page 958
• CONTEXTMENU attribute on page 958
• DEFAULT attribute on page 960
• DEFAULTVIEW attribute on page 961
• DISPLAY LIKE attribute on page 961
• DISCLOSUREINDICATOR attribute on page 962
• DOUBLECLICK attribute on page 962
• DOWNSHIFT attribute on page 962
• EXPANDEDCOLUMN attribute on page 963
• FONTPITCH attribute on page 963
• FORMAT attribute on page 963
• GRIDCHILDRENINPARENT attribute on page 964
• HEIGHT attribute on page 965
• HIDDEN attribute on page 965
• IDCOLUMN attribute on page 966
• IMAGE attribute on page 967
• IMAGECOLLAPSED attribute on page 968
• IMAGECOLUMN attribute on page 967
• IMAGEEXPANDED attribute on page 968
• IMAGELEAF attribute on page 969
• INCLUDE attribute on page 969
• INITIALIZER attribute on page 970
• INVISIBLE attribute on page 970
• ISNODECOLUMN attribute on page 971
• ITEMS attribute on page 971
• JUSTIFY attribute on page 972
• KEY attribute on page 973
• MINHEIGHT attribute on page 975
• MINWIDTH attribute on page 975
• NOENTRY attribute on page 975
• NOT NULL attribute on page 976
• NOTEDITABLE attribute on page 976
• OPTIONS attribute on page 977
• ORIENTATION attribute on page 977
• PARENTIDCOLUMN attribute on page 977
• PICTURE attribute on page 977
• PROGRAM attribute on page 978
• PROPERTIES attribute on page 979
• QUERYEDITABLE attribute on page 979
• REQUIRED attribute on page 980
• REVERSE attribute on page 981
• SAMPLE attribute on page 981
• SCROLL attribute on page 982
• SCROLLBARS attribute on page 982
• SIZEPOLICY attribute on page 982
• SPACING attribute on page 984
• SPLITTER attribute on page 985
• STEP attribute on page 985

User interface | 953

• STRETCH attribute on page 985
• STYLE attribute on page 986
• TABINDEX attribute on page 986
• TAG attribute on page 987
• TEXT attribute on page 987
• TITLE attribute on page 988
• UNHIDABLE attribute on page 989
• UNHIDABLECOLUMNS attribute on page 990
• UNMOVABLE attribute on page 990
• UNMOVABLECOLUMNS attribute on page 990
• UNSIZABLE attribute on page 989
• UNSIZABLECOLUMNS attribute on page 989
• UNSORTABLE attribute on page 988
• UNSORTABLECOLUMNS attribute on page 988
• UPSHIFT attribute on page 991
• VALIDATE attribute on page 991
• VALIDATE LIKE attribute on page 991
• VALUECHECKED attribute on page 993
• VALUEMAX attribute on page 992
• VALUEMIN attribute on page 992
• VALUEUNCHECKED attribute on page 993
• VERIFY attribute on page 993
• VERSION attribute on page 994
• WANTFIXEDPAGESIZE attribute on page 994
• WANTNORETURNS attribute on page 995
• WANTTABS attribute on page 995
• WIDGET attribute on page 995
• WIDTH attribute on page 999
• WINDOWSTYLE attribute on page 999
• WORDWRAP Attribute on page 1000

ACCELERATOR attribute
The ACCELERATOR is an action attribute defining the primary accelerator key for an action.

Syntax

ACCELERATOR = key

1. key defines the accelerator key.

Usage

This attribute is an action attribute that can be specified in form ACTION DEFAULTS, for more details, see
ACCELERATOR action attribute on page 1323.

ACCELERATOR2 attribute
The ACCELERATOR2 is an action attribute defining the secondary accelerator key for an action.

Syntax

ACCELERATOR2 = key

1. key defines the accelerator key.

User interface | 954

Usage

This attribute is an action attribute that can be specified in form ACTION DEFAULTS, for more details, see
ACCELERATOR2 action attribute on page 1324.

ACCELERATOR3 attribute
The ACCELERATOR3 is an action attribute defining the third accelerator key for an action.

Syntax

ACCELERATOR3 = key

1. key defines the accelerator key.

Usage

This attribute is an action attribute that can be specified in form ACTION DEFAULTS, for more details, see
ACCELERATOR3 action attribute on page 1325.

ACCELERATOR4 attribute
The ACCELERATOR4 is an action attribute defining the fourth accelerator key for an action.

Syntax

ACCELERATOR4 = key

1. key defines the accelerator key.

Usage

This attribute is an action attribute that can be specified in form ACTION DEFAULTS, for more details, see
ACCELERATOR4 action attribute on page 1325.

ACTION attribute
The ACTION attribute defines the action associated to the form item.

Syntax

ACTION = action-name

1. action-name is an identifier that defines the name of the action to be sent.

Usage

The ACTION attribute defines the name of the action to be sent to the program when the user activates the
form item.

This attribute can for example be used in a BUTTONEDIT field to identify the corresponding action handle
to be executed in the program when the button is pressed.

The action name can be prefixed with a sub-dialog identifier and/or field name, to define a qualified action
view (see action handler binding rules for more details).

Example

BUTTONEDIT f001 = customer.state, ACTION = print;

User interface | 955

AGGREGATETEXT attribute
The AGGREGATETEXT attribute defines a label to be displayed for aggregate fields.

Syntax

AGGREGATETEXT = [%]"string"

1. string defines the label to be associated with the aggregate cell, with the % prefix it is a localized string.

Usage

The AGGREGATETEXT attribute can be specified at the AGGREGATE field level, or globally at the TABLE
level, to define a label for the whole summary line. When defining the AGGREGATETEXT attribute at
the aggregate field level, the text will be anchored to the value cell. If the AGGREGATETEXT attribute is
specified at the TABLE level, the label will appear on the left in the summary line. When an aggregate text
is defined at both levels, the global aggregate text of the table will be ignored.

Example

AGGREGATE tot = FORMONLY.total, AGGREGATETEXT="Total:";

AGGREGATETYPE attribute
The AGGREGATETYPE attribute defines how the aggregate field value is computed.

Syntax

AGGREGATETYPE = { PROGRAM | SUM | AVG | MIN | MAX | COUNT }

Usage

PROGRAM specifies that the aggregate value will be computed and displayed by the program code.

An aggregate type different from PROGRAM specifies that the aggregate value is computed automatically:

• SUM computes the total of all values of the corresponding numeric column.
• AVG computes the average of all values of the corresponding numeric column.
• MIN displays the minimum value of the corresponding numeric column.
• MAX displays the maximum value of the corresponding numeric column.
• COUNT computes the number of rows.

The SUM and AVG aggregate types apply to data types that can be used as operand for an addition, such
as INTEGER, DECIMAL, INTERVAL.

The MIN and MAX aggregate types apply to data types that can be compared, such as INTEGER,
DECIMAL, INTERVAL, CHAR, DATETIME.

Example

AGGREGATE tot = FORMONLY.total, AGGREGATETYPE=PROGRAM;

User interface | 956

AUTOSCALE attribute
The AUTOSCALE attribute causes the form element contents to automatically scale to the size given to the
item.

Syntax

AUTOSCALE

Usage

For images, this attribute forces the image to be stretched to fit in the area reserved for the image.

AUTONEXT attribute
The AUTONEXT attribute forces the cursor to automatically leave the current field when full.

Syntax

AUTONEXT

Usage

With AUTONEXT, when the user types a character that completely fills the current field, the focus goes
automatically to the next field in the input order.

If data values entered in the field do not meet the requirements of other field attributes like INCLUDE or
PICTURE, the cursor does not automatically move to the next field. It remains in the current field, and an
error message displays.

AUTONEXT is particularly useful with character fields in which the input data is of a standard length, such
as numeric postal codes. It is also useful if a character field has a length of 1, as only one keystroke is
required to enter data and move to the next field.

BUTTONTEXTHIDDEN attribute
The BUTTONTEXTHIDDEN attribute indicates that the button labels for an element should not be displayed.

Syntax

BUTTONTEXTHIDDEN

Usage

Use BUTTONTEXTHIDDEN in a TOOLBAR definition to hide the labels of toolbar buttons.

CENTURY attribute
The CENTURY attribute defines expansion of the year in a DATE or DATETIME field.

Syntax

CENTURY = { "R" | "C" |"F" | "P" }

Usage

The CENTURY attribute specifies how to expand abbreviated one- and two-digit year specifications in a
DATE and DATETIME field.

Century expansion is based on this attribute and on the current year defined by the system clock.

User interface | 957

The CENTURY attribute can specify any of four algorithms to expand abbreviated years into four-digit year
values that end with the same digits (or digit) that the user has entered.

CENTURY supports the same settings as the DBCENTURY environment variable, but with a scope that is
restricted to a single field.

If the CENTURY and DBCENTURY settings are different, CENTURY takes precedence.

Unlike DBCENTURY, the CENTURY attribute is not case sensitive. However, we recommend that you use
uppercase letters in the attribute.

CLASS attribute
The CLASS attribute defines the behavior of a field defined with the WIDGET attribute.

Syntax

CLASS = "identifier"

1. identifier is a predefined keyword defining the class of the field.

Usage

The CLASS attribute can only be used with the WIDGET attribute. It is ignored if WIDGET is not used.

Important: This attribute is deprecated, use new form item types instead.

Table 258: Supported field classes

Class Description

KEY Field is used to trigger a keystroke instead of being
a normal input field.

Only supported with
WIDGET="BMP"|"CHECK"|"RADIO"

PASSWORD Field input is masked by replacing normal character
echo by stars.

COLOR attribute
The COLOR attribute defines the foreground color of the text displayed by a form element.

Syntax

COLOR = color-name

1. color-name can be: BLACK, BLUE, CYAN, GREEN, MAGENTA, RED,WHITE, and YELLOW.

Usage

The COLOR attribute defines the logical color of a value displayed in a field.

For backward compatibility, color-name can be combined with an intensity keyword: REVERSE, LEFT,
BLINK, and UNDERLINE.

Example

EDIT f001 = customer.name, COLOR = RED;

User interface | 958

COLOR WHERE Attribute
The COLOR WHERE attribute defines a condition to set the foreground color dynamically.

Syntax

COLOR = color-name [...] WHERE bool-expr

1. color-name can be BLACK, BLUE, CYAN, GREEN, MAGENTA, RED, WHITE, or YELLOW.
2. color-name can also be an intensity keyword: REVERSE, LEFT, BLINK, and UNDERLINE.
3. bool-expr defines a boolean expression with a restricted syntax.

Usage

The COLOR WHERE attribute defines the logical color of the text of a field when the value satisfies the
conditional expression.

The condition in COLOR WHERE can only reference the field for which the attribute is set.

The boolean expression is automatically evaluated at runtime to check when the color attribute must be
set.

Example

EDIT f001 = item.price, COLOR=RED WHERE f001 > 100;

CONFIG Attribute
The CONFIG attribute defines the behavior and decoration of a field defined with the WIDGET attribute.

Syntax

CONFIG = "parameter [...]"

1. parameter is the value of a configuration parameter.

Usage

The CONFIG attribute can only be used with the WIDGET attribute. It is ignored if WIDGET is not used.

Configuration parameters are separated by blanks.

If a configuration parameter holds blank characters, you must use {} curly braces to delimit the parameter
value.

Important: This attribute is deprecated, use new form item types instead.

CONTEXTMENU attribute
The CONTEXTMENU attribute defines whether a context menu option must be displayed for an action.

Syntax

CONTEXTMENU = [AUTO | YES | NO]

Usage

This attribute is an action attribute that can be specified in form ACTION DEFAULTS, for more details, see
CONTEXTMENU action attribute on page 1326.

User interface | 959

COMMENT attribute
The COMMENT attribute defines hint for the user about the form element.

Syntax

COMMENT = [%]"string"

1. string is the text to display, with the % prefix it is a localized string.

Usage

The most common use of the COMMENT attribute is to give information or instructions to the user.

The COMMENT attribute can be used for different sort of form elements:

• Form field definitions, to show a message when the field gets the focus.
• Action views, to give a hint to the user about the action.

With form fields, this attribute is particularly appropriate when the field accepts only a limited set of
values. The screen location where the message is displayed depends on external configuration. It can
be displayed in the comment line, or in the status bar when using a graphical user interface. If the OPEN
WINDOW statement specifies COMMENT LINE OFF, any output to the comment area is hidden even if the
window displays a form that includes fields that include the COMMENT attribute.

This attribute is also an action attribute that can be defined in the ACTION DEFAULTS section of a form or
directly in an action view (BUTTON), see COMMENT action attribute on page 1325 for more details.

Example

-- As action default
ACTION DEFAULTS
 ACTION print (COMMENT="Print current order information")
END

-- In a form field definition
EDIT f1 = customer.name, COMMENT = "The customer name";

-- In a form buttom
BUTTON b1: print, COMMENT = "Print customer details";

COMPLETER attribute
The COMPLETER attribute enables autocompletion for the edit field.

Syntax

COMPLETER

Usage:

Form fields with COMPLETER attribute provide suggestions while the end-user types text into the field, it
can be used in text edit fields such as EDIT and BUTTONEDIT item types.

Normally, the ON CHANGE trigger is fired for text edit fields when leaving the field and if the content was
modified. Form fields defined with the COMPLETER attribute will trigger the ON CHANGE control block when
the end user modifies the content of the field.

See Enabling autocompletion on page 1274 for more details.

User interface | 960

Example

EDIT f1 = FORMONLY.custname, COMPLETER;

COMPONENTTYPE attribute
The COMPONENTTYPE attribute defines a name identifying the external widget for WEBCOMPONENT fields.

Syntax

COMPONENTTYPE = "name"

1. name defines the HTML file defining the web component.

Usage

The COMPONENTTYPE attribute is used to define the type of a WEBCOMPONENT form item for gICAPI web
components.

When this attribute is specified, it defines the name of the HTML file that will be loaded by the front-end. If
this attribute is not defined, the web component will be specified by an URL set dynamically by program in
the field value. Consider using URL-based web components instead of gICAPI web components.

Example

WEBCOMPONENT f001 = FORMONLY.mycal, COMPONENTTYPE="Calendar";

DEFAULT attribute
The DEFAULT attribute assigns a default value to a field during data entry.

Syntax

DEFAULT = value

1. value can be any literal expression supported by the form compiler, as long as it matches the form field
type.

2. value can be TODAY to specify the current system date as default.
3. value can be CURRENT to specify the current system datetime as default.

Usage

The literal constant specified after as default value must match the form field type. For example, when
defining a numeric field, use a numeric decimal constant, for character string fields, use a double-quoted
character literal.

The effect of the DEFAULT attribute depends on the WITHOUT DEFAULTS configuration option of the
dialog using the form:

With the INPUT statement, form default values have are ignored when using the WITHOUT DEFAULTS
option. With this option, the runtime system displays the values in the program variables to the screen.
Otherwise, the form default values will be displayed when the dialog starts.

With the INPUT ARRAY statement, the form default values are always used for new rows inserted by
the user. With INPUT ARRAY, the WITHOUT DEFAULTS option indicates if the existing program array
elements have to be used.

Defaults values can also be specified in the database schema file, for form fields defined with database
column reference.

User interface | 961

If the field is FORMONLY, you must also specify a data type when you assign the DEFAULT attribute to a
field.

If both the DEFAULT attribute and the REQUIRED attribute are assigned to the same field, the REQUIRED
attribute is ignored.

If you do not use the WITHOUT NULL INPUT option in the DATABASE section of a form, all fields default to
null values unless you have specified a DEFAULT attribute.

Note that DATETIME and INTERVAL literals are not supported in the DEFAULT attribute.

Example

EDIT f001 = order.orderdate, DEFAULT = TODAY;
EDIT f012 = FORMONLY.discount TYPE DECIMAL(5,2), DEFAULT=0.10;

DEFAULTVIEW attribute
The DEFAULTVIEW attribute defines if a default view (a button) must be displayed for a given action.

Syntax

DEFAULTVIEW = [AUTO | YES | NO]

Usage

This attribute is an action attribute that can be specified in form ACTION DEFAULTS, for more details, see
DEFAULTVIEW action attribute on page 1327.

DISPLAY LIKE attribute
The DISPLAY LIKE attribute applies column attributes defined in the database schema files (.att) to a
field.

Syntax

DISPLAY LIKE [table.]column

1. table is the optional table name to qualify the column.
2. column is the name of the column to be used to retrieve display attributes.

Usage

Specifying this attribute is equivalent to listing all the attributes that are assigned to table.column in the
database schema file with the .att extension.

Display attributes are automatically taken from the schema file if the field is linked to table.column in the
field name specification.

The DISPLAY LIKE attribute is evaluated at compile time, not at runtime. If the database schema file
changes, recompile all forms using this attribute. Even if all of the fields in the form are FORMONLY, this
attribute requires the form compiler to access the database schema file that contains the description of
table.

Example

EDIT f001 = FORMONLY.fullname, DISPLAY LIKE customer.custname;

User interface | 962

DISCLOSUREINDICATOR attribute
The DISCLOSUREINDICATOR attribute adds a drill-down decoration to the form item.

Syntax

DISCLOSUREINDICATOR

Usage

The DISCLOSUREINDICATOR attribute is used on BUTTON form items to add a graphical hint, to indicate
that a click on the button will drill down in the application windows, typically to show a detail view of the
information displayed in the current window.

This is a simple decoration attribute, with no other functional purpose.

For example, on iOS devices, the buttons defined with this attribute will show a typical > icon on the right.

Example

BUTTON b_details : details,
 TEXT="Show details",
 DISCLOSUREINDICATOR;

DOUBLECLICK attribute
The DOUBLECLICK attribute defines the action for double-clicks or tap on TABLE/TREE rows.

Syntax

DOUBLECLICK = action-name

1. action-name defines the name of the action to be invoked.

Usage

Note: The double-click/tap action can also be defined as DISPLAY ARRAY dialog attribute. For
more details, see Defining the action for a row choice on page 1360.

The DOUBLECLICK attribute is typically used in a TABLE or TREE container, to define the action to be sent
when the user double-clicks on a row on a front-end using a mouse device. On mobile front-ends, this
attribute corresponds to the action of tapping on the row with the finger.

By default, when the TABLE is driven by a DISPLAY ARRAY, a double-click invokes the "accept" action.

With an INPUT ARRAY, double-click selects the whole text if the current widget is editable. If
DOUBLECLICK is defined when using an INPUT ARRAY, the action can only be sent when the user
double-clicks on a non-editable widget like a LABEL. It is not recommended to define this attribute when an
INPUT ARRAY dialog is used.

DOWNSHIFT attribute
The DOWNSHIFT attribute forces character input to lowercase letters.

Syntax

DOWNSHIFT

User interface | 963

Usage

Assign the DOWNSHIFT attribute to a character field to automatically convert uppercase letters entered by
the user to lowercase letters.

Because uppercase and lowercase letters have different values, storing character strings in one or the
other format can simplify sorting and querying a database.

The results of conversions between uppercase and lowercase letters are based on the locale settings.

EXPANDEDCOLUMN attribute
The EXPANDEDCOLUMN attribute specifies the form field that indicates whether a tree node is expanded.

Syntax

EXPANDEDCOLUMN = column-name

1. column-name is the name of the form field holding the flag indicating whether a tree node is expanded
(opened.)

Usage

This attribute is used in the definition of a TREE container.

You must specify form field column names, not item tag identifiers.

This attribute is optional.

FONTPITCH attribute
The FONTPITCH attribute defines the character font type as fixed or variable when the default font is used.

Syntax

FONTPITCH = {FIXED|VARIABLE}

Usage

By default, most front ends use variable width character fonts, but some fields might need to use a fixed
font.

Tip: Use a STYLE defining a fixed font instead of this attribute.

FORMAT attribute
The FORMAT attribute defines the data formatting for numeric and date time fields, for input and display.

Syntax

FORMAT = "format"

1. format is a string of characters that specifies a data format.

Usage

The FORMAT attribute can be set to define a input and display format for numeric and date fields.

When this attribute is not used, environment variables define the default format:

• For MONEY and numeric fields such as DECIMAL fields, a format can be specified with the DBFORMAT
(or DBMONEY) environment variables.

• For DATE fields, the default format is defined by the DBDATE environment variable.

User interface | 964

The data format is used when converting the input buffer to the program variable, and when displaying
program variable data to form fields. For example, when defining a FORMAT="yyyy-mm-dd" for a form
field bound to a program variable defined as a DATE, the user can input a date as 2013-12-24, and the
date value will be displayed in the same manner.

Do not confuse the FORMAT and PICTURE attributes: The PICTURE attribute is used to define an input
mask for character string fields, such as vehicle registration numbers. Do not mix PICTURE and FORMAT
attributes in field defintions.

If the format string is smaller than the field width, you get a compile-time warning, but the form is usable.

The format string can be any valid string expression using formatting characters as described in Formatting
numeric values on page 217 and Formatting DATE values on page 220.

Example

EDIT f001 = order.thedate, FORMAT = "mm/dd/yyyy";

GRIDCHILDRENINPARENT attribute
The GRIDCHILDRENINPARENT attribute is used for a container to align its children to the parent container.

Syntax

GRIDCHILDRENINPARENT

Usage

By default, in a grid-based layout, child elements of a container are aligned locally inside the container
layout cells. With the GRIDCHILDRENINPARENT attribute, you can force children to be aligned in the
vertical or horizontal direction, according to the layout cells in the parent container of the container to which
you assign this attribute.

Important: This feature is not supported on mobile platforms.

Note: The GRIDCHILDRENINPARENT attribute applies only to GROUP and SCROLLGRID containers
used inside a parent GRID container.

When the group or scrollgrid containers are placed vertically over each other, the alignment applies on
parent grid columns, and when the containers are placed side by side horizontally, the alignment applies
on parent grid rows.

Example

With the next form definition, the elements in the four group boxes will align vertically and
horizontally to the parent grid cells:

LAYOUT
GRID
{
<G ga ><G gb >
 Some text
[a] b[b]
< >< >
<G gc ><G gd >
[c] d[d]
< >< >
}
END
END
ATTRIBUTES

User interface | 965

GROUP ga: GRIDCHILDRENINPARENT;
GROUP gb: GRIDCHILDRENINPARENT;
GROUP gc: GRIDCHILDRENINPARENT;
GROUP gd: GRIDCHILDRENINPARENT;
EDIT a = FORMONLY.f_a;
EDIT b = FORMONLY.f_b;
EDIT c = FORMONLY.f_c;
EDIT d = FORMONLY.f_d;
END

HIDDEN attribute
The HIDDEN attribute indicates that the element should not be displayed.

Syntax

HIDDEN [= USER]

1. HIDDEN sets the underlying item attribute to 1.
2. HIDDEN=USER sets the underlying item attribute to 2.

Usage

By default, all form elements are visible. Specify the HIDDEN attribute to hide a form element, such as a
form field or a groupbox.

The runtime system detects hidden form fields: If you write an INPUT statement using a hidden field, the
field is ignored (as if it was declared as NOENTRY).

If the HIDDEN keyword is specified alone, the underlying item attribute is set to 1. The value 1 indicates
that the element is definitvely hidden to the end user, which cannot show the element, for example with the
context menu of TABLE headers. In this hidden mode, the UNHIDABLE attribute is ignored by the front end.

With HIDDEN=USER, the underlying item attribute is set to 2. The value 2 indicates that the element is
hidden by default, but the end user can show/hide the element as needed. For example, the user can
change a hidden column back to visible. Form elements like table columns that are hidden by the user
might be automatically re-shown (hidden=0) by the front-end if the program dialog gives the focus to that
field for input. In such case the program dialog takes precedence over the hidden attribute.

When you set a hidden attribute for a form field, the model node gets the hidden attribute, not the view
node.

Form fields hidden with HIDDEN=USER (value 2) might be shown anyway, if the field is needed by a dialog
for input.

Programs may also change the visibility of form elements dynamically with the
ui.Form.setElementHidden() or ui.Form.setFieldHidden() methods.

Example

EDIT f001 = FORMONLY.field1, HIDDEN;
EDIT col1 = FORMONLY.column1, HIDDEN=USER;

HEIGHT attribute
The HEIGHT attribute defines an explicit height for a form element.

Syntax

HEIGHT = integer [CHARACTERS|LINES|POINTS|PIXELS]

User interface | 966

1. integer defines the height of the element.

Usage

By default, the height of an element is defined by the size of the form item tag in a grid-based layout, or by
the type of the form item in a stack-based layout. Use the HEIGHT attribute to define a specific height for a
form item.

Note: As a general rule, consider not specifying a unit, to default to relative characters/lines/
columns, instead of specifying exact pixels or points. This is especially important for mobile devices,
where the screen resolution can significantly vary according to the smartphone or tablet model.

In a grid-based layout and stack-based layout, if you don't specify a size unit, it defaults to CHARACTERS,
which defines a height based on the characters size in the current font.

Grid-based layout

For sizable items like IMAGE, the default height is defined by the number of lines of the form item tag in the
layout, as a vertical character height. Overwrite this default by specifying the HEIGHT attribute.

For TABLE/TREE containers, the default height is defined by the number of lines used in the table layout.
Overwrite the default by specifying the HEIGHT = x LINES attribute.

IMAGE img1: image1, WIDTH = 20, HEIGHT = 12;

Stack-based layout

For TABLE containers, the height of a list is defined by the actual number of rows, this cannot be changed.

For IMAGE items, by default the image is rendered full size, which means that the actual size of the image
is used. Overwrite the default by specifying the HEIGHT attribute:

IMAGE image1, HEIGHT = 12, ...;

By default, WEBCOMPONENT items adapt their size to the content. To force a give size, use the HEIGHT
attribute:

WEBCOMPONENT FORMONLY.chart, HEIGHT = 10, ...;

A TEXTEDIT item always adapts its size to the text value. By using the HEIGHT attribute, you can define a
minimum height, when the value of the field is empty:

TEXTEDIT FORMONLY.comment, HEIGHT = 5, ...;

IDCOLUMN attribute
The IDCOLUMN attribute specifies the form field that contains the identifier of a tree node.

Syntax

IDCOLUMN = column-name

1. column-name is a form field name.

Usage

This attribute is used in the definition of a TREE container, to define the name of the form field containing
the identifier of a node in a tree view

You must specify form field column names, not item tag identifiers.

User interface | 967

This attribute is mandatory.

IMAGE attribute
The IMAGE attribute defines the image resource to be displayed for the form item.

Syntax

IMAGE = "resource"

1. resource defines the file name, path or URL to the image source.

Usage:

The IMAGE attribute is used to define the image resource to be displayed form items such a BUTTON,
BUTTONEDIT, a TOOLBAR button or a static IMAGE item.

For more details about image resource specification, see Providing the image resource on page 784.

This attribute is also an action attribute that can be defined in the ACTION DEFAULTS section of a form or
directly in an action view (BUTTON), see IMAGE action attribute on page 1328 for more details.

Example

-- As action default
ACTION DEFAULTS
 ACTION print (IMAGE="printer")
END

-- In a form buttonedit or button
BUTTONEDIT f001 = FORMONLY.field01, IMAGE = "zoom";
BUTTON b01: open_file, IMAGE = "buttons/fileopen";
BUTTON b02: accept, IMAGE = "http://myserver/images/accept.png";

-- In a static image form item
IMAGE: img1, IMAGE = "mylogo.png"

IMAGECOLUMN attribute
The IMAGECOLUMN attribute defines the form field containing the image for the current field.

Syntax

IMAGECOLUMN = column-name

1. column-name is a form field name.

Usage

The IMAGECOLUMN attribute allows displaying an image on the left of the value of this column value. The
image can be different for each row.

A typical usage is the TREE container: IMAGECOLUMN will allow to display a row-specific image left of the
tree node text. You defined only one image column for a tree node decoration.

When used in the definition of a TABLE column, the image and the column will be displayed in the same
table cell. There can be several TABLE columns using an IMAGECOLUMN.

For TREE containers, the images defined by the IMAGECOLLAPSED, IMAGEEXPANDED and IMAGELEAF
attributes take precedence over the images defined by the IMAGECOLUMN cell.

This attribute references form field that contains the name of an image. This form field must be defined as
a PHANTOM form field, that will be part of the screen record definition in the INSTRUCTIONS section.

User interface | 968

For more details about image resource specification in the PHANTOM column, see Providing the image
resource on page 784.

Example

...
ATTRIBUTES
PHANTOM FORMONLY.icon;
EDIT FORMONLY.file_name, IMAGECOLUMN=icon;
...
END
INSTRUCTIONS
SCREEN RECORD sr(FORMONLY.icon, FORMONLY.file_name, ...);
...

IMAGECOLLAPSED attribute
The IMAGECOLLAPSED attribute sets the global icon to be used when a tree node is collapsed.

Syntax

IMAGECOLLAPSED = "image-name"

1. image-name is an image resource.

Usage

This attribute is used in the definition of a TREE container, to define the icon to be used for nodes that are
collapsed.

It overwrites the program array image defined by IMAGECOLUMN, if both are used.

This attribute is optional.

For more details about image resource specification, see Providing the image resource on page 784.

IMAGEEXPANDED attribute
The IMAGEEXPANDED attribute sets the global icon to be used when a tree node is expanded.

Syntax

IMAGEEXPANDED = "image-name"

1. image-name is an image resource.

Usage

This attribute is used in the definition of a TREE container, to define the icon to be used for nodes that are
expanded.

It overwrites the program array image defined by IMAGECOLUMN, if both are used.

This attribute is optional.

For more details about image resource specification, see Providing the image resource on page 784.

User interface | 969

IMAGELEAF attribute
The IMAGELEAF attribute defines the global icon for leaf nodes of a TREE container.

Syntax

IMAGELEAF = "image-name"

1. image-name is an image resource.

Usage

This attribute is used in the definition of a TREE container, to specify the name of the icon that must be
used for leaf nodes.

It overwrites the program array image defined by IMAGECOLUMN, if both are used.

This attribute is optional.

For more details about image resource specification, see Providing the image resource on page 784.

INCLUDE attribute
The INCLUDE attribute defines a list of possible values for a field.

Syntax

INCLUDE = ({ NULL | literal [TO literal] } [,...])

1. literal can be any literal expression supported by the form compiler.

Usage

The INCLUDE attribute specifies acceptable values for a field and causes the runtime system to check the
data before accepting an input value.

If the field is FORMONLY, you must also specify a data type when you assign the INCLUDE attribute to a
field.

Include the NULL keyword in the value list to specify that it is acceptable for the user to leave the field
without entering any value.

Use the TO keyword to specify an inclusive range of acceptable values. When specifying a range of values,
the lower value must appear first. The field value is accepted if it is greater or equal to the first literal, and
lower or equal to the second literal.

INCLUDE = (1 TO 999)
 is equivalent to:
(field_value >= 1 AND field_value <= 999)

Special consideration must be taken for character string fields:

INCLUDE = ("AAA" TO "ZZZ")
 is equivalent to:
(field_value >= "AAA" AND field_value <= "ZZZ")
 ABC is accepted
 A!! is not accepted
 Zaa is not accepted

When combining several ranges and single values, the value entered by the user is verified for each
element of the INCLUDE attribute:

INCLUDE = (1 TO 999, -1, NULL)

User interface | 970

 is equivalent to:
(field_value >= 1 AND field_value <= 999)
OR
(field_value == -1)
OR
(field_value IS NULL)

Example

EDIT f001 = compute.rate, INCLUDE = (1 TO 100, 200, NULL);
EDIT f002 = customer.state, INCLUDE = ("AL" TO "GA", "IA" TO
 "WY");
EDIT f003 = FORMONLY.valid TYPE CHAR, INCLUDE = ("Y","N");

INITIALIZER attribute
The INITIALIZER attribute allows you to specify an initialization function that will be automatically called
by the runtime system to set up the form item.

Syntax

INITIALIZER = function

1. function is an identifier defining the program function to be called.

Usage

The initialization function must exist in the program using the form file and must be defined with a
ui.ComboBox parameter.

The initialization function name is converted to lowercase by fglform.

Tip: Consider defining the initialization function name in lowercase letters. The language syntax
allows case-insensitive functions names, but to avoid mistakes, it is recommended to use a
common naming convention with lowercase letters.

INVISIBLE attribute
The INVISIBLE attribute prevents user-entered data from being echoed on the screen during an
interactive statement.

Syntax

INVISIBLE

Usage

The INVISIBLE attribute can be used for EDIT and BUTTONEDIT fields.

Characters that the user enters in a field with the INVISIBLE attribute are not displayed during data entry.
Depending on the front end type, the typed characters are displayed using the blank, star, underscore or
dot characters.

The INVISIBLE attribute has no effect when display data directly to a field with DISPLAY TO or DISPLAY
BY NAME.

User interface | 971

ISNODECOLUMN attribute
The ISNODECOLUMN attribute specifies the form field that indicates whether a tree node has children.

Syntax

ISNODECOLUMN = column-name

1. column-name is a form field name.

Usage

This attribute is used in the definition of a TREE container, to specify the name of the form field indicating
whether a tree node has children.

Even if the program node does not contain child nodes for this tree node, this attribute may be used, to
implement dynamic filling of tree views.

You must specify form field column names, not item tag identifiers.

This attribute is optional.

ITEMS attribute
The ITEMS attribute defines a list of possible values that can be used by the form item.

Syntax

ITEMS = { single-value-list | double-value-list }

where single-value-list is:

(value [,...])

where double-value-list is:

((value, label-value) [,...])

1. single-value-list is a comma-separated list of single values.
2. double-value-list is a comma-separated list of (a, b) values pairs within parentheses.
3. value is a numeric or string literal, or one of the following keywords: NULL, TRUE, FALSE.
4. label-value is a numeric literal, a string literal, or a localized string.

Usage

The list must be delimited by parentheses, and each element of the list can be a simple literal value or a
pair of literal values delimited by parentheses.

This attribute is not used by the runtime system to validate the field, you must use the INCLUDE attribute to
force the possible values.

This example defines a list of simple values:

ITEMS = ("Paris", "London", "New York")

This example defines a list of pairs:

ITEMS = ((1,"Paris"),(2,"London"),(3,"New York"))

User interface | 972

This attribute can be used, for example, to define the list of a COMBOBOX form item:

COMBOBOX cb01 = FORMONLY.combobox01,
 ITEMS = ((1,"Paris"), (2,"London"),(3,"New York"));

In this example, the first value of a pair (1,2,3) defines the data values of the form field and the second
value of a pair ("Paris", "London", "New York") defines the value to be displayed in the selection list.

When used in a RADIOGROUP form item, this attribute defines the list of radio buttons:

RADIOGROUP rg01 = FORMONLY.radiogroup01,
 ITEMS = ((1,"Paris"), (2,"London"),(3,"New York"));

In this case, the first value of a pair (1,2,3) defines the data values of the form field and the second value of
a pair ("Paris", "London", "New York") defines the value to be displayed as the radio button label.

You can specify item labels with localized strings, but this is only possible when you specify a key and a
label:

ITEMS = ((1,%"item1"),(2,%"item2"),(3,%"item3"))

It is allowed to define a NULL value for an item (An empty string is equivalent to NULL):

ITEMS = ((NULL,"Enter bug status"),(1,"Open"),(2,"Resolved"))

In this case, the behavior of the field depends from the item type used.

JUSTIFY attribute
The JUSTIFY attribute defines the justification of the content of a field and the alignment of table column
headers.

Syntax

JUSTIFY = { LEFT | CENTER | RIGHT }

Usage

With the JUSTIFY attribute, you specify the justification of the content of a field as LEFT, CENTER or
RIGHT when the field is in display state.

This attribute is ignored for input (i.e. when the field has the focus); only the default data justification rule
applies when a field is in input state. The default data justification depends on the dialog type, the field data
type and the FORMAT attribute. For example, a numeric field value is right aligned, while a string field is left
aligned. The type of dialog also defines the default justification: In a CONSTRUCT, all input fields are left
aligned, for search criteria input.

The JUSTIFY attribute can be used with all form item types: Additionally to the field content/data
alignment, JUSTIFY defines the alignment of table column headers indirectly (i.e. table column header
follows the alignment of field data). However, column header alignment in tables may not be enabled by
default; Check the headerAlignment presentation style attribute for the Table class.

With mobile front-ends, tables are rendered as list views with a maximum of two visible columns. By
default, the main and the comment columns are displayed vertically in each row (i.e. main is on top of the
comment). Use JUSTIFY=RIGHT for the second column, in order to display columns side by side. Note
that numeric fields are by default right justified and thus do not need that attribute to be set.

You can also specify the text alignment of static form labels with the JUSTIFY attribute.

User interface | 973

Example

LABEL t01: TEXT="Hello!", JUSTIFY=RIGHT;
EDIT f01 = order.value, JUSTIFY=CENTER;

KEY attribute
The KEY attribute is used to define the labels of keys when the field is made current.

Syntax

KEY keyname = [%]"label"

1. keyname is the name of a key (like F10, "Control-z").
2. label is the text to be displayed in the button corresponding to the key.

Usage

Use the KEY attribute to define a label for the accelerator key corresponding to an action when the focus is
in the field.

The keyname must be specified in quotes if you want to use Control / Shift / Alt key modifiers.

See the KEYS section to define key labels for the whole form.

Note: This feature is supported for backward compatibility. Consider using action attributes to
define accelerator keys and decorate actions.

Example

EDIT f001 = customer.city, KEY F10 = "City list";
EDIT f002 = customer.state, KEY "Control-z" = "Open Zoom";

KEYBOARDHINT attribute
The KEYBOARDHINT attribute gives an indication on the kind of data the form field contains, to let the front-
end adapt the keyboard accordingly.

Syntax

KEYBOARDHINT = { DEFAULT | EMAIL | NUMBER | PHONE }

Usage

The KEYBOARDHINT attribute can be used to give a hint to the front-end, regarding the kind of data the
form field will contain. According to this hint, the front-end will open the virtual keyboard adapted to the
data type, especially useful when designing application forms for mobile platforms.

Valid values for KEYBOARDHINT are:

• DEFAULT: No hint, the only hint is the data type of the program variable bound to the form field.
• EMAIL: The field is used to enter an e-mail address.
• NUMBER: The field is used to enter a numeric value.
• PHONE: The field is used to enter a phone number.

For example, when defining a numeric field with the attribute KEYBOARDHINT=NUMBER, the iOS device will
display a numeric keyboard when entering data into that field.

User interface | 974

Figure 47: Mobile application using a numeric keyboard

Example

EDIT f23 = customer.cust_phone, KEYBOARDHINT=PHONE;

User interface | 975

MINHEIGHT attribute
The MINHEIGHT attribute defines the minimum height of a form.

Syntax

MINHEIGHT = integer

1. integer defines the minimum height of the element, as a number of grid cells.

Usage

The MINHEIGHT attribute is used to define a minimum height for the form/window. It must be specified in
the attributes of the LAYOUT section.

The unit defaults to a number of grid cells. This is the equivalent of the CHARACTERS in the HEIGHT
attribute specification.

Example

LAYOUT (MINWIDTH=60, MINHEIGHT=50)
GRID
 ...

MINWIDTH attribute
The MINWIDTH attribute defines the minimum width of a form.

Syntax

MINWIDTH = integer

1. integer defines the minimum width of the element, as a number of grid cells.

Usage

The MINWIDTH attribute is used to define a minimum width for the form/window. It must be specified in the
attributes of the LAYOUT section.

The unit defaults to a number of grid cells. This is the equivalent of the CHARACTERS in the WIDTH attribute
specification.

Example

LAYOUT (MINWIDTH=60, MINHEIGHT=50)
GRID
 ...

NOENTRY attribute
The NOENTRY attribute prevents data entry in the field during an input dialog.

Syntax

NOENTRY

Usage

Use the NOENTRY attribute to bypass field input during an INPUT or INPUT ARRAY statement.

User interface | 976

A NOENTRY field is like a disabled field, it cannot get the focus.

When compiling a form with a field referencing a SERIAL/BIGSERIAL column in the database schema, the
NOENTRY attribute is automatically set. However, the attribute will not be set if the field is defined with a
TYPE LIKE syntax.

When using a WITHOUT DEFAULTS dialog option, the content of the corresponding program variable is
displayed in the field.

The NOENTRY attribute does not prevent data entry into a field during a CONSTRUCT statement.

Example

EDIT f001 = order.totamount, NOENTRY;

NOT NULL attribute
The NOT NULL attribute sets that the field does not accept NULL values.

Syntax

NOT NULL

Usage

The NOT NULL attribute requires that the field contains a non-null value. It can be specified explicitly in the
form field definition, or in the corresponding column definition in the database schema file. If not column is
associated to the field, the NOT NULL attribute can also be used in the type definition of FORMONLY fields.

The NOT NULL attribute is effective only when the field name appears in the list of screen fields of an
INPUT or INPUT ARRAY statement.

If a DEFAULT attribute is used for the field and the input dialog does not use the WITHOUT DEFAULTS
option, the runtime system assumes that the default value satisfies the NOT NULL attribute.

Unlike the REQUIRED attribute which has no effect when the INPUT dialog uses the WITHOUT DEFAULTS
option, the NOT NULL attribute is always checked when validating a dialog.

Example

EDIT f001 = customer.city, NOT NULL;

NOTEDITABLE attribute
The NOTEDITABLE attribute disables the text editor.

Syntax

NOTEDITABLE

Usage:

The NOTEDITABLE attribute can be used in BUTTONEDIT field to disable the text editor. The button of the
field remains active, if there is a corresponding active action handler in the current dialog. The field can still
get the focus.

Use this attribute if you want to deny text edition in BUTTONEDIT fields, when the value can only be set by
the action.

User interface | 977

OPTIONS attribute
The OPTION attribute specifies widget options for the field.

Syntax

OPTIONS = "option [...]"

1. option can be -nolist (to indicate that the column should appear as an independent field).

Usage

The OPTIONS attribute specifies parameters for a form item defined with the WIDGET attribute.

Important: This attribute is deprecated, use new form item types instead.

ORIENTATION attribute
The ORIENTATION attribute defines whether an element displays vertically or horizontally.

Syntax

ORIENTATION = { VERTICAL | HORIZONTAL }

Usage

The ORIENTATION attribute is typically used in the definition of a RADIOGROUP form item, to specify how
radio items have to be displayed.

Example

RADIOGROUP f001 = customer.status, ORIENTATION=HORIZONTAL;

PARENTIDCOLUMN attribute
The PARENTIDCOLUMN attribute specifies the form field that contains the identifier of the parent node of a
tree node.

Syntax

PARENTIDCOLUMN = column-name

1. column-name is a form field name.

Usage

This attribute is used in the definition of a TREE container, to define the name of the form field containing
the identifier of the tree node that is the parent of the current node in a tree view

You must specify form field column names, not item tag identifiers.

This attribute is mandatory.

PICTURE attribute
The PICTURE attribute specifies a character pattern for data entry in a text field, and prevents entry of
values that conflict with the specified pattern.

Syntax

PICTURE = "format-string"

User interface | 978

1. format-string defines the data input pattern of the field.

Usage

format-string can be any combination of characters, where the characters "A", "#" and "X" have a special
meaning.

• The character "A" specifies any letter (alpha-numeric) character at a given position.
• The character "#" specifies any digit character at a given position.
• The character "X" specifies any character at a given position.

Any character different from "A", "X" and "#" is treated as a literal. Such characters automatically appear in
the field and do not have to be entered by the user.

The PICTURE attribute does not require data entry into the entire field. It only requires that whatever
characters are entered conform to format-string.

When PICTURE specifies input formats for DATETIME or INTERVAL fields, the form compiler does not
check the syntax of format-string, but your form will work if the syntax is correct. Any error in format-string,
however, such as an incorrect field separator, produces a runtime error.

The typical usage for the PICTURE attribute is for (fixed-length) CHAR fields. It is not recommended to use
PICTURE for other data types, especially numeric or date/time fields: The current value of the field must
always match (i.e. be formatted according to) PICTURE.

Understand that the PICTURE attribute defines a mask for data entry. In order to format fields when data
is displayed to the field, use the FORMAT attribute instead. FORMAT is typically used for numeric and date
fields, while PICTURE is typically used for formatted character string fields requiring input control.

The PICTURE attribute is ignored in CONSTRUCT and DISPLAY / DISPLAY ARRAY instructions: It takes
only effect in INPUT and INPUT ARRAY dialogs.

Example

EDIT f001 = carinfo.ident, PICTURE = "AA####-AA(X)";

PROGRAM attribute
The PROGRAM attribute can specify an external application program to edit TEXT or BYTE fields.

Syntax

PROGRAM = "editor"

1. editor is the name of the program that must be used to edit the special field data.

Usage

You can assign the PROGRAM attribute to a TEXT or BYTE field to call an external program to work with the
BYTE or TEXT values.

This attribute works in TUI mode only.

Users can invoke the external program by pressing the exclamation point (!) key while the screen cursor
is in the field.

The external program then takes over control of the screen. When the user exits from the external
program, the form is redisplayed with any display attributes besides PROGRAM in effect.

When no PROGRAM attribute is used, the DBEDIT environment variable defines the default editor.

User interface | 979

PROPERTIES attribute
The PROPERTIES attribute is used to define a list of widget-specific characteristics.

Syntax

PROPERTIES = ({ single-property| array-property | map-property} [,...])

where single-property is:

identifier = property-value

and array-property is:

identifier = (property-value [,...])

and map-property is:

identifier = (item-identifier = property-value[,...])

and property-value is:

{ numeric-value | "string-value" }

1. numeric-value is an integer or decimal literal.
2. string-value is a string literal delimited by single or double quotes.

Usage

The PROPERTIES attribute is typically used to define the widget-specific attributes of a WEBCOMPONENT
form item.

Property names and values are not checked, to let you freely set any characteristic of an external widget.
You must verify that the front-end side implementation supports the specified properties.

Example

WEBCOMPONENT f01 = FORMONLY.mycalendar,
 COMPONENTTYPE = calendar,
 PROPERTIES = (
 type = "gregorian",
 week_start = 2,
 days_off = (1, 7),
 dates_off = ("????-11-25", "????-06-20"),
 day_titles = (t1 = "Sunday",
 t2 = "Monday",
 t3 = "Tuesday",
 t4 = "Wednesday",
 t5 = "Thursday",
 t6 = "Friday",
 t7 = "Saturday"
);

QUERYEDITABLE attribute
The QUERYEDITABLE attribute makes a COMBOBOX field editable during a CONSTRUCT statement.

Syntax

QUERYEDITABLE

User interface | 980

Usage

The QUERYEDITABLE attribute is effective only during a CONSTRUCT statement. This attribute is
useful when the display values match the real values in the ITEMS attribute, for example when
ITEMS=("Paris","London","Madrid"). Do not use this attribute when the real field values are
mapped to display values, for example when ITEMS=((1,"Paris"),(2,"London"),(3,"Madrid")).

During a CONSTRUCT, a COMBOBOX is not editable by default: The end-user is forced to set one of the
values of the list as defined by the ITEMS attribute, or set the 'empty' item. The QUERYEDITABLE attribute
can be used to force the COMBOBOX to be editable during a CONSTRUCT instruction, in order to allow free
search criterion input such as "A*". If QUERYEDITABLE is used and the ITEMS are defined with key/label
combinations, the text entered by the user will be automatically searched in the list of items. If a label
corresponds, the key will be used in the SQL criterion, otherwise the text entered by the user will be used.
For example, if the items are defined as ((1,"Paris"),(2,"Madrid"),(3,"London")), and the
user enters "Paris" in the field, the item (1,"Paris") will match and will be generate "colname = 1".
If the user enters ">2", the text does not match any item so it will be used as is and generate the SQL
"colname > 2". Users may enter values like "Par*", but in this case the runtime system will raise an error
because this criterion does is not valid for the numeric data type of the field. To avoid end-user confusion,
a COMBOBOX defined with key/label combinations should not use the QUERYEDITABLE attribute.

REQUIRED attribute
The REQUIRED attribute forces the user to modify the content of a field during an input dialog.

Syntax

REQUIRED

Usage

The REQUIRED attribute forces the user to modify the content of a field controlled by an input dialog
(INPUT or INPUT ARRAY), when the INPUT dialog does not use the WITHOUT DEFAULTS option. Within
INPUT ARRAY, the REQUIRED attribute always applies to new created rows.

If an INPUT dialog uses the WITHOUT DEFAULTS clause, the current value of the variable linked to the
REQUIRED field is considered as a default value; the runtime system assumes that the field satisfies the
REQUIRED attribute, even if the variable value is null.

In an INPUT ARRAY dialog, the REQUIRED attribute always applies to new created rows, even if WITHOUT
DEFAULTS is used. In other words, when creating a new row, INPUT ARRAY behaves like INPUT without
the WITHOUT DEFAULTS clause.

If REQUIRED is effective regarding the WITHOUT DEFAULTS conditions, and a DEFAULT attribute is used
for the field, the runtime system assigns the default value to the field and assumes that the REQUIRED
attribute is satisfied.

The REQUIRED attribute does not prevent fields to be null; If the field contains a value, and the user
subsequently erases this value during the same input, the runtime system considers the REQUIRED
attribute satisfied. To insist on a non-null entry, use the NOT NULL attribute.

Example

EDIT f001 = orders.ord_shipcmt, REQUIRED;

User interface | 981

REVERSE attribute
The REVERSE attribute displays any value in the field in reverse video (dark characters in a bright field).

Syntax

REVERSE

Usage

Use the REVERSE attribute to highlight specific fields in your forms.

On graphical front-ends, the REVERSE attribute is rendered by using the field COLOR attribute as
background color.

On character based terminals, the REVERSE video escape sequences must be defined in the TERMINFO
or TERMCAP databases.

Example

EDIT f001 = customer.name, COLOR = BLUE, REVERSE;

SAMPLE attribute
The SAMPLE attribute defines the text to be used to compute the width of a form field.

Syntax

SAMPLE = "text"

1. text is the sample string that will be used to compute the width of the field.

Usage

By default, form fields are rendered by the client with a size determined by the current font and the number
of characters used in the layout grid. The field width is computed so that the largest value can fit in the
widget.

Important: This feature is not supported on mobile platforms.

Sometimes the default computed width is too wide for the typical values displayed in the field. For example,
numeric fields usually need less space as alphanumeric fields. If the values are always smaller, you can
use the SAMPLE attribute to provide a hint for the front end to compute the best width for that form field.

When specifying the SAMPLE attribute, you do not have to fill the sample string up to the width of the
corresponding field tag: The front-ends will be able to compute a physical width by applying a ratio to
fit the best visual result. For example, for a sample of 'XY' used for a field defined with 10 characters, is
equivalent to specifying a sample of 'XYXYXYXYXY'.

If the SAMPLE attribute is not used, the first 6 cells are always computed with the pixel width of the 'M'
character in the current font. Next cells are computed with the pixel width of the '0' (zero) character. In
other words, the default sample model is 'MMMMMM000000.....", reduced to the size of the field tag in the
layout:

 -123456789-123456789- default sample
 [f01] MMMM
 [f02] MMMMMM
 [f03] MMMMMM0000000000

User interface | 982

You can define a default sample for all fields used in the form, by specifying a DEFAULT SAMPLE option in
the INSTRUCTIONS section.

Example

EDIT cid = customer.custid, SAMPLE="0000";
EDIT ccode = customer.ucode, SAMPLE="MMMMMM";
DATEEDIT be01 = customer.created, SAMPLE="00-00-0000";

SCROLL attribute
The SCROLL attribute can be used to enable horizontal scrolling in a character field.

Syntax

SCROLL

Usage

By default, the maximum data input length is defined by the width of the item-tag of the field. For example,
if you define an CHAR field in the form with a length of 3 characters, users can only enter a maximum of 3
characters, even if the program variable used for input is a CHAR(20).

If you want to let the user input more characters than the width of the item-tag of the field, use the SCROLL
attribute.

The SCROLL attribute applies only to fields with character data input.

Use the SCROLL attribute only when the layout of the form does not allow to define an item tag that is
large enough to hold all possible character string data that fits in the corresponding program variable.
Understand that the end user can miss a part of the displayed data when the field is too small. Therefore,
using the SCROLL attribute should be rare.

SCROLLBARS attribute
The SCROLLBARS attribute can be used to specify scrollbars for a form item.

Syntax

SCROLLBARS = { NONE | VERTICAL | HORIZONTAL | BOTH }

Usage

This attribute defines scrollbars for the form item, such as a TEXTEDIT.

Example

TEXTEDIT f001 = customer.fname, SCROLLBARS=BOTH;

SIZEPOLICY attribute
The SIZEPOLICY attribute is a sizing directive, according to the content of a form item.

Syntax

SIZEPOLICY = { INITIAL | FIXED | DYNAMIC }

User interface | 983

Usage

The SIZEPOLICY attribute defines how the front-ends computes the size of some form elements,
according to the content of the form field or form item.

The SIZEPOLICY applies only to leaf elements of the layout. It does not apply to containers. The attribute
applies to form elements with sizable content, typically IMAGE, COMBOBOX, WEBCOMPONENT. Elements
allowing user input such as EDIT, or elements where the size does not depend from the value content
such as PROGRESSBAR, SLIDER do not use this attribute.

Note that the SIZEPOLICY attribute is ignored for columns used in TABLE or TREE containers: In list
views, the size policy is implicitly defined by the cell (i.e., the size of the column in the form layout). The
SIZEPOLICY attribute is also implicitly fixed for fields inside SCROLLGRID and GRID containers that are
controlled by a list dialog, such as a DISPLAY ARRAY. With a list dialog, each row can have a different
value, which would imply a different widget size for each row; this is not supported.

When the SIZEPOLICY is not specified, the default behavior depends on the type of the form item. See
Table 259: Behavior of SIZEPOLICY=INITIAL, according to the form item type and front-end type on page
984.

SIZEPOLICY = FIXED

When SIZEPOLICY is FIXED, the form element's size is exactly the size defined in the layout of the form
specification file.

The size of the element is computed from the width and height in the form grid and the font used on the
front-end side.

The element keeps the size, even if the content is modified. However, if the STRETCH attribute is set to X,
Y or BOTH, the form element can still stretch when the parent window size changes.

SIZEPOLICY = DYNAMIC

When SIZEPOLICY is DYNAMIC, the size of the element grows and shrinks according to the width of the
content, during the lifetime of the application.

This can be used for COMBOBOX or RADIOGROUP fields, when the size of the widget must fit exactly to its
content, which can vary during the program execution.

Note: With SIZEPOLICY=DYNAMIC, some element such as BUTTON, LABEL, IMAGE and
RADIOGROUP can shrink and grow all the time, while COMBOBOX elements can only grow.

SIZEPOLICY = INITIAL

When SIZEPOLICY is INITIAL, the size is computed from the initial content, the first time the element
appears on the screen. Once the widget displays, its size is frozen. However, if the STRETCH attribute is
set to X, Y or BOTH, the form element can still stretch when the parent window size changes.

This is typically used when the size of the element must be fixed, but is not known at design time. For
example, when populating a COMBOBOX item list from a database table, the size of the COMBOBOX depends
on the size of the labels in the drop-down list).

This size policy mode is also useful when the text of labels is unknown at design time because of
internationalization.

With SIZEPOLICY=INITIAL, the behavior differs depending on the form element type.

User interface | 984

Table 259: Behavior of SIZEPOLICY=INITIAL, according to the form item type and front-end type

Form item Behavior with SIZEPOLICY=INITIAL

BUTTON The size defined in the form is a minimum size. If the text is bigger, the size grows (width
and height).

COMBOBOX The width defined in the form is a minimum width. If one of the items in the value list is
bigger, the size grows in order for the combobox to fully display the largest item.

LABEL,
CHECKBOX,
RADIOGROUP

These form items can shrink or grow. The size defined in the form is ignored. The fields
are sized according to the element text.

IMAGE Image form items can shrink and grow according to the picture displayed. Images can
use the STRETCH attribute, so that the widget size is dependent on the parent container,
overriding the SIZEPOLICY attribute. If the WIDTH and HEIGHT attributes must be used,
the SIZEPOLICY attribute must be set to FIXED.

WEBCOMPONENTThe web component is scaled to the right size, after the first web page is loaded. It
stays at that size, except if the STRETCH attribute is used, and the parent container size
changes.

Keep in mind that after the first display, the element size will be frozen.

Example

COMBOBOX f001 = customer.city,
 ITEMS=((1,"Paris"),(2,"Madrid"), (3,"London")),
 SIZEPOLICY=DYNAMIC;

WEBCOMPONENT wc1 = FORMONLY.chart,
 COMPONENTTYPE="chart",
 SIZEPOLICY=FIXED,
 STRETCH=BOTH;

SPACING attribute
The SPACING attribute is a spacing directive to display form elements.

Syntax

SPACING = { NORMAL | COMPACT }

Usage

This attribute defines the global distance between two neighboring form elements. In NORMAL mode, the
front end displays form elements consistent with the desktop spacing, which is, for example, 6 and 10
pixels on Microsoft™ Windows™ platforms.

When using the COMPACT mode, large forms that by default do not fit to the screen can be displayed with
less space between elements.

By default, forms are displayed with COMPACT spacing.

Example

LAYOUT (SPACING=COMPACT)

User interface | 985

SPLITTER attribute
The SPLITTER attribute forces the container to use a splitter widget between each child element.

Syntax

SPLITTER

Usage

This attribute indicates that the container (typically, a VBOX or HBOX) must have a splitter between
each child element held by the container. If a container is defined with a splitter and if the children are
stretchable (like TABLE or TEXTEDIT), users can resize the child elements inside the container.

Example

VBOX (SPLITTER)

STEP attribute
The STEP attribute specifies how a value is increased or decreased in one step (by a mouse click or key
up/down).

Syntax

STEP = integer

1. integer defines a positive integer value to be added (for an increase) or subtracted (for a decrease).

Usage

This attribute is typically used with form items allowing the user to change the current integer value by a
mouse click like SLIDER, SPINEDIT.

Example

SLIDER s01 = FORMONLY.slider, STEP=10;

STRETCH attribute
The STRETCH attribute specifies how a widget must resize when the parent container is resized.

Syntax

STRETCH = { NONE | X | Y | BOTH }

Usage

This attribute is typically used with form items that can be re-sized like IMAGE. TEXTEDIT, or
WEBCOMPONENT fields. By default such form items have a fixed width and height, but in some cases you
may want to force the widget to resize vertically, horizontally, or in both directions.

• To allow the widget to resize vertically only, use STRETCH=Y.
• To allow the widget to resize horizontally only, use STRETCH=X.
• To allow the widget to resize vertically and horizontally, use STRETCH=BOTH.

User interface | 986

Example

IMAGE i01 = FORMONLY.image01, STRETCH=BOTH;

STYLE attribute
The STYLE attribute specifies a presentation style for a form element.

Syntax

STYLE = "string"

1. string is a user-defined style.

Usage

This attribute specifies a presentation style to be applied to a form element.

The presentation style can define decoration attributes such as a background color, a font type, and so on.

Note: The string used to define this attribute must be a style-name only, it must not contain the
element-type that is typically used to define the style in a .4st file (as CheckBox.important for
example)

Example

EDIT c01 = item.comment, STYLE = "important";

TABINDEX attribute
The TABINDEX attribute defines the tab order for a form item.

Syntax

TABINDEX = integer

1. integer defines the order of the item in the tab sequence.

Usage

This attribute can be used to define the order in which the form items are selected as the user "tabs" from
field.

To take TABINDEX attributes into account in dialogs, the program must defined the form tabbing order with
the OPTIONS FIELD ORDER FORM instruction. Alternatively, a dialog can use the FIELD ORDER FORM
option as well.

The TABINDEX attribute can also be used to define which field must get the focus when a FOLDER page is
selected.

By default, form items get a tab index according to the order in which they appear in the LAYOUT section.

Tip: TABINDEX can be set to zero in order to exclude the form item from the tabbing list. The item
can still get the focus with the mouse.

Example

EDIT f001 = customer.fname, TABINDEX = 1;
EDIT f002 = customer.lname, TABINDEX = 2;
EDIT f003 = customer.comment,

User interface | 987

 TABINDEX = 0; -- Excluded from tabbing list

TAG attribute
The TAG attribute can be used to identify the form item with a specific string.

Syntax

TAG = "tag-string"

1. tag-string is free text.

Usage

This attribute is used to identify form items with a specific string. It can be queried in the program to
perform specific processing.

You are free to use this attribute as you need. For example, you can define a numeric identifier for each
field in the form in order to show context help, or group fields for specific input verification.

If you need to handle multiple data, you can format the text, for example, by using a pipe separator.

Example

EDIT f001 = customer.fname, TAG = "name";
EDIT f002 = customer.lname, TAG = "name|optional";

TEXT attribute
The TEXT attribute defines the label associated with a form item.

Syntax

TEXT = [%]"string"

1. string defines the label to be associated with the form item, with the % prefix it is a localized string.

Usage

The TEXT attribute is used to define the label of a form item, for example for a CHECKBOX form field or a
BUTTON action view.

Consider using localized strings with the %"string-id" syntax, if you plan to internationalize your
application.

This attribute is also an action attribute that can be defined in the ACTION DEFAULTS section of a form or
directly in an action view (BUTTON), see TEXT action attribute on page 1330 for more details.

Example

-- As form action default
ACTION DEFAULTS
 ACTION print (TEXT="Print")
END

-- As a CHECKBOX label
CHECKBOX cb01 = FORMONLY.checkbox01,
 TEXT="OK" ... ;

-- As a BUTTON label

User interface | 988

BUTTON b1: print, TEXT="Print";

TITLE attribute
The TITLE attribute defines the title of a form item.

Syntax

TITLE = [%]"string"

1. string defines the title to be associated with the form item, with the % prefix it is a localized string.

Usage

The TITLE attribute is typically used to define the title of a form field that will be defined as a TABLE or
TREE column, or form items used in a stacked layout, to define the label associated to the item.

Note: Use of the TITLE attribute should be restricted to form fields that make up the columns of a
table/tree container, or form items used in a stacked layout.

Consider using localized strings with the %"string-id" syntax, if you plan to internationalize your
application.

Example

EDIT col4 = FORMONLY.ord_shipdate, TITLE="Ship date";

UNSORTABLE attribute
The UNSORTABLE attribute indicates that the element cannot be selected by the user for sorting.

Syntax

UNSORTABLE

Usage

By default, a TABLE container allows the user to sort the columns by a left-click on the column header.

Use the UNSORTABLE attribute to prevent a sort on a specific column.

Makes sense only for a field that is used for the definition of a column in a TABLE container.

Example

EDIT c01 = item.comment, UNSORTABLE;

UNSORTABLECOLUMNS attribute
The UNSORTABLECOLUMNS attribute indicates that the columns of the table cannot be selected by the user
for sorting.

Syntax

UNSORTABLECOLUMNS

Usage

When using this attribute in a TABLE definition, the end user will not be allowed to sort rows.

User interface | 989

Example

TABLE t1 (UNSORTABLECOLUMNS)

UNSIZABLE attribute
The UNSIZABLE attribute indicates that the element cannot be resized by the user.

Syntax

UNSIZABLE

Usage

By default, a TABLE container allows the user to resize the columns by a drag-click on the column header.

Use this attribute to prevent a resize on a specific column.

Makes sense only for a field that is used for the definition of a column in a TABLE container.

Example

EDIT c01 = item.comment, UNSIZABLE;

UNSIZABLECOLUMNS attribute
The UNSIZABLECOLUMNS attribute indicates that the columns of the table cannot be resized by the user.

Syntax

UNSIZABLECOLUMNS

Usage

When using this attribute in a TABLE definition, the end user will not be allowed to resize the columns.

Example

TABLE t1 (UNSIZABLECOLUMNS)

UNHIDABLE attribute
The UNHIDABLE attribute indicates that the element cannot be hidden or shown by the user with the
context menu.

Syntax

UNHIDABLE

Usage

By default, a TABLE container allows the user to hide the columns by a right-click on the column header.

Use this attribute to prevent the user from hiding a specific column.

The end user is also denied to show columns that are hidden by default with HIDDEN=USER

Makes sense only for a field that is used for the definition of a column in a TABLE container.

User interface | 990

Example

EDIT c01 = item.comment, UNHIDABLE;

UNHIDABLECOLUMNS attribute
The UNHIDABLECOLUMNS attribute indicates that the columns of the table cannot be hidden or shown by
the user with the context menu.

Syntax

UNHIDABLECOLUMNS

Usage

When using this attribute in a TABLE definition, the end user will not be allowed to hide columns, or show
columns that are hidden by default with HIDDEN=USER.

Example

TABLE t1 (UNHIDABLECOLUMNS)

UNMOVABLE attribute
The UNMOVABLE attribute prevents the user from moving a defined column of a table.

Syntax

UNMOVABLE

Usage

By default, a TABLE container allows the user to move the columns by dragging and dropping the column
header.

Use this attribute to prevent the user from changing the order of a specific column.

Typically, UNMOVABLE is used on at least two columns to prevent the user from changing the order of the
input on these columns.

Example

EDIT c01 = item.comment, UNMOVABLE;

UNMOVABLECOLUMNS attribute
The UNMOVABLECOLUMNS attribute prevents the user from moving columns of a table.

Syntax

UNMOVABLECOLUMNS

Usage

When using this attribute in a TABLE definition, the end user will not be allowed to move columns around.

User interface | 991

Example

TABLE t1 (UNMOVABLECOLUMNS)

UPSHIFT attribute
The UPSHIFT attribute forces character input to uppercase letters.

Syntax

UPSHIFT

Usage

Assign the UPSHIFT attribute to a character field to automatically convert lowercase letters entered by the
user to uppercase letters.

Because uppercase and lowercase letters have different values, storing character strings in one or the
other format can simplify sorting and querying a database.

The results of conversions between uppercase and lowercase letters are based on the locale settings.

Example

EDIT f001 = FORMONLY.name, UPSHIFT;

VALIDATE attribute
The VALIDATE action attribute defines the data validation level for a given action.

Syntax

VALIDATE = NO

Usage

This attribute is an action attribute that can be specified in form ACTION DEFAULTS, for more details, see
VALIDATE action attribute on page 1331.

VALIDATE LIKE attribute
The VALIDATE LIKE attribute applies column attributes defined in the .val database schema files to a
field.

Syntax

VALIDATE LIKE [table.]column

Note:

1. table is the optional table name to qualify the column.
2. column is the name of the column used to search for validation rules.

Usage

Specifying the VALIDATE LIKE attribute is equivalent to writing in the field definition all the attributes that
are assigned to table.column in the .val database schema file.

Note that .val attributes are taken automatically from the schema file if the field is linked to table.column in
the field name specification. The VALIDATE LIKE attribute is usually specified for FORMONLY fields.

User interface | 992

The VALIDATE LIKE attribute is evaluated at compile time, not at runtime. If the database schema file
changes, you should recompile all your forms.

Even if all of the fields in the form are FORMONLY, the VALIDATE LIKE attribute requires the form compiler
to access the database schema file that contains the description of table.

Example

EDIT f001 = FORMONLY.fullname, VALIDATE LIKE customer.custname;

VALUEMIN attribute
The VALUEMIN attribute defines a lower limit of values displayed in widgets (such as progress bars).

Syntax

VALUEMIN = integer

1. integer is a integer literal.

Usage

This attribute is typically used to define the lower limit in PROGRESSBAR, SPINEDIT and SLIDER fields.

This attribute is not used by the runtime system to validate the field. You must use the INCLUDE attribute
to control value boundaries.

Example

SLIDER s01 = FORMONLY.slider01,
 VALUEMIN=0,
 VALUEMAX=500;

VALUEMAX attribute
The VALUEMAX attribute defines a upper limit of values displayed in widgets (such as progress bars).

Syntax

VALUEMAX = integer

1. integer is an integer literal.

Usage

This attribute is typically usedto define the upper limit in PROGRESSBAR, SPINEDIT and SLIDER fields.

This attribute is not used by the runtime system to validate the field. You must use the INCLUDE attribute
to control value boundaries.

Example

SLIDER s01 = FORMONLY.slider01,
 VALUEMIN=0,
 VALUEMAX=500;

User interface | 993

VALUECHECKED attribute
The VALUECHECKED attribute defines the value associated with a checkbox item when it is checked.

Syntax

VALUECHECKED = value

1. value is a numeric or string literal, or one of the following keywords: NULL, TRUE, FALSE.

Usage

This attribute is used in conjunction with the VALUEUNCHECKED attribute to define the values
corresponding to the states of a CHECKBOX.

This attribute is not used by the runtime system to validate the field, you must use the INCLUDE attribute to
control value boundaries.

Example

CHECKBOX cb01 = FORMONLY.checkbox01,
 TEXT="OK",
 VALUECHECKED=TRUE,
 VALUEUNCHECKED=FALSE;

VALUEUNCHECKED attribute
The VALUEUNCHECKED attribute defines the value associated with a checkbox item when it is not checked.

Syntax

VALUEUNCHECKED = value

1. value is a numeric or string literal, or one of the following keywords: NULL, TRUE, FALSE.

Usage

This attribute is used in conjunction with the VALUECHECKED attribute to define the values corresponding
to the states of a CHECKBOX.

This attribute is not used by the runtime system to validate the field, you must use the INCLUDE attribute to
control value boundaries.

Example

CHECKBOX cb01 = FORMONLY.checkbox01,
 TEXT="OK",
 VALUECHECKED="Y",
 VALUEUNCHECKED="N";

VERIFY attribute
The VERIFY attribute requires users to enter data in the field twice to reduce the probability of erroneous
data entry.

Syntax

VERIFY

User interface | 994

Usage

This attribute supplies an additional step in data entry to ensure the integrity of your data. After the user
enters a value into a VERIFY field and presses the Return or Tab key, the runtime system erases the field
and requests reentry of the value. The user must enter exactly the same data each time, character for
character: 15000 is not exactly the same as 15000.00.

The VERIFY attribute takes effect in INPUT or INPUT ARRAY instructions only, it has no effect on
CONSTRUCT statements.

VERSION attribute
The VERSION attribute is used to specify a user version string for an element.

Syntax

VERSION = { "string" | TIMESTAMP }

1. string is a user-defined version string.

Usage

This attribute specifies a version string to distinguish different versions of a form element. You can specify
an explicit version string or use the TIMESTAMP keyword to force the form compiler to write a timestamp
string into the 42f file.

Typical usage is to specify a version of the form to indicate if the form content has changed. This attribute
is used by the front-end to distinguish different form versions and to avoid reloading window/form settings
into a new version of a form.

You should use the TIMESTAMP only during development.

Example

LAYOUT (TEXT="Orders", VERSION = "1.23")

WANTFIXEDPAGESIZE attribute
The WANTFIXEDPAGESIZE attribute controls the vertical resizing of a list element.

Syntax

WANTFIXEDPAGESIZE [= NO]

Usage

The WANTFIXEDPAGESIZE attribute can be used for TABLE and SCROLLGRID containers to control the
vertical resizing of the list element.

By default, a TABLE container is resizable (vertically and horizontally). To freeze the height of the table to
the number of lines defined by the form file, use the attribute WANTFIXEDPAGESIZE.

By default, a SCROLLGRID container is not resizable in height. The number of visible scrollgrid
rows is defined by the form file. To allow the scrollgrid to stretch vertically, use the attribute
WANTFIXEDPAGESIZE=NO.

User interface | 995

WANTNORETURNS attribute
The WANTNORETURNS attribute forces a text field to reject newline characters when the user presses the
Return key.

Syntax

WANTNORETURNS

Usage

By default, text fields like TEXTEDIT insert a newline (ASCII 10) character in the text when the user
presses the Return key. As the Return key is typically used to fire the accept action to validate the dialog,
you can force the field to reject Return keys with this attribute.

The user can still enter newline characters with Shift-Return or Ctrl-Return, if these keys are not bound to
actions.

WANTTABS attribute
The WANTTABS attribute forces a text field to insert Tab characters in the text when the user presses the
Tab key.

Syntax

WANTTABS

Usage

By default, text fields like TEXTEDIT do not insert a Tab character in the text when the user presses the
Tab key, since the Tab key is used to move to the next field. You can force the field to consume Tab keys
with this attribute.

The user can still jump out of the field with Shift-Tab, if this key is not bound to an action.

WIDGET attribute
The WIDGET attribute specifies the type of graphical widget to be used for the field.

Syntax

WIDGET = "identifier"

1. identifier defines the type of widget, it can be one of the keywords listed in Table 260: Supported
widgets on page 996.

Usage

The WIDGET attribute defines the type of widget to be used for the form field.

This attribute is used with CONFIG, CLASS and INCLUDE attributes, to parameter the field widget.

Important: This attribute is deprecated, use new form item types instead.

• Instead of WIDGET="IMAGE", you should now use a IMAGE form item.
• Instead of WIDGET="CANVAS", you should now use a CANVAS form item.
• Instead of WIDGET="CHECK", you should now use a CHECKBOX form item.
• Instead of WIDGET="COMBO", you should now use a COMBOBOX form item.
• Instead of WIDGET="BMP", you should now use a BUTTON form item.
• Instead of WIDGET="FIELD_BMP", you should now use a BUTTONEDIT form item.
• Instead of WIDGET="RADIO", you should now use a RADIOGROUP form item.

User interface | 996

The identifier widget type is case sensitive, only uppercase letters are recognized.

When you use the WIDGET attribute, the form cannot be properly displayed on character based terminals, it
should only be displayed on graphical front ends.

Table 260: Supported widgets

Symbol Effect Other attributes

Canvas The field is used as a drawing
area.

Field must be declared as
FORMONLY field.

None.

BUTTON The field is presented as a button
widget with a label.

CONFIG: The unique parameter defines the key to
be sent when the user clicks on the button. Button
text is defined in configuration files or from the
program with a DISPLAY TO instruction.

For example:

CONFIG = "Control-z"

BMP The field is presented as a button
with an image.

CONFIG: First parameter defines the image file to
be displayed, second parameter defines the key to
be sent when the user clicks on the button.

For example:

CONFIG = "smiley.bmp F11"

Important: Image files are not centralized
on the machine where the program is
executed; image files must be present on
the Workstation. See front end specific
documentation for more details.

CHECK The field is presented as a
checkbox widget. It can be
used with the CLASS attribute
to change the behavior of the
widget.

CONFIG: First and second parameters define
the values corresponding respectively to the
state "Checked" / "Unchecked" of the check box,
while the third parameter defines the label of the
checkbox.

For example:

CONFIG = "Y N Confirmation"

If the text part must include spaces, add {} curly
braces around the text:

CONFIG = "Y N {Order validated}"

If the CLASS attribute is used with the "KEY"
value, the first and second parameters defines the
keys to be sent respectively when the checkbox is
"Checked" / "Unchecked", and the third parameter
defines the label of the checkbox as with normal
checkbox usage.

For example (line breaks added for document
readability):

User interface | 997

Symbol Effect Other attributes

CLASS = "KEY",
CONFIG = "F11 F12 Confirmation"

COMBO The field is presented as a
combobox widget. It can be
used with the CLASS attribute
to change the behavior of the
widget.

INCLUDE: This attribute defines the list of
acceptable values that will be displayed in the
combobox list.

For example (line breaks added for document
readability):

INCLUDE =
("Paris", "London", "Madrid")

Important: The INCLUDE attribute cannot
hold value range definitions, because all
items must be explicitly listed to be added
to the combobox list.

The following example is not supported:

INCLUDE = (1 TO 10)

FIELD_BMP The field is presented as a normal
editbox, plus a button on the right.

CONFIG: The first parameter defines the image file
to be displayed in the button; the second parameter
defines the key to be sent when the user clicks on
the button.

For example:

CONFIG = "combo.bmp Control-z"

LABEL The field is presented as a simple
label, a read-only text.

None.

RADIO The field is presented as a
radiogroup widget.

CONFIG: Parameter pairs define respectively the
value and the label corresponding to one radio
button.

For example (line breaks added for document
readability):

CONFIG =
"AA First BB Second CC Third"

If the radio texts must include spaces, add {} curly
braces around the texts (line breaks added for
document readability):

CONFIG = "AA {First option}
BB {Second option} CC {Third option}"

If the CLASS attribute is used with the value "KEY",
the first element of each pairs represents the key to
be sent when the user selects a radio button.

For example (line breaks added for document
readability):

CLASS = "KEY",
CONFIG = "F11 First F12 Second

User interface | 998

Symbol Effect Other attributes

F13 Third"

Controlling old style widgets activation

The following list of widgets can be enabled or disabled from programs with a DISPLAY TO instruction:

• Text buttons (WIDGET="BUTTON")
• Image buttons (WIDGET="BMP")
• Checkboxes of class "KEY" (WIDGET="CHECK", CLASS="KEY")
• Radio buttons of class "KEY" (WIDGET="RADIO", CLASS="KEY")

If you display an exclamation mark in such fields, the button is enabled, but if you display a star (*), it is
disabled:

DISPLAY "*" TO button1 # disables the button
DISPLAY "!" TO button1 # enables the button

Changing the text of WIDGET="BMP" fields

The text of button fields (WIDGET="BUTTON") can be changed from programs with the DISPLAY TO
instruction:

DISPLAY "Click me" TO button1
 # Sets text and enables the button

Changing the image of WIDGET="BMP" fields:

The image of button fields (WIDGET="BMP") can be changed from programs with the DISPLAY TO
instruction:

DISPLAY "smiley.bmp" TO button1
 # Sets image and enables the button

Image files are not centralized on the machine where the program is executed; image files must be present
on the Workstation. See front end specific documentation for more details.

Changing the text of WIDGET="LABEL" fields:

The text of label fields (WIDGET="LABEL") can be changed from programs with the DISPLAY TO
instruction:

DISPLAY "Firstname" TO l_firstname
 # Sets text of the label field

Using WIDGET="Canvas" fields:

The fields declared with the WIDGET="Canvas" attribute can be used by the program as drawing areas.
Canvas fields must be defined in the LAYOUT section. A set of drawing functions are provided to fill canvas
fields with graphical elements.

User interface | 999

WIDTH attribute
The WIDTH attribute defines an explicit width of a form element.

Syntax

WIDTH = integer [CHARACTERS|COLUMNS|POINTS|PIXELS]

1. integer defines the width of the element.

Usage

By default, the width of an element is defined by the size of the form item tag in a grid-based layout, or by
the type of the form item in a stack-based layout. Use the WIDTH attribute to define a specific width for a
form item.

Note: As a general rule, consider not specifying a unit, to default to relative characters/lines/
columns, instead of specifying exact pixels or points. This is especially important for mobile devices,
where the screen resolution can significantly vary according to the smartphone or tablet model.

Grid-based layout

For sizable items like IMAGE, the default width is defined by the number of horizontal characters used in
the form item tag. Overwrite this default by specifying the WIDTH attribute.

IMAGE img1: image1, WIDTH = 20, HEIGHT = 12;

For TABLE/TREE containers, the default width is defined by the columns used in the table layout. Overwrite
the default by specifying the WIDTH = x COLUMNS attribute. This will give a small initial width for tables
with a large number of columns.

TABLE t1: table1, WIDTH = 5 COLUMNS;

In a grid-based layout, if you don't specify a size unit, it defaults to CHARACTERS, which defines a width
based on the characters size in the current font.

Stack-based layout

In a stack-based layout, the WIDTH attribute cannot be used: The width of form element are automatically
computed.

WINDOWSTYLE attribute
The WINDOWSTYLE attribute defines the style to be used by the parent window of a form.

Syntax

WINDOWSTYLE = "string"

1. string is a user-defined style name.

Usage

The WINDOWSTYLE attribute can be used to specify the style of the parent window that will hold the form.
This attribute is specific to the LAYOUT element. Do not confuse this attribute with the STYLE attribute,
which is used to specify the decoration style of the form elements.

When a form is loaded by the OPEN WINDOW or DISPLAY FORM instruction, the runtime system
automatically assigns the WINDOWSTYLE to the STYLE attribute of the parent window element.

User interface | 1000

Example

LAYOUT (STYLE="BigFont", WINDOWSTYLE="dialog")

WORDWRAP Attribute
The WORDWRAP attribute enables a multiple-line editor in TUI mode.

Syntax

WORDWRAP [{ COMPRESS | NONCOMPRESS }]

Usage

This attribute is provided for backward compatibility with character-based forms, to support word wrapping
in multi-line text input.

In GUI mode, you should use a TEXTEDIT form item instead. When used, the WORDWRAP attribute
is ignored, because text input and display is managed by the text editor widget. The text data is not
automatically modified by the editor by adding blanks to put words on the next line.

In TUI mode, the WORDWRAP attribute has following effects:

• During input and display, the runtime system treats all segments that have that field tag as segments of
a single field.

• The multi-line editor can wrap long character strings to the next line of a multiple-segment field for data
entry, data editing, and data display.

• The COMPRESS option prevents blanks produced by the editor from being included in the program
variable. COMPRESS is applied by default and can cause truncation to occur if the sum of intentional
characters exceeds the field or column size. Because of editing blanks in the WORDWRAP field, the
stored value might not correspond exactly to its multiple-line display.

• Specifying NONCOMPRESS after the WORDWRAP keyword causes any editor blanks to be saved when the
string value is saved in a database column, in a variable, or in a file.

Using WORDWRAP fields with character-based terminals results in quite different behavior than with
graphical front ends. With character-based terminals, the text input and display is modified by the multi-line
editor. This editor can automatically modify the text data by adding blanks to put words to the next line, in
order to make the text fit into the form field. In GUI mode, the text input and display is managed by a multi-
line edit control.

The maximum number of bytes a user can enter is the width of the form-field multiplied by the height of the
form-field. Blank characters may be intentional blanks or fill blanks. Intentional blanks are initially stored
in the target variable where entered by the user. Fill blanks are inserted at the end of a line by the editor
when a newline or a word-alignment forces a line-break. It is not possible to set the cursor at a fill blank.
Intentional blanks are always displayed (even on the beginning of a line; the word-wrapping method used
in reports with PRINT WORDWRAP works differently).

When entering characters with Japanese locales, special characters are prohibited from being the first or
the last character on a line. If the last character is prohibited from ending a line, this character is wrapped
down to the next line. If the first character is prohibited from beginning a line, the preceding character will
also wrap down to the next line. This method is called kinsoku. The test for prohibited characters will be
done only once for the first and the last character on each line.

Word-wrapping is disabled on the last row of a WORDWRAP field. The last word on the last row may by
truncated. The WORDWRAP COMPRESS attribute instructs the editor to remove fill blanks before assigning
the field-buffer to the target variable. The WORDWRAP NONCOMPRESS attribute instructs the editor to store
fill blanks to the target variable. The WORDWRAP and WORDWRAP NONCOMPRESS attributes are equivalent.

The WORDWRAP attribute is not used by the CONSTRUCT instruction.

User interface | 1001

Examples
Example 1: Grid-based layout form

LAYOUT (TEXT = "Customer orders")
 VBOX
 GROUP group1 (TEXT = "Customer")
 GRID
 {
 <GROUP Name >
 [f001]
 < >
 <GROUP Identifiers ><GROUP Contact >
 FCode: [f002] Phone: [f004]
 LNumb: [f003] EMail: [f005]
 < >< >
 }
 END
 END
 TABLE
 {
 OrdNo Date Ship date Weight
 [c01 |c02 |c03 |c04]
 [c01 |c02 |c03 |c04]
 [c01 |c02 |c03 |c04]
 [c01 |c02 |c03 |c04]
 }
 END
 FOLDER
 PAGE pg1 (TEXT = "Address")
 GRID
 {
 Address: [f011]
 State: [f012]
 Zip Code: [f013]
 }
 END
 END
 PAGE pg2 (TEXT = "Comments")
 GRID
 {
 [f021]
 []
 []
 []
 }
 END
 END
 END
 END
END

Example 2: Stack-based layout form

SCHEMA stores

ACTION DEFAULTS
 ACTION import(TEXT=%"action.import")
END

TABLES
 customer
END

User interface | 1002

LAYOUT(TEXT=%"title.customer")
STACK
GROUP
 LABEL, TEXT=%"label.new_customer";
END --GROUP
GROUP
 EDIT customer.customer_num, NOENTRY, TITLE=%"label.number";
 EDIT customer.fname, TITLE=%"label.first_name";
 EDIT customer.lname, TITLE=%"label.last_name";
 EDIT customer.company, TITLE=%"label.company";
END --GROUP
GROUP(TEXT = "group.address")
 EDIT customer.address1, TITLE=%"label.address1";
 EDIT customer.address2, TITLE=%"label.address2";
 EDIT customer.city, TITLE=%"label.city";
 BUTTONEDIT customer.state, TITLE=%"label.state", UPSHIFT,
 NOTEDITABLE, ACTION = zoom;
 EDIT customer.zipcode, TITLE=%"label.zipcode";
END --GROUP
GROUP phone_edit
 EDIT customer.phone, TITLE=%"label.telephone",
 KEYBOARDHINT=PHONE;
END --GROUP
GROUP phone_dial
 BUTTON dial, TEXT=%"button.dial";
END --GROUP
END --STACK
END --LAYOUT

Form rendering
The section explains the layout rules to render forms on graphical front-ends.

• Form rendering basics on page 1002
• Grid-based layout on page 1004
• Stack-based layout on page 1017

Form rendering basics
Get the essentials about form rendering.

In the graphical mode (GUI mode), forms are not displayed in a fixed text-mode screen. Application
windows can display complex layouts and are resizable by the end user, if the platform allows window
resizing (mobile devices versus desktop platforms).

When developing with command line tools, forms are designed with .per form specification files, which
are text files. In order to display text-based forms in graphical mode, the text-based form definitions must
be converted to graphical forms, which implies specific layout rules. These rules are explained in this
section.

We distinguish two type of form rendering techniques:

• Grid-based rendering, based on a grid of cells, to place and size form elements.
• Stack-based rendering, where all form elements are place over each other vertically.

Character set usage
The character set used to edit and compile .per form specification files is defined by the current locale.

Form elements (typically, labels) can be written with non-ASCII characters of the current codeset.

In a grid-based layout, the form element positions and sizes are determined by counting the width of
characters, rather than the number of bytes identifying the characters in the current codeset. This rule can
be ignored when using a single-byte character set such as ISO-8859-1 or CP-1252, where each character

User interface | 1003

has width of 1 and codepoint of 1 byte. This rule is important when using a multibyte character set such as
BIG5 or UTF-8.

For example, in the UTF-8 multibyte codeset, a Chinese ideogram is encoded with three bytes, while the
visual width of the character is twice the size of a Latin character. In the next example, the labels with three
Chinese characters have the same width as the labels using six Latin characters. As a result, all the labels
will get the same size (6 cells), and all fields will be aligned properly in a proportional font display:

LAYOUT
GRID
{
[f001] abcdef [f002]
abcdef [f003] ### [f004]
}
END
END

In a stack-based container, the position of form elements is logical, the current locale does not impact on
the form item positions as in a grid-based container:

LAYOUT
 STACK
 GROUP
 EDIT customer.cust_num, TITLE="###";
 EDIT customer.cust_name;
 EDIT customer.cust_address;
 END
 ...
 END
END

For maximum portability, it is recommended to write all form specification files in ASCII (7 bit), and use
localized strings to internationalize your forms.

Adapting to viewport changes
Application forms and functions can be adapted according to the front-end viewport size or mobile device
orientation.

Detecting viewport size / orientation changes

When the mobile device orientation changes, or when the current window is resized on desktop/web front-
ends, the windowresized specific predefined action will be sent, if an ON ACTION handler is defined by
the current dialog for this action.

Note: The windowresized action should only be used to hide/show items on the current form
using the standard user interface API (ui.Form.setElementHidden()) and not reload forms on
the fly.

This predefined action can be used to detect viewport geomatry changes and adapt the application form to
the new size:

 ON ACTION windowresized
 -- Code to adapt to the new viewport size

Note: In dialogs allowing field input (INPUT / INPUT ARRAY or CONSTRUCT), take care of the
current field input: The windowresized action can force the field validation. Therefore, it is
not recommended to use this special action in these dialogs. The action can be safely used in
DISPLAY ARRAY and MENU dialogs.

User interface | 1004

To control the action view rendering defaults and current field validation behavior when the
windowresized action is used and fired, consider setting action defaults attribute for this action in your
.4ad file as follows:

<ActionDefaultList>
 ...
 <ActionDefault name="windowresized" validate="no" defaultView="no"
 contextMenu="no"/>
 ...
</ActionDefaultList>

Querying the geometry of the viewport

Use the feInfo/windowSize front call to query the actual size of the front-end view-port (GDC current
window, GBC webview, or mobile screen size):

DEFINE size STRING
CALL ui.Interface.frontCall("standard","feInfo",["windowSize"],[size])
IF size == "1200x1824" THEN
 ...
END IF

Grid-based layout
A form file can define a grid-based layout within a tree of layout items.

In a .per form specification file, the LAYOUT section defines a tree of layout containers, which hold form
items such as labels and form fields.

The GRID container can be used to define a grid of cells that hold form items: In the layout tree, the GRID
container acts as a leaf node, which holds the visible widgets (fields, buttons, and so on).

Note: SCROLLGRID and GROUP containers defined by layout tags inside a grid without the
GRIDCHILDRENINPARENT attribute, are similar to GRID containers in regards to the layout rules
describe in this section.

The .per form specification file defines a form layout based on a character grid, each character defines a
cell of the grid:

GRID
{
First Name [fname]
Last Name [lname]
}
END

The .per file layout specification can be shown in a character grid.

User interface | 1005

Figure 48: Character grid of a form layout

With a fixed-font based front end (such as a dumb terminal), the forms appear within a screen where each
cell is identified by x and y coordinates, as in the SCREEN section of the form specification file. There is no
particular layout issue, as all characters can be displayed at the same (relative) position as in the source
form file.

With the graphical front-end, text-based forms must be displayed in a graphical window using fonts with a
proportional size. In a proportional font, the field label "Key" has a different graphical length than the label
"Num", despite having the same number of characters.

In the compiled version of the form specification file, all form items get coordinates in a virtual grid (defined
by posX and posY attributes), and the number of cells the item occupies in the grid (in the gridWidth
and gridHeight attributes):

User interface | 1006

Figure 49: Grid positioning

The "First Name" and "Last Name" texts are identified as whole labels, even if the words "First" and
"Name" (or "Last" and "Name") are not joined in the form definition, because the form compiler considers a
single blank as a word separator within labels.

Packed and unpacked grids
When resizing a window, the content will either grow with the window or be packed in the top left position.

If elements in the window can grow, they will follow the window container and resize accordingly. Some
elements can grow vertically, some can grow horizontally, and some can grow in both directions. The
way resizable form items can grow is controlled by the STRETCH attribute. The window content is packed
horizontally, vertically or in both directions, if none of the elements can grow in that direction.

The following form item types can grow horizontally:

• TABLE / TREE items
• IMAGE items (with STRETCH=BOTH or STRETCH=X)
• TEXTEDIT items (with STRETCH=BOTH or STRETCH=X)

The following form item types can grow vertically:

• TABLE / TREE items (without WANTFIXEDPAGESIZE attribute)
• IMAGE items (with STRETCH=BOTH or STRETCH=Y)
• TEXTEDIT items (with STRETCH=BOTH or STRETCH=Y)

User interface | 1007

In general, a GRID container can grow if any object inside the GRID can grow. The exception to this rule: If
there is a single GROUP container (defined without the GRIDCHILDRENINPARENT attribute) inside a GRID
and nothing else, the grid can grow even if the objects inside the grid cannot grow.

This exception allows better rendering of a grouped grid.

Figure 50: Packed grid

Figure 51: Unpacked grid

User interface | 1008

Automatic HBoxes and VBoxes
Horizontal and vertical boxes are added automatically when stretchable elements are used.

When using layout tags in a GRID container, the fglform compiler will automatically add hbox or vbox
containers with splitters in the following conditions:

• An hbox is created when two or more stretchable elements are stacked side by side and touch each
other (no space between).

• A vbox is created when two or more stretchable elements are stacked vertically and touch each other
(no space between).

No hbox or vbox will be created if the elements are in a SCROLLGRID container.

This example defines two tables stacked vertically, generating a vbox with splitter. The ending tags for the
tables are omitted.

<T table1 >
[colA |colB]
[colA |colB]
[colA |colB]
[colA |colB]
<T table2 >
[colC |colD]
[colC |colD]

This example defines a layout with two stretchable TEXTEDIT fields placed side by side, which would
generate an automatic hbox with splitter. To make both widgets touch, you need to use a pipe delimiter in
between the two widgets.

[textedit1 |textedit2]
[|]
[|]
[|]

Widget position and size in grid
Form items render as widgets in the window, at a given position and with a given size.

To render form items, grid-based rendering follows the layout rules described below:

1. The position of the widgets in the virtual grid is defined by the posX and posY AUI tree attributes.
2. The number of virtual grid cells occupied by a widget is defined by the gridWidth and gridHeight

AUI tree attributes.
3. The real size (i.e. pixels) of a widget is defined by the width and height AUI tree attributes.
4. Empty lines and empty columns in the form layout definition take a size of 0 pixels, but this can be

configured with emptyColWidth and emptyRowHeight style attributes (see below).
5. The size of a cell in the virtual grid depends on the real size of the widgets inside the grid.
6. A widget's minimum size is computed via its real size and the SAMPLE attribute.
7. The preferred size of the widget is computed according to the SIZEPOLICY attribute.
8. The final widget size is computed according to the minimum and preferred size, to fill the cells in the

grid.
9. A small spacing is applied in non-empty cells.

The next screen-shot shows 2 labels and 2 fields placed in a grid.

User interface | 1009

Figure 52: Two labels and two fields placed in a grid: Grid view

Figure 53: Two labels and two fields placed in a grid: Form view

By default, empty grid rows and empty grid columns get not size when rendering on the front-end. For
example, in the above grid sample, the grid columns #10 and #11 are empty.

Form item dependencies in grids
Form items interact with each other in terms of width, according to the front-end widget size.

This example illustrates how form items are dependent of each other inside the grid.

GRID
{
 [a]
 [b]
}
END

This .per implies that form items a and b start at the same position and have the same size, whatever a
and b are.

This rule could lead to very different results, especially when a large widget is assigned into a small
number of cells.

Example:

LAYOUT
GRID
{
[a|b][f]
[c|d] [e]
}
END
END

ATTRIBUTES
CHECKBOX a = formonly.a, TEXT="A Checkbox";
EDIT b = formonly.b;
EDIT c = formonly.c;
CHECKBOX d = formonly.d, TEXT="Another Checkbox";
EDIT e = formonly.e;

User interface | 1010

EDIT f = formonly.f;
END

The grid will be computed regarding characters cells in the form definition:

Figure 54: Grid layout

Figure 55: Grid layout with checkboxes

Then the minimum size of each widget and the layout is computed.

Cells (0,1) and (1,3) contain a checkbox; these checkboxes will enlarge columns 1 and 3.

User interface | 1011

Figure 56: Enlarged columns

Because the EDIT field "c" is defined to have the same width as checkbox "a", it will be much larger as
expected.

Figure 57: Resulting form

To avoid this visual result, you must assign a realistic number of grid cells for each form item.

GRID
{
[a |b][f]
[c|d][e]
}

Even if the grid area is wider in the source form file, the real graphical result will be smaller.

Figure 58: Resulting form

Complex grid layout example
Describes how form item align in grid-based front-ends with an example.

These diagrams show the virtual grid of a complex form, with several field item tags.

User interface | 1012

Figure 59: Grid containing several fields

For each form field, the position and the number of cells is computed by the form compiler.

At runtime, the front-end creates the widgets and sets them on the virtual grid.

Figure 60: Widgets set on grid

Once widgets are on the grid, their minimum size is computed according to their size, to SIZEPOLICY and
the SAMPLE attributes.

Then the sizes of the grid cells adapt to the size of the widgets.

Figure 61: Widget size computations

User interface | 1013

Figure 62: Widgets in rendered form

In this screen shot, the fields k and c are much bigger than expected:

• Field g and l make columns 33, 34 and 35 bigger than the others,
• Field f extends columns 25 to 31.
• As field c has to fill columns 25 to 35, its size grows; the same for field k.

Some fields are proportionally bigger than others because some parameters are variable, while others are
fixed.

The width of the widget is the sum of border width, plus the content width (depending on SIZEPOLICY and
the SAMPLE attributes).

Since the default SAMPLE is MMMMMM000..., the graphical width of a field is not linearly proportional to
the width defined in the form file. For example, a field of 1 will be as wide as 2 borders + 1 'M'. A field of 10
will be as wide as 2 borders + 6 'M' + 4 '0'. This means that a field of 1 is far from being 10 times smaller
than a field of 10.

Using hbox tags to align form items
The hbox tag concept has been introduced to bypass the limitations of the character-based grid in forms.

An hbox tag defines a widget container that will gather the child widgets horizontally, like the horizontal box
container. All widgets inside this container are no longer dependent on the parent grid.

• Defining hbox tags in grids on page 1013
• Spacer items in hbox tags on page 1015
• Widget size within hbox tags on page 1016

Defining hbox tags in grids

An hbox tag is defined by using a : colon in an item tag delimited by square braces.

This example creates a hbox container containing widgets a, b and c. These widgets won't be aligned in
the grid.

GRID
{
[a:b:c]
[d|e|f]
}
END

User interface | 1014

Figure 63: Using an hbox tag

Figure 64: HBox tag rendering

Hbox tags are useful when the form contains large widgets in a small number of cells in one row, and don't
want to have dependencies.

Figure 65: Using an HBox tag

We can modify the Form item dependencies in grids on page 1009 example, using hbox tags:

GRID
{
[a:b][f]
[c:d][e]
}
END

User interface | 1015

Figure 66: HBox rendering

Spacer items in hbox tags

HBox tags also introduces the spacer items concept: when a grid hbox is created, the content may be
smaller than the container.

GRID
{
[a :b :c]
[d :e :f]
}
END

ATTRIBUTES

Figure 67: Spacer items

Because of the checkbox, the cell 1 is very large, and then the hbox is larger than the three fields. A spacer
item object is automatically created by the form compiler; the role of the spacer item is to take all the free
space in the container. Then all the widgets are packed to the left side of the hbox.

By default, a spacer item is created at the right of the container, but the spacer can also be defined in
another place:

GRID
{
[a :b :c] <- default: spacer on the right
[:d :e :f] <- spacer on the left
[g : :h] <- spacer between g and h
[i: :j: :k : :l] <- multiple spacers (between i and j, j and k, k
 and l
}
END

User interface | 1016

Figure 68: Form using spacers

Widget size within hbox tags

By default, the real width of BUTTONEDIT, DATEEDIT, DATETIMEEDIT and COMBOBOX widgets are
computed as follows:

if item-tag-width > 2
 real-width = item-tag-width - 2
else
 real-width = item-tag-width

Where item-tag-width represents the number of characters used in the form layout by the item tag, to
define the width of the element.

If the default widget size computing does not satisfy the needs, it is possible to specify the exact with of a
BUTTONEDIT, DATEDIT or COMBOBOX with an hbox tag, combined to the SAMPLE attribute.

The hbox tag can be used with a : (colon) and - (dash) marker to define the exact number of characters
the field can display, while the SAMPLE attribute will define the size.

For example:

LAYOUT
GRID
{
 ButtonEdit A [ba]
 ButtonEdit B [bb:]
 ButtonEdit C [bc :]
 ButtonEdit D [bd -:]
}
END
END
ATTRIBUTES
BUTTONEDIT ba = FORMONLY.ba, SAMPLE="0", ACTION=zoom1;
BUTTONEDIT bb = FORMONLY.bb, SAMPLE="M", ACTION=zoom2;
BUTTONEDIT bc = FORMONLY.bc, SAMPLE="Pi", ACTION=zoom3;
BUTTONEDIT bd = FORMONLY.bd, SAMPLE="0", ACTION=zoom4;
END

Here the ba item tag occupies 7 grid columns and gets a real width of 5 (7-2). The SAMPLE attribute makes
the edit field part as large as 5 characters '0' in the current font, so with this field you can input or display
only 5 digits.

The bb item tag, which is in an hbox tag that occupies 7 grid columns, gets a width of 2. Since the SAMPLE
attribute is "M", one can input 2 characters as wide as an "M".

The bc item tag, which is in an hbox tag that occupies 7 grid columns, gets a width of 3 (5-2). Since the
SAMPLE attribute is "Pi", the edit field part will be as large as the word "Pi". (If SAMPLE contains more than
1 character it must have the same number of characters as in the field definition).

User interface | 1017

When using an hbox tag, one can explicitly specify the width of the field with the dash size indicator: The
bd, which is in an hbox tag that occupies 7 grid columns, gets a width of 4 (because of the dash size
indicator). Since the SAMPLE attribute is "0", the edit field part will be as large as 4 digits.

Stack-based layout
A form file can define a stack-based layout within a tree of stack items.

In a .per form specification file, the LAYOUT section defines a tree of layout containers, which hold layout
items such as labels and form fields.

Use the STACK layout containers, to define a logical grouping of form elements, to be rendered vertically by
the front end.

Important: This feature is experimental and specific to mobile programming (STACK layout is
not supported by GWC-JS and GDC). The syntax/name and semantics/behavior may change in a
future version.

The STACK container defines a tree of stack containers, which holds a set of stack items such as form
fields:

LAYOUT
STACK
 GROUP g1(TEXT="Customer info")
 EDIT customer.cust_num, NOENTRY, TITLE="Id:";
 EDIT customer.cust_name, TITLE="Name:";
 EDIT customer.cust_address, TITLE="Address:";
 END
END
END

There is no such thing as x,y coordinates in a stack container: The form element position definition is
abstract and relative to other elements. Arranging form elements logically allows more flexibility in the final
rendering of the form on the front-end.

Stack-based forms are typically used in mobile application design, to get a similar, but adaptable layout
rendering on different mobile device brands.

The visual result of the above form definition would look as follows on an iOS mobile device:

User interface | 1018

Figure 69: iOS stacked form 2

Label internationalization
Define form files with stacked containers for different languages.

To internationalize your application, define TITLE attributes using %"string-id" localized strings, in
stack containrs and stack item definitions:

-- myform.per
LAYOUT
 STACK
 GROUP (TEXT=%"group.custinfo")
 EDIT customer.cust_num, NOENTRY, TITLE=%"cust.label.id";;
 EDIT customer.cust_name, TITLE=%"cust.label.name";
 EDIT customer.cust_address, TIELE=%"cust.label.address";
 END
 END
ED

-- myapp.str
"group.custinfo" = "Customer information"
"cust.label.id" = "Id:"
"cust.label.name" = "Name:"
"cust.label.address" = "Address:"

If more space is needed for text fields, remove field labels and add a COMMENT attribute to show a grayed
text inside empty fields:

-- myform.per
LAYOUT
 STACK
 GROUP (TEXT=%"group.custinfo")
 EDIT customer.cust_num, NOENTRY, TITLE=%"cust.label.id";;
 EDIT customer.cust_name, COMMENT=%"cust.comment.name";
 EDIT customer.cust_address, COMMENT=%"cust.comment.address";

User interface | 1019

 END
 END
END

-- myapp.str
"group.custinfo" = "Customer information"
"cust.label.id" = "Id:"
"cust.comment.name" = "Customer's name"
"cust.comment.address" = "Customer's address"

The visual result for the about stack-based form will look like this on an iOS device:

Figure 70: iOS stacked form 3

Stacked group rendering
Groups render in a native way on front-ends supporting the stacked layout.

Use GROUP containers in your form definition, to control the stacked layout: Fields and other form elements
such as buttons can be grouped together by domain.

The header of a group box is defined by the TEXT attribute of the GROUP container.

For example, in a form designed for customer data input, customer identification (number, name) should
appear in a dedicated group, while address information (street, zip code, state, country fields) should
appear under another group:

-- myform.per
LAYOUT
 STACK
 GROUP g1 (TEXT=%"cust.group1")
 EDIT FORMONLY.id, TITLE=%"cust.label.id";
 EDIT FORMONLY.name, TITLE=%"cust.label.name";
 END
 GROUP g2 (TEXT=%"cust.group2")

User interface | 1020

 LABEL : l_street, TEXT=%"cust.label.street";
 TEXTEDIT FORMONLY.street, HEIGHT=3;
 EDIT FORMONLY.zipcode, TITLE=%"cust.label.zipcode";
 EDIT FORMONLY.state, TITLE=%"cust.label.state";
 EDIT FORMONLY.country, TITLE=%"cust.label.country";
 END
 END
END

-- myapp.str
"cust.group1" = "Customer id"
"cust.label.id" = "Id:"
"cust.label.name" = "Name:"
"cust.group2" = "Address"
"cust.label.street" = "Street:"
"cust.label.zipcode" = "Zip Code:"
"cust.label.state" = "State:"
"cust.label.country" = "Country:"

This code example will render as follows on an iOS mobile device:

User interface | 1021

Figure 71: iOS stacked form 4

Toolbars
Toolbars define a bar of buttons that appears at the top of application forms.

• Understanding toolbars on page 1022
• Syntax of a toolbar file (.4tb) on page 1022
• Using toolbars on page 1023

• Defining toolbars in the form file on page 1024
• Loading a toolbar from an XML file on page 1024

User interface | 1022

• Loading a default toolbar from an XML file on page 1024
• Creating the toolbar manually with DOM on page 1024
• Toolbars on mobile devices on page 1025

• Examples on page 1025

• Example 1: Toolbar in XML format on page 1025
• Example 2: Toolbar created dynamically on page 1026
• Example 3: Toolbar section in form file on page 1026

Understanding toolbars

A toolbar defines action views presented as a set of buttons that can trigger events in an interactive
instruction.

This section describes how to define toolbars with XML in files or in programs as global/default toolbars; it
is also possible to define toolbars in forms with the TOOLBAR section, as form-specific toolbars.

Toolbar files can be loaded by a program with the methods ui.Interface.loadToolBar() (for default
toolbars) or ui.Form.loadToolBar() (for form-initializers).

A global toolbar is displayed by default in all windows, or in the global window container when using a
window container. The form-specific toolbar is displayed in the form where it is defined. The position and
visibility of toolbars can be controlled with a window style attribute. Typical "modal windows" do not display
toolbars.

The toolbar items (or buttons) are enabled according to the ON ACTION handlers defined by the current
interactive instruction. A toolbar item is bound to an action handler by name.. A click on the toolbar button
will execute the user code in the action handler.

Toolbar elements can get a style attribute in order to use a specific rendering/decoration following
presentation style definitions.

The DOM tag names are case sensitive; Toolbar is different from ToolBar.

When binding to an action, make sure that you are using the right value in the name attribute. As ON
ACTION and COMMAND generate lowercase identifiers, it is recommended to use lowercase names.

It is recommended that you define the decoration of toolbar items for common actions with action defaults.

Syntax of a toolbar file (.4tb)
A toolbar file defines a set of buttons in a dedicated area of a window.

Toolbar XML syntax

<ToolBar [toolbar-attribute="value" [...]] >
 { <ToolBarSeparator separator-attribute="value" [...] />
 | <ToolBarItem item-attribute="value" [...] />
 } [...]
</ToolBar>

1. toolbar-attribute defines a property of the toolbar.
2. item-attribute defines a property of the toolbar item.

Toolbar XML attributes

Table 261: ToolBar node attributes

Attribute Type Description

style STRING
Use to decorate the element with
a presentation style.

User interface | 1023

Attribute Type Description

tag STRING
User-defined attribute to identify
the node.

name STRING Identifies the toolbar.

buttonTextHidden INTEGER
Defines if the text of toolbar
buttons must appear by default.

Table 262: ToolBarItem node attributes

Attribute Type Description

name STRING

Identifies the action
corresponding to the toolbar
button.

Can be prefixed with the sub-
dialog identifier.

style STRING
Use to decorate the element with
a presentation style.

tag STRING
User-defined attribute to identify
the node.

text STRING
The text to be displayed in the
toolbar button.

comment STRING
The message to be shown as
tooltip when the user selects a
toolbar button.

hidden INTEGER Indicates if the item is hidden.

image STRING
The icon to be used in the toolbar
button.

Table 263: ToolBarSeparator node attributes

Attribute Type Description

name STRING Identifies the toolbar separator.

style STRING
Use to decorate the element with
a presentation style.

tag STRING
User-defined attribute to identify
the node.

hidden INTEGER
Indicates if the separator is
hidden.

Using toolbars
To use toolbars, you must understand how they work and how to structure the code.

• Understanding toolbars on page 1022
• Defining toolbars in the form file on page 1024
• Loading a toolbar from an XML file on page 1024
• Loading a default toolbar from an XML file on page 1024

User interface | 1024

• Creating the toolbar manually with DOM on page 1024
• Toolbars on mobile devices on page 1025

Defining toolbars in the form file
Toolbars can be defined in the form specification file within the TOOLBAR section.

Form toolbars are only displayed in the window where the form is loaded. Only one toolbar can be defined
in a form file. Toolbar button attributes that are common to topmenu options should be centralized in action
defaults.

Example

TOOLBAR tb
 ITEM accept (TEXT="Ok", IMAGE="ok")
 ITEM cancel (TEXT="Cancel", IMAGE="cancel")
 SEPARATOR
 ...
END

LAYOUT
GRID
{
 ...

Loading a toolbar from an XML file

To load a toolbar definition file (4tb) for a form, use the utility method provided by the ui.Form built-in
class.

CALL myform.loadToolbar("standard")

Loading a default toolbar from an XML file
To load a default toolbar from an XML definition file, use the utility method provided by the ui.Interface
built-in class.

CALL ui.Interface.loadToolbar("standard")

The default toolbar will be displayed in all forms.

Creating the toolbar manually with DOM

This example shows how to create a toolbar in all forms by using the default initialization function and the
om.DomNode class:

CALL ui.Form.setDefaultInitializer("myinit")
OPEN FORM f1 FROM "form1"
DISPLAY FORM f1
...
FUNCTION myinit(form)
 DEFINE form ui.Form
 DEFINE f om.DomNode
 LET f = form.getNode()
 ...
END FUNCTION

After getting the DOM node of the form, create a node with the "ToolBar" tag name:

DEFINE tb om.DomNode
LET tb = f.createChild("ToolBar")

User interface | 1025

For each toolbar button, create a sub-node with the "ToolBarItem" tag name and set the attributes to
define the button:

DEFINE tbi om.DomNode
LET tbi = tb.createChild("ToolBarItem")
CALL tbi.setAttribute("name","update")
CALL tbi.setAttribute("text","Modify")
CALL tbi.setAttribute("comment","Modify the current record")
CALL tbi.setAttribute("image","change")

If needed, you can create a "ToolBarSeparator" node to separate toolbar buttons:

DEFINE tbs om.DomNode
LET tbs = tb.createChild("ToolBarSeparator")

Toolbars on mobile devices
Toolbars can be used to control action view rendering on mobile devices.

On mobile devices, actions render usually as default action views, that display implicitly in dedicated panes
on the screen. When displaying forms on a mobile front-end, you can use a toolbar to control the rendering
of the actions.

Using toolbars for Android™ devices (GMA)

On Android devices, a TOOLBAR can be used to define the action views that appear in the Android action
bar. Toolbar action views are listed first and ordered as they are defined in the TOOLBAR section, followed
by the default action views for remaining actions that are not part of the TOOLBAR definition.

Using toolbars for iOS devices (GMI)

On iOS devices, a TOOLBAR renders as the iOS toolbar panel. This toolbar appears at the bottom of the
screen, displaying a icon or text for each toolbar item. If there is not enough space to render all toobar
items, a three-dot overflow icon appears on the right, to show up the remaining toolbar items.

The iosSeparatorStretch toolbar style attribute can be used to stretch the separators to give more
space between action buttons.

Examples
Examples showing the various ways to define a toolbar.

• Example 1: Toolbar in XML format on page 1025
• Example 2: Toolbar created dynamically on page 1026
• Example 3: Toolbar section in form file on page 1026

Example 1: Toolbar in XML format

<ToolBar style="mystyle">
 <ToolBarItem name="f5" text="List" image="list" />
 <ToolBarSeparator/>
 <ToolBarItem name="query" text="Query" image="search" />
 <ToolBarItem name="add" text="Append" image="add" />
 <ToolBarItem name="delete" text="Delete" image="delete" />
 <ToolBarItem name="modify" text="Modify" image="change" />
 <ToolBarSeparator/>
 <ToolBarItem name="f1" text="Help" image="list" />
 <ToolBarSeparator/>
 <ToolBarItem name="quit" text="Quit" image="quit" />
</ToolBar>

User interface | 1026

Example 2: Toolbar created dynamically

MAIN
 DEFINE aui om.DomNode
 DEFINE tb om.DomNode
 DEFINE tbi om.DomNode
 DEFINE tbs om.DomNode

 LET aui = ui.Interface.getRootNode()

 LET tb = aui.createChild("ToolBar")

 LET tbi = createToolBarItem(tb,"f1","Help","Show help","help")
 LET tbs = createToolBarSeparator(tb)
 LET tbi = createToolBarItem(tb,"upd","Modify","Modify current
 record","change")
 LET tbi = createToolBarItem(tb,"del","Remove","Remove current
 record","delete")
 LET tbi = createToolBarItem(tb,"add","Append","Add a new record","add")
 LET tbs = createToolBarSeparator(tb)
 LET tbi = createToolBarItem(tb,"xxx","Exit","Quit application","quit")

 MENU "Example"
 COMMAND KEY(F1)
 DISPLAY "F1 action received"
 COMMAND "upd"
 DISPLAY "Update action received"
 COMMAND "Del"
 DISPLAY "Delete action received"
 COMMAND "Add"
 DISPLAY "Append action received"
 COMMAND "xxx"
 EXIT PROGRAM
 END MENU

END MAIN

FUNCTION createToolBarSeparator(tb)
 DEFINE tb om.DomNode
 DEFINE tbs om.DomNode
 LET tbs = tb.createChild("ToolBarSeparator")
 RETURN tbs
END FUNCTION

FUNCTION createToolBarItem(tb,n,t,c,i)
 DEFINE tb om.DomNode
 DEFINE n,t,c,i VARCHAR(100)
 DEFINE tbi om.DomNode
 LET tbi = tb.createChild("ToolBarItem")
 CALL tbi.setAttribute("name",n)
 CALL tbi.setAttribute("text",t)
 CALL tbi.setAttribute("comment",c)
 CALL tbi.setAttribute("image",i)
 RETURN tbi
END FUNCTION

Example 3: Toolbar section in form file

TOOLBAR (STYLE="mystyle")
 ITEM accept (TEXT="Ok", IMAGE="ok")
 ITEM cancel (TEXT="cancel", IMAGE="cancel")
 SEPARATOR
 ITEM editcut -- Gets decoration from action defaults

User interface | 1027

 ITEM editcopy -- Gets decoration from action defaults
 ITEM editpaste -- Gets decoration from action defaults
 SEPARATOR
 ITEM append (TEXT="Append", IMAGE="add")
 ITEM update (TEXT="Update", IMAGE="modify")
 ITEM delete (TEXT="Delete", IMAGE="del")
 ITEM search (TEXT="Search", IMAGE="find")
END

Topmenus
Topmenus define typical pull-down menus that appear at the top of application forms.

• Understanding topmenus on page 1027
• Syntax of a topmenu file (.4tm) on page 1028
• Using topmenus on page 1030

• Defining the topmenu in a form file on page 1030
• Loading a topmenu from an XML file on page 1030
• Loading a default topmenu from an XML file on page 1030
• Creating the topmenu dynamically on page 1030
• Topmenus on mobile devices on page 1031

• Examples on page 1033

• Example 1: Topmenu in XML format on page 1033
• Example 2: Topmenu section in form file on page 1033

Understanding topmenus

A topmenu defines a graphical menu that holds views for actions controlled in programs with ON ACTION
handlers. A topmenu renders to the user according to the front-end platform standards. On a desktop / web
front-end, the topmenu appears as a typical pull-down menu. On mobile devices, a topmenu displays as a
flat list of options (Android™), and as a set of option screens the user can drill down (iOS).

This section describes how to define topmenus with XML in files or in programs as global/default
topmenus; it is also possible to define topmenus in forms with the TOPMENU section, as form-specific
topmenus.

Topmenu files can be loaded by program with the methods ui.Interface.loadTopMenu() (for default
topmenus) or ui.Form.loadTopMenu() (for form-initializers).

In the abstract user interface tree, the TopMenu node must be created under the Form node, and must
contain TopMenuGroup nodes. The TopMenuGroup nodes group topmenu commands and other topmenu
groups. A TopMenuCommand is a leaf node in the topmenu tree that will trigger an action:

TopMenu
 +- TopMenuGroup
 +- TopMenuCommand
 +- TopMenuCommand
 +- TopMenuCommand
 +- TopMenuGroup
 +- TopMenuGroup
 +- TopMenuCommand
 +- TopMenuCommand
 +- TopMenuGroup
 +- TopMenuCommand
 +- TopMenuCommand
 +- TopMenuCommand

User interface | 1028

The topmenu options are enabled according to the ON ACTION handlers defined by the current interactive
instruction. A topmenu option is bound to an action handler by name. Selecting the topmenu option will
execute the user code in the action handler.

Topmenu elements can get a style attribute in order to use a specific rendering/decoration following
presentation style definitions.

The DOM tag names are case sensitive; Topmenu is different from TopMenu.

When binding to an action, make sure that you are using the right value in the name attribute. As ON
ACTION and COMMAND generate lowercase identifiers, it is recommended to use lowercase names.

It is recommended that you define the decoration of topmenu options for common actions with action
defaults.

Images cannot be displayed for the first level of TopMenuGroup elements.

Syntax of a topmenu file (.4tm)
A topmenu file defines a tree of menu options to be displayed in the header of a window.

Topmenu XML syntax

<TopMenu [topmenu-attribute="value" [...]] >
 group
 [...]
 </TopMenu>

where group is:

<TopMenuGroup group-attribute="value" [...]>
 { <TopMenuSeparator separator-attribute="value" [...] />
 | <TopMenuCommand command-attribute="value" [...] />
 | group
 } [...]
 </TopMenuGroup>

1. topmenu-attribute defines a property of the TopMenu.
2. group-attribute defines a property of a TopMenuGroup.
3. command-attribute defines a property of a TopMenuCommand.
4. separator-attribute defines a property of a TopMenuSeparator.

Topmenu XML attributes

Table 264: TopMenu node attributes

Attribute Type Description

name STRING Identifies the topmenu.

style STRING
Can be used to decorate the
element with a presentation style.

tag STRING
User-defined attribute to identify
the node.

User interface | 1029

Table 265: TopMenuCommand node attributes

Attribute Type Description

name STRING

Identifies the action
corresponding to the topmenu
command.

Can be prefixed with the sub-
dialog identifier.

style STRING
Can be used to decorate the
element with a presentation style.

tag STRING
User-defined attribute to identify
the node.

text STRING
The text to be displayed in the
pull-down menu option.

comment STRING
The message to be shown for this
element.

hidden INTEGER
Indicates if the command is
hidden.

image STRING
The icon to be used in the pull-
down menu option.

acceleratorName STRING

Defines the accelerator name to
be display on the left of the menu
option text.

Note this attribute is only used for
decoration (you must also define
an action default accelerator).

Table 266: TopMenuGroup node attributes

Attribute Type Description

name STRING Identifies the topmenu group.

style STRING
Can be used to decorate the
element with a presentation style.

tag STRING
User-defined attribute to identify
the node.

text STRING
The text to be displayed in the
pull-down menu group.

comment STRING
The message to be shown for this
element.

hidden INTEGER Indicates if the group is hidden.

image STRING
The icon to be used in the pull-
down menu group.

User interface | 1030

Table 267: Separator-attributes for the TopMenuSeparator node

Attribute Type Description

name STRING Identifies the topmenu separator.

style STRING
Can be used to decorate the
element with a presentation style.

tag STRING
User-defined attribute to identify
the node

hidden INTEGER
Indicates if the separator is
hidden.

Using topmenus
To use topmenus, you must understand how they work and how to structure the code.
Defining the topmenu in a form file
Topmenus can be defined in the form specification file within the TOPMENU section.

Form topmenus will only be displayed in the window where the form is loaded. Only one topmenu can be
defined in a form file. Topmenu item attributes that are common to toolbar buttons should be centralized in
action defaults.

Example

TOPMENU tm
 GROUP form (TEXT="Form")
 COMMAND help (TEXT="Help", IMAGE="quest")
 COMMAND quit (TEXT="Quit")
 END
 ...
END

LAYOUT
GRID
{
 ...

Loading a topmenu from an XML file

To load a .4tm topmenu definition file for a form, use the utility method provided by the ui.Form built-in
class:

CALL myform.loadTopMenu("standard")

Loading a default topmenu from an XML file
To load a default topmenu from an XML definition file, use the utility method provided by the
ui.Interface built-in class.

CALL ui.Interface.loadTopMenu("standard")

The default topmenu will be displayed in all forms.

Creating the topmenu dynamically

This example shows how to create a topmenu in all forms by using the default initialization function and the
om.DomNode class:

CALL ui.Form.setDefaultInitializer("myinit")
OPEN FORM f1 FROM "form1"

User interface | 1031

DISPLAY FORM f1
...
FUNCTION myinit(form)
 DEFINE form ui.Form
 DEFINE f om.DomNode
 LET f = form.getNode()
 ...
END FUNCTION

After getting the DOM node of the form, create a node with the "TopMenu" tag name:

DEFINE tm om.DomNode
LET tm = f.createChild("TopMenu")

For each Topmenu group, create a subnode with the "TopMenuGroup" tag name and set the attributes to
define the group:

DEFINE tmg om.DomNode
LET tmg = tm.createChild("TopMenuGroup")
CALL tmg.setAttribute("text","Reports")

For each Topmenu option, create a sub-node in a group node with the "TopMenuCommand" tag name and
set the attributes to define the option:

DEFINE tmi om.DomNode
LET tmi = tmg.createChild("TopMenuCommand")
CALL tmi.setAttribute("name","report")
CALL tmi.setAttribute("text","Order report")
CALL tmi.setAttribute("comment","Orders entered today")
CALL tmi.setAttribute("image","smiley")

If needed, you can create a "TopMenuSeparator" node inside a group, to separate menu options:

DEFINE tms om.DomNode
LET tms = tmg.createChild("TopMenuSeparator")

Topmenus on mobile devices
Topmenus can be used to implement a general options menu in mobile apps.

On mobile devices, actions render usually as default action views, that display implicitly in dedicated panes
on the screen. When displaying forms on a mobile front-end, you can use a topmenu to get a list of options
the end user can choose from.

Using topmenus for Android™ devices (GMA)

On Android devices, a TOPMENU renders as a menu icon on the top left of the screen, in the Android action
bar. When the user taps on this icon, a list with topmenu items shows up. Selecting an option fires the
corresponding action handler is fired.

Note: On Android, the topmenu can only display one level of options (no tree of options is
possible).

User interface | 1032

Using topmenus for iOS devices (GMI)

On iOS devices, a TOPMENU renders as a menu icon on the top left corner of the device screen, in the iOS
navigation controller. When the user taps on this icon, a new view appears with the first level of topmenu
items. The user can the drill down to a next level, select an option if it's a leaf item, or tap on the back
button to move one level up in the topmenu tree. Selecting a leaf item will fire the corresponding action
handler and close the menu.

User interface | 1033

Examples
Example 1: Topmenu in XML format

<TopMenu>
 <TopMenuGroup text="Form" style="mystyle">
 <TopMenuCommand name="help" text="Help" image="quest" />
 <TopMenuCommand name="quit" text="Quit" acceleratorName="alt-F4"/>
 </TopMenuGroup>
 <TopMenuGroup text="Edit">
 <TopMenuCommand name="accept" text="Validate" image="ok" />
 <TopMenuCommand name="cancel" text="Cancel" image="cancel" />
 <TopMenuSeparator/>
 <TopMenuCommand name="editcut" text="Cut" />
 <TopMenuCommand name="editcopy" text="Copy" />
 <TopMenuCommand name="editpaste" text="Paste" />
 </TopMenuGroup>
 <TopMenuGroup text="Records">
 <TopMenuCommand name="append" text="Add" image="add" />
 <TopMenuCommand name="delete" text="Remove" image="delete" />
 <TopMenuCommand name="update" text="Modify" image="change" />
 <TopMenuSeparator/>
 <TopMenuCommand name="search" text="Query" image="find" />
 </TopMenuGroup>
</TopMenu>

Example 2: Topmenu section in form file

TOPMENU
 GROUP form (TEXT="Form", STYLE="mystyle")
 COMMAND help (TEXT="Help", IMAGE="quest")
 COMMAND quit (TEXT="Quit", ACCELERATOR=ALT-F4)
 END
 GROUP edit (TEXT="Edit")
 COMMAND accept (TEXT="Validate", IMAGE="ok")
 COMMAND cancel (TEXT="Cancel", IMAGE="cancel")
 SEPARATOR
 COMMAND editcut -- Gets decoration from action defaults
 COMMAND editcopy -- Gets decoration from action defaults
 COMMAND editpaste -- Gets decoration from action defaults
 END
 GROUP records (TEXT="Records")
 COMMAND append (TEXT="Add", IMAGE="add")

User interface | 1034

 COMMAND delete (TEXT="Remove", IMAGE="del")
 COMMAND update (TEXT="Modify", IMAGE="change")
 SEPARATOR
 COMMAND search (TEXT="Search", IMAGE="find")
 END
END

Dialog instructions
This section describes the dialog instructions to control application forms and the concepts related to dialog
implementation.

• Static display (DISPLAY/ERROR/MESSAGE/CLEAR) on page 1034
• Prompt for values (PROMPT) on page 1042
• Ring menus (MENU) on page 1048
• Record input (INPUT) on page 1060
• Read-only record list (DISPLAY ARRAY) on page 1075
• Editable record list (INPUT ARRAY) on page 1098
• Query by example (CONSTRUCT) on page 1128
• Multiple dialogs (DIALOG) on page 1144
• Parallel dialogs (START DIALOG) on page 1199

Static display (DISPLAY/ERROR/MESSAGE/CLEAR)
This section explains the instructions displaying static information to application forms, such as DISPLAY,
ERROR, MESSAGE, CLEAR.

• Display of data and messages on page 1034
• DISPLAY (to stdout) on page 1035
• MESSAGE on page 1035
• ERROR on page 1036
• DISPLAY TO on page 1037
• DISPLAY BY NAME on page 1038
• CLEAR FORM on page 1040
• CLEAR SCREEN ARRAY on page 1040
• CLEAR field-list on page 1041
• SCROLL on page 1042

Display of data and messages

The values contained in program variables can be displayed to the current form with the DISPLAY BY
NAME or DISPLAY TO instruction. Forms can be cleared with the CLEAR FORM or CLEAR field-list
instructions. Complete record lists (in SCROLLGRID, TABLE or TREE containers) can be cleared with the
CLEAR SCREEN ARRAY instruction. Application messages and warnings can be displayed to the user with
the MESSAGE and ERROR instructions.

The DISPLAY BY NAME/TO instructions are not interactive, and are usually not needed if the program
is always in the context of a dialog controlling the form fields: The data of the program variables will be
displayed in form fields when the dialog starts, if the WITHOUT DEFAULTS option is specified, and during
the dialog execution, form fields will be automatically synchronized with the program variables when using
the UNBUFFERED option.

User interface | 1035

DISPLAY (to stdout)
The DISPLAY instruction displays text in line mode to the standard output channel.

Syntax

DISPLAY expression

1. expression is any expression supported by the language.

Usage

The DISPLAY instruction can be used to print information to the standard output channel (stdout) of the
terminal the program is attached to.

The expression is typically a list of string constants and program variables separated by the comma
concatenation operator.

Before displaying to the standard output channel, the expression is converted to a character string. The
values contained in variables are formatted according to the data types and environment settings such as
DBDATE and DBMONEY.

Example

MAIN
 DISPLAY "Today's date is: ", TODAY
END MAIN

MESSAGE
The MESSAGE instruction displays a message to the user.

Syntax

MESSAGE message [,...]
 [ATTRIBUTES (display-attribute [,...])]

where display-attribute is:

{ BLACK | BLUE | CYAN | GREEN
| MAGENTA | RED | WHITE | YELLOW
| BOLD | DIM | INVISIBLE | NORMAL
| REVERSE | BLINK | UNDERLINE
| STYLE = "style-name"
}

1. expression is any expression supported by the language.
2. style-name is a presentation style name.

Usage

The MESSAGE instruction displays a message to the user in an interactive program.

In TUI mode, the text is displayed in the comment line of the current window.

In GUI mode, the text is displayed in a specific area, depending on the STYLE attribute.

When you specify the STYLE attribute, you can reference a style defined in the presentation styles file. This
allows you to display errors or messages in GUI mode with more sophisticated visual effects as the regular
TTY attributes. Advanced automatic rendering can be obtained with message specific style attributes. If

User interface | 1036

you want to apply automatically a style to all program messages displayed with the MESSAGE instruction,
you can use the :message pseudo selector in the style definition.

Example

INPUT BY NAME custrec.* ...
 BEFORE INPUT
 MESSAGE "Enter customer data."
 ...

ERROR
The ERROR instruction displays an error message to the user.

Syntax

ERROR expression
 [ATTRIBUTES (display-attribute [,...])]

where display-attribute is:

{ BLACK | BLUE | CYAN | GREEN
| MAGENTA | RED | WHITE | YELLOW
| BOLD | DIM | INVISIBLE | NORMAL
| REVERSE | BLINK | UNDERLINE
| STYLE = "style-name"
}

1. expression is any expression supported by the language.
2. style-name is a presentation style name.

Usage

The ERROR instruction displays an error message to the user in an interactive program.

In TUI mode, the error text is displayed in the error line of the current window.

In GUI mode, the text is displayed in a specific area, depending on the STYLE attribute.

When you specify the STYLE attribute, you can reference a style defined in the presentation styles file. This
allows you to display errors or messages in GUI mode with more sophisticated visual effects as the regular
TTY attributes. Advanced automatic rendering can be obtained with message specific style attributes. If
you want to apply automatically a style to all program warnings displayed with the ERROR instruction, you
can use the :error pseudo selector in the style definition.

Example

...
IF sqlca.sqlcode THEN
 ERROR "Database update failed (" || sqlca.sqlcode || ")"
 ATTRIBUTES(STYLE="important")
 ...
END IF
...

User interface | 1037

DISPLAY TO
The DISPLAY TO instruction displays data to form fields explicitly.

Syntax

DISPLAY expression [,...] TO field-spec [,...]
 [ATTRIBUTES (display-attribute [,...])]

where field-spec is:

{ field-name
| table-name.*
| table-name.field-name
| screen-array[line].*
| screen-array[line].field-name
| screen-record.*
| screen-record.field-name
} [,...]

where display-attribute is:

{ BLACK | BLUE | CYAN | GREEN
| MAGENTA | RED | WHITE | YELLOW
| BOLD | DIM | NORMAL
| REVERSE | BLINK | UNDERLINE
}

1. expression is any expression supported by the language.
2. field-name is the identifier of a field of the current form.
3. table-name is the identifier of a database table of the current form.
4. screen-record is the identifier of a screen record of the current form.
5. screen-array is the screen array that will be used in the form.

Usage
A DISPLAY TO statement copies the data from program variables to the form fields specified after the TO
keyword.

When the program variables do not have the same names as the form fields, you must use the TO clause
to explicitly map the variables to fields. You can list the fields individually, or you can use the screen-
record.* or screen-record[n].* notation, where screen-record[n].* specifies all the fields in
line n of a screen array.

In the next example, the values in the p_items program record are displayed in the first row of the s_items
screen array:

DISPLAY p_items.* TO s_items[1].*

The expanded list of screen fields must correspond in order and in number to the expanded list of
identifiers after the DISPLAY keyword. Identifiers and their corresponding fields must have the same or
compatible data types. For example, the next DISPLAY statement displays the values in the p_customer
program record in fields of the s_customer screen record:

DISPLAY p_customer.* TO s_customer.*

For this example, the p_customer program record and the s_customer screen record require compatible
declarations. The following DEFINE statement declares the p_customer program record:

DEFINE p_customer RECORD

User interface | 1038

 customer_num LIKE customer.customer_num,
 fname LIKE customer.fname,
 lname LIKE customer.lname,
 phone LIKE customer.phone
END RECORD

This fragment of a form specification declares the s_customer screen record:

ATTRIBUTES
 f000 = customer.customer_num;
 f001 = customer.fname;
 f002 = customer.lname;
 f003 = customer.phone;
END

The DISPLAY TO instruction is usually not needed if the program is always in the context of a dialog
controlling the form fields.

DISPLAY TO changes the touched flag

The DISPLAY TO statement changes the 'touched' status of the target fields. When you modify a field
value with this instruction, the FIELD_TOUCHED() operator returns true and the ON CHANGE and ON ROW
CHANGE triggers may be invoked if the current field value was changed with a DISPLAY BY NAME.

In dialogs controlling field input such as INPUT or INPUT ARRAY, use the UNBUFFERED attribute to display
data to fields automatically without changing the 'touched' status of fields. The UNBUFFERED clause will
make automatic form field and program variable synchronization. When using the UNBUFFERED mode,
the touched flag can be set with DIALOG.setFieldTouched() if you want to get the same effect as a
DISPLAY BY NAME

Specifying TTY attributes in the DISPLAY BY NAME statement
The ATTRIBUTES clause temporarily overrides any default display attributes or any attributes specified in
the OPTIONS or OPEN WINDOW statements for the fields. When the DISPLAY TO statement completes
execution, the default display attributes are restored.In a DISPLAY TO statement, any screen attributes
specified in the ATTRIBUTES clause apply to all the fields that you specify after the TO keyword.

The REVERSE, BLINK, INVISIBLE, and UNDERLINE attributes are not sensitive to the color or
monochrome status of the terminal, if the terminal is capable of displaying these intensity modes. The
ATTRIBUTES clause can include zero or more of the BLINK, REVERSE, and UNDERLINE attributes, and
zero or one of the other attributes. That is, all of the attributes except BLINK, REVERSE, and UNDERLINE
are mutually exclusive.

The DISPLAY TO statement ignores the INVISIBLE attribute, regardless of whether you specify it in the
ATTRIBUTES clause.

DISPLAY BY NAME
The DISPLAY BY NAME instruction displays data to form fields explicitly by name.

Syntax

DISPLAY BY NAME { variable | record.* } [,...]
 [ATTRIBUTES (display-attribute [,...])]

where display-attribute is:

{ BLACK | BLUE | CYAN | GREEN
| MAGENTA | RED | WHITE | YELLOW
| BOLD | DIM | NORMAL
| REVERSE | BLINK | UNDERLINE

User interface | 1039

}

1. variable is a program variable that has the same name as a form field.
2. record.* is a record variable that has members with the same names as form fields.

Usage

A DISPLAY BY NAME statement copies the data from program variables to the form fields associated to
the variables by name. The program variables used in DISPLAY BY NAME must have the same name as
the form fields where they have to be displayed. The language ignores any record structure name prefix
when matching the names. The names must be unique and unambiguous; if not, the instruction raises an
error.

For example, the following statement displays the values for the specified variables in the form fields with
corresponding names (company and address1):

DISPLAY BY NAME p_customer.cust_company,
 p_customer.cust_address1

The DISPLAY BY NAME instruction is usually not needed if the program is always in the context of a
dialog controlling the form fields.

DISPLAY BY NAME uses the default screen record

Unlike the DISPLAY TO instruction where you can explicitly specify a screen record or screen array,
DISPLAY BY NAME displays data to the screen fields of the default screen records. The default screen
records are those having the names of the tables defined in the TABLES section of the form specification
file. When the form fields define a record list in the layout, only the first row can be referenced with the
default screen record. In the next example, the form contains a static record list definition in the layout.

SCHEMA mystock
SCREEN
{
[f01 |f02 |f03]
[f01 |f02 |f03]
[f01 |f02 |f03]
[f01 |f02 |f03]
}
END
TABLES
customer
END
ATTRIBUTES
f01 = customer.cust_key;
f02 = customer.cust_name;
f03 = customer.cust_address;
END

In the program, a DISPLAY BY NAME statement will display the data in the first line of the record list in the
form:

DISPLAY BY NAME record_cust.*

DISPLAY BY NAME changes the touched flag

The DISPLAY BY NAME statement changes the 'touched' status of the target fields. When you modify a
field value with this instruction, the FIELD_TOUCHED() operator returns true and the ON CHANGE and ON
ROW CHANGE triggers may be invoked if the current field value was changed with a DISPLAY BY NAME.

User interface | 1040

In dialogs controlling field input such as INPUT or INPUT ARRAY, use the UNBUFFERED attribute to display
data to fields automatically without changing the 'touched' status of fields. The UNBUFFERED clause will
make automatic form field and program variable synchronization. When using the UNBUFFERED mode,
the touched flag can be set with DIALOG.setFieldTouched() if you want to get the same effect as a
DISPLAY BY NAME statement.

Specifying TTY attributes in the DISPLAY BY NAME statement

The ATTRIBUTES clause temporarily overrides any default display attributes or any attributes specified
in the OPTIONS or OPEN WINDOW statements for the fields. When the DISPLAY BY NAME statement
completes execution, the default display attributes are restored.

The REVERSE, BLINK, INVISIBLE, and UNDERLINE attributes are not sensitive to the color or
monochrome status of the terminal, if the terminal is capable of displaying these intensity modes. The
ATTRIBUTES clause can include zero or more of the BLINK, REVERSE, and UNDERLINE attributes, and
zero or one of the other attributes. That is, all of the attributes except BLINK, REVERSE, and UNDERLINE
are mutually exclusive.

The DISPLAY BY NAME statement ignores the INVISIBLE attribute, regardless of whether you specify it
in the ATTRIBUTES clause.

CLEAR FORM
The CLEAR FORM instruction clears all fields in the current form.

Syntax

CLEAR FORM

Usage

The CLEAR FORM instruction clears all form fields of the current form. It has no effect on any part of the
screen display except the form fields.

Similarly to CLEAR field-list, the CLEAR FORM instruction is typically used when the program is not
inside a dialog block execution controlling the form fields. For example, after a database query with a
CONSTRUCT instruction, you might want to clear all search criteria entered by the user with this instruction,
to cleanup the form.

The CLEAR FORM instruction is usually not needed if the program is always in the context of a dialog
controlling the form fields.

Example

 CONSTRUCT BY NAME sql
 ON cust_name, cust_address, ...
 ...
 END CONSTRUCT
 CLEAR FORM
 ...

CLEAR SCREEN ARRAY
The CLEAR SCREEN ARRAY instruction clears the values of all rows of the form list identified by the
specified screen array.

Syntax

CLEAR SCREEN ARRAY screen-array.*

User interface | 1041

1. screen-array is a screen array specified in the form.

Usage

After executing a DISPLAY ARRAY or INPUT ARRAY instruction, values remain in the form list identified by
the screen array.

The CLEAR SCREEN ARRAY instruction automatically clears all rows of the list, regardless of the view: a
TABLE, TREE, SCROLLGRID, or in a matrix of fields (an old-style/text-mode static screen array).

The CLEAR SCREEN ARRAY instruction replaces code which clears each individual row through the use of
a loop:

-- Clearing each row individually
FOR i=1 TO <screen-array-length>
 CLEAR screen-array[i].*
END FOR
-- Unique instruction to clear a list
CLEAR SCREEN ARRAY screen-array.*

Using the CLEAR SCREEN ARRAY instruction eliminates the need for calculating the screen array length, a
value which can change when using a TABLE container, that can be resized.

The CLEAR SCREEN ARRAY instruction is usually not needed if the program is always in the context of a
dialog controlling the form fields.

Example

...
 DISPLAY ARRAY cust_arr TO sa.*
 ...
 CLEAR SCREEN ARRAY sa.*
 ...

CLEAR field-list
The CLEAR field-list instruction clears specific fields in the current form.

Syntax

CLEAR field-list

where field-list is:

{ field-name
| table-name.*
| table-name.field-name
| screen-array[line].*
| screen-array[line].field-name
| screen-record.*
| screen-record.field-name
}
[,...]

1. field-name is the identifier of a field of the current form.
2. table-name is the identifier of a database table of the current form.
3. screen-record is the identifier of a screen record of the current form.
4. screen-array is the screen array that will be used in the form.

User interface | 1042

Usage

The CLEAR field-list instruction can be used to clear the content of the specified form fields

Similarly to CLEAR FORM, the CLEAR field-list is typically used when the program is not inside a
dialog block execution controlling the form fields. For example, after a database query with a CONSTRUCT
instruction, you might want to clear all search criteria entered by the user with this instruction, to cleanup
the form.

The CLEAR field-list instruction is usually not needed if the program is always in the context of a
dialog controlling the form fields.

Example

 CONSTRUCT BY NAME sql
 ON s_customer.*
 ...
 END CONSTRUCT
 CLEAR s_customer.*
 ...

SCROLL
The SCROLL instruction moves data rows up or down in a screen array.

Syntax

SCROLL field-list { UP | DOWN } [BY lines]

where field-list is:

{ field-name
| table-name.*
| table-name.field-name
| screen-array[line].*
| screen-array[line].field-name
| screen-record.*
| screen-record.field-name
} [,...]

1. field-name is the identifier of a field of the current form.
2. table-name is the identifier of a database table of the current form.
3. screen-record is the identifier of a screen record of the current form.
4. screen-array is the name of the screen array used of the current form.
5. lines is an integer expression that specifies how far (in lines) to scroll the display.

Usage

The SCROLL instruction specifies vertical movements of displayed values in all or some of the fields of a
screen array within the current form.

The SCROLL instruction is supported for applications running in TUI mode, to scroll screen array rows
when no interactive instruction is executing. In a GUI application, use a TABLE container with a DISPLAY
ARRAY instruction.

Prompt for values (PROMPT)
The PROMPT instruction provides unique field input in an automatic popup window.

• Understanding the PROMPT instruction on page 1043

User interface | 1043

• Syntax of PROMPT instruction on page 1043
• Using simple prompt inputs on page 1044

• PROMPT programming steps on page 1044
• PROMPT instruction configuration on page 1045
• Default actions in PROMPT on page 1045
• Interaction blocks on page 1046

• Examples on page 1047

• Example 1: Simple PROMPT statements on page 1047
• Example 2: Simple PROMPT with Interrupt Checking on page 1047
• Example 3: PROMPT with ATTRIBUTES and ON ACTION handlers on page 1047

Understanding the PROMPT instruction

Use the PROMPT instruction to query for a single value from the user.

PROMPT requires the text of the question to be displayed to the user and the variable that receives the
value entered by the user. The variable can be of any simple data type except TEXT and BYTE.

The runtime system displays the question in the prompt area, waits for the user to enter a value, reads
whatever value was entered until the user validates (for example with the Enter key), and stores this value
in a response variable. The prompt dialog remains visible until the user enters a response.

The prompt finishes after ON IDLE, ON ACTION, or ON KEY block execution (to ensure backwards
compatibility).

Prompt display in TUI mode

In TUI mode, the PROMPT question and input field is displayed in the prompt line of the current window,
which is defined by the OPTIONS PROMPT LINE instruction or with the ATTRIBUTES clause of OPEN
WINDOW. If the prompt line is not as wide as the prompt string, runtime error -1146 occurs.

Prompt display in GUI mode

In GUI mode, the PROMPT instruction opens a modal window with an OK and a Cancel button, and waits
for input from the user.

Figure 72: PROMPT window

Syntax of PROMPT instruction
The PROMPT statement assigns a user-supplied value to a variable.

Syntax

PROMPT question
 [ATTRIBUTES (display-attribute [,...])]
 FOR [CHAR[ACTER]] variable
 [HELP number]
 [ATTRIBUTES (control-attribute [,...])]

User interface | 1044

[dialog-control-block
 [...]
 END PROMPT]

where dialog-control-block is one of:

{ ON IDLE seconds
| ON TIMER seconds
| ON ACTION action-name
| ON KEY (key-name [,...])
}
 statement
 [...]

where display-attribute is:

{ BLACK | BLUE | CYAN | GREEN
| MAGENTA | RED | WHITE | YELLOW
| BOLD | DIM | INVISIBLE | NORMAL
| REVERSE | BLINK | UNDERLINE
}

where control-attribute is:

{ ACCEPT [= boolean]
| CANCEL [= boolean]
| CENTURY = "century-spec"
| FORMAT = "format-spec"
| PICTURE = "picture-spec"
| SHIFT = { "up" | "down" }
| HELP = help-number
| COUNT = row-count
| UNBUFFERED [= boolean]
| WITHOUT DEFAULTS [= boolean]
}

1. question is a string expression displayed as a message for the input of the value.
2. variable is the name of the variable that receives the data typed by the user.
3. The FOR CHAR clause exits the prompt statement when the first character has been typed.
4. number is the help message number to be displayed when the user presses the help key.
5. key-name is an hot-key identifier (such as F11 or Control-z).
6. action-name identifies an action that can be executed by the user.
7. seconds is an integer literal or variable that defines a number of seconds.
8. statement is an instruction that is executed when the user presses the key defined by key-name.
9. century-spec is a string specifying the century input rule, like the CENTURY attribute.
10.format-spec is a string defining the display format for the prompt field, like the FORMAT attribute.
11.picture-spec is a string defining the input format for the prompt field, like the PICTURE attribute.

Using simple prompt inputs
To use simple prompt inputs, you must understand how they work and how to structure the code.
PROMPT programming steps

To use the PROMPT statement, you must:

1. Declare a program variable with the DEFINE statement.

2. Set the INT_FLAG variable to FALSE.

3. Define the PROMPT statement, with dialog control blocks to control the instruction. Use the FOR CHAR
clause if a single character is to be entered.

User interface | 1045

4. After executing the PROMPT, check the INT_FLAG variable to determine whether the input was
validated or canceled by the user.

PROMPT instruction configuration

HELP option

The HELP clause specifies the number of a help message to display if the user invokes the help while
executing the instruction. The predefined help action is automatically created by the runtime system. You
can bind action views to the help action.

The HELP clause overrides the HELP attribute.

ACCEPT option

The ACCEPT attribute can be set to FALSE to avoid the automatic creation of the accept default action.

CANCEL option
The CANCEL attribute can be set to FALSE to avoid the automatic creation of the cancel default action. This
is useful for example when you only need a validation action (accept), or when you want to write a specific
cancellation procedure, by using EXIT INPUT.

If the CANCEL=FALSE option is set, no close action will be created, and you must write an ON ACTION
close control block to create an explicit action.

Default actions in PROMPT

When a PROMPT instruction executes, the runtime system creates a set of default actions.

According the invoked default action, field validation occurs and different PROMPT control blocks are
executed.

This table lists the default actions created for this dialog:

Table 268: Default actions created for the PROMPT dialog

Default action Description

accept
Validates the PROMPT dialog (validates field criteria)

Creation can be avoided with the ACCEPT attribute.

cancel

Cancels the PROMPT dialog (no validation, int_flag
is set)

Creation can be avoided with the CANCEL attribute.

close

By default, cancels the PROMPT dialog (no
validation, int_flag is set)

Default action view is hidden. See Implementing the
close action on page 1337.

help
Shows the help topic defined by the HELP clause.

Only created when a HELP clause is defined.

User interface | 1046

Interaction blocks
ON ACTION block

You can use ON ACTION blocks to execute a sequence of instructions when the user raises a specific
action. This is the preferred solution compared to ON KEY blocks, because ON ACTION blocks use
abstract names to control user interaction.

Important: The PROMPT instruction is automatically finished after ON IDLE, ON ACTION, ON KEY
block execution.

ON IDLE block

The ON IDLE seconds clause defines a set of instructions that must be executed after a given period
of user inactivity. This interaction block can be used, for example, to quit the dialog after the user has not
interacted with the program for a specified period of time.

The parameter of ON IDLE must be an integer literal or variable. If it the value is zero, the dialog timeout is
disabled.

It is not recommended to use the ON IDLE trigger with a short timeout period such as 1 or 2 seconds; The
purpose of this trigger is to give the control back to the program after a relatively long period of inactivity
(10, 30 or 60 seconds). This is typically the case when the end user leaves the workstation, or got a phone
call. The program can then execute some code before the user gets the control back.

ON IDLE 30
 IF ask_question(
 "Do you want to reload information the database?") THEN
 -- Fetch data back from the db server
 END IF

Important: The timeout value is taken into account when the dialog initializes its internal data
structures. If you use a program variable instead of an integer constant, any change of the variable
will have no effect if the variable is changed after the dialog has initialized. If you what to change
the value of the timeout variable, it must be done before the dialog block.

ON KEY block

An ON KEY (key-name) block defines an action with a hidden action view (no default button is visible),
that executes a sequence of instructions when the user presses the specified key.

The ON KEY block is supported for backward compatibility with TUI mode applications.

An ON KEY block can specify up to four different keys. Each key creates a specific action objects that will
be identified by the key name in lowercase. For example, ON KEY(F5,F6) creates two actions with the
names f5 and f6. Each action object will get an ACCELERATORNAME assigned with the corresponding
accelerator name. The specified keys must be one of the virtual keys.

In GUI mode, action defaults are applied for ON KEY actions by using the name of the action (the key
name). You can define secondary accelerator keys, as well as default decoration attributes like button text
and image, by using the key name as action identifier. The action name is always in lowercase letters.

Check carefully the ON KEY CONTROL-? statements because they may result in having duplicate
accelerators for multiple actions due to the accelerators defined by action defaults. Additionally, ON KEY
statements used with ESC, TAB, UP, DOWN, LEFT, RIGHT, HELP, NEXT, PREVIOUS, INSERT, CONTROL-
M, CONTROL-X, CONTROL-V, CONTROL-C and CONTROL-A should be avoided for use in GUI programs,
because it's very likely to clash with default accelerators defined in the factory action defaults file provided
by default.

By default, ON KEY actions are not decorated with a default button in the action frame (the default action
view). You can show the default button by configuring a text attribute with the action defaults.

ON KEY (CONTROL-Z)
 CALL open_zoom()

User interface | 1047

ON TIMER block

The ON TIMER seconds clause defines a set of instructions that must be executed at regular intervals.
This interaction block can be used, for example, to check if a message has arrived in a queue, and needs
to be processed.

The parameter of ON TIMER must be an integer literal or variable. If the value is zero, the dialog timeout is
disabled.

It is not recommended to use the ON TIMER trigger with a short timeout period, such as 1 or 2 seconds.
The purpose of this trigger is to give the control back to the program after a reasonable period of time, such
as 10, 20 or 60 seconds.

ON TIMER 30
 CALL check_for_messages()

Important: The timer value is taken into account when the dialog initializes its internal data
structures. If you use a program variable instead of an integer constant, a change of the variable
has no effect if the change takes place after the dialog has initialized. If you what to change the
value of the timeout variable, it must be done before the dialog block.

Examples
Example 1: Simple PROMPT statements

MAIN
 DEFINE birth DATE
 DEFINE chkey CHAR(1)
 PROMPT "Please enter your birthday: " FOR birth
 DISPLAY "Your birthday is: " || birth
 PROMPT "Now press a key... " FOR CHAR chkey
 DISPLAY "You pressed: " || chkey
END MAIN

Example 2: Simple PROMPT with Interrupt Checking

MAIN
 DEFINE birth DATE
 LET INT_FLAG = FALSE
 PROMPT "Please enter your birthday: " FOR birth
 IF INT_FLAG THEN
 DISPLAY "Interrupt received."
 ELSE
 DISPLAY "Your birthday is: " || birth
 END IF
END MAIN

Example 3: PROMPT with ATTRIBUTES and ON ACTION handlers

MAIN
 DEFINE birth DATE
 LET birth = TODAY
 PROMPT "Please enter your birthday: " FOR birth
 ATTRIBUTES(WITHOUT DEFAULTS)
 ON ACTION action1
 DISPLAY "Action 1"
 END PROMPT
 DISPLAY "Your birthday is " || birth
END MAIN

User interface | 1048

Ring menus (MENU)
The MENU instruction implements a list of options the end user can choose from.

• Understanding ring menus on page 1048
• Syntax of the MENU instruction on page 1048
• MENU programming steps on page 1050
• Using ring menus on page 1050

• Rendering modes of a menu on page 1050
• Binding action views to menu options on page 1053
• MENU instruction configuration on page 1053
• Default actions in MENU on page 1054
• MENU control blocks on page 1054

• BEFORE MENU block on page 1054
• MENU interaction blocks on page 1054

• COMMAND [KEY()] "option" block on page 1054
• COMMAND KEY() block on page 1055
• ON ACTION block on page 1056
• ON IDLE block on page 1046

• MENU control instructions on page 1057

• SHOW/HIDE OPTION instruction on page 1057
• EXIT MENU instruction on page 1058
• CONTINUE MENU instruction on page 1058

• Examples on page 1059

Understanding ring menus

A ring menu defines a list of options that can trigger actions to execute associated program code. Ring
menus are implemented with the MENU interactive instruction. A MENU block lists the possible actions that
can be triggered in a given place in the program, with the associated program code to be executed.

MENU "Sample"
 COMMAND "Say hello"
 DISPLAY "Hello, world!"
 COMMAND "Exit"
 EXIT MENU
END MENU

A ring menu can only define a set of options for a given level of the program. You cannot define all menu
options of your program in a single MENU instruction; you must implement nested menus.

The MENU instruction is mainly designed for text mode applications, displaying ring menus at the top of
the screen. A typical TUI mode application starts with a global menu, defining general options to access
subroutines, which in turn implement specific menus with database record handling options such as
'Append', 'Delete', 'Modify', and 'Search'. Ring menus can also be used in a GUI application, however, as
this instruction does not handle form fields, other parts of the form are disabled during the menu dialog
execution. In GUI applications, ring menus are typically used to open a modal window with Yes / No /
Cancel options.

Syntax of the MENU instruction
The MENU instruction defines a set of options the end user can select to trigger actions in a program.

Syntax

MENU [title]

User interface | 1049

 [ATTRIBUTES (menu-attribute [,...])]
 [BEFORE MENU
 menu-statement
 [...]
]
 menu-option
 [...]
END MENU

where menu-option is one of:

{ COMMAND option-name
 [option-comment] [HELP help-number]
 menu-statement
 [...]
| COMMAND KEY (key-name) option-name
 [option-comment] [HELP help-number]
 menu-statement
 [...]
| COMMAND KEY (key-name)
 menu-statement
 [...]
| ON ACTION action-name
 [ATTRIBUTES (action-attributes-menu)]
 menu-statement
 [...]
| ON IDLE seconds
 menu-statement
 [...]
| ON TIMER seconds
 menu-statement
 [...]
}

where action-attributes-menu is:

{ TEXT = string
| COMMENT = string
| IMAGE = string
| ACCELERATOR = string
| DEFAULTVIEW = { YES | NO | AUTO }
| CONTEXTMENU = { YES | NO | AUTO }
| DISCLOSUREINDICATOR
 [,...] }

where menu-statement is:

{ statement
| CONTINUE MENU
| EXIT MENU
| NEXT OPTION option
| SHOW OPTION { ALL | option [,...] }
| HIDE OPTION { ALL | option [,...] }
}

where menu-attribute is:

{ STYLE = { "default" | "popup" | "dialog" }
| COMMENT = "string"
| IMAGE = "string"
}

User interface | 1050

1. title is a string expression defining the title of the menu.
2. menu-attribute is an attribute that defines the behavior and presentation of the menu.
3. key-name is an hot-key identifier (like F11 or Control-z).
4. option-name is a string expression defining the label of the menu option and identifying the action that

can be executed by the user.
5. option-comment is a string expression containing a description for the menu option, displayed when

option-name is the current.
6. help-number is an integer that allows you to associate a help message number with the menu option.
7. action-name identifies an action that can be executed by the user.
8. seconds is an integer literal or variable that defines a number of seconds.
9. action-name identifies an action that can be executed by the user.
10.action-attributes are dialog-specific action attributes.

MENU programming steps

The following steps describe how to implement a MENU statement:

1. Create a MENU block with a title and write the end of the menu block with the END MENU keywords.

2. According to the type of menu rendering you need, add an ATTRIBUTES clause with the required
STYLE attribute.

3. List all the options that you want to offer to the end user when the menu executes. Typical CRUD
programs will implement "Append", "Modify", "Delete" operations for a given database application entity
(customers, orders, items tables). Typical dialog box menus have "Yes" / "No" / "Cancel" options.

4. According to TUI or GUI mode, define action views (topmenu, toolbar or form buttons) for each menu
action, and use either COMMAND [KEY] or ON ACTION clauses to define the menu options.

5. When the menu is not a popup or dialog menu, do not forget to implement an option to leave the menu
with the EXIT MENU control instruction.

6. Implement the code to be executed in every option.

Using ring menus
To use ring menus, you must understand how they work and how to structure the code.
Rendering modes of a menu
When you add a style to a MENU's attributes list, you define the look-and-feel of that menu and how that
menu acts.

MENU rendering specification

The rendering mode of a MENU instruction can be controlled with the STYLE dialog attribute:

MENU "Test" ATTRIBUTES (STYLE = "mode")
 ...
END MENU

Note: MENU ... ATTRIBUTES(STYLE="mode") is not a presentation style defined in a 4st file:
It defines a display mode, a rendering hint for front-ends.

The decoration of the different rendering modes of a MENU depends from the front-end type and the
platform used. Consider testing the menu instruction with all front-ends that must be supported for end
users.

Default MENU rendering

By default, if no STYLE attribute is used in the MENU instruction, each menu option will be displayed as a
push button in a dedicated area of the current window, depending on the front end. This dedicated area is
called the action frame.

User interface | 1051

Note that when an explicit action view (for ex, a BUTTON in form layout) is associated with a menu option,
the default button will not appear in the action frame area.

The default rendering of a MENU, including the position of the action frame in the window, can be controlled
with window presentation style attributes.

MAIN
 MENU "File"
 COMMAND "New"
 DISPLAY "New"
 COMMAND "Open"
 DISPLAY "Open"
 COMMAND "Save"
 DISPLAY "Save"
 COMMAND "Import"
 DISPLAY "Import"
 COMMAND "Quit"
 EXIT MENU
 END MENU
END MAIN

Figure 73: Default rendering of MENU with the Genero Desktop Client

Modal dialog MENU rendering

Menus can be rendered in a modal dialog window by specifying the STYLE="dialog" attribute in the
MENU instruction.

MAIN
 MENU "Example of dialog menu"
 ATTRIBUTES (STYLE="dialog", COMMENT="Delete the file?")
 COMMAND "Yes"
 DISPLAY "Yes"
 COMMAND "No"
 DISPLAY "No"
 COMMAND "Cancel"
 DISPLAY "Cancel"
 END MENU
END MAIN

When the user clicks on an option, the MENU instruction automatically exits and the modal dialog window
closes. There is no need for an EXIT MENU command.

User interface | 1052

With STYLE="dialog", when the user clicks on an option, the MENU instruction automatically exits and
the popup menu closes. There is no need for an EXIT MENU command.

Figure 74: MENU displayed as a modal dialog with the Genero Desktop Client

Popup MENU rendering

Menus can also be displayed as popup choice lists, when the STYLE="popup" attribute is used in the
MENU instruction.

MAIN
 DEFINE r INTEGER
 MENU "test"
 COMMAND "popup"
 DISPLAY popup()
 COMMAND "quit"
 EXIT MENU
 END MENU
END MAIN

FUNCTION popup()
 DEFINE r INTEGER
 LET r = -1
 MENU "unused" ATTRIBUTES (STYLE="popup")
 COMMAND "Copy all"
 LET r = 1
 COMMAND "Copy current"
 LET r = 2
 COMMAND "Paste all"
 LET r = 3
 COMMAND "Paste current"
 LET r = 4
 END MENU
 RETURN r
END FUNCTION

With STYLE="popup", when the user clicks on an option, the MENU instruction automatically exits and the
popup menu closes. There is no need for an EXIT MENU command.

User interface | 1053

Figure 75: MENU displayed as popup list with the Genero Desktop Client

MENU rendering on mobile platforms

On mobile devices, the rendering of the MENU dialog depends on whether or not the current window has a
form.

If a MENU is active and the current Window has no form, then the MENU is shown as a list of actions.

If a MENU is active and has a FORM, then the menu actions are rendered like all other dialog actions.

Binding action views to menu options

A MENU statement is a controller for user actions, defining action handlers triggered by action views.
Actions views in the form file (i.e. toolbar buttons, topmenu items or push buttons) are bound to menu
options by name. For example, if a MENU instruction defines ON ACTION sendmail, a form BUTTON with
the name "sendmail" will be attached to that action handler.

When binding action views to menu option clauses, the action name is case sensitive. The compiler
converts COMMAND labels and ON ACTION identifiers to lowercase to create the action name. It is
recommended that you use all lowercase letters when defining the action name for action views and menu
options.

Menu options can also be defined with the COMMAND clause. Unlike ON ACTION, the COMMAND clause
takes a string literal as argument, that defines both the action name and the default text to be displayed in
the default action view. For example, COMMAND "Help" will define the action name help and the default
button text "Help". Action views must be bound with the action name in lower case (help).

When the menu is rendered as a popup of dialog box, no explicit action views need to be defined, default
action views will be created and will get the decoration specified in action defaults.

MENU instruction configuration

The rendering and behavior of a MENU instruction can be configured with the ATTRIBUTES clause:

MENU "Question"
 ATTRIBUTES (
 STYLE="dialog",
 COMMENT="Do you want to commit your changes?"
)

When the STYLE instruction attribute is set to 'default' or when you do not specify the menu type, the
runtime system generates a default decoration as a set of buttons in a specific area of the current window.

When the STYLE attribute is set to 'dialog', the menu options appear as buttons at the bottom in a
temporary modal window, in which you can define the message and the icon with the COMMENT and IMAGE
attributes.

When the STYLE is set to 'popup', the menu appears as a popup menu (contextual menu).

User interface | 1054

If the menu is a "dialog" or "popup", the dialog is automatically exited after any action clause such as ON
ACTION, COMMAND or ON IDLE.

Default actions in MENU

When an MENU instruction executes, the runtime system creates a set of default actions.

Table 269: Default actions created for the MENU instruction

Default action Control Block execution order

close Created to execute COMMAND KEY(INTERRUPT) if
used (can be overwritten with ON ACTION close)

Default action view is hidden. See Implementing the
close action on page 1337.

help Shows the help topic defined by the HELP clause.

Default action view is hidden.

Window close events can be trapped with COMMAND KEY(INTERRUPT) clause.

MENU control blocks
BEFORE MENU block

If the MENU block contains a BEFORE MENU clause, statements within this clause will be executed before
the menu dialog starts.

This block is typically used to hide or disable some menu options according to the current context of the
program. For example, when the current user is not allowed to create new records, the menu options can
be disabled as follows:

MENU "Orders"
 BEFORE MENU
 CALL DIALOG.setActionActive("append", can_user_append())
 ...
 COMMAND "Append" -- creates "append" action (lowercase)
 ...
 ...
END MENU

In TUI mode, the menu options can also be disabled, but they will still be displayed on the screen. The end
user will see the option, but cannot select it. In this case it's more convenient to hide the option to the end
user with the DIALOG.setActionHidden() method, instead of disabling the action.

MENU interaction blocks
COMMAND [KEY()] "option" block

The COMMAND [KEY(key-name)] "option-name" clause defines a menu action handler with a set
of instructions to be executed when an action is invoked. The option text (option-name), converted to
lowercase letters, defines the name of the action.

For example, when defining:

COMMAND "Hello"

The name of the action will be "hello" (not "Hello" with a capital H).

When used with the KEY() clause, the command specifies both accelerator keys and an option text. For
backward compatibility, a coma-separated key list is supported in the KEY() specification. Consider using
a single key for new developments, or prefer accelerator definition with action defaults.

User interface | 1055

Action defaults will be applied by using the action name defined by the option text (converted to lower
case).

Explicit action views defined in the form (BUTTON in layout, TOPMENU or TOOLBAR items) will get all action
defaults associated to the menu command, while default action views (i.e. buttons in the action frame) will
be decorated with the menu option text and comment specified in the program (i.e. the TEXT and COMMENT
attributes of the corresponding action defaults entry are not used for the default action views), however,
other attributes such as the IMAGE will also be applied to default action views.

For example, when defining:

COMMAND "Hello" "This is the Hello option"

The name of the action will become "hello", the default action view button text will be "Hello", and the
button hint will be "This is the Hello option", even if an action default defines a different text or
comment for the "hello" action. If the corresponding action default defines a IMAGE icon, it will display in
the default action view button.

The KEY() clause can specify up to four accelerator attributes for the action. The keys defined in the
program will take precedence over accelerators defined with action defaults.

The first letter of the display text of a COMMAND menu clause can be used as default accelerator. When this
first letter is not used by other menu option labels, pressing the key corresponding to that letter will execute
that action. When the first letter is also used in other menu options, pressing the key will toggle the focus
between all default action views that share the same letter. For example:

MENU
 COMMAND "Start"
 DISPLAY "Start"
 COMMAND "Stop"
 DISPLAY "Stop"
 COMMAND "Quit"
 EXIT MENU
END MENU

In this example, when pressing S on the keyboard, the focus will toggle between "Start" and "Stop"buttons,
and the current option can be selected with the Return or Space key. When pressing Q, the "Quit" action
will be fired.

To write abstract code without decoration in your programs, use the ON ACTION clause instead of
COMMAND [KEY], except if the action view must get the focus.

Note that if you use an ampersand (&) in the command name, some front-ends consider the letter following
& as an Alt-key accelerator, and the letter will be underscored. However the ampersand forms part of the
action name. For example, COMMAND "&Save" will create an action with the name "&save".

In TUI mode, actions created with COMMAND [KEY] do not get accelerators from action defaults; Only
actions defined with ON ACTION will get accelerators of action defaults.

COMMAND KEY() block

The COMMAND KEY(key-name) block (without an option text) defines a menu action handler with a
set of instructions to be executed when an action is invoked. The KEY() clause defines one or several
accelerator keys separated by a comma. The specified key name must be one of the virtual keys.

For backward compatibility, a coma-separated key list is supported in the KEY() specification. Consider
using a single key for new developments, or prefer accelerator definition with action defaults.

While a COMMAND KEY(key-name) "option-name" (with option text) defines the name of the action
with the option text (converted to lowercase), a COMMAND KEY(key-name) (without option text), defines
the action name from the last key in the KEY() list, converted to lowercase letters. For example, with
COMMAND KEY(F10,F12,Control-Z), the name of the action will be "control-z".

User interface | 1056

Action defaults will be applied by using the key name of the KEY() clause. With a list of keys, the last key
name will be used to apply action defaults, because it defines the action name.

The KEY() clause can specify up to four accelerator attributes for the action. The keys defined in the
program will take precedence over accelerators defined with action defaults.

By default, COMMAND KEY(key-name) actions are not decorated with a default action (i.e. a button in
the action frame will not appear for these actions). However, by defining the text attribute within action
defaults, the default action view button will be visible. This allows you to decorate existing COMMAND
KEY(key-name) clauses with graphical buttons without changing the program code.

To write abstract code without decoration in your programs, use the ON ACTION clause instead of
COMMAND [KEY], except if the action view must get the focus.

In TUI mode, actions created with COMMAND [KEY] do not get accelerators from action defaults; Only
actions defined with ON ACTION will get accelerators of action defaults.

ON ACTION block

The ON ACTION action-name blocks execute a sequence of instructions when the user triggers a
specific action.

A typical action handler block looks like this:

 ON ACTION action-name
 instruction
 ...

Action blocks will be bound by name to action views (like buttons) in the current form. Action views can
be buttons in forms, toolbar buttons, topmenu options, and if no explicit action view is defined, actions are
rendered with a default action view, depending on the type of front-end.

The next example defines an action block to open a typical zoom window and let the user select a
customer record:

 ON ACTION zoom
 CALL zoom_customers() RETURNING st, rec.cust_id, rec.cust_name

In a dialog handling user input such as INPUT, INPUT ARRAY and CONSTRUCT, if an action is specific to a
field, add the INFIELD clause to have the action automatically enabled when the corresponding field gets
the focus:

 ON ACTION zoom INFIELD cust_city
 CALL zoom_cities() RETURN st, rec.cust_city

In most cases actions are decoration with action defaults in form files, but there can be cases where the ON
ACTION handler needs to define its own attributes at the program level. This can be done by adding the
ATTRIBUTES() clause of ON ACTION:

 ON ACTION custinfo ATTRIBUTES(DISCLOSUREINDICATOR, IMAGE="info")
 CALL show_customer_info()

For more details about action handlers, and action configuration, see Dialog actions on page 1276.

ON IDLE block

The ON IDLE seconds clause defines a set of instructions that must be executed after a given period
of user inactivity. This interaction block can be used, for example, to quit the dialog after the user has not
interacted with the program for a specified period of time.

The parameter of ON IDLE must be an integer literal or variable. If it the value is zero, the dialog timeout is
disabled.

User interface | 1057

It is not recommended to use the ON IDLE trigger with a short timeout period such as 1 or 2 seconds; The
purpose of this trigger is to give the control back to the program after a relatively long period of inactivity
(10, 30 or 60 seconds). This is typically the case when the end user leaves the workstation, or got a phone
call. The program can then execute some code before the user gets the control back.

ON IDLE 30
 IF ask_question(
 "Do you want to reload information the database?") THEN
 -- Fetch data back from the db server
 END IF

Important: The timeout value is taken into account when the dialog initializes its internal data
structures. If you use a program variable instead of an integer constant, any change of the variable
will have no effect if the variable is changed after the dialog has initialized. If you what to change
the value of the timeout variable, it must be done before the dialog block.

ON TIMER block

The ON TIMER seconds clause defines a set of instructions that must be executed at regular intervals.
This interaction block can be used, for example, to check if a message has arrived in a queue, and needs
to be processed.

The parameter of ON TIMER must be an integer literal or variable. If the value is zero, the dialog timeout is
disabled.

It is not recommended to use the ON TIMER trigger with a short timeout period, such as 1 or 2 seconds.
The purpose of this trigger is to give the control back to the program after a reasonable period of time, such
as 10, 20 or 60 seconds.

ON TIMER 30
 CALL check_for_messages()

Important: The timer value is taken into account when the dialog initializes its internal data
structures. If you use a program variable instead of an integer constant, a change of the variable
has no effect if the change takes place after the dialog has initialized. If you what to change the
value of the timeout variable, it must be done before the dialog block.

MENU control instructions
SHOW/HIDE OPTION instruction
The HIDE OPTION and SHOW OPTION to hide or show MENU options.

Syntax:

{ HIDE | SHOW } OPTION
 { ALL
 | option-name [,...]
 }

Usage

The SHOW OPTION instruction will show/enable action views corresponding the listed menu options. The
default action views (buttons in action frame) are made visible and the explicit action views (buttons in
form) are enabled. The HIDE OPTION instruction will hide default action views and disable explicit action
views.

Use the ALL keyword reference all menu options. In a menu that contains many options, you typically do a
HIDE OPTIONS ALL followed by HIDE OPTION to show a subset of the menu options.

User interface | 1058

The SHOW OPTION and HIDE OPTION instructions are provided for backward compatibility. To hide and
show default action views, use the DIALOG.setActionHidden() method instead. In GUI applications,
you should rather disable actions, instead of hiding them to the end user.

Example

MENU "Customers"
 BEFORE MENU
 HIDE OPTION ALL
 SHOW OPTION "Add", "Exit"
 ...

EXIT MENU instruction
EXIT MENU terminates the execution of a MENU block.

Syntax

EXIT MENU

Usage

EXIT MENU statement terminates the MENU block an continues the program flow with the statement after
the menu block.

Example

MENU "Stock"
 ...
 COMMAND "Exit"
 EXIT MENU
END MENU

CONTINUE MENU instruction
CONTINUE MENU resumes the execution of a MENU block.

Syntax

CONTINUE MENU

Usage

The CONTINUE MENU ignores the remaining instructions in the current program section of a MENU block,
re-displays the menu options and gives the control back to the user to select a new menu option.

The statements following the CONTINUE MENU instruction are skipped.

Example

MENU "Stock"
 ...
 COMMAND "Exit"
 IF question("Exit the program?")==FALSE THEN
 CONTINUE MENU
 END IF
 CALL commit_changes()
 EXIT MENU

User interface | 1059

END MENU

Examples
Example 1: MENU with abstract action options

MENU
 ON ACTION new
 CALL newFile()
 ON ACTION open
 CALL openFile()
 ON ACTION save
 CALL saveFile()
 ON ACTION import
 LOAD FROM "infile.dat" INSERT INTO table
 ON ACTION quit
 EXIT PROGRAM
END MENU

Example 2: MENU with text-mode options

MENU "File"
 COMMAND KEY (CONTROL-N) "New" "Creates New File" HELP 101
 CALL newFile()
 COMMAND KEY (CONTROL-O) "Open" "Open existing File" HELP 102
 CALL openFile()
 COMMAND KEY (CONTROL-S) "Save" "Save Current File" HELP 103
 CALL saveFile()
 COMMAND "Import"
 LOAD FROM "infile.dat" INSERT INTO table
 COMMAND KEY (CONTROL-Q) "Quit" "Quit Program" HELP 201
 EXIT PROGRAM
END MENU

Example 3: MENU with STYLE="dialog"

The next code example implements typical message box utility functions implemented with MENU dialogs:

FUNCTION mbox_ync(title,msg)
 DEFINE title, msg STRING
 DEFINE res SMALLINT
 MENU title ATTRIBUTES(STYLE="dialog",COMMENT=msg)
 ON ACTION yes LET res = 1
 ON ACTION no LET res = 0
 ON ACTION cancel LET res = -1
 END MENU
 RETURN res
END FUNCTION

FUNCTION mbox_yn(title,msg)
 DEFINE title, msg STRING
 DEFINE res BOOLEAN
 MENU title ATTRIBUTES(STYLE="dialog",COMMENT=msg)
 ON ACTION yes LET res = TRUE
 ON ACTION no LET res = FALSE
 END MENU
 RETURN res
END FUNCTION

FUNCTION mbox_ok(title,msg)
 DEFINE title, msg STRING
 MENU title ATTRIBUTES(STYLE="dialog",COMMENT=msg)

User interface | 1060

 ON ACTION accept
 END MENU
END FUNCTION

Record input (INPUT)
The INPUT instruction provides single record input control in an application form.

• Understanding the INPUT instruction on page 1060
• Syntax of the INPUT instruction on page 1061
• INPUT programming steps on page 1062
• Using simple record inputs on page 1063

• Variable binding in INPUT on page 1063
• INPUT instruction configuration on page 1065
• Default actions in INPUT on page 1066
• INPUT control blocks on page 1066

• INPUT control blocks execution order on page 1066
• BEFORE INPUT block on page 1067
• AFTER INPUT block on page 1068
• BEFORE FIELD block on page 1069
• ON CHANGE block on page 1069
• AFTER FIELD block on page 1070

• INPUT interaction blocks on page 1070

• ON ACTION block on page 1056
• ON IDLE block on page 1046
• ON KEY block on page 1046

• INPUT control instructions on page 1072

• NEXT FIELD instruction on page 1121
• ACCEPT INPUT instruction on page 1072
• CONTINUE INPUT instruction on page 1073
• EXIT INPUT instruction on page 1073

• Examples on page 1073

• Example 1: INPUT with binding by field position on page 1073
• Example 2: INPUT with binding by field name on page 1074

Understanding the INPUT instruction

The INPUT statement binds program variables to screen-records in forms for data entry in form fields. The
INPUT statement uses the current form in the current window. Before executing the INPUT statement,
record data must be fetched from the database table into the program variables using by the input
statement.

During the INPUT statement execution, the user can edit the record fields, while the program controls the
behavior of the instruction with control blocks.

To terminate the INPUT execution, the user can validate (or cancel) the dialog to commit (or invalidate) the
modifications made in the record.

When the statement completes execution, the form is deactivated. After the user terminates the input
(for example, with the "accept" key), the program must test the INT_FLAG variable to check if the dialog
was validated (or canceled), and then can use the INSERT or UPDATE SQL statements to modify the
appropriate database tables.

User interface | 1061

Syntax of the INPUT instruction
The INPUT statement supports data entry into the fields of the current form.

Syntax

INPUT { BY NAME { variable | record.* } [,...]
 [WITHOUT DEFAULTS]
 | variable | record.* } [,...]
 [WITHOUT DEFAULTS]
 FROM field-list
 }
 [ATTRIBUTES (
 { display-attribute
 | control-attribute
 } [,...])]
 [HELP help-number]
 [dialog-control-block
 [...]
END INPUT]

where dialog-control-block is one of:

{ BEFORE INPUT
| AFTER INPUT
| BEFORE FIELD field-spec [,...]
| AFTER FIELD field-spec [,...]
| ON CHANGE field-spec [,...]
| ON IDLE seconds
| ON TIMER seconds
| ON ACTION action-name
 [INFIELD field-spec]
 [ATTRIBUTES (action-attributes-input)]
| ON KEY (key-name [,...])
}
 dialog-statement
 [...]

where action-attributes-input is:

{ TEXT = string
| COMMENT = string
| IMAGE = string
| ACCELERATOR = string
| DEFAULTVIEW = { YES | NO | AUTO }
| VALIDATE = NO
| CONTEXTMENU = { YES | NO | AUTO }
 [,...] }

where dialog-statement is one of:

{ statement
| ACCEPT INPUT
| CONTINUE INPUT
| EXIT INPUT
| NEXT FIELD
 { CURRENT
 | NEXT
 | PREVIOUS
 | field-spec
 }
}

User interface | 1062

where field-list defines a list of fields with one or more of:

{ field-name
| table-name.*
| table-name.field-name
| screen-array[line].*
| screen-array[line].field-name
| screen-record.*
| screen-record.field-name
} [,...]

where field-spec identifies a unique field with one of:

{ field-name
| table-name.field-name
| screen-array.field-name
| screen-record.field-name
}

where display-attribute is:

{ BLACK | BLUE | CYAN | GREEN
| MAGENTA | RED | WHITE | YELLOW
| BOLD | DIM | INVISIBLE | NORMAL
| REVERSE | BLINK | UNDERLINE
}

where control-attribute is:

{ ACCEPT [= boolean]
| CANCEL [= boolean]
| FIELD ORDER FORM
| HELP = help-number
| NAME = "dialog-name"
| UNBUFFERED [= boolean]
| WITHOUT DEFAULTS [= boolean]
}

1. variable is a program variable that will be filled by the INPUT statement.
2. record.* is a record variable that will be filled by the INPUT statement.
3. help-number is an integer that allows you to associate a help message number with the instruction.
4. field-name is the identifier of a field of the current form.
5. table-name is the identifier of a database table of the current form.
6. screen-record is the identifier of a screen record of the current form.
7. screen-array is the screen array that will be used in the form.
8. line is a screen array line in the form.
9. key-name is a hot-key identifier (like F11 or Control-z).
10.dialog-name is the identifier of the dialog.
11.seconds is an integer literal or variable that defines a number of seconds.
12.action-name identifies an action that can be executed by the user.
13.statement is any instruction supported by the language.
14.boolean is a boolean expression evaluated when the dialog starts.
15.action-attributes are dialog-specific action attributes.

INPUT programming steps

The following steps describe how to use the INPUT statement:

1. Create a form specification file, with an optional screen record.

User interface | 1063

The screen record identifies the presentation elements to be used by the runtime system to display the
records. if you omit the declaration of the screen record in the form file, the runtime system will use the
default screen records created by the form compiler for each table listed in the TABLES section and for
the FORMONLY pseudo-table.

2. Make sure that the program controls interruption handling with DEFER INTERRUPT, to manage the
validation/cancellation of the interactive dialog.

3. Define a program record with the DEFINE instruction.

The members of the program record must correspond to the elements of the screen record, by number
and data types.

4. Open and display the form, using an OPEN WINDOW with the WITH FORM clause or the OPEN FORM /
DISPLAY FORM instructions.

5. If needed, fill the program record with data, for example with a result set cursor.

6. Set the INT_FLAG variable to FALSE.

7. Write the INPUT statement to handle data input.

8. Inside the INPUT statement, control the behavior of the instruction with BEFORE INPUT, BEFORE
FIELD, AFTER FIELD, AFTER INPUT and ON ACTION blocks.

9. After the interaction statement block, test the INT_FLAG predefined variable to check if the dialog was
canceled (INT_FLAG=TRUE) or validated (INT_FLAG=FALSE).

If the INT_FLAG variable is TRUE, you should reset it to FALSE to not disturb code that relies on this
variable to detect interruption events from the GUI front-end or TUI console.

Using simple record inputs
To use simple record inputs, you must understand how they work and how to structure the code.
Variable binding in INPUT

The INPUT instruction binds program variables (typically, members of a RECORD) are bound to the fields
of a screen record of the current form, and synchronizes the data between field input buffers and program
variables.

Binding variables and fields by name

The INPUT BY NAME variable-list instruction implicitly binds the fields to the program variables
that have the same identifiers as the form field names. The program variables are typically defined within
a record declared with a LIKE table.* based a database schema, to get the same names as the form
fields defined with database column references. The runtime system ignores any record name prefix when
making the match, only record member names matter. The unqualified names of the variables and of the
fields must be unique and unambiguous within their respective domains. If they are not, the runtime system
generates an exception.

SCHEMA stock
DEFINE custrec RECORD LIKE customer.*
...
INPUT BY NAME custrec.*
 ...
END INPUT

Binding variables and fields by position

The INPUT variable-list FROM field-list clause explicitly binds the variables to form fields by
position. The form can include other fields that are not part of the specified variable list, but the number of
variables or record members must equal the number of form fields listed in the FROM clause. Each variable
must be of the same (or a compatible) data type as the corresponding form field. When the user enters

User interface | 1064

data, the runtime system checks the entered value against the data type of the variable, not the data type
of the form field.

SCHEMA stock
DEFINE custrec RECORD LIKE customer.*,
 comment VARCHAR(100)
...
INPUT custrec.*, comment FROM sr_cust.*, cmt
 ...
END INPUT

When using the FROM clause with a screen record followed by a .* (dot star), keep in mind that program
variables are bound to screen record fields by position, so you must make sure that the program variables
are defined (or listed) in the same order as the screen array fields.

Serial column support

The program variables can be of any data type: The runtime system will adapt input and display rules to
the variable type. If a variable is declared with the LIKE clause and uses a column defined as SERIAL /
SERIAL8 / BIGSERIAL, the runtime system will treat the field as if it was defined with the NOENTRY
attribute in the form file: Since values of serial columns are automatically generated by the database
server, no user input is required for such fields.

The UNBUFFERED mode

The variables act as data model to display data or to get user input through the INPUT instruction. Always
use the variables if you want to change some field values by program. When using the UNBUFFERED
attribute, the instruction is sensitive to program variable changes: If you need to display new data during
the INPUT execution, just assign the values to the program variables; the runtime system will automatically
display the values to the screen:

INPUT p_items.* FROM s_items.* ATTRIBUTES (UNBUFFERED)
 ON CHANGE code
 IF p_items.code = "A34" THEN
 LET p_items.desc = "Item A34"
 END IF
END INPUT

Handling default field values

When the INPUT instruction executes, any column default values are displayed in the screen fields, unless
you specify the WITHOUT DEFAULTS keywords. The column default values are specified in the form
specification file with the DEFAULT attribute, or in the database schema files.

If you specify the WITHOUT DEFAULTS option, however, the form fields display the current values of the
variables when the INPUT statement begins. This option is available with both the BY NAME and the FROM
binding clauses.

LET p_items.code = "A34"
INPUT p_items.* FROM s_items.* WITHOUT DEFAULTS
 BEFORE INPUT
 MESSAGE "You should see A34 in field 'code'..."
END INPUT

Using PHANTOM fields

If the program record has the same structure as a database table (this is the case when the record is
defined with a LIKE clause), you may not want to display/use some of the columns. You can achieve this

User interface | 1065

by used PHANTOM fields in the screen record definition. Phantom fields will only be used to bind program
variables, and will not be transmitted to the front-end for display.

INPUT instruction configuration

This section describes the options that can be specified in the ATTRIBUTES clause of the INPUT
instruction. The options of the ATTRIBUTES clause override all default attributes and temporarily override
any display attributes that the OPTIONS or the OPEN WINDOW statement specified for these fields. With the
INPUT statement, the INVISIBLE attribute is ignored.

NAME option

The NAME attribute can be used to name the INPUT dialog. This is especially used to identify actions of the
dialog.

HELP option

The HELP clause specifies the number of a help message to display if the user invokes the help while the
focus is in any field used by the instruction. The predefined 'help' action is automatically created by the
runtime system. You can bind action views to the 'help' action.

The HELP clause overrides the HELP attribute.

WITHOUT DEFAULTS option

Indicates if the fields controlled by INPUT must be filled (FALSE) or not (TRUE) with the column default
values defined in the form specification file or the database schema files. The runtime system assumes
that the field satisfies the REQUIRED attribute when WITHOUT DEFAULTS is used. If the WITHOUT
DEFAULT option is not used, all fields defined with the REQUIRED attribute must be visited and modified.
Fields not defined as NOT NULL can be left empty.

FIELD ORDER FORM option

By default, the tabbing order is defined by the variable binding list in the instruction description. You
can control the tabbing order by using the FIELD ORDER FORM attribute: When this attribute is used,
the tabbing order is defined by the TABINDEX attribute of the form fields. If this attribute is used, the
Dialog.fieldOrder FGLPROFILE entry is ignored.

The OPTIONS instruction can also change the behavior of the INPUT instruction, with the INPUT WRAP or
FIELD ORDER FORM options.

UNBUFFERED option

Indicates that the dialog must be sensitive to program variable changes. When using this option, you
bypass the traditional "buffered" mode.

When using the traditional "buffered" mode, program variable changes are not automatically displayed
to form fields; You need to execute a DISPLAY TO or DISPLAY BY NAME. Additionally, if an action is
triggered, the value of the current field is not validated and is not copied into the corresponding program
variable. The only way to get the text of the current field is to use GET_FLDBUF().

If the "unbuffered" mode is used, program variables and form fields are automatically synchronized. You
don't need to display explicitly values with a DISPLAY TO or DISPLAY BY NAME. When an action is
triggered, the value of the current field is validated and is copied into the corresponding program variable.

ACCEPT option

The ACCEPT attribute can be set to FALSE to avoid the automatic creation of the accept default action. This
option can be used for example when you want to write a specific validation procedure, by using ACCEPT
INPUT.

User interface | 1066

CANCEL option

The CANCEL attribute can be set to FALSE to avoid the automatic creation of the cancel default action. This
is useful for example when you only need a validation action (accept), or when you want to write a specific
cancellation procedure, by using EXIT INPUT.

If the CANCEL=FALSE option is set, no close action will be created, and you must write an ON ACTION
close control block to create an explicit action.

Default actions in INPUT

When an INPUT instruction executes, the runtime system creates a set of default actions.

According the invoked default action, field validation occurs and different INPUT control blocks are
executed.

This table lists the default actions created for this dialog:

Table 270: Default actions created for the INPUT dialog

Default action Description

accept Validates the INPUT dialog (validates fields and
leaves the dialog)

Creation can be avoided with ACCEPT attribute.

cancel Cancels the INPUT dialog (no validation,
INT_FLAG is set to TRUE)

Creation can be avoided with CANCEL attribute.

close By default, cancels the INPUT dialog (no validation,
INT_FLAG is set to TRUE)

Default action view is hidden. See Implementing the
close action on page 1337.

help Shows the help topic defined by the HELP clause.

Only created when a HELP clause is defined.

The accept and cancel default actions can be avoided with the ACCEPT and CANCEL dialog control
attributes:

INPUT BY NAME field1 ATTRIBUTES (CANCEL=FALSE)
 ...

INPUT control blocks
INPUT control blocks execution order

This table shows the order in which the runtime system executes the control blocks in the INPUT
instruction, according to the user action:

Table 271: Control Block Execution Order for INPUT

Context / User action Control Block execution order

Entering the dialog 1. BEFORE INPUT

2. BEFORE FIELD (first field)

User interface | 1067

Context / User action Control Block execution order

Moving from field A to field B 1. ON CHANGE (if value has changed for field A)
2. AFTER FIELD (for field A)
3. BEFORE FIELD (for field B)

Changing the value of a field with a specific field
like checkbox

1. ON CHANGE

Validating the dialog 1. ON CHANGE (if value has changed in current
field)

2. AFTER FIELD

3. AFTER INPUT

Canceling the dialog 1. AFTER INPUT

BEFORE INPUT block

BEFORE INPUT block in singular and parallel INPUT, INPUT ARRAY dialogs

In a singular INPUT, INPUT ARRAY instruction, or when used as parallel dialog, the BEFORE INPUT is
only executed once when the dialog is started.

The BEFORE INPUT block is executed once at dialog startup, before the runtime system gives control to
the user. This block can be used to display messages to the user, initialize program variables and setup
the dialog instance by deactivating unused fields or actions the user is not allowed to execute.

INPUT BY NAME cust_rec.* ...
 BEFORE INPUT
 MESSAGE "Input customer information"
 CALL DIALOG.setActionActive("check_info", is_super_user())
 CALL DIALOG.setFieldActive("cust_comment", is_super_user())
 ...

The fields are initialized with the defaults values before the BEFORE INPUT block is executed. When the
INPUT instruction uses the WITHOUT DEFAULTS option, the default values are taken from the program
variables bound to the fields, otherwise (with defaults), the DEFAULT attributes of the form fields are used.

Use the NEXT FIELD control instruction in the BEFORE INPUT block, to jump to a specific field when the
dialog starts.

BEFORE INPUT block in INPUT and INPUT ARRAY of procedural DIALOG

In an INPUT or INPUT ARRAY sub-dialog of a procedural DIALOG instruction, the BEFORE INPUT block is
executed when the focus goes to a group of fields driven by the sub-dialog. This trigger is only invoked if a
field of the sub-dialog gets the focus, and none of the other fields had the focus.

When the focus is in a list driven by an INPUT ARRAY sub-dialog, moving to a different row will not invoke
the BEFORE INPUT block.

BEFORE INPUT is executed after the BEFORE DIALOG block andbefore the BEFORE ROW, BEFORE
FIELD blocks.

In this example, the BEFORE INPUT block is used to set up a specific action and display a message:

INPUT BY NAME p_order.*
 BEFORE INPUT
 CALL DIALOG.setActionActive("validate_order", TRUE)

User interface | 1068

AFTER INPUT block

AFTER INPUT block in singular and parallel INPUT, INPUT ARRAY dialogs
In a singular INPUT, INPUT ARRAY instruction, or when used as parallel dialog, the AFTER INPUT is only
executed once when dialog ends.

The AFTER INPUT block is executed after the user has validated or canceled the INPUT or INPUT ARRAY
dialog with the accept or cancel default actions, or when the ACCEPT INPUT instruction is executed.

The AFTER INPUT block is not executed when the EXIT INPUT instruction is performed.

In singular and parallel dialogs, this block is typically used to implement global dialog validation rules
depending from several fields. If the values entered by the user do not satisfy the constraints, use the
NEXT FIELD instruction to force the dialog to continue. The CONTINUE INPUT instruction can be used
instead of NEXT FIELD, when no particular field has to be select.

Before checking the validation rules, make sure that the INT_FLAG variable is FALSE: in case if the user
cancels the dialog, the validation rules must be skipped.

INPUT BY NAME cust_rec.*
 WITHOUT DEFAULTS ATTRIBUTES (UNBUFFERED)
 ...

 AFTER INPUT
 IF NOT INT_FLAG THEN
 IF cust_rec.cust_address IS NOT NULL
 AND cust_rec.cust_zipcode IS NULL THEN
 ERROR "Address is incomplete, enter a zipcode."
 NEXT FIELD zipcode
 END IF
 END IF
END INPUT

To limit the validation to fields that have been modified by the end user, you can call the
FIELD_TOUCHED() function or the DIALOG.getFieldTouched() method to check if a field has
changed during the dialog execution. This will make your validation code faster if the user has only
modified a couple of fields in a large form.

AFTER INPUT block in INPUT and INPUT ARRAY of procedural DIALOG

In an INPUT or INPUT ARRAY sub-dialog of a procedural DIALOG instruction, the AFTER INPUT block is
executed when the focus is lost by a group of fields driven by an INPUT or INPUT ARRAY sub-dialog. This
trigger is invoked if a field of the sub-dialog loses the focus, and a field of a different sub-dialog gets the
focus. When the focus is in a list driven by an INPUT ARRAY sub-dialog, moving to a different row will not
invoke the AFTER INPUT block.

If the focus leaves the current group and goes to an action view, this trigger is not executed, because the
focus did not go to another sub-dialog yet.

AFTER INPUT is executed after the AFTER FIELD, AFTER ROW blocks and before the AFTER DIALOG
block.

Executing a NEXT FIELD in the AFTER INPUT control block will keep the focus in the group of fields.
Within an INPUT ARRAY sub-dialog, NEXT FIELD will keep the focus in the list and stay in the current
row. You typically use this behavior to control user input.

In this example, the AFTER INPUT block is used to validate data and disable an action that can only be
used in the current group:

INPUT BY NAME p_order.*
 AFTER INPUT
 IF NOT check_order_data(DIALOG) THEN

User interface | 1069

 NEXT FIELD CURRENT
 END IF
 CALL DIALOG.setFieldActive("validate_order", FALSE)

BEFORE FIELD block

For fields controlled by an INPUT, INPUT ARRAY or by a CONSTRUCT instructions, the BEFORE FIELD
block is executed every time the cursor enters into the specified field.

For editable lists driven by INPUT ARRAY, this block is executed when moving the focus from field to field
in the same row, or when moving to another row in the same column.

The BEFORE FIELD block is also executed when performing a NEXT FIELD instruction.

The BEFORE FIELD keywords must be followed by a list of form field specification. The screen-record
name can be omitted.

BEFORE FIELD is executed after BEFORE INPUT, BEFORE CONSTRUCT, BEFORE ROW and BEFORE
INSERT.

Use this block to do some field value initialization, or to display a message to the user:

INPUT BY NAME p_cust.* ...
 BEFORE FIELD cust_status
 LET p_cust.cust_comment = NULL
 MESSAGE "Enter customer status"

When using the default FIELD ORDER CONSTRAINT mode, the dialog executes the BEFORE FIELD
block of the field corresponding to the first variable of an INPUT or INPUT ARRAY, even if that field is not
editable (NOENTRY, hidden or disabled). The block is executed when you enter the dialog and every time
you create a new row in the case of INPUT ARRAY. This behavior is supported for backward compatibility.
The block is not executed when using the FIELD ORDER FORM, the mode recommended for DIALOG
instructions.

With the FIELD ORDER FORM mode, for each dialog executing the first time with a specific form, the
BEFORE FIELD block might be invoked for the first field of the initial tabbing list defined by the form, even
if that field was hidden or moved around in a table. The dialog then behaves as if a NEXT FIELD first-
visible-column would have been done in the BEFORE FIELD of that field.

When form-level validation occurs and a field contains an invalid value, the dialog gives the focus to the
field, but no BEFORE FIELD trigger will be executed.

ON CHANGE block

The ON CHANGE block can be used to detect that a field changed by user input. The ON CHANGE block
is executed if the value has changed since the field got the focus and if the modification flag is set. The
ON CHANGE block can only be used for fields controlled by an INPUT or INPUT ARRAY dialog, it is not
available in CONSTRUCT.

For editable fields defined as EDIT, TEXTEDIT or BUTTONEDIT, the ON CHANGE block is executed
when leaving a field, if the value of the specified field has changed since the field got the focus and if
the modification flag is set for the field. You leave the field when you validate the dialog, when you move
to another field, or when you move to another row in an INPUT ARRAY. However, if the text edit field is
defined with the COMPLETER attribute to enable autocompletion, the ON CHANGE trigger will be fired after a
short period of time, when the user has typed characters in.

For editable fields defined as CHECKBOX, COMBOBOX, DATEEDIT, DATETIMEEDIT, TIMEEDIT,
RADIOGROUP, SPINEDIT, SLIDER or URL-based WEBCOMPONENT (when the COMPONENTTYPE attribute
is not used), the ON CHANGE block is invoked immediately when the user changes the value with the
widget edition feature. For example, when toggling the state of a CHECKBOX, when selecting an item in

User interface | 1070

a COMBOBOX list, or when choosing a date in the calendar of a DATEEDIT. Note that for such item types,
when ON CHANGE is fired, the modification flag is always set.

 ON CHANGE order_checked -- Defined as CHECKBOX
 CALL setup_dialog(DIALOG)

If both an ON CHANGE block and AFTER FIELD block are defined for a field, the ON CHANGE block is
executed before the AFTER FIELD block.

When changing the value of the current field by program in an ON ACTION block, the ON CHANGE
block will be executed when leaving the field if the value is different from the reference value and if the
modification flag is set (after previous user input or when the touched flag has been changed by program).

When using the NEXT FIELD instruction, the comparison value is reassigned as if the user had leaved
and reentered the field. Therefore, when using NEXT FIELD in ON CHANGE block or in an ON ACTION
block, the ON CHANGE block will only be invoked again if the value is different from the reference value.
This denies to do field validation in ON CHANGE blocks: you must do validations in AFTER FIELD blocks
and/or AFTER INPUT blocks.

AFTER FIELD block

In dialog parts driven by a simple INPUT, INPUT ARRAY or by a CONSTRUCT sub-dialog, the AFTER
FIELD block is executed every time the focus leaves the specified field. For editable lists driven by INPUT
ARRAY, this block is executed when moving the focus from field to field in the same row, or when moving to
another row in the same column.

The AFTER FIELD keywords must be followed by a list of form field specifications. The screen-record
name can be omitted.

AFTER FIELD is executed before AFTER INSERT, ON ROW CHANGE, AFTER ROW, AFTER INPUT or
AFTER CONSTRUCT.

When a NEXT FIELD instruction is executed in an AFTER FIELD block, the cursor moves to the specified
field, which can be the current field. This can be used to prevent the user from moving to another field / row
during data input. Note that the BEFORE FIELD block is also executed when NEXT FIELD is invoked.

The AFTER FIELD block of the current field is not executed when performing a NEXT FIELD; only
BEFORE INPUT, BEFORE CONSTRUCT, BEFORE ROW, and BEFORE FIELD of the target item might be
executed, based on the sub-dialog type.

When ACCEPT DIALOG, ACCEPT INPUT or ACCEPT CONTRUCT is performed, the AFTER FIELD trigger
of the current field is executed.

Use the AFTER FIELD block to implement field validation rules:

INPUT BY NAME p_item.* ...
 AFTER FIELD item_quantity
 IF p_item.item_quantity <= 0 THEN
 ERROR "Item quantity cannot be negative or zero"
 LET p_item.item_quantity = 0
 NEXT FIELD item_quantity
 END IF

INPUT interaction blocks
ON ACTION block

The ON ACTION action-name blocks execute a sequence of instructions when the user triggers a
specific action.

A typical action handler block looks like this:

 ON ACTION action-name
 instruction

User interface | 1071

 ...

Action blocks will be bound by name to action views (like buttons) in the current form. Action views can
be buttons in forms, toolbar buttons, topmenu options, and if no explicit action view is defined, actions are
rendered with a default action view, depending on the type of front-end.

The next example defines an action block to open a typical zoom window and let the user select a
customer record:

 ON ACTION zoom
 CALL zoom_customers() RETURNING st, rec.cust_id, rec.cust_name

In a dialog handling user input such as INPUT, INPUT ARRAY and CONSTRUCT, if an action is specific to a
field, add the INFIELD clause to have the action automatically enabled when the corresponding field gets
the focus:

 ON ACTION zoom INFIELD cust_city
 CALL zoom_cities() RETURN st, rec.cust_city

In most cases actions are decoration with action defaults in form files, but there can be cases where the ON
ACTION handler needs to define its own attributes at the program level. This can be done by adding the
ATTRIBUTES() clause of ON ACTION:

 ON ACTION custinfo ATTRIBUTES(DISCLOSUREINDICATOR, IMAGE="info")
 CALL show_customer_info()

For more details about action handlers, and action configuration, see Dialog actions on page 1276.

ON IDLE block

The ON IDLE seconds clause defines a set of instructions that must be executed after a given period
of user inactivity. This interaction block can be used, for example, to quit the dialog after the user has not
interacted with the program for a specified period of time.

The parameter of ON IDLE must be an integer literal or variable. If it the value is zero, the dialog timeout is
disabled.

It is not recommended to use the ON IDLE trigger with a short timeout period such as 1 or 2 seconds; The
purpose of this trigger is to give the control back to the program after a relatively long period of inactivity
(10, 30 or 60 seconds). This is typically the case when the end user leaves the workstation, or got a phone
call. The program can then execute some code before the user gets the control back.

ON IDLE 30
 IF ask_question(
 "Do you want to reload information the database?") THEN
 -- Fetch data back from the db server
 END IF

Important: The timeout value is taken into account when the dialog initializes its internal data
structures. If you use a program variable instead of an integer constant, any change of the variable
will have no effect if the variable is changed after the dialog has initialized. If you what to change
the value of the timeout variable, it must be done before the dialog block.

ON KEY block

An ON KEY (key-name) block defines an action with a hidden action view (no default button is visible),
that executes a sequence of instructions when the user presses the specified key.

The ON KEY block is supported for backward compatibility with TUI mode applications.

An ON KEY block can specify up to four different keys. Each key creates a specific action objects that will
be identified by the key name in lowercase. For example, ON KEY(F5,F6) creates two actions with the

User interface | 1072

names f5 and f6. Each action object will get an ACCELERATORNAME assigned with the corresponding
accelerator name. The specified keys must be one of the virtual keys.

In GUI mode, action defaults are applied for ON KEY actions by using the name of the action (the key
name). You can define secondary accelerator keys, as well as default decoration attributes like button text
and image, by using the key name as action identifier. The action name is always in lowercase letters.

Check carefully the ON KEY CONTROL-? statements because they may result in having duplicate
accelerators for multiple actions due to the accelerators defined by action defaults. Additionally, ON KEY
statements used with ESC, TAB, UP, DOWN, LEFT, RIGHT, HELP, NEXT, PREVIOUS, INSERT, CONTROL-
M, CONTROL-X, CONTROL-V, CONTROL-C and CONTROL-A should be avoided for use in GUI programs,
because it's very likely to clash with default accelerators defined in the factory action defaults file provided
by default.

By default, ON KEY actions are not decorated with a default button in the action frame (the default action
view). You can show the default button by configuring a text attribute with the action defaults.

ON KEY (CONTROL-Z)
 CALL open_zoom()

ON TIMER block

The ON TIMER seconds clause defines a set of instructions that must be executed at regular intervals.
This interaction block can be used, for example, to check if a message has arrived in a queue, and needs
to be processed.

The parameter of ON TIMER must be an integer literal or variable. If the value is zero, the dialog timeout is
disabled.

It is not recommended to use the ON TIMER trigger with a short timeout period, such as 1 or 2 seconds.
The purpose of this trigger is to give the control back to the program after a reasonable period of time, such
as 10, 20 or 60 seconds.

ON TIMER 30
 CALL check_for_messages()

Important: The timer value is taken into account when the dialog initializes its internal data
structures. If you use a program variable instead of an integer constant, a change of the variable
has no effect if the change takes place after the dialog has initialized. If you what to change the
value of the timeout variable, it must be done before the dialog block.

INPUT control instructions
ACCEPT INPUT instruction

The ACCEPT INPUT instruction validates the INPUT instruction and exits the dialog block if no error is
raised.

The AFTER FIELD, ON CHANGE, etc. control blocks will be executed.

The statements after the ACCEPT INPUT instruction will not be executed.

INPUT BY NAME cust_rec.*
 ...
 ON ACTION process_order
 CALL set_missing_defaults()
 ACCEPT INPUT
 ...
END INPUT

The INPUT instruction creates the default accept action to let the user validate the dialog. The ACCEPT
INPUT instruction should only be used in specific cases when the default accept action is not appropriated.

User interface | 1073

CONTINUE INPUT instruction

CONTINUE INPUT skips all subsequent statements in the current control block and gives the control
back to the dialog. This instruction is useful when program control is nested within multiple conditional
statements, and you want to return the control to the dialog.

If this instruction is called in a control block that is not AFTER INPUT, further control blocks might be
executed according to the context. CONTINUE INPUT instructs the dialog to continue as if the code in
the control block was terminated (i.e. it's a kind of GOTO end_of_control_block). However, when
executed in AFTER INPUT, the focus returns to the most recently occupied field in the current form, giving
the user another chance to enter data in that field. In this case the BEFORE FIELD of the current field will
be invoked.

As alternative, use the NEXT FIELD control instruction to give the focus to a specific field and force the
dialog to continue. However, unlike CONTINUE INPUT, the NEXT FIELD instruction will skip the further
control blocks that are normally executed.

EXIT INPUT instruction

The EXIT INPUT instruction terminates the INPUT instruction and resumes the program execution at the
instruction following the INPUT block.

Performing an EXIT INPUT instruction during a dialog is equivalent to cancel the dialog: No field
validation will occur, and the AFTER FIELD or AFTER INPUT blocks will not be executed. The dialog is
exited immediately. However, INT_FLAG will not be set to TRUE as when the cancel action is fired.

CLEAR instruction in dialogs

The CLEAR field-list and CLEAR SCREEN ARRAY screen-array.* instructions clear the value
buffer of specified form fields. The buffers are directly changed in the current form, and the program
variables bound to the dialog are left unchanged. CLEAR can be used outside any dialog instruction, such
as the DISPLAY BY NAME / TO instructions.

When a dialog is configured with the UNBUFFERED mode, there is no reason to clear field buffers since
any variable assignment will synchronize field buffers. Actually, changing the field buffers with DISPLAY
or CLEAR instruction in an UNBUFFERED dialog will have no visual effect, because the variables bound to
the dialog will be used to reset the field buffer just before giving control back to the user. To clear fields
of an UNBUFEFERED dialog, just set to NULL the variables bound to the dialog. However, when using a
CONSTRUCT, no program variables are associated to the dialog and no UNBUFFERED concept exits, and
the CLEAR or DISPLAY TO / BY NAME instructions are the only way to modify the CONSTRUCT fields.

A screen array with a screen-line specification doesn't make much sense in a GUI application using TABLE
containers, you can therefore use the CLEAR SCREEN ARRAY instruction to clear all rows of a list.

Examples
Example 1: INPUT with binding by field position

Form definition file (form1.per):

SCHEMA office

LAYOUT
GRID
{
 Customer id: [f001]
 First Name : [f002]
 Last Name : [f003]
}
END
END

TABLES
 customer

User interface | 1074

END

ATTRIBUTES
 f001 = customer.id;
 f002 = customer.fname;
 f003 = customer.lname, UPSHIFT;
END

INSTRUCTIONS
 SCREEN RECORD sr_cust(customer.*);
END

Program source code:

SCHEMA office

MAIN

 DEFINE custrec RECORD LIKE customer.*

 OPTIONS INPUT WRAP

 OPEN FORM f FROM "form1"
 DISPLAY FORM f

 LET INT_FLAG = FALSE
 INPUT custrec.* FROM sr_cust.*

 IF INT_FLAG = FALSE THEN
 DISPLAY custrec.*
 LET INT_FLAG = FALSE
 END IF

END MAIN

Example 2: INPUT with binding by field name

Form definition file "custlist.per" (same as in Example 1)

Program source code:

SCHEMA shop

MAIN

 DEFINE custrec RECORD LIKE customer.*
 DEFINE upd INTEGER

 DATABASE shop
 OPTIONS INPUT WRAP
 OPEN FORM f FROM "form1"
 DISPLAY FORM f

 LET custrec.id = arg_val(1)
 LET upd = (custrec.id < 0)

 LET INT_FLAG = FALSE
 INPUT BY NAME custrec.* ATTRIBUTES(UNBUFFERED, WITHOUT DEFAULTS=upd)
 BEFORE INPUT
 MESSAGE "Enter customer information..."
 IF upd THEN
 SELECT fname, lname INTO custrec.fname, customer.lname
 FROM customer WHERE customer.id = custrec.id

User interface | 1075

 END IF
 AFTER FIELD fname
 IF FIELD_TOUCHED(custrec.fname) AND custrec.fname IS NULL THEN
 LET custrec.lname = NULL
 END IF
 AFTER INPUT
 MESSAGE "Input terminated..."
 END INPUT

 IF INT_FLAG = FALSE THEN
 DISPLAY custrec.*
 LET INT_FLAG = FALSE
 END IF

END MAIN

Read-only record list (DISPLAY ARRAY)
The DISPLAY ARRAY instruction provides record list navigation in an application form, with optional record
modification actions.

• Understanding the DISPLAY ARRAY instruction on page 1075
• Syntax of DISPLAY ARRAY instruction on page 1076
• DISPLAY ARRAY programming steps on page 1077
• Using read-only record lists on page 1078

• Variable binding in DISPLAY ARRAY on page 1078
• DISPLAY ARRAY instruction configuration on page 1079
• Default actions in DISPLAY ARRAY on page 1080
• DISPLAY ARRAY data blocks on page 1081
• DISPLAY ARRAY control blocks on page 1082
• DISPLAY ARRAY interaction blocks on page 1086
• DISPLAY ARRAY control instructions on page 1095

• Examples on page 1095

• Example 1: DISPLAY ARRAY using full list mode on page 1095
• Example 2: DISPLAY ARRAY using paged mode on page 1096
• Example 3: DISPLAY ARRAY using modification triggers on page 1097

Understanding the DISPLAY ARRAY instruction
The DISPLAY ARRAY is a dialog instruction designed to browse a list of records, binding a static or
dynamic array model to a screen array of the current displayed form.

A DISPLAY ARRAY instruction supports additional features such as drag & drop, tree-view management,
built-in sort and search, multi-row selection and list modification triggers. For a detailed description of these
features, see Table views on page 1345.

Use the DISPLAY ARRAY instruction to let the end user browse in a list of rows, after fetching a result set
from the database. The result set is produced with a database cursor executing a SELECT statement. The
SELECT SQL statement is usually completed at runtime with a WHERE clause produced from a CONSTRUCT
dialog. When the DISPLAY ARRAY statement completes execution, the program must test the INT_FLAG
variable to check if the dialog was validated (or canceled) to take into account (or ignore) the row that was
chosen by the user.

User interface | 1076

Syntax of DISPLAY ARRAY instruction
The DISPLAY ARRAY instruction controls the display of a program array on the screen.

Syntax

DISPLAY ARRAY array TO screen-array.*
 [HELP help-number]
 [ATTRIBUTES ({ display-attribute
 | control-attribute }
 [,...])]
 [dialog-control-block
 [...]
END DISPLAY]

where dialog-control-block is one of:

{ BEFORE DISPLAY
| AFTER DISPLAY
| BEFORE ROW
| AFTER ROW
| ON IDLE seconds
| ON TIMER seconds
| ON ACTION action-name
 [ATTRIBUTES (action-attributes-display-array)]
| ON FILL BUFFER
| ON SELECTION CHANGE
| ON SORT
| ON APPEND [ATTRIBUTES (action-attributes-listmod-triggers)]
| ON INSERT [ATTRIBUTES (action-attributes-listmod-triggers)]
| ON UPDATE [ATTRIBUTES (action-attributes-listmod-triggers)]
| ON DELETE [ATTRIBUTES (action-attributes-listmod-triggers)]
| ON EXPAND (row-index)
| ON COLLAPSE (row-index)
| ON DRAG_START (dnd-object)
| ON DRAG_FINISH (dnd-object)
| ON DRAG_ENTER (dnd-object)
| ON DRAG_OVER (dnd-object)
| ON DROP (dnd-object)
| ON KEY (key-name [,...])
}
 dialog-statement
 [...]

where action-attributes-display-array is:

{ TEXT = string
| COMMENT = string
| IMAGE = string
| ACCELERATOR = string
| DEFAULTVIEW = { YES | NO | AUTO }
| CONTEXTMENU = { YES | NO | AUTO }
| ROWBOUND
 [,...] }

where action-attributes-listmod-triggers is:

{ TEXT = string
| COMMENT = string
| IMAGE = string
| ACCELERATOR = string
| DEFAULTVIEW = { YES | NO | AUTO }

User interface | 1077

| CONTEXTMENU = { YES | NO | AUTO }
 [,...] }

where dialog-statement is one of:

{ statement
| EXIT DISPLAY
| CONTINUE DISPLAY
| ACCEPT DISPLAY
}

where display-attribute is:

{ BLACK | BLUE | CYAN | GREEN
| MAGENTA | RED | WHITE | YELLOW
| BOLD | DIM | INVISIBLE | NORMAL
| REVERSE | BLINK | UNDERLINE
}

where control-attribute is:

{ ACCEPT [= boolean]
| CANCEL [= boolean]
| KEEP CURRENT ROW [= boolean]
| HELP = help-number
| COUNT = row-count
| UNBUFFERED [= boolean]
| DETAILACTION = action-name
| DOUBLECLICK = action-name
| ACCESSORYTYPE = { DETAILBUTTON | DISCLOSUREINDICATOR | CHECKMARK }
}

1. array is a static or dynamic array containing the records you want to display.
2. screen-array is the name of the screen array used to display data.
3. help-number is an integer that associates a help message number with the instruction.
4. action-name identifies an action that can be executed by the user.
5. seconds is an integer literal or variable that defines a number of seconds.
6. row-index identifies the program variable which holds the row index corresponding to the tree view node

that has been expanded or collapsed.
7. dnd-object references a ui.DragDrop variable defined in the scope of the dialog.
8. key-name is an hot-key identifier (such as F11 or Control-z).
9. statement is any instruction supported by the language.
10.row-count defines the total number of rows for a static array.
11.boolean is a boolean expression that evaluates to TRUE or FALSE.
12.action-attributes are dialog-specific action attributes.

DISPLAY ARRAY programming steps
Follow this procedure to use the DISPLAY ARRAY dialog instruction.

The following steps describe how to use the DISPLAY ARRAY statement:

1. Create a form specification file containing a screen array. The screen array identifies the presentation
elements to be used by the runtime system to display the rows.

2. Make sure that the program controls interruption handling with DEFER INTERRUPT, to manage the
validation/cancellation of the interactive dialog.

3. Define an array of records with the DEFINE instruction. The members of the program array must
correspond to the elements of the screen array, by number and data types. Static or a dynamic

User interface | 1078

arrays can be used for the full list mode, but the paged mode requires a dynamic array. For new
developments, use dynamic arrays in both cases.

4. Open and display the form, using OPEN WINDOW WITH FORM or the OPEN FORM / DISPLAY FORM
instructions.

5. If you want to use the full list mode, fill the program array with data, typically with a result set cursor,
counting the number of program records being filled with retrieved data.

6. Set the INT_FLAG variable to FALSE.

7. Write the DISPLAY ARRAY statement block. When using a static array, specify the number of rows with
the COUNT attribute in the ATTRIBUTES clause, or call the SET_COUNT() function before the dialog
block. With dynamic arrays, the number of rows is automatically known by the dialog. Consider using
the UNBUFFERED mode in new developments.

8. If you want to use the paged mode, define the total number of rows with the COUNT attribute (can
be -1 for infinite number of rows), and add the ON FILL BUFFER clause that will contain the
code to fill the dynamic array with the expected rows from fgl_dialog_getBufferStart() to
fgl_dialog_getBufferLength().

9. If multi-row selection is needed, call the ui.Dialog.setSelectionMode() method in BEFORE
DISPLAY to enable this mode.

10.Inside the DISPLAY ARRAY block, control the behvior of the instruction with BEFORE ROW, AFTER ROW
and ON ACTION blocks.

11.After the interaction statement block, test the INT_FLAG predefined variable to check if the dialog was
canceled (INT_FLAG=TRUE) or validated (INT_FLAG=FALSE). If the INT_FLAG variable is TRUE, reset
it to FALSE to not disturb code that relies on this variable to detect interruption events from the GUI
front-end or TUI console.

12.If needed, get the current row with the ARR_CURR() built-in function after dialog execution. During
dialog execution, you can also use DIALOG.getCurrentRow().

Using read-only record lists
To use read-only record lists, you must understand how they work and how to structure the code.
Variable binding in DISPLAY ARRAY

The DISPLAY ARRAY statement binds the members of the array of record to the screen array fields
specified with the TO keyword. Array members and screen array fields are bound by position (i.e. not by
name). The number of members in the program array must match the number of fields in the screen record
(that is, in a single row of the screen array).

SCHEMA stock
DEFINE cust_arr DYNAMIC ARRAY OF customer.*
...
DISPLAY ARRAY cust_arr TO sr.*
 ATTRIBUTES(UNBUFFERED)
 ...
END DISPLAY

Keep in mind that array members are bound to screen array fields by position, so you must make sure that
the members of the array are defined in the same order as the screen array fields.

Note that the array is usually defined with a flat list of members with ARRAY OF RECORD / END RECORD.
However, the array can be structured with sub-records and still be used with a DISPLAY ARRAY dialog.
This is especially useful when you need to define arrays from database tables, and additional information
needs to be managed at runtime (for example to hold image resource for each row, to be displayed with
the IMAGECOLUMN attribute):

SCHEMA shop
DEFINE a_items DYNAMIC ARRAY OF RECORD
 item_data RECORD LIKE items.*,
 it_image STRING,

User interface | 1079

 it_count INTEGER
 END RECORD
...
DISPLAY ARRAY a_items TO sr.*
 ...

When using the UNBUFFERED attribute, the instruction is sensitive to program variable changes. This
means that you do not have to DISPLAY the values; setting the program variable used by the dialog
automatically displays the data in the corresponding form field.

ON ACTION change
 LET arr[arr_curr()].field1 = newValue()

If the program array has the same structure as a database table (this is the case when the array is defined
with a DEFINE LIKE clause), you may not want to display/use some of the columns. You can achieve this
by using PHANTOM fields in the screen array definition. Phantom fields will only be used to bind program
variables, and will not be transmitted to the front-end for display.

DISPLAY ARRAY instruction configuration

This section describes the options that can be specified in the ATTRIBUTES clause of the DISPLAY
ARRAY instruction. The options of the ATTRIBUTES clause override all default attributes and temporarily
override any display attributes that the OPTIONS or the OPEN WINDOW statement specified for these fields.
With the DISPLAY ARRAY statement, the INVISIBLE attribute is ignored.

HELP option
The HELP clause specifies the number of a help message to display if the user invokes the help the
DISPLAY ARRAY dialog. The predefined 'help' action is automatically created by the runtime system. You
can bind action views to the 'help' action.

The HELP clause overrides the HELP attribute.

COUNT option

When using a dynamic array, the number of rows to be displayed is defined by the number of elements in
the dynamic array; the COUNT attribute is ignored.

When using a static array or the paged mode, the number of rows to be displayed is defined by the
COUNT attribute. You can also use the SET_COUNT() built-in function, but it is supported for backward
compatibility only. If you don't know the total number of rows for the paged mode, you can specify -1 for the
COUNT attribute (or in the SET_COUNT() call before the dialog block): With COUNT=-1, the dialog will ask
for rows by executing ON FILL BUFFER until you provide less rows as asked, or if you reset the number
of rows to a value higher as -1 with ui.Dialog.setArrayLength().

KEEP CURRENT ROW option

Depending on the list container used in the form, the current row may be highlighted during the execution
of the dialog, and cleared when the instruction ends. You can change this default behavior by using the
KEEP CURRENT ROW attribute, to force the runtime system to keep the current row highlighted.

ACCEPT option

The ACCEPT attribute can be set to FALSE to avoid the automatic creation of the default accept action.
Use this attribute when you want to avoid dialog validation, or if you need to write a specific validation
procedure by using ACCEPT DISPLAY.

User interface | 1080

CANCEL option

The CANCEL attribute can be set to FALSE to avoid the automatic creation of the cancel default action.
Use this attribute when you only need a validation action (accept), or when you want to write a specific
cancellation procedure by using EXIT DISPLAY.

If the CANCEL=FALSE option is set, no close action will be created, and you must write an ON ACTION
close control block to create an explicit action.

DOUBLECLICK option

The DOUBLICKCLICK option can be used to define the action that will be fired when the user chooses
a row from the list. On front-end platforms using a mouse-device, this corresponds to a physical double-
click on a row with the mouse. On mobile front-ends, this corresponds to a tap on the row with a finger.
Note that this attribute can also be defined for the TABLE/TREE containers in form files; DOUBLECLICK in
DISPLAY ARRAY attributes has a higher precedence as DOUBLECLICK in the form file. For more details,
see Defining the action for a row choice on page 1360.

DETAILACTION option

Important: This feature is only for mobile platforms.

The DETAILACTION attribute can be used to define the action that will be fired when the user selects the
detail button of a row. The detail button is typically shown with a (i) icon on iOS devices. Note that the
DOUBLECLICK attribute can be used to distinguish the action when the user selects the row instead of the
detail button in the row. For more details, see Row configuration on iOS devices on page 1369.

ACCESSORTYPE option

Important: This feature is only for mobile platforms.

The ACCESSORYTYPE attribute can be used to define the decoration of rows, typically used on a iOS
device. Values can be DETAILBUTTON, DISCLOSUREINDICATOR, CHECKMARK to respectively get a (i),
> or checkmark icon. For more details, see Row configuration on iOS devices on page 1369.

Default actions in DISPLAY ARRAY

When an DISPLAY ARRAY instruction executes, the runtime system creates a set of default actions.

According the invoked default action, field validation occurs and different DISPLAY ARRAY control blocks
are executed.

This table lists the default actions created for this dialog:

Table 272: Default actions created for the DISPLAY ARRAY dialog

Default action Description

accept

Validates the DISPLAY ARRAY dialog (validates
current row selection)

Creation can be avoided with ACCEPT attribute.

cancel

Cancels the DISPLAY ARRAY dialog (no validation,
INT_FLAG is set to TRUE)

Creation can be avoided with CANCEL attribute.

close By default, cancels the DISPLAY ARRAY dialog (no
validation, INT_FLAG is set to TRUE)

User interface | 1081

Default action Description

Default action view is hidden. See Implementing the
close action on page 1337.

help
Shows the help topic defined by the HELP clause.

Only created when a HELP clause is defined.

nextrow

Moves to the next row in a list displayed in one row
of fields.

Only created if DISPLAY ARRAY used with a
screen record having only one row.

prevrow

Moves to the previous row in a list displayed in one
row of fields.

Only created if DISPLAY ARRAY used with a
screen record having only one row.

firstrow

Moves to the first row in a list displayed in one row
of fields.

Only created if DISPLAY ARRAY used with a
screen record having only one row.

lastrow

Moves to the last row in a list displayed in one row
of fields.

Only created if DISPLAY ARRAY used with a
screen record having only one row.

find

Opens the fglfind dialog window to let the user
enter a search value, and seeks to the row
matching the value.

Only created if the context allows built-in find.

findnext

Seeks to the next row matching the value entered
during the fglfind dialog.

Only created if the context allows built-in find.

The accept and cancel default actions can be avoided with the ACCEPT and CANCEL dialog control
attributes:

DISPLAY ARRAY arr TO sr.* ATTRIBUTES(CANCEL=FALSE, ...)
 ...

DISPLAY ARRAY data blocks

Data blocks are dialog triggers that are invoked when the dialog controller needs data to feed the view with
values.

Such blocks are typically used when record list data is provided dynamically, with the display array paged
mode of when implementing dynamic tree-views.

User interface | 1082

ON FILL BUFFER block
The ON FILL BUFFER block is used to fill a page of rows into the dynamic array, according to an offset
and a number of rows.

This data block is used in the DISPLAY ARRAY blocks.

The offset can be retrieved with the FGL_DIALOG_GETBUFFERSTART() built-in function and the number
of rows to provide is defined by the FGL_DIALOG_GETBUFFERLENGTH() built-in function.

ON EXPAND block
The ON EXPAND block is executed when a tree view node is expanded (i.e. opened).

This data block is used to implement dynamic trees in a DISPLAY ARRAY, where nodes are added
according to the nodes opened by the end user.

ON COLLAPSE block
The ON COLLAPSE block is executed when a tree view node is collapsed (i.e. closed).

This data block is used to implement dynamic trees in a DISPLAY ARRAY, where nodes are removed
according to the nodes closed by the end user.

DISPLAY ARRAY control blocks
DISPLAY ARRAY control blocks execution order

This table shows the order in which the runtime system executes the control blocks in the DISPLAY
ARRAY instruction, according to the user action:

Table 273: Control blocks execution order in DISPLAY ARRAY

Context / User action Control Block execution order

Entering the dialog 1. BEFORE DISPLAY

2. BEFORE ROW

Moving to a different row 1. AFTER ROW (the current row)
2. BEFORE ROW (the new row)

Validating the dialog 1. AFTER ROW

2. AFTER DISPLAY

Canceling the dialog 1. AFTER ROW

2. AFTER INPUT

Firing the insert or append action for the ON
INSERT block

1. AFTER ROW

2. ON INSERT

3. BEFORE ROW

Firing the delete action for the ON DELETE block 1. AFTER ROW

2. ON DELETE

3. BEFORE ROW

BEFORE DISPLAY block

BEFORE DISPLAY block in singular and parallel DISPLAY ARRAY dialogs

In a singular DISPLAY ARRAY instruction, or when used as parallel dialog, the BEFORE DISPLAY is only
executed once when the dialog is started.

User interface | 1083

The BEFORE DISPLAY block is executed once at dialog startup, before the runtime system gives control
to the user. This block can be used to display messages to the user, initialize program variables and setup
the dialog instance by deactivating actions the user is not allowed to execute.

DISPLAY ARRAY p_items TO s_items.*
 BEFORE DISPLAY
 CALL DIALOG.setActionActive("clear_item_list", is_super_user())

BEFORE DISPLAY block in singular and parallel DISPLAY ARRAY dialogs

In a DISPLAY ARRAY sub-dialog of a procedural DIALOG instruction, the BEFORE DISPLAY block is
executed when a DISPLAY ARRAY list gets the focus.

BEFORE DISPLAY is executed before the BEFORE ROW block.

In this example the BEFORE DISPLAY block enables an action and displays a message:

DISPLAY ARRAY p_items TO s_items.*
 BEFORE DISPLAY
 CALL DIALOG.setActionActive("print_list", TRUE)
 MESSAGE "You are now in the list of items"

AFTER DISPLAY block

AFTER DISPLAY block in singular and parallel DISPLAY ARRAY dialogs

In a singular DISPLAY ARRAY instruction, or when used as parallel dialog, the AFTER DISPLAY is only
executed once when dialog is ended.

You typically implement dialog finalization in this block.

DISPLAY ARRAY p_items TO s_items.*
 AFTER DISPLAY
 DISPLAY "Current row is: ", arr_curr()

AFTER DISPLAY block in singular and parallel DISPLAY ARRAY dialogs

In a DISPLAY ARRAY sub-dialog of a procedural DIALOG instruction, the AFTER DISPLAY block is
executed when a DISPLAY ARRAY list loses the focus and goes to another sub-dialog.

If the focus leaves the current group and goes to an action view, this trigger is not executed, because the
focus did not go to another sub-dialog yet.

AFTER DISPLAY is executed after the AFTER ROW block.

In this example, the AFTER DISPLAY block disables an action that is specific to the current list:

DISPLAY ARRAY p_items TO s_items.*
 AFTER DISPLAY
 CALL DIALOG.setActionActive("clear_item_list", FALSE)

BEFORE ROW block

BEFORE ROW block in singular and parallel DISPLAY ARRAY, INPUT ARRAY dialogs

In a singular DISPLAY ARRAY, INPUT ARRAY instruction, or when used as parallel dialog, the BEFORE
ROW block is executed each time the user moves to another row. This trigger can also be executed in other
situations, such as when you delete a row, or when the user tries to insert a row but the maximum number
of rows in the list is reached.

User interface | 1084

You typically do some dialog setup / message display in the BEFORE ROW block, because it indicates that
the user selected a new row or entered in the list.

When the dialog starts, BEFORE ROW will be executed for the current row, but only if there are data rows in
the array.

When called in this block, DIALOG.getCurrentRow() / arr_curr() return the index of the current row.

In this example, the BEFORE ROW block gets the new row number and displays it in a message:

DISPLAY ARRAY ...
 ...
 BEFORE ROW
 MESSAGE "We are on row # ", arr_curr()
 ...

BEFORE ROW block in DISPLAY ARRAY and INPUT ARRAY of procedural DIALOG

In an INPUT or INPUT ARRAY sub-dialog of a procedural DIALOG instruction, the BEFORE ROW block
is executed when a DISPLAY ARRAY or INPUT ARRAY list gets the focus, or when the user moves to
another row inside a list. This trigger can also be executed in other situations, for example when you delete
a row, or when the user tries to insert a row but the maximum number of rows in the list is reached.

You typically do some dialog setup / message display in the BEFORE ROW block, because it indicates that
the user selected a new row. Do not use this trigger to detect focus changes; Use the BEFORE DISPLAY
or BEFORE INPUT blocks instead.

In DISPLAY ARRAY, BEFORE ROW is executed after the BEFORE DISPLAY block. In INPUT ARRAY,
BEFORE ROW is executed before the BEFORE INSERT and BEFORE FIELD blocks and after the BEFORE
INPUT blocks.

When the procedural dialog starts, BEFORE ROW will only be executed if the list has received the focus and
there is a current row (the array is not empty). If you have other elements in the form which can get the
focus before the list, BEFORE ROW will not be triggered when the dialog starts. You must pay attention to
this, because this behavior is different to the behavior of singular DISPLAY ARRAY or INPUT ARRAY. In
singular dialogs, the BEFORE ROW block is always executed when the dialog starts (and there are rows in
the array).

When called in this block, DIALOG.getCurrentRow() / arr_curr() return the index of the current row.

In this example the BEFORE ROW block displays a message with the current row number:

 DISPLAY ARRAY p_items TO s_items.*
 BEFORE ROW
 MESSAGE "We are in items, on row #", DIALOG.getCurrentRow("s_items")

AFTER ROW block

AFTER ROW block in singular and parallel DISPLAY ARRAY, INPUT ARRAY dialogs

In a singular DISPLAY ARRAY, INPUT ARRAY instruction, or when used as parallel dialog, the AFTER
ROW block is executed each time the user moves to another row, before the current row is left. This trigger
can also be executed in other situations, such as when you delete a row, or when the user inserts a new
row.

A NEXT FIELD instruction executed in the AFTER ROW control block will keep the user entry in the current
row. Use this behavior to implement row validation and prevent the user from leaving the list or moving to
another row.

When called in this block, DIALOG.getCurrentRow() / arr_curr() return the index of the row that you
are leaving.

User interface | 1085

AFTER ROW block in DISPLAY ARRAY and INPUT ARRAY of procedural DIALOG

In an INPUT or INPUT ARRAY sub-dialog of a procedural DIALOG instruction, the AFTER ROW block is
executed when a DISPLAY ARRAY or INPUT ARRAY list loses the focus, or when the user moves to
another row in a list. This trigger can also be executed in other situations, for example when you delete a
row, or when the user inserts a new row.

AFTER ROW is executed after the AFTER FIELD, AFTER INSERT and before AFTER DISPLAY or AFTER
INPUT blocks.

When called in this block, DIALOG.getCurrentRow() / arr_curr() return the index of the of the row
that you are leaving.

For both INPUT ARRAY and DISPLAY ARRAY sub-dialogs, a NEXT FIELD executed in the AFTER ROW
control block will keep the focus in the list and stay in the current row. Use this feature to implement row
validation and prevent the user from leaving the list or moving to another row.

AFTER ROW and temporary rows in INPUT ARRAY

Important: After creating a temporary row at the end of a list driven by INPUT
ARRAY, if you leave that row to a previous row without data input (setting the
touched flag), or when the cancel action is invoked, the temporary row will be
automatically removed. The AFTER ROW block will be executed for the temporary
row, but ui.Dialog.getCurrentRow()/arr_curr() will be one row greater than
ui.Dialog.getArrayLength()/ARR_COUNT(). In this case, you should ignore the AFTER
ROW event. For example, you should not try to execute a NEXT FIELD or CONTINUE INPUT
instruction, nor should you try to access the dynamic array with a row index that is greater
than the total number of rows, otherwise the runtime system will adapt the total number of
rows to the actual number of rows in the program array.

In this example, the AFTER ROW block checks the current row index and verifies a variable value to forces
the focus to stay in the current row if the value is wrong:

INPUT ARRAY p_items FROM s_items.*
 ...
 AFTER ROW
 LET r = DIALOG.getCurrentRow("s_items")
 IF r <= DIALOG.getArrayLength("s_items") THEN
 IF NOT item_is_valid_quantity(p_item[r].item_quantity) THEN
 ERROR "Item quantity is not valid"
 NEXT FIELD item_quantity'
 END IF
 END IF

Another way to handle the case of temporary rows in AFTER ROW is to use a flag to know if the AFTER
INSERT block was executed: The AFTER INSERT block is not executed if the temporary row is
automatically removed. By setting a first value in BEFORE INSERT and changing the flag in AFTER
INSERT, you can detect if the row was permanently added to the list:

INPUT ARRAY p_items FROM s_items.*
 ...
 BEFORE INSERT
 LET op = "T"
 ...
 AFTER INSERT
 LET op = "I"
 ...
 AFTER ROW
 IF op == "I" THEN
 IF NOT item_is_valid_quantity(p_item[arr_curr()].item_quantity) THEN
 ERROR "Item quantity is not valid"

User interface | 1086

 NEXT FIELD item_quantity
 END IF
 WHENEVER ERROR CONTINUE
 INSERT INTO items (item_num, item_name, item_quantity)
 VALUES (p_item[arr_curr()].*)
 WHENEVER ERROR STOP
 IF SQLCA.SQLCODE<0 THEN
 ERROR "Could not insert the record into database!"
 NEXT FIELD CURRENT
 ELSE
 MESSAGE "Record has been inserted successfully"
 END IF
 END IF
...

DISPLAY ARRAY interaction blocks
ON ACTION block

The ON ACTION action-name blocks execute a sequence of instructions when the user triggers a
specific action.

A typical action handler block looks like this:

 ON ACTION action-name
 instruction
 ...

Action blocks will be bound by name to action views (like buttons) in the current form. Action views can
be buttons in forms, toolbar buttons, topmenu options, and if no explicit action view is defined, actions are
rendered with a default action view, depending on the type of front-end.

The next example defines an action block to open a typical zoom window and let the user select a
customer record:

 ON ACTION zoom
 CALL zoom_customers() RETURNING st, rec.cust_id, rec.cust_name

In a dialog handling user input such as INPUT, INPUT ARRAY and CONSTRUCT, if an action is specific to a
field, add the INFIELD clause to have the action automatically enabled when the corresponding field gets
the focus:

 ON ACTION zoom INFIELD cust_city
 CALL zoom_cities() RETURN st, rec.cust_city

In most cases actions are decoration with action defaults in form files, but there can be cases where the ON
ACTION handler needs to define its own attributes at the program level. This can be done by adding the
ATTRIBUTES() clause of ON ACTION:

 ON ACTION custinfo ATTRIBUTES(DISCLOSUREINDICATOR, IMAGE="info")
 CALL show_customer_info()

For more details about action handlers, and action configuration, see Dialog actions on page 1276.

ON IDLE block

The ON IDLE seconds clause defines a set of instructions that must be executed after a given period
of user inactivity. This interaction block can be used, for example, to quit the dialog after the user has not
interacted with the program for a specified period of time.

The parameter of ON IDLE must be an integer literal or variable. If it the value is zero, the dialog timeout is
disabled.

User interface | 1087

It is not recommended to use the ON IDLE trigger with a short timeout period such as 1 or 2 seconds; The
purpose of this trigger is to give the control back to the program after a relatively long period of inactivity
(10, 30 or 60 seconds). This is typically the case when the end user leaves the workstation, or got a phone
call. The program can then execute some code before the user gets the control back.

ON IDLE 30
 IF ask_question(
 "Do you want to reload information the database?") THEN
 -- Fetch data back from the db server
 END IF

Important: The timeout value is taken into account when the dialog initializes its internal data
structures. If you use a program variable instead of an integer constant, any change of the variable
will have no effect if the variable is changed after the dialog has initialized. If you what to change
the value of the timeout variable, it must be done before the dialog block.

ON KEY block

An ON KEY (key-name) block defines an action with a hidden action view (no default button is visible),
that executes a sequence of instructions when the user presses the specified key.

The ON KEY block is supported for backward compatibility with TUI mode applications.

An ON KEY block can specify up to four different keys. Each key creates a specific action objects that will
be identified by the key name in lowercase. For example, ON KEY(F5,F6) creates two actions with the
names f5 and f6. Each action object will get an ACCELERATORNAME assigned with the corresponding
accelerator name. The specified keys must be one of the virtual keys.

In GUI mode, action defaults are applied for ON KEY actions by using the name of the action (the key
name). You can define secondary accelerator keys, as well as default decoration attributes like button text
and image, by using the key name as action identifier. The action name is always in lowercase letters.

Check carefully the ON KEY CONTROL-? statements because they may result in having duplicate
accelerators for multiple actions due to the accelerators defined by action defaults. Additionally, ON KEY
statements used with ESC, TAB, UP, DOWN, LEFT, RIGHT, HELP, NEXT, PREVIOUS, INSERT, CONTROL-
M, CONTROL-X, CONTROL-V, CONTROL-C and CONTROL-A should be avoided for use in GUI programs,
because it's very likely to clash with default accelerators defined in the factory action defaults file provided
by default.

By default, ON KEY actions are not decorated with a default button in the action frame (the default action
view). You can show the default button by configuring a text attribute with the action defaults.

ON KEY (CONTROL-Z)
 CALL open_zoom()

ON TIMER block

The ON TIMER seconds clause defines a set of instructions that must be executed at regular intervals.
This interaction block can be used, for example, to check if a message has arrived in a queue, and needs
to be processed.

The parameter of ON TIMER must be an integer literal or variable. If the value is zero, the dialog timeout is
disabled.

It is not recommended to use the ON TIMER trigger with a short timeout period, such as 1 or 2 seconds.
The purpose of this trigger is to give the control back to the program after a reasonable period of time, such
as 10, 20 or 60 seconds.

ON TIMER 30
 CALL check_for_messages()

User interface | 1088

Important: The timer value is taken into account when the dialog initializes its internal data
structures. If you use a program variable instead of an integer constant, a change of the variable
has no effect if the change takes place after the dialog has initialized. If you what to change the
value of the timeout variable, it must be done before the dialog block.

ON APPEND block

Similarly to the ON INSERT control block, the ON APPEND trigger can be used to enable row creation
during a DISPLAY ARRAY dialog. If this block is defined, the dialog will automatically create the append
action. This action can be decorated, enabled and disabled as a regular action.

If the dialog defines an ON ACTION append interaction block and the ON APPEND block is used, the
compiler will stop with error -8408.

When the user fires the append action, the dialog first execute the user code of the AFTER ROW block if
defined. Then the dialog moves to the end of the list, and creates a new row after the last existing row.
After creating the row, the dialog executes the user code of the ON APPEND block.

The dialog handles only row creation actions and navigation, you must program the record input with a
regular INPUT statement, to let the end user enter data for the new created row. This is typically done with
an INPUT binding explicitly array fields to the screen record fields. The new current row in the program
array is identified with arr_curr(), and the current screen line in the form is defined by SCR_LINE():

DISPLAY ARRAY arr TO sr.*
 ...
 ON APPEND
 INPUT arr[arr_curr()].* FROM sr[scr_line()].* ;
 ...

Pay attention to the semicolon ending the INPUT instruction, which is usually needed here to solve a
language grammar conflict when nested dialog instructions are implemented.

After the user code is executed, the dialog gets the control back and processes the new row as follows:

• If the INT_FLAG global variable is FALSE and STATUS is zero, the new row is kept in the program
array, and the BEFORE ROW block is executed for the new created row.

• If the INT_FLAG global variable is TRUE or STATUS is different from zero, the new row is removed from
the program array, and the BEFORE ROW block is executed for the row that was existing at the current
position, before the new row was created.

The DISPLAY ARRAY dialog always resets INT_FLAG to FALSE and STATUS to zero before executing the
user code of the ON APPEND block.

The append action is disabled if the maximum number of rows is reached.

If needed, the ON APPEND handler can be configured with action attributes by added an ATTRIBUTES()
clause, as with user-defined action handlers:

 ON APPEND ATTRIBUTES(TEXT=%"custlist.delete", IMAGE="listdel")

ON INSERT block

Similarly to the ON APPEND control block, the ON INSERT trigger can be used to enable row creation
during a DISPLAY ARRAY dialog. If this block is defined, the dialog will automatically create the insert
action. This action can be decorated, enabled and disabled as a regular action.

If the dialog defines an ON ACTION insert interaction block and the ON INSERT block is used, the
compiler will stop with error -8408.

When the user fires the insert action, the dialog first execute the user code of the AFTER ROW block if
defined. Then the new row is created: The insert action creates a new row before current row in the list.
After creating the row, the dialog executes the user code of the ON INSERT block.

User interface | 1089

The dialog handles only row creation actions and navigation, you must program the record input with a
regular INPUT statement, to let the end user enter data for the new created row. This is typically done with
an INPUT binding explicitly array fields to the screen record fields. The new current row in the program
array is identified with arr_curr(), and the current screen line in the form is defined by scr_line():

DISPLAY ARRAY arr TO sr.*
 ...
 ON INSERT
 INPUT arr[arr_curr()].* FROM sr[scr_line()].* ;
 ...

Pay attention to the semicolon ending the INPUT instruction, which is usually needed here to solve a
language grammar conflict when nested dialog instructions are implemented.

After the user code is executed, the dialog gets the control back and processes the new row as follows:

• If the INT_FLAG global variable is FALSE and STATUS is zero, the new row is kept in the program
array, and the BEFORE ROW block is executed for the new created row.

• If the INT_FLAG global variable is TRUE or STATUS is different from zero, the new row is removed from
the program array, and the BEFORE ROW block is executed for the row that was existing at the current
position, before the new row was created.

The DISPLAY ARRAY dialog always resets INT_FLAG to FALSE and STATUS to zero before executing the
user code of the ON INSERT block.

The insert action is disabled if the maximum number of rows is reached.

If needed, the ON INSERT handler can be configured with action attributes by added an ATTRIBUTES()
clause, as with user-defined action handlers:

 ON INSERT ATTRIBUTES(TEXT=%"custlist.delete", IMAGE="listdel")

ON UPDATE block

The ON UPDATE trigger can be used to enable row modification during a DISPLAY ARRAY dialog. If this
block is defined, the dialog will automatically create the update action. This action can be decorated,
enabled and disabled as regular actions.

You typically configure the TABLE container in the form by defining the DOUBLECLICK attribute to "update",
in order to trigger the update action when the user double-clicks on a row.

If the dialog defines an ON ACTION update interaction block and the ON UPDATE block is used, the
compiler will stop with error -8408.

When the user fires the update action, the dialog executes the user code of the ON UPDATE block.

The dialog handles only the row modification action and navigation, you must program the record input
with a regular INPUT statement, to let the end user modify the data of the current row. This is typically
done with an INPUT binding explicitly array fields to the screen record fields, with the WITHOUT DEFAULTS
clause. The current row in the program array is identified with arr_curr(), and the current screen line in
the form is defined by scr_line():

DISPLAY ARRAY arr TO sr.*
 ...
 ON UPDATE
 INPUT arr[arr_curr()].* WITHOUT DEFAULTS FROM sr[scr_line()].* ;
 ...

Pay attention to the semicolon ending the INPUT instruction, which is usually needed here to solve a
language grammar conflict when nested dialog instructions are implemented.

After the user code is executed, the dialog gets the control back and processes the current row as follows:

User interface | 1090

• If the INT_FLAG global variable is FALSE and STATUS is zero, the modified values of the current row
are kept in the program array.

• If the INT_FLAG global variable is TRUE or STATUS is different from zero, the old values of the current
row are restored in the program array.

The DISPLAY ARRAY dialog always resets INT_FLAG to FALSE and STATUS to zero before executing the
user code of the ON UPDATE block.

If needed, the ON UPDATE handler can be configured with action attributes by added an ATTRIBUTES()
clause, as with user-defined action handlers:

 ON UPDATE ATTRIBUTES(TEXT=%"custlist.delete", IMAGE="listdel")

ON DELETE block

The ON DELETE trigger can be used to enable row deletion during a DISPLAY ARRAY dialog. If this block
is defined, the dialog will automatically create the delete action. This action can be decorated, enabled and
disabled as regular actions.

If the dialog defines an ON ACTION delete interaction block and the ON DELETE block is used, the
compiler will stop with error -8408.

When the user fires the delete action, the dialog executes the user code of the ON DELETE block.

The dialog handles only the row deletion action and navigation, you can typically program a validation
dialog box to let the user confirm the deletion. The current row in the program array is identified with
arr_curr():

DISPLAY ARRAY arr TO sr.*
 ...
 ON DELETE
 IF fgl_winQuestion("Delete",
 "Do you want to delete this record?",
 "yes", "no|yes", "help", 0) == "no"
 THEN
 LET int_flag = TRUE
 END IF
 ...

After the user code is executed, the dialog gets the control back and processes the current row as follows:

• If the INT_FLAG global variable is FALSE and STATUS is zero, the current row is deleted from the
program array, and the BEFORE ROW block is executed for the next row in the list.

• If the INT_FLAG global variable is TRUE or STATUS is different from zero, the current row is kept in the
program array, and the BEFORE ROW block is executed again for the current row.

The DISPLAY ARRAY dialog always resets INT_FLAG to FALSE and STATUS to zero before executing the
user code of the ON DELETE block.

If needed, the ON DELETE handler can be configured with action attributes by added an ATTRIBUTES()
clause, as with user-defined action handlers:

 ON DELETE ATTRIBUTES(TEXT=%"custlist.delete", IMAGE="listdel")

ON SELECTION CHANGE block

The ON SELECTION CHANGE trigger can be used to enable multi-row selection and detect when rows
are selected or de-selected by the end user during a DISPLAY ARRAY dialog. If this block is defined,
multi-row selection is automatically enableb. However, the feature can be enabled/disabled with the
setSelectionMode() dialog method.

User interface | 1091

ON SORT block

The ON SORT interfaction block can be used to detect when rows have to be sorted in a DISPLAY ARRAY
or INPUT ARRAY dialog.

ON SORT is used in two different contexts:

1. In a regular DISPLAY ARRAY / INPUT ARRAY dialog (not using paged mode), the ON SORT trigger
can be used to detect that a list sort was performed. In this case, the (visual) sort is already done by
the runtime system and the ON SORT block is only used to execute post-sort tasks, such as displaying
current row information, by using arrayToVisualIndex() dialog method. It is also possible to get the sort
column and order with the getSortKey() and getSortSelection() dialog methods.

2. In a DISPLAY ARRAY using paged mode (ON FILL BUFFER), built-in row sorting is not available
because data is provided by pages. Use the ON SORT trigger to detect a sort request and perform
a new SQL query to re-order the rows. In this case, sort column and order is available with the
getSortKey() and getSortSelection() dialog methods. See Populating a DISPLAY ARRAY on
page 1372.

ON DRAG_START block

The ON DRAG_START block is executed when the end user has begun the drag operation. If this dialog
trigger has not been defined, default dragging is enabled for this dialog.

In the ON DRAG_START block, the program typically specifies the type of drag & drop operation by
calling ui.DragDrop.setOperation() with "move" or "copy". This call will define the default
and unique drag operation. If needed, the program can allow another type of drag operation with
ui.DragDrop.addPossibleOperation(). The end user can then choose to move or copy the
dragged object, if the drag & drop target allows it.

If the dragged object can be dropped outside the program, must define the MIME type and drag/drop data
with ui.DragDrop.setMimeType() and ui.DragDrop.setBuffer() methods.

Example:

DEFINE dnd ui.DragDrop
...
DISPLAY ARRAY arr TO sr.* ...
 ...
 ON DRAG_START (dnd)
 CALL dnd.setOperation("move") -- Move is the default operation
 CALL dnd.addPossibleOperation("copy") -- User can toggle to copy if
 needed
 CALL dnd.setMimeType("text/plain")
 CALL dnd.setBuffer(arr[arr_curr()].cust_name)
 ...
END DISPLAY

ON DRAG_FINISHED block

Execution of the ON DRAG_FINISHED block notifies the dialog where the drag started that the drop
operation has been completed or terminated.

Call ui.DragDrop.getOperation() to get the final type of operation of the drop. On successful
completion, the method returns "move" or "copy"; otherwise the function returns NULL. If NULL is returned,
the ON DRAG_FINISHED trigger can be ignored.

In cases of successful moves to a target out of the current DISPLAY ARRAY, the application must remove
the transferred data from the source model. For example, if a row was moved from dialog A to B, dialog A
will get an ON DRAG_FINISHED execution after the row was dropped into B, and should remove the row
from the list A.

User interface | 1092

The ON DRAG_FINISHED interaction block is optional.

DEFINE dnd ui.DragDrop
...
DISPLAY ARRAY arr TO sr.* ...
 ...
 ON DRAG_START (dnd)
 LET last_dragged_row = arr_curr()
 ...
 ON DRAG_FINISHED (dnd)
 IF dnd.getOperation() == "move" THEN
 CALL DIALOG.deleteRow(last_dragged_row)
 END IF
 ...
END DISPLAY

ON DRAG_ENTER block

When the ON DROP control block is defined, the ON DRAG_ENTER block will be executed when the mouse
cursor enters the visual boundaries of the drop target dialog. Entering the target dialog is accepted by
default if no ON DRAG_ENTER block is defined. However, when ON DROP is defined, you should also
define ON DRAG_ENTER to deny the drop of objects with an unsupported MIME type that come from other
applications.

The program can decide to deny or allow a specific drop operation with a call to
ui.DragDrop.setOperation(); passing a NULL to the method will deny drop.

To check what MIME type is available in the drag & drop buffer, the program uses the
ui.DragDrop.selectMimeType() method. This method takes the MIME type as a parameter and
returns TRUE if the passed MIME type is used. You can call this method several times to check the
availability of different MIME types.

You may also define the visual effect when flying over the target list with
ui.DragDrop.setFeedback().

DEFINE dnd ui.DragDrop
...
DISPLAY ARRAY arr TO sr.* ...
 ...
 ON DRAG_ENTER (dnd)
 IF dnd.selectMimeType("text/plain") THEN
 CALL dnd.setOperation("copy")
 CALL dnd.setFeedback("all")
 ELSE
 CALL dnd.setOperation(NULL)
 END IF
 ON DROP (dnd)
 ...
END DISPLAY

Once the mouse has entered the target area, subsequent mouse cursor moves can be detected with the
ON DRAG_OVER trigger.

When using a table or tree-view as drop target, you can control the visual effect when the mouse flies over
the rows, according to the type of drag & drop you want to achieve.

Basically, a dragged object can be:

1. Inserted in between two rows (visual effect must show where the object will be inserted)
2. Copied/merged to the current row (visual effect must show the row under the mouse)
3. Dropped somewhere on the target widget (the exact location inside the widget does not matter)

User interface | 1093

The visual effect can be defined with the ui.DragDrop.setFeedback() method, typically called in the
ON DRAG_ENTER block.

The values to pass to the setFeedback() method to get the desired visual effects described are
respectively:

1. insert (default)
2. select

3. all

DEFINE dnd ui.DragDrop
...
DISPLAY ARRAY arr TO sr.* ...
 ...
 ON DRAG_ENTER (dnd)
 IF canDrop() THEN
 CALL dnd.setOperation(NULL)
 ELSE
 CALL dnd.setFeedback("select")
 END IF
 ...
END DISPLAY

ON DRAG_OVER block

When the ON DROP control block is defined, the ON DRAG_OVER block will be executed after ON
DRAG_ENTER, when the mouse cursor is moving over the drop target, or when the drag & drop operation
has changed (toggling copy/move).

ON DRAG_OVER will be called only once per row, even if the mouse cursor moves over the row.

In the ON DRAG_OVER block, the method ui.DragDrop.getLocationRow() returns the index of the
row in the target array, and can be used to allow or deny the drop. When using a tree-view, you must also
check the index returned by the ui.DragDrop.getLocationParent() method to detect if the object
was dropped as a sibling or as a child node, and allow/deny the drop operation accordingly.

The program can change the drop operation at any execution of the ON DRAG_OVER block. You can deny
or allow a specific drop operation with a call to ui.DragDrop.setOperation(); passing a NULL to the
method will deny the drop.

The current operation (returned by ui.DragDrop.getOperation()) is the value set in previous
ON DRAG_ENTER or ON DRAG_OVER events, or the operation selected by the end user, if it can toggle
between copy and move. Thus, ON DRAG_OVER can occur even if the mouse position has not changed.

If dropping has been denied with ui.DragDrop.setOperation(NULL) in the previous ON DRAG_OVER
event, the program can reset the operation to allow a drop with a call to ui.DragDrop.setOperation()
with the operation parameter "move" or "copy".

ON DRAG_OVER will not be called if drop has been disabled in ON DRAG_ENTER with
ui.DragDrop.setOperation(NULL)

ON DRAG_OVER is optional, and must only be defined if the operation or the acceptance of the drag object
depends on the target row of the drop target.

DEFINE dnd ui.DragDrop
...
DISPLAY ARRAY arr TO sr.* ...
 ...
 ON DRAG_ENTER (dnd)
 ...
 ON DRAG_OVER (dnd)
 IF arr[dnd.getLocationRow()].acceptsCopy THEN
 CALL dnd.setOperation("copy")

User interface | 1094

 ELSE
 CALL dnd.setOperation(NULL)
 END IF
 ON DROP (dnd)
 ...
END DISPLAY

During a drag & drop process, the end user (or the target application) can decide to modify the type of the
operation, to indicate whether the dragged object has to be copied or moved from the source to the target.
For example, in a typical file explorer, by default files are moved when doing a drag & drop on the same
disk. To make a copy of a file, you must press the Ctrl key while doing the drag & drop with the mouse.

In the drop target dialog, you can detect such operation changes in the ON DRAG_OVER trigger and query
the ui.DragDrop object for the current operation with ui.DragDrop.getOperation(). In the drag
source dialog, you typically check ui.DragDrop.getOperation() in the ON DRAG_FINISHED trigger
to know what sort of operation occurred, to keep ("copy" operation) or delete ("move" operation) the
original dragged object.

This example tests the current operation in the drop target list and displays a message accordingly:

DEFINE dnd ui.DragDrop
...
DISPLAY ARRAY arr TO sr.* ...
 ...
 ON DRAG_ENTER (dnd)
 ...
 ON DRAG_OVER (dnd)
 CASE dnd.getOperation()
 WHEN "move"
 MESSAGE "The object will be moved to row ", dnd.getLocationRow()
 WHEN "copy"
 MESSAGE "The object will be copied to row ", dnd.getLocationRow()
 END CASE
 ...
 ON DROP (dnd)
 ...
END DISPLAY

ON DROP block

To enable drop actions on a list, you must define the ON DROP block; otherwise the list will not accept drop
actions.

The ON DROP block is executed after the end user has released the mouse button to drop the dragged
object. ON DROP will not occur if drop has been denied in the previous ON DRAG_OVER event or in ON
DRAG_ENTER with a call to ui.DragDrop.setOperation(NULL).

The program might also check the MIME type of the dragged object with
ui.DragDrop.getSelectedMimeType(), and then call the ui.DragDrop.getBuffer() method to
retrieve drag & drop data from external applications.

Ideally the drop operation should be accepted (no additional call to ui.DragDrop.setOperation()).

In this block, the ui.DragDrop.getLocationRow() method returns the index of the row in the target
array, and can be used to execute the code to get the drop data / object into the row that has been chosen
by the user.

DEFINE dnd ui.DragDrop
...
DISPLAY ARRAY arr TO sr.* ...
 ...
 ON DROP (dnd)
 LET arr[dnd.getLocationRow()].capacity == dnd.getBuffer()

User interface | 1095

 ...
END DISPLAY

If the drag & drop operations are local to the same list or tree-view controller, you can use the
ui.DragDrop.dropInternal() method to simplify the code. This method implements the typical move
of the dragged rows or tree-view node. This is especially useful in case of a tree-view, but is also the
preferred way to move rows around in simple tables.

This ON DROP code example uses the dropInternal() method:

DEFINE dnd ui.DragDrop
...
DISPLAY ARRAY arr_tree TO sr_tree.* ...
 ...
 ON DROP (dnd)
 CALL dnd.dropInternal()
 ...
END DISPLAY

If you want to implement by hand the code to drop a node in a tree-view, you must check the index
returned by the ui.DragDrop.getLocationParent() method to detect if the object was dropped
as a sibling or as a child node, and execute the code corresponding to the drop operation: If the drop
target row index returned by getLocationRow() is a child of the parent row index returned by
getLocationParent() , the new row must be inserted before getLocationRow(); otherwise the new
row must be added as a child of the parent node identified by getLocationParent().

DISPLAY ARRAY control instructions
CONTINUE DISPLAY instruction

CONTINUE DISPLAY skips all subsequent statements in the current control block and gives the control
back to the dialog.

The CONTINUE DISPLAY instruction is useful when program control is nested within multiple conditional
statements, and you want to return the control to the dialog. If this instruction is called in a control block
that is not AFTER DISPLAY, further control blocks might be executed according to the context.

Actually, CONTINUE DISPLAY just instructs the dialog to continue as if the code in the control block
was terminated (i.e. it's a kind of GOTO end_of_control_block). However, when executed in AFTER
DISPLAY, the focus returns to the current row in the list, giving the user another chance to browse and
select a row. In this case the BEFORE ROW of the current row will be invoked.

EXIT DISPLAY instruction

Use the EXIT DISPLAY to terminate the DISPLAY ARRAY instruction and resume the program execution
at the instruction immediately following the DISPLAY ARRAY block.

ACCEPT DISPLAY instruction

The ACCEPT DISPLAY instruction validates the DISPLAY ARRAY instruction and exits the dialog block.

The AFTER DISPLAY control block will be executed. Statements after ACCEPT DISPLAY will not be
executed.

Examples
Various examples using the DISPLAY ARRAY dialog instruction.
Example 1: DISPLAY ARRAY using full list mode

Form definition file "custlist.per":

SCHEMA shop

LAYOUT
TABLE

User interface | 1096

{
 Id Name LastName
[f001 |f002 |f003]
[f001 |f002 |f003]
[f001 |f002 |f003]
[f001 |f002 |f003]
[f001 |f002 |f003]
[f001 |f002 |f003]
}
END
END

TABLES
 customer
END

ATTRIBUTES
 f001 = customer.id;
 f002 = customer.fname;
 f003 = customer.lname;
END

INSTRUCTIONS
 SCREEN RECORD srec[6] (customer.*);
END

Application:

SCHEMA shop

MAIN

 DEFINE cnt INTEGER
 DEFINE arr DYNAMIC ARRAY OF RECORD LIKE customer.*

 DATABASE shop

 OPEN FORM f1 FROM "custlist"
 DISPLAY FORM f1

 DECLARE c1 CURSOR FOR
 SELECT id, fname, lname FROM customer
 LET cnt = 1
 FOREACH c1 INTO arr[cnt].*
 LET cnt = cnt + 1
 END FOREACH
 CALL arr.deleteElement(cnt)

 DISPLAY ARRAY arr TO srec.*
 ON ACTION print
 DISPLAY "Print a report"
 END DISPLAY

END MAIN

Example 2: DISPLAY ARRAY using paged mode

Form definition file "custlist.per" (same as in Example 1)

Application:

SCHEMA shop

User interface | 1097

MAIN

 DEFINE arr DYNAMIC ARRAY OF RECORD LIKE customer.*
 DEFINE cnt, ofs, len, row, i INTEGER

 DATABASE shop

 OPEN FORM f1 FROM "custlist"
 DISPLAY FORM f1

 DECLARE c1 SCROLL CURSOR FOR
 SELECT id, fname, lname FROM customer
 OPEN c1
 DISPLAY ARRAY arr TO srec.* ATTRIBUTES(COUNT=-1)
 ON FILL BUFFER
 LET ofs = fgl_dialog_getBufferStart()
 LET len = fgl_dialog_getBufferLength()
 LET row = ofs
 FOR i=1 TO len
 FETCH ABSOLUTE row c1 INTO arr[i].*
 IF SQLCA.SQLCODE!=0 THEN
 CALL DIALOG.setArrayLength("srec",row-1)
 EXIT FOR
 END IF
 LET row = row + 1
 END FOR
 AFTER DISPLAY
 IF NOT int_flag THEN
 DISPLAY "Selected customer is #"
 || arr[arr_curr()-ofs+1].id
 END IF
 END DISPLAY
END MAIN

Example 3: DISPLAY ARRAY using modification triggers

Form definition file "custlist.per" (same as in Example 1)

Application:

SCHEMA shop

MAIN

 DEFINE arr DYNAMIC ARRAY OF RECORD LIKE customer.*
 DEFINE cnt, ofs, len, row, i INTEGER

 DATABASE shop

 OPEN FORM f1 FROM "custlist"
 DISPLAY FORM f1

 DECLARE c1 CURSOR FOR
 SELECT id, fname, lname FROM customer
 LET cnt = 1
 FOREACH c1 INTO arr[cnt].*
 LET cnt = cnt + 1
 END FOREACH
 CALL arr.deleteElement(cnt)

 DISPLAY ARRAY arr TO srec.* ATTRIBUTES(UNBUFFERED)
 ON UPDATE
 INPUT arr[arr_curr()].* WITHOUT DEFAULTS FROM
 srec[scr_line()].* ;

User interface | 1098

 ON INSERT
 INPUT arr[arr_curr()].* FROM srec[scr_line()].* ;
 ON APPEND
 INPUT arr[arr_curr()].* FROM srec[scr_line()].* ;
 ON DELETE
 MENU "Delete" ATTRIBUTES(STYLE="dialog",
 COMMENT="Do you want to delete the current
 row?")
 COMMAND "Yes" LET int_flag = FALSE
 COMMAND "No" LET int_flag = TRUE
 END MENU
 END DISPLAY

END MAIN

Editable record list (INPUT ARRAY)
The INPUT ARRAY instruction provides always-editable record list handling in an application form.

• Understanding the INPUT ARRAY instruction on page 1098
• Syntax of INPUT ARRAY instruction on page 1099
• INPUT ARRAY programming steps on page 1101
• Using editable record lists on page 1101

• Variable binding in INPUT ARRAY on page 1101
• INPUT ARRAY instruction configuration on page 1102
• Default actions in INPUT ARRAY on page 1105
• INPUT ARRAY control blocks on page 1106
• INPUT ARRAY interaction blocks on page 1117
• INPUT ARRAY control instructions on page 1119

• Examples on page 1124

• Example 1: INPUT ARRAY with empty record list on page 1124
• Example 2: INPUT ARRAY using a static array on page 1124
• Example 3: INPUT ARRAY using a dynamic array on page 1125
• Example 4: INPUT ARRAY updating the database table on page 1126

Understanding the INPUT ARRAY instruction

The INPUT ARRAY is a dialog instruct designed to browse and modify a list of record, binding a static or
dynamic array model to a screen array of the current displayed form.

Important: This feature is not supported on mobile platforms.

An INPUT ARRAY instruction supports additional features, built-in sort and search, multi-row selection and
list modification triggers. For a detailed description of these features, see Table views on page 1345.

Use the INPUT ARRAY instruction to let the end user update, delete and create new records in a list, after
fetching a result set from the database. The result set is produced with a database cursor executing a
SELECT statement. The SELECT SQL statement is usually completed at runtime with a WHERE clause
produced from a CONSTRUCT dialog.

The INPUT ARRAY instruction associates a program array of records with a screen-array defined in a form
so that the user can update the list of records. The INPUT ARRAY statement activates the current form
(the form that was most recently displayed or the form in the current window.)

During the INPUT ARRAY execution, the user can edit or delete existing rows, insert new rows, and move
inside the list of records. The program controls the behavior of the instruction with control blocks such as
BEFORE DELETE, BEFORE INSERT, etc.

User interface | 1099

To terminate the INPUT ARRAY execution, the user can validate (or cancel) the dialog to commit (or
invalidate) the modifications made in the list of records.

When the statement completes execution, the program must test the INT_FLAG variable to check if the
dialog was validated (or canceled) and then use INSERT, DELETE, or UPDATE SQL statements to modify
the appropriate database tables. The database can also be updated during the execution of theINPUT
ARRAY statement.

Syntax of INPUT ARRAY instruction
The INPUT ARRAY supports data entry by users into a screen array and stores the entered data in an
array of records.

Syntax

INPUT ARRAY array
 [WITHOUT DEFAULTS]
 FROM screen-array.*
 [ATTRIBUTES ({ display-attribute
 | control-attribute
 } [,...])]
 [HELP help-
number]
[dialog-control-block
 [...]
END INPUT]

where dialog-control-block is one of:

{ BEFORE INPUT
| AFTER INPUT
| AFTER DELETE
| BEFORE ROW
| AFTER ROW
| BEFORE FIELD field-spec [,...]
| AFTER FIELD field-spec [,...]
| ON ROW CHANGE
| ON CHANGE field-spec [,...]
| ON IDLE seconds
| ON TIMER seconds
| ON ACTION action-name
 [INFIELD field-spec]
 [ATTRIBUTES (action-attributes-input-array)]
| ON KEY (key-name [,...])
| BEFORE INSERT
| AFTER INSERT
| BEFORE DELETE
}
 dialog-statement
 [...]

where action-attributes-input-array is:

{ TEXT = string
| COMMENT = string
| IMAGE = string
| ACCELERATOR = string
| DEFAULTVIEW = { YES | NO | AUTO }
| VALIDATE = NO
| CONTEXTMENU = { YES | NO | AUTO }
| ROWBOUND
 [,...] }

User interface | 1100

where dialog-statement is one of:

{ statement
| ACCEPT INPUT
| CONTINUE INPUT
| EXIT INPUT
| NEXT FIELD { CURRENT | NEXT | PREVIOUS | field-spec }
| CANCEL DELETE
| CANCEL INSERT
}

where field-spec identifies a unique field with one of:

{ field-name
| table-name.field-name
| screen-array.field-name
| screen-record.field-name
}

where display-attribute is:

{ BLACK | BLUE | CYAN | GREEN
| MAGENTA | RED | WHITE | YELLOW
| BOLD | DIM | INVISIBLE | NORMAL
| REVERSE | BLINK | UNDERLINE
}

where control-attribute is:

{ ACCEPT [= boolean]
| APPEND ROW [= boolean]
| AUTO APPEND [= boolean]
| CANCEL [= boolean]
| COUNT = row-count
| DELETE ROW [= boolean]
| FIELD ORDER FORM
| HELP = help-number
| INSERT ROW [= boolean]
| KEEP CURRENT ROW [= boolean]
| MAXCOUNT = max-row-count
| UNBUFFERED [= boolean]
| WITHOUT DEFAULTS [= boolean]
}

1. array is the array of records that will be filled by the INPUT ARRAY statement.
2. help-number is an integer that allows you to associate a help message number with the instruction.
3. field-name is the identifier of a field of the current form.
4. table-name is the identifier of a database table of the current form.
5. screen-record is the identifier of a screen record of the current form.
6. screen-array is the screen array that will be used in the form.
7. action-name identifies an action that can be executed by the user.
8. seconds is an integer literal or variable that defines a number of seconds.
9. key-name is a hot-key identifier (like F11 or Control-z).
10.statement is any instruction supported by the language.
11.row-count defines the initial number of rows for a static array.
12.max-row-count is the maximum number of rows that can be created.
13.boolean is a boolean expression that evaluates to TRUE or FALSE.
14.action-attributes are dialog-specific action attributes.

User interface | 1101

INPUT ARRAY programming steps

The following steps describe how to use the INPUT ARRAY statement:

1. Create a form specification file containing a screen array. The screen array identifies the presentation
elements to be used by the runtime system to display the rows.

2. Make sure that the program controls interruption handling with DEFER INTERRUPT, to manage the
validation/cancellation of the interactive dialog.

3. Define an array of records with the DEFINE instruction. The members of the program array must
correspond to the elements of the screen array, by number and data types. If you want to input data
from a reduced set of columns, you must define a second screen array, containing the limited list of
form fields, in the form file. You can then use the second screen array in an INPUT ARRAY a FROM
sa.* instruction.

4. Open and display the form, using a OPEN WINDOW WITH FORM or the OPEN FORM / DISPLAY FORM
instructions.

5. If needed, fill the program array with data, for example with a result set cursor, counting the number of
program records being filled with retrieved data.

6. Set the INT_FLAG variable to FALSE.

7. Write the INPUT ARRAY statement to handle data input.

8. Inside the INPUT ARRAY statement, control the behavior of the instruction with control blocks such
as BEFORE INPUT, BEFORE INSERT, BEFORE DELETE, BEFORE ROW, BEFORE FIELD,AFTER
INSERT,AFTER DELETE,AFTER FIELD,AFTER ROW, AFTER INPUT and ON ACTION blocks.

9. Get the new number of rows with the ARR_COUNT() built-in function or with
DIALOG.getArrayLength().

10.After the interaction statement block, test the INT_FLAG predefined variable to check if the dialog was
canceled (INT_FLAG=TRUE) or validated (INT_FLAG=FALSE). If the INT_FLAG variable is TRUE, you
should reset it to FALSE to not disturb code that relies on this variable to detect interruption events from
the GUI front-end or TUI console.

Using editable record lists
To use editable record lists, you must understand how they work and how to structure the code.
Variable binding in INPUT ARRAY

The INPUT ARRAY statement binds the members of the array of record to the screen array fields specified
with the FROM keyword. Array members and screen array fields are bound by position (i.e. not by name).
The number of members in the program array must match the number of fields in the screen record (that
is, in a single row of the screen array).

SCHEMA stock
DEFINE cust_arr DYNAMIC ARRAY OF customer.*
...
INPUT ARRAY cust_arr FROM sr.*
 ATTRIBUTES(UNBUFFERED)
 ...
END INPUT

Keep in mind that array members are bound to screen array fields by position, so you must make sure that
the members of the array are defined in the same order as the screen array fields.

Note that the array is usually defined with a flat list of members with ARRAY OF RECORD / END RECORD.
However, the array can be structured with sub-records and still be used with an INPUT ARRAY dialog.
This is especially useful when you need to define arrays from database tables, and additional information
needs to be managed at runtime (for example to hold image resource for each row, to be displayed with
the IMAGECOLUMN attribute):

SCHEMA shop
DEFINE a_items DYNAMIC ARRAY OF RECORD

User interface | 1102

 item_data RECORD LIKE items.*,
 it_image STRING,
 it_count INTEGER
 END RECORD
...
INPUT ARRAY a_items FROM sr.*
 ...

When using a static array, the initial number of rows is defined by the COUNT attribute and the size of
the array determines how many rows can be inserted. When using a dynamic array, the initial number of
rows is defined by the number of elements in the dynamic array (the COUNT attribute is ignored), and the
maximum rows is unlimited. For both static and dynamic arrays, the maximum number of rows the user
can enter can be defined with the MAXCOUNT attribute.

The FROM clause binds the screen records in the screen array to the program records of the program
array. The form can include other fields that are not part of the specified screen array, but the number of
member variables in each record of the program array must equal the number of fields in each row of the
screen array. When the user enters data, the runtime system checks the entered value against the data
type of the variable, not the data type of the screen field.

The variables of the record array are the interface to display data or to get the user input through the
INPUT ARRAY instruction. Always use the variables if you want to change some field values by program.
When using the UNBUFFERED attribute, the instruction is sensitive to program variable changes. If you
need to display new data during the INPUT ARRAY execution, use the UNBUFFERED attribute and assign
the values to the program array row; the runtime system will automatically display the values to the screen:

INPUT ARRAY p_items FROM s_items.*
 ATTRIBUTES(UNBUFFERED)
 ON CHANGE code
 IF p_items[arr_curr()].code = "A34" THEN
 LET p_items[arr_curr()].desc = "Item A34"
 END IF
END INPUT

The runtime system adapts input and display rules to the data type of the array record members. If a
member is declared with the DEFINE LIKE instruction and uses a column defined as SERIAL / SERIAL8 /
BIGSERIAL, the runtime system will treat the field as if it was defined with the NOENTRY attribute in the
form file. Since values of serial columns are automatically generated by the database server, no user input
is required for such fields.

The default order in which the focus moves from field to field in the screen array is determined by the
declared order of the corresponding member variables, in the array of the record definition. The program
OPTIONS instruction can also change the behavior of the INPUT ARRAY instruction, with the INPUT WRAP
or FIELD ORDER FORM options.

By default the INPUT ARRAY instruction clears the program array when starting, unless you specify the
WITHOUT DEFAULTS keywords or option. With this option, the dialog displays the program array rows in
the screen fields. Unlike the INPUT dialog, the column default values defined in the form specification file
with the DEFAULT attribute or in the database schema files are always used when a new row is inserted in
the list.

If the program array has the same structure as a database table (this is the case when the array is defined
with a DEFINE LIKE clause), you may not want to display/use some of the columns. You can achieve this
by using PHANTOM fields in the screen array definition. Phantom fields will only be used to bind program
variables, and will not be transmitted to the front-end for display.

INPUT ARRAY instruction configuration

This section describes the options that can be specified in the ATTRIBUTES clause of the INPUT ARRAY
instruction. The options of the ATTRIBUTES clause override all default attributes and temporarily override

User interface | 1103

any display attributes that the OPTIONS or the OPEN WINDOW statement specified for these fields. With the
INPUT ARRAY statement, the INVISIBLE attribute is ignored.

HELP option
The HELP clause specifies the number of a help message to display if the user invokes the help the INPUT
ARRAY dialog. The predefined 'help' action is automatically created by the runtime system. You can bind
action views to the 'help' action.

The HELP clause overrides the HELP attribute.

WITHOUT DEFAULTS option

The WITHOUT DEFAULT clause defines whether the program array elements are populated (and to be
displayed) when the dialog begins. Once the dialog is started, existing rows are always handled as records
to be updated in the database (i.e. WITHOUT DEFAULTS=TRUE), while newly created rows are handled as
records to be inserted in the database (i.e. WITHOUT DEFAULTS=FALSE). In other words, the REQUIRED
and DEFAULT attributes defined in the form are only used for new created rows.

It is unusual to implement an INPUT ARRAY with no WITHOUT DEFAULTS option, because the data of
the program variables would be cleared and the list empty. So, you typically use the WITHOUT DEFAULT
clause in INPUT ARRAY. In a singular INPUT ARRAY, the default is WITHOUT DEFAULTS=FALSE.

FIELD ORDER FORM option

By default, the form tabbing order is defined by the variable list in the binding specification. You can control
the tabbing order by using the FIELD ORDER FORM attribute. When this attribute is used, the tabbing
order is defined by the TABINDEX attribute of the form items. With FIELD ORDER FORM, if you jump from
one field to a another with the mouse, the BEFORE FIELD / AFTER FIELD triggers of intermediate fields
are not executed (actually, the Dialog.fieldOrder FGLPROFILE entry is ignored.)

If the form uses a TABLE container, the front-end resets the tab indexes when the user moves columns
around. This way, the visual column order always corresponds to the input tabbing order. The order
of the columns in an editable list can be important; you may want to freeze the table columns with the
UNMOVABLECOLUMNS attribute.

UNBUFFERED option

The UNBUFFERED attribute indicates that the dialog must be sensitive to program variable changes. When
using this option, you bypass the traditional "buffered" mode.

When using the traditional " buffered" mode, program variable changes are not automatically displayed
to form fields; You need to execute a DISPLAY TO or DISPLAY BY NAME. Additionally, if an action is
triggered, the value of the current field is not validated and is not copied into the corresponding program
variable. The only way to get the text of the current field is to use GET_FLDBUF().

If the "unbuffered" mode is used, program variables and form fields are automatically synchronized. You
don't need to display explicitly values with a DISPLAY TO or DISPLAY BY NAME. When an action is
triggered, the value of the current field is validated and is copied into the corresponding program variable.

COUNT option

The COUNT attribute defines the number of valid rows in the static array to be displayed as default rows.
If you do not use the COUNT attribute, the runtime system cannot determine how much data to display, so
the screen array remains empty. You can also use the SET_COUNT() built-in function, but it is supported
for backward compatibility only. The COUNT option is ignored when using a dynamic array. If you specify
the COUNT attribute, the WITHOUT DEFAULTS option is not required because it is implicit. If the COUNT
attribute is greater than MAXCOUNT, the runtime system will take MAXCOUNT as the actual number of rows.
If the value of COUNT is negative or zero, it defines an empty list.

User interface | 1104

MAXCOUNT option

The MAXCOUNT attribute defines the maximum number of rows that can be inserted in the program array.
This attribute allows you to give an upper limit of the total number of rows the user can enter, when using
both static or dynamic arrays.

When binding a static array, MAXCOUNT is used as upper limit if it is lower or equal to the actual declared
static array size. If MAXCOUNT is greater than the array size, the size of the static array is used as the
upper limit. If MAXCOUNT is lower than the COUNT attribute (or to the SET_COUNT() parameter), the actual
number of rows in the array will be reduced to MAXCOUNT.

When binding a dynamic array, the user can enter an infinite number of rows unless the MAXCOUNT
attribute is used. If MAXCOUNT is lower than the actual size of the dynamic array, the number of rows in the
array will be reduced to MAXCOUNT.

If MAXCOUNT is negative or equal to zero, the user cannot insert rows.

ACCEPT option

The ACCEPT attribute can be set to FALSE to avoid the automatic creation of the accept default action. This
option can be used for example when you want to write a specific validation procedure, by using ACCEPT
INPUT.

CANCEL option

The CANCEL attribute can be set to FALSE to avoid the automatic creation of the cancel default action. This
is useful for example when you only need a validation action (accept), or when you want to write a specific
cancellation procedure, by using EXIT INPUT.

If the CANCEL=FALSE option is set, no close action will be created, and you must write an ON ACTION
close control block to create an explicit action.

APPEND ROW option

The APPEND ROW attribute can be set to FALSE to avoid the append default action, and deny the user to
add rows at the end of the list. If APPEND ROW =FALSE, it is still possible to insert rows in the middle of
the list. Use the INSERT ROW attribute to disallow the user from inserting rows. Additionally, even with
APPEND ROW=FALSE and INSERT ROW=FALSE, you can still get automatic temporary row creation if
AUTO APPEND is not set to FALSE.

INSERT ROW option

The INSERT ROW attribute can be set to FALSE to avoid the insert default action, and deny the user to
insert new rows in the middle of the list. However, even if INSERT ROW is FALSE, it is still possible to
append rows at the end of the list. Use the APPEND ROW attribute to disallow the user from appending
rows. Additionally, even with APPEND ROW=FALSE and INSERT ROW=FALSE, you can still get automatic
temporary row creation if AUTO APPEND is not set to FALSE.

DELETE ROW option

The DELETE ROW attribute can be set to FALSE to avoid the delete default action, and deny the user to
remove rows from the list.

AUTO APPEND option

By default, an INPUT ARRAY controller creates a temporary row when needed (for example, when the
user deletes the last row of the list, an new row will be automatically created). You can prevent this default
behavior by setting the AUTO APPEND attribute to FALSE. When this attribute is set to FALSE, the only way
to create a new temporary row is to execute the append action.

User interface | 1105

If both the APPEND ROW and INSERT ROW attributes are set to FALSE, the dialog automatically behaves
as if AUTO APPEND equals FALSE.

KEEP CURRENT ROW option

Depending on the list container used in the form, the current row may be highlighted during the execution
of the dialog, and cleared when the instruction ends. You can change this default behavior by using the
KEEP CURRENT ROW attribute, to force the runtime system to keep the current row highlighted.

Default actions in INPUT ARRAY

When an INPUT ARRAY instruction executes, the runtime system creates a set of default actions.

According the invoked default action, field validation occurs and different INPUT ARRAY control blocks are
executed.

This table lists the default actions created for this dialog:

Table 274: Default actions for INPUT ARRAY

Default action Description

accept

Validates the INPUT ARRAY dialog (validates fields
and leaves the dialog)

Creation can be avoided with ACCEPT attribute.

cancel

Cancels the INPUT ARRAY dialog (no validation,
INT_FLAG is set to TRUE)

Creation can be avoided with CANCEL attribute.

close

By default, cancels the INPUT ARRAY dialog (no
validation, INT_FLAG is set to TRUE)

Default action view is hidden. See Implementing the
close action on page 1337.

insert

Inserts a new row before current row.

Creation can be avoided with INSERT ROW =
FALSE attribute.

append

Appends a new row at the end of the list.

Creation can be avoided with APPEND ROW =
FALSEattribute.

delete

Deletes the current row.

Creation can be avoided with DELETE ROW =
FALSEattribute.

help
Shows the help topic defined by the HELP clause.

Only created when a HELPclause is defined.

nextrow Moves to the next row in a list displayed in one row
of fields.

User interface | 1106

Default action Description

Only created if DISPLAY ARRAYused with a screen
record having only one row.

prevrow

Moves to the previous row in a list displayed in one
row of fields.

Only created if DISPLAY ARRAYused with a screen
record having only one row.

firstrow

Moves to the first row in a list displayed in one row
of fields.

Only created if DISPLAY ARRAYused with a screen
record having only one row.

lastrow

Moves to the last row in a list displayed in one row
of fields.

Only created if DISPLAY ARRAYused with a screen
record having only one row.

find

Opens the fglfind dialog window to let the user
enter a search value, and seeks to the row
matching the value.

Only created if the context allows built-in find.

findnext

Seeks to the next row matching the value entered
during the fglfind dialog.

Only created if the context allows built-in find.

The insert, append, delete, accept and cancel default actions can be avoided with dialog control attributes:

INPUT ARRAY arr TO sr.* ATTRIBUTES(INSERT ROW=FALSE, CANCEL=FALSE, ...)
 ...

INPUT ARRAY control blocks
INPUT ARRAY control blocks execution order

This table shows the order in which the runtime system executes the control blocks in the INPUT ARRAY
instruction, according to the user action:

Table 275: Control block execution order for INPUT ARRAY

Context / User action Control Block execution order

Entering the dialog 1. BEFORE INPUT

2. BEFORE ROW

3. BEFORE FIELD

Moving to a different row from field A to field B 1. ON CHANGE (if value has changed for field A)
2. AFTER FIELD (for field A in the row you leave)
3. AFTER INSERT (if the row you leave was

inserted or appended)

or

User interface | 1107

Context / User action Control Block execution order

ON ROW CHANGE (if values have changed in the
row you leave)

4. AFTER ROW (for the row you leave)
5. BEFORE ROW (the new current row)
6. BEFORE FIELD (for field B in the new current

row)

Moving from field A to field B in the same row 1. ON CHANGE (if value has changed for field A)
2. AFTER FIELD (for field A)
3. BEFORE FIELD (for field B)

Deleting a row 1. BEFORE DELETE (for the row to be deleted)
2. AFTER DELETE (for the deleted row)
3. AFTER ROW (for the deleted row)
4. BEFORE ROW (for the new current row)
5. BEFORE FIELD (field in the new current row)

Inserting a new row between rows 1. ON CHANGE (if value has changed in the field
you leave)

2. AFTER FIELD (for the row you leave)
3. AFTER INSERT (if the row you leave was

inserted or appended)

or

ON ROW CHANGE (if values have changed in the
row you leave)

4. AFTER ROW (for the row you leave)
5. BEFORE INSERT (for the new created row)
6. BEFORE FIELD (for the new created row)

Appending a new row at the end 1. ON CHANGE (if value has changed in the current
field)

2. AFTER FIELD (for the row you leave)
3. AFTER INSERT (if the row you leave was

inserted or appended)

or

ON ROW CHANGE (if values have changed in the
row you leave)

4. AFTER ROW (for the row you leave)
5. BEFORE ROW (for the new created row)
6. BEFORE INSERT (for the new created row)
7. BEFORE FIELD (for the new created row)

Validating the dialog 1. ON CHANGE

2. AFTER FIELD

3. AFTER INSERT (if the current row was inserted
or appended)

or

User interface | 1108

Context / User action Control Block execution order

ON ROW CHANGE (if values have changed in the
current row)

4. AFTER ROW

5. AFTER INPUT

Canceling the dialog 1. AFTER ROW

2. AFTER INPUT

BEFORE INPUT block

BEFORE INPUT block in singular and parallel INPUT, INPUT ARRAY dialogs

In a singular INPUT, INPUT ARRAY instruction, or when used as parallel dialog, the BEFORE INPUT is
only executed once when the dialog is started.

The BEFORE INPUT block is executed once at dialog startup, before the runtime system gives control to
the user. This block can be used to display messages to the user, initialize program variables and setup
the dialog instance by deactivating unused fields or actions the user is not allowed to execute.

INPUT BY NAME cust_rec.* ...
 BEFORE INPUT
 MESSAGE "Input customer information"
 CALL DIALOG.setActionActive("check_info", is_super_user())
 CALL DIALOG.setFieldActive("cust_comment", is_super_user())
 ...

The fields are initialized with the defaults values before the BEFORE INPUT block is executed. When the
INPUT instruction uses the WITHOUT DEFAULTS option, the default values are taken from the program
variables bound to the fields, otherwise (with defaults), the DEFAULT attributes of the form fields are used.

Use the NEXT FIELD control instruction in the BEFORE INPUT block, to jump to a specific field when the
dialog starts.

BEFORE INPUT block in INPUT and INPUT ARRAY of procedural DIALOG

In an INPUT or INPUT ARRAY sub-dialog of a procedural DIALOG instruction, the BEFORE INPUT block is
executed when the focus goes to a group of fields driven by the sub-dialog. This trigger is only invoked if a
field of the sub-dialog gets the focus, and none of the other fields had the focus.

When the focus is in a list driven by an INPUT ARRAY sub-dialog, moving to a different row will not invoke
the BEFORE INPUT block.

BEFORE INPUT is executed after the BEFORE DIALOG block andbefore the BEFORE ROW, BEFORE
FIELD blocks.

In this example, the BEFORE INPUT block is used to set up a specific action and display a message:

INPUT BY NAME p_order.*
 BEFORE INPUT
 CALL DIALOG.setActionActive("validate_order", TRUE)

AFTER INPUT block

AFTER INPUT block in singular and parallel INPUT, INPUT ARRAY dialogs
In a singular INPUT, INPUT ARRAY instruction, or when used as parallel dialog, the AFTER INPUT is only
executed once when dialog ends.

User interface | 1109

The AFTER INPUT block is executed after the user has validated or canceled the INPUT or INPUT ARRAY
dialog with the accept or cancel default actions, or when the ACCEPT INPUT instruction is executed.

The AFTER INPUT block is not executed when the EXIT INPUT instruction is performed.

In singular and parallel dialogs, this block is typically used to implement global dialog validation rules
depending from several fields. If the values entered by the user do not satisfy the constraints, use the
NEXT FIELD instruction to force the dialog to continue. The CONTINUE INPUT instruction can be used
instead of NEXT FIELD, when no particular field has to be select.

Before checking the validation rules, make sure that the INT_FLAG variable is FALSE: in case if the user
cancels the dialog, the validation rules must be skipped.

INPUT BY NAME cust_rec.*
 WITHOUT DEFAULTS ATTRIBUTES (UNBUFFERED)
 ...

 AFTER INPUT
 IF NOT INT_FLAG THEN
 IF cust_rec.cust_address IS NOT NULL
 AND cust_rec.cust_zipcode IS NULL THEN
 ERROR "Address is incomplete, enter a zipcode."
 NEXT FIELD zipcode
 END IF
 END IF
END INPUT

To limit the validation to fields that have been modified by the end user, you can call the
FIELD_TOUCHED() function or the DIALOG.getFieldTouched() method to check if a field has
changed during the dialog execution. This will make your validation code faster if the user has only
modified a couple of fields in a large form.

AFTER INPUT block in INPUT and INPUT ARRAY of procedural DIALOG

In an INPUT or INPUT ARRAY sub-dialog of a procedural DIALOG instruction, the AFTER INPUT block is
executed when the focus is lost by a group of fields driven by an INPUT or INPUT ARRAY sub-dialog. This
trigger is invoked if a field of the sub-dialog loses the focus, and a field of a different sub-dialog gets the
focus. When the focus is in a list driven by an INPUT ARRAY sub-dialog, moving to a different row will not
invoke the AFTER INPUT block.

If the focus leaves the current group and goes to an action view, this trigger is not executed, because the
focus did not go to another sub-dialog yet.

AFTER INPUT is executed after the AFTER FIELD, AFTER ROW blocks and before the AFTER DIALOG
block.

Executing a NEXT FIELD in the AFTER INPUT control block will keep the focus in the group of fields.
Within an INPUT ARRAY sub-dialog, NEXT FIELD will keep the focus in the list and stay in the current
row. You typically use this behavior to control user input.

In this example, the AFTER INPUT block is used to validate data and disable an action that can only be
used in the current group:

INPUT BY NAME p_order.*
 AFTER INPUT
 IF NOT check_order_data(DIALOG) THEN
 NEXT FIELD CURRENT
 END IF
 CALL DIALOG.setFieldActive("validate_order", FALSE)

User interface | 1110

BEFORE ROW block

BEFORE ROW block in singular and parallel DISPLAY ARRAY, INPUT ARRAY dialogs

In a singular DISPLAY ARRAY, INPUT ARRAY instruction, or when used as parallel dialog, the BEFORE
ROW block is executed each time the user moves to another row. This trigger can also be executed in other
situations, such as when you delete a row, or when the user tries to insert a row but the maximum number
of rows in the list is reached.

You typically do some dialog setup / message display in the BEFORE ROW block, because it indicates that
the user selected a new row or entered in the list.

When the dialog starts, BEFORE ROW will be executed for the current row, but only if there are data rows in
the array.

When called in this block, DIALOG.getCurrentRow() / arr_curr() return the index of the current row.

In this example, the BEFORE ROW block gets the new row number and displays it in a message:

DISPLAY ARRAY ...
 ...
 BEFORE ROW
 MESSAGE "We are on row # ", arr_curr()
 ...

BEFORE ROW block in DISPLAY ARRAY and INPUT ARRAY of procedural DIALOG

In an INPUT or INPUT ARRAY sub-dialog of a procedural DIALOG instruction, the BEFORE ROW block
is executed when a DISPLAY ARRAY or INPUT ARRAY list gets the focus, or when the user moves to
another row inside a list. This trigger can also be executed in other situations, for example when you delete
a row, or when the user tries to insert a row but the maximum number of rows in the list is reached.

You typically do some dialog setup / message display in the BEFORE ROW block, because it indicates that
the user selected a new row. Do not use this trigger to detect focus changes; Use the BEFORE DISPLAY
or BEFORE INPUT blocks instead.

In DISPLAY ARRAY, BEFORE ROW is executed after the BEFORE DISPLAY block. In INPUT ARRAY,
BEFORE ROW is executed before the BEFORE INSERT and BEFORE FIELD blocks and after the BEFORE
INPUT blocks.

When the procedural dialog starts, BEFORE ROW will only be executed if the list has received the focus and
there is a current row (the array is not empty). If you have other elements in the form which can get the
focus before the list, BEFORE ROW will not be triggered when the dialog starts. You must pay attention to
this, because this behavior is different to the behavior of singular DISPLAY ARRAY or INPUT ARRAY. In
singular dialogs, the BEFORE ROW block is always executed when the dialog starts (and there are rows in
the array).

When called in this block, DIALOG.getCurrentRow() / arr_curr() return the index of the current row.

In this example the BEFORE ROW block displays a message with the current row number:

 DISPLAY ARRAY p_items TO s_items.*
 BEFORE ROW
 MESSAGE "We are in items, on row #", DIALOG.getCurrentRow("s_items")

ON ROW CHANGE block

The ON ROW CHANGE block is executed in a list controlled by an INPUT ARRAY, when leaving the
current row and when the row has been modified since it got the focus. This is typically used to detect row
modification.

User interface | 1111

The code in ON ROW CHANGE will not be executed when leaving new rows created by the user with the
default append or insert action. To detect row creation, you must use the BEFORE INSERT or AFTER
INSERT control blocks.

The ON ROW CHANGE block is only executed if at least one field value in the current row has changed
since the row was entered, and the modification flag of the field is set. The modified field(s) might not be
the current field, and several field values can be changed. Values might have been changed by the user
or by the program. The modification flag is reset for all fields when entering another row, when going to
another sub-dialog, or when leaving the dialog instruction.

ON ROW CHANGE is executed after the AFTER FIELD block and before the AFTER ROW block.

When called in this block, DIALOG.getCurrentRow() / arr_curr() return the index of the current row that
has been changed.

You can, for example, code database modifications (UPDATE) in the ON ROW CHANGE block:

 INPUT ARRAY p_items FROM s_items.*
 ...
 ON ROW CHANGE
 LET r = DIALOG.getCurrentRow("s_items")
 UPDATE items SET
 items.item_code = p_items[r].item_code,
 items.item_description = p_items[r].item_description,
 items.item_price = p_items[r].item_price,
 items.item_updatedate = TODAY
 WHERE items.item_num = p_items[r].item_num

AFTER ROW block

AFTER ROW block in singular and parallel DISPLAY ARRAY, INPUT ARRAY dialogs

In a singular DISPLAY ARRAY, INPUT ARRAY instruction, or when used as parallel dialog, the AFTER
ROW block is executed each time the user moves to another row, before the current row is left. This trigger
can also be executed in other situations, such as when you delete a row, or when the user inserts a new
row.

A NEXT FIELD instruction executed in the AFTER ROW control block will keep the user entry in the current
row. Use this behavior to implement row validation and prevent the user from leaving the list or moving to
another row.

When called in this block, DIALOG.getCurrentRow() / arr_curr() return the index of the row that you
are leaving.

AFTER ROW block in DISPLAY ARRAY and INPUT ARRAY of procedural DIALOG

In an INPUT or INPUT ARRAY sub-dialog of a procedural DIALOG instruction, the AFTER ROW block is
executed when a DISPLAY ARRAY or INPUT ARRAY list loses the focus, or when the user moves to
another row in a list. This trigger can also be executed in other situations, for example when you delete a
row, or when the user inserts a new row.

AFTER ROW is executed after the AFTER FIELD, AFTER INSERT and before AFTER DISPLAY or AFTER
INPUT blocks.

When called in this block, DIALOG.getCurrentRow() / arr_curr() return the index of the of the row
that you are leaving.

For both INPUT ARRAY and DISPLAY ARRAY sub-dialogs, a NEXT FIELD executed in the AFTER ROW
control block will keep the focus in the list and stay in the current row. Use this feature to implement row
validation and prevent the user from leaving the list or moving to another row.

User interface | 1112

AFTER ROW and temporary rows in INPUT ARRAY

Important: After creating a temporary row at the end of a list driven by INPUT
ARRAY, if you leave that row to a previous row without data input (setting the
touched flag), or when the cancel action is invoked, the temporary row will be
automatically removed. The AFTER ROW block will be executed for the temporary
row, but ui.Dialog.getCurrentRow()/arr_curr() will be one row greater than
ui.Dialog.getArrayLength()/ARR_COUNT(). In this case, you should ignore the AFTER
ROW event. For example, you should not try to execute a NEXT FIELD or CONTINUE INPUT
instruction, nor should you try to access the dynamic array with a row index that is greater
than the total number of rows, otherwise the runtime system will adapt the total number of
rows to the actual number of rows in the program array.

In this example, the AFTER ROW block checks the current row index and verifies a variable value to forces
the focus to stay in the current row if the value is wrong:

INPUT ARRAY p_items FROM s_items.*
 ...
 AFTER ROW
 LET r = DIALOG.getCurrentRow("s_items")
 IF r <= DIALOG.getArrayLength("s_items") THEN
 IF NOT item_is_valid_quantity(p_item[r].item_quantity) THEN
 ERROR "Item quantity is not valid"
 NEXT FIELD item_quantity'
 END IF
 END IF

Another way to handle the case of temporary rows in AFTER ROW is to use a flag to know if the AFTER
INSERT block was executed: The AFTER INSERT block is not executed if the temporary row is
automatically removed. By setting a first value in BEFORE INSERT and changing the flag in AFTER
INSERT, you can detect if the row was permanently added to the list:

INPUT ARRAY p_items FROM s_items.*
 ...
 BEFORE INSERT
 LET op = "T"
 ...
 AFTER INSERT
 LET op = "I"
 ...
 AFTER ROW
 IF op == "I" THEN
 IF NOT item_is_valid_quantity(p_item[arr_curr()].item_quantity) THEN
 ERROR "Item quantity is not valid"
 NEXT FIELD item_quantity
 END IF
 WHENEVER ERROR CONTINUE
 INSERT INTO items (item_num, item_name, item_quantity)
 VALUES (p_item[arr_curr()].*)
 WHENEVER ERROR STOP
 IF SQLCA.SQLCODE<0 THEN
 ERROR "Could not insert the record into database!"
 NEXT FIELD CURRENT
 ELSE
 MESSAGE "Record has been inserted successfully"
 END IF
 END IF
...

User interface | 1113

BEFORE INSERT block

The BEFORE INSERT block is executed when a new row ins created in an INPUT ARRAY. You typically
use this trigger to set some default values in the new created row. A new row can be created by moving
down after the last row, by executing a insert action, or by executing an append action.

The BEFORE INSERT block is executed after the BEFORE ROW block and before the BEFORE FIELD
block.

When called in this block, DIALOG.getCurrentRow() / arr_curr() return the index of the new created
row.

To distinguish row insertion from an appended row, compare the current row
(DIALOG.getCurrentRow("screen-array")) with the total number of rows
(DIALOG.getArrayLength("screen-array")). If the current row index and the total number of rows
correspond, the BEFORE INSERT concerns a temporary row, otherwise it concerns an inserted row.

Row creation can be stopped by using the CANCEL INSERT instruction inside BEFORE INSERT. If
possible, it is however better to disable the insert and append actions to prevent the user to execute the
actions with DIALOG.setActionActive().

In this example, the BEFORE INSERT block checks if the user can create rows and denies new row
creation if needed; otherwise, it sets some default values:

INPUT ARRAY p_items FROM s_items.*
 ...
 BEFORE INSERT
 IF NOT user_can_append THEN
 ERROR "You are not allowed to append rows"
 CANCEL INSERT
 END IF
 LET r = DIALOG.getCurrentRow("s_items")
 LET p_items[r].item_num = get_new_serial("items")
 LET p_items[r].item_name = "undefined"

AFTER INSERT block

The AFTER INSERT block of INPUT ARRAY is executed when the creation of a new row is validated. In
this block, you can for example implement SQL to insert a new row in the database table.

The AFTER INSERT block is executed afterthe AFTER FIELD block and before the AFTER ROW block.

When called in this block, DIALOG.getCurrentRow() / arr_curr() return the index of the new created
row.

When the user appends a new row at the end of the list, then moves UP to another row or validates
the dialog, the AFTER INSERT block is only executed if at least one field was edited. If no data entry is
detected, the dialog automatically removes the new appended row and thus does not trigger the AFTER
INSERT block.

When executing a NEXT FIELD in the AFTER INSERT block, the dialog will keep the focus in the list and
stay in the current row. Use this behavior to implement row input validation and prevent the user from
leaving the list or moving to another row. However, this will not cancel the row insertion and will not invoke
the BEFORE INSERT / AFTER INSERT triggers again. The only way to keep the focus in the current row
after the row was inserted is to execute a NEXT FIELD in the AFTER ROW block.

In this example, the AFTER INSERT block inserts a new row in the database and cancels the operation if
the SQL command fails:

INPUT ARRAY p_items FROM s_items.*
 ...
 AFTER INSERT
 WHENEVER ERROR CONTINUE

User interface | 1114

 INSERT INTO items VALUES
 (p_items[DIALOG.getCurrentRow("s_items")].*)
 WHENEVER ERROR STOP
 IF SQLCA.SQLCODE<>0 THEN
 ERROR SQLERRMESSAGE
 CANCEL INSERT
 END IF

BEFORE DELETE block

The BEFORE DELETE block is executed each time the user deletes a row of an INPUT ARRAY list, before
the row is removed from the list.

You typically code the database table synchronization in the BEFORE DELETE block, by executing a
DELETE SQL statement using the primary key of the current row. In the BEFORE DELETE block, the row
to be deleted still exists in the program array, so you can access its data to identify what record needs to
be removed.

The BEFORE DELETE block is executed before the AFTER DELETE block.

If needed, the deletion can be canceled with the CANCEL DELETE instruction.

When called in this block, DIALOG.getCurrentRow() / arr_curr() return the index of the row that will
be deleted.

The next example uses the BEFORE DELETE block to remove the row from the database table and
cancels the deletion operation if an SQL error occurs:

INPUT ARRAY p_items FROM s_items.*
 BEFORE DELETE
 LET r = DIALOG.getCurrentRow("s_items")
 WHENEVER ERROR CONTINUE
 DELETE FROM items
 WHERE item_num = p_items[r].item_num
 WHENEVER ERROR STOP
 IF SQLCA.SQLCODE<>0 VALUES
 ERROR SQLERRMESSAGE
 CANCEL DELETE
 END IF
...

AFTER DELETE block

The AFTER DELETE block is executed each time the user deletes a row of an INPUT ARRAY list, after the
row has been deleted from the list.

The AFTER DELETE block is executed after the BEFORE DELETE block and before the AFTER ROW block
for the deleted row and the BEFORE ROW block of the new current row.

When an AFTER DELETE block executes, the program array has already been modified; the deleted row
no longer exists in the array (except in the special case when deleting the last row). The arr_curr()
function or the ui.Dialog.getCurrentRow() method returns the same index as in BEFORE ROW, but it
is the index of the new current row. The AFTER ROW block is also executed just after the AFTER DELETE
block.

Important: When deleting the last row of the list, AFTER DELETE is executed for
the delete row, and DIALOG.getCurrentRow() / arr_curr() will be one higher as
DIALOG.getArrayLength() / ARR_COUNT(). You should not access a dynamic array with
a row index that is greater than the total number of rows, otherwise the runtime system will
adapt the total number of rows to the actual number of rows in the program array. When
using a static array, you must ignore the values in the rows after ARR_COUNT().

User interface | 1115

Here the AFTER DELETE block is used to re-number the rows with a new item line number (note that
DIALOG.getArrayLength() / ARR_COUNT() may return zero):

INPUT ARRAY p_items FROM s_items.*
 AFTER DELETE
 LET r = DIALOG.getCurrentRow("s_items")
 FOR i=r TO DIALOG.getArrayLength("s_items")
 LET p_items[i].item_lineno = i
 END FOR
...

It is not possible to use the CANCEL DELETE instruction in an AFTER DELETE block. At this time it is too
late to cancel row deletion, as the data row no longer exists in the program array.

BEFORE FIELD block

For fields controlled by an INPUT, INPUT ARRAY or by a CONSTRUCT instructions, the BEFORE FIELD
block is executed every time the cursor enters into the specified field.

For editable lists driven by INPUT ARRAY, this block is executed when moving the focus from field to field
in the same row, or when moving to another row in the same column.

The BEFORE FIELD block is also executed when performing a NEXT FIELD instruction.

The BEFORE FIELD keywords must be followed by a list of form field specification. The screen-record
name can be omitted.

BEFORE FIELD is executed after BEFORE INPUT, BEFORE CONSTRUCT, BEFORE ROW and BEFORE
INSERT.

Use this block to do some field value initialization, or to display a message to the user:

INPUT BY NAME p_cust.* ...
 BEFORE FIELD cust_status
 LET p_cust.cust_comment = NULL
 MESSAGE "Enter customer status"

When using the default FIELD ORDER CONSTRAINT mode, the dialog executes the BEFORE FIELD
block of the field corresponding to the first variable of an INPUT or INPUT ARRAY, even if that field is not
editable (NOENTRY, hidden or disabled). The block is executed when you enter the dialog and every time
you create a new row in the case of INPUT ARRAY. This behavior is supported for backward compatibility.
The block is not executed when using the FIELD ORDER FORM, the mode recommended for DIALOG
instructions.

With the FIELD ORDER FORM mode, for each dialog executing the first time with a specific form, the
BEFORE FIELD block might be invoked for the first field of the initial tabbing list defined by the form, even
if that field was hidden or moved around in a table. The dialog then behaves as if a NEXT FIELD first-
visible-column would have been done in the BEFORE FIELD of that field.

When form-level validation occurs and a field contains an invalid value, the dialog gives the focus to the
field, but no BEFORE FIELD trigger will be executed.

ON CHANGE block

The ON CHANGE block can be used to detect that a field changed by user input. The ON CHANGE block
is executed if the value has changed since the field got the focus and if the modification flag is set. The
ON CHANGE block can only be used for fields controlled by an INPUT or INPUT ARRAY dialog, it is not
available in CONSTRUCT.

For editable fields defined as EDIT, TEXTEDIT or BUTTONEDIT, the ON CHANGE block is executed
when leaving a field, if the value of the specified field has changed since the field got the focus and if
the modification flag is set for the field. You leave the field when you validate the dialog, when you move
to another field, or when you move to another row in an INPUT ARRAY. However, if the text edit field is

User interface | 1116

defined with the COMPLETER attribute to enable autocompletion, the ON CHANGE trigger will be fired after a
short period of time, when the user has typed characters in.

For editable fields defined as CHECKBOX, COMBOBOX, DATEEDIT, DATETIMEEDIT, TIMEEDIT,
RADIOGROUP, SPINEDIT, SLIDER or URL-based WEBCOMPONENT (when the COMPONENTTYPE attribute
is not used), the ON CHANGE block is invoked immediately when the user changes the value with the
widget edition feature. For example, when toggling the state of a CHECKBOX, when selecting an item in
a COMBOBOX list, or when choosing a date in the calendar of a DATEEDIT. Note that for such item types,
when ON CHANGE is fired, the modification flag is always set.

 ON CHANGE order_checked -- Defined as CHECKBOX
 CALL setup_dialog(DIALOG)

If both an ON CHANGE block and AFTER FIELD block are defined for a field, the ON CHANGE block is
executed before the AFTER FIELD block.

When changing the value of the current field by program in an ON ACTION block, the ON CHANGE
block will be executed when leaving the field if the value is different from the reference value and if the
modification flag is set (after previous user input or when the touched flag has been changed by program).

When using the NEXT FIELD instruction, the comparison value is reassigned as if the user had leaved
and reentered the field. Therefore, when using NEXT FIELD in ON CHANGE block or in an ON ACTION
block, the ON CHANGE block will only be invoked again if the value is different from the reference value.
This denies to do field validation in ON CHANGE blocks: you must do validations in AFTER FIELD blocks
and/or AFTER INPUT blocks.

AFTER FIELD block

In dialog parts driven by a simple INPUT, INPUT ARRAY or by a CONSTRUCT sub-dialog, the AFTER
FIELD block is executed every time the focus leaves the specified field. For editable lists driven by INPUT
ARRAY, this block is executed when moving the focus from field to field in the same row, or when moving to
another row in the same column.

The AFTER FIELD keywords must be followed by a list of form field specifications. The screen-record
name can be omitted.

AFTER FIELD is executed before AFTER INSERT, ON ROW CHANGE, AFTER ROW, AFTER INPUT or
AFTER CONSTRUCT.

When a NEXT FIELD instruction is executed in an AFTER FIELD block, the cursor moves to the specified
field, which can be the current field. This can be used to prevent the user from moving to another field / row
during data input. Note that the BEFORE FIELD block is also executed when NEXT FIELD is invoked.

The AFTER FIELD block of the current field is not executed when performing a NEXT FIELD; only
BEFORE INPUT, BEFORE CONSTRUCT, BEFORE ROW, and BEFORE FIELD of the target item might be
executed, based on the sub-dialog type.

When ACCEPT DIALOG, ACCEPT INPUT or ACCEPT CONTRUCT is performed, the AFTER FIELD trigger
of the current field is executed.

Use the AFTER FIELD block to implement field validation rules:

INPUT BY NAME p_item.* ...
 AFTER FIELD item_quantity
 IF p_item.item_quantity <= 0 THEN
 ERROR "Item quantity cannot be negative or zero"
 LET p_item.item_quantity = 0
 NEXT FIELD item_quantity
 END IF

User interface | 1117

INPUT ARRAY interaction blocks
ON ACTION block

The ON ACTION action-name blocks execute a sequence of instructions when the user triggers a
specific action.

A typical action handler block looks like this:

 ON ACTION action-name
 instruction
 ...

Action blocks will be bound by name to action views (like buttons) in the current form. Action views can
be buttons in forms, toolbar buttons, topmenu options, and if no explicit action view is defined, actions are
rendered with a default action view, depending on the type of front-end.

The next example defines an action block to open a typical zoom window and let the user select a
customer record:

 ON ACTION zoom
 CALL zoom_customers() RETURNING st, rec.cust_id, rec.cust_name

In a dialog handling user input such as INPUT, INPUT ARRAY and CONSTRUCT, if an action is specific to a
field, add the INFIELD clause to have the action automatically enabled when the corresponding field gets
the focus:

 ON ACTION zoom INFIELD cust_city
 CALL zoom_cities() RETURN st, rec.cust_city

In most cases actions are decoration with action defaults in form files, but there can be cases where the ON
ACTION handler needs to define its own attributes at the program level. This can be done by adding the
ATTRIBUTES() clause of ON ACTION:

 ON ACTION custinfo ATTRIBUTES(DISCLOSUREINDICATOR, IMAGE="info")
 CALL show_customer_info()

For more details about action handlers, and action configuration, see Dialog actions on page 1276.

ON IDLE block

The ON IDLE seconds clause defines a set of instructions that must be executed after a given period
of user inactivity. This interaction block can be used, for example, to quit the dialog after the user has not
interacted with the program for a specified period of time.

The parameter of ON IDLE must be an integer literal or variable. If it the value is zero, the dialog timeout is
disabled.

It is not recommended to use the ON IDLE trigger with a short timeout period such as 1 or 2 seconds; The
purpose of this trigger is to give the control back to the program after a relatively long period of inactivity
(10, 30 or 60 seconds). This is typically the case when the end user leaves the workstation, or got a phone
call. The program can then execute some code before the user gets the control back.

ON IDLE 30
 IF ask_question(
 "Do you want to reload information the database?") THEN
 -- Fetch data back from the db server
 END IF

Important: The timeout value is taken into account when the dialog initializes its internal data
structures. If you use a program variable instead of an integer constant, any change of the variable

User interface | 1118

will have no effect if the variable is changed after the dialog has initialized. If you what to change
the value of the timeout variable, it must be done before the dialog block.

ON KEY block

An ON KEY (key-name) block defines an action with a hidden action view (no default button is visible),
that executes a sequence of instructions when the user presses the specified key.

The ON KEY block is supported for backward compatibility with TUI mode applications.

An ON KEY block can specify up to four different keys. Each key creates a specific action objects that will
be identified by the key name in lowercase. For example, ON KEY(F5,F6) creates two actions with the
names f5 and f6. Each action object will get an ACCELERATORNAME assigned with the corresponding
accelerator name. The specified keys must be one of the virtual keys.

In GUI mode, action defaults are applied for ON KEY actions by using the name of the action (the key
name). You can define secondary accelerator keys, as well as default decoration attributes like button text
and image, by using the key name as action identifier. The action name is always in lowercase letters.

Check carefully the ON KEY CONTROL-? statements because they may result in having duplicate
accelerators for multiple actions due to the accelerators defined by action defaults. Additionally, ON KEY
statements used with ESC, TAB, UP, DOWN, LEFT, RIGHT, HELP, NEXT, PREVIOUS, INSERT, CONTROL-
M, CONTROL-X, CONTROL-V, CONTROL-C and CONTROL-A should be avoided for use in GUI programs,
because it's very likely to clash with default accelerators defined in the factory action defaults file provided
by default.

By default, ON KEY actions are not decorated with a default button in the action frame (the default action
view). You can show the default button by configuring a text attribute with the action defaults.

ON KEY (CONTROL-Z)
 CALL open_zoom()

ON SORT block

The ON SORT interfaction block can be used to detect when rows have to be sorted in a DISPLAY ARRAY
or INPUT ARRAY dialog.

ON SORT is used in two different contexts:

1. In a regular DISPLAY ARRAY / INPUT ARRAY dialog (not using paged mode), the ON SORT trigger
can be used to detect that a list sort was performed. In this case, the (visual) sort is already done by
the runtime system and the ON SORT block is only used to execute post-sort tasks, such as displaying
current row information, by using arrayToVisualIndex() dialog method. It is also possible to get the sort
column and order with the getSortKey() and getSortSelection() dialog methods.

2. In a DISPLAY ARRAY using paged mode (ON FILL BUFFER), built-in row sorting is not available
because data is provided by pages. Use the ON SORT trigger to detect a sort request and perform
a new SQL query to re-order the rows. In this case, sort column and order is available with the
getSortKey() and getSortSelection() dialog methods. See Populating a DISPLAY ARRAY on
page 1372.

ON TIMER block

The ON TIMER seconds clause defines a set of instructions that must be executed at regular intervals.
This interaction block can be used, for example, to check if a message has arrived in a queue, and needs
to be processed.

The parameter of ON TIMER must be an integer literal or variable. If the value is zero, the dialog timeout is
disabled.

User interface | 1119

It is not recommended to use the ON TIMER trigger with a short timeout period, such as 1 or 2 seconds.
The purpose of this trigger is to give the control back to the program after a reasonable period of time, such
as 10, 20 or 60 seconds.

ON TIMER 30
 CALL check_for_messages()

Important: The timer value is taken into account when the dialog initializes its internal data
structures. If you use a program variable instead of an integer constant, a change of the variable
has no effect if the change takes place after the dialog has initialized. If you what to change the
value of the timeout variable, it must be done before the dialog block.

INPUT ARRAY control instructions
ACCEPT INPUT instruction

The ACCEPT INPUT instruction validates the INPUTinstruction and exits the INPUT ARRAY instruction if
no error is raised. The AFTER FIELD, ON CHANGE, etc. control blocks will be executed. Statements after
the ACCEPT INPUT will not be executed.

Input field validation is a process that does several successive validation tasks, as listed here:

1. The current field value is checked, according to the program variable data type (for example, the user
must input a valid date in a DATE field).

2. NOT NULL field attributes are checked for all input fields. This attribute forces the field to have a value
set by program or entered by the user. If the field contains no value, the constraint is not satisfied. Input
values are right-trimmed, so if the user inputs only spaces, this corresponds to a NULL value which
does not fulfill the NOT NULL constraint.

3. INCLUDE field attributes are checked for all input fields. This attribute forces the field to contain a value
that is listed in the include list. If the field contains a value that is not in the list, the constraint is not
satisfied.

4. REQUIRED field attributes are checked for all input fields. This attribute forces the field to have a default
value, or to be "touched" by the user or by program. If the field was not edited during the dialog, the
constraint is not satisfied.

If a field does not satisfy one of these constraints, dialog termination is canceled, an error message is
displayed, and the focus goes to the first field causing a problem.

EXIT INPUT instruction

Use the EXIT INPUT to terminate the INPUT ARRAY instruction and resume the program execution at the
instruction following the INPUT ARRAY block.

ON ACTION leave_now
 EXIT INPUT

When leaving the INPUT ARRAY instruction, all form items used by the dialog will be disabled until another
interactive statement takes control.

CANCEL DELETE instruction

In a list controlled by an INPUT ARRAY, row deletion can be canceled by using the CANCEL DELETE
instruction in the BEFORE DELETE block. Using this instruction in a different place will generate a
compilation error.

When the CANCEL DELETE instruction is executed, the current BEFORE DELETE block is terminated
without any other trigger execution (no BEFORE ROW or BEFORE FIELD is executed), and the program
execution continues in the user event loop.

You can, for example, prevent row deletion based on some condition:

 BEFORE DELETE
 IF user_can_delete() == FALSE THEN

User interface | 1120

 ERROR "You are not allowed to delete rows"
 CANCEL DELETE
 END IF

The instructions that appear after CANCEL DELETE will be skipped.

If the row deletion condition is known before the delete action occurs, disable the delete action to prevent
the user from performing a delete row action with the DIALOG.setActionActive() method:

 CALL DIALOG.setActionActive("delete", FALSE)

It is also possible to prevent the user from deleting rows with the DELETE ROW = FALSE option in the
ATTRIBUTE clause.

CANCEL INSERT instruction

In a list controlled by an INPUT ARRAY, row creation can be canceled by the program with the CANCEL
INSERT instruction. This instruction can only be used in the BEFORE INSERT and AFTER INSERT control
blocks. If it appears at a different place, the compiler will generate an error.

The instructions that appear after CANCEL INSERT will be skipped.

If the row creation condition is known before the insert/append action occurs, disable the insert and/or
append actions to prevent the user from creating new rows, with DIALOG.setActionActive():

 CALL DIALOG.setActionActive("insert", FALSE)
 CALL DIALOG.setActionActive("append", FALSE)

However, this will not prevent the user from appending a new temporary row at the end of the list, when
moving down after the last row. To prevent row creation completely, use the INSERT ROW = FALSE and
APPEND ROW =FALSE options in the ATTRIBUTE clause of INPUT ARRAY, or combine with the AUTO
APPEND = FALSE attribute.

CANCEL INSERT in BEFORE INSERT

A CANCEL INSERT executed inside a BEFORE INSERT block prevents the new row creation. The
following tasks are performed:

1. No new row will be created (the new row is not yet shown to the user).
2. The BEFORE INSERT block is terminated (further instructions are skipped).
3. The BEFORE ROW and BEFORE FIELD triggers are executed.
4. Control goes back to the user.

You can, for example, cancel a row creation if the user is not allowed to create rows:

 BEFORE INSERT
 IF NOT user_can_insert THEN
 ERROR "You are not allowed to insert rows"
 CANCEL INSERT
 END IF

Executing CANCEL INSERT in BEFORE INSERT will also cancel a temporary row creation, except when
there are no more rows in the list. In this case, CANCEL INSERT will just be ignored and leave the new
row as is (otherwise, the instruction would loop without end). You can prevent automatic temporary row
creation with the AUTO APPEND=FALSE attribute. If AUTO APPEND=FALSE and a CANCEL INSERT is
executed in BEFORE INSERT (user has invoked an append action), the temporary row will be deleted and
list will remain empty if it was the last row.

User interface | 1121

CANCEL INSERT in AFTER INSERT

A CANCEL INSERT executed inside an AFTER INSERT block removes the newly created row. The
following tasks are performed:

1. The newly created row is removed from the list (the row exists now and user has entered data).
2. The AFTER INSERT block is terminated (further instructions are skipped).
3. The BEFORE ROW and BEFORE FIELD triggers are executed.
4. The control goes back to the user.

You can, for example, cancel a row insertion if a database error occurs when you try to insert the row into a
database table:

 AFTER INSERT
 WHENEVER ERROR CONTINUE
 LET r = DIALOG.getCurrentRow("s_items")
 INSERT INTO items VALUES (p_items[r].*)
 WHENEVER ERROR STOP
 IF SQLCA.SQLCODE<>0 THEN
 ERROR SQLERRMESSAGE
 CANCEL INSERT
 END IF

CONTINUE INPUT instruction

CONTINUE INPUT skips all subsequent statements in the current control block and gives the control
back to the dialog. This instruction is useful when program control is nested within multiple conditional
statements, and you want to return the control to the dialog. If this instruction is called in a control block
that is not AFTER INPUT, further control blocks might be executed according to the context. Actually,
CONTINUEINPUT just instructs the dialog to continue as if the code in the control block was terminated
(i.e. it's a kind of GOTO end_of_control_block). However, when executed in AFTER INPUT, the focus
returns to the current row and current field in the list, giving the user another chance to enter data in that
field. In this case the BEFORE ROW and BEFORE FIELD triggers will be invoked.

In this example, an ON ACTION block gives control back to the dialog, skipping all instructions after line 04:

ON ACTION zoom
 IF p_cust.cust_id IS NULL OR p_cust.cust_name IS NULL THEN
 ERROR "Zoom window cannot be opened."
 CONTINUE INPUT
 END IF
 IF p_cust.cust_address IS NULL THEN
 ...

You can also use the NEXT FIELD control instruction to give the focus to a specific field and force the
dialog to continue. However, unlike CONTINUE INPUT, the NEXT FIELD instruction will also skip the
further control blocks that are normally executed.

NEXT FIELD instruction

Understanding the NEXT FIELD instruction

The NEXT FIELD field-name instruction gives the focus to the specified field and forces the dialog to
stay in that field.

This instruction can be used to control field input, in BEFORE FIELD, ON CHANGE or AFTER FIELD
blocks, it can also force a DISPLAY ARRAY or INPUT ARRAY to stay in the current row when NEXT
FIELD is used in the AFTER ROW block.

If it exists, the BEFORE FIELD block of the corresponding field is executed.

User interface | 1122

The purpose of the NEXT FIELD instruction is give the focus to an editable field. Make sure that the field
specified in NEXT FIELD is active, or use NEXT FIELD CURRENT. Non-editable fields are fields defined
with the NOENTRY attribute, fields disabled at runtime with DIALOG.setFieldActive(), or fields using a
widget that does not allow input, such as a LABEL.

Instead of the NEXT FIELD instruction, you can use the DIALOG.nextField("field-name") method
to register a field, for example when the name is not known at compile time. However, this method only
registers the field: It does not stop code execution, like the NEXT FIELD instruction does. You must
execute a CONTINUE DIALOG to get the same behavior as NEXT FIELD.

Form field identification with NEXT FIELD

With the NEXT FIELD instruction, fields are identified by the form field name specification, not the program
variable name used by the dialog. Form fields are bound to program variables with the binding clause of
dialog instruction (INPUT variable-list FROM field-list, INPUT BY NAME variable-list,
CONSTRUCT BY NAME sql ON column-list,CONSTRUCT sql ON column-list FROM field-
list, INPUT ARRAY array-name FROM screen-array.*).

The field name specification can be any of the following:

• field-name
• table-name.field-name
• screen-record-name.field-name
• FORMONLY.field-name

Here are some examples:

• "cust_name"

• "customer.cust_name"

• "cust_screen_record.cust_name"

• "item_screen_array.item_label"

• "formonly.total"

When no field name prefix is used, the first form field matching that simple field name is used.

When using a prefix in the field name specification, it must match the field prefix assigned by the dialog
according to the field binding method used at the beginning of the interactive statement: When no screen-
record has been explicitly specified in the field binding clause (for example, when using INPUT BY NAME
variable-list), the field prefix must be the database table name (or FORMONLY) used in the form file,
or any valid screen-record using that field. When the FROM clause of the dialog specifies an explicit screen-
record (for example, in INPUT variable-list FROM screen-record.* / field-list-with-
screen-record-prefix or INPUT ARRAY array-name FROM screen-array.*), the field prefix
must be the screen-record name used in the FROM clause.

Abstract field identification is supported with the CURRENT, NEXT and PREVIOUS keywords. These
keywords represent the current, next and previous fields respectively. When using FIELD ORDER FORM,
the NEXT and PREVIOUS options follow the tabbing order defined by the form. Otherwise, they follow the
order defined by the input binding list (with the FROM or BY NAME clause).

In a procedural dialog, if the focus is in the first field of an INPUT or CONSTRUCT sub-dialog, NEXT FIELD
PREVIOUS will jump out of the current sub-dialog and set the focus to the previous sub-dialog. If the focus
is in the last field of an INPUT or CONSTRUCT sub-dialog, NEXT FIELD NEXT will jump out of the current
sub-dialog and set the focus to the next sub-dialog. NEXT FIELD NEXT or NEXT FIELD PREVIOUS
also jumps to another sub-dialog when the focus is in a DISPLAY ARRAY sub-dialog. However, when
using an INPUT ARRAY sub-dialog, NEXT FIELD NEXT from within the last column will loop to the first
column of the current row, and NEXT FIELD PREVIOUS from within the first column will jump to the last
column of the current row - the focus stays in the current INPUT ARRAY sub-dialog. When another sub-
dialog gets the focus because of a NEXT FIELD NEXT/PREVIOUS, the newly-selected field depends on
the sub-dialog type, following the tabbing order as if the end-user had pressed the tab or Shift-Tab key
combination.

User interface | 1123

NEXT FIELD to a non-editable INPUT / INPUT ARRAY / CONSTRUCT field

Non-editable fields are fields defined with the NOENTRY attribute, fields disabled with
ui.Dialog.setFieldActive("field-name", FALSE), or fields using a widget that does not allow
input, such as a LABEL.

If a NEXT FIELD instruction specifies a non-editable field, the BEFORE FIELD block of that field is
executed. Then the dialog tries to give the focus to that field. Since the field cannot get the focus, the
dialog will perform the last pressed navigation key (Tab, Shift-Tab, Left, Right, Up, Down, Accept) and
execute the related control blocks, including the AFTER FIELD block of the non-editable field. If no last
key is identified, the dialog considers Tab as fallback and moves to the next editable field as defined by the
FIELD ORDER mode used by the dialog. Doing a NEXT FIELD to a non-editable field can lead to infinite
loops in the dialog; Use NEXT FIELD CURRENT instead.

When selecting a non-editable field with NEXT FIELD NEXT, the runtime system will re-select the current
field since it is the next editable field in the dialog. As a result the end user sees no change.

NEXT FIELD in procedural DIALOG blocks

In a procedural dialog block, the NEXT FIELD field-name instruction gives the focus to the specified
field controlled by INPUT, INPUT ARRAY or CONSTRUCT, or to a read-only list when using DISPLAY
ARRAY.

When using a DISPLAY ARRAY sub-dialog, it is possible to give the focus to the list, by specifying the
name of the first column as argument for NEXT FIELD.

If the target field specified in the NEXT FIELD instruction is inside the current sub-dialog, neither AFTER
FIELD nor AFTER ROW will be invoked for the field or list you are leaving. However, the BEFORE FIELD
control blocks of the destination field (or the BEFORE ROW in case of read-only list) will be executed.

If the target field specified in the NEXT FIELD instruction is outside the current sub-dialog, the AFTER
FIELD, AFTER INSERT, AFTER ROW and AFTER INPUT/DISPLAY/CONSTRUCT control blocks will be
invoked for the field or list you are leaving. Form-level validation rules will also be checked, as if the user
had selected the new sub-dialog himself. This guarantees the current sub-dialog is left in a consistent
state. The BEFORE INPUT/DISPLAY/CONSTRUCT, BEFORE ROW and the BEFORE FIELD control blocks
of the destination field / list will then be executed.

NEXT FIELD in record list control blocks

When using NEXT FIELD in AFTER ROW or in ON ROW CHANGE of a DISPLAY ARRAY or INPUT ARRAY,
the dialog will stay in the current row and give control back to the user. This behavior allows you to
implement data input rules:

 AFTER ROW
 IF NOT int_flag AND arr_count()<=arr_curr() THEN
 IF arr[arr_curr()].it_count * arr[arr_curr()].it_value > maxval THEN
 ERROR "Amount of line exceeds max value."
 NEXT FIELD item_count
 END IF
 END IF

CLEAR instruction in dialogs

The CLEAR field-list and CLEAR SCREEN ARRAY screen-array.* instructions clear the value
buffer of specified form fields. The buffers are directly changed in the current form, and the program
variables bound to the dialog are left unchanged. CLEAR can be used outside any dialog instruction, such
as the DISPLAY BY NAME / TO instructions.

When a dialog is configured with the UNBUFFERED mode, there is no reason to clear field buffers since
any variable assignment will synchronize field buffers. Actually, changing the field buffers with DISPLAY
or CLEAR instruction in an UNBUFFERED dialog will have no visual effect, because the variables bound to

User interface | 1124

the dialog will be used to reset the field buffer just before giving control back to the user. To clear fields
of an UNBUFEFERED dialog, just set to NULL the variables bound to the dialog. However, when using a
CONSTRUCT, no program variables are associated to the dialog and no UNBUFFERED concept exits, and
the CLEAR or DISPLAY TO / BY NAME instructions are the only way to modify the CONSTRUCT fields.

A screen array with a screen-line specification doesn't make much sense in a GUI application using TABLE
containers, you can therefore use the CLEAR SCREEN ARRAY instruction to clear all rows of a list.

Examples
Example 1: INPUT ARRAY with empty record list

Form definition file (custlist.per):

SCHEMA shop
LAYOUT
TABLE
{
 Id First name Last name
[f001 |f002 |f003]
[f001 |f002 |f003]
[f001 |f002 |f003]
[f001 |f002 |f003]
[f001 |f002 |f003]
[f001 |f002 |f003]
}
END
END
TABLES
 customer
END
ATTRIBUTES
 f001 = customer.id ;
 f002 = customer.fname ;
 f003 = customer.lname, NOT NULL, REQUIRED ;
END
INSTRUCTIONS
 SCREEN RECORD sr_cust(customer.*);
END

Program source code:

SCHEMA shop

MAIN
 DEFINE custarr DYNAMIC ARRAY OF RECORD LIKE customer.*

 OPEN FORM f FROM "custlist"
 DISPLAY FORM f

 INPUT ARRAY custarr WITHOUT DEFAULTS FROM sr_cust.*

END MAIN

Example 2: INPUT ARRAY using a static array

The form definition file is the same as in Example 1.

SCHEMA shop

MAIN

 DEFINE custarr ARRAY[100] OF RECORD LIKE customer.*
 DEFINE allow_insert, size INTEGER

User interface | 1125

 LET custarr[1].id = 1
 LET custarr[1].fname = "John"
 LET custarr[1].lname = "SMITH"
 LET custarr[2].id = 2
 LET custarr[2].fname = "Mike"
 LET custarr[2].lname = "STONE"
 LET size = 2
 LET allow_insert = TRUE

 OPEN FORM f1 FROM "custlist"
 DISPLAY FORM f1

 INPUT ARRAY custarr WITHOUT DEFAULTS FROM sr_cust.*
 ATTRIBUTES (COUNT=size, MAXCOUNT=50, UNBUFFERED, INSERT
 ROW=allow_insert)
 BEFORE INPUT
 MESSAGE "Editing the customer table"
 BEFORE INSERT
 IF arr_curr()=4 THEN
 CANCEL INSERT
 END IF
 BEFORE FIELD fname
 MESSAGE "Enter First Name"
 BEFORE FIELD lname
 MESSAGE "Enter Last Name"
 AFTER FIELD lname
 IF custarr[arr_curr()].lname IS NULL THEN
 LET custarr[arr_curr()].fname = NULL
 END IF
 END INPUT

END MAIN

Example 3: INPUT ARRAY using a dynamic array

The form definition file is the same as in .Example 1

SCHEMA shop

MAIN

 DEFINE custarr DYNAMIC ARRAY OF RECORD LIKE customer.*
 DEFINE counter INTEGER

 FOR counter = 1 TO 500
 LET custarr[counter].id = counter
 LET custarr[counter].fname = "ff"||counter
 LET custarr[counter].lname = "NNN"||counter
 END FOR

 OPEN FORM f FROM "custlist"
 DISPLAY FORM f

 INPUT ARRAY custarr WITHOUT DEFAULTS FROM sr_cust.*
 ATTRIBUTES (UNBUFFERED)
 ON ROW CHANGE
 MESSAGE "Row #"||arr_curr()||" has been updated."
 END INPUT

END MAIN

User interface | 1126

Example 4: INPUT ARRAY updating the database table

The form definition file is the same as in Example 1.

SCHEMA shop

MAIN

 DEFINE custarr DYNAMIC ARRAY OF RECORD LIKE customer.*

 DEFINE op CHAR(1)
 DEFINE i INTEGER

 DATABASE shop

 OPEN FORM f1 FROM "custlist"
 DISPLAY FORM f1

 DECLARE c1 CURSOR FOR
 SELECT id, fname, lname FROM customer ORDER BY id
 LET i = 1
 FOREACH c1 INTO custarr[i].*
 LET i = i + 1
 END FOREACH
 CALL custarr.deleteElement(custarr.getLength())

 INPUT ARRAY custarr FROM sr_cust.*
 ATTRIBUTES(WITHOUT DEFAULTS, UNBUFFERED)

 BEFORE DELETE
 IF op == "N" THEN -- No real SQL delete for new inserted rows
 IF NOT mbox_yn("List",
 "Are you sure you want to delete this record?",
 "question") THEN
 CANCEL DELETE -- Keeps row in list
 END IF
 WHENEVER ERROR CONTINUE
 DELETE FROM customer
 WHERE ID = custarr[arr_curr()].id
 WHENEVER ERROR STOP
 IF SQLCA.SQLCODE<0 THEN
 ERROR "Could not delete the record from database!"
 CANCEL DELETE -- Keeps row in list
 END IF
 END IF

 AFTER DELETE
 IF op == "N" THEN
 MESSAGE "Record has been deleted successfully"
 ELSE
 LET op = "N"
 END IF

 AFTER FIELD fname
 IF custarr[arr_curr()].fname MATCHES "*@#$%^&()*" THEN
 ERROR "This field contains invalid characters"
 NEXT FIELD CURRENT
 END IF

 ON ROW CHANGE
 -- Warning: ON ROW CHANGE can occur if the SQL INSERT failed...
 IF op != "I" THEN LET op = "M" END IF

 BEFORE INSERT

User interface | 1127

 LET op = "T"
 -- (not the best way to get a unique sequence number!)
 SELECT MAX(ID)+1 INTO custarr[arr_curr()].id FROM customer
 IF custarr[arr_curr()].id IS NULL THEN
 LET custarr[arr_curr()].id = 1
 END IF

 AFTER INSERT
 LET op = "I"

 BEFORE ROW
 LET op = "N"

 AFTER ROW
 IF int_flag THEN EXIT INPUT END IF
 IF op == "M" OR op == "I" THEN
 IF custarr[arr_curr()].fname IS NULL
 OR custarr[arr_curr()].lname IS NULL
 OR custarr[arr_curr()].fname ==
 custarr[arr_curr()].lname THEN
 ERROR "First name and last name are equal..."
 NEXT FIELD fname
 END IF
 END IF
 IF op == "I" THEN
 WHENEVER ERROR CONTINUE
 INSERT INTO customer (id, fname, lname)
 VALUES (custarr[arr_curr()].*)
 WHENEVER ERROR STOP
 IF SQLCA.SQLCODE<0 THEN
 ERROR "Could not insert the record into database!"
 NEXT FIELD CURRENT
 ELSE
 MESSAGE "Record has been inserted successfully"
 END IF
 END IF
 IF op == "M" THEN
 WHENEVER ERROR CONTINUE
 UPDATE customer SET
 fname = custarr[arr_curr()].fname,
 lname = custarr[arr_curr()].lname
 WHERE id = custarr[arr_curr()].id
 WHENEVER ERROR STOP
 IF SQLCA.SQLCODE<0 THEN
 ERROR "Could not update the record in database!"
 NEXT FIELD CURRENT
 ELSE
 MESSAGE "Record has been updated successfully"
 END IF
 END IF

 END INPUT

END MAIN

FUNCTION mbox_yn(title,message,icon)
 DEFINE title, message, icon STRING
 DEFINE r SMALLINT
 MENU title ATTRIBUTES(STYLE='dialog',IMAGE=icon,COMMENT=message)
 COMMAND "Yes" LET r=TRUE
 COMMAND "No" LET r=FALSE
 END MENU
 RETURN r

User interface | 1128

END FUNCTION

Query by example (CONSTRUCT)
The CONSTRUCT instruction implements database query criteria input in an application form.

• Understanding the CONSTRUCT instruction on page 1128
• Syntax of CONSTRUCT instruction on page 1128
• CONSTRUCT programming steps on page 1130
• Using query by example on page 1131

• Query operators in CONSTRUCT on page 1131
• CONSTRUCT instruction configuration on page 1133
• Default actions IN CONSTRUCT on page 1134
• CONSTRUCT control blocks on page 1134
• CONSTRUCT interaction blocks on page 1138
• CONSTRUCT control instructions on page 1139

• Examples on page 1142

• Example 1: CONSTRUCT with binding by field position on page 1142
• Example 2: CONSTRUCT with binding by field name on page 1143

Understanding the CONSTRUCT instruction

The CONSTRUCT instruction provides database query by example. Query by example enables a user
to query a database by specifying values (or ranges of values) for screen fields that correspond to the
database columns. The runtime system converts the query values entered by the user into a boolean SQL
condition that can be used in the WHERE clause of a prepared SELECT statement.

The CONSTRUCT statement produces an SQL condition corresponding to all search criteria that a user
specifies in the fields. The instruction fills a character variable with that SQL condition, and you can use the
content of this variable to create the WHERE clause of a SELECT statement. The SELECT statement must
be executed with the dynamic SQL management instructions PREPARE or DECLARE FROM:

The CONSTRUCT instruction uses the data types of the form field to verify user input and to produce the
SQL condition.

Important: The SQL condition is generated according to the current database session, which
defines the type of the database server. Therefore, the program must be connected to a database
server before entering the CONSTRUCT block. The generated SQL condition is specific to the
database server and may not be used with other types of database servers.

If no criteria were entered, the string '1=1' is assigned to the string variable. This is a boolean SQL
expression that always evaluates to true so that all rows are returned.

The CONSTRUCT dialog activates the current form. This is the form most recently displayed or, if you are
using more than one window, the form currently displayed in the current window. When the CONSTRUCT
statement completes execution, the form is cleared and deactivated.

By default the screen field tabbing order is defined by the order of the field names in the FROM clause;
by default this is the list of column names in the ON clause when no FROM clause is specified. If needed,
change the field tabbing order with the FIELD ORDER FORM option and TABINDEX field attributes.

Syntax of CONSTRUCT instruction
The CONSTRUCT instruction provides database query by example, producing a WHERE condition for
SELECT.

Syntax

CONSTRUCT { BY NAME variable ON column-list

User interface | 1129

 | variable ON column-list FROM field-list
 }
 [ATTRIBUTES ({ display-attribute
 | control-attribute }
 [,...])]
 [HELP help-number]
[dialog-control-block
 [...]
END CONSTRUCT]

where column-list defines a list of database columns as:

{ column-name
| table-name.*
| table-name. column-name
} [,...]

where field-list defines a list of fields with one or more of:

{ field-name
| table-name.*
| table-name.field-name
| screen-array[line].*
| screen-array[line].field-name
| screen-record.*
| screen-record.field-name
} [,...]

where dialog-control-block is one of:

{ BEFORE CONSTRUCT
| AFTER CONSTRUCT
| BEFORE FIELD field-spec [,...]
| AFTER FIELD field-spec [,...]
| ON IDLE seconds
| ON TIMER seconds
| ON ACTION action-name
 [INFIELD field-spec]
 [ATTRIBUTES (action-attributes-construct)]
| ON KEY (key-name [,...])
}
 dialog-statement
 [...]

where action-attributes-construct is:

{ TEXT = string
| COMMENT = string
| IMAGE = string
| ACCELERATOR = string
| DEFAULTVIEW = { YES | NO | AUTO }
| CONTEXTMENU = { YES | NO | AUTO }
 [,...] }

where dialog-statement is one of:

{ statement
| NEXT FIELD { NEXT | PREVIOUS | field-spec}
| CONTINUE CONSTRUCT
| EXIT CONSTRUCT
}

User interface | 1130

where field-spec identifies a unique field with one of:

{ field-name
| table-name.field-name
| screen-array.field-name
| screen-record.field-name
}

where display-attribute is:

{ BLACK | BLUE | CYAN | GREEN
| MAGENTA | RED | WHITE | YELLOW
| BOLD | DIM | INVISIBLE | NORMAL
| REVERSE | BLINK | UNDERLINE
}

where control-attribute is:

{ ACCEPT [= boolean]
| CANCEL [= boolean]
| FIELD ORDER FORM
| HELP = help-number
| NAME = "dialog-name"
}

1. variable is the variable that will contain the SQL condition built by the CONSTRUCT instruction.
2. column-name is the identifier of a database column of the current form.
3. table-name is the identifier of a database table of the current form.
4. field-name is the identifier of a field of the current form.
5. screen-array is the screen array that will be used in the current form.
6. line is a screen array line in the form.
7. screen-record is the identifier of a screen record of the current form.
8. help-number is an integer that allows you to associate a help message number with the instruction.
9. key-name is a hot-key identifier (like F11 or Control-z).
10.dialog-name is the identifier of the dialog.
11.action-name identifies an action that can be executed by the user.
12.seconds is an integer literal or variable that defines a number of seconds.
13.statement is any instruction supported by the language.
14.action-attributes are dialog-specific action attributes.

CONSTRUCT programming steps

The following steps describe how to implement the CONSTRUCT statement:

1. Declare a variable with the DEFINE statement, it can be CHAR, VARCHAR or STRING. Prefer STRING to
avoid any size limitation.

2. Open and display the form, using an OPEN WINDOW WITH FORM or the OPEN FORM / DISPLAY FORM
instructions.

3. Set the INT_FLAG variable to FALSE.

4. Define the CONSTRUCT block with the list of form fields to be used for the query by example. If needed,
define dialog control blocks to implement rules for the query by example.

5. Inside the CONSTRUCT statement, control the behavior of the instruction with BEFORE CONSTRUCT,
BEFORE FIELD, AFTER FIELD, AFTER CONSTRUCT and ON ACTION blocks.

6. After the interaction statement block, test the INT_FLAG predefined variable to check if the dialog was
canceled (INT_FLAG=TRUE) or validated (INT_FLAG=FALSE).

User interface | 1131

If the INT_FLAG variable is TRUE, you should reset it to FALSE to not disturb code that relies on this
variable to detect interruption events from the GUI front-end or TUI console.

7. To build the complete SQL statement, concatenate "SELECT ... WHERE" to the string variable that
contains the boolean SQL expression produced by CONSTRUCT.

8. Define a database cursor with the DECLARE FROM instruction, by using the SELECT statement.

9. Execute the cursor and fetch the rows found by the database server. You can for example implement a
FOREACH loop to fill a program array, to be shown by a DISPLAY ARRAY statement.

Using query by example
To use query by example, you must understand how they work and how to structure the code.
Form field specification in CONSTRUCT

In order to produce an SQL condition, the CONSTRUCT instruction uses a list of database columns
that must match form fields for user input. Unlike INPUT, DISPLAY ARRAY and INPUT ARRAY, the
CONSTRUCT dialog does not use a program variable for each form field: Only one string variable
is required, to hold the SQL condition. Individual field criteria is available in the input buffers
(GET_FLDBUF()).

The list of database columns specified in the CONSTRUCT statement will appear in the SQL condition
produced.

Binding columns and fields by name

The CONSTRUCT BY NAME variable ON column-list syntax maps the field names to database
column names by name. Form fields are typically defined in the form by following a database schema,
specifying the column name and data type.

SCHEMA stock
DEFINE where_part STRING
...
CONSTRUCT BY NAME where_part ON cust_name, cust_address
 ...
END CONSTRUCT

Binding columns and fields by position

The CONSTRUCT variable ON column-list FROM field-list clause explicitly maps database
columns to form fields by position. The form can include other fields that are not part of the specified
column list, but the number of variables or record members must equal the number of form fields listed
in the FROM clause. Each database column must be of the same (or a compatible) data type as the
corresponding form field. When the user enters data, the runtime system checks the entered value against
the data type of the form field.

DEFINE where_part STRING
...
CONSTRUCT where_part ON cust_name, cust_address
 FROM field_02, field_04
 ...
END CONSTRUCT

Query operators in CONSTRUCT

The CONSTRUCT instruction supports a specific query syntax, using wildcard characters and comparison
operators.

The table below lists CONSTRUCT wildcard characters that can be used during a query by example input:

User interface | 1132

Table 276: CONSTRUCT relational operators

Symbol Meaning Data type

value Use value as is to filter Any simple type

= Is NULL Any simple type

== Equal to Any simple type

> Greater than Any simple type

>= Greater than or equal to Any simple type

< Less than Any simple type

<= Less than or equal to Any simple type

<> or != Not equal to Any simple type

!= Not NULL Any simple type

: or .. Range of values Any simple type

| List of values Any simple type

* Wildcard for any string Char string types

? Single-character wildcard Char string types

[c1-c2] Range of characters Char string types

[c1c2...] Set of characters Char string types

Queries based on character types are case sensitive, because SQL is case sensitive, except if the
database server is configured to be case-insensitive.

The * (star) and ? (question mark) wildcards are specific to character string type queries, and will generate
a MATCHES expression or a LIKE expression, according to the type of database used. When entering a *
or ?, the pattern can also contain a character range specification with the square brackets notation [a-z]
or [xyz]. A caret (^.) as the first character within the square brackets specifies the logical complement of
the set, and matches any character that is not listed. For example, the search value [^AB]* specifies all
strings beginning with characters other than A or B.

Some syntaxes can produce an Error in field dialog error if the feature is supported by the pattern
matching operator of the database server. For example, not all db servers support the [a-z] character range
specification in the LIKE pattern.

If you want to search for rows with values containing a * star, a ? question mark or a \ backslash, you
must escape the wildcard character with a backslash. Specifying a backslash before another character will
have no effect.

Table 277: CONSTRUCT input examples with matching and non matching values

QBE input example Matching values Non matching values

100 100 99, 101, NULL

>=100 100, 101, 200 10, 99, NULL

!=100 98, 98, 101, 102 100, NULL

!= 98, 99, 100, 101 NULL

1:100 1, 2 ... 99, 100 0, 101, NULL

User interface | 1133

QBE input example Matching values Non matching values

aaa:yyy aaa, aab, ab, yy, yyy zaa, NULL

abc abc bc, abcd, Abc, NULL

ABC ABC abc, aBC, NULL

abc* abc, abcd, abcdef bc, ABC, NULL

*bc abc, bc acd, aBC, NULL

?bc abc, xbc, zbc aabc, aBC, NULL

*bc? aaaabc, abcd, bcd abcdef, bcdef, NULL

[a-z]bc abc, ebc, zbc 2bc, +bc, Abc, NULL

[^abc]* deee, feee, zyx, z azzz, byy, d, NULL

a[bxy]c abc, axc, ayc a2c, azc, aBc, NULL

*[xyz] abcx, eeeez abcd, eeee, NULL

1|2|35 1, 2, 35 4, 5, 6, NULL

aa|bb|cc aa, bb, cc ab, dd, NULL

\\abc* \abc, \abcdef abc, NULL

*bc *bc abc, bc, NULL

\[?\] [a], a[b]c, xx[y]zz a[bb]c, a[]c, NULL

CONSTRUCT instruction configuration

This section describes the options that can be specified in the ATTRIBUTES clause of the CONSTRUCT
instruction. The options of the ATTRIBUTES clause override all default attributes and temporarily override
any display attributes that the OPTIONS or the OPEN WINDOW statement specified for these fields. With the
CONSTRUCT statement, the INVISIBLE attribute is ignored.

NAME option

The NAME attribute can be used to name the CONSTRUCT dialog. This is especially used to identify actions
of the dialog.

The clause specifies the number of a to display if the user invokes the help the dialog. The predefined
'help' action is automatically created by the runtime system. You can bind to the 'help' action.

HELP option
HELPhelp messageCONSTRUCTaction views

The HELP clause overrides the HELP attribute.

FIELD ORDER FORM option
By default, the tabbing order is defined by the variable binding list in the instruction description. You
can control the tabbing order by using the FIELD ORDER FORM attribute: When this attribute is used,
the tabbing order is defined by the TABINDEX attribute of the form fields. If this attribute is used, the
Dialog.fieldOrder FGLPROFILE entry is ignored.

The OPTIONS instruction can also change the behavior of the INPUT instruction, with the INPUT WRAP or
FIELD ORDER FORM options.

User interface | 1134

ACCEPT option

The ACCEPT attribute can be set to FALSE to avoid the automatic creation of the accept default action. This
option can be used for example when you want to write a specific validation procedure, by using ACCEPT
INPUT.

CANCEL option

The CANCEL attribute can be set to FALSE to avoid the automatic creation of the cancel default action. This
is useful for example when you only need a validation action (accept), or when you want to write a specific
cancellation procedure, by using EXIT INPUT.

If the CANCEL=FALSE option is set, no close action will be created, and you must write an ON ACTION
close control block to create an explicit action.

Default actions IN CONSTRUCT

When an CONSTRUCT instruction executes, the runtime system creates a set of default actions.

According the invoked default action, field validation occurs and different CONSTRUCT control blocks are
executed.

This table lists the default actions created for this dialog:

Table 278: Default actions created for the CONSTRUCT dialog

Default action Description

accept

Validates the CONSTRUCT dialog (validates field
criteria)

Creation can be avoided with ACCEPT attribute.

cancel

Cancels the CONSTRUCT dialog (no validation,
INT_FLAG is set)

Creation can be avoided with CANCEL attribute.

close

By default, cancels the CONSTRUCT dialog (no
validation, INT_FLAG is set)

Default action view is hidden. See Implementing the
close action on page 1337.

help
Shows the help topic defined by the HELP clause.

Only created when a HELP clause is defined.

The accept and cancel default actions can be avoided with the ACCEPT and CANCEL dialog control
attributes:

CONSTRUCT BY NAME cond ON field1 ATTRIBUTES (CANCEL=FALSE)
 ...

CONSTRUCT control blocks
CONSTRUCT control blocks execution order

This table shows the order in which the runtime system executes the control blocks in the CONSTRUCT
instruction, according to the user action:

User interface | 1135

Table 279: Control block execution order for CONSTRUCT

Context / User action Control Block execution order

Entering the dialog 1. BEFORE CONSTRUCT

2. BEFORE FIELD (first field)

Moving from field A to field B 1. AFTER FIELD (for field A)
2. BEFORE FIELD (for field B)

Validating the dialog 1. AFTER FIELD

2. AFTER CONSTRUCT

Canceling the dialog 1. AFTER CONSTRUCT

BEFORE CONSTRUCT block

BEFORE CONSTRUCT block in singular and parallel CONSTRUCT dialogs

In a singular CONSTRUCT instruction, or when used as parallel dialog, the BEFORE CONSTRUCT is only
executed once when dialog is started.

The BEFORE CONSTRUCT block is executed once at dialog startup, before the runtime system gives
control to the user for criteria input. This block can be used to display messages to the user, initialize form
fields with default search criteria values, and setup the dialog instance by deactivating unused fields or
actions the user is not allowed to execute.

CONSTRUCT BY NAME where_part ON ...
 BEFORE CONSTRUCT
 MESSAGE "Enter customer search filter"
 CALL DIALOG.setActionActive("clean", FALSE)
 ...

The fields are cleared before the BEFORE CONSTRUCT block is executed.

You can use the NEXT FIELD control instruction in the BEFORE CONSTRUCT block, to jump to a specific
field when the dialog starts.

BEFORE CONSTRUCT block in CONSTRUCT of procedural DIALOG

In a CONSTRUCT sub-dialog of a procedural DIALOG instruction, the BEFORE CONSTRUCT block is
executed when the focus goes to a group of fields driven by a CONSTRUCT sub-dialog. This trigger is only
invoked if a field of the sub-dialog gets the focus, and none of the other fields had the focus.

BEFORE CONSTRUCT is executed after the BEFORE DIALOG block and before the BEFORE FIELD blocks.

In this example, the BEFORE CONSTRUCT block is used to display a message:

CONSTRUCT BY NAME sql ON customer.*
 BEFORE CONSTRUCT
 MESSAGE "Enter customer search filter"

AFTER CONSTRUCT block

AFTER CONSTRUCT block in singular and parallel CONSTRUCT dialogs

In a singular CONSTRUCT instruction, or when used as parallel dialog, the AFTER CONSTRUCT is only
executed once when dialog is ended.

User interface | 1136

Use an AFTER CONSTRUCT block to execute instructions after the user has finished search criteria input.

AFTER CONSTRUCT is not executed if an EXIT CONSTRUCT is performed.

The code in AFTER CONSTRUCT can for example check if a criteria combination of different fields is
required or denied, and force the end use to enter all

Before checking the content of the fields used in the CONSTRUCT, make sure that the INT_FLAG variable is
FALSE: in case if the user cancels the dialog, the validation rules must be skipped.

Since no program variables are associated to the form fields, you must query the input buffers of the fields
to get the values entered by the user.

CONSTRUCT BY NAME where_part ON ...
 ...
 AFTER CONSTRUCT
 IF NOT INT_FLAG THEN
 IF length(DIALOG.getFieldBuffer(cust_name))==0
 OR length(DIALOG.getFieldBuffer(cust_addr))==0 THEN
 ERROR "Enter a search criteria for customer name and address
 fields."
 NEXT FIELD CURRENT
 END IF
 END IF
END CONSTRUCT

To limit the validation to fields that have been modified by the end user, you can call the
FIELD_TOUCHED() function or the DIALOG.getFieldTouched() method to check if a field has
changed during the dialog execution. This will make your validation code faster if the user has only
modified a couple of fields in a large form.

AFTER CONSTRUCT block in CONSTRUCT of procedural DIALOG

In a CONSTRUCT sub-dialog of a procedural DIALOG instruction, the AFTER CONSTRUCT block is executed
when the focus is lost by a group of fields driven by a CONSTRUCT sub-dialog. This trigger is invoked if a
field of the sub-dialog loses the focus, and a field of a different sub-dialog gets the focus.

If the focus leaves the current group and goes to an action view, this trigger is not executed, because the
focus did not go to another sub-dialog yet.

AFTER CONSTRUCT is executed after the AFTER FIELD and before the AFTER DIALOG block.

Executing a NEXT FIELD in the AFTER CONSTRUCT control block will keep the focus in the group of
fields.

In this example, the AFTER CONSTRUCT block is used to build the SELECT statement:

CONSTRUCT BY NAME sql ON customer.*
 AFTER CONSTRUCT
 LET sql = "SELECT * FROM customers WHERE " || sql

BEFORE FIELD block

For fields controlled by an INPUT, INPUT ARRAY or by a CONSTRUCT instructions, the BEFORE FIELD
block is executed every time the cursor enters into the specified field.

For editable lists driven by INPUT ARRAY, this block is executed when moving the focus from field to field
in the same row, or when moving to another row in the same column.

The BEFORE FIELD block is also executed when performing a NEXT FIELD instruction.

The BEFORE FIELD keywords must be followed by a list of form field specification. The screen-record
name can be omitted.

User interface | 1137

BEFORE FIELD is executed after BEFORE INPUT, BEFORE CONSTRUCT, BEFORE ROW and BEFORE
INSERT.

Use this block to do some field value initialization, or to display a message to the user:

INPUT BY NAME p_cust.* ...
 BEFORE FIELD cust_status
 LET p_cust.cust_comment = NULL
 MESSAGE "Enter customer status"

When using the default FIELD ORDER CONSTRAINT mode, the dialog executes the BEFORE FIELD
block of the field corresponding to the first variable of an INPUT or INPUT ARRAY, even if that field is not
editable (NOENTRY, hidden or disabled). The block is executed when you enter the dialog and every time
you create a new row in the case of INPUT ARRAY. This behavior is supported for backward compatibility.
The block is not executed when using the FIELD ORDER FORM, the mode recommended for DIALOG
instructions.

With the FIELD ORDER FORM mode, for each dialog executing the first time with a specific form, the
BEFORE FIELD block might be invoked for the first field of the initial tabbing list defined by the form, even
if that field was hidden or moved around in a table. The dialog then behaves as if a NEXT FIELD first-
visible-column would have been done in the BEFORE FIELD of that field.

When form-level validation occurs and a field contains an invalid value, the dialog gives the focus to the
field, but no BEFORE FIELD trigger will be executed.

AFTER FIELD block

In dialog parts driven by a simple INPUT, INPUT ARRAY or by a CONSTRUCT sub-dialog, the AFTER
FIELD block is executed every time the focus leaves the specified field. For editable lists driven by INPUT
ARRAY, this block is executed when moving the focus from field to field in the same row, or when moving to
another row in the same column.

The AFTER FIELD keywords must be followed by a list of form field specifications. The screen-record
name can be omitted.

AFTER FIELD is executed before AFTER INSERT, ON ROW CHANGE, AFTER ROW, AFTER INPUT or
AFTER CONSTRUCT.

When a NEXT FIELD instruction is executed in an AFTER FIELD block, the cursor moves to the specified
field, which can be the current field. This can be used to prevent the user from moving to another field / row
during data input. Note that the BEFORE FIELD block is also executed when NEXT FIELD is invoked.

The AFTER FIELD block of the current field is not executed when performing a NEXT FIELD; only
BEFORE INPUT, BEFORE CONSTRUCT, BEFORE ROW, and BEFORE FIELD of the target item might be
executed, based on the sub-dialog type.

When ACCEPT DIALOG, ACCEPT INPUT or ACCEPT CONTRUCT is performed, the AFTER FIELD trigger
of the current field is executed.

Use the AFTER FIELD block to implement field validation rules:

INPUT BY NAME p_item.* ...
 AFTER FIELD item_quantity
 IF p_item.item_quantity <= 0 THEN
 ERROR "Item quantity cannot be negative or zero"
 LET p_item.item_quantity = 0
 NEXT FIELD item_quantity
 END IF

User interface | 1138

CONSTRUCT interaction blocks
ON ACTION block

The ON ACTION action-name blocks execute a sequence of instructions when the user triggers a
specific action.

A typical action handler block looks like this:

 ON ACTION action-name
 instruction
 ...

Action blocks will be bound by name to action views (like buttons) in the current form. Action views can
be buttons in forms, toolbar buttons, topmenu options, and if no explicit action view is defined, actions are
rendered with a default action view, depending on the type of front-end.

The next example defines an action block to open a typical zoom window and let the user select a
customer record:

 ON ACTION zoom
 CALL zoom_customers() RETURNING st, rec.cust_id, rec.cust_name

In a dialog handling user input such as INPUT, INPUT ARRAY and CONSTRUCT, if an action is specific to a
field, add the INFIELD clause to have the action automatically enabled when the corresponding field gets
the focus:

 ON ACTION zoom INFIELD cust_city
 CALL zoom_cities() RETURN st, rec.cust_city

In most cases actions are decoration with action defaults in form files, but there can be cases where the ON
ACTION handler needs to define its own attributes at the program level. This can be done by adding the
ATTRIBUTES() clause of ON ACTION:

 ON ACTION custinfo ATTRIBUTES(DISCLOSUREINDICATOR, IMAGE="info")
 CALL show_customer_info()

For more details about action handlers, and action configuration, see Dialog actions on page 1276.

ON IDLE block

The ON IDLE seconds clause defines a set of instructions that must be executed after a given period
of user inactivity. This interaction block can be used, for example, to quit the dialog after the user has not
interacted with the program for a specified period of time.

The parameter of ON IDLE must be an integer literal or variable. If it the value is zero, the dialog timeout is
disabled.

It is not recommended to use the ON IDLE trigger with a short timeout period such as 1 or 2 seconds; The
purpose of this trigger is to give the control back to the program after a relatively long period of inactivity
(10, 30 or 60 seconds). This is typically the case when the end user leaves the workstation, or got a phone
call. The program can then execute some code before the user gets the control back.

ON IDLE 30
 IF ask_question(
 "Do you want to reload information the database?") THEN
 -- Fetch data back from the db server
 END IF

Important: The timeout value is taken into account when the dialog initializes its internal data
structures. If you use a program variable instead of an integer constant, any change of the variable

User interface | 1139

will have no effect if the variable is changed after the dialog has initialized. If you what to change
the value of the timeout variable, it must be done before the dialog block.

ON KEY block

An ON KEY (key-name) block defines an action with a hidden action view (no default button is visible),
that executes a sequence of instructions when the user presses the specified key.

The ON KEY block is supported for backward compatibility with TUI mode applications.

An ON KEY block can specify up to four different keys. Each key creates a specific action objects that will
be identified by the key name in lowercase. For example, ON KEY(F5,F6) creates two actions with the
names f5 and f6. Each action object will get an ACCELERATORNAME assigned with the corresponding
accelerator name. The specified keys must be one of the virtual keys.

In GUI mode, action defaults are applied for ON KEY actions by using the name of the action (the key
name). You can define secondary accelerator keys, as well as default decoration attributes like button text
and image, by using the key name as action identifier. The action name is always in lowercase letters.

Check carefully the ON KEY CONTROL-? statements because they may result in having duplicate
accelerators for multiple actions due to the accelerators defined by action defaults. Additionally, ON KEY
statements used with ESC, TAB, UP, DOWN, LEFT, RIGHT, HELP, NEXT, PREVIOUS, INSERT, CONTROL-
M, CONTROL-X, CONTROL-V, CONTROL-C and CONTROL-A should be avoided for use in GUI programs,
because it's very likely to clash with default accelerators defined in the factory action defaults file provided
by default.

By default, ON KEY actions are not decorated with a default button in the action frame (the default action
view). You can show the default button by configuring a text attribute with the action defaults.

ON KEY (CONTROL-Z)
 CALL open_zoom()

ON TIMER block

The ON TIMER seconds clause defines a set of instructions that must be executed at regular intervals.
This interaction block can be used, for example, to check if a message has arrived in a queue, and needs
to be processed.

The parameter of ON TIMER must be an integer literal or variable. If the value is zero, the dialog timeout is
disabled.

It is not recommended to use the ON TIMER trigger with a short timeout period, such as 1 or 2 seconds.
The purpose of this trigger is to give the control back to the program after a reasonable period of time, such
as 10, 20 or 60 seconds.

ON TIMER 30
 CALL check_for_messages()

Important: The timer value is taken into account when the dialog initializes its internal data
structures. If you use a program variable instead of an integer constant, a change of the variable
has no effect if the change takes place after the dialog has initialized. If you what to change the
value of the timeout variable, it must be done before the dialog block.

CONSTRUCT control instructions
ACCEPT CONSTRUCT instruction

The ACCEPT CONSTRUCT instruction validates the CONSTRUCT instruction and exits the dialog block if no
error is raised.

The AFTER FIELD and AFTER CONSTRUCT control blocks will be executed.

The statements after the ACCEPT CONSTRUCT will not be executed.

CONSTRUCT BY NAME where_part ON ...

User interface | 1140

 ...
 ON ACTION default_query
 CALL set_default_filter()
 ACCEPT CONSTRUCT
 ...
END CONSTRUCT

The CONSTRUCT instruction creates the default accept action to let the user validate the dialog. The
ACCEPT CONSTRUCT instruction should only be used in specific cases when the default accept action is
not appropriated.

CONTINUE CONSTRUCT instruction

CONTINUE CONSTRUCT skips all subsequent statements in the current control block and gives the control
back to the dialog. This instruction is useful when program control is nested within multiple conditional
statements, and you want to return the control to the dialog. If this instruction is called in a control block
that is not AFTER CONSTRUCT, further control blocks might be executed according to the context. Actually,
CONTINUE CONSTRUCT just instructs the dialog to continue as if the code in the control block was
terminated (i.e. it's a kind of GOTO end_of_control_block). However, when executed in AFTER
CONSTRUCT, the focus returns to the most recently occupied field in the current form, giving the user
another chance to enter data in that field. In this case the BEFORE FIELD of the current field will be
invoked.

As alternative, use the NEXT FIELD control instruction to give the focus to a specific field and force the
dialog to continue. However, unlike CONTINUE CONSTRUCT, the NEXT FIELD instruction will skip the
further control blocks that are normally executed.

EXIT CONSTRUCT instruction

The EXIT CONSTRUCT instruction terminates the CONSTRUCT instruction and resumes the program
execution at the instruction following the INPUT block.

Performing an EXIT CONSTRUCT instruction during a dialog is equivalent to cancel the dialog: No field
validation will occur, and the AFTER FIELD or AFTER CONSTRUCT blocks will not be executed. The dialog
is exited immediately. However, INT_FLAG will not be set to TRUE as when the cancel action is fired.

NEXT FIELD instruction

Understanding the NEXT FIELD instruction

The NEXT FIELD field-name instruction gives the focus to the specified field and forces the dialog to
stay in that field.

This instruction can be used to control field input, in BEFORE FIELD, ON CHANGE or AFTER FIELD
blocks, it can also force a DISPLAY ARRAY or INPUT ARRAY to stay in the current row when NEXT
FIELD is used in the AFTER ROW block.

If it exists, the BEFORE FIELD block of the corresponding field is executed.

The purpose of the NEXT FIELD instruction is give the focus to an editable field. Make sure that the field
specified in NEXT FIELD is active, or use NEXT FIELD CURRENT. Non-editable fields are fields defined
with the NOENTRY attribute, fields disabled at runtime with DIALOG.setFieldActive(), or fields using a
widget that does not allow input, such as a LABEL.

Instead of the NEXT FIELD instruction, you can use the DIALOG.nextField("field-name") method
to register a field, for example when the name is not known at compile time. However, this method only
registers the field: It does not stop code execution, like the NEXT FIELD instruction does. You must
execute a CONTINUE DIALOG to get the same behavior as NEXT FIELD.

Form field identification with NEXT FIELD

With the NEXT FIELD instruction, fields are identified by the form field name specification, not the program
variable name used by the dialog. Form fields are bound to program variables with the binding clause of

User interface | 1141

dialog instruction (INPUT variable-list FROM field-list, INPUT BY NAME variable-list,
CONSTRUCT BY NAME sql ON column-list,CONSTRUCT sql ON column-list FROM field-
list, INPUT ARRAY array-name FROM screen-array.*).

The field name specification can be any of the following:

• field-name
• table-name.field-name
• screen-record-name.field-name
• FORMONLY.field-name

Here are some examples:

• "cust_name"

• "customer.cust_name"

• "cust_screen_record.cust_name"

• "item_screen_array.item_label"

• "formonly.total"

When no field name prefix is used, the first form field matching that simple field name is used.

When using a prefix in the field name specification, it must match the field prefix assigned by the dialog
according to the field binding method used at the beginning of the interactive statement: When no screen-
record has been explicitly specified in the field binding clause (for example, when using INPUT BY NAME
variable-list), the field prefix must be the database table name (or FORMONLY) used in the form file,
or any valid screen-record using that field. When the FROM clause of the dialog specifies an explicit screen-
record (for example, in INPUT variable-list FROM screen-record.* / field-list-with-
screen-record-prefix or INPUT ARRAY array-name FROM screen-array.*), the field prefix
must be the screen-record name used in the FROM clause.

Abstract field identification is supported with the CURRENT, NEXT and PREVIOUS keywords. These
keywords represent the current, next and previous fields respectively. When using FIELD ORDER FORM,
the NEXT and PREVIOUS options follow the tabbing order defined by the form. Otherwise, they follow the
order defined by the input binding list (with the FROM or BY NAME clause).

In a procedural dialog, if the focus is in the first field of an INPUT or CONSTRUCT sub-dialog, NEXT FIELD
PREVIOUS will jump out of the current sub-dialog and set the focus to the previous sub-dialog. If the focus
is in the last field of an INPUT or CONSTRUCT sub-dialog, NEXT FIELD NEXT will jump out of the current
sub-dialog and set the focus to the next sub-dialog. NEXT FIELD NEXT or NEXT FIELD PREVIOUS
also jumps to another sub-dialog when the focus is in a DISPLAY ARRAY sub-dialog. However, when
using an INPUT ARRAY sub-dialog, NEXT FIELD NEXT from within the last column will loop to the first
column of the current row, and NEXT FIELD PREVIOUS from within the first column will jump to the last
column of the current row - the focus stays in the current INPUT ARRAY sub-dialog. When another sub-
dialog gets the focus because of a NEXT FIELD NEXT/PREVIOUS, the newly-selected field depends on
the sub-dialog type, following the tabbing order as if the end-user had pressed the tab or Shift-Tab key
combination.

NEXT FIELD to a non-editable INPUT / INPUT ARRAY / CONSTRUCT field

Non-editable fields are fields defined with the NOENTRY attribute, fields disabled with
ui.Dialog.setFieldActive("field-name", FALSE), or fields using a widget that does not allow
input, such as a LABEL.

If a NEXT FIELD instruction specifies a non-editable field, the BEFORE FIELD block of that field is
executed. Then the dialog tries to give the focus to that field. Since the field cannot get the focus, the
dialog will perform the last pressed navigation key (Tab, Shift-Tab, Left, Right, Up, Down, Accept) and
execute the related control blocks, including the AFTER FIELD block of the non-editable field. If no last
key is identified, the dialog considers Tab as fallback and moves to the next editable field as defined by the
FIELD ORDER mode used by the dialog. Doing a NEXT FIELD to a non-editable field can lead to infinite
loops in the dialog; Use NEXT FIELD CURRENT instead.

User interface | 1142

When selecting a non-editable field with NEXT FIELD NEXT, the runtime system will re-select the current
field since it is the next editable field in the dialog. As a result the end user sees no change.

NEXT FIELD in procedural DIALOG blocks

In a procedural dialog block, the NEXT FIELD field-name instruction gives the focus to the specified
field controlled by INPUT, INPUT ARRAY or CONSTRUCT, or to a read-only list when using DISPLAY
ARRAY.

When using a DISPLAY ARRAY sub-dialog, it is possible to give the focus to the list, by specifying the
name of the first column as argument for NEXT FIELD.

If the target field specified in the NEXT FIELD instruction is inside the current sub-dialog, neither AFTER
FIELD nor AFTER ROW will be invoked for the field or list you are leaving. However, the BEFORE FIELD
control blocks of the destination field (or the BEFORE ROW in case of read-only list) will be executed.

If the target field specified in the NEXT FIELD instruction is outside the current sub-dialog, the AFTER
FIELD, AFTER INSERT, AFTER ROW and AFTER INPUT/DISPLAY/CONSTRUCT control blocks will be
invoked for the field or list you are leaving. Form-level validation rules will also be checked, as if the user
had selected the new sub-dialog himself. This guarantees the current sub-dialog is left in a consistent
state. The BEFORE INPUT/DISPLAY/CONSTRUCT, BEFORE ROW and the BEFORE FIELD control blocks
of the destination field / list will then be executed.

NEXT FIELD in record list control blocks

When using NEXT FIELD in AFTER ROW or in ON ROW CHANGE of a DISPLAY ARRAY or INPUT ARRAY,
the dialog will stay in the current row and give control back to the user. This behavior allows you to
implement data input rules:

 AFTER ROW
 IF NOT int_flag AND arr_count()<=arr_curr() THEN
 IF arr[arr_curr()].it_count * arr[arr_curr()].it_value > maxval THEN
 ERROR "Amount of line exceeds max value."
 NEXT FIELD item_count
 END IF
 END IF

CLEAR instruction in dialogs

The CLEAR field-list and CLEAR SCREEN ARRAY screen-array.* instructions clear the value
buffer of specified form fields. The buffers are directly changed in the current form, and the program
variables bound to the dialog are left unchanged. CLEAR can be used outside any dialog instruction, such
as the DISPLAY BY NAME / TO instructions.

When a dialog is configured with the UNBUFFERED mode, there is no reason to clear field buffers since
any variable assignment will synchronize field buffers. Actually, changing the field buffers with DISPLAY
or CLEAR instruction in an UNBUFFERED dialog will have no visual effect, because the variables bound to
the dialog will be used to reset the field buffer just before giving control back to the user. To clear fields
of an UNBUFEFERED dialog, just set to NULL the variables bound to the dialog. However, when using a
CONSTRUCT, no program variables are associated to the dialog and no UNBUFFERED concept exits, and
the CLEAR or DISPLAY TO / BY NAME instructions are the only way to modify the CONSTRUCT fields.

A screen array with a screen-line specification doesn't make much sense in a GUI application using TABLE
containers, you can therefore use the CLEAR SCREEN ARRAY instruction to clear all rows of a list.

Examples
Example 1: CONSTRUCT with binding by field position

Form definition in the form1.per file:

SCHEMA office

User interface | 1143

LAYOUT
GRID
{
 Customer id: [f001]
 First Name : [f002]
 Last Name : [f003]
}
END
END

TABLES
 customer
END

ATTRIBUTES
 f001 = customer.id;
 f002 = customer.fname;
 f003 = customer.lname, UPSHIFT;
END

INSTRUCTIONS
 SCREEN RECORD sr_cust(customer.*);
END

Program:

MAIN
 DEFINE condition STRING
 DATABASE office
 OPEN FORM f1 FROM "form1"
 DISPLAY FORM f1
 CONSTRUCT condition
 ON id, fname, lname
 FROM sr_cust.*
 DISPLAY condition
END MAIN

Example 2: CONSTRUCT with binding by field name

Form definition file "form1.per" (same as in Example 1)

Program:

SCHEMA office
MAIN
 DEFINE condition STRING
 DEFINE statement STRING
 DEFINE cust RECORD LIKE customer.*

 DATABASE office

 OPEN FORM f1 FROM "form1"
 DISPLAY FORM f1

 CONSTRUCT BY NAME condition ON customer.*
 BEFORE CONSTRUCT
 DISPLAY "A*" TO fname
 DISPLAY "B*" TO lname
 END CONSTRUCT

 LET statement =
 "SELECT fname, lname FROM customer WHERE " || condition

User interface | 1144

 DISPLAY "SQL: " || statement

 DECLARE c1 CURSOR FROM statement
 FOREACH c1 INTO cust.*
 DISPLAY cust.*
 END FOREACH

END MAIN

Multiple dialogs (DIALOG)
The procedural DIALOG instruction allows to combine record list, record input, query criteria input in the
same application form.

• Understanding multiple dialogs on page 1144
• Syntax of the procedural DIALOG instruction on page 1147
• Procedural dialog programming steps on page 1152
• Using multiple dialogs on page 1152

• Identifying sub-dialogs in procedural DIALOG on page 1152
• Structure of a procedural DIALOG block on page 1153
• Procedural DIALOG block configuration on page 1158
• Default actions created by a DIALOG block on page 1162
• DIALOG data blocks on page 1163
• DIALOG control blocks on page 1164
• DIALOG interaction blocks on page 1179
• DIALOG control instructions on page 1189

• Examples on page 1195

• Example 1: DIALOG controlling two lists on page 1195
• Example 2: DIALOG with CONSTRUCT and DISPLAY ARRAY on page 1196
• Example 3: DIALOG with SUBDIALOG on page 1198

Understanding multiple dialogs

The concept of multiple dialogs refers to the usage of a procedural DIALOG block, to control several
elements of a form. During the execution of a procedural dialog, no other window/form can be accessed:
multiple dialogs are in the category of modal dialogs.

The DIALOG procedural instruction handles different parts of a form simultaneously, including simple
display fields, simple input fields, read-only list of records, editable list of records, query by example fields,
and action views. The DIALOG instruction acts as a collection of singular dialogs working in parallel.

User interface | 1145

Figure 76: Query customers screenshot with multiple dialogs

"Singular interactive instructions" refer to INPUT, CONSTRUCT, DISPLAY ARRAY and INPUT ARRAY
independent blocks not surrounded by the DIALOG / END DIALOG keywords. While the DIALOG
instruction reuses some of the semantics and behaviors of singular interactive instructions, there are some
differences.

Like the singular interactive instructions, DIALOG is an interactive instruction. You can execute a DIALOG
instruction from one of the singular dialogs, or execute a singular dialog from a DIALOG block. The parent
dialog will be disabled until the child dialog returns.

A DIALOG procedural instruction consist of several sub-dialog blocks declared inside the DIALOG
instruction, or external dialog blocks declared in scope outside of the current function. The external dialogs
are attached to the current dialog with the SUBDIALOG clause.

The DIALOG instruction binds program variables (such as simple records or arrays of records) with a
screen-record or screen-array defined in a form, allowing the user to view and update application data.

When a DIALOG block executes, it activates the current form (the form most recently displayed or the form
in the current window). When the statement completes execution, the form is deactivated.

User interface | 1146

This screen shot is from a demo program called "Query customers" that you can find in FGLDIR/
demo/MultipleDialogs. This demo involves a DIALOG block that contains a simple INPUT block, a
CONSTRUCT block and a DISPLAY ARRAY block:

The syntax of the DIALOG instruction is very close to singular dialogs, using common triggers such as
BEFORE FIELD, ON ACTION, and so on. Despite the similarities, the behavior and semantics of DIALOG
are a bit different from singular dialogs.

Understand that the DIALOG instruction is not provided to replace singular dialogs. Singular dialogs are still
supported. It is recommended that you use singular dialogs if no multiple dialog is required.

Unlike singular dialogs, the DIALOG instruction does not use the INT_FLAG variable. You must implement
ON ACTION accept or ON ACTION cancel to handle dialog validation or cancellation. These actions
do not exist by default in DIALOG.

Unlike singular dialogs creating implicit accept and cancel actions, by default there is no way to quit the
DIALOG instruction. You must implement your own action handler and execute EXIT DIALOG or ACCEPT
DIALOG.

A good practice is to write a setup dialog function to centralize all field and action activations according to
the context. Call that setup function at any place in the DIALOG code where the field and action activation
rules may change.

While static arrays are supported by the DIALOG instruction, it is strongly recommended that you use
dynamic arrays instead. With a dynamic array, the actual number of rows is automatically defined by the
array variable, while static arrays need an additional step to define the total number of rows.

When needed, use the UNBUFFERED mode with multiple dialogs to force model/view synchronization, and
use the FIELD ORDER FORM option to follow the TABINDEX definitions in the form file.

This example is of a DIALOG procedural instruction that includes both an INPUT and a DISPLAY ARRAY
sub-dialog, plus a sub-dialog defined externally and included with the SUBDIALOG keyword:

SCHEMA stores
DEFINE p_customer RECORD LIKE customer.*
DEFINE p_orders DYNAMIC ARRAY OF RECORD LIKE order.*
FUNCTION customer_dialog()
 DIALOG ATTRIBUTES(UNBUFFERED, FIELD ORDER FORM)
 INPUT BY NAME p_customer.*
 AFTER FIELD cust_name
 CALL setup_dialog(DIALOG)
 END INPUT
 DISPLAY ARRAY p_orders TO s_orders.*
 BEFORE ROW
 CALL setup_dialog(DIALOG)
 END DISPLAY
 SUBDIALOG common_footer
 ON ACTION close
 EXIT DIALOG
 END DIALOG
END FUNCTION

All elements of the dialog are active at the same time, so you must handle tabbing order properly. By
default - as in singular dialogs - the tabbing order is driven by the binding list (order of program variables).
It is strongly recommended that you use the FIELD ORDER FORM option and the TABINDEX field
attributes instead.

Like the singular INPUT ARRAY instruction, DIALOG creates implicit insert, append and delete actions.
These actions are only active when the focus is in the list.

User interface | 1147

Syntax of the procedural DIALOG instruction
The DIALOG block is an interactive instruction that executes several sub-dialogs simultaneously.

Syntax

DIALOG
 [ATTRIBUTES (dialog-control-attribute [,...])]

 { record-input-block
 | construct-block
 | display-array-block
 | input-array-block
 | SUBDIALOG dialog-name
 }
 [...]

 [
 dialog-control-block
 [...]
]

END DIALOG

where dialog-control-attribute is:

{ FIELD ORDER FORM
| UNBUFFERED [= boolean]
}

where dialog-name in the SUBDIALOG clause is the name of a declarative dialog block defined outside the
scope of the current function.

where dialog-control-block is one of:

{ BEFORE DIALOG
| ON ACTION action-name
 [ATTRIBUTES (action-attributes-dialog)]
| ON KEY (key-name [,...])
| ON IDLE seconds
| ON TIMER seconds
| COMMAND option-name
 [option-comment]
 [HELP help-number]
| COMMAND KEY (key-name [,...]) option-name
 [option-comment]
 [HELP help-number]
| AFTER DIALOG
}
 dialog-statement
 [...]

where action-attributes-dialog is:

{ TEXT = string
| COMMENT = string
| IMAGE = string
| ACCELERATOR = string
| DEFAULTVIEW = { YES | NO | AUTO }
| CONTEXTMENU = { YES | NO | AUTO }
 [,...] }

User interface | 1148

where record-input-block is:

INPUT { BY NAME { variable | record.* } [,...]
 | variable | record.* } [,...] FROM field-list
 }
 [ATTRIBUTES (input-control-attribute [,...])]
 [input-control-block
 [...]
]
END INPUT

where input-control-attribute is:

{ HELP = help-number
| NAME = "sub-dialog-name"
| WITHOUT DEFAULTS [= boolean]
}

where input-control-block is one of:

{ BEFORE INPUT
| BEFORE FIELD field-spec [,...]
| ON CHANGE field-spec [,...]
| AFTER FIELD field-spec [,...]
| AFTER INPUT
| ON ACTION action-name
 [INFIELD field-spec]
 [ATTRIBUTES (action-attributes-input)]
| ON KEY (key-name [,...])}
 dialog-statement
 [...]

where action-attributes-input is:

{ TEXT = string
| COMMENT = string
| IMAGE = string
| ACCELERATOR = string
| DEFAULTVIEW = { YES | NO | AUTO }
| VALIDATE = NO
| CONTEXTMENU = { YES | NO | AUTO }
 [,...] }

where construct-block is:

CONSTRUCT { BY NAME variable ON column-list
 | variable ON column-list FROM field-list
 }
 [ATTRIBUTES (construct-control-attribute [,...])]
 [construct-control-block
 [...]
]
END CONSTRUCT

where construct-control-attribute is:

{ HELP = help-number
| NAME = "sub-dialog-name"
}

User interface | 1149

where construct-control-block is one of:

{ BEFORE CONSTRUCT
| BEFORE FIELD field-spec [,...]
| AFTER FIELD field-spec [,...]
| AFTER CONSTRUCT
| ON ACTION action-name
 [INFIELD field-spec]
 [ATTRIBUTES (action-attributes-construct)]
| ON KEY (key-name [,...])}
 dialog-statement
 [...]

where action-attributes-construct is:

{ TEXT = string
| COMMENT = string
| IMAGE = string
| ACCELERATOR = string
| DEFAULTVIEW = { YES | NO | AUTO }
| CONTEXTMENU = { YES | NO | AUTO }
 [,...] }

where display-array-block is:

DISPLAY ARRAY array TO screen-array.*
 [ATTRIBUTES (display-array-control-attribute [,...])]
 [display-array-control-block
 [...]
]
END DISPLAY

where display-array-control-attribute is:

{ HELP = help-number
| COUNT = row-count
| KEEP CURRENT ROW = [= boolean]
| DETAILACTION = action-name
| DOUBLECLICK = action-name
| ACCESSORYTYPE = { DETAIBUTTON | DISCLOSUREINDICATOR | CHECKMARK }
}

where display-array-control-block is one of:

{ BEFORE DISPLAY
| BEFORE ROW
| AFTER ROW
| AFTER DISPLAY
| ON ACTION action-name
 [ATTRIBUTES (action-attributes-display-array)]
| ON KEY (key-name [,...])
| ON FILL BUFFER
| ON SELECTION CHANGE
| ON SORT
| ON APPEND [ATTRIBUTES (action-attributes-listmod-triggers)]
| ON INSERT [ATTRIBUTES (action-attributes-listmod-triggers)]
| ON UPDATE [ATTRIBUTES (action-attributes-listmod-triggers)]
| ON DELETE [ATTRIBUTES (action-attributes-listmod-triggers)]
| ON EXPAND (row-index)
| ON COLLAPSE (row-index)
| ON DRAG_START (dnd-object)
| ON DRAG_FINISH (dnd-object)

User interface | 1150

| ON DRAG_ENTER(dnd-object)
| ON DRAG_OVER (dnd-object)
| ON DROP (dnd-object) }
 dialog-statement
 [...]

where action-attributes-display-array is:

{ TEXT = string
| COMMENT = string
| IMAGE = string
| ACCELERATOR = string
| DEFAULTVIEW = { YES | NO | AUTO }
| CONTEXTMENU = { YES | NO | AUTO }
| ROWBOUND
 [,...] }

where action-attributes-listmod-triggers is:

{ TEXT = string
| COMMENT = string
| IMAGE = string
| ACCELERATOR = string
| DEFAULTVIEW = { YES | NO | AUTO }
| CONTEXTMENU = { YES | NO | AUTO }
 [,...] }

where input-array-block is:

INPUT ARRAY array FROM screen-array.*
 [ATTRIBUTES (input-array-control-attribute [,...])]
 [input-array-control-block
 [...]
]
END INPUT

where input-array-control-attribute is:

{ APPEND ROW [= boolean]
| AUTO APPEND [= boolean]
| COUNT = row-count
| DELETE ROW [= boolean]
| HELP = help-number
| INSERT ROW [= boolean]
| KEEP CURRENT ROW [= boolean]
| MAXCOUNT = max-row-count
| WITHOUT DEFAULTS [= boolean]
}

where input-array-control-block is one of:

{ BEFORE INPUT
| BEFORE ROW
| BEFORE FIELD [,...]
| ON CHANGE field-spec [,...]
| AFTER FIELD field-spec [,...]
| ON ROW CHANGE
| ON SORT
| AFTER ROW
| BEFORE DELETE
| AFTER DELETE
| BEFORE INSERT

User interface | 1151

| AFTER INSERT
| AFTER INPUT
| ON ACTION action-name
 [INFIELD field-spec]
 [ATTRIBUTES (action-attributes-input-array)]
| ON KEY (key-name [,...]) }
 dialog-statement
 [...]

where action-attributes-input-array is:

{ TEXT = string
| COMMENT = string
| IMAGE = string
| ACCELERATOR = string
| DEFAULTVIEW = { YES | NO | AUTO }
| VALIDATE = NO
| CONTEXTMENU = { YES | NO | AUTO }
| ROWBOUND
 [,...] }

where dialog-statement is one of:

{ statement
| ACCEPT DIALOG
| CONTINUE DIALOG
| EXIT DIALOG
| NEXT FIELD
 { CURRENT
 | NEXT
 | PREVIOUS
 | field-spec
 }
}

where field-list defines a list of fields with one or more of:

{ field-name
| table-name.*
| table-name.field-name
| screen-array[line].*
| screen-array[line].field-name
| screen-record.*
| screen-record.field-name
} [,...]

where field-spec identifies a unique field with one of:

{ field-name
| table-name.field-name
| screen-array.field-name
| screen-record.field-name
}

where column-list defines a list of database columns as:

{ column-name
| table-name.*
| table-name.column-name
} [,...]

User interface | 1152

1. variable-definition is a variable declaration with data type as in a regular DEFINE statement.
2. array is the array of records used by the DIALOG statement.
3. help-number is an integer that allows you to associate a help message number with the command.
4. field-name is the identifier of a field of the current form.
5. option-name is a string expression defining the label of the action and identifying the action that can be

executed by the user.
6. option-comment is a string expression containing a description for the menu option, displayed when

option-name is the current.
7. column-name is the identifier of a database column of the current form.
8. table-name is the identifier of a database table of the current form.
9. variable is a simple program variable (not a record).
10.record is a program record (structured variable).
11.screen-array is the screen array that will be used in the current form.
12.line is a screen array line in the form.
13.screen-record is the identifier of a screen record of the current form.
14.action-name identifies an action that can be executed by the user.
15.seconds is an integer literal or variable that defines a number of seconds.
16.key-name is a hot-key identifier (like F11 or Control-z).
17.row-index identifies the program variable which holds the row index corresponding to the tree node that

has been expanded or collapsed.
18.dnd-object references a ui.DragDrop variable defined in the scope of the dialog.
19.statement is any instruction supported by the language.
20.action-attributes are dialog-specific action attributes for the action.

Procedural dialog programming steps

The following steps describe how to implement a procedural DIALOG block:

1. Create a form specification file containing screen record(s) and/or screen array(s). The screen records
and screen arrays identify the presentation elements to be used by the runtime system to display the
data models (i.e. the content of program variables bound to the DIALOG blocks).

2. With the DEFINE instruction, declare program variables (i.e. records and arrays) that will be used as
data models. For record lists (DISPLAY ARRAY or INPUT ARRAY), the members of the program array
must correspond to the elements of the screen array, by number and data types. To handle record lists,
use dynamic arrays instead of static arrays.

3. Open and display the form, using the OPEN WINDOW WITH FORM clause or the OPEN FORM / DISPLAY
FORM instructions.

4. Fill the program variables (.i.e the model) with data. For lists, you typically use a result set cursor.

5. Implement the DIALOG instruction block to handle interaction. Define each sub-dialog with program
variables to be used as data models. The sub-dialogs will define how variables will be used (display or
input).

a) Inside each sub-dialog instruction, define the behavior with control blocks such as BEFORE DIALOG,
AFTER ROW, BEFORE FIELD, and interaction blocks such as ON ACTION.

b) To end the DIALOG instruction, implement an ON ACTION close or ON ACTION accept / ON
ACTION cancel to handle dialog validation and cancellation, with the ACCEPT DIALOG and EXIT
DIALOG control instructions. The INT_FLAG variable will not be set as in singular dialogs.

Using multiple dialogs
To use multiple dialogs, you must understand how they work and how to structure the code.
Identifying sub-dialogs in procedural DIALOG
Sub-dialogs need to be identified by a name to distinguish the different contexts.

A procedural DIALOG block is a collection of sub-dialogs that act as controllers for different parts of a form.
In order to program a procedural DIALOG block, there must be a unique identifier for each sub-dialog.

User interface | 1153

For example, to set the current row of a screen array with the DIALOG.setCurrentRow() method, you
pass the name of the screen array to specify the sub-dialog to be affected. Sub-dialog identifiers are also
used as a prefix to specify actions for the sub-dialog.

The following topics describe how to specify the names of the different types of DIALOG sub-dialogs:

• Identifying an INPUT sub-dialog on page 1154
• Identifying a DISPLAY ARRAY sub-dialog on page 1156
• Identifying an INPUT ARRAY sub-dialog on page 1157
• Identifying a CONSTRUCT sub-dialog on page 1155
• The SUBDIALOG clause on page 1158.

Structure of a procedural DIALOG block

A procedural DIALOG instruction is made of several sub-dialogs, plus global control blocks such as
BEFORE DIALOG and action handlers such as ON ACTION or COMMAND.

Sub-dialogs can be defined inside the DIALOG instruction, or can be declared externally in another module
and attached to the current DIALOG block with the SUBDIALOG clause. A dialog defined in the scope of a
function is know as a procedural dialog block, while a dialog declared in the scope of a module is named a
declarative dialog block.

The sub-dialogs bind program variables to form fields and define the type of interaction that will take place
for the data model (simple input, list input or query). The sub-dialogs implement individual control blocks
which let you control the behavior of the interactive instruction. Sub-dialogs can also hold action handlers,
which will define local sub-dialog actions.

The DIALOG procedural instruction can hold the following type of sub-dialogs:

1. Simple record input with the INPUT sub-dialog block.
2. Query by example input with the CONSTRUCT sub-dialog block.
3. Read-only record list navigation with the DISPLAY ARRAY sub-dialog block.
4. Editable record list handling with the INPUT ARRAY sub-dialog block.
5. A SUBDIALOG clause referencing a declarative sub-dialog by name.

The INPUT sub-dialog
The INPUT sub-dialog implement single record input in fields of the current form.

Program variable to form field binding

Each record member variable is bound to the corresponding field of a screen record, in order to manipulate
the values that the user enters in the form fields.

The INPUT clause can be used in two forms:

1. INPUT BY NAME variable-list

2. INPUT variable-list FROM field-list

The BY NAME clause implicitly binds the fields to the variables that have the same identifiers as the field
names. The variables must be declared with the same names as the fields from which they accept input.
The runtime system ignores any record name prefix when making the match. The unqualified names of the
variables and of the fields must be unique and unambiguous within their respective domains. If they are
not, the runtime system generates an exceptions, and sets the STATUS variable to a negative value.

DEFINE p_cust RECORD
 cust_num INTEGER,
 cust_name VARCHAR(50),
 cust_address VARCHAR(100)
 END RECORD
 ...
DIALOG
 INPUT BY NAME p_cust.*

User interface | 1154

 BEFORE FIELD cust_name
 ...
 END INPUT
 ...
END DIALOG

The FROM clause explicitly binds the fields in the screen record to a list of program variables by position.
The number of variables or record members must equal the number of fields listed in the FROM clause.
Each variable must be of the same (or a compatible) data types as the corresponding screen field. When
the user enters data, the runtime system checks the entered value against the data type of the variable, not
the data type of the screen field.

DEFINE c_name VARCHAR(50)
 c_addr VARCHAR(100)
 ...
DIALOG
 INPUT c_name,
 c_addr
 FROM FORMONLY.field01,
 FORMONLY.field02
 BEFORE FIELD cust_name
 ...
 END INPUT
 ...
END DIALOG

Identifying an INPUT sub-dialog

The name of an INPUT sub-dialog can be used to qualify sub-dialog actions with a prefix.

In order to identify the INPUT sub-dialog with a specific name, you can use the ATTRIBUTES clause to set
the NAME attribute:

INPUT BY NAME p_cust.*
 ATTRIBUTES (NAME = "cust")
 ...

Control blocks in INPUT

Simple record input declared with the INPUT sub-dialog can raise the following triggers:

• BEFORE INPUT
• BEFORE FIELD
• ON CHANGE
• AFTER FIELD
• AFTER INPUT

In the singular INPUT instruction, BEFORE INPUT and AFTER INPUT blocks are typically used as
initialization and finalization blocks. In an INPUT sub-dialog of a DIALOG block, BEFORE INPUT and
AFTER INPUT blocks will be executed each time the focus goes to (BEFORE) or leaves (AFTER) the group
of fields defined by this sub-dialog.

User interface | 1155

The CONSTRUCT sub-dialog
The CONSTRUCT sub-dialog provides database query by example feature, converting search criteria
entered by the user into an SQL WHERE condition that can be use to execute a SELECT statement.

Defining query by example fields

The CONSTRUCT sub-dialog requires a character string variable to hold the WHERE clause, and a list of
screen fields where the user can enter search criteria.

DEFINE sql_condition STRING
 ...
DIALOG
 CONSTRUCT BY NAME sql_condition
 ON customer.cust_name, customer.cust_address
 BEFORE FIELD cust_name
 ...
 END CONSTRUCT
 ...
END DIALOG

Make sure the character string variable is large enough to store all possible SQL conditions. It is better to
use a STRING data type to avoid any size problems.

CONSTRUCT uses the field data types defined in the current form file to produce the SQL conditions. This
is different from other interactive instructions, where the data types of the program variables define the
way to handle input/display. It is strongly recommended (but not mandatory) that the form field data types
correspond to the data types of the program variables used for input. This is implicit if both form fields and
program variables are based on the database schema file.

The CONSTRUCT clause can be used in two forms:

1. CONSTRUCT BY NAME string-variable ON column-list

2. CONSTRUCT string-variable ON column-list FROM field-list

The BY NAME clause implicitly binds the form fields to the columns, where the form field identifiers match
the column names specified in the column-list after the ON keyword. You can specify the individual column
names (separated by commas) or use the tablename.* shortcut to include all columns defined for a table
in the database schema file.

The FROM clause explicitly binds the form fields listed after the FROM keyword with the column definitions
listed after the ON keyword.

In both cases, the name of the columns in column-list will be used to produce the SQL condition in string-
variable.

Identifying a CONSTRUCT sub-dialog

The name of a CONSTRUCT sub-dialog can be used to qualify sub-dialog actions with a prefix. In order to
identify the CONSTRUCT sub-dialog with a specific name, use the ATTRIBUTES clause to set the NAME
attribute:

CONSTRUCT BY NAME sql_condition ON customer.*
 ATTRIBUTES (NAME = "q_cust")
 ...

Control blocks in CONSTRUCT

A Query By Example declared with the CONSTRUCT clause can raise the following triggers:

• BEFORE CONSTRUCT
• BEFORE FIELD

User interface | 1156

• AFTER FIELD
• AFTER CONSTRUCT

In the singular CONSTRUCT instruction, BEFORE CONSTRUCT and AFTER CONSTRUCT blocks are
typically used as initialization and finalization blocks. In DIALOG block, BEFORE CONSTRUCT and AFTER
CONSTRUCT blocks will be executed each time the focus goes to (BEFORE) or leaves (AFTER) the group of
fields defined by this sub-dialog.

The DISPLAY ARRAY sub-dialog
The DISPLAY ARRAY sub-dialog is the controller to implement the navigation in a list of records, with
option data modification actions.

Program array to screen array binding

The DISPLAY ARRAY sub-dialog binds the members of the flat record (or the primitive member) of an
array to the screen-array or screen-record fields specified with the TO keyword. The number of variables in
each record of the program array must be the same as the number of fields in each screen record (that is,
in a single row of the screen array).

You typically bind a program array to a screen-array in order to display a page of records. However, the
DIALOG instruction can also bind the program array to a simple flat screen-record. In this case, only one
record will be visible at a time.

The next code example defines an array with a flat record and binds it to a screen array:

DEFINE p_items DYNAMIC ARRAY OF RECORD
 item_num INTEGER,
 item_name VARCHAR(50),
 item_price DECIMAL(6,2)
 END RECORD
 ...
DIALOG
 DISPLAY ARRAY p_items TO sa.*
 BEFORE ROW
 ...
 END DISPLAY
 ...
END DIALOG

If the screen array is defined with one field only, you can bind an array defined with a primitive type:

DEFINE p_names DYNAMIC ARRAY OF VARCHAR(50)
 ...
DIALOG
 DISPLAY ARRAY p_names TO sa.*
 BEFORE DELETE
 ...
 END DISPLAY
 ...
END DIALOG

Identifying a DISPLAY ARRAY sub-dialog

The name of the screen array specified with the TO clause identifies the list. The dialog class method
such as takes the name of the screen array as the parameter, identifying the list. For example, you would
use DIALOG.getCurrentRow("screen-array") to query for the current row in the list identified by
'screen-array'. The name of the screen-array is also used to qualify sub-dialog actions with a prefix.

Control blocks in DISPLAY ARRAY

Read-only record lists declared with the DISPLAY ARRAY sub-dialog can raise the following triggers:

User interface | 1157

• BEFORE DISPLAY
• BEFORE ROW
• AFTER ROW
• AFTER DISPLAY

In the singular DISPLAY ARRAYinstruction, BEFORE DISPLAY and AFTER DISPLAY blocks are typically
used as initialization and finalization blocks. In a DISPLAY ARRAY sub-dialog of a DIALOG block, BEFORE
DISPLAY and AFTER DISPLAY blocks will be executed each time the focus goes to (BEFORE) or leaves
(AFTER) the group of fields defined by this sub-dialog.

The INPUT ARRAY sub-dialog
The INPUT ARRAY sub-dialog is the controller to implement the navigation and edition in a list of records.

Important: This feature is not supported on mobile platforms.

Program array to screen array binding

The INPUT ARRAY sub-dialog binds the members of the flat record (or the primitive member) of an array
to the screen-array or screen-record fields specified with the FROM keyword. The number of variables in
each record of the program array must be the same as the number of fields in each screen record (that is,
in a single row of the screen array).

You typically bind a program array to a screen-array in order to display a page of records. However, the
DIALOG instruction can also bind the program array to a simple flat screen-record. In this case, only one
record will be visible at a time.

The next code example defines an array with a flat record and binds it to a screen array:

DEFINE p_items DYNAMIC ARRAY OF RECORD
 item_num INTEGER,
 item_name VARCHAR(50),
 item_price DECIMAL(6,2)
 END RECORD
 ...
DIALOG
 INPUT ARRAY p_items FROM sa.*
 BEFORE INSERT
 ...
 END INPUT
 ...
END DIALOG

If the screen array is defined with one field only, you can bind an array defined with a primitive type:

DEFINE p_names DYNAMIC ARRAY OF VARCHAR(50)
 ...
DIALOG
 INPUT ARRAY p_names FROM sa.*
 BEFORE DELETE
 ...
 END INPUT
 ...
END DIALOG

Identifying an INPUT ARRAY sub-dialog

The name of the screen array specified with the FROM clause will be used to identify the list. For example,
the dialog class method such as DIALOG.getCurrentRow("screen-array") takes the name of the
screen array as the parameter, to identify the list you want to query for the current row. The name of the
screen-array is also used to qualify sub-dialog actions with a prefix.

User interface | 1158

Control blocks in INPUT ARRAY

Editable record lists declared with the INPUT ARRAY sub-dialog can raise the following triggers:

• BEFORE INPUT
• BEFORE ROW
• BEFORE FIELD
• ON CHANGE
• AFTER FIELD
• ON ROW CHANGE
• AFTER ROW
• BEFORE DELETE
• AFTER DELETE
• BEFORE INSERT
• AFTER INSERT
• AFTER INPUT

In the singular INPUT ARRAY instruction, BEFORE INPUT and AFTER INPUT blocks are typically used as
initialization and finalization blocks. In the INPUT ARRAY sub-dialog of a DIALOG block, BEFORE INPUT
and AFTER INPUT blocks will be executed each time the focus goes to (BEFORE)or leaves (AFTER) the
group of fields defined by this sub-dialog.

The SUBDIALOG clause

The SUBDIALOG clause attaches a declarative dialog to the current procedural DIALOG block. The
declarative dialog will be implemented outside of the scope of the current dialog, at the same level as a
function. The declarative dialog can be defined in a different module.

In terms of semantics, behavior and control block execution, a declarative dialog attached to a procedural
dialog behaves like a sub-dialog that is defined inside the procedural DIALOG block. For example, the
BEFORE INPUT control block will be executed for a declarative dialog when the focus goes to one of the
fields of that sub-dialog.

Other sub-dialogs can reference the attached declarative dialog in the current scope, for example to
execute a NEXT FIELD instruction referencing a field in another sub-dialog.

When using the DIALOG keyword inside a declarative dialog block to use ui.Dialog class methods, it
references the current procedural dialog object.

Like other module elements such as functions and reports, the name specification is mandatory when
defining a declarative dialog. The name of the declarative dialog will be referenced in a SUBDIALOG clause
of a procedural dialog instruction.

Implementing a sub-dialog as a declarative dialog in a separate module can be used in conjunction with
the form inclusion directive in the LAYOUT section of form specification files. With form inclusion and
declarative dialogs, you enforce code reusability in your application sources.

Note that declarative dialog blocks can also be used to implement parallel dialogs.

Procedural DIALOG block configuration

This sections describes the ATTRIBUTES clause attributes that can be used to configure a procedural
DIALOG instruction and its sub-dialogs.

The ATTRIBUTES clause of dialogs overrides all default attributes and temporarily override any display
attributes that the OPTIONS or the OPEN WINDOW statement specified for these fields.

User interface | 1159

DIALOG ATTRIBUTES clause

FIELD ORDER FORM option

By default, the form tabbing order is defined by the variable list in the binding specification. You can control
the tabbing order by using the FIELD ORDER FORM attribute; when this attribute is used, the tabbing order
is defined by the TABINDEX attribute of the form items.

The field order mode can also be specified globally with the OPTIONS FIELD ORDER instruction.

With FIELD ORDER FORM, if the user changes the focus from field A to a distant field B with the mouse,
the dialog does not execute the BEFORE FIELD / AFTER FIELD triggers of intermediate fields which
appear in the binding specification between field A and field B. Unlike singular dialogs, if the default
FIELD ORDER CONSTRAINT mode is used in a multiple dialog instruction, intermediate triggers are never
executed (i.e. the Dialog.fieldOrder FGLPROFILE entry is ignored by DIALOG.)

See also Defining the tabbing order on page 1271.

UNBUFFERED option

The UNBUFFERED attribute indicates that the dialog must be sensitive to program variable changes. When
using this option, you bypass the compatible "buffered" mode.

The unbuffered mode can be set globally for all DIALOG instructions with the
ui.Dialog.setDefaultUnbuffered() class method:

CALL ui.Dialog.setDefaultUnbuffered(TRUE)
DIALOG -- Will work in UNBUFFERED mode ...
END DIALOG

INPUT ATTRIBUTES clause
Attributes of the INPUT clause of a DIALOG block.

NAME option

The NAME attribute can be used to identify the INPUT sub-dialog, especially useful to qualify sub-dialog
actions.

HELP option

The HELP attribute defines the number of the help message to be displayed when invoked and focus is
in the list controlled by the INPUT sub-dialog. The predefined 'help' action is automatically created by
the runtime system. You can bind action views to the 'help' action. The HELP clause overrides the HELP
attribute.

WITHOUT DEFAULTS option

By default, sub-dialogs use the default values defined in the form files. If you want to use the values stored
in the program variables bound to the dialog, you must use the WITHOUT DEFAULTS attribute. For more
details see WITHOUT DEFAULTS option.

DISPLAY ARRAY ATTRIBUTES clause
Attributes of the DISPLAY ARRAY clause of a DIALOG block.

HELP option

The HELP attribute defines the number of the help message to be displayed when invoked and focus is in
the list controlled by the DISPLAY ARRAY sub-dialog. The predefined 'help' action is automatically created
by the runtime system. You can bind action views to the 'help' action.

The HELP clause overrides the HELP attribute.

User interface | 1160

COUNT option

The COUNT attribute defines the number of valid rows in the static array to be displayed as default rows.
If you do not use the COUNT attribute, the runtime system cannot determine how much data to display, so
the screen array remains empty. The COUNT option is ignored when using a dynamic array, unless page
mode is used. In this case, the COUNT attribute must be used to define the total number of rows, because
the dynamic array will only hold a page of the entire row set. If the value of COUNT is negative or zero, it
defines an empty list.

See also Controlling the total number of rows on page 1350.

DOUBLECLICK option

The DOUBLICKCLICK option can be used to define the action that will be fired when the user chooses
a row from the list. On front-end platforms using a mouse-device, this corresponds to a physical double-
click on a row with the mouse. On mobile front-ends, this corresponds to a tap on the row with a finger.
Note that this attribute can also be defined for the TABLE/TREE containers in form files; DOUBLECLICK in
DISPLAY ARRAY attributes has a higher precedence as DOUBLECLICK in the form file. For more details,
see Defining the action for a row choice on page 1360.

ACCESSORTYPE option

Important: This feature is only for mobile platforms.

The ACCESSORYTYPE attribute can be used to define the decoration of rows, typically used on a iOS
device. Values can be DETAILBUTTON, DISCLOSUREINDICATOR, CHECKMARK to respectively get a (i),
> or checkmark icon. For more details, see Row configuration on iOS devices on page 1369.

DETAILACTION option

Important: This feature is only for mobile platforms.

The DETAILACTION attribute can be used to define the action that will be fired when the user selects the
detail button of a row. The detail button is typically shown with a (i) icon on iOS devices. Note that the
DOUBLECLICK attribute can be used to distinguish the action when the user selects the row instead of the
detail button in the row. For more details, see Row configuration on iOS devices on page 1369.

INPUT ARRAY ATTRIBUTES clause
Attributes of the INPUT ARRAY clause of a DIALOG block.

INPUT ARRAY specific attributes can be defined in the ATTRIBUTE clause of the sub-dialog header:

HELP option

The HELP clause specifies the number of a help message to display if the user invokes the help the INPUT
ARRAY dialog. The predefined 'help' action is automatically created by the runtime system. You can bind
action views to the 'help' action. The HELP clause overrides the HELP attribute.

WITHOUT DEFAULTS option

You typically use the INPUT ARRAY sub-dialog with the WITHOUT DEFAULTS attribute. If this attribute is
not set when using an INPUT ARRAY sub-dialog, the list is empty even if the array holds data. For more
details see WITHOUT DEFAULTS option.

COUNT option

The COUNT attribute defines the number of valid rows in the static array to be displayed as default rows.
If you do not use the COUNT attribute, the runtime system cannot determine how much data to display, so
the screen array remains empty. The COUNT option is ignored when using a dynamic array. If you specify

User interface | 1161

the COUNT attribute, the WITHOUT DEFAULTS option is not required because it is implicit. If the COUNT
attribute is greater than MAXCOUNT, the runtime system will take MAXCOUNT as the actual number of rows.
If the value of COUNT is negative or zero, it defines an empty list.

MAXCOUNT option

The MAXCOUNT attribute defines the maximum number of rows that can be inserted in the program array.
This attribute allows you to give an upper limit of the total number of rows the user can enter. It can be
used with static or dynamic arrays.

When binding a static array, MAXCOUNT is used as upper limit if it is lower or equal to the actual declared
static array size. If MAXCOUNT is greater than the array size, the size of the static array is used as the upper
limit. If MAXCOUNT is lower than the COUNT attribute (or to the SET_COUNT() parameter when using a
singular INPUT ARRAY), the actual number of rows in the array will be reduced to MAXCOUNT.

When binding a dynamic array, the user can enter an infinite number of rows unless the MAXCOUNT
attribute is used. If MAXCOUNT is lower than the actual size of the dynamic array, the number of rows in the
array will be reduced to MAXCOUNT.

If MAXCOUNT is negative or equal to zero, the user cannot insert rows.

APPEND ROW option

The APPEND ROW attribute can be set to FALSE to avoid the append default action, and deny the user to
add rows at the end of the list. If APPEND ROW =FALSE, it is still possible to insert rows in the middle of
the list. Use the INSERT ROW attribute to disallow the user from inserting rows. Additionally, even with
APPEND ROW=FALSE and INSERT ROW=FALSE, you can still get automatic temporary row creation if
AUTO APPEND is not set to FALSE.

INSERT ROW option

The INSERT ROW attribute can be set to FALSE to avoid the insert default action, and deny the user to
insert new rows in the middle of the list. However, even if INSERT ROW is FALSE, it is still possible to
append rows at the end of the list. Use the APPEND ROW attribute to disallow the user from appending
rows. Additionally, even with APPEND ROW=FALSE and INSERT ROW=FALSE, you can still get automatic
temporary row creation if AUTO APPEND is not set to FALSE.

DELETE ROW option

The DELETE ROW attribute can be set to FALSE to avoid the delete default action, and deny the user to
remove rows from the list.

AUTO APPEND option

By default, an INPUT ARRAY controller creates a temporary row when needed (for example, when the
user deletes the last row of the list, an new row will be automatically created). You can prevent this default
behavior by setting the AUTO APPEND attribute to FALSE. When this attribute is set to FALSE, the only way
to create a new temporary row is to execute the append action.

If both the APPEND ROW and INSERT ROW attributes are set to FALSE, the dialog automatically behaves
as if AUTO APPEND equals FALSE.

KEEP CURRENT ROW option

Depending on the list container used in the form, the current row may be highlighted during the execution
of the dialog, and cleared when the instruction ends. You can change this default behavior by using the
KEEP CURRENT ROW attribute, to force the runtime system to keep the current row highlighted.

User interface | 1162

CONSTRUCT ATTRIBUTES clause
Attributes of the CONSTRUCT clause of a DIALOG block.

HELP option

The HELP attribute defines the number of the help message to be displayed when invoked and focus is in
the list controlled by the CONSTRUCT sub-dialog. The predefined 'help' action is automatically created by
the runtime system. You can bind action views to the 'help' action.

The HELP clause overrides the HELP attribute.

NAME option

The NAME attribute can be used to identify the CONSTRUCT sub-dialog; this is especially useful to qualify
sub-dialog actions.

Default actions created by a DIALOG block
Default actions ease the implementation of the controller by providing expected actions.

According to the sub-dialogs defined in a (declarative or procedural) DIALOG block, the runtime system
creates a set of default actions. These actions are provided to ease the implementation of the controller.
For example, when using an INPUT ARRAY sub-dialog, the dialog instruction will automatically create the
insert, append and delete default actions.

Table 280: Default actions created for the DIALOG block on page 1162 lists the default actions created for
the DIALOG interactive instruction, according to the sub-dialogs defined:

Table 280: Default actions created for the DIALOG block

Default action Control Block execution order

help

Shows the help topic defined by the HELP clause.

Only created when a HELP clause or option is
defined for the sub-dialog.

insert

Inserts a new row before current row.

Only created if INPUT ARRAY is used; action
creation can be avoided with INSERT ROW =
FALSE attribute.

append

Appends a new row at the end of the list.

Only created if INPUT ARRAY is used; action
creation can be avoided with APPEND ROW =
FALSE attribute.

delete

Deletes the current row.

Only created if INPUT ARRAY is used; action
creation can be avoided with DELETE ROW =
FALSE attribute.

nextrow

Moves to the next row in a list displayed in one row
of fields.

Only created if DISPLAY ARRAY or INPUT ARRAY
used with a screen record having only one row.

User interface | 1163

Default action Control Block execution order

prevrow

Moves to the previous row in a list displayed in one
row of fields.

Only created if DISPLAY ARRAY or INPUT ARRAY
used with a screen record having only one row.

firstrow

Moves to the first row in a list displayed in one row
of fields.

Only created if DISPLAY ARRAY or INPUT ARRAY
used with a screen record having only one row.

lastrow

Moves to the last row in a list displayed in one row
of fields.

Only created if DISPLAY ARRAY or INPUT ARRAY
used with a screen record having only one row.

find

Opens the fglfind dialog window to let the user
enter a search value, and seeks to the row
matching the value.

Only created if the context allows built-in find.

findnext

Seeks to the next row matching the value entered
during the fglfind dialog.

Only created if the context allows built-in find.

The insert, append and delete default actions can be avoided with dialog control attributes:

INPUT ARRAY arr TO sr.* ATTRIBUTES(INSERT ROW=FALSE, APPEND
 ROW=FALSE, ...)
 ...

DIALOG data blocks
Dialog data blocks are dialog triggers invoked when the dialog controller needs data to feed the view with
values.

Such blocks are typically used when record list data is provided dynamically, with the paged mode or when
implementing dynamic tree-views.

• ON FILL BUFFER block on page 1082
• ON EXPAND block on page 1082
• ON COLLAPSE block on page 1082

ON FILL BUFFER block
The ON FILL BUFFER block is used to fill a page of rows into the dynamic array, according to an offset
and a number of rows.

This data block is used in the DISPLAY ARRAY blocks.

The offset can be retrieved with the FGL_DIALOG_GETBUFFERSTART() built-in function and the number
of rows to provide is defined by the FGL_DIALOG_GETBUFFERLENGTH() built-in function.

User interface | 1164

ON EXPAND block
The ON EXPAND block is executed when a tree view node is expanded (i.e. opened).

This data block is used to implement dynamic trees in a DISPLAY ARRAY, where nodes are added
according to the nodes opened by the end user.

ON COLLAPSE block
The ON COLLAPSE block is executed when a tree view node is collapsed (i.e. closed).

This data block is used to implement dynamic trees in a DISPLAY ARRAY, where nodes are removed
according to the nodes closed by the end user.

DIALOG control blocks
Dialog control blocks are predefined dialog triggers where you can implement specific code to control the
interactive instruction.

The code could involve using ui.Dialog class methods or dialog specific instructions such as NEXT
FIELD or CONTINUE DIALOG.

• Control block execution order in parallel dialogs on page 1220
• BEFORE FIELD block on page 1069
• AFTER FIELD block on page 1070
• ON CHANGE block on page 1069
• BEFORE INPUT block on page 1067
• AFTER INPUT block on page 1068
• BEFORE CONSTRUCT block on page 1135
• AFTER CONSTRUCT block on page 1135
• BEFORE DISPLAY block on page 1082
• AFTER DISPLAY block on page 1083
• BEFORE ROW block on page 1083
• ON ROW CHANGE block on page 1110
• AFTER ROW block on page 1084
• BEFORE INSERT block on page 1113
• AFTER INSERT block on page 1113
• BEFORE DELETE block on page 1114
• AFTER DELETE block on page 1114
• BEFORE MENU block on page 1054

Control block execution order in multiple dialogs

This table shows the order in which control blocks are executed in a procedural DIALOG instruction,
according to the context and user action:

Table 281: Control block execution order for a procedural dialog

Context / User action Control Block execution order

Entering the dialog 1. BEFORE DIALOG

2. BEFORE INPUT, BEFORE CONSTRUCT or
BEFORE DISPLAY (first sub-dialog getting
focus)

3. BEFORE ROW (if focus goes to a list)
4. BEFORE FIELD (if focus goes to a field)

When the focus goes to an INPUTor to a
CONSTRUCT from a different sub-dialog

1. Triggers raised by the context of the sub-dialog
you leave

2. BEFORE INPUT or BEFORE CONSTRUCT (new
sub-dialog getting focus)

User interface | 1165

Context / User action Control Block execution order

3. BEFORE FIELD

When the focus leaves an INPUT or a CONSTRUCT
to a different sub-dialog

1. ON CHANGE (if INPUT and value of current field
has changed)

2. AFTER FIELD (for the current field)
3. AFTER INPUT or AFTER CONSTRUCT (current

sub-dialog losing focus)
4. Triggers raised by the context of the sub-dialog

you enter

When the focus goes to a DISPLAY ARRAY list or
to an INPUT ARRAY list from a different sub-dialog

1. Triggers raised by the context of the sub-dialog
you leave

2. BEFORE INPUT or BEFORE DISPLAY (new
sub-dialog getting focus)

3. BEFORE ROW (the row that was selected in the
list)

4. BEFORE FIELD (if it's an INPUT ARRAY)

When the focus leaves a DISPLAY ARRAY or
INPUT ARRAY list to a different sub-dialog

1. ON CHANGE (if INPUT ARRAY and value of
current field has changed)

2. AFTER FIELD (if it's an INPUT ARRAY)
3. AFTER INSERT (if INPUT ARRAY and current

row was just created)

or

ON ROW CHANGE (if INPUT ARRAY and a value
in the row has changed)

4. AFTER ROW (the current row in the list you
leave)

5. AFTER INPUT or AFTER DISPLAY (current
sub-dialog losing focus)

6. Triggers raised by the context of the sub-dialog
you enter

Moving from field A to field B in an INPUT or
CONSTRUCT sub-dialog or in the same row of an
INPUT ARRAY list

1. ON CHANGE (if value of current field has
changed)

2. AFTER FIELD A

3. BEFORE FIELD B

Moving from field A of an INPUT or CONSTRUCT
sub-dialog to field B in another INPUT or
CONSTRUCT sub-dialog

1. ON CHANGE (if value of current field has
changed)

2. AFTER FIELD A

3. AFTER INPUT or AFTER CONSTRUCT (for sub-
dialog of field A)

4. BEFORE INPUT or BEFORE CONSTRUCT (for
sub-dialog of field B)

5. BEFORE FIELD B

Moving to a different row in a DISPLAY ARRAY list 1. AFTER ROW (the row you leave)
2. BEFORE ROW (the new current row)

User interface | 1166

Context / User action Control Block execution order

Moving to a different row in an INPUT ARRAY list
when current row was newly created

1. ON CHANGE (if value of current field has
changed)

2. AFTER FIELD (for field A in the row you leave)
3. AFTER INSERT (the newly created row)
4. AFTER ROW (the newly created row)
5. BEFORE ROW (the new current row)
6. BEFORE FIELD (field in the new current row)

Moving to a different row in an INPUT ARRAY list
when current row was modified

1. ON CHANGE (if value of current field has
changed)

2. AFTER FIELD (for field A in the row you leave)
3. ON ROW CHANGE (the values in current row

have changed)
4. AFTER ROW (for the row that was modified)
5. BEFORE ROW (the new current row)
6. BEFORE FIELD (field in the new current row)

Inserting or appending a new row in an INPUT
ARRAY list

1. Triggers raised by the context of the sub-dialog
you leave

2. BEFORE INSERT (for the new current row)
3. BEFORE ROW (the new current row)
4. BEFORE FIELD (field in the new current row)

Deleting a row in an INPUT ARRAY list 1. BEFORE DELETE (for the current row to be
deleted)

2. AFTER DELETE (now the deleted row is
removed)

3. AFTER ROW (for the deleted row)
4. BEFORE ROW (the new current row)

Firing the insert or append action for the ON
INSERT block in a DISPLAY ARRAY list

1. AFTER ROW

2. ON INSERT

3. BEFORE ROW

Firing the delete action for the ON DELETE block in
a DISPLAY ARRAY list

1. AFTER ROW

2. ON DELETE

3. BEFORE ROW

Validating the dialog with ACCEPT DIALOG 1. ON CHANGE (if focus is in input field and value
has changed)

2. AFTER FIELD (if focus is in input field)
3. AFTER INSERT (if INPUT ARRAY and current

row was just created)

or

ON ROW CHANGE (if INPUT ARRAY and a value
in the row has changed)

4. AFTER ROW (if focus is in a list)
5. AFTER INPUT, AFTER CONSTRUCT or AFTER

CONSTRUCT (current sub-dialog)

User interface | 1167

Context / User action Control Block execution order

6. AFTER DIALOG

Canceling the dialog with EXIT DIALOG None of the control blocks will be executed; we just
leave the dialog instruction.

BEFORE DIALOG block

The BEFORE DIALOG block is executed one time as the first trigger when the DIALOG instruction starts,
before the runtime system gives control to the user. You can implement variable initialization and dialog
configuration in this block.

In this example, the BEFORE DIALOG block performs some dialog setup and gives the focus to a specific
field:

 BEFORE DIALOG
 CALL DIALOG.setActionActive("save",FALSE)
 CALL DIALOG.setFieldActive("cust_status", is_admin())
 IF cust_is_new() THEN
 NEXT FIELD cust_name
 END IF

A DIALOG instruction can include no more than one BEFORE DIALOG control block.

AFTER DIALOG block

The AFTER DIALOG block is executed one time as the last trigger when the DIALOG instruction
terminates, when performing an ACCEPT DIALOG instruction. Dialog finalization code can be implemented
in this block.

The dialog terminates when an ACCEPT DIALOG or EXIT DIALOG control instruction is executed.
However, the AFTER DIALOG block is not executed if an EXIT DIALOG is performed.

If you execute one of the following control instructions in an AFTER DIALOG block, the dialog will not
terminate and it will give control back to the user:

1. NEXT FIELD

2. NEXT OPTION

3. CONTINUE DIALOG

In the next example, the AFTER DIALOG block checks whether a field value is correct and gives control
back to the dialog if the value is wrong:

 ON ACTION accept
 ACCEPT DIALOG
 ...
 AFTER DIALOG
 IF NOT cust_is_valid_status(p_cust.cust_status) THEN
 ERROR "Customer state is not valid"
 NEXT FIELD cust_status
 END IF

BEFORE FIELD block

For fields controlled by an INPUT, INPUT ARRAY or by a CONSTRUCT instructions, the BEFORE FIELD
block is executed every time the cursor enters into the specified field.

For editable lists driven by INPUT ARRAY, this block is executed when moving the focus from field to field
in the same row, or when moving to another row in the same column.

The BEFORE FIELD block is also executed when performing a NEXT FIELD instruction.

User interface | 1168

The BEFORE FIELD keywords must be followed by a list of form field specification. The screen-record
name can be omitted.

BEFORE FIELD is executed after BEFORE INPUT, BEFORE CONSTRUCT, BEFORE ROW and BEFORE
INSERT.

Use this block to do some field value initialization, or to display a message to the user:

INPUT BY NAME p_cust.* ...
 BEFORE FIELD cust_status
 LET p_cust.cust_comment = NULL
 MESSAGE "Enter customer status"

When using the default FIELD ORDER CONSTRAINT mode, the dialog executes the BEFORE FIELD
block of the field corresponding to the first variable of an INPUT or INPUT ARRAY, even if that field is not
editable (NOENTRY, hidden or disabled). The block is executed when you enter the dialog and every time
you create a new row in the case of INPUT ARRAY. This behavior is supported for backward compatibility.
The block is not executed when using the FIELD ORDER FORM, the mode recommended for DIALOG
instructions.

With the FIELD ORDER FORM mode, for each dialog executing the first time with a specific form, the
BEFORE FIELD block might be invoked for the first field of the initial tabbing list defined by the form, even
if that field was hidden or moved around in a table. The dialog then behaves as if a NEXT FIELD first-
visible-column would have been done in the BEFORE FIELD of that field.

When form-level validation occurs and a field contains an invalid value, the dialog gives the focus to the
field, but no BEFORE FIELD trigger will be executed.

AFTER FIELD block

In dialog parts driven by a simple INPUT, INPUT ARRAY or by a CONSTRUCT sub-dialog, the AFTER
FIELD block is executed every time the focus leaves the specified field. For editable lists driven by INPUT
ARRAY, this block is executed when moving the focus from field to field in the same row, or when moving to
another row in the same column.

The AFTER FIELD keywords must be followed by a list of form field specifications. The screen-record
name can be omitted.

AFTER FIELD is executed before AFTER INSERT, ON ROW CHANGE, AFTER ROW, AFTER INPUT or
AFTER CONSTRUCT.

When a NEXT FIELD instruction is executed in an AFTER FIELD block, the cursor moves to the specified
field, which can be the current field. This can be used to prevent the user from moving to another field / row
during data input. Note that the BEFORE FIELD block is also executed when NEXT FIELD is invoked.

The AFTER FIELD block of the current field is not executed when performing a NEXT FIELD; only
BEFORE INPUT, BEFORE CONSTRUCT, BEFORE ROW, and BEFORE FIELD of the target item might be
executed, based on the sub-dialog type.

When ACCEPT DIALOG, ACCEPT INPUT or ACCEPT CONTRUCT is performed, the AFTER FIELD trigger
of the current field is executed.

Use the AFTER FIELD block to implement field validation rules:

INPUT BY NAME p_item.* ...
 AFTER FIELD item_quantity
 IF p_item.item_quantity <= 0 THEN
 ERROR "Item quantity cannot be negative or zero"
 LET p_item.item_quantity = 0
 NEXT FIELD item_quantity
 END IF

User interface | 1169

ON CHANGE block

The ON CHANGE block can be used to detect that a field changed by user input. The ON CHANGE block
is executed if the value has changed since the field got the focus and if the modification flag is set. The
ON CHANGE block can only be used for fields controlled by an INPUT or INPUT ARRAY dialog, it is not
available in CONSTRUCT.

For editable fields defined as EDIT, TEXTEDIT or BUTTONEDIT, the ON CHANGE block is executed
when leaving a field, if the value of the specified field has changed since the field got the focus and if
the modification flag is set for the field. You leave the field when you validate the dialog, when you move
to another field, or when you move to another row in an INPUT ARRAY. However, if the text edit field is
defined with the COMPLETER attribute to enable autocompletion, the ON CHANGE trigger will be fired after a
short period of time, when the user has typed characters in.

For editable fields defined as CHECKBOX, COMBOBOX, DATEEDIT, DATETIMEEDIT, TIMEEDIT,
RADIOGROUP, SPINEDIT, SLIDER or URL-based WEBCOMPONENT (when the COMPONENTTYPE attribute
is not used), the ON CHANGE block is invoked immediately when the user changes the value with the
widget edition feature. For example, when toggling the state of a CHECKBOX, when selecting an item in
a COMBOBOX list, or when choosing a date in the calendar of a DATEEDIT. Note that for such item types,
when ON CHANGE is fired, the modification flag is always set.

 ON CHANGE order_checked -- Defined as CHECKBOX
 CALL setup_dialog(DIALOG)

If both an ON CHANGE block and AFTER FIELD block are defined for a field, the ON CHANGE block is
executed before the AFTER FIELD block.

When changing the value of the current field by program in an ON ACTION block, the ON CHANGE
block will be executed when leaving the field if the value is different from the reference value and if the
modification flag is set (after previous user input or when the touched flag has been changed by program).

When using the NEXT FIELD instruction, the comparison value is reassigned as if the user had leaved
and reentered the field. Therefore, when using NEXT FIELD in ON CHANGE block or in an ON ACTION
block, the ON CHANGE block will only be invoked again if the value is different from the reference value.
This denies to do field validation in ON CHANGE blocks: you must do validations in AFTER FIELD blocks
and/or AFTER INPUT blocks.

BEFORE INPUT block

BEFORE INPUT block in singular and parallel INPUT, INPUT ARRAY dialogs

In a singular INPUT, INPUT ARRAY instruction, or when used as parallel dialog, the BEFORE INPUT is
only executed once when the dialog is started.

The BEFORE INPUT block is executed once at dialog startup, before the runtime system gives control to
the user. This block can be used to display messages to the user, initialize program variables and setup
the dialog instance by deactivating unused fields or actions the user is not allowed to execute.

INPUT BY NAME cust_rec.* ...
 BEFORE INPUT
 MESSAGE "Input customer information"
 CALL DIALOG.setActionActive("check_info", is_super_user())
 CALL DIALOG.setFieldActive("cust_comment", is_super_user())
 ...

The fields are initialized with the defaults values before the BEFORE INPUT block is executed. When the
INPUT instruction uses the WITHOUT DEFAULTS option, the default values are taken from the program
variables bound to the fields, otherwise (with defaults), the DEFAULT attributes of the form fields are used.

Use the NEXT FIELD control instruction in the BEFORE INPUT block, to jump to a specific field when the
dialog starts.

User interface | 1170

BEFORE INPUT block in INPUT and INPUT ARRAY of procedural DIALOG

In an INPUT or INPUT ARRAY sub-dialog of a procedural DIALOG instruction, the BEFORE INPUT block is
executed when the focus goes to a group of fields driven by the sub-dialog. This trigger is only invoked if a
field of the sub-dialog gets the focus, and none of the other fields had the focus.

When the focus is in a list driven by an INPUT ARRAY sub-dialog, moving to a different row will not invoke
the BEFORE INPUT block.

BEFORE INPUT is executed after the BEFORE DIALOG block andbefore the BEFORE ROW, BEFORE
FIELD blocks.

In this example, the BEFORE INPUT block is used to set up a specific action and display a message:

INPUT BY NAME p_order.*
 BEFORE INPUT
 CALL DIALOG.setActionActive("validate_order", TRUE)

AFTER INPUT block

AFTER INPUT block in singular and parallel INPUT, INPUT ARRAY dialogs
In a singular INPUT, INPUT ARRAY instruction, or when used as parallel dialog, the AFTER INPUT is only
executed once when dialog ends.

The AFTER INPUT block is executed after the user has validated or canceled the INPUT or INPUT ARRAY
dialog with the accept or cancel default actions, or when the ACCEPT INPUT instruction is executed.

The AFTER INPUT block is not executed when the EXIT INPUT instruction is performed.

In singular and parallel dialogs, this block is typically used to implement global dialog validation rules
depending from several fields. If the values entered by the user do not satisfy the constraints, use the
NEXT FIELD instruction to force the dialog to continue. The CONTINUE INPUT instruction can be used
instead of NEXT FIELD, when no particular field has to be select.

Before checking the validation rules, make sure that the INT_FLAG variable is FALSE: in case if the user
cancels the dialog, the validation rules must be skipped.

INPUT BY NAME cust_rec.*
 WITHOUT DEFAULTS ATTRIBUTES (UNBUFFERED)
 ...

 AFTER INPUT
 IF NOT INT_FLAG THEN
 IF cust_rec.cust_address IS NOT NULL
 AND cust_rec.cust_zipcode IS NULL THEN
 ERROR "Address is incomplete, enter a zipcode."
 NEXT FIELD zipcode
 END IF
 END IF
END INPUT

To limit the validation to fields that have been modified by the end user, you can call the
FIELD_TOUCHED() function or the DIALOG.getFieldTouched() method to check if a field has
changed during the dialog execution. This will make your validation code faster if the user has only
modified a couple of fields in a large form.

AFTER INPUT block in INPUT and INPUT ARRAY of procedural DIALOG

In an INPUT or INPUT ARRAY sub-dialog of a procedural DIALOG instruction, the AFTER INPUT block is
executed when the focus is lost by a group of fields driven by an INPUT or INPUT ARRAY sub-dialog. This
trigger is invoked if a field of the sub-dialog loses the focus, and a field of a different sub-dialog gets the

User interface | 1171

focus. When the focus is in a list driven by an INPUT ARRAY sub-dialog, moving to a different row will not
invoke the AFTER INPUT block.

If the focus leaves the current group and goes to an action view, this trigger is not executed, because the
focus did not go to another sub-dialog yet.

AFTER INPUT is executed after the AFTER FIELD, AFTER ROW blocks and before the AFTER DIALOG
block.

Executing a NEXT FIELD in the AFTER INPUT control block will keep the focus in the group of fields.
Within an INPUT ARRAY sub-dialog, NEXT FIELD will keep the focus in the list and stay in the current
row. You typically use this behavior to control user input.

In this example, the AFTER INPUT block is used to validate data and disable an action that can only be
used in the current group:

INPUT BY NAME p_order.*
 AFTER INPUT
 IF NOT check_order_data(DIALOG) THEN
 NEXT FIELD CURRENT
 END IF
 CALL DIALOG.setFieldActive("validate_order", FALSE)

BEFORE CONSTRUCT block

BEFORE CONSTRUCT block in singular and parallel CONSTRUCT dialogs

In a singular CONSTRUCT instruction, or when used as parallel dialog, the BEFORE CONSTRUCT is only
executed once when dialog is started.

The BEFORE CONSTRUCT block is executed once at dialog startup, before the runtime system gives
control to the user for criteria input. This block can be used to display messages to the user, initialize form
fields with default search criteria values, and setup the dialog instance by deactivating unused fields or
actions the user is not allowed to execute.

CONSTRUCT BY NAME where_part ON ...
 BEFORE CONSTRUCT
 MESSAGE "Enter customer search filter"
 CALL DIALOG.setActionActive("clean", FALSE)
 ...

The fields are cleared before the BEFORE CONSTRUCT block is executed.

You can use the NEXT FIELD control instruction in the BEFORE CONSTRUCT block, to jump to a specific
field when the dialog starts.

BEFORE CONSTRUCT block in CONSTRUCT of procedural DIALOG

In a CONSTRUCT sub-dialog of a procedural DIALOG instruction, the BEFORE CONSTRUCT block is
executed when the focus goes to a group of fields driven by a CONSTRUCT sub-dialog. This trigger is only
invoked if a field of the sub-dialog gets the focus, and none of the other fields had the focus.

BEFORE CONSTRUCT is executed after the BEFORE DIALOG block and before the BEFORE FIELD blocks.

In this example, the BEFORE CONSTRUCT block is used to display a message:

CONSTRUCT BY NAME sql ON customer.*
 BEFORE CONSTRUCT
 MESSAGE "Enter customer search filter"

User interface | 1172

AFTER CONSTRUCT block

AFTER CONSTRUCT block in singular and parallel CONSTRUCT dialogs

In a singular CONSTRUCT instruction, or when used as parallel dialog, the AFTER CONSTRUCT is only
executed once when dialog is ended.

Use an AFTER CONSTRUCT block to execute instructions after the user has finished search criteria input.

AFTER CONSTRUCT is not executed if an EXIT CONSTRUCT is performed.

The code in AFTER CONSTRUCT can for example check if a criteria combination of different fields is
required or denied, and force the end use to enter all

Before checking the content of the fields used in the CONSTRUCT, make sure that the INT_FLAG variable is
FALSE: in case if the user cancels the dialog, the validation rules must be skipped.

Since no program variables are associated to the form fields, you must query the input buffers of the fields
to get the values entered by the user.

CONSTRUCT BY NAME where_part ON ...
 ...
 AFTER CONSTRUCT
 IF NOT INT_FLAG THEN
 IF length(DIALOG.getFieldBuffer(cust_name))==0
 OR length(DIALOG.getFieldBuffer(cust_addr))==0 THEN
 ERROR "Enter a search criteria for customer name and address
 fields."
 NEXT FIELD CURRENT
 END IF
 END IF
END CONSTRUCT

To limit the validation to fields that have been modified by the end user, you can call the
FIELD_TOUCHED() function or the DIALOG.getFieldTouched() method to check if a field has
changed during the dialog execution. This will make your validation code faster if the user has only
modified a couple of fields in a large form.

AFTER CONSTRUCT block in CONSTRUCT of procedural DIALOG

In a CONSTRUCT sub-dialog of a procedural DIALOG instruction, the AFTER CONSTRUCT block is executed
when the focus is lost by a group of fields driven by a CONSTRUCT sub-dialog. This trigger is invoked if a
field of the sub-dialog loses the focus, and a field of a different sub-dialog gets the focus.

If the focus leaves the current group and goes to an action view, this trigger is not executed, because the
focus did not go to another sub-dialog yet.

AFTER CONSTRUCT is executed after the AFTER FIELD and before the AFTER DIALOG block.

Executing a NEXT FIELD in the AFTER CONSTRUCT control block will keep the focus in the group of
fields.

In this example, the AFTER CONSTRUCT block is used to build the SELECT statement:

CONSTRUCT BY NAME sql ON customer.*
 AFTER CONSTRUCT
 LET sql = "SELECT * FROM customers WHERE " || sql

User interface | 1173

BEFORE DISPLAY block

BEFORE DISPLAY block in singular and parallel DISPLAY ARRAY dialogs

In a singular DISPLAY ARRAY instruction, or when used as parallel dialog, the BEFORE DISPLAY is only
executed once when the dialog is started.

The BEFORE DISPLAY block is executed once at dialog startup, before the runtime system gives control
to the user. This block can be used to display messages to the user, initialize program variables and setup
the dialog instance by deactivating actions the user is not allowed to execute.

DISPLAY ARRAY p_items TO s_items.*
 BEFORE DISPLAY
 CALL DIALOG.setActionActive("clear_item_list", is_super_user())

BEFORE DISPLAY block in singular and parallel DISPLAY ARRAY dialogs

In a DISPLAY ARRAY sub-dialog of a procedural DIALOG instruction, the BEFORE DISPLAY block is
executed when a DISPLAY ARRAY list gets the focus.

BEFORE DISPLAY is executed before the BEFORE ROW block.

In this example the BEFORE DISPLAY block enables an action and displays a message:

DISPLAY ARRAY p_items TO s_items.*
 BEFORE DISPLAY
 CALL DIALOG.setActionActive("print_list", TRUE)
 MESSAGE "You are now in the list of items"

AFTER DISPLAY block

AFTER DISPLAY block in singular and parallel DISPLAY ARRAY dialogs

In a singular DISPLAY ARRAY instruction, or when used as parallel dialog, the AFTER DISPLAY is only
executed once when dialog is ended.

You typically implement dialog finalization in this block.

DISPLAY ARRAY p_items TO s_items.*
 AFTER DISPLAY
 DISPLAY "Current row is: ", arr_curr()

AFTER DISPLAY block in singular and parallel DISPLAY ARRAY dialogs

In a DISPLAY ARRAY sub-dialog of a procedural DIALOG instruction, the AFTER DISPLAY block is
executed when a DISPLAY ARRAY list loses the focus and goes to another sub-dialog.

If the focus leaves the current group and goes to an action view, this trigger is not executed, because the
focus did not go to another sub-dialog yet.

AFTER DISPLAY is executed after the AFTER ROW block.

In this example, the AFTER DISPLAY block disables an action that is specific to the current list:

DISPLAY ARRAY p_items TO s_items.*
 AFTER DISPLAY
 CALL DIALOG.setActionActive("clear_item_list", FALSE)

User interface | 1174

BEFORE ROW block

BEFORE ROW block in singular and parallel DISPLAY ARRAY, INPUT ARRAY dialogs

In a singular DISPLAY ARRAY, INPUT ARRAY instruction, or when used as parallel dialog, the BEFORE
ROW block is executed each time the user moves to another row. This trigger can also be executed in other
situations, such as when you delete a row, or when the user tries to insert a row but the maximum number
of rows in the list is reached.

You typically do some dialog setup / message display in the BEFORE ROW block, because it indicates that
the user selected a new row or entered in the list.

When the dialog starts, BEFORE ROW will be executed for the current row, but only if there are data rows in
the array.

When called in this block, DIALOG.getCurrentRow() / arr_curr() return the index of the current row.

In this example, the BEFORE ROW block gets the new row number and displays it in a message:

DISPLAY ARRAY ...
 ...
 BEFORE ROW
 MESSAGE "We are on row # ", arr_curr()
 ...

BEFORE ROW block in DISPLAY ARRAY and INPUT ARRAY of procedural DIALOG

In an INPUT or INPUT ARRAY sub-dialog of a procedural DIALOG instruction, the BEFORE ROW block
is executed when a DISPLAY ARRAY or INPUT ARRAY list gets the focus, or when the user moves to
another row inside a list. This trigger can also be executed in other situations, for example when you delete
a row, or when the user tries to insert a row but the maximum number of rows in the list is reached.

You typically do some dialog setup / message display in the BEFORE ROW block, because it indicates that
the user selected a new row. Do not use this trigger to detect focus changes; Use the BEFORE DISPLAY
or BEFORE INPUT blocks instead.

In DISPLAY ARRAY, BEFORE ROW is executed after the BEFORE DISPLAY block. In INPUT ARRAY,
BEFORE ROW is executed before the BEFORE INSERT and BEFORE FIELD blocks and after the BEFORE
INPUT blocks.

When the procedural dialog starts, BEFORE ROW will only be executed if the list has received the focus and
there is a current row (the array is not empty). If you have other elements in the form which can get the
focus before the list, BEFORE ROW will not be triggered when the dialog starts. You must pay attention to
this, because this behavior is different to the behavior of singular DISPLAY ARRAY or INPUT ARRAY. In
singular dialogs, the BEFORE ROW block is always executed when the dialog starts (and there are rows in
the array).

When called in this block, DIALOG.getCurrentRow() / arr_curr() return the index of the current row.

In this example the BEFORE ROW block displays a message with the current row number:

 DISPLAY ARRAY p_items TO s_items.*
 BEFORE ROW
 MESSAGE "We are in items, on row #", DIALOG.getCurrentRow("s_items")

ON ROW CHANGE block

The ON ROW CHANGE block is executed in a list controlled by an INPUT ARRAY, when leaving the
current row and when the row has been modified since it got the focus. This is typically used to detect row
modification.

User interface | 1175

The code in ON ROW CHANGE will not be executed when leaving new rows created by the user with the
default append or insert action. To detect row creation, you must use the BEFORE INSERT or AFTER
INSERT control blocks.

The ON ROW CHANGE block is only executed if at least one field value in the current row has changed
since the row was entered, and the modification flag of the field is set. The modified field(s) might not be
the current field, and several field values can be changed. Values might have been changed by the user
or by the program. The modification flag is reset for all fields when entering another row, when going to
another sub-dialog, or when leaving the dialog instruction.

ON ROW CHANGE is executed after the AFTER FIELD block and before the AFTER ROW block.

When called in this block, DIALOG.getCurrentRow() / arr_curr() return the index of the current row that
has been changed.

You can, for example, code database modifications (UPDATE) in the ON ROW CHANGE block:

 INPUT ARRAY p_items FROM s_items.*
 ...
 ON ROW CHANGE
 LET r = DIALOG.getCurrentRow("s_items")
 UPDATE items SET
 items.item_code = p_items[r].item_code,
 items.item_description = p_items[r].item_description,
 items.item_price = p_items[r].item_price,
 items.item_updatedate = TODAY
 WHERE items.item_num = p_items[r].item_num

AFTER ROW block

AFTER ROW block in singular and parallel DISPLAY ARRAY, INPUT ARRAY dialogs

In a singular DISPLAY ARRAY, INPUT ARRAY instruction, or when used as parallel dialog, the AFTER
ROW block is executed each time the user moves to another row, before the current row is left. This trigger
can also be executed in other situations, such as when you delete a row, or when the user inserts a new
row.

A NEXT FIELD instruction executed in the AFTER ROW control block will keep the user entry in the current
row. Use this behavior to implement row validation and prevent the user from leaving the list or moving to
another row.

When called in this block, DIALOG.getCurrentRow() / arr_curr() return the index of the row that you
are leaving.

AFTER ROW block in DISPLAY ARRAY and INPUT ARRAY of procedural DIALOG

In an INPUT or INPUT ARRAY sub-dialog of a procedural DIALOG instruction, the AFTER ROW block is
executed when a DISPLAY ARRAY or INPUT ARRAY list loses the focus, or when the user moves to
another row in a list. This trigger can also be executed in other situations, for example when you delete a
row, or when the user inserts a new row.

AFTER ROW is executed after the AFTER FIELD, AFTER INSERT and before AFTER DISPLAY or AFTER
INPUT blocks.

When called in this block, DIALOG.getCurrentRow() / arr_curr() return the index of the of the row
that you are leaving.

For both INPUT ARRAY and DISPLAY ARRAY sub-dialogs, a NEXT FIELD executed in the AFTER ROW
control block will keep the focus in the list and stay in the current row. Use this feature to implement row
validation and prevent the user from leaving the list or moving to another row.

User interface | 1176

AFTER ROW and temporary rows in INPUT ARRAY

Important: After creating a temporary row at the end of a list driven by INPUT
ARRAY, if you leave that row to a previous row without data input (setting the
touched flag), or when the cancel action is invoked, the temporary row will be
automatically removed. The AFTER ROW block will be executed for the temporary
row, but ui.Dialog.getCurrentRow()/arr_curr() will be one row greater than
ui.Dialog.getArrayLength()/ARR_COUNT(). In this case, you should ignore the AFTER
ROW event. For example, you should not try to execute a NEXT FIELD or CONTINUE INPUT
instruction, nor should you try to access the dynamic array with a row index that is greater
than the total number of rows, otherwise the runtime system will adapt the total number of
rows to the actual number of rows in the program array.

In this example, the AFTER ROW block checks the current row index and verifies a variable value to forces
the focus to stay in the current row if the value is wrong:

INPUT ARRAY p_items FROM s_items.*
 ...
 AFTER ROW
 LET r = DIALOG.getCurrentRow("s_items")
 IF r <= DIALOG.getArrayLength("s_items") THEN
 IF NOT item_is_valid_quantity(p_item[r].item_quantity) THEN
 ERROR "Item quantity is not valid"
 NEXT FIELD item_quantity'
 END IF
 END IF

Another way to handle the case of temporary rows in AFTER ROW is to use a flag to know if the AFTER
INSERT block was executed: The AFTER INSERT block is not executed if the temporary row is
automatically removed. By setting a first value in BEFORE INSERT and changing the flag in AFTER
INSERT, you can detect if the row was permanently added to the list:

INPUT ARRAY p_items FROM s_items.*
 ...
 BEFORE INSERT
 LET op = "T"
 ...
 AFTER INSERT
 LET op = "I"
 ...
 AFTER ROW
 IF op == "I" THEN
 IF NOT item_is_valid_quantity(p_item[arr_curr()].item_quantity) THEN
 ERROR "Item quantity is not valid"
 NEXT FIELD item_quantity
 END IF
 WHENEVER ERROR CONTINUE
 INSERT INTO items (item_num, item_name, item_quantity)
 VALUES (p_item[arr_curr()].*)
 WHENEVER ERROR STOP
 IF SQLCA.SQLCODE<0 THEN
 ERROR "Could not insert the record into database!"
 NEXT FIELD CURRENT
 ELSE
 MESSAGE "Record has been inserted successfully"
 END IF
 END IF
...

User interface | 1177

BEFORE INSERT block

The BEFORE INSERT block is executed when a new row ins created in an INPUT ARRAY. You typically
use this trigger to set some default values in the new created row. A new row can be created by moving
down after the last row, by executing a insert action, or by executing an append action.

The BEFORE INSERT block is executed after the BEFORE ROW block and before the BEFORE FIELD
block.

When called in this block, DIALOG.getCurrentRow() / arr_curr() return the index of the new created
row.

To distinguish row insertion from an appended row, compare the current row
(DIALOG.getCurrentRow("screen-array")) with the total number of rows
(DIALOG.getArrayLength("screen-array")). If the current row index and the total number of rows
correspond, the BEFORE INSERT concerns a temporary row, otherwise it concerns an inserted row.

Row creation can be stopped by using the CANCEL INSERT instruction inside BEFORE INSERT. If
possible, it is however better to disable the insert and append actions to prevent the user to execute the
actions with DIALOG.setActionActive().

In this example, the BEFORE INSERT block checks if the user can create rows and denies new row
creation if needed; otherwise, it sets some default values:

INPUT ARRAY p_items FROM s_items.*
 ...
 BEFORE INSERT
 IF NOT user_can_append THEN
 ERROR "You are not allowed to append rows"
 CANCEL INSERT
 END IF
 LET r = DIALOG.getCurrentRow("s_items")
 LET p_items[r].item_num = get_new_serial("items")
 LET p_items[r].item_name = "undefined"

AFTER INSERT block

The AFTER INSERT block of INPUT ARRAY is executed when the creation of a new row is validated. In
this block, you can for example implement SQL to insert a new row in the database table.

The AFTER INSERT block is executed afterthe AFTER FIELD block and before the AFTER ROW block.

When called in this block, DIALOG.getCurrentRow() / arr_curr() return the index of the new created
row.

When the user appends a new row at the end of the list, then moves UP to another row or validates
the dialog, the AFTER INSERT block is only executed if at least one field was edited. If no data entry is
detected, the dialog automatically removes the new appended row and thus does not trigger the AFTER
INSERT block.

When executing a NEXT FIELD in the AFTER INSERT block, the dialog will keep the focus in the list and
stay in the current row. Use this behavior to implement row input validation and prevent the user from
leaving the list or moving to another row. However, this will not cancel the row insertion and will not invoke
the BEFORE INSERT / AFTER INSERT triggers again. The only way to keep the focus in the current row
after the row was inserted is to execute a NEXT FIELD in the AFTER ROW block.

In this example, the AFTER INSERT block inserts a new row in the database and cancels the operation if
the SQL command fails:

INPUT ARRAY p_items FROM s_items.*
 ...
 AFTER INSERT
 WHENEVER ERROR CONTINUE

User interface | 1178

 INSERT INTO items VALUES
 (p_items[DIALOG.getCurrentRow("s_items")].*)
 WHENEVER ERROR STOP
 IF SQLCA.SQLCODE<>0 THEN
 ERROR SQLERRMESSAGE
 CANCEL INSERT
 END IF

BEFORE DELETE block

The BEFORE DELETE block is executed each time the user deletes a row of an INPUT ARRAY list, before
the row is removed from the list.

You typically code the database table synchronization in the BEFORE DELETE block, by executing a
DELETE SQL statement using the primary key of the current row. In the BEFORE DELETE block, the row
to be deleted still exists in the program array, so you can access its data to identify what record needs to
be removed.

The BEFORE DELETE block is executed before the AFTER DELETE block.

If needed, the deletion can be canceled with the CANCEL DELETE instruction.

When called in this block, DIALOG.getCurrentRow() / arr_curr() return the index of the row that will
be deleted.

The next example uses the BEFORE DELETE block to remove the row from the database table and
cancels the deletion operation if an SQL error occurs:

INPUT ARRAY p_items FROM s_items.*
 BEFORE DELETE
 LET r = DIALOG.getCurrentRow("s_items")
 WHENEVER ERROR CONTINUE
 DELETE FROM items
 WHERE item_num = p_items[r].item_num
 WHENEVER ERROR STOP
 IF SQLCA.SQLCODE<>0 VALUES
 ERROR SQLERRMESSAGE
 CANCEL DELETE
 END IF
...

AFTER DELETE block

The AFTER DELETE block is executed each time the user deletes a row of an INPUT ARRAY list, after the
row has been deleted from the list.

The AFTER DELETE block is executed after the BEFORE DELETE block and before the AFTER ROW block
for the deleted row and the BEFORE ROW block of the new current row.

When an AFTER DELETE block executes, the program array has already been modified; the deleted row
no longer exists in the array (except in the special case when deleting the last row). The arr_curr()
function or the ui.Dialog.getCurrentRow() method returns the same index as in BEFORE ROW, but it
is the index of the new current row. The AFTER ROW block is also executed just after the AFTER DELETE
block.

Important: When deleting the last row of the list, AFTER DELETE is executed for
the delete row, and DIALOG.getCurrentRow() / arr_curr() will be one higher as
DIALOG.getArrayLength() / ARR_COUNT(). You should not access a dynamic array with
a row index that is greater than the total number of rows, otherwise the runtime system will
adapt the total number of rows to the actual number of rows in the program array. When
using a static array, you must ignore the values in the rows after ARR_COUNT().

User interface | 1179

Here the AFTER DELETE block is used to re-number the rows with a new item line number (note that
DIALOG.getArrayLength() / ARR_COUNT() may return zero):

INPUT ARRAY p_items FROM s_items.*
 AFTER DELETE
 LET r = DIALOG.getCurrentRow("s_items")
 FOR i=r TO DIALOG.getArrayLength("s_items")
 LET p_items[i].item_lineno = i
 END FOR
...

It is not possible to use the CANCEL DELETE instruction in an AFTER DELETE block. At this time it is too
late to cancel row deletion, as the data row no longer exists in the program array.

DIALOG interaction blocks
Dialog interaction blocks are dialog triggers that can be used to execute specific code when the user
executes an action in the dialog. For example, when pressing a button in the form, the corresponding ON
ACTION interaction block will be executed.

Interaction blocks also include special handlers such as timeout event handler, drag & drop handlers, and
modification triggers for DISPLAY ARRAY sub-dialogs.

• ON ACTION block on page 1056
• ON IDLE block on page 1046
• ON KEY block on page 1046
• ON APPEND block on page 1088
• ON INSERT block on page 1088
• ON UPDATE block on page 1089
• ON DELETE block on page 1090
• ON SELECTION CHANGE block on page 1090
• ON DRAG_START block on page 1091
• ON DRAG_FINISHED block on page 1091
• ON DRAG_ENTER block on page 1092
• ON DRAG_OVER block on page 1093
• ON DROP block on page 1094

ON ACTION block

The ON ACTION action-name blocks execute a sequence of instructions when the user triggers a
specific action.

A typical action handler block looks like this:

 ON ACTION action-name
 instruction
 ...

Action blocks will be bound by name to action views (like buttons) in the current form. Action views can
be buttons in forms, toolbar buttons, topmenu options, and if no explicit action view is defined, actions are
rendered with a default action view, depending on the type of front-end.

The next example defines an action block to open a typical zoom window and let the user select a
customer record:

 ON ACTION zoom
 CALL zoom_customers() RETURNING st, rec.cust_id, rec.cust_name

User interface | 1180

In a dialog handling user input such as INPUT, INPUT ARRAY and CONSTRUCT, if an action is specific to a
field, add the INFIELD clause to have the action automatically enabled when the corresponding field gets
the focus:

 ON ACTION zoom INFIELD cust_city
 CALL zoom_cities() RETURN st, rec.cust_city

In most cases actions are decoration with action defaults in form files, but there can be cases where the ON
ACTION handler needs to define its own attributes at the program level. This can be done by adding the
ATTRIBUTES() clause of ON ACTION:

 ON ACTION custinfo ATTRIBUTES(DISCLOSUREINDICATOR, IMAGE="info")
 CALL show_customer_info()

For more details about action handlers, and action configuration, see Dialog actions on page 1276.

ON IDLE block

The ON IDLE seconds clause defines a set of instructions that must be executed after a given period
of user inactivity. This interaction block can be used, for example, to quit the dialog after the user has not
interacted with the program for a specified period of time.

The parameter of ON IDLE must be an integer literal or variable. If it the value is zero, the dialog timeout is
disabled.

It is not recommended to use the ON IDLE trigger with a short timeout period such as 1 or 2 seconds; The
purpose of this trigger is to give the control back to the program after a relatively long period of inactivity
(10, 30 or 60 seconds). This is typically the case when the end user leaves the workstation, or got a phone
call. The program can then execute some code before the user gets the control back.

ON IDLE 30
 IF ask_question(
 "Do you want to reload information the database?") THEN
 -- Fetch data back from the db server
 END IF

Important: The timeout value is taken into account when the dialog initializes its internal data
structures. If you use a program variable instead of an integer constant, any change of the variable
will have no effect if the variable is changed after the dialog has initialized. If you what to change
the value of the timeout variable, it must be done before the dialog block.

ON KEY block

An ON KEY (key-name) block defines an action with a hidden action view (no default button is visible),
that executes a sequence of instructions when the user presses the specified key.

The ON KEY block is supported for backward compatibility with TUI mode applications.

An ON KEY block can specify up to four different keys. Each key creates a specific action objects that will
be identified by the key name in lowercase. For example, ON KEY(F5,F6) creates two actions with the
names f5 and f6. Each action object will get an ACCELERATORNAME assigned with the corresponding
accelerator name. The specified keys must be one of the virtual keys.

In GUI mode, action defaults are applied for ON KEY actions by using the name of the action (the key
name). You can define secondary accelerator keys, as well as default decoration attributes like button text
and image, by using the key name as action identifier. The action name is always in lowercase letters.

Check carefully the ON KEY CONTROL-? statements because they may result in having duplicate
accelerators for multiple actions due to the accelerators defined by action defaults. Additionally, ON KEY
statements used with ESC, TAB, UP, DOWN, LEFT, RIGHT, HELP, NEXT, PREVIOUS, INSERT, CONTROL-
M, CONTROL-X, CONTROL-V, CONTROL-C and CONTROL-A should be avoided for use in GUI programs,

User interface | 1181

because it's very likely to clash with default accelerators defined in the factory action defaults file provided
by default.

By default, ON KEY actions are not decorated with a default button in the action frame (the default action
view). You can show the default button by configuring a text attribute with the action defaults.

ON KEY (CONTROL-Z)
 CALL open_zoom()

ON TIMER block

The ON TIMER seconds clause defines a set of instructions that must be executed at regular intervals.
This interaction block can be used, for example, to check if a message has arrived in a queue, and needs
to be processed.

The parameter of ON TIMER must be an integer literal or variable. If the value is zero, the dialog timeout is
disabled.

It is not recommended to use the ON TIMER trigger with a short timeout period, such as 1 or 2 seconds.
The purpose of this trigger is to give the control back to the program after a reasonable period of time, such
as 10, 20 or 60 seconds.

ON TIMER 30
 CALL check_for_messages()

Important: The timer value is taken into account when the dialog initializes its internal data
structures. If you use a program variable instead of an integer constant, a change of the variable
has no effect if the change takes place after the dialog has initialized. If you what to change the
value of the timeout variable, it must be done before the dialog block.

COMMAND [KEY] block

Use COMMAND [KEY] blocks as global procedural DIALOG action handler to execute a sequence of
instructions when the user clicks on a button or presses a specific key. COMMAND defines the text and
comment decoration attributes as well as accelerator keys for a specific action. COMMAND is especially
useful when writing TUI programs, however, it's legal to use such handler when programming new GUI
dialogs, especially when the action view (BUTTON in form) must take the focus.

Declaring a COMMAND block in DIALOG is similar to an ON ACTION block, except that COMMAND defines an
implicit text and comment decoration attribute. The name of the action will be the command text converted
to lowercase letters. For example, with the following code:

COMMAND "Open" "Opens a new file"

The name of the action will be "open", and the default decoration text will be "Open" with a capital letter.

Note that if you use an ampersand (&) in the command name, some front-ends consider the letter following
& as an Alt-key accelerator, and the letter will be underscored. However the ampersand forms part of
the action name. For example, COMMAND "&Save" will create an action with the name "&save". It is not
recommended to use & ampersand characters in action names.

Unlike ON KEY actions, if no explicit action view is defined in the form, the default action view will be visible
for a COMMAND hander (i.e. the automatic button will appear for this action on the front-end).

action defaults will be applied by using the action name. For explicit action views such as a BUTTON in
the form layout, the text/comment defined in the corresponding action default entry will overwrite the
values used in the COMMAND handler. When no explicit action view is defined in the form, the text/comment
defined in the program COMMAND clause take precedence over action defaults, to display the default action
view (button on action frame).

Inside DIALOG instruction, COMMAND blocks can only be defined as global dialog actions; Sub-dialog
specific COMMAND handlers cannot be defined. When binding a form BUTTON to a COMMAND handler, the

User interface | 1182

button can get the focus and will be managed in the tabbing list, using preferably the FIELD ORDER FORM
option.

When using the optional KEY clause, COMMAND defines also an implicit accelerator key. The key name
must be specified between parentheses with COMMAND KEY:

COMMAND KEY (F5) "Open" "Opens a new file"

The COMMAND KEY syntax allows multiple key names in the syntax. When using multiple keys in an
COMMAND KEY clause, the DIALOG instruction will assign the specified keys as accelerators:

COMMAND KEY (F5, CONTROL-P, CONTROL-Z) "Open" "Opens a new file"

With the above code example, the action name will be "open" and accelerators will be F5, CONTROL-P
and CONTROL-Z.

The keys defined by program will take precedence over the accelerators defined in the action default entry
corresponding to the action.

The COMMAND [KEY] block specification can also define a help number with the HELP clause, to display
the corresponding text of the current help file.

COMMAND "Open" "Opens a new file" HELP 34

ON APPEND block

Similarly to the ON INSERT control block, the ON APPEND trigger can be used to enable row creation
during a DISPLAY ARRAY dialog. If this block is defined, the dialog will automatically create the append
action. This action can be decorated, enabled and disabled as a regular action.

If the dialog defines an ON ACTION append interaction block and the ON APPEND block is used, the
compiler will stop with error -8408.

When the user fires the append action, the dialog first execute the user code of the AFTER ROW block if
defined. Then the dialog moves to the end of the list, and creates a new row after the last existing row.
After creating the row, the dialog executes the user code of the ON APPEND block.

The dialog handles only row creation actions and navigation, you must program the record input with a
regular INPUT statement, to let the end user enter data for the new created row. This is typically done with
an INPUT binding explicitly array fields to the screen record fields. The new current row in the program
array is identified with arr_curr(), and the current screen line in the form is defined by SCR_LINE():

DISPLAY ARRAY arr TO sr.*
 ...
 ON APPEND
 INPUT arr[arr_curr()].* FROM sr[scr_line()].* ;
 ...

Pay attention to the semicolon ending the INPUT instruction, which is usually needed here to solve a
language grammar conflict when nested dialog instructions are implemented.

After the user code is executed, the dialog gets the control back and processes the new row as follows:

• If the INT_FLAG global variable is FALSE and STATUS is zero, the new row is kept in the program
array, and the BEFORE ROW block is executed for the new created row.

• If the INT_FLAG global variable is TRUE or STATUS is different from zero, the new row is removed from
the program array, and the BEFORE ROW block is executed for the row that was existing at the current
position, before the new row was created.

The DISPLAY ARRAY dialog always resets INT_FLAG to FALSE and STATUS to zero before executing the
user code of the ON APPEND block.

User interface | 1183

The append action is disabled if the maximum number of rows is reached.

If needed, the ON APPEND handler can be configured with action attributes by added an ATTRIBUTES()
clause, as with user-defined action handlers:

 ON APPEND ATTRIBUTES(TEXT=%"custlist.delete", IMAGE="listdel")

ON INSERT block

Similarly to the ON APPEND control block, the ON INSERT trigger can be used to enable row creation
during a DISPLAY ARRAY dialog. If this block is defined, the dialog will automatically create the insert
action. This action can be decorated, enabled and disabled as a regular action.

If the dialog defines an ON ACTION insert interaction block and the ON INSERT block is used, the
compiler will stop with error -8408.

When the user fires the insert action, the dialog first execute the user code of the AFTER ROW block if
defined. Then the new row is created: The insert action creates a new row before current row in the list.
After creating the row, the dialog executes the user code of the ON INSERT block.

The dialog handles only row creation actions and navigation, you must program the record input with a
regular INPUT statement, to let the end user enter data for the new created row. This is typically done with
an INPUT binding explicitly array fields to the screen record fields. The new current row in the program
array is identified with arr_curr(), and the current screen line in the form is defined by scr_line():

DISPLAY ARRAY arr TO sr.*
 ...
 ON INSERT
 INPUT arr[arr_curr()].* FROM sr[scr_line()].* ;
 ...

Pay attention to the semicolon ending the INPUT instruction, which is usually needed here to solve a
language grammar conflict when nested dialog instructions are implemented.

After the user code is executed, the dialog gets the control back and processes the new row as follows:

• If the INT_FLAG global variable is FALSE and STATUS is zero, the new row is kept in the program
array, and the BEFORE ROW block is executed for the new created row.

• If the INT_FLAG global variable is TRUE or STATUS is different from zero, the new row is removed from
the program array, and the BEFORE ROW block is executed for the row that was existing at the current
position, before the new row was created.

The DISPLAY ARRAY dialog always resets INT_FLAG to FALSE and STATUS to zero before executing the
user code of the ON INSERT block.

The insert action is disabled if the maximum number of rows is reached.

If needed, the ON INSERT handler can be configured with action attributes by added an ATTRIBUTES()
clause, as with user-defined action handlers:

 ON INSERT ATTRIBUTES(TEXT=%"custlist.delete", IMAGE="listdel")

ON UPDATE block

The ON UPDATE trigger can be used to enable row modification during a DISPLAY ARRAY dialog. If this
block is defined, the dialog will automatically create the update action. This action can be decorated,
enabled and disabled as regular actions.

You typically configure the TABLE container in the form by defining the DOUBLECLICK attribute to "update",
in order to trigger the update action when the user double-clicks on a row.

If the dialog defines an ON ACTION update interaction block and the ON UPDATE block is used, the
compiler will stop with error -8408.

User interface | 1184

When the user fires the update action, the dialog executes the user code of the ON UPDATE block.

The dialog handles only the row modification action and navigation, you must program the record input
with a regular INPUT statement, to let the end user modify the data of the current row. This is typically
done with an INPUT binding explicitly array fields to the screen record fields, with the WITHOUT DEFAULTS
clause. The current row in the program array is identified with arr_curr(), and the current screen line in
the form is defined by scr_line():

DISPLAY ARRAY arr TO sr.*
 ...
 ON UPDATE
 INPUT arr[arr_curr()].* WITHOUT DEFAULTS FROM sr[scr_line()].* ;
 ...

Pay attention to the semicolon ending the INPUT instruction, which is usually needed here to solve a
language grammar conflict when nested dialog instructions are implemented.

After the user code is executed, the dialog gets the control back and processes the current row as follows:

• If the INT_FLAG global variable is FALSE and STATUS is zero, the modified values of the current row
are kept in the program array.

• If the INT_FLAG global variable is TRUE or STATUS is different from zero, the old values of the current
row are restored in the program array.

The DISPLAY ARRAY dialog always resets INT_FLAG to FALSE and STATUS to zero before executing the
user code of the ON UPDATE block.

If needed, the ON UPDATE handler can be configured with action attributes by added an ATTRIBUTES()
clause, as with user-defined action handlers:

 ON UPDATE ATTRIBUTES(TEXT=%"custlist.delete", IMAGE="listdel")

ON DELETE block

The ON DELETE trigger can be used to enable row deletion during a DISPLAY ARRAY dialog. If this block
is defined, the dialog will automatically create the delete action. This action can be decorated, enabled and
disabled as regular actions.

If the dialog defines an ON ACTION delete interaction block and the ON DELETE block is used, the
compiler will stop with error -8408.

When the user fires the delete action, the dialog executes the user code of the ON DELETE block.

The dialog handles only the row deletion action and navigation, you can typically program a validation
dialog box to let the user confirm the deletion. The current row in the program array is identified with
arr_curr():

DISPLAY ARRAY arr TO sr.*
 ...
 ON DELETE
 IF fgl_winQuestion("Delete",
 "Do you want to delete this record?",
 "yes", "no|yes", "help", 0) == "no"
 THEN
 LET int_flag = TRUE
 END IF
 ...

After the user code is executed, the dialog gets the control back and processes the current row as follows:

• If the INT_FLAG global variable is FALSE and STATUS is zero, the current row is deleted from the
program array, and the BEFORE ROW block is executed for the next row in the list.

User interface | 1185

• If the INT_FLAG global variable is TRUE or STATUS is different from zero, the current row is kept in the
program array, and the BEFORE ROW block is executed again for the current row.

The DISPLAY ARRAY dialog always resets INT_FLAG to FALSE and STATUS to zero before executing the
user code of the ON DELETE block.

If needed, the ON DELETE handler can be configured with action attributes by added an ATTRIBUTES()
clause, as with user-defined action handlers:

 ON DELETE ATTRIBUTES(TEXT=%"custlist.delete", IMAGE="listdel")

ON SELECTION CHANGE block

The ON SELECTION CHANGE trigger can be used to enable multi-row selection and detect when rows
are selected or de-selected by the end user during a DISPLAY ARRAY dialog. If this block is defined,
multi-row selection is automatically enableb. However, the feature can be enabled/disabled with the
setSelectionMode() dialog method.

ON SORT block

The ON SORT interfaction block can be used to detect when rows have to be sorted in a DISPLAY ARRAY
or INPUT ARRAY dialog.

ON SORT is used in two different contexts:

1. In a regular DISPLAY ARRAY / INPUT ARRAY dialog (not using paged mode), the ON SORT trigger
can be used to detect that a list sort was performed. In this case, the (visual) sort is already done by
the runtime system and the ON SORT block is only used to execute post-sort tasks, such as displaying
current row information, by using arrayToVisualIndex() dialog method. It is also possible to get the sort
column and order with the getSortKey() and getSortSelection() dialog methods.

2. In a DISPLAY ARRAY using paged mode (ON FILL BUFFER), built-in row sorting is not available
because data is provided by pages. Use the ON SORT trigger to detect a sort request and perform
a new SQL query to re-order the rows. In this case, sort column and order is available with the
getSortKey() and getSortSelection() dialog methods. See Populating a DISPLAY ARRAY on
page 1372.

ON DRAG_START block

The ON DRAG_START block is executed when the end user has begun the drag operation. If this dialog
trigger has not been defined, default dragging is enabled for this dialog.

In the ON DRAG_START block, the program typically specifies the type of drag & drop operation by
calling ui.DragDrop.setOperation() with "move" or "copy". This call will define the default
and unique drag operation. If needed, the program can allow another type of drag operation with
ui.DragDrop.addPossibleOperation(). The end user can then choose to move or copy the
dragged object, if the drag & drop target allows it.

If the dragged object can be dropped outside the program, must define the MIME type and drag/drop data
with ui.DragDrop.setMimeType() and ui.DragDrop.setBuffer() methods.

Example:

DEFINE dnd ui.DragDrop
...
DISPLAY ARRAY arr TO sr.* ...
 ...
 ON DRAG_START (dnd)
 CALL dnd.setOperation("move") -- Move is the default operation
 CALL dnd.addPossibleOperation("copy") -- User can toggle to copy if
 needed
 CALL dnd.setMimeType("text/plain")
 CALL dnd.setBuffer(arr[arr_curr()].cust_name)
 ...

User interface | 1186

END DISPLAY

ON DRAG_FINISHED block

Execution of the ON DRAG_FINISHED block notifies the dialog where the drag started that the drop
operation has been completed or terminated.

Call ui.DragDrop.getOperation() to get the final type of operation of the drop. On successful
completion, the method returns "move" or "copy"; otherwise the function returns NULL. If NULL is returned,
the ON DRAG_FINISHED trigger can be ignored.

In cases of successful moves to a target out of the current DISPLAY ARRAY, the application must remove
the transferred data from the source model. For example, if a row was moved from dialog A to B, dialog A
will get an ON DRAG_FINISHED execution after the row was dropped into B, and should remove the row
from the list A.

The ON DRAG_FINISHED interaction block is optional.

DEFINE dnd ui.DragDrop
...
DISPLAY ARRAY arr TO sr.* ...
 ...
 ON DRAG_START (dnd)
 LET last_dragged_row = arr_curr()
 ...
 ON DRAG_FINISHED (dnd)
 IF dnd.getOperation() == "move" THEN
 CALL DIALOG.deleteRow(last_dragged_row)
 END IF
 ...
END DISPLAY

ON DRAG_ENTER block

When the ON DROP control block is defined, the ON DRAG_ENTER block will be executed when the mouse
cursor enters the visual boundaries of the drop target dialog. Entering the target dialog is accepted by
default if no ON DRAG_ENTER block is defined. However, when ON DROP is defined, you should also
define ON DRAG_ENTER to deny the drop of objects with an unsupported MIME type that come from other
applications.

The program can decide to deny or allow a specific drop operation with a call to
ui.DragDrop.setOperation(); passing a NULL to the method will deny drop.

To check what MIME type is available in the drag & drop buffer, the program uses the
ui.DragDrop.selectMimeType() method. This method takes the MIME type as a parameter and
returns TRUE if the passed MIME type is used. You can call this method several times to check the
availability of different MIME types.

You may also define the visual effect when flying over the target list with
ui.DragDrop.setFeedback().

DEFINE dnd ui.DragDrop
...
DISPLAY ARRAY arr TO sr.* ...
 ...
 ON DRAG_ENTER (dnd)
 IF dnd.selectMimeType("text/plain") THEN
 CALL dnd.setOperation("copy")
 CALL dnd.setFeedback("all")
 ELSE
 CALL dnd.setOperation(NULL)
 END IF
 ON DROP (dnd)

User interface | 1187

 ...
END DISPLAY

Once the mouse has entered the target area, subsequent mouse cursor moves can be detected with the
ON DRAG_OVER trigger.

When using a table or tree-view as drop target, you can control the visual effect when the mouse flies over
the rows, according to the type of drag & drop you want to achieve.

Basically, a dragged object can be:

1. Inserted in between two rows (visual effect must show where the object will be inserted)
2. Copied/merged to the current row (visual effect must show the row under the mouse)
3. Dropped somewhere on the target widget (the exact location inside the widget does not matter)

The visual effect can be defined with the ui.DragDrop.setFeedback() method, typically called in the
ON DRAG_ENTER block.

The values to pass to the setFeedback() method to get the desired visual effects described are
respectively:

1. insert (default)
2. select

3. all

DEFINE dnd ui.DragDrop
...
DISPLAY ARRAY arr TO sr.* ...
 ...
 ON DRAG_ENTER (dnd)
 IF canDrop() THEN
 CALL dnd.setOperation(NULL)
 ELSE
 CALL dnd.setFeedback("select")
 END IF
 ...
END DISPLAY

ON DRAG_OVER block

When the ON DROP control block is defined, the ON DRAG_OVER block will be executed after ON
DRAG_ENTER, when the mouse cursor is moving over the drop target, or when the drag & drop operation
has changed (toggling copy/move).

ON DRAG_OVER will be called only once per row, even if the mouse cursor moves over the row.

In the ON DRAG_OVER block, the method ui.DragDrop.getLocationRow() returns the index of the
row in the target array, and can be used to allow or deny the drop. When using a tree-view, you must also
check the index returned by the ui.DragDrop.getLocationParent() method to detect if the object
was dropped as a sibling or as a child node, and allow/deny the drop operation accordingly.

The program can change the drop operation at any execution of the ON DRAG_OVER block. You can deny
or allow a specific drop operation with a call to ui.DragDrop.setOperation(); passing a NULL to the
method will deny the drop.

The current operation (returned by ui.DragDrop.getOperation()) is the value set in previous
ON DRAG_ENTER or ON DRAG_OVER events, or the operation selected by the end user, if it can toggle
between copy and move. Thus, ON DRAG_OVER can occur even if the mouse position has not changed.

If dropping has been denied with ui.DragDrop.setOperation(NULL) in the previous ON DRAG_OVER
event, the program can reset the operation to allow a drop with a call to ui.DragDrop.setOperation()
with the operation parameter "move" or "copy".

User interface | 1188

ON DRAG_OVER will not be called if drop has been disabled in ON DRAG_ENTER with
ui.DragDrop.setOperation(NULL)

ON DRAG_OVER is optional, and must only be defined if the operation or the acceptance of the drag object
depends on the target row of the drop target.

DEFINE dnd ui.DragDrop
...
DISPLAY ARRAY arr TO sr.* ...
 ...
 ON DRAG_ENTER (dnd)
 ...
 ON DRAG_OVER (dnd)
 IF arr[dnd.getLocationRow()].acceptsCopy THEN
 CALL dnd.setOperation("copy")
 ELSE
 CALL dnd.setOperation(NULL)
 END IF
 ON DROP (dnd)
 ...
END DISPLAY

During a drag & drop process, the end user (or the target application) can decide to modify the type of the
operation, to indicate whether the dragged object has to be copied or moved from the source to the target.
For example, in a typical file explorer, by default files are moved when doing a drag & drop on the same
disk. To make a copy of a file, you must press the Ctrl key while doing the drag & drop with the mouse.

In the drop target dialog, you can detect such operation changes in the ON DRAG_OVER trigger and query
the ui.DragDrop object for the current operation with ui.DragDrop.getOperation(). In the drag
source dialog, you typically check ui.DragDrop.getOperation() in the ON DRAG_FINISHED trigger
to know what sort of operation occurred, to keep ("copy" operation) or delete ("move" operation) the
original dragged object.

This example tests the current operation in the drop target list and displays a message accordingly:

DEFINE dnd ui.DragDrop
...
DISPLAY ARRAY arr TO sr.* ...
 ...
 ON DRAG_ENTER (dnd)
 ...
 ON DRAG_OVER (dnd)
 CASE dnd.getOperation()
 WHEN "move"
 MESSAGE "The object will be moved to row ", dnd.getLocationRow()
 WHEN "copy"
 MESSAGE "The object will be copied to row ", dnd.getLocationRow()
 END CASE
 ...
 ON DROP (dnd)
 ...
END DISPLAY

ON DROP block

To enable drop actions on a list, you must define the ON DROP block; otherwise the list will not accept drop
actions.

The ON DROP block is executed after the end user has released the mouse button to drop the dragged
object. ON DROP will not occur if drop has been denied in the previous ON DRAG_OVER event or in ON
DRAG_ENTER with a call to ui.DragDrop.setOperation(NULL).

User interface | 1189

The program might also check the MIME type of the dragged object with
ui.DragDrop.getSelectedMimeType(), and then call the ui.DragDrop.getBuffer() method to
retrieve drag & drop data from external applications.

Ideally the drop operation should be accepted (no additional call to ui.DragDrop.setOperation()).

In this block, the ui.DragDrop.getLocationRow() method returns the index of the row in the target
array, and can be used to execute the code to get the drop data / object into the row that has been chosen
by the user.

DEFINE dnd ui.DragDrop
...
DISPLAY ARRAY arr TO sr.* ...
 ...
 ON DROP (dnd)
 LET arr[dnd.getLocationRow()].capacity == dnd.getBuffer()
 ...
END DISPLAY

If the drag & drop operations are local to the same list or tree-view controller, you can use the
ui.DragDrop.dropInternal() method to simplify the code. This method implements the typical move
of the dragged rows or tree-view node. This is especially useful in case of a tree-view, but is also the
preferred way to move rows around in simple tables.

This ON DROP code example uses the dropInternal() method:

DEFINE dnd ui.DragDrop
...
DISPLAY ARRAY arr_tree TO sr_tree.* ...
 ...
 ON DROP (dnd)
 CALL dnd.dropInternal()
 ...
END DISPLAY

If you want to implement by hand the code to drop a node in a tree-view, you must check the index
returned by the ui.DragDrop.getLocationParent() method to detect if the object was dropped
as a sibling or as a child node, and execute the code corresponding to the drop operation: If the drop
target row index returned by getLocationRow() is a child of the parent row index returned by
getLocationParent() , the new row must be inserted before getLocationRow(); otherwise the new
row must be added as a child of the parent node identified by getLocationParent().

DIALOG control instructions
Dialog control instructions are language instructions dedicated to dialog control, to programmatically force
the dialog to behave in a given way.

For example the NEXT FIELD instruction forces the focus to a specific form field.

• NEXT FIELD instruction on page 1121
• CLEAR instruction in dialogs on page 1073
• DISPLAY TO / BY NAME instruction on page 1192
• CONTINUE DIALOG instruction on page 1192
• EXIT DIALOG instruction on page 1193
• ACCEPT DIALOG instruction on page 1193
• CANCEL DELETE instruction on page 1119
• CANCEL INSERT instruction on page 1120

User interface | 1190

NEXT FIELD instruction

Understanding the NEXT FIELD instruction

The NEXT FIELD field-name instruction gives the focus to the specified field and forces the dialog to
stay in that field.

This instruction can be used to control field input, in BEFORE FIELD, ON CHANGE or AFTER FIELD
blocks, it can also force a DISPLAY ARRAY or INPUT ARRAY to stay in the current row when NEXT
FIELD is used in the AFTER ROW block.

If it exists, the BEFORE FIELD block of the corresponding field is executed.

The purpose of the NEXT FIELD instruction is give the focus to an editable field. Make sure that the field
specified in NEXT FIELD is active, or use NEXT FIELD CURRENT. Non-editable fields are fields defined
with the NOENTRY attribute, fields disabled at runtime with DIALOG.setFieldActive(), or fields using a
widget that does not allow input, such as a LABEL.

Instead of the NEXT FIELD instruction, you can use the DIALOG.nextField("field-name") method
to register a field, for example when the name is not known at compile time. However, this method only
registers the field: It does not stop code execution, like the NEXT FIELD instruction does. You must
execute a CONTINUE DIALOG to get the same behavior as NEXT FIELD.

Form field identification with NEXT FIELD

With the NEXT FIELD instruction, fields are identified by the form field name specification, not the program
variable name used by the dialog. Form fields are bound to program variables with the binding clause of
dialog instruction (INPUT variable-list FROM field-list, INPUT BY NAME variable-list,
CONSTRUCT BY NAME sql ON column-list,CONSTRUCT sql ON column-list FROM field-
list, INPUT ARRAY array-name FROM screen-array.*).

The field name specification can be any of the following:

• field-name
• table-name.field-name
• screen-record-name.field-name
• FORMONLY.field-name

Here are some examples:

• "cust_name"

• "customer.cust_name"

• "cust_screen_record.cust_name"

• "item_screen_array.item_label"

• "formonly.total"

When no field name prefix is used, the first form field matching that simple field name is used.

When using a prefix in the field name specification, it must match the field prefix assigned by the dialog
according to the field binding method used at the beginning of the interactive statement: When no screen-
record has been explicitly specified in the field binding clause (for example, when using INPUT BY NAME
variable-list), the field prefix must be the database table name (or FORMONLY) used in the form file,
or any valid screen-record using that field. When the FROM clause of the dialog specifies an explicit screen-
record (for example, in INPUT variable-list FROM screen-record.* / field-list-with-
screen-record-prefix or INPUT ARRAY array-name FROM screen-array.*), the field prefix
must be the screen-record name used in the FROM clause.

Abstract field identification is supported with the CURRENT, NEXT and PREVIOUS keywords. These
keywords represent the current, next and previous fields respectively. When using FIELD ORDER FORM,
the NEXT and PREVIOUS options follow the tabbing order defined by the form. Otherwise, they follow the
order defined by the input binding list (with the FROM or BY NAME clause).

User interface | 1191

In a procedural dialog, if the focus is in the first field of an INPUT or CONSTRUCT sub-dialog, NEXT FIELD
PREVIOUS will jump out of the current sub-dialog and set the focus to the previous sub-dialog. If the focus
is in the last field of an INPUT or CONSTRUCT sub-dialog, NEXT FIELD NEXT will jump out of the current
sub-dialog and set the focus to the next sub-dialog. NEXT FIELD NEXT or NEXT FIELD PREVIOUS
also jumps to another sub-dialog when the focus is in a DISPLAY ARRAY sub-dialog. However, when
using an INPUT ARRAY sub-dialog, NEXT FIELD NEXT from within the last column will loop to the first
column of the current row, and NEXT FIELD PREVIOUS from within the first column will jump to the last
column of the current row - the focus stays in the current INPUT ARRAY sub-dialog. When another sub-
dialog gets the focus because of a NEXT FIELD NEXT/PREVIOUS, the newly-selected field depends on
the sub-dialog type, following the tabbing order as if the end-user had pressed the tab or Shift-Tab key
combination.

NEXT FIELD to a non-editable INPUT / INPUT ARRAY / CONSTRUCT field

Non-editable fields are fields defined with the NOENTRY attribute, fields disabled with
ui.Dialog.setFieldActive("field-name", FALSE), or fields using a widget that does not allow
input, such as a LABEL.

If a NEXT FIELD instruction specifies a non-editable field, the BEFORE FIELD block of that field is
executed. Then the dialog tries to give the focus to that field. Since the field cannot get the focus, the
dialog will perform the last pressed navigation key (Tab, Shift-Tab, Left, Right, Up, Down, Accept) and
execute the related control blocks, including the AFTER FIELD block of the non-editable field. If no last
key is identified, the dialog considers Tab as fallback and moves to the next editable field as defined by the
FIELD ORDER mode used by the dialog. Doing a NEXT FIELD to a non-editable field can lead to infinite
loops in the dialog; Use NEXT FIELD CURRENT instead.

When selecting a non-editable field with NEXT FIELD NEXT, the runtime system will re-select the current
field since it is the next editable field in the dialog. As a result the end user sees no change.

NEXT FIELD in procedural DIALOG blocks

In a procedural dialog block, the NEXT FIELD field-name instruction gives the focus to the specified
field controlled by INPUT, INPUT ARRAY or CONSTRUCT, or to a read-only list when using DISPLAY
ARRAY.

When using a DISPLAY ARRAY sub-dialog, it is possible to give the focus to the list, by specifying the
name of the first column as argument for NEXT FIELD.

If the target field specified in the NEXT FIELD instruction is inside the current sub-dialog, neither AFTER
FIELD nor AFTER ROW will be invoked for the field or list you are leaving. However, the BEFORE FIELD
control blocks of the destination field (or the BEFORE ROW in case of read-only list) will be executed.

If the target field specified in the NEXT FIELD instruction is outside the current sub-dialog, the AFTER
FIELD, AFTER INSERT, AFTER ROW and AFTER INPUT/DISPLAY/CONSTRUCT control blocks will be
invoked for the field or list you are leaving. Form-level validation rules will also be checked, as if the user
had selected the new sub-dialog himself. This guarantees the current sub-dialog is left in a consistent
state. The BEFORE INPUT/DISPLAY/CONSTRUCT, BEFORE ROW and the BEFORE FIELD control blocks
of the destination field / list will then be executed.

NEXT FIELD in record list control blocks

When using NEXT FIELD in AFTER ROW or in ON ROW CHANGE of a DISPLAY ARRAY or INPUT ARRAY,
the dialog will stay in the current row and give control back to the user. This behavior allows you to
implement data input rules:

 AFTER ROW
 IF NOT int_flag AND arr_count()<=arr_curr() THEN
 IF arr[arr_curr()].it_count * arr[arr_curr()].it_value > maxval THEN
 ERROR "Amount of line exceeds max value."
 NEXT FIELD item_count

User interface | 1192

 END IF
 END IF

CLEAR instruction in dialogs

The CLEAR field-list and CLEAR SCREEN ARRAY screen-array.* instructions clear the value
buffer of specified form fields. The buffers are directly changed in the current form, and the program
variables bound to the dialog are left unchanged. CLEAR can be used outside any dialog instruction, such
as the DISPLAY BY NAME / TO instructions.

When a dialog is configured with the UNBUFFERED mode, there is no reason to clear field buffers since
any variable assignment will synchronize field buffers. Actually, changing the field buffers with DISPLAY
or CLEAR instruction in an UNBUFFERED dialog will have no visual effect, because the variables bound to
the dialog will be used to reset the field buffer just before giving control back to the user. To clear fields
of an UNBUFEFERED dialog, just set to NULL the variables bound to the dialog. However, when using a
CONSTRUCT, no program variables are associated to the dialog and no UNBUFFERED concept exits, and
the CLEAR or DISPLAY TO / BY NAME instructions are the only way to modify the CONSTRUCT fields.

A screen array with a screen-line specification doesn't make much sense in a GUI application using TABLE
containers, you can therefore use the CLEAR SCREEN ARRAY instruction to clear all rows of a list.

DISPLAY TO / BY NAME instruction

The DISPLAY variable-list TO field-list or DISPLAY BY NAME variable-list instruction
fills the value buffers of specified form fields with the values contained in the specified program variables.
The DISPLAY instruction changes the buffers directly in the current form, not the program variables
bound to the dialog. DISPLAY can be used outside any dialog instruction, in the same way as the CLEAR
instruction. DISPLAY also sets the modification flag of fields.

As DIALOG is typically used with the UNBUFFERED mode, there is no reason to set field buffers in a
DIALOG block since any variable assignment will synchronize field buffers. Actually, changing the field
buffers with the DISPLAY or CLEAR instruction will have no visual effect if the fields are used by a dialog
working in UNBUFFERED mode, because the variables bound to the dialog will be used to reset the field
buffer just before giving control back to the user. So if you want to set field values, just assign the variables
and the fields will be synchronized. However, when using a CONSTRUCT binding, you may want to set field
buffers with this DISPLAY instruction, as there are no program variables bound to fields (with CONSTRUCT,
only one string variable is bound to hold the SQL condition).

Instead of using a DISPLAY instruction to set the modification flag of fields to simulate user input, use the
DIALOG.setFieldTouched() method instead.

CONTINUE DIALOG instruction

The CONTINUE DIALOG statement continues the execution of a DIALOG instruction, skipping all
statements appearing after this instruction.

Control returns to the dialog instruction, which executes remaining control blocks as if the program reached
the end of the current control block. Then the control goes back to the user and the dialog waits for a new
event.

The CONTINUE DIALOG statement is useful when program control is nested within multiple conditional
statements, and you want to return control to the user by skipping the rest of the statements.

In the following code example, an ON ACTION block gives control back to the dialog, skipping all
instructions below line 04:

ON ACTION zoom
 IF p_cust.cust_id IS NULL OR p_cust.cust_name IS NULL THEN
 ERROR "Zoom window cannot be opened if no info to identify customer"
 CONTINUE DIALOG
 END IF
 IF p_cust.cust_address IS NULL THEN
 ...

User interface | 1193

If CONTINUE DIALOG is called in a control block that is not AFTER DIALOG, further control blocks might
be executed according to the context. Actually, CONTINUE DIALOG just instructs the dialog to continue as
if the code in the control block was terminated (it is a kind of GOTO end_of_control_block). However,
when executed in AFTER DIALOG, the focus returns to the current field or read-only list. In this case the
BEFORE ROW and BEFORE FIELD triggers will be invoked.

A CONTINUE DIALOG in AFTER FIELD, AFTER INPUT, AFTER DISPLAY or AFTER CONSTRUCT will
only stop the program flow of the current block of statements; instructions after CONTINUE DIALOG will not
be executed. If the user has selected a field in a different sub-dialog, this new field will get the focus and all
necessary AFTER / BEFORE control blocks will be executed.

In case of input error in a field, the best practice is to use a NEXT FIELD instruction to stay in the dialog
and set the focus to the field that the user has to correct.

EXIT DIALOG instruction

The EXIT DIALOG statement terminates a procedural DIALOG block without any further control block
execution.

Note: When used in a declarative DIALOG block, the EXIT DIALOG instruction does only
make sense when the declarative dialog block is included in a procedural dialog block with the
SUBDIALOG clause.

Program flow resumes at the instruction following the END DIALOG keywords. Blocks such as AFTER
DIALOG will not be executed.

 ON ACTION quit
 EXIT DIALOG

When leaving the DIALOG instruction, all form items used by the dialog will be disabled until another
interactive statement takes control.

ACCEPT DIALOG instruction

The ACCEPT DIALOG statement validates all input fields bound to the DIALOG instruction and leaves the
block if no error is raised.

Note: When used in a declarative DIALOG block, the ACCEPT DIALOG instruction does only
make sense when the declarative dialog block is included in a procedural dialog block with the
SUBDIALOG clause.

When defined in the dialog block, ON CHANGE, AFTER FIELD, AFTER ROW, AFTER INPUT/DISPLAY/
CONSTRUCT control blocks will be executed when ACCEPT DIALOG is performed.

The statements appearing after the ACCEPT DIALOG instruction will be skipped.

You typically code an ACCEPT DIALOG in an ON ACTION accept block:

ON ACTION accept ACCEPT DIALOG

Note that any usage of ACCEPT DIALOG outside an ON ACTION accept block is not intended and its
behavior is undocumented.

Input field validation is a process that does several successive validation tasks:

1. The current field value is checked, according to the program variable data type (for example, the user
must input a valid date in a DATE field).

2. NOT NULL field attributes are checked for all input fields. This attribute forces the field to have a value
set by program or entered by the user. If the field contains no value, the constraint is not satisfied. Input
values are right-trimmed, so if the user inputs only spaces, this corresponds to a NULL value which
does not fulfill the NOT NULL constraint.

3. REQUIRED field attributes are checked for all input fields. This attribute forces the field to have a
default value, or to be modified by the user or by program with a DISPLAY TO / BY NAME or

User interface | 1194

DIALOG.setFieldTouched() call. If the field was not modified during the dialog, the REQUIRED
constraint is not satisfied.

4. INCLUDE field attributes are checked for all input fields. This attribute forces the field to contain a value
that is listed in the include list. If the field contains a value that is not in the list, the constraint is not
satisfied.

If a field does not satisfy one of these constraints, dialog termination is canceled, an error message is
displayed, and the focus goes to the first field causing a problem.

After input field validation has succeeded, different types of control blocks will be executed, such as AFTER
FIELD, AFTER ROW, AFTER INPUT and AFTER DIALOG.

In order to validate some parts of the dialog without leaving the block, use the DIALOG.validate()
method.

CANCEL DELETE instruction

In a list controlled by an INPUT ARRAY, row deletion can be canceled by using the CANCEL DELETE
instruction in the BEFORE DELETE block. Using this instruction in a different place will generate a
compilation error.

When the CANCEL DELETE instruction is executed, the current BEFORE DELETE block is terminated
without any other trigger execution (no BEFORE ROW or BEFORE FIELD is executed), and the program
execution continues in the user event loop.

You can, for example, prevent row deletion based on some condition:

 BEFORE DELETE
 IF user_can_delete() == FALSE THEN
 ERROR "You are not allowed to delete rows"
 CANCEL DELETE
 END IF

The instructions that appear after CANCEL DELETE will be skipped.

If the row deletion condition is known before the delete action occurs, disable the delete action to prevent
the user from performing a delete row action with the DIALOG.setActionActive() method:

 CALL DIALOG.setActionActive("delete", FALSE)

It is also possible to prevent the user from deleting rows with the DELETE ROW = FALSE option in the
ATTRIBUTE clause.

CANCEL INSERT instruction

In a list controlled by an INPUT ARRAY, row creation can be canceled by the program with the CANCEL
INSERT instruction. This instruction can only be used in the BEFORE INSERT and AFTER INSERT control
blocks. If it appears at a different place, the compiler will generate an error.

The instructions that appear after CANCEL INSERT will be skipped.

If the row creation condition is known before the insert/append action occurs, disable the insert and/or
append actions to prevent the user from creating new rows, with DIALOG.setActionActive():

 CALL DIALOG.setActionActive("insert", FALSE)
 CALL DIALOG.setActionActive("append", FALSE)

However, this will not prevent the user from appending a new temporary row at the end of the list, when
moving down after the last row. To prevent row creation completely, use the INSERT ROW = FALSE and
APPEND ROW =FALSE options in the ATTRIBUTE clause of INPUT ARRAY, or combine with the AUTO
APPEND = FALSE attribute.

User interface | 1195

CANCEL INSERT in BEFORE INSERT

A CANCEL INSERT executed inside a BEFORE INSERT block prevents the new row creation. The
following tasks are performed:

1. No new row will be created (the new row is not yet shown to the user).
2. The BEFORE INSERT block is terminated (further instructions are skipped).
3. The BEFORE ROW and BEFORE FIELD triggers are executed.
4. Control goes back to the user.

You can, for example, cancel a row creation if the user is not allowed to create rows:

 BEFORE INSERT
 IF NOT user_can_insert THEN
 ERROR "You are not allowed to insert rows"
 CANCEL INSERT
 END IF

Executing CANCEL INSERT in BEFORE INSERT will also cancel a temporary row creation, except when
there are no more rows in the list. In this case, CANCEL INSERT will just be ignored and leave the new
row as is (otherwise, the instruction would loop without end). You can prevent automatic temporary row
creation with the AUTO APPEND=FALSE attribute. If AUTO APPEND=FALSE and a CANCEL INSERT is
executed in BEFORE INSERT (user has invoked an append action), the temporary row will be deleted and
list will remain empty if it was the last row.

CANCEL INSERT in AFTER INSERT

A CANCEL INSERT executed inside an AFTER INSERT block removes the newly created row. The
following tasks are performed:

1. The newly created row is removed from the list (the row exists now and user has entered data).
2. The AFTER INSERT block is terminated (further instructions are skipped).
3. The BEFORE ROW and BEFORE FIELD triggers are executed.
4. The control goes back to the user.

You can, for example, cancel a row insertion if a database error occurs when you try to insert the row into a
database table:

 AFTER INSERT
 WHENEVER ERROR CONTINUE
 LET r = DIALOG.getCurrentRow("s_items")
 INSERT INTO items VALUES (p_items[r].*)
 WHENEVER ERROR STOP
 IF SQLCA.SQLCODE<>0 THEN
 ERROR SQLERRMESSAGE
 CANCEL INSERT
 END IF

Examples
Example 1: DIALOG controlling two lists

Form file "lists.per":

LAYOUT
GRID
{
<t t1 >
[f11 |f12]
< >
<t t2 >
[f21 |f22]

User interface | 1196

< >
}
END
END
ATTRIBUTES
EDIT f11 = FORMONLY.column_11;
EDIT f12 = FORMONLY.column_12;
EDIT f21 = FORMONLY.column_21;
EDIT f22 = FORMONLY.column_22;
END
INSTRUCTIONS
SCREEN RECORD sr1(FORMONLY.column_11,FORMONLY.column_12);
SCREEN RECORD sr2(FORMONLY.column_21,FORMONLY.column_22);
END

Program file:

DEFINE
 arr1 DYNAMIC ARRAY OF RECORD
 column_11 INTEGER,
 column_12 VARCHAR(10)
 END RECORD,
 arr2 DYNAMIC ARRAY OF RECORD
 column_21 INTEGER,
 column_22 VARCHAR(10)
 END RECORD

MAIN
 DEFINE i INTEGER
 FOR i = 1 TO 20
 LET arr1[i].column_11 = i
 LET arr1[i].column_12 = "aaa "||i
 LET arr2[i].column_21 = i
 LET arr2[i].column_22 = "aaa "||i
 END FOR
 OPTIONS INPUT WRAP
 OPEN FORM f FROM "lists"
 DISPLAY FORM f
 DIALOG ATTRIBUTES(UNBUFFERED)
 DISPLAY ARRAY arr1 TO sr1.*
 BEFORE DISPLAY
 MESSAGE "We are in list one"
 END DISPLAY
 DISPLAY ARRAY arr2 TO sr2.*
 BEFORE DISPLAY
 MESSAGE "We are in list two"
 END DISPLAY
 ON ACTION close
 EXIT DIALOG
 END DIALOG
END MAIN

Example 2: DIALOG with CONSTRUCT and DISPLAY ARRAY

Form file "form1.per":

LAYOUT
GRID
{
<g g1 >
 Name: [f1]
 State: [f2]
 City: [f3]

User interface | 1197

 Zip-code: [f4]
[:cc :sr]
< >
<g g2 >
 <t t1 >
 Id Name
 [c1 |c2]
 [c1 |c2]
 [c1 |c2]
 < >
< >
[:cw]
}
END
END

ATTRIBUTES
GROUP g1: TEXT = "Search criteria";
EDIT f1 = FORMONLY.cust_name TYPE VARCHAR;
EDIT f2 = FORMONLY.cust_state TYPE VARCHAR;
EDIT f3 = FORMONLY.cust_city TYPE VARCHAR;
EDIT f4 = FORMONLY.cust_zipcode TYPE VARCHAR;
BUTTON cc: clear, TEXT="Clear";
BUTTON sr: fetch, TEXT="Fetch";
GROUP g2: TEXT = "Customer list";
EDIT c1 = FORMONLY.c_id TYPE INTEGER;
EDIT c2 = FORMONLY.c_name TYPE VARCHAR;
BUTTON cw: close;
END

INSTRUCTIONS
SCREEN RECORD sr (FORMONLY.c_id, FORMONLY.c_name);
END

Program file:

MAIN
 DEFINE custarr DYNAMIC ARRAY OF RECORD
 c_id INTEGER,
 c_name VARCHAR(50)
 END RECORD
 DEFINE where_clause STRING

 OPTIONS INPUT WRAP

 OPEN FORM f1 FROM "form1"
 DISPLAY FORM f1

 DIALOG ATTRIBUTES(FIELD ORDER FORM, UNBUFFERED)

 CONSTRUCT BY NAME where_clause
 ON cust_name, cust_state, cust_city, cust_zipcode
 ON ACTION clear
 CLEAR cust_name, cust_state, cust_city, cust_zipcode
 END CONSTRUCT

 DISPLAY ARRAY custarr TO sr.*
 BEFORE ROW
 MESSAGE SFMT("Row: %1/%2", DIALOG.getCurrentRow("sr"),
 DIALOG.getArrayLength("sr"))
 END DISPLAY

 ON ACTION fetch

User interface | 1198

 MESSAGE "Where:", where_clause
 -- Execute SQL query here to fill custarr ...

 ON ACTION close
 EXIT DIALOG

 END DIALOG

END MAIN

Example 3: DIALOG with SUBDIALOG

Form file "comment.per":

LAYOUT
GRID
{
[cmt]
}
END
END
ATTRIBUTES
TEXTEDIT cmd = FORMONLY.the_comment, STRETCH=BOTH;
END

The module "comment.4gl":

DEFINE the_comment VARCHAR(200)

DIALOG comment_input()
 INPUT BY NAME the_comment
 ON ACTION add_sep
 LET the_comment = the_comment || "\n---"
 END INPUT
END DIALOG

Form file "form1.per":

LAYOUT
VBOX
GRID
{
Id: [f1]
Name: [f2]
}
END
FORM "comment"
END
END
ATTRIBUTES
EDIT f1 = FORMONLY.cust_id TYPE INTEGER;
EDIT f2 = FORMONLY.cust_name TYPE VARCHAR;
END

Program file:

IMPORT FGL comment

MAIN
 DEFINE cust RECORD
 cust_id INTEGER,
 cust_name VARCHAR(50)

User interface | 1199

 END RECORD

 OPTIONS INPUT WRAP

 OPEN FORM f1 FROM "form1"
 DISPLAY FORM f1

 DIALOG ATTRIBUTES(FIELD ORDER FORM, UNBUFFERED)

 INPUT BY NAME cust.*
 ON ACTION check_exists
 MESSAGE "Check if customer record exists"
 END INPUT

 SUBDIALOG comment_input

 ON ACTION close
 EXIT DIALOG

 END DIALOG

END MAIN

Parallel dialogs (START DIALOG)
The START DIALOG and TERMINATE DIALOG instructions provide multiple dialogs functionality executing
concurrently in different application forms.

• Understanding parallel dialogs on page 1199
• Syntax of the declarative DIALOG block on page 1201
• Syntax of the START DIALOG instruction on page 1207
• Syntax of the TERMINATE DIALOG instruction on page 1207
• Parallel dialog programming steps on page 1208
• Using parallel dialogs on page 1209

• Structure of a declarative DIALOG block on page 1209
• Declarative DIALOG block configuration on page 1215
• Default actions created by a DIALOG block on page 1162
• DIALOG data blocks on page 1163
• DIALOG control blocks on page 1164
• DIALOG interaction blocks on page 1179
• DIALOG control instructions on page 1189

• Examples on page 1247

• Example 1: Two independent record lists on page 1247

Understanding parallel dialogs
Parallel dialogs refers to the use of different declarative DIALOG blocks, in conjunction with the START
DIALOG and TERMINATE DIALOG instructions, and an event loop using the fgl_eventLoop() built-in
function, in order to control several forms simultaneously.

Important: This feature is only for mobile platforms.

Each dialog acts independently to control several elements of a window/form. During the execution of
parallel dialogs, the user can switch to a window/form that is controlled by another running declarative
DIALOG block. For more details about categories of dialogs, see Introducing dialogs on page 1250.

The parallel dialog feature was introduced to implement mobile applications, where several forms can be
accessed simultaneously, for example to get "split views" on mobile devices:

User interface | 1200

Figure 77: Form with Split View (Android™)

A declarative dialog block is a module element defined at the same level as a FUNCTION or REPORT
routine:

-- Module orders.4gl
SCHEMA stock
DEFINE arr DYNAMIC ARRAY OF RECORD LIKE orders.*
DIALOG orders_dlg()
 DEFINE x INT
 DISPLAY ARRAY arr TO sr_orders.*
 ...
 END DISPLAY
END DIALOG

The name of a declarative dialog is mandatory. It can be referenced by a SUBDIALOG clause, by a
START DIALOG and TERMINATE DIALOG instruction, and can identify sub-dialog actions with a prefix.
Specifically, the name of the declarative dialog will be referenced in a START DIALOG and TERMINATE
DIALOG instruction to implement parallel dialogs.

In terms of semantics, behavior and control block execution, a declarative dialog started with a START
DIALOG instruction behaves like a procedural DIALOG block.

Important: Parallel dialogs implictly use the UNBUFFERED mode. It is not possible to change this
mode when using parallel dialogs.

When using the DIALOG keyword inside a declarative dialog block to use ui.Dialog class methods, it
references the current instance of the dialog object.

In order to execute parallel dialogs, you must implement a main interaction event loop, by using the
fgl_eventLoop() built-in function. The minimal event loop code to implement is:

WHILE fgl_eventLoop()

User interface | 1201

END WHILE

Once the declarative dialogs and the interaction even loop are defined, it is possible to create the windows
with OPEN WINDOW, and initiate the dialogs with the START DIALOG instruction.

If needed, show a given dialog window with the CURRENT WINDOW instruction. Additionally, (especially
when implementing split views), you may want to "restart" a detail dialog, for example when selecting a
new row in the main record list. To restart the detail dialog, execute TERMINATE DIALOG, followed by
START DIALOG for the detail dialog. See split view programming for more details.

To finish a given dialog, execute the TERMINATE DIALOG instruction and close the dedicated window with
CLOSE WINDOW window-name.

From a set of running parallel dialogs, it is possible to switch to a modal dialog by creating a dedicated
window, and executing a procedural dialog instruction. When the procedural dialog is terminated, close the
dedicated window, and the control will go back to the parallel dialog set.

Syntax of the declarative DIALOG block
The declarative DIALOG block defines an interactive instruction that can be used by a parent DIALOG, or
as parallel dialog.

Syntax

[PRIVATE | PUBLIC] DIALOG dialog-name ()
 [define-block]
 { menu-block
 | record-input-block
 | construct-block
 | display-array-block
 | input-array-block
 }
END DIALOG

1. dialog-name defines the identifier for the declarative DIALOG block.

where define-block is a local variable declaration block.

where menu-block is:

MENU
 [BEFORE MENU
 menu-statement
 [...]
]
 menu-option
 [...]
END MENU

where menu-option is:

{ COMMAND option-name
 [option-comment] [HELP help-number]
 menu-statement
 [...]
| COMMAND KEY (key-name) option-name
 [option-comment] [HELP help-number]
 menu-statement
 [...]
| COMMAND KEY (key-name)
 menu-statement
 [...]
| ON ACTION action-name

User interface | 1202

 [ATTRIBUTES (action-attributes-menu)]
 menu-statement
 [...]
}

where action-attributes-menu is:

{ TEXT = string
| COMMENT = string
| IMAGE = string
| ACCELERATOR = string
| DEFAULTVIEW = { YES | NO | AUTO }
| CONTEXTMENU = { YES | NO | AUTO }
| DISCLOSUREINDICATOR
 [,...] }

where menu-statement is:

{ statement
| NEXT OPTION option
| SHOW OPTION { ALL | option [,...] }
| HIDE OPTION { ALL | option [,...] }
}

1. key-name is a hot-key identifier (like F11 or Control-z).
2. option-name is a string expression defining the label of the menu option and identifying the action that

can be executed by the user.
3. option-comment is a string expression containing a description for the menu option, displayed when

option-name is the current.
4. help-number is an integer that allows you to associate a help message number with the menu option.
5. action-name identifies an action that can be executed by the user.
6. idle-seconds is an integer literal or variable that defines a number of seconds.
7. action-name identifies an action that can be executed by the user.
8. action-attributes are dialog-specific action attributes.

where record-input-block is:

INPUT { BY NAME { variable | record.* } [,...]
 | variable | record.* } [,...] FROM field-list
 }
 [ATTRIBUTES (input-control-attribute [,...])]
 [input-control-block
 [...]
]
END INPUT

where input-control-attribute is:

{ HELP = help-number
| NAME = "sub-dialog-name"
| WITHOUT DEFAULTS [= boolean]
}

where input-control-block is one of:

{ BEFORE INPUT
| BEFORE FIELD field-spec [,...]
| ON CHANGE field-spec [,...]
| AFTER FIELD field-spec [,...]
| AFTER INPUT

User interface | 1203

| ON ACTION action-name
 [INFIELD field-spec]
 [ATTRIBUTES (action-attributes-input)]
| ON KEY (key-name [,...])}
 dialog-statement
 [...]

where action-attributes-input is:

{ TEXT = string
| COMMENT = string
| IMAGE = string
| ACCELERATOR = string
| DEFAULTVIEW = { YES | NO | AUTO }
| VALIDATE = NO
| CONTEXTMENU = { YES | NO | AUTO }
 [,...] }

where construct-block is:

CONSTRUCT { BY NAME variable ON column-list
 | variable ON column-list FROM field-list
 }
 [ATTRIBUTES (construct-control-attribute [,...])]
 [construct-control-block
 [...]
]
END CONSTRUCT

where construct-control-attribute is:

{ HELP = help-number
| NAME = "sub-dialog-name"
}

where construct-control-block is one of:

{ BEFORE CONSTRUCT
| BEFORE FIELD field-spec [,...]
| AFTER FIELD field-spec [,...]
| AFTER CONSTRUCT
| ON ACTION action-name
 [INFIELD field-spec]
 [ATTRIBUTES (action-attributes-construct)]
| ON KEY (key-name [,...])}
 dialog-statement
 [...]

where action-attributes-construct is:

{ TEXT = string
| COMMENT = string
| IMAGE = string
| ACCELERATOR = string
| DEFAULTVIEW = { YES | NO | AUTO }
| CONTEXTMENU = { YES | NO | AUTO }
 [,...] }

where display-array-block is:

DISPLAY ARRAY array TO screen-array.*

User interface | 1204

 [ATTRIBUTES (display-array-control-attribute [,...])]
 [display-array-control-block
 [...]
]
END DISPLAY

where display-array-control-attribute is:

{ HELP = help-number
| COUNT = row-count
| KEEP CURRENT ROW = [= boolean]
| DETAILACTION = action-name
| DOUBLECLICK = action-name
| ACCESSORYTYPE = { DETAIBUTTON | DISCLOSUREINDICATOR | CHECKMARK }
}

where display-array-control-block is one of:

{ BEFORE DISPLAY
| BEFORE ROW
| AFTER ROW
| AFTER DISPLAY
| ON ACTION action-name
 [ATTRIBUTES (action-attributes-display-array)]
| ON KEY (key-name [,...])
| ON FILL BUFFER
| ON SELECTION CHANGE
| ON SORT
| ON APPEND [ATTRIBUTES (action-attributes-listmod-triggers)]
| ON INSERT [ATTRIBUTES (action-attributes-listmod-triggers)]
| ON UPDATE [ATTRIBUTES (action-attributes-listmod-triggers)]
| ON DELETE [ATTRIBUTES (action-attributes-listmod-triggers)]
| ON EXPAND (row-index)
| ON COLLAPSE (row-index)
| ON DRAG_START (dnd-object)
| ON DRAG_FINISH (dnd-object)
| ON DRAG_ENTER(dnd-object)
| ON DRAG_OVER (dnd-object)
| ON DROP (dnd-object) }
 dialog-statement
 [...]

where action-attributes-display-array is:

{ TEXT = string
| COMMENT = string
| IMAGE = string
| ACCELERATOR = string
| DEFAULTVIEW = { YES | NO | AUTO }
| CONTEXTMENU = { YES | NO | AUTO }
| ROWBOUND
 [,...] }

where action-attributes-listmod-triggers is:

{ TEXT = string
| COMMENT = string
| IMAGE = string
| ACCELERATOR = string
| DEFAULTVIEW = { YES | NO | AUTO }
| CONTEXTMENU = { YES | NO | AUTO }

User interface | 1205

 [,...] }

where input-array-block is:

INPUT ARRAY array FROM screen-array.*
 [ATTRIBUTES (input-array-control-attribute [,...])]
 [input-array-control-block
 [...]
]
END INPUT

where input-array-control-attribute is:

{ APPEND ROW [= boolean]
| AUTO APPEND [= boolean]
| COUNT = row-count
| DELETE ROW [= boolean]
| HELP = help-number
| INSERT ROW [= boolean]
| KEEP CURRENT ROW [= boolean]
| MAXCOUNT = max-row-count
| WITHOUT DEFAULTS [= boolean]
}

where input-array-control-block is one of:

{ BEFORE INPUT
| BEFORE ROW
| BEFORE FIELD [,...]
| ON CHANGE field-spec [,...]
| AFTER FIELD field-spec [,...]
| ON ROW CHANGE
| ON SORT
| AFTER ROW
| BEFORE DELETE
| AFTER DELETE
| BEFORE INSERT
| AFTER INSERT
| AFTER INPUT
| ON ACTION action-name
 [INFIELD field-spec]
 [ATTRIBUTES (action-attributes-input-array)]
| ON KEY (key-name [,...]) }
 dialog-statement
 [...]

where action-attributes-input-array is:

{ TEXT = string
| COMMENT = string
| IMAGE = string
| ACCELERATOR = string
| DEFAULTVIEW = { YES | NO | AUTO }
| VALIDATE = NO
| CONTEXTMENU = { YES | NO | AUTO }
| ROWBOUND
 [,...] }

where dialog-statement is one of:

{ statement
| ACCEPT DIALOG

User interface | 1206

| CONTINUE DIALOG
| EXIT DIALOG
| NEXT FIELD
 { CURRENT
 | NEXT
 | PREVIOUS
 | field-spec
 }
}

where field-list defines a list of fields with one or more of:

{ field-name
| table-name.*
| table-name.field-name
| screen-array[line].*
| screen-array[line].field-name
| screen-record.*
| screen-record.field-name
} [,...]

where field-spec identifies a unique field with one of:

{ field-name
| table-name.field-name
| screen-array.field-name
| screen-record.field-name
}

where column-list defines a list of database columns as:

{ column-name
| table-name.*
| table-name.column-name
} [,...]

1. variable-definition is a variable declaration with data type as in a regular DEFINE statement.
2. array is the array of records used by the DIALOG statement.
3. help-number is an integer that allows you to associate a help message number with the command.
4. field-name is the identifier of a field of the current form.
5. option-name is a string expression defining the label of the action and identifying the action that can be

executed by the user.
6. option-comment is a string expression containing a description for the menu option, displayed when

option-name is the current.
7. column-name is the identifier of a database column of the current form.
8. table-name is the identifier of a database table of the current form.
9. variable is a simple program variable (not a record).
10.record is a program record (structured variable).
11.screen-array is the screen array that will be used in the current form.
12.line is a screen array line in the form.
13.screen-record is the identifier of a screen record of the current form.
14.action-name identifies an action that can be executed by the user.
15.seconds is an integer literal or variable that defines a number of seconds.
16.key-name is a hot-key identifier (like F11 or Control-z).
17.row-index identifies the program variable which holds the row index corresponding to the tree node that

has been expanded or collapsed.
18.dnd-object references a ui.DragDrop variable defined in the scope of the dialog.

User interface | 1207

19.statement is any instruction supported by the language.
20.action-attributes are dialog-specific action attributes for the action.

Syntax of the START DIALOG instruction
Starts the instance of a declarative dialog.

Syntax

START DIALOG dialog-name

1. dialog-name is the identifier of a declarative DIALOG block.

Usage

The START DIALOG instruction starts the declarative dialog block identified by the name passed.

The current window/form will be used to attach form fields and action views to the variables and action
handlers implemented in the referenced declarative dialog.

The START DIALOG does in fact register the specified dialog to be activated when the parallel dialog event
loop executes.

The started dialog can be terminated with TERMINATE DIALOG.

Example

This example shows a START DIALOG instruction in a function that initializes a parallel
dialog in a split view context:

FUNCTION params()
 IF ui.Window.forName("w_params") IS NULL THEN
 OPEN WINDOW w_params WITH FORM "parameters"
 ATTRIBUTES(TYPE=LEFT)
 LET params.user_name="Tom"
 LET params.auto_sync="Y"
 DISPLAY BY NAME params.*
 START DIALOG d_params_menu
 END IF
 CURRENT WINDOW IS w_params
END FUNCTION

Syntax of the TERMINATE DIALOG instruction
Terminates the instance of a declarative dialog.

Syntax

TERMINATE DIALOG dialog-name

1. dialog-name is the identifier of a declarative DIALOG block.

Usage

The TERMINATE DIALOG instruction stops a declarative dialog identified by the name passed.

If the intent is to finish the parallel dialog, the corresponding window/form bound to the dialog should be
closed after TERMINATE DIALOG.

However, TERMINATE DIALOG can also be used in conjunction with START DIALOG, to achieve a
"restart" of the parallel dialog.

User interface | 1208

Note: TERMINATE DIALOG will not raise an error, if the dialog was not yet started with START
DIALOG. This is required to implement the "restart" pattern.

The next code example shows a typical restart pattern on a detail parallel dialog, when a
new row is selected in the master list:

DIALOG d_list_view()
 DISPLAY ARRAY arr TO sr.*
 ATTRIBUTES(ACCESSORYTYPE=DISCLOSUREINDICATOR)
 BEFORE ROW -- in BEFORE ROW, we restart the details view
 CURRENT WINDOW IS w_right
 TERMINATE DIALOG d_detail_view
 LET curr_pa = arr_curr()
 DISPLAY BY NAME arr[curr_pa].*
 DISPLAY SFMT("tapped row %1",arr_curr()) TO info
 START DIALOG d_detail_view
 CURRENT WINDOW IS w_left
 ...

Parallel dialog programming steps
This procedure describes how to implement parallel dialogs with a declarative DIALOG block.

1. Create a form specification file containing screen record(s) and/or screen array(s). The screen records
and screen arrays identify the presentation elements to be used by the runtime system to display the
data models (the content of program variables bound to the DIALOG blocks).

2. Create a dedicated .4gl module to implement the declarative DIALOG block.

3. With the DEFINE instruction, declare program variables (records and arrays) that will be used as data
models. These will typically be defined as PRIVATE module variables. For record lists (DISPLAY
ARRAY or INPUT ARRAY), the members of the program array must correspond to the elements of the
screen array, by number and data types. To handle record lists, use dynamic arrays instead of static
arrays.

4. Define the declarative DIALOG block in the module, to handle interaction. Define a sub-dialog with
program variables to be used as data models. The sub-dialog will define how variables will be used
(display or input).

a) Inside the sub-dialog instruction, define the behavior with control blocks such as BEFORE ROW,
AFTER ROW, BEFORE FIELD, and interaction blocks such as ON ACTION.

5. Define a FUNCTION to create the dialog instance.

a) Add a test to check if the window and form combination dedicated to the dialog is already created,
using ui.Window.forName(). If the window does not yet exist, create it by using the OPEN
WINDOW window-name WITH FORM instruction. If the window exists, make it current with the
CURRENT WINDOW IS window-name instruction.

b) Fill the module variables (the data model) with data. For lists, you typically use a result set cursor.
c) Start the dialog with the START DIALOG dialog-name instruction.

6. Define a FUNCTION to terminate the dialog instance.

a) In the function, finish the dialog with TERMINATE DIALOG dialog-name.
b) Close the window dedicated to the dialog with CLOSE WINDOW window-name.
c) If needed, free the data model (clear large program arrays) and database cursors, to save memory.

7. If needed, add an ON ACTION close action handler to the declarative dialog, that calls the terminate
function. This allows the end user to close the front-end window and stop the dialog.

8. In another module, implement the WHILE loop using the fgl_eventLoop() built-in function to handle
interaction events for parallel dialogs. This module uses the start and terminate functions to control the
individual dialog modules.

User interface | 1209

The simplest form of the user interaction event loop is:

WHILE fgl_eventLoop()
END WHILE

Using parallel dialogs
To use parallel dialogs, you must understand how they work and how to structure the code.
Structure of a declarative DIALOG block
A declarative DIALOG instruction is made of a single sub-dialog block, with an optional DEFINE clause to
declare local variables.

Important: Unlike procedural DIALOG blocks, declarative DIALOG blocks can only define one sub-
dialog block.

The dialog instruction in the declarative DIALOG block binds program variables to form fields and define
the type of interaction that will take place for the data model (simple input, list input or query). The dialog
implement individual control blocks which let you control the behavior of the interactive instruction. The
dialog can also hold action handlers.

The declarative DIALOG block can define the following dialog types:

• A list of choices controlled by a MENU sub-dialog block.
• Simple record input with the INPUT sub-dialog block.
• Query by example input with the CONSTRUCT sub-dialog block.
• Read-only record list navigation with the DISPLAY ARRAY sub-dialog block.
• Editable record list handling with the INPUT ARRAY sub-dialog block.

The DEFINE clause
The DEFINE clause can be used to define program variables with a scope that is local to the declarative
dialog block.

This clause must be placed before any other sub-dialog block:

DIALOG ()
 DEFINE checked BOOLEAN,
 tmp STRING

 INPUT BY NAME ...
 ...
 END INPUT

END DIALOG

The DEFINE clause is only allowed in declarative dialog blocks. Variables used locally in a procedural
dialog block should be defined in the scope of the function containing the procedural dialog block.

The MENU sub-dialog
The MENU sub-dialog implements a list of choices for the user by using action handlers.

MENU implements a list of action handlers

The following code example shows a MENU sub-dialog implementing a couple of action handlers with an ON
ACTION clause or with a COMMAND clause (action views of COMMAND can get the focus):

DIALOG ()
 MENU
 ON ACTION customer_view
 ...
 ON ACTION order_view
 ...
 END MENU

User interface | 1210

END DIALOG

Control blocks in MENU

Simple record input declared with the INPUT sub-dialog can raise the following triggers:

• BEFORE MENU

In the singular MENU instruction, BEFORE MENU and AFTER MENU blocks are typically used as initialization
and finalization blocks. In an MENU sub-dialog of a DIALOG block, BEFORE MENU and AFTER MENU blocks
will be executed each time the focus goes to (BEFORE) or leaves (AFTER) the action views (buttons)
controlled by this sub-dialog.

The INPUT sub-dialog
The INPUT sub-dialog implement single record input in fields of the current form.

Program variable to form field binding

Each record member variable is bound to the corresponding field of a screen record, in order to manipulate
the values that the user enters in the form fields.

The INPUT clause can be used in two forms:

1. INPUT BY NAME variable-list

2. INPUT variable-list FROM field-list

The BY NAME clause implicitly binds the fields to the variables that have the same identifiers as the field
names. The variables must be declared with the same names as the fields from which they accept input.
The runtime system ignores any record name prefix when making the match. The unqualified names of the
variables and of the fields must be unique and unambiguous within their respective domains. If they are
not, the runtime system generates an exceptions, and sets the STATUS variable to a negative value.

DEFINE p_cust RECORD
 cust_num INTEGER,
 cust_name VARCHAR(50),
 cust_address VARCHAR(100)
 END RECORD
 ...
DIALOG
 INPUT BY NAME p_cust.*
 BEFORE FIELD cust_name
 ...
 END INPUT
 ...
END DIALOG

The FROM clause explicitly binds the fields in the screen record to a list of program variables by position.
The number of variables or record members must equal the number of fields listed in the FROM clause.
Each variable must be of the same (or a compatible) data types as the corresponding screen field. When
the user enters data, the runtime system checks the entered value against the data type of the variable, not
the data type of the screen field.

DEFINE c_name VARCHAR(50)
 c_addr VARCHAR(100)
 ...
DIALOG
 INPUT c_name,
 c_addr
 FROM FORMONLY.field01,
 FORMONLY.field02
 BEFORE FIELD cust_name
 ...

User interface | 1211

 END INPUT
 ...
END DIALOG

Identifying an INPUT sub-dialog

The name of an INPUT sub-dialog can be used to qualify sub-dialog actions with a prefix.

In order to identify the INPUT sub-dialog with a specific name, you can use the ATTRIBUTES clause to set
the NAME attribute:

INPUT BY NAME p_cust.*
 ATTRIBUTES (NAME = "cust")
 ...

Control blocks in INPUT

Simple record input declared with the INPUT sub-dialog can raise the following triggers:

• BEFORE INPUT
• BEFORE FIELD
• ON CHANGE
• AFTER FIELD
• AFTER INPUT

In the singular INPUT instruction, BEFORE INPUT and AFTER INPUT blocks are typically used as
initialization and finalization blocks. In an INPUT sub-dialog of a DIALOG block, BEFORE INPUT and
AFTER INPUT blocks will be executed each time the focus goes to (BEFORE) or leaves (AFTER) the group
of fields defined by this sub-dialog.

The CONSTRUCT sub-dialog
The CONSTRUCT sub-dialog provides database query by example feature, converting search criteria
entered by the user into an SQL WHERE condition that can be use to execute a SELECT statement.

Defining query by example fields

The CONSTRUCT sub-dialog requires a character string variable to hold the WHERE clause, and a list of
screen fields where the user can enter search criteria.

DEFINE sql_condition STRING
 ...
DIALOG
 CONSTRUCT BY NAME sql_condition
 ON customer.cust_name, customer.cust_address
 BEFORE FIELD cust_name
 ...
 END CONSTRUCT
 ...
END DIALOG

Make sure the character string variable is large enough to store all possible SQL conditions. It is better to
use a STRING data type to avoid any size problems.

CONSTRUCT uses the field data types defined in the current form file to produce the SQL conditions. This
is different from other interactive instructions, where the data types of the program variables define the
way to handle input/display. It is strongly recommended (but not mandatory) that the form field data types
correspond to the data types of the program variables used for input. This is implicit if both form fields and
program variables are based on the database schema file.

The CONSTRUCT clause can be used in two forms:

User interface | 1212

1. CONSTRUCT BY NAME string-variable ON column-list

2. CONSTRUCT string-variable ON column-list FROM field-list

The BY NAME clause implicitly binds the form fields to the columns, where the form field identifiers match
the column names specified in the column-list after the ON keyword. You can specify the individual column
names (separated by commas) or use the tablename.* shortcut to include all columns defined for a table
in the database schema file.

The FROM clause explicitly binds the form fields listed after the FROM keyword with the column definitions
listed after the ON keyword.

In both cases, the name of the columns in column-list will be used to produce the SQL condition in string-
variable.

Identifying a CONSTRUCT sub-dialog

The name of a CONSTRUCT sub-dialog can be used to qualify sub-dialog actions with a prefix. In order to
identify the CONSTRUCT sub-dialog with a specific name, use the ATTRIBUTES clause to set the NAME
attribute:

CONSTRUCT BY NAME sql_condition ON customer.*
 ATTRIBUTES (NAME = "q_cust")
 ...

Control blocks in CONSTRUCT

A Query By Example declared with the CONSTRUCT clause can raise the following triggers:

• BEFORE CONSTRUCT
• BEFORE FIELD
• AFTER FIELD
• AFTER CONSTRUCT

In the singular CONSTRUCT instruction, BEFORE CONSTRUCT and AFTER CONSTRUCT blocks are
typically used as initialization and finalization blocks. In DIALOG block, BEFORE CONSTRUCT and AFTER
CONSTRUCT blocks will be executed each time the focus goes to (BEFORE) or leaves (AFTER) the group of
fields defined by this sub-dialog.

The DISPLAY ARRAY sub-dialog
The DISPLAY ARRAY sub-dialog is the controller to implement the navigation in a list of records, with
option data modification actions.

Program array to screen array binding

The DISPLAY ARRAY sub-dialog binds the members of the flat record (or the primitive member) of an
array to the screen-array or screen-record fields specified with the TO keyword. The number of variables in
each record of the program array must be the same as the number of fields in each screen record (that is,
in a single row of the screen array).

You typically bind a program array to a screen-array in order to display a page of records. However, the
DIALOG instruction can also bind the program array to a simple flat screen-record. In this case, only one
record will be visible at a time.

The next code example defines an array with a flat record and binds it to a screen array:

DEFINE p_items DYNAMIC ARRAY OF RECORD
 item_num INTEGER,
 item_name VARCHAR(50),
 item_price DECIMAL(6,2)
 END RECORD
 ...

User interface | 1213

DIALOG
 DISPLAY ARRAY p_items TO sa.*
 BEFORE ROW
 ...
 END DISPLAY
 ...
END DIALOG

If the screen array is defined with one field only, you can bind an array defined with a primitive type:

DEFINE p_names DYNAMIC ARRAY OF VARCHAR(50)
 ...
DIALOG
 DISPLAY ARRAY p_names TO sa.*
 BEFORE DELETE
 ...
 END DISPLAY
 ...
END DIALOG

Identifying a DISPLAY ARRAY sub-dialog

The name of the screen array specified with the TO clause identifies the list. The dialog class method
such as takes the name of the screen array as the parameter, identifying the list. For example, you would
use DIALOG.getCurrentRow("screen-array") to query for the current row in the list identified by
'screen-array'. The name of the screen-array is also used to qualify sub-dialog actions with a prefix.

Control blocks in DISPLAY ARRAY

Read-only record lists declared with the DISPLAY ARRAY sub-dialog can raise the following triggers:

• BEFORE DISPLAY
• BEFORE ROW
• AFTER ROW
• AFTER DISPLAY

In the singular DISPLAY ARRAYinstruction, BEFORE DISPLAY and AFTER DISPLAY blocks are typically
used as initialization and finalization blocks. In a DISPLAY ARRAY sub-dialog of a DIALOG block, BEFORE
DISPLAY and AFTER DISPLAY blocks will be executed each time the focus goes to (BEFORE) or leaves
(AFTER) the group of fields defined by this sub-dialog.

The INPUT ARRAY sub-dialog
The INPUT ARRAY sub-dialog is the controller to implement the navigation and edition in a list of records.

Important: This feature is not supported on mobile platforms.

Program array to screen array binding

The INPUT ARRAY sub-dialog binds the members of the flat record (or the primitive member) of an array
to the screen-array or screen-record fields specified with the FROM keyword. The number of variables in
each record of the program array must be the same as the number of fields in each screen record (that is,
in a single row of the screen array).

You typically bind a program array to a screen-array in order to display a page of records. However, the
DIALOG instruction can also bind the program array to a simple flat screen-record. In this case, only one
record will be visible at a time.

The next code example defines an array with a flat record and binds it to a screen array:

DEFINE p_items DYNAMIC ARRAY OF RECORD

User interface | 1214

 item_num INTEGER,
 item_name VARCHAR(50),
 item_price DECIMAL(6,2)
 END RECORD
 ...
DIALOG
 INPUT ARRAY p_items FROM sa.*
 BEFORE INSERT
 ...
 END INPUT
 ...
END DIALOG

If the screen array is defined with one field only, you can bind an array defined with a primitive type:

DEFINE p_names DYNAMIC ARRAY OF VARCHAR(50)
 ...
DIALOG
 INPUT ARRAY p_names FROM sa.*
 BEFORE DELETE
 ...
 END INPUT
 ...
END DIALOG

Identifying an INPUT ARRAY sub-dialog

The name of the screen array specified with the FROM clause will be used to identify the list. For example,
the dialog class method such as DIALOG.getCurrentRow("screen-array") takes the name of the
screen array as the parameter, to identify the list you want to query for the current row. The name of the
screen-array is also used to qualify sub-dialog actions with a prefix.

Control blocks in INPUT ARRAY

Editable record lists declared with the INPUT ARRAY sub-dialog can raise the following triggers:

• BEFORE INPUT
• BEFORE ROW
• BEFORE FIELD
• ON CHANGE
• AFTER FIELD
• ON ROW CHANGE
• AFTER ROW
• BEFORE DELETE
• AFTER DELETE
• BEFORE INSERT
• AFTER INSERT
• AFTER INPUT

In the singular INPUT ARRAY instruction, BEFORE INPUT and AFTER INPUT blocks are typically used as
initialization and finalization blocks. In the INPUT ARRAY sub-dialog of a DIALOG block, BEFORE INPUT
and AFTER INPUT blocks will be executed each time the focus goes to (BEFORE)or leaves (AFTER) the
group of fields defined by this sub-dialog.

User interface | 1215

Declarative DIALOG block configuration
Attributes defined in the ATTRIBUTES clause of dialogs can be used to configure a declarative DIALOG
block and its sub-dialogs.

The ATTRIBUTES clause of dialogs overrides all default attributes and temporarily override any display
attributes that the OPTIONS or the OPEN WINDOW statement specified for these fields.

• INPUT ATTRIBUTES clause on page 1159
• DISPLAY ARRAY ATTRIBUTES clause on page 1159
• INPUT ARRAY ATTRIBUTES clause on page 1160
• CONSTRUCT ATTRIBUTES clause on page 1162

INPUT ATTRIBUTES clause
Attributes of the INPUT clause of a DIALOG block.

NAME option

The NAME attribute can be used to identify the INPUT sub-dialog, especially useful to qualify sub-dialog
actions.

HELP option

The HELP attribute defines the number of the help message to be displayed when invoked and focus is
in the list controlled by the INPUT sub-dialog. The predefined 'help' action is automatically created by
the runtime system. You can bind action views to the 'help' action. The HELP clause overrides the HELP
attribute.

WITHOUT DEFAULTS option

By default, sub-dialogs use the default values defined in the form files. If you want to use the values stored
in the program variables bound to the dialog, you must use the WITHOUT DEFAULTS attribute. For more
details see WITHOUT DEFAULTS option.

DISPLAY ARRAY ATTRIBUTES clause
Attributes of the DISPLAY ARRAY clause of a DIALOG block.

HELP option

The HELP attribute defines the number of the help message to be displayed when invoked and focus is in
the list controlled by the DISPLAY ARRAY sub-dialog. The predefined 'help' action is automatically created
by the runtime system. You can bind action views to the 'help' action.

The HELP clause overrides the HELP attribute.

COUNT option

The COUNT attribute defines the number of valid rows in the static array to be displayed as default rows.
If you do not use the COUNT attribute, the runtime system cannot determine how much data to display, so
the screen array remains empty. The COUNT option is ignored when using a dynamic array, unless page
mode is used. In this case, the COUNT attribute must be used to define the total number of rows, because
the dynamic array will only hold a page of the entire row set. If the value of COUNT is negative or zero, it
defines an empty list.

See also Controlling the total number of rows on page 1350.

DOUBLECLICK option

The DOUBLICKCLICK option can be used to define the action that will be fired when the user chooses
a row from the list. On front-end platforms using a mouse-device, this corresponds to a physical double-
click on a row with the mouse. On mobile front-ends, this corresponds to a tap on the row with a finger.

User interface | 1216

Note that this attribute can also be defined for the TABLE/TREE containers in form files; DOUBLECLICK in
DISPLAY ARRAY attributes has a higher precedence as DOUBLECLICK in the form file. For more details,
see Defining the action for a row choice on page 1360.

ACCESSORTYPE option

Important: This feature is only for mobile platforms.

The ACCESSORYTYPE attribute can be used to define the decoration of rows, typically used on a iOS
device. Values can be DETAILBUTTON, DISCLOSUREINDICATOR, CHECKMARK to respectively get a (i),
> or checkmark icon. For more details, see Row configuration on iOS devices on page 1369.

DETAILACTION option

Important: This feature is only for mobile platforms.

The DETAILACTION attribute can be used to define the action that will be fired when the user selects the
detail button of a row. The detail button is typically shown with a (i) icon on iOS devices. Note that the
DOUBLECLICK attribute can be used to distinguish the action when the user selects the row instead of the
detail button in the row. For more details, see Row configuration on iOS devices on page 1369.

INPUT ARRAY ATTRIBUTES clause
Attributes of the INPUT ARRAY clause of a DIALOG block.

INPUT ARRAY specific attributes can be defined in the ATTRIBUTE clause of the sub-dialog header:

HELP option

The HELP clause specifies the number of a help message to display if the user invokes the help the INPUT
ARRAY dialog. The predefined 'help' action is automatically created by the runtime system. You can bind
action views to the 'help' action. The HELP clause overrides the HELP attribute.

WITHOUT DEFAULTS option

You typically use the INPUT ARRAY sub-dialog with the WITHOUT DEFAULTS attribute. If this attribute is
not set when using an INPUT ARRAY sub-dialog, the list is empty even if the array holds data. For more
details see WITHOUT DEFAULTS option.

COUNT option

The COUNT attribute defines the number of valid rows in the static array to be displayed as default rows.
If you do not use the COUNT attribute, the runtime system cannot determine how much data to display, so
the screen array remains empty. The COUNT option is ignored when using a dynamic array. If you specify
the COUNT attribute, the WITHOUT DEFAULTS option is not required because it is implicit. If the COUNT
attribute is greater than MAXCOUNT, the runtime system will take MAXCOUNT as the actual number of rows.
If the value of COUNT is negative or zero, it defines an empty list.

MAXCOUNT option

The MAXCOUNT attribute defines the maximum number of rows that can be inserted in the program array.
This attribute allows you to give an upper limit of the total number of rows the user can enter. It can be
used with static or dynamic arrays.

When binding a static array, MAXCOUNT is used as upper limit if it is lower or equal to the actual declared
static array size. If MAXCOUNT is greater than the array size, the size of the static array is used as the upper
limit. If MAXCOUNT is lower than the COUNT attribute (or to the SET_COUNT() parameter when using a
singular INPUT ARRAY), the actual number of rows in the array will be reduced to MAXCOUNT.

User interface | 1217

When binding a dynamic array, the user can enter an infinite number of rows unless the MAXCOUNT
attribute is used. If MAXCOUNT is lower than the actual size of the dynamic array, the number of rows in the
array will be reduced to MAXCOUNT.

If MAXCOUNT is negative or equal to zero, the user cannot insert rows.

APPEND ROW option

The APPEND ROW attribute can be set to FALSE to avoid the append default action, and deny the user to
add rows at the end of the list. If APPEND ROW =FALSE, it is still possible to insert rows in the middle of
the list. Use the INSERT ROW attribute to disallow the user from inserting rows. Additionally, even with
APPEND ROW=FALSE and INSERT ROW=FALSE, you can still get automatic temporary row creation if
AUTO APPEND is not set to FALSE.

INSERT ROW option

The INSERT ROW attribute can be set to FALSE to avoid the insert default action, and deny the user to
insert new rows in the middle of the list. However, even if INSERT ROW is FALSE, it is still possible to
append rows at the end of the list. Use the APPEND ROW attribute to disallow the user from appending
rows. Additionally, even with APPEND ROW=FALSE and INSERT ROW=FALSE, you can still get automatic
temporary row creation if AUTO APPEND is not set to FALSE.

DELETE ROW option

The DELETE ROW attribute can be set to FALSE to avoid the delete default action, and deny the user to
remove rows from the list.

AUTO APPEND option

By default, an INPUT ARRAY controller creates a temporary row when needed (for example, when the
user deletes the last row of the list, an new row will be automatically created). You can prevent this default
behavior by setting the AUTO APPEND attribute to FALSE. When this attribute is set to FALSE, the only way
to create a new temporary row is to execute the append action.

If both the APPEND ROW and INSERT ROW attributes are set to FALSE, the dialog automatically behaves
as if AUTO APPEND equals FALSE.

KEEP CURRENT ROW option

Depending on the list container used in the form, the current row may be highlighted during the execution
of the dialog, and cleared when the instruction ends. You can change this default behavior by using the
KEEP CURRENT ROW attribute, to force the runtime system to keep the current row highlighted.

CONSTRUCT ATTRIBUTES clause
Attributes of the CONSTRUCT clause of a DIALOG block.

HELP option

The HELP attribute defines the number of the help message to be displayed when invoked and focus is in
the list controlled by the CONSTRUCT sub-dialog. The predefined 'help' action is automatically created by
the runtime system. You can bind action views to the 'help' action.

The HELP clause overrides the HELP attribute.

NAME option

The NAME attribute can be used to identify the CONSTRUCT sub-dialog; this is especially useful to qualify
sub-dialog actions.

User interface | 1218

Default actions created by a DIALOG block
Default actions ease the implementation of the controller by providing expected actions.

According to the sub-dialogs defined in a (declarative or procedural) DIALOG block, the runtime system
creates a set of default actions. These actions are provided to ease the implementation of the controller.
For example, when using an INPUT ARRAY sub-dialog, the dialog instruction will automatically create the
insert, append and delete default actions.

Table 282: Default actions created for the DIALOG block on page 1218 lists the default actions created for
the DIALOG interactive instruction, according to the sub-dialogs defined:

Table 282: Default actions created for the DIALOG block

Default action Control Block execution order

help

Shows the help topic defined by the HELP clause.

Only created when a HELP clause or option is
defined for the sub-dialog.

insert

Inserts a new row before current row.

Only created if INPUT ARRAY is used; action
creation can be avoided with INSERT ROW =
FALSE attribute.

append

Appends a new row at the end of the list.

Only created if INPUT ARRAY is used; action
creation can be avoided with APPEND ROW =
FALSE attribute.

delete

Deletes the current row.

Only created if INPUT ARRAY is used; action
creation can be avoided with DELETE ROW =
FALSE attribute.

nextrow

Moves to the next row in a list displayed in one row
of fields.

Only created if DISPLAY ARRAY or INPUT ARRAY
used with a screen record having only one row.

prevrow

Moves to the previous row in a list displayed in one
row of fields.

Only created if DISPLAY ARRAY or INPUT ARRAY
used with a screen record having only one row.

firstrow

Moves to the first row in a list displayed in one row
of fields.

Only created if DISPLAY ARRAY or INPUT ARRAY
used with a screen record having only one row.

lastrow Moves to the last row in a list displayed in one row
of fields.

User interface | 1219

Default action Control Block execution order

Only created if DISPLAY ARRAY or INPUT ARRAY
used with a screen record having only one row.

find

Opens the fglfind dialog window to let the user
enter a search value, and seeks to the row
matching the value.

Only created if the context allows built-in find.

findnext

Seeks to the next row matching the value entered
during the fglfind dialog.

Only created if the context allows built-in find.

The insert, append and delete default actions can be avoided with dialog control attributes:

INPUT ARRAY arr TO sr.* ATTRIBUTES(INSERT ROW=FALSE, APPEND
 ROW=FALSE, ...)
 ...

DIALOG data blocks
Dialog data blocks are dialog triggers invoked when the dialog controller needs data to feed the view with
values.

Such blocks are typically used when record list data is provided dynamically, with the paged mode or when
implementing dynamic tree-views.

• ON FILL BUFFER block on page 1082
• ON EXPAND block on page 1082
• ON COLLAPSE block on page 1082

ON FILL BUFFER block
The ON FILL BUFFER block is used to fill a page of rows into the dynamic array, according to an offset
and a number of rows.

This data block is used in the DISPLAY ARRAY blocks.

The offset can be retrieved with the FGL_DIALOG_GETBUFFERSTART() built-in function and the number
of rows to provide is defined by the FGL_DIALOG_GETBUFFERLENGTH() built-in function.

ON EXPAND block
The ON EXPAND block is executed when a tree view node is expanded (i.e. opened).

This data block is used to implement dynamic trees in a DISPLAY ARRAY, where nodes are added
according to the nodes opened by the end user.

ON COLLAPSE block
The ON COLLAPSE block is executed when a tree view node is collapsed (i.e. closed).

This data block is used to implement dynamic trees in a DISPLAY ARRAY, where nodes are removed
according to the nodes closed by the end user.

DIALOG control blocks
Dialog control blocks are predefined dialog triggers where you can implement specific code to control the
interactive instruction.

The code could involve using ui.Dialog class methods or dialog specific instructions such as NEXT
FIELD or CONTINUE DIALOG.

• Control block execution order in parallel dialogs on page 1220
• BEFORE FIELD block on page 1069

User interface | 1220

• AFTER FIELD block on page 1070
• ON CHANGE block on page 1069
• BEFORE INPUT block on page 1067
• AFTER INPUT block on page 1068
• BEFORE CONSTRUCT block on page 1135
• AFTER CONSTRUCT block on page 1135
• BEFORE DISPLAY block on page 1082
• AFTER DISPLAY block on page 1083
• BEFORE ROW block on page 1083
• ON ROW CHANGE block on page 1110
• AFTER ROW block on page 1084
• BEFORE INSERT block on page 1113
• AFTER INSERT block on page 1113
• BEFORE DELETE block on page 1114
• AFTER DELETE block on page 1114
• BEFORE MENU block on page 1054

Control block execution order in parallel dialogs

The order in which control blocks are executed in a declarative DIALOG used as parallel dialog is the same
as when executing a singular dialog.

According to the type of dialog defined in the declarative DIALOG, see:

• INPUT control blocks execution order on page 1066
• DISPLAY ARRAY control blocks execution order on page 1082
• CONSTRUCT control blocks execution order on page 1134
• INPUT ARRAY control blocks execution order on page 1106

For control block execution order in the context of a procedural DIALOG block, see Control block execution
order in multiple dialogs on page 1164.

BEFORE FIELD block

For fields controlled by an INPUT, INPUT ARRAY or by a CONSTRUCT instructions, the BEFORE FIELD
block is executed every time the cursor enters into the specified field.

For editable lists driven by INPUT ARRAY, this block is executed when moving the focus from field to field
in the same row, or when moving to another row in the same column.

The BEFORE FIELD block is also executed when performing a NEXT FIELD instruction.

The BEFORE FIELD keywords must be followed by a list of form field specification. The screen-record
name can be omitted.

BEFORE FIELD is executed after BEFORE INPUT, BEFORE CONSTRUCT, BEFORE ROW and BEFORE
INSERT.

Use this block to do some field value initialization, or to display a message to the user:

INPUT BY NAME p_cust.* ...
 BEFORE FIELD cust_status
 LET p_cust.cust_comment = NULL
 MESSAGE "Enter customer status"

When using the default FIELD ORDER CONSTRAINT mode, the dialog executes the BEFORE FIELD
block of the field corresponding to the first variable of an INPUT or INPUT ARRAY, even if that field is not
editable (NOENTRY, hidden or disabled). The block is executed when you enter the dialog and every time
you create a new row in the case of INPUT ARRAY. This behavior is supported for backward compatibility.

User interface | 1221

The block is not executed when using the FIELD ORDER FORM, the mode recommended for DIALOG
instructions.

With the FIELD ORDER FORM mode, for each dialog executing the first time with a specific form, the
BEFORE FIELD block might be invoked for the first field of the initial tabbing list defined by the form, even
if that field was hidden or moved around in a table. The dialog then behaves as if a NEXT FIELD first-
visible-column would have been done in the BEFORE FIELD of that field.

When form-level validation occurs and a field contains an invalid value, the dialog gives the focus to the
field, but no BEFORE FIELD trigger will be executed.

AFTER FIELD block

In dialog parts driven by a simple INPUT, INPUT ARRAY or by a CONSTRUCT sub-dialog, the AFTER
FIELD block is executed every time the focus leaves the specified field. For editable lists driven by INPUT
ARRAY, this block is executed when moving the focus from field to field in the same row, or when moving to
another row in the same column.

The AFTER FIELD keywords must be followed by a list of form field specifications. The screen-record
name can be omitted.

AFTER FIELD is executed before AFTER INSERT, ON ROW CHANGE, AFTER ROW, AFTER INPUT or
AFTER CONSTRUCT.

When a NEXT FIELD instruction is executed in an AFTER FIELD block, the cursor moves to the specified
field, which can be the current field. This can be used to prevent the user from moving to another field / row
during data input. Note that the BEFORE FIELD block is also executed when NEXT FIELD is invoked.

The AFTER FIELD block of the current field is not executed when performing a NEXT FIELD; only
BEFORE INPUT, BEFORE CONSTRUCT, BEFORE ROW, and BEFORE FIELD of the target item might be
executed, based on the sub-dialog type.

When ACCEPT DIALOG, ACCEPT INPUT or ACCEPT CONTRUCT is performed, the AFTER FIELD trigger
of the current field is executed.

Use the AFTER FIELD block to implement field validation rules:

INPUT BY NAME p_item.* ...
 AFTER FIELD item_quantity
 IF p_item.item_quantity <= 0 THEN
 ERROR "Item quantity cannot be negative or zero"
 LET p_item.item_quantity = 0
 NEXT FIELD item_quantity
 END IF

ON CHANGE block

The ON CHANGE block can be used to detect that a field changed by user input. The ON CHANGE block
is executed if the value has changed since the field got the focus and if the modification flag is set. The
ON CHANGE block can only be used for fields controlled by an INPUT or INPUT ARRAY dialog, it is not
available in CONSTRUCT.

For editable fields defined as EDIT, TEXTEDIT or BUTTONEDIT, the ON CHANGE block is executed
when leaving a field, if the value of the specified field has changed since the field got the focus and if
the modification flag is set for the field. You leave the field when you validate the dialog, when you move
to another field, or when you move to another row in an INPUT ARRAY. However, if the text edit field is
defined with the COMPLETER attribute to enable autocompletion, the ON CHANGE trigger will be fired after a
short period of time, when the user has typed characters in.

For editable fields defined as CHECKBOX, COMBOBOX, DATEEDIT, DATETIMEEDIT, TIMEEDIT,
RADIOGROUP, SPINEDIT, SLIDER or URL-based WEBCOMPONENT (when the COMPONENTTYPE attribute
is not used), the ON CHANGE block is invoked immediately when the user changes the value with the
widget edition feature. For example, when toggling the state of a CHECKBOX, when selecting an item in

User interface | 1222

a COMBOBOX list, or when choosing a date in the calendar of a DATEEDIT. Note that for such item types,
when ON CHANGE is fired, the modification flag is always set.

 ON CHANGE order_checked -- Defined as CHECKBOX
 CALL setup_dialog(DIALOG)

If both an ON CHANGE block and AFTER FIELD block are defined for a field, the ON CHANGE block is
executed before the AFTER FIELD block.

When changing the value of the current field by program in an ON ACTION block, the ON CHANGE
block will be executed when leaving the field if the value is different from the reference value and if the
modification flag is set (after previous user input or when the touched flag has been changed by program).

When using the NEXT FIELD instruction, the comparison value is reassigned as if the user had leaved
and reentered the field. Therefore, when using NEXT FIELD in ON CHANGE block or in an ON ACTION
block, the ON CHANGE block will only be invoked again if the value is different from the reference value.
This denies to do field validation in ON CHANGE blocks: you must do validations in AFTER FIELD blocks
and/or AFTER INPUT blocks.

BEFORE INPUT block

BEFORE INPUT block in singular and parallel INPUT, INPUT ARRAY dialogs

In a singular INPUT, INPUT ARRAY instruction, or when used as parallel dialog, the BEFORE INPUT is
only executed once when the dialog is started.

The BEFORE INPUT block is executed once at dialog startup, before the runtime system gives control to
the user. This block can be used to display messages to the user, initialize program variables and setup
the dialog instance by deactivating unused fields or actions the user is not allowed to execute.

INPUT BY NAME cust_rec.* ...
 BEFORE INPUT
 MESSAGE "Input customer information"
 CALL DIALOG.setActionActive("check_info", is_super_user())
 CALL DIALOG.setFieldActive("cust_comment", is_super_user())
 ...

The fields are initialized with the defaults values before the BEFORE INPUT block is executed. When the
INPUT instruction uses the WITHOUT DEFAULTS option, the default values are taken from the program
variables bound to the fields, otherwise (with defaults), the DEFAULT attributes of the form fields are used.

Use the NEXT FIELD control instruction in the BEFORE INPUT block, to jump to a specific field when the
dialog starts.

BEFORE INPUT block in INPUT and INPUT ARRAY of procedural DIALOG

In an INPUT or INPUT ARRAY sub-dialog of a procedural DIALOG instruction, the BEFORE INPUT block is
executed when the focus goes to a group of fields driven by the sub-dialog. This trigger is only invoked if a
field of the sub-dialog gets the focus, and none of the other fields had the focus.

When the focus is in a list driven by an INPUT ARRAY sub-dialog, moving to a different row will not invoke
the BEFORE INPUT block.

BEFORE INPUT is executed after the BEFORE DIALOG block andbefore the BEFORE ROW, BEFORE
FIELD blocks.

In this example, the BEFORE INPUT block is used to set up a specific action and display a message:

INPUT BY NAME p_order.*
 BEFORE INPUT
 CALL DIALOG.setActionActive("validate_order", TRUE)

User interface | 1223

AFTER INPUT block

AFTER INPUT block in singular and parallel INPUT, INPUT ARRAY dialogs
In a singular INPUT, INPUT ARRAY instruction, or when used as parallel dialog, the AFTER INPUT is only
executed once when dialog ends.

The AFTER INPUT block is executed after the user has validated or canceled the INPUT or INPUT ARRAY
dialog with the accept or cancel default actions, or when the ACCEPT INPUT instruction is executed.

The AFTER INPUT block is not executed when the EXIT INPUT instruction is performed.

In singular and parallel dialogs, this block is typically used to implement global dialog validation rules
depending from several fields. If the values entered by the user do not satisfy the constraints, use the
NEXT FIELD instruction to force the dialog to continue. The CONTINUE INPUT instruction can be used
instead of NEXT FIELD, when no particular field has to be select.

Before checking the validation rules, make sure that the INT_FLAG variable is FALSE: in case if the user
cancels the dialog, the validation rules must be skipped.

INPUT BY NAME cust_rec.*
 WITHOUT DEFAULTS ATTRIBUTES (UNBUFFERED)
 ...

 AFTER INPUT
 IF NOT INT_FLAG THEN
 IF cust_rec.cust_address IS NOT NULL
 AND cust_rec.cust_zipcode IS NULL THEN
 ERROR "Address is incomplete, enter a zipcode."
 NEXT FIELD zipcode
 END IF
 END IF
END INPUT

To limit the validation to fields that have been modified by the end user, you can call the
FIELD_TOUCHED() function or the DIALOG.getFieldTouched() method to check if a field has
changed during the dialog execution. This will make your validation code faster if the user has only
modified a couple of fields in a large form.

AFTER INPUT block in INPUT and INPUT ARRAY of procedural DIALOG

In an INPUT or INPUT ARRAY sub-dialog of a procedural DIALOG instruction, the AFTER INPUT block is
executed when the focus is lost by a group of fields driven by an INPUT or INPUT ARRAY sub-dialog. This
trigger is invoked if a field of the sub-dialog loses the focus, and a field of a different sub-dialog gets the
focus. When the focus is in a list driven by an INPUT ARRAY sub-dialog, moving to a different row will not
invoke the AFTER INPUT block.

If the focus leaves the current group and goes to an action view, this trigger is not executed, because the
focus did not go to another sub-dialog yet.

AFTER INPUT is executed after the AFTER FIELD, AFTER ROW blocks and before the AFTER DIALOG
block.

Executing a NEXT FIELD in the AFTER INPUT control block will keep the focus in the group of fields.
Within an INPUT ARRAY sub-dialog, NEXT FIELD will keep the focus in the list and stay in the current
row. You typically use this behavior to control user input.

In this example, the AFTER INPUT block is used to validate data and disable an action that can only be
used in the current group:

INPUT BY NAME p_order.*
 AFTER INPUT
 IF NOT check_order_data(DIALOG) THEN

User interface | 1224

 NEXT FIELD CURRENT
 END IF
 CALL DIALOG.setFieldActive("validate_order", FALSE)

BEFORE CONSTRUCT block

BEFORE CONSTRUCT block in singular and parallel CONSTRUCT dialogs

In a singular CONSTRUCT instruction, or when used as parallel dialog, the BEFORE CONSTRUCT is only
executed once when dialog is started.

The BEFORE CONSTRUCT block is executed once at dialog startup, before the runtime system gives
control to the user for criteria input. This block can be used to display messages to the user, initialize form
fields with default search criteria values, and setup the dialog instance by deactivating unused fields or
actions the user is not allowed to execute.

CONSTRUCT BY NAME where_part ON ...
 BEFORE CONSTRUCT
 MESSAGE "Enter customer search filter"
 CALL DIALOG.setActionActive("clean", FALSE)
 ...

The fields are cleared before the BEFORE CONSTRUCT block is executed.

You can use the NEXT FIELD control instruction in the BEFORE CONSTRUCT block, to jump to a specific
field when the dialog starts.

BEFORE CONSTRUCT block in CONSTRUCT of procedural DIALOG

In a CONSTRUCT sub-dialog of a procedural DIALOG instruction, the BEFORE CONSTRUCT block is
executed when the focus goes to a group of fields driven by a CONSTRUCT sub-dialog. This trigger is only
invoked if a field of the sub-dialog gets the focus, and none of the other fields had the focus.

BEFORE CONSTRUCT is executed after the BEFORE DIALOG block and before the BEFORE FIELD blocks.

In this example, the BEFORE CONSTRUCT block is used to display a message:

CONSTRUCT BY NAME sql ON customer.*
 BEFORE CONSTRUCT
 MESSAGE "Enter customer search filter"

AFTER CONSTRUCT block

AFTER CONSTRUCT block in singular and parallel CONSTRUCT dialogs

In a singular CONSTRUCT instruction, or when used as parallel dialog, the AFTER CONSTRUCT is only
executed once when dialog is ended.

Use an AFTER CONSTRUCT block to execute instructions after the user has finished search criteria input.

AFTER CONSTRUCT is not executed if an EXIT CONSTRUCT is performed.

The code in AFTER CONSTRUCT can for example check if a criteria combination of different fields is
required or denied, and force the end use to enter all

Before checking the content of the fields used in the CONSTRUCT, make sure that the INT_FLAG variable is
FALSE: in case if the user cancels the dialog, the validation rules must be skipped.

Since no program variables are associated to the form fields, you must query the input buffers of the fields
to get the values entered by the user.

CONSTRUCT BY NAME where_part ON ...
 ...

User interface | 1225

 AFTER CONSTRUCT
 IF NOT INT_FLAG THEN
 IF length(DIALOG.getFieldBuffer(cust_name))==0
 OR length(DIALOG.getFieldBuffer(cust_addr))==0 THEN
 ERROR "Enter a search criteria for customer name and address
 fields."
 NEXT FIELD CURRENT
 END IF
 END IF
END CONSTRUCT

To limit the validation to fields that have been modified by the end user, you can call the
FIELD_TOUCHED() function or the DIALOG.getFieldTouched() method to check if a field has
changed during the dialog execution. This will make your validation code faster if the user has only
modified a couple of fields in a large form.

AFTER CONSTRUCT block in CONSTRUCT of procedural DIALOG

In a CONSTRUCT sub-dialog of a procedural DIALOG instruction, the AFTER CONSTRUCT block is executed
when the focus is lost by a group of fields driven by a CONSTRUCT sub-dialog. This trigger is invoked if a
field of the sub-dialog loses the focus, and a field of a different sub-dialog gets the focus.

If the focus leaves the current group and goes to an action view, this trigger is not executed, because the
focus did not go to another sub-dialog yet.

AFTER CONSTRUCT is executed after the AFTER FIELD and before the AFTER DIALOG block.

Executing a NEXT FIELD in the AFTER CONSTRUCT control block will keep the focus in the group of
fields.

In this example, the AFTER CONSTRUCT block is used to build the SELECT statement:

CONSTRUCT BY NAME sql ON customer.*
 AFTER CONSTRUCT
 LET sql = "SELECT * FROM customers WHERE " || sql

BEFORE DISPLAY block

BEFORE DISPLAY block in singular and parallel DISPLAY ARRAY dialogs

In a singular DISPLAY ARRAY instruction, or when used as parallel dialog, the BEFORE DISPLAY is only
executed once when the dialog is started.

The BEFORE DISPLAY block is executed once at dialog startup, before the runtime system gives control
to the user. This block can be used to display messages to the user, initialize program variables and setup
the dialog instance by deactivating actions the user is not allowed to execute.

DISPLAY ARRAY p_items TO s_items.*
 BEFORE DISPLAY
 CALL DIALOG.setActionActive("clear_item_list", is_super_user())

BEFORE DISPLAY block in singular and parallel DISPLAY ARRAY dialogs

In a DISPLAY ARRAY sub-dialog of a procedural DIALOG instruction, the BEFORE DISPLAY block is
executed when a DISPLAY ARRAY list gets the focus.

BEFORE DISPLAY is executed before the BEFORE ROW block.

In this example the BEFORE DISPLAY block enables an action and displays a message:

DISPLAY ARRAY p_items TO s_items.*
 BEFORE DISPLAY

User interface | 1226

 CALL DIALOG.setActionActive("print_list", TRUE)
 MESSAGE "You are now in the list of items"

AFTER DISPLAY block

AFTER DISPLAY block in singular and parallel DISPLAY ARRAY dialogs

In a singular DISPLAY ARRAY instruction, or when used as parallel dialog, the AFTER DISPLAY is only
executed once when dialog is ended.

You typically implement dialog finalization in this block.

DISPLAY ARRAY p_items TO s_items.*
 AFTER DISPLAY
 DISPLAY "Current row is: ", arr_curr()

AFTER DISPLAY block in singular and parallel DISPLAY ARRAY dialogs

In a DISPLAY ARRAY sub-dialog of a procedural DIALOG instruction, the AFTER DISPLAY block is
executed when a DISPLAY ARRAY list loses the focus and goes to another sub-dialog.

If the focus leaves the current group and goes to an action view, this trigger is not executed, because the
focus did not go to another sub-dialog yet.

AFTER DISPLAY is executed after the AFTER ROW block.

In this example, the AFTER DISPLAY block disables an action that is specific to the current list:

DISPLAY ARRAY p_items TO s_items.*
 AFTER DISPLAY
 CALL DIALOG.setActionActive("clear_item_list", FALSE)

BEFORE ROW block

BEFORE ROW block in singular and parallel DISPLAY ARRAY, INPUT ARRAY dialogs

In a singular DISPLAY ARRAY, INPUT ARRAY instruction, or when used as parallel dialog, the BEFORE
ROW block is executed each time the user moves to another row. This trigger can also be executed in other
situations, such as when you delete a row, or when the user tries to insert a row but the maximum number
of rows in the list is reached.

You typically do some dialog setup / message display in the BEFORE ROW block, because it indicates that
the user selected a new row or entered in the list.

When the dialog starts, BEFORE ROW will be executed for the current row, but only if there are data rows in
the array.

When called in this block, DIALOG.getCurrentRow() / arr_curr() return the index of the current row.

In this example, the BEFORE ROW block gets the new row number and displays it in a message:

DISPLAY ARRAY ...
 ...
 BEFORE ROW
 MESSAGE "We are on row # ", arr_curr()
 ...

BEFORE ROW block in DISPLAY ARRAY and INPUT ARRAY of procedural DIALOG

In an INPUT or INPUT ARRAY sub-dialog of a procedural DIALOG instruction, the BEFORE ROW block
is executed when a DISPLAY ARRAY or INPUT ARRAY list gets the focus, or when the user moves to

User interface | 1227

another row inside a list. This trigger can also be executed in other situations, for example when you delete
a row, or when the user tries to insert a row but the maximum number of rows in the list is reached.

You typically do some dialog setup / message display in the BEFORE ROW block, because it indicates that
the user selected a new row. Do not use this trigger to detect focus changes; Use the BEFORE DISPLAY
or BEFORE INPUT blocks instead.

In DISPLAY ARRAY, BEFORE ROW is executed after the BEFORE DISPLAY block. In INPUT ARRAY,
BEFORE ROW is executed before the BEFORE INSERT and BEFORE FIELD blocks and after the BEFORE
INPUT blocks.

When the procedural dialog starts, BEFORE ROW will only be executed if the list has received the focus and
there is a current row (the array is not empty). If you have other elements in the form which can get the
focus before the list, BEFORE ROW will not be triggered when the dialog starts. You must pay attention to
this, because this behavior is different to the behavior of singular DISPLAY ARRAY or INPUT ARRAY. In
singular dialogs, the BEFORE ROW block is always executed when the dialog starts (and there are rows in
the array).

When called in this block, DIALOG.getCurrentRow() / arr_curr() return the index of the current row.

In this example the BEFORE ROW block displays a message with the current row number:

 DISPLAY ARRAY p_items TO s_items.*
 BEFORE ROW
 MESSAGE "We are in items, on row #", DIALOG.getCurrentRow("s_items")

ON ROW CHANGE block

The ON ROW CHANGE block is executed in a list controlled by an INPUT ARRAY, when leaving the
current row and when the row has been modified since it got the focus. This is typically used to detect row
modification.

The code in ON ROW CHANGE will not be executed when leaving new rows created by the user with the
default append or insert action. To detect row creation, you must use the BEFORE INSERT or AFTER
INSERT control blocks.

The ON ROW CHANGE block is only executed if at least one field value in the current row has changed
since the row was entered, and the modification flag of the field is set. The modified field(s) might not be
the current field, and several field values can be changed. Values might have been changed by the user
or by the program. The modification flag is reset for all fields when entering another row, when going to
another sub-dialog, or when leaving the dialog instruction.

ON ROW CHANGE is executed after the AFTER FIELD block and before the AFTER ROW block.

When called in this block, DIALOG.getCurrentRow() / arr_curr() return the index of the current row that
has been changed.

You can, for example, code database modifications (UPDATE) in the ON ROW CHANGE block:

 INPUT ARRAY p_items FROM s_items.*
 ...
 ON ROW CHANGE
 LET r = DIALOG.getCurrentRow("s_items")
 UPDATE items SET
 items.item_code = p_items[r].item_code,
 items.item_description = p_items[r].item_description,
 items.item_price = p_items[r].item_price,
 items.item_updatedate = TODAY
 WHERE items.item_num = p_items[r].item_num

User interface | 1228

AFTER ROW block

AFTER ROW block in singular and parallel DISPLAY ARRAY, INPUT ARRAY dialogs

In a singular DISPLAY ARRAY, INPUT ARRAY instruction, or when used as parallel dialog, the AFTER
ROW block is executed each time the user moves to another row, before the current row is left. This trigger
can also be executed in other situations, such as when you delete a row, or when the user inserts a new
row.

A NEXT FIELD instruction executed in the AFTER ROW control block will keep the user entry in the current
row. Use this behavior to implement row validation and prevent the user from leaving the list or moving to
another row.

When called in this block, DIALOG.getCurrentRow() / arr_curr() return the index of the row that you
are leaving.

AFTER ROW block in DISPLAY ARRAY and INPUT ARRAY of procedural DIALOG

In an INPUT or INPUT ARRAY sub-dialog of a procedural DIALOG instruction, the AFTER ROW block is
executed when a DISPLAY ARRAY or INPUT ARRAY list loses the focus, or when the user moves to
another row in a list. This trigger can also be executed in other situations, for example when you delete a
row, or when the user inserts a new row.

AFTER ROW is executed after the AFTER FIELD, AFTER INSERT and before AFTER DISPLAY or AFTER
INPUT blocks.

When called in this block, DIALOG.getCurrentRow() / arr_curr() return the index of the of the row
that you are leaving.

For both INPUT ARRAY and DISPLAY ARRAY sub-dialogs, a NEXT FIELD executed in the AFTER ROW
control block will keep the focus in the list and stay in the current row. Use this feature to implement row
validation and prevent the user from leaving the list or moving to another row.

AFTER ROW and temporary rows in INPUT ARRAY

Important: After creating a temporary row at the end of a list driven by INPUT
ARRAY, if you leave that row to a previous row without data input (setting the
touched flag), or when the cancel action is invoked, the temporary row will be
automatically removed. The AFTER ROW block will be executed for the temporary
row, but ui.Dialog.getCurrentRow()/arr_curr() will be one row greater than
ui.Dialog.getArrayLength()/ARR_COUNT(). In this case, you should ignore the AFTER
ROW event. For example, you should not try to execute a NEXT FIELD or CONTINUE INPUT
instruction, nor should you try to access the dynamic array with a row index that is greater
than the total number of rows, otherwise the runtime system will adapt the total number of
rows to the actual number of rows in the program array.

In this example, the AFTER ROW block checks the current row index and verifies a variable value to forces
the focus to stay in the current row if the value is wrong:

INPUT ARRAY p_items FROM s_items.*
 ...
 AFTER ROW
 LET r = DIALOG.getCurrentRow("s_items")
 IF r <= DIALOG.getArrayLength("s_items") THEN
 IF NOT item_is_valid_quantity(p_item[r].item_quantity) THEN
 ERROR "Item quantity is not valid"
 NEXT FIELD item_quantity'
 END IF
 END IF

User interface | 1229

Another way to handle the case of temporary rows in AFTER ROW is to use a flag to know if the AFTER
INSERT block was executed: The AFTER INSERT block is not executed if the temporary row is
automatically removed. By setting a first value in BEFORE INSERT and changing the flag in AFTER
INSERT, you can detect if the row was permanently added to the list:

INPUT ARRAY p_items FROM s_items.*
 ...
 BEFORE INSERT
 LET op = "T"
 ...
 AFTER INSERT
 LET op = "I"
 ...
 AFTER ROW
 IF op == "I" THEN
 IF NOT item_is_valid_quantity(p_item[arr_curr()].item_quantity) THEN
 ERROR "Item quantity is not valid"
 NEXT FIELD item_quantity
 END IF
 WHENEVER ERROR CONTINUE
 INSERT INTO items (item_num, item_name, item_quantity)
 VALUES (p_item[arr_curr()].*)
 WHENEVER ERROR STOP
 IF SQLCA.SQLCODE<0 THEN
 ERROR "Could not insert the record into database!"
 NEXT FIELD CURRENT
 ELSE
 MESSAGE "Record has been inserted successfully"
 END IF
 END IF
...

BEFORE INSERT block

The BEFORE INSERT block is executed when a new row ins created in an INPUT ARRAY. You typically
use this trigger to set some default values in the new created row. A new row can be created by moving
down after the last row, by executing a insert action, or by executing an append action.

The BEFORE INSERT block is executed after the BEFORE ROW block and before the BEFORE FIELD
block.

When called in this block, DIALOG.getCurrentRow() / arr_curr() return the index of the new created
row.

To distinguish row insertion from an appended row, compare the current row
(DIALOG.getCurrentRow("screen-array")) with the total number of rows
(DIALOG.getArrayLength("screen-array")). If the current row index and the total number of rows
correspond, the BEFORE INSERT concerns a temporary row, otherwise it concerns an inserted row.

Row creation can be stopped by using the CANCEL INSERT instruction inside BEFORE INSERT. If
possible, it is however better to disable the insert and append actions to prevent the user to execute the
actions with DIALOG.setActionActive().

In this example, the BEFORE INSERT block checks if the user can create rows and denies new row
creation if needed; otherwise, it sets some default values:

INPUT ARRAY p_items FROM s_items.*
 ...
 BEFORE INSERT
 IF NOT user_can_append THEN
 ERROR "You are not allowed to append rows"
 CANCEL INSERT
 END IF

User interface | 1230

 LET r = DIALOG.getCurrentRow("s_items")
 LET p_items[r].item_num = get_new_serial("items")
 LET p_items[r].item_name = "undefined"

AFTER INSERT block

The AFTER INSERT block of INPUT ARRAY is executed when the creation of a new row is validated. In
this block, you can for example implement SQL to insert a new row in the database table.

The AFTER INSERT block is executed afterthe AFTER FIELD block and before the AFTER ROW block.

When called in this block, DIALOG.getCurrentRow() / arr_curr() return the index of the new created
row.

When the user appends a new row at the end of the list, then moves UP to another row or validates
the dialog, the AFTER INSERT block is only executed if at least one field was edited. If no data entry is
detected, the dialog automatically removes the new appended row and thus does not trigger the AFTER
INSERT block.

When executing a NEXT FIELD in the AFTER INSERT block, the dialog will keep the focus in the list and
stay in the current row. Use this behavior to implement row input validation and prevent the user from
leaving the list or moving to another row. However, this will not cancel the row insertion and will not invoke
the BEFORE INSERT / AFTER INSERT triggers again. The only way to keep the focus in the current row
after the row was inserted is to execute a NEXT FIELD in the AFTER ROW block.

In this example, the AFTER INSERT block inserts a new row in the database and cancels the operation if
the SQL command fails:

INPUT ARRAY p_items FROM s_items.*
 ...
 AFTER INSERT
 WHENEVER ERROR CONTINUE
 INSERT INTO items VALUES
 (p_items[DIALOG.getCurrentRow("s_items")].*)
 WHENEVER ERROR STOP
 IF SQLCA.SQLCODE<>0 THEN
 ERROR SQLERRMESSAGE
 CANCEL INSERT
 END IF

BEFORE DELETE block

The BEFORE DELETE block is executed each time the user deletes a row of an INPUT ARRAY list, before
the row is removed from the list.

You typically code the database table synchronization in the BEFORE DELETE block, by executing a
DELETE SQL statement using the primary key of the current row. In the BEFORE DELETE block, the row
to be deleted still exists in the program array, so you can access its data to identify what record needs to
be removed.

The BEFORE DELETE block is executed before the AFTER DELETE block.

If needed, the deletion can be canceled with the CANCEL DELETE instruction.

When called in this block, DIALOG.getCurrentRow() / arr_curr() return the index of the row that will
be deleted.

The next example uses the BEFORE DELETE block to remove the row from the database table and
cancels the deletion operation if an SQL error occurs:

INPUT ARRAY p_items FROM s_items.*
 BEFORE DELETE
 LET r = DIALOG.getCurrentRow("s_items")
 WHENEVER ERROR CONTINUE

User interface | 1231

 DELETE FROM items
 WHERE item_num = p_items[r].item_num
 WHENEVER ERROR STOP
 IF SQLCA.SQLCODE<>0 VALUES
 ERROR SQLERRMESSAGE
 CANCEL DELETE
 END IF
...

AFTER DELETE block

The AFTER DELETE block is executed each time the user deletes a row of an INPUT ARRAY list, after the
row has been deleted from the list.

The AFTER DELETE block is executed after the BEFORE DELETE block and before the AFTER ROW block
for the deleted row and the BEFORE ROW block of the new current row.

When an AFTER DELETE block executes, the program array has already been modified; the deleted row
no longer exists in the array (except in the special case when deleting the last row). The arr_curr()
function or the ui.Dialog.getCurrentRow() method returns the same index as in BEFORE ROW, but it
is the index of the new current row. The AFTER ROW block is also executed just after the AFTER DELETE
block.

Important: When deleting the last row of the list, AFTER DELETE is executed for
the delete row, and DIALOG.getCurrentRow() / arr_curr() will be one higher as
DIALOG.getArrayLength() / ARR_COUNT(). You should not access a dynamic array with
a row index that is greater than the total number of rows, otherwise the runtime system will
adapt the total number of rows to the actual number of rows in the program array. When
using a static array, you must ignore the values in the rows after ARR_COUNT().

Here the AFTER DELETE block is used to re-number the rows with a new item line number (note that
DIALOG.getArrayLength() / ARR_COUNT() may return zero):

INPUT ARRAY p_items FROM s_items.*
 AFTER DELETE
 LET r = DIALOG.getCurrentRow("s_items")
 FOR i=r TO DIALOG.getArrayLength("s_items")
 LET p_items[i].item_lineno = i
 END FOR
...

It is not possible to use the CANCEL DELETE instruction in an AFTER DELETE block. At this time it is too
late to cancel row deletion, as the data row no longer exists in the program array.

BEFORE MENU block

If the MENU block contains a BEFORE MENU clause, statements within this clause will be executed before
the menu dialog starts.

This block is typically used to hide or disable some menu options according to the current context of the
program. For example, when the current user is not allowed to create new records, the menu options can
be disabled as follows:

MENU "Orders"
 BEFORE MENU
 CALL DIALOG.setActionActive("append", can_user_append())
 ...
 COMMAND "Append" -- creates "append" action (lowercase)
 ...
 ...
END MENU

User interface | 1232

In TUI mode, the menu options can also be disabled, but they will still be displayed on the screen. The end
user will see the option, but cannot select it. In this case it's more convenient to hide the option to the end
user with the DIALOG.setActionHidden() method, instead of disabling the action.

DIALOG interaction blocks
Dialog interaction blocks are dialog triggers that can be used to execute specific code when the user
executes an action in the dialog. For example, when pressing a button in the form, the corresponding ON
ACTION interaction block will be executed.

Interaction blocks also include special handlers such as timeout event handler, drag & drop handlers, and
modification triggers for DISPLAY ARRAY sub-dialogs.

• ON ACTION block on page 1056
• ON IDLE block on page 1046
• ON KEY block on page 1046
• ON APPEND block on page 1088
• ON INSERT block on page 1088
• ON UPDATE block on page 1089
• ON DELETE block on page 1090
• ON SELECTION CHANGE block on page 1090
• ON DRAG_START block on page 1091
• ON DRAG_FINISHED block on page 1091
• ON DRAG_ENTER block on page 1092
• ON DRAG_OVER block on page 1093
• ON DROP block on page 1094

ON ACTION block

The ON ACTION action-name blocks execute a sequence of instructions when the user triggers a
specific action.

A typical action handler block looks like this:

 ON ACTION action-name
 instruction
 ...

Action blocks will be bound by name to action views (like buttons) in the current form. Action views can
be buttons in forms, toolbar buttons, topmenu options, and if no explicit action view is defined, actions are
rendered with a default action view, depending on the type of front-end.

The next example defines an action block to open a typical zoom window and let the user select a
customer record:

 ON ACTION zoom
 CALL zoom_customers() RETURNING st, rec.cust_id, rec.cust_name

In a dialog handling user input such as INPUT, INPUT ARRAY and CONSTRUCT, if an action is specific to a
field, add the INFIELD clause to have the action automatically enabled when the corresponding field gets
the focus:

 ON ACTION zoom INFIELD cust_city
 CALL zoom_cities() RETURN st, rec.cust_city

In most cases actions are decoration with action defaults in form files, but there can be cases where the ON
ACTION handler needs to define its own attributes at the program level. This can be done by adding the
ATTRIBUTES() clause of ON ACTION:

 ON ACTION custinfo ATTRIBUTES(DISCLOSUREINDICATOR, IMAGE="info")

User interface | 1233

 CALL show_customer_info()

For more details about action handlers, and action configuration, see Dialog actions on page 1276.

ON IDLE block

The ON IDLE seconds clause defines a set of instructions that must be executed after a given period
of user inactivity. This interaction block can be used, for example, to quit the dialog after the user has not
interacted with the program for a specified period of time.

The parameter of ON IDLE must be an integer literal or variable. If it the value is zero, the dialog timeout is
disabled.

It is not recommended to use the ON IDLE trigger with a short timeout period such as 1 or 2 seconds; The
purpose of this trigger is to give the control back to the program after a relatively long period of inactivity
(10, 30 or 60 seconds). This is typically the case when the end user leaves the workstation, or got a phone
call. The program can then execute some code before the user gets the control back.

ON IDLE 30
 IF ask_question(
 "Do you want to reload information the database?") THEN
 -- Fetch data back from the db server
 END IF

Important: The timeout value is taken into account when the dialog initializes its internal data
structures. If you use a program variable instead of an integer constant, any change of the variable
will have no effect if the variable is changed after the dialog has initialized. If you what to change
the value of the timeout variable, it must be done before the dialog block.

ON KEY block

An ON KEY (key-name) block defines an action with a hidden action view (no default button is visible),
that executes a sequence of instructions when the user presses the specified key.

The ON KEY block is supported for backward compatibility with TUI mode applications.

An ON KEY block can specify up to four different keys. Each key creates a specific action objects that will
be identified by the key name in lowercase. For example, ON KEY(F5,F6) creates two actions with the
names f5 and f6. Each action object will get an ACCELERATORNAME assigned with the corresponding
accelerator name. The specified keys must be one of the virtual keys.

In GUI mode, action defaults are applied for ON KEY actions by using the name of the action (the key
name). You can define secondary accelerator keys, as well as default decoration attributes like button text
and image, by using the key name as action identifier. The action name is always in lowercase letters.

Check carefully the ON KEY CONTROL-? statements because they may result in having duplicate
accelerators for multiple actions due to the accelerators defined by action defaults. Additionally, ON KEY
statements used with ESC, TAB, UP, DOWN, LEFT, RIGHT, HELP, NEXT, PREVIOUS, INSERT, CONTROL-
M, CONTROL-X, CONTROL-V, CONTROL-C and CONTROL-A should be avoided for use in GUI programs,
because it's very likely to clash with default accelerators defined in the factory action defaults file provided
by default.

By default, ON KEY actions are not decorated with a default button in the action frame (the default action
view). You can show the default button by configuring a text attribute with the action defaults.

ON KEY (CONTROL-Z)
 CALL open_zoom()

ON TIMER block

The ON TIMER seconds clause defines a set of instructions that must be executed at regular intervals.
This interaction block can be used, for example, to check if a message has arrived in a queue, and needs
to be processed.

User interface | 1234

The parameter of ON TIMER must be an integer literal or variable. If the value is zero, the dialog timeout is
disabled.

It is not recommended to use the ON TIMER trigger with a short timeout period, such as 1 or 2 seconds.
The purpose of this trigger is to give the control back to the program after a reasonable period of time, such
as 10, 20 or 60 seconds.

ON TIMER 30
 CALL check_for_messages()

Important: The timer value is taken into account when the dialog initializes its internal data
structures. If you use a program variable instead of an integer constant, a change of the variable
has no effect if the change takes place after the dialog has initialized. If you what to change the
value of the timeout variable, it must be done before the dialog block.

ON APPEND block

Similarly to the ON INSERT control block, the ON APPEND trigger can be used to enable row creation
during a DISPLAY ARRAY dialog. If this block is defined, the dialog will automatically create the append
action. This action can be decorated, enabled and disabled as a regular action.

If the dialog defines an ON ACTION append interaction block and the ON APPEND block is used, the
compiler will stop with error -8408.

When the user fires the append action, the dialog first execute the user code of the AFTER ROW block if
defined. Then the dialog moves to the end of the list, and creates a new row after the last existing row.
After creating the row, the dialog executes the user code of the ON APPEND block.

The dialog handles only row creation actions and navigation, you must program the record input with a
regular INPUT statement, to let the end user enter data for the new created row. This is typically done with
an INPUT binding explicitly array fields to the screen record fields. The new current row in the program
array is identified with arr_curr(), and the current screen line in the form is defined by SCR_LINE():

DISPLAY ARRAY arr TO sr.*
 ...
 ON APPEND
 INPUT arr[arr_curr()].* FROM sr[scr_line()].* ;
 ...

Pay attention to the semicolon ending the INPUT instruction, which is usually needed here to solve a
language grammar conflict when nested dialog instructions are implemented.

After the user code is executed, the dialog gets the control back and processes the new row as follows:

• If the INT_FLAG global variable is FALSE and STATUS is zero, the new row is kept in the program
array, and the BEFORE ROW block is executed for the new created row.

• If the INT_FLAG global variable is TRUE or STATUS is different from zero, the new row is removed from
the program array, and the BEFORE ROW block is executed for the row that was existing at the current
position, before the new row was created.

The DISPLAY ARRAY dialog always resets INT_FLAG to FALSE and STATUS to zero before executing the
user code of the ON APPEND block.

The append action is disabled if the maximum number of rows is reached.

If needed, the ON APPEND handler can be configured with action attributes by added an ATTRIBUTES()
clause, as with user-defined action handlers:

 ON APPEND ATTRIBUTES(TEXT=%"custlist.delete", IMAGE="listdel")

User interface | 1235

ON INSERT block

Similarly to the ON APPEND control block, the ON INSERT trigger can be used to enable row creation
during a DISPLAY ARRAY dialog. If this block is defined, the dialog will automatically create the insert
action. This action can be decorated, enabled and disabled as a regular action.

If the dialog defines an ON ACTION insert interaction block and the ON INSERT block is used, the
compiler will stop with error -8408.

When the user fires the insert action, the dialog first execute the user code of the AFTER ROW block if
defined. Then the new row is created: The insert action creates a new row before current row in the list.
After creating the row, the dialog executes the user code of the ON INSERT block.

The dialog handles only row creation actions and navigation, you must program the record input with a
regular INPUT statement, to let the end user enter data for the new created row. This is typically done with
an INPUT binding explicitly array fields to the screen record fields. The new current row in the program
array is identified with arr_curr(), and the current screen line in the form is defined by scr_line():

DISPLAY ARRAY arr TO sr.*
 ...
 ON INSERT
 INPUT arr[arr_curr()].* FROM sr[scr_line()].* ;
 ...

Pay attention to the semicolon ending the INPUT instruction, which is usually needed here to solve a
language grammar conflict when nested dialog instructions are implemented.

After the user code is executed, the dialog gets the control back and processes the new row as follows:

• If the INT_FLAG global variable is FALSE and STATUS is zero, the new row is kept in the program
array, and the BEFORE ROW block is executed for the new created row.

• If the INT_FLAG global variable is TRUE or STATUS is different from zero, the new row is removed from
the program array, and the BEFORE ROW block is executed for the row that was existing at the current
position, before the new row was created.

The DISPLAY ARRAY dialog always resets INT_FLAG to FALSE and STATUS to zero before executing the
user code of the ON INSERT block.

The insert action is disabled if the maximum number of rows is reached.

If needed, the ON INSERT handler can be configured with action attributes by added an ATTRIBUTES()
clause, as with user-defined action handlers:

 ON INSERT ATTRIBUTES(TEXT=%"custlist.delete", IMAGE="listdel")

ON UPDATE block

The ON UPDATE trigger can be used to enable row modification during a DISPLAY ARRAY dialog. If this
block is defined, the dialog will automatically create the update action. This action can be decorated,
enabled and disabled as regular actions.

You typically configure the TABLE container in the form by defining the DOUBLECLICK attribute to "update",
in order to trigger the update action when the user double-clicks on a row.

If the dialog defines an ON ACTION update interaction block and the ON UPDATE block is used, the
compiler will stop with error -8408.

When the user fires the update action, the dialog executes the user code of the ON UPDATE block.

The dialog handles only the row modification action and navigation, you must program the record input
with a regular INPUT statement, to let the end user modify the data of the current row. This is typically
done with an INPUT binding explicitly array fields to the screen record fields, with the WITHOUT DEFAULTS

User interface | 1236

clause. The current row in the program array is identified with arr_curr(), and the current screen line in
the form is defined by scr_line():

DISPLAY ARRAY arr TO sr.*
 ...
 ON UPDATE
 INPUT arr[arr_curr()].* WITHOUT DEFAULTS FROM sr[scr_line()].* ;
 ...

Pay attention to the semicolon ending the INPUT instruction, which is usually needed here to solve a
language grammar conflict when nested dialog instructions are implemented.

After the user code is executed, the dialog gets the control back and processes the current row as follows:

• If the INT_FLAG global variable is FALSE and STATUS is zero, the modified values of the current row
are kept in the program array.

• If the INT_FLAG global variable is TRUE or STATUS is different from zero, the old values of the current
row are restored in the program array.

The DISPLAY ARRAY dialog always resets INT_FLAG to FALSE and STATUS to zero before executing the
user code of the ON UPDATE block.

If needed, the ON UPDATE handler can be configured with action attributes by added an ATTRIBUTES()
clause, as with user-defined action handlers:

 ON UPDATE ATTRIBUTES(TEXT=%"custlist.delete", IMAGE="listdel")

ON DELETE block

The ON DELETE trigger can be used to enable row deletion during a DISPLAY ARRAY dialog. If this block
is defined, the dialog will automatically create the delete action. This action can be decorated, enabled and
disabled as regular actions.

If the dialog defines an ON ACTION delete interaction block and the ON DELETE block is used, the
compiler will stop with error -8408.

When the user fires the delete action, the dialog executes the user code of the ON DELETE block.

The dialog handles only the row deletion action and navigation, you can typically program a validation
dialog box to let the user confirm the deletion. The current row in the program array is identified with
arr_curr():

DISPLAY ARRAY arr TO sr.*
 ...
 ON DELETE
 IF fgl_winQuestion("Delete",
 "Do you want to delete this record?",
 "yes", "no|yes", "help", 0) == "no"
 THEN
 LET int_flag = TRUE
 END IF
 ...

After the user code is executed, the dialog gets the control back and processes the current row as follows:

• If the INT_FLAG global variable is FALSE and STATUS is zero, the current row is deleted from the
program array, and the BEFORE ROW block is executed for the next row in the list.

• If the INT_FLAG global variable is TRUE or STATUS is different from zero, the current row is kept in the
program array, and the BEFORE ROW block is executed again for the current row.

The DISPLAY ARRAY dialog always resets INT_FLAG to FALSE and STATUS to zero before executing the
user code of the ON DELETE block.

User interface | 1237

If needed, the ON DELETE handler can be configured with action attributes by added an ATTRIBUTES()
clause, as with user-defined action handlers:

 ON DELETE ATTRIBUTES(TEXT=%"custlist.delete", IMAGE="listdel")

ON SELECTION CHANGE block

The ON SELECTION CHANGE trigger can be used to enable multi-row selection and detect when rows
are selected or de-selected by the end user during a DISPLAY ARRAY dialog. If this block is defined,
multi-row selection is automatically enableb. However, the feature can be enabled/disabled with the
setSelectionMode() dialog method.

ON SORT block

The ON SORT interfaction block can be used to detect when rows have to be sorted in a DISPLAY ARRAY
or INPUT ARRAY dialog.

ON SORT is used in two different contexts:

1. In a regular DISPLAY ARRAY / INPUT ARRAY dialog (not using paged mode), the ON SORT trigger
can be used to detect that a list sort was performed. In this case, the (visual) sort is already done by
the runtime system and the ON SORT block is only used to execute post-sort tasks, such as displaying
current row information, by using arrayToVisualIndex() dialog method. It is also possible to get the sort
column and order with the getSortKey() and getSortSelection() dialog methods.

2. In a DISPLAY ARRAY using paged mode (ON FILL BUFFER), built-in row sorting is not available
because data is provided by pages. Use the ON SORT trigger to detect a sort request and perform
a new SQL query to re-order the rows. In this case, sort column and order is available with the
getSortKey() and getSortSelection() dialog methods. See Populating a DISPLAY ARRAY on
page 1372.

ON DRAG_START block

The ON DRAG_START block is executed when the end user has begun the drag operation. If this dialog
trigger has not been defined, default dragging is enabled for this dialog.

In the ON DRAG_START block, the program typically specifies the type of drag & drop operation by
calling ui.DragDrop.setOperation() with "move" or "copy". This call will define the default
and unique drag operation. If needed, the program can allow another type of drag operation with
ui.DragDrop.addPossibleOperation(). The end user can then choose to move or copy the
dragged object, if the drag & drop target allows it.

If the dragged object can be dropped outside the program, must define the MIME type and drag/drop data
with ui.DragDrop.setMimeType() and ui.DragDrop.setBuffer() methods.

Example:

DEFINE dnd ui.DragDrop
...
DISPLAY ARRAY arr TO sr.* ...
 ...
 ON DRAG_START (dnd)
 CALL dnd.setOperation("move") -- Move is the default operation
 CALL dnd.addPossibleOperation("copy") -- User can toggle to copy if
 needed
 CALL dnd.setMimeType("text/plain")
 CALL dnd.setBuffer(arr[arr_curr()].cust_name)
 ...
END DISPLAY

ON DRAG_FINISHED block

Execution of the ON DRAG_FINISHED block notifies the dialog where the drag started that the drop
operation has been completed or terminated.

User interface | 1238

Call ui.DragDrop.getOperation() to get the final type of operation of the drop. On successful
completion, the method returns "move" or "copy"; otherwise the function returns NULL. If NULL is returned,
the ON DRAG_FINISHED trigger can be ignored.

In cases of successful moves to a target out of the current DISPLAY ARRAY, the application must remove
the transferred data from the source model. For example, if a row was moved from dialog A to B, dialog A
will get an ON DRAG_FINISHED execution after the row was dropped into B, and should remove the row
from the list A.

The ON DRAG_FINISHED interaction block is optional.

DEFINE dnd ui.DragDrop
...
DISPLAY ARRAY arr TO sr.* ...
 ...
 ON DRAG_START (dnd)
 LET last_dragged_row = arr_curr()
 ...
 ON DRAG_FINISHED (dnd)
 IF dnd.getOperation() == "move" THEN
 CALL DIALOG.deleteRow(last_dragged_row)
 END IF
 ...
END DISPLAY

ON DRAG_ENTER block

When the ON DROP control block is defined, the ON DRAG_ENTER block will be executed when the mouse
cursor enters the visual boundaries of the drop target dialog. Entering the target dialog is accepted by
default if no ON DRAG_ENTER block is defined. However, when ON DROP is defined, you should also
define ON DRAG_ENTER to deny the drop of objects with an unsupported MIME type that come from other
applications.

The program can decide to deny or allow a specific drop operation with a call to
ui.DragDrop.setOperation(); passing a NULL to the method will deny drop.

To check what MIME type is available in the drag & drop buffer, the program uses the
ui.DragDrop.selectMimeType() method. This method takes the MIME type as a parameter and
returns TRUE if the passed MIME type is used. You can call this method several times to check the
availability of different MIME types.

You may also define the visual effect when flying over the target list with
ui.DragDrop.setFeedback().

DEFINE dnd ui.DragDrop
...
DISPLAY ARRAY arr TO sr.* ...
 ...
 ON DRAG_ENTER (dnd)
 IF dnd.selectMimeType("text/plain") THEN
 CALL dnd.setOperation("copy")
 CALL dnd.setFeedback("all")
 ELSE
 CALL dnd.setOperation(NULL)
 END IF
 ON DROP (dnd)
 ...
END DISPLAY

Once the mouse has entered the target area, subsequent mouse cursor moves can be detected with the
ON DRAG_OVER trigger.

User interface | 1239

When using a table or tree-view as drop target, you can control the visual effect when the mouse flies over
the rows, according to the type of drag & drop you want to achieve.

Basically, a dragged object can be:

1. Inserted in between two rows (visual effect must show where the object will be inserted)
2. Copied/merged to the current row (visual effect must show the row under the mouse)
3. Dropped somewhere on the target widget (the exact location inside the widget does not matter)

The visual effect can be defined with the ui.DragDrop.setFeedback() method, typically called in the
ON DRAG_ENTER block.

The values to pass to the setFeedback() method to get the desired visual effects described are
respectively:

1. insert (default)
2. select

3. all

DEFINE dnd ui.DragDrop
...
DISPLAY ARRAY arr TO sr.* ...
 ...
 ON DRAG_ENTER (dnd)
 IF canDrop() THEN
 CALL dnd.setOperation(NULL)
 ELSE
 CALL dnd.setFeedback("select")
 END IF
 ...
END DISPLAY

ON DRAG_OVER block

When the ON DROP control block is defined, the ON DRAG_OVER block will be executed after ON
DRAG_ENTER, when the mouse cursor is moving over the drop target, or when the drag & drop operation
has changed (toggling copy/move).

ON DRAG_OVER will be called only once per row, even if the mouse cursor moves over the row.

In the ON DRAG_OVER block, the method ui.DragDrop.getLocationRow() returns the index of the
row in the target array, and can be used to allow or deny the drop. When using a tree-view, you must also
check the index returned by the ui.DragDrop.getLocationParent() method to detect if the object
was dropped as a sibling or as a child node, and allow/deny the drop operation accordingly.

The program can change the drop operation at any execution of the ON DRAG_OVER block. You can deny
or allow a specific drop operation with a call to ui.DragDrop.setOperation(); passing a NULL to the
method will deny the drop.

The current operation (returned by ui.DragDrop.getOperation()) is the value set in previous
ON DRAG_ENTER or ON DRAG_OVER events, or the operation selected by the end user, if it can toggle
between copy and move. Thus, ON DRAG_OVER can occur even if the mouse position has not changed.

If dropping has been denied with ui.DragDrop.setOperation(NULL) in the previous ON DRAG_OVER
event, the program can reset the operation to allow a drop with a call to ui.DragDrop.setOperation()
with the operation parameter "move" or "copy".

ON DRAG_OVER will not be called if drop has been disabled in ON DRAG_ENTER with
ui.DragDrop.setOperation(NULL)

ON DRAG_OVER is optional, and must only be defined if the operation or the acceptance of the drag object
depends on the target row of the drop target.

DEFINE dnd ui.DragDrop

User interface | 1240

...
DISPLAY ARRAY arr TO sr.* ...
 ...
 ON DRAG_ENTER (dnd)
 ...
 ON DRAG_OVER (dnd)
 IF arr[dnd.getLocationRow()].acceptsCopy THEN
 CALL dnd.setOperation("copy")
 ELSE
 CALL dnd.setOperation(NULL)
 END IF
 ON DROP (dnd)
 ...
END DISPLAY

During a drag & drop process, the end user (or the target application) can decide to modify the type of the
operation, to indicate whether the dragged object has to be copied or moved from the source to the target.
For example, in a typical file explorer, by default files are moved when doing a drag & drop on the same
disk. To make a copy of a file, you must press the Ctrl key while doing the drag & drop with the mouse.

In the drop target dialog, you can detect such operation changes in the ON DRAG_OVER trigger and query
the ui.DragDrop object for the current operation with ui.DragDrop.getOperation(). In the drag
source dialog, you typically check ui.DragDrop.getOperation() in the ON DRAG_FINISHED trigger
to know what sort of operation occurred, to keep ("copy" operation) or delete ("move" operation) the
original dragged object.

This example tests the current operation in the drop target list and displays a message accordingly:

DEFINE dnd ui.DragDrop
...
DISPLAY ARRAY arr TO sr.* ...
 ...
 ON DRAG_ENTER (dnd)
 ...
 ON DRAG_OVER (dnd)
 CASE dnd.getOperation()
 WHEN "move"
 MESSAGE "The object will be moved to row ", dnd.getLocationRow()
 WHEN "copy"
 MESSAGE "The object will be copied to row ", dnd.getLocationRow()
 END CASE
 ...
 ON DROP (dnd)
 ...
END DISPLAY

ON DROP block

To enable drop actions on a list, you must define the ON DROP block; otherwise the list will not accept drop
actions.

The ON DROP block is executed after the end user has released the mouse button to drop the dragged
object. ON DROP will not occur if drop has been denied in the previous ON DRAG_OVER event or in ON
DRAG_ENTER with a call to ui.DragDrop.setOperation(NULL).

The program might also check the MIME type of the dragged object with
ui.DragDrop.getSelectedMimeType(), and then call the ui.DragDrop.getBuffer() method to
retrieve drag & drop data from external applications.

Ideally the drop operation should be accepted (no additional call to ui.DragDrop.setOperation()).

User interface | 1241

In this block, the ui.DragDrop.getLocationRow() method returns the index of the row in the target
array, and can be used to execute the code to get the drop data / object into the row that has been chosen
by the user.

DEFINE dnd ui.DragDrop
...
DISPLAY ARRAY arr TO sr.* ...
 ...
 ON DROP (dnd)
 LET arr[dnd.getLocationRow()].capacity == dnd.getBuffer()
 ...
END DISPLAY

If the drag & drop operations are local to the same list or tree-view controller, you can use the
ui.DragDrop.dropInternal() method to simplify the code. This method implements the typical move
of the dragged rows or tree-view node. This is especially useful in case of a tree-view, but is also the
preferred way to move rows around in simple tables.

This ON DROP code example uses the dropInternal() method:

DEFINE dnd ui.DragDrop
...
DISPLAY ARRAY arr_tree TO sr_tree.* ...
 ...
 ON DROP (dnd)
 CALL dnd.dropInternal()
 ...
END DISPLAY

If you want to implement by hand the code to drop a node in a tree-view, you must check the index
returned by the ui.DragDrop.getLocationParent() method to detect if the object was dropped
as a sibling or as a child node, and execute the code corresponding to the drop operation: If the drop
target row index returned by getLocationRow() is a child of the parent row index returned by
getLocationParent() , the new row must be inserted before getLocationRow(); otherwise the new
row must be added as a child of the parent node identified by getLocationParent().

DIALOG control instructions
Dialog control instructions are language instructions dedicated to dialog control, to programmatically force
the dialog to behave in a given way.

For example the NEXT FIELD instruction forces the focus to a specific form field.

• NEXT FIELD instruction on page 1121
• CLEAR instruction in dialogs on page 1073
• DISPLAY TO / BY NAME instruction on page 1192
• CONTINUE DIALOG instruction on page 1192
• EXIT DIALOG instruction on page 1193
• ACCEPT DIALOG instruction on page 1193
• CANCEL DELETE instruction on page 1119
• CANCEL INSERT instruction on page 1120

NEXT FIELD instruction

Understanding the NEXT FIELD instruction

The NEXT FIELD field-name instruction gives the focus to the specified field and forces the dialog to
stay in that field.

User interface | 1242

This instruction can be used to control field input, in BEFORE FIELD, ON CHANGE or AFTER FIELD
blocks, it can also force a DISPLAY ARRAY or INPUT ARRAY to stay in the current row when NEXT
FIELD is used in the AFTER ROW block.

If it exists, the BEFORE FIELD block of the corresponding field is executed.

The purpose of the NEXT FIELD instruction is give the focus to an editable field. Make sure that the field
specified in NEXT FIELD is active, or use NEXT FIELD CURRENT. Non-editable fields are fields defined
with the NOENTRY attribute, fields disabled at runtime with DIALOG.setFieldActive(), or fields using a
widget that does not allow input, such as a LABEL.

Instead of the NEXT FIELD instruction, you can use the DIALOG.nextField("field-name") method
to register a field, for example when the name is not known at compile time. However, this method only
registers the field: It does not stop code execution, like the NEXT FIELD instruction does. You must
execute a CONTINUE DIALOG to get the same behavior as NEXT FIELD.

Form field identification with NEXT FIELD

With the NEXT FIELD instruction, fields are identified by the form field name specification, not the program
variable name used by the dialog. Form fields are bound to program variables with the binding clause of
dialog instruction (INPUT variable-list FROM field-list, INPUT BY NAME variable-list,
CONSTRUCT BY NAME sql ON column-list,CONSTRUCT sql ON column-list FROM field-
list, INPUT ARRAY array-name FROM screen-array.*).

The field name specification can be any of the following:

• field-name
• table-name.field-name
• screen-record-name.field-name
• FORMONLY.field-name

Here are some examples:

• "cust_name"

• "customer.cust_name"

• "cust_screen_record.cust_name"

• "item_screen_array.item_label"

• "formonly.total"

When no field name prefix is used, the first form field matching that simple field name is used.

When using a prefix in the field name specification, it must match the field prefix assigned by the dialog
according to the field binding method used at the beginning of the interactive statement: When no screen-
record has been explicitly specified in the field binding clause (for example, when using INPUT BY NAME
variable-list), the field prefix must be the database table name (or FORMONLY) used in the form file,
or any valid screen-record using that field. When the FROM clause of the dialog specifies an explicit screen-
record (for example, in INPUT variable-list FROM screen-record.* / field-list-with-
screen-record-prefix or INPUT ARRAY array-name FROM screen-array.*), the field prefix
must be the screen-record name used in the FROM clause.

Abstract field identification is supported with the CURRENT, NEXT and PREVIOUS keywords. These
keywords represent the current, next and previous fields respectively. When using FIELD ORDER FORM,
the NEXT and PREVIOUS options follow the tabbing order defined by the form. Otherwise, they follow the
order defined by the input binding list (with the FROM or BY NAME clause).

In a procedural dialog, if the focus is in the first field of an INPUT or CONSTRUCT sub-dialog, NEXT FIELD
PREVIOUS will jump out of the current sub-dialog and set the focus to the previous sub-dialog. If the focus
is in the last field of an INPUT or CONSTRUCT sub-dialog, NEXT FIELD NEXT will jump out of the current
sub-dialog and set the focus to the next sub-dialog. NEXT FIELD NEXT or NEXT FIELD PREVIOUS
also jumps to another sub-dialog when the focus is in a DISPLAY ARRAY sub-dialog. However, when
using an INPUT ARRAY sub-dialog, NEXT FIELD NEXT from within the last column will loop to the first

User interface | 1243

column of the current row, and NEXT FIELD PREVIOUS from within the first column will jump to the last
column of the current row - the focus stays in the current INPUT ARRAY sub-dialog. When another sub-
dialog gets the focus because of a NEXT FIELD NEXT/PREVIOUS, the newly-selected field depends on
the sub-dialog type, following the tabbing order as if the end-user had pressed the tab or Shift-Tab key
combination.

NEXT FIELD to a non-editable INPUT / INPUT ARRAY / CONSTRUCT field

Non-editable fields are fields defined with the NOENTRY attribute, fields disabled with
ui.Dialog.setFieldActive("field-name", FALSE), or fields using a widget that does not allow
input, such as a LABEL.

If a NEXT FIELD instruction specifies a non-editable field, the BEFORE FIELD block of that field is
executed. Then the dialog tries to give the focus to that field. Since the field cannot get the focus, the
dialog will perform the last pressed navigation key (Tab, Shift-Tab, Left, Right, Up, Down, Accept) and
execute the related control blocks, including the AFTER FIELD block of the non-editable field. If no last
key is identified, the dialog considers Tab as fallback and moves to the next editable field as defined by the
FIELD ORDER mode used by the dialog. Doing a NEXT FIELD to a non-editable field can lead to infinite
loops in the dialog; Use NEXT FIELD CURRENT instead.

When selecting a non-editable field with NEXT FIELD NEXT, the runtime system will re-select the current
field since it is the next editable field in the dialog. As a result the end user sees no change.

NEXT FIELD in procedural DIALOG blocks

In a procedural dialog block, the NEXT FIELD field-name instruction gives the focus to the specified
field controlled by INPUT, INPUT ARRAY or CONSTRUCT, or to a read-only list when using DISPLAY
ARRAY.

When using a DISPLAY ARRAY sub-dialog, it is possible to give the focus to the list, by specifying the
name of the first column as argument for NEXT FIELD.

If the target field specified in the NEXT FIELD instruction is inside the current sub-dialog, neither AFTER
FIELD nor AFTER ROW will be invoked for the field or list you are leaving. However, the BEFORE FIELD
control blocks of the destination field (or the BEFORE ROW in case of read-only list) will be executed.

If the target field specified in the NEXT FIELD instruction is outside the current sub-dialog, the AFTER
FIELD, AFTER INSERT, AFTER ROW and AFTER INPUT/DISPLAY/CONSTRUCT control blocks will be
invoked for the field or list you are leaving. Form-level validation rules will also be checked, as if the user
had selected the new sub-dialog himself. This guarantees the current sub-dialog is left in a consistent
state. The BEFORE INPUT/DISPLAY/CONSTRUCT, BEFORE ROW and the BEFORE FIELD control blocks
of the destination field / list will then be executed.

NEXT FIELD in record list control blocks

When using NEXT FIELD in AFTER ROW or in ON ROW CHANGE of a DISPLAY ARRAY or INPUT ARRAY,
the dialog will stay in the current row and give control back to the user. This behavior allows you to
implement data input rules:

 AFTER ROW
 IF NOT int_flag AND arr_count()<=arr_curr() THEN
 IF arr[arr_curr()].it_count * arr[arr_curr()].it_value > maxval THEN
 ERROR "Amount of line exceeds max value."
 NEXT FIELD item_count
 END IF
 END IF

CLEAR instruction in dialogs

The CLEAR field-list and CLEAR SCREEN ARRAY screen-array.* instructions clear the value
buffer of specified form fields. The buffers are directly changed in the current form, and the program

User interface | 1244

variables bound to the dialog are left unchanged. CLEAR can be used outside any dialog instruction, such
as the DISPLAY BY NAME / TO instructions.

When a dialog is configured with the UNBUFFERED mode, there is no reason to clear field buffers since
any variable assignment will synchronize field buffers. Actually, changing the field buffers with DISPLAY
or CLEAR instruction in an UNBUFFERED dialog will have no visual effect, because the variables bound to
the dialog will be used to reset the field buffer just before giving control back to the user. To clear fields
of an UNBUFEFERED dialog, just set to NULL the variables bound to the dialog. However, when using a
CONSTRUCT, no program variables are associated to the dialog and no UNBUFFERED concept exits, and
the CLEAR or DISPLAY TO / BY NAME instructions are the only way to modify the CONSTRUCT fields.

A screen array with a screen-line specification doesn't make much sense in a GUI application using TABLE
containers, you can therefore use the CLEAR SCREEN ARRAY instruction to clear all rows of a list.

DISPLAY TO / BY NAME instruction

The DISPLAY variable-list TO field-list or DISPLAY BY NAME variable-list instruction
fills the value buffers of specified form fields with the values contained in the specified program variables.
The DISPLAY instruction changes the buffers directly in the current form, not the program variables
bound to the dialog. DISPLAY can be used outside any dialog instruction, in the same way as the CLEAR
instruction. DISPLAY also sets the modification flag of fields.

As DIALOG is typically used with the UNBUFFERED mode, there is no reason to set field buffers in a
DIALOG block since any variable assignment will synchronize field buffers. Actually, changing the field
buffers with the DISPLAY or CLEAR instruction will have no visual effect if the fields are used by a dialog
working in UNBUFFERED mode, because the variables bound to the dialog will be used to reset the field
buffer just before giving control back to the user. So if you want to set field values, just assign the variables
and the fields will be synchronized. However, when using a CONSTRUCT binding, you may want to set field
buffers with this DISPLAY instruction, as there are no program variables bound to fields (with CONSTRUCT,
only one string variable is bound to hold the SQL condition).

Instead of using a DISPLAY instruction to set the modification flag of fields to simulate user input, use the
DIALOG.setFieldTouched() method instead.

CONTINUE DIALOG instruction

The CONTINUE DIALOG statement continues the execution of a DIALOG instruction, skipping all
statements appearing after this instruction.

Control returns to the dialog instruction, which executes remaining control blocks as if the program reached
the end of the current control block. Then the control goes back to the user and the dialog waits for a new
event.

The CONTINUE DIALOG statement is useful when program control is nested within multiple conditional
statements, and you want to return control to the user by skipping the rest of the statements.

In the following code example, an ON ACTION block gives control back to the dialog, skipping all
instructions below line 04:

ON ACTION zoom
 IF p_cust.cust_id IS NULL OR p_cust.cust_name IS NULL THEN
 ERROR "Zoom window cannot be opened if no info to identify customer"
 CONTINUE DIALOG
 END IF
 IF p_cust.cust_address IS NULL THEN
 ...

If CONTINUE DIALOG is called in a control block that is not AFTER DIALOG, further control blocks might
be executed according to the context. Actually, CONTINUE DIALOG just instructs the dialog to continue as
if the code in the control block was terminated (it is a kind of GOTO end_of_control_block). However,
when executed in AFTER DIALOG, the focus returns to the current field or read-only list. In this case the
BEFORE ROW and BEFORE FIELD triggers will be invoked.

User interface | 1245

A CONTINUE DIALOG in AFTER FIELD, AFTER INPUT, AFTER DISPLAY or AFTER CONSTRUCT will
only stop the program flow of the current block of statements; instructions after CONTINUE DIALOG will not
be executed. If the user has selected a field in a different sub-dialog, this new field will get the focus and all
necessary AFTER / BEFORE control blocks will be executed.

In case of input error in a field, the best practice is to use a NEXT FIELD instruction to stay in the dialog
and set the focus to the field that the user has to correct.

EXIT DIALOG instruction

The EXIT DIALOG statement terminates a procedural DIALOG block without any further control block
execution.

Note: When used in a declarative DIALOG block, the EXIT DIALOG instruction does only
make sense when the declarative dialog block is included in a procedural dialog block with the
SUBDIALOG clause.

Program flow resumes at the instruction following the END DIALOG keywords. Blocks such as AFTER
DIALOG will not be executed.

 ON ACTION quit
 EXIT DIALOG

When leaving the DIALOG instruction, all form items used by the dialog will be disabled until another
interactive statement takes control.

ACCEPT DIALOG instruction

The ACCEPT DIALOG statement validates all input fields bound to the DIALOG instruction and leaves the
block if no error is raised.

Note: When used in a declarative DIALOG block, the ACCEPT DIALOG instruction does only
make sense when the declarative dialog block is included in a procedural dialog block with the
SUBDIALOG clause.

When defined in the dialog block, ON CHANGE, AFTER FIELD, AFTER ROW, AFTER INPUT/DISPLAY/
CONSTRUCT control blocks will be executed when ACCEPT DIALOG is performed.

The statements appearing after the ACCEPT DIALOG instruction will be skipped.

You typically code an ACCEPT DIALOG in an ON ACTION accept block:

ON ACTION accept ACCEPT DIALOG

Note that any usage of ACCEPT DIALOG outside an ON ACTION accept block is not intended and its
behavior is undocumented.

Input field validation is a process that does several successive validation tasks:

1. The current field value is checked, according to the program variable data type (for example, the user
must input a valid date in a DATE field).

2. NOT NULL field attributes are checked for all input fields. This attribute forces the field to have a value
set by program or entered by the user. If the field contains no value, the constraint is not satisfied. Input
values are right-trimmed, so if the user inputs only spaces, this corresponds to a NULL value which
does not fulfill the NOT NULL constraint.

3. REQUIRED field attributes are checked for all input fields. This attribute forces the field to have a
default value, or to be modified by the user or by program with a DISPLAY TO / BY NAME or
DIALOG.setFieldTouched() call. If the field was not modified during the dialog, the REQUIRED
constraint is not satisfied.

4. INCLUDE field attributes are checked for all input fields. This attribute forces the field to contain a value
that is listed in the include list. If the field contains a value that is not in the list, the constraint is not
satisfied.

User interface | 1246

If a field does not satisfy one of these constraints, dialog termination is canceled, an error message is
displayed, and the focus goes to the first field causing a problem.

After input field validation has succeeded, different types of control blocks will be executed, such as AFTER
FIELD, AFTER ROW, AFTER INPUT and AFTER DIALOG.

In order to validate some parts of the dialog without leaving the block, use the DIALOG.validate()
method.

CANCEL DELETE instruction

In a list controlled by an INPUT ARRAY, row deletion can be canceled by using the CANCEL DELETE
instruction in the BEFORE DELETE block. Using this instruction in a different place will generate a
compilation error.

When the CANCEL DELETE instruction is executed, the current BEFORE DELETE block is terminated
without any other trigger execution (no BEFORE ROW or BEFORE FIELD is executed), and the program
execution continues in the user event loop.

You can, for example, prevent row deletion based on some condition:

 BEFORE DELETE
 IF user_can_delete() == FALSE THEN
 ERROR "You are not allowed to delete rows"
 CANCEL DELETE
 END IF

The instructions that appear after CANCEL DELETE will be skipped.

If the row deletion condition is known before the delete action occurs, disable the delete action to prevent
the user from performing a delete row action with the DIALOG.setActionActive() method:

 CALL DIALOG.setActionActive("delete", FALSE)

It is also possible to prevent the user from deleting rows with the DELETE ROW = FALSE option in the
ATTRIBUTE clause.

CANCEL INSERT instruction

In a list controlled by an INPUT ARRAY, row creation can be canceled by the program with the CANCEL
INSERT instruction. This instruction can only be used in the BEFORE INSERT and AFTER INSERT control
blocks. If it appears at a different place, the compiler will generate an error.

The instructions that appear after CANCEL INSERT will be skipped.

If the row creation condition is known before the insert/append action occurs, disable the insert and/or
append actions to prevent the user from creating new rows, with DIALOG.setActionActive():

 CALL DIALOG.setActionActive("insert", FALSE)
 CALL DIALOG.setActionActive("append", FALSE)

However, this will not prevent the user from appending a new temporary row at the end of the list, when
moving down after the last row. To prevent row creation completely, use the INSERT ROW = FALSE and
APPEND ROW =FALSE options in the ATTRIBUTE clause of INPUT ARRAY, or combine with the AUTO
APPEND = FALSE attribute.

CANCEL INSERT in BEFORE INSERT

A CANCEL INSERT executed inside a BEFORE INSERT block prevents the new row creation. The
following tasks are performed:

1. No new row will be created (the new row is not yet shown to the user).
2. The BEFORE INSERT block is terminated (further instructions are skipped).

User interface | 1247

3. The BEFORE ROW and BEFORE FIELD triggers are executed.
4. Control goes back to the user.

You can, for example, cancel a row creation if the user is not allowed to create rows:

 BEFORE INSERT
 IF NOT user_can_insert THEN
 ERROR "You are not allowed to insert rows"
 CANCEL INSERT
 END IF

Executing CANCEL INSERT in BEFORE INSERT will also cancel a temporary row creation, except when
there are no more rows in the list. In this case, CANCEL INSERT will just be ignored and leave the new
row as is (otherwise, the instruction would loop without end). You can prevent automatic temporary row
creation with the AUTO APPEND=FALSE attribute. If AUTO APPEND=FALSE and a CANCEL INSERT is
executed in BEFORE INSERT (user has invoked an append action), the temporary row will be deleted and
list will remain empty if it was the last row.

CANCEL INSERT in AFTER INSERT

A CANCEL INSERT executed inside an AFTER INSERT block removes the newly created row. The
following tasks are performed:

1. The newly created row is removed from the list (the row exists now and user has entered data).
2. The AFTER INSERT block is terminated (further instructions are skipped).
3. The BEFORE ROW and BEFORE FIELD triggers are executed.
4. The control goes back to the user.

You can, for example, cancel a row insertion if a database error occurs when you try to insert the row into a
database table:

 AFTER INSERT
 WHENEVER ERROR CONTINUE
 LET r = DIALOG.getCurrentRow("s_items")
 INSERT INTO items VALUES (p_items[r].*)
 WHENEVER ERROR STOP
 IF SQLCA.SQLCODE<>0 THEN
 ERROR SQLERRMESSAGE
 CANCEL INSERT
 END IF

Examples
Programming examples using parallel dialogs.
Example 1: Two independent record lists

Form file "simple_list.per":

LAYOUT
GRID
{
<T t1 >
[c1 |c2]
[c1 |c2]
[c1 |c2]
}
END
END
ATTRIBUTES
c1 = FORMONLY.col1;
c2 = FORMONLY.col2;
END

User interface | 1248

INSTRUCTIONS
SCREEN RECORD sr(FORMONLY.*);
END

The module "list1.4gl":

DEFINE arr DYNAMIC ARRAY OF RECORD
 id INTEGER,
 name VARCHAR(50)
 END RECORD

FUNCTION start_list1()
 DEFINE i INTEGER
 IF ui.Window.forName("w_list1") IS NULL THEN
 FOR i=1 TO 10
 LET arr[i].id = i
 LET arr[i].name = "Record "||i
 END FOR
 OPEN WINDOW w_list1 WITH FORM "simple_list"
 START DIALOG control_list1
 ELSE
 CURRENT WINDOW IS w_list1
 END IF
END FUNCTION

FUNCTION terminate_list1()
 TERMINATE DIALOG control_list1
 CLOSE WINDOW w_list1
END FUNCTION

DIALOG control_list1()
 DISPLAY ARRAY arr TO sr.*
 ON ACTION add_row
 CALL DIALOG.appendRow("sr")
 LET arr[arr.getLength()].id = arr.getLength()
 LET arr[arr.getLength()].name = "[new record]"
 ON ACTION close
 CALL terminate_list1()
 END DISPLAY
END DIALOG

The module "list2.4gl" (quite the same code as list1.4gl):

DEFINE arr DYNAMIC ARRAY OF RECORD
 id INTEGER,
 name VARCHAR(50)
 END RECORD

FUNCTION start_list2()
 DEFINE i INTEGER
 IF ui.Window.forName("w_list2") IS NULL THEN
 FOR i=1 TO 10
 LET arr[i].id = i
 LET arr[i].name = "Record "||i
 END FOR
 OPEN WINDOW w_list2 WITH FORM "simple_list"
 START DIALOG control_list2
 ELSE
 CURRENT WINDOW IS w_list2
 END IF
END FUNCTION

FUNCTION terminate_list2()

User interface | 1249

 TERMINATE DIALOG control_list2
 CLOSE WINDOW w_list2
END FUNCTION

DIALOG control_list2()
 DISPLAY ARRAY arr TO sr.*
 ON ACTION clear_row
 INITIALIZE arr[arr_curr()].* TO NULL
 ON ACTION close
 CALL terminate_list2()
 END DISPLAY
END DIALOG

Program file:

IMPORT FGL list1
IMPORT FGL list2
MAIN
 OPTIONS INPUT WRAP
 CALL start_list1()
 CALL start_list2()
 WHILE fgl_eventloop()
 END WHILE
END MAIN

User interface programming
Describes how to program user interface and dialog instructions.

• Dialog programming basics on page 1249
• Dialog actions on page 1276
• Input fields on page 1260
• Table views on page 1345
• Tree views on page 1384
• Split views on page 1395
• Drag & drop on page 1411
• Web components on page 1416
• Canvases on page 1448
• Start menus on page 1454
• Window containers (WCI) on page 1458

Dialog programming basics
This section describes basic dialog programming concepts.

• The model-view-controller paradigm on page 1250
• Introducing dialogs on page 1250
• Dialog configuration with FGLPROFILE on page 1251
• The DIALOG control class on page 1252
• Dialog control functions on page 1252
• User interruption handling on page 1252
• Get program control if user inactivity on page 1254
• Get program control on a regular (timed) basis on page 1255

User interface | 1250

The model-view-controller paradigm
The dynamic user interface architecture is based on the Model-View-Controller (MVC) paradigm.

The model defines the object to be displayed (typically the application data that is stored in program
variables). The view defines the decoration of the model (how the model must be displayed to the screen,
this is typically the form). The controller is the interative instruction that implements the program code to
handle the model.

Views are defined in the abstract user interface tree from compiled .42f forms loaded by programs. The
program variables act as models, and you implement the controllers with interactive instructions, such as
DIALOG or INPUT. Controllers also define action handlers that contain the program code to be executed
when an action view is triggered.

Normally the controllers should not provide any decoration information, as that is the purpose of views.
Because of the history of the language, however, some interactive instructions such as MENU define both
the controller and some presentation information such as menu title, command labels, and comments. In
this case, the runtime system automatically creates the view with that information; you can still associate
other views to the same controller.

Introducing dialogs
Application forms are controlled by interactive instruction blocks called dialogs. These blocks perform the
common tasks associated with the form, such as field input and action handling.

The interactive instructions allow the program to respond to user actions and data input.

Simple display (non-interactive)

The DISPLAY BY NAME / TO instruction allows you to display program variable data in the fields of a
form and continue the program flow without giving control to the end user. This is in fact not an interactive
instruction, as it just displays data to the current form, and returns immediately. However, it may be used
in interactive instructions to display information to the end user. Note that when using the UNBUFFERED
mode of a dialog, you do not need to is the DISPLAY BY NAME / TO instruction to synchronize program
variables and form fields.

The MESSAGE and ERROR instructions are also simple display instructions without user interaction. These
instructions are typically used to display a warning message to the end user.

The interactive dialog blocks

The singular MENU instruction handles a list of choices to activate a specific function of the program. No
field input is possible with this instruction. The user can only select an action from the list.

The singular INPUT instruction is designed for simple record input. It enables the fields in a form for input,
waits while the types data into the fields, and proceeds after the user accepts or cancels the dialog.

The singular DISPLAY ARRAY instruction is used to browse a list of records. It allows the user to view
the contents of a program array of records, scrolling the record list on the screen and choosing a specific
record. DISPLAY ARRAY implements by default a read-only list of records, but can be extended to become
a modifiable list with list modification triggers such as ON INSERT.

The singular INPUT ARRAY instruction supports record list input. It allows the user to alter the contents of
records of a program array, and to insert and delete records.

The singular CONSTRUCT instruction is designed to let the user enter search criteria for a database query.
The user can enter a value or a range of values for one or several form fields, and your program looks up
the database rows that satisfy the requirements.

The procedural DIALOG instruction (placed in the program flow) allows you to combine several INPUT,
DISPLAY ARRAY, INPUT ARRAY and CONSTRUCT functionality within the same form.

The declarative DIALOG block (defined at the same level as a function) allows you to implement indiviual
MENU, INPUT, DISPLAY ARRAY, INPUT ARRAY and CONSTRUCT functionality, that will perform in parallel

User interface | 1251

on sevaral forms, when used with the START DIALOG and TERMINATE DIALOG instructions. Declaractive
DIALOG blocks can also be associated to a procedural DIALOG instruction through the SUBDIALOG clause,
it will then act as a procedural DIALOG sub-dialog.

Modal dialogs and parallel dialogs

Interactive instructions can be implemented as modal or parallel dialogs. Modal dialogs control a given
window, and that window closes when the dialog is accepted or canceled. The window displays on the top
of any existing windows which are not accessible while the modal dialog executes. Parallel dialogs allow
access to several windows simultaneously; the user can switch from on window to the other.

Dialog configuration with FGLPROFILE
FGLPROFILE parameters can be used to configure dialog behavior.

By setting global parameters in FGLPROFILE, you can control the behavior of all dialogs of the program.
These options are provided as global parameters to define a common pattern for all dialogs of your
application. A complete description is available in the runtime configuration section.

List of FGLPROFILE entries affecting the behavior of dialogs:

1. Dialog.fieldOrder (only used by singular dialogs like INPUT)
2. Dialog.currentRowVisibleAfterSort

The Dialog.fieldOrder entry

Dialog.fieldOrder = {true|false}

The Dialog.fieldOrder FGLPROFILE entry defines the execution of BEFORE FIELD and AFTER
FIELD triggers of intermediate fields.

When this parameter is set to true, as the end user moves to a new field with a mouse click, the runtime
system executes the BEFORE FIELD and AFTER FIELD dialog control blocks of the input fields between
the source field and the destination field. When the parameter is set to false, intermediate field triggers are
not executed.

The Dialog.fieldOrder configuration parameter is ignored by the DIALOG multiple-dialog instruction or
when using the FIELD ORDER FORM option in singular dialogs such as INPUT.

Do not use this feature for new developments: GUI applications allow users to jump from one field to any
other field of the form by using the mouse. Therefore, it makes no sense to execute the BEFORE FIELD
and AFTER FIELD triggers of intermediate fields in a graphical application.

Important: The default setting for the runtime system is false; while the default setting in
FGLPROFILE for Dialog.fieldOrder is true. As a result, the overall setting after installation
is true. To modify the behavior of intermediate field trigger execution, change the setting of
Dialog.fieldOrder in FGLPROFILE to false, or use the FIELD ORDER FORM program option.

The Dialog.currentRowVisibleAfterSort entry

Dialog.currentRowVisibleAfterSort = {true|false}

The Dialog.currentRowVisibleAfterSort FGLPROFILE entry controls the visibility of the current
row after a sort in tables

When this parameter is set to true, the offset of table page is automatically adapted to show the current
row after a sort. By default, the offset is not changed and current row may not be visible after sorting rows
of a table. Changing this parameter has no impact on existing code, it is just an indicator to force the
dialog to shift to the page of rows having the current row, as if the end-user had scrollbar. You can use this
parameter to get the same behavior as well known e-mail readers.

User interface | 1252

The DIALOG control class
This topic explains the purpose of the ui.DIALOG class.

Inside a dialog instruction, the DIALOG predefined keyword represents the current dialog object. This
dialog object can be used to execute methods provided by the ui.Dialog built-in class.

For example, you can enable or disable an action with the setActionActive() dialog method, or you
can hide or show the default action view with the setActionHidden() method:

BEFORE INPUT
 CALL DIALOG.setActionActive("zoom",FALSE)
AFTER FIELD field1
 CALL DIALOG.setActionHidden("zoom",1)

The setFieldActive() method can be used to enable or disable a field during the dialog:

ON CHANGE custname
 CALL DIALOG.setFieldActive("custaddr",
 (rec.custname IS NOT NULL))

The ui.Dialog class provides also methods to configure the dialog, for example to enable multiple row
selection:

BEFORE DIALOG
 CALL DIALOG.setSelectionMode("sr1", 1)

Dialog control functions
The language provides several built-in functions and operators to be used in a dialog instruction.

Use the dialog functions and operators to keep track of the relative states of the current row, the program
array, and the screen array, or to access the field buffers and keystroke buffers.

Typical control functions used in dialogs are: arr_curr(), arr_count(), fgl_set_arr_curr(),
set_count(), field_touched(), GET_FLDBUF(), INFIELD(), fgl_dialog_getfieldname(),
fgl_dialog_getbuffer().

As an alternative to functions and operators (especially for those taking hard-coded parameters such as
INFIELD(), use the methods provided in the ui.Dialog class.

User interruption handling
Allow the end user to cancel the execution of a procedure in the program.

When do we need interruption handling?

If the program executes an interactive instruction, the GUI front end can send action events based on user
actions. When the program performs a long process like a loop, a report, or a database query, the front
end has no control. You might want to permit the user to stop a long-running process in the such case.

Detecting user interruptions in programs

To detect user interruptions coming from a GUI front-end, you define an action view with the name
'interrupt':

BUTTON sb: interrupt, TEXT="Stop";

When the runtime system takes control to process program code or execute a long running SQL query, the
front end automatically enables the local 'interrupt' action to let the user send an asynchronous interruption
request to the program.

User interface | 1253

A program (i.e. the runtime system) can also receive a SIGINT interruption signal from the operating
system. The interruption request that comes from the front-end is a different source, however the runtime
system handles both type of interruption events the same way.

When receiving an interrupt event from the front-end with a 'interrupt' special action, or from the system
(SIGINT) the runtime system sets the INT_FLAG register to TRUE.

Consider using DEFER INTERRUPT and test the INT_FLAG register to properly handle user interruptions,
and avoid immediate program termination: If the DEFER INTERRUPT instruction is not used, the program
will stop immediately when an interruption event is caught. With DEFER INTERRUPT, the program
continues, and can test INT_FLAG to check if an interruption event occurred. It is good practice to reset
INT_FLAG to FALSE after detecting interruption:

WHILE ...
 IF INT_FLAG THEN
 LET INT_FLAG=FALSE
 ERROR "Procedure was interrupted by the user"
 EXIT WHILE
 END IF
 ...
END WHILE

SQL queries can be interrupted too, if the target database supports this feature. However, since the control
is on the database server side while the SQL statement is running, it is not possible to execute program
code to check INT_FLAG. In order to detect an SQL interruption, check the SQLCA.SQLCODE register
after the query for SQL error -213, indicating that the last SQL statement was interrupted.

WHENEVER ERROR CONTINUE
-- Long running SQL statement
WHENEVER ERROR STOP
IF SQLCA.SQLCODE == -213 THEN
 ERROR "Database query interrupted by user"
 ...
END IF

When not using DEFER INTERRUPT, if the program enters in a long running procedure, a button with the
action name 'interrupt' will become active. The user can then press that button, and the runtime system
will stop the program, since DEFER INTERRUPT is not used. However, this will not happen when a dialog
is active, because the 'interrupt' button will be automatically disabled in that context. Such situation can
confuse the end user, expecting that the 'interrupt' button can stop the program in any context.

Note that the front end can not handle interruption requests properly if the display generates a lot of
network traffic. In this case, the front end has to process a lot of user interface modifications and has no
time to detect a mouse click on the 'interrupt' action view. A typical example is a program doing a loop
from 1 to 10000, just displaying the value of the counter to a field and doing a refresh. This would generate
hundreds of AUI tree modifications in a short period of time. In such a case, we recommended that you
calculate a modulo and display steps 10 by 10 or 100 by 100.

Implementing interruption of a long running SQL query

-- db_busy.per
LAYOUT
 GRID
 {
 Database query in progress...
 [sb]
 }
 END
END
ATTRIBUTES
 BUTTON sb: interrupt, TEXT="Stop";

User interface | 1254

END

MAIN
 DEFINE oc INT
 DEFER INTERRUPT
 OPTIONS SQL INTERRUPT ON
 DATABASE stores
 OPEN FORM f FROM "db_busy"
 DISPLAY FORM f
 CALL ui.Interface.refresh()
 WHENEVER ERROR CONTINUE
 SELECT COUNT(*) INTO oc FROM orders
 WHENEVER ERROR STOP
 IF SQLCA.SQLCODE == -213 THEN
 ERROR "Database query has been interrupted..."
 END IF
END MAIN

Get program control if user inactivity
Execute some code after a given number of seconds, when the user does not interact with the program.

When to use the ON IDLE trigger?

If an interactive instruction has the control, the program waits for a user interaction like an action or field
input. If the end user leaves the workstation, or switches to another application, the program cannot get
the control and is frozen until the user comes back. You might want to execute some code, after a perio of
inactivity, for example to refresh the displayed data by doing a new database query, or even after a long
period, to terminate the program automatically.

Implementing the ON IDLE trigger

To detect user inactivity during a dialog, define an ON IDLE trigger in the dialog. This trigger is dialog
specific, it is typically defined in the main dialog of the program, but it can also be defined in every dialog.

Important: Consider using the ON IDLE interaction block in dialogs that do not handle field input,
such as DISPLAY ARRAY and MENU: In input dialogs, this trigger might be executed when in the
middle of a field input, and could force field value validation and raise an input error.

For example:

DEFINE seconds SMALLINT
LET seconds = 120
DISPLAY ARRAY ...
 ...
 ON IDLE seconds
 MESSAGE "Automatic data refresh..."
 -- Reload the array with a new database result set
...

Note that the parameter of the ON IDLE trigger can be a integer variable, but it will only be read when the
dialog is started. Changing the variable during dialog execution will have no effect.

A value of zero of less of zero disables the timeout trigger.

User interface | 1255

Get program control on a regular (timed) basis
Execute some code after a given number of seconds, with or without user interaction with the program.

When to use the ON TIMER trigger?

In some cases, the application needs to execute code on a scheduled basis, for example to process a
message arrived in a queue, refresh data on a dashboard, or display resources in time-based graphs.

Important: Unlike the ON IDLE trigger which executes when there is no user activity, the ON
TIMER trigger executes even when the user interacts with the application. Therefore, the code
executed in an ON TIMER trigger must perform quickly, otherwise the end user will experience poor
performance. As a general rule, make sure the time spent in the ON TIMER code is less than the
timer interval. For example, if the processing time takes about 2 seconds, it doesn't make sense to
have an ON TIMER that triggers every second.

Implementing the ON TIMER trigger

To return control to the program on regular intervals, use the ON TIMER seconds trigger in dialogs. This
trigger is dialog specific. It is typically defined in the main dialog of the program, but it can be defined in
every dialog.

Important: Consider using the ON TIMER interaction block in dialogs that do not handle field input,
such as DISPLAY ARRAY and MENU. If used in input dialogs, this trigger may execute in the middle
of a field input, which can force field value validation and raise an input error.

For example:

DEFINE seconds SMALLINT
LET seconds = 120
DISPLAY ARRAY ...
 ...
 ON TIMER seconds
 MESSAGE "Check for messages in queue..."
 -- Query the message server for new messages.
...

Note that the parameter of the ON TIMER trigger can be a integer variable, but it will only be read when the
dialog is started. Changing the variable during dialog execution will have no effect.

A value of zero or less than zero disables the timeout trigger.

Implementing dynamic dialogs
Dialogs can be created at runtime with the ui.Dialog class.

Dynamic dialog basics

The ui.Dialog class can create dialog objects at runtime, to implement generic code controlling forms
that are created at runtime, when the data structure is not known at compile time.

Important: Dynamic dialogs are provided to resolve specific needs, like implementing a
generic zoom window to select a record in a list, and control forms generated at runtime.
This feature is not a replacement for regular "static" dialog instructions, used to control the
forms defined in form specification files.

The dynamic dialogs can be used in conjunction with base.SqlHandle objects, to get database table
column information in order to build forms dynamically.

Unlike static dialog instructions, dynamic dialogs do not require a data model (i.e. program variables
containing the values for fields): Dynamic dialogs hold the data model internally, and behave by default
in unbuffered mode: When an action is fired and the corresponding trigger handler is executed, the field
values are available.

User interface | 1256

Creating the form

Before you instanciate a new ui.Dialog object, you must load an existing compiled .42f form, or create
a new form dynamically in your program.

Forms build at runtime must be created with the ui.Window.createForm() method, and must contain a
valid definition with layout containers, form fields, and screen records.

Note: See Genero BDL demos for a complete example of form creation at runtime.

The createForm() method will be invoked by using the current window. For the main form of the
program, use directly the (empty) SCREEN window. For child windows, create the windows without a form
by using following syntax:

OPEN WINDOW w1 WITH 1 ROWS, 1 COLUMNS

Assuming that there is a current empty window, you can then create the ui.Form object, to finally get the
om.DomNode object to build your form:

DEFINE w ui.Window,
 f ui.Form,
 n om.DomNode
LET w = ui.Window.getCurrent()
LET f = w.createForm()
LET n = f.getNode()
...

Use om classes, to build you form dynamically. A good practice to create dynamic forms is to write first a
.per file, that implements a static version of one of the forms you want to build at runtime. Compile the
.per to a .42f and inspect the generated XML file, to understand the structure of the form file.

For more details, see:

• ui.Window.createForm on page 1770
• The om package on page 1833

Creating the dialog object

To reference the dialog object, first declare a variable with the type ui.Dialog:

DEFINE d ui.Dialog

The dynamic dialog creation methods take the list of field definitions as parameter, as a dynamic array with
a record structure using two members to define the field name and data type.

In order to defined the fields used by the dynamic dialog, define a dynamic array with the following
structure:

DEFINE fields DYNAMIC ARRAY OF RECORD
 name STRING,
 type STRING
 END RECORD

The field definition array will identify form fields and the data types to be used to store the values. The data
types are provided as strings, using the same syntax as a regular Genero type:

LET fields[1].name = "formonly.cust_id"
LET fields[1].type = "INTEGER"
LET fields[2].name = "formonly.cust_name"
LET fields[2].type = "VARCHAR(50)"
LET fields[3].name = "formonly.cust_modts"

User interface | 1257

LET fields[3].type = "DATETIME YEAR TO FRACTION(5)"

Note: The type names used by the dynamic dialog API is the same as the type names returned by
the base.SqlHandle.getResultType() method.

When the list of field definition is complete, create the dynamic dialog object.

To create a dynamic dialog handling simple record input:

LET d = ui.Dialog.createInputByName(fields)

For more details, see ui.Dialog.createInputByName on page 1789.

To create a display array dynamic dialog:

LET d = ui.Dialog.createDisplayArrayTo(fields, "sr_custlist")

Note: The list handling, the createDisplayArrayTo() method requires the name of the screen
record used to group form fields, as defined in the INSTRUCTIONS section of the .per form file.

For more details, see ui.Dialog.createDisplayArrayTo on page 1791.

To create a dynamic dialog handling query by example:

LET d = ui.Dialog.createConstructByName(fields)

For more details, see ui.Dialog.createConstructByName on page 1788.

Add user-defined triggers

Dynamic dialogs can be configured with user-defined triggers, for example to execute code when a specific
action is fired.

After creating the dialog object, add user-defined triggers with the ui.Dialog.addTrigger() method:

DEFINE d ui.Dialog
...
CALL d.addTrigger("ON ACTION print")
CALL d.addTrigger("ON DELETE")
...

Note that some triggers must be identified with the user-defined action name, as in "ON ACTION print".

User-defined triggers will then be handled in the dynamic dialog loop, when the event occurs.

For more details, see: ui.Dialog.addTrigger on page 1793.

Handling dialog events

To implement the "body" of a dynamic dynamic, mix a WHILE loop with the ui.Dialog.nextEvent()
method, to handle dialog events.

The WHILE loop will act as the main event handler of your dynamic dialog, and will loop, waiting for dialog
events until you explicitely exist the loop with an EXIT WHILE instruction.

DEFINE d ui.Dialog
...
WHILE TRUE
 CASE d.nextEvent()
 WHEN "BEFORE DISPLAY"
 ...
 WHEN "ON ACTION print"
 ...

User interface | 1258

 WHEN "ON DELETE"
 ...
 WHEN "AFTER DISPLAY"
 ...
END WHILE

Several implicit trigger names are supported by dynamic dialogs, such as "BEFORE ROW", "AFTER
FIELD field-name". These triggers are equivalent to the static dialog control blocks, to control the
behavior of your dynamic dialog.

The event handlers for the user-defined triggers that have been added with the addTrigger() method
must also be handled in the dynamic dialog loop.

Inside the WHILE loop, control the behavior of the dialog with the methods provided in the ui.Dialog
class. For example, to jump to a different field when the "jump" action is fired:

WHILE TRUE
 CASE d.nextEvent()
 WHEN "ON ACTION jump"
 CALL d.nextField("customer.cust_name")
 ...

BEFORE/AFTER FIELD handlers must be identified with the field name (without the table/formonly prefix):

WHILE TRUE
 CASE d.nextEvent()
 WHEN "AFTER FIELD cust_name"
 IF LENGTH(d.getFieldValue("customer.cust_name")) < 3 THEN
 ERROR "Customer name is too short"
 CALL d.nextField("customer.cust_name")
 END IF
 ...

For more details, see the ui.Dialog.nextEvent() method reference.

Handling field values

A dynamic dialog stores field values in internal buffers created according to the field definitions provided in
the creation method. Access to these values is required, to implement the dynamic dialog. For example, to
set default values before entering the dialog loop, modifying and/or querying values during the dialog loop,
and to get the entered values after dialog termination when accepted by the user.

To set or get values of fields controlled by a dynamic dialog, use respectively the
ui.Dialog.setFieldValue() and ui.Dialog.getFieldValue() methods.

Note: These methods take a form field name as parameter, that can be provided in different
notations. See Identifying fields in dialog methods on page 1818 for more details.

When implementing a display array dynamic dialog handling a record list, the set/get field value methods
apply to the current row: If you want to set or get field values of a particular row, first move to the row with
the ui.Dialog.setCurrentRow() method.

The next example copies the values from the fields in the current row of a display array dynamic dialog
(d_list), to the field buffers of a record input dynamic dialog (d_rec):

CALL d_list.setCurrentRow("sr_custlist", index)
FOR i=1 TO fields.getLength()
 CALL d_rec.setFieldValue(fields[i].name,
 d_list.getFieldValue(fields[i].name)
)
END FOR

User interface | 1259

For more details, see:

• ui.Dialog.setFieldValue on page 1813
• ui.Dialog.getFieldValue on page 1801

Get query conditions for a field

A dynamic dialog created with ui.Dialog.createConstructByName on page 1788 handles query by example
input.

To generate the SQL condition from the search value entered in a construct field, use the
ui.Dialog.getQueryFromField on page 1802 method, by passing the field name as parameter:

LET field_condition = DIALOG.getQueryFromField("customer.cust_name")

To build the complete WHERE part for the SELECT statement, iter through all form fields and concatenate
the form field condition by separating with the AND or with the OR operator:

FOR i=1 TO fields.getLength()
 LET field_condition = d.getQueryFromField(fields[i].name)
 IF field_condition IS NOT NULL THEN
 IF where_clause IS NOT NULL THEN
 LET where_clause = where_clause, " AND "
 END IF
 LET where_clause = where_clause, field_condition
 END IF
END FOR

Implementing the accept and cancel actions

Regular static dialog instructions implement the accept and cancel actions, to respectively validate or abort
the dialog.

These actions are created automatically for static dialogs, but must be created by hand for dynamic
dialogs.

In the case of cancel, you can mimic the behavior of static dialogs by setting the INT_FLAG register to
TRUE and then leave the WHILE loop with an EXIT WHILE.

For the accept action, call the ui.Dialog.accept() method to validate field input and leave the dialog,
and execute an EXIT WHILE in the "AFTER INPUT" event to leave the dialog loop.

For example, to implement the accept and cancel actions for a simple record input:

DEFINE d ui.Dialog
...
LET d = ui.Dialog.createInputByName(fields)
CALL d.addTrigger("ON ACTION cancel")
CALL d.addTrigger("ON ACTION accept")
...
WHILE TRUE
 CASE d.nextEvent()
 WHEN "ON ACTION cancel"
 LET int_flag = TRUE
 EXIT WHILE
 WHEN "ON ACTION accept"
 CALL d.accept()
 WHEN "AFTER INPUT"
 EXIT WHILE
 END CASE
END WHILE

User interface | 1260

Terminating the dialog

Some synchronization code needs to be implemented to properly destroy the dynamic dialog. A dialog
needs to be destroyed by closing its corresponding window/form.

In order to terminate a dialog, assign NULL to the ui.Dialog variable referencing the dialog object.
This will destroy the object, if no other variables references it, and the corresponding window can then be
closed:

LET d = NULL
CLOSE WINDOW w1

Combining dynamic dialogs with dynamic cursors

To write generic code accessing a database, implement the dynamic dialog with field names and types
coming from the base.SqlHandle cursor.

The next code example builds a list of fields according to the database table passed as first parameter.
The function scans the result set column names and types of the base.SqlHandle cursor, to build the list
of field definitions, that can then be used for the dynamic dialog creation:

FUNCTION build_field_list(dbtable, fields)
 DEFINE dbtable STRING,
 fields DYNAMIC ARRAY OF RECORD
 name STRING,
 type STRING
 END RECORD
 DEFINE h base.SqlHandle,
 i INT

 LET h = base.SqlHandle.create()
 CALL h.prepare("SELECT * FROM " || dbtable)
 CALL h.open()
 CALL h.fetch()
 CALL fields.clear()
 FOR i=1 TO h.getResultCount()
 LET fields[i].name = h.getResultName(i)
 LET fields[i].type = h.getResultType(i)
 END FOR

END FUNCTION

For more details, see The SqlHandle class on page 1725.

Input fields
Describes various concepts related to form field management in dialogs

Field input length
Field input length defines the amount of characters the user can type in a form field.

Input length basics

The field input length is used by interactive instructions to limit the size of the data that can be entered
by the user. Additionally, when displaying a program variable to a form field with the DISPLAY TO or
DISPLAY BY NAME instruction, the field input length is used to truncate the text resulting from the data
conversion. For non-character values, if the resulting text does not fit into the input length, the field will
show * stars to indicate an overflow.

User interface | 1261

Length semantics for character fields

When using byte length semantics (the default), the input length represents the number of bytes in the
current character set. In other words, it is the number of bytes used by the character string in the character
set used by the runtime system. For example, when using a Chinese BIG5 encoding, Latin characters
(a,b,c) use one byte each, while Chinese ideograms use 2 bytes: If the input length is 6, the user can enter
6 Latin characters like "abcdef", or 4 Latin characters and one Chinese ideogram, or 3 Chinese ideograms.

When using character length semantics (FGL_LENGTH_SEMANTICS=CHAR environment variable), the
unit for the input length is in characters. For example, in a UTF-8 character set, if the form field has a width
of 6 cells, the field can hold 6 characters, from any alphabet. There is no limitation regarding the number of
bytes the UTF-8 encoded string will use.

Input length control

The field input length is defined according to:

1. The type of layout (grid-based or stack-based layout)
2. The data type of the program variable bound to field by the interactive instruction.
3. In grid-based layout, the usage of the SCROLL attribute for CHAR/VARCHAR/STRING types.

Field width definition in grid-based containers

In a grid-based container, by default the input length is defined by the width of the field item tag in the
LAYOUT section. The width of a field item tag is defined by the number of cell positions used between the
square braces:

LAYOUT
GRID
{
 [f1] -- width = 3 cells
 [f2] -- width = 6 cells
 ...

As a general rule, forms must define fields that can hold all possible values that the corresponding program
variable can contain. For example, a DATE field must be defined with 10 cells, to hold date values in the
format DD/MM/YYYY.

If the program variable is defined with a numeric data type like INTEGER or DECIMAL, the input length is
defined by the width of the field defined in the form.

If the program variable is defined with character data type such as CHAR, VARCHAR or STRING, by default,
the input length is defined by the width of the field defined in the form. The SCROLL attribute can be used
to bypass this limit and force the input length to be as large as the program variable. For example, when
using a CHAR(20) variable with a form field defined with width of 3 characters, the input length will be 20
characters instead of 3.

Note: Using the SCROLL attribute must be an exception: Form fields should be large enough to
hold all possible characters that fit in the corresponding program variable. Note also that for specific
item types like TEXTEDIT, the SCROLL attribute behavior is implicit when the element is stretchable
or allows scrollbars.

If the program variable is defined with a DATE, DATETIME or INTERVAL data type, the input length is
defined by the data type. For example. a DATE field will allow 10 characters.

Field width definition in stack-based containers

In a stack-based layout, the input length is defined by the data type of the program variable.

User interface | 1262

In the next example, the cust_id field will allow numeric input length in the range of the INTEGER data
type, and the cust_name field will allow up to 50 characters:

-- Form file
LAYOUT
 STACK
 EDIT customer.cust_id;
 EDIT customer.cust_name;
 ...

-- Program
MAIN
 DEFINE cust_rec RECORD
 cust_id INTEGER,
 cust_name VARCHAR(50)
 END RECORD
 ...
 INPUT BY NAME cust_rec.*
 ...

If the program variable is defined with a numeric data type like INTEGER or DECIMAL or a character data
type such as CHAR, VARCHAR or STRING, the input length is defined by the value range of the program
variable. For numeric values, you can use the INCLUDE attribute to define the range of possible values.

If the program variable is defined with a DATE, DATETIME or INTERVAL data type, the input length is
defined by the data type. For example. a DATE field will allow 10 characters.

The buffered and unbuffered modes
The buffered and unbuffered mode control the synchronization of program variables and form fields.

Data model / view / controller paradigm

When bound to an interactive instruction (i.e. dialog), program variables act as a data model to display data
or to get user input. To change the values of form fields by program, the corresponding variables must be
set and displayed.

Synchronization of program variables with the form fields depends on the buffer mode used by the dialog.
Use the unbuffered mode to get automatic data model / form field synchronization.

Configuring the buffer mode

By default, singular dialogs (INPUT, DISPLAY ARRAY) and procedural DIALOG blocks are using the
buffered mode, while parallel dialogs are using the unbuffered mode by default.

The unbuffered mode can be set per (modal) dialog instruction, with the UNBUFFERED dialog attribute:

INPUT BY NAME p_site.* ATTRIBUTES(UNBUFFERED)
 ...
END INPUT

When using a procedural DIALOG block, all subdialogs defined locally or included with the SUBDIALOG
clause inherit the buffer mode of the parent procedural dialog block:

DIALOG ATTRIBUTES(UNBUFFERED)
 INPUT BY NAME p_site.* -- unbuffered
 ...
 END INPUT
 DISPLAY ARRAY a_events TO sr_events.* -- unbuffered
 ...
 END DISPLAY
 SUBDIALOG d_comments -- unbuffered

User interface | 1263

END DIALOG

The unbuffered mode can also be set globally with the ui.Dialog.setDefaultUnbuffered() method, for
singular and procedural dialogs:

CALL ui.Dialog.setDefaultUnbuffered(TRUE)
...
INPUT BY NAME rec_cust.* WITHOUT DEFAULTS -- uses unbuffered mode
 ...
END INPUT

In contrast with modal dialogs described above, when implementing parallel dialogs, all started dialogs are
implicitly using the unbuffered mode, and it is not possible to use the buffered mode:

DIALOG d_customers()
 INPUT BY NAME r_cust.*
 ...
 END INPUT
END DIALOG
...
START DIALOG d_customers -- will be unbufferd by default
...

The buffered mode

When you use the default "buffered" mode, program variable changes are not automatically displayed
to form fields; you need to execute DISPLAY TO or DISPLAY BY NAME. Additionally, if an action is
triggered, the value of the current field is not validated and is not copied into the corresponding program
variable. The only way to get the text of a field is to use GET_FLDBUF() or DIALOG.getFieldBuffer().
These functions return the current text, which might not be a valid representation of a value of the field data
type:

INPUT BY NAME p_item.*
 ON ACTION zoom
 CALL select_item()
 RETURNING p_item.code, p_item.desc
 DISPLAY BY NAME p_item.code, p_item.desc
 END IF
 ...
END INPUT

The unbuffered mode

With the unbuffered mode, program variables and form fields are automatically synchronized, and the
dialog instruction is sensitive to program variable changes: You don't need to display values explicitly with
DISPLAY TO or DISPLAY BY NAME. When an action is triggered, the value of the current field is validated
and is copied into the corresponding program variable. If you need to display new data during the dialog
execution, just assign the values to the program variables; the runtime system will automatically display the
values to the screen after user code of the current control or interaction block has been executed:

INPUT BY NAME p_site.* ATTRIBUTES(UNBUFFERED)
 ON ACTION zoom
 CALL select_item()
 RETURNING p_item.code, p_item.desc
 -- no need to display desc.
 END IF
 ...
END INPUT

User interface | 1264

Actions configuration for field validation

During data input, values entered by the user in form fields are automatically validated and copied into
the program variables. Actually the value entered in form fields is first available in the form field buffer.
This buffer can be queried with built-in functions or dialog class methods. With the unbuffered mode, the
field buffer is used to synchronize program variables each time control returns to the runtime system - for
example, when the user clicks on a button to execute an action.

With the unbuffered mode, data validation must be prevented for some actions such as cancel or close . To
avoid field validation for a given action, set the validate action default attribute to "no", in the .4ad file or
in the ACTION DEFAULTS section of the form file:

ACTION DEFAULTS
 ACTION undo (TEXT = "Undo", VALIDATE = NO)
 ...
END

Some predefined actions are already configured with validate=no in the default.4ad file.

If field validation is disabled for an action, the code executed in the ON ACTION block acts as if the dialog
was in buffered mode: The program variable is not set; however, the input buffer of the current field is
updated. When returning from the user code, the dialog will not synchronize the form fields with program
variables, and the current field will display the input buffer content. Therefore, if you change the value of
the program variable during an ON ACTION block where validation is disabled, you must explicitly display
the values to the fields with DISPLAY TO / BY NAME.

To illustrate this case, imagine that you want to implement an undo action to allow the modifications done
by the user to be reverted (before these have been saved to the database of course). You typically copy
the current record into a clone variable when the dialog starts, and copy these old values back to the input
record when the undo action is invoked. An undo action is a good candidate to avoid field validation, since
you want to ignore current values. If you don't re-display the values, the input buffer of the current field will
remain when returning from the ON ACTION block:

DIALOG ATTRIBUTES(UNBUFFERED)
 INPUT BY NAME p_cust.*
 BEFORE INPUT
 LET p_cust_copy.* = p_cust.*
 ON ACTION undo -- Defined with VALIDATE=NO
 LET p_cust.* = p_cust_copy.*
 DISPLAY BY NAME p_cust.*
 END INPUT
END DIALOG

For more details, see Data validation at action invocation on page 1331.

Binding variables to form fields
Some dialogs need program variables to store form field values.

Dialogs handling data fields input or display (INPUT, INPUT ARRAY, DISPLAY ARRAY) need program
variables to store the information displayed in form fields during the dialog execution. The exception is
CONSTRUCT, which needs only one string variable that holds the SQL condition produced.

When declaring a dialog handling form fields, you specify what program variables must be bound to the
form fields:

 INPUT BY NAME custrec.* ...
 ...
 END INPUT

User interface | 1265

There are different ways to bind program variables to screen record fields. Basically program variables
can be bound to form fields by name or by position, according to the binding clause used in the dialog
definition.

When binding program variables with a screen record followed by a .* (dotstar), program variables are
bound to screen record fields by position, so you must make sure that the program variables are defined
(or listed) in the same order as the screen array fields. This is true for INPUT, DISPLAY ARRAY and
INPUT ARRAY.

The program variables can be of any simple data type supported by the dialogs; the runtime system will
adapt input and display rules to the variable type. When the user enters data for an INPUT or INPUT
ARRAY instruction, the runtime system checks the entered value against the data type of the variable, not
the data type of the form field. For example, if you want to use a DATE variable, the dialog will check for a
valid date value when the user enters a value in the corresponding form field.

With CONSTRUCT, no program variable is used for fields: Only one string variable is bound to that type of
dialog, to hold the generated SQL condition. Note that the CONSTRUCT dialog uses the field data types
defined in the form file.

Program variables are typically declared with a DEFINE LIKE clause to get the data type of a column as
defined in the database schema file. When the form fields are also defined like a column of the database
schema, this ensure that the program variable and form field data type matches the underlying database
column type. If a variable is declared LIKE a SERIAL / SERIAL8 / BIGSERIAL column, the runtime system
will treat the field as if it was defined as NOENTRY in the form file: Since values of serial columns are
automatically generated by the database server, no user input is required for such fields.

Program variables (simple records and arrays) used in dialogs can have a flat definition, or structured
definition with sub-records.

Data format for input and display of numeric (DECIMAL, INTEGER) and DATE fields can be defined
with the FORMAT attribute. A default data format can be defined with environment variables (DBDATE,
DBFORMAT, etc)

Some data validation rules can be defined at the form level, such as NOT NULL, REQUIRED and INCLUDE
attributes. Data validation constraints are checked when leaving a field, or when the dialog is validated (for
example, with the ACCEPT DIALOG instruction inside a DIALOG multiple dialog block).

If the program record or array has the same structure as a database table (this is the case when the
variable is defined with a DEFINE LIKE clause), you may not want to display / use some of the columns.
You can achieve this by used PHANTOM fields in the screen array definition. Phantom fields will only be
used to bind program variables, and will not be transmitted to the front-end for display.

Form field initialization
Form field initialization can be controlled by the WITHOUT DEFAULTS dialog option.

The INPUT and INPUT ARRAY dialogs provide the WITHOUT DEFAULTS option to use program variable
values when the dialog starts, or to apply the DEFAULT attribute defined in forms. The semantics of this
options is slightly different in INPUT and INPUT ARRAY dialogs. The WITHOUT DEFAULTS clause should
always be used in INPUT ARRAY.

The WITHOUT DEFAULTS option can be used in the binding clause or as an ATTRIBUTES. When used in
the binding clause, the option is defined statically at compile time as TRUE. When used as an ATTRIBUTES
option, it can be specified with an integer expression that is evaluated when the DIALOG interactive
instruction starts:

INPUT BY NAME p_cust.* ATTRIBUTES (WITHOUT DEFAULTS = NOT new)
 ...
END INPUT

User interface | 1266

The WITHOUT DEFAULTS clause in INPUT

In the default mode, an INPUT clears the program variables and assigns the values defined by the
DEFAULT attribute in the form file (or indirectly, the default value defined in the database schema files).
This mode is typically used to input and INSERT a new record in the database. The REQUIRED field
attributes are checked to make sure that the user has entered all data that is mandatory. Note that
REQUIRED only forces the user to enter the field, and can leave the value NULL unless the NOT NULL
attribute is used. Therefore, if you have an AFTER FIELD or ON CHANGE control block with validation
rules, you can use the REQUIRED attribute to force the user to enter the field and trigger that block.

In contrast, the WITHOUT DEFAULTS option starts the INPUT dialog with the existing values of program
variables. This mode is typically used in order to UPDATE an existing database row. Existing values are
considered valid, thus the REQUIRED attributes are ignored when this option is used.

The NOT NULL field attribute is always checked at dialog validation, even if the WITHOUT DEFAULTS
option is set.

The WITHOUT DEFAULTS clause in INPUT ARRAY

With an INPUT ARRAY, the WITHOUT DEFAULT option defines whether the program array is populated
when the dialog begins. Once the dialog is started, existing rows are always handled as records to be
updated in the database (i.e. WITHOUT DEFAULTS=TRUE), while newly created rows are handled as
records to be inserted in the database (i.e. WITHOUT DEFAULTS=FALSE). In other words, column default
values defined in the form specification file or the database schema files are only used for new created
rows.

It is unusual to implement an INPUT ARRAY with no WITHOUT DEFAULTS option, because the program
array would be cleared and the list would appear empty.

Important: The default in INPUT ARRAY used inside DIALOG is WITHOUT DEFAULTS=TRUE, but
in a singular INPUT ARRAY dialog, the default is WITHOUT DEFAULTS=FALSE.

Input field modification flag
Each input field controlled by a dialog instruction has a modification flag.

The modification flag is used to execute form-level validation rules and trigger ON CHANGE blocks. The flag
can also be queried to detect if a field was touched/changed during the DIALOG instruction, for example
with the FIELD_TOUCHED() operator or with ui.Dialog.getFieldTouched().

Both FIELD_TOUCHED() and ui.Dialog.getFieldTouched() accept a list of fields and/or the
screen-record.* notation in order to check the modification flag of multiple fields in a unique function call.
You can also pass a simple * star as parameter, to reference all fields used by the dialog.

The modification flag is set to TRUE when the user enters data in a field, or when the program executes a
DISPLAY TO / DISPLAY BY NAME instruction. The flag can also be set by program to TRUE or reset to
FALSE with the ui.Dialog.setFieldTouched() method, to emulate user input by program or to reset
the modification flags after data was saved in the database.

The modification flags of all fields are automatically reset to FALSE by the interactive instruction in the
following cases:

• When the dialog instruction starts.
• In a DIALOG block, when entering a group of fields controlled by an INPUT or a CONSTRUCT sub-

dialog .
• When moving to (or creating) a new row in an INPUT ARRAY.
• Withing a DISPLAY ARRAY, the modification flags are always TRUE for all fields.

When using a DISPLAY ARRAY, the modification flags are set to TRUE for all fields. This behavior exists
because of backward compatibility. Since values cannot be modified by the user, the modification flags are
not relevant in this dialog. However, you must pay attention when implementing nested dialogs, because
DISPLAY ARRAY will set the modification flags of the fields driven by the parent dialog, for example when
executing a DISPLAY ARRAY from an INPUT ARRAY.

User interface | 1267

Query the modification flags with the ui.Dialog.getFieldTouched() method, typically in the context
of AFTER INPUT, AFTER CONSTRUCT, AFTER INSERT or AFTER ROW control blocks.

When using a list driven by an INPUT ARRAY binding, a temporary row added at the end of the list will be
automatically removed if all fields have the modification flag is set to FALSE.

For typical EDIT fields, the modification flag is set when leaving the field. If you want to detect data
modification earlier, you should use the dialogtouched predefined action. However, this event is only an
indicator that the user started to modify a field, the value will not be available in the program variables.

Reacting to field value changes
This section describes the purpose of the ON CHANGE interaction block.

The ON CHANGE interaction block can be used in different ways:

• With form fields allowing only entire value input such as CHECKBOX, or using an additional widget such
as a calendar in a DATEEDIT: ON CHANGE can be used to detect an immediate value change, or the
selection of a value in the additional widget, without leaving the field.

• With text fields like EDIT (allowing incomplete values), defined with the COMPLETER attribute to
implement autocompletion: In this case the ON CHANGE trigger is fired without leaving the field, when
the user types characters in (after a short delay).

• With text fields like EDIT (allowing incomplete values): ON CHANGE can be used to detect a value
change, when the field is left.

A typically usage of ON CHANGE is for example with a CHECKBOX, to enable/disable other form elements
according to the value of the checkbox field:

INPUT BY NAME rec.* ...
 ...
 ON CHANGE input_details -- can be TRUE or FALSE
 CALL DIALOG.setFieldActive("address1", rec.input_details)
 CALL DIALOG.setFieldActive("address2", rec.input_details)
 ...
END INPUT

The dialogtouched predefined action can also be used to detect field changes immediately, but with this
action you can't get the data in the target variables; this special action should only be used to detect that
the user has started to modify data in the current dialog.

Immediate detection of user changes
This section describes the purpose of the predefined dialogtouched action.

The dialogtouched special predefined action can be used to detect user changes immediately and execute
code in the program.

Singular interactive instruction are typically ended with an accept or cancel action. For example, a singular
INPUT statement allows the end user to enter a database record, and validate or cancel the input for that
record. The INPUT statement is then re-executed to input another record. Unlike singular dialogs, the
DIALOG instruction can be used continuously for several data operations, such as navigation, creation, or
modification. Typically, default is the navigation mode, and as soon as the user starts to modify a field, it
switches to edit mode, to modify a record, or create a new record. In such case, the dialog must be notified
when the user starts to modify the current record, for example to enable a save action. This is achieved
with the dialogtouched predefined action.

The dialogtouched action works for any field controlled by the current interactive instruction, and with
any type of form field: Every time the user modifies the value of a field (without leaving the field), the ON
ACTION dialogtouched block will be executed; This can be triggered by typing characters in a text
editor field, clicking a checkbox / radiogroup, or modifying a slider. When a ON ACTION dialogtouched
action handler is defined, the front-end knows that it must send this action when the end-user modifies the
current field (without leaving that field), just by a simple keystroke.

User interface | 1268

Important: The dialogtouched action must be enabled/disabled in accordance with the
status of the dialog: If this action is enabled, the ON ACTION dialogtouched block will be
invoked each time the user types characters (or modifies the value with copy/paste) in the
current field; This can generate a lot of network traffic and is not the goal of this action: The
dialogtouched action must be disabled as soon as it is detected, and the DIALOG can then
enter in modification/edit mode. When user input is validated and saved in the database, the
dialogtouched action can be enabled again.

Use ON ACTION dialogtouched to detect the beginning of a record modification in a DIALOG block, to
enable a "save" action for example. To prevent further dialogtouched action events, disable the action with
a DIALOG.setActionActive() method. When the dialogtouched action is enabled, the ON ACTION
block will be invoked each time the user types characters in an editable field. This programming pattern is
illustrated by the next code example:

DIALOG
 ...
 ON ACTION dialogtouched
 CALL setup_dialog(DIALOG,TRUE)
 ...
 ON ACTION save
 CALL save_record()
 CALL setup_dialog(DIALOG,FALSE)
 ...
END DIALOG

FUNCTION setup_dialog(d,editing)
 DEFINE d ui.Dialog, editing BOOLEAN
 CALL DIALOG.setActionActive("dialogtouched", NOT editing)
 CALL DIALOG.setActionActive("save", editing)
 CALL DIALOG.setActionActive("query", NOT editing)
END FUNCTION

When a dialogtouched action occurs, the current field may contain some text that does not represent
a valid value of the underlying field data type. For example, a form field bound to a DATE variable may
contain only a part of a valid date string, such as [12/24/]. For this reason, the target variable cannot
hold the current text displayed on the screen when the ON ACTION dialogtouched code is executed,
even when using the UNBUFFERED mode.

To avoid data validation on action code execution, the dialogtouched action is defined with
validate="no" attribute in the FGLDIR/lib/default.4ad action defaults file. This is mandatory when
using the UNBUFFERED mode; otherwise the runtime would try to copy the input buffer into the program
variable when a dialogtouched action is invoked. Since the text of the current field will in most cases
contain only a part of a valid data value, using validate="yes" would always result in a conversion
error.

In order to detect field input changes, you can use the ON CHANGE trigger, when the form item type allows
to detect value changes immediately, for example in COMBOBOX, CHECKBOX or DATEEDIT fields.

Form-level validation rules
Form-level validation rules can be defined for each field controlled by a dialog.

Form-level validation can be specified at the form field level with attributes such as NOT NULL, REQUIRED
and INCLUDE. These attributes are part of the business rules of the application and must be checked
before saving data into the database.

Implicit validation rule checking

An INPUT or INPUT ARRAY block automatically executes form-level validation rules in the following cases:

• The NOT NULL attribute is satisfied if a value is in the field. NOT NULL is checked:

User interface | 1269

• when the user moves to a different row in a list controlled by an INPUT ARRAY; However, if the row
is temporary and none of the fields is touched, the attribute is ignored.

• in a DIALOG block, when focus leaves the sub-dialog controlling the field;
• in a DIALOG block, when NEXT FIELD gives the focus to a field in a different sub-dialog than the

current sub-dialog.
• when the dialog instruction is ended, for example when a procedural DIALOG is ended with ACCEPT

DIALOG, or when an singular INPUT is ended with ACCEPT INPUT or with the implicit accept action.
• The REQUIRED attribute is satisfied if the field modification flag is true, if a DEFAULT value is defined, or

if the WITHOUT DEFAULTS option is used. REQUIRED is checked:

• when the user moves to a different row in a list controlled by an INPUT ARRAY; However, if the row
is temporary and none of the fields is touched, the attribute is ignored.

• in a DIALOG block, when focus leaves the sub-dialog controlling the field;
• in a DIALOG block, when NEXT FIELD gives the focus to a field in a different sub-dialog than the

current sub-dialog.
• when the dialog instruction is ended, for example when a procedural DIALOG is ended with ACCEPT

DIALOG, or when an singular INPUT is ended with ACCEPT INPUT or with the implicit accept action.
• The INCLUDE attribute is satisfied if the value is in the list defined by the attribute. INCLUDE is checked

when the target program variable must be assigned. This happens:

• when UNBUFFERED mode is used, focus is in the field, and an action is invoked;
• when the focus leaves the field;
• when the user moves to a different row in a list controlled by an INPUT ARRAY; However, if the row

is temporary and none of the fields is touched, the attribute is ignored.
• in a DIALOG block, when focus leaves the sub-dialog controlling the field;
• in a DIALOG block, when NEXT FIELD gives the focus to a field in a different sub-dialog than the

current sub-dialog.
• when the dialog instruction is ended, for example when a procedural DIALOG is ended with ACCEPT

DIALOG, or when an singular INPUT is ended with ACCEPT INPUT or with the implicit accept action.

Performing validation rules explicitly

Singular input dialogs (INPUT / INPUT ARRAY) create default accept / cancel actions. The form-level
validation rules are typically performed when the implicit accept action is triggered.

The DIALOG procedural instruction can be used as in singular interactive instructions, with the typical OK /
Cancel buttons (i.e. accept / cancel actions) to finish the instruction. The accept/cancel action handlers
would respectively execute the ACCEPT DIALOG and EXIT DIALOG instructions. This solution lets the
user input or modify one record at a time, and the program flow must reenter theDIALOG instruction to
edit or create another record. Alternatively, theDIALOG instruction can let the user input / modify multiple
records without leaving the dialog. In this case, you need a way to execute the form-level validation rules
defined for each field, before saving the data to the database.

To validate a subset of fields controlled by the DIALOG instruction, use the
ui.Dialog.validate("field-list") method, as shown in this example:

 ON ACTION save
 IF DIALOG.validate("cust.*") < 0 THEN
 CONTINUE DIALOG
 END IF
 CALL customer_save()

This method automatically displays an error message and registers the next field in case of error. It is
mandatory to execute a CONTINUE DIALOG instruction if the function returns an error.

User interface | 1270

Within singular input dialogs, form-level validation rules can also be explicitly performed with the ACCEPT
INPUT instruction, or with the DIALOG.validate("*") API call, followed by a CONTINUE INPUT in
case of error.

Form field deactivation

The form fields bound to a dialog are by default active (i.e. they can get the focus). When needed,
disable the fields that do not require user input, and reactivate them later during the dialog execution.
For example, imagine a form containing an "Industry" COMBOBOX field , with the options Healthcare,
Education, Government, Manufacturing, and Other . If the user selects "Other", an secondary EDIT field
should be activated automatically, to let the user input the specific description of the industry. But if one of
the predefined values is selected, there is no need for the additional field, so secondary field can be left
disabled.

This can be achieved by enabling/disabling fields with the ui.Dialog.setFieldActive() method
according to the context. The "Industry" field case described can be implemented as follows:

DIALOG ATTRIBUTES(UNBUFFERED)
 INPUT BY NAME rec.*
 ON CHANGE industry
 -- A value of 99 corresponds to the "Other" item
 CALL DIALOG.setFieldActive("cust.industry", (rec.industry!=99))
 ...
 END INPUT
 BEFORE DIALOG
 CALL DIALOG.setFieldActive("cust.industry", FALSE)
 ...
END DIALOG

Consider centralizing field activation / deactivation in a setup function specific to the dialog, passing the
DIALOG object as parameter.

Do not disable all fields of a dialog, otherwise the dialog execution stops (at least one field must get the
focus during a dialog execution).

It is also possible to hide fields with the ui.Form.setFieldHidden() method of the form objects. The
dialog considers hidden fields as disabled (i.e. there is no need to disable fields that are already hidden).
But hiding form elements changes the space used in the window layout and the form may be displayed in
unexpected way, except when hiding elements in containers prepared to that, such as tables.

Identifying sub-dialogs in procedural DIALOG
Sub-dialogs need to be identified by a name to distinguish the different contexts.

A procedural DIALOG block is a collection of sub-dialogs that act as controllers for different parts of a form.
In order to program a procedural DIALOG block, there must be a unique identifier for each sub-dialog.

For example, to set the current row of a screen array with the DIALOG.setCurrentRow() method, you
pass the name of the screen array to specify the sub-dialog to be affected. Sub-dialog identifiers are also
used as a prefix to specify actions for the sub-dialog.

The following topics describe how to specify the names of the different types of DIALOG sub-dialogs:

• Identifying an INPUT sub-dialog on page 1154
• Identifying a DISPLAY ARRAY sub-dialog on page 1156
• Identifying an INPUT ARRAY sub-dialog on page 1157
• Identifying a CONSTRUCT sub-dialog on page 1155
• The SUBDIALOG clause on page 1158.

User interface | 1271

Defining the tabbing order
Control the order of tabbing trough the fields with the TABINDEX attribute.

When a dialog is executing, the end-user can jump from field to field with the keyboard by using the Tab
and Shift-Tab keys.

Note: One can tab out of an INPUT ARRAY sub-dialog with Ctrl-Tab and Shift-Ctrl-Tab
accelerators (in INPUT ARRAY, Tab and Shift-Tab loop in the fields of the current row).

The order in which the fields can be visited with the Tab key can be controlled with a program option and
the TABINDEX form field attribute.

The FIELD ORDER dialog attribute defines the way tabbing order works. Tabbing order can be based on
the dialog binding list (FIELD ORDER CONSTRAINED, the default) or it can be based on the form tabbing
order (FIELD ORDER FORM). It is recommended that you use the FIELD ORDER FORM option, to use the
tabbing order specified in the form file.

The TABINDEX field attribute allows tabbing order in the form to be defined for each form item. By default,
the form compiler assigns a tabbing index for each form item according to the position of the item in the
layout.

Form elements that can get the focus are:

• Simple form fields controlled by INPUT or CONSTRUCT,
• Read-only lists controlled by DISPLAY ARRAY,
• Editable list cells controlled by INPUT ARRAY,
• Simple buttons controlled by a COMMAND interaction block.

If you use the keyboard to tab into a form element, the focus will go to the next (or previous) element that
is visible and activated . In other words, if a form item is hidden or disabled, it is removed from the tabbing
list.

The tabbing position of a read-only list driven by a DISPLAY ARRAY binding is defined by the TABINDEX
of the first field .

When TABINDEX is set to zero, the form item is excluded from the tabbing list. However, the item with
TABINDEX=0 can still get the focus with the mouse (or when you tap on it on a mobile device).

The NEXT FIELD instruction can also use the tabbing order, when executing NEXT FIELD NEXT and
NEXT FIELD PREVIOUS.

If the form uses a TABLE container, the front-end resets the tab indexes when the user moves columns
around. This way, the visual column order always corresponds to the input tabbing order. If the order
of the columns in an editable list shouldn't be changed, you can freeze the table columns with the
UNMOVABLECOLUMNS attribute.

Which form item has the focus?
Identify what element of the current form has the focus.

Sometimes it is important to know what form element has currently the focus. This is especially important
when implementing a DIALOG block, that can control several parts of a form. For example, when several
lists are driven by multiple DISPLAY ARRAY sub-dialogs, you may need to know what is the current list.

To get the name of the current form item, use the DIALOG.getCurrentItem() method. This method is
the replacement of the former fgl_dialog_getfieldname() built-in function. It has been extended to
return identifiers for fields, lists or actions identifiers.

DIALOG ATTRIBUTES(UNBUFFERED)
 DISPLAY ARRAY p_orders TO orders.*
 ...
 END DISPLAY
 DISPLAY ARRAY p_items TO items.*
 ...
 END DISPLAY

User interface | 1272

 ...
 IF DIALOG.getCurrentItem() == "items" THEN
 ...
 END IF
 ...
END DIALOG

It is also possible to detect when the focus enters or leaves a field or a group of fields by using control
blocks such as BEFORE INPUT/DISPLAY or AFTER INPUT/DISPLAY.

Giving the focus to a form element
How to force the focus by program, to move or stay in a specific form element.

Use the NEXT FIELD instruction to force the focus to a specific field or screen record (list). The NEXT
FIELD instruction expects a form field name.

In a DIALOG block, when the specified field is the first column identifier of a sub-dialog driven by a
DISPLAY ARRAY block, the read-only list gets the focus. If the field name is not known at compile time,
you can alternatively use the ui.Dialog.nextfield() method.

DIALOG ATTRIBUTES(UNBUFFERED)
 INPUT BY NAME p_cust ATTRIBUTES(NAME="cust")
 ...
 END DISPLAY
 DISPLAY ARRAY p_orders TO orders.*
 ...
 END DISPLAY
 ON ACTION go_to_header
 NEXT FIELD cust_num
 ON ACTION go_to_detail
 NEXT FIELD order_lineno
 ...
END DIALOG

When a BUTTON exist in the form layout, it can get the focus if the DIALOG block defines a COMMAND
clause as action handler. Currently there is no way to give the focus to a BUTTON by program.

DIALOG ATTRIBUTES(UNBUFFERED)
 ...
 COMMAND "print"
 CALL print_order()
 ...
END DIALOG

In some seldom cases (especially when using folder tabs), it may be need to show a part of the form that
is not controlled by the dialog (i.e. there is no active field or button that can get the focus in that form part,
thus the above techniques cannot work). To show temporary a given part of the form that cannot get the
focus, use the ui.Form.ensureFieldVisible() or ui.Form.ensurelementVisible() methods.

DEFINE form ui.Form
...
DIALOG ATTRIBUTES(UNBUFFERED)
 ...
 BEFORE DIALOG
 LET form = DIALOG.getForm()
 ...
 ON ACTION show_image1
 CALL form.ensureElementVisible("image1")
 ...
END DIALOG

User interface | 1273

Detection of focus changes
Describes how to detect when the focus goes from field to field or to a read-only list.

Detecting focus changes in a singular INPUT or CONSTRUCT

An singular INPUT or CONSTRUCT controls several fields that can get the focus and become current. In
order to execute some code when a field gets (or loses) the focus, use the following control blocks:

• BEFORE FIELD (a specific field (or group of fields) gets the focus)
• AFTER FIELD (the field (or group of fields) loses focus)

Detecting focus changes in a singular DISPLAY ARRAY

An singular DISPLAY ARRAY controls rows of a list, that can get the focus and become current. In order to
execute some code when a row gets (or loses) the focus, use the following control blocks:

• BEFORE ROW (a new row gets the focus inside a DISPLAY ARRAY or INPUT ARRAY list)
• AFTER ROW (a row inside a DISPLAY ARRAY or INPUT ARRAY list loses focus)

Detecting focus changes in a singular INPUT ARRAY

An singular INPUT ARRAY controls several fields and rows of a list, that can get the focus and become
current. In order to execute some code when a field or a row gets (or loses) the focus, use the following
control blocks:

• BEFORE ROW (a new row gets the focus inside a DISPLAY ARRAY or INPUT ARRAY list)
• BEFORE FIELD (a specific field (or group of fields) gets the focus)
• AFTER FIELD (the field (or group of fields) loses focus)
• AFTER ROW (a row inside a DISPLAY ARRAY or INPUT ARRAY list loses focus)

Detecting focus changes in a DIALOG

A DIALOG interaction block can handle different parts of a form simultaneously. In order to execute some
code when a part of the form gets (or loses) the focus, use the following control blocks:

• BEFORE INPUT (a field of this INPUT or INPUT ARRAY sub-dialog gets the focus and none of its fields
had focus before)

• BEFORE CONSTRUCT (a field of this CONSTRUCT sub-dialog gets the focus and none of its fields had
focus before)

• BEFORE DISPLAY (this DISPLAY ARRAY sub-dialog gets the focus and none of its fields had focus
before)

• BEFORE ROW (a new row gets the focus inside a DISPLAY ARRAY or INPUT ARRAY list)
• BEFORE FIELD (a specific field (or group of fields) gets the focus)
• AFTER FIELD (the field (or group of fields) loses focus)
• AFTER ROW (a row inside a DISPLAY ARRAY or INPUT ARRAY list loses focus)
• AFTER DISPLAY (this DISPLAY ARRAY sub-dialog loses the focus = focus goes to another sub-dialog)
• AFTER CONSTRUCT (this CONSTRUCT sub-dialog loses the focus = focus goes to another sub-dialog)
• AFTER INPUT (this INPUT or INPUT ARRAY sub-dialog loses focus = focus goes to another sub-

dialog)

These triggers are also executed by NEXT FIELD.

User interface | 1274

Enabling autocompletion
Autocompletion allows to display a list of proposals while the user is typing text into a field.

Introduction to autocompletion

Text input fields (like EDIT and BUTTONEDIT) can be defined with autocompletion feature, by combining
the COMPLETER form field attribute with program code providing the list of proposals in a dynamic array of
strings, with the DIALOG.setCompleterItems() method, when the ON CHANGE trigger is fired for the
autocompletion field.

Defining a form field for autocompletion

In order to enable autocompletion in a text form field, you must define the COMPLETER attribute:

EDIT f1 = FORMONLY.firstname, COMPLETER;

The COMPLETER attribute can be used for EDIT and BUTTONEDIT fields.

Providing the front-end with a list of proposals

The DIALOG.setCompleterItems() method must be used to provide the list of proposal during dialog
execution:

DEFINE items DYNAMIC ARRAY OF STRING
-- fill the array with items
LET items[1] = "Ann"
LET items[2] = "Anna"
LET items[3] = "Annabel"
CALL DIALOG.setCompleterItems(items)

Important: Consider the execution time of the code creating the proposal list. For example, avoid
long complex SQL queries that can take more than a few milliseconds to complete.

The setCompleterItems() method will raise error -8114 if the list of items contains more than 50
elements. The purpose of autocompletion is to provide a short list of proposals to the user. Note that this
error is not trappable with exception handlers like TRY/CATCH, the code must avoid to reach the limit.

Detecting user input

When implementing autocompletion, you must detect when the user modifies the field value, to adapt the
list of items with the setCompleterItems() method.

In order to detect user input, define the ON CHANGE dialog control block, and call a custom function
by passing the DIALOG object, and the value of the current field as paramter, to filter the proposal list
accordingly:

INPUT BY NAME rec.firstname
 ...
 ON CHANGE firstname
 CALL fill_proposals_firstname(DIALOG, rec.firstname)

For text fields defined with the COMPLETER attribute, the ON CHANGE trigger will be fired without leaving
the field, each time the user types characters in. The event is fired after a short delay, to not overload the
UI exchanges between the front-end and the runtime system.

Note: The item list for a field implementing autocompletion is not permanent: The program must re-
define the autocompletion item list with setCompleterItems(), on every ON CHANGE event.

User interface | 1275

Example

The example below implements form field with autocompletion: Each time the ON CHANGE
trigger is fired, the set of proposals is adapted to the current field value, to match names
that start with the same characters typed by the user.

Form file (compl.per):

LAYOUT
GRID
{
[f1]
[f2]
}
END
END
ATTRIBUTES
EDIT f1 = FORMONLY.field1, COMPLETER;
EDIT f2 = FORMONLY.field2;
END

Program file (compl.4gl):

DEFINE all_names DYNAMIC ARRAY OF STRING

MAIN
 DEFINE rec RECORD
 field1 STRING,
 field2 STRING
 END RECORD
 CALL fill_names()
 OPEN FORM f FROM "compl"
 DISPLAY FORM f
 OPTIONS INPUT WRAP
 INPUT BY NAME rec.* ATTRIBUTES(UNBUFFERED)
 ON CHANGE field1
 CALL fill_proposals(DIALOG, rec.field1)
 END INPUT
END MAIN

FUNCTION fill_names()
 DEFINE i INTEGER
 LET i=0
 LET all_names[i:=i+1] = "Amanda"
 LET all_names[i:=i+1] = "Ann"
 LET all_names[i:=i+1] = "Anna"
 LET all_names[i:=i+1] = "Annabelle"
 LET all_names[i:=i+1] = "Barbara"
 LET all_names[i:=i+1] = "Barry"
 LET all_names[i:=i+1] = "Brice"
END FUNCTION

FUNCTION fill_proposals(dlg, curr_val)
 DEFINE dlg ui.Dialog, curr_val STRING
 DEFINE curr_set DYNAMIC ARRAY OF STRING,
 i, x INTEGER
 LET x=0
 FOR i=1 TO all_names.getLength()
 IF upshift(all_names[i]) MATCHES upshift(curr_val)||"*"
 THEN
 LET curr_set[x:=x+1] = all_names[i]
 END IF
 END FOR

User interface | 1276

 CALL dlg.setCompleterItems(curr_set)
END FUNCTION

Dialog actions
Describes how to program action handling when the end user triggers an action on the front-end.

Action handling basics
This topic describes the basics of action views, action events and action handlers.

In the user interface of the application, action views can produce action events, that will execute user code
in the corresponding action handler defined in the current interactive instruction of the program.

Actions views are for example BUTTON form items.

Action handlers are ON ACTION or COMMAND dialog blocks that execute user code, in the current
interactive dialog.

Action views are bound to action handlers by name.

If no action view is explicitly defined in the current form, the front end will create a "default action view" for
the action. This is typically a button that appears in a specific area, located and decorated according to the
front end platform standards.

Actions can be configured with action attributes. These can be defined explicitly at the action view level
(button in form), as dialog-specific action configuration (ON ACTION name ATTRIBUTES(...)), or with
action defaults.

Special actions are supported, such as the interrupt action to the user cancel a running application
procedure.

Defining action views in forms
How to define action views that will fire action events.

Actions views are form items that can be activated to fire an action event. The action event triggers user
code in an ON ACTION block.

We distinguish action views defined explicitly in form files from default action views. A default action
view will automatically appear when an action handler is implemented in the current dialog (if no explicit
action view with the same name exists in the form). Default action view creation can be controlled with the
DEFAULTVIEW action attribute.

To fire user code, action views are bound to action handlers by name.

Action view decoration attributes (IMAGE for icons, TEXT for label, COMMENT for hint) can be centralized in
action defaults.

Action views can be items of form elements dedicated to action execution, such as TOOLBAR items (i.e.
toolbar buttons) or TOPMENU options:

TOOLBAR
 ITEM accept
 ITEM cancel
 ...
END

Action views can be typical BUTTON items defined in the form LAYOUT:

LAYOUT
GRID
{
 [b1]
 ...

User interface | 1277

}
...
ATTRIBUTES
BUTTON b1 : print, IMAGE="printer";
...

Action views can be sub-elements of other elements, as when defining a BUTTONEDIT with an ACTION
attribute:

LAYOUT
GRID
{
 [f1]
 ...
}
...
ATTRIBUTES
BUTTONEDIT f1 = customer.cust_city, ACTION=choose_city, IMAGE="zoom";
...

Action views can also be simple IMAGE items, when the ACTION attribute is specified:

LAYOUT
GRID
{
 [i1]
 ...
}
...
ATTRIBUTES
IMAGE i1: image1, ACTION=show_details, IMAGE="mylogo";
...

Note that IMAGE fields can be defined as TABLE columns and define the ACTION attribute to trigger user
code:

LAYOUT
GRID
{
<TABLE t1 >
[c1 |c2 |c3]
[c1 |c2 |c3]
[c1 |c2 |c3]
...
}
...
ATTRIBUTES
...
IMAGE c3: FORMONLY.image, ACTION=delete;
...

For more details about image column actions see Defining actions on list columns with images on page
1355.

The row selection in a TABLE (or TREE) will be considered an action view when defining the DOUBLECLICK
attribute:

DISPLAY ARRAY arr TO sr.*
 ATTRIBUTES(UNBUFFERED, DOUBLECLICK=select)
 ...
END DISPLAY

User interface | 1278

Action views can also be graphical elements that are standard action triggers on the front-end platform,
such as the [x] cross button of desktop windows, that will automatically bind to a "close" action, or the FAB
button of Android, which can be configured to trigger a specific action.

Implementing dialog action handlers
How to execute user code in ON ACTION blocks when an action is fired.

Actions handlers are typically defined in dialog instructions with the ON ACTION interaction block. You
must specify the name of the action after the ON ACTION keywords:

INPUT BY NAME ...
 ...
 ON ACTION print
 -- user code
 ...

Action handlers can also be defined with the COMMAND syntax in MENU and DIALOG instructions:

MENU ...
 ...
 COMMAND "Print" "Print the current record"
 -- user code
 ...

ON ACTION blocks provide better abstraction than COMMAND blocks by using simple action identifiers and
leaving the decoration in the form files or action defaults files. The ON ACTION block defines an action
handler with a simple action name. The COMMAND block defines an action handler with an action name, but
it also defines decoration attributes, such as the label and comment. Keyboard accelerators and help topic
numbers can also be defined.

Note: Action views controlled by ON ACTION handlers cannot get the focus. When using the
COMMAND action handler, action views such as a BUTTON defined in the form layout can get the
focus and are part of the tabbing item list.

Action handlers are bound to action views by name.

Binding action views to action handlers
How are action views of the forms bound to action handlers in the program code?

Action views (such as buttons) are bound to action handlers by the name attribute. Action handlers are
defined in interactive instructions with an ON ACTION clause or COMMAND / ON KEY clauses.

For example, in the ATTRIBUTES section of the form, a button may be defined as follows:

BUTTON b1: show_help, TEXT="Show Help";

The corresponding action handler (code) in the program will use the "show_help" action name:

ON ACTION show_help
 CALL ShowHelp()

The COMMAND / ON KEY clauses are typically used to write text mode programs. Such clauses define the
name of the action and the decoration label. It is recommended that you use ON ACTION clauses instead,
because they identify user actions with an abstract name. However, if required, you can use a COMMAND
clause in a non-menu dialog to include the corresponding action view in the focus-able form items.

In the ON ACTION action-name clause, the name of the action must be a valid identifier, preferably
written in lowercase letters. In the abstract user interface tree (where the action views are defined), action
names are case-sensitive (as they are standard DOM attribute values). However, identifiers are not case-

User interface | 1279

sensitive in the language. The fglcomp compiler always converts the action identifiers of ON ACTION
clauses to lowercase:

ON ACTION PrintRecord -- will be compiled as "printrecord"

To avoid confusion, always use lower-case names for action names (for example, print_record instead
of PrintRecord).

Default action views
A default action view is created to render an action handler when no explicit action view exists for it.

If no explicit action view is defined, such as a toolbar button, a topmenu item or a simple button in the form
layout, the front end creates a default action view for each COMMAND or ON ACTION action handler, or
implicit action such as insert/delete in INPUT ARRAY, in the current interactive instruction.

The rendering of default action views depends from the platform. On a desktop front-end, the default
action views appear as buttons in the action frame in the right-hand side of the current window. On a
mobile device, the default action views will follow the mobile user interface standards, which can be vendor
specific. For more details about default action views on mobile, see Rendering default action views on
mobile on page 1279.

When creating action handlers with ON KEY (or COMMAND KEY without a command name in a MENU), the
default action view is invisible. If you define a text attribute in the action defaults, the default action view
is made visible.

Control the default action view visibility by using the DEFAULTVIEW action attribute.

If one or more action views are defined explicitly for a given action, the front end considers that the default
view is not needed. Typically, if you define in the form a BUTTONEDIT field, a BUTTON, or a TOOLBAR item
that triggers the action, you do not need an additional button in the action frame.

The presentation of the default action views can be controlled with presentations style attributes for the
Window AUI tree nodes.

Rendering default action views on mobile
Default action views are rendered according to the mobile specific standards.

Default action view rendering on mobile

The top and/or bottom part of the app screen is dedicated to displaying default action views to the user.

Key functions of these areas:

• Make important actions prominent and accessible in a predictable way (such as New or Search).
• Support consistent navigation and view switching within apps.
• Reduce clutter by providing an action overflow for less-used actions.
• Provide a dedicated space for giving your app an identity with text and/or an image.

How actions are rendered on the mobile device depends on:

• the order of the ON ACTION statements in the current dialog of the running app.
• The type of platform (Android™/iOS).
• The type (phone/tablet) and orientation of the device.

Actions are mapped to the Android or iOS platform in a specific way, following the platform standard.

Actions can be programmatically enabled and disabled, and hidden and shown. The text, image and other
properties of the action can be controlled with action attributes.

GUI elements to trigger actions on mobile devices

Each mobile platform provides its own standard to display action triggers.

User interface | 1280

GMA and GMI follow respectively the Android and iOS standards:

• Navigation controller on iOS devices on page 1280
• Action bar on Android devices on page 1285
• Floating action button on Android devices on page 1286

Decorating action views on mobile

Actions are typically decorated using the IMAGE or the TEXT action attribute. If these attributes are not
defined or if the specified image resource is not available, the mobile front-end uses a default decoration.
For some actions, the front-end always uses the platform-specific decoration. For example, on iOS
devices, the "refresh" action always renders as a typical circular arrow icon.

Well-known actions use a default icon or text corresponding to the mobile platform GUI guidelines. As
these follow the mobile OS standards, do not define your own text or icons for common actions such as
"accept" or "cancel".

For a complete list of predefined action decorations, see:

• Default action views decoration on iOS devices on page 1284
• Default action views decoration on Android devices on page 1288

Rendering close/cancel/accept actions on Android devices

The physical back button on an Android device is considered a default action view for the "close", "cancel",
or "accept" action in the current dialog:

• If a close action is defined, it is assigned to the back button.
• If the close action is not defined, but the cancel action is defined, it is assigned to the back button.
• If neither close nor cancel actions are defined, but the accept action is defined, it is assigned to the

back button.

If accept or cancel cannot be assigned to the back button, a default action view appears in the action
panel. For example, if all three actions (close, cancel and accept) exist and are active, the action panel
shows a check mark for the accept action and a cross icon for the cancel action, while the back button fires
the close action.

Navigation controller on iOS devices
On iOS devices, apps display a navigation controller on the top of the screen.

The iOS navigation controller is made of a navigation bar on the left side and a common action pane
on the right side.

User interface | 1281

Figure 78: iOS app interface

Navigation bar (1) The left side navigation bar provides a linear path
through various screens. The accept, cancel
or close action is rendered as back button,
respectively in the order of precedence given here.
If there is a previous form or window, then this
button shows the title of the previous page. If there
is not a form to return to, the "back" navigation
button is shown.

User interface | 1282

Common action pane (2) The right-hand side is the common action pane.
Default action views are displayed here, in the order
of the current dialog's ON ACTION statements of
the current dialog.

Toolbar pane (3) When default action views are displayed, if there is
not enough room in the common action pane (2),
the remaining actions are displayed in the toolbar
pane at the bottom of the screen. If there is not
enough space to display all action views in the
toolbar pane, an overflow icon appears on the right.
Tap on the overflow icon to show the remaining
action views.

Use a TOOLBAR in your form, to have full control
on the toolbar pane. An action displayed as a
TOOLBAR item in the toolbar pane will no longer
display as default action view in the common action
pane (2).

In this screen shot, the device is oriented in landscape mode. The app is the same, yet since there is
enough space in the navigation bar, all default action views display in the common action pane.

Figure 79: iOS app interface in landscape mode

To customize the application, define the colors of the iOS navigation bar and toolbar with the following
Window-class style attributes:

• iosTintColor, for items in (1), (2) and (3) (and for other form items)
• iosNavigationBarTintColor, for (1) and (2).
• iosToolBarTintColor, for (3).

For example, by setting the following style attributes, the navigation bar will render as shown in the screen
shot:

<Style name="Window">

User interface | 1283

 <StyleAttribute name="iosTintColor" value="darkRed" />
 <StyleAttribute name="iosNavigationBarTintColor" value="orange" />
 <StyleAttribute name="iosToolBarTintColor" value="orange" />
 <StyleAttribute name="iosTabBarTintColor" value="orange" />
</Style>

Figure 80: iOS (7) colored navigation bar

User interface | 1284

Default action views decoration on iOS devices
Common default action views get a decoration implicitly, following iOS standards.

On iOS devices, the decoration for well known actions can be a symbol or a text. When a text is used, it
is internationalized. For example, the "accept" action translates to "Done" when the mobile language is
English, "Fertig" in German and "OK" in French.

For the default action views of the common actions, the decoration will always follow the iOS standards,
even if an attribute is explicitly specified for the action. For example, if you implement an ON ACTION
save action handler with ATTRIBUTES(TEXT="Write",IMAGE="disk"), the action view renders with
the "Save" text on an iOS device configured for the English language.

Table 283: Default rendering for common actions on iOS

Action name iOS default rendering Symbol

accept Internationalized text (English: Done) N/A

cancel Internationalized text (English: Cancel) N/A

refresh Typical circular symbol

insert Typical plus sign symbol

append Typical plus sign symbol

delete Typical trash symbol

find Typical magnifier symbol

User interface | 1285

Action name iOS default rendering Symbol

search Typical magnifier symbol

edit Internationalized text (English: Edit) N/A

save Internationalized text (English: Save) N/A

Action bar on Android™ devices
On Android devices, apps show an action bar.

The Android action bar displays in the top of the screen, with several elements having a specific purpose:

The app icon (1) The app icon and the title of the current form display
in the upper left corner.

The application title is defined by the TEXT attribute
of the main window displayed by the application.

User interface | 1286

The icon that appears is either the icon set for the
app in the packaging, or it is the image specified
by the ui.Interface.setImage method.
The application icons must be included in the
deployment package (.apk) and follow the Android
standards (several icon sizes are required).

The view control (2) If your app implements different views controlled
by a top-level navigator, this segment allows users
to switch between views. For more details, see
Navigator pane on page 1399. In an application
handling multiple views in parallel, the view control
item displays as a text button.

Figure 81: Android View Control

Action buttons (3) and Action overflow (4) The right-hand side of the action bar shows the
actions. The action buttons (3) show the most
important actions of your app. Actions that do not fit
in the action bar are moved to the action overflow,
and an overflow icon appears on the right. Tap on
the overflow icon to display the list of remaining
action views. If the device has a physical Menu
button, the overflow actions are accessible by
pressing the physical Menu button and not from an
action overflow icon.

Actions display in the order of the ON ACTION
statements of the current dialog. If a toolbar is
defined, the actions defined in the toolbar take
priority and list prior to other actions, in the order
they are defined in the toolbar.

If an image is available, it is displayed, otherwise
the action text is shown. Depending on the space
available (space used by the app icon, screen size,
orientation, and so on), the number of actions and
the device type, Android displays either the icon or
the icon and the text of the action.

Floating action button on Android™ devices
On Android devices, apps using material design show a Floating Action Button (FAB).

The Android floating action button displays on the bottom right of the screen, and can be tapped to fire a
specific action:

User interface | 1287

The floating action button (1) The material design guidelines include the concept
of promoted actions, that can be triggered with the
floating action button.

Define the list of actions that can be fired from the
FAB button with FAB configuration style attributes:

<Style name="Window">
 <StyleAttribute
 "materialFABActionList="accept,select,detail"
</Style>

The order of the actions define which action is
triggered when the FAB button is tapped, and
several matching actions are active. With the above
example, if the "accept" action is disabled, and the
"select" and "detail" actions are active, a tap on the
FAB button fires the "select" action.

The icon of the FAB button is defined by the IMAGE
attribute of the corresponding action. If no IMAGE
attribute is defined for the action, a default icon
is selected from the built-in icons, according to
the name of the action. See Default action views
decoration on Android devices on page 1288 for

User interface | 1288

more details about action names to default Android
built-in icon mapping.

Default action views decoration on Android™ devices
Common default action views get a decoration implicitly, following Android standards.

On Android devices, when the IMAGE and the TEXT action attributes are not defined for an action, the
default action view gets an implicit decoration.

The default icon is selected according to the name of the action: The symbol is picked from a built-in
images (i.e. Android material design icons), if it has the same name as the action. If no icon corresponds,
the default action view will get no icon.

The text defaults to the name of the action, converted to uppercase. The text displays only if the Android
system considers that the screen is large enough to display the texts. Typically, texts are shown on tablets,
but not on smartphones with small/medium screens.

For example, when implementing a ON ACTION refresh handler, GMA will implicitly use the default icon
with the name "refresh" (the typical circular refresh symbol), and, if there is enough room, display the text
"REFRESH" on the right of the icon.

Position and rendering of default action views can be controlled with Android specific style attributes. For
more details, see Default action view style attributes on page 825.

Not also that some actions can be rendering as the Floating Action Button of material design, as described
in Floating action button on Android devices on page 1286.

Default actions views displayed in the top control bar and in the overflow button will get a text but no icons,
while the FAB material design button will get an icon but no text.

The next table shows the default icons that will be selected for common Genero BDL action names.

Note: This table does not list all possible built-in icons: More images are available from the Android
material design icon library, and the GMA will select the icon according to the action name. For
example, an action with the name "audio" will get the Android music symbol icon:

User interface | 1289

User interface | 1290

Table 284: Default icons for common actions on Android

Action name Icon

about

accept

append

User interface | 1291

Action name Icon

attention

User interface | 1292

Action name Icon

bell

calendar

User interface | 1293

Action name Icon

camera

cancel

User interface | 1294

Action name Icon

copy

User interface | 1295

Action name Icon

cut

delete

User interface | 1296

Action name Icon

diropen

User interface | 1297

Action name Icon

edit

editcopy

User interface | 1298

Action name Icon

editcut

editpaste

User interface | 1299

Action name Icon

exit

file

User interface | 1300

Action name Icon

filenew

User interface | 1301

Action name Icon

filter

User interface | 1302

Action name Icon

find

findnext

User interface | 1303

Action name Icon

first

User interface | 1304

Action name Icon

firstrow

User interface | 1305

Action name Icon

forwind

User interface | 1306

Action name Icon

help

hint

User interface | 1307

Action name Icon

insert

User interface | 1308

Action name Icon

User interface | 1309

Action name Icon

interrupt

last

User interface | 1310

Action name Icon

lastrow

User interface | 1311

Action name Icon

next

User interface | 1312

Action name Icon

nextrow

User interface | 1313

Action name Icon

new

paste

User interface | 1314

Action name Icon

prev

User interface | 1315

Action name Icon

previous

prevrow

User interface | 1316

Action name Icon

query

rewind

User interface | 1317

Action name Icon

update

User interface | 1318

Action name Icon

Configuring actions
Action attributes related to decoration, keyboard shortcuts and behavior can be defined with action
attributes.

Action attributes define attributes for actions, including decoration such as text, icon, comment, as well
as keyboard accelerator (ctrl-?, function keys), and also semantics such as current field validation control
when an action is fired.

The action attributes can be defined at different levels, through action defaults, form item attributes and
action handler attributes:

1. Common action attributes can be centralized in a global action defaults file with the .4ad extension,
2. Form-specific action attributes can be defined in the ACTION DEFAULTS section of a form definition

file,
3. Dialog-specific action attributes can be defined in programs with the ATTRIBUTES() clause of ON

ACTION handlers.
4. Form-item specific action view attributes (decoration only) can be defined directly at the item level

(labels, icons, comments).

Action attributes do not only define action view decoration: It is possible to define the semantics of an
action, for example by using the VALIDATE action default attribute. Functional attributes take effect for a
given action when the dialog implementing the action handler becomes active.

Action attributes are particularly important to render the default action view (when there is no explicit action
view defined in the form). This is typically the case when not form is associated to the dialog.

User interface | 1319

Action attributes can be defined with action defaults: Common action defaults are defined in a global action
defaults (.4ad) file, while form specific actions are define withing the ACTION DEFAULTS section of form
files.

If a dialog is not attached to a specific form such as an independent MENU, define the action attributes
with the ATTRIBUTES clause on ON ACTION handlers, to render the default view and configure the action
semantics. Attributes defined by ON ACTION action-name ATTRIBUTES() will only be applied to the
default action view: The elements in the forms do not get decoration attributes defined by dialog action
handlers.

The final decoration and functional attribute values are set in this order of precedence:

1. The attribute defined in the action view element definition itself (local form element decoration).
2. The attribute defined in the ATTRIBUTES clause of an ON ACTION handler.
3. The attribute defined for the action in the ACTION DEFAULTS section of the current form.
4. The attribute defined for the action in the global action defaults file (.4ad).

Note that the syntax to define action attributes depends on the context where the action attributes are
defined:

• In the .4ad file, the syntax follows XML standards, as defined in Action default attributes reference
(.4ad) on page 797.

• In the .per files, the syntax follows the form specification file attributes, as defined in ACTION
DEFAULTS section on page 903.

• In the .4gl files (in dialog action handlers), the syntax follows the language syntax, as defined in ON
ACTION block on page 1056.

Example

Consider the following parts of code related to the same action definition, namely "print":

1. A BUTTON item defined in the form specification file:

ATTRIBUTES
 BUTTON b1: print, TEXT="Print item";
END

2. A dialog instruction with code defining the ON ACTION handler with an ATTRIBUTES
clause:

DIALOG ...
 ...
 ON ACTION print
 ATTRIBUTES(ROWBOUND, IMAGE = "printer_2")
 ...

3. The form ACTION DEFAULTS section defining:

form.per:
ACTION DEFAULTS
 ACTION print (IMAGE="printer_1",
 COMMENT="Print the order",
 ACCELERATORNAME=Control-P,
 CONTEXTMENU=NO)
END

4. A global .4ad action defaults file defining:

<ActionDefaultList>
 <ActionDefault name="print" text="Print" image="smiley" />
</ActionDefaultList>

User interface | 1320

When the dialog executes, the "print" action will get the following functional attributes:

• acceleratorName = "control-p" - from the form ACTION DEFAULTS section
• rowBound = "yes" - from the dialog ON ACTION handler
• contextMenu = "no" - from the form ACTION DEFAULTS section

The form button (i.e. the action view) will get the following decoration attribute values:

• text = "Print item" - from the BUTTON form item
• image = "printer_2" - from the dialog ON ACTION handler
• comment = "Print the order" - from the form ACTION DEFAULTS section

Action attributes context usage

Action attributes are used to configure functional and decoration properties of actions. The table below lists
the possible action atttributes and indicates in what context they can be defined.

Table 285: Action attributes definitions

Attribute Context

Form action
view

Dialog action
handler

Form action
defaults
section

Global action
defaults file
(.4ad)

ACCELERATOR

See ACCELERATOR action
attribute on page 1323.

No Yes Yes Yes

ACCELERATOR2

See ACCELERATOR2 action
attribute on page 1324.

No No Yes Yes

ACCELERATOR3

See ACCELERATOR3 action
attribute on page 1325.

No No Yes Yes

ACCELERATOR4

See ACCELERATOR4 action
attribute on page 1325.

No No Yes Yes

COMMENT

See COMMENT action attribute on
page 1325.

Yes Yes Yes Yes

CONTEXTMENU

See CONTEXTMENU action
attribute on page 1326.

No Yes Yes Yes

DEFAULTVIEW

See DEFAULTVIEW action
attribute on page 1327.

No Yes Yes Yes

DISCLOSUREINDICATOR No Yes (only for
MENU)

No No

User interface | 1321

Attribute Context

Form action
view

Dialog action
handler

Form action
defaults
section

Global action
defaults file
(.4ad)

See DISCLOSUREINDICATOR
action attribute on page 1328.

IMAGE

See IMAGE action attribute on
page 1328.

Yes Yes Yes Yes

ROWBOUND

See ROWBOUND action attribute
on page 1329.

No Yes (only for list
dialogs)

No No

TEXT

See TEXT action attribute on page
1330.

Yes Yes Yes Yes

VALIDATE

See VALIDATE action attribute on
page 1331.

No Yes (only for
input dialogs)

Yes Yes

Using attributes of action defaults

Purpose of action defaults

Action defaults allow to define default attributes for common action. These defaults can be overwritten with
form item attributes, or with dialog action handler attributes (only for default action views).

Centralize action attributes with action defaults, to avoid specifying them in all the source files that define
the same action view and action handler. For example, you can specify the default text, image and
keyboard accelerator for elements like push buttons, toolbar items, topmenu options.

Common action defaults are typically defined in a global action defaults (.4ad) file, while form specific
actions are configured with form action defaults in the ACTION DEFAULTS section of the .per form
specification file.

Global action defaults file

Global action defaults are defined in an XML file with the 4ad extension. By default, the runtime system
searches for a file named default.4ad in the current directory. If the file does not exist, it searches in the
directories defined by the FGLRESOURCEPATH (or DBPATH) environment variable. If no file was found
using the environment variable(s), standard action default settings are loaded from the FGLDIR/lib/
default.4ad file.

Important: Global action defaults must be defined in a unique file; you cannot combine
several 4ad files.

If needed, override the default search by loading a specific global action defaults file with the
ui.Interface.loadActionDefaults() method.

It is possible to use localized strings in action default attributes such as TEXT and COMMENT, by using LStr
XML elements:

<ActionDefaultList>

User interface | 1322

 <ActionDefault name="yes" text="Yes">
 <LStr text="common.yes"/>
 </ActionDefault>
 ...

Form specific action defaults

Action defaults can be defined at the form level in the ACTION DEFAULTS section. When action defaults
are defined in the form file, action views get the attributes defined locally for this form:

ACTION DEFAULTS
 ACTION print (TEXT="Print",
 IMAGE="printer",
 COMMENT="Print the current record",
 ACCELERATOR=CONTROL-P)
END

Form action defaults can also be defined in a .4ad file to be loaded dynamically with the
ui.Form.loadActionDefaults() method. This method is typically used in form initializers to decorate
several application forms without defining an ACTION DEFAULTS section in each .per file.

It is possible to use localized strings in action default attributes such as TEXT and COMMENT:

ACTION print (TEXT=%"common.print")

Action defaults are applied only once

Decoration attributes (like TEXT, IMAGE) of an action view will automatically be set with the value defined
in the action defaults to all new action views of a new created form, if there is no explicitly value specified in
the element definition for that attribute. Decoration action default attributes are applied only once, to newly
created form elements: Dynamic changes are not reapplied to action views. For example, if you first load
a toolbar, then you load a global action defaults file, the attributes of the toolbar items will not be updated
with the last loaded action defaults. If you dynamically create action views (like TopMenu or ToolBar), the
action defaults are not applied, so you must set all decoration attributes by hand.

Action defaults and sub-dialog actions

The action default attributes to be applied are selected according to name of the action. In some situations,
the action view can be bound to an action handler by specifying a sub-dialog and/or field name prefix.
For those views, the action defaults defined with the corresponding action name will be used to set the
attributes with the default values. In other words, the prefix will be ignored. For example, if an action view is
defined with the name custlist.append, it will get the action defaults defined for the append action.

Functional attributes

Functional attributes (like VALIDATE, ACCELERATOR) can only be defined in action defaults, or in ON
ACTION dialog action handlers with the ATTRIBUTES clause. Functional attributes take effect for a given
action when the dialog becomes active.

Dialog action handler attributes

Action attributes can be specified at the dialog instruction level for default action views. These action
attributes will overwrite the attributes defined in action defaults.

To define dialog-level action attributes for an action, add the ATTRIBUTES() clause to ON ACTION, with a
comma-separated list of action default attributes:

ON ACTION print
 ATTRIBUTES (TEXT = "Print",
 COMMENT = "Print the current record",

User interface | 1323

 IMAGE = "printer",
 VALIDATE = NO)

It is possible to use localized strings in action attributes such as TEXT and COMMENT:

ON ACTION print
 ATTRIBUTES (TEXT = %"common.print.label",
 COMMENT = %"common.print.comment",
 ...)

Dialog-level action attributes are typically used when the dialog is not related to a specific form, for
example with independent MENU dialogs.

If the current form defines explicit action views (buttons in layout, toolbar buttons, topmenu items) with
the same name as the ON ACTION handler defining action attributes with the ATTRIBUTES() clause, the
explicit action views will not get the action attributes defined by the ON ACTION.

Text attribute shows default action view

When creating actions with ON KEY (or COMMAND KEY without a command name in a MENU), the default
action view (i.e. button in action frame) is invisible. However, if you define a text action attribute for the
corresponding key action, the default action view is made visible.

You can also control the visibility of the default action view with the DEFAULTVIEW action attribute.

Note that it is also possible to set key labels with form attributes (KEY) or with function calls
(FGL_SET_KEYLABEL()), this feature is supported for backward compatibility. Use action default text
attributes in new developments.

Defining keyboard accelerators

When using the ON ACTION clause in a dialog instruction, action defaults accelerators are applied in both
GUI and TUI mode. For backward compatibility, this is not done in TUI mode when using the ON KEY
clause.

The traditional ON KEY clause in a dialog like INPUT implicitly defines the acceleratorName attribute for
the action, and the corresponding action default accelerator will be ignored. For example, when you define
an ON KEY(F10) block, the first accelerator will be "F10", even if an action default defines an accelerator
"F5" for the action "F10". However, you can set other accelerators with the acceleratorName2,
acceleratorName3 and acceleratorName4 attributes in action defaults.

Important: In TUI mode, actions created with ON KEY do not get accelerators of action
defaults; Only actions defined with ON ACTION will get accelerators of Action Defaults.

In menus, the behavior is a bit different, see the COMMAND and COMMAND KEY clause in MENU.

If no accelerator is specified in action defaults for a predefined action, the runtime system sets one or
more default accelerators according to the user interface mode. For example, the accept action will get the
Return and Enter keys in GUI mode, but in TUI mode, the Escape key would be used.

If you want to force an action to have no accelerator, you can use none as the accelerator name.

Action attributes list
ACCELERATOR action attribute
The ACCELERATOR is an action attribute defining the primary accelerator key for an action.

Syntax

Syntax 1 (Dialog action handlers)

ACCELERATOR = "key"

User interface | 1324

Syntax 2 (ACTION DEFAULTS section in form files)

ACCELERATOR = key

Syntax 3 (Global .4ad action defaults file)

acceleratorName = "key"

1. key defines the accelerator key.

Usage

The ACCELERATOR attribute defines the keyboard combination that can be pressed by the user to send an
action to the program.

Note that in dialog-specific action attributes, the ACCELERATOR must be specified as a string expression.

This attribute applies to the actions defined by the current dialog in the current window. It can be specified
as action default attribute in a global .4ad file, in the ACTION DEFAULTS section of form files, or as dialog
action attribute.

Example

-- As action handler attribute
ON ACTION print ATTRIBUTES(ACCELERATOR="control-p")

-- As action default
ACTION DEFAULTS
 ACTION print (ACCELERATOR=control-p)
END

-- In a global action defaults file
<ActionDefault name="print" acceleratorName="control-p" ... />

ACCELERATOR2 action attribute
The ACCELERATOR2 is an action attribute defining the secondary accelerator key for an action.

Syntax

Syntax 1 (Dialog action handlers): N/A

Syntax 2 (ACTION DEFAULTS section in form files)

ACCELERATOR2 = key

Syntax 3 (Global .4ad action defaults file)

acceleratorName2 = "key"

1. key defines the accelerator key.

Usage

The ACCELERATOR2 attribute defines the keyboard combination that can be pressed by the user to send
an action to the program.

Important: This attribute is provided for specific cases, consider using only one accelerator per
action.

User interface | 1325

ACCELERATOR3 action attribute
The ACCELERATOR3 is an action attribute defining the third accelerator key for an action.

Syntax

Syntax 1 (Dialog action handlers): N/A

Syntax 2 (ACTION DEFAULTS section in form files)

ACCELERATOR3 = key

Syntax 3 (Global .4ad action defaults file)

acceleratorName3 = "key"

1. key defines the accelerator key.

Usage

The ACCELERATOR3 attribute defines the keyboard combination that can be pressed by the user to send
an action to the program.

Important: This attribute is provided for specific cases, consider using only one accelerator per
action.

ACCELERATOR4 action attribute
The ACCELERATOR4 is an action attribute defining the fourth accelerator key for an action.

Syntax

Syntax 1 (Dialog action handlers): N/A

Syntax 2 (ACTION DEFAULTS section in form files)

ACCELERATOR4 = key

Syntax 3 (Global .4ad action defaults file)

acceleratorName4 = "key"

1. key defines the accelerator key.

Usage

The ACCELERATOR4 attribute defines the keyboard combination that can be pressed by the user to send
an action to the program.

Important: This attribute is provided for specific cases, consider using only one accelerator per
action.

COMMENT action attribute
The COMMENT attribute defines hint for the user about the action.

Syntax

Syntax 1 (Dialog action handlers and form action defaults)

COMMENT = [%]"string"

User interface | 1326

Syntax 2 (Global .4ad action defaults file)

comment = "string"
(with optional LStr node for localized strings)

1. string is the text to display, with the % prefix it is a localized string.

Usage

Use the COMMENT attribute to define a description for the action. This text will typically be displayed as a
hint for the corresponding action view.

Consider using localized strings with the %"string-id" syntax, if you plan to internationalize your
application.

This action attribute can be specified as action default attribute in a global .4ad file, in the ACTION
DEFAULTS section of form files, as dialog action attribute, or as action view attribute.

Example

-- As action handler attribute
ON ACTION print ATTRIBUTES(COMMENT="Prints current record")

-- As action default
ACTION DEFAULTS
 ACTION print (COMMENT="Print current order information")
END

-- In a form buttom, using a localized string id
BUTTON b1: print, COMMENT=%"actions.print.comment";

-- In a global action defaults file with a localized string id
<ActionDefault name="zoom" comment="Opens a zoom window" ... >
 <LStr comment="actions.zoom.comment" />
</ActionDefault>

CONTEXTMENU action attribute
The CONTEXTMENU attribute defines whether a context menu option must be displayed for an action.

Syntax

Syntax 1 (Dialog action handlers and form action defaults)

CONTEXTMENU = [AUTO | YES | NO]

Syntax 2 (Global .4ad action defaults file)

contextMenu = ["yes" | "no" | "auto"]

Usage

CONTEXTMENU is an action attribute defining whether the context menu option must be displayed for an
action.

1. NO indicates that no context menu option must be displayed for this action.
2. YES indicates that a context menu option must always be displayed for this action, if the action is

visible.
3. AUTO means that the context menu option is displayed if no explicit action view is used for that action

and the action is visible.

User interface | 1327

The default is YES.

This attribute applies to the actions defined by the current dialog in the current window. It can be specified
as action default attribute in a global .4ad file, in the ACTION DEFAULTS section of form files, or as dialog
action attribute.

Example

-- As action handler attribute
ON ACTION zoom ATTRIBUTES(CONTEXTMENU=YES)

-- As action default
ACTION DEFAULTS
 ACTION zoom (CONTEXTMENU=YES)
END

-- In a global action defaults file
<ActionDefault name="zoom" contextMenu="yes" ... />

DEFAULTVIEW action attribute
The DEFAULTVIEW attribute defines if a default view (a button) must be displayed for a given action.

Syntax

Syntax 1 (Dialog action handlers and form action defaults)

DEFAULTVIEW = [AUTO | YES | NO]

Syntax 2 (Global .4ad action defaults file)

defaultView = ["yes" | "no" | "auto"]

Usage

DEFAULTVIEW is an action attribute defining whether the default action view (a button) must be displayed
for an action.

• NO indicates that no default action view must be displayed for this action.
• YES indicates that a default action view must always be displayed for this action, if the action is visible.
• AUTO means that a default action view is displayed if no explicit action view is used for that action and

the action is visible.

The default is AUTO.

This attribute applies to the actions defined by the current dialog in the current window. It can be specified
as action default attribute in a global .4ad file, in the ACTION DEFAULTS section of form files, or as dialog
action attribute.

Example

-- As action handler attribute
ON ACTION zoom ATTRIBUTES(DEFAULTVIEW=YES)

-- As action default
ACTION DEFAULTS
 ACTION zoom (DEFAULTVIEW=YES)
END

-- In a global action defaults file

User interface | 1328

<ActionDefault name="zoom" defaultView="yes" ... />

DISCLOSUREINDICATOR action attribute
The DISCLOSUREINDICATOR attribute a drill-down decoration to an action.

Syntax

(only in MENU action handlers)

DISCLOSUREINDICATOR

Usage

DISCLOSUREINDICATOR is an action attribute defining whether a disclosure indicator must be shown for
the default view (a button) of an action.

Important: This feature is only for mobile platforms.

A disclosure indicator gives a visual hint to the user, to show that the selection of the action will drill down
in the application screens.

The DISCLOSUREINDICATOR attribute is typically used in a MENU instruction, for options that open a sub-
menu.

The rendering of a disclosure indicator depends from the front-end platform standards. On iOS devices,
buttons will show a typical > icon on the right.

This attribute can only be specified in a MENU dialog, as action attribute in the ATTRIBUTES() clause of
ON ACTION handlers, and applies to the actions defined by the current dialog in the current window.

Note however, that form buttons can get a DISCLOSUREINDICATOR attribute, as an action view
decoration.

Example

MENU ...
 ...
 ON ACTION details ATTRIBUTES(DISCLOSUREINDICATOR)
 CALL show_customer_details(cust_rec.cust_no)
 ...

IMAGE action attribute
The IMAGE attribute defines the image resource to be displayed for the action.

Syntax

Syntax 1 (Dialog action handlers and form action defaults)

IMAGE = "resource"

Syntax 2 (Global .4ad action defaults file)

image = "resource"

1. resource defines the file name, path or URL to the image source.

User interface | 1329

Usage:

The IMAGE attribute is used to define the image resource for the action view such a BUTTON ,
BUTTONEDIT or a TOOLBAR button.

For more details about image resource specification, see Providing the image resource on page 784.

This action attribute can be specified as action default attribute in a global .4ad file, in the ACTION
DEFAULTS section of form files, as dialog action attribute, or as action view attribute.

Example

-- As action handler attribute
ON ACTION print ATTRIBUTES(IMAGE="printer")

-- As action default
ACTION DEFAULTS
 ACTION print (IMAGE="printer")
END

-- In a form buttonedit or button
BUTTONEDIT f001 = FORMONLY.field01, IMAGE = "zoom";
BUTTON b01: open_file, IMAGE = "buttons/fileopen";
BUTTON b02: accept, IMAGE = "http://myserver/images/accept.png";

ROWBOUND action attribute
The ROWBOUND attribute defines if the action is related to the row context of a record list.

Syntax

(only in action handlers of record list dialog)

ROWBOUND

Usage

The ROWBOUND is typically used in a DISPLAY ARRAY or INPUT ARRAY dialog action handler, when the
action depends from the row context. The actions marked with this attribute will be automatically enabled/
disabled according the current row existence, and rendered in a special way according to the front-end
platform standards.

Important: This feature is only for mobile platforms.

The ROWBOUND attribute was mainly introduced for mobile applications, when using a TABLE container to
get a list view: Actions marked with this attribute will be rendered in a native manner on the mobile device.

If a default action view is displayed for the action, it will be automatically hidden when no current row
context is available.

This attribute can only be specified in a list handling dialog, as action attribute in the ATTRIBUTES()
clause of ON ACTION handlers, and applies to the actions defined by the current dialog in the current
window.

Default actions such as the delete action when using an ON DELETE modification trigger will
automatically get the ROWBOUND attribute, to be available only when at least one row exists in the list.
Therefore, the ROWBOUND attribute cannot be specified for such DISPLAY ARRAY modification triggers.

Example

DISPLAY ARRAY ...
 ...

User interface | 1330

 ON ACTION print ATTRIBUTES(ROWBOUND)
 CALL print_customer_info(arr_curr())
 ...

TEXT action attribute
The TEXT attribute defines the label associated to the action.

Syntax

Syntax 1 (Dialog action handlers and form action defaults)

TEXT = [%]"string"

Syntax 2 (Global .4ad action defaults file)

text = "string"
(with optional LStr node for localized strings)

1. string defines the label for the action, with the % prefix it is a localized string.

Usage

The TEXT attribute is used to define the label associated to an action, for example for a CHECKBOX form
field or a BUTTON action view.

Consider using localized strings with the %"string-id" syntax, if you plan to internationalize your
application.

This action attribute can be specified as action default attribute in a global .4ad file, in the ACTION
DEFAULTS section of form files, as dialog action attribute, or as action view attribute.

Example

-- As action handler attribute
ON ACTION print ATTRIBUTES(TEXT="Print")

-- As form action default
ACTION DEFAULTS
 ACTION print (TEXT="Print")
END

-- As a CHECKBOX label
CHECKBOX cb01 = FORMONLY.checkbox01,
 TEXT="OK" ... ;

-- As a BUTTON label, using a localized string id
BUTTON b1: print, TEXT=%"actions.print.label";

-- In a global action defaults file with a localized string id
<ActionDefault name="zoom" text="Zoom" ... >
 <LStr text="actions.zoom.label" />
</ActionDefault>

User interface | 1331

VALIDATE action attribute
The VALIDATE action attribute defines the data validation level for a given action.

Syntax

Syntax 1 (Dialog action handlers and form action defaults)

VALIDATE = NO

Syntax 2 (Global .4ad action defaults file)

validate = "no"

Usage

When the VALIDATE action attribute is set to NO, it indicates that no data validation must occur for this
action. However, current input buffer contains the text modified by the user before triggering the action.

This attribute applies to the actions defined by the current dialog in the current window. It can be specified
as action default attribute in a global .4ad file, in the ACTION DEFAULTS section of form files, or as dialog
action attribute.

Example

-- As action handler attribute
ON ACTION undo ATTRIBUTES(VALIDATE=NO)

-- As action default
ACTION DEFAULTS
 ACTION undo (VALIDATE=NO)
END

-- In a global action defaults file
<ActionDefault name="undo" validate="nos" ... />

Data validation at action invocation
The validate action default attribute controls field validation when an action is fired.

When using the UNBUFFERED mode of interactive instructions such asINPUT or DIALOG, if the user
triggers an action, the current field data is checked and loaded in the target variable bound to the form
field. For example, if the user types a wrong date (or only a part of a date) in a field using a DATE variable
and then clicks on a button to invoke an action, the runtime system will display an invalid input error and
will not execute the ON ACTION block corresponding to the button.

To prevent data validation for some actions, use the validate action default attribute. This attribute
instructs the runtime not to copy the input buffer text into the program variable (requiring input buffer text to
match the target data type).

ACTION DEFAULTS
 ...
 ACTION zoom (... VALIDATE = NO ...)
 ...
END

This is especially needed in DIALOG instructions; in singular dialogs like INPUT, predefined actions like
cancel do not validate the current field value when UNBUFFERED mode is used.

The validate action default attribute can be set in the global action default file, or at the form level, with
the VALIDATE attribute in a line of the ACTION DEFAULTS section.

User interface | 1332

Enabling and disabling actions
By default, dialog actions are enabled, however an action should be disabled when not allowed in the
current context.

Dialog actions are enabled to let the user invoke the action handler (ON ACTION/COMMAND) by clicking on
the corresponding action view (button) or by pressing its accelerator key. In most situations, actions remain
active during the whole dialog execution. However, to follow GUI standards, actions must be disabled
when not allowed in the current context. For example, a print action should be disabled if no record is
currently shown in the form. After a database query, when the form is filled with a given record, the print
action can be activated.

Depending on the front-end ergonomics, the visual result of disabling an action can be different. On
desktop front-ends, the action views (buttons) are typically grayed, indicating that the action is there but
cannot be triggered. On other front-ends such as some mobile devices, the action view might be hidden,
for layout reasons (there is not much space on a mobile device screen).

During a dialog instruction, enable or disable an action with the setActionActive() method of the
ui.Dialog built-in class. This method takes the name of the action (in lowercase letters) and a boolean
expression (0 or FALSE, 1 or TRUE) as arguments.

 BEFORE INPUT
 CALL DIALOG.setActionActive("zoom", FALSE)

Consider centralizing action activation / deactivation in a setup function specific to the dialog, passing the
DIALOG object as the parameter. Centralizing the action activation defines the rules in a single location:

FUNCTION cust_dialog_setup(d)
 DEFINE d ui.Dialog
 DEFINE can_modify BOOLEAN
 LET can_modify = (cust_rec.is_new OR user_info.is_admin)
 CALL d.setActionActive("update", can_modify)
 CALL d.setActionActive("delete", can_modify)
 ...
END FUNCTION

Some predefined dialog actions such as insert / append / delete of INPUT ARRAY are automatically
enabled/disabled according to the context. For example, if the maximum number of rows (MAXCOUNT) is
reached in an INPUT ARRAY, insert and append actions are disabled.

When the action activation depends on the focus being in a specific field, consider using the INFIELD
clause of ON ACTION to automatically disable an action if the focus leaves the specified field.

Inside a DIALOG block, actions can be defined a different levels, and may need to be identified with the
sub-dialog prefix, when you invoke the ui.Dialog.setActionActive() method outside of the context
of the sub-dialog. In the next example, the check_row action must be prefixed by the s_ord sub-dialog
name, because setActionActive() is called from the INPUT BY NAME sub-dialog context, to disable
an action from the DISPLAY ARRAY sub-dialog:

DIALOG ATTRIBUTES(UNBUFFERED)
 DISPLAY ARRAY a_ord TO s_ord.*
 -- sub-dialog-level action
 ON ACTION check_row
 ...
 END DISPLAY
 ...
 INPUT BY NAME rec.* ...
 ON CHANGE consolidation
 -- Must use sub-dialog name to identify the check_row action:
 CALL DIALOG.setActionActive("s_ord.check_row", FALSE)
 ...
 END INPUT

User interface | 1333

END DIALOG

Hiding and showing default action views
If needed, default action views can be hidden or shown.

When an action is rendered with a default action view (for example, by a button on the action frame of
a destop front-end, or in the top action panel on a mobile front-end), it is sometimes required to hide the
action button when the operation is not possible and there is not much space on the screen.

Important: Hiding an action will only make the default action view invisible, if there is a keyboard
accelerator associated to the action, it can still fire the action. Consider disabling the action
completely with setActionActive().

During a dialog instruction, shown or hide an action with the setActionHidden() method of the
ui.Dialog built-in class. This method takes the name of the action (in lowercase letters) and an integer
boolean expression (0 or FALSE, 1 or TRUE) as arguments.

 BEFORE INPUT
 CALL DIALOG.setActionHidden("zoom", 1)

Consider centralizing action visibility control in a setup function specific to the dialog, passing the DIALOG
object as the parameter. Centralizing the action activation defines the rules in a single location:

FUNCTION cust_dialog_setup(d)
 DEFINE d ui.Dialog
 DEFINE can_modify BOOLEAN
 LET can_modify = (cust_rec.is_new OR user_info.is_admin)
 CALL d.setActionActive("update", can_modify)
 CALL d.setActionHidden("update", IIF(can_modify,0,1))
 CALL d.setActionActive("delete", can_modify)
 CALL d.setActionHidden("delete", IIF(can_modify,0,1))
 ...
END FUNCTION

Pay attention to multi-level action definitions inside a DIALOG block: Inside a DIALOG block, actions must
be hidden/shown with the ui.Dialog.setActionHidden() method by specifying a simple action
name:

DIALOG ATTRIBUTES(UNBUFFERED)
 ...
 BEFORE DIALOG
 CALL DIALOG.setActionHidden("print", 1)
 ...
 ON ACTION query
 -- query the database and fill the record
 ...
 CALL DIALOG.setActionHidden("print", (cust_id IS NULL))
 ...
END DIALOG

Sub-dialog actions in procedural DIALOG blocks
This topic describes how action are differentiated with handlers defined in a procedural DIALOG block.

We distinguish dialog actions from sub-dialog actions: When the ON ACTION handler is defined at the
same level as a BEFORE DIALOG control block, it is a dialog action, and the action name is a simple
identifier as in singular interactive instructions:

action-name

User interface | 1334

When the ON ACTION handler is defined inside a sub-dialog, or if the action is an implicit action such as
insert in INPUT ARRAY, it is a sub-dialog action, and the action name gets the name of the sub-dialog
as the prefix to identify the sub-dialog action with a unique name:

sub-dialog-name.action-name

The INPUT ARRAY and DISPLAY ARRAY sub-dialogs are implicitly identified with the screen-record name
defined in the form. For INPUT and CONSTRUCT sub-dialogs, the sub-dialog identifier can be specified with
the NAME attribute.

The next example defines two 'check' action in different sub-dialog contexts, and a 'close' action at the
dialog level:

DIALOG
 INPUT BY NAME ... ATTRIBUTES (NAME = "cust")
 ON ACTION check -- sub-dialog action "cust.check"
 ...
 END INPUT
 DISPLAY ARRAY arr_orders TO sr_ord.*
 ...
 ON ACTION check -- sub-dialog action "sr_ord.check"
 ...
 END DISPLAY
 BEFORE DIALOG
 ...
 ON ACTION close -- dialog action "close"
 ...
END DIALOG

By using the sub-dialog identifier in form definition files, you can bind action views to specific sub-dialog
actions. Action views bound to sub-dialog actions with qualified sub-dialog action names will always be
active, even if the focus is not in the sub-dialog of the action. You typically use fully-qualified sub-dialog
actions names for buttons in the form body or in topmenu options. However, it does not make much sense
to use this technique for toolbar buttons, where buttons must be enabled/disabled according to the context.

TOOLBAR
 ...
 ITEM append
 ...
END

TOPMENU
 ...
 GROUP orders (TEXT="Orders")
 COMMAND sr_ord.append
 ...
END

LAYOUT
GRID
{
 ...
 [b002]
}
END
END

ATTRIBUTES
BUTTON b002: sr_ord.append;
END

User interface | 1335

If you bind an action view with a simple action name (without the sub-dialog prefix), the action view will be
attached to any sub-dialog action with the matching name. This is especially useful for common actions
such as the implicit insert / append / delete actions created by INPUT ARRAY, when the dialog handles
multiple editable lists. Bind toolbar buttons to these actions without the sub-dialog prefix; the buttons
will apply to the current list that has the focus. The action views bound to sub-dialog actions without the
sub-dialog qualifier will automatically be enabled or disabled when entering or leaving the group of fields
controlled by the sub-dialog (i.e. typical navigation buttons in the toolbar will be disabled if the focus is not
in a list).

If a sub-dialog action is invoked when the focus is not in the sub-dialog of the action, the focus will
automatically be given to the first field of the sub-dialog, before executing the user code defined in the ON
ACTION clause. This will trigger the same validation rules and control blocks as if the user had selected the
first field of the sub-dialog by hand.

When using DIALOG.setActionActive() (or any method that takes an action name as parameter),
you can specify the action name with or without a sub-dialog identifier. If you qualify the action with the
sub-dialog identifier, the sub-dialog action is clearly identified. If you don't specify a sub-dialog prefix, the
action will be identified based on the focus context - when the focus is in the sub-dialog of the action,
non-qualified action names identify the local sub-dialog action; otherwise, they identify a dialog action if
one exists with the same name. Disabling an action by the program with setActionActive(), will take
precedence over the built-in activation rules (i.e. if the action is disabled by the program, the action will not
be activated when entering the sub-dialog).

For action views bound to sub-dialog actions with qualifiers, the action defaults defined with the
corresponding action name will be used to set the attributes with the default values. In other words, the
prefix will be ignored. For example, if an action view is defined with the name "custlist.append", it will
get the action defaults defined for the "append" action.

Field-specific actions (INFIELD clause)
Using the INFIELD clause of ON ACTION provides automatic action activation when a field gets the focus.

The ON ACTION interaction block of INPUT, CONSTRUCT and INPUT ARRAY (as singular dialogs or sub-
dialogs in DIALOG instruction), can be specified with the INFIELD field-name clause. With this clause,
the action will only be active when the focus is in one of the fields. The same action name can be used for
several fields.

INPUT ARRAY custarr WITHOUT DEFAULTS FROM sr_cust.*
 ON ACTION zoom INFIELD cust_city
 LET custarr[arr_curr()].cust_city = zoom_city()
 ON ACTION zoom INFIELD cust_state
 LET custarr[arr_curr()].cust_state = zoom_state()
END INPUT

Actions defined with the INFIELD field-name clause can be identified with the field name as prefix:

field-name.action-name

Bind action views with field name prefix to identify the action specifically to a field, or use the action name
only. Without the field name prefix, the action view is enabled and disabled automatically according to the
current field. When binding the action view with the fully-qualified name including the field name prefix, the
action view will always be active, and the focus will jump to the field if the action is fired.

Actions defined in sub-dialogs of the DIALOG instruction get the name of the sub-dialog as prefix. If ON
ACTION action-name INFIELD field-name is used in a sub-dialog, the action object name is
prefixed with the name of the sub-dialog, followed by the name of the field. The fully-qualified action name
will be:

sub-dialog-name.field-name.action-name

User interface | 1336

When the field-specific action is invoked (for example by a button of the toolbar bound with the fully-
qualified action name) and if the field does not have the focus, the runtime system first selects that field
before executing the code of the ON ACTION INFIELD block. The field selection forces data validation
and AFTER FIELD of the current field, followed by BEFORE FIELD of the target field associated to the
action.

It's still possible to enable and disable field-specific action objects by the program using the
DIALOG.setActionActive() method. When specifying a fully-qualified action name with the field name
prefix, that field-specific action will be enabled or disabled. When disabled by the setActionActive()
method, the corresponding action views will always be disabled, even if the field has the focus. If you
do not specify a fully-qualified name in the method call, and if several actions are defined with the same
action name in different sub-dialogs and/or using the INFIELD clause, the method will identify the
action according to the current focus context. For example, if you define ON ACTION zoom INFIELD
cust_city and ON ACTION zoom INFIELD cust_addr, when the focus is in cust_city, a call to
DIALOG.setActionActive("zoom", FALSE) will disable the action specific to the cust_city field.

Fields can be enabled or disabled dynamically with the DIALOG.setFieldActive() method. If an ON
ACTION INFIELD is declared on a field and if you enable/disable the field dynamically, then the field-
specific action (and corresponding action views in the form) will be enabled or disabled accordingly.

For action views bound to field actions with qualifiers, the action defaults defined with the corresponding
action name will be used to set the attributes with the default values. In other words, the prefix will be
ignored. For example, if an action view is defined with the name "cust_addr.check", it will get the action
defaults defined for the "check" action.

Multilevel action conflicts

Actions can be defined at two levels in a singular dialog, and three levels in the context of a DIALOG block:

1. Dialog level
2. Sub-dialog level (procedural DIALOG only)
3. Field level (ON ACTION with INFIELD clause)

It is not good practice to use the same action name at different levels of a dialog: This makes action view
bindings and action handling (i.e. enabling / disabling) very complex, because there are many possible
combinations. Therefore, when using the same action name at different dialog levels, the fglcomp compiler
will raise a warning -8409. However, it is legal to use the same action name for a given level of action
handlers in a sub-dialogs or for field-actions. For example, using the "zoom" action name for multiple ON
ACTION INFIELD handlers is a common practice.

When binding action views with full qualified names, the ON ACTION handler is clearly identified, and the
corresponding user code will be executed. However, when you do not specify the complete prefix of a
sub-dialog or field action, the runtime system searches for the best ON ACTION handler to be executed,
according to the current focus context.

Take for example a DIALOG instruction defining three ON ACTION print handlers at the dialog, sub-
dialog and field level:

DIALOG
 INPUT BY NAME ... ATTRIBUTES (NAME = "cust")
 ...
 ON ACTION print INFIELD cust_name -- field-level action (1)
 ...
 ON ACTION print -- sub-dialog-level action (2)
 ...
 END INPUT
 ...
 ON ACTION print -- dialog-level action (3)
 ...
END DIALOG

User interface | 1337

The action views of the form will behave as follows:

• Action views bound with the name "print" will always be active, and invoke the ON ACTION print
handler corresponding to the current focus context:

• (1) is invoked if the focus is in the cust_name field.
• (2) is invoked if the focus is in the cust sub-dialog, but not in cust_name field.
• (3) is invoked if the focus is in another sub-dialog as cust sub-dialog.

• Action views bound with the name "cust.print" will always be active, even if the focus is not the
cust sub-dialog, and invoke the ON ACTION print handler according to the current focus context:

• (1) is invoked if the focus is in the cust_name field.
• (2) is invoked if the focus is in the cust sub-dialog, but not in cust_name field.

• Action views bound with the name "cust.cust_name.print" will always be active, and invoke the ON
ACTION print INFIELD cust_name handler after giving the focus to the cust_name field.

If the first field of a sub-dialog defines an ON ACTION INFIELD with the same action name as a sub-
dialog action, and the focus is not in that sub-dialog when the user selects an action view bound with the
name sub-dialog-name.action-name, the runtime system gives the focus to the first field of the sub-dialog.
This field becomes the current field, and the runtime system executes the field-specific action handler
instead of the sub-dialog action handler.

To avoid mistakes and complex combinations, you should use specific action names for each dialog level.

Action display in the contextual menu
The CONTEXTMENU action default attribute allows to control action visibility in the contextual menu.

Some front-ends can display a contextual menu, with all the active actions that are possible in the current
form. Displaying all actions might not be adapted to your needs. To control if an action must be displayed
in the context menu, set the CONTEXTMENU attribute in action defaults. Values for CONTEXTMENU can be
YES, NO and AUTO.

ACTION DEFAULTS
 ...
 ACTION insert (... CONTEXTMENU = YES ...)
 ACTION append (... CONTEXTMENU = YES ...)
 ACTION delete (... CONTEXTMENU = YES ...)
 ...
 ACTION validate_order (... CONTEXTMENU = NO ...)
 ...
END

Implementing the close action
The close action is a predefined action dedicated to close graphical windows (for example, with the X cross
button).

In graphical applications, windows can be closed by the user, for example by pressing Alt+F4 or by clicking
the cross button in the upper-left corner of the window. A predefined action is dedicated to this specific
event, named "close".

When the end user closes a graphical window, the program gets a close action.

Note that the default action view (i.e. button in the action frame) of the close action is hidden.

The close action in DIALOG dialogs

When executing a DIALOG instruction, the close action executes the ON ACTION close block, if defined.
Otherwise, the close action is mapped to the cancel action if an ON ACTION cancel handler is defined.

If neither ON ACTION close, nor ON ACTION cancel are defined, nothing will happen if the user tries
to close the window with the X cross button or an ALT+F4 keystroke.

User interface | 1338

The INT_FLAG register will not be set in the context of DIALOG.

The close action in form input singular dialogs

When an ON ACTION close handler is defined in an INPUT, INPUT ARRAY, CONSTRUCT, DISPLAY
ARRAY or PROMPT interactive instruction, the handler code will be executed if the close action is fired.

If no explicit ON ACTION close handler is defined, the close action acts the same as the cancel
predefined action. So by default when the user clicks the X cross button in a window, the interactive
instruction stops and INT_FLAG is set to 1.

If there is an explicit ON ACTION cancel block defined, INT_FLAG is set to 1 and the user code under
ON ACTION cancel will be executed.

If the CANCEL=FALSE option is set, no cancel and no close action will be created, and you must write an
ON ACTION close handler to proceed with the close action. In this case, the INT_FLAG register will not
be set when the close action is invoked.

The close action in MENU dialogs

When an ON ACTION close handler is defined in a MENU statement, the handler code will be executed if
the close action is fired.

If no explicit ON ACTION close action handler is defined, the code of the COMMAND KEY(INTERRUPT)
or ON ACTION cancel will be executed, if defined. if neither COMMAND KEY(INTERRUPT) nor ON
ACTION cancel are defined, nothing happens and the program stays in the MENU instruction. Regarding
the close action, the value of INT_FLAG is undefined in a MENU instruction.

The close action on mobile devices

When displaying on a mobile device, the close action is rendered differently according to the type of mobile
platform:

• On Android™, the close action is mapped to the [Back] button (it is not rendered in the action panel)
• On iOS, there is no [Back] button concept and the close action is rendered as a regular action.

For more details, see Rendering default action views on mobile on page 1279.

Example

You typically implement a close action handler to open a confirmation dialog box as in
following example:

INPUT BY NAME cust_rec.*
 ...
 ON ACTION close
 IF msg_box_yn("Are you sure you want to close this window?")
 == "y" THEN
 EXIT INPUT
 END IF
 ...
END INPUT

Predefined actions
Genero predefines some action names for common operations of interactive instructions.

Predefined actions are different from user-defined action, in the sense that the name of a predefined action
is reserved, and the action may has an ON ACTION handler, while user-defined actions have a specific
name, and must be implemented with an ON ACTION handler.

There are three types of predefined actions:

User interface | 1339

• Automatic actions: actions that are automatically created and handled by the program dialog, like
accept, cancel, insert.

• Special actions: actions with a special usage, that can be invoked asynchronously or automatically by
the front-end, like interrupt, dialogtouched.

• Local actions: actions that are handled on the front end side, without program interaction, such as
editcopy.

Default decoration attributes and keyboard shortcuts are defined with action defaults, like for user-defined
actions.

Automatic and local actions with same name

Some predefined actions exist as both automatic actions and as local actions (for example, editcopy). The
automatic actions are created according to the dialog context. If an automatic action has to be defined and
if a local action exists with the same name, the automatic action takes precedence over the local action.

For example, if the dialog context requires a editcopy runtime action, the local editcopy action will not be
handled by the front end. Identical action names are used for automatic and local action to bind with the
same action view. For example, the same toolbar button created with the editcopy name will trigger the
automatic action or the local action, according to the context.

Overwriting predefined actions with ON ACTION

If you define your own ON ACTION handler with the name of a predefined action, the default action
processing is bypassed and the program code is executed instead.

The next code example defines an ON ACTION clause with the accept predefined action name:

INPUT BY NAME customer.*
 ON ACTION accept
 ...
END INPUT

In this case, the default behavior of the automatic accept action is not performed; the user code is
executed instead.

Local actions can be overwritten in the same manner, however, this is not recommended (use your own
action names).

Predefined actions enabled according to context

Some predefined actions (such as insert, append and delete in INPUT ARRAY) are enabled and disabled
automatically by the dialog according to the context (for example, when a static array used by the INPUT
ARRAY is full, the insert and append actions get disabled).

Even when overwriting such actions with your own action handler, the runtime system will continue to
enable and disabled the actions automatically.

You should not overwrite predefined actions.

Binding action views to predefined actions

As for user-defined actions, if you design forms with action views using predefined action names, they will
automatically attach themselves to the actions of the interactive instructions.

It is also possible to define default images, texts, comments and accelerator keys in the action defaults
resource file for the predefined actions.

User interface | 1340

List of predefined actions

Table 286: Automatic actions (automatically created by dialogs)

Action Name Description
ON ACTION block is
required

Context

accept
Validates the current
interactive instruction
(singular dialogs only)

can overwrite (1)

cancel
Cancels the current
interactive instruction
(singular dialogs only)

can overwrite (1)

close
Triggers a cancel key in
the current interactive
instruction (by default)

can overwrite (7)

insert
Inserts a new row before
current row

can overwrite (2)

append
Appends a new row at
the end of the list

can overwrite (2)

delete Deletes the current row can overwrite (2)

find

Opens the fglfind dialog
window to let the user
enter a search value,
and seeks to the row
matching the value

can overwrite (4)

findnext

Seeks to the next row
matching the value
entered during the fglfind
dialog

can overwrite (4)

nextrow
Moves to the next row
(only if list using one flat
screen record)

can overwrite (8)

prevrow
Moves to the previous
row (only if list using one
flat screen record)

can overwrite (8)

firstrow
Moves to the first row
(only if list using one flat
screen record)

can overwrite (8)

lastrow
Moves to the last row
(only if list using one flat
screen record)

can overwrite (8)

help
Shows the help topic
defined by the HELP
clause

can overwrite (1)

editcopy
Copy selected rows (or
current row if MRS is off)
to the clipboard

can overwrite (9)

User interface | 1341

Table 287: Special actions (special behavior)

Special Action Name Description
ON ACTION block is
required

Context

browser_back

Sent when the user hits
the back button in a web
browser (web front-end
only).

yes (7)

browser_forward

Sent when the user hits
the forward button in a
web browser (web front-
end only).

yes (7)

dialogtouched

Sent by the front end
each time the user
modifies the value of a
field. For more details,
see Immediate detection
of user changes on page
1267.

yes (7)

interrupt

Sends an interruption
request to the program
when processing. For
more details, see User
interruption handling on
page 1252.

no (5)

windowresized

On Mobile devices, this
action is sent when
changing the orientation
of the device. On other
front-ends, it is sent
when the current active
window is resized.
For more details, see
Adapting to viewport
changes on page 1003.

yes (6)

notificationpushed

On Mobile devices,
this action is fired
when receiving a
push notification
message. See
getRemoteNotifications
on page 1930

yes (6)

Table 288: Local actions (handled by the front end)

Local Action Name Description
ON ACTION block is
required

Context

editcopy
Copies the current
selected text to the
clipboard

can overwrite (7)

User interface | 1342

Local Action Name Description
ON ACTION block is
required

Context

editcut

Copies the current
selected text to the
clipboard and removes
the text from the current
input widget

can overwrite (7)

editpaste
Pastes the clipboard
content to the current
input widget

can overwrite (7)

nextfield
Moves to the next field in
the form

can overwrite (3)

prevfield
Moves to the previous
field in the form

can overwrite (3)

nextrow
Moves to the next row in
the list

can overwrite (4)

prevrow
Moves to the previous
row in the list

can overwrite (4)

firstrow
Moves to the first row in
the list

can overwrite (4)

lastrow
Moves to the last row in
the list

can overwrite (4)

nextpage
Moves to the next page
in the list

can overwrite (4)

prevpage
Moves to the previous
page in the list

can overwrite (4)

nexttab
Moves to the next page
in the folder

can overwrite (6)

prevtab
Moves to the previous
page in the folder

can overwrite (6)

Context column descriptions

1. CONSTRUCT, INPUT, PROMPT, INPUT ARRAY and DISPLAY ARRAY.
2. INPUT ARRAY only.
3. CONSTRUCT, INPUT and INPUT ARRAY.
4. INPUT ARRAY and DISPLAY ARRAY.
5. Only possible when no interactive instruction is active.
6. Possible in any kind of interactive instruction (MENU included).
7. DIALOG, CONSTRUCT, INPUT, PROMPT, INPUT ARRAY and DISPLAY ARRAY.
8. INPUT ARRAY and DISPLAY ARRAY on flat screen-record.
9. DISPLAY ARRAY only.

User interface | 1343

Keyboard accelerator names
Virtual keys
Virtual keys are the key names that can be used in program instructions such as ON KEY and COMMAND
KEY.

An ON KEY block defines one to four different action objects that will be identified by the key name in
lowercase (ON KEY(F5,F6) = creates Action f5 + Action f6). Each action object will get
an acceleratorName attribute assigned. In GUI mode, Action defaults are applied for ON KEY actions
by using the name of the key. You can define secondary accelerator keys, as well as default decoration
attributes like button text and image, by using the key name as action identifier. The action name is always
in lowercase letters.

Check carefully the ON KEY CONTROL-? statements because they may result in having duplicate
accelerators for multiple actions due to the accelerators defined by action defaults. Additionally, ON KEY
statements used with ESC, TAB, UP, DOWN, LEFT, RIGHT, HELP, NEXT, PREVIOUS, INSERT, CONTROL-
M, CONTROL-X, CONTROL-V, CONTROL-C and CONTROL-A should be avoided for use in GUI programs,
because it's very likely to clash with default accelerators defined in the Action Defaults.

By default, ON KEY actions are not decorated with a default button in the action frame (i.e. default action
view). You can show the default button by configuring a text attribute with the action defaults.

Table 289: Names of keys to be referenced in programs

Key Name Description

ACCEPT The validation key.

INTERRUPT The interruption key.

ESC or ESCAPE The ESC key (not recommended, use ACCEPT
instead).

TAB The TAB key (not recommended).

Control-char A control key where char can be any character
except A, D, H, I, J, K, L, M, R, or X.

F1 through F255 A function key.

DELETE The key used to delete a new row in an array.

INSERT The key used to insert a new row in an array.

HELP The help key.

LEFT The left arrow key.

RIGHT The right arrow key.

DOWN The down arrow key.

UP The up arrow key.

PREVIOUS or PREVPAGE The previous page key.

NEXT or NEXTPAGE The next page key.

Accelerator keys
Accelerators keys are attributes defining the keyboard shortcuts for actions.

Keyboard accelerators can be defined at several level in the form files or in action defaults. You can define
up to four accelerator keys for the same action in action defaults, by setting the acceleratorName,
acceleratorName2, acceleratorName3 and acceleratorName4 attributes.

User interface | 1344

If no accelerators are defined in the action defaults, the runtime system sets default accelerators for
predefined actions, according to the user interface mode. For example, the accept action will get the
Return and Enter keys in GUI mode, but gets the Escape key in TUI mode.

Accelerators can also be defined in on the program in the attribute list of the ON ACTION interaction block.

If one of the user-defined actions uses an accelerator that would normally be used for a predefined action,
the runtime system does not set that accelerator for the predefined action. For example (in GUI mode),
if you define an ON ACTION quit with an action default using the accelerator "Escape", the "cancel"
predefined action will not get the "Escape" default accelerator. In this case, user settings take precedence
over defaults.

Text edition and navigation accelerators such as Home and End are usually local to the widget. According
to the context, such accelerators might be eaten by the graphical widget and will not invoke the action
bound to the corresponding accelerator defined in the action defaults. For example, even if the action
defaults for the "firstrow" action defines the Home accelerator, when using an INPUT ARRAY, the Home
key will jump to the beginning of the edit field, not the first row of the list.

If you want to force an action to have no accelerator, specify "none" as the accelerator name.

This table lists all the keyboard accelerator names:

Table 290: Keyboard accelerator names

Accelerator Name Description

none
Special name indicating the runtime system must
not set any default accelerator for the action.

0-9 Decimal digits from 0 to 9

A-Z Letters from A to Z

F1-F35 The functions keys

BackSpace
The BACKSPACE key (do not confuse with
DELETE key)

Delete The DELETE key (navigation keyboard group)

Down The DOWN key (arrow keyboard group)

End The END key (navigation keyboard group)

Enter The ENTER key (numeric keypad, see Note)

Escape The ESCAPE key

Home The HOME key (navigation keyboard group)

Insert The INSERT key (navigation keyboard group)

Left The LEFT key (arrow keyboard group)

Minus The MINUS sign key (-)

Next The NEXT PAGE key (navigation keyboard group)

Prior The PRIOR PAGE key (navigation keyboard group)

Return
The RETURN key (alphanumeric keypad, see
Note)

Right The RIGHT key (arrow keyboard group)

Space The SPACEBAR key

User interface | 1345

Accelerator Name Description

Tab The TABULATION Key

Up The UP key (arrow keyboard group)

Note: The "Enter" key represents the ENTER key available on the numeric keypad of standard
keyboards, while "Return" represents the RETURN key of the alphanumeric keyboard. By default,
the "accept" validation action is configured to accept both "Enter" and "Return" keys.

Accelerator key modifiers

All of the key names listed in the previous table can be combined with modifiers representing the Ctrl, Shift
and Alt keys.

The names to be used for the key modifiers are "Control-", "Shift-", and "Alt-", to be added as prefix
in accelerator name.

For example:

Control-P
Shift-Alt-F12
Control-Shift-Alt-Z

Table views
Describes how to program dialogs controlling record lists.

• Understanding tables views on page 1345
• Defining tables in the layout on page 1346
• Binding tables to arrays in dialogs on page 1349
• Controlling the total number of rows on page 1350
• Handling the current row on page 1352
• Controlling table rendering on page 1350
• Displaying column images on page 1354
• Defining actions on list columns with images on page 1355
• Built-in table features on page 1355
• Summary lines in tables on page 1360
• Defining the action for a row choice on page 1360
• Actions bound to the current row on page 1361
• Using tables on mobile devices on page 1362
• Populating a DISPLAY ARRAY on page 1372
• INPUT ARRAY row modifications on page 1377
• INPUT ARRAY temporary rows on page 1378
• DISPLAY ARRAY modification triggers on page 1380
• Cell color attributes on page 1380
• Multiple row selection on page 1381
• Examples on page 1383

• Example 1: Simple list view on page 1383

Understanding tables views
Table views define the graphical element to display a list of records.

The end user can navigate in the list to select a row or edit rows, according to the dialog controlling the
table.

User interface | 1346

If the front-end platform standards allow it, the user can resize the table, sort rows, move/resize/hide
columns, make multiple-row selections, search rows by criterion, and more.

Figure 82: Form with Table View (desktop front-end)

Tables views are controlled by a DISPLAY ARRAY or INPUT ARRAY instruction using a form screen-array
bound to a TABLE container.

You can customize the rendering and the behavior of table views with form attributes in the TABLE
container, and in the program using the dialog implementation.

Defining tables in the layout
Define table views in the LAYOUT section of the form definition file.

Desiging table views

When using a grid-based layout, the table rows and columns are defined within an area delimited by curly
braces. Columns are defined with item tags and form fields. Every column tag must be properly aligned.
You typically use a pipe character to separate the column tags.

A table definition using the TABLE layout item:

TABLE
{
[c1 |c2 |c3]
[c1 |c2 |c3]
[c1 |c2 |c3]
}
END

Alternatively, you can define a <TABLE > layout tags inside a GRID container, beside other layout tags:

GRID
{
<GROUP g1 >

User interface | 1347

[f1]
[f2]
[]
< >
<TABLE t1 >
[c1 |c2 |c3]
[c1 |c2 |c3]
[c1 |c2 |c3]
< >
}
END

Important: Avoid Tab characters (ASCII 9) inside the curly-brace delimited area. If used, Tab
characters are replaced with 8 blanks at compilation with fglform.

The position of the item tags is detected by the form compiler to build the table. Column item types (widget
to be used) and behavior are defined with form items in the ATTRIBUTES section:

ATTRIBUTES
EDIT c1 = customer.cust_id;
EDIT c2 = customer.cust_name;
EDIT c3 = customer.cust_address;
END

When using a stack-based layout, table views are defined with the TABLE stack item inside a STACK
container. In this case, position/size and behavior are defined at a single place:

LAYOUT
 STACK
 TABLE t1(UNMOVABLECOLUMNS)
 EDIT customer.cust_id;
 EDIT customer.cust_name;
 EDIT customer.cust_address;
 END
 END
END

Controlling the size of the table

In a grid-based container, the default width and height of a table are defined by the columns and the
number of lines used in the table layout respectively. In a stack-based container,

You can overwrite the default table by specifying the WIDTH and HEIGHT attributes.

TABLE t1 (WIDTH = 5 COLUMNS, HEIGHT = 10 LINES)

Defining column titles

The TABLE layout item definition can contain column titles as well as the tag identifiers for each column's
form fields. The fglform form compiler can associate column titles in the table layout with the form field
columns if they are aligned properly.

Note: At least two spaces are required between column titles.

TABLE
{
 Title1 Title2 Title3
[c1 |c2 |c3]
[c1 |c2 |c3]
[c1 |c2 |c3]

User interface | 1348

}
END

Alternatively, you can set the column titles of a table container by using the TITLE attribute in the definition
of the form fields. This allows you to use localized strings for the column titles.

TABLE
{
[c1 |c2 |c3]
[c1 |c2 |c3]
[c1 |c2 |c3]
}
END
...
ATTRIBUTES
EDIT c1 = customer.cust_id, TITLE=%"label.cust_id";
EDIT c2 = customer.cust_name, TITLE=%"label.cust_name";
EDIT c3 = customer.cust_address, TITLE=%"label.cust_address";
END

Similarly, in a stack item TABLE container, columns can get a TITLE attribute:

LAYOUT
 STACK
 TABLE t1(UNMOVABLECOLUMNS)
 EDIT customer.cust_id, TITLE=%"label.cust_id";
 EDIT customer.cust_name, TITLE=%"label.cust_name";
 EDIT customer.cust_address, TITLE=%"label.cust_address";
 END
 END
END

Height of table rows

The height of table rows can be defined with a grid-based layout by adding empty tags underneath column
tags (this makes sense only when using widgets that can get a height such as TEXTEDIT or IMAGE).

LAYOUT
TABLE
{
[c1 |c2]
[|]
[|]
}
END
END
ATTRIBUTES
EDIT c1=FORMONLY.key;
TEXTEDIT c2=FORMONLY.thetext;
END
...

In the above example, the second column is defined as a TEXTEDIT item type, that can get a height as a
number of grid cells. The height is defined by the number of item tags of the table row in the layout section
(height=3 in our example)

User interface | 1349

Binding tables to arrays in dialogs

Identifying list views in program dialogs

In list dialogs such as the INPUT ARRAY or DISPLAY ARRAY, the screen array identifies the record list
element in the current form to be bound to the program array used by the dialog.

In the next example, the INPUT ARRAY uses the custlist screen array of the form, and binds the
custarr program ARRAY with:

INPUT ARRAY custarr FROM custlist.*

The screen array members will be associated to the program array record members by position. The order
and number of the screen array elements matters, because these are bound by position to the members
the program array. The position of the TABLE columns, however, can differ from the members of the
screen array and program array.

To omit columns in the TABLE layout, yet include them in the definition of the screen array, and define the
columns as PHANTOM fields in the form definition file.

The program array can be defined from the database table definition with the DEFINE LIKE instruction:

DEFINE custarr DYNAMIC ARRAY OF RECORD LIKE customer.*

Note that the array is usually defined with a flat list of members with ARRAY OF RECORD / END
RECORD. However, the array can be structured with sub-records and still be used with a list dialog. This is
especially useful when you need to define arrays from database tables, and additional information needs
to be managed at runtime (for example to hold image resource for each row, to be displayed with the
IMAGECOLUMN attribute):

SCHEMA shop
DEFINE a_items DYNAMIC ARRAY OF RECORD
 item_data RECORD LIKE items.*,
 it_image STRING,
 it_count INTEGER
 END RECORD
...
DISPLAY ARRAY a_items TO sr.*
 ...

Defining screen arrays in grid-based layout TABLEs

When using a grid-based layout, the TABLE container is bound to a screen array defined in the
INSTRUCTION section, by the name of the form fields used in the screen array definition.

The column data type and additional column properties are defined in the ATTRIBUTES section as form
fields:

LAYOUT
...
TABLE
{
[c1 |c2 |c3]
[c1 |c2 |c3]
[c1 |c2 |c3]
[c1 |c2 |c3]
}
END
...

ATTRIBUTES

User interface | 1350

EDIT c1 = customer.cust_num;
EDIT c2 = customer.cust_name,
EDIT c3 = customer.cust_cdate;
...

Each form field of the table must be grouped in the INSTRUCTIONS section in a SCREEN RECORD
definition.

SCREEN RECORD custlist(cust_num, cust_name, cust_cdate);

Defining screen arrays in stack-based layout TABLEs

When using a stack-based layout, the TABLE stack item gets a identifier, which defines the screen array to
be used in programs:

LAYOUT
 STACK
 TABLE custlist (STYLE="regular")
 EDIT customer.cust_num;
 EDIT customer.cust_name,
 EDIT customer.cust_cdate;
 END
 END
END

This identified is mandatory for TABLE stack items.

Controlling table rendering
Table rendering can be controlled by the use of presentation styles and table attributes.

Current row rendering

By default, the current row in a TABLE is highlighted in display mode (DISPLAY ARRAY) but not in input
mode (INPUT ARRAY, CONSTRUCT). You can set decoration attributes of a table with a presentation style
of the Table class.

Table resize control

By default, tables can be resized in height. Use the WANTFIXEDPAGESIZE form file attribute to deny table
resizing.

Current row visibility after dialog execution

When the dialog controlling the table has finished, the current row may be deselected, depending on the
KEEP CURRENT ROW dialog attribute.

Controlling the total number of rows
Methods are provided to set and get the number of rows in a read-only or editable list of records.

Note: The DISPLAY ARRAY and INPUT ARRAY dialogs can use dynamic or static arrays.
Static arrays are supported for backward compatibility, consider using dynamic arrays for new
development.

User interface | 1351

Set the number of rows when using a static array

When using a static array in DISPLAY ARRAY or INPUT ARRAY, you must specify the actual number of
rows with the SET_COUNT() built-in function or with the COUNT dialog attribute. Both of them are only
taken into account when the interactive instruction starts.

DEFINE arr ARRAY[100] OF ...
... (fill the array with x rows)
CALL set_count(x)
DISPLAY ARRAY arr TO sa.*
 ...
END DISPLAY

When using multiple list subdialogs in a DIALOG block, the SET_COUNT() built-in function is unusable,
as it defines the total number of rows for all lists. The only way to define the number of rows when using a
static array in multiple dialogs is to use the COUNT attribute.

Consider using dynamic arrays instead of static arrays.

Set the number of rows when using a dynamic array

When using a dynamic array in DISPLAY ARRAY or INPUT ARRAY, the total number of rows is
automatically defined by the array variable (array.getLength()).

DEFINE arr DYNAMIC ARRAY OF ...
... (fill the array with x rows)
DISPLAY ARRAY arr TO sa.*
 ...
END DISPLAY

However, special consideration has to be taken when using the paged mode of DISPLAY ARRAY. In this
mode, the dynamic array only holds a page of the complete row set shown to the user: In paged mode, you
must specify the total number of rows with the ui.Dialog.setArrayLength() method.

Get the number of rows in a list

To get the current number of rows in a DISPLAY ARRAY or INPUT ARRAY, use either the
ui.Dialog.getArrayLength() or the ARR_COUNT() function.

The getArrayLength() method can be used inside or outside the context of the list dialog, as it takes
the screen array as parameter to identify the list dialog. For example, when implementing a DIALOG block
with two DISPLAY ARRAY subdialogs, you can query the number of rows of a list in the code block of
another list controller:

DIALOG ...
 DISPLAY ARRAY arr1 TO sa1.*
 ON ACTION check
 IF DIALOG.getArrayLength("sa2")] > 1 THEN
 ...
 END IF
 END DISPLAY
 DISPLAY ARRAY arr2 TO sa2.*
 END DISPLAY
END DIALOG

The ARR_COUNT() function must be used in the context of the DISPLAY ARRAY or INPUT ARRAY dialog,
or just after executing such dialog. For example, it can be used just after an INPUT ARRAY dialog, to get
the number of rows left in the list:

INPUT ARRAY arr FROM sa.*
 ...

User interface | 1352

END INPUT
IF NOT int_flag THEN
 FOR i=1 TO arr_count()
 ...
 END FOR
END IF

The ARR_COUNT() function returns the number of rows for the last executed dialog, until a new list dialog
is started.

Handling the current row
Query and control the current row in a read-only or editable list of records.

Get the current row

To query the current row of a list, use either the ui.Dialog.getCurrentRow() method or the
ARR_CURR() built-in function, according to the context.

The getCurrentRow() method can be used inside or outside the context of the DISPLAY ARRAY or
INPUT ARRAY dialog. The method takes the name of the screen array as the argument to identify the list.
For example, when implementing a DIALOG block with two DISPLAY ARRAY subdialogs, you can query
the current row of a list in the code block of the other list controller:

DIALOG ...
 DISPLAY ARRAY arr1 TO sa1.*
 ON ACTION check
 IF arr2[DIALOG.getCurrentRow("sa2")].value > 0 THEN
 ...
 END IF
 END DISPLAY
 DISPLAY ARRAY arr2 TO sa2.*
 END DISPLAY
END DIALOG

The ARR_CURR() function must be used in the context of the current DISPLAY ARRAY or INPUT ARRAY
dialog, or just after executing such a dialog. For example, when implementing modification triggers in a
DISPLAY ARRAY dialog, the current row and the current screen line can be queried respectively with the
ARR_CURR() and SCR_LINE() functions:

DISPLAY ARRAY arr TO sa.*
 ON UPDATE
 INPUT arr[arr_curr()].* WITHOUT DEFAULTS FROM sa[scr_line()].* ;
END DISPLAY

The ARR_CURR() function returns the current row index for the last executed dialog, until a new list dialog
is started.

Set the current row

To set the current row in a list controlled by a DISPLAY ARRAY or INPUT ARRAY, use the
ui.Dialog.setCurrentRow() method. This method takes the name of the screen array and the new
row index as parameters:

DISPLAY ARRAY p_items TO sa.*
 ...
 ON ACTION next_empty
 LET row = findEmptyRow(p_items)
 CALL DIALOG.setCurrentRow("sa", row)
 ...
END DISPLAY

User interface | 1353

Calling the DIALOG.setCurrentRow() method will not execute control blocks such as BEFORE ROW
and AFTER ROW, and will not set the focus. If you want to set the focus to the list, you must use the NEXT
FIELD instruction. This works with DISPLAY ARRAY as well as with INPUT ARRAY.

Tip: Use this method with care. Let the dialog handle normal navigation automatically, and jump to
a specific row only in the context of an ON ACTION block.

The FGL_SET_ARR_CURR() function can also be used. This function must be called in the context of the
current list having the focus.

Note: FGL_SET_ARR_CURR() triggers control blocks such as BEFORE ROW, while
DIALOG.setCurrentRow() does not trigger any control blocks.

Converting visual index to/from program array index

When the end user sorts rows in a table, the program array index (arr_curr()) may differ from the visual
row index (the row position as seen by the user).

The ui.Dialog class provides methods to convert between these contexts:

The ui.Dialog.arrayToVisualIndex on page 1796 method converts a program array index to a visual index.
It can be used, for example, to display a typical list position message (Row: current-row / total-rows). The
current row (arr_curr()/getCurrentRow()) is a program array index that must be converted to a visual index.
Note that you need to display such messages in the BEFORE ROW trigger and ON SORT trigger:

FUNCTION disp_row(d,n)
 DEFINE d ui.DIALOG, n STRING
 MESSAGE SFMT("Row: %1/%2",
 d.arrayToVisualIndex(n,d.getCurrentRow(n)),
 d.getArrayLength(n))
END FUNCTION
...
 DISPLAY ARRAY arr TO sr.*
 ...
 BEFORE ROW
 CALL disp_row(DIALOG,"sr")
 ON SORT
 CALL disp_row(DIALOG,"sr")
 ...
 END DISPLAY

The ui.Dialog.visualToArrayIndex on page 1815 method converts a visual index to a program array index.
It can be used for example to ask the user for a row position (visual index), and make that row current by
using DIALOG.setCurrentRow() after converting to the program array index:

DEFINE i INTEGER
...
DISPLAY ARRAY arr TO sr.*
 ...
 ON ACTION move_to
 PROMPT "Enter row index:" FOR i
 CALL DIALOG.setCurrentRow("sr", DIALOG.visualToArrayIndex("sr", i))
 ...
END DISPLAY

User interface | 1354

Displaying column images
You can use PHANTOM fields and the IMAGECOLUMN attribute to display images in a column, to the left of
the column value.

To display an image on the left of the column value in table views, define a PHANTOM field to hold the
image name, and bind it to a parent column with the IMAGECOLUMN attribute.

LAYOUT
TABLE
{
[c1 |c2]
[c1 |c2]
[c1 |c2]
}
END
END
ATTRIBUTES
PHANTOM FORMONLY.file_icon;
EDIT c1 = FORMONLY.file_name, IMAGECOLUMN=file_icon;
EDIT c2 = FORMONLY.file_size;
...
END
INSTRUCTIONS
SCREEN RECORD sr(FORMONLY.*);
END

The program code can then display the specified image with each row.

DEFINE arr DYNAMIC ARRAY OF RECORD
 file_icon STRING,
 file_name STRING,
 file_size INTEGER
 END RECORD
...
FOR x=1 TO max_files
 CASE file_type(arr[x].file_name)
 WHEN "file" LET arr[x].file_icon = "file"
 WHEN "dir" LET arr[x].file_icon = "folder"
 END CASE
END FOR
...
DISPLAY ARRAY arr TO sr.*
 ...
END DISPLAY

When images come from the database, these are typically fetched into BYTE variables. If the BYTE
variable is located in a file (LOCATE IN FILE), it can be bound to the IMAGECOLUMN field: The runtime
system will automatically display the image data. Note however that each BYTE element of the array must
be located in a distinct file. This can be done as follows:

DEFINE arr DYNAMIC ARRAY OF RECORD
 pic_num INTEGER,
 pic_data BYTE,
 pic_when DATETIME YEAR TO SECOND
 END RECORD
...
DECLARE c1 CURSOR FOR SELECT * FROM mypics
LET i=1
LOCATE arr[i].pic_data IN FILE
FOREACH c1 INTO arr[i].*
 LOCATE arr[i:=i+1].pic_data IN FILE
END FOREACH

User interface | 1355

CALL arr.deleteElement(i)
...

Defining actions on list columns with images
Columns in tables displaying images can trigger action events, when the user selects the image.

TABLE and TREE containers can define columns as IMAGE field, to display pictures or icons. By default,
these table cells are not clickable. When you define an ACTION attribute for a table column defined as
IMAGE, the action event will fire when the image is selected (with a mouse click, for example). Note that
this note apply to the IMAGECOLUMN concept, which is rather a column decoration.

Important: When selecting an image, the current row may change as when selecting a new row in
the table.

The following example defines a TABLE with two IMAGE columns, and attaches the update and delete
actions:

LAYOUT
TABLE
{
[c1 |c2 |i1|i2]
[c1 |c2 |i1|i2]
[c1 |c2 |i1|i2]
}
END
END
ATTRIBUTES
EDIT c1 = FORMONLY.id, TITLE="Id", NOENTRY;
EDIT c2 = FORMONLY.name, TITLE="Name";
IMAGE i1 = FORMONLY.i_modify, ACTION=update;
IMAGE i2 = FORMONLY.i_delete, ACTION=delete;
END
INSTRUCTIONS
SCREEN RECORD sr(FORMONLY.*);
END

In the program code, use a dialog instruction to implement the action handlers for the image actions. For
example, you can define a DISPLAY ARRAY with ON UPDATE and ON DELETE list modification triggers
that will respectively create the update and delete actions:

DISPLAY ARRAY arr TO sr.*
 ON UPDATE
 -- user code
 ON DELETE
 -- use code
END DISPLAY

Built-in table features
Several implicit list handling features are provided by table views.
Columns layout
By default, a user can position, hide, show, and resize columns in TABLE and TREE containers.

Important: This feature is not supported on mobile platforms.

Resizing columns

By default, columns can be resized. On desktop front-ends, the user can drag the right edge of a column
header to increase or decrease the width of the column.

To deny column resizing for all columns in a table, add the UNSIZABLECOLUMNS attribute to the TABLE or
TREE container.

User interface | 1356

To deny column resizing for an individual column, add the UNSIZABLE attribute to the form field definition
for that column.

Hiding/showing columns

By default, the user can control the visibility of columns. On desktop front-ends, a user right-clicks on a
column header to get a contextual menu that allows to show/hide columns.

To deny the column visibility option for all columns in a table, add the UNHIDABLECOLUMNS attribute to the
TABLE or TREE container.

To deny the column visibility option for an individual column, add the UNHIDABLE attribute to the form field
definition for that column.

To hide a column initially but allow column visibility, set the HIDDEN attribute with the value USER in the
form field definition for that column. This hides the column by default, and lets the user show the column if
needed.

Changing column positions

By default, columns can be moved around. On desktop front-ends, a user can rearrange columns by
dragging the column header to a different position.

To deny this option, add the UNMOVABLECOLUMNS attribute to the TABLE or TREE container.

To deny this option for an individual column, add the UNMOVABLE attribute to the form field definition for
that column.

List ordering
List controllers implement a built-in sort. This feature can be disabled if not required.

When a DISPLAY ARRAY or INPUT ARRAY block is combined with a TABLE container, the row sorting
feature is implicitly available. Row sorting is supported on TREE containers with DISPLAY ARRAY dialogs
only.

Important: This feature is not supported on mobile platforms.

To sort rows in a list, the user must click on a column header of the table. Clicking on a table column
header triggers a GUI event that instructs the runtime system to reorder the rows displayed in the list
container.

In fact, the rows are only sorted from a visual point of view; the data rows in the program array (the model)
are left untouched. Therefore, when rows are sorted, the visual position of the current row might be
different from the current row index in the program array.

To sort rows, the runtime system uses the standard collation order of the system, following the current
locale settings. As result, the rows might be ordered a bit differently than when using the database server
to sort rows (with an ORDER BY clause of the SELECT statement), since database servers can define their
own collation sequences to sort character data.

The built-in sort is enabled by default. To prevent sorting in a TABLE or TREE containers, defined the
UNSORTABLECOLUNMS attribute at the list container level, or set the UNSORTABLE attribute at the column/
field level. As rows can be created and modified during an INPUT ARRAY instruction, you may want to use
the UNSORTABLECOLUMNS attribute for tables controlled by INPUT ARRAY.

To execute code after a sort was performed, use the ON SORT interaction block in the dialog, for example
to display the current row position with ui.Dialog.arrayToVisualIndex on page 1796.

The sorting feature is disabled when using the paged mode of DISPLAY ARRAY, because not all result set
rows are known by the runtime system in this mode. However, it is possible to detect a sort request from
the user with the ON SORT trigger. You can then re-execute the SQL query with a new sort order. For more
details, see Populating a DISPLAY ARRAY on page 1372.

User interface | 1357

When an application window is closed, the selected sort column and order is stored by the front-end in the
user settings database of the system (for example, on Windows™ platforms it's the registry database). The
sort will be automatically re-applied the next time the window is created. This way, the rows will appear
sorted when the program restarts. The saved sort column and order is specific to each list container.

Find function
List controllers implement a built-in find. This feature can be disabled if not required.

The DISPLAY ARRAY and INPUT ARRAY block blocks support the built-in find feature by default.

Important: This feature is not supported on mobile platforms.

This feature works with any list container (TABLE, TREE, SCROLLGRID).

The built-in find creates the implicit "find" and "findnext" actions. These actions can be decorated, enabled
and disabled as regular actions.

When the user triggers the "find" action (default accelerator is Ctrl-F), the dialog opens a popup window
to let the user enter a search value. On validation with the OK button, the dialog starts to search a row
where a field value matches the value entered in the find dialog. The "find" action starts the search from
the current row. After a first search, the user can trigger the "findnext" action (default accelerator is Ctrl-
G), in order to continue the search in the rest of the record list, without opening the find dialog again (the
current search value will be reused).

By default, any table column is scanned, but the user can select a specific column in the find dialog box, as
long as a column title is available. Case-sensitive or insensitive search as well as wraparound options are
also available.

The value entered in the find dialog is compared to all fields of visible columns, except columns of the type
TEXT or BYTE. The comparison is based on the formatted value. For example, a MONEY column will display
values formatted with the currency symbol. To match values in that column, the user must enter exactly
the same value (i.e. with the currency symbol and the correct decimal separator). When using COMBOBOX
fields, the find searches in the visible values of combobox items.

Only text widgets displaying values are searched. Columns using widgets such as images, radio-groups,
checkboxes are not searched. Further, the find function ignores PHANTOM fields, hidden fields and fields
defined with the INVISIBLE attribute.

Only rows in memory can be searched. When using the paged-mode (ON FILL BUFFER), the built-in
search is disabled. When implementing dynamic tree views , the built-in find will only search the tree nodes
available in the program array.

If the dialog defines an explicit ON ACTION find or ON ACTION findnext, the default built-in find is
disabled.

Keyboard seek
The keyboard seek feature allows a user to find a row in a read-only list, by typing characters.

During a DISPLAY ARRAY, when the user types alphabetic characters on the keyboard, the runtime
system will automatically seek to the next row having a character field that contains a value starting with
the typed characters. The seek search restarts from the current row when the user types a new characters
on the keyboard.

Important: This feature is not supported on mobile platforms.

This feature works with any list container (TABLE, TREE, SCROLLGRID).

Numeric, date/time and large data (TEXT/BYTE) columns are ignored. Only character columns are
searched, fields using widgets like image, radio-group or checkbox are ignored. Further, the seek function
ignores PHANTOM fields, hidden fields and fields defined with the INVISIBLE attribute.

User interface | 1358

The user can rapidly type several characters on the keyboard, to search for a value that starts with the
typed characters. After a given timeout (less than a second), the seek buffer is cleared and a new search
filter can be taken into account.

The seek search is case-insensitive.

If no row could be found from the typed characters, the [Not found] error -8105 will be displayed
automatically.

If an alphabetic character is used as action accelerator, the built-in seek feature is disabled, because the
accelerator must fire the corresponding action.

Only rows in memory can be searched. When using page-mode (ON FILL BUFFER), the built-in seek
is disabled. When implementing dynamic tree views, the built-in seek will only search the tree nodes
available in the program array.

By default, any character column of the list is scanned. But if the list gets sorted, the runtime system
considers that the sort column is the most important and searches only in that column.

Reduce filter
The reduce filter allows a user to reduce the row set in a read-only list according to a filter.

When using a DISPLAY ARRAY with a TABLE container, and if the front-end supports filter search facility,
the user can enter a criterion in that search field, to show only the rows matching the content of the filter.

Important: This feature is only for mobile platforms.

The filter search is case-insensitive.

The value entered in the filter field is compared to all fields of visible columns, except columns of the type
TEXT or BYTE. The comparison is based on the formatted value. For example, a MONEY column will display
values formatted with the currency symbol. To match values in that column, the user must enter exactly
the same value (i.e. with the currency symbol and the correct decimal separator). When using COMBOBOX
fields, the find searches in the visible values of combobox items.

Only text widgets displaying values are searched. Columns using widgets such as images, radio-groups or
checkboxes are not searched. The filter function ignores PHANTOM fields, hidden fields and fields defined
with the INVISIBLE attribute.

Only rows in memory can be searched. When using page-mode (ON FILL BUFFER), the built-in filter is
disabled. When implementing dynamic tree views, the built-in filter will only search the tree nodes available
in the program array.

If the rows are filtered (i.e. some value is present in the search field), any non-rowbound action is disabled.
On iOS, the action bar is replaced by the search bar.

The list filter is typically used on mobile devices for full-screen list views.

Figure 83: iOS list view with filter field

User interface | 1359

Figure 84: Android™ list view with filter field

User interface | 1360

Summary lines in tables
Table views can display a summary line, to show aggregate values for columns.

To get a summary line in a table, define AGGREGATE fields at the bottom of the TABLE container, with the
corresponding form item definition in the INSTRUCTION section.

Important: This feature is not supported on mobile platforms.

Define the type of the aggregate field with the AGGREGATETYPE attribute: The aggregate value can be
automatically computed, or set by program.

To get a global label for the summary line, specify the AGGREGATETEXT attribute at the TABLE level. This
aggregate label will appear on the left in the summary line, if no aggregate text is defined at the aggregate
field level.

To decorate the summary line, use presentation style attributes such as summaryLineAlwaysAtBottom.

The next example defines a "total" aggregate field for the third column of the table:

TABLE (AGGREGATETEXT="Total")
{
 [c1 |c2 |c3]
 [c1 |c2 |c3]
 [total]
}
END
...
ATTRIBUTES
...
AGGREGATE total = FORMONLY.total, AGGREGATETYPE=PROGRAM;
...

For details, see AGGREGATE item definition on page 933.

Defining the action for a row choice
The row choice in the DISPLAY ARRAY dialog can be associated with a dedicated action.

When using a DISPLAY ARRAY dialog to control a table view with a graphical front-end, by default, a
double-click on a row (for a desktop client), or a tap on a row (for mobile clients) has the following behavior:

• On a desktop front-end, by default, a mouse double-click changes the current row, and fires the
"accept" action if available. If the default accept action is fired, the dialog will end, except if the accept
action has been disabled or was over-written by a ON ACTION accept handler. This default behavior
fits most of the record list of a desktop application, where the main purpose is to let the user choose a
row from the list.

• On a mobile devices, by default, a tap on a row changes the current row only. This corresponds to a
single mouse click on a desktop front-end, and therefore does not fire the "accept" action by default. If a
tap must fire the accept action, define the DOUBLECLICK attribute.

In order to detect the physical event when the user chooses a row with a double-click on desktop clients
and tap on mobile clients, define the DOUBLECLICK attribute of DISPLAY ARRAY dialogs to fire an action
handler block (ON ACTION double-click-action-name):

DISPLAY ARRAY arr TO sr.*
 ATTRIBUTES(UNBUFFERED, DOUBLECLICK=select)
 ON ACTION select
 MESSAGE "myselect:", arr_curr()
END DISPLAY

If the DOUBLECLICK attribute is defined, it will only configure the action for the double-click or tap physical
event: By default, the accept action is still available, and the [Ok] button or the [Return] key will still fire

User interface | 1361

the accept action and leave the dialog. To avoid the default accept action, add ACCEPT=FALSE to the
DISPLAY ARRAY attribute list:

DISPLAY ARRAY arr TO sr.*
 ATTRIBUTES(UNBUFFERED, DOUBLECLICK=select, ACCEPT=FALSE)
 ON ACTION select
 MESSAGE "myselect:", arr_curr()
END DISPLAY

Note that if the selected row is not the current row, any defined AFTER ROW and BEFORE ROW control
blocks execute before the ON ACTION block. The code blocks execute in the following order:

1. AFTER ROW (for the previous current row)
2. BEFORE ROW (for the new current row)
3. ON ACTION double-click-action

When defining a DOUBLECLICK action, you declare an explicit action view, and no default action view will
be displayed for this action (except if you explicitely force it with DEFAULTVIEW=YES).

The double-click action can also be defined as TABLE/TREE attribute in form files. DOUBLECLICK in
DISPLAY ARRAY attributes has a higher precedence as DOUBLECLICK in the form file. For more details,
see DOUBLECLICK attribute on page 962.

Actions bound to the current row
Actions can be configured with the ROWBOUND attribute to depend from the current row.

When using a DISPLAY ARRAY or INPUT ARRAY dialog to control a table view, actions can get the
ROWBOUND attribute in order to make the action only available when there is a current row in the list.

Important: This feature is only for mobile platforms.

The ROWBOUND attribute must only be used with TABLE and TREE containers (it does not make sense for
SCROLLGRID and static lists in GRID containers).

This attribute is generally used in mobile applications, when a list view requires actions to be decorated
in a row-specific way. For example, on Android™ devices, the actions with the ROWBOUND attribute will be
available by selecting the three-dot button on the right of each list view cell.

In the next example, the DISPLAY ARRAY dialog implements three actions:

• The "refresh" action is not "rowbound", and will always be available (i.e. active/visible), even if the list is
empty.

• The "check" action is rowbound, and will only be available if there is a (current) row in the list.
• The "delete" action created by the ON DELETE modification trigger is implicitely "rowbounded".

DISPLAY ARRAY a_orders TO sr.* ATTRIBUTES(UNBUFFERED)
 ...
 ON ACTION refresh -- not rowbound
 CALL fetch_orders()
 ON ACTION check ATTRIBUTES(ROWBOUND)
 CALL check_order(arr_curr())
 ON DELETE -- implicitly rowbound
 CALL delete_order(arr_curr())
 ...
END DISPLAY

User interface | 1362

Using tables on mobile devices
Table views render in a specific way on mobile devices, in order to take advantage of mobile device
ergonomics.
Unsupported table features
Some table / list view features are not supported on mobile devices.

The list view features not supported on mobile devices include:

• Multiple row selection on page 1381
• Summary lines in tables on page 1360
• List ordering on page 1356
• Find function on page 1357
• Keyboard seek on page 1357
• Columns layout on page 1355
• Drag & drop on page 1411

Note also that there are no column headers/titles in mobile list views.

Two-column display
On mobile devices, a TABLE container displays as a list view with the first two columns' content.

While a TABLE container and the corresponding list controller (DISPLAY ARRAY) can define multiple
columns, only the first two columns are rendered on a mobile device. The first column defines the main
information to be shown for the row (such as a customer name), while the second column contains
additional information (such as a comment, date, address or phone number).

Figure 85: iOS list view with two-column default rendering

User interface | 1363

If the second column contains numeric data or has the JUSTIFY=RIGHT attribute, both columns display on
a single line with the first column left-aligned and the second column right-aligned.

Figure 86: iOS list view with side-by-side rendering

A list view on a mobile device can include an image for each row. To display an image, associate a
PHANTOM column to the IMAGECOLUMN attribute of the first column definition. For more details about
images in lists, see Displaying column images on page 1354.

Figure 87: iOS list view with row images

User interface | 1364

Full and Embedded list views
On mobile devices, table views are displayed as either full screen lists or embedded lists, according to the
layout definition.

Full list view

A full list view displays when the table is the only element in a form.

LAYOUT
TABLE
{
[c1 |c2]
}
END
END

Figure 88: iOS full list view rendering

User interface | 1365

Embedded list view

An embedded list view displays when the table is mixed with other form elements. All rows of the table are
shown. Scrolling is not possible.

Tip: With an embedded list view, consider limiting the number of rows in the program array.

In this example, the table is inside a GRID container:

LAYOUT
GRID
{
<GROUP g1 >
 Id: [f1]
 Name: [f2]
< >
<GROUP g2 >
 <TABLE t1 >
 [c1 |c2]
 [c1 |c2]
 [c1 |c2]
 < >
< >
}
END
END

Figure 89: iOS embedded list view rendering

User interface | 1366

The DOUBLECLICK (tap) action
On mobile devices, the DOUBLECLICK attribute defines the action to fire when a row is tapped.

By default, no action is fired on mobile devices when the user taps on a row. To fire a dedicated action,
add the DOUBLECLICK attribute to the DISPLAY ARRAY dialog and define an ON ACTION action handler.

DISPLAY ARRAY arr TO sr.*
 ATTRIBUTES(DOUBLECLICK=row_select)
 ON ACTION row_select
 CALL process_row(arr_curr())
...

Alternatively, you can add a DOUBLECLICK attribute to your TABLE definition in your form file.

Tip: We recommend you specify the DOUBLECLICK attribute with the DISPLAY ARRAY dialog, as
it is strongly related to the DISPLAY ARRAY dialog.

Note:

• On Android™ devices, a long tap on a row only selects the row. The DOUBLECLICK action is not
fired.

• For iOS devices, consider using list view decoration options, as described in Row configuration
on iOS devices on page 1369.

User interface | 1367

Rowbound actions
A rowbound action specifies an action to apply to the selected row. Rowbound actions get specific
rendering and behavior on mobile devices.

Rowbound actions are action defined with the ROWBOUND action attribute in ON ACTION handlers.
Rowbound actions can also be default actions that are implicitly related to the current row, such as the
"delete" action.

DISPLAY ARRAY arr TO sr.*
 ...
 ON ACTION clear_list -- not rowbound
 ...
 ON ACTION copy_row ATTRIBUTES(ROWBOUND, TEXT="Copy row")
 ...
 ON ACTION check_row ATTRIBUTES(ROWBOUND, TEXT="Check row")
 ...
 ON DELETE -- implicitly rowbound
 ...

Genero Mobile for Android™ (GMA)

On Android 4 devices, when rowbound actions are defined, each row of a list view shows the three-
dot indicator. Tap this icon to bring up a row context menu with options to execute the corresponding
rowbound actions. Swipe the row from the right to the left to fire the delete action, it defined.

Figure 90: Android list view with rowbound actions

Genero Mobile for iOS (GMI)

On iOS 7 devices, when you swipe your finger from right to left, More… and/or Delete icons show up in
the row. Tap More... to bring up a list of rowbound actions to execute. Tap Delete to fire the corresponding
delete action code.

User interface | 1368

Figure 91: iOS list view with rowbound actions

Close, accept and cancel actions
The default rendering of the close, accept and cancel actions with a list view depends on the mobile
device.

A DISPLAY ARRAY dialog implements the "close", "accept", and "cancel" actions by default. When using
a full list view, these actions are default action views. The rendering of these actions vary according to the
type of mobile device. The accept and cancel buttons typically show up on the top of the list view.

For more details, see Rendering default action views on mobile on page 1279.

User interface | 1369

Row configuration on iOS devices
On iOS devices, table views can be configured to use specific row decorations.

Note: The features described in this topic are provided for iOS devices. The decoration attributes
are ignored by Genero Mobile for Android™ (GMA)

The ACCESSORYTYPE attribute

On iOS devices, the ACCESSORYTYPE attribute used in the DISPLAY ARRAY dialog ATTRIBUTES clause
defines the type of icon that appears at the right side of each row.

Possible values for the ACCESSORYTYPE attribute are:

• CHECKMARK

• DETAILBUTTON

• DISCLOSUREINDICATOR

For more details about the ATTRIBUTES syntax, see Syntax of DISPLAY ARRAY instruction on page
1076.

Checkmark

When using ACCESSORYTYPE=CHECKMARK, the current row gets a check mark icon on the right hand side.

This decoration is typically used to get a visual indicator for the current row, so the user knows what row
will be selected when the DISPLAY ARRAY dialog is validated with an accept (Done) action:

DISPLAY ARRAY arr TO sr.*
 ATTRIBUTES(ACCESSORYTYPE=CHECKMARK)
 ...

Figure 92: iOS list view with checkmark

User interface | 1370

To customize the application, define the color of the checkmark with the iosTintColor Window-class
style attribute.

Detail button

When using ACCESSORYTYPE=DETAILBUTTON, each row gets a (i) icon on the right-hand side.

To specify what action must be fired when the user taps on the (i) icon, define the DETAILACTION in the
DISPLAY ARRAY attributes, and its corresponding ON ACTION handler.

By opening a new window when in the detail action code, a tap on the icon shifts the current window from
right to left, to show the new screen.

When tapping on another part of a row, by default, the row becomes then new current row. To follow
typical iOS standards, you should also define a DOUBLECLICK with its corresponding ON ACTION handler,
to handle current row selection with a dedicated action. If tapping on any part of a row should open a detail
form, use the DISCLOSUREINDICATOR solution instead of DETAILBUTTON.

When selecting a different row, the AFTER ROW / BEFORE ROW control blocks are executed before the
detail action or double-click action.

DISPLAY ARRAY arr TO sr.*
 ATTRIBUTES(ACCESSORYTYPE=DETAILBUTTON,
 DETAILACTION=edit_details,
 DOUBLECLICK=select_row)
 ...
 ON ACTION edit_details
 OPEN WINDOW w_details WITH FORM "details"
 INPUT BY NAME arr[i].*
 ...
 END INPUT
 CLOSE WINDOW w_details
 ON ACTION select_row
 ...

User interface | 1371

Figure 93: iOS list view with detail button

To customize the application, define the color of the disclosure indicator with the iosTintColor Window-
class style attribute.

Disclosure indicator

When using ACCESSORYTYPE=DISCLOSUREINDICATOR, each row gets a > gray chevron at the right of
each row. This decoration is typically used when tapping the button brings up a list of more choices related
to the current row, or to open a detail form to modify the list element.

To execute code when a tapping on a row, define the DOUBLECLICK attribute and its corresponding ON
ACTION handler.

By opening a new window when in the detail action code, a tap on a row shifts the current window from
right to left, to show the new screen.

When selecting a different row, the AFTER ROW / BEFORE ROW control blocks are executed before the
double-click action.

DISPLAY ARRAY arr TO sr.*
 ATTRIBUTES(ACCESSORYTYPE=DISCLOSUREINDICATOR,
 DOUBLECLICK=row_select)
 ...
 ON ACTION row_select
 MENU "Options" ATTRIBUTES(STYLE="dialog")
 COMMAND "Refresh"
 ...
 COMMAND "Duplicate"
 ...
 COMMAND "Compress"
 ...
 COMMAND "Refresh"
 ...

User interface | 1372

 COMMAND "Synchronize"
 ...
 END MENU
 ...

Figure 94: iOS list view with disclosure indicator

Populating a DISPLAY ARRAY
The program array must be filled with rows to populate the DISPLAY ARRAY dialog.

With DISPLAY ARRAY, either full list mode or paged mode is used to fill the form array. Consider using full
list mode for short/medium result sets, and use paged mode for very large result sets.

Full list mode of DISPLAY ARRAY
In order to handle short/medium result sets, use the full list mode of DISPLAY ARRAY.

Understanding the full list mode

In full list mode, DISPLAY ARRAY uses a complete copy of the result set to be displayed in the form array.
The full list mode is typically used for a short or medium row set (10 - 100 rows).

In full list mode, the DISPLAY ARRAY instruction uses a static or dynamic program array defined with a
record structure corresponding to (or to a part of) a screen-array in the current form.

The program array is filled with data rows before DISPLAY ARRAY is executed, typically with a FOREACH
loop when rows come from the database.

User interface | 1373

Figure 95: Full list mode in DISPLAY ARRAY diagram

Consider using a dynamic array instead of a static array: By using a dynamic array the program will only
use the required memory resources, and the dialog will automatically detect the number of rows from the
dynamic array (array.getLength())

Full list mode example

The following example implements a DISPLAY ARRAY in its simpler form: A dynamic array is filled with
database rows and contains the whole result set to be displayed in the table:

MAIN
 DEFINE arr DYNAMIC ARRAY OF RECORD
 id INTEGER,
 fname CHAR(30),
 lname CHAR(30)
 END RECORD
 DEFINE i INTEGER

 DATABASE stores

 OPEN FORM f1 FROM "custlist"
 DISPLAY FORM f1

 DECLARE c1 CURSOR FOR
 SELECT customer_num, fname, lname FROM customer
 LET i=1
 FOREACH c1 INTO arr[i].*
 LET i = i+1
 END FOREACH
 CALL arr.deleteElement(i)

 DISPLAY ARRAY arr TO sa.* ATTRIBUTES(UNBUFFERED)
 BEFORE ROW
 MESSAGE "Moved to row ", arr_curr()
 END DISPLAY

END MAIN

User interface | 1374

Paged mode of DISPLAY ARRAY
In order to handle very large result sets, use the paged mode of DISPLAY ARRAY.

Understanding the paged mode

The paged mode of DISPLAY ARRAY allows the program to display a very large number of rows, without
copying all database rows into the program array.

This mode uses the ON FILL BUFFER data block to let the program populate the array with the current
visible page of rows. This is a subset of the database query result set (SELECT), typically controlled by a
scrollable cursor.

Figure 96: Paged mode diagram

Note: DISPLAY ARRAY has following contraints when using the paged mode:

• By default, row sorting is not allowed: Implement an ON SORT trigger to handle list sorting,
• Multi-range selection is not supported, if the paged mode uses an undefined number of rows

(COUNT=-1),
• To fill a tree view dynamically, use the ON EXPAND / ON COLLAPSE data blocks.

Paged mode programming details

In paged mode, the dynamic array holds a page of rows, not all rows of the result set. The data rows are
provided throught the ON FILL BUFFER block, by filling a dynamic array with the rows of the current
page.

The ON FILL BUFFER clause is used to fill a page of rows in the dynamic array, according
to a row offset and the number of rows required in the page. The row offset is defined by the
FGL_DIALOG_GETBUFFERSTART() built-in function, and the number of rows to provide is defined by the
FGL_DIALOG_GETBUFFERLENGTH() built-in function.

Note: The ON FILL BUFFER is triggered when all the user code is executed and the dialog
gets the control back, this means that the fill clause is not immediately fired when calling
DIALOG.setArrayLength().

If known, specify the total number of rows with the COUNT attribute in the ATTRIBUTES clause
of DISPLAY ARRAY. The total number of rows can be changed during dialog execution with the
ui.Dialog.setArrayLength() method. In singular DISPLAY ARRAY instructions, you define the
total number of rows of a paged mode with the SET_COUNT() built-in function or the COUNT attribute. But

User interface | 1375

these are only taken into account when the dialog starts. If the total number of rows changes during the
execution of the dialog, the only way to specify the number of rows is DIALOG.setArrayLength().

If the total number of rows is not known before starting the DISPLAY ARRAY dialog, set COUNT=-1.
The dialog will then query for rows until the end of the result set is reached. The end of the result set
is detect when the number of rows provided in ON FILL BUFFER are less then the number of rows
asked by the dialog, or if you reset the total number of rows to a value higher value as -1 with the
ui.Dialog.setArrayLength() method. Note that the dialog cannot support multi-row selection when
the total number of rows is undefined.

It is not possible to use treeview decoration when the dialog uses the paged mode: For treeviews, the
dialog needs the complete set of open nodes with parent/child relations to handle the tree view display.
With the paged mode only a short window of the dataset is known by the dialog. If you use a tree view with
a paged mode DISPLAY ARRAY, the program will raise an error at runtime.

A typical paged DISPLAY ARRAY implementation consists of a scroll cursor providing the list of records to
be displayed. Scroll cursors use a static result set. If you want to display fresh data, you can implement an
advanced paged mode by using a scroll cursor that provides the primary keys of the referenced result set,
plus a prepared cursor to fetch rows on demand in the ON FILL BUFFER clause. In this case you may
need to check whether a row still exists when fetching a record with the second cursor.

Paged mode basic example

The following example shows a DISPLAY ARRAY implementation using a scroll cursor to fill pages of
records in ON FILL BUFFER, specifying an undefined number of rows (COUNT=-1).

MAIN
 DEFINE arr DYNAMIC ARRAY OF RECORD
 id INTEGER,
 fname CHAR(30),
 lname CHAR(30)
 END RECORD
 DEFINE cnt, ofs, len, row, i INTEGER

 DATABASE stores

 OPEN FORM f1 FROM "custlist"
 DISPLAY FORM f1

 DECLARE c1 SCROLL CURSOR FOR
 SELECT customer_num, fname, lname FROM customer
 OPEN c1

 DISPLAY ARRAY arr TO sa.* ATTRIBUTES(COUNT=-1)
 ON FILL BUFFER
 CALL arr.clear()
 LET ofs = fgl_dialog_getBufferStart()
 LET len = fgl_dialog_getBufferLength()
 LET row = ofs
 FOR i=1 TO len
 FETCH ABSOLUTE row c1 INTO arr[i].*
 IF SQLCA.SQLCODE!=0 THEN
 CALL DIALOG.setArrayLength("sa",row-1)
 EXIT FOR
 END IF
 LET row = row + 1
 END FOR
 ON ACTION ten_first_rows_only
 CALL DIALOG.setArrayLength("sa", 10)
 END DISPLAY

END MAIN

User interface | 1376

Paged mode with sorting feature

To implement row sorting in a DISPLAY ARRAY using paged mode, use the ON SORT trigger
to detect a sort request, get the sort information with the ui.Dialog.getSortKey on page 1802 /
ui.Dialog.getSortReverse on page 1802 methods, and re-execute the SQL query to sort rows accordingly
with an ORDER BY clause. The ON SORT trigger will be fired before the ON FILL BUFFER trigger:

MAIN
 DATABASE test1
 OPEN FORM f1 FROM "custlist"
 DISPLAY FORM f1
 CALL show_list()
END MAIN

FUNCTION execute_sql(order_by)
 DEFINE order_by STRING
 DEFINE sql STRING
 IF order_by IS NULL THEN
 LET order_by = "ORDER BY fname"
 END IF
 LET sql = "SELECT customer_num, fname, lname FROM customer ", order_by
 DECLARE c1 SCROLL CURSOR FROM sql
 OPEN c1
END FUNCTION

FUNCTION show_list()
 DEFINE arr DYNAMIC ARRAY OF RECORD
 id INTEGER,
 fname VARCHAR(30),
 lname VARCHAR(30)
 END RECORD
 DEFINE cnt, ofs, len, row, i INTEGER,
 key STRING, rev BOOLEAN

 CALL execute_sql(NULL)
 DISPLAY ARRAY arr TO sa.* ATTRIBUTES(COUNT=-1)
 ON SORT
 LET key = DIALOG.getSortKey("sa")
 LET rev = DIALOG.isSortReverse("sa")
 IF key IS NULL THEN
 CALL execute_sql(NULL)
 ELSE
 -- Assuming that form field names match table column names
 CALL execute_sql("ORDER BY " || key || IIF(rev," DESC"," "))
 END IF
 ON FILL BUFFER
 CALL arr.clear()
 LET ofs = fgl_dialog_getBufferStart()
 LET len = fgl_dialog_getBufferLength()
 LET row = ofs
 FOR i=1 TO len
 FETCH ABSOLUTE row c1 INTO arr[i].*
 IF SQLCA.SQLCODE!=0 THEN
 CALL DIALOG.setArrayLength("sa",row-1)
 EXIT FOR
 END IF
 LET row = row + 1
 END FOR
 END DISPLAY

END FUNCTION

User interface | 1377

Note that with the above example, the current row remains at the same position: When the table is sorted,
the set of rows provided in the ON FILL BUFFER may not include the database row that was the current
row before the sort.

To track the current row, store the primary key value of the current row before re-executing the query.
After query execution, scan the cursor result set and perform a DIALOG.setCurrentRow() when the
primary key of the current row is found. The current row might be outside the row set provided in ON FILL
BUFFER. In order to make setCurrentRow() work properly, you have to count the total number of rows
before the DISPLAY ARRAY:

 ...
 DEFINE cnt, ofs, len, row, i INTEGER,
 key STRING, rev BOOLEAN,
 row_count, curr_id, last_id INTEGER

 ...

 SELECT COUNT(*) INTO row_count FROM customer

 CALL execute_sql(NULL)
 DISPLAY ARRAY arr TO sa.* ATTRIBUTES(COUNT=row_count)
 ON SORT
 LET row = DIALOG.getCurrentRow("sa")
 FETCH ABSOLUTE row c1 INTO last_id
 LET key = DIALOG.getSortKey("sa")
 LET rev = DIALOG.isSortReverse("sa")
 IF key IS NULL THEN
 CALL execute_sql(NULL)
 ELSE
 -- Assuming that form field names match table column names
 CALL execute_sql("ORDER BY " || key || IIF(rev," DESC"," "))
 END IF
 LET row=1
 WHILE TRUE
 FETCH c1 INTO curr_id
 IF SQLCA.SQLCODE==100 THEN
 ERROR "Last current row disappeared from result set!"
 EXIT PROGRAM 1
 END IF
 IF curr_id == last_id THEN
 CALL DIALOG.setCurrentRow("sa",row)
 EXIT WHILE
 END IF
 LET row = row+1
 END WHILE
 ON FILL BUFFER
 ...

INPUT ARRAY row modifications
Controlling row creation and deletion in an editable record list.

The INPUT ARRAY instruction handles record list edition. This controller allows the user to directly edit
existing rows and to create or remove rows with implicit actions.

The following implicit actions are created by default by the INPUT ARRAY dialog:

• insert: creates a new row before the current row. If there are no rows in the list, the action adds a
new row.

• append: creates a new row after the last row of the list.
• delete: deletes the current row.

User interface | 1378

To prevent INPUT ARRAY to create the implicit "insert", "append" and "delete" actions, set respectively the
INSERT ROW, APPEND ROW, or DELETE ROW control attributes to FALSE. To fully deny row addition, set
also the AUTO APPEND attribute to FALSE.

...
 INPUT ARRAY p_items FROM sa.*
 -- Allow only row append and delete implicit actions.
 ATTRIBUTES(AUTO APPEND=FALSE,
 INSERT ROW=FALSE)
 ...
 END INPUT
...

Specific control blocks are available to take control when a row is created or deleted:

• BEFORE INSERT and AFTER INSERT control blocks can be used to control row creation. Cancel a row
creation with CANCEL INSERT in BEFORE INSERT or AFTER INSERT blocks.

• BEFORE DELETE and AFTER DELETE control blocks can be used to control row deletion. Cancel row
deletion with the CANCEL DELETE instruction in BEFORE DELETE.

Dynamic arrays and the ui.Dialog class provide methods such as array.deleteElement() or
ui.Dialog.appendRow() to modify the list. When using these methods, the predefined triggers such
as BEFORE DELETE or BEFORE INSERT are not executed. While it is safe to use these methods within
a DISPLAY ARRAY, you must take care when using an INPUT ARRAY. For example, you should not call
such methods in triggers like BEFORE ROW, AFTER INSERT, BEFORE DELETE.

Users can append temporary rows by moving to the end of the list, or when executing the append action.
Appending temporary rows is a different from inserting a row; an appended row is considered temporary
until the user modifies a field while an inserted row remains in the list even if the user does not modify a
field.

By default, when the last row is removed by a delete action, the INPUT ARRAY instruction will
automatically create a new temporary row at the same position. The visual effect of this behavior can be
misinterpreted - if no data was entered in the last row, you can't see any difference. However, the last row
is really deleted and a new row is created, and the BEFORE DELETE / AFTER DELETE / AFTER ROW /
BEFORE ROW / BEFORE INSERT control block sequence is executed. In order to deny to avoid the creation
of a new temporary row when the last row is deleted, set AUTO APPEND = FALSE attribute.

The insert, append or delete actions will be automatically disabled according to the context: If the INPUT
ARRAY is using a static array that becomes full, or if the MAXCOUNT attribute is reached, both insert and
append actions will be disabled. The delete action is automatically disabled when AUTO APPEND =
FALSE and there are no more rows in the array.

INPUT ARRAY temporary rows
Temporary rows can be created at the end of an editable record list.

In record list controlled by an INPUT ARRAY, the user can create a new temporary row at the end of the
list: The new row is called "temporary" because it will be automatically removed if the user leaves the row
without entering data. If data is entered by the user or by program (setting the touched flag), the temporary
row becomes permanent.

A temporary row is promoted to a permanent row under certain conditions described in this topic. We
distinguish also explicit temporary row creation from automatic temporary row creation.

Temporary row creation is different from adding new rows with the DIALOG.appendRow() method; When
appending a row by program, the row is considered permanent and remains in the list even if the user did
not enter data in fields.

User interface | 1379

Conditions to make a temporary row permanent

The temporary row is made permanent, when moving down to the next new temporary row, or if
the modification flag of one of the fields is set. The modification flag of a field is typically set when
the user enters data in the form field and tabs to another field (or validates the dialog), but this
modification flag can also be set by program, with a DISPLAY TO / BY NAME instruction or with the
DIALOG.setFieldTouched() method. When the modification is set by program, NOENTRY fields are
ignored, however, fields dynamically disabled by DIALOG.setFieldActive() are taken into account.

Explicit temporary row creation

Explicit temporary row creation takes place when the user decided to append a new row explicitly with the
append action. If the list is empty, an insert action will have the same effect as an append action (i.e. a
temporary row will be created at position 1).

Automatic temporary row creation

By default, automatic temporary row creation takes place when:

• The user tries to move below the last row, with a Down keystroke or with the mouse.
• The user presses the Tab key when in the last field of the last row.
• The list has the focus and the last row of the list is deleted by an implicit delete action.
• The list has the focus and the last row of the list is deleted by program with DIALOG.deleteRow() or

DIALOG.deleteAllRows().
• When the INPUT ARRAY is in a DIALOG block, the list has no rows and gets the focus (A new

temporary row is created to let the user enter data immediately)

Avoiding temporary row creation

Temporary row creation is useful because, in most cases, INPUT ARRAY is used to edit existing rows and
append new rows at the end of the list. However, you might want to deny row addition or at least avoid the
automatic temporary row creation when the last row is deleted or when an empty list gets the focus.

To avoid explicit temporary row creation, prevent INPUT ARRAY to defined the implicit append action by
setting the APPEND ROW attribute to FALSE in the ATTRIBUTE clause:

...
 INPUT ARRAY p_items FROM sa.* ATTRIBUTES(APPEND ROW=FALSE)
 ...
 END INPUT
...

Even if APPEND ROW /INSERT ROW attributes are set to FALSE, automatic temporary row can still occur
when the user deletes the last row of the list or if the list is empty when the INPUT ARRAY is entered.
Without automatic temporary row creation, an INPUT ARRAY instruction would have no rows to edit if the
array is empty. To avoid automatic temporary row creation is such cases, set the AUTO APPEND attribute
to FALSE:

...
 INPUT ARRAY p_items FROM sa.* ATTRIBUTES(AUTO APPEND=FALSE)
 ...
 END INPUT
...

To fully deny row addition, set both APPEND ROW and AUTO APPEND to FALSE.

If both APPEND ROW and INSERT ROW attributes are set to FALSE, the dialog will deny explicit temporary
row creation but also automatic temporary row creation, as if AUTO APPEND = FALSE would be used.

User interface | 1380

Row creation control blocks for temporary rows

In order to control row creation, use the BEFORE INSERT and AFTER INSERT control blocks. The
BEFORE INSERT trigger is invoked after a new row was inserted or appended, just before the user gets
control to enter data in fields. Regarding temporary rows, the AFTER INSERT block is invoked if data has
been entered and you leave the new row (for example, when the focus moves to another row or leaves the
current list), or if the dialog is validated, for example with ACCEPT DIALOG in case of DIALOG (or ACCEPT
INPUT in case of singular INPUT ARRAY). No AFTER INSERT block is invoked if the user did not enter
data: The temporary row is automatically deleted.

In the BEFORE INSERT control block, you can tell if a row is a temporary appended one by comparing
the current row (DIALOG.getCurrentRow() or ARR_CURR()) with the total number of rows
(DIALOG.getArrayLength() or ARR_COUNT()). If the current row index equals the row count, you are
in a temporary row.

AFTER ROW and temporary rows

When a temporary row as automatically removed, the AFTER ROW block will be executed for the
temporary row, but ui.Dialog.getCurrentRow() / ARR_CURR() will be one row greater than
DIALOG.getArrayLength() / ARR_COUNT(). In this case, ignore the AFTER ROW event.

DISPLAY ARRAY modification triggers
Using dedicated interaction blocks to allow the user to modify a read-only record list.

The DISPLAY ARRAY block implements by default a read-only list of records. The end user can navigate
in the list, but cannot modify the rows.

The traditional way to implement an editable list of record is to use INPUT ARRAY. However, INPUT
ARRAY uses ergonomics that may not correspond to the end user expectations. Basically, a list controlled
by an INPUT ARRAY is always in "edit mode": the focus is in a field and the user can modify the current
field. When moving up or down in the list, the edit cursor jumps to the upper or lower cell.

Other GUI applications use a different pattern, with read-only lists that can switch to edit mode when a
specific action is fired. To implement such ergonomics, use the ON INSERT, ON APPEND, ON UPDATE, ON
DELETE modification triggers to control row insertion, appending, modification and deletion in a DISPLAY
ARRAY block.

Cell color attributes
List controllers can display every cell in a specific color.

When using the DISPLAY ARRAY or INPUT ARRAY, you can assign specific colors to cells of a TABLE or
TREE rows with the DIALOG.setArrayAttributes() or DIALOG.setCellAttributes() method.

Call the method in the dialog initialization clause, for example, in BEFORE DISPLAY for a singular
DISPLAY ARRAY dialog.

The method takes an array as parameter. This array must have the same structure as the data array, but
each element of the record must be a string. Attributes can be set for individual cells by using the TTY
attributes (see method reference for possible values).

If cell attribute values are changed in during the dialog execution, use the UNBUFFERED mode to get
automatic form synchronization. The unbuffered mode is not required if the cell attributes are defined
before executing the dialog, and leave unchanged until the dialog ends.

Example

This is the list.per form file defining the table view:

LAYOUT
TABLE
{
[c1 |c2]

User interface | 1381

}
END
END
ATTRIBUTES
c1 = FORMONLY.key;
c2 = FORMONLY.name;
END
INSTRUCTIONS
SCREEN RECORD sr(FORMONLY.*);
END

This is the program code (main.4gl):

MAIN
 DEFINE arr DYNAMIC ARRAY OF RECORD
 key INTEGER,
 name VARCHAR(100)
 END RECORD
 DEFINE att DYNAMIC ARRAY OF RECORD
 key STRING,
 name STRING
 END RECORD
 DEFINE I INT

 FOR i=1 TO 10
 LET arr[i].key = i
 LET arr[i].name = "Item "||i
 LET att[i].key = "red reverse"
 LET att[i].name = IIF(i MOD 2,"blue","green")
 END FOR

 OPEN FORM f1 FROM "list"
 DISPLAY FORM f1

 DISPLAY ARRAY arr TO sr.* ATTRIBUTES(UNBUFFERED)
 BEFORE DISPLAY
 CALL DIALOG.setCellAttributes(att)
 ON ACTION att_modify_cell
 LET att[2].key = "red reverse"
 ON ACTION att_clear_cell
 LET att[2].key = NULL
 END DISPLAY

END MAIN

Multiple row selection
Multiple row selection allows the end user to select several rows in a list of records.

The DISPLAY ARRAY controller supports multiple row selection when the ON SELECTION CHANGE block
is defined, or by enabling the feature with the ui.Dialog.setSelectionMode() method when the
dialog starts. The setSelectionMode() method can also be used to enable or disable the multi-row
selection during the dialog execution.

Important: This feature is not supported on mobile platforms.

When multi-row selection is enabled, the end user can select one or several rows with the
standard keyboard and mouse click combinations. When the end user selects or de-selects
rows, the ON SELECTION CHANGE block is fired, if defined. The program can then query the
DIALOG.isRowSelected() method to check for selected rows.

DISPLAY ARRAY arr TO sr.*

User interface | 1382

 ...
 ON SELECTION CHANGE
 FOR i=1 TO DIALOG.getArrayLength("sr")
 DISPLAY SFMT("Row: %1 s=%2", i, DIALOG.isRowSelected("sr", i))
 END FOR
 ON ACTION enable_mrs
 CALL DIALOG.setSelectionMode("sr", 1)
 ON ACTION disable_mrs
 CALL DIALOG.setSelectionMode("sr", 0)
 ...
END DISPLAY

Multiple row selection is GUI-specific and therefore can't be used in TUI mode.

With multiple row selection, you must distinguish between two concepts: row selection and current row.
In GUI mode, a selected row usually has a blue background, while the current row has a dotted focus
rectangle. The current row may not be selected, or a selected row may not be the current row. When the
default single-row selection is used, the current row is always selected automatically.

If the ON SELECTION CHANGE block is not required, use the ui.Dialog.setSelectionMode()
method to enable multi-row selection for the dialog:

DISPLAY ARRAY arr TO sr.*
 BEFORE DISPLAY
 CALL DIALOG.setSelectionMode("sr", 1)
 ...
END DISPLAY

Note however that without the ON SELECTION CHANGE trigger, it is not possible to detect row selection
change when staying on the current row, since no BEFORE ROW / AFTER ROW trigger is fired in this case.

Row selection flags can be changed by program for a range of rows with the
DIALOG.setSelectionRange() method.

The DISPLAY ARRAY dialog implements an implicit row-copy feature: The selected rows can be dragged
to another dialog or external program, or the end-user can do an "editcopy" predefined action (Ctrl-C
shortcut), to copy the selected rows to the front-end clipboard. The row-copy feature works also when
multiple row selection is disabled, but only the current row will be dragged or copied to the front-end
clipboard.

If you delete, insert or append rows in the program array with methods such as
array.deleteElement(), selection information is not synchronized: To sync the selection flags with the
data rows, use dialog methods like DIALOG.insertRow() (or DIALOG.insertNode() for tree-views), .

Behavior of ui.Dialog class methods with multiple row selection

Table 291: Effect of ui.Dialog class on selection flags when multi-range selection is enabled

Dialog class method Effect on multiple row selection

appendRow() Selection flags of existing rows are unchanged.

New row is appended at the end of the list with
selection flag set to zero.

appendNode() Selection flags of existing rows are unchanged.

New node is appended at the end of the tree with
selection flag set to zero.

deleteAllRows() Selection flags of all rows are cleared.

User interface | 1383

Dialog class method Effect on multiple row selection

deleteRow() Selection flags of existing rows are unchanged.

Selection information is synchronized (i.e., shifted
up) for all rows after the deleted row.

deleteNode() Selection flags of existing rows are unchanged.

Selection information is synchronized (i.e., shifted
up) for all nodes after the deleted node.

insertRow() Selection flags of existing rows are unchanged.

Selection information is synchronized (i.e., shifted
down) for all rows after the new inserted row.

insertNode() Selection flags of existing rows are unchanged.

Selection information is synchronized (i.e., shifted
down) for all nodes after the new inserted node.

setArrayLength() Selection flags of existing rows are unchanged.

If the new array length is larger than the previous
length, selection flags of new rows are not
initialized to zero.

setCurrentRow() Selection flags of all rows are reset, and the new
current row gets selected.

setSelectionMode() When you switch off multiple row selection, the
selection flags of existing rows are cleared.

Examples
Example 1: Simple list view

The form file table.per (grid-based layout):

LAYOUT
TABLE (DOUBLECLICK=myselect)
{
[c1 |c2]
}
END
END
ATTRIBUTES
PHANTOM FORMONLY.key;
c1 = FORMONLY.name, IMAGECOLUMN=image;
PHANTOM FORMONLY.image;
c2 = FORMONLY.detail;
END
INSTRUCTIONS
SCREEN RECORD list1(FORMONLY.*);
END

The form file table.per (stack-based layout):

LAYOUT
STACK
 TABLE list1(DOUBLECLICK=myselect)

User interface | 1384

 PHANTOM FORMONLY.key;
 EDIT FORMONLY.name,
 IMAGECOLUMN=image, TITLE="Name";
 PHANTOM FORMONLY.image;
 EDIT FORMONLY.detail, TITLE="Detail";
 END
END
END

The program main.4gl:

MAIN
 DEFINE arr DYNAMIC ARRAY OF RECORD
 key INTEGER,
 name STRING,
 image STRING,
 detail STRING
 END RECORD,
 i INTEGER
 FOR i=1 TO 60
 LET arr[i].key = i
 LET arr[i].name = SFMT("Item %1", i)
 IF i MOD 2 THEN
 LET arr[i].image = "file"
 ELSE
 LET arr[i].image = "smiley"
 END IF
 LET arr[i].detail = SFMT("This is item %1", i)
 END FOR
 OPEN FORM f1 FROM "table"
 DISPLAY FORM f1
 DISPLAY ARRAY arr TO list1.* ATTRIBUTES(UNBUFFERED)
 ON ACTION myselect
 MESSAGE "myselect:", arr_curr()
 END DISPLAY
END MAIN

Tree views
Describes tree view programming in the language.

• Understanding tree-views on page 1385
• Defining a TREE container on page 1386
• Defining the program array for tree-views on page 1388
• Filling the program array with rows on page 1389
• Controlling a tree-view with DISPLAY ARRAY on page 1390
• Modifying the tree during dialog execution on page 1390
• Using regular DISPLAY ARRAY control blocks on page 1391
• Dynamic filling of very large trees on page 1391
• Built-in sort and tree-views on page 1391
• Multi-row selection and tree-views on page 1392
• Drag and drop in tree-views on page 1392
• Examples on page 1392

• Example 1: Static tree view (filled before dialog starts) on page 1392
• Example 2: Dynamic tree view (filled on demand) on page 1393

User interface | 1385

Understanding tree-views

Tree-views can be implemented with a DISPLAY ARRAY instruction using a form screen-array bound to
a TREE container with tree-view specific attributes. TREE containers are very similar to TABLE containers,
except that the first columns are used to display a tree of nodes on the right of the widget.

Important: This feature is not supported on mobile platforms.

The next screen-shot shows a typical file browser using a tree-view. This example implements a DIALOG
instruction with two DISPLAY ARRAY sub-dialogs. The first DISPLAY ARRAY sub-dialog controls the tree-
view while the second one controls the file list on the right side.

Figure 97: Form with Tree View

The data used to display tree-view nodes must be provided in a program array and controlled by a
DISPLAY ARRAY. It is possible to control a tree view table with a singular DISPLAY ARRAY or with a
DISPLAY ARRAY sub-dialog within a DIALOG instruction.

A tree view model is implemented with a flat program array (i.e. a list of rows), where each row defines
parent/child node identifiers to describe the structure of the tree; so, the order of the rows matters:

Tree structure parent-id child-id
Node 1 NULL 1
 Node 1.1 1 1.1
 Node 1.2 1 1.2
 Node 1.2.1 1.2 1.2.1
 Node 1.2.2 1.2 1.2.2
 Node 1.2.3 1.2 1.2.3
 Node 1.3 1 1.3
 Node 1.3.1 1.3 1.3.1

Depending on your need, you can fill the program array with all rows of the tree before dialog execution,
or you can fill or reduce the list of nodes dynamically upon expand / collapse action events. In the second
case, you must provide additional information for each row of the program array, to indicate whether the
node has children. A dynamic build of the tree view allows you to implement programs displaying very
large trees, for example in a bill of materials application, where thousands of elements can be assembled
together.

User interface | 1386

Tree-views can display additional columns for each node, to show specific row data as in a regular table.

Figure 98: Tree-view with additional columns

Defining a TREE container

Create a form specification file containing a TREE container bound to a screen array. The screen array
identifies the presentation elements to be used by the runtime system to display the tree-view and the
additional columns.

A TREE container must be present in the LAYOUT section of the form, defining the columns of the tree-view
list. The TREE container must hold at least one column defining the node texts (or names). This column
will be used on the front-end side to display the tree-view widget. Additional columns can be added in
the TREE container to display node information. The TREE container attributes must be declared in the
ATTRIBUTES section of the form.

Secondary form fields have to be used to hold tree node information such as icon image, parent node id,
current node id, expanded flag and parent flag. While these secondary fields can be defined as regular
form fields and displayed in the tree-view list, we recommend that you use PHANTOM fields instead:
Phantom fields can be listed in the screen-array but do not need to be part of the LAYOUT section.
Phantom fields will only be used by the runtime system to build the tree of nodes.

Example of tree-view definition using a TREE container:

LAYOUT
TREE mytree (PARENTIDCOLUMN=parentid, IDCOLUMN=id,
 EXPANDEDCOLUMN=expanded, ISNODECOLUMN=isnode)
{
 Tree
[name |desc]
[name |desc]
[name |desc]
[name |desc]
[name |desc]
}
END
END
ATTRIBUTES
EDIT name = FORMONLY.name, IMAGECOLUMN=image;

User interface | 1387

PHANTOM FORMONLY.image;
PHANTOM FORMONLY.parentid;
PHANTOM FORMONLY.id;
PHANTOM FORMONLY.expanded;
PHANTOM FORMONLY.isnode;
EDIT desc = FORMONLY.description;
END
INSTRUCTIONS
SCREEN RECORD sr(FORMONLY.*);
END

Example of tree-view definition using the <Tree> layout tag inside a GRID container, with a TREE form
element to define attributes in the ATTRIBUTES section:

LAYOUT
GRID
{
<Tree tv >
 Tree
[name |desc]
[name |desc]
[name |desc]
[name |desc]
[name |desc]
< >
}
END
END
ATTRIBUTES
TREE tv: mytree,
 PARENTIDCOLUMN=parentid, IDCOLUMN=id,
 EXPANDEDCOLUMN=expanded, ISNODECOLUMN=isnode;
EDIT name = FORMONLY.name, IMAGECOLUMN=image;
PHANTOM FORMONLY.image;
PHANTOM FORMONLY.parentid;
PHANTOM FORMONLY.id;
PHANTOM FORMONLY.expanded;
PHANTOM FORMONLY.isnode;
EDIT desc = FORMONLY.description;
END
INSTRUCTIONS
SCREEN RECORD sr(FORMONLY.*);
END

The first visual column ("name" in example) must be the field defining the node names, and the widget
must be an EDIT or LABEL.

Several attributes are used to configure a TREE form element:

• The PARENTIDCOLUMN and IDCOLUMN attributes are respectively used to identify the form field
containing the identifiers of the parent and child nodes, defining the structure of the tree. You must
specify form field column names, not item tag identifiers (used to reference a form item in the layout
section). If these attributes are not specified, the parent node id and node id field names default
respectively to "parentid" and "id".

• The EXPANDEDCOLUMN attribute can be used to define the form field holding the flag indicating that a
node is expanded (i.e. opened).

• If the ISNODECOLUMN attribute is used, it defines the form field indicating that a node has children, even
if the program array does not contain child nodes for that parent node. This attribute must be used to
implement dynamic filling of tree-views.

User interface | 1388

• The IMAGEEXPANDED, IMAGECOLLAPSED and the IMAGELEAF attributes are optional attributes
defining global images for expanded, collapsed and leaf nodes. You should use these attributes if you
want to display the same icons for all nodes.

• The IMAGEEXPANDED and IMAGECOLLAPSED instruct the runtime system to set a specific icon when a
node gets expanded or collapsed. The IMAGELEAF attribute defines the global icon for leaf nodes. This
saves the programmer from writing code to display common node images.

Tree-view definition must be completed with form fields declaration. These must be defined in the
ATTRIBUTES section. The fields not used for display are declared as PHANTOM fields. The tree-view form
fields must be grouped in a screen-array declared in the INSTRUCTIONS section.

The form fields required to declare a tree-view table are the following.

Table 292: Form fields required to declare a tree-view table

Description Field type
Tree attribute to
define the field

Mandatory Default name

Text to be
displayed for the
node

EDIT N/A yes N/A

Id of the node PHANTOM IDCOLUMN yes id

Id of the parent
node

PHANTOM PARENTIDCOLUMN yes parentid

Icon image for a
node

PHANTOM IMAGECOLUMN no N/A

Node expansion
indicator

PHANTOM EXPANDEDCOLUMN no no

Parent node
indicator

PHANTOM ISNODECOLUMN no no

The first three fields (node text, parent id and node id) are mandatory, and that the first visual (non-
phantom) field listed in the screen array will be implicitly used to hold the text of tree-view nodes.

Additional fields (like the desc field in this example) can be defined to display details for each node in
regular columns, that will appear on the right of the tree widget.

The order of the fields in the screen array of the tree-view does not matter, but it must of course match the
order of the corresponding variables in the record-array of the program.

If you need to display node-specific images, define a phantom field to hold node images and attach it to the
tree-view definition by using the IMAGECOLUMN attribute. Alternatively you can globally define images for
all nodes with the IMAGEEXPANDED, IMAGECOLLAPSED and the IMAGELEAF attributes of the TREE form
element.

Defining the program array for tree-views

In the program code, define a dynamic array of records with the DEFINE instruction. The DISPLAY ARRAY
dialog will use that program array as the model for the tree-view list. A tree of nodes will be automatically
built according to the data found in the program array. The front-end can then render the tree of nodes in a
tree-view widget.

The members of the program array must correspond to the elements of the screen-array bound to the
TREE container, by number and data types.

The name of the array members does not matter; the purpose of each member is defined by the name of
the corresponding screen-array members declared in the form file. Program array members and screen-
array members are bound by position.

User interface | 1389

The next code example defines a program array with a member structure corresponding to the screen-
array defined in the form example of the previous section.

DEFINE tree_arr DYNAMIC ARRAY OF RECORD
 name STRING, -- text to be displayed for the node
 pid STRING, -- id of the parent node
 id STRING, -- id of the current node
 image STRING, -- name of the image file for the node (can be
 null)
 expanded BOOLEAN, -- node expansion flag (TRUE/FALSE) (optional)
 isnode BOOLEAN, -- children indicator flag (TRUE/FALSE) (optional)
 description STRING -- user field describing the node
END RECORD

The name, pid, id members are mandatory. These hold respectively the node text, parent and current node
identifiers that define the structure of the tree.

The image member will hold the name of the little icon to be displayed for each node and leaf. You can
omit this member, if you do not want to display images, or when then tree defines default images with the
IMAGEEXPANDED, IMAGECOLLAPSED and the IMAGELEAF attributes.

The expanded member can be used to handle node expansion by program. You can query this member to
check whether a node is expanded, or set the value to expand a specific node.

The isnode member can be used to indicate whether a given node has children, without filling the array
with rows defining the child nodes. This information will be used by front-ends to decorate a node as a
parent, even if no children are present. The program should then fill the array with child nodes when an
expand action is invoked, to implement dynamic tree-views).

The program array can hold more columns (like the description field), which can be displayed in regular
table columns as part of a node's data.

Remember the order of the program array members must match the screen-array members in the form
file, but this order can be different from the column order used in the layout, with the exception of the first
column defining the text of nodes (i.e. name field in example).

Filling the program array with rows

Once the program array is defined according to the screen-array of the tree-view table, fill the array with
the tree-view definition.

You can directly fill the program array before the dialog execution. Once the dialog has started, you must
use the methods DIALOG.insertNode(), DIALOG.appendNode() and DIALOG.deleteNode(), if
you want to modify the tree, otherwise information like multi-range selection flags and cell attributes will not
be synchronized.

Fill the rows in the correct order defining the structure of the tree, to reflect the parent/child relationship of
the tree nodes. If a row defines a tree-view node with a parent identifier that does not exist, or if the child
row is inserted under the wrong parent row, the orphan row will become a new node at the root of the tree.

In order to fill the program array with database rows defining the tree structure, you will need to write a
recursive function, keeping track of the current level of the nodes to be created for a given parent.

The next example shows how to fill the array with data coming from a database table having the following
structure:

CREATE TABLE dbtree (
 id SERIAL NOT NULL,
 parentid INTEGER NOT NULL,
 name VARCHAR(20) NOT NULL
)

User interface | 1390

The difficulty with fetching a tree from a database table is in the cursor management, which can not be
used recursively. A workaround for this problem is to fetch all the children of a given node at once, then call
the function recursively for each of the fetched nodes:

TYPE tree_t RECORD
 id INTEGER,
 parentid INTEGER,
 name VARCHAR(20)
 END RECORD

DEFINE tree_arr tree_t

FUNCTION fetch_tree(pid)
 DEFINE pid, i, j, n INTEGER
 DEFINE a DYNAMIC ARRAY OF tree_t
 DEFINE t tree_t

 DECLARE cu1 CURSOR FOR SELECT * FROM dbtree WHERE parentid = pid
 LET n = 0
 FOREACH cu1 INTO t.*
 LET n = n + 1
 LET a[n].* = t.*
 END FOREACH

 FOR i = 1 TO n
 LET j = tree_arr.getLength() + 1
 LET tree_arr[j].name = a[i].name
 LET tree_arr[j].id = a[i].id
 LET tree_arr[j].parentid = a[i].parentid
 CALL fetch_tree(a[i].id)
 END FOR

END FUNCTION

Controlling a tree-view with DISPLAY ARRAY

After the program array has been filled, you must execute a DISPLAY ARRAY dialog.

The next code example implements a DISPLAY ARRAY binding the program array called tree_arr to the sr
screen-array, attaching the dialog to the tree table defined in the form:

CALL fill_tree(tree_arr)
DISPLAY ARRAY tree_arr TO sr.* ATTRIBUTES(UNBUFFERED)
 BEFORE ROW
 DISPLAY "Current row is: ", DIALOG.getCurrentRow("sr")
END DISPLAY

It is not possible to use the DISPLAY ARRAY paged mode (ON FILL BUFFER) when the decoration is a
tree view list. The dialog needs the complete set of open nodes with parent/child relation to handle the tree
view display, with the paged mode only a given window of the dataset is known by the dialog. If you use
a the paged mode in DISPLAY ARRAY with a tree view as decoration, the program will raise an error at
runtime.

However, tree-views can be filled dynamically with ON EXPAND / ON COLLAPSE triggers.

Modifying the tree during dialog execution

During the DISPLAY ARRAY execution, it is possible to modify the content of the tree model (i.e.
the program array), by inserting, adding or removing nodes by program. However, you should not
directly modify the program array: You must use the dialog class methods DIALOG.insertNode(),
DIALOG.appendNode() and DIALOG.deleteNode() to modify the tree model. By using these
methods, the dialog can synchronize internal data, otherwise the tree display would be corrupted.

User interface | 1391

It is recommended to be in UNBUFFERED mode to get a front-end synchronization of the tree-view content.

Using regular DISPLAY ARRAY control blocks

If needed, you can implement traditional DISPLAY ARRAY control blocks like BEFORE ROW or AFTER
ROW:

DISPLAY ARRAY tree_arr TO sr.* ATTRIBUTES(UNBUFFERED)
 BEFORE ROW
 DISPLAY "BEFORE ROW - Current row is: ", DIALOG.getCurrentRow("sr")
 AFTER ROW
 DISPLAY "AFTER ROW - Current row is: ", DIALOG.getCurrentRow("sr")
END DISPLAY

Dynamic filling of very large trees

When a huge tree needs to be displayed, tree data filling can be optimized by creating the nodes on
demand. There is no need to fill the complete program array with all possible nodes (down to the last leaf),
when only the first levels/branches of the tree are displayed on the screen.

To implement a dynamically filled tree, first define an additional column in the TREE container, to indicate
whether a given node has children. That field will be used to render a node with a [+] button, and let the
end user click on the node to expand it, even if no child nodes are created yet.

In the DISPLAY ARRAY code, if a node is expanded (or collapsed), the dialog will invoke the ON EXPAND
or ON COLLAPSE triggers, to let the program add (or remove) rows in the array, to adapt the tree data
dynamically according to navigation events.

DEFINE row_index INTEGER
...
DISPLAY ARRAY tree_arr TO sr.* ATTRIBUTES(UNBUFFERED)
 ON EXPAND (row_index)
 DISPLAY "EXPAND - Expanded row is: ", row_index
 -- Fill with children nodes for tree_arr[row_index]
 ON COLLAPSE (row_index)
 DISPLAY "COLLAPSE - Collapsed row is: ", row_index
 -- Remove children nodes of tree_arr[row_index]
END DISPLAY

The program array can be filled directly before the dialog execution, but once the dialog has started, use
dialog methods such as DIALOG.insertNode() to modify the tree, otherwise information like multi-range
selection flags and cell attributes will not be synchronized. This is typically the case when implementing a
dynamically-filled tree with ON EXPAND/ ON COLLAPSE triggers.

Built-in sort and tree-views

By default, the built-in sort is enabled in a TREE container; when the end user clicks on column headers,
the runtime system sorts the visual representation of the program array. Tree nodes are ordered by levels;
the children nodes are ordered inside a given parent node.

This is a powerful built-in feature. However, in some cases, the tree structure must be static (i.e. the order
of the nodes must not change) and you don't want the end user to sort the rows. To prevent the built-in
sort, use the UNSORTABLECOLUMNS attribute for the TREE container definition:

LAYOUT
...
END
ATTRIBUTES
TREE tv: mytree, UNSORTABLECOLUMNS, ...
...

User interface | 1392

Multi-row selection and tree-views

Multi-row selection can be used with a DISPLAY ARRAY controlling a TREE container. However, because
of the tree-view ergonomic differences with simple tables, the selection of tree nodes follows some specific
rules:

1. When selecting a range of nodes, only visible nodes will get the selection flag. For example, if you
select all nodes with Ctrl-A, and if the root node is collapsed, only the root node will be selected. This
applies also when selecting nodes by program with the DIALOG.setSelectionRange().

2. Collapsing a node will de-select all child nodes.

Drag and drop in tree-views

Drag and drop can be implemented within a DISPLAY ARRAY controlling a TREE container, with the ON
DRAG* and ON DROP interactive blocks.

The nodes can be moved around in the same tree, can be dropped outside the tree or can be inserted in
the tree from external sources.

Examples
Example 1: Static tree view (filled before dialog starts)

Form file "form1.per":

LAYOUT
GRID
{
<Tree t1 >
 Name Index
[c1 |c2]
[c1 |c2]
[c1 |c2]
[c1 |c2]
}
END
END

ATTRIBUTES
LABEL c1 = FORMONLY.name;
LABEL c2 = FORMONLY.idx;
PHANTOM FORMONLY.pid;
PHANTOM FORMONLY.id;
PHANTOM FORMONLY.exp;
TREE t1: tree1
 IMAGEEXPANDED = "open",
 IMAGECOLLAPSED = "folder",
 IMAGELEAF = "file",
 PARENTIDCOLUMN = pid,
 IDCOLUMN = id,
 EXPANDEDCOLUMN = exp;
END

INSTRUCTIONS
SCREEN RECORD sr_tree(name, pid, id, idx, exp);
END

Static tree DISPLAY ARRAY:

DEFINE tree DYNAMIC ARRAY OF RECORD
 name STRING,
 pid STRING,
 id STRING,
 idx INTEGER,

User interface | 1393

 expanded BOOLEAN
END RECORD

MAIN
 OPEN FORM f FROM "form1"
 DISPLAY FORM f
 CALL fill(4)
 DISPLAY ARRAY tree TO sr_tree.* ATTRIBUTES(UNBUFFERED)
 BEFORE ROW
 DISPLAY "Current row: ", arr_curr()
 END DISPLAY
END MAIN

FUNCTION fill(max_level)
 DEFINE max_level, p INTEGER
 CALL tree.clear()
 LET p = fill_tree(max_level, 1, 0, NULL)
END FUNCTION

FUNCTION fill_tree(max_level, level, p, pid)
 DEFINE max_level, level INTEGER
 DEFINE p INTEGER
 DEFINE i INTEGER
 DEFINE id, pid STRING
 DEFINE name STRING
 IF level < max_level THEN
 LET name = "Node "
 ELSE
 LET name = "Leaf "
 END IF
 FOR i = 1 TO level
 LET p = p + 1
 IF pid IS NULL THEN
 LET id = i
 ELSE
 LET id = pid || "." || i
 END IF
 LET tree[p].id = id
 LET tree[p].pid = pid
 LET tree[p].idx = p
 LET tree[p].expanded = FALSE
 LET tree[p].name = name || level || '.' || i
 IF level < max_level THEN
 LET p = fill_tree(max_level, level + 1, p, id)
 END IF
 END FOR
 RETURN p
END FUNCTION

Example 2: Dynamic tree view (filled on demand)

Form file "form1.per":

LAYOUT
GRID
{
<Tree t1 >
 Name Description
[c1 |c2]
[c1 |c2]
[c1 |c2]
[c1 |c2]
}

User interface | 1394

END
END

ATTRIBUTES
LABEL c1 = FORMONLY.name;
PHANTOM FORMONLY.pid;
PHANTOM FORMONLY.id;
PHANTOM FORMONLY.hasChildren;
LABEL c2 = FORMONLY.descr;
TREE t1: tree1
 IMAGEEXPANDED = "open",
 IMAGECOLLAPSED = "folder",
 IMAGELEAF = "file",
 PARENTIDCOLUMN = pid,
 IDCOLUMN = id,
 ISNODECOLUMN = hasChildren;
END

INSTRUCTIONS
SCREEN RECORD sr_tree(FORMONLY.*);
END

Dynamic tree DISPLAY ARRAY:

DEFINE tree DYNAMIC ARRAY OF RECORD
 name STRING,
 pid STRING,
 id STRING,
 hasChildren BOOLEAN,
 description STRING
END RECORD

MAIN
 DEFINE id INTEGER

 OPEN FORM f FROM "form1"
 DISPLAY FORM f

 LET tree[1].pid = 0
 LET tree[1].id = 1
 LET tree[1].name = "Root"
 LET tree[1].hasChildren = TRUE
 DISPLAY ARRAY tree TO sr_tree.* ATTRIBUTES(UNBUFFERED)
 BEFORE DISPLAY
 CALL DIALOG.setSelectionMode("sr_tree",1)
 ON EXPAND(id)
 CALL expand(DIALOG,id)
 ON COLLAPSE(id)
 CALL collapse(DIALOG,id)
 END DISPLAY
END MAIN

FUNCTION collapse(d,p)
 DEFINE d ui.Dialog
 DEFINE p INTEGER
 WHILE p < tree.getLength()
 IF tree[p + 1].pid != tree[p].id THEN EXIT WHILE END IF
 CALL d.deleteNode("sr_tree", p + 1)
 END WHILE
END FUNCTION

FUNCTION expand(d,p)
 DEFINE d ui.Dialog

User interface | 1395

 DEFINE p INTEGER
 DEFINE id STRING
 DEFINE i, x INTEGER
 FOR i = 1 TO 4
 LET x = d.appendNode("sr_tree", p)
 LET id = tree[p].id || "." || i
 LET tree[x].id = id
 -- tree[x].pid is implicitly set by the appendNode() method...
 LET tree[x].name = "Node " || id
 IF i MOD 2 THEN
 LET tree[x].hasChildren = TRUE
 ELSE
 LET tree[x].hasChildren = FALSE
 END IF
 LET tree[x].description = "This is node " || tree[x].name
 END FOR
END FUNCTION

Split views
These topics describe split view programming in the language.

• Understanding split views on page 1395
• Creating split view windows on page 1396
• Parallel dialogs for split views on page 1397
• Refreshing a parallel dialog on page 1397
• One or two panes on page 1398
• Switching between panes on page 1398
• Navigator pane on page 1399
• Rendering an HBox as a split view on page 1402
• Examples on page 1403

• Example 1: Single split view application on page 1403
• Example 2: Multiple split views with navigation bar on page 1405
• Example 3: Split view using an HBox on page 1409

Understanding split views
Split views refer to the ability to access two forms side by side on a mobile device. This feature is mainly
provided for tablet devices, as most phones can only display one window/form at a time.

A split view is composed by a "left pane" and and "right pane". In the programs, the panes are
implemented with window objects displaying forms, which are controlled by parallel dialogs.

Important: This feature is only for mobile platforms.

User interface | 1396

Figure 99: Form with Split View (Android™)

Split views (controlled by parallel dialogs) are typically used to browse in the application data, while modal
dialogs are used for data input in a single form. An application based on split views will start with parallel
dialogs, and switch to a simple modal dialog when the user chooses to edit application data. Parallel dialog
handling is suspended by the runtime system, when a modal dialog executes. For details about parallel
dialogs compared to modal dialogs, see Introducing dialogs on page 1250.

If the application displays several split views simultaneously, implement a navigator pane, to let the end
user switch between the different split views.

Creating split view windows
The application specifies which window opens in which pane by using the STYLE attribute in the OPEN
WINDOW instruction.

Specify either LEFT or RIGHT for the TYPE attribute, to define a left-hand side pane and a right-hand side
pane of the split view respectively.

Important: Both left (TYPE=LEFT) and right (TYPE=RIGHT) splitview windows need to be created.

This example specifies that the window w_left (with the form customer_list) display in the left pane,
and the window w_right (with the form customer_detail) display in the right pane:

OPEN WINDOW w_left WITH FORM "customer_list" ATTRIBUTES(TYPE=LEFT)
OPEN WINDOW w_right WITH FORM "customer_detail" ATTRIBUTES(TYPE=RIGHT)

The window content of both panels will be controlled by parallel dialogs.

Important:

Split-view windows must be the root window (after closing the default SCREEN window), or direct
children of the NAVIGATOR window, if it is used. If regular windows are created before split views,
these must be closed:

User interface | 1397

Case 1: Close regular windows created before the split-views:

CLOSE WINDOW screen
OPEN WINDOW w1 WITH FORM "form1"
...
CLOSE WINDOW w1
...
OPEN WINDOW w_left WITH FORM "customer_list" ATTTRIBUTES(TYPE=LEFT)
OPEN WINDOW w_right WITH FORM "customer_detail" ATTRIBUTES(TYPE=RIGHT)
...

Case 2: Create split-views as direct NAVIGATOR children

CLOSE WINDOW screen
OPEN WINDOW w_main WITH 10 ROWS, 80 COLUMNNS ATTRIBUTES(TYPE=NAVIGATOR)
...
OPEN WINDOW w_left WITH FORM "customer_list" ATTTRIBUTES(TYPE=LEFT)
OPEN WINDOW w_right WITH FORM "customer_detail" ATTRIBUTES(TYPE=RIGHT)
...

When using a navigator window, the names of the split view windows must match the action names
created in the parallel dialog controlling the options of the navigator pane. For more details, see Navigator
pane on page 1399.

Parallel dialogs for split views
In order to control the left-hand and right-hand split view content, you must implement two parallel dialogs,
each dedicated to a pane.

Create each window and start the parallel dialog for that window. Repeat for each window. When all
windows have been created and all dialogs started, run the event loop to activate them.

OPEN WINDOW w_left WITH FORM "customer_list"
 ATTRIBUTES(TYPE=LEFT)
START DIALOG d_list_view

OPEN WINDOW w_right WITH FORM "customer_detail"
 ATTRIBUTES(TYPE=RIGHT)
START DIALOG d_detail_view

WHILE fgl_eventLoop()
END WHILE

The parallel dialogs must be implemented with a declarative dialog block. See Parallel dialogs (START
DIALOG) on page 1199 for more details.

For small iOS devices (not tablets), consider using the ACCESSORYTYPE=DISCLOSUREINDICATOR in the
DISPLAY ARRAY dialog, for left-pane controllers.

Refreshing a parallel dialog
To restart a parallel dialog, use TERMINATE DIALOG + START DIALOG.

Once the split view parallel dialogs are started, the typically programming pattern to refresh the detail view
of the right pane is to restart the detail dialog by executing a TERMINATE DIALOG followed by a START
DIALOG.

The next example shows the case of a list view master (d_list_view dialog) displayed on the left pane,
which is bound to a detail view of the right pane (d_detail_view dialog). The detail information must be
refreshed when moving to a new row (BEFORE ROW control block):

DIALOG d_list_view()
 DISPLAY ARRAY arr TO sr.*
 ATTRIBUTES(ACCESSORYTYPE=DISCLOSUREINDICATOR)

User interface | 1398

 BEFORE ROW -- in BEFORE ROW, we restart the details view
 CURRENT WINDOW IS w_right
 TERMINATE DIALOG d_detail_view
 LET curr_pa = arr_curr()
 DISPLAY BY NAME arr[curr_pa].*
 DISPLAY SFMT("tapped row %1",arr_curr()) TO info
 START DIALOG d_detail_view
 CURRENT WINDOW IS w_left
 END DISPLAY
END DIALOG

One or two panes
The same application displays as a split view application with two panes on some devices, yet displays as
a single pane on other devices. What controls this?

With split views, you open two windows, assigning one to the left pane and one to the right pane of the
split view. Not all mobile devices, however, can display multiple panes on the same screen. While the
application code is the same, the mobile client displays either one pane (typical for phones) or two panes
(typical for tablets).

If the device only allows a single pane to display, the window in the left pane is the first window displayed.

The rules for single-pane or two-pane display differ according to the mobile platform:

• On Android™ devices, the two-pane mode is activated if the width of the screen is more than 900 dp
(density-independent pixels). The width of the screen depends on the orientation; you may notice that
you have two panes when the tablet is held in landscape mode (width greater than height), yet only one
pane when the tablet is held in portrait mode (height greater than width).

Note: A density-independent pixel (dp) is an abstract unit that is based on the physical density
of the screen. The unit is relative to a 160 dpi screen, so one dp is one pixel on a 160 dpi
screen. The ratio of dp-to-pixel will change with the screen density, but not necessarily in direct
proportion.

• On iOS devices:

• With the iPad, the two-pane mode is activated, regardless of the orientation of the tablet.
• With the iPhone or iTouch devices, only a single pane displays.

Switching between panes
How to switch between the left and right panes of a split view depends on the mobile platform and the
ergonomic standards of that platform.

Switching between panes by program

After creating the split view windows and starting the parallel dialogs to control them, the application
program can switch between the left and right panes of a split view by selecting the corresponding window
with the CURRENT WINDOW IS instruction.

CURRENT WINDOW IS w_customers

Switching between panes on phone devices

On a mobile device (such as phones) that only displays one split view pane at the time, switching from the
left pane to the right pane is handled automatically by the front-end.

Note: The ergonomics and rendering depend on the device's operating system.

When starting the application, the left-pane is displayed first. This pane typically uses a table view
controlled by a DISPLAY ARRAY dialog.

User interface | 1399

On an iOS phone, consider using the ACCESSORYTYPE=DISCLOSUREINDICATOR in the DISPLAY ARRAY
dialog of left-pane controllers.

If the end user taps on a row in the list of the left pane, the right pane is automatically shown. To avoid this
implicit switch from the left to the right pane, define a DOUBLECLICK = action-name attribute in the
DISPLAY ARRAY dialog, and bind this action to an ON ACTION handler which does not change the current
window.

Once the right pane is displayed, the user can switch to the left pane:

• On an Android™ phone, press the physical back button.
• On an iOS phone, press the back arrow on the top left of the window.

Important: This automatic "back to left panel" option is only possible if the dialog on the right side
does not have a close, cancel or accept action defined. If one of these actions are defined, it
will be attached to the back button, and that action will be executed when pressed.

Navigator pane
A navigator pane enables access to several views in an application from a main panel.

For many mobile applications, you will want to provide a view that allows you to show different forms and
views that are active at the same time, to expose different functional areas for your application. This can be
achieved by providing a top-level navigator with several views, controlled by parallel dialogs.

In order to implement a top-level navigator, create a window with the TYPE=NAVIGATOR attribute and
without a form (i.e. using the x ROWS y COLUMNS clause). This window will only be used to display a set
of actions views, to let the user switch between views. A view can be implemented as a split view by using
a left and right typed window.

Important: The navigator window must be the root window (after closing the default SCREEN
window). If regular windows are created before the navigator window, these must be closed:

-- Case 1: Screen window is closed, navigator is the root window
CLOSE WINDOW screen
...
OPEN WINDOW w_main WITH 10 ROWS, 80 COLUMNNS ATTRIBUTES(TYPE=NAVIGATOR)

-- Case 2: Close regular windows created before the navigator window
OPEN WINDOW w1 WITH FORM "form1"
...
CLOSE WINDOW w1
...
OPEN WINDOW w_main WITH 10 ROWS, 80 COLUMNNS ATTRIBUTES(TYPE=NAVIGATOR)

• On iOS devices, the navigator window displays in a typical iOS tab bar at the bottom of the screen:

User interface | 1400

To customize the iOS application, define the color of the iOS tab bar the iosTabBarTintColor Window-
class style attribute.

• On Android™ devices, the navigator window displays in the top of the screen, in the view control of the
action bar (2):

User interface | 1401

The navigator window will be controlled by a dedicated parallel dialog implementing a MENU instruction,
with the action handlers to select the related window, when the corresponding action is fired.

Important: The name of the actions in the navigator menu must match the name of the
corresponding window, which is typically, the left-typed window when using split views.

The next example implements:

• The w_main window, and its corresponding controller, the d_navigator parallel dialog.
• The w_customers window as a left-pane, with the d_customers parallel dialog.
• The w_orders window as a right-pane, with the d_orders parallel dialog.
• The navigator MENU dialog implemens the w_customer and w_orders action handlers.

...
OPEN WINDOW w_main WITH 10 ROWS, 80 COLUMNNS ATTRIBUTES(TYPE=NAVIGATOR)
START DIALOG d_navigator
OPEN WINDOW w_customers WITH FORM "customers" ATTRIBUTES(TYPE=LEFT)
START DIALOG d_customers
OPEN WINDOW w_orders WITH FORM "orders" ATTRIBUTES(TYPE=RIGHT)
START DIALOG d_orders
...
DIALOG d_navigator()
 MENU
 ON ACTION w_customers ATTRIBUTES(TEXT="Customers", IMAGE="smiley")
 CURRENT WINDOW IS w_customers
 ON ACTION w_orders ATTRIBUTES(TEXT="Orders")
 CURRENT WINDOW IS w_orders
 END MENU
END DIALOG

The functionality is the same on either mobile platforms: providing the user with the ability to navigate
between multiple views efficiently. The rendering depends on the platform:

• On an iOS device, navigator window renders as a tab bar, displaying at the bottom of the screen.

User interface | 1402

• On an Android device, navigator window renders as a spinner, which is a drop-down menu in the action
bar.

Rendering an HBox as a split view
Achieve a split view display with HBOX container and style attribute.

By defining a TABLE and a GRID container in a parent HBOX container, it is possible to get a splitview
display by setting the splitViewRendering style attribute of the HBox class. When using this style
attribute, the TABLE displays as a listview on the left of the screen, while the GRID displays as a form on
the right.

First define a form with the HBOX container, TABLE and GRID. In the code example below, the HBOX
container gets a STYLE attribute referencing a style named "splitview" in the .4st file:

LAYOUT
HBOX (STYLE="splitview")
TABLE
{
[c1 |c2]
[c1 |c2]
[c1 |c2]
[c1 |c2]
}
END
GRID
{
First name: [f1]
Last name: [f2]
...
}
END
END
...

The .4st file should look like follows:

<StyleList>
 <Style name="HBox.mystyle">
 <StyleAttribute name="splitViewRendering" value="yes" />
 </Style>
 ...
</StyleList>

The program must implement a dialog that handles both parts of the splitview. You typically implement a
DISPLAY ARRAY to handle the TABLE, and refresh the right part of the screen contained in the GRID, with
code in the BEFORE ROW control block:

DISPLAY ARRAY arr TO sr.*
 BEFORE ROW
 DISPLAY arr[arr_curr()].first_name TO f_first_name
 DISPLAY arr[arr_curr()].last_name TO f_last_name
END DISPLAY

User interface | 1403

Examples
Example applications using split views.
Example 1: Single split view application
This application uses a minimum amount of code to describe a typical implementation of parallel dialogs
that result in a split view application, with a list in the left pane and the detail for the selected row in the
right pane. It uses only one split view.

main.4gl

The code in the MAIN block creates the left pane/window and the right pane/window by specifiying the
TYPE attribute in OPEN WINDOW.

The left window will display a form comprised of a table view of all records (a1_list_view), the other
window contains a form with the detail view of a single record from the array (a1_detail_view)

The START DIALOG statements, along with the WHILE fgl_eventLoop() loop, creates the parallel
dialog on which a split view depends.

DEFINE arr DYNAMIC ARRAY OF RECORD
 id INTEGER,
 name VARCHAR(15),
 date DATE,
 comment VARCHAR(30)
 END RECORD
DEFINE curr_pa SMALLINT

MAIN
 CLOSE WINDOW SCREEN
 CALL populate_array()

 OPEN WINDOW w_left WITH FORM "list_view"
 ATTRIBUTES(TYPE=LEFT)
 START DIALOG d_list_view

 OPEN WINDOW w_right WITH FORM "detail_view"
 ATTRIBUTES(TYPE=RIGHT)
 START DIALOG d_detail_view

 WHILE fgl_eventLoop()
 END WHILE

END MAIN

DIALOG d_list_view()
 DISPLAY ARRAY arr TO sr.*
 ATTRIBUTES(ACCESSORYTYPE=DISCLOSUREINDICATOR)
 BEFORE ROW -- in BEFORE ROW, we restart the details view
 CURRENT WINDOW IS w_right
 TERMINATE DIALOG d_detail_view
 LET curr_pa = arr_curr()
 DISPLAY BY NAME arr[curr_pa].*
 DISPLAY SFMT("tapped row %1",arr_curr()) TO info
 START DIALOG d_detail_view
 CURRENT WINDOW IS w_left
 END DISPLAY
END DIALOG

DIALOG d_detail_view()
 MENU
 ON ACTION an_action
 MESSAGE "The action an_action was selected!"
 ON ACTION details
 IF edit_details() THEN

User interface | 1404

 DISPLAY BY NAME arr[curr_pa].*
 END IF
 END MENU
END DIALOG

FUNCTION edit_details()
 -- A modal dialog disables all parallel dialogs
 OPEN WINDOW w_details WITH FORM "details"
 ATTRIBUTES(TYPE=POPUP, STYLE="popup")
 LET int_flag=FALSE
 INPUT BY NAME
 arr[curr_pa].name,
 arr[curr_pa].comment
 WITHOUT DEFAULTS
 CLOSE WINDOW w_details
 RETURN (int_flag==FALSE)
END FUNCTION

FUNCTION populate_array()
 DEFINE i INT
 FOR i=1 TO 40
 LET arr[i].id=i
 LET arr[i].name="item "||i
 LET arr[i].date=TODAY
 LET arr[i].comment="item-detail "||i
 END FOR
END FUNCTION

Left form definition file (list_view.per)

This form definition file provides the table, or list, of records in the array. Even though four table columns
are defined, only two display.

LAYOUT (TEXT="Items")
TABLE
{
[c1 |c2]
}
END
END
ATTRIBUTES
PHANTOM FORMONLY.id;
EDIT c1=FORMONLY.name;
PHANTOM FORMONLY.date;
EDIT c2=FORMONLY.comment;
END
INSTRUCTIONS
SCREEN RECORD sr(FORMONLY.*);
END

Right form definition file (detail_view.per)

This form definition file displays the details for a single record in the array.

LAYOUT (TEXT="Details")
GRID
{
Id [f01]
Name [f02]
Date [f03]
Comment [f04]
Info [f05]

User interface | 1405

 [b1_details]
}
END
END
ATTRIBUTES
EDIT f01=FORMONLY.id;
EDIT f02=FORMONLY.name, SCROLL;
EDIT f03=FORMONLY.date;
EDIT f04=FORMONLY.comment, SCROLL;
EDIT f05=FORMONLY.info;
BUTTON b1_details:details,TEXT="Modify details";
END

Detail form definition file (details.per)

This is a simple form containing a two fields that will be used in the program by the edit_details()
function to modify item details.

LAYOUT (TEXT="Edit details")
GRID
{
Name: [f01]
Comment: [f02]
 []
}
END
END
ATTRIBUTES
EDIT f01=FORMONLY.name, SCROLL;
TEXTEDIT f02=FORMONLY.comment, STRETCH=BOTH;
END

Example 2: Multiple split views with navigation bar
This example shows how to write an application that handles two split views, each having a left and right
pane, with a top level navigation pane that allows the end user to easily switch between the two split views.

main.4gl

This module implements the window creation and the parallel dialogs to control their content.

The code in the MAIN block creates four windows:

• The main window is the navigation window/pane, defined by the TYPE=NAVIGATION attribute. Only the
d_navigator() main dialog is started.

• Two other windows are created for the customer list and details, in the customers() function. This
function is called when the main dialog starts. The function checks if the w_customers window
exists and if needed, opens the splitview windows and starts the dialogs handling customer records. If
windows already exists, it performs a CURRENT WINDOW IS w_customers, to select the customer
pane.

• The second window showing orders and its corresponding dialog are created in the orders() function,
using the same programming pattern as in the customers() function.

• When the user selects one of the main dialog actions, it calls either the customers(), the orders(),
or the params() function, to show the corresponding pane.

• The configuration pane is handled in the params() function, with the corresponding d_params_menu
dialog: When selected, the form is in read-only mode by default. The menu implements the "modify"
action to edit the parameters. This action will create a modal dialog, that stops temporarly the parallel
dialogs.

DEFINE c_arr DYNAMIC ARRAY OF RECORD
 id INTEGER,

User interface | 1406

 name VARCHAR(30),
 address VARCHAR(100)
 END RECORD,
 c_curr INTEGER

DEFINE o_arr DYNAMIC ARRAY OF RECORD
 id INTEGER,
 info VARCHAR(100),
 deliv DATE
 END RECORD

DEFINE params RECORD
 user_name VARCHAR(30),
 auto_sync CHAR(1)
 END RECORD

MAIN
 CLOSE WINDOW SCREEN
 OPEN WINDOW w_navigator WITH 10 ROWS, 80 COLUMNS
 ATTRIBUTES(TYPE=NAVIGATOR)
 START DIALOG d_navigator
 WHILE fgl_eventLoop()
 END WHILE
END MAIN

DIALOG d_navigator()
 MENU
 BEFORE MENU
 CALL customers()
 -- Note that action names must match the window names
 ON ACTION w_customers ATTRIBUTES(TEXT="Customers",IMAGE="customers")
 CALL customers()
 ON ACTION w_orders ATTRIBUTES(TEXT="Orders",IMAGE="orders")
 CALL orders()
 ON ACTION w_params ATTRIBUTES(TEXT="Params",IMAGE="sync")
 CALL params()
 END MENU
END DIALOG

FUNCTION params()
 IF ui.Window.forName("w_params") IS NULL THEN
 OPEN WINDOW w_params WITH FORM "parameters"
 LET params.user_name="Tom"
 LET params.auto_sync="Y"
 DISPLAY BY NAME params.*
 START DIALOG d_params_menu
 END IF
 CURRENT WINDOW IS w_params
END FUNCTION

DIALOG d_params_menu()
 MENU
 ON ACTION modify ATTRIBUTES(TEXT="Modify")
 CALL edit_params()
 ON ACTION options ATTRIBUTES(TEXT="Options")
 CALL options()
 END MENU
END DIALOG

FUNCTION edit_params() -- This is a modal dialog
 LET int_flag=FALSE
 INPUT BY NAME params.* ATTRIBUTES(WITHOUT DEFAULTS)
 IF NOT int_flag THEN
 -- CALL save_params()

User interface | 1407

 END IF
END FUNCTION

FUNCTION options()
 MENU "Options" ATTRIBUTES(STYLE="dialog")
 ON ACTION sync ATTRIBUTES(TEXT="Synchronize")
 --
 ON ACTION exit ATTRIBUTES(TEXT="Exit")
 EXIT PROGRAM
 ON ACTION cancel
 EXIT MENU
 END MENU
END FUNCTION

FUNCTION customers()
 IF ui.Window.forName("w_customers") IS NULL THEN
 CALL populate_customers()
 OPEN WINDOW w_customers WITH FORM "customer_list"
 ATTRIBUTES(TYPE=LEFT)
 START DIALOG d_customer_list
 OPEN WINDOW w_customer_detail WITH FORM "customer_detail"
 ATTRIBUTES(TYPE=RIGHT)
 START DIALOG d_customer_detail
 END IF
 CURRENT WINDOW IS w_customers
END FUNCTION

DIALOG d_customer_list()
 DISPLAY ARRAY c_arr TO c_sr.*
 ATTRIBUTES(ACCESSORYTYPE=DISCLOSUREINDICATOR)
 BEFORE ROW
 CURRENT WINDOW IS w_customer_detail
 TERMINATE DIALOG d_customer_detail
 LET c_curr = arr_curr()
 DISPLAY BY NAME c_arr[c_curr].*
 START DIALOG d_customer_detail
 CURRENT WINDOW IS w_customers
 END DISPLAY
END DIALOG

DIALOG d_customer_detail()
 MENU
 ON ACTION details
 LET int_flag=FALSE
 INPUT BY NAME c_arr[c_curr].name,
 c_arr[c_curr].address
 WITHOUT DEFAULTS
 IF NOT int_flag THEN
 DISPLAY BY NAME c_arr[c_curr].*
 END IF
 END MENU
END DIALOG

FUNCTION populate_customers()
 LET c_arr[1].id = 324
 LET c_arr[1].name = "Mike Treeman"
 LET c_arr[1].address = "56 Gamleed st."
 LET c_arr[2].id = 8934
 LET c_arr[2].name = "Stepfan Plombier"
 LET c_arr[2].address = "78 Pokam st."
 LET c_arr[3].id = 451
 LET c_arr[3].name = "Ted Barber"
 LET c_arr[3].address = "1243b Western st."
END FUNCTION

User interface | 1408

FUNCTION orders()
 IF ui.Window.forName("w_orders") IS NULL THEN
 CALL populate_orders()
 OPEN WINDOW w_orders WITH FORM "order_list"
 START DIALOG d_order_list
 END IF
 CURRENT WINDOW IS w_orders
END FUNCTION

DIALOG d_order_list()
 DISPLAY ARRAY o_arr TO o_sr.*
 END DISPLAY
END DIALOG

FUNCTION populate_orders()
 LET o_arr[1].id = 43249
 LET o_arr[1].info = "Xmass gifts"
 LET o_arr[1].deliv = MDY(12,23,2011)
 LET o_arr[2].id = 33424
 LET o_arr[2].info = "Dressing items"
 LET o_arr[2].deliv = MDY(2,13,2012)
END FUNCTION

customer_list.per

This is the form defining the customer list, it is used for the left-pane of the customers split view.

LAYOUT (TEXT="Customers")
TABLE
{
[c1 |c2]
}
END
END
ATTRIBUTES
PHANTOM FORMONLY.id;
EDIT c1=FORMONLY.name;
EDIT c2=FORMONLY.address;
END
INSTRUCTIONS
SCREEN RECORD c_sr(FORMONLY.*);
END

customer_detail.per

This is the form defining fields to show customer details, it is used for the right-pane of the customers split
view.

LAYOUT (TEXT="Customer details")
GRID
{
Id [f01]
Name [f02]
Address [f03]
 [b1_details]
}
END
END
ATTRIBUTES
EDIT f01=FORMONLY.id;
EDIT f02=FORMONLY.name, SCROLL;

User interface | 1409

EDIT f03=FORMONLY.address, SCROLL;
BUTTON b1_details:details,TEXT="Modify details";
END

order_list.per

This is the form defining the order list, it is a single form (not a split view)

LAYOUT (TEXT="Orders")
TABLE
{
[c1 |c2]
}
END
END
ATTRIBUTES
PHANTOM FORMONLY.id;
EDIT c1=FORMONLY.info;
EDIT c2=FORMONLY.date;
END
INSTRUCTIONS
SCREEN RECORD o_sr(FORMONLY.*);
END

parameters.per

LAYOUT (TEXT="Settings")
GRID
{
User [f01]
Auto sync [f02]
}
END
END
ATTRIBUTES
EDIT f01=FORMONLY.user_name, SCROLL;
CHECKBOX f02=FORMONLY.auto_sync, NOT NULL,
 VALUECHECKED="Y", VALUEUNCHECKED="N";
END

Example 3: Split view using an HBox
This app uses a minimum amount of code to show a split view implementation using an hbox container.

Styles definition file (mystyles.4st)

For this example, we start with the style file. The style file specifies the splitViewRendering attribute
for the HBox container when the style is set to mysplitview.

<?xml version="1.0" encoding="ANSI_X3.4-1968"?>
<StyleList>
 <Style name="HBox.mysplitview">
 <StyleAttribute name="splitViewRendering" value="yes" />
 </Style>
</StyleList>

User interface | 1410

Form definition file (splitview.per)

The form definition file defines a HBOX container using the mysplitview style. It contains a TABLE
followed by a GRID. The table will become the left pane of the split view app, and the grid will become the
right pane of the split view app.

LAYOUT
 HBOX (STYLE="mysplitview")
 TABLE
 {
 [c1 |c2]
 [c1 |c2]
 [c1 |c2]
 [c1 |c2]
 }
 END
 GRID
 {
 <GROUP g1 >
 Name: [lb_name :lb_id]
 E-mail: [lb_email]
 Address: [lb_address]
 City: [lb_city]
 < >
 <GROUP g2 >
 Phone: [lb_phone]
 Mobile: [lb_mobile]
 < >
 }
 END
 END
END

ATTRIBUTES

PHANTOM FORMONLY.id;
EDIT c1 = FORMONLY.name;
EDIT c2 = FORMONLY.address;
PHANTOM FORMONLY.city;
PHANTOM FORMONLY.phone;
PHANTOM FORMONLY.mobile;
PHANTOM FORMONLY.email;
GROUP g1: group1, TEXT="Contact";
EDIT lb_id = FORMONLY.cont_id;
EDIT lb_name = FORMONLY.cont_name;
EDIT lb_address = FORMONLY.cont_address;
EDIT lb_city = FORMONLY.cont_city;
GROUP g2: group2, TEXT="Numbers";
EDIT lb_phone = FORMONLY.cont_phone;
EDIT lb_mobile = FORMONLY.cont_mobile;
EDIT lb_email = FORMONLY.cont_email;
END

INSTRUCTIONS
SCREEN RECORD sr(id, name, address, city,
 phone, mobile, email);
END

Application (main.4gl)

The application starts by loading the splitview.4st style file.

User interface | 1411

After populating the array with our sample data, the splitview.per form is loaded and displayed in the
default SCREEN window.

Then, a DISPLAY ARRAY statement takes control, and fills the fields in the grid in the BEFORE ROW
trigger, when a new row is selected by the user.

DEFINE carr DYNAMIC ARRAY OF RECORD
 cont_id INTEGER,
 cont_name VARCHAR(40),
 cont_address VARCHAR(100),
 cont_city VARCHAR(50),
 cont_phone VARCHAR(20),
 cont_mobile VARCHAR(20),
 cont_email VARCHAR(30)
END RECORD

MAIN
 CALL ui.Interface.loadStyles("splitview")
 CALL load_samples()
 OPEN FORM f FROM "splitview"
 DISPLAY FORM f
 DISPLAY ARRAY carr TO sr.* ATTRIBUTES(UNBUFFERED)
 BEFORE ROW
 DISPLAY BY NAME carr[arr_curr()].*
 END DISPLAY
END MAIN

FUNCTION load_samples()
 DEFINE i INTEGER
 LET i=0
 LET carr[i:=i+1].cont_id = 982
 LET carr[i].cont_name = "Mike Stanford"
 LET carr[i].cont_address = "5 Marbel St."
 LET carr[i].cont_city = "Balmberg"
 LET carr[i].cont_phone = "8723847234"
 LET carr[i].cont_mobile= "8732487833"
 LET carr[i].cont_email = "mikest@xyz.com"
 LET carr[i:=i+1].cont_id = 8234
 LET carr[i].cont_name = "Phil Karlmon"
 LET carr[i].cont_address = "341 Merlo Bld"
 LET carr[i].cont_city = "Clerckmont"
 LET carr[i].cont_phone = "9823498234"
 LET carr[i].cont_mobile= "9999991213"
 LET carr[i].cont_email = "pkarl@yoioyoio.com"
 LET carr[i:=i+1].cont_id = 1045
 LET carr[i].cont_name = "Clark Gambello"
 LET carr[i].cont_address = "35 Straw St."
 LET carr[i].cont_city = "Bringstone"
 LET carr[i].cont_phone = "9823498234"
 LET carr[i].cont_mobile= "8234981111"
 LET carr[i].cont_email = "cgamb@youhoowha.com"
END FUNCTION

Drag & drop
Explains programming techniques for the drag & drop feature.

• Understanding drag & drop on page 1412
• Syntax of drag & drop interaction blocks on page 1412
• Default drag & drop operation on page 1413
• Control block execution order on page 1413
• Handle drag & drop data with MIME types on page 1413

User interface | 1412

• Examples on page 1415

• Example 1: Two lists side-by-side with drag & drop on page 1415

Understanding drag & drop

Drag & drop is a well know feature of graphical applications, allowing the end user to use the mouse to
drag an element of a window to another window in the same program or into an external application. The
front-end platform/device must support this feature.

Important: This feature is not supported on mobile platforms.

Drag & drop can be implemented in regular tables and tree-views controlled by a singular DISPLAY
ARRAY or a DISPLAY ARRAY sub-dialog within a DIALOG instruction. Drag & drop is not supported in other
dialog contexts, such as a singular INPUT, INPUT ARRAY or CONSTRUCT.

With drag & drop, end users can:

• Move drag-able objects between lists and tree-views in the same Genero form or program.
• Move drag-able objects between lists and tree-views in different Genero forms and programs.
• Move drag-able objects between other desktop applications and tables / tree-views in Genero

programs.

Drag & drop control is implemented in a DISPLAY ARRAY with specific interaction blocks, to handle the
events related to the drag and drop operation. These specific blocks will be triggered when drag and drop
events arrive from the front-end.

• ON DRAG_START
• ON DRAG_FINISHED
• ON DRAG_ENTER
• ON DRAG_OVER
• ON DROP

Each of these interaction blocks takes a ui.DragDrop object as a parameter. A reference variable to that
object must be declared before the dialog. In the interaction block, the ui.DragDrop object can be used
to configure the drag & drop action to take. For example, a "drag enter" event can be refused.

The ON DRAG_START and ON DRAG_FINISHED triggers apply to the source of the drag & drop operation;
the dialog where the object was dragged. The other triggers provide notification to the drop target dialog,
used to inform the program when the different drop events occur and to let the target accept or reject the
drop action.

This example illustrates the use of a drag & drop interaction block with the ui.DragDrop control object:

DEFINE dnd ui.DragDrop
...
DISPLAY ARRAY arr TO sr.* ...
...
 ON DRAG_ENTER(dnd)
 IF ok_to_drop THEN
 CALL dnd.setOperation("move")
 ELSE
 CALL dnd.setOperation(NULL)
 END IF
...
END DISPLAY

Syntax of drag & drop interaction blocks
The ON DRAG* / ON DROP interaction blocks implement drag & drop operations.

{ ON DRAG_START (dnd-object)
| ON DRAG_FINISHED (dnd-object)

User interface | 1413

| ON DRAG_ENTER(dnd-object)
| ON DRAG_OVER (dnd-object)
| ON DROP (dnd-object) }
 dialog-statement
 [...]

1. dnd-object is a variable referencing an object of the class ui.DragDrop.

Default drag & drop operation

By default, all DISPLAY ARRAY dialogs implement a default drag operation that copies all selected rows to
the drag & drop buffer as a tab-separated list of values.

The user code equivalent to the default drag & drop operation would look like this:

DEFINE dnd ui.DragDrop
...
DISPLAY ARRAY arr TO sr.* ...
...
 ON DRAG_START(dnd)
 CALL dnd.setOperation("copy")
 CALL dnd.setMimeType("text/plain")
 CALL dnd.setBuffer(DIALOG.selectionToString("sr"))
...
END DISPLAY

Control block execution order

The table below shows the order in which the runtime system executes the control blocks related to drag &
drop events:

Table 293: Control block execution order for drag & drop events

Context / User action Control Block execution order

The user starts to drag an object from the source
dialog.

1. ON DRAG_START (in source dialog)

The mouse cursor enters the drop target dialog. 1. ON DRAG_ENTER (in target dialog)

After entering the target dialog, the mouse cursor
moves from row to row, or user chooses to change
the drop operation (move or copy).

1. ON DRAG_OVER (in target dialog)

The user releases the mouse button over the target
dialog.

1. ON DROP (in target dialog)
2. ON DRAG_FINISHED (in source dialog)

Handle drag & drop data with MIME types

If a drag & drop is intended to work only in the same application, data can be passed with variables in the
context of the current program. For example, in a program using two tables where the user can drag &
drop elements between the two lists, identify the selected rows and update the program arrays accordingly.
When drag & drop is limited to the current application, avoid the drop outside the current application.

When a drag & drop operation comes from (or goes to) external applications, data can be of various types/
formats: plain text, formatted text, documents, images, sounds, videos, and so on. In order to handle the
drag & drop data, you must identify the type of data held in the drag & drop buffer. The type of data in the
buffer is identified by the MIME type (Multiple Internet Mail Extensions). MIME types are a widely used
internet standard specification, first introduced to identify the content of e-mail attachments.

User interface | 1414

Only text data can be passed with drag & drop; binary data is not supported. However, you can pass files
by using the fgl_getfile() file transfer function, and identify the file with a URI (text-uri-list MIME type).
For a working example, see the demos in FGLDIR/demo/DragAndDrop.

Example of MIME types:

• text/plain
• text/uri-list
• text/x-vcard

You can also define your own MIME type, as long as it does not conflict with existing standard MIME types.
For example:

• text/my-remote-file
• text/my-customer-record

If you do not specify a MIME type when the drag starts, the type defaults to text/plain, and the dialog will
by default copy the data from selected rows into the drag & drop buffer. To prevent drag & drop to external
applications, you must pass an application-specific MIME type to the ui.DragDrop.setMimeType()
method, to be sure that other applications do not recognize the MIME type and will deny the drop.

Preparing the dragged object for external targets

If the program implements drag & drop of objects that can be dropped to external programs, you must
specify the MIME type of the object and copy the data to the drag & drop buffer, so that the external
application can identify the data format and receive it.

In the ON DRAG_START block, you must call the ui.DragDrop.setMimeType() method to define the
MIME type of the object, and copy the text data into the buffer with the ui.DragDrop.setBuffer()
method.

This example shows a DISPLAY ARRAY dialog preparing the drag & drop buffer to export VCard data from
a dragged row:

DEFINE dnd ui.DragDrop
...
DISPLAY ARRAY arr TO sr.* ...
...
 ON DRAG_START(dnd)
 -- Define the MIME type and copy text data to DnD buffer
 CALL dnd.setMimeType("text/x-vcard")
 CALL dnd.setBuffer(buildVCardData(arr[arr_curr()].cid))
 CALL dnd.setOperation("copy")
...
END DISPLAY

Receiving the dragged object from external sources

This describes how to handle the drop action when the target dialog receives an object dragged from an
external source, by identifying the MIME type of the object.

In the ON DRAG_ENTER block, you must call the ui.DragDrop.selectMimeType() method to check
that data is available in a format identified by the MIME type, passed as a parameter. If the type of data is
available in the buffer, the method returns TRUE. Later, when the dragged object is dropped (ON DROP),
you can get the previously selected MIME type with ui.DragDrop.getSelectedMimeType() before
calling ui.DragDrop.getBuffer() to retrieve the actual data.

The next example shows the usage of those methods: In ON DRAG_ENTER, the program checks available
MIME types, and denies the drop operation if the buffer does not hold any of the MIME types that can be
treated by the program. In ON DROP, the program calls getSelectMimeType() to check what MIME

User interface | 1415

type was selected, retrieves the data with getBuffer() , then inserts a new row and puts the data in
dedicated fields according to the MIME type:

DEFINE dnd ui.DragDrop
...
DISPLAY ARRAY arr TO sr.* ...
...
 ON DRAG_ENTER(dnd)
 -- Set operation to NULL if unexpected MIME type found
 CASE
 WHEN dnd.selectMimeType("text/plain")
 WHEN dnd.selectMimeType("text/uri-list")
 OTHERWISE
 CALL dnd.setOperation(NULL)
 END CASE
...
 ON DROP(dnd)
 -- Select MIME type and get data from buffer
 LET row = dnd.getLocationRow()
 CALL DIALOG.insertRow("sr", row)
 IF dnd.getSelectMimeType() == "text/plain" THEN
 LET arr[row].text_data = dnd.getBuffer()
 END IF
...
END DISPLAY

Examples

See demo directory for more Drag & Drop examples.

Example 1: Two lists side-by-side with drag & drop

MAIN
 DEFINE drag_index, drop_index, i INT
 DEFINE drag_source, drag_value SRING
 DEFINE arr_left, arr_right DYNAMIC ARRAY OF STRING
 DEFINE dnd ui.DragDrop
 CONSTANT S_LEFT="sr_left"
 CONSTANT S_RIGHT="sr_right"

 OPEN FORM f FROM "dnd"
 DISPLAY FORM f

 FOR i = 1 TO 10
 LET arr_left[i] = "left " || i
 LET arr_right[i] = "right" || i
 END FOR

 INITIALIZE drag_index TO NULL

 DIALOG ATTRIBUTES(UNBUFFERED)

 DISPLAY ARRAY arr_left TO sr_left.*
 ON DRAG_START(dnd)
 LET drag_source = S_LEFT
 LET drag_index = arr_curr()
 LET drag_value = arr_left[drag_index]
 ON DRAG_FINISHED(dnd)
 INITIALIZE drag_source TO NULL
 ON DRAG_ENTER(dnd)
 IF drag_source IS NULL THEN
 CALL dnd.setOperation(NULL)
 END IF

User interface | 1416

 ON DROP(dnd)
 IF drag_source == S_LEFT THEN
 CALL dnd.dropInternal()
 ELSE
 LET drop_index = dnd.getLocationRow()
 CALL DIALOG.insertRow(S_LEFT, drop_index)
 CALL DIALOG.setCurrentRow(S_LEFT, drop_index)
 LET arr_left[drop_index] = drag_value
 CALL DIALOG.deleteRow(S_RIGHT, drag_index)
 END IF
 END DISPLAY

 DISPLAY ARRAY arr_right TO sr_right.*
 ON DRAG_START(dnd)
 LET drag_source = S_RIGHT
 LET drag_index = arr_curr()
 LET drag_value = arr_right[drag_index]
 ON DRAG_FINISHED(dnd)
 INITIALIZE drag_source TO NULL
 ON DRAG_ENTER(dnd)
 IF drag_source IS NULL THEN
 CALL dnd.setOperation(NULL)
 END IF
 ON DROP(dnd)
 IF drag_source == S_RIGHT THEN
 CALL dnd.dropInternal()
 ELSE
 LET drop_index = dnd.getLocationRow()
 CALL DIALOG.insertRow(S_RIGHT, drop_index)
 CALL DIALOG.setCurrentRow(S_RIGHT, drop_index)
 LET arr_right[drop_index] = drag_value
 CALL DIALOG.deleteRow(S_LEFT, drag_index)
 END IF
 END DISPLAY

 ON ACTION cancel
 EXIT DIALOG

 END DIALOG
END MAIN

Web components
This section describes how to use web components in your application.

• Understanding web components on page 1417
• WEBCOMPONENT item type on page 900
• Controlling the web component layout on page 1418
• Using a URL-based web component on page 1419

• Defining a URL-based web component in forms on page 1420
• Specifying the URL source of a web component on page 1420
• Controlling the URL web component in programs on page 1421

• Using a gICAPI web component on page 1422

• HTML document and JavaScript for the gICAPI object on page 1422
• The gICAPI web component interface script on page 1423
• Deploying the gICAPI web component files on page 1426
• Defining a gICAPI web component in forms on page 1428
• Controlling the gICAPI web component in programs on page 1429
• Using image resources with the gICAPI web component on page 1430

User interface | 1417

• Examples on page 1432

• Example 1: URL-based web component using Google maps on page 1432
• Example 2: Calling a JavaScript function of a gICAPI web component on page 1432
• Example 3: Implementing Google+ authentication with a URL-based web component on page 1434
• Example 4: Color picker gICAPI web component on page 1437

Understanding web components
External graphical components can be integrated into forms by using the WEBCOMPONENT form item type.

A WEBCOMPONENT form field is a form element that defines an area in the form layout to hold an external
component, typically not available as a native widget on the front-end platform.

Web components are designed for a specific need, and usually have advanced and powerful features
which can bring added value to your applications. For example, you can find chart and graph widgets,
calendar widgets, drawing widgets, and more. Such specialized widgets are not part of the standard GUI
toolkits used by Genero front-ends. They need to be integrated as external components.

Important: Depending on the type of front-end, the web components can have limitations: When
using native front-ends (GDC, GMA, GMI), the web components are implemented with a "webview"
widget, which is not a full-featured web browser.

The main web component limitations on native front-ends are:

• lack of plugin support,
• less accurate javascript engine,
• lack of advanced html+css features.

Some web components are free, and some are licensed, so you should take the cost into account before
integrating a new web component in your application.

Web components can be implemented with two different techniques:

1. Using an URL specification, by setting the URL as value of the WEBCOMPONENT field at runtime. This
is the easiest way to implement a web component. The widget is controlled with URL values by the
program, but requires some additional coding to handle URLs, instead of flat field values.

2. Using an gICAPI object (based on JavaScript™), by defining the COMPONENTTYPE attribute in the form
file. This kind of web component requires some JavaScript coding, to write a form field "plugin", which
is usable in a normal dialog instruction, that behaves as all the other widgets in terms of value setting/
getting.

The content and/or behavior of a web component can be controlled in the program code by using the field
value. To detect events inside the web component, the program dialogs must implement an ON CHANGE
control block, that will be fired immediately after a user action on the web component.

WEBCOMPONENT item type
Defines a specialized form item that holds an external component.

WEBCOMPONENT item basics

The WEBCOMPONENT form item defines a form field that will hold an external component, implemented with
a front-end plug-in mechanism.

This topic describes the WEBCOMPONENT item type in form definition files, a complete section is dedicated
to web component programming.

Defining a WEBCOMPONENT

The COMPONENTTYPE attribute identifies gICAPI external objects to be used for the field. The
PROPERTIES attribute is typically used to define attributes that are specific to a given gICAPI-based web
component. For example, a chart component might have properties to define x-axis and y-axis labels. For
more details, see Using a gICAPI web component on page 1422.

User interface | 1418

If the COMPONENTTYPE attribute is not used, the web component will be a URL-based web component. For
more details, see Using a URL-based web component on page 1419.

Some front-ends support different presentation and behavior options, which can be controlled by a STYLE
attribute. For more details, see Common style attributes on page 818.

Where to use a WEBCOMPONENT

A WEBCOMPONENT form item can be defined in two different ways:

1. With an item tag and a WEBCOMPONENT item definition on page 949 in a grid-layout container
(GRID, SCROLLGRID and TABLE).

2. As a WEBCOMPONENT stack item on page 927 in a STACK container.

Defining the widget size

The size of a WEBCOMPONENT widget can be controlled in grid-based or stack-based layout, according to
several attributes such as SIZEPOLICY and STRETCH.

For more details about image sizing, see Controlling the web component layout on page 1418.

Controlling the web component layout

Web component sizing basics

Web components are usually complex widgets displaying detailed information, such as charts, graphs, or
calendars. Such widgets are generally resizeable. Therefore, the WEBCOMPONENT form item must be large
and stretchable.

Viewport zooming on mobile devices

In order to avoid automatic viewport zooming with mobile applications, consider adding a meta tag with
name='viewport' in the HTML file of your gICAPI-based web components, with initial and maximal
scale attributes set to 1:

<meta name='viewport' content='initial-scale=1.0, maximum-scale=1.0' />

Note: Don't use such responsive meta tag, if your web component isn't specifically designed to be
responsive.

Web component size in grid-based layout

In a grid-bases layout, the item tag of the WEBCOMPONENT defines the default dimensions of the web
component area:

LAYOUT
GRID
{
<GROUP g1 >
[f1][f2]
[f3]
 ...
< >
[f5]
[]
[]
[]
}
END

User interface | 1419

In the ATTRIBUTES section, use the SIZEPOLICY, SCROLLBARS and STRETCH attributes, to define the
sizing policy of a web component field:

WEBCOMPONENT f5 = FORMONLY.mymap,
 SIZEPOLICY = FIXED,
 STRETCH = BOTH;

By default, the WEBCOMPONENT widget gets the size of the form item (like SIZEPOLICY=FIXED). When
SIZEPOLICY=INITIAL, the web component is scaled to the right size after the first webpage is loaded
and stays at that size. When SIZEPOLICY=DYNAMIC, the web component is resized after each load of a
new webpage so that no scrollbars should appear.

Web component size layout in stack-based layout

In a stack-based layout, a WEBCOMPONENT item is defined with other items in a logical presentation order,
without any size information:

LAYOUT
 STACK
 GROUP (TEXT="Chart example")
 COMBOBOX FORMONLY.chart_type, NOT NULL,
 INITIALIZER=chart_type_init;
 WEBCOMPONENT FORMONLY.chart,
 COMPONENTTYPE = "chartjs",
 STYLE="regular";
 END
 END
END

By default, the WEBCOMPONENT widget size will adapt to the content of the web component: It will stretch
vertically to the appropriate size, in order to show the complete web component content.

To limit the size of the WEBCOMPONENT widget, you can use the HEIGHT attribute in the form definition:

WEBCOMPONENT FORMONLY.chart,
 HEIGHT = 5, -- 5 lines
 ...

Note: If the HEIGHT attribute of the web component is defined in the form file, it fixes the
widget height, which may result in vertical scrollbars inside the widget. This is like using
SIZEPOLICY=FIXED for a web component in a grid-based layout.

If the HEIGHT attribute is not specified in the .per file, the front-end will take the height attribute of the
HTML elements of the web component HTML file into account, for example when using a <canvas />
element:

<body>
 <canvas id="myChart" height="100px" />

Using a URL-based web component
This section describes how to add a URL-based web component to your application.

To implement an URL-based web component:

URL-based web components are hosted on a third-party server and provide a specific service, such as a
geographical location on a map. Make sure that the service is available.

1. Identify the URL of the hosted web component you want to use.

2. In the form file, define a WEBCOMPONENT field, without a COMPONENTTYPE attribute.

User interface | 1420

See Defining a URL-based web component in forms on page 1420 for more details.

3. In the program, set the URL of the hosted web component in the form field value.

See Specifying the URL source of a web component on page 1420 for more details.

4. In the program, detect user interactions with an ON CHANGE control block, and control the URL-based
web component with dedicated front calls.

See Controlling the URL web component in programs on page 1421 for more details.

Defining a URL-based web component in forms

Adding a WEBCOMPONENT to the form file

To define a URL-based web component field, add a form field with the WEBCOMPONENT item type, without
the COMPONENTTYPE attribute:

WEBCOMPONENT f001 = FORMONLY.mymap;

A web component field is typically defined with the FORMONLY prefix, as the data for the field is rarely
stored in a database column.

The field type (and its corresponding program variable) must be a character string type. Consider using the
STRING type to avoid any size limitation for the URL specification.

Sizing policy for web component fields

Web components are usually complex widgets displaying detailed information, such as charts, graphs, or
calendars, which are generally resizeable. Use the appropriate form item attributes to get the expected
layout and behavior. For more details, see Controlling the web component layout on page 1418.

Example

LAYOUT
GRID
{
[wc]
[]
[]
[]
[]
}
END
END
ATTRIBUTES
WEBCOMPONENT wc = FORMONLY.mychart,
 STRETCH = BOTH;
END

Specifying the URL source of a web component
The content of URL-based web components is defined by the form field value. It can only be set by
program.

Setting the initial URL

When the current form defines a WEBCOMPONENT form item without the COMPONENTTYPE attribute, it is a
URL-based web component. The program can set the URL dynamically in field value:

DISPLAY "wc-URL" TO wc-field

User interface | 1421

or with:

DEFINE wc_field STRING
LET wc_field = "wc-URL"
DISPLAY BY NAME wc_field

or by using the variable in an INPUT dialog with the UNBUFFERED option:

DEFINE rec RECORD
 name STRING,
 mymap STRING
 END RECORD
...
LET rec.mymap = "http://www.openstreetmap.org"
INPUT BY NAME rec.* WITHOUT DEFAULTS
 ATTRIBUTES(UNBUFFERED)
 ...

Once the URL of the web component is defined, the initial URL content is shown by the front-end, and the
end user can interact with it.

Changing the URL

During program execution, you can assigning another URL to the web component field value. The content
will be updated to show the new URL.

This example implements a MENU dialog with actions that set different URLs to the web component field,
changing the content based on the selected action:

MENU "test"
 ON ACTION map_1
 DISPLAY "http://www.openstreetmap.org" TO wc_field
 ON ACTION map_2
 DISPLAY "http://www.wikimapia.org" TO wc_field
 ON ACTION map_3
 DISPLAY "http://maps.google.com" TO wc_field
END MENU

Controlling the URL web component in programs
URL-based web components can be controlled with the field value and with front calls

Detecting user interaction in a web component with ON CHANGE

The content of an URL-based web component is defined by the field value.

When the end user interacts with the content, and if the remote service points to a different URL, the field
value changes.

The URL change can be detected by implementing an ON CHANGE control block for the web component
field. The trigger will be fired immediately when the URL changes:

DEFINE rec RECORD
 num INTEGER,
 name STRING,
 map STRING
 END RECORD
...
INPUT BY NAME rec.* WITHOUT DEFAULTS
 ATTRIBUTES(UNBUFFERED)
 ...
 ON CHANGE map

User interface | 1422

 CALL map_changed(rec.map)
 ...

Controlling URL-based web components with front calls

The web component can be manipulated with specific front calls. The web component-specific front calls
are provided in the "webcomponent" front call module.

The call front call that can be used for general purposes. It takes as parameters the name of the form
field, a JavaScript function to call, and optional parameters as required. The JavaScript function must be
implemented in the HTML content pointed by the URL of the web component field. The front call returns
the result of the JavaScript function.

DEFINE title STRING
CALL ui.Interface.frontCall("webcomponent", "call",
 ["formonly.url_field", "eval", "document.title"],
 [title])

The getTitle function is another useful webcomponent front call that can get the title of the HTML
document of the web component:

DEFINE info STRING
CALL ui.Interface.frontCall("webcomponent", "getTitle",
 ["formonly.url_field"], [info])

Some providers return key information in the title of the HTML document.

Using a gICAPI web component
This section describes how to add a gICAPI-based web component to your application.

To implement a gICAPI-based web compoent:

1. Identify the web component you want to use and get the source code (HTML, JavaScript™, CSS).

2. Implement the gICAPI interface script for the web component.

See The gICAPI web component interface script on page 1423 for more details about the gICAPI
interface script implementation.

3. Define the location where the front end can find the gICAPI interface files. This depends on the front
end technology used by your application.

See Deploying the gICAPI web component files on page 1426 for more details.

4. Define a WEBCOMPONENT field in the form file. Use the COMPONENTTYPE attribute to define the root
HTML file name describing the gICAPI web component.

See Defining a gICAPI web component in forms on page 1428 for more details.

5. Use the web component in the dialog of the program.

See Controlling the gICAPI web component in programs on page 1429 for more details.

6. If image resources are required by your web component, you must provide them as part of the gICAPI
web component assets, or provide them from the program with a specific API.

See Using image resources with the gICAPI web component on page 1430 for more details.

HTML document and JavaScript for the gICAPI object
A gICAPI web component is identified by an HTML document containing the JavaScript interface (or a
reference to the .js file).

The HTML document is defined by the COMPONENTTYPE attribute of the WEBCOMPONENT form field. The
name specified in this attribute will be used to identify the HTML file:

WEBCOMPONENT wc = FORMOMLY.chart,

User interface | 1423

 COMPONENTTYPE = "mychart"; -- Identifies "mychart.html"

The HTML document must reference (or contain) the JavaScript implementing the gICAPI interface:

<!DOCTYPE html>
<html>
<head>
 <title>The title</title>
 <script language="JavaScript" type="text/javascript" src="wc_echo.js"></
script>
</head>
<body>
<div style="background-color:green;width:3000px;height:3000px;" >
here
</div>
</body>
</html>

The gICAPI web component interface script
The gICAPI web components are controlled on the front end through a gICAPI interface object, defined in
an JavaScript™ script.

gICAPI interface basics

The goal of the gICAPI interface is to manage communication between the program and the web
component with a basic API, to handle the interaction events, the focus and the value of the web
component field.

The interface script is written in JavaScript™ and bound to the WEBCOMPOMENT form field by using an
HTML document as container.

Figure 100: Web Component communication management

The gICAPI web component API relies on a published global JavaScript™ object named gICAPI.

Predefined function for gICAPI interface initialization

The onICHostReady() global function must be implemented, to execute code after the gICAPI interface
has been initialized.

Note: The gICAPI object is ready in the context of onICHostReady().

The programming interface of the gICAPI class is identified by a version number, to make sure that
the user code corresponds to the current gICAPI implementation. Verify that t runtime version number
matches the gICAPI version used during development, by checking the value passed as parameter to
onICHostReady().

User interface | 1424

Note: The onICHostReady() function is mandatory to check the gICAPI interface version, and to
implement the assignment of gICAPI.on* callback functions as described later in this topic.

Table 294: Function to handle the gICAPI interface

Method Description

onICHostReady(version
String)

Called when the gICAPI web component interface is ready. The version
passed in the parameter allows you to check that your component is
compatible with the API, and initialization code can be execute in this function.

In order to check the interface version, implement the onICHostReady() function as follows:

onICHostReady = function(version) {
 if (version != 1.0)
 alert('Invalid API version');
 // More initialization code...
}

gICAPI callbacks to handle events coming from the program

The on* functions must be implemented as callbacks (functions assigned to gICAPI object members),
in order to detect changes comming from the program (such as a web component field value modification
with onData()).

Important: The gICAPI object must be instanciated, before defining and assigning these
methods. The gICAPI object is created and initialized by the web component framework before
calling the onICHostReady() global function. Therefore, on* callback methods are typically
defined and assigned to the gICAPI object, inside the body of the onICHostReady() function.

onICHostReady = function(version) {

 if (version != 1.0)
 alert('Invalid API version');

 current_color = "#000000";

 gICAPI.onProperty = function(properties) {
 var ps = eval('(' + properties + ')');
 document.getElementById("title").innerHTML = ps.title;
 }

 ...

Table 295: Object methods of gICAPI (program to component)

Method Description

onData(data
String)

Called when the program value of the form field is updated by the runtime
system (for example, when doing a DISPLAY variable TO wc_field) or
when the VM returns the validated value, after a gICAPI.SetData() was
performed by the web component.

The VM value is provided in the data parameter.

When the onData() function is fired, you will typicaly assign the data value
to the web component, or check that the VM has validated your SetData()
request, when the value sent and the value returned by the VM do match.

User interface | 1425

Method Description

The data must be a string, it is not a scalar value, it is typically serialized as a
JSON string.

Note: Use util.JSON classes to serialize / de-serialize structured data
(i.e. RECORDs or ARRAYs)

onFocus(polarity
Boolean)

Called when the runtime system / program changes the focus (for example,
with a NEXT FIELD instruction, or when the user tabs through the form fields).
If the web component gains the focus, polarity is set to true. If the web
component loses the focus, polarity is set to false.

Note: This function is also called after a gICAPI.setFocus(), if the
runtime system has accepted to set the focus to the web component
field.

onProperty(properties
String)

Called when one of the properties of the component is set at form creation
time, or when a property is changed dynamically once the form and web
component are loaded. The format used to pass the property set is JSON.

Note: Each time this function is called, all properties are provided in
the parameter.

gICAPI functions to send events to the program

Table 296: Object methods of gICAPI (component to program)

Method Description

Action(action
String)

Triggers an action event, which will execute the corresponding ON ACTION
code. If the named action is not available (not active or does not exist), this
function has no effect.

SetData(data
String)

Registers data to be sent to the program, to set the form field value.

The data must be a string, it is not a scalar value, it is typically serialized as a
JSON string.

Note: The gICAPI-based web component field must be the current
field (i.e. the web component field must have the focus), otherwise
SetData() will be ignored.

The value change is transmitted to the runtime system when the web
component field loses the focus. If you want to transmit the value change
the runtime system immediately, gICAPI.SetData() must be used in
conjunction with gICAPI.Action(), in order to fire an action.

After a SetData() the value is sent to the VM which can accept or reject the
field value change. In order to detect that the VM has accepted the value, the
onData() function will be called with the same value as the value sent by
SetData(). The web component then receives an indication that the VM has
accepted the value change.

Note: Data is transmitted as plain text; Sending a large amount of
data is not recommended.

SetFocus() Generates a focus change request. The tabbing order and focus management
is controlled by the runtime system: If the focus change request succeeds,
gICAPI.onFocus() will be called with the true parameter.

http://en.wikipedia.org/wiki/JSON

User interface | 1426

Method Description

The focus request may fail when:

• the current field does not satisfy field constraints (VERIFY, data type
conversion, and so on.)

• due to program logic (AFTER FIELD ..., NEXT FIELD).

Deploying the gICAPI web component files
Deploy web component files to the front-end platform before using gICAPI web components.

Deploying the HTML document and the JavaScript gICAPI interface

The gICAPI web component files (main HTML file, additional JavaScript files and other potential assets)
must be available on the platform where the front-end executes. According to your configuration, Genero
supports several solutions to provide the gICAPI web component files from a single location. In a
distributed configuration with many individual front-end nodes, consider centralizing the gICAPI files on a
server, instead of copying the gICAPI web component files manually to each front-end device.

Important: If the main gICAPI HTML document references external JavaScript files, put these files
in the same directory as the HTML file referencing them.

Deploying gICAPI web component files with the GAS (using any front-end)

When using the Genero Application Server, the gICAPI web component files must be deployed as part of
the application program files.

The .xcf configuration file of your application must define the base path to search for HTML web
component files. This base path is defined by the WEB_COMPONENT_DIRECTORY entry of the EXECUTION
element:

<APPLICATION ...
 <EXECUTION>
 ...
 <WEB_COMPONENT_DIRECTORY>$(application.path)/webcomponents</
WEB_COMPONENT_DIRECTORY>
 ...

The HTML document must be located in a sub-directory below the base path, using the same name as
defined by the COMPONENTTYPE attribute. As result, the complete path to the HTML document will be:

base-path/component-type/component-type.html

Note: The above example uses the default value of the WEB_COMPONENT_DIRECTORY parameter.
If you locate your gICAPI web component files under appdir/webcomponents/component-
type, you do not need to set this element in the .xcf file.

For example, if the form file defines the COMPONENTTYPE attribute as follows:

WEBCOMPONENT wc = FORMOMLY.mychart,
 COMPONENTTYPE = "3DChart";

If WEB_COMPOMENT_DIRECTORY is defined as "$(application.path)/webcomponents", and
application.path is "/opt/var/gas/appdata/app/myapp", the HTML document will be found in:

• /opt/var/gas/appdata/app/myapp/webcomponents/3DCshart/3DChart.html

To simplify deployment of gICAPI web components with the GAS, consider using the fglgar utility. For
more details, see GAS documentation.

User interface | 1427

Note: Unlike other front-ends, the GAS will not ask the VM for gICAPI web component files
through the FGLIMAGEPATH mechanism, as described in the next section. The FGLIMAGEPATH
mechanism applies only to front-ends using direct connection.

Centralizing gICAPI web component files for GMA, GMI and GDC front-ends (direct connection)

When using a front-end with a direct connection (i.e. not through the GAS), you can automatically transfer
web component files to the front-end. Locate the gICAPI web component files on the computer where
programs execute and set the FGLIMAGEPATH on page 182 environment variable. The web component
files are automatically transferred if the program executes on a server and the gICAPI web component files
are not found locally by the front-end.

When using FGLIMAGEPATH, gICAPI web component files are searched in the following order:

1. FGLIMAGEPATH-location/webcomponents/component-type/component-type.html

2. FGLIMAGEPATH-location/component-type.html

If assets such as .js, .css, .png files are referenced by a relative path name in the HTML content, the
resources are also transferred via the FGLIMAGEPATH mechanism. If the assets use an absolute path
with a concrete URL scheme (http://something), the HTML viewer will try to get the resource from
the URL location.

Note: Providing gICAPI web component files through FGLIMAGEPATH simplifies the development
process for mobile applications, as you do not have to copy the files to the device.

For example, if you define the gICAPI web component field as follows:

WEBCOMPONENT wc = FORMOMLY.mychart,
 COMPONENTTYPE = "3DChart";

If the FGLIMAGEPATH search path contains "/opt/myapp", and the gICAPI files are located under /opt/
myapp/webcomponents/3DChart", the gICAPI web component HTML document will be found on the server
at:

• /opt/myapp/webcomponents/3DChart/3DChart.html

Deploying gICAPI web component files for an embedded mobile application

When running the application on mobile (i.e. in embedded mode), the gICAPI web component files (along
with other assets) can be deployed on the device: The files will be found locally on the device.

Note: The GDC front-end supports also local gICAPI file lookup in the GDC installation directory.
However, this solution is supported for backward compatibility: Consider centralizing the gICAPI
web component files on the application server, by using the GAS or the FGLIMAGEPATH
mechanism as described above.

Mobile front-ends make a local search for gICAPI web component files in the following order:

1. appdir/webcomponents/component-type/component-type.html

2. appdir/component-type.html

Here component-type is the name defined by the COMPONENTTYPE attribute in the form definition file.

For more details about appdir on mobile devices, see Deploying mobile apps on Android devices on page
2572 and Deploying mobile apps on iOS devices on page 2584.

Defining the gICAPI files search path by program

To define the base URL to the web component files for a given application, you can also use the
setWebComponentPath on page 1901 front call. The URL must be a well formatted absolute URL (e.g.
"http://myserver/components" or "file:///c:/components").

User interface | 1428

Important: This front-call is provided for backward compatibility, consider using one of the other
mechanisms described in this topic.

Recommended web component directory layout

When using the default settings in any configuration (i.e. no FGLIMAGEPATH defined, default GAS
settings), put the gICAPI web component files under a webcomponents directory, along with the other
program files, for example:

appdir
appdir/main.42m
appdir/form1.42f
appdir/form2.42f
appdir/webcomponents/3DChart
appdir/webcomponents/3DChart/3DChart.html
appdir/webcomponents/3DChart/3DChart.js
appdir/webcomponents/3DChart/3DChart.css
appdir/webcomponents/3DChart/icon_close.png
...

Defining a gICAPI web component in forms
When defining a gICAPI web component in a form specification file, you can also provide a sizing policy
and define additional properties.

Adding a WEBCOMPONENT to the form file

To define an gICAPI web component field, add a form field with the WEBCOMPONENT item type and the
COMPONENTTYPE attribute. The COMPONENTTYPE attribute is mandatory when defining a gICAPI web
component; it defines the root HTML file name describing the gICAPI web component.

A web component field is typically defined with the FORMONLY prefix, as the data for the field is rarely
stored in a database column.

Sizing policy for web component fields

Web components are usually complex widgets displaying detailed information, such as charts, graphs, or
calendars, which are generally resizeable. Use the appropriate form item attributes to get the expected
layout and behavior. For more details, see Controlling the web component layout on page 1418.

Defining gICAPI web component properties

Since web component field definitions are generic, you must use the PROPERTIES attribute to set specific
parameters for the component.

The PROPERTIES attribute can define a list of:

• simple properties (name = value),
• array properties (name = (value1, value2, ...))
• map/dictionary properties (name = (sub-name1 = value1,sub-name2 = value2, ...))

where name is a simple identifier, and where values can be numeric or string literals.

Component properties defined in the PROPERTIES attribute are transmitted to the web component through
the onProperty() method of the gICAPI object.

The name of a property defined in the PROPERTIES attribute is converted to lowercase by the form
compiler. To avoid mistakes, a good programming pattern is to define properties in lowercase, in both
the interface script and in the form definition file. Property names are not checked at compile time, so
nonexistent or mistyped properties will be ignored at runtime.

User interface | 1429

Example

LAYOUT
GRID
{
[wc]
[]
[]
[]
[]
}
END
END
ATTRIBUTES
WEBCOMPONENT wc = FORMONLY.mychart,
 COMPONENTTYPE = "3DCharts",
 STRETCH = BOTH,
 PROPERTIES = (type = "bars",
 x_label = "Months",
 y_label = "Sales");
END

Controlling the gICAPI web component in programs

Controlling the gICAPI-based web components with ON ACTION

Once a WEBCOMPONENT field is defined in the form file with the COMPONENTTYPE attribute pointing to an
HTML content file, it can be used as a regular edit field in program dialogs. The data of the gICAPI web
component is transmitted with the field value, and usually needs to be serialized and deserialized (typically
in JSON), when the data is not a simple scalar value.

When the web component field value is changed in the program, the onData() method of the gICAPI
object is fired, and you can parse the serialized string in your JavaScript.

In order to detect web component value changes in the program, you need to combine the
gICAPI.setData() and gICAPI.Action() methods, to transmit the value and to fire an action, that
will be handled by an ON ACTION block.

Note: The ON CHANGE trigger is not executed automatically for gICAPI-based web components,
just by using gICAPI.SetData().

The next example serializes and de-serializes a dymamic array using the JSON format:

IMPORT util
...
DEFINE mywc STRING
DEFINE data_array DYNAMIC ARRAY OF RECORD ...
...
...
INPUT BY NAME mywc, ...
 ATTRIBUTES(WITHOUT DEFAULTS, UNBUFFERED)
 ...
 ON ACTION set_wc_values -- Bound to form button
 LET mywc = util.JSON.stringify(data_array)

 ON ACTION wc_data_changed -- Triggered by gICAPI.Action()
 CALL util.JSON.parse(mywc, data_array)
...

Important: All data will be transmitted through the abstract user interface protocol: Transmitting a
lot of data will not be efficient and is likely to slow down your application.

User interface | 1430

Controlling the gICAPI-based web components with properties

Use the PROPERTIES attribute in the form specification, to define the configuration of the field. When
a property of the web component is modified, the onProperty() method of the gICAPI object in the
JavaScript will be invoked. Note that the complete property set will be passed, even if a single property is
modified. Use JSON utilities to handle property set:

gICAPI.onProperty = function(propertySet) {
 var ps = eval('(' + propertySet + ')');
 document.getElementById("title").innerHTML = ps.title;
}

Controlling gICAPI-based web components with front calls

The web component can be manipulated with specific front calls. The web component-specific front calls
are provided in the "webcomponent" front call module.

The call front call that can be used for general purposes. It takes as parameters the name of the form
field, a JavaScript function to call, and optional parameters as required. The JavaScript function must be
implemented in the HTML content of the gICAPI web component field. The front call returns the result of
the JavaScript function.

DEFINE title STRING
CALL ui.Interface.frontCall("webcomponent", "call",
 ["formonly.mychart", "eval", "document.title"],
 [title])

The getTitle function is another useful webcomponent front call that can get the title of the HTML
document of the web component:

DEFINE info STRING
CALL ui.Interface.frontCall("webcomponent", "getTitle",
 ["formonly.url_field"], [info])

Some providers return key information in the title of the HTML document.

Using image resources with the gICAPI web component
This section explains how to use image resources in a gICAPI web component.

Image resources in gICAPI web components

In some cases, web components require image resources, which can be classified as follows:

1. Common (static) image resources, that are part of the gICAPI web component implementation. This
category of image resource can be referenced with absolute URLs (retrieved automatically by the
HTML viewer), or can be deployed as part of the gICAPI web component assets, when referenced with
relative URLs.

2. Private (variable) image resources, that are displayed by the program at runtime. This category of
image resource can be referenced with absolute URLs (retrieved automatically by the HTML viewer), or
can be provided by using the ui.Interface.filenameToURI() / FGLIMAGEPATH mechanism (as
described below).

Referencing image resources in HTML

Image resources are typically referenced in HTML within the element, by setting the src attribute
to a relative or absolute URL:

User interface | 1431

The following example uses an absolute URL:

<img src="http://www.4js.com/images/smiley.gif" alt="Smiley face" height=
 "42" width= "42" >

This example uses a relative URL:

The gICAPI web component framework can automatically retrieve image resources. If the value is not
an absolute or relative URL that can be resolved by the HTML viewer, the image resources are retrieved
from the Genero application using the the ui.Interface.filenameToURI() / FGLIMAGEPATH
mechanism.

Providing static images in gICAPI web component files

To provide common static images as assets of your gICAPI web component, provide the image files along
with the main HTML file, typically in a dedicated directory. For example, if you define the following directory
structure:

3DChart/3DChart.html
3DChart/images/redraw.gif
3DChart/images/fetchdata.gif

The HTML content of the web component can reference common static images as follows:

Providing application images from Genero programs

Some gICAPI web components display variable image resources provided at runtime. For example,
a photo gallery web component displaying pictures. Such image resources are usually private to the
application.

To use image resources that are not static images part of the gICAPI web component assets:

1. Reference absolute URLs directly in the HTML content (in "src" attributes of image elements) with
http:, https: or file: shemes, to be retrieved automatically by the HTML viewer, or:

2. Reference image resources in the HTML content with the URI returned from the
ui.Interface.filenameToURI() method, to provide image files from the platform where the
application executes (can be a server or mobile device):

• When running the application on a server behind the GAS, the filenameToURI() method will
convert the local file path to a URL that will make the image file available through the GAS.

• When using a direct connection to the front-end (typical GDC desktop configuration with application
running on a server), the file name will be returned as is and the images will then be transmitted
through the FGLIMAGEPATH mechanism, as described in Providing the image resource on page
784.

• When running apps on mobile devices, the filenameToURI() method will build the complete
path to the local file, according to the list of directories defined in the FGLIMAGEPATH environment
variable. The image resource is then directly read from the device file system.

Try Example 5: Application images in gICAPI web component on page 1445, to see this method in
practice.

User interface | 1432

Examples
Several examples show you how to include Web components in your program.
Example 1: URL-based web component using Google maps
This example shows how to implement a simple mobile application using a WEBCOMPONENT field
interacting with Google maps

The form file: webcomp.per

LAYOUT
GRID
{
[f1]
[]
[]
[]
[]
[]
[]
[]
[f2]
[f3]
[]
}
END
END
ATTRIBUTES
WEBCOMPONENT f1 = FORMONLY.mymap, STRETCH=BOTH;
BUTTONEDIT f2 = FORMONLY.location, ACTION=set_loc;
TEXTEDIT f3 = FORMONLY.value, STRETCH=X;
END

The program file: webcomp.4gl

MAIN
 CONSTANT c_gmaps = "http://maps.google.com/"
 DEFINE rec RECORD
 mymap STRING,
 location STRING,
 value STRING
 END RECORD
 OPEN FORM f1 FROM "webcomp"
 DISPLAY FORM f1
 LET rec.location = "Paris"
 LET rec.mymap = c_gmaps||"?q="||rec.location
 INPUT BY NAME rec.* WITHOUT DEFAULTS
 ATTRIBUTES(UNBUFFERED)
 ON ACTION set_loc
 LET rec.mymap = c_gmaps||"?q="||rec.location
 LET rec.value = rec.mymap
 ON CHANGE mymap
 LET rec.value = rec.mymap
 MESSAGE "URL has changed! "||CURRENT HOUR TO FRACTION(3)
 END INPUT
END MAIN

Example 2: Calling a JavaScript function of a gICAPI web component
This example shows how to call a JavaScript function with the "call" front call

The form file: wc_echo.per

ACTION DEFAULTS
 ACTION data_available(DEFAULTVIEW=NO)

User interface | 1433

END
LAYOUT
GRID
{
[data]
[]
[]
}
END
END
ATTRIBUTES
WEBCOMPONENT data = formonly.data,
 COMPONENTTYPE="wc_echo",
 STRETCH=BOTH;
END

The HTML file: wc_echo.html

<!DOCTYPE html>
<html>
<head>
 <title>The title</title>
 <script language="JavaScript" type="text/javascript" src="wc_echo.js"></
script>
</head>
<body>
<div style="background-color:green;width:3000px;height:3000px;" >
here
</div>
</body>
</html>

The JavaScript file: wc_echo.js

function echoString(str) {
 return str;
}

function echoObject(ostr) {
 var o = JSON.parse(ostr);
 // do something and return back
 return JSON.stringify(o);
}

onICHostReady = function(version) {

 if (version != 1.0)
 alert('Invalid API version');

 gICAPI.onProperty = function(p) {
 var myObject = eval('(' + p + ')');
 if (myObject.url!="") {
 setTimeout(function () {
 downloadURL(myObject.url);
 }, 0);
 }
 }

}

User interface | 1434

The program file: wc_echo.4gl

MAIN
 OPEN FORM f FROM "wc_echo"
 DISPLAY FORM f
 MENU "test"
 COMMAND "echo"
 CALL echo()
 COMMAND "exit"
 EXIT MENU
 END MENU
END MAIN

FUNCTION echo()
 DEFINE a,title,ut STRING
 TRY
 CALL ui.Interface.frontCall("webcomponent","call",
 ["formonly.data","eval","Math.floor(5/2)"],[ut])
 CALL ui.Interface.frontCall("webcomponent","getTitle",
 ["formonly.data"],[title])
 CALL ui.Interface.frontCall("webcomponent","call",
 ["formonly.data","echoString","hello"],[a])
 MESSAGE "ut:",ut,",a:",a,",title:",title
 CATCH
 ERROR err_get(status)
 END TRY
END FUNCTION

Example 3: Implementing Google+ authentication with a URL-based web component
This example shows how to authenticate the user with a google+ account on a mobile platform, using the
OAuth technology.

The form file: wc_oauth.per

LAYOUT(text="Proceed to the authorization")
GRID
{
[f1]
[]
[]
}
END
END
ATTRIBUTES
WEBCOMPONENT f1 = FORMONLY.wc_oauth, STRETCH=BOTH;
END

The Google+ API utility file: wc_oauth.4gl

Google+ Authorization API:
See https://developers.google.com/accounts/docs/OAuth2InstalledApp

IMPORT com
IMPORT util

The persistant datastore
PRIVATE DEFINE datastore RECORD
 client_id STRING,
 client_secret STRING,
 authorization_code STRING,
 expiration_date DATETIME YEAR TO SECOND,
 auth_data RECORD
 access_token STRING,

User interface | 1435

 token_type STRING,
 expires_in INTEGER,
 id_token STRING,
 refresh_token STRING
 END RECORD,
 user_info RECORD
 id STRING,
 name STRING,
 link STRING, # google plus profile URL
 picture STRING, # face URL
 email STRING
 END RECORD
 END RECORD

#+ This function checks if the google account is authorized and manages to
 get authorization
#+ @return boolean
FUNCTION googleplus_isAuthorized()
 DEFINE httpReq com.HttpRequest
 DEFINE httpPostData STRING
 DEFINE httpResp com.HttpResponse
 DEFINE httpRespData STRING
 DEFINE authUrl STRING

 LET datastore.client_id = "****999.apps.googleusercontent.com"
 LET datastore.client_secret = "rlg*******-HUB"

 # Check token expiration
 IF datastore.expiration_date > CURRENT YEAR TO SECOND THEN
 RETURN TRUE
 END IF
 # The authorization token expired
 # If we already have an authorization, we need to refresh our token
 # See https://developers.google.com/accounts/docs/OAuth2InstalledApp?
hl=fr#refresh
 IF datastore.auth_data.refresh_token.getLength() > 2 THEN
 # Refresh the token
 LET httpReq = com.HttpRequest.Create("https://accounts.google.com/o/
oauth2/token")
 CALL httpReq.setMethod("POST")
 LET httpPostData =
 SFMT(
 "client_id=%1&client_secret=%2&refresh_token=
%3&grant_type=refresh_token",
 datastore.client_id,
 datastore.client_secret,
 datastore.auth_data.refresh_token
)
 ELSE
 # Get an authorization code
 # See https://developers.google.com/accounts/docs/OAuth2InstalledApp?
hl=fr#formingtheurl
 LET authUrl =
 SFMT("https://accounts.google.com/o/oauth2/auth?"
 ||"response_type=code"
 ||"&client_id=%1"
 ||"&redirect_uri=urn:ietf:wg:oauth:2.0:oob"
 ||"&scope=https://www.googleapis.com/auth/userinfo.email"
 ||"%%20https://www.googleapis.com/auth/userinfo.profile"
 ||"%%20https://www.googleapis.com/auth/plus.login",
 datastore.client_id
)
 LET datastore.authorization_code =
 googleplus_getAuthorization(authUrl)

User interface | 1436

 IF datastore.authorization_code IS NULL THEN
 # User did not authorize the accesss to the data
 RETURN FALSE
 END IF
 # Ask for the first token
 # See https://developers.google.com/accounts/docs/OAuth2InstalledApp?
hl=fr#handlingtheresponse
 LET httpReq = com.HttpRequest.Create("https://accounts.google.com/o/
oauth2/token")
 CALL httpReq.setMethod("POST")
 LET httpPostData =
 SFMT("code=%1&client_id=%2&client_secret=%3"
 ||"&redirect_uri=urn:ietf:wg:oauth:2.0:oob"
 ||"&grant_type=authorization_code",
 datastore.authorization_code,
 datastore.client_id,
 datastore.client_secret
)
 END IF
 TRY
 CALL httpReq.doFormEncodedRequest(httpPostData, FALSE)
 LET httpResp = httpReq.getResponse()
 IF httpResp.getStatusCode() <> 200 THEN
 RETURN FALSE
 END IF
 LET httpRespData = httpResp.getTextResponse()
 CALL util.JSON.parse(httpRespData, datastore.auth_data)
 LET datastore.expiration_date =
 CURRENT YEAR TO SECOND + ((datastore.auth_data.expires_in - 60)
 UNITS SECOND)
 RETURN (datastore.expiration_date > CURRENT YEAR TO SECOND)
 CATCH
 # Network error...
 RETURN FALSE
 END TRY
END FUNCTION

#+ This function manages the authentication and authorization UI for Google+
#+ @param authorizationUrl the built URL to display the authorization dialog
 on google website
#+ @return The authorization code
FUNCTION googleplus_getAuthorization(authorizationUrl)
 DEFINE authorizationUrl STRING
 DEFINE authorizationCode STRING
 DEFINE wc_oauth STRING
 DEFINE doc_title STRING
 DEFINE flag BOOLEAN

 DEFINE authorizationCodeBegin INTEGER
 DEFINE authorizationCodeEnd INTEGER

 OPEN WINDOW w_oauth WITH FORM "wc_oauth"
 LET authorizationCode = NULL
 LET wc_oauth = authorizationUrl
 INPUT BY NAME wc_oauth ATTRIBUTES(WITHOUT DEFAULTS, ACCEPT=FALSE)
 ON CHANGE wc_oauth -- a new page is loaded in the webview
 CALL ui.Interface.frontCall("webcomponent","getTitle",
["formonly.wc_oauth"],[doc_title])
 IF doc_title.getIndexOf("Success", 1) == 1 THEN
 LET authorizationCodeBegin = doc_title.getIndexOf("code=", 1)
 LET authorizationCodeEnd = doc_title.getIndexOf("&",
 authorizationCodeBegin)
 IF authorizationCodeEnd = 0 THEN
 LET authorizationCodeEnd = doc_title.getLength() + 1

User interface | 1437

 END IF
 LET authorizationCode =
 doc_title.subString(authorizationCodeBegin+5, authorizationCodeEnd - 1)
 EXIT INPUT
 END IF
 ON ACTION cancel
 MENU "Confirmation"
 ATTRIBUTES(STYLE="dialog", COMMENT="Cancel the authorization
 process?")
 ON ACTION accept
 LET flag = TRUE
 ON ACTION cancel
 LET flag = FALSE
 END MENU
 IF flag THEN
 LET authorizationCode = NULL
 EXIT INPUT
 END IF
 END INPUT
 CLOSE WINDOW w_oauth
 RETURN authorizationCode
END FUNCTION

The program file: main.4gl

IMPORT FGL wc_oauth
MAIN
 MENU
 ON ACTION get_auth
 IF googleplus_isAuthorized() THEN
 MESSAGE "Google+ authorization acquired."
 ELSE
 ERROR "Unable to get Google+ authorization."
 END IF
 ON ACTION close
 EXIT MENU
 END MENU
END MAIN

Example 4: Color picker gICAPI web component
This topic describes the different steps to implement a gICAPI-based web component.

Introduction

In this example, we will implement a simple color picker, that will allow the user the select a color from
a predefined set. Colors are drawn as square boxes using SVG graphics, user can change the current
selected color with a separate COMBOBOX field, modify the title of the HTML body, and query for the color
list with a webcomponent.call front call.

The HTML file is described in detail, and complete code example with program and form file is available at
the end of this topic.

HTML code description

As any HTML source code, the file starts with the typical HTML tags:

<!DOCTYPE html>
<html>
<head>
<meta http-equiv="content-type" content="text/html" charset="utf-8" />
<meta name='viewport' content='initial-scale=1.0, maximum-scale=1.0' />

User interface | 1438

Note: The "viewport" meta is provided to adjust the viewport size for mobile devices.

The JavaScript™ code needs to the enclosed in a <script> element:

<script language="JavaScript">

Global variables are defined to hold information that must be persistent during the web component life:

var current_color;
var wanted_color;
var has_focus;

The global function onICHostReady() will be called by the front end, when the web component interface
is ready. The version passed as parameter allows you to check that your component code is compatible
with the current gICAPI framework, and to define and assign the gICAPI.on* callback methods (these will
be defined in the body of the onICHostReady() function:

onICHostReady = function(version) {

 if (version != 1.0)
 alert('Invalid API version');

 ... some initialization code ...

 gICAPI.onProperty = function(propertySet) {
 ... see below for function body ...
 }

 gICAPI.onData = function(data) {
 ... see below for function body ...
 }

 gICAPI.onFocus = function(polarity) {
 ... see below for function body ...
 }

}

At this point, the gICAPI interface is ready and the gICAPI object can be used.

The onProperty() method is called when a web component property changes (properties will be
initialized at form creation, or changed during form usage). In this code example, when the property "title"
is changed by the program, the element with id="title" is updated with the new title. The eval built-in
JavaScript function is used to convert the JSON string property set to a JSON object, to find the "title"
property:

gICAPI.onProperty = function(propertySet) {
 var ps = eval('(' + propertySet + ')');
 document.getElementById("title").innerHTML = ps.title;
}

Note: The ON ACTION change_title in the dialog code will change the title property after the
form initialization, to show that the onProperty() function can also be invoked after the web
component field creation.

The showFocusRectangle() function shows a border around the specified color item (SVG element),
according to the color identifier passed as parameter and the focus status (focus can be true, false or -1, to
keep the current border color and just modify the position of the border):

showFocusRectangle = function(color, focus) {

User interface | 1439

 // See complete code example for details
}

The changeColor() function implements a color change, by registering a field value change with
gICAPI.SetData(), and by triggering a specific action with gICAPI.Action(), to inform the program
that a color was selected:

changeColor = function(color) {
 current_color = color;
 showFocusRectangle(current_color, true);
 gICAPI.SetData(current_color);
 gICAPI.Action("color_selected");
}

Next lines implement the onFocus() function, executed when the web component gets or loses the focus.
The code distinguishes the case when the focus is gained (by a mouse click on a color item), selecting a
new color with a call to changeColor(), and the case when the focus is set to the web component by the
runtime system. A blue border will be added to the current color item, when the component gets the focus,
and the border color is reset to gray when the focus is lost.:

gICAPI.onFocus = function(polarity) {
 if (polarity == true) {
 has_focus = true;
 if (wanted_color != undefined) {
 changeColor(wanted_color);
 wanted_color = undefined;
 } else {
 showFocusRectangle(current_color, true);
 }
 } else {
 has_focus = false;
 showFocusRectangle(current_color, false);
 }
}

The onData() function must be implemented to detect web component value changes done in the
program, and to acknowledge . This will be triggered by assigning the rec.webcomp variable in the
dialog code, typically in the ON CHANGE color block, when modifying the combobox value. The
showFocusRectangle() function moves the focus border to the color item corresponding to the color
identifier passed as parameter.:

gICAPI.onData = function(data) {
 current_color = data;
 showFocusRectangle(current_color, -1);
}

The selectColor() function will be called through the onclick event of the <rect> SVG
elements representing colors. If the web component does not have the focus yet, the function will call
gICAPI.SetFocus(), in order to ask the runtime system, if the focus can go to the web component field.
If the runtime system accepts to set the focus to the web component field, the onFocus() method will be
called with true as parameter, and will handle the requested color change (using wanted_color). if the
focus cannot be set to the web component, the onFocus() method will not be called:

selectColor = function(color) {
 if (has_focus) {
 changeColor(color);
 } else {
 wanted_color = color;
 gICAPI.SetFocus();
 // Color item change is done in onFocus(), because

User interface | 1440

 // VM may refuse to set the focus to the wc field.
 }
}

Note: The only way to detect that the focus was gained by the web compoment field, is when
onFocus(true) is called.

End the JavaScript element with the </script> ending tag:

</script>

Close the HTML head element with the </head> ending tag:

</head>

The rest of the HTML page defines the graphical elements for the color picker, with a <h3> title and and an
<svg> element containing <rect> element to show clickable color items. Note the <rect> element with
id="focus_rectangle", used to show a border for the current color item:

<body height="100%" width="100%">
<h3 id="title">no-title</h3>

<svg id="svg_container" width="230" height="130">

 <rect x="5" y= "5" rx="5" ry="5" width="30" height="30"
 id="#FFFFCC"
 style="fill:#FFFFCC;stroke:black;stroke-width:1"
 onclick="selectColor('#FFFFCC')" />
 ...

 <rect x="178" y= "73" rx="7" ry="7" width="34" height="34"
 id="focus_rectangle"
 style="fill:none;stroke:gray;stroke-width:3" />

</svg>

</body>

Complete source code

File color_picker.per:

ACTION DEFAULTS
 ACTION color_selected (DEFAULTVIEW = NO)
END
LAYOUT
GRID
{
 Id: [f1]
[f2]
[]
[]
[]
[]
[]
[]
[]
 Color: [f3]
[f4]
[]
[]

User interface | 1441

}
END
END
ATTRIBUTES
EDIT f1 = FORMONLY.id;
WEBCOMPONENT f2 = FORMONLY.webcomp,
 COMPONENTTYPE="color_picker",
 PROPERTIES = (title="My color picker"),
 STRETCH=BOTH;
COMBOBOX f3 = FORMONLY.pgcolor, NOT NULL,
 ITEMS=("#FFFFCC", "#FFFFAA", "#FFFF00",
 "#FFAD99", "#FF0000", "#990000",
 "#99CCFF", "#0066FF", "#000099",
 "#FF99FF", "#FF00FF", "#990099",
 "#99FF99", "#009933", "#006600",
 "#FFFFFF", "#AAAAAA", "#000000");
TEXTEDIT f4 = FORMONLY.info, STRETCH=X;
END

File color_picker.4gl:

IMPORT util

MAIN
 DEFINE rec RECORD
 id INTEGER,
 webcomp STRING,
 pgcolor STRING,
 info STRING
 END RECORD,
 f ui.Form,
 n om.DomNode,
 tmp STRING,
 colors DYNAMIC ARRAY OF STRING

 OPTIONS INPUT WRAP

 OPEN FORM f1 FROM "color_picker"
 DISPLAY FORM f1

 LET rec.id = 98344
 LET rec.webcomp = "#FF0000"
 LET rec.pgcolor = rec.webcomp

 INPUT BY NAME rec.* WITHOUT DEFAULTS
 ATTRIBUTES(UNBUFFERED)

 ON CHANGE pgcolor
 LET rec.webcomp = rec.pgcolor

 ON ACTION color_selected
 IF rec.webcomp == "#000000" THEN
 LET rec.webcomp = rec.pgcolor
 LET rec.info = NULL
 ERROR "Black color is denied!"
 ELSE
 LET rec.pgcolor = rec.webcomp
 LET rec.info = "Color selected:", rec.pgcolor
 END IF

 ON ACTION change_title ATTRIBUTES(TEXT="Change title")
 LET f = DIALOG.getForm()
 LET n = f.findNode("Property", "title")

User interface | 1442

 CALL n.setAttribute("value", "New title")
 LET rec.info = "Title changed."

 ON ACTION get_colors ATTRIBUTES(TEXT="Get colors")
 TRY
 CALL ui.Interface.frontCall("webcomponent", "call",
 ["formonly.webcomp", "getColorList"], [tmp])
 CALL util.JSON.parse(tmp, colors)
 LET rec.info = "Color list: ", tmp
 CATCH
 ERROR "Front call failed."
 END TRY

 END INPUT

END MAIN

File color_picker.html:

<!DOCTYPE html>
<html>
<head>
<meta http-equiv="content-type" content="text/html" charset="utf-8" />
<meta name='viewport' content='initial-scale=1.0, maximum-scale=1.0' />

<script language="JavaScript">

var current_color;
var wanted_color;
var has_focus;

onICHostReady = function(version) {

 if (version != 1.0)
 alert('Invalid API version');

 current_color = "#000000";

 gICAPI.onProperty = function(properties) {
 var ps = eval('(' + properties + ')');
 document.getElementById("title").innerHTML = ps.title;
 }

 gICAPI.onFocus = function(polarity) {
 if (polarity == true) {
 has_focus = true;
 if (wanted_color != undefined) {
 changeColor(wanted_color);
 wanted_color = undefined;
 } else {
 showFocusRectangle(current_color, true);
 }
 } else {
 has_focus = false;
 showFocusRectangle(current_color, false);
 }
 }

 gICAPI.onData = function(data) {
 current_color = data;
 showFocusRectangle(current_color, -1);
 }

User interface | 1443

}

showFocusRectangle = function(color, focus) {
 var f = document.getElementById("focus_rectangle");
 var e = document.getElementById(color);
 if (e == null) {
 e = document.getElementById("#000000");
 }
 var e_x = e.getAttribute("x") - 2;
 var e_y = e.getAttribute("y") - 2;
 f.setAttribute("x", e_x);
 f.setAttribute("y", e_y);
 if (focus == true) {
 f.style.stroke = "blue";
 } else if (focus == false) {
 f.style.stroke = "gray";
 }
}

changeColor = function(color) {
 current_color = color;
 showFocusRectangle(current_color, true);
 gICAPI.SetData(current_color);
 gICAPI.Action("color_selected");
}

selectColor = function(color) {
 if (has_focus) {
 changeColor(color);
 } else {
 wanted_color = color;
 gICAPI.SetFocus();
 // Color item change is done in onFocus(), because
 // VM may refuse to set the focus to the wc field.
 }
}

</script>

</head>

<body height="100%" width="100%">
<h3 id="title">no-title</h3>

<svg id="svg_container" width="230" height="130">

 <rect x="5" y= "5" rx="5" ry="5" width="30" height="30"
 id="#FFFFCC"
 style="fill:#FFFFCC;stroke:black;stroke-width:1"
 onclick="selectColor('#FFFFCC')" />
 <rect x="5" y="40" rx="5" ry="5" width="30" height="30"
 id="#FFFFAA"
 style="fill:#FFFFAA;stroke:black;stroke-width:1"
 onclick="selectColor('#FFFFAA')" />
 <rect x="5" y="75" rx="5" ry="5" width="30" height="30"
 id="#FFFF00"
 style="fill:#FFFF00;stroke:black;stroke-width:1"
 onclick="selectColor('#FFFF00')" />

 <rect x="40" y= "5" rx="5" ry="5" width="30" height="30"
 id="#FFAD99"
 style="fill:#FFAD99;stroke:black;stroke-width:1"
 onclick="selectColor('#FFAD99')" />

User interface | 1444

 <rect x="40" y="40" rx="5" ry="5" width="30" height="30"
 id="#FF0000"
 style="fill:#FF0000;stroke:black;stroke-width:1"
 onclick="selectColor('#FF0000')" />
 <rect x="40" y="75" rx="5" ry="5" width="30" height="30"
 id="#990000"
 style="fill:#990000;stroke:black;stroke-width:1"
 onclick="selectColor('#990000')" />

 <rect x="75" y= "5" rx="5" ry="5" width="30" height="30"
 id="#99CCFF"
 style="fill:#99CCFF;stroke:black;stroke-width:1"
 onclick="selectColor('#99CCFF')" />
 <rect x="75" y="40" rx="5" ry="5" width="30" height="30"
 id="#0066FF"
 style="fill:#0066FF;stroke:black;stroke-width:1"
 onclick="selectColor('#0066FF')" />
 <rect x="75" y="75" rx="5" ry="5" width="30" height="30"
 id="#000099"
 style="fill:#000099;stroke:black;stroke-width:1"
 onclick="selectColor('#000099')" />

 <rect x="110" y= "5" rx="5" ry="5" width="30" height="30"
 id="#FF99FF"
 style="fill:#FF99FF;stroke:black;stroke-width:1"
 onclick="selectColor('#FF99FF')" />
 <rect x="110" y="40" rx="5" ry="5" width="30" height="30"
 id="#FF00FF"
 style="fill:#FF00FF;stroke:black;stroke-width:1"
 onclick="selectColor('#FF00FF')" />
 <rect x="110" y="75" rx="5" ry="5" width="30" height="30"
 id="#990099"
 style="fill:#990099;stroke:black;stroke-width:1"
 onclick="selectColor('#990099')" />

 <rect x="145" y= "5" rx="5" ry="5" width="30" height="30"
 id="#99FF99"
 style="fill:#99FF99;stroke:black;stroke-width:1"
 onclick="selectColor('#99FF99')" />
 <rect x="145" y="40" rx="5" ry="5" width="30" height="30"
 id="#009933"
 style="fill:#009933;stroke:black;stroke-width:1"
 onclick="selectColor('#009933')" />
 <rect x="145" y="75" rx="5" ry="5" width="30" height="30"
 id="#006600"
 style="fill:#006600;stroke:black;stroke-width:1"
 onclick="selectColor('#006600')" />

 <rect x="180" y= "5" rx="5" ry="5" width="30" height="30"
 id="#FFFFFF"
 style="fill:#FFFFFF;stroke:black;stroke-width:1"
 onclick="selectColor('#FFFFFF')" />
 <rect x="180" y="40" rx="5" ry="5" width="30" height="30"
 id="#AAAAAA"
 style="fill:#AAAAAA;stroke:black;stroke-width:1"
 onclick="selectColor('#AAAAAA')" />
 <rect x="180" y="75" rx="5" ry="5" width="30" height="30"
 id="#000000"
 style="fill:#000000;stroke:gray;stroke-width:1"
 onclick="selectColor('#000000')" />

 <rect x="178" y= "73" rx="7" ry="7" width="34" height="34"
 id="focus_rectangle"
 style="fill:none;stroke:gray;stroke-width:3" />

User interface | 1445

</svg>

</body>
</html>

Example 5: Application images in gICAPI web component
This topic shows how to display application images in a gICAPI-based web component.

Introduction

In this example, we will focus on the technique to display application images dynamically in gICAPI web
component HTML content, by using the ui.Interface.filenameToURI() method.

This sample application can be used with any Genero front-end configuration (as a web application with
the GAS, in direct (development) mode with GDC/GMA/GMI, or as a mobile app running on a device)

For gICAPI programming basics, see Example 4: Color picker gICAPI web component on page 1437.

The complete code example with program and form file is available at the end of this topic.

HTML code description

The HTML source file starts with the typical HTML tags:

<!DOCTYPE html>
<html>
<head>
<meta http-equiv="content-type" content="text/html" charset="utf-8" />
<meta name='viewport' content='initial-scale=1.0, maximum-scale=1.0' />

The JavaScript™ code defines the onICHostReady(). This function checks for the API version and
defines the set_image() JavaScript function that will set the src attribute in the image element:

<script language="JavaScript">
 onICHostReady = function(version) {

 if (version != 1.0)
 alert('Invalid API version');

 set_image = function(ressource) {
 var ie=document.getElementsByName("myimage")[0];
 ie.src=ressource;
 }

 }
</script>

Close the HTML head element with the </head> ending tag:

</head>

The body of the HTML page contains two elements:

• an h2 title,
• the image element, identified by a name:

<body height="100%" width="100%">
 <h2>Testing application images in gICAPI Web Component</h2>

 </body>

User interface | 1446

</html>

Application directory structure

In order to easily build and install on mobile devices, create the following directory structure:

top-dir
|
|-- fglprofile
|-- main.4gl
|-- main.42m
|-- myform.per
|-- myform.42f
|-- images (application image files)
| |-- image01.jpg
| |-- image02.jpg
| |-- image03.jpg
| ...
|-- webcomponents
| |-- mywebcomp
| |-- mywebcomp.html
|
|-- gmi
| |-- iOS resources (icons, etc)
| ...
|-- gma
| |-- Android resources (icons, etc)
| ...
|

For more details about building mobile apps from the command line, see Deploying mobile apps on page
2572.

Providing image files

Copy some of your favorite images in the "images" directory.

The sample program will scan this directory to fill a combobox and let you choose the image to be
displayed:

FUNCTION init_image_list(cb)
 DEFINE cb ui.ComboBox
 DEFINE h INTEGER,
 fn STRING
 LET
 h=os.Path.dirOpen(os.Path.join(base.Application.getProgramDir(),"images"))
 WHILE h > 0
 LET fn = os.Path.dirNext(h)
 IF fn IS NULL THEN EXIT WHILE END IF
 IF fn=="." OR fn==".." THEN CONTINUE WHILE END IF
 CALL cb.addItem(fn, fn)
 END WHILE
END FUNCTION

Note: When deployed on a mobile device, the images directory will be part of
the application program files. Thus to access the directory you need to add the
base.Application.getProgramDir on page 1705 path. For more details, see Directory
structure for GMA apps on page 2572 and Directory structure for GMI apps on page 2584.

User interface | 1447

In the program code, the ON CHANGE image interaction block will perform a front call to set the image
resource in the gICAPI web component:

 ON CHANGE image
 LET rec.uri = ui.Interface.filenameToURI(rec.image)
 CALL ui.Interface.frontCall("webcomponent","call",
 ["formonly.wc","set_image",rec.uri],[])

FGLIMAGEPATH environment settings

In order to find image resources when not executing behing a GAS, you need to define the
FGLIMAGEPATH environment variable as follows:

$ FGLIMAGEPATH=$PWD/images:.

For deployed mobile applications, the FGLIMAGEPATH environment variable must be set in the default
fglprofile file, by using the $FGLAPPDIR place holder:

mobile.environment.FGLIMAGEPATH = "$FGLAPPDIR/images:."

For more details about FGLIMAGEPATH settings, see Providing the image resource on page 784.

Complete source code

File myform.per:

LAYOUT
GRID
{
Current image: [f1]
Image URI: [f2]
[wc]
[]
[]
[]
[]
}
END
END

ATTRIBUTES
COMBOBOX f1 = FORMONLY.image,
 INITIALIZER = init_image_list;
EDIT f2 = FORMONLY.uri, SCROLL;
WEBCOMPONENT wc = FORMONLY.wc,
 COMPONENTTYPE="mywebcomp",
 STRETCH=BOTH;
END

File main.4gl:

IMPORT os

MAIN
 DEFINE rec RECORD
 image STRING,
 uri STRING,
 wc STRING
 END RECORD
 OPEN FORM f1 FROM "myform"

User interface | 1448

 DISPLAY FORM f1
 INPUT BY NAME rec.* WITHOUT DEFAULTS ATTRIBUTES(UNBUFFERED)
 ON CHANGE image
 LET rec.uri = ui.Interface.filenameToURI(rec.image)
 CALL ui.Interface.frontCall("webcomponent","call",
 ["formonly.wc","set_image",rec.uri],[])
 END INPUT
END MAIN

FUNCTION init_image_list(cb)
 DEFINE cb ui.ComboBox
 DEFINE h INTEGER,
 fn STRING
 LET
 h=os.Path.dirOpen(os.Path.join(base.Application.getProgramDir(),"images"))
 WHILE h > 0
 LET fn = os.Path.dirNext(h)
 IF fn IS NULL THEN EXIT WHILE END IF
 IF fn=="." OR fn==".." THEN CONTINUE WHILE END IF
 CALL cb.addItem(fn, fn)
 END WHILE
END FUNCTION

File mywebcomp.html:

<!DOCTYPE html>
<html>
<head>
<title>Test</title>
<meta Http-Equiv="Cache-Control" Content="no-cache">
<meta Http-Equiv="Pragma" Content="no-cache">
<meta Http-Equiv="Expires" Content="0">
<script LANGUAGE="JavaScript">
 onICHostReady = function(version) {

 if (version != 1.0)
 alert('Invalid API version');

 set_image = function(ressource) {
 var ie=document.getElementsByName("myimage")[0];
 ie.src=ressource;
 }

 }
</script>
</head>
 <body>
 <h2>Testing application images in gICAPI Web Component</h2>

 </body>
</html>

Canvases
Canvases are form drawing areas.

• Understanding canvases on page 1449
• CANVAS item definition on page 936
• Syntax of canvas nodes on page 1450
• Using canvases on page 1451

• Canvas drawing area on page 1451

User interface | 1449

• Step by step canvas example on page 1452
• Canvas drawing functions on page 1453

Understanding canvases

A canvas element defines a drawing area in a form, to show basic colored shapes.

Important: This feature is not supported on mobile platforms.

Canvas can draw lines, rectangles, ovals, circles, texts, arcs, and polygons. Keys can be bound to
graphical elements for selection with a right or left mouse click.

In programs, you select a given canvas area by name and you create the shapes in the abstract user
interface tree by using the built-in DOM API, or helper functions.

The painted canvas is automatically displayed on the front end when an interactive instruction is executed,
such as MENU or INPUT.

Each canvas element is identified by a unique number (id). You can use this identifier to bind mouse clicks
to canvas elements.

Note: Consider using Web Components for specific drawing needs (charts, graphics). For
example using SVG graphics in a Web Component is more powerfull as the Canvas framework.

CANVAS item definition
Defines an area in which you can draw shapes, in a grid-based layout.

Syntax

CANVAS item-tag: item-name [, attribute-list] ;

1. item-tag is an identifier that defines the name of the item tag in the layout section.
2. item-name identifies the form item.
3. attribute-list defines the aspect and behavior of the form item.

Attributes

COMMENT, HIDDEN, TAG.

Usage

Define the rendering and behavior of a canvas drawing area item tag, with a CANVAS element in the
ATTRIBUTES section.

Note: The CANVAS feature is deprecated, consider using a WEBCOMPONENT with SVG graphics.

Example

LAYOUT
GRID
{
[cvs1]
[]
[]
 ...

}
END
END

ATTRIBUTES

User interface | 1450

CANVAS cvs1: canvas1;
...

Syntax of canvas nodes

Canvas areas are defined in forms with the following XML syntax:

<Canvas colName="name" >
{ <CanvasArc canvasitem-attribute="value" [...] />
| <CanvasCircle canvasitem-attribute="value"[...] />
| <CanvasLine canvasitem-attribute="value"[...] />
| <CanvasOval canvasitem-attribute="value"[...] />
| <CanvasPolygon canvasitem-attribute="value"[...] />
| <CanvasRectangle canvasitem-attribute="value"[...] />
| <CanvasText canvasitem-attribute="value"[...] />
} [...]
</Canvas>
[...]

Table 297: Types of canvas element

Name Description

CanvasArc Arc defined by the bounding square top left point, a
diameter, a start angle, a end angle, and a fill color.

CanvasCircle Circle defined by the bounding square top left point,
a diameter, and a fill color.

CanvasLine Line defined by a start point, an end point, width,
and a fill color.

CanvasOval Oval defined by rectangle (with start point and
endpoint), and a fill color.

CanvasPolygon Polygon defined by a list of points, and a fillcolor.

CanvasRectangle Rectangle defined by a start point, an end point,and
a fill color.

CanvasText Text defined by a start point, an anchor hint, the
text, and a fill color.

Table 298: Attributes of canvas elements

Name Values Description

startX INTEGER (0->1000) X position of starting point.

startY INTEGER (0->1000) Y position of starting point.

endX INTEGER (0->1000) X position of ending point.

endY INTEGER (0->1000) Y position of ending point.

xyList STRING Space-separated list of Y X
coordinates. For example: "23
45 56 78" defines (x=23,y=45)
(x=56,y=78).

width INTEGER Width of the shape.

User interface | 1451

Name Values Description

height INTEGER Height of the shape.

diameter INTEGER Diameter for circles and arcs.

startDegrees INTEGER Beginning of the angular range
occupied by an arc.

extentDegrees INTEGER Size of the angular range
occupied by an arc.

text STRING The text to draw.

anchor "n","e","w","s" Anchor hint to give the draw
direction for texts.

fillColor STRING Name of the color to be used for
the element.

acceleratorKey1 STRING Name of the key associated to a
left button click.

acceleratorKey3 STRING Name of the key associated to a
right button click.

Using canvases
Canvas drawing area

The canvas area represents an abstract drawing page where you define size and location of shapes with
coordinates from (0,0) to (1000,1000).

The origin point (0,0), is on the left-bottom of the drawing area.

Figure 101: Canvas area diagram

The drawing area is defined in the form file with a CANVAS form item. At runtime, you draw the content
of canvas areas in the Abstract User Interface tree: In a form defining canvas areas, the Abstract User
Interface tree contains empty <Canvas> nodes that you can fill with canvas items.

A canvas node is identified in the program by the name attribute. You can get the canvas node by name
with the Window.getElement(name) method.

User interface | 1452

You cannot drop canvas area nodes, as they are read-only in a form definition.

Step by step canvas example

First define a drawing area in the form file with the CANVAS form item type. In this example, the name of
the canvas field is 'canvas01'. This field name identifies the drawing area:

DATABASE FORMONLY
LAYOUT
GRID
{
 Canvas example:
 [ca01]
 []
 []
 []
 []
 []
}
END
END
ATTRIBUTES
CANVAS ca01: canvas01;
END

In programs, you draw canvas shapes by creating canvas nodes in the abstract user interface tree with the
DOM API utilities.

Define a variable to hold the DOM node of the canvas and a second to handle children created for shapes:

DEFINE c, s om.DomNode

Define a window object variable; open a window with the form containing the canvas area; get the current
window object, and then get the canvas DOM node:

DEFINE w ui.Window
OPEN WINDOW w1 WITH FORM "form1"
LET w = ui.Window.getCurrent()
LET c = w.findNode("Canvas","canvas01")

Create a child node with a specific type defining the shape:

LET s = c.createChild("CanvasRectangle")

Set attributes to complete the shape definition:

CALL s.setAttribute("fillColor", "red")
CALL s.setAttribute("startX", 10)
CALL s.setAttribute("startY", 20)
CALL s.setAttribute("endX", 100)
CALL s.setAttribute("endY", 150)

It is possible to bind keys / actions to Canvas items in order to let the end user select elements with a
mouse click. You can assign a function key for left-button mouse clicks with the acceleratorKey1
attribute, while acceleratorKey2 is used to detect right-button mouse clicks. The function keys you
can bind are F1 to F255. If the user clicks on a Canvas item bound to key actions, the corresponding
action handler will be executed in the current dialog. Several canvas items can be bound to the same
action keys; In order to identify what items have been selected by a mouse click, you can use the

User interface | 1453

drawGetClickedItemId() function of fgldraw.4gl. This method will return the AUI tree node id of
the Canvas items that was selected (i.e. s.getId()).

... Create the Canvas item with s node variable ...
CALL s.setAttribute("acceleratorKey1", "F50")
MENU "test"
 COMMAND KEY (F50)
 IF drawGetClickedItemId() = s.getId() THEN
 ...
 END IF
...
END MENU

To clear a given shape in the canvas, remove the element in the canvas node:

CALL c.removeChild(s)

To clear the drawing area completely, remove all children of the canvas node:

LET s=c.getFirstChild()
WHILE s IS NOT NULL
 CALL c.removeChild(s)
 LET s=c.getFirstChild()
END WHILE

Canvas drawing functions

This table describes the helper functions provided to ease canvas usage. Use these functions or use
the DOM API to directly create canvas elements in the form. The helper functions are implemented in
FGLDIR/src/fgldraw.4gl. See the source file for more details.

Table 299: CANVAS Built-in functions provided for backward compatibility with version 3

Name Description

drawInit() Initializes the drawing API. It is mandatory to call
this function at the beginning of your program,
before the first display instruction.

drawSelect() Selects a canvas area for drawing.

drawDisableColorLines() By default, simple lines drawn with drawLine()
are colored by drawFillColor(). Pass TRUE to
the function to get black lines.

drawFillColor() Defines the fill color for shapes and lines. Color
value are named colors like "red", "green", "blue"...

drawLineWidth() Defines the width of lines.

drawAnchor() Defines the anchor hint for texts.

drawLine() Draws a line in the selected canvas.

drawCircle() Draws a circle in the selected canvas.

drawArc() Draws an arc in the selected canvas.

drawRectangle() Draws a rectangle in the selected canvas.

drawOval() Draws an oval in the selected canvas.

drawText() Draws a text in the selected canvas.

User interface | 1454

Name Description

drawPolygon() Draws a polygon in the selected canvas.

drawClear() Clears the selected canvas.

drawButtonLeft() Enables left mouse click on a canvas element.

drawButtonRight() Enables right mouse click on a canvas element.

drawClearButton() Disables all mouse clicks on a canvas element.

drawGetClickedItemId() Returns the id of the last clicked canvas element

Start menus
Start menus define a tree of application programs that can be started.

• Understanding start menus on page 1454
• Syntax of start menu files (.4sm) on page 1454
• Using start menus on page 1456

• Loading a start menu from an XML file on page 1456
• Creating the start menu dynamically on page 1456

• Examples on page 1456

• Example 1: Start menu in XML format on page 1456
• Example 2: Start menu created dynamically on page 1457

Understanding start menus

The start menu defines a tree of commands that start programs on the application server where the
runtime system executes.

Important: This feature is not supported on mobile platforms.

It is recommended that you create a specific program dedicated to running the start menu. This program
must create (or load) a start menu, and then perform an interactive instruction to enter the interaction loop.

The start menu must be defined in the abstract user interface tree under the "UserInterface" root node.

The start menu is unique for a program and cannot be redefined.

When a start menu command is selected by the user, the runtime system automatically starts a child
process with the command specified in the command attribute.

Syntax of start menu files (.4sm)

Start menus are defined in a .4sm file with the following XML syntax:

<StartMenu [startmenu-attribute="value"[...]] >
 group[...]
</StartMenu>

where group is:

<StartMenuGroup group-attribute="value"
 [...]>{ <StartMenuSeparator/>| <StartMenuCommand
 command-attribute="value"
 [...] />|
 group}
 [...]
</StartMenuGroup>

User interface | 1455

1. startmenu-attributedefines a property of the StartMenu.
2. command-attribute defines a property of a StartMenuCommand.
3. group-attribute defines a property of a StartMenuGroup.

Table 300: Attributes of the StartMenu node

Attribute Type Description

name STRING
Identifies the StartMenu, can be
omitted.

text STRING
Defines the text to be displayed
as title.

Table 301: Attributes of the StartMenuGroup node

Attribute Type Description

disabled INTEGER
Indicates if the group must be
disabled (grayed, cannot be
selected).

hidden INTEGER
Indicates if the group is hidden or
visible.

image STRING
Defines the icon to be used for
this group.

name STRING
Identifies the start menu group,
can be omitted.

text STRING
Defines the text to be displayed
for this group.

Table 302: Attributes of the StartMenuCommand node

Attribute Type Description

disabled INTEGER
Indicates if the item must be
disabled (grayed, cannot be
selected).

comment STRING
Specifies the comment to be
shown for this command.

exec STRING
Defines the command to be
executed when the user selects
this command.

hidden INTEGER
Indicates if the command is
hidden or visible.

image STRING
Defines the icon to be used for
this command.

name STRING
Identifies the StartMenu item, can
be omitted.

text STRING
Defines the text to be displayed
for this command.

User interface | 1456

Attribute Type Description

waiting INTEGER
Defines if the command must be
started without waiting (0, default)
or waiting (1).

Table 303: Attributes of the StartMenuSeparator node

Attribute Type Description

name STRING
Identifies the StartMenu
separator, can be omitted.

Using start menus
To use start menus, you must understand how they work and how to structure the code.
Loading a start menu from an XML file

To load a start menu definition file, use the utility method provided by the ui.Interface built-in class:

CALL ui.Interface.loadStartMenu("standard")

Creating the start menu dynamically

You can create a startmenu dynamically with the om.DomNode class:

First, get the abstract user interface root node:

DEFINE aui om.DomNode
LET aui = ui.Interface.getRootNode()

Next, create a node with the "StartMenu" tag name:

DEFINE sm om.DomNode
LET sm = aui.createChild("StartMenu")

Next, create a "StartMenuGroup" node to group a couple of command nodes:

DEFINE smg om.DomNode
LET smg = sm.createChild("StartMenuGroup")
CALL smg.setAttribute("text","Programs")

Then, create "StartMenuCommand" nodes for each program and, if needed, add
"StartMenuSeparator" nodes to separate entries:

DEFINE smc, sms om.DomNode
LET smc = smg.createChild("StartMenuCommand")
CALL smc.setAttribute("text","Orders")
CALL smc.setAttribute("exec","fglrun orders.42r")
LET smc = smg.createChild("StartMenuCommand")
CALL smc.setAttribute("text","Customers")
CALL smc.setAttribute("exec","fglrun customers.42r")
LET sms = smg.createChild("StartMenuSeparator")
LET smc = smg.createChild("StartMenuCommand")
CALL smc.setAttribute("text","Items")
CALL smc.setAttribute("exec","fglrun items.42r")

Examples
Example 1: Start menu in XML format

<StartMenu>

User interface | 1457

 <StartMenuGroup text="Ordering" >
 <StartMenuCommand text="Orders" exec="fglrun orders.42r"
 disabled="1" />
 <StartMenuCommand text="Customers" exec="fglrun custs.42r"
 image="smiley" />
 <StartMenuCommand text="Items" exec="fglrun items.42r"
 waiting="1" />
 <StartMenuCommand text="Reports" exec="fglrun reports.42r"
 comment="Run reports" />
 </StartMenuGroup>
 <StartMenuGroup text="Configuration" >
 <StartMenuCommand text="Database" exec="fglrun dbseconf.42r" />
 <StartMenuCommand text="Users" exec="fglrun userconf.42r" />
 <StartMenuCommand text="Printers" exec="fglrun prntconf.42r" />
 </StartMenuGroup>
</StartMenu>

Example 2: Start menu created dynamically

MAIN
 DEFINE aui om.DomNode
 DEFINE sm om.DomNode
 DEFINE smg om.DomNode
 DEFINE smc om.DomNode

 LET aui = ui.Interface.getRootNode()

 LET sm = aui.createChild("StartMenu")

 LET smg = createStartMenuGroup(sm,"Ordering")
 LET smc = createStartMenuCommand(smg,"Orders","fglrun orders.42r",NULL)
 LET smc = createStartMenuCommand(smg,"Customers","fglrun custs.42r",NULL)
 LET smc = createStartMenuCommand(smg,"Items","fglrun items.42r",NULL)
 LET smc = createStartMenuCommand(smg,"Reports","fglrun reports.42r",NULL)
 LET smg = createStartMenuGroup(sm,"Configuration")
 LET smc = createStartMenuCommand(smg,"Database","fglrun
 dbseconf.42r",NULL)
 LET smc = createStartMenuCommand(smg,"Users","fglrun userconf.42r",NULL)
 LET smc = createStartMenuCommand(smg,"Printers","fglrun
 prntconf.42r",NULL)

 MENU "Example"
 COMMAND "Quit"
 EXIT PROGRAM
 END MENU

END MAIN

FUNCTION createStartMenuGroup(p,t)
 DEFINE p om.DomNode
 DEFINE t STRING
 DEFINE s om.DomNode
 LET s = p.createChild("StartMenuGroup")
 CALL s.setAttribute("text",t)
 RETURN s
END FUNCTION

FUNCTION createStartMenuCommand(p,t,c,i)
 DEFINE p om.DomNode
 DEFINE t,c,i STRING
 DEFINE s om.DomNode
 LET s = p.createChild("StartMenuCommand")
 CALL s.setAttribute("text",t)

User interface | 1458

 CALL s.setAttribute("exec",c)
 CALL s.setAttribute("image",i)
 RETURN s
END FUNCTION

Window containers (WCI)
WCI containers define window containers to group several programs in a parent multiple document
interface presentation.

• Understanding the Window Container Interface on page 1458
• Configuration of WCI parent programs on page 1458
• Configuration of WCI child programs on page 1459
• Implement tabbed WCI containers on page 1459

Understanding the Window Container Interface

By default, application windows are displayed independently in separate windows on the front-end window
manager. This mode is well known as SDI, "Single Document Interface".

The user interface can be configured to group program windows in a parent container. This is known
as MDI, "Multiple Document Interface". In Genero, Multiple Document Interface is called WCI: Window
Container Interface.

Important: WCI is typically a desktop application feature and is not supported with other front-ends
(web and mobile).

The WCI can be used to group several programs together in a parent window. The parent program is the
container for the other programs, defined as children of the container. The container program can have its
own windows, but this makes sense only for temporary modal windows (with style="dialog").

WCI configuration is done dynamically at the beginning of programs, with methods of the ui.Interface
built-in class.

Configuration of WCI parent programs

The WCI container program is a separate program of a special type, dedicated to contain other program
windows. On the front-end, container programs automatically display a parent window that will hold all child
program windows that will attach to the container.

The WCI container program must indicate that its type is special (ui.Interface.setType() method),
and must identify itself (ui.Interface.setName() method):

 MAIN
 CALL ui.Interface.setName("parent1")
 CALL ui.Interface.setType("container")
 CALL ui.Interface.setText("SoftStore Manager")
 CALL ui.Interface.setSize("600px","1000px")
 CALL ui.Interface.loadStartMenu("mystartmenu")
 MENU "Main"
 COMMAND "Help" CALL help()
 COMMAND "About" CALL aboutbox()
 COMMAND "Exit" EXIT MENU
 END MENU
 END MAIN

You can define the initial size of the parent container window with the
ui,interface.setSize(height,width) method.

When the program is identified as a container, a global window is automatically displayed as an container
window. The default toolbar and the default topmenu are displayed and a startmenu can be used. Other
windows created by this kind of program can be displayed, inside the container (windowType="normal"

User interface | 1459

) or as dialog windows (windowType="modal"). Window styles can be applied to the parent window by
using the default style specification (name="Window.main").

Configuration of WCI child programs

WCI children programs must attach to a parent container by giving the name of the container program:

 MAIN
 CALL ui.Interface.setName("custapp")
 CALL ui.Interface.setType("child")
 CALL ui.Interface.setText("Customers")
 CALL ui.Interface.setContainer("parent1")
 ...
 END MAIN

Multiple container programs can be used to group programs by application modules.

The client displays a system error and the programs stops when:

• A child program is started, but the parent container is not
• A container program is started twice

When the parent container program is stopped, other applications are automatically stopped by
the front-end. This will result in a runtime error -6313 on the application server side. To avoid this,
you should control that there are no more running child programs before terminating the parent
container program. The WCI container program can query for the existence of children with the
ui.Interface.getChildCount() and ui.Interface.getChildInstances() methods:

MAIN
 CALL ui.Interface.setName("parent1")
 CALL ui.Interface.setType("container")
 CALL ui.Interface.setText("SoftStore Manager")
 CALL ui.Interface.setSize("600px","1000px")
 CALL ui.Interface.loadStartMenu("mystartmenu")
 MENU "Main"
 COMMAND "Help" CALL help()
 COMMAND "About" CALL aboutbox()
 COMMAND "Exit"
 IF ui.Interface.getChildCount()>0 THEN
 ERROR "You must first exit the child programs."
 ELSE
 EXIT MENU
 END IF
 END MENU
END MAIN

Implement tabbed WCI containers

WCI container can also display the child programs in a folder tab, when the presentation style attribute
tabbedContainer is set to yes.

With a tabbed window container, the style attribute tabbedContainerCloseMethod defines how to
close the current page.

Values can be:

• "container" (default), the container has a close button on the top right corner, which closes the
current tab.

• "page", each page has its own close button.
• "both", each page and the container have a close button.
• "none", no close button is shown.

The close button is enabled depending on the window style attribute.

Reports | 1460

Reports

• Understanding reports on page 1460
• XML output for reports on page 1461
• The report driver on page 1464
• The report routine on page 1469
• Two-pass reports on page 1480
• Report instructions on page 1480
• Report operators on page 1486
• Report aggregate functions on page 1489
• Report engine configuration on page 1492

Understanding reports
A report can arrange and format the data according to your instructions and display the output on the
screen, send it to a printer, or store it as a file for future use.

To implement a report, a program must include two distinct components:

• The report driver specifies what data the report includes.
• The report routine formats the data for output.

The report driver retrieves the specified rows from a database, stores their values in program variables,
and sends these - one input record at a time - to the report routine. After the last input record is received
and formatted, the runtime system calculates any aggregate values based on all the data and sends the
entire report to some output device.

Figure 102: Report driver and database cursor

By separating the two tasks of data retrieval and data formatting, the runtime system simplifies the
production of recurrent reports and makes it easy to apply the same report format to different data sets.

The report engine supports the following features:

• The option to display report output to the screen, to the printer, to a file or to a SAX handler to transform
the output following XML standards.

Reports | 1461

• Full control over page layout, including first page header and generic page headers , page trailers,
columnar presentation, and row grouping.

• Facilities for creating the report either from the rows returned by a cursor or from input records
assembled from any other source, such as output from several different SELECT statements through
the report driver.

• Control blocks to manipulate data from a database cursor on a row-by-row basis, either before or after
the row is formatted by the report.

• Aggregate functions that can calculate frequencies, percentages, sums , averages , minimum, and
maximum values.

• The USING operator and other built-in functions and operators for formatting and displaying information
in output from the report.

• The WORDWRAP operator to format long character strings that occupy multiple lines of output from the
report.

• The option to execute other language statements while generating a report.
• Stopping a report in the report definition code, with EXIT REPORT or TERMINATE REPORT.

The report engine supports one-pass reports and two-pass reports. The one-pass requires sorted data to
be produced by the report driver in order to handle row grouping with the BEFORE GROUP / AFTER GROUP
blocks. The two-pass record handles sort automatically and does not need sorted data from the report
driver. During the first pass, the report engine sorts the data and stores the sorted values in a temporary
file in the database. During the second pass, it calculates any aggregate values and produces output from
data in the temporary files.

XML output for reports
For better integration with external tools based on XML standards, reports can produce XML output.

The purpose of XML-based reports is to sort and group data, not to decorate. Data decoration and
formatting can be done by external tools, or you can redirect the XML report output to a SAX document
handler object to process the output and generate for example HTML pages.

• Writing an XML report driver and routine on page 1461
• Structure of XML report output on page 1462
• Conditional statement output in XML reports on page 1462

Writing an XML report driver and routine

To produce an XML report, you must start the report with the TO XML HANDLER clause in the START
REPORT instruction, and then use the PRINTX statement inside the report routine:

MAIN
 ...
 START REPORT orders_report
 TO XML HANDLER om.XmlWriter.createFileWriter("orders.xml")
 ...
END MAIN

REPORT order_report(rec)
 ...
 FORMAT
 ON EVERY ROW
 PRINTX NAME = order rec.*
 ...
END REPORT

If all the reports of the program must generate XML output, you can also use the global function
fgl_report_set_document_handler().

Reports | 1462

Structure of XML report output

The generated XML output contains the structure of the formatted pages, with page header, page trailer
and group sections. Every PRINTX instruction will generate a <Print> node with a list of <Item> nodes
containing the data. The XML processor can use this structure to format and render the output as needed.

If a new report is started with START REPORT instruction inside a REPORT routine producing XML, and if
there is no destination specified in the START REPORT instruction, the sub-report inherits the XML output
target of the parent, and sub-report nodes will be merged into the parent XML output.

The output of an XML report will have the following node structure:

<Report ...>
 <PageHeader pageNo="...">
 ...
 </PageHeader>
 <Group>
 <BeforeGroup>
 <Print name="...">
 <Item name="..." type="..." value="..." isoValue="..." />
 <Item name="..." type="..." value="..." isoValue="..." />
 ...
 </Print>
 ...
 </BeforeGroup>
 <OnEveryRow>
 <Print name="...">
 <Item name="..." type="..." value="..." isoValue="..." />
 <Item name="..." type="..." value="..." isoValue="..." />
 ...
 </Print>
 ...
 </OnEveryRow>
 ...
 <AfterGroup>
 <Print name="...">
 <Item name="..." type="..." value="..." isoValue="..." />
 <Item name="..." type="..." value="..." isoValue="..." />
 ...
 </Print>
 </AfterGroup>
 ...
 </Group>
 ...
 <OnLastRow ...>
 ...
 </OnLastRow>

 <PageTrailer ...>
 ...
 </PageTrailer>

</Report>

Conditional statement output in XML reports

If PRINTX commands are used inside program flow control instructions like IF, CASE, FOR, FOREACH and
WHILE, the XML output will contain additional nodes to identify such conditional print instructions:

<For>
 <ForItem>
 <Print name="...">

Reports | 1463

 <Item name="..." type="..." value="..." isoValue="..." />
 </Print>
 ...
 </ForItem>
 ...
</For>

<While>
 <WhileItem>
 <Print name="...">
 <Item name="..." type="..." value="..." isoValue="..." />
 </Print>
 ...
 </WhileItem>
 ...
</While>

<Foreach>
 <ForeachItem>
 <Print name="...">
 <Item name="..." type="..." value="..." isoValue="..." />
 </Print>
 ...
 </ForeachItem>
 ...
</Foreach>

<Case>
 <When id="position">
 <Print name="...">
 <Item name="..." type="..." value="..." isoValue="..." />
 </Print>
 ...
 </When>
 ...
</Case>

<If>
 <IfThen>
 <Print name="...">
 <Item name="..." type="..." value="..." isoValue="..." />
 </Print>
 ...
 </IfThen>
 <IfElse>
 <Print name="...">
 <Item name="..." type="..." value="..." isoValue="..." />
 </Print>
 ...
 </IfElse>
</If>

That information can be useful to process an XML report output.

Reports | 1464

The report driver
The report driver retrieves data, starts the report engine and sends the data (as input records) to be
formatted by the REPORT routine.

Usage

A report driver can be part of the MAIN program block, or it can be in one or more functions.

The report driver typically consists of a loop (such as WHILE , FOR, or FOREACH) with the following
statements to process the report:

Table 304: Report driver statements

Instruction Description

START REPORT This statement is required to instantiate the report
driver.

OUTPUT TO REPORT Provide data for one row to the report driver.

FINISH REPORT Normal termination of the report.

TERMINATE REPORT Cancels the processing of the report.

A report driver is started by the START REPORT instruction. Once started, data can be provided to the
report driver through the OUTPUT TO REPORT statement. To instruct the report engine to terminate output
processing, use the FINISH REPORT instruction. To cancel a report from outside the report routine, use
TERMINATE REPORT (from inside the report routine, you cancel the report with EXIT REPORT).

In order to handler report interruption, the report driver can check if the INT_FLAG variable is TRUE to stop
the loop when the user asked to interrupt the report execution.

It is possible to execute several report drivers at the same time. It is even possible to invoke a report driver
inside a REPORT routine, which is different from the current driver.

The programmer must make sure that the runtime system will always execute these instructions in the
following order:

1. START REPORT

2. OUTPUT TO REPORT

3. FINISH REPORT

Example

SCHEMA stores7
MAIN
 DEFINE rcust RECORD LIKE customer.*
 DATABASE stores7
 DECLARE cu1 CURSOR FOR SELECT * FROM customer
 LET int_flag = FALSE
 START REPORT myrep
 FOREACH cu1 INTO rcust.*
 IF int_flag THEN EXIT FOREACH END IF
 OUTPUT TO REPORT myrep(rcust.*)
 END FOREACH
 IF int_flag THEN
 TERMINATE REPORT myrep
 ELSE
 FINISH REPORT myrep
 END IF

Reports | 1465

END MAIN

START REPORT
The START REPORT instruction initializes a report execution.

Syntax

START REPORT report-routine
 [TO to-clause]
 [WITH dimension-option [,...]]

where to-clause is one of:

{ SCREEN
| PRINTER
| [FILE] filename
| PIPE program [IN FORM MODE | IN LINE MODE]
| XML HANDLER sax-handler-object
| OUTPUT destination-expr [DESTINATION { program | filename}]
}

where dimension-option is one of:

{ LEFT MARGIN = m-left
| RIGHT MARGIN = m-right
| TOP MARGIN = m-top
| BOTTOM MARGIN = m-bottom
| PAGE LENGTH = m-length
| TOP OF PAGE = c-top
}

1. report-routine is the name of the REPORT routine.
2. filename is a string expression specifying the file that receives report output.
3. program is a string expression specifying a program, a shell script, or a command line to receive report

output.
4. destination-expr is a string expression that specifies one of: SCREEN, PRINTER, FILE, PIPE, PIPE IN

LINE MODE, PIPE IN FORM MODE.
5. sax-handler-object is a variable referencing an om.SaxDocumentHandler instance.
6. m-left is the left margin in number of characters. The default is 5.
7. m-right is the right margin in number of characters. The default is 132.
8. m-top is the top margin in number of lines. The default is 3.
9. m-bottom is the bottom margin in number of lines. The default is 3.
10.m-length is the total number of lines on a report page. The default page length is 66 lines.
11.c-top is a string that defines the page-eject character sequence.

Usage

The START REPORT statement initializes a report. The instruction allows you to specify the report output
destination and the page dimensions and margins.

START REPORT typically precedes a loop instruction such as FOR, FOREACH, or WHILE in which OUTPUT
TO REPORT feeds the report routine with data. After the loop terminates, FINISH REPORT completes the
processing of the output.

DEFINE file_name VARCHAR(200), page_size INTEGER
...

Reports | 1466

START REPORT myrep
 TO FILE file_name
 WITH PAGE LENGTH = page_size

If a START REPORT statement references a report that is already running, the report is re-initialized; any
output might be unpredictable.

Output specification

The TO clause can be used to specify a destination for output. If you omit the TO clause, the Genero
runtime system sends report output to the destination specified in the report routine definition. If the report
routine does not define an OUTPUT clause, the report output is sent by default to the report viewer when in
GUI mode, or to the screen when in TUI mode.

Report output can be specified dynamically as follows:

• The TO FILE option can specify the filename as a character variable that is assigned at runtime.
• The TO PIPE option can specify the program as a character variable that is assigned at runtime.
• The TO OUTPUT option can specify the report output with a string expression, described later in detail.

The SCREEN option specifies that output is to the report window. The way the report is displayed to the end
user depends on whether you are in TUI mode or GUI mode. In TUI mode, the report output displays to the
terminal screen. In GUI mode, the report output displays in a dedicated popup window called the Report
Viewer.

The PRINTER option instructs the runtime system to output the report to the device or program defined by
the DBPRINT environment variable.

When using the FILE option, you can specify a file name as the report destination. Output will be sent
to the specified file. If the file exists, its content will be overwritten by the new report output. The FILE
keyword is optional, but it's best to include it to make your code more readable.

The PIPE option defines a program, shell script, or command line to which the report output must be sent,
using the standard input channel. When using the TUI mode, you can use the IN [LINE|FORM] MODE
option to specify whether the program is in line mode or in formatted mode when report output is sent to a
pipe.

The TO OUTPUT option allows you to specify one of the output options dynamically at runtime. The
character string expression must be one of: "SCREEN", "PRINTER", "FILE", "PIPE", "PIPE IN LINE
MODE", " PIPE IN FORM MODE". If the expression specifies "FILE" or "PIPE", you can also specify a
filename or program in a character variable following the DESTINATION keyword.

The XML HANDLER option indicates that the report output will be generated as XML and redirected to a
SAX-document handler. When using XML output, the report result can be shown in the Genero Report
Engine installed on the front-end workstation. See XML output for more details.

Page dimensions specification

The WITH clause defines the dimensions of each report page and the left, top, right and bottom margins.
The values corresponding to a margin and page length must be valid integer expressions. The margins can
be defined in any order, but a comma "," is required to separate two page dimensions options.

• The LEFT MARGIN clause defines the number of blank spaces to include at the start of each new line
of output. The default is 5.

• The RIGHT MARGIN clause defines the total number of characters in each line of output, including the
left margin. If you omit this but specify FORMAT EVERY ROW, the default is 132.

• The TOP MARGIN clause specifies how many blank lines appear above the first line of text on each
page of output. The default is 3.

• The BOTTOM MARGIN clause specifies how many blank lines follow the last line of output on each page.
The default is 3.

Reports | 1467

• The PAGE LENGTH clause specifies the total number of lines on each page, including data, the
margins, and any page headers or page trailers from the FORMAT section. The default page length is 66
lines.

In addition to the page dimension options, the TOP OF PAGE clause can specify a page-eject sequence
for a printer. On some systems, specifying this value can reduce the time required for a large report to
produce output, because SKIP TO TOP OF PAGE can substitute this value for multiple line feeds.

OUTPUT TO REPORT
The OUTPUT TO REPORT instruction provides a data row to the report execution.

Syntax

OUTPUT TO REPORT report-name (parameters)

1. report-name is the name of the report to which the parameters should be sent.
2. parameters is the data that needs to be sent to the report.

Usage

The OUTPUT TO REPORT instruction feeds the report routine with a single set of data values (called an
input record), which corresponds usually to one printed line in the report output.

An input record is the ordered set of values returned by the expressions that you list between the
parentheses following the report name in the OUTPUT TO REPORT statement. The specified values
are passed to the report routine, as part of the input record. The input record typically corresponds to a
retrieved row from the database.

The set of values is usually grouped in a RECORD variable and best practice is to define a user defined type
(TYPE) in order to ease the variable definitions required in the code implementing the report driver and the
report routine definition, for example:

SCHEMA stores
TYPE t_cust RECORD LIKE customer.*
...
DEFINE r_cust t_cust
...
 OUTPUT TO REPORT cust_report(r_cust.*)
...
REPORT cust_report(r)
 DEFINE r t_cust
 ...

The OUTPUT TO REPORT statement is included within a WHILE, FOR, or FOREACH loop, so that the
program passes data to the report one input record at a time. The next example uses a FOREACH loop to
fetch data from the database and pass it as input record to a report:

SCHEMA stores
DEFINE o LIKE orders.*
...
DECLARE order_c CURSOR FOR
 SELECT orders.*
 FROM orders ORDER BY ord_cust
 START REPORT order_list
 FOREACH order_c INTO o.*
 OUTPUT TO REPORT order_list(o.*)
 END FOREACH
 FINISH REPORT order_list
...

Reports | 1468

Special consideration should be taken regarding row ordering with reports: For example if the report
groups rows with BEFORE GROUP OF or AFTER GROUP OF sections, the rows must be ordered by the
column specified in these sections, and rows should preferably be ordered by the report driver to avoid
two-pass reports.

If OUTPUT TO REPORT is not executed, none of the control blocks of the report routine are executed, even
if the program also includes the START REPORT and FINISH REPORT statements.

The members of the input record that you specify in the expression list of the OUTPUT TO REPORT
statement must correspond to elements of the formal argument list in the REPORT definition in their
number and their position, and must be of compatible data types. At compile time, the number of
parameters passed with the OUTPUT TO REPORT instruction is not checked against the DEFINE section of
the report routine. This is a known behavior of the language.

Arguments of the TEXT and BYTE data types are passed by reference rather than by value; arguments of
other data types are passed by value. A report can use the WORDWRAP operator with the PRINT statement
to display TEXT values. A report cannot display BYTE values; the character string <byte value> in output
from the report indicates a BYTE value.

FINISH REPORT
The FINISH REPORT instruction finalizes a report execution.

Syntax

FINISH REPORT report-name

1. report-name is the name of the report to be ended.

Usage

FINISH REPORT closes the report driver. Therefore, it must be the last statement in the report driver and
must follow a START REPORT statement that specifies the name of the same report.

FINISH REPORT must be the last statement in the report driver.

FINISH REPORT does the following:

1. Completes the second pass, if report is a two-pass report. These 'second pass' activities handle the
calculation and output of any aggregate values that are based on all the input records in the report,
such as COUNT(*) or PERCENT(*) with no GROUP qualifier.

2. Executes any AFTER GROUP OF control blocks.
3. Executes any PAGE HEADER, ON LAST ROW, and PAGE TRAILER control blocks to complete the

report.
4. Copies data from the output buffers of the report to the destination.
5. Closes the Select cursor on any temporary table that was created to order the input records or to

perform aggregate calculations.

TERMINATE REPORT
The TERMINATE REPORT instruction cancels a report execution.

Syntax

TERMINATE REPORT report-name

1. report-name is the name of the report to be canceled.

Reports | 1469

Usage

TERMINATE REPORT cancels the report processing. It is typically used when the program (or the user)
becomes aware that a problem prevents the report from producing part of its intended output, or when the
user interrupted the report processing.

TERMINATE REPORT has the following effects:

• Terminates the processing of the current report.
• Deletes any intermediate files or temporary tables that were created in processing the report.

The EXIT REPORT instruction has the same effect, except that it can be used inside the report definition.

The report routine
The report routine implements the body of a report, with formatting instructions.

Syntax

[PUBLIC|PRIVATE] REPORT report-name (argument-list)
 [define-section]
 [output-section]
 [sort-section]
 [format-section]
END REPORT

where define-section is:

DEFINE variable-definition [,...]

where output-section is:

OUTPUT
[
 REPORT TO
 {
 SCREEN
 | PRINTER
 | [FILE] filename
 | PIPE program [IN FORM MODE | IN LINE MODE]
 }
]
[
 [WITH]
 [LEFT MARGIN m-left]
 [RIGHT MARGIN m-right]
 [TOP MARGIN m-top]
 [BOTTOM MARGIN m-bottom]
 [PAGE LENGTH m-length]
 [TOP OF PAGE c-top]
]

where sort-section is:

 ORDER [EXTERNAL] BY report-variable [,...]

where format-section is:

FORMAT EVERY ROW

Reports | 1470

or:

 FORMAT
 control-block
 [report-only-fgl-statement | sql-statement | report-statement]
 [...]
 [...]

where control-block can be one of:

{
[FIRST] PAGE HEADER
| ON EVERY ROW
| BEFORE GROUP OF report-variable
| AFTER GROUP OF report-variable
| PAGE TRAILER
| ON LAST ROW
}

Note:

1. variable-definition follows the DEFINE instruction syntax and declares report-variables .
2. report-variable is the name of a variable declared in the DEFINE section.
3. report-only-fgl-statement is a subset of all the regular language statements.
4. sql-statement is a valid static SQL statement.

Usage

The report definition formats input records. Like the FUNCTION or MAIN statement, it is a program block
that can be the scope of local variables. It is not, however, a function; it is not reentrant, and CALL cannot
invoke it. The report definition receives data from its driver in sets called input records. These records
can include program records, but other data types are also supported. Each input record is formatted
and printed as specified by control blocks and statements within the report definition. Most statements
and functions can be included in a report definition, and certain specialized statements and operators for
formatting output can appear only in a report definition.

Like MAIN or FUNCTION, the report definition must appear outside any other program block. It must begin
with the REPORT statement and must end with the END REPORT keywords.

Some statements are prohibited in a REPORT routine control block. For example, it is not possible to use
CONSTRUCT, INPUT, DEFER, DEFINE, REPORT, RETURN instructions in a control block of a report.

By default, report routines are public; They can be called by any other module of the program. If a report
routine is only used by the current module, you may want to hide that routine to other modules, to make
sure that it will not be called by mistake. To keep a report routine local to the module, add the PRIVATE
keyword before the report header. Private report routines are only hidden to external modules, all function
of the current module can still call local private report routines.

The define section declares the data types of local variables used within the report, and of any variables
(the input records) that are passed as arguments to the report by the calling statement. Reports without
arguments or local variables do not require a DEFINE section.

The output-section can set margin and page size values, and can also specify where to send the formatted
output. Output from the report consists of successive pages, each containing a fixed number of lines
whose margins and maximum number of characters are fixed.

The sort-section specifies how the rows have to be sorted. The specified sort order determines the order in
which the runtime system processes any GROUP OF control blocks in the FORMAT section.

The format-section is required. It specifies the appearance of the report, including page headers, page
trailers, and aggregate functions of the data. It can also contain control blocks that specify actions to take

Reports | 1471

before or after specific groups of rows are processed. (Alternatively, it can produce a default report by only
specifying FORMAT EVERY ROW).

The report prototype

When defining a report routine, the report name must immediately follow the REPORT keyword. The name
must be unique among function and report names within the program. Its scope is the entire program.

The list of formal arguments of the report must be enclosed in parentheses and separated by commas.
These are local variables that store values that the calling routine passes to the report. The compiler
issues an error unless you declare their data types in the subsequent DEFINE section of the report routine.
You can include a program record in the formal argument list, but you cannot append the .* symbols to
the name of the record. Arguments can be of any data type except ARRAY, or a record with an ARRAY
member.

When you call a report, the formal arguments are assigned values from the argument list of the OUTPUT
TO REPORT statement. These actual arguments that you pass must match, in number and position,
the formal arguments of the REPORT routine. The data types must be compatible, but they need not be
identical. The runtime system can perform some conversions between compatible data types.

The names of the actual arguments and the formal arguments do not have to match.

You must include the following items in the list of formal arguments:

• All the values for each row sent to the report in the following cases:

• If you include an ORDER BY section or GROUP PERCENT(*) function
• If you use a global aggregate function (one over all rows of the report) anywhere in the report,

except in the ON LAST ROW control block
• If you specify the FORMAT EVERY ROW default format

• Any variables referenced in the following group control blocks:

• AFTER GROUP OF

• BEFORE GROUP OF

DEFINE section in REPORT
Defines report parameters and local variables.

Syntax

The syntax of the report DEFINE section is the same as for the DEFINE statement, except that you cannot
define arrays or array members for records.

Usage

This section declares a data type for each formal argument in the REPORT prototype and for any additional
local variables that can be referenced only within the REPORT program block. The DEFINE section is
required if you pass arguments to the report or if you reference local variables in the report.

For declaring local report variables, the same rules apply to the DEFINE section as to the DEFINE
statement in MAIN and FUNCTION program blocks. There are some differences and exceptions, however:

• Report arguments cannot be of type ARRAY.
• Report arguments cannot be records that include ARRAY members.
• Report local variables are not allocated on the stack at every OUTPUT TO REPORT call: The scope of

the variables in the DEFINE section is local to the report routine, but the lifetime is the duration of the
program, like module or global variables. In other words, report variables persist across OUTPUT TO
REPORT calls.

data types of local variables that are not formal arguments are unrestricted. You must include arguments in
the report prototype and declare them in the DEFINE section, if any of the following conditions is true:

Reports | 1472

• If you specify FORMAT EVERY ROW to create a default report, you must pass all the values for each
record of the report.

• If an ORDER BY section is included, you must pass all the values that ORDER BY references for each
input record of the report.

• If you use the AFTER GROUP OF control block, you must pass at least the arguments that are named in
that control block.

• If an aggregate that depends on all records of the report appears anywhere except in the ON LAST
ROW control block, you must pass each of the records of the report through the argument list.

Aggregates dependent on all records include:

• GROUP PERCENT(*) (anywhere in a report).
• Any aggregate without the GROUP keyword (anywhere outside the ON LAST ROW control block).

If your report calls an aggregate function, an error might result if any argument of an aggregate function is
not also a format argument of the report. You can, however, use global or module variables as arguments
of aggregates if the value of the variable does not change while the report is executing.

A report can reference variables of global or module scope that are not declared in the DEFINE section.
Their values can be printed, but they can cause problems in aggregates and in BEFORE GROUP OF
and AFTER GROUP OF clauses. Any references to non-local variables can produce unexpected results,
however, if their values change while a two-pass report is executing.

OUTPUT section in REPORT
Specifies report destination and page format options.

Syntax

 OUTPUT
[
 REPORT TO
 {
 SCREEN
 | PRINTER
 | [FILE] filename
 | PIPE [IN FORM MODE | IN LINE MODE] program
 }
]
[
 [LEFT MARGIN m-left]
 [RIGHT MARGIN m-right]
 [TOP MARGIN m-top]
 [BOTTOM MARGIN m-bottom]
 [PAGE LENGTH m-length]
 [TOP OF PAGE c-top]
]

1. program defines the name of a program, shell script, command receiving the output.
2. filename defines the file which receives the output of the report.
3. m-left is the left margin in number of characters. The default is 5.
4. m-right is the right margin in number of characters. The default is 132.
5. m-top is the top margin in number of lines. The default is 3.
6. m-bottom is the bottom margin in number of lines. The default is 3.
7. m-length is the total number of lines on a report page. The default page length is 66 lines.
8. c-top is a string that defines the page-eject character sequence.

Reports | 1473

Usage

The OUTPUT section can specify the destination and dimensions for output from the report and the page-
eject sequence for the printer. If you omit the OUTPUT section, the report uses default values to format
each page. This section is superseded by any corresponding START REPORT specifications.

The OUTPUT section can direct the output from the report to a printer, file, or pipe, and can initialize
the page dimensions and margins of report output. If PRINTER is specified, the DBPRINT environment
variable specifies which printer.

The START REPORT statement of the report driver can override all of these specifications by assigning
another destination in its TO clause or by assigning other dimensions, margins, or another page-eject
sequence in the WITH clause.

Because the size specifications for the dimensions and margins of a page of report output that the OUTPUT
section can specify must be literal integers, consider defining page dimensions in the START REPORT
statement, where you can use variables to assign these values dynamically at runtime.

ORDER BY section in REPORT
Forces a sort order of unsorted data rows in reports.

Syntax

ORDER [EXTERNAL] BY report-variable [DESC | ASC] [,...]

1. report-variable identifies one of the variables passed to the report routine to be used for sorting rows.

Usage

When grouping rows in a report, values that the report definition receives from the report driver are
significant in determining how BEFORE GROUP OF or AFTER GROUP OF control blocks will process the
data in the formatted report output.

The ORDER BY section defines how the variables of the input records are to be sorted. It is required if the
report driver does not send sorted data to the report. The specified sort order determines the order in which
the runtime system processes any GROUP OF control blocks in the FORMAT section.

If you omit the ORDER BY section, the runtime system processes input records in the order received from
the report driver and processes any GROUP OF control blocks in their order of appearance in the FORMAT
section. If records are not sorted in the report driver , the GROUP OF control blocks might be executed at
random intervals (that is, after any input record) because unsorted values tend to change from record to
record.

If you specify only one variable in the GROUP OF control blocks, and the input records are already sorted in
sequence on that variable by the SELECT statement, you do not need to include an ORDER BY section in
the report.

Specify ORDER EXTERNAL BY if the input records have already been sorted by the SELECT statement
used by the report driver. The list of variables after the keywords ORDER EXTERNAL BY control the
execution order of GROUP BY control blocks.

Without the EXTERNAL keyword, the report becomes a two-pass report , meaning that the report engine
processes the set of input records twice. During the first pass, the report engine sorts the data and stores
the sorted values in a temporary table in the database. During the second pass, it calculates any aggregate
values and produces output from data in the temporary files.

With the EXTERNAL keyword, the report engine only needs to make a single pass through the data: it does
not need to build the temporary table in the database for sorting the data. However, If the report routine
contains aggregations functions such as GROUP PERCENT(*) , the report will become a two-pass report
because such aggregation function needs all rows to compute the value.

Reports | 1474

The DESC or ASC clause defines the sort order.

FORMAT section in REPORT
Defines the formatting directives inside a report routine.

Syntax

Default format:

 FORMAT EVERY ROW

Custom format:

 FORMAT
 control-block
 [report-statement
 | report-only-fgl-statement
 | sql-statement
]
 [...]
 [...]

where control-block can be one of:

{
[FIRST] PAGE HEADER
| ON EVERY ROW
| BEFORE GROUP OF report-variable
| AFTER GROUP OF report-variable
| PAGE TRAILER
| ON LAST ROW
}

1. report-statement is any report-specific instruction.
2. report-only-fgl-statement is any language instruction supported in the report routine.
3. sql-statement is any SQL statement supported by the language.
4. report-variable is the name of a variable declared in the DEFINE section.

Usage

A report definition must contain a FORMAT section.

The FORMAT section determines how the output from the report will look. It works with the values that are
passed to the REPORT program block through the argument list or with global or module variables in each
record of the report. In a source file, the FORMAT section begins with the FORMAT keyword and ends with
the END REPORT keywords.

The FORMAT section is made up of the following control blocks:

• FIRST PAGE HEADER

• PAGE HEADER

• PAGE TRAILER

• BEFORE GROUP OF

• AFTER GROUP OF

• ON EVERY ROW

• ON LAST ROW

If you use the FORMAT EVERY ROW, no other statements or control blocks are valid. The EVERY ROW
keywords specify a default output format, including every input record that is passed to the report.

Reports | 1475

Control blocks define the structure of a report by specifying one or more statements to be executed when
specific parts of the report are processed.

If a report driver includes START REPORT and FINISH REPORT statements, but no data records are
passed to the report, no control blocks are executed. That is, unless the report executes an OUTPUT
TO REPORT statement that passes at least one input record to the report; then neither the FIRST PAGE
HEADER control block nor any other control block is executed

Apart from BEFORE GROUP OF and AFTER GROUP OF, each control block must appear only one time.

More complex FORMAT sections can contain control blocks like ON EVERY ROW or BEFORE GROUP OF,
which contain statements to execute while the report is being processed. Control blocks can contain report
execution statements and other executable statements.

A control block may invoke most language statements, except those listed in prohibited statements.

The BEFORE/AFTER GROUP OF control blocks can include aggregate functions to instruct the report
engine to automatically compute such values.

A report-statement is a statement specially designed for the report format section. It cannot be used in any
other part of the program.

The sequence in which the BEFORE GROUP OF and AFTER GROUP OF control blocks are executed
depends on the sort list in the ORDER BY section, regardless of the physical sequence in which these
control blocks appear within the FORMAT section.

FORMAT EVERY ROW
Default format specification of a report.

A report routine written with FORMAT EVERY ROW formats the report in a simple default format, containing
only the values that are passed to the REPORT program block through its arguments, and the names of
the arguments. You cannot modify the EVERY ROW statement with any of the statements listed in report
execution statements, and neither can you include any control blocks in the FORMAT section.

The report engine uses as column headings the names of the variables that the report driver passes as
arguments at runtime. If all fields of each input record can fit horizontally on a single line, the default report
prints the names across the top of each page and the values beneath. Otherwise, it formats the report with
the names down the left side of the page and the values to the right, as in the previous example. When a
variable contains a null value, the default report prints only the name of the variable, with nothing for the
value.

The following example is a brief report specification that uses FORMAT EVERY ROW. We assume here that
the cursor that retrieved the input records for this report was declared with an ORDER BY clause, so that no
ORDER BY section is needed in this report definition:

DATABASE stores7

REPORT simple(order_num, customer_num, order_date)

 DEFINE order_num LIKE orders.order_num,
 customer_num LIKE orders.customer_num,
 order_date LIKE orders.order_date

 FORMAT EVERY ROW

END REPORT

The example would produce the following output:

order_num customer_num order_date
 1001 104 01/20/1993
 1002 101 06/01/1993
 1003 104 10/12/1993

Reports | 1476

 1004 106 04/12/1993
 1005 116 12/04/1993
 1006 112 09/19/1993
 1007 117 03/25/1993
 1008 110 11/17/1993
 1009 111 02/14/1993
 1010 115 05/29/1993
 1011 104 03/23/1993
 1012 117 06/05/1993

FIRST PAGE HEADER
Defines the printing commands for the first page of a report.

This control block specifies the action that the runtime system takes before it begins processing the first
input record. You can use it, for example, to specify what appears near the top of the first page of output
from the report.

Because the runtime system executes the FIRST PAGE HEADER control block before generating any
output, you can use this control block to initialize variables that you use in the FORMAT section.

If a report driver includes START REPORT and FINISH REPORT statements, but no data records are
passed to the report, this control block is not executed. That is, unless the report executes an OUTPUT TO
REPORT statement that passes at least one input record to the report, neither the FIRST PAGE HEADER
control block nor any other control block is executed.

As its name implies, you can also use a FIRST PAGE HEADER control block to produce a title page as
well as column headings. On the first page of a report, this control block overrides any PAGE HEADER
control block. That is, if both a FIRST PAGE HEADER and a PAGE HEADER control block exist, output
from the first appears at the beginning of the first page, and output from the second begins all subsequent
pages.

The TOP MARGIN (set in the OUTPUT section) determines how close the header appears to the top of the
page.

Consider the following notes when programming the FIRST PAGE HEADER control block:

1. You cannot include a SKIP integer LINES statement inside a loop within this control block.
2. The NEED statement is not valid within this control block.
3. If you use an IF…THEN…ELSE statement within this control block, the number of lines displayed by

any PRINT statements following the THEN keyword must be equal to the number of lines displayed by
any PRINT statements following the ELSE keyword.

4. If you use a CASE, FOR, or WHILE statement that contains a PRINT statement within this control
block, you must terminate the PRINT statement with a semicolon (;). The semicolon suppresses any
LINEFEED characters in the loop, keeping the number of lines in the header constant from page to
page.

5. You cannot use a PRINT filename statement to read and display text from a file within this control block

Corresponding restrictions also apply to CASE, FOR, IF, NEED, SKIP, PRINT, and WHILE statements in
PAGE HEADER and PAGE TRAILER control blocks.

PAGE HEADER
Defines the printing commands for the top of all pages of a report.

This control block is executed whenever a new page is added to the report. The PAGE HEADER control
block specifies the action that the runtime takes before it begins processing each page of the report. It can
specify what information, if any, appears at the top of each new page of output from the report.

The TOP MARGIN specification (in the OUTPUT section) affects how many blank lines appear above the
output produced by statements in the PAGE HEADER control block.

You can use the PAGENO operator in a PRINT statement within a PAGE HEADER control block to
automatically display the current page number at the top of every page.

Reports | 1477

The FIRST PAGE HEADER control block overrides this control block on the first page of a report.

New group values can appear in the PAGE HEADER control block when this control block is executed after
a simultaneous end-of-group and end-of-page situation.

The runtime system delays the processing of the PAGE HEADER control block until it encounters the first
PRINT, SKIP, or NEED statement in the ON EVERY ROW, BEFORE GROUP OF, or AFTER GROUP OF
control block. This order guarantees that any group columns printed in the PAGE HEADER control block
have the same values as the columns printed in the ON EVERY ROW control block.

The details that apply to FIRST PAGE HEADER also apply to PAGE HEADER.

PAGE TRAILER
Defines the printing commands for the tail of all pages of a report.

The PAGE TRAILER control block specifies what information, if any, appears at the bottom of each page of
output from the report.

The runtime system executes the statements in the PAGE TRAILER control block before the PAGE
HEADER control block when a new page is needed. New pages can be initiated by any of the following
conditions:

• PRINT attempts to print on a page that is already full.
• SKIP TO TOP OF PAGE is executed.
• SKIP n LINES specifies more lines than are available on the current page.
• NEED specifies more lines than are available on the current page.

You can use the PAGENO operator in a PRINT statement within a PAGE TRAILER control block to
automatically display the page number at the bottom of every page, as in this example:

PAGE TRAILER
 PRINT COLUMN 28, PAGENO USING "page <<<<"

The BOTTOM MARGIN specification (in the OUTPUT section) affects how close to the bottom of the page
the output displays the page trailer.

The details that apply to FIRST PAGE HEADER also apply to PAGE TRAILER.

BEFORE/AFTER GROUP OF
Defines printing commands of row grouping sections withing a report.

The BEFORE/AFTER GROUP OF control blocks specify what action the runtime system takes respectively
before or after it processes a group of input records. Group hierarchy is determined by the ORDER BY
specification in the SELECT statement or in the report definition.

A group of records is all of the input records that contain the same value for the variable whose name
follows the AFTER GROUP OF keywords. This group variable must be passed through the report
arguments. A report can include no more than one AFTER GROUP OF control block for any group variable.

When the runtime system executes the statements in a BEFORE/AFTER GROUP OF control block, the
report variables have the values from the first / last record of the new group. From this perspective, the
BEFORE/AFTER GROUP OF control block could be thought of as the "on first / last record of group" control
block.

Each BEFORE GROUP OF block is executed in order, from highest to lowest priority, at the start of a report
(after any FIRST PAGE HEADER or PAGE HEADER control blocks, but before processing the first record)
and on these occasions:

• Whenever the value of the group variable changes (after any AFTER GROUP OF block for the old value
completes execution)

• Whenever the value of a higher-priority variable in the sort list changes (after any AFTER GROUP OF
block for the old value completes execution)

Reports | 1478

The runtime system executes the AFTER GROUP OF control block on these occasions:

• Whenever the value of the group variable changes.
• Whenever the value of a higher-priority variable in the sort list changes.
• At the end of the report (after processing the last input record but before the runtime system executes

any ON LAST ROW or PAGE TRAILER control blocks). In this case, each AFTER GROUP OF control
block is executed in ascending priority.

How often the value of the group variable changes depends in part on whether the input records have been
sorted by the SELECT statement:

• If records are already sorted, the BEFORE/AFTER GROUP OF block executes before the runtime
system processes the first record of the group.

• If records are not sorted, the BEFORE GROUP OF block might be executed after any record because
the value of the group variable can change with each record. If no ORDER BY section is specified, all
BEFORE/AFTER GROUP OF control blocks are executed in the same order in which they appear in the
FORMAT section. The BEFORE/AFTER GROUP OF control blocks are designed to work with sorted data.

You can sort the records by specifying a sort list in either of the following areas:

• An ORDER BY section in the report definition
• The ORDER BY clause of the SELECT statement in the report driver

To sort data in the report definition (with an ORDER BY section), make sure that the name of the group
variable appears in both the ORDER BY section and in the BEFORE GROUP OF control block.

To sort data in the ORDER BY clause of a SELECT statement, perform the following tasks:

• Use the column name in the ORDER BY clause of the SELECT statement as the group variable in the
BEFORE GROUP OF control block.

• If the report contains BEFORE or AFTER GROUP OF control blocks, make sure that you include an
ORDER EXTERNAL BY section in the report to specify the precedence of variables in the sort list.

If you specify sort lists in both the report driver and the report definition, the sort list in the ORDER BY
section of the REPORT takes precedence. When the runtime system starts to generate a report, it first
executes the BEFORE GROUP OF control blocks in descending order of priority before it executes the ON
EVERY ROW control block. If the report is not already at the top of the page, the SKIP TO TOP OF PAGE
statement in a BEFORE GROUP OF control block causes the output for each group to start at the top of a
page.

If the sort list includes more than one variable, the runtime system sorts the records by values in the first
variable (highest priority). Records that have the same value for the first variable are then ordered by the
second variable and so on until records that have the same values for all other variables are ordered by the
last variable (lowest priority) in the sort list.

The ORDER BY section determines the order in which the runtime system processes BEFORE GROUP OF
and AFTER GROUP OF control blocks. If you omit the ORDER BY section, the runtime system processes
any GROUP OF control blocks in the lexical order of their appearance within the FORMAT section.

If you include an ORDER BY section, and the FORMAT section contains more than one BEFORE GROUP OF
or AFTER GROUP OF control block, the order in which these control blocks are executed is determined by
the sort list in the ORDER BY section. In this case, their order within the FORMAT section is not significant
because the sort list overrides their lexical order.

The runtime system processes all the statements in a BEFORE GROUP OF or AFTER GROUP OF control
block on these occasions:

• Each time the value of the current group variable changes.
• Each time the value of a higher-priority variable changes. How often the value of the group variable

changes depends in part on whether the input records have been sorted. If the records are sorted,
AFTER GROUP OF executes after the runtime system processes the last record of the group of records;
BEFORE GROUP OF executes before the runtime system processes the first records with the same

Reports | 1479

value for the group variable. If the records are not sorted, the BEFORE GROUP OF and AFTER GROUP
OF control blocks might be executed before and after each record because the value of the group
variable might change with each record. All the AFTER GROUP OF and BEFORE GROUP OF control
blocks are executed in the same lexical order in which they appear in the FORMAT section.

In the AFTER GROUP OF control block, you can include the GROUP keyword to qualify aggregate report
functions like AVG(), SUM(), MIN(), or MAX():

 AFTER GROUP OF r.order_num
 PRINT r.order_date, 7 SPACES,
 r.order_num USING"###&", 8 SPACES,
 r.ship_date, " ",
 GROUP SUM(r.total_price) USING"$$$$,$$$,$$$.&&"
 AFTER GROUP OF r.customer_num
 PRINT 42 SPACES, "-------------------"
 PRINT 42 SPACES, GROUP SUM(r.total_price) USING"$$$$,$$$,$$$.&&"

Using the GROUP keyword to qualify an aggregate function is only valid within the AFTER GROUP OF
control block. It is not valid, for example, in the BEFORE GROUP OF control block.

After the last input record is processed, the runtime system executes the AFTER GROUP OF control blocks
before it executes the ON LAST ROW control block.

ON EVERY ROW
Defines printing commands for each row in a report.

The ON EVERY ROW control block specifies the action to be taken by the runtime system for every input
record that is passed to the report definition.

The runtime system executes the statements within the ON EVERY ROW control block for each new input
record that is passed to the report. The following example is from a report that lists all the customers, their
addresses, and their telephone numbers across the page:

 ON EVERY ROW
 PRINT r.fname, " ", r.lname, " ",
 r.address1, " ", r.cust_phone

The runtime system delays processing the PAGE HEADER control block (or the FIRST PAGE HEADER
control block, if it exists) until it encounters the first PRINT, SKIP, or NEED statement in the ON EVERY
ROW control block.

If a BEFORE GROUP OF control block is triggered by a change in the value of a variable, the runtime
system executes all appropriate BEFORE GROUP OF control blocks (in the order of their priority) before it
executes the ON EVERY ROW control block. Similarly, if execution of an AFTER GROUP OF control block
is triggered by a change in the value of a variable, the runtime system executes all appropriate AFTER
GROUP OF control blocks (in the reverse order of their priority) before it executes the ON EVERY ROW
control block.

ON LAST ROW
Defines the printing commands of the last row in a report.

The ON LAST ROW control block specifies the action that the runtime system is to take after it processes
the last input record that was passed to the report definition and encounters the FINISH REPORT
statement.

The statements in the ON LAST ROW control block are executed after the statements in the ON EVERY
ROW and AFTER GROUP OF control blocks if these blocks are present.

When the runtime system processes the statements in an ON LAST ROW control block, the variables that
the report is processing still have the values from the final record that the report processed. The ON LAST
ROW control block can use aggregate functions to display report totals.

Reports | 1480

Prohibited report routine statements

Language statements that have no meaning inside a report definition routine are prohibited. These
statements are some of the statements that are not valid within any control block of the FORMAT section of
a REPORT program block, such as interactive statements (CONSTRUCT, INPUT, DIALOG, MENU), program
block definitions (FUNCTION, REPORT), and some flow control instructions like RETURN.

A compile-time error is issued if you attempt to include any of these statements in a control block of a
report. You can call a function that includes some of these statements, but this is not recommended.

Two-pass reports
The report engine supports two-pass reports, to order rows automatically.

The one-pass report requires sorted data to be produced by the report driver in order to handle before/
after groups properly. The two-pass report handles sorts internally and does not need sorted data from
the report driver. During the first pass, the report engine sorts the data and stores the sorted values in a
temporary file in the database. During the second pass, it calculates any aggregate values and produces
output from data in the temporary files.

A report is defined as a two-pass report if it includes any of the following items:

• An ORDER BY section without the EXTERNAL keyword.
• The GROUP PERCENT(*) aggregate function anywhere in the report.
• Any aggregate function that has no GROUP keyword in any control block other than ON LAST ROW.

Two-pass reports create temporary tables. The FINISH REPORT statement uses values from these tables
to calculate any global aggregates, and then deletes the tables. Since two-pass reports create temporary
tables, the report engine requires a database connection, and the database server must support temporary
tables with indexes.

Consider avoiding two-pass reports when a regular report is possible.

Report instructions
The report instruction listed in this section can appear only in control blocks of the FORMAT section of a
report routine.

EXIT REPORT
Cancels the report processing.

Syntax

EXIT REPORT

Usage

EXIT REPORT cancels the report processing. It must appear in the FORMAT section of the report definition.
It is useful after the program (or the user) becomes aware that a problem prevents the report from
producing part of its intended output.

EXIT REPORT has the following effects:

• Terminates the processing of the current report.
• Deletes any intermediate files or temporary tables that were created in processing the report.

You cannot use the RETURN statement as a substitute for EXIT REPORT. An error is issued if RETURN is
encountered within the definition of a report.

Reports | 1481

PRINT
Formats and prints a row of data in a report routine.

Syntax

PRINT
 {
 expression
 | COLUMN left-offset
 | PAGENO
 | LINENO
 | num-spaces SPACES
 | [GROUP] COUNT(*) [WHERE condition]
 | [GROUP] PERCENT(*) [WHERE condition]
 | [GROUP] AVG(variable) [WHERE condition]
 | [GROUP] SUM(variable) [WHERE condition]
 | [GROUP] MIN(variable) [WHERE condition]
 | [GROUP] MAX(variable) [WHERE condition]
 | char-expression WORDWRAP [RIGHT MARGIN rm]
 | FILE "file-name"
 } [,...]
 [;]

1. expression is any legal language expression.
2. left-offset is described in COLUMN.
3. num-spaces is described in SPACES.
4. char-expression is a string expression or a TEXT variable.
5. filename is a string expression , or a quoted string, that specifies the name of a text file to include in the

output from the report.

Usage

The PRINT instruction is used in a report routine to output a line of data.

The PRINT statement can include character data in the form of an ASCII file, a TEXT variable, or a
comma-separated expression list of character expressions in the output of the report. (For TEXT variable or
filename, you cannot specify additional output in the same PRINT statement.)

If a BYTE value is used in the PRINT statement, the output will show the "<byte value>" text for this
element when the report output is regular text. If the report output is XML, the BYTE value is converted to
Base64 before it is written to the output stream.

PRINT statement output begins at the current character position, sometimes called simply the current
position. On each page of a report, the initial default character position is the first character position in the
first line. This position can be offset horizontally and vertically by margin and header specifications and by
executing any of the following statements:

• The SKIP statement moves it down to the left margin of a new line.
• The NEED statement can conditionally move it to a new page.
• The PRINT statement moves it horizontally (and sometimes down).

Unless you use the keyword CLIPPED or USING, values are displayed with widths (including any sign) that
depend on their declared data types.

Table 305: Default print width for data types

Data type Default Print Width

BYTE N/A

Reports | 1482

Data type Default Print Width

CHAR Length of character data type declaration.

DATE DBDATE dependent, 10 if DBDATE = "MDY4/"

DATETIME From 2 to 25, as implied in the data type
declaration.

DECIMAL (2 + p + s), where p is the precision and s is the
scale from the data type declaration.

FLOAT 14

INTEGER 11

INTERVAL From 3 to 25, as implied in the data type
declaration.

MONEY (2 + c + p + s), where c is the length of the currency
defined by DBMONEY and p is the precision and s
is the scale from the data type declaration.

NCHAR Length of character data type declaration.

NVARCHAR Length current value in the variable.

SMALLFLOAT 14

SMALLINT 6

STRING Length current value in the variable.

TEXT Length current value in the variable.

VARCHAR Length current value in the variable.

Unless you specify the FILE or WORDWRAP option, each PRINT statement displays output on a single line.
For example, this fragment displays output on two lines:

PRINT fname, lname
PRINT city, ", ", state, " ", zip-code

If you terminate a PRINT statement with a semicolon, however, you suppress the implicit LINEFEED
character at the end of the line. The next example has the same effect as the PRINT statements in the
previous example:

PRINT fname;
PRINT lname
PRINT city, ", ", state, " ", zip-code

The expression list of a PRINT statement returns one or more values that can be displayed as printable
characters. The expression list can contain report variables , built-in functions and operators. Some of
these can appear only in a REPORT program block such as PAGENO, LINENO, PERCENT.

If the expression list applies the USING operator to format a DATE or MONEY value, the format string of
the USING operator takes precedence over the DBDATE , DBMONEY , and DBFORMAT environment
variables.

The PRINT FILE statement reads the contents of the specified filename into the report, beginning at
the current character position. This statement permits you to insert a multiple-line character string into
the output of a report. If filename stores the value of a TEXT variable, the PRINT FILE file-name

Reports | 1483

statement has the same effect as specifying PRINT text-variable. (But only PRINT variable can
include the WORDWRAP operator)

Aggregate report functions summarize data from several records in a report. The syntax and effects of
aggregates in a report resemble those of SQL aggregate functions but are not identical.

The expression (in parentheses) that SUM(), AVG(), MIN(), or MAX() takes as an argument is typically
of a number or INTERVAL data type; ARRAY, BYTE, RECORD, and TEXT are not valid. The SUM(), AVG(),
MIN() , and MAX() aggregates ignore input records for which their arguments have null values, but each
returns NULL if every record has a null value for the argument.

The GROUP keyword is an optional keyword that causes the aggregate function to include data only for a
group of records that have the same value for a variable that you specify in an AFTER GROUP OF control
block. An aggregate function can only include the GROUP keyword within an AFTER GROUP OF control
block.

The optional WHERE clause allows you to select among records passed to the report, so that only records
for which the boolean expression is TRUE are included.

Example

The following example is from the FORMAT section of a report definition that displays both
quoted strings and values from rows of the customer table:

FIRST PAGE HEADER
 PRINT COLUMN 30, "CUSTOMER LIST"
 SKIP 2 LINES
 PRINT "Listings for the State of ", thisstate
SKIP 2 LINES
 PRINT "NUMBER", COLUMN 12, "NAME", COLUMN 35, "LOCATION",
 COLUMN 57, "ZIP", COLUMN 65, "PHONE"
 SKIP 1 LINE
PAGE HEADER
 PRINT "NUMBER", COLUMN 12, "NAME", COLUMN 35, "LOCATION",
 COLUMN 57, "ZIP", COLUMN 65, "PHONE"
 SKIP 1 LINE
ON EVERY ROW
 PRINT customer_num USING "###&", COLUMN 12, fname CLIPPED,
 1 SPACE, lname CLIPPED, COLUMN 35, city CLIPPED, ", ",
 state, COLUMN 57, zip-code, COLUMN 65, phone

PRINTX
Prints an XML formatted row of data in a report, with an additional identifier for XML outputs.

Syntax

PRINTX [NAME = identifier] expression

1. identifier is the name to be used in the XML node.
2. expression is any legal language expression.

Usage

The PRINTX statement is similar to PRINT, except that when XML is produced by the report, the XML print
element will be named as specified. If the NAME clause is omitted or the report is run in non-XML mode,
then PRINTX does exactly the same as PRINT.

Reports | 1484

To generate XML output, you must redirect the report output into a SAX document handler with the TO
XML HANDLER clause of START REPORT:

START REPORT orders_report
 TO XML HANDLER om.XmlWriter.createFileWriter("orders.xml")

Note that when using XML output, BYTE values are converted to Base64 before they are printed with the
PRINTX instruction.

Example

REPORT (fname, lname, ...)
 DEFINE fname VARCHAR(20),
 lname VARCHAR(20)
 ...
 FORMAT
 ...
 ON EVERY ROW
 PRINTX NAME=customer fname, lname
...

With the above code, the variable names will appear in the graphical report designer as
"customer.fname" and "customer.lname".

NEED
Specifies the number of rows needed in a report section.

Syntax

NEED num-lines LINE[S]

1. num-lines is the number of lines.

Usage

This statement has the effect of a conditional SKIP TO TOP OF PAGE statement, the condition being that
the number to which the integer expression evaluates is greater than the number of lines that remain on
the current page.

The NEED statement can prevent the report from dividing parts of the output that you want to keep together
on a single page. In this example, the NEED statement causes the PRINT statement to send output to the
next page unless at least six lines remain on the current page:

 AFTER GROUP OF r.order_num
 NEED 6 LINES
 PRINT " ", r.order_date, " ", GROUP SUM(r.total_price)

The LINES value specifies how many lines must remain between the line above the current character
position and the bottom margin for the next PRINT statement to produce output on the current page. If
fewer than LINES remain on the page, the report engine prints both the PAGE TRAILER and the PAGE
HEADER.

The NEED statement does not include the BOTTOM MARGIN value when it compares LINES to the number
of lines remaining on the current page. NEED is not valid in FIRST PAGE HEADER, PAGE HEADER, or
PAGE TRAILER blocks.

Reports | 1485

PAUSE
Pauses a report displayed to the screen.

Syntax

PAUSE ["comment"]

1. comment is an optional comment to be displayed.

Usage

Output is sent by default to the screen unless the START REPORT statement or the OUTPUT section
specifies a destination for report output.

The PAUSE statement can be executed only if the report sends its output to the screen. It has no effect if
you include a TO clause in either of these contexts:

• In the OUTPUT section of the report definition.
• In the START REPORT statement of the report driver.

Include the PAUSE statement in the PAGE HEADER or PAGE TRAILER block of the report. For example,
the following code causes the runtime system to skip a line and pause at the end of each page of report
output displayed on the screen:

 PAGE TRAILER
 SKIP 1 LINE
 PAUSE "Press return to continue"

SKIP
Skips a given number of lines in a report.

Syntax

SKIP { num-lines LINE[S] | TO TOP OF PAGE }

1. num-lines is the number of lines.

Usage

The SKIP statement allows you to insert blank lines into report output or to skip to the top of the next page
as if you had included an equivalent number of PRINT statements without specifying any expression list.

The LINE and LINES keywords are synonyms in the SKIP statement.

Output from any PAGE HEADER or PAGE TRAILER control block appears in its usual location.

The SKIP n LINES statement cannot appear within a CASE statement, a FOR loop, or a WHILE loop.

The SKIP TO TOP OF PAGE statement cannot appear in a FIRST PAGE HEADER , PAGE HEADER or
PAGE TRAILER control block.

Example

 FIRST PAGE HEADER
 PRINT "Customer List"
 SKIP 2 LINES
 PRINT "Number Name Location"
 SKIP 1 LINE
 PAGE HEADER
 PRINT "Number Name Location"

Reports | 1486

 SKIP 1 LINE
 ON EVERY ROW
 PRINT r.customer_num, r.fname, r.city

Report operators
Report operators can be used to print dynamic report information.

LINENO
Contains the current line number in a report.

Syntax

LINENO

Usage

This operator takes no operand but returns the value of the line number of the report line that is currently
printing.

The report engine calculates the line number by calculating the number of lines from the top of the current
page, including the TOP MARGIN.

Example

In this example, a PRINT statement instructs the report to calculate and display the current
line number, beginning in the tenth character position after the left margin:

 ON EVERY ROW
 IF LINENO > 9 THEN
 PRINT COLUMN 10, "Line:", LINENO USING "<<<"
 END IF

PAGENO
Contains the current page number in a report.

Syntax

PAGENO

Usage

This operator takes no operand but returns the number of the page the report engine is currently printing.

You can use PAGENO in the PAGE HEADER or PAGE TRAILER block, or in other control blocks to number
the pages of a report sequentially.

Example

If you use the SQL aggregate COUNT(*) in the SELECT statement to find how many
records are returned by the query, and if the number of records that appear on each page

Reports | 1487

of output is both fixed and known, you can calculate the total number of pages, as in this
example:

 FIRST PAGE HEADER
 SELECT COUNT(*) INTO cnt FROM customer
 LET y = cnt/50 -- Assumes 50 records per page
 ON EVERY ROW
 PRINT COLUMN 10, r.customer_num, ...
 PAGE TRAILER
 PRINT PAGE PAGENO USING "<<" OF cnt USING "<<"

If the calculated number of pages was 20, the first page trailer would be:

Page 1 of 20

PAGENO increments with each page, so the last page trailer would be:

Page 20 of 20

SPACES
Generates the given number of blank characters.

Syntax

num-spaces SPACES

1. num-spaces is the number of spaces.

Usage

This operator returns a string of blanks, equivalent to a quoted string containing the specified number of
blanks.

In a PRINT statement, these blanks are inserted at the current character position.

Its operand must be an integer expression that returns a positive number, specifying an offset (from the
current character position) no greater than the difference (right margin - current position). After PRINT
SPACES has executed, the new current character position has moved to the right by the specified number
of characters.

Outside PRINT statements, SPACES and its operand must appear within parentheses: (n SPACES).

Example

 ON EVERY ROW
 LET s = (6 SPACES), "=ZIP"
 PRINT r.fname, 2 SPACES, r.lname, s

WORDWRAP
Splits a character string to match a given margin limit.

Syntax

WORDWRAP [RIGHT MARGIN position]

Reports | 1488

1. position defines the temporary right margin, as a number of characters, counting from the left.

Usage

The WORDWRAP operator automatically wraps successive segments of long character strings onto
successive lines of report output. Any string value that is too long to fit between the current position and the
right margin is divided into segments and displayed between temporary margins:

• The current character position becomes the temporary left margin.
• Unless you specify RIGHT MARGIN, the right margin defaults to 132, or to the size value from the

RIGHT MARGIN clause of the OUTPUT section or START REPORT instruction.

Specify WORDWRAP RIGHT MARGIN integer to set a temporary right margin as a number of characters,
counting from the left edge of the page. This value cannot be smaller than the current character position or
greater than right margin defined for the report. The current character position becomes the temporary left
margin. These temporary values override the specified or default left and right margins of the report.

After the PRINT statement has executed, any explicit or default margins defined in the RIGHT MARGIN
clause of the OUTPUT section or START REPORT instruction are restored.

The following PRINT statement specifies a temporary left margin in column 10 and a temporary right
margin in column 70 to display the character string that is stored in the variable called mynovel:

 PRINT COLUMN 10, mynovel WORDWRAP RIGHT MARGIN 70

The data string can include printable ASCII characters. It can also include the TAB (ASCII 9), LINEFEED
(ASCII 10), and ENTER (ASCII 13) characters to partition the string into words that consist of substrings
of other printable characters. Other non-printable characters might cause runtime errors. If the data string
cannot fit between the margins of the current line, the report engine breaks the line at a word division, and
pads the line with blanks at the right.

From left to right, the report engine expands any TAB character to enough blank spaces to reach the next
tab stop. By default, tab stops are in every eighth column, beginning at the left-hand edge of the page. If
the next tab stop or a string of blank characters extends beyond the right margin, the report engine takes
these actions:

1. Prints blank characters only to the right margin.
2. Discards any remaining blanks from the blank string or tab.
3. Starts a new line at the temporary left margin.
4. Processes the next word.

The report engine starts a new line when a word plus the next blank space cannot fit on the current line. If
all words are separated by a single space, this action creates an even left margin. The following rules are
applied (in descending order of precedence) to the portion of the data string within the right margin:

• Break at any LINEFEED, or ENTER, or LINEFEED, ENTER pair.
• Break at the last blank (ASCII 32) or TAB character before the right margin.
• Break at the right margin, if no character farther to the left is a blank, ENTER, TAB, or LINEFEED

character.

The report engine maintains page discipline under the WORDWRAP option. If the string is too long for the
current page, the report engine executes the statements in any page trailer and header control blocks
before continuing output onto a new page.

For Japanese locales, a suitable break can also be made between the Japanese characters. However,
certain characters must not begin a new line, and some characters must not end a line. This convention
creates the need for KINSOKU processing, whose purpose is to format the line properly, without any
prohibited word at the beginning or ending of a line.

Reports use the wrap-down method for WORDWRAP and KINSOKU processing. The wrap-down method
forces down to the next line characters that are prohibited from ending a line. A character that precedes

Reports | 1489

another that is prohibited from beginning a line can also wrap down to the next line. Characters that
are prohibited from beginning or ending a line must be listed in the locale. The runtime system tests for
prohibited characters at the beginning and ending of a line, testing the first and last visible characters. The
KINSOKU processing only happens once for each line. That is, no further KINSOKU processing occurs,
even if prohibited characters are still on the same line after the first KINSOKU processing.

Report aggregate functions
Report aggregate functions can be used to compute data.

COUNT
Counts a number of rows in a report according to a condition.

Syntax

[GROUP] COUNT(*) [WHERE condition]

1. condition is a boolean expression evaluated to compute the aggregate value.

Usage

This aggregate report instruction returns the total number of records qualified by the optional WHERE
condition.

The WHERE condition is evaluated after any OUTPUT TO REPORT execution. Even if it is typically used in
AFTER GROUP OF blocks, the aggregate expression is not evaluated in that block: Changing values of the
WHERE clause in the AFTER GROUP context will not have an immediate effect.

Using the GROUP keyword causes the aggregate instructions to include only data of the current group of
records that have the same value for the variable that you specify in the AFTER GROUP OF control block.

Example

The following fragment of a report definition uses the AFTER GROUP OF control block
and GROUP keyword to form sets of records according to how many items are in each
order. The last PRINT statement calculates the total price of each order, adds a shipping
charge, and prints the result. Because no WHERE clause is specified here, GROUP SUM()
combines the total_price of every item in the group included in the order.

 AFTER GROUP OF number
 SKIP 1 LINE
 PRINT 4 SPACES, "Shipping charges for the order: ",
 ship_charge USING "$$$$.&&"
 PRINT 4 SPACES, "Count of small orders: ",
 GROUP COUNT(*) WHERE total_price < 200.00 USING
 "##,###"
 SKIP 1 LINE
 PRINT 5 SPACES, "Total amount for the order: ",
 ship_charge + GROUP SUM(total_price) USING "$$,$$$,$$
$.&&"

Reports | 1490

PERCENT
Calculates the percentage of rows matching a condition.

Syntax

[GROUP] PERCENT(*) [WHERE condition]

1. condition is a boolean expression evaluated to compute the aggregate value.

Usage

This aggregate report instruction returns the percentage of the total number of records qualified by the
optional WHERE condition.

Using the GROUP keyword causes the aggregate instructions to include only data of the current group of
records that have the same value for the variable that you specify in the AFTER GROUP OF control block.

This aggregate instruction makes a two-pass report when not using the GROUP keyword and is used in any
control block other than ON LAST ROW, or when using the GROUP PERCENT(*) anywhere in the report.

SUM
Calculates the total of a report parameter according to a condition.

Syntax

[GROUP] SUM(expression) [WHERE condition]

1. expression is the expression to be computed.
2. condition is a boolean expression evaluated to compute the aggregate value.

Usage

This aggregate report instruction evaluates as the total of expression among all records or among records
qualified by the optional WHERE clause and any GROUP specification.

Using the GROUP keyword causes the aggregate instructions to include only data of the current group of
records that have the same value for the variable that you specify in the AFTER GROUP OF control block.

Input records for which the expression evaluates to NULL values are ignored.

By default, if all input record values are NULL , the result of the aggregate is NULL. However, you
can control this behavior and force the runtime system to return zero instead of NULL with the
report.aggregateZero FGLPROFILE parameter.

This aggregate instruction makes a two-pass report when not using the GROUP keyword and is used in any
control block other than ON LAST ROW.

AVG
Calculates the average of a report parameter according to a condition.

Syntax

[GROUP] AVG(expression) [WHERE condition]

1. expression is the expression to be computed.
2. condition is a boolean expression evaluated to compute the aggregate value.

Reports | 1491

Usage

This aggregate report instruction evaluates as the average (that is, the arithmetic mean value) of
expression among all records or among records qualified by the optional WHERE clause and any GROUP
specification.

Using the GROUP keyword causes the aggregate instructions to include only data of the current group of
records that have the same value for the variable that you specify in the AFTER GROUP OF control block.

Input records for which the expression evaluates to NULL values are ignored.

By default, if all input record values are NULL , the result of the aggregate is NULL. However, you
can control this behavior and force the runtime system to return zero instead of NULL with the
report.aggregateZero FGLPROFILE parameter.

This aggregate instruction makes a two-pass report when not using the GROUP keyword and is used in any
control block other than ON LAST ROW.

MIN
Calculates the minimum value of a report parameter according to a condition.

Syntax

[GROUP] MIN(expression) [WHERE condition]

1. expression is the expression to be computed.
2. condition is a boolean expression evaluated to compute the aggregate value.

Usage

For number, currency, and interval values, MIN(expression) aggregate report instruction returns the
minimum value for expression among all records or among records qualified by the WHERE clause and any
GROUP specification.

For DATETIME or DATE data values, greater than means later and less than means earlier in time.
Character strings are sorted according to their first character. If your program is executed in the default
(U.S. English) locale, for character data types, greater than means after in the ASCII collating sequence,
where a> A> 1, and less than means before in the ASCII sequence, where 1< A< a.

Using the GROUP keyword causes the aggregate instructions to include only data of the current group of
records that have the same value for the variable that you specify in the AFTER GROUP OF control block.

Input records for which the expression evaluates to NULL values are ignored.

By default, if all input record values are NULL , the result of the aggregate is NULL. However, you
can control this behavior and force the runtime system to return zero instead of NULL with the
report.aggregateZero FGLPROFILE parameter.

This aggregate instruction makes a two-pass report when not using the GROUP keyword and is used in any
control block other than ON LAST ROW.

MAX
Calculates the maximum value of a report parameter according to a condition.

Syntax

[GROUP] MAX(expression) [WHERE condition]

1. expression is the expression to be computed.
2. condition is a boolean expression evaluated to compute the aggregate value.

Reports | 1492

Usage

For number, currency, and interval values, the MAX(expression) aggregate report instruction returns the
maximum value for expression among all records or among records qualified by the WHERE clause and any
GROUP specification.

For DATETIME or DATE data values, greater than means later and less than means earlier in time.
Character strings are sorted according to their first character. If your program is executed in the default
(U.S. English) locale, for character data types, greater than means after in the ASCII collating sequence,
where a> A> 1, and less than means before in the ASCII sequence, where 1< A< a.

Using the GROUP keyword causes the aggregate instructions to include only data of the current group of
records that have the same value for the variable that you specify in the AFTER GROUP OF control block.

Input records for which the expression evaluates to NULL values are ignored.

By default, if all input record values are NULL , the result of the aggregate is NULL. However, you
can control this behavior and force the runtime system to return zero instead of NULL with the
report.aggregateZero FGLPROFILE parameter.

This aggregate instruction makes a two-pass report when not using the GROUP keyword and is used in any
control block other than ON LAST ROW.

Report engine configuration
Report engine behavior can be controlled with FGLPROFILE settings.

By default, aggregate instructions such as SUM() return a NULL value if all input record values are NULL.

You can force the report engine to return a zero decimal value with the following FGLPROFILE setting:

Report.aggregateZero = {true|false}

When this entry is set to true, the SUM() , AVG() , MAX() and MIN() aggregate functions return zero
when all values are NULL.

Default value of the configuration parameter is false (i.e. aggregate functions evaluate to null if all items are
null)

When using GROUP aggregates with this entry is set to true, the aggregate instruction will still return NULL
in the first AFTER GROUP OF output of the report. Zero values will be returned starting from second group
output. This behavior is expected, for backward compatibility with older versions.

You should not use the Report.aggregateZero entry if you don't need that specific behavior.

Programming tools | 1493

Programming tools

These topics cover programming with the Genero Business Development Language.

• Command line tools on page 1493
• Compiling source files on page 1508
• Source code edition on page 1516
• Source documentation on page 1517
• The preprocessor on page 1522
• The debugger on page 1531
• The profiler on page 1556
• Optimization on page 1559
• Logging options on page 1563

Command line tools
The different command line tools provided for BDL programming.

• fglrun on page 1493
• fglform on page 1495
• fgl2p on page 1496
• fglcomp on page 1497
• fgllink on page 1499
• fglmkmsg on page 1500
• fglmkext on page 1500
• fgldb on page 1501
• fgldbsch on page 1502
• fglmkstr on page 1503
• fglwsdl on page 1503
• fglpass on page 1506

fglrun
The fglrun tool is the runtime system program that executes p-code programs.

Syntax

fglrun [options] program [argument [...]]

1. options are described in Table 306: fglrun options on page 1493.
2. program is a .42r or .42m p-code program.
3. argument is an argument passed to the program

Options

Table 306: fglrun options

Option Description

-V Display version information for the tool.

-h Displays options for the tool. Short help.

Programming tools | 1494

Option Description

-i { mbcs }

Displays information.

• -i mbcs displays information about multibyte
character set settings.

-d
Start in debug mode. See The debugger on page
1531 for more details.

-e extfile[,...]
Specify a C extension module to be loaded.
This option can take a comma-separated list of
extensions.

-l
Link p-code modules together, see Compiling
source files on page 1508.

-o { progname.42r | libname.42x }
Output file specification when using the -l link
option, it can be a 42r program or a 42x library.

-b
Displays compiler version information of the
module, see Compiling source files on page 1508.

-p
Generate profiling information to stderr (UNIX™

only). See The profiler on page 1556.

-M
Display a memory usage diagnostic when program
ends. See Check runtime system memory leaks on
page 1561.

-m

Check for memory leaks. If leaks are found,
displays memory usage diagnostic and stops with
status 1. See Check runtime system memory leaks
on page 1561.

--java-option=option

Passes Java™ runtime options when initializing the
JNI interface.

See Java™ Interface for more details.

--print-imports
Loads the specified modules and prints all IMPORT
FGL instructions that should be used in each
module. See Compiling source files on page 1508.

--start-guilog=logfile
Log all GUI protocol exchange in a file. The GUI log
file can then be replayed with the --run-guilog
option.

--run-guilog=logfile
Replays a GUI log created with the --start-
guilog option.

--gui-listen=port
Instructs the runtime system to listen to a TCP port
for incoming GUI connections. For more details see
Connecting with a front-end on page 755.

--module-size module
Show the amount of limited pcode size for a
module.

--program-size program
Show the amount of limited pcode size for an entire
program.

Programming tools | 1495

Usage

The fglrun command line tool executes p-code programs, for example:

fglrun myprogram.42r -x 123

The program file must contain the MAIN routine.

The arguments passed to the program can be queried with the arg_val() built-in function.

The .42r or .42m extension is optional:

fglrun myprogram -x 123

Note: First fglrun tries to find the program file with the name provided in the command line. If
the file is not found, the extension is removed (if it is present in the provided file name), and a new
search is done by adding the .42r extension. If the file is still not found, fglrun tries with the
.42m extension. As result, a program file myprogram.42m will be found and loaded, even if you
pass myprogram.42r to fglrun. Specify no .42r or .42m extension, to avoid mistakes and
simplify migration from .42r linked programs to .42m-only modules (using IMPORT FGL).

fglform
The fglform tool compiles form specification files into XML formatted files used by the programs.

Syntax

fglform [options] srcfile[.per]

1. options are described in Table 307: fglform options on page 1495.
2. srcfile.per is the form specification file.

Options:

Table 307: fglform options

Option Description

-V Display version information for the tool.

-h Displays options for the tool. Short help.

-i { mbcs }
Displays information. -i mbcs displays information
about multibyte character set settings.

-m Extract localized strings.

-M
Write error messages to standard output instead of
creating a .err error file.

-W { all }
Display warning messages. Only -W all option is
supported for now.

-E Preprocess only.

-p option Preprocessing control, where option can be one of:

• nopp: Disable preprocessing.
• noli: No line number information (only with -E

option).
• fglpp: Use # syntax instead of & syntax.

Programming tools | 1496

Option Description

-I path Provides a path to search for include files.

-D ident Defines the macro 'ident' with the value 1.

Usage

The fglform command line tool compiles a .per form specification file into a .42f compiled version:

fglform custform.per

The .per extension is optional, if not used, fglform will automatically search for files with this extension.

The .42f compiled version is an XML formatted file used by programs when a form definition is loaded with
the OPEN FORM or OPEN WINDOW WITH FORM instructions.

fgl2p
The fgl2p tool compiles source files and assembles p-code modules into a .42r program or a .42x library.

Syntax

To create a library:

fgl2p [options] -o outfile.42x { pcmod.42m | srcfile.4gl } [...]

To create a program:

fgl2p [options] -
o outfile.42r { pcmod.42m | srcfile.4gl | library.42x } [...]

1. options are described in Table 308: fgl2p options on page 1496.
2. outfile.42r is the name of the program to be created.
3. outfile.42x is the name of the library to be created.
4. pcmod.42m is a p-code module compiled with fglcomp.
5. source.4gl is a program source file.
6. library.42x is the name of a library to be linked.

Options

Table 308: fgl2p options

Option Description

-V Display version information for the tool.

-h Displays options for the tool. Short help.

-o outfile.ext
Output file specification, where ext can be 42r for a
program or 42x for a library.

otheroption Other options are passed to the linker or compiler.

Programming tools | 1497

Usage

The fgl2p command line tool can compile .4gl source files and link .42m p-code modules together, to
create a .42x library or a .42r program file.

fgl2p -o myprog.42x module1.4gl module2.42m lib1.42x

This tool is provided for convenience, in order to create programs or libraries in one command line. It uses
the fglcomp and the fgllink tools to compile and link modules together.

fglcomp
The fglcomp tool compiles .4gl source files into .42m p-code modules.

Syntax

fglcomp [options] srcfile[.4gl]

1. options are described in Table 309: fglcomp options on page 1497.
2. srcfile .4gl is the program source file.
3. The .4gl extension is optional.

Options

Table 309: fglcomp options

Option Description

-V or --version Display version information for the tool.

-h or --help Display options for the tool. Short help.

-i { mbcs }
Display information. -i mbcs displays information
about multibyte character set settings.

-S
Dump Static SQL statements found in the source to
stdout.

-m
Extract %"string" localized strings from source to
stdout.

-M
Write error messages to standard output instead of
creating a .err error file.

-W what
Display warning messages. For a complete
description, see Arguments for the -W option on
page 1498.

-E
Preprocess only. See The preprocessor on page
1522 for more details.

--timestamp Add compilation timestamp to build information in
42m header.

-p option Preprocessing control, where option can be one of:

• nopp: Disable preprocessing.
• noli: No line number information (only with -E

option).
• fglpp: Use # syntax instead of & syntax.

Programming tools | 1498

Option Description

-G
Produce .c and .h globals interface files for C-
Extensions.

-I path
Provides a path to search for include files. See The
preprocessor on page 1522 for more details.

-D ident
Defines the macro 'ident' with the value 1. See The
preprocessor on page 1522 for more details.

-U ident
Undefines the macro 'ident'. See The preprocessor
on page 1522 for more details.

--build-doc Generate source documentation.

--doc-private
When using the --build-doc option, include
PRIVATE symbols to the documentation.

--build-rdd
Generate the .rdd data definition during
compilation.

--verbose Print detailed compilation information.

--implicit=type

Specify whether or not to compile imported
modules, where type can be one of:

• none: Disable any implicit compilation.
• 42m: Compileimported modules if needed (the

default).

-r or --resolve-calls

Throw an error on references to undeclared
functions. Each external function must be made
known to the compiler by IMPORT FGL. When
using this option, the linking phase is no longer
needed; a source (4gl) file compiled with this
option must not be linked. See IMPORT FGL
module on page 372 for more details.

--java-option=option

Passes Java™ runtime options when initializing the
JNI interface.

See Java™ Interface for more details.

Usage

The fglcomp command line tool compiles a .4gl into a .42m p-code module:

fglcomp customers.4gl

If a compilation error occurs, the compiler generates an error file with an .err extension. The error file
contains the original source code with error messages. Use the option -M to display the error messages to
standard error instead of producing the .err file.

Arguments for the -W option

The -W option can be used to check for wrong language usage, that must be supported for backward
compatibility. When used, this option helps to write better source code.

The argument following -W option can be one of return, unused, stdsql, print, error or all.

Programming tools | 1499

• Using -W all enables all warning flags.
• Using -W error makes the compiler stop if any warning is raised, as if an error occurred.
• The -W unused option displays a message for all unused variables.
• The -W return option displays a warning if the same function returns different number of values with

several RETURN statements.
• The -W stdsql option displays a message for all non-portable SQL statements or language

instructions.
• The -W print option displays a message when the PRINT instruction is used outside a REPORT.
• The -W implicit option warns on references to undeclared functions. A function is undeclared if not

defined in the current module or in any imported module. This warning is silently ignored if IMPORT
FGL is not used.

• The -W apidoc option prints a warning for invalid source documentation tags when using the --build-
doc option.

The -W option also supports the negative form of arguments by using the no- prefix as in: no-return,
no-unused, no-stdsql. You might need to use these negative form in order to disable some warning
when using the -W all option:

fglcomp -Wall -Wno-stdsql customers.4gl

Switches will be enabled/disabled in the order of appearance in the command line.

fgllink
The fgllink tool assembles p-code modules produced with fglcomp into a .42r program or a .42x library.

Syntax

To create a library:

fgllink [options] -o outfile.42x module.42m [...]

To create a program:

fgllink [options] -o outfile.42r { module.42m | library.42x } [...]

1. options are described in Table 310: fgllink options on page 1499.
2. outfile.42r is the name of the program to be created.
3. outfile.42x is the name of the library to be created.
4. module.42m is a p-code module compiled with fglcomp.
5. library.42x is the name of a library to be linked.

Options

Table 310: fgllink options

Option Description

-V Display version information for the tool.

-h Displays options for the tool. Short help.

-e extfile[,...]
Specify a C extension module to be loaded.
This option can take a comma-separated list of
extensions.

-o { progname.42r | libname.42x }
Output file specification, it can be a 42r program or
a 42x library.

Programming tools | 1500

Option Description

otheroption Other options are passed to fglrun for linking.

Usage

The fgllink command line tool links .42m p-code modules together to create a .42x library or a .42r
program file.

fgllink -o myprog.42x module1.42m module2.42m lib1.42x

Note: fgllink is a wrapper calling fglrun with the -l option.

fglmkmsg
The fglmkmsg tool compiles .msg message files into a binary version used by programs.

Syntax

fglmkmsg [options] srcfile [outfile]

1. options are described in Table 311: fglmkmsg options on page 1500.
2. srcfile is the source message file.
3. outfile is the destination file.

Options

Table 311: fglmkmsg options

Option Description

-V Display version information for the tool.

-h Displays options for the tool. Short help.

-r msgfile De-compiles a binary message file.

Usage

The fglmkmsg command line tool compiles a .msg message file into a .iem compiled version:

fglmkmsg mess01.msg

For backward compatibility, you can specify the output file as second argument:

fglmkmsg mess01.msg mess01.iem

The .iem compiled version can be used by BDL programs, for example, when the HELP clause is used in a
MENU or INPUT instruction.

fglmkext
The fglmkext tool compiles and links a user C Extension.

Syntax

fglmkext [options] source.c [...]

Programming tools | 1501

1. options are described in Table 312: fglmkext options on page 1501.
2. source is a C source file implementing C extension functions.

Options

Table 312: fglmkext options

Option Description

-V Display version information for the tool.

-h Displays options for the tool. Short help.

-o libname
Output file specification, defines the C Extension
library name.

Usage

The fglmkext command line tool compiles and links a C Extension library.

The command can be used with a single source file, the name of the library will default to the name of the
specified source:

fglmkext myext.c

If a single C source file is provided, must define the usrFunctions C extension interface structure as well
as the functions to be used from a BDL program.

In order to specify a library name, use the -o option, several C source files can also be specified. For
example, on a UNIX platform:

fglmkext -o mycext.so module_a.c module_b.c

fgldb
The fgldb tool is an interface program for remote debugging.

Syntax 1: Debugging an application running on a server

fgldb -p process-id

1. process-id is the process identifier of the fglrun-bin / fglrun.exe program.

Syntax 2: Debugging an app running on a mobile device

fgldb -m host[:port]]

1. host is the host (or IP address) of the mobile device where the program executes, default is "localhost".
2. port is the TCP port number to connect to, default is 6400.

Options

Table 313: fgldb options

Option Description

-V Display version information for the tool.

Programming tools | 1502

Option Description

-h Displays options for the tool.

-p process-id Attach to a running process to debug

-m host[:port] Attach to a running process to debug

Usage

The fgldb command line tool is an interface for remote debugging, attaching to a Genero program
running on a server or on a mobile device (or mobile emulator).

fgldbsch
The fgldbsch tool generates the database schema files from an existing database.

Syntax

fgldbsch -db dbname [options]

1. dbname is the name of the database from which the schema is to be extracted.
2. options are described in Table 314: fgldbsch options on page 1502.

Options

Table 314: fgldbsch options

Option Description

-V Display version information for the tool.

-h Displays options for the tool. Short help.

-H Display long help.

-v
Enable verbose mode (display information
messages).

-ct Display data type conversion tables.

-cx dbtype
Display data type conversion table for the give
database type.

-db dbname
Specify the database as dbname. This option is
required to generate the schema files.

-dv dbdriver Specify the database driver to be used.

-un user
Define the user name for database connection as
user.

-up pswd
Define the user password for database connection
as pswd.

-ow owner Define the owner of the database tables as owner.

-cv string
Specify the data type conversion rules by character
positions in string.

-of name
Specify output files prefix, default is database
name.

Programming tools | 1503

Option Description

-tn tabname Extract the description of a specific table.

-ie
Ignore tables with columns having data types that
cannot be converted.

-cu Generate upper case table and column names.

-cl Generate lower case table and column names.

-cc Generate case-sensitive table and column names.

-sc Extract shadow columns.

-st Extract system tables.

-om
Run schema extractor in old fglschema mode
(accepts -c and -r options)

Usage

The fgldbsch command line tool extracts the schema description for any database supported by the
product.

The .sch schema file is mandatory to compiler forms or source modules using the SCHEMA instruction.

fglmkstr
The fglmkstr tool compiles .str localized string resource files.

Syntax

fglmkstr [options] source-file[.str]

1. options are described in Table 315: fglmkstr options on page 1503.
2. source-file is the .str string file. You can omit the file extension.

Options

Table 315: fglmkstr options

Option Description

-V Display version information for the tool.

-h Displays options for the tool. Short help.

Usage

The fglmkstr command line tool is used to compile .str localized string files into .42s files.

fglwsdl
The fglwsdl tool produces web services stub files for client or server programs (from WSDL / XSD).

Syntax

fglwsdl command [options] parameter

1. command indicates what operation must be done by fglwsdl.

Programming tools | 1504

2. options are described in Commands and options on page 1504.
3. parameter depends on the command used.

Commands and options

Table 316: fglwsdl commands

Command Description

-V Display version information

-h Display this help

-l List services from a WSDL or variables from a XSD

-c [options]
wsdl-spec

Generate client stub (default) to be used in a GWS client application. wsdl-spec is the
name of a WSDL description file or the URL of a WSDL description for a published web
service. Typically, http://host/service?WSDL.

The options are listed in Table 317: WSDL Options on page 1504 and Table 319:
Common options on page 1505.

-s [options]
wsdl-spec

Generate server stub to be used in a GWS server application. wsdl-spec is the name of
a WSDL description file or the URL of a WSDL description for a published web service.
Typically, http://host/service?WSDL.

The options are listed in Table 317: WSDL Options on page 1504 and Table 319:
Common options on page 1505.

-x [options]
xsd-spec

Generate BDL data types from a XML schema (XSD). xsd-spec is the name of an XML
schema file or the URL of an XSD schema resource on the web.

The options are listed in Table 318: XSD Options on page 1505 and Table 319:
Common options on page 1505.

-regex regex
value

Validate the value against the regex regular expression described in XML schema
specification.

Table 317: WSDL Options

Options Description

-o file Specify a base name for the output files.

-n service port Generate only for the given service name and port type.

-b binding Generate only for the given binding.

-prefix name Add name as the prefix of the generated web service functions, variables and types.
(name can contain %s for servicename, %p for portname and %f for filename)

-compatibility Generate a Genero 1.xx compatibility client stub.

-fRPC Force RPC convention; use RPC Convention to generate the code, regardless of what
the WSDL information contains.

-disk Save WSDL and all dependencies from an URL on the disk.

Note: To generate code at the same time, you must use the option -c, -s, or
both. Otherwise, no code is generated.

-domHandler Generates the use of DOM in the client stub and calls to callback handlers.

http://www.w3.org/TR/xmlschema-2/#regexs

Programming tools | 1505

Options Description

-alias Generates FGLPROFILE Logical names in place of URLs for the client stub.

-soap11 Generates only client and server stubs supporting SOAP 1.1 protocol.

-soap12 Generates only client and server stubs supporting SOAP 1.2 protocol.

-ignoreFaults Do not generate extra code to handle soap faults.

-wsa <yes|no> Force support of WS-Addressing 1.0 if yes, disable support of WS-Addressing 1.0 if no,
otherwise support WS-Addressing 1.0 according to the WSDL definition.

Table 318: XSD Options

Options Description

-o file Name of the output file. If file has no extension, .inc is added.

-n name [ns] Generate only for the given variable name and namespace (if there is one).

-prefix name Add name as the prefix of the generated data types.

-disk Save XSD and all dependencies from an URL on the disk.

Note: No code is generated.

Table 319: Common options

Options Description

-comment Add XML comments to the generation.

-fArray Force XML array generation instead of XML list when possible. If the WSDL contains an
XML definition of a BDL list, generate a BDL array matching the same definition.

-fInheritance Force generation of XML choice records for all inheritance types found in the schemas,
otherwise only for abstract types and elements.

-fInlineTypes Force generation of TYPE definitions for all global inlined types found in the schemas.

-noFacets Don't generate facet constraints restricting the value-space of simple data type.

-legacyTypes Don't generate BIGINT, TINYINT and BOOLEAN data types.

-ignoreMixed Ignore attribute mixed="true" in XML schemas when generating code.

-ext schema Add an external schema. See option '-extDir'.

-extDir
directory

Add all external schema files ending with .xsd in the directory.

Note: External schemas for dependencies won't be included in the WSDL
description or in the XSD schema if their location attributes are missing. Use this
option to add a missing external schema for a WSDL or XSD dependency.

-noValidation Disable XML schema validation warnings.

-autoNsPrefix
nb

Automatic prefix generation for variables and types using a substring of the namespace
by removing the nb first elements (-1 means only the last element).

For example: If a variable belongs to the namespace http://www.mycompany.com/
Global/Service, a value of -1 will give Service as a prefix, and a value of 1 will give
Global_Service as a prefix.

Programming tools | 1506

Options Description

-nsPrefix ns
value

Add value as prefix of the generated variables and types belonging to namespace ns
(supersede the -prefix and the -autoNsPrefix option, and can be called several times).

Table 320: Network options (when specifying an URL)

Options Description

-noHTTP Disable HTTP - search for the WSDL description or the XML schema and its
dependencies on the client instead of the internet. Useful, for example, if a company has
restricted access to the internet.

-proxy location Connect via proxy where location is host[:port] or ip[:port].

-pAuth login
pass

Proxy authentication login and password.

-hAuth login
pass

HTTP authentication login and password.

-cert cert File of the X509 PEM-encoded certificate for HTTPS purpose.

-key key File of the PEM-encoded private key for HTTPS purpose.

-wCert cert Certificate name in the Windows™ keystore for HTTPS purpose (Windows™ only).

-CA list A filename with the list of concatenated X509 PEM-encoded certificate authorities. (On
Windows™, if not set, the Certificate Authority list of the key store is used).

Usage

The fglwsdl command line tool produces the WSDL description of a web service that will be accessed
by a GWS client application, or to define a WSDL description to creating a corresponding GWS server
application. The tool generates the BDL data types from XML schemas (also known as XSD).

To access a remote web service, you must get the WSDL information from the service provider. Sample
services can be found through UDDI registries (http://www.uddi.org) , or on other sites such as XMethods (
http://www.xmethods.net).

fglpass
The fglpass tool allows you to encrypt passwords.

Syntax

fglpass [options]

1. options are described in fglpass options.

Options

Table 321: fglpass options

Command Description

-V Display version information

-Vssl Display SSL version

-h Display this help

http://www.uddi.org
http://www.xmethods.net

Programming tools | 1507

Command Description

-e Encrypt the password with a RSA key or certificate
and encode it in BASE64 form

-d Decode the BASE64 form of the password and
decrypt it with a RSA private key

-w cert Windows™ certificate name to encrypt the password
(Windows™ only)

-c cert File of the PEM-encoded certificate to encrypt the
password

-k key File of the PEM-encoded private key to encrypt or
decrypt the password

-enc64 file File to be BASE64 encoded (result to stdout)

-dec64 file BASE64 encoded file to be decoded (result to
stdout)

-agent:port files Start password agent on specified port to serve the
list of private key files

Usage

The fglpass command line tool allows you to:

• Encrypt a password using a RSA key or X.509 certificate and encode it in BASE64 form.
• Run a password agent that returns (in a protected way) the passwords that grant access to the different

private keys used in all your applications.
• Encode a file in BASE64 form and decode it back.

For security reasons, it is recommended to avoid storing clear passwords in a file, or leave private keys
unprotected without a password. The fglpass command can be used to encrypt passwords.

fglWrt
The fglWrt tool is used to manage product licenses.

Syntax

fglWrt [options]

1. options are described in Table 322: fglmkstr options on page 1507.

Options

Table 322: fglmkstr options

Option Description

-V Display version information for the tool.

-h Displays options for the tool. Short help.

-l license

Installs a license.

Note: To escape when prompted to enter a
license key, type "stop" at the prompt.

Programming tools | 1508

Option Description

-m key Maintenance key specification.

-u Check for active users.

-k key Installation key for license validation.

-d Remove current installed license.

-i Clears the list of registered user sessions.

-a option

Check or view options, possible options are:

• ps : Shows processes on this machine.
• cpu : Shows number of CPU in the computer.
• hostname : Shows name of this machine.
• info license : Shows license information.
• info stat : Shows statitics of license server.
• info users : Shows all registered active users.
• info up : Shows if license server is up.

Usage

The fglWrt command line tool is used to install, upgrade or delete licenses.

If no license is installed, it is not possible to use Genero Business Development Language.

Compiling source files
Describes how to build the runtime files from source files.

• Compiling form files on page 1508
• Compiling message files on page 795
• Compiling source code on page 1510
• Importing modules on page 1511
• Linking libraries on page 1511
• Linking programs on page 1512
• Using makefiles on page 1515
• Module build information on page 1515

Compiling form files

Form specification files (with .per file extension) must be compiled to runtime form files (with .42f file
extension) by using the fglform tool. Compiled form files are XML independent from the platform and
processor architecture.

The following lines show a compilation in a UNIX™ shell session:

$ cat form.per
LAYOUT
GRID
{
[f01]
}
END
END
ATTRIBUTES
f01 = FORMONLY.field1;

Programming tools | 1509

END

$ fglform form.per

$ ls -s form.42f
 4 form.42f

If an error occurs, the compiler writes an error file with the .err extension.

$ cat form.per
LAYOUT
GRID
{
}

$ fglform form.per
The compilation was not successful. Errors found: 1.
 The file 'form.err' has been written.

$ cat form.err
LAYOUT
GRID
{
}
A grammatical error has been found at '}', expecting SCR_TEXT.
See error number -6803.

With the -M option, you can force the compiler to display an error message instead of generating an .err
error file (line break added for documentation readability):

$ fglform -M form.per
form.per:4:1:4:1:error:(-6803)
 A grammatical error has been found at '}', expecting SCR_TEXT.

By default, the compiler does not raise any warnings. You can turn on warnings with the -W option:

$ cat form.per
LAYOUT
GRID
{
[f01]
}
END
END
ATTRIBUTES
f01 = FORMONLY.field1, WIDGET="COMBO";
END

$ fglform -Wall form.per
form.per:9: warning (-8005) Deprecated feature: The WIDGET attribute is
 obsolete

Compiling message files

In order to use message files in a program, the message source files (with .msg extension) must be
compiled with the fglmkmsg utility to produce compiled message files (with .iem extension).

The following command line compiles the message source file mess01.msg:

fglmkmsg mess01.msg

Programming tools | 1510

This creates the compiled message file mess01.iem.

For backward compatibility, you can specify the output file as second argument:

fglmkmsg mess01.msg mess01.iem

The .iem compiled version of the message file must be distributed on the machine where the programs are
executed.

Compiling string files
The source string files (with .str extension) must be compiled to binary files (with .42s extension) in
order to be loaded by the runtime system.

To compile a source string file, use the fglmkstr compiler.

$ fglmkstr filename.str

The fglmkstr tool generates a .42s file with the filename prefix.

Important: When compiling a .str source string file, you must set the locale (character set)
corresponding to the encoding used in the .str file.

Compiling source code

Source code modules (with .4gl file extension) must be compiled to p-code modules (with .42m file
extension) by using the fglcomp tool. Compiled p-code modules are independent from the platform and
processor architecture.

The following lines show a compilation in a UNIX™ shell session:

$ cat prog.4gl
MAIN
 DISPLAY "hello"
END MAIN

$ fglcomp prog.4gl

$ ls -s prog.42m
 4 prog.42m

If an error occurs, the compiler writes an error file with the .err extension.

$ cat prog.4gl
MAIN
 LET x = "hello"
END MAIN

$ fglcomp prog.4gl
Compilation was not successful. Errors found: 1.
 The file prog.4gl has been written.

$ cat prog.err
MAIN
 LET x = "hello"
| The symbol 'x' does not represent a defined variable.
| See error number -4369.
END MAIN

Programming tools | 1511

With the -M option, you can force the compiler to display an error message instead of generating an .err
error file:

$ fglcomp prog.4gl
xx.4gl:2:8 error:(-4369) The symbol 'x' does not represent a defined
 variable.

By default, the compiler does not raise any warnings. You can turn on warnings with the -W option:

$ cat prog.4gl
MAIN
 DATABASE test1
 SELECT COUNT(*) FROM x, OUTER(y) WHERE x.k = y.k
END MAIN

$ fglcomp -W stdsql prog.4gl
xx.4gl:3: warning: SQL statement or language instruction with specific SQL
 syntax.

When a warning is raised, you can use the -W error option to force the compiler to stop as if an error
was found. For more details about the -W option, see Arguments for the -W option on page 1498.

Consider also using the --verbose option of the compiler to get detailed information about the source
compilation:

$ fglcomp --verbose main.4gl
[parsing main.4gl]
[compiling: fglcomp --import-by=main --verbose mod1]
[parsing mod1.4gl]
[compiling: fglcomp --import-by=main,mod1 --verbose mod2]
[parsing mod2.4gl]
[writing mod2.42m]
[loading mod2.42m]
[writing mod1.42m]
[loading mod1.42m]
[writing main.42m]

Importing modules

With the IMPORT FGL instruction, module symbols such as variables, types and constants can be
referenced in the importing module.

The next source example imports the myutils and account modules, and uses the init() and set_account()
functions of the imported modules. The first function call is qualified with the module name - this is optional
but required to resolve ambiguities when the same function name is used by different modules:

IMPORT FGL myutils
IMPORT FGL account
MAIN
 CALL myutils.init()
 CALL set_account("CFX4559")
 ...
END MAIN

Linking libraries

Compiled 42m modules can be grouped in libraries by using the fgllink linker. The library files get the 42x
extension. If none of the modules defines the MAIN block, the linker creates a library; if a MAIN block is
present, the linker creates a program, that should use a 42r extension.

Note that linking is supported for backward compatibility, you should use IMPORT FGL instead.

Programming tools | 1512

Library linking is done with the fglrun tool by using the -l option. The fgllink tool can be used for
convenience, it is a simple script calling fglrun -l.

The following lines show a link procedure to create a library in a UNIX™ shell session:

$ fglcomp fileutils.4gl
 $ fglcomp userutils.4gl
 $ fgllink -o libutils.42x fileutils.42m userutils.42m

When you create a library, all functions of the 42m modules used in the link command are registered in the
42x file.

Keep in mind that the 42x library file does not contain the 42m p-code. When deploying your application,
you must provide all compiled 42m modules.

When creating a 42x library, all functions must be uniquely defined; otherwise, error -6203 will be returned
by the linker.

The 42x libraries are typically used to link the final 42r programs:

$ fglcomp mymain.4gl
 $ fgllink -o myprog.42r mymain.42m libutils.42x

The 42r programs must be re-linked if the content of 42x libraries have changed. In this example, if
a function of the userutils.4gl source file was removed, you must recompile userutils.4gl, re-link the
libutils.42x library and re-link the myprog.42r program.

It is possible to create a library by referencing other 42x library files in the link command, as long as 42M
modules can be found:

$ fglcomp module_1.4gl
 $ fglcomp module_2.4gl
 $ fgllink -o lib_A.42x module_1.42m
 $ fgllink -o lib_B.42x module_2.42m lib_A.42x $ fgllink -o myprog.42r
 lib_B.42x
 -- will hold functions of module_1 and module_2.

If you do not specify an absolute path for a file, the linker searches by default for .42m modules and .42x
libraries in the current directory. You can specify a search path with the FGLLDPATH environment
variable.

If you are using C-Extensions, you may need to use the -e option to specify the list of extension modules,
if the IMPORT keyword is not used:

$ fgllink -e extlib,extlib2,extlib3 -o libutils.42x fileutils.42m
 userutils.42m

Linking programs

Genero programs are created by linking several .42m modules and/or .42x libraries together, where one of
the modules defines a MAIN block. By convention, the resulting program file gets the 42r extension.

Note that linking is supported for backward compatibility, you should use IMPORT FGL instead. When
using IMPORT FGL to import all modules used by a program, the link stage is no longer required (you can
directly execute the 42m module containing the MAIN block).

Program linking is done with the fglrun tool by using the -l option. The fgllink tool can be used for
convenience; it is a simple script calling fglrun -l.

The following lines show a link procedure to create a program in a UNIX™ shell session:

$ fglcomp main.4gl

Programming tools | 1513

$ fglcomp store.4gl
$ fgllink -o stores.42r main.42m store.42m

The purpose of the linking phase is to check for missing function symbols, and reference all the symbols
in the resulting .42r program file. Any function used in the .42m modules specified in the link line must be
provided. Missing symbols will result in a -1338 linker error. Note that this applies only to programs: When
linking a 42x library, there can be references to undefined functions:

$ cat main.4gl
MAIN
 CALL myfunc()
END MAIN

$ fglcomp main.4gl
$ fgllink -o prog.42r main.42m
ERROR(-1338):The function 'myfunc' has not been defined in any module in the
 program.

The generated 42r program files do not contain the 42m p-code. When deploying your application, you
must provide all 42m modules, as well as 42r program files. Since 42x library files are only used to build
programs, you do not have to deploy 42x library files.

If you omit the -o option in the fgllink command, the default output file will have the .42x extension and the
name of the module containing the MAIN block. The .42r file extension is used by convention to distinguish
a program dictionary file from a library dictionary file.

When linking a 42r program by using 42x libraries, the modules defined in a library are included only if one
of the symbols in the module is used by the program. However, all symbols of 42m modules specified in
the command line will always be referenced in the resulting 42r program file. The same function symbols
can be defined in distinct libraries; the linker will select the function of the first library that was specified in
the command line.

All symbols referenced in a module must exist in the final 42r program dictionary file. If a symbol is
not found, the runtime system stops with error -1338. This error is fatal and cannot be trapped with an
exception handler.

When linking a 42r program, global symbols must be unique; otherwise, error -6203 will be returned by
the linker. The same error will be returned when linking a 42x library by using modules defining the same
functions.

If you do not specify an absolute path for a file, the linker searches by default for .42m modules and .42x
libraries in the current directory. You can specify a search path with the FGLLDPATH environment
variable:

$ FGLLDPATH=/usr/dev/lib/maths:/usr/dev/lib/utils
$ export FGLLDPATH
$ ls /usr/dev/lib/maths
mathlib1.42x
mathlib2.42x
mathmodule11.42m
mathmodule12.42m
mathmodule22.42m
$ ls /usr/dev/lib/utils
fileutils.42m
userutils.42m
dbutils.42m
$ fgllink -o myprog.42r mymodule.42m mathlib1.42x fileutils.42m

In this example the linker will find the specified files in the /usr/dev/lib/maths and /usr/dev/lib/
utils directories defined in FGLLDPATH.

Programming tools | 1514

When creating a .42r program by linking .42m modules with .42x libraries, if the same function is defined in
a .42m and in a module of a 42x library, the function of the specified .42m module will be selected by the
linker, and the function of the library will be ignored. However, the linker will raise error -6203 if two .42m
modules specified in the link command define the same function.

The link procedure searches recursively for the functions used by the program. For example, if the MAIN
block calls function FA in module MA, and FA calls FB in module MB, all functions from module MA and
MB will be included in the 42r program definition.

When linking a program with modules using the IMPORT FGL instruction, you do not have to specify the
imported modules in the link line, since these modules will be loaded dynamically at runtime. However,
any symbol used by the imported module must be resolved by the linker. Therefore, if the imported module
uses functions that come from other modules which are not imported by this module, these non-imported
modules must be specified in the link command line. For example, if the main module imports module MA
to call the function FA, which in turn calls a function FB from module MB, but MA does not import MB, you
will have to specify MB in the link line to have the linker resolve the FB function.

When linking a .42r program by using a .42x library, if none of the functions of a module in the .42x library
are used in the program, the complete module is excluded by the linker. This may cause undefined
function errors at runtime, such as when a function is only used in a dynamic call (an initialization function,
for example.)

The following case illustrates this behavior:

$ cat x1.4gl
function fx11()
end function
function fx12()
end function

$ cat x2.4gl
function fx21()
end function
function fx22()
end function

$ cat prog.4gl
main
 call fx11()
end main

$ fglcomp x1.4gl
$ fglcomp x2.4gl
$ fglcomp prog.4gl

$ fgllink -o lib.42x x1.42m x2.42m

$ fgllink -o prog.42r prog.42m lib.42x

Here, module x1.42m (with functions fx11 and fx12) will be referenced in the .42r program file, but
functions of module x2.42m will not. At runtime, any dynamic call to functions fx21() or fx22() will fail
with an un-trappable error -1338.

If you are using C-Extensions, you may need to use the -e option to specify the list of extension modules if
the IMPORT keyword is not used:

$ fgllink -e extlib,extlib2,extlib3 -o stores.42r main.42m store.42m

Programming tools | 1515

Using makefiles

Most UNIX™ platforms provide the make utility program to compile projects. The make program is an
interpreter of makefiles. These files contain directives to compile and link programs and/or generate other
kind of files.

When developing on Microsoft™ Windows™ platforms, you may use the NMAKE utility provided with
Visual C++, however this tool does not have the same behavior as the UNIX™ make program. To have a
compatible make on Windows™, you can install a GNU make or third party UNIX™ tools such as Cygwin.

For more details about the make utility, see the platform-specific documentation.

The follow example shows a typical makefile for Genero applications:

#--
Generic makefile rules to be included in Makefiles
.SUFFIXES: .42s .42f .42m .42r .str .per .4gl .msg .hlp
FGLFORM=fglform -M
FGLCOMP=fglcomp -M
FGLLINK=fglrun -l
FGLMKMSG=fglmkmsg
FGLMKSTR=fglmkstr
FGLLIB=$$FGLDIR/lib/libfgl4js.42x
all::
.msg.hlp:
 $(FGLMKMSG) $*.msg $*.hlp
.str.42s:
 $(FGLMKSTR) $*.str $*.42s
.per.42f:
 $(FGLFORM) $*.per
.4gl.42m:
 $(FGLCOMP) $*.4gl
clean::
 rm -f *.hlp *.42? *.out
#-----------------------------
Makefile example
include Makeincl
FORMS=\
 customers.42f\
 orderlist.42f\
 itemlist.42f
MODULES=\
 customerInput.42m\
 zoomOrders.42m\
 zoomItems.42m
customer.42x: $(MODULES)
 $(FGLLINK) -o customer.42x $(MODULES)
all:: customer.42x $(FORMS)

Module build information

The compiler version used to build the 42m modules must be compatible to the runtime system used to
execute the programs. The fglcomp compiler writes version information in the generated 42m files. This
can be useful on site, if you need to check the version of the compiler that was used to build the 42m
nodules.

To extract build information, run fglrun with the -b option:

$ fglrun -b mymodule.42m
 3.00.00 /home/devel/stores/mymodule.4gl 24

The output shows the following fields:

Programming tools | 1516

1. The Genero product version (3.00.00)
2. The full path of the source file (/home/devel/stores/mymodule.4gl)
3. The internal identifier of the p-code version (23)

fglrun -b can read the header of p-code modules compiled with older versions of fglcomp and display
version information for such old modules. If fglrun cannot recognize a p-code module, it returns with an
execution status that is different from zero.

When reading build information of a 42x or 42r file, fglrun scans all modules used to build the library or
program. You will see different versions in the first column if the modules were compiled with different
versions of fglcomp. However, it's not recommended that you mix versions on a production site:

$ fglrun -b myprogram.42r
 3.00.00 /home/devel/stores/mymodule1.4gl 24
 3.10.02 /home/devel/stores/mymodule2.4gl 24
 3.00.01 /home/devel/stores/mymodule3.4gl 24

To check if the version of the runtime system corresponds to the p-code version, run fglrun with the -V
option:

$ fglrun -V
fglrun 3.00.00 internal-build-number
Genero virtual machine
Target l64xl212
...

If you need to write timestamp information in the p-code modules, you can use the --timestamp option of
fglcomp:

$ fglcomp --timestamp mymodule.4gl
 $ fglrun -b mymodule.42m
 2008-12-24 11:22:33 2.11.05-1169.84 /home/devel/stores/mymodule.4gl 15

Important: When using the --timestamp compiler option to write build timestamp information
in p-code modules, you will not be able to easily compare 42m files (based on a checksum, for
example): Without the timestamp, fglcomp generates exactly the same p-code module if the source
file was not modified.

Source code edition
Simple helper to better render sources in configurable text editors.

These topics concern source code editing. You are free to use your preferred source code editor to write
your programs.

• Choosing the correct locale on page 1516
• Avoid Tab characters in screen layouts on page 1517
• Code completion and syntax highlighting with VIM on page 1517

Choosing the correct locale

Before starting to edit source files, you must identify and configure the editor with the locale (character set)
you want to use in your sources.

The language supports single-byte and multibyte character sets. When developing multilingual
applications, we recommend that you write .per and .4gl source files in ASCII, and externalize language-
dependent messages in string resource files.

Programming tools | 1517

Avoid Tab characters in screen layouts

When editing .per form files, avoid using Tab characters in sources, especially in the LAYOUT or SCREEN
sections of forms. Different kinds of text or source code editors can expand Tab characters differently,
according to the configuration settings. As a result, if two programmers are using different Tab expansion
settings, the form layout will display in different ways. If used in a grid area, a Tab character will be
interpreted as 8 blanks by fglform.

It is legal to use Tab characters in the rest of the .per file or .4gl sources (for example, to indent the code).

Code completion and syntax highlighting with VIM

If you are using the vim editor, automatic code completion and syntax highlighting is supported by fglcomp
and fglform compilers.

In order to use auto completion with vim, you need at least vim version 7 with the Omni Completion
feature.

To get the benefit of this feature with the vim editor, do this:

Note: In the next lines, user-vim-dir is ~/.vim on Unix platforms, and %USERPROFILE%
\vimfiles on Windows platforms. And home-dir is $HOME on Unix platforms, and %USERPROFILE
% on Windows platforms.

1. Copy $FGLDIR/lib/fglcomplete.vim into the user-vim-dir/autoload directory.
2. Copy $FGLDIR/lib/fgl.vim into the user-vim-dir/syntax directory.
3. Copy $FGLDIR/lib/per.vim into the user-vim-dir/syntax directory.
4. Add the following lines to your VIM resrouces file (home-dir/.vimrc file):

autocmd Filetype fgl setlocal omnifunc=fglcomplete#Complete
autocmd Filetype per setlocal omnifunc=fglcomplete#Complete
syntax on
au BufNewFile,BufRead *.per setlocal filetype=per

You can now use automatic code completion; open a .4gl or .per file, start to edit the file, and when you are
in vim insert mode, press CTRL-X + CTRL-O, to get a list of language elements to complete the instruction
syntax or expression.

Note: For convenience, TAB can also be used to get the completion list as with the CTRL-X +
CTRL-O key combinations. However, TAB will only show the completion list, if the edit cursor in after
a keyword: At the beginning of the line, TAB adds indentation characters.

For more details about vim, see http://www.vim.org.

Source documentation
Explains how to automatically generate documentation from your sources.

• Understanding source code documentation on page 1518
• Prerequisites for source documentation generation on page 1518
• Documentation structure on page 1518
• Adding comments to sources on page 1519

• Commenting a function on page 1519
• Commenting a module on page 1521
• Commenting a package on page 1521
• Commenting a project on page 1521

• Run the documentation generator on page 1521

http://www.vim.org

Programming tools | 1518

Understanding source code documentation

Documenting sources is an important task in software development, to share the code among applications
and achieve better re-usability.

Source documentation must be concise, clear, and complete. However, documenting sources can be
boring and subject to mistakes if large repetitive documentation sections have to be written by hand.

Source documentation can be produced automatically with the fglcomp compiler. The compiler can
generate source documentation from the .4gl files of your project with minimum effort. The resulting source
documentation is generated in simple HTML format and can be published on a web server.

Source documentation is generated with the --build-doc option of fglcomp. To extract documentation
from a .4gl source:

fglcomp --build-doc filename.4gl

You can generate default documentation from the existing sources. For a better description of the
code, add special #+ comments in your sources to describe code elements such as functions, function
parameters, and return values.

By default, only PUBLIC symbols are documented. If you want to include PRIVATE symbols, use the --
doc-private option:

fglcomp --build-doc --doc-private filename.4gl

Prerequisites for source documentation generation

To generate the HTML pages, fglcomp first generates .xa files which must be converted to .html files.
The conversion from .xa to .html is done with an XSLT processor using the .xsl style sheets files
provided in FGLDIR/lib/fgldoc/

You must have an XSLT processor installed on the machine where the documentation is generated.

• On UNIX™, fglcomp runs the FGLDIR/lib/fgldoc/Transform.sh script to convert .xa files
to .html files. Therefore you need the xsltproc command line XSLT processor (from the libxml
package).

• On Windows™, fglcomp runs the FGLDIR\lib\fgldoc\Transform.js script to convert .xa files
to .html files. To run the Transform.js script, you must have cscript.exe installed with the
Microsoft™.XMLDOM class (this is the case on recent Windows™ versions).

Note: If the default result of the transformation does not fit your needs, the style sheets provided in
FGLDIR/lib/fgldoc can be adapted to generate different HTML files.

Documentation structure

The source documentation structure is based on the well-known Java-doc technique. The generated
documentation reflects the structure of your sources; in order to have nicely structured source
documentation, you must have a nicely structured source tree.

The source documentation elements are structured as follows (elements in italic must be created by hand,
others are generated files):

• Top/root directory (the root of your project)

• overview.4gl (description of the project)
• overview-summary.html

• overview-frame.html

• allclasses-frame.html

• index-all.html

• index.html

Programming tools | 1519

• fgldoc.css

• sub-directory1 (package)

• sub-directory11 (package)
• ...
• sub-directory12 (package)

• sub-directory121 (package)

• package-info.4gl (description of the package/directory)
• package-summary.html

• package-frame.html

• source1211.4gl (module)
• source1211.html

• source1212.4gl (module)

• #+ Module 1212 comment (description of the module)
• #+ Function 12121 comment (description of the function)
• function12121
• #+ Function 12121 comment

• function12122
• ...

• source1212.html

• source1213.4gl (module)
• source1213.html

• ...
• sub-directory2 (package)
• ...
• sub-directory3 (package)
• ...

First create a file named overview.4gl in the top directory of the project. This file contains the
overall description of the project. In that directory, the documentation generator creates the files
overview-summary.html, overview-frame.html, allclasses-frame.html, index-all.html,
index.html and fgldoc.css .

The documentation generator can scan sub-directories to build the documentation for a whole project;
each source directory defines a package. For each directory (i.e. package), the generator creates a
package-summary.html and a package-frame.html file. If a file with the name package-info.4gl
exists, it will be scanned to complete the package-summary.html file with the package description.

The documentation generator creates a filename .html file for each .4gl source module, seen as a class in
the documentation.

Adding comments to sources

Commenting a function

To comment a function, add some lines starting with #+, before the function body. The comment body
is composed of paragraphs separated by a blank line. The first paragraph of the comment is a short
description of the function. This description will be placed in the function summary table. The next
paragraph is long text describing the function in detail. Other paragraphs must start with a tag to identify
the type of the paragraph; a tag starts with the @ "at" sign.

Programming tools | 1520

Table 323: Supported @ tags

Tag Description

@code Indicates that the next lines show a code example
using the function.

@param name description Defines a function parameter identified by name,
explained by a description.

name must match the parameter name in the
function declaration.

@returnType fglType [,...] Defines the data type of the value returned by the
function.

If the function returns several values, write a
comma-separated list of types.

@return description Describes the values returned by the function.

Several @return comment lines can be written.

Example

#+ Compute the amount of the orders for a given customer
#+
#+ This function calculates the total amount of all orders for
 the
#+ customer identified by the cust_id number passed as
 parameter.
#+
#+ @code
#+ DEFINE total DECIMAL(10,2)
#+ CALL total = ordersTotal(r_customer.cust_id)
#+
#+ @param cid Customer identifier
#+
#+ @returnType DECIMAL(10,2)
#+ @return The total amount as DECIMAL(10,2)
#+
FUNCTION ordersTotal(cid)
 DEFINE cid INTEGER
 DEFINE ordtot DECIMAL(10,2)
 SELECT SUM(ord_amount) INTO ordtot
 FROM orders WHERE orders.cust_id = cid
 RETURN ordtot
END FUNCTION

Commenting a report

To comment a report, add some lines starting with #+, before the report body. The comment body
is composed of paragraphs separated by a blank line. The first paragraph of the comment is a short
description of the report. This description will be placed in the function summary table. The next paragraph
is long text describing the report in detail. Other paragraphs must start with a tag to identify the type of the
paragraph; a tag starts with the @ "at" sign.

Programming tools | 1521

Table 324: Supported @ tags

Tag Description

@code Indicates that the next lines show a code example
using the report.

@param name description Defines a report parameter identified by name,
explained by a description.

name must match the parameter name in the report
declaration.

Commenting a module

To comment a .4gl module, you can add #+ lines at the beginning of the source, before module element
declarations such as module variable definitions.

Example

#+ This module implements customer information handling
#+
#+ This code uses the 'customer' and 'custdetail' database
 tables.
#+ Customer input, query and list handling functions are defined
 here.
#+
DEFINE r_cust RECORD
 cust_id INTEGER,
 cust_name VARCHAR(50),
 cust_address VARCHAR(200)
END RECORD

Commenting a package

To describe a complete directory (i.e. package), you must create a package-info.4gl file in the
directory and add a #+ comment in the file. The comment will be added to the package-summary.html
file.

Commenting a project

In the top directory of your sources, you must create a overview.4gl file with a #+ comment describing
the project. This file is mandatory in order to generate the tree of HTML pages for an entire project, as it is
used as the starting point by fglcomp.

Run the documentation generator
Follow this procedure to produce the source documentation.

Follow this procedure to produce the source documentation.

1. Go to the top directory of your sources.

2. Create a file named overview.4gl, with a #+ comment describing your project.

3. Go to the subdirectories and create files named package-info.4gl with a #+ comment describing
the package.

4. Edit the 4gl modules to add #+ comments to functions that must be documented.

5. Go back to the top directory of your sources.

6. Run fglcomp --build-doc overview.4gl

Programming tools | 1522

Use the -W apidoc compiler option to get warnings for invalid comment tags. For example, when a
@param tag is missing for a function parameter.

7. To test the result, load the generated index.html file in your preferred browser.

The preprocessor
A typical preprocessor like in the C language.

• Understanding the preprocessor on page 1522
• Compilers command line options on page 1522
• File inclusion on page 1523
• Simple macro definition on page 1525
• Function macro definition on page 1527
• Stringification operator on page 1529
• Concatenation operator on page 1529
• Predefined macros on page 1530
• Undefining a macro on page 1530
• Conditional compilation on page 1530

Understanding the preprocessor

The preprocessor is used to transform your sources before compilation. It allows you to include other
files and to define macros that will be expanded when used in the source. It behaves similar to the C
preprocessor, with some differences.

Important: The preprocessor should be avoided if there is an alternative in the native language.
For example, instead of defining program constants with a &define macro, use the CONSTANT
instruction. Other language features such as IMPORT FGL increase code readability and modular
programming, without the need of a preprocessor. The preprocessor might be desupported in a
future version.

The preprocessor transforms files as follows:

• The source file is read and split into lines.
• Continued lines are merged into one long line if it is part of a preprocessor definition.
• Comments are not removed unless they appear in a macro definition.
• Each line is split into a list of lexical tokens.

The preprocessor implements the following features:

1. File inclusion
2. Conditional compilation
3. Macro definition and expansion

There are two kind of macros:

1. Simple macros
2. Function macros

If a preprocessing directive is invalid, the compilers will generate a .err file with the preprocessing error
included in the source file at the line position where the problem exists. When using the -M option,
preprocessor errors will be printed to stderr, like regular compiler errors.

Compilers command line options

Preprocessor options can be used with fglcomp and fglform compilers.

Programming tools | 1523

File inclusion path

The -I option defines a path used to search files included by the &include directives:

 -I path

Macro definition

The -D option defines a macro with the value 1, so that it can be used conditional directives like &ifdef:

 -D identifier

The -U option undefines a macro. The macro will not be defined, even if it is defined with the -D option
later in the command line, or when it is defined in the code with a &define directive:

 -U identifier

However, predefined macros such as __LINE__ can't be undefined with the -U option.

Preprocessing only

 -E

By using the -E option, only the preprocessing phase is done by the compilers. Result is dumped in
standard output.

Preprocessing options

 -p [nopp|noln|fglpp]

When using option -p nopp, it disables the preprocessor phase.

By using option -p noln with the -E preprocessing-only option, you can remove line number information
and unnecessary empty lines.

By default, the preprocessor expects an ampersand '&' as preprocessor symbol for macros. The option -
p fglpp enables the old syntax, using the sharp '#' as preprocessor symbol. The sharp '# ' syntax is not
compatible with single-line comments.

Examples

fglcomp -E -D DEBUG -I /usr/sources/headers program.4gl

fglcomp -E -p fglpp -I /usr/sources/headers program.4gl

fglcomp -E -p nopp -I /usr/sources/headers program.4gl

File inclusion
The &include directive instructs the preprocessor to include a file.

Syntax

&include "filename"

Programming tools | 1524

1. filename is searched first in the directory containing the current file, then in the directories listed in the
include path. (-I option). The file name can be followed by spaces and comments.

Usage

The included file will be scanned and processed before continuing with the rest of the current file.

Source: File A

First line
&include "B"
Third line

Source: File B

Second line

Result:

& 1 "A"
First line
& 1 "B"
Second line
& 3 "A"
Third line

These preprocessor directives inform the compiler of its current location with special preprocessor
comments, so the compiler can provide the right error message when a syntax error occurs.

The preprocessor-generated comments use the following format:

& number "filename"

where:

• number is the current line in the preprocessed file
• filename is the current file name

Recursive inclusions

Recursive inclusions are not allowed. Doing so will fail and output an error message.

The following example is incorrect:

Source: File A

&include "B"

Source: File B

HELLO
&include "A"

fglcomp -M A.4gl output

B.4gl:2:1:2:1:error:(-8029) Multiple inclusion of the source file 'A'.

Including the same file several times is allowed:

Programming tools | 1525

Source: File A

&include "B"
&include "B" -- correct

Source: File B

HELLO

Result:

& 1 "A"
& 1 "B"
HELLO
& 2 "A"
& 1 "B"
HELLO

Simple macro definition
A simple macro is identified by its name and body.

Syntax

&define identifier body

1. identifier is the name of the macro. Any valid identifier can be used.
2. body is any sequence of tokens until the end of the line.

After substitution, the macro definition is replaced with blank lines.

Usage

As the preprocessor scans the text, it substitutes the macro body for the name identifier.

The following example show macro substitution with 2 simple macros:

Source: File A

&define MAX_TEST 12
&define HW "Hello world"

MAIN
 DEFINE i INTEGER
 FOR i=1 TO MAX_TEST
 DISPLAY HW
 END FOR
END MAIN

Result:

& 1 "A"

MAIN
 DEFINE i INTEGER
 FOR i=1 TO 12
 DISPLAY "Hello world"
 END FOR

Programming tools | 1526

END MAIN

The macro definition can be continued on multiple lines, but when the macro is expanded, it is joined to a
single line as follows:

Source: File A

&define TABLE_VALUES 1, \
 2, \
 3
DISPLAY TABLE_VALUES

Result:

& 1 "A"

DISPLAY 1, 2, 3

The source file is processed sequentially, so a macro takes effect at the place it has been written:

Source: File A

DISPLAY X
&define X "Hello"
DISPLAY X

Result:

& 1 "A"
DISPLAY X

DISPLAY "Hello"

The macro body is expanded only when the macro is applied:

Source: File A

&define AA BB
&define BB 12
DISPLAY AA

Result:

& 1 "A"

DISPLAY 12

• AA is first expanded to BB.
• The text is re-scanned and BB is expanded to 12.
• When the macro AA is defined, BB is not known yet; but it is known when the macro AA is used.

In order to prevent infinite recursion, a macro cannot be expanded recursively.

Source: File A

&define A B
&define B A
&define C C

Programming tools | 1527

A C

Result:

& 1 "A"

A C

• A is first expanded to B.
• B is expanded to A.
• A is not expanded again as it appears in its own expansion.
• C expands to C and can not be expanded further.

Note: It is also possible to define a macro with the -D command line option of compilers.

Function macro definition
Function macros are preprocessor macros which can take arguments.

Syntax

&define identifier(arglist) body

1. identifier is the name of the macro. Any valid identifier can be used.
2. body is any sequence of tokens until the end of the line.
3. arglist is a list of identifiers separated with commas and optionally whitespace.
4. There must be no space or comment between the macro name and the opening parenthesis. Otherwise

the macro is not a function macro, but a simple macro.

Usage

Function macros take arguments that are replaced in the body by the preprocessor.

Source: File A

&define function_macro(a,b) a + b
&define simple_macro (a,b) a + b
function_macro(4 , 5)
simple_macro (1,2)

Result:

& 1 "A"

4 + 5
(a,b) a + b (1,2)

A function macro can have an empty argument list. In this case, parenthesis are required for the macro to
be expanded. As we can see in the next example, the third line is not expanded because it there is no '()'
after foo. The function macro cannot be applied even if it has no arguments.

Source: File A

&define foo() yes
foo()
foo

Programming tools | 1528

Result:

& 1 "A"

yes
foo

The comma separates arguments. Macro parameters containing a comma can be used with parenthesis.
In this example, the second line has been substituted, but th third line produced an error, because the
number of parameters is incorrect.

Source: File A

&define one_parameter(a) a
one_parameter((a,b))
one_parameter(a,b)

fglcomp -M output

source.4gl:3:1:3:1:error:(-8039) Invalid number of parameters
 for macro one_parameter.

Macro arguments are completely expanded and substituted before the function macro expansion.

A macro argument can be left empty.

Source: File A

&define two_args(a,b) a b
two_args(,b)
two_args(,)
two_args()
two_args(,,)

fglcomp -M output

source.4gl:4:1:4:1:error:(-8039) Invalid number of parameters
 for macro two_args.
source.4gl:5:1:5:1:error:(-8039) Invalid number of parameters
 for macro two_args.

Macro arguments appearing inside strings are not expanded.

Source: File A

&define foo(x) "x"
foo(toto)

Result:

& 1 "A"

"x"

Programming tools | 1529

Stringification operator
Transforms a preprocessor macro element to a string.

Syntax

#param

1. param is a parameter of the macro

Usage

The stringification operator # converts a preprocessor macro parameter to a string.

When a macro parameter is used with a preceding #, it is replaced by a string containing the literal text of
the argument.

The argument is not macro expanded before the substitution.

Source: File A

&define disp(x) DISPLAY #x
disp(abcdef)

Result:

& 1 "A"
DISPLAY "abcdef"

Concatenation operator
Concatenates two parameters of a preprocessor macro.

Syntax

token1 ## token2

1. token1 is a parameter of the macro or a simple token.
2. token2 is a parameter of the macro or a simple token.

Usage
The double-sharp operator ## can be used to merge two tokens while expanding a macro and create a
single token.

All tokens can not be merged. Usually these tokens are identifiers, or numbers.

The concatenation result produces an identifier.

Source: File A

&define COMMAND(NAME) #NAME, NAME ## _command
COMMAND(quit)

Result:

& 1 "A"

"quit", quit_command

Programming tools | 1530

Predefined macros

The preprocessor predefines 2 macros:

1. __LINE__ expands to the current line number. Its definition changes with
each new line of the code.

2. __FILE__ expands to the name of the current file as a string constant. Ex:
"subdir/file.inc"

These macros are often used to generate error messages.

An &include directive changes the values of __FILE__ and __LINE__ to correspond to the included
file.

Undefining a macro
Un-defines a preprocessor macro.

Syntax

&undef identifier

1. identifier is a preprocessor constant.

Usage

If a macro is redefined without having been undefined previously, the preprocessor issues a warning and
replaces the existing definition with the new one. First un-define a macro with the &undef directive.

Source: File A

&define HELLO "hello"
DISPLAY HELLO
&undef HELLO
DISPLAY HELLO

Result:

& 1 "A"

DISPLAY "hello"
DISPLAY HELLO

Note: It is also possible to undefine a macro with the -U command line option of compilers.
However, predefined macros can't be undefined with this option.

Conditional compilation
Integrate code lines conditionally.

Syntax 1

&ifdef identifier
...
[&else
...]
&endif

Programming tools | 1531

Syntax 2

&ifndef identifier
...
[&else
...]
&endif

1. identifier is a preprocessor constant.

Usage

The &ifdef and &ifndef preprocessor macros can be used to integrate code lines conditionally
according to the existence of a preprocessor constant.

The constant is defined with a &define or with the -D option in the command line.

Even if the condition is evaluated to false, the content of the &ifdef block is still scanned and tokenized.
Therefore, it must be lexically correct.

Sometimes it is useful to use some code if a macro is not defined. You can use &ifndef, that evaluates to
true if the macro is not defined.

Source: File A

&define IS_DEFINED
&ifdef IS_DEFINED
DISPLAY "The macro is defined"
&endif /* IS_DEFINED */

Result:

& 1 "A"

DISPLAY "The macro is defined"

The debugger
Describes the command-line debugger to find easily bugs in your programs.

• Understanding the debugger on page 1531
• Prerequisites to run the debugger on page 1532
• Starting fglrun in debug mode on page 1532
• Attaching to a running program on page 1533
• Debugging on a mobile device on page 1534
• Stack frames in the debugger on page 1535
• Setting a breakpoint programmatically on page 1536
• Expressions in debugger commands on page 1536
• Debugger commands on page 1537

Understanding the debugger

The debugger is a feature built in the runtime system (fglrun) that allows you to control the execution of a
program step by step, so that you can find logical and runtime errors.

There are three debug modes possible with the Genero runtime system:

Programming tools | 1532

1. Start the fglrun program from the command line with the -d option. For more details, see Starting fglrun
in debug mode on page 1532.

2. Attaching with the fgldb tool, to a running fglrun process, for debugging through a TCP socket. For
more details, see Attaching to a running program on page 1533.

3. Connect directly with the fgldb tool, to the debug TCP port of a runtime system running on a mobile
device in standalone mode. For more details, see Debugging on a mobile device on page 1534.

The debugger supports a subset of the standard GNU C/C++ debugger called gdb.

In command line mode, the debugger shows the following prompt

(fgldb)

A command is a single line of input. It starts with a command name, which may be followed by arguments
whose meaning depends on the command name. For example, the command step accepts as an
argument the number of times to step:

(fgldb) step 5

You can use command abbreviations. For example, the 'step' command abbreviation is 's':

(fgldb) s 5

Possible command abbreviations are shown in the command's syntax.

A blank line as input to the debugger (pressing just the RETURN or ENTER keys) usually causes the
previous command to repeat. However, commands whose unintentional repetition might cause problems
will not repeat in this way.

Prerequisites to run the debugger

Before starting the debugger, make sure you have properly set the FGLSOURCEPATH environment
variable, to let the debugger find the source files.

UNIX™ example:

$ FGLSOURCEPATH="/usr/app/source:/home/scott/sources"
$ export FGLSOURCEPATH

Windows™ example:

C:\> set FGLSOURCEPATH=C:\app\sources;C:\scott\sources

By default, if FGLSOURCEPATH is not defined, the debugger searches for sources in the current directory
and in directories defined by FGLLDPATH.

Make sure that the following FGLPROFILE entry is not define or defined as false:

fglrun.ignoreDebuggerEvent = false

Starting fglrun in debug mode

To start the fglrun runtime system in debug mode, use the -d option of fglrun, for example:

fglrun -d myprog

This mode is typically used in development environments when using the command line tools.

Programming tools | 1533

The debugger can be used from the command line shell, but can also be called from a graphical debugging
tool that understands the debugging commands of fglrun -d. The syntax of the commands is similar to
the gdb debugger.

The debugger can for example be used alone in the command line mode or with a graphical shell
compatible with gdb such as ddd:

ddd --debugger "fglrun -d myprog"

Attaching to a running program

Basics

Use the fgldb command with the -p option to switch the runtime system into debug mode when an
application is running on a server.

Note: The fgldb command must be executed on the machine where the fglrun process executes.

The fgldb command line tool takes the fglrun-bin (Unix) / fglrun.exe (Windows) process id as value for the
-p argument.

Note: Before starting a debug session, make sure that you fulfill the prerequisites for debugging.

Debug a program running on a UNIX server

First, identify the process id of the fglrun-bin or fglrun.exe program running on your server.

For example, on a Unix platform, use the ps command:

$ ps a | grep fglrun-bin
10646 pts/0 S+ 0:00 /opt/myapp/fgl/lib/fglrun-bin stockinfo.42m

Note: Inspect the GAS log files to find the id of an fglrun process running behind a GAS application
server. Enable full log reports in the GAS to get detailed information about process execution.

You may want to debug processes that use a lot of machine resources (processor, memory or open files).
Use a system utility to find a process id by resources used (e.g., the top command on Linux).

Execute the fgldb tool with the process id of the program you want to attach to:

$ fgldb -p 10646
108 DISPLAY ARRAY contlist TO sr.*
(fgldb)

The (fgldb) prompt indicates that you are now connected to the fglrun process, and the program flow is
suspended. To continue with the program flow, enter the "continue" debugger command:

(fgldb) continue
Continuing.

The application will then resume. To suspend the program again and enter debugger commands,
press CTRL-C in the debug console. fgldb will display the interrupt message and return control to the
debugger:

...
Continuing.
^CINTERRUPT
108 DISPLAY ARRAY contlist TO sr.*
(fgldb)

Programming tools | 1534

At this point, you can enter debugger commands. For example, set a break point and continue until the
break point is reached:

(fgldb) b 427
Breakpoint 2 at 0x00000000: file contacts.4gl, line 427.
(fgldb) continue
Continuing.
Breakpoint 2, edit_contact() at contacts.4gl:427
427 IF new THEN
(fgldb)

To finish the debug session, close the connection with the "detach" debugger command:

(fgldb) detach
Connection closed by foreign host.

Debugging on a mobile device

Basics

When an app was created with debug mode and is running in on a device, it is possible to switch the
runtime system in debug mode, by using the fgldb command tool with the -m option.

Important: The app must have be created in debug mode. Apps created in release mode cannot
be debugged with the fgldb tool. For more details, check how to build mobile apps with debug
mode in the Deploying mobile apps on page 2572 section.

Important: On iOS devices, after installing the app, you need to enable the debug port in the app
settings, otherwise the app will not listen to the debug port.

The fgldb command line tool takes two arguments: The host (or IP address) of the mobile device, and an
optional TCP port number to connect to. For mobile devices, the debug TCP port is 6400. Note that this
is the same port the mobile front-end is listening to for GUI connection, when working in GUI client/server
mode.

Note: Before starting a debug session, make sure that you fulfill the prerequisites for debugging.

Debugging an app running on a physical device

Considering the mobile device IP address is "192.168.1.23", and the application is running locally on a
physical mobile device, you can open a debug session from the development machine as follows:

$ fgldb -m 192.168.1.23:6400
108 DISPLAY ARRAY contlist TO sr.*
(fgldb)

The (fgldb) prompt indicates that you are now connected to the fglrun process on mobile device, and
the program flow is suspended. To continue with the program flow, enter the "continue" debugger
command:

(fgldb) continue
Continuing.

The application will then resume on the mobile device. To suspend the program again and enter debugger
commands, press CTRL-C in the debug console: fgldb will show the interrupt message and give you the
control back:

...
Continuing.

Programming tools | 1535

^CINTERRUPT
108 DISPLAY ARRAY contlist TO sr.*
(fgldb)

At this point, you can for example set a break point and continue until the break point is reached:

(fgldb) b 427
Breakpoint 2 at 0x00000000: file contacts.4gl, line 427.
(fgldb) continue
Continuing.
Breakpoint 2, edit_contact() at contacts.4gl:427
427 IF new THEN
(fgldb)

To finish the debug session, close the connection with the "detach" debugger command:

(fgldb) detach
Connection closed by foreign host.

Debugging an app running on an Android device emulator

When the mobile application is executing on an Android device emulator in the same machine as the
development environment, you must first redirect the 6400 TCP port.

First you must connect to the emulator terminal, using the telnet TCP port 5554:

$ telnet localhost 5554

When connected on the device emulator, redirect the port 6400 as follows:

$ redir add tcp:6400:6400
$ quit

You may also want to redirect the port 6480, to be able to show GMA service debug information from a
browser with the http://localhost:6480 URL:

$ redir add tcp:6480:6480

Finally, quit the device emulator telnet session with:

$ quit

Stack frames in the debugger

Each time your program performs a function call, information about the call is saved in a block of data
called a stack frame. Each frame contains the data associated with one call to one function.

The stack frames are allocated in a region of memory called the call stack. When your program is started,
the stack has only one frame, that of the function main. This is the initial frame, also known as the
outermost frame. As the debugger executes your program, a new frame is made each time a function is
called. When the function returns, the frame for that function call is eliminated.

The debugger assigns numbers to all existing stack frames, starting with zero for the innermost frame, one
for the frame that called it, and so on upward. These numbers do not really exist in your program; they are
assigned by the debugger to allow you to designate stack frames in commands.

Each time your program stops, the debugger automatically selects the currently executing frame and
describes it briefly. You can use the frame command to select a different frame from the current call stack.

http://localhost:6480

Programming tools | 1536

Setting a breakpoint programmatically

You can set a breakpoint in the program source code with the BREAKPOINT instruction. If the program
flow encounters this instruction, the program stops as if the break point was set by the break command:

MAIN
 DEFINE i INTEGER
 LET i=123
 BREAKPOINT
 DISPLAY i
END MAIN

The BREAKPOINT instruction is simply ignored when running in normal mode.

Expressions in debugger commands

Some debugger commands such as display take an expression as argument. The Genero debugger
supports a reduced syntax for command expressions described in this section. For a detailed description of
comparison operators, constant values and operands, see Expressions.

Syntax

 variable
| char-const
| int-const
| dec-const
| NULL
| TRUE
| FALSE
| expression IS [NOT] NULL
| expression = expression
| expression == expression
| expression <= expression
| expression => expression
| expression < expression
| expression > expression
| expression + expression
| expression - expression
| expression * expression
| expression / expression
| expression OR expression
| expression AND expression
| NOT expression
| - expression
| (expression)

Note:

1. variable is a program variable name.
2. char-const is character string literal delimited by single or double quotes.
3. int-const is an integer literal.
4. dec-const is a decimal number literal.
5. expression is a combination of one or more listed syntax elements.

Example

(fgldb) display a + 1000
1: a = 1140.50

Programming tools | 1537

Debugger commands

Table 325: Summary of debugger commands

Command Description

backtrace / where
Print a summary of how your program reached the
current state (back trace of all stack frames).

break Set a break point at the specified line or function.

call Call a function in the program.

clear Clear breakpoint at some specified line or function.

continue Continue program being debugged.

define Define a new command name.

delete
Delete some breakpoints or auto-display
expressions.

detach Closes a remote debug connection.

disable Disable some breakpoints.

display
Print the values of expression EXP each time the
program stops.

down
Select and print the function called by the current
function.

echo Print the specified text.

enable
Re-activate breakpoints that have previously been
disabled.

finish Execute until selected stack frame returns.

frame Select and print a stack frame.

help Print list of debugger commands.

ignore
Set ignore-count of a breakpoint number N to
COUNT.

info
Provide information about the status of the
program.

list List specified function or line.

next
Step program; continue with the next source code
line at the same level.

output
Print the current value of the specified expression;
do not include value history and do not print
newline.

print Print the current value of the specified expression.

ptype Print the type of a variable

quit Exit the debugger.

run Start the debugged program.

Programming tools | 1538

Command Description

set
Evaluate an expression and assign the result to a
variable.

source Execute a file of debugger commands.

signal
Continue program giving it the signal specified by
the argument.

step Step program until it reaches a different source line.

tbreak Set a temporary breakpoint.

tty
Set terminal for future runs of program being
debugged.

undisplay
Cancel some expressions to be displayed when the
program stops.

until
Continue running until a specified location is
reached.

up
Select and print the function that called the current
function.

watch
Set a watchpoint for an expression. A watchpoint
stops the execution of your program whenever the
value of an expression changes.

whatis Prints the data type of a variable.

backtrace / where
The backtrace commands prints a summary of how your program reached the current state.

Syntax

backtrace

Usage

The backtrace command prints a summary of your program's entire stack, one line per frame. Each line
in the output shows the frame number and function name.

bt and where are aliases for the backtrace command.

Example

(fgldb) backtrace
#1 addcount() at mymodule.4gl:6
#2 main() at mymodule.4gl:2
(fgldb)

break
The break command defines a break point to stop the program execution at a given line or function.

Syntax

break [{ [module.]function

Programming tools | 1539

 | [module:]line }]
 [if condition]

1. function is a function name.
2. module is the name of a specific source file, without extension.
3. line is a source code line.
4. condition is an expression evaluated dynamically.

Usage

The break command sets a break point at a given position in the program.

When the program is running, the debugger stops automatically at breakpoints defined by this command.

If a condition is specified, the program stops at the breakpoint only if the condition evaluates to TRUE.

If you do not specify any location (function or line number), the breakpoint is created for the current line.
For example, if you write "break if var = 1", the debugger adds a conditional breakpoint for the current line,
and the program will only stop if the variable is equal to 1 when reaching the current line again.

Example

(fgldb) break mymodule:5
Breakpoint 2 at 0x00000000: file mymodule.4gl, line 5.

call
The call command calls a function in the program.

Syntax

call function-name ([expression [,...]])

1. function-name is the name of the function to call.
2. expression is a combination of variables, constants and operators.

Usage

The call command invokes a function of the program and returns the control to the debugger.

The return values of the function are printed as a comma-separated list delimited by curly braces.

Example

MAIN
 DEFINE i INTEGER

 LET i = 1
 DISPLAY i
END MAIN

FUNCTION hello ()
 RETURN "hello", "world"
END FUNCTION

(fgldb) br main
Breakpoint 1 at 0x00000000: file t.4gl, line 4.
(fgldb) run
Breakpoint 1, main() at t.4gl:4

Programming tools | 1540

4 LET i = 1
(fgldb) call hello()
$1 = { "hello" , "world" }
(fgldb)

clear
The clear command clears the breakpoint at a specified line or function.

Syntax

clear [{ function | [module:] line }]

1. function is a function name.
2. module is a specific source file.
3. line is a source code line.

Usage

With the clear command, you can delete breakpoints according to where they are in your program.

Use the clear command with no arguments to delete any breakpoints at the next instruction to be
executed in the selected stack frame.

Use the delete command to delete individual breakpoints by specifying their breakpoint numbers.

Example

(fgldb) clear mymodule:5
Deleted breakpoint 2
(fgldb)

continue
The continue command continues the execution of the program after a breakpoint.

Syntax

continue [ignore-count]

1. ignore-count defines the number of times to ignore a breakpoint at this location.

Usage

The continue command continues the execution of the program until the program completes normally,
another breakpoint is reached, or a signal is received.

c is an alias for the continue command.

Example

(fgldb) continue
...
(program output)
...
Program exited normally.

Programming tools | 1541

define
The define command allows you to specify a user-defined sequence of commands.

Syntax

define command-name
command
 [...]
end

1. command-name is the name assigned to the command sequence.
2. command is a valid debugger command.
3. end indicates the end of the command sequence.

Usage

The define command allows you to create a user-defined command by assigning a command name to a
sequence of debugger commands that you specify. You may then execute the command that you defined
by entering the command name at the debugger prompt.

User commands may accept up to ten arguments separated by white space.

Example

(fgldb) define myinfo
> info breakpoints
> info program
> end
(fgldb)

delete
The delete command allows you to remove breakpoints that you have specified in your debugger
session.

Syntax

delete breakpoint

1. breakpoint is the number assigned to the breakpoint by the debugger.

Usage

The delete command allows you to remove breakpoints when they are no longer needed in your
debugger session.

If you prefer you may disable the breakpoint instead, see the disable command.

d is an alias for the delete command.

Example

(fgldb) delete 1
(fgldb) run
Program exited normally.
(fgldb)

Programming tools | 1542

detach
The detach command closes the TCP connection of a remove debug session.

Syntax

detach

Usage

The detach command must be used to terminate a remove debug session, by closing the debug TCP
connection.

Example

(fgldb) detach

disable
The disable command disables the specified breakpoint.

Syntax

disable breakpoint

1. breakpoint is the number assigned to the breakpoint by the debugger.

Usage

The disable command instructs the debugger to ignore the specified breakpoint when running the
program.

Use the enable command to reactivate the breakpoint for the current debugger session.

Example

(fgldb) disable 1
(fgldb) run
Program exited normally.
(fgldb)

display
The display command displays the specified expression's value each time program execution stops.

Syntax

display expression

1. expression is a combination of variables, constants and operators.

Usage

The display command allows you to add an expression to an automatic display list. The values of
the expressions in the list are printed each time program execution stops. Each expression in the list is
assigned a number to identify it.

This command is useful in tracking how the values of expressions change during the program's execution.

Programming tools | 1543

Example

(fgldb) display a
1: a = 6
(fgldb) display i
2: i = 1
(fgldb) step
2: i = 1
1: a = 6
16 for i = 1 to 10
(fgldb) step
2: i = 2
1: a = 6
17 let a = a+1
(fgldb)

down
The down command moves down in the call stack.

Syntax

down

Usage

The down command moves the focus of the debugger down from the frame currently being examined, to
the frame of its callee.

The command selects and prints the function called by the current function.

See stack frames for a brief description of frames.

(fgldb) down
#0 query_cust() at custquery.4gl:22
22 CALL cleanup()
(fgldb)

echo
The echo command prints the specified text as prompt.

Syntax

echo text

1. text is the specific text to be output.

Usage

The echo command allows you to generate exactly the output that you want.

Special characters can be included in text using C escape sequences, such as '\n' to print a newline. No
newline is printed unless you specify one. In addition to the standard C escape sequences, a backslash
followed by a space stands for a space. A backslash at the end of text can be used to continue the
command onto subsequent lines.

Programming tools | 1544

Example

(fgldb) echo hello\n
hello
(fgldb)

enable
The enable command enables breakpoints that have previously been disabled.

Syntax

enable breakpoint

1. breakpoint is the number assigned to the breakpoint by the debugger.

Usage

The enable command allows you to reactivate a breakpoint in the current debugger session.

The breakpoint must have been disabled using the disable command.

Example

(fgldb) disable 1
(fgldb) run
Program exited normally.
(fgldb) enable 1
(fgldb) run
Breakpoint 1, at mymodule.4gl:5

finish
The finish command continues the execution of a program until the current function returns normally.

Syntax

finish

Usage

The finish command instructs the program to continue running until just after the function in the selected
stack frame returns, and then stop.

The returned value, if any, is printed.

Example

(fgldb) finish
Run till exit myfunc() at module.4gl:10
Value returned is $1 = 123
(fgldb)

Programming tools | 1545

frame
The frame command selects and prints a stack frame.

Syntax

frame [number]

1. number is the stack frame number of the frame that you wish to select.

Usage

The frame command allows you to move from one stack frame to another, and to print the stack frame
that you select. Each stack frame is associated with one call to one function within the currently executing
program. Without an argument, the current stack frame is printed.

See stack frames for a brief discussion of frames.

Example

(fgldb) frame
#0 query_cust() at testquery.4gl:42
(fgldb)

help
The help command provides information about debugger commands.

Syntax

help [command]

1. command is the name of the debugger command for which you wish information.

Usage

The help command displays a short explanation of a specified command.

Enter the help command with no arguments to display a list of debugger commands.

Example

(fgldb) help delete
Delete some breakpoints or auto-display expressions

ignore
The ignore command defines the number of times a breakpoint must be ignored.

Syntax

ignore breakpoint count

1. breakpoint is the breakpoint number.
2. count is the number of times the breakpoint will be ignored.

Programming tools | 1546

Usage

The ignore command defines the number of times a breakpoint is ignored when the program flow
reaches that breakpoint.

The next count times the breakpoint is reached, the program execution will continue, and no breakpoint
condition is checked.

You can specify a count of zero to make the breakpoint stop the next time it is reached.

When using the continue command to resume the execution of the program from a breakpoint, you can
specify a an ignore count directly as an argument.

Example

(fgldb) br main
Breakpoint 1 at 0x00000000: file t.4gl, line 4.
(fgldb) ignore 1 2
Will ignore next 2 crossings of breakpoint 1.
(fgldb) run 1
Program exited normally.
(fgldb) run 1
Program exited normally.
(fgldb) run
Breakpoint 1, main() at t.4gl:4
4 LET i = 1
(fgldb)

info
The info command describes the current state of your program.

Syntax

info { breakpoints
|sources
| program
| variables
| locals
| files
| line { function
 | module:line }
}

1. function is a function name of the program.
2. module:line defines a source code line in a module.

Usage

The info command describes the state of your program.

• info breakpoints lists the breakpoints that you have set.
• info sources prints the names of all the source files in your program.
• info program displays the status of your program.
• info variables displays global variables.
• info locals displays the local variables of the current function.
• info files lists the files from which symbols were loaded.
• info line function prints the program addresses for the first line of the function named function.
• info line module:line prints the starting and ending addresses of the compiled code for the

source line specified. See the list command for all the ways that you can specify the source code line.

Programming tools | 1547

Example

(fgldb) info sources
Source files for which symbols have been read in:
mymodule.4gl, fglwinexec.4gl, fglutil.4gl, fgldialog.4gl,
 fgldummy4js.4gl
(fgldb)

list
The list command prints source code lines of the program being executed.

Syntax

list [function
 | [module:]line]

Usage

The list command prints source code lines of your program, by default it begins with the current line.

Example

(fgldb) run
Breakpoint 1, at mymodule.4gl:5
5 CALL addlist()
(fgldb) list
5 CALL add_customer(cust_rec.*)
6 MESSAGE "Customer record was added"
...
14 END FUNCTION
(fgldb)

next
The next command continues running the program by executing the next source line in the current stack
frame, and then stops.

Syntax

next [count]

1. count defines the number of lines to execute before stopping.

Usage

The next command allows you to execute your program one line of source code at a time. The next
command is similar to step, but function calls that appear within the line of code are executed without
stepping into the function code.

When the next line of code at the original stack level that was executing when you gave the next
command is reached, execution stops.

Using a count parameter will repeat the step command count times.

After reaching a breakpoint, the next command can be used to examine a troublesome section of code
more closely.

Programming tools | 1548

n is an alias for the next command.

Example

(fgldb) next
5 CALL add_customer(cust_rec.*)
(fgldb) next
6 MESSAGE "Customer record was added"
(fgldb) next 2
8 RETURN TRUE

output
The output command prints only the value of the specified expression, suppressing any other output.

Syntax

output expression

1. expression is a combination of variables, constants and operators.

Usage

The output command prints the current value of the expression and nothing else, no newline character,
no "expr=", etc.

The usual output from the debugger is suppressed, allowing you to print only the value.

Example

(fgldb) output cust_rec.cust_id
87324(fgldb)

print
The print command displays the current value of the specified expression.

Syntax

print expression

1. expression is a combination of variables, constants and operators.

Usage

The print command allows you to examine the data in your program.

It evaluates and prints the value of the specified expression from your program, in a format appropriate to
its data type.

p is an alias for the print command.

Example

(fgldb) print cust_rec.cust_id
$1 = 87324
(fgldb)

Programming tools | 1549

ptype
The ptype command prints the data type or structure of a variable.

Syntax

ptype variable-name

1. variable-name is the name of the variable.

Example

(fgldb) ptype cust_rec
type = RECORD
 cust_num INTEGER,
 cust_name VARCHAR(10),
 cust_address VARCHAR(200)
END RECORD

quit
The quit command terminates the debugger session.

Syntax

quit

Usage

The quit command allows you to exit the debugger.

q is an alias for the quit command.

Example

(fgldb) quit

run
The run command starts the program.

Syntax

run [argument [...]]

1. argument is an argument to be passed to the program.

Usage

The run command causes your program to execute until a breakpoint is reached or the program
terminates normally.

Example

(fgldb) run a b c
Breakpoint 1, at mymodule.4gl:3
3 CALL add_cust(cust_rec.*)

Programming tools | 1550

(fgldb)

set
The set command allows you to configure your debugger session and change program variable values.

Syntax

set { annotate {1|0}
 | environment envname[=value]
 | prompt ptext
 | set print elements elemcount
 | variable varname=expression
 | verbose {on|off}
 }

1. ptext is the string to which the prompt should be set.
2. varname is the program variable to be set to expression.
3. expression is a combination of variables, constants and operators.
4. envname is the environment variable to be set to value.
5. elemcount is the number of elements to define.

Usage

The set command allows to change program variables and/or debug environment settings.

set variable sets an program variable, to be taken into account when continuing program execution.
The right operand can be an expression.

set prompt changes the prompt text. The text can be set toady string. A space is not automatically
added after the prompt string, allowing you to determine whether to add a space at the end of the prompt
string.

set environment sets an environment variable, where value may be any string. If the value parameter
is omitted, the variable is set to a null value. The variable is set for your program, not for the debugger
itself.

set verbose on forces the debugger to display additional messages about its operations, allowing you
to observe that it is still working during lengthy internal operations.

set annotate 1 switches the output format of the debugger to be more machine readable (this
command is used by GUI front-ends like ddd or xxgdb)

set print elements elemcount defines the maximum number of array elements to be printed by the
debugger when displaying a program array.

Example

(fgldb) set prompt ($)
($)

On UNIX™ systems, if your SHELL variable names a shell that runs an initialization file,
any variables you set in that file affect your program. You may wish to move setting of
environment variables to files that are only run when you sign on, such as .login or .profile.

Programming tools | 1551

source
The source command executes a file of debugger commands.

Syntax

source cmdfile

1. cmdfile is the name of the file containing the debugger commands.

Usage

The source command allows you to execute a command file of lines that are debugger commands.

The lines in the file are executed sequentially.

The commands are not printed as they are executed, and any messages are not displayed.

Commands are executed without asking for confirmation.

An error in any command terminates execution of the command file.

Example

Using the text file cmdfile.txt, which contains the single line with a break command:

$ cat cmdfile.txt
break 10

$ fglrun -d myprog
(fgldb) source cmdfile.txt
Breakpoint 2 @ 0x00000000: file mymod.4gl, line 10.
(fgldb)

signal
The signal command sends an interruption signal to the program.

Syntax

signal signal

Usage

The signal comment resumes execution where your program stopped, but immediately give it the signal
signal.

signal can be the name or the number of a signal.

For example, on many systems signal 2 and signal SIGINT are both ways of sending an interrupt
signal. The signal SIGINT command resumes execution of your program where it has stopped, but
immediately sends an interrupt signal. The source line that was current when the signal was received is
displayed.

Note: The current version only allows then signal SIGINT.

Example

(fgldb) signal SIGINT
Program exited normally.
16 for i = 1 to 10

Programming tools | 1552

(fgldb)

step
The step command continues running the program by executing the next line of source code, and then
stops.

Syntax

step [count]

1. count defines the number of lines to execute before stopping.

Usage

The step command allows you to "step" through your program, executing one line of source code at a
time.

When a function call appears within the line of code, that function is also stepped through.

A common technique is to set a breakpoint prior to the section or function that is causing problems, run the
program till it reaches the breakpoint, and then step through it line by line.

Using a count parameter will repeat the step command count times.

s is an alias for the step command.

Example

(fgldb) step
4 CALL add_customer(cust_rec.*)
(fgldb) step 2
6 MESSAGE "Customer record was added"

tbreak
The tbreak command sets a temporary breakpoint.

Syntax

tbreak [{ function | [module:] line }] [if condition]

1. function is a function name.
2. module is a specific source file.
3. line is a source code line.
4. condition is an expression evaluated dynamically.

Usage

The tbreak command sets a breakpoint for one stop only.

The breakpoint is set in the same way as with the break command, but the breakpoint is automatically
deleted after the first time your program stops there.

If a condition is specified, the program stops at the breakpoint only if the condition evaluates to true.

If you do not specify any location (function or line number), the breakpoint is created for the current line.
For example, if you write "tbreak if var = 1", the debugger adds a conditional breakpoint for the
current line, and the program will only stop if the variable is equal to 1 when reaching the current line again.

Programming tools | 1553

Example

(fgldb) tbreak 12
Breakpoint 2 at 0x00000000: file custmain.4gl, line 12.
(fgldb)

tty
The tty command resets the default program input and output for future run commands.

Syntax

tty filename

1. filename is the file which is to be the default for program input and output.

Usage

The tty command instructs the debugger to redirect program input and output to the specified file for
future run commands.

The redirection is for your program only; your terminal is still used for debugger input and output.

Example

(fgldb) tty /dev/ttyS0
(fgldb)

undisplay
The undisplay command cancels expressions to be displayed when the program execution stops.

Syntax

undisplay itemnum

1. itemnum is the number of the expressions for which the display is cancelled.

Usage:

When the display command is used, each expression displayed is assigned an item number.

The undisplay command allows you to remove expressions from the list to be displayed, using the item
number to specific the expression to be removed.

Example

(fgldb) step
2: i = 2
1: a = 20
9 FOR i = 1 TO 10
(fgldb) undisplay 2
(fgldb) step
1: a = 20
10 LET cont = TRUE
(fgldb)

Programming tools | 1554

until
The until command continues running the program until the specified location is reached.

Syntax

until [{ function | [module:] line }]

1. function is a function name.
2. module is a specific source file.
3. line is a source code line.

Usage

The until command continues running your program until either the specified location is reached, or the
current stack frame returns.

This command can be used to avoid stepping through a loop more than once.

Example

(fgldb) until add_customer()

up
The up command selects and prints the function that called this one, or the function specified by the frame
number in the call stack.

Syntax

up [frames]

1. frames says how many frames up to go in the stack. The default is 1.

Usage

The up command moves towards the outermost frame, to frames that have existed longer. To print the
function that called the current function, use the up command without an argument.

See stack frames for a brief description of frames.

Example

(fgldb) up
#1 main() at customain.4gl:14
14 CALL query_cust()
(fgldb)

watch
The watch command sets a watchpoint for an expression.

Syntax

watch expression [if boolean-expression]

1. expression is a combination of variables, constants and operators.
2. boolean-expression is an optional boolean expression.

Programming tools | 1555

Usage

The watch command stops the program execution when the value of the expression changes.

If boolean-expression is provided, the watch command stops the execution of the program if the
expression value has changed and the boolean-expression evaluates to true.

The watchpoint cannot be set if the program is not in the context where expression can be evaluated.
Before using a watchpoint, you typically set a breakpoint in the function where the expression makes
sense, then you run the program, and then you set the watchpoint. This example illustrates this procedure.

Example

MAIN
 DEFINE i INTEGER

 LET i = 1
 DISPLAY i
 LET i = 2
 DISPLAY i
 LET i = 3
 DISPLAY i

 END MAIN

(fgldb) break main
breakpoint 1 at 0x00000000: file test.4gl, line 4
(fgldb) run
Breakpoint 1, main() at test.4gl:4
4 LET i = 1
(fgldb) watch i if i >= 3
Watchpoint 1: i
(fgldb) continue
1
2
Watchpoint 1: i

Old value = 2
New value = 3
main() at t.4gl:9
9 DISPLAY i
(fgldb)

whatis
The whatis command prints the data type of a variable.

Syntax

whatis variable-name

1. variable-name is the name of the variable.

Usage

The whatis command can be used to show the data type of a program variable.

The program variable must exist in the current scope.

Programming tools | 1556

Example

(fgldb) run
Breakpoint 1, main() at t.4gl:4
4 LET i = 1
(fgldb) whatis i
type = INTEGER
(fgldb)

The profiler
Find out what function is the bottleneck in your program.

• Syntax of the program profiler on page 1556
• Usage on page 1556

• Understanding the profiler on page 1556
• Profiler output: Flat profile on page 1556
• Profiler output: Call graph on page 1557

• Example on page 1558

Syntax of the program profiler

Start the fglrun tool with the -p option in order to activate the program profiler.

fglrun -p program[.42r] [argument [...]]

1. program is the name of the BDL program.
2. argument is a command line argument passed to the program.

Profiling statistics will be collected during program execution, and printed when the program ends.

Usage

Understanding the profiler

The profiler is a tool built in the runtime system that allows you to know where your program spends time,
and which function calls which function.

The profiler can help to identify pieces of your program that are slower than expected.

In order to enable the profiler during the execution of a program, you must start fglrun with the -p option, for
example:

fglrun -p myprog

When the program ends, the profiler dumps profiling information to standard error.

The times reported by the profiler can change from one execution to the other, depending on the available
system resources. You better execute the program several times to get an average time.

The profiler does not support parent/child recursive calls, when a child function calls its parent function (i.e.
Function P calls C which calls P again). In this case the output will show negative values, because the time
spend in the parent function is subtracted from the time spend in the child function.

Profiler output: Flat profile

The section "flat profile" contains the list of the functions called while the programs was running. It is
presented as a five-column table.

Programming tools | 1557

Table 326: Flat profile columns

Column Name Description

count number of calls for this function

%total
Percentage of time spent in this function. Includes
time spent in subroutines called from this function.

%child
Percentage of time spent in the functions called
from this function.

%self
Percentage of time spent in this function excluding
the time spent in subroutines called from this
function.

name Function name

Note: 100% represents the program execution time.

Profiler output: Call graph

The section "Call graph" provides for each function:

1. The functions that called it, the number of calls, and an estimation of the percentage of time spent in
these functions.

2. The functions called, the number of calls, and an estimation of the time that was spent in the
subroutines called from this function.

Table 327: Call graph columns

Column name Description

index
Each function has an index which appears at the
beginning of its primary line.

%total
Percentage of time spent in this function. Includes
time spent in subroutines called from this function.

%self
Percentage of time spent in this function excluding
the time spent in subroutines called from this
function.

%child
Percentage of time spent in the functions called
from this function.

calls/of Number of calls / Total number of calls

name Function name

Output example:

index %total %self %child calls/of name

Programming tools | 1558

...
 1.29 0.10 1.18 1/2 <-- main
 24.51 1.18 23.33 1/2 <-- fb
[4] 25.80 1.29 24.51 2 *** fc
 24.51 1.43 23.08 7/8 --> fa

Description:

• The three stars *** indicate the function that is analyzed: fb.
• fc consumed 25.80% of the CPU time, 24.51% was in the called functions, 1.29% in the fc function

code.
• fc has been called two times (one time by main and a second time by fb)
• fc has called the fa function 7 times.
• fa has been called 8 times in the program.

Example

Sample program

MAIN
 DISPLAY "Profiler sample"
 CALL fB()
 CALL fC(2)
END MAIN

FUNCTION fA(s,n_a)
 DEFINE s STRING
 DEFINE n_a,i INTEGER
 FOR i=1 TO n_a
 DISPLAY "fA "||s||" n:"||i
 END FOR
END FUNCTION

FUNCTION fB()
 CALL fA("fB",10)
 CALL fC(5)
END FUNCTION

FUNCTION fC(n_c)
 DEFINE n_c INTEGER
 WHILE n_c > 0
 CALL fA("fC",2)
 LET n_c=n_c-1
 END WHILE
END FUNCTION

Running the profiler

Flat profile (order by self)
 count %total %child %self name
 25 88.0 0.0 88.0 rts_display
 72 6.3 0.0 6.3 rts_Concat
 8 85.4 82.0 3.4 fa
 2 25.8 24.5 1.3 fc
 8 0.3 0.0 0.3 rts_forInit
 1 85.6 85.4 0.2 fb
 1 99.9 99.6 0.3 main

Programming tools | 1559

Call gr

index %total %self %child calls/of name
 12.69 12.69 0.00 1/25 <-- main
 75.29 75.29 0.00 24/25 <-- fa
[1] 87.98 87.98 0.00 25 *** rts_display

 6.35 6.35 0.00 72/72 <-- fa
[2] 6.35 6.35 0.00 72 *** rts_Concat

 60.90 2.02 58.88 1/8 <-- fb
 24.51 1.43 23.08 7/8 <-- fc
[3] 85.41 3.45 81.96 8 *** fa
 75.29 75.29 0.00 24/25 --> rts_display
 6.35 6.35 0.00 72/72 --> rts_Concat
 0.33 0.33 0.00 8/8 --> rts_forInit

 1.29 0.10 1.18 1/2 <-- main
 24.51 1.18 23.33 1/2 <-- fb
[4] 25.80 1.29 24.51 2 *** fc
 24.51 1.43 23.08 7/8 --> fa

 0.33 0.33 0.00 8/8 <-- fa
[5] 0.33 0.33 0.00 8 *** rts_forInit

 85.61 0.20 85.41 1/1 <-- main
[6] 85.61 0.20 85.41 1 *** fb
 24.51 1.18 23.33 1/2 --> fc
 60.90 2.02 58.88 1/8 --> fa

 99.94 0.35 99.59 1/1 <-- <top>
[7] 99.94 0.35 99.59 1 *** main
 1.29 0.10 1.18 1/2 --> fc
 85.61 0.20 85.41 1/1 --> fb
 12.69 12.69 0.00 1/25 --> rts_display

Optimization
Programming tips and tricks to make your programs run faster.

• Runtime system basics on page 1560

• Dynamic module loading on page 1560
• Elements shared by multiple programs on page 1560
• Elements shared by multiple modules on page 1560
• Objects private to a program on page 1560

• Check runtime system memory leaks on page 1561
• Optimize your programs on page 1561

• Finding program bottlenecks on page 1561
• Optimizing SQL statements on page 1561
• Passing small CHAR parameters to functions on page 1561
• Compiler removes unused variables on page 1562
• Saving memory by splitting modules on page 1562
• Saving memory by using STRING variables on page 1562
• Saving memory by using dynamic arrays on page 1562

Programming tools | 1560

Runtime system basics

Dynamic module loading

A Genero Business Development Language program is made of several 42m modules. Modules a linked
together, or the dependency is defined with the IMPORT FGL instruction.

Except when using the debugger, modules are loaded dynamically when a module element (.i.e symbol) is
required by the caller. For example, when executing a CALL instruction, the runtime system checks if the
module of the function is already in memory. If not, the module is first loaded, then module variables are
instantiated, and then the function is called.

Running programs are not affected by file replacements and will continue to run with an image of the
module file that was originally loaded. However, replacing program modules during execution should be
used with care: Since .42m modules are loaded dynamically on demand (when a symbol of the module is
referenced), some modules may not yet be loaded, even if the program instance is already started. When
replacing a module while programs are running, invalid symbol errors can occur if the module to be loaded
does not correspond to the rest of the program modules that were loaded before the file replacements. See
following scenario:

1. Program starts with V1 of main.42m, needing V1 of module libutil.42m (loaded later on demand).
2. Administrator upgrades application and installs main.42m and libutil.42m version V2.
3. Program running with V1 copy of main.42m calls a function from libutil.42m: runtime loads V2 of

that module, while V1 is expected.

When live application updates are mandatory, consider installing new program and resource files
(V2) in a different directory as the currently running version (V1), and use the FGLLDPATH and
FGLRESOURCEPATH environment variables to point to the new files when starting a new (V2) program
instance.

Note that on Windows™ platforms, program files currently in use cannot be overwritten, because of
Windows™ OS memory mapping limitations. You need to turn off memory mapping with the FGLPROFILE
entry fglrun.mmapDisable.

Elements shared by multiple programs

The (.42m) p-code module instructions and other elements such as constants are shared among several
programs running on the same machine.

Localized string resource files (.42s) are also shared among all fglrun processes running on a computer.

These files are loaded with the system memory mapping facility, which allows multiple processes to access
the same unique memory area.

Elements shared by multiple modules

By definition, global variables are visible to all modules of a program, and thus shared among all modules
of the program. While global variables are an easy way to share data among multiple modules, it is not
recommended that you use too many global variables.

The data type definitions are only defined once in memory and shared by all modules of a program
instance. By data type definition we mean the type descriptions, not the data itself. This applies only to the
equivalent data types used in different modules.

Objects private to a program

Program objects such as global variables, module variables as well as resources used by the user
interface and SQL connections and cursors, are private to a program.

This implies that each of these objects requires private memory to be allocated. If memory is an issue, do
not allocate unnecessary resources. For example, don't create windows / load forms or declare / prepare
cursors until these are really needed by the program. When the resource is not longer needed, consider
freeing them (CLOSE WINDOW, FREE cursor).

Programming tools | 1561

Check runtime system memory leaks

To improve the quality of the runtime system, fglrun supports the -M / -m options to count the creation
of built-in class objects and some internal objects. This allows to check for memory leaks in the runtime
system: The runtime system counts the object creations and destructions for each class. The right-most
column of the output is the different between created and destroyed objects, it must show a zero for all
type of objects.

The options described here are provided for debugging purpose only. The output format is subject of
changes. These option can also be removed in a next version of the product.

$ fglrun -M stores.42r
FunctionI : 10 - 10 = 0
Module : 3 - 3 = 0
...
FieldType : 19 - 19 = 0

The -M option displays memory counters at the end of the program execution.

The -m option checks for memory leaks, and displays memory counters at the end of the program
execution if leaks were found.

Each line shows the number of objects allocated, and the number of objects freed. If the difference is not
zero, there is a memory leak.

If you are doing automatic regression tests, we recommend that you run all your programs with fglrun -
m to check for memory leaks in the runtime system.

Optimize your programs

This section lists some programming tips and tricks to optimize the execution of your application.

Finding program bottlenecks

The best way to find out why a program is slow (and also, to optimize an already fast-running program), it
to use the profiler.

This tool is included in the runtime system, and generates a report that shows what function in your
program is the most time-consuming.

Optimizing SQL statements

SQL statement execution is often the code part of the program that consumes a lot of processor, disk and
network resources. Therefore, it is critical to pay attention to SQL execution.

Advice for this can be found in SQL Programming.

Passing small CHAR parameters to functions

Function parameters of most data types are passed by value (i.e. the value of the caller variable is copied
on the stack, and then copied back into a local variable of the called function.) When large data types are
used, this can introduce a performance issue.

For example, the following code defines a logging function that takes a CHAR(2000) as parameter:

FUNCTION log_msg(msg)
 DEFINE msg CHAR(2000)
 CALL myLogChannel.writeLine(msg)
END FUNCTION

If you call this function with a string having 19 bytes:

CALL log_msg("Start processing...")

Programming tools | 1562

When doing this call, the runtime system copies 19 characters on the stack, calls the function, and then
copies the value into the local variable. Since the values in CHAR variables must always have a length
matching the variable definition size, the runtime system fills the remaining 1981 positions with blanks. As
result, each time you call this function, a 2000 characters long variable is created on the stack.

By using a VARCHAR(2000) (or a STRING) data type in this function, you optimize the execution because
no trailing blanks need to be added.

Compiler removes unused variables

When declaring a large static array without any reference to that variable in the rest of the module, you will
not see the memory grow at runtime. The compiler has removed its definition from the 42m module.

To get the defined variable in the 42m module, you must at least use it once in the source (for example,
with a LET statement). Note that memory might only be allocated when reaching the lines using the
variable.

Saving memory by splitting modules

Program modules (42m) are loaded dynamically on demand. If a program only needs some independent
functions of a given module, all module resources will be allocated just to call these functions. By
independent, we mean functions that do not use module objects such as variables defined outside function
or SQL cursors. To avoid unnecessary resource allocation, you can extract these independent functions
into another module and save a lot of memory at runtime.

If you are using 42x libraries, it is recommended that you create libraries with the 42m modules that belong
to the same functionality group. For example, group all accounting modules together in an accounting
library. By doing this, programmers using the 42x libraries are not dependent from module reorganizations.

Libraries are supported for backward compatibility, you should consider using the IMPORT FGL instruction
to define module dependency and get modules loaded dynamically when needed.

Saving memory by using STRING variables

The CHAR and VARCHAR data types are provided to hold string data from a database column. When you
define a CHAR or VARCHAR variable with a length of 1000, the runtime system must allocate the entire size,
to be able to fetch SQL data directly into the internal string buffer.

For character string data that is not stored in the database, consider using the STRING data type. The
STRING type is similar to VARCHAR, except that you don't need to specify a maximum length and the
internal string buffer is allocated dynamically as needed. Thus, by default, a STRING variable initially
requires just a bunch of bytes, and grows during the program life time, with a limitation of 65534 bytes.

A STRING variable should typically be used to build SQL statements dynamically, for example from a
CONSTRUCT instruction. You may also use the STRING type for utility function parameters, to hold file
names for example.

After a large STRING variable is used, it should be cleared with a LET or a INITIALIZE TO NULL
instruction. However, this is only needed for STRING variables declared as global or module variables. The
variables defined in functions will be automatically destroyed when the program returns from the function.

The base.StringBuffer build-in class should be used for heavy string manipulation and modifications.
String data is not copied on the stack when an object of this class is passed to a function, or when the
string is modified with class methods. This can have a big impact on performance when very large strings
are processed.

Saving memory by using dynamic arrays

The language supports both static arrays and dynamic arrays. For compatibility reasons, static arrays must
be allocated in their entirety. This can result in huge memory usage when big structures are declared, such
as:

DEFINE my_array ARRAY[100,50] OF RECORD

Programming tools | 1563

 id CHAR(200),
 comment1 CHAR(2000),
 comment2 CHAR(2000)
END RECORD

If possible, replace such static arrays with dynamic arrays:

DEFINE my_array DYNAMIC ARRAY OF RECORD
 id CHAR(200),
 comment1 CHAR(2000),
 comment2 CHAR(2000)
END RECORD

However, be aware that dynamic arrays have a slightly different behavior than static arrays.

Logging options
Logging solutions allow to display exchanges between components when a program executes.

Genero provides several options to get debug information, as well as logging features, to ease regression
test implementation:

• Logging the runtime errors in a file with STARTLOG().
• Getting the stack trace with base.Application.getStackTrace()
• Displaying the GUI protocol exchange in stderr with FGLGUIDEBUG.
• Log front-end protocol exchange with fglrun --start-guilog option.
• Displaying the SQL statements execution in stderr with FGLSQLDEBUG.

Extending the language | 1564

Extending the language

These topics cover extending Genero Business Development Language with other languages and external
components.

• The Java interface on page 1564
• C-Extensions on page 1597
• User-defined front calls on page 1615
• Web Components on page 1636

The Java™ interface
The Java™ interface allows you to import Java classes and instantiate Java objects in your programs.

The Java interface gives access to the huge standard Java libraries, as well as commercial libraries for
specific purposes.

The methods of Java objects can be called with other Java objects referenced in program, as well as with
native language data types such as INTEGER, DECIMAL, CHAR.

The Java interface of Genero has the following limitations:

1. It is not possible to use Java generic types such as java.util.Vector<E>, with a type parameter (for ex:
Vector<MyClass> v = new Vector<MyClass>()). However, it is possible to instanciate these
classes without a type parameter (for ex: Vector v = new Vector()).

2. Database connections cannot be shared between Java and Genero programs.
3. Java graphical objects cannot be used in Genero forms.

Note: On Android™ mobile devices, some system functions can only be accessed in the context
of a JVM. Use the Java™ interface with the com.fourjs.gma.vm.FglRun class to access such
system specifics.

• Prerequisites and installation on page 1565
• Getting started with the Java interface on page 1566

• Import a Java class on page 1566
• Define an object reference variable on page 1566
• Instantiate a Java class on page 1567
• Calling a method of a class on page 1567
• Calling a method of an object on page 1567

• Advanced programming on page 1568

• Using JVM options on page 1568
• Case sensitivity with Java on page 1568
• Method overloading in Java on page 1568
• Passing Java objects to functions on page 1569
• Using the method return as an object on page 1570
• Ignorable return of Java methods on page 1570
• Static fields of Java classes on page 1570
• Mapping native and Java data types on page 1571
• Using the DATE type on page 1572
• Using the DATETIME type on page 1573
• Using the INTERVAL type on page 1577
• Using the DECIMAL type on page 1575

Extending the language | 1565

• Using the BYTE type on page 1576
• Using the TEXT type on page 1575
• Identifying Genero data types in Java code on page 1579
• Using Genero records on page 1580
• Formatting data in Java code on page 1582
• Character set mapping on page 1583
• Using Java arrays on page 1583
• Passing variable arguments (varargs) on page 1584
• The CAST operator on page 1586
• The INSTANCEOF operator on page 1586
• Java exception handling on page 1587
• Executing Java code with GMA on page 1587

• Examples on page 1592

• Example 1: Using the regex package on page 1592
• #unique_2611
• Example 3: Using Java on Android on page 1593

Prerequisites and installation

Learn about Java™ and OOP

Before starting with the Java™ interface, if you are not familiar with Java™ and Object Oriented
Programming, we strongly recommend that you learn more about this language from the different tutorials
and courses you can find on the internet.

Java software requirements

In order to use the Java™ Interface in your application programs, you need the Java software installed and
properly configured.

• Install a Java™ Development Kit on development sites (if you need to compile your own Java classes)
• Install a Java™ Runtime Environment on production sites (on the server where your programs are

running)

The Java™ classes defined by Genero (com.fourjs.fgl.lang.*) are compiled with javac -source
1.5 -target 1.5, to be Java™ 1.5+ compatible. Therefore the minimum theoretical Java™ version is
1.5. However, according to the platform, the minimum required version is Java™ 1.6 or 1.7.

The version of the installed Java software can be shown with the command:

java --version

In order to execute Java byte code, the Genero runtime system uses the JNI interface. The JVM is loaded
as a shared library and its binary format must match the binary format of the Genero runtime system. For
example, a 64-bit Genero package requires a 64-bit JVM.

When implementing Java classes for Genero Mobile for Android (GMA), check the JDK version required by
the Android™ SDK. For more information, see the Android Studio web site.

How to set up Java™

This short procedure describes how to set up a Java™ environment to be used with Genero.

1. Download the latest JDK from your preferred Java™ provider. On production sites, you only need a
Java™ Runtime Environment (JRE).

2. Install the package on your platform by following the vendor installation notes.

https://developer.android.com/sdk/installing/studio.html

Extending the language | 1566

3. Set the PATH environment variable to the directory containing the Java™ compiler (javac), and to the
Java™ Virtual Machine (java).

4. Configure your environment to let the dynamic linker find the libjvm.so shared library on UNIX™ or
the JVM.DLL on Microsoft™ Windows™. For example, on a Linux/Intel you add $JAVA_HOME/lib/
i386/server to LD_LIBRARY_PATH.

Note: On Microsoft™ Windows™ platforms, make sure that the PATH envrionment variable
does not contain double quotes arround the path to the JVM.DLL dynamic library, otherwise
the DLL loader will fail to load the JVM. On Mac OS X, the JVM lib can be found from the
JAVA_HOME directory, For more details, see Platform-specific notes for the JVM on page 1566

5. Set the CLASSPATH or pass the --java-option=-Djava.class.path=<pathlist> option
to fglrun with the directories of the Java™ packages you want to use. You must add FGLDIR/lib/
fgl.jar to the class path in order to compile Java™ code with language specific classes such as
com.fourjs.fgl.lang.FglDecimal or com.fourjs.fgl.lang.FglRecord.

6. Try your JDK by compiling a small java sample and executing it.

Platform-specific notes for the JVM

On some platforms like HP-UX® and AIX®, you must pay attention to additional configuration settings in
order to use the Java™ Interface. For more details, see the OS specific notes in the installation guide.

On Microsoft™ Windows™ platforms, make sure that the PATH envrionment variable does not contain
double quotes arround the path to the JVM.DLL dynamic library, otherwise the DLL loader will fail to load
the JVM.

On Android™ devices, Java classes must be part of the .apk package and can be used without any further
configuration.

On Mac OS X, the usage of DYLD_LIBRARY_PATH is strongly discouraged, especially since OS X 10.11
this environment variable is no longer exported in sub processes. In order to load the JVM, the runtime
system will first try a regular dlopen("libjvm"). If this system call fails, the runtime system will lookup for the
libjvm.dylib library under the typical $JAVA_HOME/jre directories (for example, $JAVA_HOME/jre/
bin/client).

Note: In order to find JAVA_HOME on Mac OS X, use the /usr/libexec/java_home tool:

export JAVA_HOME=`/usr/libexec/java_home`

Getting started with the Java™ interface

Import a Java™ class

In order to use a Java™ class in your program code, you must first import the class with the IMPORT JAVA
instruction:

IMPORT JAVA java.util.regex.Pattern

This will import the specified Java™ class into the current program module. Object references can now be
defined for this class.

Define an object reference variable

Before creating a Java™ object in your program, you must declare a program variable to reference the
object. The type of the variable must be the name of the Java™ class, and can be fully qualified if needed:

IMPORT JAVA java.util.regex.Pattern
MAIN
 DEFINE p1 Pattern
 DEFINE p2 java.util.regex.Pattern

Extending the language | 1567

END MAIN

The variables declared with a class are only the handles to reference an object (i.e. the object is not yet
created).

Instantiate a Java™ class

To create a new Java™ object, use ClassName.create(), and assign the value returned by the
create() method to a program variable declared with the Java™ class name:

IMPORT JAVA java.lang.StringBuffer
MAIN
 DEFINE sb StringBuffer
 LET sb = StringBuffer.create()
END MAIN

If the Java™ class constructor uses parameters, pass the parameters to the create() method:

IMPORT JAVA java.lang.StringBuffer
MAIN
 DEFINE sb1, sb2 StringBuffer
 -- Next code line uses StringBuffer(String str) constructor
 LET sb1 = StringBuffer.create("abcdef")
 -- Next code line uses StringBuffer(int capacity) constructor
 LET sb2 = StringBuffer.create(2048)
END MAIN

Calling a method of a class

Class methods (static method in Java™) can be called without instantiating an object of the class. Static
method invocation must be prefixed with the class name. In the next example, the compile() class
method of Pattern class returns a new instance of a Pattern object:

IMPORT JAVA java.util.regex.Pattern
MAIN
 DEFINE p Pattern
 LET p = Pattern.compile("[,\\s]+")
END MAIN

If you define a variable with the same name as a Java™ class, you must fully qualify the class when calling
static methods, as shown in this example:

IMPORT JAVA java.util.regex.Pattern
IMPORT JAVA java.util.regex.Matcher
MAIN
 DEFINE Pattern Pattern
 DEFINE Matcher Matcher
 -- static method, needs full qualifier
 LET Pattern = java.util.regex.Pattern.compile("[a-z]+")
 -- regular instance method, Pattern resolves to variable
 LET Matcher = Pattern.matcher("abcdef")
END MAIN

Note that in Genero, program variables are case-insensitive (Pattern = pattern).

Calling a method of an object

Once the class has been instantiated as an object, and the object reference has been assigned to a
variable, you can call a method of the Java™ object by using the variable as the prefix:

IMPORT JAVA java.util.regex.Pattern

Extending the language | 1568

IMPORT JAVA java.util.regex.Matcher
MAIN
 DEFINE p Pattern
 DEFINE m Matcher
 LET p = java.util.regex.Pattern.compile("[a-z]+")
 LET m = p.matcher("abcdef")
 DISPLAY m.matches()
END MAIN

In this example, the last line of the MAIN module calls an object method that returns a boolean value that is
converted to an INTEGER and displayed.

Advanced programming

Using JVM options

When using the Java™ interface, you can instruct fglrun or fglcomp to pass Java™ VM specific options
during JNI initialization, by using the --java-option command line argument.

In the next example, fglrun will pass -verbose:gc to the Java™ Virtual Machine:

$ fglrun --java-option=-verbose:gc myprog.42r

If you want to pass several options to the JVM, repeat the --java-option argument as in this example:

$ fglrun --java-option=-verbose:gc --java-option=-esa myprog.42r

You may want to pass the Java™ class path as command line option to fglrun with -Djava.class.path
option as in the next example:

$ fglrun --java-option=-Djava.class.path=$FGLDIR/lib/fgl.jar:$MYCLASSPATH
 myprog.42r

Regarding class path specification, the java runtime or javac compiler provide the -cp or -classpath
options but when loading the JVM library from fglrun or fglcomp, only -Djava.class.path option is
supported by the JNI interface.

Case sensitivity with Java™

The Java™ language is case-sensitive. Therefore, when you write the name of a Java™ package, class
or method in a .4gl source, it must match the exact name as if you were writing a Java™ program. The
fglcomp compiler takes care of this, and writes case-sensitive class and method names in the .42m p-code
modules.

IMPORT JAVA java.util.regex.Pattern
MAIN
 DEFINE p java.util.regex.PATTERN -- Note the case error
END MAIN

With this code example, fglcomp will raise error -6622 at line 3, because the "java/util/PATTERN" name
cannot be found.

Method overloading in Java™

The Java™ language allows method overloading; the parameter count and the parameter data types of
a method are part of the method identification. Thus, the same method name can be used to implement
different versions of the Java™ method, taking different parameters:

DEFINE int2 SMALLINT, int4 INTEGER, flt FLOAT

Extending the language | 1569

-- Next call invokes method display(short) of the Java class
CALL myobj.display(int2)

-- Next call invokes method display(int) of the Java class
CALL myobj.display(int4)

-- Next call invokes method display(double) of the Java class
CALL myobj.display(flt)

-- Next call invokes method display(short,int) of the Java class
CALL myobj.display(int2,int4)

Passing Java™ objects to functions

Java™ objects must be instantiated and referenced by a program variable. The object reference is stored
in the variable and can be passed as a parameter or returned from a program function. The Java™ objects
are passed by reference to functions. This means that the called function does not get a clone of the
object, but rather a handle to the original object. The function can then manipulate and modify the original
object provided by the caller:

IMPORT JAVA java.lang.StringBuffer

MAIN
 DEFINE x java.lang.StringBuffer
 LET x = StringBuffer.create()
 CALL change(x)
 DISPLAY x.toString()
END MAIN

FUNCTION change(sb)
 DEFINE sb java.lang.StringBuffer
 CALL sb.append("abc")
END FUNCTION

Similarly, Java™ object references can be returned from functions:

IMPORT JAVA java.lang.StringBuffer

MAIN
 DEFINE x java.lang.StringBuffer
 LET x = build()
 DISPLAY x.toString()
END MAIN

FUNCTION build()
 DEFINE sb java.lang.StringBuffer
 LET sb = StringBuffer.create() -- Creates a new object.
 CALL sb.append("abc")
 RETURN sb -- Returns the reference to the object, not a copy/clone.
END FUNCTION

Garbage collection of unused objects

Java™ objects do not need to be explicitly destroyed; as long as an object is referenced by a variable, on
the stack or in an expression, it will remain. When the last reference to an object is removed, the object is
destroyed automatically.

The next example shows how a unique object can be referenced twice, using two variables:

FUNCTION test()
 -- Declare 2 variables to reference a StringBuffer object

Extending the language | 1570

 DEFINE sb1, sb2 java.lang.StringBuffer
 -- Create object and assign reference to variable
 LET sb1 = StringBuffer.create()
 -- Same object is now referenced by 2 variables
 LET sb2 = sb1
 -- Object is modified through first variable
 CALL sb1.append("abc")
 -- Object is modified through second variable
 CALL sb2.append("def")
 -- Shows content of StringBuffer object
 DISPLAY sb1.toString()
 -- Same output as previous line
 DISPLAY sb2.toString()
 -- Object is only referenced by second variable
 LET sb1 = NULL
 -- sb2 removed from stack, object is no longer referenced and is
 destroyed.
END FUNCTION

Using the method return as an object

If a Java™ method returns an object, you can use the method call directly as an object reference to call
another method:

IMPORT JAVA java.util.regex.Pattern
MAIN
 DEFINE p Pattern
 LET p = Pattern.compile("a*b")
 IF p.matcher("aaaab").matches() THEN
 DISPLAY "It matches..."
 END IF
END MAIN

In this code example, the matcher() method of object p is invoked and returns an object of type
java.util.regex.Matcher. The object reference returned by the matcher() method can be directly
used to invoke the matches() method of the Matcher class.

Ignorable return of Java™ methods

Java™ allows you to ignore the return value of a method (as in C/C++):

StringBuffer sb = new StringBuffer;
sb.append("abc"); -- returns a new StringBuffer object but is ignored

In programs, you can call a Java™ method and ignore the return value:

IMPORT JAVA java.util.lang.StringBuffer
MAIN
 DEFINE sb StringBuffer
 LET sb = StringBuffer.create()
 LET sb = sb.append("abc")
 CALL sb.append("def") -- typical usage
END MAIN

Static fields of Java™ classes

Java™ classes can have object and class ("static") fields. Java™ static class fields can be declared as
"final" (read-only). It is not possible to change the object or class fields in programs, even if the field is not
declared as "static final"; you can however read from it:

IMPORT JAVA java.lang.Integer

Extending the language | 1571

MAIN
 DISPLAY Integer.MAX_VALUE
END MAIN

Mapping native and Java™ data types

Java™ and Genero have different built-in data types. Unlike Genero, Java™ is a strongly typed language:
You cannot call a method with a String if it was defined to get an int parameter. To call a Java™

method, Genero native typed values need to be converted to/from Java™ types such as byte, int,
short, char or data objects such as java.lang.String. If possible, the fglrun runtime system will do
this conversion implicitly.

The fglcomp compiler will raise the error -6606, if the native data type does not match the Java™ (primitive)
type, using Widening Primitive Conversions. For example, passing a Genero DECIMAL when a Java™

double is expected will fail, but passing a SMALLFLOAT (equivalent to Java™ float) when a Java™

double is expected will compile and run.

Genero has advanced native data types such as DECIMAL, which do not have an equivalent primitive
type or class in Java™. For such Genero types, you need to use a specific Java™ class provided in the
FGLDIR/lib/fgl.jar package, like com.fourjs.fgl.lang.FglDecimal. You can then manipulate
the Genero specific value in the Java™ code.

Genero also implements structured types with RECORD definitions, converted to
com.fourjs.fgl.lang.FglRecord objects for Java™.

The Genero arrays cannot be used to call Java™ methods. You must use a native Java™ arrays instead.

In some cases you need to explicitly cast with the new CAST() operator. See the section about CAST()
operator for more details.

This table shows the implicit conversions done by the runtime system when a Java™ method is called, or
when a Java™ method returns a value or object reference:

Table 328: Implicit conversions by Genero with Java™ method / Java™ method returns

Genero data type Java™ equivalent

CHAR java.lang.String

VARCHAR java.lang.String

STRING java.lang.String

DATE com.fourjs.fgl.lang.FglDate

DATETIME com.fourjs.fgl.lang.FglDateTime

INTERVAL com.fourjs.fgl.lang.FglInterval

BIGINT long (64-bit signed integer)

INTEGER int (32-bit signed integer)

SMALLINT short (16-bit signed integer)

TINYINT tinyint (8-bit signed integer)

FLOAT double (64-bit signed floating point number)

SMALLFLOAT float (32-bit signed floating point number)

DECIMAL com.fourjs.fgl.lang.FglDecimal

MONEY com.fourjs.fgl.lang.FglDecimal

Extending the language | 1572

Genero data type Java™ equivalent

BYTE com.fourjs.fgl.lang.FglByteBlob

TEXT com.fourjs.fgl.lang.FglTextBlob

RECORD structure com.fourjs.fgl.lang.FglRecord

Java™ Array This is a native Java™ Array

Table 329: Native language data types that cannot be converted to Java™ types

Genero data type

ARRAY structures

Built-in classes

Using the DATE type

When calling a Java™ method with an expression evaluating to a DATE, the runtime system converts the
DATE value to an instance of the com.fourjs.fgl.lang.FglDate class implemented in FGLDIR/lib/
fgl.jar. You can then manipulate the date from within the Java™ code.

You must add FGLDIR/lib/fgl.jar to the class path in order to compile Java™ code with
com.fourjs.fgl.lang.FglDate class.

The com.fourjs.fgl.lang.FglDate class implements following:

Table 330: Methods of the com.fourjs.fgl.lang.FglDate class

Method Description

String toString() Converts the DATE value to a String object
representing the date in format:

YYYY-MM-DD

static void valueOf(
 String val)

Creates a new FglDate object from a String object
representing a date in the format YYYY-MM-DD.

In the Java™ code, you can convert the com.fourjs.fgl.lang.FglDate to a java.util.Calendar
object as in this example:

public static void useDate(FglDate d) throws ParseException {
 SimpleDateFormat sdf = new SimpleDateFormat("yyyy-MM-dd");
 Calendar cal = Calendar.getInstance();
 cal.setTime(sdf.parse(d.toString()));
 ...
}

If you need to create an com.fourjs.fgl.lang.FglDate object in your program, you can use the
valueOf() class method as in this example:

IMPORT JAVA com.fourjs.fgl.lang.FglDate
MAIN
 DEFINE d com.fourjs.fgl.lang.FglDate
 LET d = FglDate.valueOf("2008-12-23")
 DISPLAY d.toString()
END MAIN

Extending the language | 1573

Using the DATETIME type

When calling a Java™ method with an expression evaluating to a DATETIME, the runtime system converts
the DATETIME value to an instance of the com.fourjs.fgl.lang.FglDateTime class implemented in
FGLDIR/lib/fgl.jar. You can then manipulate the DATETIME from within the Java™ code.

You must add FGLDIR/lib/fgl.jar to the class path in order to compile Java™ code with
com.fourjs.fgl.lang.FglDateTime class.

The com.fourjs.fgl.lang.FglDateTime class implements following:

Table 331: Fields of the com.fourjs.fgl.lang.FglDateTime class

Field Description

final static int YEAR
Time qualifier for year

final static int MONTH
Time qualifier for month

final static int DAY
Time qualifier for day

final static int HOUR
Time qualifier for hour

final static int MINUTE
Time qualifier for minute

final static int SECOND
Time qualifier for second

final static int FRACTION
Time qualifier for fraction (start qualifier)

final static int FRACTION1
Time qualifier for fraction(1) (end qualifier)

final static int FRACTION2
Time qualifier for fraction(2) (end qualifier)

final static int FRACTION3
Time qualifier for fraction(3) (end qualifier)

final static int FRACTION4
Time qualifier for fraction(4) (end qualifier)

final static int FRACTION5
Time qualifier for fraction(5) (end qualifier)

Extending the language | 1574

Table 332: Methods of the com.fourjs.fgl.lang.FglDateTime class

Method Description

String toString()
Converts the DATETIME value to a String object
representing a datetime in the format YYYY-MM-DD
hh:mm:ss.fff.

static void valueOf(
 String val)

Creates a new FglDateTime object from a String
object representing a datetime value in the format:
YYYY-MM-DD hh:mm:ss.fff

static void valueOf(
 String val,
 int startUnit,
 int endUnit)

Creates a new FglDateTime object from a String
object representing a datetime value in the format
YYYY-MM-DD hh:mm:ss.fff, using the qualifiers
passed as parameter.

static int encodeTypeQualifier(
 int startUnit,
 int endUnit)

Returns the encoded type qualifier for a datetime
with to datetime qualifiers passed:

encoded qualifier = (length * 256) + (startUnit * 16)
+ endUnit

Where length defines the total number of significant
digits in this time data.

For example, with DATETIME YEAR TO MINUTE:

startUnit = YEAR

length = 12 (YYYYMMDDhhmm)

endUnit = MINUTE

In the Java™ code, you can convert the com.fourjs.fgl.lang.FglDateTime to a
java.util.Calendar object as in this example:

public static void useDatetime(FglDateTime dt) throws ParseException {
 SimpleDateFormat sdf = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss.SSS");
 Calendar cal = Calendar.getInstance();
 cal.setTime(sdf.parse(dt.toString()));
 ...
}

If you need to create an com.fourjs.fgl.lang.FglDateTime object in your program, you can use the
valueOf() class method as in this example:

IMPORT JAVA com.fourjs.fgl.lang.FglDateTime
MAIN
 DEFINE dt com.fourjs.fgl.lang.FglDateTime
 LET dt = FglDateTime.valueOf("2008-12-23 11:22:33.123")
 LET dt = FglDateTime.valueOf("11:22:33.123",
 FglDateTime.HOUR, FglDateTime.FRACTION3)
 DISPLAY dt.toString()
END MAIN

The valueOf() method expects a string representing a complete date-time specification, from year to
milliseconds, equivalent to a DATETIME YEAR TO FRACTION(3) data type.

Extending the language | 1575

Using the DECIMAL type

When calling a Java™ method with an expression evaluating to a DECIMAL , the runtime system converts
the DECIMAL value to an instance of the com.fourjs.fgl.lang.FglDecimal class implemented in
FGLDIR/lib/fgl.jar. You can then manipulate the DECIMAL from within the Java™ code.

You must add FGLDIR/lib/fgl.jar to the class path in order to compile Java™ code with
com.fourjs.fgl.lang.FglDecimal class.

The com.fourjs.fgl.lang.FglDecimal class implements following:

Table 333: Methods of the com.fourjs.fgl.lang.FglDecimal class

Method Description

String toString()
Converts the DECIMAL value to a String object.

static void valueOf(String val)
Creates a new FglDecimal object from a String
object representing a decimal value.

static void valueOf(int val)
Creates a new FglDecimal object from an int
value.

static int encodeTypeQualifier(
 int precision,
 int scale)

Returns the encoded type qualifier for this decimal
according to precision and scale.

encoded qualifier = (precision * 256) + scale

Use 255 as scale for floating point decimal.

In the Java™ code, you can convert the com.fourjs.fgl.lang.FglDecimal to a
java.lang.BigDecimal as in following example:

public static FglDecimal divide(FglDecimal d1, FglDecimal d2){
 BigDecimal bd1 = new BigDecimal(d1.toString());
 BigDecimal bd2 = new BigDecimal(d2.toString());
 BigDecimal res = bd1.divide(bd2, BigDecimal.ROUND_FLOOR);
 return FglDecimal.valueOf(res.toString());
}

If you need to create an com.fourjs.fgl.lang.FglDecimal object in your program, you can use the
valueOf() class method as in this example:

IMPORT JAVA com.fourjs.fgl.lang.FglDecimal
MAIN
 DEFINE jdec com.fourjs.fgl.lang.FglDecimal
 LET jdec = FglDecimal.valueOf("123.45")
 DISPLAY jdec.toString()
END MAIN

Using the TEXT type

When calling a Java™ method with an expression evaluating to a TEXT, the runtime system converts
the TEXT handle to an instance of the com.fourjs.fgl.lang.FglTextBlob class implemented in
FGLDIR/lib/fgl.jar. You can then manipulate the LOB from within the Java™ code.

You must add FGLDIR/lib/fgl.jar to the class path in order to compile Java™ code with
com.fourjs.fgl.lang.FglTextBlob class.

The com.fourjs.fgl.lang.FglTextBlob class implements following:

Extending the language | 1576

Table 334: Methods of the com.fourjs.fgl.lang.FglTextBlob class

Method Description

String toString()
Converts the large text data to a simple String.

static void valueOf(
 String val)

Creates a new FglTextBlob object from a
String.

In the Java™ code, you can pass a com.fourjs.fgl.lang.FglTextBlob object as in this example:

public static void useByte(FglTextBlob t) throws ParseException {
 String s = t.toString();
 ...
}

If you need to create an com.fourjs.fgl.lang.FglTextBlob object in your program, you can use the
valueOf() class method as in this example:

IMPORT JAVA com.fourjs.fgl.lang.FglTextBlob
MAIN
 DEFINE jtext com.fourjs.fgl.lang.FglTextBlob
 LET jtext = FglTextBlob.valueOf("abcdef..........")
 DISPLAY jtext.toString()
END MAIN

Using the BYTE type

When calling a Java™ method with an expression evaluating to a BYTE, the runtime system converts
the BYTE handle to an instance of the com.fourjs.fgl.lang.FglByteBlob class implemented in
FGLDIR/lib/fgl.jar. You can then manipulate the LOB from within the Java™ code.

You must add FGLDIR/lib/fgl.jar to the class path in order to compile Java™ code with
com.fourjs.fgl.lang.FglByteBlob class.

The com.fourjs.fgl.lang.FglByteBlob class implements following:

Table 335: Methods of the com.fourjs.fgl.lang.FglByteBlob class

Method Description

String toString()
Returns the HEX string representing the binary
data.

static void valueOf(
 String val)

Creates a new FglByteBlob object from a String
object representing the binary data in HEX format.

In the Java™ code, you can pass a com.fourjs.fgl.lang.FglByteBlob object as in this example:

public static void useByte(FglByteBlob b) throws ParseException {
 String s = b.toString();
 ...
}

Extending the language | 1577

If you need to create an com.fourjs.fgl.lang.FglByteBlob object in your program, you can use the
valueOf() class method as in this example:

IMPORT JAVA com.fourjs.fgl.lang.FglByteBlob
MAIN
 DEFINE jbyte com.fourjs.fgl.lang.FglByteBlob
 LET jbyte = FglByteBlob.valueOf("0FA5617BDE")
 DISPLAY jbyte.toString()
END MAIN

Using the INTERVAL type

When calling a Java™ method with an expression evaluating to an INTERVAL, the runtime system converts
the INTERVAL value to an instance of the com.fourjs.fgl.lang.FglInterval class implemented in
FGLDIR/lib/fgl.jar. You can then manipulate the INTERVAL from within the Java™ code.

You must add FGLDIR/lib/fgl.jar to the class path in order to compile Java™ code with
com.fourjs.fgl.lang.FglInterval class.

The com.fourjs.fgl.lang.FglInterval class implements following:

Extending the language | 1578

Table 336: Fields of the com.fourjs.fgl.lang.FglInterval class

Field Description

final static int YEAR
Time qualifier for year

final static int MONTH
Time qualifier for month

final static int DAY
Time qualifier for day

final static int HOUR
Time qualifier for hour

final static int MINUTE
Time qualifier for minute

final static int SECOND
Time qualifier for second

final static int FRACTION
Time qualifier for fraction (start qualifier)

final static int FRACTION1
Time qualifier for fraction(1) (end qualifier)

final static int FRACTION2
Time qualifier for fraction(2) (end qualifier)

final static int FRACTION3
Time qualifier for fraction(3) (end qualifier)

final static int FRACTION4
Time qualifier for fraction(4) (end qualifier)

final static int FRACTION5
Time qualifier for fraction(5) (end qualifier)

Table 337: Methods of the com.fourjs.fgl.lang.FglInterval class

Methods Description

String toString()
Converts the INTERVAL value to a String object
representing an interval in default format.

static void valueOf(
 String val)

Creates a new FglInterval object from a
String object representing an interval value in
format:

DD hh:mm:ss.fff

static void valueOf(
 String val,
 int startUnit,

Creates a new FglDateTime object from a
String object representing an interval value in
standard format, using the qualifiers and precision
passed as parameter.

Extending the language | 1579

Methods Description

 int endUnit)

static int encodeTypeQualifier(
 int startUnit,
 int length,
 int endUnit))

Returns the encoded type qualifier for an interval
with to interval qualifiers and length passed:

encoded qualifier = (length * 256) + (startUnit * 16)
+ endUnit

Where length defines the total number of significant
digits in this time data.

For example, with INTERVAL DAY(5) TO
FRACTION3:

startUnit = DAY

length = 13 (DDDDhhmmssfff)

endUnit = FRACTION3

In the Java™ code, you can pass a com.fourjs.fgl.lang.FglInterval object as in this example:

public static void useInterval(FglInterval inv) throws ParseException {
 String s = inv.toString();
 ...
}

If you need to create an com.fourjs.fgl.lang.FglInterval object in your program, you can use the
valueOf() class method as in this example:

IMPORT JAVA com.fourjs.fgl.lang.FglInterval
MAIN
 DEFINE inv com.fourjs.fgl.lang.FglInterval
 LET inv = FglInterval.valueOf("-510 12:33:45.123")
 DISPLAY inv.toString()
END MAIN

Identifying Genero data types in Java™ code

Java™ data types and Genero data types are different. To identify Genero types in Java™ code, you can
use the com.fourjs.fgl.lang.FglTypes class implemented in FGLDIR/lib/fgl.jar.

You can for example identify the data type of a member of an FglRecord object.

You must add FGLDIR/lib/fgl.jar to the class path in order to compile Java™ code with
com.fourjs.fgl.lang.FglType class.

The com.fourjs.fgl.lang.FglTypes class implements following:

Extending the language | 1580

Table 338: Fields of the com.fourjs.fgl.lang.FglTypes class

Field Corresponding data type

final static int BYTE
BYTE

final static int CHAR
CHAR

final static int DATE
DATE

final static int DATETIME
DATETIME

final static int DECIMAL
DECIMAL

final static int FLOAT
FLOAT

final static int INT
INTEGER

final static int SMALLFLOAT
SMALLFLOAT

final static int SMALLINT
SMALLINT

final static int VARCHAR
VARCHAR

final static int STRING
STRING

final static int RECORD
RECORD structure

final static int ARRAY
ARRAY object

Using Genero records

When passing a RECORD to a Java™ method, the runtime system converts the RECORD to an instance of
the com.fourjs.fgl.lang.FglRecord class implemented in FGLDIR/lib/fgl.jar.

The FglRecord object is a copy of the RECORD variable: Structure and members of the FglRecord
object can be read within the Java™ code, but cannot be modified.

You must add FGLDIR/lib/fgl.jar to the class path in order to compile Java™ code with
com.fourjs.fgl.lang.FglRecord class.

The com.fourjs.fgl.lang.FglRecord class implements the following methods:

Extending the language | 1581

Table 339: Methods of the com.fourjs.fgl.lang.FglRecord class

Method Description

int getFieldCount()
Returns the number of record members.

String getFieldName(int p)
Returns the name of the record member at position
p.

FglTypes getType(int p)
Returns the FglTypes constant of the record
member at position p.

String getTypeName(int p)
Returns the string representation of the data type of
the record member at position p.

int getTypeQualifier(int p)
Returns the encoded type qualifier of the record
member at position p.

int getInt(int p)
Returns the int value of the record member at
position p.

int getFloat(int p)
Returns the float value of the record member at
position p.

double getDouble(int p)
Returns the double value of the record member at
position p.

String getString(int p)
Returns the String representation of the value of the
record member at position p.

FglDecimal getDecimal(int p)
Returns the FglDecimal value of the record
member at position p.

FglDate getDate(int p)
Returns the FglDate value of the record member
at position p.

FglDateTime getDateTime(int p)
Returns the FglDateTime value of the record
member at position p.

FglInterval getInterval(int p)
Returns the FglInterval value of the record
member at position p.

FglByteBlob getByteBlob(int p)
Returns the FglByteBlob value of the record
member at position p.

FglTextBlob getTextBlob(int p)
Returns the FglTextBlob value of the record
member at position p.

In the Java™ code, use the query methods of the com.fourjs.fgl.lang.FglRecord to identify the
members of the RECORD:

public static void showMemberTypes(FglRecord rec){
 int i;
 int n = rec.getFieldCount();
 for (i = 1; i <= n; i++)
 System.out.println(String.valueOf(i) + ":" +

Extending the language | 1582

 rec.getFieldName(i) + " / " + rec.getTypeName(i));
}

When assigning a RECORD to a com.fourjs.fgl.lang.FglRecord, widening conversion applies
implicitly. But when assigning a com.fourjs.fgl.lang.FglRecord to a RECORD, narrowing
conversion applies and you must explicitly CAST the original object reference to the type of the RECORD.
The next example shows how to return an FglRecord object from a Java™ method:

-- PassRecord.4gl
IMPORT JAVA com.fourjs.fgl.lang.FglRecord
IMPORT JAVA UseRecord
MAIN
 TYPE type1 RECORD
 id INTEGER,
 name VARCHAR(50)
 END RECORD
 DEFINE rec1, rec2 type1
 LET rec1.id = 123
 LET rec1.name = "McFly"
 LET rec2 = CAST(UseRecord.getRecord(rec1) AS type1)
END MAIN

-- UseRecord.java
import com.fourjs.fgl.lang.FglRecord;
public class UseRecord{
 public static FglRecord getRecord(FglRecord rec){
 ...
 return rec;
 }
}

Formatting data in Java™ code

To format numeric and date-time data in Java™ code, use the com.fourjs.fgl.lang.FglFormat
class implemented in FGLDIR/lib/fgl.jar.

You must add FGLDIR/lib/fgl.jar to the class path in order to compile Java™ code with
com.fourjs.fgl.lang.FglFormat class.

The com.fourjs.fgl.lang.FglFormat class provides an interface to the data formatting functions of
the runtime system. This class is actually an equivalent of the USING operator in the language.

The com.fourjs.fgl.lang.FglFormat class implements the following:

Table 340: Methods of the com.fourjs.fgl.lang.FglFormat class

Method Description

static String format(
 int v,
 String fmt)

Formats the integer value provided as Java™ int,
according to fmt. Here fmt must specify a numeric
format with [$@*#&<()+-] characters, as with the
USING operator.

static String format(
 double v,
 String fmt)

Formats the FLOAT value provided as Java™

double, according to fmt. Here fmt must specify
a numeric format with [$ @*#&<()+-. ,]
characters, as with the USING operator.

static String format(
 FglDate v,

Formats the DATE value provided as FglDate,
according to fmt. Here fmt must specify a date

Extending the language | 1583

Method Description

 String fmt) format with [mdy]characters., as with the USING
operator.

static String format(
 FglDecimal v,
 String fmt)

Formats the DECIMAL value provided as
FglDecimal, according to fmt. Here fmt
must specify a numeric format with [$ @*#
$<()+-. ,] characters, as with the USING
operator.

Example of Java™ code using the com.fourjs.fgl.lang.FglFormat class:

public static void formatDecimal(FglDecimal dec){
 System.out.println(FglFormat.format(dec,"$#####&.&&");
}

Character set mapping

Application programs use a given locale and character set, while Java™ uses its own charset internally for
the char Java™ type (16- bit UNICODE).

When passing character strings to/from Java™ methods or when assigning program strings to
java.lang.String, the runtime system handles character set conversion.

Using Java™ arrays

Java™ arrays and Genero arrays are different. In order to interface with Java™ arrays, the Genero
language has been extended with a new kind of arrays, called "Java™ arrays".

Java™ arrays have to be created with a given length. Like native Java™ arrays, the length cannot be
changed after the array is created.

To create a Java™ array in Genero, you must define a TYPE in order to call the create() type method
of Java™ arrays. The type of the elements in a Java™ array must be one of the language types that have
a corresponding primitive type in Java™ (such as INTEGER (int), FLOAT (double)), or it must be a Java™

class such as java.lang.String.

The Java™ arrays are passed to Java™ methods by reference, so the elements of the array can be
manipulated in Java™. Further, Java™ arrays can be created in Java™ code and returned to the Genero
program.

This example shows how to create a Java™ array in Genero, to instantiate a Java™ Array of INTEGER
elements:

MAIN
 TYPE int_array_type ARRAY[] OF INTEGER
 DEFINE ja int_array_type
 LET ja = int_array_type.create(100)
 LET ja[10] = 123
 DISPLAY ja[10], ja[20]
 DISPLAY ja.getLength()
END MAIN

The next example shows a program creating a Java™ array of Java™ strings:

IMPORT JAVA java.lang.String
MAIN
 TYPE string_array_type ARRAY[] OF java.lang.String
 DEFINE names string_array_type
 LET names = string_array_type.create(100)

Extending the language | 1584

 LET names[1] = "aaaaaaa"
 DISPLAY names[1]
END MAIN

To create a Java™ array of structured RECORD elements, use the com.fourjs.fgl.lang.FglRecord
class:

IMPORT JAVA com.fourjs.fgl.lang.FglRecord
MAIN
 TYPE record_array_type ARRAY[]
 OF com.fourjs.fgl.lang.FglRecord
 DEFINE ra record_array_type
 TYPE r_t RECORD
 id INTEGER,
 name VARCHAR(100)
 END RECORD
 DEFINE r r_t
 LET ra = record_array_type.create(100)
 LET r.id = 123
 LET r.name = "McFly"
 LET ra[10] = r
 INITIALIZE r TO NULL
 LET r = CAST (ra[10] AS r_t)
 DISPLAY r.*
END MAIN

Java™ arrays of Java™ classes can be defined. The next example introspects the java.lang.String
class by using Java™ array of java.lang.reflect.Method to query the list of methods from the
java.lang.String class:

IMPORT JAVA java.lang.Class
IMPORT JAVA java.lang.reflect.Method
MAIN
 DEFINE c java.lang.Class
 DEFINE ma ARRAY[] OF java.lang.reflect.Method
 DEFINE i INTEGER
 LET c = Class.forName("java.lang.String")
 LET ma = c.getMethods()
 FOR i = 1 TO ma.getLength()
 DISPLAY ma[i].toString()
 END FOR
END MAIN

Java™ arrays can be created in the Java™ code, to be returned from a method and assigned to a program
variable:

public static int [] createIntegerArray(int size) {
 return new int[size];
}

Passing variable arguments (varargs)

Java™ supports variable arguments in method definitions with the ellipsis notation, allowing callers to pass
a different number of arguments according to the need. A typical example is a message print method:

import java.lang.String;

public class MyClass {
 public static void ShowStrings(String... sl) {
 for (String s : sl)
 System.out.println(s);

Extending the language | 1585

 }
}

In order to call such a method from the Genero program, create a Java™ array of the type of the variable
argument, fill the array with objects and call the method with that array:

IMPORT JAVA java.lang.String
IMPORT JAVA MyClass

MAIN
 TYPE sl_t ARRAY[] OF java.lang.String
 DEFINE sl ARRAY[] OF java.lang.String
 LET sl = sl_t.create(2)
 LET sl[1] = "Value 1"
 LET sl[2] = "Value 2"
 CALL MyClass.ShowStrings(sl)
END MAIN

Since Java arrays have a static size, you must create the Java array with the exact number of variable
arguments to be passed to the method.

If the Java class cannot be modified, consider implementing a function to wrap calls to the Java method,
with a varying number of arguments. It can for example take a BDL dynamic array as parameter, to simplify
the callers code:

IMPORT JAVA java.lang.String
IMPORT JAVA MyClass

MAIN
 DEFINE a DYNAMIC ARRAY OF STRING
 LET a[1] = "Value 1"
 LET a[2] = "Value 2"
 LET a[3] = "Value 3"
 CALL my_show_strings(a)
 LET a[4] = "Value 1"
 LET a[5] = "Value 2"
 CALL my_show_strings(a)
END MAIN

FUNCTION my_show_strings(sa)
 TYPE sl_t ARRAY[] OF java.lang.String
 DEFINE sa DYNAMIC ARRAY OF STRING
 DEFINE sl ARRAY[] OF java.lang.String
 DEFINE i INTEGER
 LET sl = sl_t.create(sa.getLength())
 FOR i=1 TO sa.getLength()
 LET sl[i] = sa[i]
 END FOR
 CALL MyClass.ShowStrings(sl)
END FUNCTION

If the Java class can be modified, a good practice is to write overloaded methods, using a static number of
arguments:

public class MyClass {
 private static void _ShowStrings(String... sl) {
 for (String s : sl)
 System.out.println(s);
 }
 public static void ShowStrings(String s1) {
 _ShowStrings(s1);
 }

Extending the language | 1586

 public static void ShowStrings(String s1, String s2) {
 _ShowStrings(s1, s2);
 }
 public static void ShowStrings(String s1, String s2, String s3) {
 _ShowStrings(s1, s2, s3);
 }
}

The CAST operator

Important consideration has to be taken when assigning object references to different target types or
classes. A Widening Reference Conversion occurs when an object reference is converted to a superclass
that can accommodate any possible reference of the original type or class. A Narrowing Reference
Conversion occurs when an object reference of a superclass is converted to a subtype or subclass of
the original object reference. For example, in a vehicle class hierarchy with Vehicle and Car classes,
Car is a subclass that inherits from the Vehicle superclass. When assigning a Car object reference to
a Vehicle variable, Widening Reference Conversion takes place. When assigning a Vehicle object
reference to a Car variable, Narrowing Reference Conversion occurs.

While widening conversion does not require casts and will not produce compilation or runtime errors,
narrowing conversion needs the CAST operator to convert to the target type or class:

CAST(object_reference AS type_or_class)

The next example creates a java.lang.StringBuffer object, and assigns the reference to a
java.lang.Object variable (implying Widening Reference Conversion); then the object reference is
assigned back to the java.lang.StringBuffer variable (implying Narrowing Reference Conversion
and CAST operator usage):

IMPORT JAVA java.lang.Object
IMPORT JAVA java.lang.StringBuffer
MAIN
 DEFINE o java.lang.Object
 DEFINE sb java.lang.StringBuffer
 LET sb = StringBuffer.create()
 -- Widening Reference Conversion
 LET o = sb
 -- Narrowing Reference Conversion needs CAST()
 LET sb = CAST(o AS StringBuffer)
END MAIN

The INSTANCEOF operator

When manipulating an object reference with a variable defined with a superclass of the real class used to
instantiate the object, you sometimes need to identify the real class of the object.

This is possible with the INSTANCEOF operator.

This operator checks whether the left operand is an instance of the type or class specified by the right
operand:

object_reference INSTANCEOF type_or_class

This example creates a java.lang.StringBuffer object, assigns the reference to a
java.lang.Object variable, and tests whether the class type of the object reference is a
java.lang.StringBuffer:

IMPORT JAVA java.lang.Object
IMPORT JAVA java.lang.StringBuffer
MAIN
 DEFINE o java.lang.Object

Extending the language | 1587

 LET o = StringBuffer.create()
 DISPLAY o INSTANCEOF StringBuffer -- Shows 1 (TRUE)
END MAIN

Java exception handling

In order to catch Java™ exceptions within programs, use a TRY/CATCH block.

When a Java exception occurs, the runtime system sets the STATUS variable to the error code -8306.

The Java exception details (i.e. the name of the exception) can be found with the ERR_GET(STATUS)
built-in function.

Important: To get the Java exception type with ERR_GET(), do not execute other instructions
before querying for the error message, otherwise the STATUS variable might be reset to zero and
the Java exception details would be lost.

To easily identify the type of the Java exceptions in your code, consider writing a library function based on
ERR_GET(), that recognizes most common Java exceptions, and converts them to integer codes:

IMPORT JAVA java.lang.StringBuffer
MAIN
 DEFINE sb java.lang.StringBuffer
 LET sb = StringBuffer.create("abcdef")
 TRY
 CALL sb.deleteCharAt(50) -- out of bounds!
 CATCH
 DISPLAY err_get(STATUS)
 EXIT PROGRAM 1
 END TRY
END MAIN

Note: As a general pattern, do not use TRY/CATCH or WHENEVER ERROR CONTINUE exception
handlers if no exception is supposed to occur. By default the program will then stop and display the
Java exception details.

Executing Java™ code with GMA
On Android™ devices running GMA apps, the Genero language can be extended with the Java interface.

The GMA executes a program in a JVM process and therefore does not require more resources to execute
Java code.

We distinguish the following use cases where the Java interface of Genero can be used in GMA:

• Use classes from the standard Java or Android Java library.
• Implement and use user-defined Java classes, requiring GMA packaging.
• Implement and execute a user-defined Android activity, requiring GMA packaging.

Java may also be used to extend the GMA front-end with user-defined front calls. For details, see
Implement front call modules for GMA on page 1620.

Standard Java™ and Android™ library usage
You can use Java classes that are part of the standard Java library and Android Java library.

Using standard Java within the GMA

Java classes provided in the standard Java library and in the Android Java library can be used directly by
including the IMPORT JAVA classname keywords in the Genero code:

IMPORT JAVA java.lang.Runtime
IMPORT JAVA android.os.Build

MAIN

Extending the language | 1588

 DEFINE rtm Runtime, msg STRING

 LET rtm = java.lang.Runtime.getRuntime()

 LET msg = SFMT("Device:[%1] %2 - %3 (%4 procs)",
 android.os.Build.MANUFACTURER,
 android.os.Build.MODEL,
 android.os.Build.SERIAL,
 rtm.availableProcessors())

 MENU "Test" ATTRIBUTES(STYLE="dialog", COMMENT=msg)
 ON ACTION ok
 EXIT MENU
 END MENU

END MAIN

The Android Java library does not include all the classes of a regular JRE. User interface classes are
specific to the Android user interface framework. The list of standard Android Java packages can be found
at http://developer.android.com/reference/packages.html.

Only non-interactive classes can be used in this context. To get a graphical user interface, you must
implement an Android Activity, as described in Implement Android activities in GMA on page 1589.

Because Android apps are Java-based, the JVM and standard Java library is directly available. There
is no need to bundle the Java library with your Genero program files when you deploy your app as .apk
package.

When executing the Genero program on a computer in development mode, it is not possible to use
classes that are specific to the Android Java library, because the Android Java library is not available in
development mode at runtime.

You must compile your app code and deploy it on an Android device for execution. To compile your app
code on the development platform, you need to setup the Java SDK environment and the CLASSPATH to
the Android SDK library (android.jar).

Note: For compilation, JDK_HOME can point to a 32-bit or 64-bit Java Development Kit installation,
to match the Genero BDL architecture. However, the Android SDK is only available in 32-bit.

JVM context-dependent Android API calls

On an Android device, the GMA executes a Genero program in a JVM process. Some Android system
APIs cannot be directly called from the Genero runtime system context; they must be called from the JVM
context.

In order to call such APIs, you must import the com.fourjs.gma.vm.FglRun class and get the Android
JVM thread context by calling the getContext() method of the FglRun class.

The getContext() method will return an instance of the android.content.Context class. For more
details, see http://developer.android.com/reference/android/content/Context.html

Note: To use this Android JVM interface, you must add the android.jar library (from the
Android SDK) to the class path.

The com.fourjs.gma.vm.FglRun class implements the following methods:

Table 341: Methods of the com.fourjs.gma.vm.FglRun class

Method Description

Context getContext() Returns the Android JVM context object of the
runtime system.

http://developer.android.com/reference/packages.html
http://developer.android.com/reference/android/content/Context.html%29

Extending the language | 1589

In the program code, use the getContext() method to get the JVM context and call specific Android
APIs:

IMPORT JAVA android.app.Service
IMPORT JAVA android.content.Context
IMPORT JAVA android.util.DisplayMetrics
IMPORT JAVA android.view.WindowManager

IMPORT JAVA com.fourjs.gma.vm.FglRun

MAIN
 DEFINE w, h, d INT
 MENU "Java"
 ON ACTION test
 CALL android_screen_metrics() RETURNING w, h, d
 MESSAGE "Width: ", w, "\nHeight: ", h, "\nDensity: ", d
 END MENU
END MAIN

FUNCTION android_screen_metrics()
 DEFINE ctx android.content.Context,
 dm android.util.DisplayMetrics,
 wm android.view.WindowManager

 LET ctx = com.fourjs.gma.vm.FglRun.getContext()
 LET dm = android.util.DisplayMetrics.create()
 LET wm = CAST (ctx.getSystemService("window")
 AS android.view.WindowManager)
 CALL wm.getDefaultDisplay().getMetrics(dm)

 RETURN dm.widthPixels,
 dm.heightPixels,
 dm.densityDpi
END FUNCTION

Using front calls instead of pure Java

For maximum portability, consider implementing Android-specific extensions as custom front calls. When
using the front call technology, apps can be executed in development (app running on the server) and in
deployed mode (app running on the mobile device) with the same Genero code.

Implement Java user extensions in GMA
A GMA app can execute custom Java code.

In order to execute Java user code on the mobile device, the compiled Java classes need to be available
to the Genero runtime system. They can then be imported with the IMPORT JAVA classname instruction.

When executing the Genero program on a computer in development mode, define the CLASSPATH to
your .jar files. This allows the JVM loaded by the Genero runtime system find the appropriate Java classes.

When executing the Genero program on a mobile device, the compiled user Java classes must be included
in the mobile app Android™ package (.apk), which is created in the Genero Studio deployment procedure.

Implement Android™ activities in GMA
Android activities can be bundled with your GMA app and called from the Genero code.

A Java-based extension that interacts with the end user must be implemented as an Android Activity, by
using the android.app.Android class.

In order to use your Android Activity from the program, it must be integrated in the mobile app Android
package (.apk), which is created in the Genero Studio deployment procedure.

http://developer.android.com/reference/android/app/Activity.html

Extending the language | 1590

This code example implements a simple Android Activity:

package com.myextension;

import android.app.Activity;
import android.os.Bundle;
import android.widget.TextView;

public class MyActivity extends Activity {
 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 Button button = new Button(this);
 button.setText("Quit");
 setContentView(button);
 button.setOnClickListener(
 new View.OnClickListener() {
 public void onClick(View v) {
 int resultCode = 0;
 Intent resultData = new Intent();
 resultData.putExtra("MyKey", "MyValue");
 setResult(resultCode, resultData);
 finish();
 }
 });
 }
}

In order to execute this activity from a Genero app, use the startActivity front call:

MAIN
 DEFINE data, extras STRING
 MENU
 ON ACTION activity ATTRIBUTES(TEXT="Call bundled activity")
 CALL ui.Interface.frontCall("android", "startActivityForResult",
 ["android.intent.action.VIEW", NULL, NULL, NULL,
 "com.myextension.MyActivity"],
 [data, extras])
 MESSAGE "data=",data," / extras=",extras
 ON ACTION quit
 EXIT MENU
 END MENU
END MAIN

Note: The component name (fifth parameter) of the startActivity front call does normally take
the APK package name followed by the Java Activity class name (apk-package-name/java-
class-name). The APK Android package name can be defined for the application project in the
Genero Studio. When using an user-defined activity that is part of the GMA binary archive, do not
specify the APK package in the component parameter, because the Java Activity class will be
included in the current APK package. This is true when using the customized GMA front-end in
development mode, and in the final application that is deployed on the device. For more details
about the component parameter, see startActivity (Android) on page 1942.

Packaging custom Java™ extensions for GMA
Custom Java extension must be integrated in the GMA to run on Android™ devices.

Genero Mobile apps for Android are created from Genero Studio, or from the command-line with
gmabuildtool on page 2580: You need to provide the custom GMA binary archive containing your Java
extensions, to Genero Studio or to gmabuildtool.

• Genero Studio finds the GMA binary archive from the GMADIR variable defined in the configuration
settings.

Extending the language | 1591

• The gmabuildtool requires the Android Studio project directory used to build the custom GMA, to be
specified with the --build-project-folder-path option.

Along with the GMA binary archive, you must provide the .jar files of your Java extensions, that will
be used to compile Genero application code on the development machine, as well as the .apk Android
packages of GMA, to deploy the front-end part on the device for client/server development (typically with
user-defined front calls).

The original GMA binary archive is a zip file containing several .aar Android libraries. A customized
GMA binary archive contains the .aar files from the GMA core libraries, the Genero runtime system core
libraries, and custom .aar files build from your own Java libraries. The custom .aar libs are created from
Android Studio. The minimum Android Studio version is 0.8.9.

To create a new GMA binary archive, the extension.jar file, and the .apk packages, including your
Java extensions, perform the steps described in Custom GMA binary archive build on page 1591.

After completing these steps:

• When compiling application code, Genero Studio can find your .jar libraries to resolve Java symbols.
• When deploying the front-end only for client/server development, Genero Studio will find the .apk

packages to be installed on the device.
• When building an Android app in Genero Studio, it will be created from the custom GMA binary archive

that includes your Java extensions.
• When building an Android app with gmabuildtool, it can be created by specifying the custom GMA

Android project directory with the --build-project-folder-path option.

Custom GMA binary archive build
Building a GMA binary archive with custom Java classes using Android™ Studio.

Android Studio must be installed, and minimum Android development skills are required.

1. Locate the original GMA binary archive on your computer. When using Genero Studio, the GMA binary
archive is defined by the GMADIR variable in configuration settings. When not using Genero Studio, the
GMA binary archive is provided as a separate package.

The GMA binary archive consist of a set of files:

• fjs-gma-*-android-scaffolding.zip : This file contains the original GMA core binary without
custom extensions.

• fjs-gma-*-android-extension-project.zip : This file contains the Android Studio project
template to build your custom GMA.

2. Unzip the fjs-gma-*-android-extension-project.zip archive into a directory of your choice
(my_project_dir).

3. From Android Studio, open the project from my_project_dir.

4. In the project definition, under the "extension" library, find AndroidManifest.xml and modify the
"package" attribute of the "manifest" node. This package name identifies your extension library, it will
not be used to build a final app in GST.

5. Add your Java sources to this Android Studio project, under the "extension" library.

6. Locate the testapp app in the project.

This is a sample activity that can be customized, to test your GMA extension directly within the Android
Studio environment.

7. Modify testapp, to call your extension (see code for details), build and run for testing.

8. Build the project in release mode.

This creates the extension.jar file and a fjs-gma-.*-scaffolding.zip archive, containing
the .aar Android libraries. The files are created under the my_project_dir/extension/build/
outputs directory.

9. Unzip the new GMA binary archive (fjs-gma-.*-scaffolding.zip) into a temporary directory
(my_tmp_dir).

https://developer.android.com/sdk/installing/studio.html

Extending the language | 1592

10.Locate the gradlew script from the unzipped GMA binary archive (my_tmp_dir).

11.Execute the command gradlew build.

This will create the new .apk packages of GMA. The .apk files are created in the my_tmp_dir/app/
build/outputs directory.

12.Create a new directory (my_gma_dir).

13.Copy the new *-scaffolding.zip file, the extension.jar and the .apk packages to
my_gma_dir.

14.Modify the CLASSPATH configuration variable in Genero Studio, to find the extension.jar file.

This is required to let the Genero compiler find your Java classes.

15.When using Genero Studio, modify the GMADIR configuration variable to point to the my_gma_dir
directory.This is required to let Genero Studio use your customized GMA binary to build apps. When
using gmabuildtool to build apps from the command line, provide the custom GMA Android project
directory with the --build-project-folder-path option.

16.Deploy the new GMA apk on the device, for client/server development purpose.

When using Genero Studio, the IDE will find the .apk packages to be installed on the device from
GMADIR.

Examples

Example 1: Using the regex package

IMPORT JAVA java.util.regex.Pattern
IMPORT JAVA java.util.regex.Matcher
MAIN
 DEFINE p Pattern
 DEFINE m Matcher
 LET p = Pattern.compile("[a-z]+,[a-z]+")
 DISPLAY p.pattern()
 LET m = p.matcher("aaa,bbb")
 IF m.matches() THEN
 DISPLAY "The string matches the pattern..."
 ELSE
 DISPLAY "The string does not match the pattern..."
 END IF
END MAIN

Example 2: Using the Apache POI framework

This example shows how to create an XLS file, using the Apache POI framework. You must download and
install the Apache POI JAR file and make the CLASSPATH environment variable point to the POI JAR in
order to compile and run this example. After execution, you should find a file named "itemlist.xls" in the
current directory, which can be loaded with Microsoft™ Excel or Open Office Calc:

IMPORT JAVA java.io.FileOutputStream
IMPORT JAVA org.apache.poi.hssf.usermodel.HSSFWorkbook
IMPORT JAVA org.apache.poi.hssf.usermodel.HSSFSheet
IMPORT JAVA org.apache.poi.hssf.usermodel.HSSFRow
IMPORT JAVA org.apache.poi.hssf.usermodel.HSSFCell
IMPORT JAVA org.apache.poi.hssf.usermodel.HSSFCellStyle
IMPORT JAVA org.apache.poi.hssf.usermodel.HSSFFont
IMPORT JAVA org.apache.poi.ss.usermodel.IndexedColors

MAIN
 DEFINE fo FileOutputStream
 DEFINE workbook HSSFWorkbook
 DEFINE sheet HSSFSheet

http://poi.apache.org

Extending the language | 1593

 DEFINE row HSSFRow
 DEFINE cell HSSFCell
 DEFINE style HSSFCellStyle
 DEFINE headerFont HSSFFont
 DEFINE i, id INTEGER, s STRING

 LET workbook = HSSFWorkbook.create()

 LET style = workbook.createCellStyle()
 CALL style.setAlignment(HSSFCellStyle.ALIGN_CENTER)
 CALL style.setFillForegroundColor(
 IndexedColors.LIGHT_CORNFLOWER_BLUE.getIndex());
 CALL style.setFillPattern(HSSFCellStyle.SOLID_FOREGROUND);
 LET headerFont = workbook.createFont()
 CALL headerFont.setBoldweight(HSSFFont.BOLDWEIGHT_BOLD)
 CALL style.setFont(headerFont);

 LET sheet = workbook.createSheet()

 LET row = sheet.createRow(0)
 LET cell = row.createCell(0)
 CALL cell.setCellValue("Item Id")
 CALL cell.setCellStyle(style)
 LET cell = row.createCell(1)
 CALL cell.setCellValue("Name")
 CALL cell.setCellStyle(style)

 FOR i=1 TO 10
 LET row = sheet.createRow(i)
 LET cell = row.createCell(0)
 CALL cell.setCellType(HSSFCell.CELL_TYPE_NUMERIC)
 LET id = 100 + i
 CALL cell.setCellValue(id)
 LET cell = row.createCell(1)
 LET s = SFMT("Item #%1",i)
 CALL cell.setCellValue(s)
 END FOR

 LET fo = FileOutputStream.create("itemlist.xls");
 CALL workbook.write(fo);
 CALL fo.close();

END MAIN

Example 3: Using Java on Android™

This example shows how to access Android™ components throught Java, it includes:

• Access to the JDK API to get the number of cores on your device.
• Access to Android™ APIs to get the screen dimension, the device manufacturer and model (with no

need for any additional authorization)
• Access to the Bluetooth stack to list the paired devices.

Note: In your GM project, you need to ask for BLUETOOTH authorization.

Form file formJavaStandard.per:

LAYOUT (TEXT="Access to Android API")
GROUP group1(TEXT="Using standard JDK API...")
GRID grid1
{
[l1 |f1]

Extending the language | 1594

}
END
END

ATTRIBUTES
LABEL l1 : label1, TEXT="Number of processors available";
LABEL f1 = FORMONLY.nb_proc;
END

Form file formAndroidSimple.per:

LAYOUT (TEXT="Access to Android API")
GROUP group1(TEXT="Using simple Android API...")
GRID grid1
{
[l1 |f1]
[l2 |f2]
[l3 |f3]
[l4 |f4]
}
END
END

ATTRIBUTES
LABEL l1 : label1, TEXT="Device manufacturer";
LABEL f1 = FORMONLY.manufacturer;
LABEL l2 : label2, TEXT="Device model";
LABEL f2 = FORMONLY.model;
LABEL l3 : label3, TEXT="Device serial number";
LABEL f3 = FORMONLY.serial;
LABEL l4 : label4, TEXT="Device screen dimension";
LABEL f4 = FORMONLY.diagonal;
END

Form file formAndroidBluetooth.per:

LAYOUT (TEXT="Access to Android API")
GROUP group1(TEXT="Using Bluetooth Android API...")
GRID grid1
{
[l1 |f1]
<TABLE t >
[c1 |c2]
[c1 |c2]
[c1 |c2]
< >
}
END
END

ATTRIBUTES
LABEL l1 : label1, TEXT="Bluetooth adapter name";
LABEL f1 = FORMONLY.ba_name;
LABEL c1 = FORMONLY.name;
LABEL c2 = FORMONLY.comment;
END

INSTRUCTIONS
SCREEN RECORD list(FORMONLY.name, FORMONLY.comment);
END

Extending the language | 1595

Program file:

IMPORT util

IMPORT JAVA java.lang.Runtime
IMPORT JAVA java.util.Iterator
IMPORT JAVA java.lang.Class
IMPORT JAVA java.lang.Math

IMPORT JAVA android.bluetooth.BluetoothAdapter
IMPORT JAVA android.bluetooth.BluetoothDevice
IMPORT JAVA android.content.Context
IMPORT JAVA android.os.Build
IMPORT JAVA android.util.DisplayMetrics
IMPORT JAVA android.view.WindowManager

IMPORT JAVA com.fourjs.gma.vm.FglRun

MAIN
 MENU "Samples"
 COMMAND "Android API access"
 CALL androidApiAccess()
 COMMAND "Quit"
 EXIT MENU
 ON ACTION close
 EXIT MENU
 END MENU
END MAIN

FUNCTION androidApiAccess()

 MENU "Android API access"
 COMMAND "Accessing Java standard API"
 CALL androidApiAccess_java_standard()
 COMMAND "Accessing simple android information"
 CALL androidApiAccess_android_simple()
 COMMAND "Accessing sophisticated APIs : bluetooth"
 CALL androidApiAccess_bluetooth()
 ON ACTION CANCEL
 EXIT MENU
 END MENU
END FUNCTION

FUNCTION androidApiAccess_java_standard()
 DEFINE r Runtime

 OPEN WINDOW w WITH FORM "formJavaStandard"

 LET r = java.lang.Runtime.getRuntime()
 DISPLAY r.availableProcessors() TO nb_proc

 MENU
 ON ACTION QUIT
 EXIT MENU
 ON ACTION close
 EXIT MENU
 END MENU

 CLOSE WINDOW w
END FUNCTION

FUNCTION androidApiAccess_android_simple()
 DEFINE s STRING

Extending the language | 1596

 DEFINE dm DisplayMetrics
 DEFINE c Context
 DEFINE width, height, dens, wi, hi, x, y FLOAT
 DEFINE screenInches FLOAT
 DEFINE wm android.view.WindowManager

 OPEN WINDOW w WITH FORM "formAndroidSimple"

 LET s = android.os.Build.MANUFACTURER
 DISPLAY s TO manufacturer
 LET s = android.os.Build.MODEL
 DISPLAY s TO model
 LET s = android.os.Build.SERIAL
 DISPLAY s TO serial

 # Get the FglRun Context
 LET c = com.fourjs.gma.vm.FglRun.getContext()

 # Compute display dimension (diagonal)
 LET dm = android.util.DisplayMetrics.create()
 LET wm = CAST (c.getSystemService("window") AS
 android.view.WindowManager)
 CALL wm.getDefaultDisplay().getMetrics(dm)
 LET width = dm.widthPixels
 LET height = dm.heightPixels
 LET dens = dm.densityDpi
 LET wi = width/dens
 LET hi = height/dens
 LET x = util.Math.pow(wi,2)
 LET y = util.Math.pow(hi,2);
 LET screenInches = util.Math.sqrt(x+y);

 DISPLAY screenInches TO diagonal
 MENU
 ON ACTION QUIT
 EXIT MENU
 ON ACTION close
 EXIT MENU
 END MENU

 CLOSE WINDOW w
END FUNCTION

FUNCTION androidApiAccess_bluetooth()
 DEFINE ba BluetoothAdapter
 DEFINE sbd Iterator
 DEFINE bd BluetoothDevice
 DEFINE bds DYNAMIC ARRAY OF RECORD
 name STRING,
 comment STRING
 END RECORD
 DEFINE i INTEGER
 DEFINE s STRING

 OPEN WINDOW w WITH FORM "formAndroidBluetooth"

 LET ba = android.bluetooth.BluetoothAdapter.getDefaultAdapter()
 LET s = ba.getName()
 DISPLAY s TO ba_name

 LET sbd = ba.getBondedDevices().iterator()
 LET i = 0
 WHILE sbd.hasNext()
 LET bd = CAST(sbd.next() AS BluetoothDevice)

Extending the language | 1597

 LET i = i + 1
 LET bds[i].name = bd.getName()
 LET bds[i].comment = bd.getBluetoothClass().toString()
 END WHILE

 DISPLAY ARRAY bds TO list.*
 ON ACTION QUIT
 EXIT DISPLAY
 ON ACTION close
 EXIT DISPLAY
 END DISPLAY

 CLOSE WINDOW w
END FUNCTION

C-Extensions
With C-Extensions, you can bind your own C libraries in the runtime system, to call C function from the
application code.

• Understanding C-Extensions on page 1597
• Header files for ESQL/C typedefs on page 1598
• Creating C-Extensions on page 1598
• Creating Informix ESQL/C Extensions on page 1599
• The C interface file on page 1600
• Loading C-Extensions at runtime on page 1601
• Runtime stack functions on page 1602
• C-Extension data types and structures on page 1606
• Calling program functions from C on page 1610
• Sharing global variables on page 1611
• Simple C-Extension example on page 1612
• Implementing C-Extensions for GMI on page 1613

Understanding C-Extensions
With C-Extensions, you can bind your own C libraries in the runtime system, to call C function from the
application code. This feature allows you to extend the language with custom libraries, or existing standard
libraries, by writing some 'wrapper functions' to interface with the Genero language.

On regular platforms, C-Extensions are implemented with shared libraries, that will be loaded by the fglrun
program on demand.

Note: Platforms such as iOS mobile devices deny to load shared libraries. In this case, you must
re-link the virtual machine. For more details, see Implementing C-Extensions for GMI on page
1613.

Function parameters and returned values are passed/returned on the runtime stack, using pop/push
functions. Be sure to pop and push the exact number of parameters/returns expected by the caller;
otherwise, a fatal stack error will be raised at runtime.

In order to use a C-Extension in your program, you typically specify the library name with the IMPORT
instruction at the beginning of the module calling the C-Extension functions. The compiler can then check
for function existence and the library will be automatically loaded at runtime.

Note:

• The C code written in C-Extensions is usually platform specific and does not ease the migration
of your application to a different operating system, especially when doing a lot of system calls.

Extending the language | 1598

Additionally, C data types that are defined differently according to the processor architecture
(32 / 64 bits issues) can also be an issue.

• Make sure that the functions defined in your C-Extensions do not conflict with program functions.
In case of conflict, you will get a compiler or a runtime error, according to the loading technique
used.

Header files for ESQL/C typedefs
To compile C-Extensions using complex data types such as DECIMAL, DATETIME/INTERVAL or
BYTE/TEXT, you need IBM® Informix® ESQL/C data type structure definitions such as dec_t, dtime_t,
intrvl_t, as well as macros like DECLEN() or TU_ENCODE(). These definitions are not required if you
use standard C types such as short, int or char[].

The definition of the ESQL/C structures like dec_t are property of IBM®. However, a copy of the ESQL/
C header files used during the port of Genero are distributed in FGLDIR/include/esql, with agreement
from IBM®.

Some ESQL/C type definitions are platform specific. For example, the mlong typedef is different on 32-bit
and 64-bit machines.

Creating C-Extensions
Custom C-Extensions must be provided to the runtime system as Shared Objects (.so) on UNIX™, and as
Dynamically Loadable Libraries (.DLL) on Windows™.

In order to create a C-Extension, you must:

1. Define the list of user functions in the C interface file, by including the fglExt.h header file.
2. Compile the C interface file with your C compiler.
3. Modify your C source modules by including the fglExt.h header file.
4. Compile the C interface file and the C modules with the position-independent code option.
5. Create the shared library with the compiled C interface file and C modules by linking with the libfgl

runtime system library.

Include the fglExt.h header file in the following way:

#include "f2c/fglExt.h"

When migrating from IBM® Informix® 4GL, it is possible that existing C-Extension sources include
Informix® specific headers like sqlhdr.h or decimal.h. You can either remove or keep the original
includes, but if you want to keep them, the Informix® specific header files must be included before the
fglExt.h header file, in order to let fglExt.h detect that typedefs such as dec_t or dtime_t are
already defined by Informix® headers. If you include Informix® headers after fglExt.h, you will get a
compilation error. As fglExt.h defines all Informix-like typedef structures, you can remove the inclusion
of Informix® specific header files.

The C functions that are implemented in the C-Extension libraries must be known by the runtime system.
To do so, each C-Extension library must publish its functions in a UsrFunction array, which is read by
the runtime system when the module is loaded. The UsrFunction array describes the user functions by
specifying the name of the function, the C function pointer, the number of parameters and the number of
returned values. You typically define the UsrFunction array in the C interface file.

After compiling the C sources, you must link them together with the libfgl runtime system library.

Carefully read the man page of the ld dynamic loader, and any documentation of your operating system
related to shared libraries. Some platforms require specific configuration and command line options when
linking a shared library, or when linking a program using a shared library (+s option on HP for example).

Linux™ command-line example:

gcc -c -I $FGLDIR/include -fPIC myext.c

Extending the language | 1599

gcc -c -I $FGLDIR/include -fPIC cinterf.c
gcc -shared -o myext.so myext.o cinterf.o -L$FGLDIR/lib -lfgl

Windows™ command-line example using Visual C 8.0 and higher (with SxS manifest for the DLL!):

cl /DBUILDDLL /I%FGLDIR%/include /c myext.c
cl /DBUILDDLL /I%FGLDIR%/include /c cintref.c
link /dll /manifest /out:myext.dll myext.obj cinterf.obj %FGLDIR%\lib
\libfgl.lib
mt -manifest myext.dll.manifest -outputresource:myext.dll

If you build your DLL with a version of Microsoft™ Visual C++ that is different from the version used
to build FGLRUN.EXE, the DLL must get private dependencies other than the process default. For
example, when the C-Extension DLL needs the Visual C 9.0 runtime library MSVCR90.DLL, while the
FGLRUN.EXE was build with VC 10 and needs MSVCR100.DLL. Private dependencies is specified with
the resource id ISOLATIONAWARE_MANIFEST_RESOURCE_ID, by adding the ;2 modifier at the end of the
-outputresource option, after the filename:

mt -manifest myext.dll.manifest -outputresource:myext.dll;2

To simplify compilation and linking of a C-Extension library, it is also possible to use the fglmkext command
line tool:

fglmkext -o myext.so module_a.c module_b.c

Note: The fglmkext command line tool contains platform-specific C compiler and linker options
required to build a C Extension library.

Creating Informix® ESQL/C Extensions
C-Extension libraries can be created from ESQL/C sources, as long as you have an Informix® ESQL/C
compiler which is compatible with your Genero runtime system.

In order to create a C-Extension from ESQL/C sources, you must:

1. Define the list of user functions in the C interface file, by including the fglExt.h header file.
2. Compile the C interface file with your C compiler.
3. Modify your ESQL/C source modules by including the fglExt.h header file.
4. Compile the ESQL/C modules with the esql compiler, with the position-independent code option.
5. Create the shared library with the compiled C interface file and ESQL/C modules by linking with the

libfgl runtime system library, and with the ESQL/C libraries (esql -libs), to resolve the ESQL/C
symbols.

Include the fglExt.h header file in the following way:

#include "f2c/fglExt.h"

You can compile .ec extensions with the native Informix® esql compiler. This section describes how to use
the Informix® esql compiler.

The following example shows how to compile and link an extension library with Informix® esql compiler:

Linux™ command-line example:

esql -c -I$FGLDIR/include myext.ec
gcc -c -I$FGLDIR/include -fPIC cinterf.c
gcc -shared -o myext.so myext.o cinterf.o -L$FGLDIR/lib -lfgl \
 -L$INFORMIXDIR/lib -L$INFORMIXDIR/lib/esql `esql -libs`

Extending the language | 1600

Windows™ command-line example (using Microsoft™ Visual C++):

esql -c myext.ec -I%FGLDIR%/include
cl /DBUILDDLL /I%FGLDIR%/include /c cintref.c
esql -target:dll -o myext.dll myext.obj cinterf.obj %FGLDIR%\lib\libfgl.lib

When using Informix® esql, you link the extension library with Informix® client libraries. These libraries
will be shared by the extension module and the Informix® database driver loaded by the Genero runtime
system. Since both the extension functions and the runtime database driver use the same functions
to execute SQL queries, you can share the current SQL connection opened in the Genero program to
execute SQL queries in the extension functions. However, mixing connection management instructions
(DATABASE, CONNECT TO) as well as database creation can produce unexpected results. For example
you cannot do a CREATE DATABASE in your ESQL/C extension, and expect that the main program can
use this database to execute SQL statements.

The C interface file
To make your C functions visible to the runtime system, you must define all the functions in the C interface
file.

The C interface file is a C source file that defines the usrFunctions array. This array defines C functions
that can be called from programs.

The last record of the usrFunctions array must be a line with all the elements set to NULL/0, to define
the end of the list.

Each element of the usrFunctions array must be filled following members:

1. The first member is the name of the function, provided as a (const char *) character string.
2. The second member is the C function symbol, provided as an (int (*function) (int)) C

function pointer.
3. The third member is the number of parameters passed to the function through the runtime stack,

provided as an (int).
4. The fourth member is the number of values returned by the function, provided as an (int); use -1 to

specify a variable number of arguments.

You typically do a forward declaration of your C functions, before the usrFunctions array initializer:

#include "f2c/fglExt.h"

int c_init(int);
int c_set_trace(int);
int c_get_message(int);

UsrFunction usrFunctions[]={
 { "init", c_init, 0, 0 },
 { "set_trace", c_set_trace, 1, 0 },
 { "get_message", c_get_message, 1, 1 },
 { NULL, NULL, 0, 0 }
};

Note that the UsrFunction structure contains an additional member, dedicated for internal use. If you
experience compiler warnings because of un-initialized structure members, simply complete the C function
definitions with a fifth zero value:

/* Avoids C compiler warnings because of un-initialized structure members */

UsrFunction usrFunctions[]={
 { "init", c_init, 0, 0, 0 },
 /* member for internal use ---^ */
 ...

Extending the language | 1601

Linking programs using C-Extensions
When creating a 42r program or 42x library, the linker needs to resolve all function names, including C-
Extension functions.

If extension modules are not specified explicitly in the source files with the IMPORT directive, you must give
the extension modules with the -e option in the command line:

fgllink -e myext1,myext2,myext3 -o myprog.42r moduleA.42m moduleB.42m ...

The -e option of fgllink does not write C-Extension references into the .42r file. If you use the -e argument
with the fgllink command, you must also use the -e argument with the fglrun command, in order to load the
libraries at runtime.

The -e option is not needed when using the default userextension module, or if C-Extensions are
specified with the IMPORT directive.

Loading C-Extensions at runtime
The runtime system can load several C-Extensions libraries, allowing you to properly split your libraries by
defining each group of functions in separate C interface files.

Note: When running iOS platforms, the C-Extensions are linked statically to the GMI application.

Directories are searched for the C-Extensions libraries according to the FGLLDPATH environment variable
rules. See the environment variable definition for more details.

If the C-Extension library depends on other shared libraries, make sure that the library loader of the
operating system can find theses shared objects: You may need to set the LD_LIBRARY_PATH
environment variable on UNIX™ or the PATH environment variable on Windows™ to point to the directory
where these other libraries are located.

There are three ways to bind a C-Extension with the runtime system:

1. Using the IMPORT instruction in sources.
2. Using the default C-Extension name.
3. Using the -e option of fglrun.

Using the IMPORT instruction

The IMPORT instruction allows you to declare an external module in a .4gl source file. It must appear at the
beginning of the source file.

The name of the module specified after the IMPORT keyword is converted to lowercase by the compiler.
Therefore it is recommended to use lowercase file names only.

The compiler and the runtime system automatically know which C-Extensions must be loaded, based on
the IMPORT instruction:

IMPORT mylib1
MAIN
 CALL myfunc1("Hello World") -- C function defined in mylib1
END MAIN

When the IMPORT instruction is used, no other action has to be taken at runtime. The module name is
stored in the 42m p-code and is automatically loaded when needed.

Using the default C-Extension name

All modules using a function from a C-Extension should now use the IMPORT instruction, however this
could be a major change to existing sources.

Extending the language | 1602

To simplify migration of existing C-Extensions, the runtime system loads by default a module with the name
userextension. Create this shared library with your existing C-Extensions, and the runtime system will
load it automatically if it is in the directories specified by FGLLDPATH.

Using the -e fglrun option

In some cases you need several C-Extension libraries, which are used by different group of programs, so
you can't use the default userextension solution. However, you don't want to review all your sources in
order to use the IMPORT instruction.

You can specify the C-Extensions to be loaded by using the -e option of fglrun. The -e option takes a
comma-separated list of module names, and can be specified multiple times in the command line. The next
example loads five extension modules:

fglrun -e myext1,myext2,myext3 -e myext4,myext5 myprog.42r

By using the -e option, the runtime system loads the modules specified in the command line instead of
loading the default userextension module.

Runtime stack functions
To pass values between a C function and a program, the C function and the runtime system use the
runtime stack.

Stack function basics

The parameters passed to the C function must be popped from the stack at the beginning of the C function,
and the return values expected by the Genero BDL call must be pushed on the stack before leaving the C
function.

The int parameter of the C function defines the number of input parameters passed on the stack, and the
function must return an int value defining the number of values returned on the stack.

Note: If you don't pop / push the specified number of parameters / return values, you corrupt the
stack and get a fatal error.

Pop parameters from the stack

The runtime system library includes a set of functions to retrieve the values passed as parameters on the
stack. This table shows the library functions provided to pop values from the stack into C buffers:

Table 342: Library functions provided to pop values from the stack into C buffers

Function Data type Details

void popdate(int4 *dst); DATE 4-byte integer value
corresponding to days
since12/31/1899.

void popint(mint *dst); INTEGER System dependent integer value
(int)

void popshort(int2 *dst); SMALLINT 2-byte integer value

void poplong(int4 *dst); INTEGER 4-byte integer value

void popflo(float *dst); SMALLFLOAT 4-byte floating point value

void popdub(double *dst); FLOAT 8-byte floating point value

Extending the language | 1603

Function Data type Details

void popdec(dec_t *dst); DECIMAL See structure definition in
$FGLDIR/include/f2c
headers

void popquote(char *dst,
int size);

CHAR(n) The size parameter defines the
size of the char buffer (with the
'\0').

The trailing blanks are kept.

void popvchar(char *dst,
int size);

VARCHAR(n) The size parameter defines the
size of the char buffer (with the
'\0').

The trailing blanks are kept.

void popstring(char *dst,
int size);

VARCHAR(n) The size parameter defines the
size of the char buffer (with the
'\0').

This function trims all the trailing
spaces, even the last one. There
is no way to distinguish from
NULL if the string has only
spaces.

void popdtime(dtime_t
*dst, int size);

DATETIME See structure definition in
$FGLDIR/include/f2c
headers

size =
 TU_DTENCODE(start,
 end)

void popinv(intrvl_t
*dst, int size);

INTERVAL See structure definition in
$FGLDIR/include/f2c
headers

size = TU_IENCODE(len,
 start, end)

void poplocator(loc_t
**dst);

BYTE, TEXT See structure definition in
$FGLDIR/include/f2c
headers

Important: this function
pops the pointer of a
loc_t object!

When using a pop function, the value is copied from the stack to the local C variable and the value is
removed from the stack.

In a Genero program, strings (CHAR, VARCHAR) are not terminated by '\0'. Therefore, the C variable
must have one additional character to store the '\0'. For example, the equivalent of a VARCHAR(100) in
Genero BDL programs is a char x[101] in C.

Extending the language | 1604

Stack introspection

A set of C API functions are provided to query information on the parameters passed on the stack to a C
function. Query for the parameter type and the actual size of a character string value, to adapt the buffer
receiving the parameter.

Table 343: Library functions to introspect the runtime stack

Function Description

const char
*fglcapi_peekStackType(void)

Returns the type name of the topmost value on the
stack as a string.

For example, if the value on the stack is a
CHAR(100), the function returns the string
"CHAR(100)".

Note: If the current value on the stack is
a string literal ("foo") then the type name is
"STRING" not "CHAR(3)".

int fglcapi_peekStackBufferSize(void) Returns the proposed size of a C char buffer, when
getting character strings from the stack with a pop*
function.

String pop functions such as popquote() and
popvchar() require a C char buffer to be allocated.
To allocate the buffer dynamically, use the
fglcapi_peekStackBufferSize() function to get the
actual size of the string parameter passed on the
stack.

Allocating char buffers with the proposed size
avoids truncating values returned from the stack.

Important: The size returned by this
function depends on the encoding
(LC_CTYPE) and the character length
semantics.

For example, assuming the value passed
on the stack is a CHAR(100), the function
returns:

• 101 (100 + 1) when using byte
semantics.

• 301 (3 * 100 + 1) when using UTF-8 and
character length semantics.

See Length semantics settings on page 314
for more details about these concepts.

Stack introspection example:

int my_function(int n)
{
 int sz;
 char *buf;
 sz = fglcapi_peekStackBufferSize();
 buf = malloc(sz);
 popstring(buf, sz);
 // ...

Extending the language | 1605

 free(buf);
 return 0;
}

Push returns on the stack

To return a value from the C function, you must use one of the functions provided in the runtime system
library.

Table 344: Functions provided in the runtime system library to return a value from a C function

Function Data type Details

void pushdate(int4 val); DATE 4-byte integer value
corresponding to days
since12/31/1899.

void pushdec(const dec_t
*val, const unsigned
decp);

DECIMAL See structure definition in
$FGLDIR/include/f2c
headers

void pushint(mint val); INTEGER System dependent integer value
(int)

void pushlong(int4 val); INTEGER 4-byte integer value

void pushshort(int2 val); SMALLINT 2-byte integer value

void pushflo(float *val); SMALLFLOAT 4-byte floating point value.

Important: This function
takes a pointer!

void pushdub(double
*val);

FLOAT 8-byte floating point value.

Important: This function
takes a pointer!

void pushquote(const char
*val, int len);

CHAR(n) len = strlen(val) (without '\0')

void pushvchar(const char
*val, int len);

VARCHAR(n) len = strlen(val) (without '\0')

void pushdtime(const
dtime_t *val);

DATETIME See structure definition in
$FGLDIR/include/f2c
headers

void pushinv(const
intrvl_t *val);

INTERVAL See structure definition in
$FGLDIR/include/f2c
headers

When using a push function, the value of the C variable is copied at the top of the stack; therefore the
scope and lifespan of the C variable does not matter.

To simplify migration of IBM I4GL legacy C extensions using ret*() style functions, Genero supports the
following synonyms:

Extending the language | 1606

Table 345: Return value functions synonyms

Function Equivalent

void retdate(int4 val) pushdate

void retdec(const dec_t *val) pushdec

void retmoney(const dec_t *val) pushdec

void retint(int val) pushint

void retlong(int4 val) pushlong

void retshort(int2 val) pushshort

void retflo(float *val) pushflo

void retdub(double *val) pushdub

void retquote(const char *val) pushquote

void retstring(const char *val) pushquote

void retvchar(const char *val) pushvchar

void retdtime(const dtime_t *val) pushdtime

void retinv(const intrvl_t *val) pushinv

Note: Pay attention to the retdec(), retmoney(), retquote() and retvchar() functions.
These do not have the same signature as the equivalent push*() functions.

C-Extension data types and structures
C types are used to write C-Extensions.

The following C types are used to write C-Extensions.

Table 346: C types used to write C-Extensions

Type name Description

int4 signed integer with a size of 4 bytes

uint4 unsigned integer with a size of 4 bytes

int2 signed integer with a size of 2 bytes

uint2 unsigned integer with a size of 2 bytes

int1 signed integer with a size of 1 byte

uint1 unsigned integer with a size of 1 byte

mint signed machine-dependent C int

muint unsigned machine-dependent C int

mlong signed machine-dependent C long

mulong unsigned machine-dependent C long

dec_t DECIMAL data type structure

dtime_t DATETIME data type structure

intrvl_t INTERVAL data type structure

Extending the language | 1607

Type name Description

loc_t TEXT / BYTE locator structure

Basic data types

Basic data types such as bigint, int4 and int2 are provided to define variables that must hold BIGINT
(bigint), SMALLINT (int2), INTEGER (int4) and DATE (int4) values. Standard char array can be
used to hold CHAR and VARCHAR data.

DATE

No specific typedef exists for the DATE type; you can use the int4 type to store a DATE value.

DECIMAL/MONEY

The dec_t structure is provided to hold DECIMAL and MONEY values.

The internals of dec_t structure can be ignored during C-Extension programming, because decimal API
functions are provided to manipulate any aspects of a decimal.

DATETIME

The dtime_t structure holds a DATETIME value.

Before manipulating a dtime_t, you must initialize its qualifier qt_qual, by using the TU_DTENCODE
macro:

dtime_t dt;
dt.dt_qual = TU_DTENCODE(TU_YEAR, TU_SECOND);
dtcvasc("2004-02-12 12:34:56", &dt);

INTERVAL

The intrvl_t structure holds an INTERVAL value.

Before manipulating a intrvl_t, you must initialize its qualifier in_qual, by using the TU_IENCODE
macro:

intrvl_t in;
in.in_qual = TU_IENCODE(5, TU_YEAR, TU_MONTH);
incvasc("65234-02", &in);

TEXT/BYTE Locator

The loc_t structure is used to declare host variables for a TEXT/BYTE values (simple large objects).
Because the potential size of the data can be quite large, this is a locator structure that contains
information about the size and location of the TEXT/BYTE data, rather than containing the actual data.

Table 347: Fields of the loc_t structure

Field name Data type Description

loc_indicator int4 Null indicator; a value of -1
indicates a null TEXT/BYTE value.
Your program can set the field
to indicate the insertion of a null
value. Database client libraries

Extending the language | 1608

Field name Data type Description

set the value for selects and
fetches.

loc_type int4 data type - SQLTEXT (for TEXT
values) or SQLBYTES (for BYTE
values).

loc_size int4 Size of the TEXT/BYTE value in
bytes; your program sets the size
of the large object for insertions.
Database client libraries set the
size for selects and fetches.

loc_loctype int2 Location - LOCMEMORY (in
memory) or LOCFNAME (in a
named file). Set loc_loctype
after you declare the locator
variable and before this declared
variable receives the large object
value.

loc_buffer char * If loc_loctype is LOCMEMORY,
this is the location of the
TEXT/BYTE value; your program
must allocate space for the buffer
and store its address here.

loc_bufsize int4 If loc_loctype is LOCMEMORY,
this is the size of the
buffer loc_buffer; If you set
loc_bufsize to -1, database
client libraries will allocate the
memory buffer for selects and
fetches. Otherwise, it is assumed
that your program will handle
memory allocation and de-
allocation.

loc_fname char * If loc_loc_type is LOCFNAME,
this is the address of the
pathname string that contains the
file.

Example

loc_t *pb1
double ratio;
char *source = NULL, *psource = NULL;
int size;

if (pb1->loc_loctype == LOCMEMORY) {
 psource = pb1->loc_buffer;
 size = pb1->loc_size;
} else if (pb1->loc_loctype == LOCFNAME) {
 int fd;
 struct stat st;
 fd = open(pb1->loc_fname, O_RDONLY);
 fstat(fd, &st);

Extending the language | 1609

 size = st.st_size;
 psource = source = (char *) malloc(size);
 read(fd, source, size);
 close(fd);
}

Calling C functions from programs
C-Extensions functions can be called from the program in the same way that you call a BDL function.

The C functions that can be called from programs must use the following signature:

int function-name(int)

Here function-name must be written in lowercase letters. The fglcomp compiler converts all BDL functions
names (following a CALL keyword) to lowercase.

The C function must be declared in the usrFunctions array in the C interface file.

Important: Parameters and return values must be pushed/popped on the runtime stack, by using
the stack functions. Parameters passed to the C function must be popped in the reverse order of
the BDL call list: CALL c_fct(A, B, C) => pop C, B, A. However, values returned from
the C function must be pushed in the same order as in the BDL returning clause: push A, B, C
=> CALL c_fct() RETURNING A, B, C.

In the next code example, the C-Extension module mycext.c defines the c_fct() function:

#include <stdlib.h>
#include <stdio.h>
#include <string.h>

#include "f2c/fglExt.h"

int c_fct(int n);

UsrFunction usrFunctions[]={
 {"c_fct",c_fct,2,2},
 {0,0,0,0}
};

int c_fct(int n)
{
 int rc;
 float price;
 char name[31];
 if (n != 2) exit(1);
 popflo(&price);
 popvchar(name, sizeof(name));
 printf(">> [%s] price:%f\n", name, price);
 pushint(strlen(name));
 price = price * 2;
 pushflo(&price);
 return 0;
}

The C-Extension library is imported by the BDL module with IMPORT:

IMPORT mycext

MAIN
 DEFINE len INT, price2 FLOAT
 CALL c_fct("Hand gloves", 120.50)

Extending the language | 1610

 RETURNING len, price2
 DISPLAY "len = ", len
 DISPLAY "price2 = ", price2
END MAIN

Compilation and execution example on a Linux system:

$ gcc -I $FGLDIR/include -shared -fPIC -o mycext.so mycext.c

$ fglcomp myprog.4gl

$ fglrun myprog.42m
>> [Hand gloves] price:120.500000
len = 11
price2 = 241.0

Calling program functions from C
It is possible to call an BDL function from a C-Extension function.

To call an BDL function from a C-Extension function, use the fgl_call macro:

fgl_call (function-name, nb-params);

In this call, function-name is the name of the program function to call, and nb-params is the number of
parameters pushed on the stack for the program function. The function-name must be written in lowercase
letters; The fglcomp compiler converts all program functions names to lowercase.

The fgl_call() macro is converted to a function that returns the number of values returned on the stack.

Important: Parameters and return values must be pushed/popped on the runtime stack, by using
the stack functions. Parameters passed to the BDL function must be pushed in the same order as
the BDL parameter list: push A, B, C => FUNCTION fct(A, B, C). However, values
returned from the BDL function must be popped in the reverse order of the BDL return clause:
RETURN A, B, C => pop C, B, A.

The myprog.4gl BDL module defining the MAIN block and the display_item() function to be called
from the C extension:

IMPORT mycext

MAIN
 CALL c_fct()
END MAIN

FUNCTION display_item(name, size)
 DEFINE name VARCHAR(30), size INTEGER
 DISPLAY name, size
 RETURN length(name), (size / 100)
END FUNCTION

The mycext.c C extension module calling the BDL function:

#include <stdlib.h>
#include <stdio.h>

#include "f2c/fglExt.h"

int c_fct(int n);

UsrFunction usrFunctions[]={
 {"c_fct",c_fct,0,0},

Extending the language | 1611

 {0,0,0,0}
};

int c_fct(int n)
{
 int rc, len;
 float size2;
 if (n != 0) exit(1);
 pushquote("Hand gloves", 11);
 pushint(54);
 rc = fgl_call(display_item, 2);
 if (rc != 2) exit(1);
 popflo(&size2);
 popint(&len);
 printf(">> %d %f\n", len, size2);
 return 0;
}

Compilation and execution example on a Linux system:

$ gcc -I $FGLDIR/include -shared -fPIC -o mycext.so mycext.c

$ fglcomp myprog.4gl

$ fglrun myprog.42m
Hand gloves 54
>> 11 0.540000

Sharing global variables
While not recommended, you can share global variables declared in your program with a C module.

In order to share the global variables declared in your program, you must:

1. Generate the .c and .h interface files by using fglcomp -G with the module defining the global
variables:

GLOBALS
DEFINE g_name CHAR(100)
END GLOBALS

fglcomp -G myglobals.4gl

This will produce two files named myglobals.h and myglobals.c.
2. In the C module, include the generated header file and use the global variables directly:

#include <string.h>
#include "f2c/fglExt.h"
#include "myglobals.h"

int myfunc1(int c)
{
 strcpy(g_name, "new name");
 return 0;
}

3. When creating the C-Extension library, compile and link with the myglobals.c generated file.

Tip: Using global variables is not recommended. It makes your code difficult to maintain. If you
need persistent variables, use module variables and write set/get functions that you can interface
with.

Extending the language | 1612

Simple C-Extension example
This example shows how to create a C-Extension library on Linux™ using gcc.

The command line options to compile and link shared libraries can change depending on the operating
system and compiler/linker used.

The "split.c" file

#include <string.h>
#include "f2c/fglExt.h"

int fgl_split(int in_num);
int fgl_split(int in_num)
{
 char c1[101];
 char c2[101];
 char z[201];
 char *ptr_in;
 char *ptr_out;
 popvchar(z, 200); /* Getting input parameter */
 strcpy(c1, "");
 strcpy(c2, "");
 ptr_out = c1;
 ptr_in = z;
 while (*ptr_in != ' ' && *ptr_in != '\0')
 {
 *ptr_out = *ptr_in;
 ptr_out++;
 ptr_in++;
 }
 *ptr_out=0;
 ptr_in++;
 ptr_out = c2;
 while (*ptr_in != '\0')
 {
 *ptr_out = *ptr_in;
 ptr_out++;
 ptr_in++;
 }
 *ptr_out=0;
 pushvchar(c1, 100); /* Returning the first output parameter */
 pushvchar(c2, 100); /* Returning the second output parameter */
 return 2; /* Returning the number of output parameters (MANDATORY) */
}

The "splitext.c" C interface file

#include "f2c/fglExt.h"

int fgl_split(int);

UsrFunction usrFunctions[]={
 { "fgl_split", fgl_split, 1, 2 },
 { 0,0,0,0 }
};

Compile the C Module and the interface file

gcc -c -I $FGLDIR/include -fPIC split.c

Extending the language | 1613

gcc -c -I $FGLDIR/include -fPIC splitext.c

Create the shared library

gcc -shared -o libsplit.so split.o splitext.o -L$FGLDIR/lib -lfgl

The program "split.4gl"

IMPORT libsplit
MAIN
 DEFINE str1, str2 VARCHAR(100)
 CALL fgl_split("Hello World") RETURNING str1, str2
 DISPLAY "1: ", str1
 DISPLAY "2: ", str2
END MAIN

Compile the .4gl module

fglcomp split.4gl

Run the program without the -e option

fglrun split

Implementing C-Extensions for GMI
This section describes how to program C-Extensions for the GMI VM.

C-Extensions for GMI

With C-Extensions for GMI, you can address specific needs on iOS platforms, that are not available
by default in the Genero language. For example, implement functions to interface with mobile specific
hardware like sensors, card readers, scanners, bluetooth, etc.

The runtime system virtual machine build in the GMI for iOS platforms can be extended with the C-
Extension technology. The basics to implement C-Extensions are the same for iOS as for Unix/Windows
platforms, but there are some differences, explained in this section.

The main difference is that user libraries cannot be loaded dynamically on iOS and thus require a re-link of
the GMI binary with the user-defined C-Extension library.

Writing C-Extension sources for GMI

C-Extension source files can be organized in several .c or .m files, but the final library name must be
userextension.

For a first test, we recommend that you group all your C-Extension functions in a single sources file called
userextension.m.

In the Objective C source file, you should add the following lines, to include typical iOS header files:

#include <Foundation/Foundation.h>
#include <UIKit/UIKit.h>

The Genero runtime system header file must be included as well:

#include "f2c/fglExt.h"

Extending the language | 1614

The C-Extension functions must be registered as usual, in a UsrFunction array, defining the number of
input and output parameters:

UsrFunction usrFunctions[]={
 {"get_user_info",get_user_info,1,1},
 ...
 {NULL,NULL,0,0}
};

Using iOS C-Extensions in your program

The application code needs to be compiled on the development platform before it is deployed on the iOS
device or simulator, by using the C-Extension library build for the development platform.

In your Genero program, import the C-Extension module with IMPORT userextension. You can also omit
this IMPORT instruction, because the runtime system tries to find and load the userextension library
by default. Note also that C-Extension function have a global scope, so you can omit to prefix the function
name with the lib/module name:

IMPORT userextension
MAIN
 DEFINE info STRING
 LET info = get_user_info()
 ...
END MAIN

Compiler behavior regarding IMPORT userextension usage:

• With IMPORT userextension: The compiler can check references to functions defined in the
extension. The programmer can qualify a function-name as userextension.function-name. But in
this case, the userextension.so shared library must exist on the development platform.

• Without IMPORT userextension: The compiler can not check references to those functions. The
compiler does not load the userextension module implicitly. C-Extension function names can not
be qualified. In this case, the userextension.so library is not required for compilation, but it will
be needed if the final program is linked, or if you want to execute/test the application in client/server
development mode.

Compiling and linking with C-Extensions on the development platform

On the development machine, if you link 42r programs, or if you want the compiler to check for missing
symbols (with the -r option), the userextension library must exist in the development environment.

Note: At runtime, on the development machine, the extension library will be loaded at first
extension function call. But when the application is deployed on the iOS device, the extension
library will be part of the GMI/VM binary (because it is statically linked).

To create the userextension library for the development environment, you must build an Objective-C
shared library.

If the C-Extension contains iOS API calls, it will not be possible to compile the extension library as is on the
development machine: Write conditional pre-processor macros to hide the iOS specific code, and simulate
the function behavior for the development platform:

#ifndef EMULATE_IOS
#include <Foundation/Foundation.h>
#include <UIKit/UIKit.h>
#endif
...
int get_user_info(int pc)
{
 char prop[101];

Extending the language | 1615

 char value[101];
 int z = (int) sizeof(prop);
 assert(pc==1);
 popvchar(prop, z);
#ifndef EMULATE_IOS
 ... here goes the iOS specific code ...
#else
 value[0] = '\0';
#endif
 pushvchar(value, (int) strlen(value));
 return 1;
}

Command line example to create a shared library with the XCode environment (note that we define the
NOT_IOS_IMPL constant to compile the code without iOS specific API calls):

$ cc -shared -o userextension.dylib userextension.c \
 -D EMULATE_IOS -I $FGLDIR/include -L $FGLDIR/lib -lfgl

Building the iOS app with C extensions

Regular mobile iOS apps are created with the gmibuildtool on page 2592 command-line tool. However, if
you want to build an iOS app using C extensions, you must setup a Makefile calling the FGLDIR/lib/
Makefile-gmi generic makefile.

For more details, see Building iOS apps with Genero on page 2586

User-defined front calls
Front-ends can be extended with custom functions to access specific features.

It is possible to implement custom front-end functions to interface with platform-specific features, and
use the feature from a Genero program through a front call. For example, you can implement a front-end
function module interfacing with a bar code reader, to return bar codes to the Genero program.

This section describes how to implement your own front calls by front-end type. Because each front-end
type uses different technologies, you must use native platform APIs to implement front calls.

Implement front call modules for GDC
Custom front call modules for the desktop front-end are implemented by using the API for GDC front calls
in C language.

GDC custom front call basics

In order to extend the GDC with your own front calls, you must be familiar with C++ programming, and
have a C++ compiler installed on your development platform.

GDC front call modules must be implemented as a Dynamic Linked Library (.DLL) on Windows™ platforms,
as a shared library (.so) on Linux™, or as a Dynamic Library (.dyLib) under Mac Os X. This shared library
must be deployed on each platform where the GDC front-end executes.

The GDC is able to automatically load the front call module and find the function, based on the module
name and function name used in the Genero BDL front call (ui.Interface.frontCall).

The API for GDC front calls is based on the frontEndInterface front call interface structure, that is
used to interface with the GDC core, in order to pass/return values to/from a front call.

Follow these steps to implement a custom front call module for the GDC:

1. Create a C source to implement your front call functions.

Extending the language | 1616

2. In the front call functions body:

a. Check the number of parameters passed with the getParamCount() function.
b. Pop parameter values with one of the pop*() functions.
c. Perform the function task.
d. Push the result values with one of the push*() functions.
e. Return 0 on success, -1 otherwise.

3. Compile and link the shared library.
4. Deploy the shared library to the platform where GDC executes.

The front call interface structure

Information required to execute the front call is transmitted to the extension module through the front call
interface structure. This structure contains a list of function pointers to:

• manage the stack (push or pop for each handled data type)
• get information about the function (number of in and out parameters)
• get information about the front-end (front call environment variables)

The following defines the front call interface structure:

struct frontEndInterface
 {
 short (* getParamCount) ();
 short (* getReturnCount) ();
 void (* popInteger) (long &, short &);
 void (* pushInteger) (const long, short);
 void (* popString) (char *, short &, short &);
 void (* pushString) (const char *, short, short);
 void (* getFrontEndEnv) (const char *, char *, short &);
 void (* popWString) (wchar_t *, short &, short &);
 void (* pushWString) (const wchar_t*, short, short);
 };

Important: The front call interface structure is defined for the C++ language.

Prototype of a front call function implementation

The prototype of each front call function must be:

int function_name (const struct frontEndInterface &fci);

1. function_name is the name of your function.
2. fci is the front call interface structure.

The fci structure will be filled by the GDC and passed to the custom function. You can then use this
structure to pop/push values from/to the stack, and get environment information from the core GDC.

The function must return 0 on success, -1 otherwise.

Front call environment variables

The front call function can query the GDC for front call environment variables, to get information about the
context.

The following front call environment variables are supported:

Extending the language | 1617

Table 348: Supported front call environment variables for the GDC

Environment Variable Description

frontEndPath The path where the GDC front-end is installed.

Module initialization and finalization

The font-call module can define initialization and finalization functions. GDC will automatically call these
functions as follows:

• void initialize();

This function is called when the front call module library is loaded. If needed, perform variable
initialization and resource allocation in this function.

• void finalize();

This function is called when the GDC front-end stops. If needed, perform resource release in this
function.

The API for custom front call implementation

Table 349: Front call interface functions

Function Description

short getParamCount();
This function returns the number of parameters
given to the function called.

short getReturnCount();
This function returns the number of returning values
of the function called.

void (* getFrontEndEnv)
 (const char * name,
 char * value,
 short & length);

This function is used to get context information from
the front-end.

• name is the name of the front call environment
variable.

• value is the char buffer to hold the value of the
variable.

• length is the actual length of the value.

void popInteger(
 long & value,
 short & isNull);

This function is used to get an integer from the
stack.

• value is the reference to where the popped
integer will be set.

• isNull indicates whether the parameter is null.

void pushInteger(
 const long value,
 short isNull);

This function is used to push an integer on the
stack.

• value is the value of the integer.
• isNull indicates whether the value is null.

void popString(
 char * value,
 short & length,
 short & isNull);

This function is used to get a string from the stack.

• value is the pointer where the popped string
will be set.

• length is the length of the string.

Extending the language | 1618

Function Description

• isNull indicates whether the parameter is null.

void pushString(
 const char * value,
 short length,
 short isNull);

This function is used to push a string on the stack.

• value is the value of the string.
• length the length of the string. A length of -1

indicates that the length is detected based on
the content of the string.

• isNull indicates whether the parameter is null.

void (* popWString)
 (wchar_t *value,
 short & length,
 short & isNull);

This function is used to get a WideChar string from
the stack.

• value is the pointer where the popped string
will be set.

• length is the length of the string.
• isNull indicates whether the parameter is null.

void (* pushWString)
 (wchar_t *value,
 short length,
 short isNull);

This function is used to push a WideChar string on
the stack.

• value is the value of the string.
• length the length of the string. A length of -1

indicates that the length is detected based on
the content of the string.

• isNull indicates whether the parameter is null.

Calling the custom front call from BDL

In the Genero program, use the ui.Interface.frontCall() API to call the front-end function. This
method takes the front call module name as the first parameter and the front call function name as second
parameter. The front call module name is defined by the name of the dynamic library (module_name.DLL,
module_name.so or module_name.dylib).

For example, if you implement a front call module with the name "mymodule.so", the Genero program code
must use the name "mymodule" as front call module name:

CALL ui.Interface.frontCall("mymodule", "myfunction", ["John DOE"], [msg])

Deploying the custom front call module

The shared library implementing the custom front call functions must be deployed on the platform where
the GDC executes: Copy your custom front call modules in the bin directory of the GDC installation
directory (i.e. %GDCDIR%\bin). This is also true when the GDC is deployed as ActiveX over the GAS.

Example

This example implements a simple front call function that computes the sum of two integer numbers. It
takes two parameters and returns two values.

mymodule.h:

struct frontEndInterface
 {
 short (* getParamCount) ();
 short (* getReturnCount) ();
 void (* popInteger) (long &, short &);

Extending the language | 1619

 void (* pushInteger) (const long, short);
 void (* popString) (char *, short &, short &);
 void (* pushString) (const char *, short, short);
 void (* getFrontEndEnv) (const char *, char *, short &);
 void (* popWString) (wchar_t *, short &, short &);
 void (* pushWString) (const wchar_t*, short, short);
 };

#ifdef WIN32
#define EXPORT extern "C" __declspec(dllexport)
#else
#define EXPORT extern "C"
#endif

EXPORT void initialize();
EXPORT void finalize();
EXPORT int mysum(const frontEndInterface &fx);

mymodule.cpp:

#include "mymodule.h"
#include <stdio.h>
#include <string.h>

void initialize() {
}

void finalize() {
}

int mysum(const struct frontEndInterface &fci) {
 long param1, param2;
 short isNull1, isNull2;
 long sum;
 char msg[255];

 if (fci.getParamCount() != 2 || fci.getReturnCount() != 2) {
 return -1;
 }

 fci.popInteger(param2, isNull2);
 fci.popInteger(param1, isNull1);

 sum = param1 + param2;

 if (!isNull1 && !isNull2) {
 sum = param1 + param2;
 sprintf(msg, "%d + %d = %d", param1, param2, sum);
 } else {
 sum = 0;
 sprintf(msg, "Parameters are NULL");
 }

 fci.pushInteger(sum, 0);
 fci.pushString(msg, strlen(msg), 0);

 return 0;
}

To invoke the sum front-end function, use the ui.Interface.frontCall() method in your Genero
program:

MAIN

Extending the language | 1620

 DEFINE res INT, msg STRING
 MENU
 ON ACTION frontcall ATTRIBUTES(TEXT="Call custom front call")
 CALL ui.Interface.frontCall("mymodule", "mysum",
 [100,250], [res,msg])
 DISPLAY "Result: ", res, "\n", msg
 ON ACTION quit
 EXIT MENU
 END MENU
END MAIN

Implement front call modules for GMA
Custom front call modules for the Android™ front-end are implemented by using the API for GMA front calls
in Java™.

GMA custom front call basics

In order to extend the GMA with your own front calls, you must be familiar with Java programming
concepts, and if you want to interface with Android apps, understand concepts such as Android Activity
and Intent.

The API for GMA front calls is based on the following Java interfaces:

• com.fourjs.gma.extension.v1.IFunctionCallController

• com.fourjs.gma.extension.v1.IFunctionCall

The front call function controller (IFunctionCallController) is implemented by the GMA, it is used to
notify function call results, raise runtime exceptions and invoke activities.

The front call function body (IFunctionCall) implements the actual custom front call code.

The steps to implement an IFunctionCall class are:

1. Create a Java source file with the name of the front call function, for example: "getPhoneId.java",
that will implementing the IFunctionCall interface.

2. Define the Java package name identifying the front call module, for example: "package
com.mycompany.utilities;".

3. Define a private IFunctionCallController object reference to handle the function controller.
4. Implement the setFunctionCallController() method for the function controller registration.
5. Implement the invoke() method to perform the actual front call task. In this method, use the

controller's returnValues() method to return values from the front call. If needed, you can raise
runtime errors with controller's raiseError() method. It is also possible to start an Android Activity
with the startActivity* controller methods.

6. If an activity is started with controller's startActivityForResult method, implement the
onActivityResult() method in the function body class, to handle the end of the activity, and call
controller's returnValues() method to return values from the front call.

7. If needed, implement the onSaveInstanceState() and the onRestoreInstanceState()
methods, to respectivly save and restore information when Android has to suspend the application.

Note: In any case, the IFunctionCall class must either call the controller's returnValues()
or raiseError() methods to give the control back to the Genero program.

Extending the language | 1621

The com.fourjs.gma.extension.v1.IFunctionCall interface

Table 350: Methods of the com.fourjs.gma.extension.v1.IFunctionCall interface

Method Description

void
 setFunctionCallController(IFunctionCallController controller)

This method binds the front call function controller
object to the function body object.

The controller parameter is the
IFunctionCallController object to bind with
the front call function body object.

abstract void invoke(Object[] args)
 throws IllegalArgumentException

This method performs the front call. Is will be called
when the front call is executed from the Genero
program.

The args parameter is a variable list of parameters
passed to the front call. This corresponds to the
third argument of ui.Interface.frontCall on page 395

void
 onSaveInstanceState(Bundle state)

Saves the state of an ongoing function call when
Android needs to suspend the application.

The state parameter is the bundle to save the state
to.

void
 onRestoreInstanceState(Bundle state)

Restores the state of an ongoing function call, when
Android needs to restore the application.

The state parameter is the bundle to restore the
state from.

void
 onActivityResult(int resultCode,
 Intent data)

Callback invoked when an activity started through
IFunctionCallController.startActivityForResult
finishes.

The resultCode parameter is the integer result
code returned by the child activity through its
setResult() method.

The data parameter is an Intent object, which can
return result data to the caller (various data can be
attached to Intent "extras").

The com.fourjs.gma.extension.v1.IFunctionCallController interface

Table 351: Methods of the com.fourjs.gma.extension.v1.IFunctionCallController interface

Method Description

void
 returnValues(IFunctionCall functionCall,
 Object...values)

Notifies the controller that the front call function
call has finished successfully. To be called typically
at the end of the IFunctionCall.invoke()
method.

The functionCall parameter is the current
IFunctionCall object invoked.

Extending the language | 1622

Method Description

The values parameter defines the variable list of
front call function return values. This corresponds
to the fourth parameter of ui.Interface.frontCall on
page 395.

void
 raiseError(IFunctionCall functionCall,
 String message)

Notifies the controller of an error in the front
call function call. This leads to a BDL runtime
exception.To be called if needed within the
IFunctionCall.invoke() method.

The functionCall parameter is the current
IFunctionCall object invoked.

The message parameter holds the error message
to be returned to the Genero program in the second
part of the error -6333 message (see front call error
handling in ui.Interface.frontCall on page 395).

void
 startActivity(IFunctionCall functionCall,
 Intent intent)

Starts a new activity. The function call won't be
notified of the end of the activity. The Genero
program will run in parallel of this activity. The
behavior is similar to a RUN WITHOUT WAITING.

The functionCall parameter is the current
IFunctionCall object invoked.

The intent parameter describes the activity to start.

void
 startActivityForResult(IFunctionCall functionCall,
 Intent intent)

Starts a new activity. The function call won't be
notified of the end of the activity. The Genero
program will remain blocked as long as the started
activity isn't finished. The behavior is similar to a
RUN.

The method
IFunctionCall.onActivityResult will be
called once the activity finishes.

The functionCall parameter is the current
IFunctionCall object invoked.

The intent parameter describes the activity to start.

Activity getCurrentActivity() Returns the current Activity object. Provided in
case if you need to pass the current activity to an
Android API requiring this object.

Important: Don't use the returned
activity to start other activities (don't
call Activity.startActivity or
Activity.startActivityForResult),
use the helpers of the current interface
instead.

Calling the custom front call from BDL

In the Genero program, use the ui.Interface.frontCall() API to call the front-end function.
This method takes the front call module name as first parameter and the front call function name as

Extending the language | 1623

second parameter. The front call module name is defined by the Java package name of the custom class
implementing the IFunctionCall interface, and the front call function name is defined by the name of
the class.

For example, if you implement the following front call function:

package com.mycompany.utilities;
...
public class GetPhoneId implements IFunctionCall {
...

The Genero program code must pass the Java package name "com.mycompany.utilities" as front
call module name and the class name "GetPhoneId" as front call function name:

CALL ui.Interface.frontCall("com.mycompany.utilities", "GetPhoneId", ["John
 DOE"], [msg])

Deploying the custom front call

The compiled Java classes implementing the front calls must be included in the mobile application Android
package (.apk), which is created in the Genero Studio deployment procedure. The same GMA package
building rules apply for front calls and for simple Java extensions. See Packaging custom Java extensions
for GMA on page 1590 for more details.

Example

The next example implements a HelloWorld call as a front call module.

HelloWorld.java:

package com.mycompany.testmodule;

import android.content.Intent;
import android.os.Bundle;

import com.fourjs.gma.extension.v1.IFunctionCall;
import com.fourjs.gma.extension.v1.IFunctionCallController;

public class HelloWorld implements IFunctionCall {

 private IFunctionCallController mController;

 @Override
 public void setFunctionCallController(IFunctionCallController
 controller) {
 mController = controller;
 }

 @Override
 public void invoke(Object[] args) throws IllegalArgumentException {
 if (args.length != 1) {
 throw new IllegalArgumentException("HelloWorld takes one
 argument");
 }

 mController.returnValues(this, "Hello " + args[0].toString());
 }

 @Override
 public void onSaveInstanceState(Bundle state) {
 }

Extending the language | 1624

 @Override
 public void onRestoreInstanceState(Bundle state) {
 }

 @Override
 public void onActivityResult(int returnCode, Intent data) {
 }
}

In order to invoke the HelloWorld front-end function, use the ui.Interface.frontCall() API in the
Genero program:

MAIN
 DEFINE msg STRING
 MENU
 ON ACTION frontcall ATTRIBUTES(TEXT="Call custom front call")
 CALL ui.Interface.frontCall("com.mycompany.testmodule", "HelloWorld",
 ["John DOE"], [msg])
 ON ACTION quit
 EXIT MENU
 END MENU
END MAIN

Implement front call modules for GMI
Custom front call modules for the iOS front-end are implemented by using the API for GMI front-calls in
Objective-C.

GMI custom front call basics

In order to extend the GMI with your own front calls, you must be familiar with Objective-C programming,
and if you want to interface with iOS Apps, have a knowledge of the iOS API.

Important: Before starting with GMI front call implementation, you need to get the GMI package
and unzip the archive into the FGLDIR directory, as described in the prerequisites sections of
Building iOS apps with Genero on page 2586.

The API for GMI front calls is based on the FrontCall class and the FrontCallHelper and
FunctionCall protocols. You can find these in the file frontcall.h in the in the FGLDIR/include/
gmi diretory.

To implement custom front calls, write a class which extends FrontCall and implement
the “moduleName” and “execute:retCount:params” methods as well as the
“initWithFunctionModuleHelper:” initializer.

To register your front calls with GMI, implement a function “NSArray* frontCalls()” in your extension
project, which has to return an array of Objective-C strings with the names of the FrontCall classes you
implemented.

Follow these steps to implement a custom front call module for the GMI:

1. Import the frontcall.h header file in your source.
2. Define an interface (MyFrontCall) which extends FrontCall.
3. Create the class (MyFrontCall) which implements this interface:

a. Implement the - (instancetype) initWithFunctionModuleHelper:(id)aHelper
initializer, calling [superinitWithFunctionModuleHelper:aHelper] to pass the
FrontCallHelper to the base implementation.

b. Implement the - (NSString*) moduleName method, returning the name of the front call module.

Extending the language | 1625

c. Implement the - (void)execute:(NSString)name retCount:(int)retCount params:
(NSArray)params method, defining the body of your front calls. See below for details about the
execute method.

4. Implement the function NSArray* frontCalls() and return the class object of your class as the first
element in the array (see below for code example).

API to implement custom front calls in GMI

To get parameters passed from the Genero program to the front call, and return values from the front call
to the Genero program, use the following macros and methods of the FrontCall class:

Table 352: GMI custom front call API

Macro / Method Description

(void) FC_REQUIRED_PARAMS(count) Checks that the number of parameters passed by
the Genero program equals count. This macro will
raise an error in the Genero program if not enough
parameters were passed.

(NSString *) FC_PARAM(index) Get the string parameter passed to the front
call, at the given position. If the parameters
are of a different type, use the doubleValue,
floatValue and integerValue methods
on NSString or a NSScanner, to convert the
parameter to the expected type.

(int) FC_PARAM_INT(index) Get the int parameter passed to the front call, at the
given position.

(void) intResult:(int) intValue Ends the front call by returning one integer to
Genero.

(void) doubleResult:(double)
 doubleValue

Ends the front call by returning one double to
Genero.

(void) stringResult:(NSString
 *):stringValue*

Ends the front call by returning one string to
Genero.

(void) startResult Initiate setting multiple result values.

Must be followed by add* function calls and ended
with endResult.

(void) addIntResult:(int)intValue Add an integer to the list of results returned.

Extending the language | 1626

Macro / Method Description

To be used after a startResult call.

(void) addDoubleResult:(double)
 doubleValue

Add a double to the list of results returned.

To be used after a startResult call.

(void) addStringResult:(NSString *)
 stringValue*

Add a string to the list of results returned.

To be used after a startResult call.

(void) endResult Finalize the setting of multiple result values an
return the results to the Genero program, with front
call error code zero (i.e. success).

(void) ok Ends the front call without returning any value to
Genero, indicating that the front call execution was
successful.

(void) error(FCErrorCode):error Ends the front call with a specific front call
error code defined in FCErrorCode enum in
frontcall.h, to indicate that front call execution
failed, typically because of invalid parameters or
invalid function name.

(void) errorWithMessage(NSString
 *)message*

Ends the front call with front call return code -4
(maps to BDL error -6333), and a user-defined error
message, that can be read with ERR_GET() in the
Genero program.

(void) willSetResultLater To be called at the end of the execute function,
if result values are intended to be set after the
execute function did return.

If the willSetResultLater function is used, the
current front call will not end until one of the result
functions is called.

For example, if your front call opens a message
box, the execute function will return before one
of the message box buttons are selected. Once a
button is pressed, the front call result value is set.

Calling the custom front call from BDL

In the Genero program, use the ui.Interface.frontCall() API to call the front-end function. This
method takes the front call module name as first parameter and the front call function name as second
parameter.

The front call module name is defined by the string value returned from the -(NSString *)
moduleName* method of your front call implementation, and the front-call function name is passed to the
execute method you implemented as first parameter (name).

For example, if you implement the following class:

#import <gmi/frontcall.h>
...

Extending the language | 1627

@interface MyFrontCall : FrontCall
 ...
@end

@class MyFrontCall

-(instancetype) initWithFunctionModuleHelper:(id)aHelper
{
 if (self = [superinitWithFunctionModuleHelper:aHelper]) {
 ...
 }
 return self;
}

-(NSString*) moduleName{
 return @"MyModule";
}

-(void)execute:(NSString)name
 retCount:(int)retCount
 params:(NSArray)params
{
 [super execute:name retCount:retCount params:params];
 if ([[name lowercaseString]isEqualToString:@"myfrontcall"]) {
 ...

The Genero program code must pass the module name "MyModule" as front call module name and the
class name "MyFrontCall" as front call function name:

CALL ui.Interface.frontCall("MyModule", "MyFrontCall", ["John DOE"],[msg])

Custom front call implementation details (execute method)

First of all, call the execute method of the parent FrontCall class, right at the top of the execute
method:

 [super execute:name retCount:retCount params:params];

The execute method must check the name of the front call function passed as parameter, to perform the
expected code. This is the function name passed to the ui.Interface.frontCall() call in the Genero
program:

 if([[name lowercaseString] isEqualToString:@"myfunction"]) {

Implement the body of the front call function in the if() block as follows:

Add an assert() line, to make sure that the number of return values match:

 assert(retCount == 2);

In order to get the parameters passed from the Genero program, use the FC_* macros in the body of your
front call function.

First, check that the number of parameters passed is correct, with the FC_REQUIRED_PARAMS(count)
macro:

 FC_REQUIRED_PARAMS(3);
 ...

Extending the language | 1628

Retrieve the parameters passed to the front call with the FC_PARAM(index) or FC_PARAM_INT(index)
macros, which return a NSString* and an int respectively. If needed, use the doubleValue,
floatValue and integerValue methods on NSString or a NSScanner, to convert the parameter to
the expected type:

 NSString * info = FC_PARAM(0);
 int v1 = [FC_PARAM(1) integerValue];
 double v2 = [FC_PARAM(2) doubleValue];

Implement the actual code of the front call.

To return values to Genero, use one of the helper methods such as intResult:value, if a single value
must be returned to the Genero program. If more than one value must be returned, build a return set with
the startResult, add*Result and endResult methods:

 [self startResult];
 [self addIntResult:isIpad];
 [self addIntResult:canLocate];
 [self endResult];

If the front call displays a UI (e.g. an UIAlertController or displays a customer UIViewController),
call the willSetResultLater method of the FrontCall class, to avoid that the control flow is returned
to the Genero program upon exit of the execute method:

 [self willSetResultLater];

Additionally, if you call the willSetResultLater method, you need to call one of the result methods like
stringResult at a later time.

Deploying the custom front call

The complied Objective-C classes and the NSString frontCalls() function must be included in the
iOS app build process.

The same app building rules apply for custome front calls as for C extensions.

See Building iOS apps with Genero on page 2586 for more details.

Example

In this example, the ExtensionFrontCall class implements two front calls: "isipad" and "logindialog".

We start by defining the interface for the custom front call module:

@interface ExtensionFrontCall : FrontCall<UIAlertViewDelegate>
@end

The ExtensionFrontCall class extends FrontCall, and implements the UIAlertViewDelegate
protocol which is used by the "logindialog" front call.

Next, we start the implementation of the interface:

@implementation ExtensionFrontCall

-(instancetype) initWithFunctionModuleHelper:(id)aHelper
{
 if (self = [superinitWithFunctionModuleHelper:aHelper]) {
 }
 return self;
}

Extending the language | 1629

-(NSString*) moduleName{
 return @"ExtensionFrontCall";
}

-(void)execute:(NSString)name retCount:(int)retCount params:(NSArray)params
 {
 [super execute:name retCount:retCount params:params];
 ...
}

...
@end

We use the standard initializer which will be called by GMI on startup and define "ExtensionFrontCall"
as module name by returning it from the moduleName method.

We also start the implementation of the execute method by calling the super method.

Now we can implement the frontCalls function to notify GMI about the front call module we are adding:

NSArray* frontCalls()
{
 return @[[ExtensionFrontCall class]];
}

This function is added above the interface implementation in the example, but could be defined in any
file, as long as it is included in the project. If more than one module has to be defined, add the class
names of the other modules to the returned array (e.g. return @[[ExtensionFrontCall class] ,
[AnotherFrontCall class]];)

The isipad front call example

This front call simply returns the information on which device GMI is running. If it is an iPad the int 1 will be
returned to the Genero program:

if ([[name lowercaseString] isEqualToString:@“isipad”]) {
 assert(retCount == 1);
 BOOL isIpad = UI_USER_INTERFACE_IDIOM() == UIUserInterfaceIdiomPad;
 [self startResult];
 [self addIntResult:isIpad];
 [self endResult];
}

After checking that only one return parameter was defined in Genero, the code identifies the platform with
the UI_USER_INTERFACE_IDIOM() API and stores the result in the isIpad variable.

The next three lines return the result value to Genero, by starting a result block with startResult,
adding an int to the return set with addIntResult, and finally calling endResult to send the result to the
Genero progra,.

We could also have used the single line: [self intResult:isIpad]; to achieve the same behavior,
since we only return one result value.

The Genero program will call the isIPad front call as follows:

DEFINE res INTEGER
CALL ui.Interface.frontCall("ExtensionFrontCall", "isipad", [], [res])

Extending the language | 1630

The logindialog front call example

This front call will display a login dialog to the user. It expects two parameters (the title and the message
for the login dialog), and will return the login name and the password entered by the end user:

if([[name lowercaseString] isEqualToString:@“logindialog”]) {
 assert(retCount == 2);
 FC_REQUIRED_PARAMS(2);
 NSString *title = FC_PARAM(0);
 NSString *message = FC_PARAM(1);
 UIAlertView *alert = [[UIAlertView alloc]
 initWithTitle:title
 message:message
 delegate:self
 cancelButtonTitle:NSLocalizedString(@"Cancel",@"Cancel")
 otherButtonTitles:NSLocalizedString(@"OK",@"OK"),nil];
 alert.alertViewStyle = UIAlertViewStyleLoginAndPasswordInput;
 [alert show];
 [self willSetResultLater];
}

We first check that two result values were set in Genero and that two parameters were supplied to the front
call.

Then we use the FC_PARAM macro to fetch the parameters and assign them to NSStrings.

Then we allocate and initialize an UIAlertView with the given message and title and set the
alertViewStyle to "UIAlertViewStyleLoginAndPasswordInput", so that one plain text field and
one password field will be displayed on the alert.

In the initWithTitle call we also set "self" as the delegate of the alert so that we receive callbacks
after user input (we had added the UIAlertViewDelegate protocol to our ExtensionFrontCall
interface definition).

Finally, we call willSetResultLater, to keep the control flow in iOS. If we don’t call this function, GMI
concludes the front call was not handled by the execute function (as none of the xxxResult functions
was called inside), and the front call will fail with a “Frontcall not found” error message.

The ExtensionFrontCall class implements the alertView:didDismissWithButtonIndex:
method from the UIAlertViewDelegate protocol:

pragma mark UIAlertViewDelegate(void)

alertView:(UIAlertView *)alertViewdidDismissWithButtonIndex:
(NSInteger)buttonIndex {
 [self startResult];
 if (buttonIndex != alertView.cancelButtonIndex) {
 [self addStringResult:[alertViewtextFieldAtIndex:0].text];
 [self addStringResult:[alertViewtextFieldAtIndex:1].text];
 } else {
 [self addStringResult:nil];
 [self addStringResult:nil];
 }
 [self endResult];
}

This method will be called after the user has tapped on one of the buttons and the view has been
dismissed. Inside this method, we first call startResult to enable adding more than one return value.

If the tapped button was not the Cancel button, we add the values of the login and password fields as
strings to the results and then call endResult to return the control flow to the Genero program.

Extending the language | 1631

The Genero program will call the login dialog front call as follows:

DEFINE ul, up STRING
CALL ui.Interface.frontCall("ExtensionFrontCall", "logindialog",
 ["MyApp","User login"],
 [un, up])
IF up IS NULL THEN
 ERROR "Login canceled"
 EXIT PROGRAM
END IF

Note: The file userextension.m of the GMI Extension project contains a complete example on
how to write custom front calls.

Implement front call modules for GWC - HTML5 theme
Custom front call modules for the GWC-HTML5 theme front-end are implemented by using JavaScript™.

GWC-HTML5 theme custom front call basics

When using the GWC-HTML5 theme, front-end calls are JavaScript™ functions executed locally on the
workstation where the browser is running.

Note: Executing front calls in the context of a web browser is limited to the OS functions a web
browser can do. For example, it will not be possible to delete a file on the computer where the
browser executes.

To implement custom front calls for GWC-HTML5 theme, you must edit the csf.js JavaScript file located
in $FGLASDIR/tpl/SetHtml5. Genero built-in front calls and custom front calls are implemented in the
csf.js file.

Important: Custom front call module and function names must be registered in lowercase for the
GWC-HTML5 theme front-end.

Follow these steps to implement a custom front call module for the GWC-HTML5 theme:

1. Edit the $FGLASDIR/tpl/SetHtml5/csf.js file.
2. Add a JavaScript object using the name of the front call module to the gwc.frontCallModuleList

object:

gwc.frontCallModuleList.mymodule = { ... }

3. Add your front call functions as JavaScript methods to the newly-created module object (with potential
parameters):

gwc.frontCallModuleList.mymodule = {
 myfunction : function (param1, ...) {
 ...
 }
}

The parameters of the JavaScript method must match the parameter list of the
ui.Interface.frontCall("mymodule", "myfunction", [param-list], [return-
list]).

4. If the front call must return values to the Genero program, add a return instruction in the JavaScript
method:

 return ([value1, ...]);

Extending the language | 1632

The number of returned values must match the number of variables used in the return list of the
Genero front call ui.Interface.frontCall("mymodule", "myfunction", [param-list],
[return-list]).

If the front call does not return any value to the Genero program, the JavaScript method must return an
empty list:

 return [];

Note:

• If the SetHtml5 directory contains compressed .js files, do not forget to compress the
modified csf.js file, or remove the compressed version of the file (the GAS will use the non-
compressed version).

• Keep in mind that the JavaScript modules can be cached in your browser. You may need to
refresh the cache when doing modifications in the csf.js file.

• Make sure to save your custom front call definitions added to csf.js before installing a new
version of the GAS; the existing csf.js will be overwritten by the new installation.

• Front call module and function names are case sensitive.

Example

Add the following lines in the csf.js file:

gwc.frontCallModuleList.mymodule = {
 myfunction1: function(param) {
 alert("param: " + param);
 return [];
 }
 myfunction2: function(param1,param2) {
 alert("param1: " + param1 + "\nparam2: " + param2);
 return [55,"aaa"];
 }
};

The above JavaScript code implements a front call module list with functions that can be called from the
Genero programs as follows:

DEFINE r INTEGER, s STRING
CALL ui.Interface.frontCall("mymodule", "myfunction1", ["abc"], [])
CALL ui.Interface.frontCall("mymodule", "myfunction2", [123,"abc"], [r,s])

Implement front call modules for GWC - JavaScript
Custom front call modules for the GWC-JS front-end are implemented by using JavaScript™.

GWC-JS custom front call basics

In order to extend the GWC-JS with your own front calls, you must be familiar with JavaScript programming
concepts.

Important: Custom front call module and function names must be registered in lowercase for the
GWC-JS front-end.

With GWC-JS, front-end calls are JavaScript functions executed locally on the workstation where the
browser is running.

Note: Executing front calls in the context of a web browser is limited to the OS functions a web
browser can do. For example, it will not be possible to delete a file on the computer where the
browser executes.

Extending the language | 1633

Customizing the GWC-JS front-end

In order to integrate your custom front calls in the GWC-JS front end, you need to setup the GWC-JS
customization environment.

Basically, you will have to:

1. Setup GWC-JS customization (install Node.js).
2. Extract the GWC-JS front-end archive into a project-dir directory,
3. Copy your custom front calls JavaScript modules in the project-dir/customization,
4. Rebuild the GWC-JS front-end with the grunt utility.
5. Configure the GAS to use the customized GWC-JS front-end.

For more details, see GWS-JS customization chapter in the GAS documentation.

Structure of a custom front call JavaScript module

One JavaScript module will define a front call module implementing several front call fonctions.

The .js file must be copied into the project-dir/customization directory.

A custom front call JavaScript module must have the following structure:

"use strict";

modulum('FrontCallService.modules.module-name', ['FrontCallService'],
 /**
 * @param {gbc} context
 * @param {classes} cls
 */
 function(context, cls) {
 context.FrontCallService.modules.module-name = {

 function-name: function (param1, ...) {

 ... user code ...

 {
 return [values ...]
 |
 this.setReturnValues([values ...]);
 }

 },

 [...] /* More functions can be defined for this module */

 };
 }
);

Where:

1. module-name is the name of the front call module, and corresponds to the first parameter of
ui.Interface.frontCall().

2. function-name is the name of the front call function, and corresponds to the second parameter of
ui.Interface.frontCall().

3. param1, param2 ... are the input values provided as third parameter of
ui.Interface.frontCall().

4. values is a JavaScript array containaing the values to be returned in the last parameter of of
ui.Interface.frontCall().

https://nodejs.org

Extending the language | 1634

GWC-JS custom front call API

The following JavaScript functions are provided to implement your custom front-calls:

Table 353: GWC-JS custom front call API

Method Description

this.parametersError([message]) This function can be invoked when an invalid
number of parameters is passed to the front call, in
order to raise on exception in the BDL program.

The message parameter holds the error message
to be returned to the Genero program in the second
part of the error -6333 message (see front call error
handling in ui.Interface.frontCall on page 395).

this.runtimeError([message]) This function can be used to raise an exception in
the BDL program, when the front call needs to warn
the program that an error occured.

The message parameter holds the error message
to be returned to the Genero program in the second
part of the error -6333 message (see front call error
handling in ui.Interface.frontCall on page 395).

this.setReturnValues(values) This function sets the values to be returned to the
BDL program in the case of an asynchroneous front
call. See Asynchroneous custom front calls on page
1634 for more details

Synchroneous custom front calls

Synchroneous front calls can directly return the front call values with a classic JavaScript return
instruction, by specifying a JavaScript array.

The next code example returns a single value:

 return ["Hello " + name + " !"];

Following code example returns three values:

 return ["first", "second", "third"];

Asynchroneous custom front calls

JavaScript custom front calls sometimes require asynchroneous programming. In such case, the custom
front call API provides the setReturnValues() function to register values that must be returned to the
BDL program.

For example, to return value after a delay of 5 seconds:

 window.setTimeout(function () {
 this.setReturnValues(["After 5s, Hello " + name + " !"]);
 }.bind(this), 5000);

Extending the language | 1635

Example

The next JavaScript code example implements a synchroneous and an asynchroneous
custom front call function:

"use strict";

modulum('FrontCallService.modules.mymodule',
 ['FrontCallService'],
 /**
 * @param {gbc} context
 * @param {classes} cls
 */
 function(context, cls) {
 context.FrontCallService.modules.mymodule = {

 add_hello_sync: function (name) {
 if (name === undefined) {
 this.parametersError();
 return;
 }
 if (name.length === 0) {
 this.runtimeError("name shouldn't be empty");
 return;
 }

 return ["Hello, " + name + " !"];
 },

 add_hello_async: function (name) {
 if (name === undefined) {
 this.parametersError();
 return;
 }
 if (name.length === 0) {
 this.runtimeError("name shouldn't be empty");
 return;
 }

 window.setTimeout(function () {
 this.setReturnValues(["After 5s, Hello, " + name +
 " !"]);
 }.bind(this), 5000);
 }
 };
 }
);

From the Genero BDL program:

DEFINE res INTEGER
CALL ui.Interface.frontcall("mymodule","add_hello_sync",
 ["world"] , [res])
CALL ui.Interface.frontcall("mymodule","add_hello_async",
 ["world"] , [res])

Extending the language | 1636

Web Components
Implement specialized form elements with Web Components.

For more details, see Web components on page 1416.

Library reference | 1637

Library reference

Reference for classes and functions provided as built-in or extension packages.

• Built-in functions on page 1637
• Utility functions on page 1667
• Built-in packages on page 1687
• Extension packages on page 1947
• Built-in front calls on page 1881
• File extensions on page 2296
• Genero BDL errors on page 2297

Built-in functions
A built-in function is a predefined function that is part of the runtime system, or provided as a library
function automatically loaded when a program starts. The built-in functions are part of the language.

Note that some operators such as FIELD_TOUCHED(field-spec) look like functions, but these are core
language operators that are different in terms of semantics and order of precedence.

• Built-in functions on page 1637
• List of desupported built-in functions on page 1666
• The key code table on page 1666

Built-in functions

Table 354: Built-in functions

Function Description

arg_val(
 position INTEGER)
 RETURNING result STRING

Returns a command line argument by position.

arr_count()
 RETURNING result INTEGER

Returns the number of rows entered during an INPUT
ARRAY statement.

arr_curr()
 RETURNING result INTEGER

Returns the current row in a DISPLAY ARRAY or
INPUT ARRAY.

downshift(
 source STRING)
 RETURNING result STRING

Converts a string to lowercase.

err_get(
 errnum INTEGER)

Returns the text corresponding to an error number.

Library reference | 1638

Function Description

 RETURNING result STRING

err_print(
 errnum INTEGER)

Prints in the error line the text corresponding to an
error number.

err_quit(
 errnum INTEGER)

Prints in the error line the text corresponding to an
error number and terminates the program.

errorlog(
 text STRING)

Copies the string passed as parameter into the error
log file.

fgl_buffertouched()
 RETURNING result INTEGER

Returns TRUE if the input buffer was modified in the
current field.

fgl_db_driver_type()
 RETURNING drvtype CHAR(3)

Returns the 3-letter identifier/code of the current
database driver.

fgl_decimal_truncate(
 value DECIMAL,
 decimals INTEGER)
 RETURNING result DECIMAL

Returns a decimal truncated to the precision passed
as parameter.

fgl_decimal_sqrt(
 value DECIMAL)
 RETURNING result DECIMAL

Computes the square root of the decimal passed as
parameter.

fgl_decimal_exp(
 value DECIMAL)
 RETURNING result DECIMAL

Returns the value of Euler's constant (e) raised to the
power of the decimal passed as parameter.

fgl_decimal_logn(
 value DECIMAL)
 RETURNING result DECIMAL

Returns the natural logarithm of the decimal passed
as parameter.

fgl_decimal_power(
 base DECIMAL,
 exp DECIMAL)
 RETURNING result DECIMAL

Raises decimal to the power of the real exponent.

fgl_dialog_getbuffer()
 RETURNING result STRING

Returns the text of the input buffer of the current field.

fgl_dialog_getbufferlength()
Returns the number of rows to feed a paged DISPLAY
ARRAY.

Library reference | 1639

Function Description

 RETURNING result INTEGER

fgl_dialog_getbufferstart()
 RETURNING result INTEGER

Returns the row offset of the page to feed a paged
display array.

fgl_dialog_getcursor()
 RETURNING index INTEGER

Returns the position of the edit cursor in the current
field.

fgl_dialog_getfieldname()
 RETURNING result STRING

Returns the name of the current input field.

fgl_dialog_getkeylabel(
 keyname STRING)
 RETURNING result STRING

Returns the label associated to a key for the current
interactive instruction.

fgl_dialog_getselectionend()
 RETURNING position INTEGER

Returns the position of the last selected character in
the current field.

fgl_dialog_infield(
 field-name STRING)
 RETURNING result INTEGER

This function checks for the current input field.

fgl_dialog_setbuffer(
 value STRING)

Sets the input buffer of the current field.

fgl_dialog_setcurrline(
 line INTEGER,
 row INTEGER)

This function moves to a specific row in a record list.

fgl_dialog_setcursor(
 position INTEGER)

This function sets the position of the edit cursor in the
current field.

fgl_dialog_setfieldorder(
 active INTEGER)

This function enables or disables field order constraint.

fgl_dialog_setkeylabel(
 keyname STRING,
 label STRING)

Sets the label associated to a key for the current
interactive instruction.

fgl_dialog_setselection(
 cursor INTEGER,
 end INTEGER)

Selects the text in the current field.

fgl_drawbox(
Draws a rectangle in the current window.

Library reference | 1640

Function Description

 height INTEGER,
 width INTEGER,
 line INTEGER,
 column INTEGER,
 color INTEGER)

fgl_drawline(
 column INTEGER,
 line INTEGER,
 width INTEGER,
 type CHAR(1),
 color INTEGER)

Draws a line in the current window (TUI and traditional
mode).

fgl_eventloop()
 RETURNING status BOOLEAN

Waits for a user interaction event.

fgl_dialog_getcursor()
 RETURNING index INTEGER

Returns the position of the edit cursor in the current
field.

fgl_getenv(
 variable STRING)
 RETURNING result STRING

Returns the value of the environment variable.

fgl_getfile(
 src STRING,
 dst STRING)

Retrieves a file from the front-end context to the virtual
machine context.

fgl_gethelp(
 help-id INTEGER)
 RETURNING result STRING

Returns the help text according to its identifier by
reading the current help file.

fgl_getkey()
 RETURNING keynum INTEGER

Waits for a keystroke and returns the key number.

fgl_getkeylabel(
 keyname STRING)
 RETURNING result STRING

Returns the default label associated to a key.

fgl_getpid()
 RETURNING result INTEGER

Returns the system process identifier.

fgl_getresource(
 name STRING)
 RETURNING result STRING

Returns the value of an FGLPROFILE entry.

fgl_getversion()
Returns the product version number of Genero.

Library reference | 1641

Function Description

 RETURNING result STRING

fgl_getwin_height()
 RETURNING result INTEGER

Returns the number of rows of the current window.

fgl_getwin_width()
 RETURNING result INTEGER

Returns the width of the current window as a number
of columns.

fgl_getwin_x()
 RETURNING result INTEGER

Returns the horizontal position of the current window.

fgl_getwin_y()
 RETURNING result INTEGER

Returns the vertical position of the current window.

fgl_keyval(
 string STRING)
 RETURNING result INTEGER

Returns the key code of a logical or physical key.

fgl_lastkey()
 RETURNING result INTEGER

Returns the key code corresponding to the logical key
that the user most recently typed in the form.

fgl_putfile(
 src STRING,
 dst STRING)

Transfers a file from the virtual machine context to the
front end context.

fgl_report_print_binary_file(
 filename STRING)

Prints a file containing binary data during a report.

fgl_report_set_document_handler(
 handler om.SaxDocumentHandler)

Redirects the next report to an XML document
handler.

fgl_scr_size(
 screen-array STRING)
 RETURNING result INTEGER

Returns the size of the specified screen array in the
current form.

fgl_set_arr_curr(
 row INTEGER)

Moves to a specific row in a record list.

fgl_setenv(
 variable STRING,
 value STRING)

Sets the value of an environment variable.

fgl_setkeylabel(
 keyname STRING,

Sets the default label associated to a key.

Library reference | 1642

Function Description

 label STRING)

fgl_setsize(
 height INTEGER,
 width INTEGER)

Sets the size of the main application window.

fgl_settitle(
 label STRING)

Sets the title of the current application window.

fgl_system(
 command STRING)

Runs a command on the application server.

fgl_width(
 expression STRING)
 RETURNING result INTEGER

Returns the number of columns needed to represent
the printed version of the expression.

fgl_window_getoption(
 attribute STRING)
 RETURNING result STRING

Returns attributes of the current window.

length(
 expression STRING)
 RETURNING result INTEGER

Returns the number of the character string passed as
parameter.

num_args()
 RETURNING result INTEGER

Returns the number of program arguments.

scr_line()
 RETURNING result INTEGER

Returns the index of the current row in the screen
array.

set_count(
 nbrows INTEGER)

Defines the number of rows containing explicit data in
a static array used by the next dialog.

showhelp(
 helpnum INTEGER)

Displays a runtime help text.

startlog(
 filename STRING)

Initializes error logging and opens the error log file
passed as the parameter.

upshift(
 source STRING)
 RETURNING result STRING

Converts a string to uppercase.

Library reference | 1643

arg_val()
Returns a command line argument by position.

Syntax

arg_val(
 position INTEGER)
 RETURNING result STRING

1. position is an integer defining the argument position.
2. result is a string containing the program argument.

Usage

This function provides a mechanism for passing values to the program through the command line that
invokes the program. You can design a program to expect or allow arguments after the name of the
program in the command line.

The position parameter defines the argument to be returned. 0 returns the name of the program, 1 returns
the first argument.

Like all built-in functions, arg_val() can be invoked from any program block. You can use it to pass
values to MAIN, which cannot have formal arguments, but you are not restricted to calling arg_val()
from the MAIN statement.

Use the arg_val() function to retrieve individual arguments during program execution. Use the
num_args() function to determine how many arguments follow the program name on the command line.

If position is greater than 0, arg_val(position) returns the command-line argument used at a given
position. The value of position must be between 0 and the value returned by num_args(), the number of
command-line arguments. The expression arg_val(0) returns the name of the application program.

If the argument position is negative or greater than num_args(), the method returns NULL.

arr_count()
Returns the number of rows entered during an INPUT ARRAY statement.

Syntax

arr_count()
 RETURNING result INTEGER

1. result is the current number of records that exist in the array.

Usage

Use arr_count() to determine the number of program records that are currently stored in a static
program array used by the INPUT ARRAY instruction.

This function is typically called inside or after INPUT ARRAY or DISPLAY ARRAY statement.

arr_count() returns a positive integer, corresponding to the index of the furthest record within the static
program array that the user accessed. Not all the rows counted by arr_count() necessarily contain data
(for example, if the user presses the Down key more times than there are rows of data.

This function is not required when using dynamic arrays. In such case, the total number of rows in defined
by the array.getLength() method after the dialog, or by the ui.Dialog.getArrayLength()
method during the dialog execution.

Library reference | 1644

arr_curr()
Returns the current row in a DISPLAY ARRAY or INPUT ARRAY.

Syntax

arr_curr()
 RETURNING result INTEGER

Usage

The arr_curr() function returns an integer value that identifies the current row of a list of rows in an
INPUT ARRAY or DISPLAY ARRAY instruction. The first row is numbered 1.

Note that arr_curr() and scr_line() can return different values if the program array is larger than the
screen array.

Consider using the ui.Dialog.getCurrentRow() method instead of arr_curr() when executing
several list-handled instruction in parallel inside a DIALOG block.

downshift()
Converts a string to lowercase.

Syntax

downshift(
 source STRING)
 RETURNING result STRING

1. source is the character string to convert to lowercase letters.

Usage

The downshift() function returns a string value in which all uppercase characters in its argument are
converted to lowercase.

The character conversion depends on locale settings (the LC_CTYPE environment variable). Non-
alphabetic or lowercase characters are not altered.

scr_line()
Returns the index of the current row in the screen array.

Syntax

scr_line()
 RETURNING result INTEGER

Usage

The scr_line() function returns the index of the current row in the screen array. It is typically used
inside a DISPLAY ARRAY or INPUT ARRAY statement.

Important: When using new graphical objects such as TABLE containers, this function can return
an invalid screen array line number, because the current row may not be visible if the user scrolls in
the list with scrollbars.

Do not confuse scr_line() with arr_curr(), the first returns the index of the current row in the form
screen array, and the second returns the index of the current row in the program variable.

Library reference | 1645

num_args()
Returns the number of program arguments.

Syntax

num_args()
 RETURNING result INTEGER

Usage

Returns the number of arguments passed to the program.

The function returns 0 if no arguments are passed to the program.

err_get()
Returns the text corresponding to an error number.

Syntax

err_get(
 errnum INTEGER)
 RETURNING result STRING

1. errnum is a runtime error or an Informix® SQL error.

Usage

The err_get() function returns the error message corresponding to the number passed as parameter.

IBM® Informix® SQL error numbers can only be supported if the program is connected to an Informix
database. Do not use this function in the context of SQL execution, when using different type of database
servers.

err_print()
Prints in the error line the text corresponding to an error number.

Syntax

err_print(
 errnum INTEGER)

1. errnum is a runtime error or an Informix® SQL error.

Usage

The err_print() function displays to the screen the error message corresponding to the number passed
as parameter. The message will be displayed in the error line defined by the program.

IBM® Informix® SQL error numbers can only be supported if the program is connected to an Informix
database. Do not use this function when programming an application that must run with different type of
database servers.

err_quit()
Prints in the error line the text corresponding to an error number and terminates the program.

Syntax

err_quit(

Library reference | 1646

 errnum INTEGER)

1. errnum is a runtime error or an Informix® SQL error.

Usage

The err_quit() function prints the error message corresponding to the number passed as parameter.
The message will be displayed in standard error stream and the program will terminate.

IBM® Informix® SQL error numbers can only be supported if the program is connected to an Informix
database. Do not use this function when programming an application that must run with different type of
database servers.

errorlog()
Copies the string passed as parameter into the error log file.

Syntax

errorlog(
 text STRING)

1. text is the character string to be inserted in the error log file.

Usage

The errorlog() function writes the passed string in the current error log file. The error log file is defined
by a call to the startlog() function.

Use this function to identify errors in programs and to customize error handling. The error log functions can
also be used to trace the way a program is used to improve it, record work habits or help to detect attempts
to breach security.

fgl_buffertouched()
Returns TRUE if the input buffer was modified in the current field.

Syntax

fgl_buffertouched()
 RETURNING result INTEGER

Usage

The function returns TRUE if the input buffer has been modified after the current field was selected (i.e. got
the focus).

Call this function in AFTER FIELD, AFTER INPUT, AFTER CONSTRUCT, ON KEY, ON ACTION blocks.

This function is not equivalent to FIELD_TOUCHED(): The modification status of fgl_buffertouched()
is reset when entering a new field, while FIELD_TOUCHED() returns TRUE when a field was modified
during the interactive instruction.

fgl_db_driver_type()
Returns the 3-letter identifier/code of the current database driver.

Syntax

fgl_db_driver_type()
 RETURNING drvtype CHAR(3)

Library reference | 1647

Usage

This function can be called after connecting to a database server with the CONNECT or DATABASE
instructions, in order to identify the type of the target database with the driver type.

Returned value is the 3-letter driver code, in lower case, such as "ifx", "ora", "db2", etc.

See the drivers table for more details about the list of database driver types.

The function returns NULL if there is no current database driver (i.e. if database connection is not yet
established).

fgl_decimal_truncate()
Returns a decimal truncated to the precision passed as parameter.

Syntax

fgl_decimal_truncate(
 value DECIMAL,
 decimals INTEGER)
 RETURNING result DECIMAL

1. value is the decimal to be converted.
2. decimals defines the number of digits after the decimal point.

Usage

This function truncates the decimal to the number of decimal digits specified.

The value is not rounded, it is just truncated. For example, when truncating 12.345 to 2 decimal digits, the
result will be 12.34, not 12.35.

fgl_decimal_sqrt()
Computes the square root of the decimal passed as parameter.

Syntax

fgl_decimal_sqrt(
 value DECIMAL)
 RETURNING result DECIMAL

1. value is the decimal to be computed.

fgl_decimal_exp()
Returns the value of Euler's constant (e) raised to the power of the decimal passed as parameter.

Syntax

fgl_decimal_exp(
 value DECIMAL)
 RETURNING result DECIMAL

1. value is the decimal to be computed.

fgl_decimal_logn()
Returns the natural logarithm of the decimal passed as parameter.

Syntax

fgl_decimal_logn(

Library reference | 1648

 value DECIMAL)
 RETURNING result DECIMAL

1. value is the decimal to be computed.

fgl_decimal_power()
Raises decimal to the power of the real exponent.

Syntax

fgl_decimal_power(
 base DECIMAL,
 exp DECIMAL)
 RETURNING result DECIMAL

1. base is the decimal to be raise to the power of exp.
2. exp is the exponent.

Usage

Unlike the ** operator, the fgl_decimal_power() function supports real numbers for the exponent.

fgl_dialog_getbuffer()
Returns the text of the input buffer of the current field.

Syntax

fgl_dialog_getbuffer()
 RETURNING result STRING

Usage

The fgl_dialog_getbuffer() function returns the content of the input buffer of the current field. It
must be used in INPUT, INPUT ARRAY and CONSTRUCT blocks.

The function is especially useful in a CONSTRUCT instruction, because there is no variable associated to
fields in this case.

Consider using the ui.Dialog.getFieldBuffer() method instead.

fgl_dialog_setbuffer()
Sets the input buffer of the current field.

Syntax

fgl_dialog_setbuffer(
 value STRING)

1. value is the text to set in the current input buffer.

Usage

In the default buffered input mode, this function modifies the input buffer of the current field; the
corresponding input variable is not assigned. It makes no sense to call this function in BEFORE FIELD
blocks of INPUT and INPUT ARRAY. However, if the statement is using the UNBUFFERED mode, the
function will set both the field buffer and the program variable. If the string set by the function does not
represent a valid value that can be stored by the program variable, the buffer and the variable will be set to
NULL.

Library reference | 1649

The fgl_dialog_setbuffer() function must be used in INPUT, INPUT ARRAY and CONSTRUCT
blocks.

This function sets the modification flag for both FIELD_TOUCHED() and fgl_buffertouched()
functions. There is a slight difference between both functions: The modification flag for
fgl_buffertouched() is reset to FALSE when entering the field.

The function is especially useful in a CONSTRUCT instruction, because there is no variable associated to
fields in this case.

fgl_dialog_getfieldname()
Returns the name of the current input field.

Syntax

fgl_dialog_getfieldname()
 RETURNING result STRING

Usage

This function returns the name of the current input field during a dialog execution. It must be use in INPUT,
INPUT ARRAY or CONSTRUCT blocks.

Only the column part of the field name is returned (screen record name is omitted).

The fgl_dialog_getfieldname() is similar to the INFIELD() operator and
fgl_dialog_infield() function.

fgl_dialog_infield()
This function checks for the current input field.

Syntax

fgl_dialog_infield(
 field-name STRING)
 RETURNING result INTEGER

1. field-name is the name if the form field.

Usage

The fgl_dialog_infield() function returns TRUE if the field name passed as the parameter is the
current input field.

The function must be called in INPUT, INPUT ARRAY or CONSTRUCT blocks.

This function is the equivalent of the INFIELD() operator, except that the function takes a string
expression as parameter, while the INFIELD() operator expects a hard-coded form field name.

fgl_dialog_setcursor()
This function sets the position of the edit cursor in the current field.

Syntax

fgl_dialog_setcursor(
 position INTEGER)

1. position is the edit cursor position in the text, using byte length semantics.

Library reference | 1650

Usage

The fgl_dialog_setcursor() moves the edit cursor to the specified position in the current field. The
function must be called in interactive instructions control blocks, when staying in the current field.

This function has only an effect when staying in the current field, it should not be called in an AFTER
FIELD or AFTER ROW for example.

Note that you can use FGL_DIALOG_SETSELECTION() to select a piece of text in a field.

Important: When using byte length semantics, the position is expressed in bytes. When using
char length semantics, the unit is characters. This is matters when using a multibyte locale such as
UTF-8.

fgl_dialog_setfieldorder()
This function enables or disables field order constraint.

Syntax

fgl_dialog_setfieldorder(
 active INTEGER)

1. When active is TRUE, the field order is constrained. When active is FALSE, the field order is not
constrained.

Usage

Typical applications control user input with BEFORE FIELD and AFTER FIELD blocks. In many cases
the field order and the sequential execution of AFTER FIELD blocks is important in order to validate the
data entered by the user. But with graphical front ends you can use the mouse to move to a field. By
default the runtime system executes all BEFORE FIELD and AFTER FIELD blocks of the fields used by
the interactive instruction, from the origin field to the target field selected by mouse click. If needed, you
can force the runtime system to ignore all intermediate field triggers, by calling this function with a FALSE
attribute.

This function must be called outside interactive dialog blocks, typically at the beginning of the program.

Consider using the Dialog.fieldOrder parameter when all programs are affected. The FGLPROFILE
profile entry is the default when the fgl_dialog_setfieldorder() function is not used.

Consider using OPTIONS FIELD ORDER FORM for new developments with graphical rendering.

fgl_dialog_setcurrline()
This function moves to a specific row in a record list.

Syntax

fgl_dialog_setcurrline(
 line INTEGER,
 row INTEGER)

1. line is the line number in the form screen array.
2. row is the row number in the program array variable.

Usage

Moves to the row / screen line specified. See fgl_set_arr_curr() for more details.

To be called during a DISPLAY ARRAY or INPUT ARRAY instruction, inside BEFORE DISPLAY / BEFORE
INPUT or ON ACTION / ON KEY blocks only.

Library reference | 1651

The line parameter is ignored in GUI mode.

fgl_dialog_getbufferstart()
Returns the row offset of the page to feed a paged display array.

Syntax

fgl_dialog_getbufferstart()
 RETURNING result INTEGER

Usage

The FGL_DIALOG_GETBUFFERSTART() function returns the record list offset to be used to fill a page of a
DISPLAY ARRAY running in paged mode.

This function must be called in the context of the ON FILL BUFFER trigger. The returned value is
undefined if the function is used outside this trigger.

fgl_dialog_getbufferlength()
Returns the number of rows to feed a paged DISPLAY ARRAY.

Syntax

fgl_dialog_getbufferlength()
 RETURNING result INTEGER

Usage

The fgl_dialog_getbufferlength() function returns the number of rows to be provided by the
program to fill a page of a DISPLAY ARRAY running in paged mode.

This function must be called in the context of the ON FILL BUFFER trigger. The returned value is
undefined if the function is used outside this trigger.

fgl_dialog_getcursor() / fgl_getcursor()
Returns the position of the edit cursor in the current field.

Syntax

fgl_dialog_getcursor()
 RETURNING index INTEGER

1. index is the edit cursor position in the text, using byte length semantics.

Usage

The fgl_dialog_getcursor() function can be used in conjunction with
fgl_dialog_getselectionend() to get the position of the edit cursor and the piece of text that is
selected in the current field.

Important: When using byte length semantics, the position is expressed in bytes. When using
char length semantics, the unit is characters. This is matters when using a multibyte locale such as
UTF-8.

Library reference | 1652

fgl_dialog_getkeylabel()
Returns the label associated to a key for the current interactive instruction.

Syntax

fgl_dialog_getkeylabel(
 keyname STRING)
 RETURNING result STRING

1. keyname is the logical name of a key such as F11 or DELETE, INSERT, CANCEL.

Usage

The fgl_dialog_getkeylabel() function returns the label defined for the function or control key
passed as parameter, for the current interactive instruction.

This function returns the key labels defined for the current dialog. There are different levels of key label
definitions.

This function is provided for backward compatibility, use action defaults to define action view texts.

fgl_dialog_getselectionend()
Returns the position of the last selected character in the current field.

Syntax

fgl_dialog_getselectionend()
 RETURNING position INTEGER

1. position is the position of the last selected character in the current field text, using in byte length
semantics.

Usage

The fgl_dialog_getselectionend() function returns the edit cursor position of the last selected
character in the text of the current field.

Important: When using byte length semantics, the position is expressed in bytes. When using
char length semantics, the unit is characters. This is matters when using a multibyte locale such as
UTF-8.

The function returns zero if the complete text is selected.

The edit cursor position returned by fgl_dialog_getcursor() will be lower as the position returned by
fgl_dialog_getselectionend() if the text has been selected backwards.

fgl_dialog_setkeylabel()
Sets the label associated to a key for the current interactive instruction.

Syntax

fgl_dialog_setkeylabel(
 keyname STRING,
 label STRING)

1. keyname is the logical name of a key such as F11 or DELETE,INSERT, CANCEL.
2. label is the text associated to the key.

Library reference | 1653

Usage

The fgl_dialog_setkeylabel() associates a text to a function or control key. for the current dialog.
Default action views (i.e. buttons that appears in the control frame of a window) will get the label displayed
instead of the function or control key name.

This function defines the key labels for the current dialog. There are different levels of key label definitions.

Note: This feature is supported for backward compatibility. Consider using action attributes to
define accelerator keys and decorate actions.

fgl_dialog_setselection()
Selects the text in the current field.

Syntax

fgl_dialog_setselection(
 cursor INTEGER,
 end INTEGER)

1. cursor defines the edit cursor position, using byte length semantics.
2. end defines the selection end position, using byte length semantics.

Usage

A call to fgl_dialog_setselection(cursor, end) sets the text selection in the current
form field. The cursor parameter defines the character position of the edit cursor (equivalent to
fgl_dialog_getcursor() position), while end defines the character position of the end of the text
selection (equivalent to fgl_dialog_getselectionend() position).

Important: When using byte length semantics, the positions are expressed in bytes. When using
char length semantics, the unit is characters. This is matters when using a multibyte locale such as
UTF-8.

cursor can be lower, greater or equal to end.

This function has only an effect when staying in the current field, it should not be called in an AFTER
FIELD or AFTER ROW for example.

fgl_drawbox()
Draws a rectangle in the current window.

Syntax

fgl_drawbox(
 height INTEGER,
 width INTEGER,
 line INTEGER,
 column INTEGER,
 color INTEGER)

1. height is the height of the rectangle.
2. width is the width of the rectangle.
3. line is the horizontal coordinate of the upper side of the rectangle.
4. column is the vertical coordinate of the left side of the rectangle.
5. color is the color number (ignored).

Library reference | 1654

Usage

The fgl_drawbox() function draws a rectangle based on the character terminal coordinates in the
current open window.

Dimensions and coordinates are specified in grid cells unit (i.e. characters).

This function is provided for backward compatibility. A call to this function will be ignored if the current
window is not SCREEN based. The function is supported to draw rectangles in text mode applications.

fgl_drawline()
Draws a line in the current window (TUI and traditional mode).

Syntax

fgl_drawline(
 column INTEGER,
 line INTEGER,
 width INTEGER,
 type CHAR(1),
 color INTEGER)

1. line is the horizontal coordinate of the upper side of the rectangle.
2. column is the vertical coordinate of the left side of the rectangle.
3. width is the width of the line.
4. type (ignored).
5. color is the color number (ignored).

Usage

The fgl_drawline() function draws a line based on the character terminal coordinates in the current
open window.

Dimensions and coordinates are specified in grid cells unit (i.e. characters).

This function is provided for backward compatibility. A call to this function will be ignored if the current
window is not SCREEN based. The function is supported to draw lines in text mode applications.

fgl_eventloop()
Waits for a user interaction event.

Syntax

fgl_eventloop()
 RETURNING status BOOLEAN

1. status is boolean indicating if the user event loop must continue.

Usage

The fgl_eventloop() function is used to implement the parallel dialog main event loop, in conjuction
with START DIALOG / TERMINATE DIALOG instructions, used to register and end parallel dialogs.

The function waits until a user interaction event occurs and returns TRUE or FALSE to indicate if the event
loop must continue or stop. It is typically used in a WHILE / END WHILE loop:

WHILE fgl_eventLoop()
END WHILE

Library reference | 1655

Parallel dialogs are registrer with the START DIALOG instruction. As long as at least one parallel dialog
is registered, the fgl_evenLoop() function returns TRUE. When the last parallel dialog is ended with a
TERMINATE DIALOG instruction, the fgl_evenLoop() function returns FALSE and the even loop is stopped.

fgl_getenv()
Returns the value of the environment variable.

Syntax

fgl_getenv(
 variable STRING)
 RETURNING result STRING

1. variable is the name of the environment variable.

Usage

The argument of fgl_getenv() must be the name of an environment variable.

If the requested value exists in the current user environment, the function returns the value of that variable.
If the specified environment variable is not defined, the function returns a NULL value. If the environment
variable is defined but does not have a value assigned to it, the function returns blank spaces.

fgl_gethelp()
Returns the help text according to its identifier by reading the current help file.

Syntax

fgl_gethelp(
 help-id INTEGER)
 RETURNING result STRING

1. help-id is the help text identifier.

Usage

The fgl_gethelp() function returns the text corresponding to the help message number passed as
parameter.

The text is read from the current help file. The current help file is defined by the OPTIONS HELP FILE
instruction.

fgl_getpid()
Returns the system process identifier.

Syntax

fgl_getpid()
 RETURNING result INTEGER

Usage

The fgl_getpid() function returns the current process identifier. The process identifier is provided by
the operating system.

Library reference | 1656

fgl_getfile()
Retrieves a file from the front-end context to the virtual machine context.

Syntax

fgl_getfile(
 src STRING,
 dst STRING)

1. src is the path of the file to retrieve from the front-end context.
2. dst is the path of the file to write in the virtual machine context.

Usage

The fgl_getfile() function uploads a file from the front-end workstation disk to the application server
disk where fglrun is executed.

Important: Using this function can result in a security hole if you allow the end user to specify the
file paths without control. There is not limitation on the file content or file paths: If the user executing
the application on the server side is allowed to write critical server files, the program could transfer
files from the client workstation and overwrite critical server files. On the other hand, critical files
can be read from the client workstation and copied on the application server. It is in the hands
of the programmer to implement file path and/or file content restrictions in the programs using
fgl_getfile().

When the front-end is located on a mobile device (GMA or GMI), the fgl_getfile() function can take
an opaque file path as first argument, to identify a local device resource returned from a front call such as
choosePhoto on page 1927, takeVideo on page 1939. This allows you to retrieve the media file into the
virtual machine context, for persistent storage, and to share it with applications running on other devices.
This fgl_getfile() feature can be used with a standalone app running on the device, or a client/server
app executing on a server and displaying on the device. For more details, see Runtime images on page
787.

fgl_getkey()
Waits for a keystroke and returns the key number.

Syntax

fgl_getkey()
 RETURNING keynum INTEGER

1. keynum is the integer key code of the pressed key.

Usage

fgl_getkey() waits for a keystroke and returns the key code corresponding to the pressed physical key.

This function should only be used in text mode.

Unlike fgl_lastkey(), which can return a value indicating the logical effect of whatever key the user
pressed,fgl_getkey() returns an integer representing the key code of the physical key that the user
pressed. The fgl_getkey() function recognizes the same codes for keys that the fgl_keyval()
function returns. Unlike fgl_keyval(), which can only return keystrokes that are entered during dialogs,
fgl_getkey() can be called outside a dialog context.

Library reference | 1657

fgl_getkeylabel()
Returns the default label associated to a key.

Syntax

fgl_getkeylabel(
 keyname STRING)
 RETURNING result STRING

1. keyname is the logical name of a key such as F11 or DELETE, INSERT, CANCEL.

Usage

The fgl_getkeylabel() function returns the default label defined for the function or control key passed
as parameter.

This function returns the default key labels defined for the all dialogs. There are different levels of key label
definitions.

This function is provided for backward compatibility, use action defaults to define action view texts.

fgl_getresource()
Returns the value of an FGLPROFILE entry.

Syntax

fgl_getresource(
 name STRING)
 RETURNING result STRING

1. name is the FGLPROFILE entry name to be read.

Usage

The fgl_getresource() function reads the FGLPROFILE file(s) and returns the value defined for the
entry passed as parameter.

If the entry does not exist in the configuration file, the function returns NULL.

Note that FGLPROFILE entry names are not case sensitive.

fgl_getversion()
Returns the product version number of Genero.

Syntax

fgl_getversion()
 RETURNING result STRING

Usage

The fgl_getversion() function returns the product version number the Genero Business Development
Language runtime system.

Important: This function is provided for debugging only; do not write business code dependent on
the build number. The format of the returned value is subject of change in future versions.

Library reference | 1658

fgl_getwin_height()
Returns the number of rows of the current window.

Syntax

fgl_getwin_height()
 RETURNING result INTEGER

Usage

The fgl_getwin_height() function returns the height of the current window, in character units.

This function is provided for text mode applications, in GUI mode, windows are re-sizeable and thus their
height is variable.

fgl_getwin_width()
Returns the width of the current window as a number of columns.

Syntax

fgl_getwin_width()
 RETURNING result INTEGER

Usage

The fgl_getwin_width() function returns the width of the current window, in character units.

This function is provided for text mode applications, in GUI mode, windows are re-sizeable and thus their
width is variable.

fgl_getwin_x()
Returns the horizontal position of the current window.

Syntax

fgl_getwin_x()
 RETURNING result INTEGER

Usage

The fgl_getwin_x() function returns the horizontal coordinate of the top/left corner of the current
window.

This function is provided for text mode applications, in GUI mode, windows are movable and thus their
position is variable.

fgl_getwin_y()
Returns the vertical position of the current window.

Syntax

fgl_getwin_y()
 RETURNING result INTEGER

Usage

The fgl_getwin_y() function returns the vertical coordinate of the top/left corner of the current window.

Library reference | 1659

This function is provided for text mode applications, in GUI mode, windows are movable and thus their
position is variable.

fgl_keyval()
Returns the key code of a logical or physical key.

Syntax

fgl_keyval(
 string STRING)
 RETURNING result INTEGER

1. string can be a single character, a digit, a printable symbol like @, #, $ or a special keyword such as
ACCEPT.

Usage

fgl_keyval() can be used in form-related statements to examine a value returned by the
fgl_lastkey() and fgl_getkey() functions.

Key names recognized by fgl_keyval() are: ACCEPT, HELP, NEXT, RETURN, DELETE, INSERT,
NEXTPAGE, RIGHT, DOWN, INTERRUPT, PREVIOUS, TAB, ESC, ESCAPE, LEFT, PREVPAGE, UP, F1 through
F64, CONTROL-character (where character can be any letter except A, D, H, I, J, L, M, R, or X).

The function returns NULL if the parameter does not correspond to a valid key.

If you specify a single character, fgl_keyval() considers the case. In all other instances, the function
ignores the case of its argument, which can be uppercase or lowercase letters.

To determine whether the user has performed an action, such as inserting a row, specify the logical name
of the action (such as INSERT) rather than the name of the physical key (such as F1). For example, the
logical name of the Accept action is ACCEPT, while the default physical key is ESCAPE. To test if the key
most recently pressed by the user corresponds to the Accept action, specify fgl_keyval("ACCEPT")
rather than fgl_keyval("ESCAPE") or fgl_keyval("ESC"). Otherwise, if a key other than ESCAPE
is set as the Accept key and the user presses that key,FGL_LASTKEY() does not return a code equal to
fgl_keyval("ESCAPE").

This function is provided for backward compatibility especially for TUI mode applications. fgl_keyval()
is well supported in text mode, but this function can only be emulated in GUI mode, because the front-ends
communicate with the runtime system with other events as keystrokes.

fgl_lastkey()
Returns the key code corresponding to the logical key that the user most recently typed in the form.

Syntax

fgl_lastkey()
 RETURNING result INTEGER

Usage

The fgl_lastkey() function returns a numeric code corresponding to the user's last keystroke before
the function was called. For example, if the last key that the user pressed was a lowercase s, the function
returns the code 115 (i.e. the ASCII character set code).

The value of fgl_lastkey() is undefined in a MENU statement.

The function returns NULL if no key has been pressed.

Library reference | 1660

It is not required to know the specific key codes returned by fgl_lastkey(): The FGL_KEYVAL()
function can be used to compare the key code of the last key pressed. The FGL_KEYVAL() function lets
you compare the last key pressed with a logical of physical key. For example, you do not need to know the
physical key defined to validate a dialog, you can use the logical name "accept" instead. For a complete list
of key codes and logical key names, see the Key code table.

Pay attention to the fact that this function is provided for backward compatibility. The abstract user
interface protocol is based on logical events, not only key events. For example, in GUI mode, when
selecting a new row with the mouse in a table, there is no key press as when moving in a static screen
array in TUI mode. However, the runtime system tries to emulate as much as possible keystrokes from
non-keystroke events.

fgl_putfile()
Transfers a file from the virtual machine context to the front end context.

Syntax

fgl_putfile(
 src STRING,
 dst STRING)

1. src is the path to the file to transmit from the virtual machine context.
2. dst is the path to the file to write in the front end context.

Usage

The fgl_putfile() function downloads a file from the application server disk where fglrun is executed
to the front-end workstation disk.

Important: Using this function can result in a security hole if you allow the end user to specify
the file paths without control. There is not limitation on the file content or file paths: If the user
executing the application on the server side is allowed to read critical server files, the program could
transfer these files on the client workstation. On the other hand, critical files can be written on the
client workstation. It is in the hands of the programmer to implement file path and/or file content
restrictions in the programs using fgl_putfile().

fgl_report_print_binary_file()
Prints a file containing binary data during a report.

Syntax

fgl_report_print_binary_file(
 filename STRING)

1. filename is the name of the binary file.

Usage

This function prints a file containing binary data during a report.

This function is provided for backward compatibility and must only be using inside a REPORT routine.

fgl_report_set_document_handler()
Redirects the next report to an XML document handler.

Syntax

fgl_report_set_document_handler(

Library reference | 1661

 handler om.SaxDocumentHandler)

1. handler is the document handler variable.

Usage

This function attaches the specified XML document handler to the next executed report, it must be called
before the execution of a report.

This function is provided for backward compatibility, you should use the TO XML HANDLER of START
REPORT instead.

fgl_setkeylabel()
Sets the default label associated to a key.

Syntax

fgl_setkeylabel(
 keyname STRING,
 label STRING)

1. keyname is the logical name of a key such as F11 or DELETE, INSERT, CANCEL.
2. label is the text associated to the key.

Usage

fgl_setkeylabel() associates a text to a function or control key. Default action views (i.e. buttons that
appears in the control frame of a window) will get the label displayed instead of the function or control key
name.

This function defines the default key labels for all dialogs. There are different levels of key label definitions.

Note: This feature is supported for backward compatibility. Consider using action attributes to
define accelerator keys and decorate actions.

fgl_scr_size()
Returns the size of the specified screen array in the current form.

Syntax

fgl_scr_size(
 screen-array STRING)
 RETURNING result INTEGER

1. screen-array is the name of a screen-array in the current displayed form.

Usage

The fgl_scr_size() function takes the name of a screen array as parameter identifying an array in
the currently opened form and returns an integer that corresponds to the number of screen records in that
screen array.

This function is typically used with traditional text mode forms having screen arrays with a constant size, to
display data in screen array rows with the DISPLAY TO instruction.

For modern GUI applications, consider using the UNBUFFERED mode in dialogs, to get automatic form
field synchronization with program variables.

Error -1108 will be raised if the passed screen-array does not exits in the current form, and error -1114 is
returned if no form is currently displayed.

Library reference | 1662

fgl_setsize()
Sets the size of the main application window.

Syntax

fgl_setsize(
 height INTEGER,
 width INTEGER)

1. height is the number of lines of the window.
2. width is the number of columns of the window.

Usage

This function defines the size of the main window when using the traditional GUI mode.

fgl_settitle()
Sets the title of the current application window.

Syntax

fgl_settitle(
 label STRING)

1. label is the text of the title.

Usage

The fgl_settitle() function defines the title of the current window, as well as the default title for new
created windows.

This function is provided for backward compatibility, the title of a window can be defined with the TEXT
attribute of a LAYOUT section.

fgl_setenv()
Sets the value of an environment variable.

Syntax

fgl_setenv(
 variable STRING,
 value STRING)

1. variable is the name of the environment variable.
2. value is the value to be set.

Usage

The fgl_setenv() function sets or modifies the value of an environment variable.

There is a little difference between Windows™ and UNIX™ platforms when passing a NULL as the value
parameter: On Windows platforms, the environment variable is removed, while on UNIX, the environment
variable gets an empty value (i.e. it is not removed from the environment).

Important: You may experience unexpected results if you change environment variables that are
already used by the current program - for example, when you are connected to INFORMIX and you
change the INFORMIXDIR environment variable.

Library reference | 1663

fgl_set_arr_curr()
Moves to a specific row in a record list.

Syntax

fgl_set_arr_curr(
 row INTEGER)

1. row is the row number is the program array variable.

Usage

This function is typically used to control navigation in a DISPLAY ARRAY or INPUT ARRAY, within an ON
ACTION or ON KEY block. The function can also be used inside BEFORE DISPLAY or BEFORE INPUT
blocks, to jump to a specific row when the dialog starts. You should not use this function in an other
context.

Control blocks like BEFORE ROW and field/row validation in INPUT ARRAY are performed, as if the user
moved to another row, except when the function is called in BEFORE DISPLAY or BEFORE INPUT.

When a new row is reached by using with this function, the first editable field gets the focus.

An alternative to the fgl_set_arr_curr() function is the ui.Dialog.setCurrentRow() method; However,
the dialog class method will be used in a different programming pattern, as it does not trigger the control
blocks like the built-in function.

fgl_system()
Runs a command on the application server.

Syntax

fgl_system(
 command STRING)

1. command is the command line to be executed on the server.

Usage

The fgl_system() function suspends the execution of the program and executes the command passed
as parameter on the application server where fglrun is executed. The command is executed in a new shell
and the program is suspended until the command terminates.

When running the program in TUI mode, the terminal is switched to line mode before executing the
command passed to the fgl_system() function.

This function is provided for backward compatibility. In older versions, the function could raise a terminal
emulator on the front-end to show the command output on the workstation. This feature is no longer
supported.

fgl_width()
Returns the number of columns needed to represent the printed version of the expression.

Syntax

fgl_width(
 expression STRING)
 RETURNING result INTEGER

1. expression is any valid string expression.

Library reference | 1664

Usage

The fgl_width() function returns the number of columns that will be used if you display expression on a
text terminal.

If the parameter is NULL, the function returns zero.

The number of columns used by a character depends on the glyph (i.e. the graphical symbol used to draw
the character on the screen). For example, an ASCII character like A uses one column, while one Chinese
ideogram uses 2 columns (i.e. on a text terminal, the size of one Chinese ideogram takes the same size as
AB).

Trailing blanks are counted in the length of the string.

fgl_window_getoption()
Returns attributes of the current window.

Syntax

fgl_window_getoption(
 attribute STRING)
 RETURNING result STRING

1. attribute is the name of a window attribute.

Usage

The fgl_window_getoption() function returns the value of the window attribute passed as parameter.

Possible parameters are: name, x, y, width, height, formline, messageline.

This function is provided for backward compatibility, do not use this function in modern GUI applications.

length()
Returns the number of the character string passed as parameter.

Syntax

length(
 expression STRING)
 RETURNING result INTEGER

1. expression is any valid character string expression supported by the language.

Usage

The length() function counts the length of a character string.

If the parameter is NULL, the function returns zero.

Important: When using byte length semantics, the length is expressed in bytes. When using char
length semantics, the unit is characters. This is matters when using a multibyte locale such as
UTF-8.

set_count()
Defines the number of rows containing explicit data in a static array used by the next dialog.

Syntax

set_count(
 nbrows INTEGER)

Library reference | 1665

1. nbrows defines the number of explicit rows in the static array.

Usage

When using a static array in an INPUT ARRAY (with WITHOUT DEFAULTS clause) or a DISPLAY ARRAY
statement, you must specify the number of rows in the array which contain explicit data. In typical
applications, these array elements contain the values fetched from a SELECT statement.

set_count() must be called before a DISPLAY ARRAY or INPUT ARRAY statement.

The number of rows can also specified with the COUNT attribute of INPUT ARRAY and DISPLAY ARRAY
statements.

When using a dynamic array, the number of rows is implicitly defined by the array.

showhelp()
Displays a runtime help text.

Syntax

showhelp(
 helpnum INTEGER)

1. helpnum is the help message number in the current help file.

Usage

The showhelp() function displays a runtime help text, corresponding to its specified argument, from the
current help file defined by the OPTIONS HELP FILE instruction.

In GUI mode, the help text will be displayed in a new popup window. In TUI mode, the help text is
displayed in a the whole screen.

startlog()
Initializes error logging and opens the error log file passed as the parameter.

Syntax

startlog(
 filename STRING)

1. filename is the name of the error log file.

Usage

Call startlog() in the MAIN program block to open or create an error log file. After startlog() has
been invoked, a record of every subsequent error that occurs during the program execution is written in the
error log file.

The format of the error records appended to the error log file after each subsequent error is as follows:

Date: 03/06/99 Time: 12:20:20
Program error at "stock_one.4gl", line number 89.
SQL statement error number -239.
Could not insert new row - duplicate value in a UNIQUE INDEX column.
SYSTEM error number -100
ISAM error: duplicate value for a record with unique key.

To report specific application errors, use the errorlog() function to make an entry in the error log file.

Library reference | 1666

If the argument of startlog() is not the name of an existing file, startlog() creates a new one. If the
file already exists, startlog() opens it and positions the file pointer so that subsequent error messages
can be appended to this file.

Example

CALL startlog("/var/myapp/logs/error-" || fgl_getpid() ||
 ".log")
...
CALL errorlog("The current user is not allowed to perform order
 validation")

upshift()
Converts a string to uppercase.

Syntax

upshift(
 source STRING)
 RETURNING result STRING

1. source is the character string to convert to uppercase letters.

Usage

The upshift() function returns a string value in which all lowercase characters in its argument are
converted to uppercase.

The character conversion depends on locale settings (the LC_CTYPE environment variable). Non-
alphabetic or uppercase characters are not altered.

List of desupported built-in functions

Table 355: Desupported built-in functions

Function Description

FGL_FORMFIELD_GETOPTION() Returns attributes of a specified form field.

FGL_GETUITYPE() Returns the type of the front end.

FGL_WINDOW_OPEN() Opens a new window with coordinates and size.

FGL_WINDOW_OPENWITHFORM() Opens a new window with coordinates and form.

FGL_WINDOW_CLEAR() Clears the window having the name that is passed
as a parameter.

FGL_WINDOW_CLOSE() Closes the window having the name that is passed
as a parameter.

FGL_WINDOW_CURRENT() Makes current the window having the name that is
passed as a parameter.

The key code table

This table lists internal key codes. Avoid hard-coding these numbers in your sources; otherwise the source
will not be compatible with future versions the language.

Library reference | 1667

Always use the FGL_KEYVAL() function instead.

Table 356: Internal key codes

Value Key name Description

1 to 26 Control-x Control key, where x is the any
letter from A to Z. The key code
corresponding to Control-A is 1,
Control-B is 2, etc.

others < 256 ASCII chars Other codes correspond to the
ASCII characters set.

2000 up The up-arrow logical key.

2001 down The down-arrow logical key.

2002 left The left-arrow logical key.

2003 right The right-arrow logical key.

2005 nextpage The next-page logical key.

2006 prevpage The previous-page logical key.

2008 help The help logical key.

2011 interrupt The interrupt logical key.

2020 home The home logical key.

2021 end The end logical key.

2016 accept The accept logical key.

2017 backspace The backspace logical key.

3000 to 3255 Fx Function key, where x is the
number of the function key. The
key code corresponding to a
function key Fx is 3000+x-1, for
example, 3011 corresponds to
F12.

Utility functions
A utility function is a function provided in a separate library; it is not built in the runtime system.

To use a utility function, declare the module where the function is defined with the IMPORT FGL
instruction:

IMPORT FGL fgldialog
...
 CALL fgl_winmessage(...)

For backward compatibility, utility function are also grouped in a 42x library named libfgl4js.42x,
which can be linked to your programs.

The 42x library file, 42m modules and 42f forms are located in FGLDIR/lib. The sources of the utility
functions and form files are provided in the FGLDIR/src directory.

• Common dialog utility functions (IMPORT FGL fgldialog) on page 1668

Library reference | 1668

• Database utility functions (IMPORT FGL fgldbutl) on page 1672
• Front-end dialog utility functions (IMPORT FGL fglwinexec) on page 1676

Common dialog utility functions (IMPORT FGL fgldialog)

Table 357: Common dialog utility functions (fgldialog.4gl)

Function Description

fgl_winbutton(
 title STRING,
 text STRING,
 default STRING,
 buttons STRING,
 icon STRING,
 danger SMALLINT)
 RETURNING result STRING

Displays an interactive message box containing
multiple choices, in a popup window.

fgl_winmessage(
 title STRING,
 text STRING,
 icon STRING)

Displays an interactive message box containing text
and OK button.

fgl_winprompt(
 x INTEGER,
 y INTEGER,
 text STRING,
 default STRING,
 length INTEGER,
 type INTEGER)
 RETURNING value STRING

Displays a dialog box containing a field that accepts
a value.

fgl_winquestion(
 title STRING,
 text STRING,
 default STRING,
 buttons STRING,
 icon STRING,
 danger SMALLINT)
 RETURNING value STRING

Displays an interactive message box with
configurable Ok/Yes/No/Cancel/Ignore/Abort/Retry
buttons.

fgl_winwait(
 text STRING)

Displays an interactive message box and waits for
user validation.

fgl_winbutton()
Displays an interactive message box containing multiple choices, in a popup window.

Syntax

fgl_winbutton(
 title STRING,
 text STRING,
 default STRING,
 buttons STRING,

Library reference | 1669

 icon STRING,
 danger SMALLINT)
 RETURNING result STRING

1. title defines the title of the message window.
2. text specifies the string displayed in message window.
3. default indicates the default button to be pre-selected.
4. buttons defines a set of button labels separated by "|".
5. icon is the name of the icon to be displayed.
6. danger (for X11 only), number of the warnings item. Otherwise, this parameter is ignored.

Usage

Use the fgl_winbutton() function to open a message box and let the end user select an option in a set
of buttons. The function returns the label of the button which has been selected by the user.

Use '\n' in text to separate lines (this does not work in TUI mode).

Supported names for the icon parameter are: information, exclamation, question, stop.

You can define up to 7 buttons that each have 10 characters.

If two buttons start with the same letter, the user will not be able to select one of them in the TUI mode.

The "&" before a letter for a button is displayed in TUI mode, or underlines the next letter in graphical front-
ends.

This function is provided for backward compatibility, use a menu with "dialog" style instead.

Example

IMPORT FGL fgldialog
MAIN
 DEFINE answer STRING
 LET answer = fgl_winbutton("Media selection", "What is your
 favorite media?",
 "Lynx", "Floppy Disk|CD-ROM|DVD-ROM|Other", "question", 0)
 DISPLAY "Selected media is: " || answer
END MAIN

fgl_winmessage()
Displays an interactive message box containing text and OK button.

Syntax

fgl_winmessage(
 title STRING,
 text STRING,
 icon STRING)

1. title defines message box title.
2. text is the text displayed in the message box. Use '\n' to separate lines.
3. icon is the name of the icon to be displayed.

Usage

The fgl_winmessage() function displays a message box to the end user.

Library reference | 1670

Important: With front-ends implementing this function with the system dialog box API creating a
modal window, the end user will have to close the modal window first, before continuing within the
window of another program. Consider using a menu with "dialog" style instead, to not block other
programs.

Supported names for the icon parameter are: information, exclamation, question, stop. Note that
on some front-ends such as iOS devices, the native message popup window does not display an image.

On front-ends using a system dialog box API, the OK buttons will be automatically localized according
to the operating system language settings. On other front-ends, the option buttons will be decorated
according to action default settings.

Example

IMPORT FGL fgldialog
MAIN
 CALL fgl_winmessage("Title", "This is a critical message.",
 "stop")
END MAIN

fgl_winprompt()
Displays a dialog box containing a field that accepts a value.

Syntax

fgl_winprompt(
 x INTEGER,
 y INTEGER,
 text STRING,
 default STRING,
 length INTEGER,
 type INTEGER)
 RETURNING value STRING

1. x is the column position in characters.
2. y is the line position in characters.
3. text is the message shown in the box.
4. default is the default value.
5. length is the maximum length of the input value.
6. type is the data type of the return value.
7. value is the value entered by the user.

Usage

The fgl_winprompt() function allows the end user to enter a value.

This function is provided for backward compatibility, you can also use your own input dialog with a
customized form to get a value from the user. Or use the standard PROMPT instruction.

Possible values for the type parameter are: 0=CHAR, 1=SMALLINT, 2=INTEGER, 7=DATE,
255=invisible

Avoid passing NULL values.

Example

IMPORT FGL fgldialog
MAIN

Library reference | 1671

 DEFINE answer DATE
 LET answer = fgl_winprompt(10, 10, "Today", DATE, 10, 7)
 DISPLAY "Today is " || answer
END MAIN

fgl_winquestion()
Displays an interactive message box with configurable Ok/Yes/No/Cancel/Ignore/Abort/Retry buttons.

Syntax

fgl_winquestion(
 title STRING,
 text STRING,
 default STRING,
 buttons STRING,
 icon STRING,
 danger SMALLINT)
 RETURNING value STRING

1. title is the message box title.
2. text is the message displayed in the message box. Use '\n' to separate lines (does not work on ASCII

client).
3. default defines the default button that is preselected.
4. buttons defines the options. Must be a pipe-separated list of 2 or three options : ok, yes, no, cancel,

abort, retry, ignore.
5. icon is the name of the icon to be displayed.
6. danger is supported for backward compatibility. This parameter is ignored.

Usage

The fgl_winquestion() function shows a question message box to the end user and waits for an
answer.

Important: With front-ends implementing this function with the system dialog box API creating a
modal window, the end user will have to close the modal window first, before continuing within the
window of another program. Consider using a menu with "dialog" style instead, to not block other
programs.

The function returns the label of the option which has been selected by the user.

Supported names for the icon parameter are: information, exclamation, question, stop. Note that
on some front-ends such as iOS devices, the native message popup window does not display an image.

The buttons parameter defines the list of options that the user can select. Possible values are: ok, yes,
no, cancel, abort, retry, ignore. You must specify a pipe-separated list of options, with a maximum
of 3 options. For example: "ok", "yes|no", "yes|no|cancel", "abort|retry|ignore".

Important: To display the popup window of this API, desktop and mobile front-ends use the
platform specific message box API, with a predefined set of buttons. Some non-standard option
combinations may not be supported, such as "ok|yes|abort". Further, the order of the buttons
depends also from platform standards. For example, with "abort|retry|ignore", the buttons
can appear in the following order: [Retry] [Ignore] [Abort].

On front-ends using a system dialog box API, the option buttons will be automatically localized according
to the operating system language settings. On other front-ends, the option buttons will be decorated
according to action default settings.

Library reference | 1672

Example

IMPORT FGL fgldialog
MAIN
 DEFINE answer STRING
 LET answer = "yes"
 WHILE answer = "yes"
 LET answer = fgl_winquestion(
 "Procedure", "Would you like to continue ? ",
 "cancel", "yes|no|cancel", "question", 0)
 END WHILE
 IF answer = "cancel" THEN
 DISPLAY "Canceled."
 END IF
END MAIN

fgl_winwait()
Displays an interactive message box and waits for user validation.

Syntax

fgl_winwait(
 text STRING)

1. text is the message displayed in the message box. Use '\n' to separate lines (not working on ASCII
client).

Usage

The fgl_winwait() function displays a message to the end user and waits until the user presses the OK
button.

Important: With front-ends implementing this function with the system dialog box API creating a
modal window, the end user will have to close the modal window first, before continuing within the
window of another program. Consider using a menu with "dialog" style instead, to not block other
programs.

Database utility functions (IMPORT FGL fgldbutl)

Table 358: Database utility functions (fgldbutl.4gl)

Function Description

db_get_database_type()
 RETURNING result STRING

Returns the database type for the current
connection.

db_get_sequence(
 id STRING)
 RETURNING result BIGINT

Generates a new sequence for a given identifier.

db_start_transaction()
 RETURNING result INTEGER

Starts a nested transaction call.

db_finish_transaction(
Terminates a nested transaction call.

Library reference | 1673

Function Description

 commit INTEGER)
 RETURNING result INTEGER

db_is_transaction_started()
 RETURNING result INTEGER

Indicates whether a nested transaction call is
started.

db_get_database_type()
Returns the database type for the current connection.

Syntax

db_get_database_type()
 RETURNING result STRING

Usage

After connecting to the database, you can get the type of the database server with this function.

Important: This function is deprecated, use the fgl_dbdriver_type() function instead.

Table 359: Codes returned by db_get_database_type() per database type

Code Description

ASE Sybase ASE

DB2 IBM® DB2®

IFX IBM® Informix®

MYS Oracle MySQL

MSV Microsoft™ SQL Server

ORA Oracle Database

PGS PostgreSQL

db_get_sequence()
Generates a new sequence for a given identifier.

Syntax

db_get_sequence(
 id STRING)
 RETURNING result BIGINT

1. id is the identifier of the sequence.
2. result is the new generated sequence.

Usage

This function generates a new sequence from a register table created in the current database.

Important:

1. Needs a database table called SEQREG.

Library reference | 1674

2. The function must be called inside a transaction block.

The table must be created as follows:

CREATE TABLE seqreg (
 sr_name VARCHAR(30) NOT NULL,
 sr_last BIGINT NOT NULL,
 PRIMARY KEY (sr_name)
)

Each time you call this function, the sequence is incremented in the database table and returned by the
function.

It is mandatory to use this function inside a transaction block, in order to generate unique sequences.

Example

IMPORT FGL fgldbutl
MAIN
 DEFINE ns BIGINT, s INTEGER
 DATABASE mydb
 BEGIN WORK
 LET ns = db_get_sequence("mytable")
 INSERT INTO mytable VALUES (ns, 'a new sequence')
 COMMIT WORK
END MAIN

db_start_transaction()
Starts a nested transaction call.

Syntax

db_start_transaction()
 RETURNING result INTEGER

1. result is the SQL execution status or the transaction start. Zero indicates success.

Usage

On most database engines, you can only have a unique transaction, that is started with BEGIN WORK
and ended with COMMIT WORK or ROLLBACK WORK. But in a some cases, you may need to do complex
nested function calls, executing several SQL instruction that must all be grouped in a single transaction.
The nested transaction utility functions help you to implement this.

With this nested transaction technique, you encapsulate transaction start and end withing the utility
function. Custom functions doing SQL operations can then be reused in different parts of your application:
If the caller does not start the transaction, the called function will automatically start and end the
transaction.

The db_start_transaction() function encapsulates the BEGIN WORK instruction to start a
transaction, in order to implement nested transactions.

Note: These transaction encapsulation functions are provided for special cases, where the function
call graph is complex. In general, you should simply use the standard BEGIN WORK / COMMIT
WORK / ROLLBACK WORK instructions to implement transaction blocks.

These transaction management functions execute a real transaction instruction at the boundaries of the
subsequent start/finish calls.

Library reference | 1675

Example

IMPORT FGL fgldbutl

MAIN
 DEFINE s INTEGER
 DATABASE mydb
 LET s = db_start_transaction() -- real BEGIN WORK
 IF s != 0 THEN DISPLAY "error 1" END IF
 WHENEVER ERROR CONTINUE
 UPDATE customer SET cust_name = 'Undef'
 WHENEVER ERROR STOP
 LET s = SQLCA.SQLCODE
 IF s != 0 THEN
 DISPLAY "error 2"
 ELSE
 LET s = do_update()
 IF s != 0 THEN DISPLAY "error 3" END IF
 END IF
 LET s = db_finish_transaction(s==0) -- real COMMIT or ROLLBACK
 WORK
 IF s != 0 THEN DISPLAY "error 4" END IF
END MAIN

FUNCTION do_update()
 DEFINE s INTEGER
 LET s = db_start_transaction() -- no SQL command (nested)
 IF s != 0 THEN
 DISPLAY "error 1.1"
 ELSE
 WHENEVER ERROR CONTINUE
 UPDATE customer SET cust_status = 'X'
 WHENEVER ERROR STOP
 LET s = SQLCA.SQLCODE
 IF s != 0 THEN
 DISPLAY "error 1.2"
 END IF
 END IF
 LET s = db_finish_transaction(s==0) -- no SQL command (nested)
 IF s != 0 THEN DISPLAY "error 1.3" END IF
 RETURN s
END FUNCTION

db_finish_transaction()
Terminates a nested transaction call.

Syntax

db_finish_transaction(
 commit INTEGER)
 RETURNING result INTEGER

1. commit is a boolean that indicates whether the transaction must be committed.
2. result is the SQL execution status or the commit or rollback. Zero indicates success.

Usage

This function encapsulates the COMMIT WORK or ROLLBACK WORK instructions to end a transaction.

Library reference | 1676

When the number of calls to DB_START_TRANSACTION() matches, this function executes a COMMIT
WORK if the passed parameter is TRUE; if the passed parameter is FALSE, it executes a ROLLBACK WORK.

If the number of start/finish calls does not match, the function does nothing.

db_is_transaction_started()
Indicates whether a nested transaction call is started.

Syntax

db_is_transaction_started()
 RETURNING result INTEGER

• result is a boolean value that indicates if a nested transaction call sequence was started.

Usage

The function returns TRUE if a transaction was started with db_start_transaction(), and was not yet
finished with a call to the db_finish_transaction() function.

Front-end dialog utility functions (IMPORT FGL fglwinexec)

Table 360: Front-end-side dialog functions (fglwinexec.4gl) (deprecated: use ui.Interface.frontCall()
instead)

Function Description

winopendir(
 dirname STRING,
 caption STRING)
 RETURNING result
 STRING

Opens a dialog window to get a directory path on the front-end
workstation.

winopenfile(
 dirname STRING,
 typename STRING,
 extlist STRING,
 caption STRING)
 RETURNING result
 STRING

Opens a dialog window to get a file to be read on the front-end
workstation.

winsavefile(
 dirname STRING,
 typename STRING,
 extlist STRING,
 caption STRING)
 RETURNING result
 STRING

Opens a dialog window to get a file path to save data on the front-end
workstation.

winshellexec(
 filename STRING)
 RETURNING result
 INTEGER

Opens a document on the workstation where the Windows™ front end
runs.

Microsoft™ Windows™ only!

winexecwait(
Executes a program on the workstation where the Windows™ front-
end runs and waits for termination.

Library reference | 1677

Function Description

 command STRING)
 RETURNING result
 INTEGER

Microsoft™ Windows™ only!

winexec(
 command STRING)
 RETURNING result
 INTEGER

Executes a program on the workstation where the Windows™ front
end runs and returns immediately.

Microsoft™ Windows™ only!

winopendir()
Opens a dialog window to get a directory path on the front-end workstation.

Syntax

winopendir(
 dirname STRING,
 caption STRING)
 RETURNING result STRING

1. dirname is the default path to be displayed in the dialog window.
2. caption is the label to be displayed.

Usage

This function opens a dialog window to let the user select a directory path on the front end workstation file
system.

The function returns the directory path on success.

The function returns NULL if a problem has occurred or if the user canceled the dialog.

Important: This function is provided for backward compatibility and should be avoided to run your
programs with different sort of front-ends. It must be called after the front-end connection was
established.

winopenfile()
Opens a dialog window to get a file to be read on the front-end workstation.

Syntax

winopenfile(
 dirname STRING,
 typename STRING,
 extlist STRING,
 caption STRING)
 RETURNING result STRING

1. dirname is the default path to be displayed in the dialog window.
2. typename is the name of the file type to be displayed.
3. extlist is a blank-separated list of file extensions defining the file type.
4. caption is the label to be displayed.

Usage

This function opens a dialog window to let the user select a file path on the front end workstation file
system, in order to open the file.

Library reference | 1678

The function returns the file path on success.

The function returns NULL if a problem has occurred or if the user canceled the dialog.

Important: This function is provided for backward compatibility and should be avoided to run your
programs with different sort of front-ends. It must be called after the front-end connection was
established.

winsavefile()
Opens a dialog window to get a file path to save data on the front-end workstation.

Syntax

winsavefile(
 dirname STRING,
 typename STRING,
 extlist STRING,
 caption STRING)
 RETURNING result STRING

1. dirname is the default path to be displayed in the dialog window.
2. typename is the name of the file type to be saved.
3. extlist is a blank separated list of file extensions defining the file type.
4. caption is the label to be saved.

Usage

This function opens a dialog window to let the user select a file path on the front end workstation file
system, in order to save the file.

The function returns the file path on success.

The function returns NULL if a problem has occurred or if the user canceled the dialog.

Important: This function is provided for backward compatibility and should be avoided to run your
programs with different sort of front-ends. It must be called after the front-end connection was
established.

winexec() MS Windows™ FE Only!
Executes a program on the workstation where the Windows™ front end runs and returns immediately.

Syntax

winexec(
 command STRING)
 RETURNING result INTEGER

1. command is the command to be executed on the front end.

Usage

The function executes the program on the Windows™ front end and returns the control to the program
without waiting.

Important: This function is provided for backward compatibility and should be avoided to run your
programs with different sort of front-ends. It must be called after the front-end connection was
established.

Library reference | 1679

winexecwait() MS Windows™ FE Only!
Executes a program on the workstation where the Windows™ front-end runs and waits for termination.

Syntax

winexecwait(
 command STRING)
 RETURNING result INTEGER

1. command is the command to be executed on the front end.

Usage

The function executes the program on the Windows™ front end and waits for its termination.

Important: This function is provided for backward compatibility and should be avoided to run your
programs with different sort of front-ends. It must be called after the front-end connection was
established.

winshellexec() MS Windows™ FE Only!
Opens a document on the workstation where the Windows™ front end runs.

Syntax

winshellexec(
 filename STRING)
 RETURNING result INTEGER

1. filename is the file to be opened on the front end.

Usage

The function opens a document on the Windows™ front end without waiting.

Important: This function is provided for backward compatibility and should be avoided to run your
programs with different sort of front-ends. It must be called after the front-end connection was
established.

vCard utility functions (IMPORT FGL VCard)

Table 361: vCard utility functions (VCard.4gl)

Function Description

PUBLIC TYPE VCAddress RECORD
 PostOfficeBox,
 ExtendedAddress, -- apartment
 or suite number
 Street,
 City,
 State,
 ZIP,
 Country STRING
 -- , CountryCode STRING -- X-
ABADR:de

The VCAddress structured type to hold vCard
address data.

Library reference | 1680

Function Description

 END RECORD

PUBLIC TYPE VCName RECORD
 FirstName,
 LastName,
 MiddleName,
 Prefix,
 Suffix STRING
 --, FormattedName STRING
 END RECORD

The VCName structured type to hold vCard data
related to the person name.

PUBLIC TYPE VCPerson RECORD
 FirstName STRING, -- N[1]
 LastName STRING, -- N[2]
 MiddleName STRING, -- N[3]
 Prefix STRING, -- N[4]
 Suffix STRING, -- N[5]
 formattedName STRING, -- FN
 nickname STRING, -- NICKNAME
 jobTitle STRING, -- TITLE
 organization STRING, --
 ORG.value[1]
 department STRING, --
 ORG.value[2]
 birthday STRING, -- BDAY
 note STRING, -- NOTE
 address DYNAMIC ARRAY OF RECORD
 type STRING,
 PostOfficeBox, -- ADR[1]
 ExtendedAddress, -- ADR[2]
 Street, -- ADR[3]
 City, -- ADR[4]
 State, -- ADR[5]
 ZIP, -- ADR[6]
 Country STRING -- ADR[7]
 END RECORD,
 phone DYNAMIC ARRAY OF RECORD
 type STRING,
 number STRING -- TEL
 END RECORD,
 email DYNAMIC ARRAY OF RECORD
 type STRING,
 value STRING -- EMAIL
 END RECORD

The VCPerson structured type to hold vCard data.

format_person(
 person VCPerson)
 RETURNING result STRING

Converts a VCPerson record to a vCard string
representation vCard.

scan_address(
 source STRING,
 type STRING)

Extracts an address from a string representing a
vCard.

Library reference | 1681

Function Description

 RETURNING address VCAddress

scan_email(
 source STRING,
 type STRING)
 RETURNING email STRING

Extracts an email from a string representing a
vCard.

scan_person(
 source STRING)
 RETURNING person VCPerson

Extracts person's data from a string representing a
vCard.

scan_phone(
 source STRING,
 type STRING)
 RETURNING phone STRING

Extracts a phone number from a string representing
a vCard.

VCAddress type
The VCAddress structured type to hold vCard address data.

Syntax

PUBLIC TYPE VCAddress RECORD
 PostOfficeBox,
 ExtendedAddress, -- apartment or suite number
 Street,
 City,
 State,
 ZIP,
 Country STRING
 -- , CountryCode STRING -- X-ABADR:de
 END RECORD

Usage

This type defines a record structure to hold vCard address information. It is used for values returned by the
scan_address() function.

Example

IMPORT FGL VCard
MAIN
 DEFINE a VCard.VCAddress
 LET a.Street = "Sunset Bld"
END MAIN

VCName type
The VCName structured type to hold vCard data related to the person name.

Syntax

PUBLIC TYPE VCName RECORD
 FirstName,

Library reference | 1682

 LastName,
 MiddleName,
 Prefix,
 Suffix STRING
 --, FormattedName STRING
 END RECORD

Usage

This type defines a record structure to hold vCard information related to the person name. It is used for
values returned by the scan_name() function.

Example

IMPORT FGL VCard
MAIN
 DEFINE n VCard.VCName
 LET n.FirstName = "Hans"
 LET n.LastName = "Mustermann"
END MAIN

VCPerson type
The VCPerson structured type to hold vCard data.

Syntax

PUBLIC TYPE VCPerson RECORD
 FirstName STRING, -- N[1]
 LastName STRING, -- N[2]
 MiddleName STRING, -- N[3]
 Prefix STRING, -- N[4]
 Suffix STRING, -- N[5]
 formattedName STRING, -- FN
 nickname STRING, -- NICKNAME
 jobTitle STRING, -- TITLE
 organization STRING, -- ORG.value[1]
 department STRING, -- ORG.value[2]
 birthday STRING, -- BDAY
 note STRING, -- NOTE
 address DYNAMIC ARRAY OF RECORD
 type STRING,
 PostOfficeBox, -- ADR[1]
 ExtendedAddress, -- ADR[2]
 Street, -- ADR[3]
 City, -- ADR[4]
 State, -- ADR[5]
 ZIP, -- ADR[6]
 Country STRING -- ADR[7]
 END RECORD,
 phone DYNAMIC ARRAY OF RECORD
 type STRING,
 number STRING -- TEL
 END RECORD,
 email DYNAMIC ARRAY OF RECORD
 type STRING,
 value STRING -- EMAIL
 END RECORD

Library reference | 1683

Usage

This type defines a record structure to hold vCard information. It is used by VCard functions such as
format_person().

Example

IMPORT FGL VCard
MAIN
 DEFINE p VCard.VCPerson
 LET p.FirstName = "Hans"
 LET p.LastName = "Mustermann"
END MAIN

format_person()
Converts a VCPerson record to a vCard string representation vCard.

Syntax

format_person(
 person VCPerson)
 RETURNING result STRING

1. person is a VCPerson record.
2. result is the resulting vCard string (version 3.0).

Usage

This function converts a record defined with the VCPerson type, to a string representing a vCard.

Example

IMPORT FGL VCard
MAIN
 DEFINE p VCard.VCPerson
 LET p.FirstName = "Hans"
 LET p.LastName = "Mustermann"
 LET p.email[1].VALUE = "hans@nomail.com"
 LET p.phone[1].TYPE = "HOME"
 LET p.phone[1].number = "+49 123 4567 8901"
 LET p.phone[2].TYPE = "WORK"
 LET p.phone[2].number = "+49 123 9876 5431"
 DISPLAY VCard.format_person(p.*)
END MAIN

Output:

BEGIN:VCARD
VERSION:3.0
N:Hans;Mustermann;;;
FN:Hans Mustermann
TEL;TYPE=HOME:+49 123 4567 8901
TEL;TYPE=WORK:+49 123 9876 5431
EMAIL:hans@nomail.com
END:VCARD

http://tools.ietf.org/html/rfc6350

Library reference | 1684

scan_address()
Extracts an address from a string representing a vCard.

Syntax

scan_address(
 source STRING,
 type STRING)
 RETURNING address VCAddress

1. source is the vCard string (version 3.0).
2. type is the type of address (HOME, WORK, pref).
3. address is the address found, returned as VCAddress structure.

Usage

This function parses the vCard string passed as parameter to find address data according to a type, and
returns address information in a record defined with the VCAddress type.

The function looks for lines starting with the "ADR" keyword.

The second parameter (type) defines is the value of the "TYPE" attribute in an "ADR" line. Values can
for example be "HOME", "WORK", "pref". If this parameter is NULL, the address with TYPE=pref will be
returned. If no preferred address exists, the first address will be returned.

Example

IMPORT FGL VCard
MAIN
 DEFINE a VCard.VCAddress,
 f TEXT
 LOCATE f IN FILE arg_val(1)
 CALL VCard.scan_address(f,"WORK") RETURNING a.*
 DISPLAY a.*
END MAIN

scan_email()
Extracts an email from a string representing a vCard.

Syntax

scan_email(
 source STRING,
 type STRING)
 RETURNING email STRING

1. source is the vCard string (version 3.0).
2. type is the type of email (HOME, WORK, pref).
3. email is the email found.

Usage

This function parses the vCard string passed as parameter to find "EMAIL" data according to a type, and
returns the email address as a string.

The function looks for lines starting with the "EMAIL" keyword.

http://tools.ietf.org/html/rfc6350
http://tools.ietf.org/html/rfc6350

Library reference | 1685

The second parameter (type) defines is the value of the "TYPE" attribute in an "EMAIL" line. Values can for
example be "HOME", "WORK", "pref". If this parameter is NULL, the email with TYPE=pref will be returned.
If no preferred email exists, the first email will be returned.

Example

IMPORT FGL VCard
MAIN
 DEFINE m STRING,
 f TEXT
 LOCATE f IN FILE arg_val(1)
 CALL VCard.scan_email(f,NULL) RETURNING m
 DISPLAY m
END MAIN

scan_name()
Extracts name information from a string representing a vCard.

Syntax

scan_name(
 source STRING)
 RETURNING name VCName

1. source is the vCard string (version 3.0).
2. name is the name found, returned as VCName structure.

Usage

This function parses the vCard string passed as parameter to find person name data, and returns name
information in a record defined with the VCName type.

Example

IMPORT FGL VCard
MAIN
 DEFINE n VCard.VCName,
 f TEXT
 LOCATE f IN FILE arg_val(1)
 CALL VCard.scan_name(f) RETURNING n.*
 DISPLAY n.*
END MAIN

scan_person()
Extracts person's data from a string representing a vCard.

Syntax

scan_person(
 source STRING)
 RETURNING person VCPerson

1. source is the vCard string (version 3.0).
2. person is the resulting VCPerson structure.

http://tools.ietf.org/html/rfc6350
http://tools.ietf.org/html/rfc6350

Library reference | 1686

Usage

This function parses the vCard string passed as parameter, extracts all information, and returns a record
defined with the VCPerson type.

Example

IMPORT FGL VCard
MAIN
 DEFINE p VCard.VCPerson,
 f TEXT
 LOCATE f IN FILE arg_val(1)
 CALL VCard.scan_person(f) RETURNING p.*
 DISPLAY p.*
END MAIN

scan_phone()
Extracts a phone number from a string representing a vCard.

Syntax

scan_phone(
 source STRING,
 type STRING)
 RETURNING phone STRING

1. source is the vCard string (version 3.0).
2. type is the type of phone number (HOME, WORK, TEXT, VOICE, FAX, CELL, VIDEO, PAGER,

TEXTPHONE, pref).
3. phone is the phone number found.

Usage

This function parses the vCard string passed as parameter to find phone data according to a type, and
returns the phone number in a string.

The function looks for lines starting with the "TEL" keyword.

The second parameter (type) defines is the value of the "TYPE" attribute in an "TELs" line. Values can for
example be "HOME", "WORK", "TEXT", "VOICE", "FAX", "CELL", "VIDEO", "PAGER", "TEXTPHONE",
"pref". If this parameter is NULL, the phone number with TYPE=pref will be returned. If no preferred phone
number exists, the first phone number will be returned.

Example

IMPORT FGL VCard
MAIN
 DEFINE n STRING,
 f TEXT
 LOCATE f IN FILE arg_val(1)
 CALL VCard.scan_phone(f,NULL) RETURNING n
 DISPLAY n
END MAIN

http://tools.ietf.org/html/rfc6350

Library reference | 1687

Built-in packages
These topics cover the built-in classes provided by the Genero Business Development Language.

• The BYTE data type as class on page 1687
• The STRING data type as class on page 1689
• The TEXT data type as class on page 1695
• DYNAMIC ARRAY as class on page 1697
• The Java Array type as class on page 1701
• The Application class on page 1703
• The Channel class on page 1707
• The StringBuffer class on page 1738
• The StringTokenizer class on page 1749
• The TypeInfo class on page 1752
• The MessageServer class on page 1754
• The Interface class on page 1755
• The Window class on page 1769
• The Form class on page 1774
• The Dialog class on page 1784
• The ComboBox class on page 1820
• The DragDrop class on page 1827
• The DomDocument class on page 1833
• The DomNode class on page 1839
• The NodeList class on page 1858
• The SaxAttributes class on page 1860
• The SaxDocumentHandler class on page 1865
• The XmlReader class on page 1871
• The XmlWriter class on page 1876

BDL data types package
These topics cover the built-in classes of BDL data types

• The BYTE data type as class on page 1687
• The STRING data type as class on page 1689
• The TEXT data type as class on page 1695
• DYNAMIC ARRAY as class on page 1697
• The Java Array type as class on page 1701

The BYTE data type as class
The BYTE built-in data type provides a set of utility methods to manipulate BYTE data.

BYTE methods can be invoked with the variable, for example:

DEFINE b BYTE
CALL t.writeFile("mydata")

Library reference | 1688

BYTE data type methods

Table 362: Object methods

Name Description

readFile(filename STRING)
Reads a file into a BYTE locator.

writeFile(filename STRING)
Writes the containt of a BYTE to a file.

BYTE.readFile
Reads a file into a BYTE locator.

Syntax

readFile(filename STRING)

1. filename is the path the file to be loaded.

Usage

This method reads a content from the specified file into the BYTE locator.

The bytes are loaded as is, without any conversion.

If the file is not found or if it cannot be read, the error -8087 is raised.

Example

MAIN
 DEFINE b BYTE
 LOCATE b IN MEMORY
 CALL b.readFile("mydata")
END MAIN

BYTE.writeFile
Writes the containt of a BYTE to a file.

Syntax

writeFile(filename STRING)

1. filename is the file to be written to.

Usage

This method writes the containt of the current BYTE locator to the specified file.

The bytes are written as is, without any conversion.

If the file cannot be written, the error -8087 is raised.

Example

MAIN
 DEFINE b BYTE
 LOCATE b IN MEMORY

Library reference | 1689

 SELECT col_byte INTO b FROM ...
 CALL b.writeFile("mydata")
END MAIN

The STRING data type as class
The STRING built-in data type provides a set of utility methods to manipulate character strings.

STRING methods can be invoked with the variable, for example:

DEFINE s STRING
IF s.equalsIgnoreCase("pink") THEN
 ...
END IF

STRING data type methods

Table 363: Object methods

Name Description

append(string STRING)
 RETURNING result STRING

Concatenates a string.

equals(string STRING)
 RETURNING result BOOLEAN

Compares a string to the content of the variable.

equalsIgnoreCase(string STRING)
 RETURNING result BOOLEAN

Makes a case-insensitive string comparison.

getCharAt(position INTEGER)
 RETURNING result CHAR(1)

Returns the character at the specified position.

getIndexOf(string STRING, start
 INTEGER)
 RETURNING result INTEGER

Returns the position of a sub-string.

getLength()
 RETURNING result INTEGER

Returns the length of the current string.

subString(start INTEGER, end
 INTEGER)
 RETURNING result STRING

Returns a sub-string according to start and end
positions.

toLowerCase()
 RETURNING result STRING

Returns the string converted to lower case.

toUpperCase()
Returns the string converted to upper case.

Library reference | 1690

Name Description

 RETURNING result STRING

trim()
 RETURNING result STRING

Removes leading a trailing blanks.

trimLeft()
 RETURNING result STRING

Removes leading blanks.

trimRight()
 RETURNING result STRING

Removes trailing blanks.

STRING.append
Concatenates a string.

Syntax

append(string STRING)
 RETURNING result STRING

1. string is the string to be concatenated.

Usage

This method concatenates a string to the current STRING variable and returns the resulting string.

The original STRING variable is not modified.

Appending a NULL will have no effect: the original string is returned.

Example

MAIN
 DEFINE s STRING
 LET s = "Some text"
 DISPLAY s.append("... more text")
END MAIN

STRING.equals
Compares a string to the content of the variable.

Syntax

equals(string STRING)
 RETURNING result BOOLEAN

1. string is the string to compare with.

Usage

This method compares a string to the current STRING variable and returns TRUE if both strings match.

If the original STRING variable or the string passed as parameter is NULL, the result with be FALSE.

Library reference | 1691

Example

MAIN
 DEFINE s STRING
 LET s = "white"
 IF s.equals("white") THEN
 DISPLAY "Matches"
 END IF
END MAIN

STRING.equalsIgnoreCase
Makes a case-insensitive string comparison.

Syntax

equalsIgnoreCase(string STRING)
 RETURNING result BOOLEAN

1. string is the string to compare with.

Usage

This method compares a string to the current STRING variable by ignoring the character case, and returns
TRUE if both strings match.

If the original STRING variable or the string passed as parameter is NULL, the result with be FALSE.

Example

MAIN
 DEFINE s STRING
 LET s = "white"
 IF s.equalsIgnoreCase("WHITE") THEN
 DISPLAY "Matches"
 END IF
END MAIN

STRING.getCharAt
Returns the character at the specified position.

Syntax

getCharAt(position INTEGER)
 RETURNING result CHAR(1)

1. position is the position of the character int the string.

Usage

This method extracts the character at the specified position from the STRING variable.

If the STRING variable is NULL, or if the position is out of the bounds of the string, the result will be NULL.

Important: When using byte length semantics, the position is expressed in bytes, and when using
char length semantincs, position is specified in characters. In byte length semantics, the method
returns NULL if the position does not match a valid character-byte index in the current string.

Library reference | 1692

Example

MAIN
 DEFINE s STRING
 LET s = "Some text"
 DISPLAY s.getCharAt(4)
END MAIN

STRING.getIndexOf
Returns the position of a sub-string.

Syntax

getIndexOf(string STRING, start INTEGER)
 RETURNING result INTEGER

1. string is the sub-string to be searched.
2. start is the starting position for the search.

Usage

This method scans a STRING variable to find the sub-string passed as parameter, and returns the position
of the sub-string.

The method starts to search the sub-string at the starting position specified as second parameter.

The method returns zero if:

• The substring was not found.
• The variable is NULL.
• The sub-string is NULL.
• The start position is out of bounds.

Important: When using byte length semantics, the position is expressed in bytes, and when using
char length semantincs, it is specified in characters.

Example

MAIN
 DEFINE s STRING
 LET s = "Some text"
 DISPLAY s.getIndexOf("text",1)
END MAIN

STRING.getLength
Returns the length of the current string.

Syntax

getLength()
 RETURNING result INTEGER

Usage

This method counts the number of bytes or characters in a STRING variable.

Note: Unlike the LENGTH() function, the getLength() method counts the trailing blanks.

Library reference | 1693

If the STRING variable is NULL, the method returns zero.

Important: When using byte length semantics, the length is expressed in bytes, and when using
char length semantincs, it is expressed in characters.

Example

MAIN
 DEFINE s STRING
 LET s = "Some text"
 DISPLAY s.getLength()
END MAIN

STRING.subString
Returns a sub-string according to start and end positions.

Syntax

subString(start INTEGER, end INTEGER)
 RETURNING result STRING

1. start is the starting position of the sub-string.
2. end is the ending position of the sub-string.

Usage

This method returns a sub-string of the current STRING variable according to a start and end position in the
original string.

If the STRING variable is NULL, or when the positions are out of bounds, the method returns NULL.

Important: When using byte length semantics, the positions are expressed in bytes, and when
using char length semantincs, positions are expressed in characters.

Example

MAIN
 DEFINE s STRING
 LET s = "Some text"
 DISPLAY s.subString(6,9)
END MAIN

STRING.toLowerCase
Returns the string converted to lower case.

Syntax

toLowerCase()
 RETURNING result STRING

Usage

This method converts the current STRING variable to lower case and returns the resulting string.

If the original STRING variable is NULL, the result is NULL.

Library reference | 1694

Example

MAIN
 DEFINE s STRING
 LET s = "Some text"
 DISPLAY s.toLowerCase()
END MAIN

STRING.toUpperCase
Returns the string converted to upper case.

Syntax

toUpperCase()
 RETURNING result STRING

Usage

This method converts the current STRING variable to upper case and returns the resulting string.

If the original STRING variable is NULL, the result is NULL.

Example

MAIN
 DEFINE s STRING
 LET s = "Some text"
 DISPLAY s.toUpperCase()
END MAIN

STRING.trim
Removes leading a trailing blanks.

Syntax

trim()
 RETURNING result STRING

Usage

This method deletes the white space characters before the first character and after the last character of the
current STRING variable and returns the resulting string.

If the original STRING variable is NULL, the result will be NULL.

Example

MAIN
 DEFINE s STRING
 LET s = " Some text "
 DISPLAY s.trim()
END MAIN

Library reference | 1695

STRING.trimLeft
Removes leading blanks.

Syntax

trimLeft()
 RETURNING result STRING

Usage

This method deletes the white space characters before the first character of the current STRING variable
and returns the resulting string.

If the original STRING variable is NULL, the result will be NULL.

Example

MAIN
 DEFINE s STRING
 LET s = " Some text"
 DISPLAY s.trimLeft()
END MAIN

STRING.trimRight
Removes trailing blanks.

Syntax

trimRight()
 RETURNING result STRING

Usage

This method deletes the white space characters after the last character of the current STRING variable and
returns the resulting string.

If the original STRING variable is NULL, the result will be NULL.

Example

MAIN
 DEFINE s STRING
 LET s = "Some text "
 DISPLAY s.trimRight()
END MAIN

The TEXT data type as class
The TEXT built-in data type provides a set of utility methods to manipulate TEXT data.

TEXT methods can be invoked with the variable, for example:

DEFINE t TEXT
CALL t.writeFile("mydata")

Library reference | 1696

TEXT data type methods

Table 364: Object methods

Name Description

getLength()
 RETURNING result INTEGER

Returns the length of a TEXT content.

readFile(filename STRING)
Reads a file into a TEXT locator.

writeFile(filename STRING)
Writes the containt of a TEXT to a file.

TEXT.getLength
Returns the length of a TEXT content.

Syntax

getLength()
 RETURNING result INTEGER

Usage

This method returns the number of bytes of the TEXT data.

Important: This method returns always a number of bytes, even when using character length
semantics.

Example

MAIN
 DEFINE t TEXT
 LOCATE t IN MEMORY
 DISPLAY t.getLength()
END MAIN

TEXT.readFile
Reads a file into a TEXT locator.

Syntax

readFile(filename STRING)

1. filename is the path the file to be loaded.

Usage

This method reads a content from the specified file into the TEXT locator.

If the file is not found or if it cannot be read, the error -8087 is raised.

Important: The character set used in the file must match the current application locale.

Library reference | 1697

Example

MAIN
 DEFINE t TEXT
 LOCATE t IN MEMORY
 CALL t.readFile("mydata")
END MAIN

TEXT.writeFile
Writes the containt of a TEXT to a file.

Syntax

writeFile(filename STRING)

1. filename is the file to be written to.

Usage

This method writes the containt of the current TEXT locator to the specified file.

If the file cannot be written, the error -8087 is raised.

Important: The character set used in the file must match the current application locale.

Example

MAIN
 DEFINE t TEXT
 LOCATE t IN MEMORY
 SELECT col_text INTO t FROM ...
 CALL t.writeFile("mydata")
END MAIN

DYNAMIC ARRAY as class
The DYNAMIC ARRAY (or static ARRAY) type provides a set of utility methods to manipulate the array
elements.

DYNAMIC ARRAY methods can be invoked with the variable, for example:

DEFINE a DYNAMIC ARRAY OF STRING
CALL a.appendElement()
DISPLAY a.getLength()

DYNAMIC ARRAY methods

Table 365: Object methods

Name Description

appendElement()
Adds a new element to the end of the array.

clear()
Removes all elements of the array.

Library reference | 1698

Name Description

 RETURNING result INTEGER

deleteElement(index INTEGER)
Removes an element from the array according to its
index.

getLength()
 RETURNING result INTEGER

Returns the length of the array.

insertElement(index INTEGER)
Inserts a new element at the given index.

sort(key STRING, reverse BOOLEAN)
Sorts the rows in the array.

DYNAMIC ARRAY.appendElement
Adds a new element to the end of the array.

Syntax

appendElement()

Usage

This method creates a new element at the end of the array.

The element is initialized to NULL.

Example

MAIN
 DEFINE a DYNAMIC ARRAY OF INTEGER
 ... (array has already 10 elements)
 CALL a.appendElement()
 LET a[a.getLength()] = a.getLength()
 DISPLAY a.getLength() -- shows 11
 DISPLAY a[10] -- shows 10
 DISPLAY a[11] -- shows 11
END MAIN

Since element allocation occurs automatically for dynamic arrays, you can omit the call the
appendElement() method and assign directly the new element:

MAIN
 DEFINE a DYNAMIC ARRAY OF INTEGER
 LET a[100] = 87234 -- Array gets a length of 100 automatically
 LET a[101] = 98562 -- New element at position 101
END MAIN

DYNAMIC ARRAY.clear
Removes all elements of the array.

Syntax

clear()

Library reference | 1699

 RETURNING result INTEGER

Usage

This method clears the array, by removing all its elements.

Use the clear() method just before filling the array with a new set of elements, if the array is potentially
not empty.

Example

FUNCTION fill_array(arr)
 DEFINE arr DYNAMIC ARRAY OF STRING
 DEFINE i INTEGER
 CALL arr.clear()
 FOR i=1 TO 10
 LET arr[i] = "Item #"||i
 END FOR
END FUNCTION

DYNAMIC ARRAY.deleteElement
Removes an element from the array according to its index.

Syntax

deleteElement(index INTEGER)

Usage

This method removes the array element at the specified index.

No error is raised if the index is out of bounds.

Example

MAIN
 DEFINE a DYNAMIC ARRAY OF INTEGER
 LET a[10] = 9
 CALL a.deleteElement(5)
 DISPLAY a.getLength() -- shows 9
 DISPLAY a[9] -- shows 9
END MAIN

DYNAMIC ARRAY.getLength
Returns the length of the array.

Syntax

getLength()
 RETURNING result INTEGER

Usage

This method returns the number of elements in the array.

Library reference | 1700

Example

DEFINE arr DYNAMIC ARRAY OF STRING,
 i INTEGER
FOR i=1 TO arr.getLength()
 DISPLAY arr[i]
END FOR

DYNAMIC ARRAY.insertElement
Inserts a new element at the given index.

Syntax

insertElement(index INTEGER)

Usage

This method inserts a new element in the array, before the specified index.

No error is raised if the index is out of bounds.

Example

MAIN
 DEFINE a DYNAMIC ARRAY OF INTEGER
 LET a[10] = 11
 CALL a.insertElement(10)
 LET a[10] = 10
 DISPLAY a.getLength() -- shows 11
 DISPLAY a[10] -- shows 10
 DISPLAY a[11] -- shows 11
END MAIN

DYNAMIC ARRAY.sort
Sorts the rows in the array.

Syntax

sort(key STRING, reverse BOOLEAN)

1. key is the name of a member of a structured array (DYNAMIC ARRAY OF RECORD), or NULL if the
array is not structured.

2. reverse is FALSE for ascending order, TRUE for descending order.

Usage

This method sorts the array according to the name of the member passed as first parameter, for arrays
defined with a structured type (DYNAMIC ARRAY OF RECORD). If the array is defined with a simple type,
the first argument can be NULL.

The second parameter defines the sort order as ascending (FALSE) or descending (TRUE).

When doing subsequent calls to the sort() method using different record members of the array, the rows
will be ordered by all of the record members specified for the cumulative sorts, with the most recent call
defining the main sort field.

Library reference | 1701

Another way to think of this is in terms of the ORDER BY clause of a SQL statement: If your dynamic array
contained the variables A, B and C, and you included the following calls to the sort() method:

CALL a.sort("C",false)
CALL a.sort("B",false)
CALL a.sort("A",false)

This would be equivalent to writing an ORDER BY clause that states:

ORDER BY A, B, C

Note: Character string data is sorted according to the current application locale.

Example

MAIN
 DEFINE a DYNAMIC ARRAY OF RECORD
 key INTEGER,
 name VARCHAR(30)
 END RECORD
 LET a[1].key = 776236 LET a[1].name = "aaaaa"
 LET a[2].key = 273434 LET a[2].name = "cccccccc"
 LET a[3].key = 934092 LET a[3].name = "bbbbb"
 CALL a.sort("name",FALSE)
 -- Array is sorted by name (asc order)
 CALL a.sort("key",TRUE)
 -- Array is sorted by key (desc order), then by name (asc
 order)
 -- within each key;
 -- The current sort becomes the main sort field, the initial
 sort
 -- becomes the secondary sort field
END MAIN

The Java Array type as class
The Java Array type provides a set of utility methods array elements.

Java array methods can be invoked with a type reference or the array variable, for example:

IMPORT JAVA java.lang.String
MAIN
 TYPE string_array_type ARRAY[] OF java.lang.String
 DEFINE names string_array_type
 LET names = string_array_type.create(100)
 LET names[1] = "aaaaaaa"
 DISPLAY names.getLength()
END MAIN

Java Array type methods

Table 366: Class methods

Name Description

java-array-type.create(size
 INTEGER)
 RETURNING object java-array-type

Creates a new Java array of the given type.

Library reference | 1702

Table 367: Object methods

Name Description

getLength()
 RETURNING result INTEGER

Returns the length of the Java array.

java-array-type.create
Creates a new Java array of the given type.

Syntax

java-array-type.create(size INTEGER)
 RETURNING object java-array-type

1. size defines the actual number of elements of the array.

Usage

This class method creates a new instance of the Java array specified by the type used, with the size
provided as parameter.

The type must be declared as a user defined type define with the ARRAY [] OF notation reserved for
Java arrays.

Example

IMPORT JAVA java.lang.String
MAIN
 TYPE string_array_type ARRAY[] OF java.lang.String
 DEFINE names string_array_type
 LET names = string_array_type.create(100)
 LET names[1] = "aaaaaaa"
 DISPLAY names[1]
END MAIN

java-array.getLength
Returns the length of the Java array.

Syntax

getLength()
 RETURNING result INTEGER

Usage

This method returns the number of elements in the Java array.

Example

IMPORT JAVA java.lang.String
MAIN
 TYPE string_array_type ARRAY[] OF java.lang.String
 DEFINE names string_array_type
 LET names = string_array_type.create(100)
 LET names[1] = "aaaaaaa"
 DISPLAY names.getLength()

Library reference | 1703

END MAIN

The base package
These topics cover the built-in classes for the base class

• The Application class on page 1703
• The Channel class on page 1707
• The SqlHandle class on page 1725
• The StringBuffer class on page 1738
• The StringTokenizer class on page 1749
• The TypeInfo class on page 1752
• The MessageServer class on page 1754

The Application class
The base.Application class provides a set of utility functions related to the program environment.

Command line arguments, execution directory and FGLPROFILE resource entries are some of the
elements you can query with this class.

This class is built-in and can be used directly in the source code.

This class does not have to be instantiated. It provides class methods for the current program.

base.Application methods

Table 368: Class methods

Name Description

base.Application.getArgument(
 index INTEGER)
 RETURNING result STRING

Returns the command line argument by position.

base.Application.getArgumentCount()
 RETURNING result INTEGER

Returns the total number of command line
arguments.

base.Application.getProgramDir()
 RETURNING result STRING

Returns the directory path of the current program.

base.Application.getProgramName()
 RETURNING result STRING

Returns the name of the current program.

base.Application.getFglDir()
 RETURNING result STRING

Returns the path to the FGLDIR installation
directory.

base.Application.getResourceEntry(
 entry STRING)
 RETURNING result STRING

Returns the value of an FGLPROFILE entry.

base.Application.getStackTrace()
Returns the function call stack trace.

Library reference | 1704

Name Description

 RETURNING result STRING

base.Application.isMobile()
 RETURNING result BOOLEAN

Indicates if the application runs on a mobile device.

base.Application.getArgument
Returns the command line argument by position.

Syntax

base.Application.getArgument(
 index INTEGER)
 RETURNING result STRING

1. index is the index of the program argument.

Usage

The index is the program argument position. The first program argument is identified by the position 1.
Argument number zero is the program name.

Returns NULL if there is no argument provided at the position.

Example

MAIN
 DEFINE i INTEGER
 FOR i=1 TO base.Application.getArgumentCount()
 DISPLAY base.Application.getArgument(i)
 END FOR
END MAIN

base.Application.getArgumentCount
Returns the total number of command line arguments.

Syntax

base.Application.getArgumentCount()
 RETURNING result INTEGER

Usage

Returns the total number of command line arguments, can be used to scan the argument values with
base.Application.getArgument().

base.Application.getFglDir
Returns the path to the FGLDIR installation directory.

Syntax

base.Application.getFglDir()
 RETURNING result STRING

Library reference | 1705

Usage

The getFglDir() method returns the installation directory path defined by the FGLDIR environment
variable. The directory path is system-dependent.

base.Application.getProgramDir
Returns the directory path of the current program.

Syntax

base.Application.getProgramDir()
 RETURNING result STRING

Usage

This method returns the directory path where the program file (42r) is located.

The directory path is system-dependent.

base.Application.getProgramName
Returns the name of the current program.

Syntax

base.Application.getProgramName()
 RETURNING result STRING

Usage

This method returns the name of the current program. This is the name of the 42m or 42r module passed
to fglrun, without the file extension.

base.Application.getResourceEntry
Returns the value of an FGLPROFILE entry.

Syntax

base.Application.getResourceEntry(
 entry STRING)
 RETURNING result STRING

1. entry is the name of an FGLPROFILE entry.

Usage

This method returns the fglprofile value of the FGLPROFILE resource entry passed as parameter.

Example

MAIN
 DISPLAY
 base.Application.getResourceEntry("mycompany.params.logmode")
END MAIN

Library reference | 1706

base.Application.getStackTrace
Returns the function call stack trace.

Syntax

base.Application.getStackTrace()
 RETURNING result STRING

Usage

Discover which functions have been called when a program raises an error. Use the getStackTrace()
method to print the stack trace to a log file. This method returns a string containing a formatted list of the
current function stack.

You typically use this function in a WHENEVER ERROR CALL handler.

MAIN
 WHENEVER ERROR CALL my_handler
 ...
END MAIN
...
FUNCTION my_handler()
 DISPLAY base.Application.getStackTrace()
END FUNCTION

Example of stack trace output:

#0 my_handler() at debug.4gl:173
#1 save_customer_data() at customer.4gl:1534
#2 edit_customer() at customer.4gl:542
#3 main at main.4gl:23

base.Application.isMobile
Indicates if the application runs on a mobile device.

Syntax

base.Application.isMobile()
 RETURNING result BOOLEAN

1. result is TRUE if the program runs on a mobile device.

Usage

This class method can be called to check if the program code is running on a smartphone or tablet device.
The method will return TRUE if the program executes in standalone mode (i.e. the runtime system is on the
mobile device).

Example

MAIN
 IF base.Application.isMobile() THEN
 MESSAGE "We are on a mobile device."
 END IF
END MAIN

Library reference | 1707

The Channel class
The base.Channel class is a built-in class providing basic input/output functions.
base.Channel methods

Table 369: Class methods

Name Description

base.Channel.create()
 RETURNING result base.Channel

Create a new channel object.

Table 370: Object methods

Name Description

dataAvailable()
 RETURNING result BOOLEAN

Tests if some data can be read from the channel.

close()
Closes the channel.

isEof()
 RETURNING result BOOLEAN

Detect the end of a file.

openFile(
 path STRING,
 mode STRING)

Opening a file channel.

openPipe(
 cmd STRING,
 mode STRING)

Opening a pipe channel to a sub-process.

openClientSocket(
 host STRING,
 port INTEGER,
 mode STRING,
 timeout INTEGER)

Open a TCP client socket channel.

openServerSocket(
 interface STRING, port INTEGER,
 mode STRING)

Open a TCP server socket channel.

read(
 [variable-list])
 RETURNING result INTEGER

Reads a list of data delimited by a separator from
the channel.

readLine()
Read a complete line from the channel.

Library reference | 1708

Name Description

 RETURNING result STRING

readOctets(
 bytes INTEGER)
 RETURNING result STRING

Read a given number of bytes and return it as a
character string.

setDelimiter(
 delim STRING)

Define the value delimiter for a channel.

write(
 [variable-list])

Writes a list of data delimited by a separator to the
channel.

writeLine(
 line STRING)

Write a complete line to the channel.

writeNoNL(
 string STRING)

Writes a string to the channel (without newline
character).

base.Channel.create
Create a new channel object.

Syntax

base.Channel.create()
 RETURNING result base.Channel

Usage

Use the base.Channel.create() class method to create a channel object.

The new created object must be assigned to a program variable defined with the base.Channel type.

Example

DEFINE ch base.Channel
LET ch = base.Channel.create()

base.Channel.close
Closes the channel.

Syntax

close()

Usage

Call the close() method when you are done with the channel. The channel can be re-opened after it has
been closed.

Library reference | 1709

Note: A channel is automatically closed, when the channel object is destroyed.

Example

CALL ch.close()

base.Channel.dataAvailable
Tests if some data can be read from the channel.

Syntax

dataAvailable()
 RETURNING result BOOLEAN

Usage

The dataAvailable() method returns TRUE if some data can be read from the channel.

This method is only to be used in some rare cases. Use dataAvailable() if the protocol allows
asynchronous messages from the peer. An example is an asynchronous error message from the peer, to
stop sending more data.

dataAvailable() checks if at least one byte is available on the stream. A subsequent read will block, if
the read operation can not be completed. This should not happen: the methods read() and readLine()
and their counterparts write() and writeLine() read and write complete lines (a line is a sequence of
characters terminated by the line separator).

The method opens up the possibility to read data asynchronously. One possible use for this method is to
stop a data transfer to a remote site after receiving an error message from the remote site.

Example

The local site sends a huge amount of data to the remote site using
base.Channel.writeLine(). An error may occur during the processing of data by the
remote side. The remote site writes an error message causing the local site to stop the
data transmission.

On the local site, the file is parent.4gl.

-- this file: parent.4gl
MAIN
 DEFINE i INT
 DEFINE c base.Channel

 LET c = base.Channel.create()
 CALL c.openPipe("fglrun child", "u")
 WHILE TRUE
 IF c.dataAvailable() THEN
 DISPLAY "message from child: ", c.readLine()
 EXIT WHILE
 END IF
 CALL c.writeLine("line " || i)
 END WHILE
END MAIN

On the remote site, the file is child.4gl.

-- this file: child.4gl
MAIN

Library reference | 1710

 DEFINE c base.Channel
 DEFINE s STRING
 DEFINE n INT

 LET n = 0
 LET c = base.Channel.create()
 CALL c.openFile("", "u")
 WHILE NOT c.isEof()
 LET s = c.readLine()
 LET n = n + 1
 IF n == 3 THEN
 CALL c.writeLine("error: something happens")
 CALL readRemainingData(c)
 EXIT WHILE
 END IF
 END WHILE
END MAIN

FUNCTION readRemainingData(c)
 DEFINE c base.Channel
 DEFINE s STRING
 WHILE NOT c.isEof()
 LET s = c.readLine()
 END WHILE
END FUNCTION

base.Channel.isEof
Detect the end of a file.

Syntax

isEof()
 RETURNING result BOOLEAN

Usage

Use the isEof() method to detect the end of a file while reading from a channel.

The end of file is only detected after the last read. In other words, you first read, then check for the end of
file and process if not end of file.

Example

DEFINE s STRING
WHILE TRUE
 LET s = ch.readLine()
 IF ch.isEof() THEN
 EXIT WHILE
 END IF
 DISPLAY s
END WHILE

base.Channel.openClientSocket
Open a TCP client socket channel.

Syntax

openClientSocket(
 host STRING,

Library reference | 1711

 port INTEGER,
 mode STRING,
 timeout INTEGER)

1. host is the name of the host machine you want to connect to.
2. port is the port number of the service.
3. mode is the open mode. Can be "r", "w" or "u" (combined with "b" if needed).
4. timeout is the timeout in seconds. -1 indicates no timeout (wait forever)

Usage

Use the openClientSocket() method to establish a TCP connection to a server.

Pay attention to character set used by the network protocol you want to use by opening a channel with this
method: The protocol must be based on ASCII, or must use the same character set as the application.

The host parameter defines the host name of the server.

The port parameter defines the TCP port to connect to.

The opening mode can be one of the following:

• r: For read mode: only to read from the socket
• w: For write mode: only to write to the socket
• u: For read and write mode: To read and write from/to the socket

Any of these modes can be followed by b, to use binary mode and avoid CR/LF translation on Windows
platforms.

Note: The binary mode is only required in specific cases, and will only take effect when writing
data.

If the opening mode is not one of the above letters, the method will raise error -8085.

When the timeout parameter is -1, the connection waits forever.

The method raises error -8084 if the channel cannot be opened.

Example

CALL ch.openClientSocket("localhost", 80, "u", 5)

base.Channel.openFile
Opening a file channel.

Syntax

openFile(
 path STRING,
 mode STRING)

1. path is the path to the file to open, can be NULL for stdin/stdout.
2. mode is the open mode. Can be "r", "w", "a" or "u" (combined with "b" if needed).

Usage

The openFile() method can be used to open a file for reading, writing, or both.

When passing NULL as file name, the channel can be used to read and/or write to stdout or stdin,
according to mode.

The opening mode can be one of the following:

Library reference | 1712

• r: For read mode: reads from a file (standard input if path is NULL).
• w: For write mode: starts with an empty file (standard output if the path is NULL).
• a: For append mode: writes at the end of a file (standard output if the path is NULL).
• u: For read from standard input and write to standard output (path must be NULL).

Any of these modes can be followed by b, to use binary mode and avoid CR/LF translation on Windows
platforms.

Note: The binary mode is only required in specific cases, and will only take effect when writing
data.

If the opening mode is not one of the above letters, the method will raise error -8085

When you use the w or a modes, the file is created if it does not exist.

The method raises error -6340 sif the file cannot be opened.

Example

CALL ch.openFile("file.txt", "w")

base.Channel.openPipe
Opening a pipe channel to a sub-process.

Syntax

openPipe(
 cmd STRING,
 mode STRING)

1. cmd is the system command to be executed.
2. mode is the open mode. Can be "r", "w", "a" or "u" (combined with "b" if needed).

Usage

With the openPipe() method, you can read from the standard output of a subprocess, write to the
standard input, or both.

Important: This feature is not supported on mobile platforms.

The opening mode can be one of the following:

• r: For read only from standard output of the command.
• w: For write only to standard input of the command.
• a: For write only to standard input of the command.
• u: For read from standard output and write to standard input of the command.

Any of these modes can be followed by b, to use binary mode and avoid CR/LF translation on Windows
platforms.

Note: The binary mode is only required in specific cases, and will only take effect when writing
data.

If the opening mode is not one of the above letters, the method will raise error -8085.

Example

CALL ch.openPipe("ls", "r")

Library reference | 1713

base.Channel.openServerSocket
Open a TCP server socket channel.

Syntax

openServerSocket(
 interface STRING, port INTEGER,
 mode STRING)

1. interface is the name of the network interface to be used.
2. port is the port number of the service.
3. mode is the open mode. Only "u" is allowed (combined with "b" if needed).

Usage

The openServerSocket() method initializes the channel object to listen to a given TCP interface and
port.

The server socket accepts multiple client connects: After calling the openServerSocket() method, a
call to readLine() waits until the first client connects and returns after reading a complete line. Only one
client connection can be serviced at time: it's not possible to select a specific client connection. A client
connection must be closed by writing the EOF character to the channel. The EOF character is ASCII 26.
Do not call base.Channel.close() to close a client/server connection: This would close the sever
socket and reject any pending client connection. The next call to readLine() after writing EOF will wait
until the next client connects or select the next pending client.

Pay attention to character set used by the network protocol you want to use by opening a channel with this
method: The protocol must be based on ASCII, or must use the same character set as the application.

The interface parameter defines the network interface to be used, in case if the server uses different
network adapters. Use NULL to listen to all network interfaces, or when the server has only one network
interface.

The port parameter defines the TCP port to listen to.

The opening mode must be "u", to read and write from/to the socket. The method will raise error -8085 if
the mode is different from "u".

The "u" mode can be combined with the "b" binary mode, to avoid CR/LF translation on Windows
platforms.

Note: The binary mode is only required in specific cases, and will only take effect when writing
data.

The method raises error -8084 if the socket cannot be opened.

Example

MAIN
 DEFINE io base.Channel
 DEFINE s STRING
 LET io = base.Channel.create()
 CALL io.openServerSocket("127.0.0.1", 4711, "u")
 WHILE TRUE
 LET s = io.readLine()
 CALL io.writeLine(s)
 -- next line closes the current connection
 CALL io.writeLine(ASCII 26) -- EOF
 END WHILE
END MAIN

Library reference | 1714

base.Channel.read
Reads a list of data delimited by a separator from the channel.

Syntax

read(
 [variable-list])
 RETURNING result INTEGER

1. variable-list is a list of program variables separated by a comma, or record.*

Usage

After opening the channel object, use the read() method to read a record of data from the channel.

The read() method uses the field delimiter defined by setDelimiter().

The read() method takes a modifiable list of variables as parameter, by using the [] square brace
notation.

A call to read() is blocking until the read operation is complete.

If the read() method returns less data than expected, then the remaining variables will be initialized to
NULL. If the read() method returns more data than expected, the data is silently ignored.

Any target variable must have a primitive type (BOOLEAN, TINYINT, SMALLINT, INT, BIGINT,
SMALLFLOAT, FLOAT, DECIMAL, DATE, DATETIME, INTERVAL, BYTE, TEXT, CHAR, VARCHAR, STRING) or
be a RECORD that contains only primitive members.

If data could be read, the read() method returns TRUE. Otherwise it returns FALSE, indicating the end of
the file or stream.

Example

WHILE ch.read([cust_rec.*])
 ...
END WHILE

base.Channel.readLine
Read a complete line from the channel.

Syntax

readLine()
 RETURNING result STRING

Usage

After opening the channel object, use the readLine() method to read a complete line from the channel.

The readLine() method returns an empty string if the line is empty.

A call to readLine() is blocking until the read operation is complete.

The readLine() function returns NULL if end of file is reached. To distinguish empty lines from NULL,
you must use the STRING data type. If you use a CHAR or VARCHAR, you will get NULL for empty lines. To
detect the end of file, use the isEof() method.

Example

WHILE TRUE

Library reference | 1715

 LET s = ch.readLine()
 IF ch.isEof() THEN EXIT WHILE END IF
 ...
END WHILE

base.Channel.readOctets
Read a given number of bytes and return it as a character string.

Syntax

readOctets(
 bytes INTEGER)
 RETURNING result STRING

1. bytes is the number of bytes to read, not the number of characters.

Usage

After opening the channel object, call the readOctets() method to read a given number of bytes
from the channel. The bytes are returned as a character string. The bytes read must match the current
encoding.

The readOctets() function returns NULL if end of file is reached. To distinguish empty lines from NULL,
you must use the STRING data type. If you use a CHAR or VARCHAR, you will get NULL for empty lines. To
properly detect end of file, use the isEof() method.

Before reading the actual bytes in a readOctets() call, you typically get the number of bytes to read
from the sender, as shown in the example.

A valid use case of the method is the HTTP protocol. Reading HTML content with readLine() is not
possible: The body consists of multiple lines, and the last line might not be terminated by a line-terminator,
and the stream gets not EOF:

HTTP/1.0 200 OK
Date: Wed, 16 Apr 2014 18:50:51 GMT
Content-Type: text/html
Content-Length: 1354

<html>
<body>
<h1>My title</h1>
 :
</body>
</html>

Example

WHILE TRUE
 ...
 -- Get the number of bytes to read.
 LET len = ch.readLine()
 -- Read the bytes as character string.
 LET s = ch.readOctets(len)
 IF ch.isEof() THEN EXIT WHILE END IF
 ...
END WHILE

Library reference | 1716

base.Channel.setDelimiter
Define the value delimiter for a channel.

Syntax

setDelimiter(
 delim STRING)

1. delim is the value delimiter to be used.

Usage

After creating the channel object, define the field value delimiter with the setDelimiter() method.

CALL ch.setDelimiter("^")

The default delimiter is defined by the DBDELIMITER environment variable, or a pipe (|) if DBDELIMITER
is not defined.

Specify CSV as the delimiter to read/write in Comma Separated Value format.

CALL ch.setDelimiter("CSV")

Important: Setting a NULL delimiter is allowed for backward compatibility, but must be avoid:
This was a workaround to read/write complete lines. If the delimiter is set to NULL, the read()
and write() methods do not use the backslash (\) escape character. As a result, data with
special characters like backslash, delimiter or line-feed will be written as is, and reading data will
ignore escaped characters in the source stream. If you need to read or write non-formatted data,
you should use the readLine()/writeLine() methods instead. These methods do not use a
delimiter, nor do they use the backslash escape character.

base.Channel.write
Writes a list of data delimited by a separator to the channel.

Syntax

write(
 [variable-list])

1. variable-list is a list of program variables separated by a comma, or record.*

Usage

After opening a channel, use the write() method to write a record of data to the channel.

The write() method uses the field delimiter defined by setDelimiter().

The write() method takes a modifiable list of variables as the parameter, using the [] square brace
notation.

The method raises error -6345 if the channel fails to write data.

Example

CALL ch.write([cust_rec.*])

Library reference | 1717

base.Channel.writeLine
Write a complete line to the channel.

Syntax

writeLine(
 line STRING)

1. line is the string expression to be written to the channel.

Usage

After opening a channel, use the writeLine() method to write a line of text to the channel.

The writeLine() method does not use the field delimiter, it write the text data to the stream, with an
ending newline character.

To write a string with no ending newline character, use the writeNoNL() method.

The method raises error -6345 if the channel fails to write data.

Example

CALL ch.writeLine("Customer number: "|| custno)

base.Channel.writeNoNL
Writes a string to the channel (without newline character).

Syntax

writeNoNL(
 string STRING)

1. string is the character string to be written to the channel.

Usage

After opening a channel, use the writeNoNL() method to write a string to the channel, without a trailing
newline character.

Important: Do not confuse the writeNoNL() method with the write() method. The first
is provided to write raw character strings to the stream, while the second is designed to write
records with formatted data and field delimiters. Note also that the Channel class provides the
writeLine() method to write a string with a ending newline character.

The method raises error -6345 if the channel fails to write data.

Example

CALL ch.writeNoNL("Some text ...")

Usage

The base.Channel class is a built-in class providing basic input/output functionality for:

• text file reading/writing
• subprocess communication (through pipes)
• basic network communication (through TCP sockets)

Library reference | 1718

Important: No character set conversion is done when reading or writing data with channel objects.
The character set used in the data file must correspond to the locale of the runtime system, for both
input and output.

Steps to use a channel object:

• Define a variable with the base.Channel type.
• Create a channel object with base.Channel.create() and assign it to the variable.
• Open the channel for a file, piped process or socket (as a client).
• Read or write data in formatted mode or in line mode.
• Close the channel.

Channel methods may raise exceptions. Exceptions can be trapped with the WHENEVER ERROR or
TRY/CATCH instructions.

When reading or writing strings, the escape character is the backslash (\).

The are three modes to read and write data with Channels:

1. Reading/writing formatted data as a set of fields in a line (i.e. records), with the read() and write()
methods, needing a value separator defined by setDelimiter(). This mode follows the same
formatting rules as the LOAD/UNLOAD instructions, and can also be used to read/write CSV (Comma
Separated Value) formatted data.

2. Reading/writing complete lines with the readLine() and writeLine() methods. This mode is
typically used to read/write simple data files.

3. Handling raw character string data by reading/writing pieces of strings, with the readOctets() and
writeNoNL() methods.

Read and write formatted data

When the channel is open, use the read()/write() methods to read and write data records where field
values are separated by a delimiter defined by setDelimiter().

Note: The LOAD/ UNLOAD SQL instructions follow the same formatting rules as the
read()/write() channel methods.

The input or output stream is text data where each line contains the string representation of a record. Field
values are separated by the delimiter character defined.

For example, a formatted text file can look like this, when using a default pipe (|) delimiter:

8712|David|Cosneski|24-12-1978|
3422|Frank|Zapinetti|13-04-1968|
323|Mark|Kelson|03-10-1988|

In the serialized data, empty fields (||) have a length of zero and are considered as NULL.

To read the above formatted data, the code could be:

MAIN
 DEFINE ch base.Channel
 DEFINE custinfo RECORD
 cust_num INTEGER,
 cust_fname VARCHAR(40),
 cust_lname VARCHAR(40),
 cust_bdate DATE
 END RECORD
 LET ch = base.Channel.create()
 CALL ch.setDelimiter("|")
 CALL ch.openFile("custinfo.txt","r")
 WHILE ch.read([custinfo.*])
 DISPLAY custinfo.*
 END WHILE

Library reference | 1719

 CALL ch.close()
END MAIN

The backslash \ is the escape character: When writing data with write(), special characters like the
backslash, line-feed or the delimiter character will be escaped. When reading data with read(), any
escaped \char character will be converted to char.

The next code writes a single field value where the character string contains a backslash, the pipe delimiter
and a line-feed character. The backslash is also the escape character for string literals, therefore we need
to double the backslash to get a backslash in the string, while the line-feed character (<lf>) is represented
by backslash-n (\n) in string literals:

CALL ch.setDelimiter("|")
CALL ch.write("aaa\\bbb|ccc\nddd") -- [aaa<bs>bbb|ccc<lf>ddd]

This code will produce the following text file:

aaa\\bbb\|ccc\
ddd|

When reading such a line back into memory with the read() method, all escaped characters are
converted back to the single character. In this example, \\ becomes \, \| becomes | and \<lf>
becomes <lf>.

When using the read()/write() methods, the escaped line-feed (LF, \n) characters are written as BS +
LF to the output, and when reading with read(), BS + LF are detected and interpreted, to be restored as if
the value was assigned by a LET instruction, with the same string used in the write() function.

If you want to write a LF as part of a value, the string must contain the backslash and line-feed as two
independent characters. You need to escape the backslash when you write the string constant in the .4gl
source file.

CALL ch.setDelimiter("|")
CALL ch.write("aaa\\\nbbb") -- [aaa<bs><lf>bbb]
CALL ch.write("ccc\nddd") -- [aaa<lf>bbb]

would generate the following output:

aaa\
bbb|
ccc|
ddd|

where the first two lines contain data for the same line, in the meaning of a Channel record.

When you read these lines back with a read() call, you get the following strings in memory:

Read 1: aaa<bs><lf>bbb
Read 2: ccc
Read 3: ddd

These reads would correspond to the following assignments when using string constants:

LET s = "aaa\\\nbbb"
LET s = "ccc"
LET s = "ddd"

Data can also be formatted as CVS (Comma Separated Values), when defining "CVS" as delimiter value:

CALL ch.setDelimiter("CVS")

Library reference | 1720

This CVS format is similar to the standard channel format, with the following differences:

• Values in the file might be surrounded with double quotes (").
• If a value contains a comma or a NEWLINE, it is not escaped; the value must be quoted in the file.
• Double-quote characters in values are doubled in the output file and the output value must be quoted.
• Backslash characters are not escaped and are read as is; the value must be quoted.
• Leading and trailing blanks are kept (no truncation).
• No ending delimiter is expected at the end of the record line.

Read and write simple lines

When the channel is open, use the readLine()/writeLine() methods to read and write simple lines of
data terminated by a line terminator.

When using the readLine() and writeLine() functions, a LF character represents the end of a line.

For example, a simple text file can look like this:

first line
second line
third line

To read the above text file, the code could be:

MAIN
 DEFINE i INTEGER
 DEFINE s STRING
 DEFINE ch base.Channel
 LET ch = base.Channel.create()
 CALL ch.openFile("file.txt","r")
 LET i = 1
 WHILE TRUE
 LET s = ch.readLine()
 IF ch.isEof() THEN EXIT WHILE END IF
 DISPLAY i, " ", s
 LET i = i + 1
 END WHILE
 CALL ch.close()
END MAIN

LF characters escaped by a backslash are not interpreted as part of the line during a readLine() call.

When a line is written, any LF characters in the string will be written as is to the output. When a line is read,
the LF escaped by a backslash is not interpreted as part of the line.

For example, this code:

CALL ch.writeLine("aaa\\\nbbb") -- [aaa<bs><lf>bbb]
CALL ch.writeLine("ccc\nddd") -- [aaa<lf>bbb]

would generate this output:

aaa\
bbb
ccc
ddd

and the subsequent readLine() will read four different lines, where the first line is ended by a backslash:

Read 1 aaa<bs>
Read 2 bbb
Read 3 ccc

Library reference | 1721

Read 4 ddd

Line terminators on Windows™ and UNIX™

On Windows™ platforms, DOS formatted text files use CR/LF as line terminators. You can manage these
type of files with the base.Channel class.

By default, on both Windows™ and UNIX™ platforms, when records are read from a DOS file with
the base.Channel class, the CR/LF line terminator is removed. When a record is written to a file on
Windows™, the lines are terminated with CR/LF in the file; on UNIX™, the lines are terminated with LF only.

To avoid the automatic translation of CR/LF on Windows™, you can use the b option of the openFile()
and openPipe() methods. You can combine the b option with r or w, based on the read or write
operations that you want to do.

CALL ch.openFile("mytext.txt", "rb")

On Windows™, when lines are read with the b option, only LF is removed from CR/LF line terminators; CR
will be copied as a character part of the last field. In contrast, when lines are written with the b option, LF
characters will not be converted to CR/LF.

On UNIX™, writing lines with or without the binary mode option does not matter.

Handle channel exceptions

Channel errors can be trapped with the WHENEVER ERROR exception handler:

WHENEVER ERROR CONTINUE
CALL ch.write([num,label])
IF STATUS THEN
 ERROR "An error occurred while reading from Channel"
 CALL ch.close()
 RETURN -1
END IF
WHENEVER ERROR STOP

Or with a TRY/CATCH block:

TRY
 CALL ch.write([num,label])
CATCH
 ERROR "An error occurred while reading from Channel"
 CALL ch.close()
 RETURN -1
END TRY

Implementing a TCP socket channel

The base.Channel class provides methods to implement basic TCP client and server programs.
Consider character set encodings when designing such programs: No implicit character set conversion is
done by the runtime system. Both client and server must use the same character set and length semantics.

The following code example implements a client program connecting to a TCP port, using the
openClientSocket() method:

MAIN
 DEFINE ch base.Channel,
 time DATETIME HOUR TO SECOND,
 data STRING
 LET ch = base.Channel.create()
 CALL ch.openClientSocket("localhost",99999,"u",3)
 CALL ch.writeLine("get_time")
 LET time = ch.readLine()

Library reference | 1722

 DISPLAY "client 1: ", time
 CALL ch.writeLine("get_string")
 LET data = ch.readLine()
 DISPLAY "client 2: ", data
 CALL ch.writeLine("disconnect")
 CALL ch.close()
END MAIN

The next code example implements the server program that can be used with the above client program.
The server program uses the openServerSocket() and readLine() methods to listen to a given TCP
interface/port. Note that the connection with a client must be ended by sending an EOF character (ASCII
26) to the client, the next readLine() call will wait for a new client connection, or select a pending client
connection:

MAIN
 DEFINE ch base.Channel,
 cmd, data STRING
 LET ch = base.Channel.create()
 DISPLAY "starting server..."
 CALL ch.openServerSocket(null, 99999, "u")
 WHILE TRUE
 LET cmd = ch.readLine()
 IF ch.isEof() THEN
 DISPLAY "Connection ended by client..."
 EXIT WHILE
 END IF
 DISPLAY "cmd: ", cmd
 IF cmd == "get_time" THEN
 CALL ch.writeLine(CURRENT HOUR TO SECOND)
 END IF
 IF cmd == "get_string" THEN
 LET data = "This is a string..."
 CALL ch.writeLine(data)
 END IF
 IF cmd == "disconnect" THEN
 CALL ch.writeLine(ASCII 26) -- EOF
 END IF
 END WHILE
 DISPLAY "end of server..."
END MAIN

Examples
Example 1: Reading formatted data from a file

This program reads data from file.txt, which contains two columns separated by a pipe (|) character. It
writes this data to the end of fileout.txt, using a percent sign (%) as the delimiter.

MAIN
 DEFINE custinfo RECORD
 cust_num INTEGER,
 cust_name VARCHAR(40)
 END RECORD
 DEFINE ch_in, ch_out base.Channel
 LET ch_in = base.Channel.create()
 CALL ch_in.setDelimiter("|")
 LET ch_out = base.Channel.create()
 CALL ch_out.setDelimiter("%")
 CALL ch_in.openFile("file.txt","r")
 CALL ch_out.openFile("fileout.txt","w")
 WHILE ch_in.read([custinfo.*])
 CALL ch_out.write([custinfo.*])
 END WHILE

Library reference | 1723

 CALL ch_in.close()
 CALL ch_out.close()
END MAIN

Example 2: Executing the ls UNIX™ command

This program executes the ls command and displays the filenames and extensions separately.

MAIN
 DEFINE fn CHAR(40)
 DEFINE ex CHAR(10)
 DEFINE ch base.Channel
 LET ch = base.Channel.create()
 CALL ch.setDelimiter(".")
 CALL ch.openPipe("ls -l","r")
 WHILE ch.read([fn,ex])
 DISPLAY fn, " ", ex
 END WHILE
 CALL ch.close()
END MAIN

Example 3: Reading lines from a file

MAIN
 DEFINE i INTEGER
 DEFINE s STRING
 DEFINE ch base.Channel
 LET ch = base.Channel.create()
 CALL ch.openFile("file.txt","r")
 LET i = 1
 WHILE TRUE
 LET s = ch.readLine()
 IF ch.isEof() THEN EXIT WHILE END IF
 DISPLAY i, " ", s
 LET i = i + 1
 END WHILE
 CALL ch.close()
END MAIN

Example 4: Communicating with an HTTP server

MAIN
 DEFINE ch base.Channel, eof INTEGER
 LET ch = base.Channel.create()
 -- HTTP protocol forces every line to be terminate by \r\n
 -- So we use channel binary mode to avoid CR+LF translation on Windows.
 -- In text mode, each line would be terminated by \r\r\n on Windows.
 WHENEVER ERROR CONTINUE
 CALL ch.openClientSocket("localhost", 80, "ub", 30)
 IF STATUS != 0 THEN
 DISPLAY "Could not open socket: error ", STATUS
 EXIT PROGRAM 1
 END IF
 WHENEVER ERROR STOP
 -- HTTP expects CR+LF: Note that LF is added by writeLine()!
 CALL ch.writeLine("GET / HTTP/1.0\r")
 -- No HTTP headers...
 -- Empty line = end of headers
 CALL ch.writeLine("\r")
 WHILE NOT eof
 DISPLAY ch.readLine()
 LET eof = ch.isEof()
 END WHILE

Library reference | 1724

 CALL ch.close()
END MAIN

Example 5: Sending mails through an SMTP server

MAIN
 DEFINE mc base.Channel
 DEFINE i, res INTEGER
 DEFINE subject, emFrom, emRcpt, msg STRING
 DEFINE mailbody DYNAMIC ARRAY OF STRING
 LET subject = "Hello..."
 LET emFrom = "ted.fisher@4js.com"
 LET emRcpt = "ted.fisher@4js.com"
 LET mailbody[1] = "Hello,"
 LET mailbody[2] = "What's new?"
 LET mc = base.Channel.create()
 -- We use channel binary mode to avoid CR+LF translation on Windows.
 -- In text mode, each line would be terminated by \r\r\n on Windows.
 CALL mc.openClientSocket("mail.strasbourg.4js.com", 25, "ub", 5)
 CALL readSmtpAnswer(mc) RETURNING res, msg
 CALL smtpSend(mc, "HELO xxx\r") RETURNING res, msg
 CALL smtpSend(mc, SFMT("MAIL FROM: %1\r", emFrom)) RETURNING res, msg
 CALL smtpSend(mc, SFMT("RCPT TO: %1\r", emRcpt)) RETURNING res, msg
 CALL smtpSend(mc, "DATA\r") RETURNING res, msg
 DISPLAY "Sending mail body:"
 CALL mc.writeLine(SFMT("Subject: %1\r", subject))
 FOR i = 1 TO mailbody.getLength()
 CALL mc.writeLine(mailbody[i])
 END FOR
 CALL mc.writeLine(".")
 CALL readSmtpAnswer(mc) RETURNING res, msg
 DISPLAY " Result: ", res
 CALL smtpSend(mc, "QUIT\r") RETURNING res, msg
 CALL mc.close()
END MAIN

FUNCTION smtpSend(ch, command)
 DEFINE ch base.Channel
 DEFINE command, msg STRING
 DEFINE res INTEGER
 DISPLAY "Sending command: ", command
 CALL ch.writeLine(command)
 CALL readSmtpAnswer(ch) RETURNING res, msg
 DISPLAY " Result: ", res
 RETURN res, msg
END FUNCTION

FUNCTION readSmtpAnswer(ch)
 DEFINE ch base.Channel
 DEFINE line, msg STRING
 DEFINE res INTEGER
 LET msg = ""
 WHILE TRUE
 LET line = ch.readLine() -- Note: /r/n is already removed!
 IF line IS NULL THEN
 RETURN -1, "COULD NOT READ SMTP ANSWER"
 END IF
 IF line MATCHES "[0-9][0-9][0-9] *" THEN
 IF msg.getLength() != 0 THEN
 LET msg=msg || "\n"
 END IF
 LET msg=msg.append(line.subString(4, line.getLength()))
 LET res = line.subString(1,3)

Library reference | 1725

 RETURN res, msg
 END IF
 IF line MATCHES "[0-9][0-9][0-9]-*" THEN
 IF msg.getLength() != 0 THEN
 LET msg=msg || "\n"
 END IF
 LET msg=msg.append(line.subString(4, line.getLength()))
 END IF
 END WHILE
END FUNCTION

The SqlHandle class
The base.SqlHandle class is a built-in class providing an API to execute parameterized SQL
statements, with or without result sets.
base.SqlHandle methods

Table 371: Class methods

Name Description

create()
 RETURNING handle base.SqlHandle

Create a new base.SqlHandle object.

Table 372: Object methods

Name Description

close()
Closes the SQL handle (cursor).

execute()
Executes a simple SQL statement (without result
set).

fetch()
Fetches a new row from the SQL result set.

fetchAbsolute(position INTEGER)
Fetches to a specified row in a scrollable SQL
result set.

fetchFirst()
Fetches the first row in a scrollable SQL result set.

fetchLast()
Fetches the last row in a scrollable SQL result set.

fetchPrevious()
Fetches the previous row in a scrollable SQL result
set.

fetchRelative(offset INTEGER)
Fetches a row relative to the current row in a
scrollable SQL result set.

flush()
Flushes the rows from the insert cursor buffer.

getResultCount()
Returns the number of result set columns produced
by the SQL statement.

Library reference | 1726

Name Description

 RETURNING count INTEGER

getResultName(index INTEGER)
 RETURNING name STRING

Returns the name of a column in the result set
produced by the SQL statement.

getResultType(index INTEGER)
 RETURNING type STRING

Returns the Genero type name of a column in the
result set produced by the SQL statement.

getResultValue(index INTEGER)
 RETURNING value fgl-type

Returns the value of a column in the result set
produced by the SQL statement.

open()
Opens the SQL handle (SELECT or INSERT
cursor).

openScrollCursor()
Opens the SQL handle (with scrollable option).

prepare(sql-text STRING)
Prepares an SQL statement for the SQL handle.

put()
Put a new row in the insert cursor buffer.

setParameter(
 index INTEGER,
 value fgl-type)

Sets the value of an SQL parameter for this SQL
handle.

base.SqlHandle.create
Create a new base.SqlHandle object.

Syntax

create()
 RETURNING handle base.SqlHandle

Usage

Use the create() method to create a base.SqlHandle object to execute SQL statements.

The value returned by this method must be assigned to a variable defined with the base.SqlHandle type.

As with other built-in classes, the SqlHandle object will be automatically destroyed if no longer referenced.

Example

DEFINE sh base.SqlHandle
LET sh = base.SqlHandle.create()
...

Library reference | 1727

base.SqlHandle.close
Closes the SQL handle (cursor).

Syntax

close()

Usage

Call the close() method when you are done with the SQL handle.

The statement can be re-opened after it has been closed.

Note: An SqlHandle object is automatically closed when the object is destroyed.

As with standard Genero SQL instructions, SQL errors can be trapped with WHENEVER ERROR or TRY /
CATCH blocks and by testing SQLCA.SQLCODE.

Example

CALL sh.close()

base.SqlHandle.execute
Executes a simple SQL statement (without result set).

Syntax

execute()

Usage

Call the execute() method to execute the prepared SQL statement, without producing a result set
(INSERT, UPDATE, DELETE, CREATE TABLE, ...).

The SQL statement must have been prepared with a prepare() call.

If the SQL statement contains ? parameter place holders, issue a setParameter() call for each
parameter before executing the SQL statement.

As with standard Genero SQL instructions, SQL errors can be trapped with WHENEVER ERROR or TRY /
CATCH blocks and by testing SQLCA.SQLCODE.

Example

CALL sh.execute()

base.SqlHandle.fetch
Fetches a new row from the SQL result set.

Syntax

fetch()

Usage

Call the fetch() method to fetch a new row from the SQL result set.

Library reference | 1728

The SQL statement must have been opened with a open() call.

After performing the fetch call, you can query for column information with the getResultCount(),
getResultName(index), getResultType(index) and getResultValue(index) methods.

If no row is found (end of result set), SQLCA.SQLCODE is set to 100 (NOTFOUND).

As with standard Genero SQL instructions, SQL errors can be trapped with WHENEVER ERROR or TRY /
CATCH blocks and by testing SQLCA.SQLCODE.

Example

CALL sh.fetch()

base.SqlHandle.fetchAbsolute
Fetches to a specified row in a scrollable SQL result set.

Syntax

fetchAbsolute(position INTEGER)

1. position is the absolute row position in the result set (starts at 1).

Usage

Call the fetchAbsolute() method to fetch to the specified row in a scrollable SQL result set.

The SQL statement must have been opened with a openScrollCursor() call.

After performing the fetch call, you can query for column information with the getResultCount(),
getResultName(index), getResultType(index) and getResultValue(index) methods.

If no row is found (end of result set), SQLCA.SQLCODE is set to 100 (NOTFOUND).

If the specified position does not correspond to a row position in the result set, SQLCA.SQLCODE is set to
100 (NOTFOUND).

As with standard Genero SQL instructions, SQL errors can be trapped with WHENEVER ERROR or TRY /
CATCH blocks and by testing SQLCA.SQLCODE.

Example

CALL sh.fetchAbsolute(10)

base.SqlHandle.fetchFirst
Fetches the first row in a scrollable SQL result set.

Syntax

fetchFirst()

Usage

Call the fetchFirst() method to fetch the first row in a scrollable SQL result set.

The SQL statement must have been opened with a openScrollCursor() call.

After performing the fetch call, you can query for column information with the getResultCount(),
getResultName(index), getResultType(index) and getResultValue(index) methods.

If no row is found (end of result set), SQLCA.SQLCODE is set to 100 (NOTFOUND).

Library reference | 1729

If the result set is empty, SQLCA.SQLCODE is set to 100 (NOTFOUND).

As with standard Genero SQL instructions, SQL errors can be trapped with WHENEVER ERROR or TRY /
CATCH blocks and by testing SQLCA.SQLCODE.

Example

CALL sh.fetchFirst()

base.SqlHandle.fetchLast
Fetches the last row in a scrollable SQL result set.

Syntax

fetchLast()

Usage

Call the fetchLast() method to fetch the last row in a scrollable SQL result set.

The SQL statement must have been opened with a openScrollCursor() call.

After performing the fetch call, you can query for column information with the getResultCount(),
getResultName(index), getResultType(index) and getResultValue(index) methods.

If no row is found (end of result set), SQLCA.SQLCODE is set to 100 (NOTFOUND).

If the result set is empty, SQLCA.SQLCODE is set to 100 (NOTFOUND).

As with standard Genero SQL instructions, SQL errors can be trapped with WHENEVER ERROR or TRY /
CATCH blocks and by testing SQLCA.SQLCODE.

Example

CALL sh.fetchLast()

base.SqlHandle.fetchPrevious
Fetches the previous row in a scrollable SQL result set.

Syntax

fetchPrevious()

Usage

Call the fetchPrevious() method to fetch to the previous row in a scrollable SQL result set.

The SQL statement must have been opened with a openScrollCursor() call.

After performing the fetch call, you can query for column information with the getResultCount(),
getResultName(index), getResultType(index) and getResultValue(index) methods.

If no row is found (end of result set), SQLCA.SQLCODE is set to 100 (NOTFOUND).

If the result set is empty, or if the current row is already the first row, SQLCA.SQLCODE is set to 100
(NOTFOUND).

As with standard Genero SQL instructions, SQL errors can be trapped with WHENEVER ERROR or TRY /
CATCH blocks and by testing SQLCA.SQLCODE.

Library reference | 1730

Example

CALL sh.fetchPrevious()

base.SqlHandle.fetchRelative
Fetches a row relative to the current row in a scrollable SQL result set.

Syntax

fetchRelative(offset INTEGER)

1. offset is the row offset in the result set. The offset can be negative, to fetch backwards.

Usage

Call the fetchRelative() method to fetch the row at the specified offset, relative to the current row in a
scrollable SQL result set.

The SQL statement must have been opened with a openScrollCursor() call.

After performing the fetch call, you can query for column information with the getResultCount(),
getResultName(index), getResultType(index) and getResultValue(index) methods.

If no row is found (end of result set), SQLCA.SQLCODE is set to 100 (NOTFOUND).

If the result set is empty, or if no row exists at the specified offset relative to the current row position,
SQLCA.SQLCODE is set to 100 (NOTFOUND).

As with standard Genero SQL instructions, SQL errors can be trapped with WHENEVER ERROR or TRY /
CATCH blocks and by testing SQLCA.SQLCODE.

Example

CALL sh.fetchRelative(-3)

base.SqlHandle.flush
Flushes the rows from the insert cursor buffer.

Syntax

flush()

Usage

With an insert cursor, call the flush() method to force the buffered rows to the database server.

The SQL statement must have been opened with a open() call.

As with standard Genero SQL instructions, SQL errors can be trapped with WHENEVER ERROR or TRY /
CATCH blocks and by testing SQLCA.SQLCODE.

Example

CALL sh.flush()

Library reference | 1731

base.SqlHandle.getResultCount
Returns the number of result set columns produced by the SQL statement.

Syntax

getResultCount()
 RETURNING count INTEGER

Usage

Call the getResultCount() method to query the number of columns in the result set, after executing the
SQL statement with the open() method and fetching a row with fetch().

Example

FOR i=1 TO sh.getResultCount()
 DISPLAY sh.getResultName(i)
END FOR

base.SqlHandle.getResultName
Returns the name of a column in the result set produced by the SQL statement.

Syntax

getResultName(index INTEGER)
 RETURNING name STRING

1. index is the ordinal position of the result set column (starts at 1).

Usage

Call the getResultName() method to query the name of a column in the result set, after executing the
SQL statement with the open() method and fetching a row with fetch().

The method takes the position of the column as the parameter.

Example

FOR i=1 TO sh.getResultCount()
 DISPLAY sh.getResultName(i)
END FOR

base.SqlHandle.getResultType
Returns the Genero type name of a column in the result set produced by the SQL statement.

Syntax

getResultType(index INTEGER)
 RETURNING type STRING

1. index is the ordinal position of the result set column (starts at 1).

Usage

Call the getResultType() method to query the type of a column in the result set, after executing the
SQL statement with the open() method and fetching a row with fetch().

Library reference | 1732

The method takes the position of the column as the parameter.

The type name is a string that represents a Genero type. For example, "INTEGER", "DECIMAL(10,2)",
"DATE", "DATETIME YEAR TO SECOND".

Important: The type returned can differ, depending on the brand of database server used. The
database driver provides the column type according to the described API of the client database
software, which in turn queries the database server for the native type of the column. For example,
if you create a table in the Genero program with a DATE type in a Oracle database, the resulting
DATE native type in Oracle will correspond to a Genero type of DATETIME YEAR TO SECOND.

Example

FOR i=1 TO sh.getResultCount()
 DISPLAY sh.getResultType(i)
END FOR

base.SqlHandle.getResultValue
Returns the value of a column in the result set produced by the SQL statement.

Syntax

getResultValue(index INTEGER)
 RETURNING value fgl-type

1. index is the ordinal position of the result set column (starts at 1).

Usage

Call the getResultValue() method to get the value of a column in the result set, after executing the
SQL statement with the open() method and fetching a row with fetch().

The method takes the position of the column as the parameter.

The value returned can be assigned to a program variable of the type corresponding to the type name
returned by getResultType().

Important: TEXT and BYTE values are returned by reference. In order to get the value of a TEXT
or BYTE column, define a variable of this type and assign the getResultValue() return. The
returned TEXT or BYTE variable is already located in memory, there is no need to LOCATE the
variable before calling getResultValue().

DEFINE p_text TEXT
...
LET p_text = h.getResultValue(3)
...

Example

FOR i=1 TO sh.getResultCount()
 DISPLAY sh.getResultValue(i)
END FOR

Library reference | 1733

base.SqlHandle.open
Opens the SQL handle (SELECT or INSERT cursor).

Syntax

open()

Usage

Call the open() method to execute the prepared SQL statement, and open the result set cursor or insert
cursor.

The SQL statement must have been prepared with a prepare() call.

If the SQL statement contains ? parameters:

• For a statement with a result set (SELECT), values must be provided for each parameter before the
open() call.

• For an insert cursor, values must be provided after the open() call, before each put() call.

As with standard Genero SQL instructions, SQL errors can be trapped with WHENEVER ERROR or TRY /
CATCH blocks and by testing SQLCA.SQLCODE.

Example

CALL sh.open()

base.SqlHandle.openScrollCursor
Opens the SQL handle (with scrollable option).

Syntax

openScrollCursor()

Usage

Call the openScrollCursor() method to execute a prepared SQL statement, and open the result set for
use with a scrollable SQL cursor.

The SQL statement must have been prepared with a prepare() call.

If the SQL statement contains ? parameters, values must be provided for each parameter before the
openScrollCursor() call.

After opening the scrollable cursor, use methods such as fetchFirst(), fetchPrevious() and
fetchAbsolute(n) to move forwards and backwards in the SQL result set.

As with standard Genero SQL instructions, SQL errors can be trapped with WHENEVER ERROR or TRY /
CATCH blocks and by testing SQLCA.SQLCODE.

Example

CALL sh.openScrollCursor()

Library reference | 1734

base.SqlHandle.prepare
Prepares an SQL statement for the SQL handle.

Syntax

prepare(sql-text STRING)

Usage

Call the prepare() method to prepare the SQL statement that will be executed with either execute() or
open().

The SQL statement can contain ? parameter place holders, to be filled with the setParameter() method
before executing the statement.

As with standard Genero SQL instructions, SQL errors can be trapped with WHENEVER ERROR or TRY /
CATCH blocks and by testing SQLCA.SQLCODE.

Example

CALL sh.prepare("INSERT INTO mytable VALUES (?,?)")

base.SqlHandle.put
Put a new row in the insert cursor buffer.

Syntax

put()

Usage

Call the put() method to create a new row for the insert cursor.

The SQL statement must have been prepared with a prepare() call.

All SQL parameter values must be provided before doing the put() call.

As with standard Genero SQL instructions, SQL errors can be trapped with WHENEVER ERROR or TRY /
CATCH blocks and by testing SQLCA.SQLCODE.

Example

CALL sh.put()

base.SqlHandle.setParameter
Sets the value of an SQL parameter for this SQL handle.

Syntax

setParameter(
 index INTEGER,
 value fgl-type)

1. index is the ordinal position of the ? SQL parameter (starts at 1).
2. value is the variable containing the parameter value.

Library reference | 1735

Usage

Call the setParameter() method to define the value of an SQL parameter specified with a ? place
holder in the string passed to the prepare() method.

The SQL statement must have been prepared with a prepare() call.

It is possible to pass numeric and string constants directly to the method, but type conversion cannot be
done without a program variable.

Example

DEFINE v_pk INT, v_crea DATETIME YEAR TO SECOND
...
CALL sh.setParameter(1,v_pk)
CALL sh.setParameter(2,v_crea)

Usage

The base.SqlHandle class is a built-in class providing dynamic SQL support with a 3GL API.

Compared to regular SQL cursor instructions, the main purpose of the base.SqlHandle class
is to provide column name and SQL data type information with the getResultName() and
getResultType() methods. It is also possible to write generic code for parameterized queries with the
setParameter() method.

Important: A database connection must exist in order to use SqlHandle objects.

Unlike regular Genero cursors, SQL handle objects are created dynamically, and can be passed as
parameter or returned from functions:

MAIN
 DEFINE h base.SqlHandle
 CONNECT TO "mydb"
 LET h = base.SqlHandle.create()
 CALL my_prepare(h)
 CALL my_execute(h)
END MAIN

FUNCTION my_prepare(h)
 DEFINE h base.SqlHandle
 CALL h.prepare("INSERT INTO cust VALUES (...
END FUNCTION

FUNCTION my_execute(h)
 DEFINE h base.SqlHandle
 CALL h.execute()
END FUNCTION

Executing a simple SQL statement without a result set

Perform the following steps, to execute an SQL statement without a result set:

1. Define the SQL handle variable as base.SqlHandle
2. Create an SQL handle object base.SqlHandle.create()
3. prepare(sql-text)

4. For each SQL parameter:

a. setParameter(index, value)

5. execute() -- test for SQLCA.SQLCODE
6. Repeat from (5), (4), or (3)

Library reference | 1736

Executing a SQL statement returning a result set

Perform the following steps, to execute an SQL statement with a result set:

1. Define the SQL handle variable as base.SqlHandle
2. Create an SQL handle object base.SqlHandle.create()
3. prepare(sql-text)

4. For each SQL parameter:

a. setParameter(index, value)

5. open()

6. fetch() -- test for SQLCA.SQLCODE == 100
7. getResultCount() -- for each column index:

a. getResultName(index)

b. getResultType(index)
c. getResultValue(index)

8. close()

9. Repeat from (6), (4), (5), or (3)

Executing a SQL statement returning a result set, as scrollable cursor

Perform the following steps, to execute an SQL statement with a result set and scroll forwards and
backwards in the rows:

1. Define the SQL handle variable as base.SqlHandle
2. Create an SQL handle object base.SqlHandle.create()
3. prepare(sql-text)

4. For each SQL parameter:

a. setParameter(index, value)

5. openScrollCursor()

6. fetch() (next row), fetchLast(), fetchFirst(), fetchPrevious(), fetchRelative(n) or
fetchAbsolute(n) -- test for SQLCA.SQLCODE == 100

7. getResultCount() -- for each column index:

a. getResultName(index)

b. getResultType(index)
c. getResultValue(index)

8. close()

9. Repeat from (6), (4), (5), or (3)

Creating rows with an insert cursor

Perform the following steps, to insert many rows with an SQL handle insert cursor:

1. Define the SQL handle variable as base.SqlHandle
2. Create an SQL handle object base.SqlHandle.create()
3. prepare(insert-stmt-with-params)

4. BEGIN WORK

5. open()

6. For each row to insert:

a. For each SQL parameter:

a. setParameter(index, value)

b. put()
7. close()

Library reference | 1737

8. COMMIT WORK

9. Repeat from (4) or (3)

SQL error handling with SqlHandle

Handling SQL error and status information (such as NOTFOUND) can be done with SqlHandle objects as
with regular SQL instruction, by testing the SQLCA.SQLCODE register, and by using TRY/CATCH blocks or
WHENEVER ERROR.

MAIN
 DEFINE h base.SqlHandle
 CONNECT TO "mydb"
 LET h = base.SqlHandle.create()
 TRY
 CALL h.prepare("SELECT * FROM mytab")
 CALL h.open()
 CALL h.fetch()
 DISPLAY h.getResultValue(1)
 CALL h.close()
 CATCH
 DISPLAY "SQL ERROR:", SQLCA.SQLCODE
 END TRY
END MAIN

Examples
Example 1: SQL statement without a result set

The following code executes a simple UPDATE statement with the base.SqlHandle API:

MAIN
 DEFINE h base.SqlHandle

 CONNECT TO "mydb"

 LET h = base.SqlHandle.create()

 CALL h.prepare("UPDATE t1 SET name = ? WHERE pk = ?")

 CALL h.setParameter(1, "Scott")
 CALL h.setParameter(2, "8723")

 TRY
 CALL h.execute()
 CATCH
 DISPLAY "Error detected: ", SQLCA.SQLCODE
 END TRY

END MAIN

Example 2: SQL statement with a result set

The following code executes a simple SELECT statement with the base.SqlHandle API:

MAIN
 DEFINE h base.SqlHandle,
 d DATE,
 i INTEGER

 CONNECT TO "mydb"

 LET h = base.SqlHandle.create()

Library reference | 1738

 CALL h.prepare("SELECT * FROM t1 WHERE created > ?")

 LET d = TODAY
 CALL h.setParameter(1, d)

 CALL h.open()

 WHILE TRUE
 CALL h.fetch()
 IF SQLCA.SQLCODE==NOTFOUND THEN EXIT WHILE END IF
 DISPLAY "-----------------"
 FOR i=1 TO h.getResultCount()
 DISPLAY i, ":", h.getResultName(i),
 " / ", h.getResultType(i),
 " = ", h.getResultValue(i)
 END FOR
 END WHILE

 CALL h.close()

END MAIN

The StringBuffer class
The base.StringBuffer class is a built-in class designed to manipulate character strings.

This class is optimized for string operations such as scanning, replacements, concatenation.

Use the base.StringBuffer class instead of STRING variables to implement heavy string
manipulations. When you use a base.StringBuffer object, you work directly on the internal string
buffer. When you use the STRING data type and modify a string, the runtime system creates a new buffer.
While this does not impact the performance of programs with a user interface or even batch programs
doing SQL, it can impact performance when you need to rapidly process large character strings. For
example, if you need to process 500 KB of text (such as when you are performing a global search-and-
replace of specific words), you get much better performance with a base.StringBuffer object than you
would with a STRING variable.

When you pass a base.StringBuffer object as a function parameter, the function receives a variable
that references the object. Passing the object by reference is much more efficient than using a STRING
that is passed by value, because STRING data is copied on the stack. The function manipulates the
original string, not a copy of the string.

Important: The methods of this class use character positions and string length. When using byte
length semantics, the length is expressed in bytes. When using char length semantics, the unit is
characters. This is matters when using a multibyte locale such as UTF-8.

base.StringBuffer methods

Table 373: Class methods

Name Description

base.StringBuffer.create()
 RETURNING result base.StringBuffer

Create a string buffer object.

Table 374: Object methods

Name Description

append(
Append a string at the end of the current string.

Library reference | 1739

Name Description

 part STRING)

clear()
Clear the string buffer.

equals(
 reference STRING)
 RETURNING result BOOLEAN

Compare strings (case sensitive).

equalsIgnoreCase(
 reference STRING)
 RETURNING result BOOLEAN

Compare strings (case insensitive)

getCharAt(
 position INTEGER)
 RETURNING result STRING

Return the character at a specified position.

getIndexOf(
 substr STRING,
 start INTEGER)
 RETURNING result INTEGER

Return the position of a substring.

getLength()
 RETURNING result INTEGER

Return the length of a string.

insertAt(
 part STRING,
 pos INTEGER)

Insert a string at a given position.

replace(
 old STRING,
 new STRING,
 occ INTEGER)

Replace one string with another.

replaceAt(
 start INTEGER,
 length INTEGER,
 new STRING)

Replace part of a string with another string.

subString(
 start INTEGER,
 end INTEGER)

Return the substring at the specified position.

Library reference | 1740

Name Description

 RETURNING result STRING

toLowerCase()
Converts the string in the buffer to lower case.

toUpperCase()
Converts the string in the buffer to upper case.

toString()
 RETURNING result STRING

Create a STRING from the string buffer.

trim()
Remove leading and trailing blanks.

trimLeft()
Removes leading blanks.

trimRight()
Removes trailing blanks.

base.StringBuffer.create
Create a string buffer object.

Syntax

base.StringBuffer.create()
 RETURNING result base.StringBuffer

Usage

Use the base.StringBuffer.create() class method to create a string buffer object.

The new created object must be assigned to a program variable defined with the base.StringBuffer
type.

Example

DEFINE buf base.StringBuffer
LET buf = base.StringBuffer.create()

base.StringBuffer.append
Append a string at the end of the current string.

Syntax

append(
 part STRING)

1. part is the string to append to the string buffer.

Usage

The append() method appends a string to the internal string buffer.

Library reference | 1741

Example

LET buf = base.StringBuffer.create()
CALL buf.append("abc")

base.StringBuffer.clear
Clear the string buffer.

Syntax

clear()

Usage

Use the clear() method to clear the string buffer.

After clearing, the string buffer is empty and the length is zero.

Example

CALL buf.clear()

base.StringBuffer.equals
Compare strings (case sensitive).

Syntax

equals(
 reference STRING)
 RETURNING result BOOLEAN

1. reference is the string to compare with.

Usage

Use the equals() method to determine whether the value of a base.StringBuffer object is identical
to a specified string.

This method is case-sensitive.

Since the parameter for the method must be a string, you can use the toString() method to convert a
base.StringBuffer object in order to compare it.

The method returns TRUE if the strings are identical, otherwise it returns FALSE.

Example

DEFINE buf, buf2 base.StringBuffer,
 mystring STRING
LET buf = base.StringBuffer.create()
CALL buf.append("there")

-- compare to a STRING
IF buf.equals("there") THEN
 DISPLAY "buf matches there"
END IF

-- compare to a STRING variable

Library reference | 1742

LET mystring = "there"
IF buf.equals(mystring) THEN
 DISPLAY "buf matches mystring"
END IF

-- compare to another StringBuffer object
LET buf2 = base.StringBuffer.create()
CALL buf2.append("there")
IF buf.equals(buf2.toString()) THEN
 DISPLAY "buf matches buf2"
END IF

Output:

buf matches there
buf matches mystring
buf matches buf2

base.StringBuffer.equalsIgnoreCase
Compare strings (case insensitive)

Syntax

equalsIgnoreCase(
 reference STRING)
 RETURNING result BOOLEAN

1. reference is the string to compare with.

Usage

The equalsIgnoreCase() method compares the current string buffer with the passed string, ignoring
the character case.

Since the parameter for the method must be a string, you can use the toString() method to convert a
base.StringBuffer object in order to compare it.

The method returns TRUE if the strings are identical, otherwise it returns FALSE.

Example

DEFINE buf3 base.StringBuffer
LET buf3 = base.StringBuffer.create()
CALL buf3.append("there")
IF buf3.equalsIgnoreCase("There") THEN
 DISPLAY "buf matches There ignoring case"
END IF

Output:

buf matches There ignoring case

base.StringBuffer.getCharAt
Return the character at a specified position.

Syntax

getCharAt(
 position INTEGER)

Library reference | 1743

 RETURNING result STRING

1. position is the character position in the string.

Usage

The getCharAt() method returns the character from the string buffer at the position that you specify.

The first character position is 1.

The method returns NULL if the position is lower as 1 or greater as the length of the string.

Important: When using byte length semantics, the position is expressed in bytes. When using
char length semantics, the unit is characters. This is matters when using a multibyte locale such as
UTF-8.

Example

DEFINE buf base.StringBuffer
LET buf = base.StringBuffer.create()
CALL buf.append("abcdef")
DISPLAY buf.getCharAt(3) -- Shows c

base.StringBuffer.getIndexOf
Return the position of a substring.

Syntax

getIndexOf(
 substr STRING,
 start INTEGER)
 RETURNING result INTEGER

1. substr is the substring to be found.
2. start is the starting position.

Usage

The getIndexOf() method returns the position of a substring in the string buffer. Specify the substring
and an integer specifying the position at which the search should begin. Use 1 if you want to start at the
beginning of the string buffer.

The method returns zero if the substring is not found.

CALL buf.append("abcdef")
DISPLAY buf.getIndexOf("def",1) -- Shows 4

Important: When using byte length semantics, the position is expressed in bytes. When using
char length semantics, the unit is characters. This is matters when using a multibyte locale such as
UTF-8.

Example

This example iterates through the complete string to display the position of multiple
occurrences of the same substring.

MAIN
 DEFINE b base.StringBuffer
 DEFINE pos INTEGER
 DEFINE s STRING

Library reference | 1744

 LET b = base.StringBuffer.create()
 CALL b.append("---abc-----abc--abc----")
 LET pos = 1
 LET s = "abc"
 WHILE TRUE
 LET pos = b.getIndexOf(s,pos)
 IF pos == 0 THEN
 EXIT WHILE
 END IF
 DISPLAY "Pos: ", pos
 LET pos = pos + length(s)
 END WHILE
END MAIN

base.StringBuffer.getLength
Return the length of a string.

Syntax

getLength()
 RETURNING result INTEGER

Usage

Use the getLength() method to return the number of characters in the current string buffer, including
trailing spaces.

The length of an empty string buffer is 0.

Important: When using byte length semantics, the string length is expressed in bytes. When using
char length semantics, the unit is characters. This is matters when using a multibyte locale such as
UTF-8.

Example

CALL buf.append("abc")
DISPLAY buf.getLength() -- Shows 3
-- append three spaces to the end of the string
CALL buf.append(" ")
DISPLAY buf.getLength() -- Shows 6

base.StringBuffer.insertAt
Insert a string at a given position.

Syntax

insertAt(
 part STRING,
 pos INTEGER)

1. part is the string part to be inserted.
2. pos is the position where the string must be inserted.

Usage

The insertAt() method inserts a string before the specified position in the string buffer.

Library reference | 1745

Important: When using byte length semantics, the position is expressed in bytes. When using
char length semantics, the unit is characters. This is matters when using a multibyte locale such as
UTF-8.

Example

CALL buf.append("abcdef")
CALL buf.insertAt(3, "xx")
DISPLAY buf.toString() -- Shows abcxxdef

base.StringBuffer.replace
Replace one string with another.

Syntax

replace(
 old STRING,
 new STRING,
 occ INTEGER)

1. old is the string to be replaced.
2. new is the new string replacing the old string.
3. occ is the number of replacements to do.

Usage

The replace() method replaces a string within the current string buffer with a different string. Specify
the original string, replacement string, and the number of occurrences to replace. Use 0 to replace all
occurrences.

Example

CALL buf.append("aaxxbbxxcc")
CALL buf.replace("xx", "zz", 1)
DISPLAY buf.toString() -- Shows aazzbbxxcc

base.StringBuffer.replaceAt
Replace part of a string with another string.

Syntax

replaceAt(
 start INTEGER,
 length INTEGER,
 new STRING)

1. start is position where the replacement starts.
2. length is the number of characters to be replaced.
3. new is the replacement string.

Usage

The replaceAt() method replaces part of the current string with another string.

The parameters are integers indicating the position at which the replacement should start, the number of
characters to be replaced, and the replacement string.

Library reference | 1746

The first position in the string is 1.

Important: When using byte length semantics, the position and length are expressed in bytes.
When using char length semantics, the unit is characters. This is matters when using a multibyte
locale such as UTF-8.

Example

CALL buf.append("abxxxxef")
CALL buf.replaceAt(3,4,"cd")
DISPLAY buf.toString() -- Shows abcdef

base.StringBuffer.subString
Return the substring at the specified position.

Syntax

subString(
 start INTEGER,
 end INTEGER)
 RETURNING result STRING

1. start is the substring to be found.
2. end is the ending position.

Usage

The subString() method returns the substring defined by the start and end positions passed as
parameter.

The first character is at position 1.

Important: When using byte length semantics, the positions are expressed in bytes. When using
char length semantics, the unit is characters. This is matters when using a multibyte locale such as
UTF-8.

Example

CALL buf.append("abcdefg")
DISPLAY buf.subString(2,5) -- Shows bcde

base.StringBuffer.toLowerCase
Converts the string in the buffer to lower case.

Syntax

toLowerCase()

Usage

The toLowerCase() method converts the current string to lower case.

Example

CALL buf.append("AbC")
CALL buf.toLowerCase()

Library reference | 1747

DISPLAY buf.toString() -- Shows abc

base.StringBuffer.toString
Create a STRING from the string buffer.

Syntax

toString()
 RETURNING result STRING

Usage

The toString() method creates a STRING value from the current string buffer.

Use this method if you need to pass the string to another method or instruction that expects a STRING as
parameter.

Example

CALL buf.append("abc")
DISPLAY buf.toString() -- Shows abc

base.StringBuffer.toUpperCase
Converts the string in the buffer to upper case.

Syntax

toUpperCase()

Usage

The toUpperCase() method converts the current string to upper case.

Example

CALL buf.append("AbC")
CALL buf.toUpperCase()
DISPLAY buf.toString() -- Shows ABC

base.StringBuffer.trim
Remove leading and trailing blanks.

Syntax

trim()

Usage

The trim() method removes the leading and trailing blanks in the string buffer.

Example

CALL buf.append(" abc ")
CALL buf.trim()

Library reference | 1748

DISPLAY "["||buf.toString()||"]" -- Shows [abc]

base.StringBuffer.trimLeft
Removes leading blanks.

Syntax

trimLeft()

Usage

The trimLeft() method removes the leading blanks in the string buffer.

Example

CALL buf.append(" abc ")
CALL buf.trimLeft()
DISPLAY "["||buf.toString()||"]" -- Shows [abc]

base.StringBuffer.trimRight
Removes trailing blanks.

Syntax

trimRight()

Usage

The trimRight() method removes the trailing blanks in the string buffer.

CALL buf.append(" abc ")
CALL buf.trimRight()
DISPLAY "["||buf.toString()||"]" -- Shows [abc]

Examples
Example 1: Add strings to a StringBuffer

MAIN
 DEFINE buf base.StringBuffer
 LET buf = base.StringBuffer.create()
 CALL buf.append("abc")
 DISPLAY buf.toString()
 CALL buf.append("def")
 DISPLAY buf.toString()
 CALL buf.append(123456)
 DISPLAY buf.toString()
END MAIN

Output:

abc
abcdef
abcdef123456

Library reference | 1749

Example 2: Modify a StringBuffer with a function

MAIN
 DEFINE buf base.StringBuffer
 LET buf = base.StringBuffer.create()
 CALL modify(buf)
 DISPLAY "buf is ", buf.toString()
END MAIN

FUNCTION modify(sb)
 DEFINE sb base.StringBuffer
 CALL sb.append("more")
 DISPLAY "sb is ", sb.toString()
END FUNCTION

Output:

sb is more
buf is more

The StringTokenizer class
The base.StringTokenizer class is designed to parse a string to extract tokens according to
delimiters.

The steps to use a string tokenizer are:

1. Define a variable with the base.StringTokenizer type.
2. Create the string tokenizer object with one of the create methods, passing the string to be parsed as

parameter.
3. Optionally, count the number of tokens with countTokens() before processing.
4. Use a WHILE loop to process the different tokens, by using hasMoreTokens() as loop condition and

nextToken() inside the loop body to get the next token.

base.StringTokenizer methods

Table 375: Class methods

Name Description

base.StringTokenizer.create(
 source STRING,
 delims STRING)
 RETURNING result
 base.StringTokenizer

Create a string tokenizer object.

base.StringTokenizer.createExt(
 source STRING, delims STRING,
 escape STRING, nulls BOOLEAN)
 RETURNING result
 base.StringTokenizer

Create a string tokenizer object with escape char
and null handling.

Table 376: Object methods

Name Description

countTokens()
Returns the number of tokens left to be returned.

Library reference | 1750

Name Description

 RETURNING result INTEGER

hasMoreTokens()
 RETURNING result BOOLEAN

Returns TRUE if there are more tokens to return.

nextToken()
 RETURNING result STRING

Returns the next token found in the source string.

base.StringTokenizer.create
Create a string tokenizer object.

Syntax

base.StringTokenizer.create(
 source STRING,
 delims STRING)
 RETURNING result base.StringTokenizer

1. source is the character string to be parsed.
2. delims defines the delimiters to be used.

Usage

Use the base.StringTokenizer.create() class method to create a string tokenizer object.

The new created object must be assigned to a program variable defined with the
base.StringTokenizer type.

The method can take a unique or multiple delimiters into account. A delimiter is always one character long.

The empty tokens are not taken into account, and no escape character is defined for the delimiters. The
nextToken() method will never return NULL strings.

Note: To specify a backslash as a delimiter, you must use double backslashes in both the source
string and as the delimiter, as shown in Example 3: Specify a backslash as a delimiter on page
1752

Example

DEFINE tok base.StringTokenizer
-- Using a single pipe delimiter
LET tok = base.StringTokenizer.create("aaa|bbb|ccc","|")
-- Using several delimiters
LET tok = base.StringTokenizer.create("aaa|bbb;ccc+ddd","|+;")

base.StringTokenizer.createExt
Create a string tokenizer object with escape char and null handling.

Syntax

base.StringTokenizer.createExt(
 source STRING, delims STRING,
 escape STRING, nulls BOOLEAN)
 RETURNING result base.StringTokenizer

Library reference | 1751

1. source is the character string to be parsed.
2. delims defines the delimiters to be used.
3. escape defines the escape character.
4. nulls indicates if empty tokens must be returned.

Usage

Use the base.StringTokenizer.createExt() class method to create a string tokenizer object, with
escape character and null token handling.

The new created object must be assigned to a program variable defined with the
base.StringTokenizer type.

The method can take a unique or multiple delimiters into account. A delimiter is always one character long.

When defining an escape character with the third parameter, the delimiters can be escaped in the source
string.

When passing TRUE to the last parameter, the empty tokens are taken into account. The nextToken()
method might return NULL strings. In the source string, leading and trailing delimiters or the amount of
delimiters between two tokens affects the number of tokens.

Note: To specify a backslash as a delimiter, you must use double backslashes in both the source
string and as the delimiter, as shown in Example 3: Specify a backslash as a delimiter on page
1752

Example

DEFINE tok base.StringTokenizer
LET tok = base.StringTokenizer.createExt("|aaa||b\\|bb|
ccc","|","\\",TRUE)

base.StringTokenizer.countTokens
Returns the number of tokens left to be returned.

Syntax

countTokens()
 RETURNING result INTEGER

Usage

Use the countTokens() method to count the number of tokens left to be returned by the string tokenizer.

This method can be used to know the number of tokens before processing the source string with the
hasMoreTokens() and nextToken() methods.

base.StringTokenizer.hasMoreTokens
Returns TRUE if there are more tokens to return.

Syntax

hasMoreTokens()
 RETURNING result BOOLEAN

Usage

The hasMoreTokens() method indicates if there are other tokens in the source string that are not yet
processed.

Library reference | 1752

Use the hasMoreTokens() method typically as the expression of a WHILE block.

base.StringTokenizer.nextToken
Returns the next token found in the source string.

Syntax

nextToken()
 RETURNING result STRING

Usage

The nextToken() method parses the source string for tokens, according to the creation method used,
and returns the next token if found.

The method returns NULL if no token is found, or if an empty token was found and the nulls parameter of
the createExt() method was set to TRUE.

Use the hasMoreTokens() method to check if more tokens are to be read.

Examples
Example 1: Split a UNIX™ directory path

MAIN
 DEFINE tok base.StringTokenizer
 LET tok = base.StringTokenizer.create("/home/tomy","/")
 WHILE tok.hasMoreTokens()
 DISPLAY tok.nextToken()
 END WHILE
END MAIN

Example 2: Escaped delimiters and NULL tokens

MAIN
 DEFINE tok base.StringTokenizer
 LET tok = base.StringTokenizer.createExt("||\\|aaa||bbc|","|","\\",TRUE)
 WHILE tok.hasMoreTokens()
 DISPLAY tok.nextToken()
 END WHILE
END MAIN

Example 3: Specify a backslash as a delimiter

MAIN
 DEFINE tok base.StringTokenizer
 LET tok = base.StringTokenizer.create("C:\\My Documents\\My Pictures","\
\")
 WHILE tok.hasMoreTokens()
 DISPLAY tok.nextToken()
 END WHILE
END MAIN

The TypeInfo class

The base.TypeInfo class creates a DOM node from a structured program variable.

This class does not have to be instantiated.

Steps to use the class:

• Define a variable with the om.DomNode type.

Library reference | 1753

• Create a channel object with base.TypoInfo.create(var) and assign it to the DOM node
variable.

• Use the new created DOM node.

For example. to convert a list of database records to XML, fetch rows from a database table in a
structured array, specify the array as the input parameter for the base.TypeInfo.create() method
to create a new base.DomNode object, and serialize the resulting DOM node to a file by using the
node.writeXml() method. You can then pass the resulting file to any application that is able to read
XML for input.

Note: Consider using the JSON interface to serialize and de-serialize program variables.

base.TypeInfo methods

Table 377: Class methods

Name Description

base.TypeInfo.create()
 RETURNING result om.DomNode

Create a DomNode from a structured program
variable.

base.TypeInfo.create()
Create a DomNode from a structured program variable.

Syntax

base.TypeInfo.create()
 RETURNING result om.DomNode

Usage

Use the base.TypeInfo.create() class method to create a om.DomNode object from a program
variable.

The program variable is typically a RECORD, but it can be any sort of structured variable, including arrays.

The om.DomNode is created with type information and values.

The data is formatted according to current environment settings (DBDATE, DBFORMAT, and DBMONEY).

Example

MAIN
 DEFINE n om.DomNode
 DEFINE r RECORD
 key INTEGER,
 lastname CHAR(20),
 birthdate DATE
 END RECORD
 LET r.key = 234
 LET r.lastname = "Johnson"
 LET r.birthdate = MDY(12,24,1962)
 LET n = base.TypeInfo.create(r)
 CALL n.writeXml("r.xml")
END MAIN

Library reference | 1754

The generated node contains variable values and data type information. The example
creates this file:

<?xml version="1.0"? encoding="ISO-8859-1">
<Record>
 <Field type="INTEGER" value="234" name="key"/>
 <Field type="CHAR(20)" value="Johnson" name="lastname"/>
 <Field type="DATE" value="12/24/1962" name="birthdate"/>
</Record>

The MessageServer class
The base.MessageServer class allows a program to send a key action over the network to other
programs using this service.

This class can be used to join a group of programs to be notified by simple messages (i.e. key events). The
programs can run on different machines connected together in a network.

Important: This feature is experimental and subject to change.

The base.MessageServer uses network API capabilities with Sockets and the UDP protocol. The
computers must be configured with a network. The UDP protocol does not guarantee the transmission of
datagrams, therefore messages sent with the MessageServer can arrive out of order, duplicated, or go
missing without notice.

The UDP port is 6600 and the IP address group is 224.0.1.1. These cannot be changed.

Important: This feature is only supported in direct connection with the GDC front-end. It is not
supported when using other front-ends or when using the GAS.

base.MessageServer methods

Table 378: Class methods

Name Description

base.MessageServer.connect()
Connects to the group of programs to be notified by
a message.

base.MessageServer.send(
 keyname STRING)

Sends a key event to the group of programs
connected together.

base.MessageServer.connect
Connects to the group of programs to be notified by a message.

Syntax

base.MessageServer.connect()

Usage

Use the connect() method to join the group of programs that can be notified by a key event message.

Library reference | 1755

base.MessageServer.send
Sends a key event to the group of programs connected together.

Syntax

base.MessageServer.send(
 keyname STRING)

1. keyname is a string expression defining the key event to be sent over the network.

Usage

Once connected to the message server group with base.MessageServer.connect(), a program calls
the base.MessageServer.send() class method to notify other programs registered to the group.

CALL base.MessageServer.send("f1")

All programs registered to the message server group are notified, including the program which has sent the
message. The messages can be treated by the current dialog with a simple ON KEY() interaction block.

Examples
Example 1: Simple MessageServer usage

MAIN
 CALL base.MessageServer.connect()
 MENU "test"
 COMMAND "send F1" CALL base.MessageServer.send("f1")
 ON KEY (F1) DISPLAY "Key F1 received..."
 COMMAND "quit" EXIT MENU
 END MENU
END MAIN

The ui package
These topics cover the built-in classes for the ui class

• The Interface class on page 1755
• The Window class on page 1769
• The Form class on page 1774
• The Dialog class on page 1784
• The ComboBox class on page 1820
• The DragDrop class on page 1827

The Interface class
The ui.Interface class provides methods to manipulate the user interface.

This class does not have to be instantiated.

ui.Interface methods
Methods of the ui.Interface class

Table 379: Class methods

Name Description

ui.Interface.frontCall(
 module STRING,
 function STRING,
 [parameter-list],

ui.Interface.frontCall performs a function
call to the current front-end.

Library reference | 1756

Name Description

 [returning-list])

ui.Interface.filenameToURI(
 filename STRING)
 RETURNING uri INTEGER

Converts a file name to an URI to be used as a web
component image resource.

ui.Interface.getChildCount()
 RETURNING result INTEGER

Get the number of children in a parent container.

ui.Interface.getChildInstances(
 name STRING)
 RETURNING result INTEGER

Get the number of child instances for a given
program name.

ui.Interface.getContainer()
 RETURNING result STRING

Get the parent container of the curren program.

ui.Interface.getDocument()
 RETURNING result om.DomDocument

Returns the DOM document of the abstract user
interface tree.

ui.Interface.getFrontEndName()
 RETURNING result STRING

Returns the type of the front-end currently in use.

ui.Interface.getFrontEndVersion()
 RETURNING result STRING

Returns the version of the front-end currently in
use.

ui.Interface.getName()
 RETURNING result STRING

ui.Interface.frontCall performs a function
call to the current front-end.

ui.Interface.getImage()
 RETURNING result STRING

ui.Interface.frontCall performs a function
call to the current front-end.

ui.Interface.getText()
 RETURNING result STRING

Returns the title of the program.

ui.Interface.getType()
 RETURNING result STRING

Returns the type of the program.

ui.Interface.getRootNode()
 RETURNING result om.DomNode

Get the root DOM node of the abstract user
interface.

ui.Interface.loadActionDefaults(
Load the default action defaults file.

Library reference | 1757

Name Description

 filename STRING)

ui.Interface.loadStartMenu(
 filename STRING)

Load the start menu file.

ui.Interface.loadToolBar(
 filename STRING)

Load a default toolbar file.

ui.Interface.loadTopMenu(
 filename STRING)

Load a default topmenu file.

ui.Interface.loadStyles(
 filename STRING)

Load the presentation styles file.

ui.Interface.setImage(
 icon STRING)

Defines the icon image of the program.

ui.Interface.setName(
 name STRING)

Define the name of the current program for the
front-end.

ui.Interface.setText(
 title STRING)

Defines the title for the program.

ui.Interface.setType(
 type STRING)

Defines the type of the program for the front-end.

ui.Interface.setSize(
 height INTEGER,
 width INTEGER)

Specify the initial size of the parent container
window.

ui.Interface.setContainer(
 name STRING)

Define the parent container for the current program.

ui.Interface.refresh()
Synchronize the user interface with the front-end.

ui.Interface.frontCall
ui.Interface.frontCall performs a function call to the current front-end.

Syntax

ui.Interface.frontCall(
 module STRING,
 function STRING,
 [parameter-list],

Library reference | 1758

 [returning-list])

1. module defines the shared library or classpath where the function is implemented.
2. function defines the name of the function to be called.
3. parameter-list is a list of input parameters.
4. returning-list is a list of output parameters.

Important: The returning-list variables are passed by reference to the frontCall() method.

Usage

The ui.Interface.frontCall() class method can be used to execute a procedure on the front-end
workstation through the front-end software component. You can for example launch a front-end specific
application like a browser or a text editor, or manage the clipboard content.

The method takes four parameters:

1. The module, identifying the shared library (.so or .DLL) or the Java class (GMA) implementing the front
call function.

2. The function of the module the be executed.
3. The list of input parameters, using the square brace notation.
4. The list of output parameters, using the square brace notation.

Input and output parameters are provided as a variable list of parameters, by using the square braces
notation ([param1,param2,...]). Input parameters can be an expression supported by the language;
output parameters must be variables only, to receive the returning values. An empty list is specified with []
. Output parameters are optional: If the front call returns values, they will be ignored by the runtime system.

Simple front call example:

FUNCTION call()
 DEFINE info STRING
 CALL ui.Interface.frontCall("standard", "feInfo", ["feName"], [info])
END FUNCTION

Some front calls need a file path as parameter. File paths must follow the syntax of the front end
workstation file system. You may need to escape backslash characters in such parameters. The next
example shows how to pass a file path with a space in a directory name to a front-end running on a
Microsoft™ Windows™ workstation:

FUNCTION call()
 DEFINE path STRING, res INTEGER
 LET path = "\"c:\\work dir\\my report.doc\""
 -- This is: "c:\work dir\my report.doc"
 CALL ui.Interface.frontCall("standard", "shellExec", [path], [res])
END FUNCTION

Front call error handling

Exception handling instructions can be used to check the execution status of a front call. Both WHENEVER
ERROR directives or TRY/CATCH block can surround the front call to avoid program stop in case of error,
and check the error number returned in the STATUS variable.

Note: There is not need to surround front calls with exception handlers such as TRY/CATCH, if the
front call is always supposed to execute without error. For example, the feInfo front call will never
produce an exception.

Example of front call error handling with a TRY/CATCH block:

FUNCTION takePhoto()

Library reference | 1759

 DEFINE path STRING
 TRY -- This front call may fail if the front-end is not a mobile device:
 CALL ui.Interface.frontCall("mobile", "takePhoto", [], [path])
 CATCH
 MESSAGE "Cannot take photo: ", STATUS, " ", err_get(STATUS)
 LET path = NULL
 END TRY
 RETURN path
END FUNCTION

If the front call module name or the function name is invalid, the errors -6331 or -6332 will be raised,
respectively.

If the front call execution failed for some reason, the error -6333 will be raised. The description of the
problem can be found in the second part of the error message, returned by a call to the ERR_GET()
function.

The error -6334 can be raised in case of input or output parameter mismatch. The control of the number of
input and output parameters is in the hands of the front-end. Most of the standard front calls have optional
returning parameters and will not raise error -6334, if the output parameter list is left empty. However,
front-end specific extensions or user-defined front-end functions may return an invalid execution status in
case of input or output parameter mismatch, raising error -6334. If the front-end sends an call execution
status of zero (OK), and the number of returned values does not match the number of program variables,
the runtime system will set unmatched program variables to NULL. As a general rule, the program should
provide the expected input and output parameters as specified in the documentation.

ui.Interface.filenameToURI
Converts a file name to an URI to be used as a web component image resource.

Syntax

ui.Interface.filenameToURI(
 filename STRING)
 RETURNING uri INTEGER

1. filename is the local file name to be converted to a URI.
2. uri is the resulting URI.

Usage

The ui.Interface.filenameToURI() class method converts a local (VM context / server) file name to
an URI that can be accessed by the front ends to get the resource. This method is typically used to provide
application image files in Web Components.

Note: The runtime system uses the same mechanism to provide the front-end with images
referenced in form elements: Thus, there is no need to call this method except when using
application images in web components.

This method is typically used when executing applications behind a GAS, but it can also be used with
direct connection to the front-end (typical GDC desktop connection), or when running apps on a mobile
device.

The VM context file name to URI mapping is done as follows:

• If the filename parameter is already an URI (i.e. has a scheme like http:, https:, file:), the file
name is returned as is.

• If the filename parameter is an absolute, relative file path, or a simple file name:

• When the program is executing behind a GAS, user agents can access files via HTTP. In this
architecture, the method will produce an URI that can be referenced in HTML elements of a web
component: The image resource will be available from this location.

Library reference | 1760

• When using a direct connection to the (GDC) front-end without using the GAS, the method
returns the file name as is, and the image resources will be transmitted to the GDC through the
FGLIMAGEPATH mechanism.

• When executing an app on a mobile device, both front-end and runtime system cohexist on the
same platform and can access to the same file system. In this architecture, the method builds
the complete local path to the file, following the list of directories defined in the FGLIMAGEPATH
environment variable.

Note: The URI or file path returned by the filenameToURI() method are only valid during the
program live time: Do not stores these values in a persistent way.

For more details, see Providing the image resource on page 784 and Using image resources with the
gICAPI web component on page 1430

Example

LET uri = ui.Interface.filenameToURI("myimage.png")

ui.Interface.getChildCount
Get the number of children in a parent container.

Syntax

ui.Interface.getChildCount()
 RETURNING result INTEGER

Usage

The ui.Interface.getChildCount() class method returns the number of child programs attached to
the current parent WCI program.

WCI child programs are attached to a given container by using the ui.Interface.setContainer()
method. Container and child program identifiers/names are defined by the ui.Interface.setName()
method.

ui.Interface.getChildInstances
Get the number of child instances for a given program name.

Syntax

ui.Interface.getChildInstances(
 name STRING)
 RETURNING result INTEGER

1. name is the name of a child program attached to the container of the current program.

Usage

The ui.Interface.getChildInstances() class method returnes the number of child instances of a
program attached to the current parent WCI program, according to the name of the child program passed
as parameter.

The name of a child program is defined by the ui.Interface.setName() method.

The getChildInstances() method is typically used to check if a give child program is already started,
to avoid multiple instances of the same program in a given WCI container.

Library reference | 1761

ui.Interface.getContainer
Get the parent container of the curren program.

Syntax

ui.Interface.getContainer()
 RETURNING result STRING

Usage

The ui.Interface.getContainer() class method returns the name of the parent WCI container
defined with ui.Interface.setContainer().

ui.Interface.getDocument
Returns the DOM document of the abstract user interface tree.

Syntax

ui.Interface.getDocument()
 RETURNING result om.DomDocument

Usage

The ui.Interface.getDocument() method returns the DOM document of the abstract user interface
tree.

Define a variable with the type om.DomDocument to receive the result of this method.

Consider using the getRootNode() method instead to get directely the root DOM node of the AUI tree.

ui.Interface.getFrontEndName
Returns the type of the front-end currently in use.

Syntax

ui.Interface.getFrontEndName()
 RETURNING result STRING

Usage

The ui.Interface.getFrontEndName() class method returns the type of the front end used by the
program.

Table 380: Front-end names

Front-end name Description

GDC Desktop front-end

GMA Mobile front-end for Android™

GMI Mobile front-end for iOS

GWC Web browser front-end

Console Text front-end (dumb terminal)

Library reference | 1762

ui.Interface.getFrontEndVersion
Returns the version of the front-end currently in use.

Syntax

ui.Interface.getFrontEndVersion()
 RETURNING result STRING

Usage

The ui.Interface.getFrontEndVersion() class method returns the version number of the front end
used by the program.

Note: This method is primarily used for debugging purposes.

ui.Interface.getImage
Returns the icon image of the program.

Syntax

ui.Interface.getImage()
 RETURNING result STRING

Usage

Use the ui.Interface.getImage() class method to get the icon image name of the program
previously set by setImage().

ui.Interface.getName
Returns the name of the program.

Syntax

ui.Interface.getName()
 RETURNING result STRING

Usage

The ui.Interface.getName() class method returns the name of the program that was defined with the
setName() method.

ui.Interface.getRootNode
Get the root DOM node of the abstract user interface.

Syntax

ui.Interface.getRootNode()
 RETURNING result om.DomNode

Usage

The ui.Interface.getRootNode() method returns the root DOM node of the abstract user interface
tree.

Define a variable with the type om.DomNode to receive the result of this method.

DEFINE rn om.DomNode

Library reference | 1763

LET rn = ui.Interface.getRootNode()
-- use d to inspect/change the AUI tree

ui.Interface.getText
Returns the title of the program.

Syntax

ui.Interface.getText()
 RETURNING result STRING

Usage

Use the ui.Interface.getText() class method to get the title of the program previously set by
setText().

ui.Interface.getType
Returns the type of the program.

Syntax

ui.Interface.getType()
 RETURNING result STRING

Usage

Use the ui.Interface.getType() class method to get the type of the program previously set by
setType().

ui.Interface.loadActionDefaults
Load the default action defaults file.

Syntax

ui.Interface.loadActionDefaults(
 filename STRING)

1. filename is the name of action defaults file, without the extension.

Usage

Use the ui.Interface.loadActionDefaults() class method to load a .4ad file defining action
defaults for all program forms.

Specify the filename without the "4ad" extension.

If the file does not exist in the current directory, it is searched in the directories defined in the DBPATH/
FGLRESOURCEPATH environment variable.

Example

CALL ui.Interface.loadActionDefaults("mydefaults")

Library reference | 1764

ui.Interface.loadStartMenu
Load the start menu file.

Syntax

ui.Interface.loadStartMenu(
 filename STRING)

1. filename is the name of a start menu file, without the extension.

Usage

Use the ui.Interface.loadStartMenu() class method to load a .4sm file defining a start menu.

Specify the filename without the "4sm" extension.

If the file does not exist in the current directory, it is searched in the directories defined in the DBPATH/
FGLRESOURCEPATH environment variable.

Example

CALL ui.Interface.loadStartMenu("mystartmenu")

ui.Interface.loadStyles
Load the presentation styles file.

Syntax

ui.Interface.loadStyles(
 filename STRING)

1. filename is the name of presentation styles file, without the extension.

Usage

Use the ui.Interface.loadStyles() class method to load a .4st file defining presentation styles for
all program forms.

Specify the filename without the "4st" extension.

If the file does not exist in the current directory, it is searched in the directories defined in the DBPATH/
FGLRESOURCEPATH environment variable.

Example

CALL ui.Interface.loadStyles("mystyles")

ui.Interface.loadToolBar
Load a default toolbar file.

Syntax

ui.Interface.loadToolBar(
 filename STRING)

1. filename is the name of a toolbar file, without the extension.

Library reference | 1765

Usage

Use the ui.Interface.loadToolBar() class method to load a .4tb file defining a default global toolbar
for all forms.

Specify the filename without the "4tb" extension.

If the file does not exist in the current directory, it is searched in the directories defined in the DBPATH/
FGLRESOURCEPATH environment variable.

The default toolbar loaded by this method is also used for the WCI container.

Example

CALL ui.Interface.loadToolBar("mytoolbar")

ui.Interface.loadTopMenu
Load a default topmenu file.

Syntax

ui.Interface.loadTopMenu(
 filename STRING)

1. filename is the name of a topmenu file, without the extension.

Usage

Use the ui.Interface.loadTopMenu() class method to load a .4tm file defining a default topmenu for
all forms.

Specify the filename without the "4tm" extension.

If the file does not exist in the current directory, it is searched in the directories defined in the DBPATH/
FGLRESOURCEPATH environment variable.

The default topmenu loaded by this method is also used for the WCI container.

Example

CALL ui.Interface.loadTopMenu("mytopmenu")

ui.Interface.setContainer
Define the parent container for the current program.

Syntax

ui.Interface.setContainer(
 name STRING)

1. name is the name of the parent container.

Usage

The ui.Interface.setContainer(name) class method to specify the name of the parent WCI
container where the current program windows must be displayed. This creates a WCI relation between two
independent programs running with distinct fglrun processes.

Each WCI program must be identified by a name, to be set with the ui.Interface.setName() class
method.

Library reference | 1766

ui.Interface.setImage
Defines the icon image of the program.

Syntax

ui.Interface.setImage(
 icon STRING)

1. icon is the image file name to be used as program icon.

Usage

Use the ui.Interface.setImage() class method to define the icon image for the program to be used
by the front-ends.This icon will be used in task bars, for example.

Call the method at the beginning of the program, before any interactive instruction.

ui.Interface.setName
Define the name of the current program for the front-end.

Syntax

ui.Interface.setName(
 name STRING)

1. name is the identifier of the program.

Usage

Use the ui.Interface.setName() class method to define the identifier for the program to be used by
the front-ends, for example in case of window container usage.

The name passed to this method will be passed to the front-end in order to identify the program.

Call the method at the beginning of the program, before any interactive instruction.

By default, it is the program name (without .42m or .42r extension).

ui.Interface.setSize
Specify the initial size of the parent container window.

Syntax

ui.Interface.setSize(
 height INTEGER,
 width INTEGER)

1. height is the initial height of the main window.
2. width is the initial width of the main window.

Usage

Use the ui.Interface.setSize(height,width) class method to define the initial size of the parent
container window of an window container application. The parameters can be integer or string values.

By default, the unit is the character grid cells, but you can add the px unit to specify the height and width in
pixels.

The setSize() method can also be used to configure the size of the main window when using traditional
mode, as a replacement of fgl_setsize() built-in function.

Library reference | 1767

Call the method at the beginning of the program, before any interactive instruction.

ui.Interface.setText
Defines the title for the program.

Syntax

ui.Interface.setText(
 title STRING)

1. title is the text to be used as program title.

Usage

Use the ui.Interface.setText() class method to define the title for the program to be used by the
front-ends, for example in case of window container usage (as title for the main window), or for the text to
be displayed in the task bars.

Call the method at the beginning of the program, before any interactive instruction.

ui.Interface.setType
Defines the type of the program for the front-end.

Syntax

ui.Interface.setType(
 type STRING)

1. type is the identifier of the program.

Usage

Use the ui.Interface.setType() class method to define the type for the program to be used by the
front-ends, for example in case of window container usage.

Possible values are: normal, container, child.

The type passed to this method will be passed to the front-end in order to define the rendering and
behavior of the program.

Call the method at the beginning of the program, before any interactive instruction.

ui.Interface.refresh
Synchronize the user interface with the front-end.

Syntax

ui.Interface.refresh()

Usage

The ui.Interface.refresh() class method forces a synchronization of the abstract user interface
tree with front-end .

By default, during an interactive instruction like DIALOG, the AUI tree is refreshed automatically when
the runtime system gets the control back after user code execution. There is no need to call the refresh
method in regular code.

Important: This method should be used with care; It is only provided to synchronize with the front-
end in specific cases. For example, when you need to display batch processing information to the
user. Calling this method too frequently will produce a lot of network traffic.

Library reference | 1768

Example

FOR i=1 TO 10
 DISPLAY i TO step_num
 CALL ui.Interface.refresh()
 SLEEP 1
END FOR

Examples
Example 1: Get the type and version of the front end

MAIN
 MENU "Test"
 COMMAND "Get"
 DISPLAY "Name = " || ui.Interface.getFrontEndName()
 DISPLAY "Version = " || ui.Interface.getFrontEndVersion()
 COMMAND "Exit"
 EXIT MENU
 END MENU
END MAIN

Example 2: Get the AUI root node and save it to a file in XML format

MAIN
 DEFINE n om.DomNode
 MENU "Test"
 COMMAND "SaveUI"
 LET n = ui.Interface.getRootNode()
 CALL n.writeXml("auitree.xml")
 COMMAND "Exit"
 EXIT MENU
 END MENU
END MAIN

Example 3: Using the Window Container Interface

The WCI parent program:

MAIN
 CALL ui.Interface.setName("main1")
 CALL ui.Interface.setText("This is the parent container")
 CALL ui.Interface.setType("container")
 CALL ui.Interface.setSize("600px","600px")
 CALL ui.Interface.loadStartMenu("appmenu")
 MENU "Main"
 COMMAND "Help" CALL help()
 COMMAND "About" CALL aboutbox()
 COMMAND "Exit"
 IF ui.Interface.getChildCount()>0 THEN
 ERROR "You must first exit the child programs."
 ELSE
 EXIT MENU
 END IF
 END MENU
END MAIN

The WCI child program:

MAIN
 CALL ui.Interface.setName("prog1")
 CALL ui.Interface.setText("This is module 1")

Library reference | 1769

 CALL ui.Interface.setType("child")
 CALL ui.Interface.setContainer("main1")
 MENU "Test"
 COMMAND "Exit"
 EXIT MENU
 END MENU
END MAIN

Example 4: Synchronizing the AUI tree with the front end

MAIN
 DEFINE cnt INTEGER
 OPEN WINDOW w WITH FORM "myform"
 FOR cnt=1 TO 10
 DISPLAY BY NAME cnt
 CALL ui.Interface.refresh()
 SLEEP 1
 END FOR
END MAIN

The Window class
The ui.Window class provides an interface to the window objects create with the OPEN WINDOW
instruction.

A windows is typically created with a form with the OPEN WINDOW WITH FORM instruction. If the window
contains a form, consider using the ui.Form class instead of ui.Window.

ui.Window methods
Methods of the ui.Window class.

Table 381: Class methods

Name Description

ui.Window.forName(
 name STRING)
 RETURNING result ui.Window

Get a window object by name.

ui.Window.getCurrent()
 RETURNING result ui.Window

Get the current window object.

Table 382: Object methods

Name Description

createForm(
 name STRING)
 RETURNING result ui.Form

Create a new empty form in a window.

findNode(
 type STRING,
 name STRING)
 RETURNING result om.DomNode

Search for a specific element in the window.

getForm()
Get the current form of a window.

Library reference | 1770

Name Description

 RETURNING result ui.Form

getNode()
 RETURNING result om.DomNode

Get the DOM node of a window.

getImage()
 RETURNING result STRING

Get the window icon.

getText()
 RETURNING result STRING

Get the window title.

setImage(
 image STRING)

Set the window icon.

setText(
 text STRING)

Set the window title.

ui.Window.forName
Get a window object by name.

Syntax

ui.Window.forName(
 name STRING)
 RETURNING result ui.Window

1. name defines the name of the window.

Usage

The ui.Window.forName() class method returns the ui.Window object corresponding to an identifier
used to create the window with the OPEN WINDOW instruction.

Declare a variable of type ui.Window to hold the window object reference.

Example

DEFINE w ui.Window
OPEN WINDOW w1 WITH FORM "custform"
LET w = ui.Window.forName("w1")

ui.Window.createForm
Create a new empty form in a window.

Syntax

createForm(
 name STRING)
 RETURNING result ui.Form

Library reference | 1771

1. name is the name for the form.

Usage

The createForm() method can be used to create a new empty form in the window object. This is
typically used to build forms dynamically, by creating the elements with the OM API.

Important: It is mandatory to create a form in a window with the createForm() method,
otherwise it is not usable.

The method returns a new ui.Form instance or NULL if the form name passed as the parameter identifies
an existing form used by the window.

Example

DEFINE w ui.Window,
 f ui.Form,
 n, g om.DomNode
OPEN WINDOW w1 WITH 10 ROWS, 20 COLUMNS
LET w = ui.Window.getCurrent()
LET f = w.createForm("myform")
LET n = f.getNode()
LET g = f.createChild("Grid")

ui.Window.getCurrent
Get the current window object.

Syntax

ui.Window.getCurrent()
 RETURNING result ui.Window

Usage

The ui.Window.getCurrent() class method returns the ui.Window object corresponding to the
current window.

Declare a variable of type ui.Window to hold the window object reference.

Example

DEFINE w ui.Window
OPEN WINDOW w1 WITH FORM "custform"
LET w = ui.Window.getCurrent()

ui.Window.getForm
Get the current form of a window.

Syntax

getForm()
 RETURNING result ui.Form

Usage

The getForm() method returns the ui.Form object corresponding to the current form used by the
window object.

Library reference | 1772

Declare a variable of type ui.Form to hold the form object reference.

Consider using the ui.Dialog.getForm() method to get the form used by the current dialog.

Example

DEFINE f ui.Form
OPEN WINDOW w1 WITH FORM "custform"
LET w = ui.Window.getCurrent()
LET f = w.getForm()

ui.Window.getNode
Get the DOM node of a window.

Syntax

getNode()
 RETURNING result om.DomNode

Usage

The getNode() method returns the om.DomNode object corresponding to the window object.

Declare a variable of type om.DomNode to hold the DOM node object reference.

Consider using the ui.Dialog.getForm() method to get the form used by the current dialog.

Example

DEFINE w ui.Window, n om.DomNode
OPEN WINDOW w1 WITH FORM "custform"
LET w = ui.Window.getCurrent()
LET n = w.getNode()

ui.Window.findNode
Search for a specific element in the window.

Syntax

findNode(
 type STRING,
 name STRING)
 RETURNING result om.DomNode

1. type defines the type of the node.
2. name defines the name of the node.

Usage

The findNode() method allows you to search for a specific DOM node in the abstract representation of
the window. You search for a child node by giving its type and the name of the element (i.e. the tagname
and the value of the 'name' attribute).

The method returns the first element found matching the specified type (tagname) and node name.
Window element names must be unique for the same type of nodes, if you want to distinguish all elements.

The findNode() method is provided for ui.Window class for specific cases when the window does not
contain a form. For windows containing a form, use the ui.Form.findNode() method instead.

Library reference | 1773

ui.Window.getImage
Get the window icon.

Syntax

getImage()
 RETURNING result STRING

Usage

Use the getImage() method to get the current icon of a window.

ui.Window.getText
Get the window title.

Syntax

getText()
 RETURNING result STRING

Usage

Use the getText() method to get the current title of a window.

ui.Window.setImage
Set the window icon.

Syntax

setImage(
 image STRING)

1. image is the image name for the icon of the window.

Usage

The setImage() method defines the icon of the window.

By default, the icon of a window is defined by the IMAGE attribute of the LAYOUT definition in form files.

ui.Window.setText
Set the window title.

Syntax

setText(
 text STRING)

1. text is the title of the window.

Usage

The setText() method defines the title of the window.

By default, the title of a window is defined by the TEXT attribute of the LAYOUT definition in form files.

Library reference | 1774

Examples
Example 1: Get a window by name and change the title

MAIN
 DEFINE w ui.Window
 OPEN WINDOW w1 WITH FORM "customer" ATTRIBUTES(TEXT="Unknown")
 LET w = ui.Window.forName("w1")
 IF w IS NULL THEN
 EXIT PROGRAM
 END IF
 CALL w.setText("Customer")
 MENU "Test"
 COMMAND "exit" EXIT MENU
 END MENU
 CLOSE WINDOW w1
END MAIN

Example 2: Get a the current form and hide a groupbox

MAIN
 DEFINE w ui.Window
 DEFINE f ui.Form
 OPEN WINDOW w1 WITH FORM "customer"
 LET w = ui.Window.getCurrent()
 IF w IS NULL THEN
 EXIT PROGRAM
 END IF
 LET f = w.getForm()
 MENU "Test"
 COMMAND "hide" CALL f.setElementHidden("gb1",1)
 COMMAND "exit" EXIT MENU
 END MENU
 CLOSE WINDOW w1
END MAIN

The Form class
The ui.Form class provides an interface to form objects created by an OPEN WINDOW WITH FORM or
DISPLAY FORM instruction.

A form object allows you to manipulate form elements by program. For example, you can hide parts of a
form with the setElementHidden() method. The runtime system is able to handle hidden fields during a
dialog instruction. You can, for example, hide a GROUP containing fields and labels.

Outside dialogs, get a ui.Form instance of the current form with the ui.Window.getForm() method.
When executing a dialog, use the ui.Dialog.getForm() method.

Note that the OPEN FORM instruction does not load a form; it simply declares a handle. The form will be
created in the AUI tree when executing the DISPLAY FORM instruction. Therefore, the corresponding
ui.Form object is only available after DISPLAY FORM is executed.

ui.Form methods
Methods of the ui.Form class.

Table 383: Class methods

Name Description

ui.Form.setDefaultInitializer(
 funcname STRING)

Define the default initializer for all forms.

Library reference | 1775

Table 384: Object methods

Name Description

findNode(
 type STRING,
 name STRING)
 RETURNING result om.DomNode

Search for a child node in the form.

getNode()
 RETURNING result om.DomNode

Get the DOM node of the form.

loadActionDefaults(
 filename STRING)

Load form action defaults.

loadToolBar(
 filename STRING)

Load the form toolbar.

loadTopMenu(
 filename STRING)

Load the form topmenu.

setElementHidden(
 name STRING,
 hide INTEGER)

Show or hide form elements.

setElementImage(
 name STRING,
 text STRING)

Change the image of form elements.

setElementStyle(
 name STRING,
 style STRING)

Change the style of form elements.

setElementText(
 name STRING,
 text STRING)

Change the text of form elements.

setFieldHidden(
 name STRING,
 hide INTEGER)

Show or hide a form field.

setFieldStyle(
 name STRING,
 style STRING)

Change the style of a form field.

ensureElementVisible(
Ensure the visibility of a form element.

Library reference | 1776

Name Description

 name STRING)

ensureFieldVisible(
 name STRING)

Ensure visibility of a form field.

ui.Form.setDefaultInitializer
Define the default initializer for all forms.

Syntax

ui.Form.setDefaultInitializer(
 funcname STRING)

1. funcname is the name of a function in the program.

Usage

Specify a default initialization function with the ui.Form.setDefaultInitializer() method, to
implement global processing when a form is opened.

The method takes the name of the initialization function as a parameter.

Important: The initialization function name must be in lowercase letters. The language syntax
allows case-insensitive functions names, but the runtime system must reference functions in
lowercase letters internally.

When a form is loaded with OPEN FORM / DISPLAY FORM or with OPEN WINDOW ... WITH FORM, the
initialization function will be called with a ui.Form object as a parameter.

Example

MAIN
 ...
 CALL ui.Form.setDefaultInitializer("form_init")
 ...
 OPEN FORM f1 FROM "customers"
 DISPLAY FORM f1 -- initialization function is called
 ...
END MAIN

FUNCTION form_init(f)
 DEFINE f ui.Form
 CALL f.loadToolBar("common_toolbar")
END FUNCTION

ui.Form.ensureElementVisible
Ensure the visibility of a form element.

Syntax

ensureElementVisible(
 name STRING)

1. name defines the name of the form element.

Library reference | 1777

Usage

Use the ensureElementVisible() method to make sure that the given form element (not form field) is
visible to the user. This method can for example be used to show a folder page by passing a field that is
located in the folder page, even if the field is not used in a dialog.

This method must be used for static form elements, to make form fields visible, use the
ensureFieldVisible() method instead.

The form element is identified by its name. If several form elements can have the same name, the first form
element found is selected.

Note that the ensureElementVisible() method can only show the specified element if it's
possible, according to the focus handling in the current active dialog. For more details, see the
ensureFieldVisible() instead.
ui.Form.ensureFieldVisible
Ensure visibility of a form field.

Syntax

ensureFieldVisible(
 name STRING)

1. name defines the name of the form field.

Usage

The ensureFieldVisible() method makes the given form field visible to the user. This method can for
example be used to show a folder page by passing a field that is located in the folder page, even if the field
is not used in a dialog.

The form field is identified by name, with an optional prefix (table.column or column).

This method does not give the focus to the field passed as parameter: The folder page or screen area
shown by this method call is temporarily visible and can disappear at the next user interaction, according to
focus management.

For example, consider a folder having two pages. The focus is in a field on the first page. A call to the
ensureFieldVisible() method makes the second folder page visible, passing a field located in the
second page. When the user presses the TAB key, the focus goes to the next field on the first page,
bringing the first page to the top. If you want to show a folder page and give the focus to a specific field in
that page, you must explicitly give the focus to a field of the page, with NEXT FIELD.

The ensureFieldVisible() method is used for form fields, to show static form elements such as labels
or images, use the ensureElementVisible() method instead.

ui.Form.getNode
Get the DOM node of the form.

Syntax

getNode()
 RETURNING result om.DomNode

Usage

The getNode() method returns the DOM node containing the abstract representation of the window/form.

After loading and displaying a form with OPEN FORM / DISPLAY FORM or with OPEN WINDOW ...
WITH FORM, get the form object for example with ui.Dialog.getForm() and use the getNode()
method to query the DOM node corresponding to the form.

Library reference | 1778

Example

DEFINE n om.DomNode,
 f ui.Form

INPUT BY NAME ...
 ...
 LET f = DIALOG.getForm()
 LET n = f.getNode()
 ...

ui.Form.findNode
Search for a child node in the form.

Syntax

findNode(
 type STRING,
 name STRING)
 RETURNING result om.DomNode

1. type defines the type of the node.
2. name defines the name of the node.

Usage

The findNode() method allows you to search for a specific DOM node in the abstract representation of
the form. You search for a child node by giving its type and the name of the element (i.e. the tagname and
the value of the 'name' attribute).

The method returns the first element found matching the specified type (tagname) and node name. Form
element names must be unique for the same type of nodes, if you want to distinguish all elements.

Example

DEFINE n om.DomNode,
 f ui.Form

INPUT BY NAME ...
 ...
 LET f = DIALOG.getForm()
 LET n = f.findNode("Label", "lb_name")
 ...

ui.Form.loadActionDefaults
Load form action defaults.

Syntax

loadActionDefaults(
 filename STRING)

1. filename is the name of the action defaults file without extension.

Usage

Load form specific action defaults at runtime with the loadActionDefaults() method.

Library reference | 1779

The loadActionDefaults() method is commonly used in the form initialization function.

Specify the filename without the "4ad" extension.

If the file does not exist in the current directory, it is searched in the directories defined in the DBPATH /
FGLRESOURCEPATH environment variable.

If a form contains already action defaults, it will be replaced by the new action defaults loaded by this
method.

ui.Form.loadToolBar
Load the form toolbar.

Syntax

loadToolBar(
 filename STRING)

1. filename is the name of the toolbar file without extension.

Usage

Load a toolbar XML definition file into the form with the loadToolBar() method.

The loadToolBar() method is commonly used in the form initialization function.

Specify the filename without the "4tb" extension.

If the file does not exist in the current directory, it is searched in the directories defined in the DBPATH /
FGLRESOURCEPATH environment variable.

If the form already contains a toolbar, it will be replaced by the new toolbar loaded from this method.

ui.Form.loadTopMenu
Load the form topmenu.

Syntax

loadTopMenu(
 filename STRING)

1. filename is the name of the topmenu file without extension.

Usage

Load a topmenu XML definition file into the form with the loadTopMenu() method.

The loadTopMenu() method is commonly used in the form initialization function.

Specify the filename without the "4tm" extension.

If the file does not exist in the current directory, it is searched in the directories defined in the DBPATH /
FGLRESOURCEPATH environment variable.

If the form already contains a topmenu, it will be replaced by the new topmenu loaded by this method.

ui.Form.setElementHidden
Show or hide form elements.

Syntax

setElementHidden(
 name STRING,

Library reference | 1780

 hide INTEGER)

1. name defines the name of the node.
2. hide the integer value to show or hide the element.

Usage

Change the visibility of a form element with the setElementHidden() method. You must pass the
identifier of the form element. The identifier is the element name as defined in the form definition.

All elements with this name will be affected. If you want to distinguish all form elements, use unique names
in the form definition file.

The setElementHidden() method changes the hidden attribute of all form elements identified by the
name.

The value passed to hide/show the element can be 0, 1 or 2:

Table 385: Hidden attribute integer values

Hidden value Description

0 Makes the element visible.

1 The element is hidden and the user cannot make it visible. Typically used to
hide information the user is not allowed to see.

2 The element is hidden and the user can make it visible.

Note: Do not hide all fields of a dialog, otherwise the dialog execution stops. At least one field must
get the focus during a dialog execution.

ui.Form.setElementImage
Change the image of form elements.

Syntax

setElementImage(
 name STRING,
 text STRING)

1. name defines the name of the node.
2. image is the image to be set.

Usage

Change the image/icon of a form element with the setElementImage() method. You must pass the
identifier of the form element. The identifier is the element name as defined in the form definition.

All elements with this name will be affected. If you want to distinguish all form elements, use unique names
in the form definition file.

ui.Form.setElementStyle
Change the style of form elements.

Syntax

setElementStyle(
 name STRING,
 style STRING)

Library reference | 1781

1. name defines the name of the node.
2. style is the style name to be set.

Usage

Change the style of a form element with the setElementStyle() method. You must pass the identifier
of the form element. The identifier is the element name as defined in the form definition.

All elements with this name will be affected. If you want to distinguish all form elements, use unique names
in the form definition file.

ui.Form.setElementText
Change the text of form elements.

Syntax

setElementText(
 name STRING,
 text STRING)

1. name defines the name of the node.
2. text is the text to be set.

Usage

Change the text of a form element with the setElementText() method, for example to modify the text
of a static label or group box during program execution. You must pass the identifier of the form element.
The identifier is the element name as defined in the form definition file (per) or the name attribute for the
element as defined in the form file.

All elements with this name will be affected. If you want to distinguish all form elements, use unique names
in the form definition file.

ui.Form.setFieldHidden
Show or hide a form field.

Syntax

setFieldHidden(
 name STRING,
 hide INTEGER)

1. name defines the name of the form field.
2. hide the integer value to show or hide the element.

Usage

Change the visibility of a form field with the setFieldHidden() method. You must pass the identifier
of the form field, as defined in the .per form definition. The form field is identified by column name, with
an optional prefix (table.column or column). The form field can be a regular field or a column of a list
container such as a TABLE.

The value passed to hide/show the element can be 0, 1 or 2:

Table 386: Hidden attribute integer values

Hidden value Description

0 Makes the field visible.

Library reference | 1782

Hidden value Description

1 The field is hidden and the user cannot make it
visible. Typically used to hide information the user
is not allowed to see.

2 The element is hidden and the user can make it
visible.

Note: Do not hide all fields of a dialog, otherwise the dialog execution stops. At least one field must
get the focus during a dialog execution.

ui.Form.setFieldStyle
Change the style of a form field.

Syntax

setFieldStyle(
 name STRING,
 style STRING)

1. name defines the name of the form field.
2. style is the style name to be set.

Usage

Change the style of a form field with the setFieldStyle() method. You must pass the identifier of
the form field, as defined in the .per form definition. The form field is identified by column name, with an
optional prefix (table.column or column). The form field can be a regular field or a column of a list
container such as a TABLE.

Examples
Example 1: Implement a global form initialization function

MAIN
 CALL ui.Form.setDefaultInitializer("init")
 OPEN FORM f1 FROM "items"
 DISPLAY FORM f1 -- Form appears in the default SCREEN window
 OPEN WINDOW w1 WITH FORM "customer"
 OPEN WINDOW w2 WITH FORM "orders"
 DISPLAY FORM f1 -- Form appears in w2 window
 MENU "Test"
 COMMAND "exit" EXIT MENU
 END MENU
END MAIN

FUNCTION init(f)
 DEFINE f ui.Form
 DEFINE n om.DomNode
 CALL f.loadTopMenu("mymenu")
 LET n = f.getNode()
 DISPLAY "Init: ", n.getAttribute("name")
END FUNCTION

Example 2: Hide form elements dynamically

MAIN
 DEFINE w ui.Window
 DEFINE f ui.Form
 DEFINE custid INTEGER

Library reference | 1783

 DEFINE custname CHAR(10)
 OPEN WINDOW w1 WITH FORM "customer"
 LET w = ui.Window.getCurrent()
 LET f = w.getForm()
 INPUT BY NAME custid, custname
 ON ACTION hide
 CALL f.setFieldHidden("customer.custid",1)
 CALL f.setElementHidden("label_custid",1)
 ON ACTION show
 CALL f.setFieldHidden("customer.custid",0)
 CALL f.setElementHidden("label_custid",0)
 END INPUT
END MAIN

Example 3: Change the title of table column headers

The form file (coltitle.per):

LAYOUT
GRID
{
<TABLE t1 >
 Id Name
[c1 |c2]
[c1 |c2]
[c1 |c2]
[c1 |c2]
[c1 |c2]
}
END
END
ATTRIBUTES
c1 = FORMONLY.col1;
c2 = FORMONLY.col2;
END
INSTRUCTIONS
SCREEN RECORD sr(FORMONLY.*);
END

The program file:

MAIN
 DEFINE f ui.Form, i INT
 DEFINE arr DYNAMIC ARRAY OF RECORD
 id INT,
 name VARCHAR(40)
 END RECORD
 OPEN FORM f1 FROM "coltitle"
 DISPLAY FORM f1
 FOR i=1 TO 10
 LET arr[i].id = i
 LET arr[i].name = "aaa"||i
 END FOR
 DISPLAY ARRAY arr TO sr.* ATTRIBUTES(UNBUFFERED)
 BEFORE DISPLAY
 let f = dialog.getForm()
 ON ACTION change_title
 CALL f.setElementText("formonly.col1","ID")
 CALL f.setElementText("formonly.col2","NAME")
 END DISPLAY
END MAIN

Library reference | 1784

The Dialog class
The ui.Dialog class provides a set of methods to configure, query and control the current interactive
instruction.

A ui.Dialog object can for example be used to enable or disable actions and form fields dynamically
during the dialog execution.

A dialog object is typically available inside a dialog block, with the predefined DIALOG keyword, and can
only be referenced during the execution of that interactive instruction. After the interactive instruction, the
dialog object is destroyed and its reference becomes invalid.

Dialog objects can also be created dynamically to handle forms created at runtime. This feature is only
provided for specific needs.

ui.Dialog methods
Methods of the ui.Dialog class.

Table 387: Class methods

Name Description

ui.Dialog.createConstructByName(
 fields DYNAMIC ARRAY OF RECORD
 name STRING,
 type STRING
 END RECORD
)

Creates a new ui.Dialog object to handle a
CONSTRUCT BY NAME.

ui.Dialog.createDisplayArrayTo(
 fields DYNAMIC ARRAY OF RECORD
 name STRING,
 type STRING
 END RECORD,
 tabname STRING)

Creates a new ui.Dialog object to handle a
DISPLAY ARRAY.

ui.Dialog.createInputByName(
 fields DYNAMIC ARRAY OF RECORD
 name STRING,
 type STRING
 END RECORD
)

Creates a new ui.Dialog object to handle an INPUT
BY NAME.

ui.Dialog.getCurrent()
 RETURNING result ui.Dialog

Returns the current dialog object.

ui.Dialog.setDefaultUnbuffered(
 value BOOLEAN)

Set the default unbuffered mode for all dialogs.

Library reference | 1785

Table 388: Object methods

Name Description

accept()
Validates and terminates the dialog.

addTrigger(
 name STRING)

Adds an event trigger to the dynamic dialog

appendNode(
 name STRING,
 index INTEGER)

Appends a new node in the specified tree-view.

appendRow(
 name STRING)

Appends a new row in the specified list.

deleteAllRows(
 name STRING)

Deletes all rows from the specified list.

arrayToVisualIndex(
 name STRING,
 index INTEGER)

Converts the program array index to the visual
index for a given screen array.

deleteNode(
 name STRING,
 index INTEGER)

Deletes a node from the specified tree-view.

deleteRow(
 name STRING,
 index INTEGER)

Deletes a row from the specified list.

getArrayLength(
 name STRING)
 RETURNING result INTEGER

Returns the total number of rows in the specified
list.

getCurrentItem()
 RETURNING result STRING

Returns the current item having focus.

getCurrentRow(
 name STRING)
 RETURNING result INTEGER

Returns the current row of the specified list.

getFieldBuffer(
 field STRING)

Returns the input buffer of the specified field.

Library reference | 1786

Name Description

 RETURNING result STRING

getFieldTouched(
 field-list STRING)
 RETURNING result BOOLEAN

Returns the modification flag for a field.

getFieldValue(
 name STRING)

Returns the value of a field controlled by a dynamic
dialog.

getForm()
 RETURNING result ui.Form

Returns the current form used by the dialog.

getSortKey(
 screen-array STRING)
 RETURNING field-name STRING

Returns the name of the sort field selected by the
user.

getSortReverse(
 screen-array STRING)
 RETURNING result BOOLEAN

Indicates the sort order direction
(FALSE=ascending, TRUE=descending)

insertNode(
 name STRING,
 index INTEGER)

Inserts a new node in the specified tree.

insertRow(
 name STRING,
 index INTEGER)

Inserts a new row in the specified list.

isRowSelected(
 name STRING,
 index INTEGER)
 RETURNING result BOOLEAN

Queries row selection for a give list and row.

nextField(
 name STRING)

Registering the next field to jump to.

nextEvent()
 RETURNING event STRING

Waits for a dialog event.

selectionToString(
 name STRING)
 RETURNING result STRING

Serializes data of the selected rows.

setActionActive(
 name STRING,

Enabling and disabling dialog actions.

Library reference | 1787

Name Description

 active BOOLEAN)

setActionHidden(
 name STRING,
 hide INTEGER)

Handling default action view visibility.

setArrayAttributes(
 name STRING,
 attributes ARRAY)

Define cell decoration attributes array for the
specified list (singular or multiple dialogs).

setArrayLength(
 name STRING,
 len INTEGER)

Sets the total number of rows in the specified list.

setCellAttributes(
 attributes ARRAY)

Define cell decoration attributes array for the
specified list (singular dialog only).

setCompleterItems(
 items-array DYNAMIC ARRAY OF
 STRING)

Define autocompletion items for the a field defined
with COMPLETER attribute.

setCurrentRow(
 name STRING,
 row INTEGER)

Sets the current row in the specified list.

setFieldActive(
 field-list STRING,
 active BOOLEAN)

Enable and disable form fields.

setFieldTouched(
 field-list STRING,
 touched BOOLEAN)

Sets the modification flag of the specified field.

setFieldValue(
 name STRING,
 value fgl-type)

Sets the value of a field controlled by the dialog
object.

setSelectionMode(
 name STRING,
 mode INTEGER)

Defines the row selection mode for the specified
list.

setSelectionRange(
 name STRING,
 start INTEGER,
 end INTEGER,

Sets the row selection flags for a range of rows.

Library reference | 1788

Name Description

 value BOOLEAN)

validate(
 field-list STRING)
 RETURNING result INTEGER

Check form level validation rules.

visualToArrayIndex(
 name STRING,
 index INTEGER)

Converts the visual index to the program array
index for a given screen array.

ui.Dialog.createConstructByName
Creates a new ui.Dialog object to handle a CONSTRUCT BY NAME.

Syntax

ui.Dialog.createConstructByName(
 fields DYNAMIC ARRAY OF RECORD
 name STRING,
 type STRING
 END RECORD
)

1. fields is the list of form fields controlled by the dialog. This must be a DYNAMIC ARRAY of RECORD
structure, with a name and type member of type STRING.

Usage

The ui.Dialog.createConstructByName() class method creates a new dialog object to implement
the equivalent of a static CONSTRUCT block.

Note: The current form will be attached to the new created dialog.

The method takes a list of field definitions as parameter. The parameter must be defined as a DYNAMIC
ARRAY OF RECORD, with name and type members:

DEFINE fields DYNAMIC ARRAY OF RECORD
 name STRING,
 type STRING
 END RECORD

These names provided in the field definition list must identify form fields defined in the current form. For
example, if the current form file defines the following fields:

LAYOUT
...
END
TABLES
customer
END
ATTRIBUTES
EDIT f1 = customer.cust_id;
EDIT f2 = customer.cust_name;
...
END

Library reference | 1789

The field names provided to the createConstructByName() method must be defined as follows:

LET fields[1].name = "customer.cust_id"
LET fields[2].name = "customer.cust_name"
...

The types provided in the field definition list will identify the data type to be used for data input and display.

Possible values for types are the string equivalents of the Genero BDL built-in types. For example:

• "INTEGER"

• "VARCHAR(50)"

• "DATE"

• "DECIMAL(10,2)"

• "DATETIME YEAR TO FRACTION(5)"

Note: The type used to define form fields can be the returning value of a
base.SqlHandle.getResultType() method.

Example

DEFINE fields DYNAMIC ARRAY OF RECORD
 name STRING,
 type STRING
 END RECORD
DEFINE d ui.Dialog

OPEN FORM f1 FROM "custform"
DISPLAY FORM f1

LET fields[1].name = "customer.cust_id"
LET fields[1].type = "INTEGER"

LET fields[2].name = "customer.cust_name"
LET fields[2].type = "VARCHAR(50)"
...
LET d = ui.Dialog.createConstructByName(fields)
...

ui.Dialog.createInputByName
Creates a new ui.Dialog object to handle an INPUT BY NAME.

Syntax

ui.Dialog.createInputByName(
 fields DYNAMIC ARRAY OF RECORD
 name STRING,
 type STRING
 END RECORD
)

1. fields is the list of form fields controlled by the dialog. This must be a DYNAMIC ARRAY of a RECORD
structure, with a name and type member of type STRING.

Usage

The ui.Dialog.createInputByName() class method creates a new dialog object to implement the
equivalent of a static INPUT BY NAME block.

Library reference | 1790

Note: The current form will be attached to the new created dialog.

The method takes a list of field definitions as parameter. The parameter must be defined as a DYNAMIC
ARRAY OF RECORD, with name and type members:

DEFINE fields DYNAMIC ARRAY OF RECORD
 name STRING,
 type STRING
 END RECORD

These names provided in the field definition list must identify form fields defined in the current form. For
example, if the current form file defines the following fields:

LAYOUT
...
END
TABLES
customer
END
ATTRIBUTES
EDIT f1 = customer.cust_id;
EDIT f2 = customer.cust_name;
...
END

The field names provided to the createInputByName() method must be defined as follows:

LET fields[1].name = "customer.cust_id"
LET fields[2].name = "customer.cust_name"
...

The types provided in the field definition list will identify the data type to be used for data input and display.

Possible values for types are the string equivalents of the Genero BDL built-in types, for example:

• "INTEGER"

• "VARCHAR(50)"

• "DATE"

• "DECIMAL(10,2)"

• "DATETIME YEAR TO FRACTION(5)"

Note: The type used to define form fields can be the returning value of a
base.SqlHandle.getResultType() method.

Example

DEFINE fields DYNAMIC ARRAY OF RECORD
 name STRING,
 type STRING
 END RECORD
DEFINE d ui.Dialog

OPEN FORM f1 FROM "custform"
DISPLAY FORM f1

LET fields[1].name = "customer.cust_id"
LET fields[1].type = "INTEGER"

LET fields[2].name = "customer.cust_name"
LET fields[2].type = "VARCHAR(50)"
...

Library reference | 1791

LET d = ui.Dialog.createInputByName(fields)
...

ui.Dialog.createDisplayArrayTo
Creates a new ui.Dialog object to handle a DISPLAY ARRAY.

Syntax

ui.Dialog.createDisplayArrayTo(
 fields DYNAMIC ARRAY OF RECORD
 name STRING,
 type STRING
 END RECORD,
 tabname STRING)

1. fields is the list of form fields controlled by the dialog. This must be a DYNAMIC ARRAY of a RECORD
structure, with a name and type member of type STRING.

2. tabname is the name of the screen array (defined with the SCREEN RECORD instruction in form files).

Usage

The ui.Dialog.createDisplayArrayTo() class method creates a new dialog object to implement
the equivalent of a static DISPLAY ARRAY TO block.

Note: The current form will be attached to the new created dialog.

The method takes a list of field definitions as first parameter. This parameter must be defined as a
DYNAMIC ARRAY OF RECORD, with name and type members:

DEFINE fields DYNAMIC ARRAY OF RECORD
 name STRING,
 type STRING
 END RECORD

These names provided in the field definition list must identify form fields defined in the current form. For
example, if the current form file defines the following fields:

LAYOUT
...
END
TABLES
customer
END
ATTRIBUTES
EDIT f1 = customer.cust_id;
EDIT f2 = customer.cust_name;
...
END

The field names provided to the createDisplayArrayTo() method must be defined as follows:

LET fields[1].name = "customer.cust_id"
LET fields[2].name = "customer.cust_name"
...

The types provided in the field definition list will identify the data type to be used for data input and display.

Possible values for types are the string equivalents of the Genero BDL built-in types, for example:

• "INTEGER"

Library reference | 1792

• "VARCHAR(50)"

• "DATE"

• "DECIMAL(10,2)"

• "DATETIME YEAR TO FRACTION(5)"

Note: The type used to define form fields can be the returning value of a
base.SqlHandle.getResultType() method.

The second parameter passed to the createDisplayArrayTo() method is the name of the screen
record which groups the fields together, for the list view of the form. For example, in the next form
definition, the screen record name is "sr_custlist":

...
INSTRUCTIONS
SCREEN RECORD sr_custlist
(
 customer.cust_id,
 customer.cust_name,
 ...
);
END

For more details, see Screen records on page 866.

Example

DEFINE fields DYNAMIC ARRAY OF RECORD
 name STRING,
 type STRING
 END RECORD
DEFINE d ui.Dialog

OPEN FORM f1 FROM "custform"
DISPLAY FORM f1

LET fields[1].name = "customer.cust_id"
LET fields[1].type = "INTEGER"

LET fields[2].name = "customer.cust_name"
LET fields[2].type = "VARCHAR(50)"
...
LET d = ui.Dialog.createDisplayArrayTo(fields, "sr_custlist")
...

ui.Dialog.getCurrent
Returns the current dialog object.

Syntax

ui.Dialog.getCurrent()
 RETURNING result ui.Dialog

Usage

To get the current active dialog object, use the ui.Dialog.getCurrent() class method.

The method returns NULL if there is no current active dialog.

Library reference | 1793

Example

FUNCTION field_disable(name)
 DEFINE name STRING
 DEFINE d ui.Dialog
 LET d = ui.Dialog.getCurrent()
 IF d IS NOT NULL THEN
 CALL d.setFieldActive(name, FALSE)
 END IF
END FUNCTION

ui.Dialog.setDefaultUnbuffered
Set the default unbuffered mode for all dialogs.

Syntax

ui.Dialog.setDefaultUnbuffered(
 value BOOLEAN)

1. value is a boolean to enable the unbuffered mode.

Usage

By default, modal dialogs are not sensitive to variable changes. To make a dialog sensitive, use the
UNBUFFERED attribute in the dialog instruction definition.

To defined the default for all subsequent dialogs, use the setDefaultUnbuffered() class method:

CALL ui.Dialog.setDefaultUnbuffered(TRUE)

Note: Only singular and multiple dialogs are sensitive to this API, parallel dialogs are implicitely
using the unbuffered mode.

ui.Dialog.accept
Validates and terminates the dialog.

Syntax

accept()

Usage

Use the accept() method to validate field input and terminate the dialog. This method is equivalent to the
ACCEPT INPUT / ACCEPT DISPLAY / ACCEPT DIALOG instructions.

The method is provided as a 3GL alternative to the ACCEPT control instructions, for example to terminate
the dialog in a function, outside the context of a dialog block, where control instructions cannot be used.

Typical dialog validation rules are performed when calling this method. See ACCEPT DIALOG for more
details.

ui.Dialog.addTrigger
Adds an event trigger to the dynamic dialog

Syntax

addTrigger(
 name STRING)

Library reference | 1794

1. name is the name of the dialog.

Usage

When implementing a dynamic dialog, the addTrigger() method must be used to register the triggers,
that need to be handled with user code:

CALL d.addTrigger("ON ACTION print")

Registered dialog triggers are then typically managed in a WHILE loop using the nextEvent() method, to
wait for dialog events.

The following triggers are accepted by the addTrigger() method:

Note: More predefined triggers such as "BEFORE ROW" are existing for dynamic dialogs, but these
triggers do not have to be added with the addTrigger() method, since they are implicit.

Table 389: User-defined triggers for dynamic dialogs

Trigger name Description Dialog block equivalent

ON ACTION action-
name

Action handler for the action identified by action-
name.

ON ACTION block

ON APPEND Row addition action handler for a display array
dynamic dialog.

ON APPEND block

ON DELETE Row deletion action handler for a display array
dynamic dialog.

ON DELETE block

ON INSERT Row insertion action handler for a display array
dynamic dialog.

ON INSERT block

ON UPDATE Row modification action handler for a display array
dynamic dialog.

ON UPDATE block

ui.Dialog.appendRow
Appends a new row in the specified list.

Syntax

appendRow(
 name STRING)

1. name is the screen array name.

Usage

The appendRow() method appends a row to the end of the array controlled by the dialog.

Important: This method is designed to be used in an ON ACTION block. It must not be called in
control blocks such as BEFORE ROW, AFTER ROW, BEFORE INSERT, AFTER INSERT, BEFORE
DELETE, or AFTER DELETE.

The method is similar to appending a new element to the program array, except the internal dialog
registers are automatically updated (like the total number of rows returned by getArrayLength()). If the
list is decorated with cell attributes, the program array defining the attributes will also be synchronized. If
multi-row selection is enabled, selection flags of existing rows are kept. The new row is inserted at the end
of the list with the selection flag set to zero.

Library reference | 1795

Note: The purpose of this method is to implement business logic required to modify the record list
in the current dialog. It is typically used in a DISPLAY ARRAY dialog. Avoid using this method in
INPUT ARRAY. To allow the end user to append, modify or delete rows in a DISPLAY ARRAY, use
list modification interaction blocks.

After the method is called, a new row is created in the program array. You can assign values to the
variables before the control goes back to the user. The getArrayLength() method will return the new
row count.

The method does not set the current row and does not give the focus to the list; you need to call
setCurrentRow() and execute NEXT FIELD to give the focus.

This method does not execute any BEFORE ROW, BEFORE INSERT, AFTER INSERT or AFTER ROW
control blocks.

The appendRow() method does not create a temporary row as the implicit append action of INPUT
ARRAY; The row is considered permanent once it is added.

Example

This example implements a user-defined action to append ten rows at the end of the list.

ON ACTION append_some_rows
 FOR i = 1 TO 10
 CALL DIALOG.appendRow("sa")
 LET r = DIALOG.getArrayLength("sa")
 LET p_items[r].item_quantity = 1.00
 END FOR

ui.Dialog.appendNode
Appends a new node in the specified tree-view.

Syntax

appendNode(
 name STRING,
 index INTEGER)

1. name is the screen array name.
2. index is the index of the parent node in the program array (starts at 1).

Usage

The appendNode() method adds a new node under a given parent, when the dialog controls a tree view.

This method must be used when modifying the array of a tree view during the execution of the dialog,
for example when implementing a dynamic tree with ON EXPAND / ON COLLAPSE triggers. Before the
execution of the dialog, you can fill the program array directly. This includes the context of BEFORE
DISPLAY or BEFORE DIALOG control blocks.

When adding rows for a tree view, the id of the parent node and new node matters because that
information is used to build the internal tree structure. When calling appendNode(), you pass the index of
the parent node under which the new node will be appended. In the program array, the parent-id member
of the new node will automatically be initialized with the value of the id of the parent node identifier by the
index passed as parameter, then the internal tree structure is rebuilt.

If the parent index is zero, a new root node will be appended.

The method returns the index of the new inserted node.

Library reference | 1796

In the program array, the parent-id member of the new node will automatically be initialized with the value
of the id member of the parent node identified by the index.

DISPLAY ARRAY mytree TO sr.*
 ...
 ON EXPAND(id)
 CALL DIALOG.appendNode("sr", id)
 ...
 ...

ui.Dialog.arrayToVisualIndex
Converts the program array index to the visual index for a given screen array.

Syntax

arrayToVisualIndex(
 name STRING,
 index INTEGER)

1. name is the screen array name.
2. index is the index of the program array row.

Usage

When the end user sorts rows in a table, the program array index may differ from the visual row index.

Use this method to convert a program array row index (arr_curr()) to a row index as seen by the end
user. For example, if you want to display a typical message with (current-row / total-rows), convert the
current program array row to a visual row index before displaying the value:

MESSAGE SFMT("Row: %1/%2",
 DIALOG.arrayToVisualIndex("sr", DIALOG.getCurrentRow("sr")),
 DIALOG.getArrayLength("sr")
)

ui.Dialog.deleteAllRows
Deletes all rows from the specified list.

Syntax

deleteAllRows(
 name STRING)

1. name is the screen array name.

Usage

The deleteAllRows() method removes all the rows of a list driven by a DISPLAY ARRAY or INPUT
ARRAY. This is equivalent to a deleteRow() call, but instead of deleting one particular row, it removes all
rows of the specified list.

This method must not be called in control blocks such as BEFORE ROW, AFTER ROW, BEFORE INSERT,
AFTER INSERT, BEFORE DELETE, AFTER DELETE, it is designed to be used in an ON ACTION block.

After the method is called, all rows are deleted from the program array, and the getArrayLength()
method will return zero.

The method takes the name of the screen-array as parameter.

Library reference | 1797

If the deleteAllRows() method is called during an INPUT ARRAY, the dialog will automatically append
a new temporary row if the focus is in the list, to let the user enter new data. When using AUTO APPEND
= FALSE attribute, no temporary row will be created and the current row register will be automatically
changed to make sure that it will not be greater than the total number of rows.

If deleteAllRows() method is called during an INPUT ARRAY or DISPLAY ARRAY that has the focus,
the BEFORE ROW control block will be executed if you delete the current row. This is required to reset the
internal state of the dialog.

If the list was decorated with cell attributes, the program array defining the attributes will be cleared. If
multi-row selection is enabled, selection flags are cleared.

ui.Dialog.deleteNode
Deletes a node from the specified tree-view.

Syntax

deleteNode(
 name STRING,
 index INTEGER)

1. name is the screen array name.
2. index is the index of the node in the program array that has to be deleted (starts at 1).

Usage

The deleteNode() method is similar to deleteRow(), except that it has to be used when the dialog
controls a tree view.

This method must be used when modifying the array of a tree view during the execution of the dialog,
for example when implementing a dynamic tree with ON EXPAND / ON COLLAPSE triggers. Before the
execution of the dialog, you can fill the program array directly. This includes the context of BEFORE
DISPLAY or BEFORE DIALOG control blocks.

The main difference with deleteRow() is that deleteNode() will remove recursively all child nodes
before removing the node identified by index.

If the index is zero, all root nodes will be deleted from the tree.

ui.Dialog.deleteRow
Deletes a row from the specified list.

Syntax

deleteRow(
 name STRING,
 index INTEGER)

1. name is the screen array name.
2. index is the index of the row to be deleted (starts a 1).

Usage

The deleteRow() method deletes the row in the array controlled by the dialog.

Important: This method is designed to be used in an ON ACTION block. It must not be called in
control blocks such as BEFORE ROW, AFTER ROW, BEFORE INSERT, AFTER INSERT, BEFORE
DELETE, or AFTER DELETE.

The method is similar to deleting an element to the program array, except that internal dialog registers
are automatically updated (like the total number of rows returned by getArrayLength()). If the list is

Library reference | 1798

decorated with cell attributes, the program array defining the attributes will also be synchronized. If multi-
row selection is enabled, selection information is synchronized (i.e., selection flags are shifted up) for all
rows after the deleted row.

Note: The purpose of this method is to implement business logic required to modify the record list
in the current dialog. It is typically used in a DISPLAY ARRAY dialog. Avoid using this method in
INPUT ARRAY. To allow the end user to append, modify or delete rows in a DISPLAY ARRAY, use
list modification interaction blocks.

After the method is called, the row no longer exists in the program array, and the getArrayLength()
method will return the new row count.

If the deleteRow() method is called during an INPUT ARRAY that has the focus, control blocks such as
BEFORE ROW and BEFORE FIELD will be executed, if you delete the current row. This is required to reset
the internal state of the dialog. However, the method does not execute any BEFORE ROW or AFTER ROW
control blocks in a DISPLAY ARRAY dialog.

If the deleteRow() method is called during an INPUT ARRAY, and if no more rows are in the list after
the call, the dialog will automatically append a new temporary row if the focus is in the list, to let the user
enter new data. When using AUTO APPEND = FALSE attribute, no temporary row will be created and
the current row register will be automatically changed to make sure that it will not be greater than the total
number of rows.

If you pass zero as row index, the method does nothing (if no rows are in the list, getCurrentRow()
returns zero).

Example

This example implements a user-defined action to remove rows that have a specific
property:

ON ACTION delete_invalid_rows
 FOR r = 1 TO DIALOG.getArrayLength("sa")
 IF NOT s_orders[t].is_valid THEN
 CALL DIALOG.deleteRow("sa",r)
 LET r = r - 1
 END IF
 END FOR

ui.Dialog.getArrayLength
Returns the total number of rows in the specified list.

Syntax

getArrayLength(
 name STRING)
 RETURNING result INTEGER

1. name is the screen array name.

Usage

The getArrayLength() method returns the total number of rows of an INPUT ARRAY or DISPLAY
ARRAY list. The name of the screen array is passed as parameter to identify the list.

Example

DIALOG
 DISPLAY ARRAY custlist TO sa_custlist.*
 BEFORE ROW

Library reference | 1799

 MESSAGE "Row count: " ||
 DIALOG.getArrayLength("sa_custlist")
 ...
 END DISPLAY
 INPUT ARRAY ordlist TO sa_ordlist.*
 BEFORE ROW
 MESSAGE "Row count: " ||
 DIALOG.getArrayLength("sa_ordlist")
 ...
 END INPUT
 ...

ui.Dialog.getCurrentItem
Returns the current item having focus.

Syntax

getCurrentItem()
 RETURNING result STRING

Usage

The getCurrentItem() method returns the name of the current form item having the focus.

• If the focus is on an action view (typically, a BUTTON in the form layout), getCurrentItem() returns
the name of the corresponding action. If several action views a bound to the same action handler with a
unique name, there is no way to distinguish which action view has the focus.

• If the focus is in a simple field controlled by an INPUT or CONSTRUCT sub-dialog, getCurrentItem()
returns the [tab-name.]field-name of that current field. The tab-name. prefix is added if a FROM clause is
used with an explicit list of fields. No prefix is added if FROM screen-record.* is used or if BY NAME
clause is used.

• If the focus is in a list controlled by a DISPLAY ARRAY sub-dialog, getCurrentItem() returns the
screen-array name identifying the list.

• If the focus is in a field of a list controlled by an INPUT ARRAY sub-dialog, getCurrentItem()
returns screen-array.field-name, identifying both the list and the current field. In some context,
the current field is undefined. For example when entering the INPUT ARRAY sub-dialog,
getCurrentItem() will return the screen-array only when in the BEFORE INPUT control block.

ui.Dialog.getCurrentRow
Returns the current row of the specified list.

Syntax

getCurrentRow(
 name STRING)
 RETURNING result INTEGER

1. name is the screen array name.

Usage

Use the getCurrentRow() method to retrieve the current row of an INPUT ARRAY or DISPLAY ARRAY
list.

You must pass the name of the screen array to identify the list.

DIALOG
 DISPLAY ARRAY custlist TO sa_custlist.*

Library reference | 1800

 BEFORE ROW
 MESSAGE "Current row: " || DIALOG.getCurrentRow("sa_custlist")
 ...
 END DISPLAY
 INPUT ARRAY ordlist TO sa_ordlist.*
 BEFORE ROW
 MESSAGE "Current row: " || DIALOG.getCurrentRow("sa_ordlist")
 ...
 END INPUT
 ...

ui.Dialog.getFieldBuffer
Returns the input buffer of the specified field.

Syntax

getFieldBuffer(
 field STRING)
 RETURNING result STRING

1. field is the field specification.

Usage

The getFieldBuffer() method returns the current input buffer of the specified field. The input buffer is
used by the dialog to synchronize form fields and program variables. In some situations, especially when
using the buffered mode or in a CONSTRUCT, you may want to access the field input buffer.

Note: This method should only be used in dialogs allowing field input (INPUT, INPUT ARRAY,
CONSTRUCT). The behavior is undefined when used in DISPLAY ARRAY.

The parameter is a field specification, a string containing the field qualifier, with an optional prefix
("[table.]column").

LET buff = DIALOG.getFieldBuffer("customer.cust_name")

The input buffer can be set with:

• A DISPLAY TO or DISPLAY BY NAME instruction
• The FGL_DIALOG_SETBUFFER() function (only for the current field)

For more details about field name specification, see Identifying fields in dialog methods on page 1818.

ui.Dialog.getFieldTouched
Returns the modification flag for a field.

Syntax

getFieldTouched(
 field-list STRING)
 RETURNING result BOOLEAN

1. field-list is the string with the list of field specification.

Usage

The getFieldTouched() method returns TRUE if the modification flag of the specified field(s) is set.

The field-list is a string containing the field qualifier, with an optional prefix ("[table.]column"), a table
prefix followed by a dot and an asterisk ("table.*"), or a simple asterisk ("*").

Library reference | 1801

This code checks if a specific field has been touched:

AFTER FIELD cust_name
 IF DIALOG.getFieldTouched("customer.cust_address") THEN
 ...

If the parameter is a screen record following by dot-asterisk, the method checks the touched flags of all the
fields that belong to the screen record:

ON ACTION quit
 IF DIALOG.getFieldTouched("customer.*") THEN
 ...

When passing a simple asterisk (*) to the method, the runtime system will check all fields used by the
dialog:

ON ACTION quit
 IF DIALOG.getFieldTouched("*") THEN
 ...

For more details about field name specification, see Identifying fields in dialog methods on page 1818.

ui.Dialog.getFieldValue
Returns the value of a field controlled by a dynamic dialog.

Syntax

getFieldValue(
 name STRING)

1. name is the name of the dialog.

Usage

The getFieldValue() method can be used when implementing a dynamic dialog, to return the value of
a field:

DISPLAY d.getFieldValue("customer.cust_addr")

The first parameter defines the field to be set. For more details about field name specification, see
Identifying fields in dialog methods on page 1818.

When used in a dynamic dialog controlling a list of records, this methods returns the value for a field in the
current row. The current row can be set with the setCurrentRow() method.

ui.Dialog.getForm
Returns the current form used by the dialog.

Syntax

getForm()
 RETURNING result ui.Form

Usage

The getForm() method returns a ui.Form object as a handle to the current form used by the dialog.

Use this form object to modify elements of the current form. For example, you can hide some parts of the
form with the ui.Form.setElementHidden() method.

Library reference | 1802

ui.Dialog.getQueryFromField
Returns the SQL condition of a field used in a query by example dialog.

Syntax

getQueryFromField(
 field-name STRING)
 RETURNING sql-condition STRING

1. field-name is the name of the form field.

Usage

The getQueryFromField() method generates the SQL condition from the value entered in the field
specified by the field-name parameter.

This method is used in the context of a construct dynamic dialog.

The result of this method can be used to build the WHERE part of a SELECT statement to find rows in a
database.

Collect and concatenate field conditions returned from getQueryFromField(), then add AND or OR
boolean operators to create an executable SQL query.

Note: The SQL condition is generated according to the current type of database. The SQL syntax
may vary according to the target database. Therefore you should not reuse the generated SQL
conditions. However, the user input of a query by example dialog can be reused for different type of
databases (see ui.Dialog.setFieldValue on page 1813 and ui.Dialog.getFieldValue on page 1801)

ui.Dialog.getSortKey
Returns the name of the sort field selected by the user.

Syntax

getSortKey(
 screen-array STRING)
 RETURNING field-name STRING

1. screen-array is the name of the screen array.

Usage

The getSortKey() method returns the form field name selected by the user to sort rows.

This method is used in the context of the ON SORT trigger.

Note: If the sort is reset, the getSortKey() method returns NULL.

ui.Dialog.getSortReverse
Indicates the sort order direction (FALSE=ascending, TRUE=descending)

Syntax

getSortReverse(
 screen-array STRING)
 RETURNING result BOOLEAN

1. screen-array is the name of the screen array.

Library reference | 1803

Usage

The getSortReverse() method returns FALSE if the sort order is ascending, and TRUE if the sort is in
descending order.

This method is used in the context of the ON SORT trigger.

ui.Dialog.insertNode
Inserts a new node in the specified tree.

Syntax

insertNode(
 name STRING,
 index INTEGER)

1. name is the screen array name.
2. index is the index of the next sibling node in the program array (starts at 1).

Usage

The insertNode() method is similar to insertRow(), except that it has to be used when the list dialog
controls a tree view.

This method must be used when modifying the array of a tree view during the execution of the dialog,
for example when implementing a dynamic tree with ON EXPAND / ON COLLAPSE triggers. Before the
execution of the dialog, you can fill the program array directly. This includes the context of BEFORE
DISPLAY or BEFORE DIALOG control blocks.

When adding rows for a tree view, the id of the parent node and new node matters because that
information is used to build the internal tree structure. When calling insertNode(), you pass the index
of the next sibling node. In the program array, the parent-id member of the new node will automatically be
initialized with the value of the parent-id of the next sibling node, then the internal tree structure is rebuilt.

ui.Dialog.insertRow
Inserts a new row in the specified list.

Syntax

insertRow(
 name STRING,
 index INTEGER)

1. name is the screen array name.
2. index is the index where the row must be inserted (starts at 1).

Usage

The insertRow() method inserts a row in the list, at a given position.

Important: This method is designed to be used in an ON ACTION block. It must not be called in
control blocks such as BEFORE ROW, AFTER ROW, BEFORE INSERT, AFTER INSERT, BEFORE
DELETE, or AFTER DELETE.

The method is similar to inserting a new element in the program array, except the internal dialog registers
are automatically updated (like the total number of rows returned by getArrayLength()). If the list is
decorated with cell attributes, the program array defining the attributes will also be synchronized. If multi-
row selection is enabled, selection flags of existing rows are kept. Selection information is synchronized
(i.e., flags are shifted down) for all rows after the new inserted row.

Library reference | 1804

Note: The purpose of this method is to implement business logic required to modify the record list
in the current dialog. It is typically used in a DISPLAY ARRAY dialog. Avoid using this method in
INPUT ARRAY. To allow the end user to append, modify or delete rows in a DISPLAY ARRAY, use
list modification interaction blocks.

After the method is called, a new row is created in the program array, so you can assign values to the
variables before the control goes back to the user. The getArrayLength() method will return the new
row count.

The method does not set the current row and does not give the focus to the list; you need to call
setCurrentRow() and execute NEXT FIELD to give the focus.

The insertRow() method must not be used when controlling a tree view. Use the insertNode()
method instead.

This method does not execute any BEFORE ROW, BEFORE INSERT, AFTER INSERT or AFTER ROW
control blocks.

If the index is greater than the number of rows, a new row is appended at the end or the list. This is the
equivalent of calling the appendRow() method.

If the list is empty, getCurrentRow() returns zero. If zero is returned, use 1 to reference the first row,
otherwise you can get a -1326 error when using the program array.

Example

This example shows a user-defined action to insert ten rows in the list at the current
position:

ON ACTION insert_some_rows
 LET r = DIALOG.getCurrentRow("sa")
 IF r == 0 THEN LET r = 1 END IF
 FOR i = 10 TO 1 STEP -1
 CALL DIALOG.insertRow("sa", r)
 LET p_items[r].item_quantity = 1.00
 END FOR

ui.Dialog.isRowSelected
Queries row selection for a give list and row.

Syntax

isRowSelected(
 name STRING,
 index INTEGER)
 RETURNING result BOOLEAN

1. name is the screen array name.
2. index is a row index.

Usage

If multi-row selection is enabled with setSelectionMode(), you can check whether a row is selected
with the isRowSelected() method:

ON ACTION check_current_row_selected
 IF DIALOG.isRowSelected("sr", DIALOG.getCurrentRow("sr")) THEN
 MESSAGE "Current row is selected."
 END IF

If multi-row selection is off, the method returns TRUE for the current row and FALSE for other rows.

Library reference | 1805

ui.Dialog.nextEvent
Waits for a dialog event.

Syntax

nextEvent()
 RETURNING event STRING

1. event is the name of the dialog event that raised.

Usage

The nextEvent() waits for a dialog event to occur, and returns a string that identifies the dialog event
that has raised.

This method is typically used in a WHILE loop, to implement a dynamic dialog.

A dialog event can be a user-defined trigger such as "ON ACTION print", or an implicit trigger such as
"BEFORE ROW", corresponding to the control blocks that can be defined in static dialog instructions such
as DISPLAY ARRAY.

User-defined triggers are added to the dynamic dialog with the addTrigger() method:

Table 390: User-defined triggers for dynamic dialogs

Trigger name Description Dialog block equivalent

ON ACTION action-
name

Action handler for the action identified by action-
name.

ON ACTION block

ON APPEND Row addition action handler for a display array
dynamic dialog.

ON APPEND block

ON DELETE Row deletion action handler for a display array
dynamic dialog.

ON DELETE block

ON INSERT Row insertion action handler for a display array
dynamic dialog.

ON INSERT block

ON UPDATE Row modification action handler for a display array
dynamic dialog.

ON UPDATE block

Implicit dialog triggers are predefined and can be detected and handled in the dialog WHILE loop if needed:

Table 391: Implicit triggers for dynamic dialogs

Trigger name Description Dialog block equivalent

BEFORE DISPLAY Initialization of the display array dynamic dialog. BEFORE DISPLAY block

BEFORE INPUT Initialization of the input by name dynamic dialog. BEFORE INPUT block

AFTER DISPLAY End of the display array dynamic dialog. AFTER DISPLAY block

AFTER INPUT End of the input by name dynamic dialog. AFTER INPUT block

BEFORE ROW Moving to a new row in a display array dynamic
dialog.

BEFORE ROW block

AFTER ROW Leaving the current row in a display array dynamic
dialog.

AFTER ROW block

Library reference | 1806

Trigger name Description Dialog block equivalent

BEFORE FIELD
field-name

Entering the field field-name in an input dynamic
dialog.

BEFORE FIELD block

AFTER FIELD field-
name

Leaving the field field-name in an input dynamic
dialog.

AFTER FIELD block

ui.Dialog.nextField
Registering the next field to jump to.

Syntax

nextField(
 name STRING)

1. name is the form field name.

Usage

The nextField() method registers the name of the next field that must get the focus when control goes
back to the dialog.

The first parameter identifies the form field, see Identifying fields in dialog methods for more details.

This method is similar to the NEXT FIELD instruction, except that it does not implicitly break the program
flow. If you want to get the same behavior as NEXT FIELD, the method call must be followed by a
CONTINUE DIALOG instruction, or an equivalent instruction, in case of singular dialog.

Since this method takes an expression as parameter, you can write generic code, when the name of the
target field is not known at compile time. In the next example, the check_value() function returns a field
name where the value does not satisfy the validation rules.

DEFINE fn STRING
...
ON ACTION save
 IF (fn:= check_values()) IS NOT NULL THEN
 CALL DIALOG.nextField(fn)
 CONTINUE DIALOG
 END IF
 CALL save_data()
 ...

ui.Dialog.selectionToString
Serializes data of the selected rows.

Syntax

selectionToString(
 name STRING)
 RETURNING result STRING

1. name is the screen array name.

Usage

The selectionToString() method can be used to get a tab-separated value list of the selected rows.

When multi-row selection is disabled, the method serializes the current row.

Library reference | 1807

You typically use this method in conjunction with drag & drop to fill the buffer, by using a text/plain MIME
type, to export data to external applications.

ON ACTION serialize
 LET buff = DIALOG.selectionToString("sr")

Numeric and date data will be formatted according to current locale settings (DBMONEY, DBDATE).

The visual presentation of data is respected: The dialog will copy the rows in the sort order specified by the
user, moved columns will appear in the same positions as in the table and hidden columns will be ignored.
Note that phantom columns are not copied.

Items in the tab-separated record will be surrounded by double-quotes if the value contains special
characters such as a newline, a double-quote, or controls characters with ASCII code < 0x20. Double-
quotes in the value will be doubled.

ui.Dialog.setActionActive
Enabling and disabling dialog actions.

Syntax

setActionActive(
 name STRING,
 active BOOLEAN)

1. name is the name of the action.
2. active is a boolean value.

Usage

Use the setActionActive() method to enable or disable an action.

CALL DIALOG.setActionActive("zoom", FALSE)

The second parameter of the method must be a boolean expression that evaluates to 0 (FALSE) or 1
(TRUE).

For more details about action names, see Identifying actions in dialog methods on page 1817.

ui.Dialog.setActionHidden
Handling default action view visibility.

Syntax

setActionHidden(
 name STRING,
 hide INTEGER)

1. name is the name of the action.
2. hide is 1 to hide, 0 to show.

Usage

Use the setActionHidden() method to hide the default view (and context menu option) of an action.

CALL DIALOG.setActionHidden("confirm", 1)

The first parameter identifies the action object of the dialog

For more details about action names, see Identifying actions in dialog methods.

Library reference | 1808

ui.Dialog.setArrayAttributes
Define cell decoration attributes array for the specified list (singular or multiple dialogs).

Syntax

setArrayAttributes(
 name STRING,
 attributes ARRAY)

1. name is the screen array name.
2. attributes is a program array defining the cell attributes.

Usage

In an INPUT ARRAY or DISPLAY ARRAY dialog, the setArrayAttributes() method can be used to
specify display attributes for each cell.

The setArrayAttributes() when several screen arrays are defined, to be able to idenfify the list by
the name of the screen array. An equivalent method called setCellAttributes() can be used, for
dialogs where only one screen array is defined.

Possible values for cell attributes are a combination of the following:

• The TTY attribute reverse
• The TTY attribute blink
• The TTY attribute underline
• One of the TTY colors: white, yellow, magenta, red, cyan, green, blue, black

Define an array with the same number of record elements as the data array used by the INPUT ARRAY or
DISPLAY ARRAY. Each element must have the same name as in the data array, and must be defined with
a character data type (typically: STRING):

DEFINE data DYNAMIC ARRAY OF RECORD
 pkey INTEGER,
 name VARCHAR(50)
 END RECORD
DEIFNE attributes DYNAMIC ARRAY OF RECORD
 pkey STRING,
 name STRING
 END RECORD

Fill the display attributes array with color and video attributes. These must be specified in lowercase
characters and separated by a blank (ex: "red reverse"):

FOR i=1 TO data.getLength() -- length from data array!
 LET attributes[i].name = "blue reverse"
END FOR

Then, attach the array to the dialog with the setArrayAttributes() method, in a BEFORE DIALOG,
BEFORE INPUT or BEFORE DISPLAY block:

BEFORE DIALOG
 CALL DIALOG.setArrayAttributes("sr", attributes)

Like data values, if you change the cell attributes during the dialog, these are not displayed automatically
unless the UNBUFFERED mode is used.

ON ACTION modify_cell_attribute
 LET attributes[arr_curr()].name = "red reverse"

Library reference | 1809

If you set NULL to a element, the default TTY attributes will be reset:

ON ACTION clean_cell_attribute
 LET attributes[arr_curr()].name = NULL

ui.Dialog.setArrayLength
Sets the total number of rows in the specified list.

Syntax

setArrayLength(
 name STRING,
 len INTEGER)

1. name is the screen array name.
2. len is the new size of the array.

Usage

The setArrayLength() method is used to specify the total number of rows when using the DISPLAY
ARRAY paged mode. The name of the screen array is passed to identify the list, followed by an integer
expression defining the number of rows.

When using a dynamic array without paged mode (i.e. without the ON FILL BUFFER clause), you don't
need to specify the total number of rows to the DIALOG instruction: It is defined by the number of elements
in the array. However, when using the paged mode in a DISPLAY ARRAY, the total number of rows does
not correspond to the elements in the program array, because the program array holds only a page of the
whole list. In any other cases, a call to this method is just ignored.

A call to setArrayLength() will not trigger the execution of the ON FILL BUFFER clause immediately.
The trigger to fill a page of rows will be executed when all the user code has been execute and the control
goes back to the dialog instruction.

The setArrayLength() method is also be used to fix the final number of rows when using COUNT=-1
attribute, to implement a paged list without knowing the total number of rows when the dialog starts.

ui.Dialog.setCellAttributes
Define cell decoration attributes array for the specified list (singular dialog only).

Syntax

setCellAttributes(
 attributes ARRAY)

1. attributes is a program array defining the cell attributes.

Usage

In an INPUT ARRAY or DISPLAY ARRAY dialog, the setCellAttributes() method can be used to
specify display attributes for each cell.

The setCellAttributes() method is designed for dialog programming, where only one screen
array is used (for example, in a singular DISPLAY ARRAY dialog). An equivalent method called
setArrayAttributes() can be used, when several screen arrays are defined in a multiple dialog, to be
able to idenfify the list by the name of the screen array.

Possible values for cell attributes are a combination of the following:

• The TTY attribute reverse
• The TTY attribute blink

Library reference | 1810

• The TTY attribute underline
• One of the TTY colors: white, yellow, magenta, red, cyan, green, blue, black

Define an array with the same number of record elements as the data array used by the INPUT ARRAY or
DISPLAY ARRAY. Each element must have the same name as in the data array, and must be defined with
a character data type (typically: STRING):

DEFINE data DYNAMIC ARRAY OF RECORD
 pkey INTEGER,
 name VARCHAR(50)
 END RECORD
DEIFNE attributes DYNAMIC ARRAY OF RECORD
 pkey STRING,
 name STRING
 END RECORD

Fill the display attributes array with color and video attributes. These must be specified in lowercase
characters and separated by a blank (ex: "red reverse"):

FOR i=1 TO data.getLength() -- length from data array!
 LET attributes[i].name = "blue reverse"
END FOR

Then, attach the array to the dialog with the setCellAttributes() method, in a BEFORE INPUT or
BEFORE DISPLAY block:

BEFORE DISPLAY
 CALL DIALOG.setCellAttributes(attributes)

Like data values, if you change the cell attributes during the dialog, these are not displayed automatically
unless the UNBUFFERED mode is used.

ON ACTION modify_cell_attribute
 LET attributes[arr_curr()].name = "red reverse"

If you set NULL to a element, the default TTY attributes will be reset:

ON ACTION clean_cell_attribute
 LET attributes[arr_curr()].name = NULL

ui.Dialog.setCompleterItems
Define autocompletion items for the a field defined with COMPLETER attribute.

Syntax

setCompleterItems(
 items-array DYNAMIC ARRAY OF STRING)

1. items-array defines the list of proposals to be passed to the front-end.

Usage

The setCompleterItems(items-array) dialog method defines the list of proposals for the current
field, to implement autocompletion.

The field must be defined in the form with the COMPLETER attribute.

Library reference | 1811

The list of proposal items is passed as a dynamic array of strings:

DEFINE items DYNAMIC ARRAY OF STRING

To cleanup the proposal list for a give field, pass NULL as second parameter to the function.

Important: The method will raise error -8114, if the list of items contains more than 50 elements.
Note that this error is not trappable with exception handlers like TRY/CATCH, the code must avoid
to reach the limit.

See Enabling autocompletion on page 1274 for more details.

Example

DEFINE items DYNAMIC ARRAY OF STRING
...
 ON CHANGE firstname
 -- fill the array with items
 LET items[1] = "Ann"
 LET items[2] = "Anna"
 LET items[3] = "Annabel"
 CALL DIALOG.setCompleterItems(items)

ui.Dialog.setCurrentRow
Sets the current row in the specified list.

Syntax

setCurrentRow(
 name STRING,
 row INTEGER)

1. name is the screen array name.
2. row is the new row in the array.

Usage

Use the setCurrentRow() method to change the current row in an INPUT ARRAY or DISPLAY ARRAY
list. You must pass the name of the screen array to identify the list, and the new row number.

DEFINE x INTEGER
DIALOG
 DISPLAY ARRAY custlist TO sa_custlist.*
 ...
 END DISPLAY
 ON ACTION goto_x
 CALL DIALOG.setCurrentRow("sa_custlist", x)
 ...

Moving to a different row with setCurrentRow() will not trigger control blocks such as BEFORE ROW /
AFTER ROW, as the fgl_set_arr_curr() built-in function does.

The setCurrentRow() method will not set the focus; You need to use NEXT FIELD to set the focus to a
list. (This works with DISPLAY ARRAY as well as with INPUT ARRAY.)

If the passed row index is lower than 1, the first row will be selected. If the row index is greater than the
total number of rows, the last row will be selected.

If the new current row is out of the current page of rows, the dialog will adapt the list offset to make the new
current row visible.

Library reference | 1812

If multi-row selection is enabled, all selection flags of rows are cleared, and the new current row gets
automatically selected.

ui.Dialog.setFieldActive
Enable and disable form fields.

Syntax

setFieldActive(
 field-list STRING,
 active BOOLEAN)

1. field-list is the string with the list of field specification.
2. active is a boolean value.

Usage

The setFieldActive() method can be used to enable / disable form fields.

The field-list is a string containing the field qualifier, with an optional prefix ("[table.]column"), or a table
prefix followed by a dot and an asterisk ("table.*").

CALL DIALOG.setFieldActive("customer.cust_addr",
 (rec.cust_name IS NOT NULL))

Do not disable all fields of a dialog, otherwise the dialog execution stops (at least one field must get the
focus during a dialog execution).

For more details about field name specification, see Identifying fields in dialog methods on page 1818.

ui.Dialog.setFieldTouched
Sets the modification flag of the specified field.

Syntax

setFieldTouched(
 field-list STRING,
 touched BOOLEAN)

1. field-list is the string with the list of field specification.
2. touched is the boolean value to set the modification flag.

Usage

The setFieldTouched() method can be used to change the modification flag of the specified field(s).

The field-list is a string containing the field qualifier, with an optional prefix ("[table.]column"), or a table
prefix followed by a dot and an asterisk ("table.*").

You typically use this method to set the touched flag when assigning a variable, to emulate a user input.
Remember when using the UNBUFFERED mode, you don't need to display the value to the fields. The
setFieldTouched() method is provided as a 3GL replacement for the DISPLAY BY NAME / TO
instructions to set the modification flags.

ON ACTION zoom_city
 LET p_cust.cust_city = zoom_city()
 CALL DIALOG.setFieldTouched("customer.cust_city", TRUE)
 ...

Library reference | 1813

If the parameter is a screen record following by dot-asterisk, the method checks the modification flags of
all the fields that belong to the screen record. You typically use this to reset the touched flags of a group of
fields, after modifications have been saved to the database, to get back to the initial state of the dialog:

ON ACTION save
 CALL save_cust_record()
 CALL DIALOG.setFieldTouched("customer.*", FALSE)
 ...

The modification flags are reset to false when using an INPUT ARRAY list, every time you leave the
modified row.

For more details about field name specification, see Identifying fields in dialog methods on page 1818.

ui.Dialog.setFieldValue
Sets the value of a field controlled by the dialog object.

Syntax

setFieldValue(
 name STRING,
 value fgl-type)

1. name is the name of the field.
2. value is the value to be set.

Usage

The setFieldValue() method can be used when implementing a dynamic dialog, to set the value of a
field:

DEFINE default_address STRING,
 default_creadate DATE
...
CALL d.setFieldValue("customer.cust_addr", default_address)
CALL d.setFieldValue("customer.cust_creadate", default_creadate)

The first parameter defines the field to be set. For more details about field name specification, see
Identifying fields in dialog methods on page 1818.

When used in a dynamic dialog controlling a list of records, this methods sets the value for a field in the
current row. The current row can be set with the setCurrentRow() method. This is also true when filling
the dynamic dialog with rows: You must first set the current row with setCurrentRow(), then set field
(i.e. cell values) with setFieldValue().

Example

The following code example implements a FOR loop to copy values of all fields of the
d_disparr dialog to the field of the d_recinp dialog:

DEFINE row, i INTEGER,
 h base.SqlHandle,
 fields DYNAMIC ARRAY OF RECORD
 name STRING,
 type STRING
 END RECORD
 d_rec ui.Dialog,
 d_list ui.Dialog
...
 -- Fill the array with rows from an SqlHandle object
 CALL h.open()

Library reference | 1814

 LET row = 0
 WHILE status == 0
 -- must set the current row before setting values
 CALL d_list.setCurrentRow("sr_custlist", row:=row+1)
 FOR i = 1 TO h.getResultCount()
 CALL d_list.setFieldValue(h.getResultName(i),
 h.getResultValue(i))
 END FOR
 CALL h.fetch()
 END WHILE
 CALL d_list.setCurrentRow("sr_custlist", 1)
...
 -- Copy field values from d_list to d_rec dialog
 FOR i=1 TO fields.getLength()
 CALL d_rec.setFieldValue(fields[i].name,
 d_list.getFieldValue(fields[i].name)
)
 END FOR

ui.Dialog.setSelectionMode
Defines the row selection mode for the specified list.

Syntax

setSelectionMode(
 name STRING,
 mode INTEGER)

1. name is the screen array name.
2. mode defines the selection mode (0, 1).

Usage

In DISPLAY ARRAY instructions, the setSelectionMode() method can be used to enable/disable multi-
row selection.

Possible values of the mode parameter are 0 (single row selection) or 1 (multi-range selection). Other
values are reserved for future use.

If multi-row selection is switched off, selected rows get deselected.

For more details about multi-row selection, see Multiple row selection on page 1381.

ui.Dialog.setSelectionRange
Sets the row selection flags for a range of rows.

Syntax

setSelectionRange(
 name STRING,
 start INTEGER,
 end INTEGER,
 value BOOLEAN)

1. name is the screen array name.
2. start is the starting row index.
3. end is the ending row index.
4. value is the selection flag to set.

Library reference | 1815

Usage

If multi-row selection is enabled with setSelectionMode(), you can set the selection flags for a range of
rows with the setSelectionRange() method.

ON ACTION select_all
 CALL DIALOG.setSelectionRange("sr", 1, -1, TRUE)

The start and end index must be in the range of possible row indexes (from 1 to
DIALOG.getArrayLength()).

If you specify an end index of -1, it will set the flags from start index to the end of the list.

ui.Dialog.validate
Check form level validation rules.

Syntax

validate(
 field-list STRING)
 RETURNING result INTEGER

1. field-list is the string with the list of field specification.

Usage

Use the validate() method in order to execute NOT NULL, REQUIRED and INCLUDE validation rules
defined in the form specification files.

Can the method by passing a list of fields or screen records as parameter.

The method returns zero if success and the input error code of the first field which does not satisfy the
validation rules.

The current field is always checked, even if it is not part of the validation field list. This is mandatory,
otherwise the current field may be left with invalid data.

If an error occurs, the validate() method automatically displays the corresponding error message, and
registers the next field to jump to when the interactive instruction gets the control back.

The validate() method does not stop code execution if an error is detected. You must execute a
CONTINUE DIALOG or CONTINUE INPUT instruction to cancel the code execution.

A typical usage is for a "save" action:

ON ACTION save
 IF DIALOG.validate("cust.*") < 0 THEN
 CONTINUE DIALOG
 END IF
 CALL customer_save()

For more details about field name specification, see Identifying fields in dialog methods on page 1818.

ui.Dialog.visualToArrayIndex
Converts the visual index to the program array index for a given screen array.

Syntax

visualToArrayIndex(
 name STRING,
 index INTEGER)

Library reference | 1816

1. name is the screen array name.
2. index is the index of the row as seen by the end user.

Usage

When the end user sorts rows in a table, the visual row index may differ from the program array index.

Use this method to convert a row index as seen by the end user, to the program array index. For example,
if the application implements a feature that allows the user to enter a row index to jump to that row, it will
be entered as a visual row index. You must convert this index to the program array index, for example to
make a setCurrentRow().

CALL DIALOG.setCurrentRow("sr", DIALOG.visualToArrayIndex("sr", user_index))

Usage
Referencing the current dialog

In order to reference the current dialog, you can define a variable with the ui.Dialog type, and get the
current dialog object with the ui.Dialog.getCurrent() method:

DEFINE d ui.Dialog

INPUT BY NAME ...
 BEFORE DIALOG
 LET d = ui.Dialog.getCurrent()
 CALL d.setActionActive("zoom", FALSE)
 ...

As an alternative and to simplify programming, you should use the DIALOG keyword in the context of the
interactive instruction block. the DIALOG keyword is a predefined object variable referencing the current
dialog. The DIALOG variable can only be used inside the interactive instruction block:

INPUT BY NAME custid, custname
 ON ACTION disable
 CALL DIALOG.setFieldActive("custid", FALSE)
END INPUT

Passing a dialog reference to functions

Using the DIALOG keyword outside a dialog instruction block results in a compilation error. However, you
can pass the object to a function that defines the dialog parameter with the ui.Dialog type.

The next example passes the DIALOG object reference to the setupDialog() function, which
implements action activation rules that must be applied after different events, during the dialog execution:

INPUT BY NAME custid, custname, custaddr
 BEFORE INPUT
 CALL setupDialog(DIALOG)
 ...
 ON ACTION check_address
 ...
 CALL setupDialog(DIALOG)
 ...
END INPUT

FUNCTION setupDialog(d)
 DEFINE d ui.Dialog
 DEFINE isAdmin BOOLEAN
 LET isAdmin = (global_params.user_group == "admin")
 CALL d.setActionActive("delete", isAdmin)
 CALL d.setActionActive("convert", isAmdin)
 CALL d.setActionActive("check_address",

Library reference | 1817

 isAdmin AND rec.custaddr IS NOT NULL)
END FUNCTION

Identifying actions in dialog methods

In ui.Dialog methods such as setActionActive(), the first parameter identifies the action object
to be modified. This parameter can be full-qualified or partly-qualified. If you don't specify a full-qualified
name, the action object will be identified according to the focus context.

The action name specification can be any of the following:

• action-name
• dialog-name.action-name
• dialog-name.field-name.action-name
• field-name.action-name (singular dialogs only)

Here action-name identifies the name of the action specified in ON ACTION action-name or COMMAND
"action-name" handlers, while dialog-name identifies the singular dialog or sub-dialog and field-name
defines the field bound to the action INFIELD clause of ON ACTION.

The action name must be passed in lowercase letters.

The runtime system will raise the error -8089 if the action specified by [dialog-name.][field-name.]action-
name can not be found within the current dialog.

Note: As a general rule, assign unique action names for each specific dialog action, to avoid the
usage of dialog and/or field identifiers.

In the DIALOG instruction, actions can be prefixed with the sub-dialog identifier. However, if methods like
setActionActive() are called in the context of the sub-dialog, the prefix can be omitted. When using
a field-specific action defined with the INFIELD clause of ON ACTION, you can identify the action with the
full-qualified name dialog-name.field-name.action-name. Like sub-dialog actions, if you specify only action-
name, the runtime system will search for the action object according to the focus context.

Note that an INPUT or CONSTRUCT sub-dialogs have no identifier by default. The dialog name can be
defined with the NAME attribute. For more details, see Identifying sub-dialogs in procedural DIALOG on
page 1152.

When using a singular dialog like INPUT, you can identify field-specific actions by field-name.action-name,
if the dialog was defined without a NAME attribute.

Example

DIALOG ...
 ...
 INPUT BY NAME cust_rec.* ATTRIBUTES(NAME="cust")
 ON ACTION compare
 ...
 ON ACTION check INFIELD cust_city
 ...
 END INPUT
 ...
 DISPLAY ARRAY orders TO sr_ord.*
 ...
 ON ACTION archive
 ...
 END DISPLAY
 ...
 ON ACTION print
 ...
 ON ACTION disable_all
 CALL DIALOG.setActionActive("cust.compare", FALSE)
 CALL DIALOG.setActionActive("cust.cust_city.check", FALSE)

Library reference | 1818

 CALL DIALOG.setActionActive("sr_ord.archive", FALSE)
 CALL DIALOG.setActionActive("print", FALSE)
END DIALOG

Identifying fields in dialog methods

In ui.Dialog methods such as setFieldActive(), the first parameter identifies the form field (or, for
some methods, a list of fields) to be modified. The form field names can be full-qualified or partly-qualified.

Fields are identified by the form field name specification, not the program variable name used by the
dialog. Remember form fields are bound to program variables with the binding clause of dialog instruction
(INPUT variable-list FROM field-list, INPUT BY NAME variable-list, CONSTRUCT
BY NAME sql ON column-list,CONSTRUCT sql ON column-list FROM field-list, INPUT
ARRAY array-name FROM screen-array.*).

The field name specification can be any of the following:

• field-name
• table-name.field-name
• screen-record-name.field-name
• FORMONLY.field-name

Here are some examples:

• "cust_name",
• "customer.cust_name",
• "cust_screen_record.cust_name",
• "item_screen_array.item_label",
• "formonly.total",
• "customer.*" (only some methods accept the "dot asterisk" notation)

When no field name prefix is used, the first form field matching that field name will be used. If the field
specification is invalid (i.e. no field in the current dialog matches the field specification), the method will
throw the error -1373.

When using a prefix in the field name specification, it must match the field prefix assigned by the dialog
according to the field binding method used at the beginning of the interactive statement: When no screen-
record has been explicitly specified in the field binding clause (for example, when using INPUT BY NAME
variable-list,) the field prefix must be the database table name (or FORMONLY) used in the form file,
or any valid screen-record using that field. But when the FROM clause of the dialog specifies an explicit
screen-record (for example, in INPUT variable-list FROM screen-record.* /field-list-
with-screen-record-prefix or INPUT ARRAY array-name FROM screen-array.*) the field
prefix must be the screen-record name used in the FROM clause.

The methods validate(), setFieldActive(), setFieldTouched(), getFieldTouched() can
take a list of fields as parameter, by using the "dot-asterisk " notation (screen-record.*). This way you can
check, query or change a complete list of fields in one method call:

ON ACTION save
 CALL save_cust_record()
 CALL DIALOG.setFieldTouched("customer.*", FALSE)
 ...

Examples
Example 1: Disable fields dynamically

FUNCTION input_customer()
 DEFINE custid INTEGER
 DEFINE custname CHAR(10)
 INPUT BY NAME custid, custname

Library reference | 1819

 ON ACTION enable
 CALL DIALOG.setFieldActive("custid",1)
 ON ACTION disable
 CALL DIALOG.setFieldActive("custid",0)
 END INPUT
END FUNCTION

Example 2: Get the form and hide fields

FUNCTION input_customer()
 DEFINE f ui.Form
 DEFINE custid INTEGER
 DEFINE custname CHAR(10)
 INPUT BY NAME custid, custname
 BEFORE INPUT
 LET f = DIALOG.getForm()
 CALL f.setElementHidden("customer.custid",1)
 END INPUT
END FUNCTION

Example 3: Pass a dialog object to a function

 FUNCTION input_customer()
 DEFINE custid INTEGER
 DEFINE custname CHAR(10)
 INPUT BY NAME custid, custname
 BEFORE INPUT
 CALL setup_dialog(DIALOG)
 END INPUT
 END FUNCTION

 FUNCTION setup_dialog(d)
 DEFINE d ui.Dialog
 CALL d.setActionActive("print",user.can_print)
 CALL d.setActionActive("query",user.can_query)
 END FUNCTION

Example 4: Set display attributes for cells

FUNCTION display_items()
 DEFINE i INTEGER
 DEFINE items DYNAMIC ARRAY OF RECORD
 key INTEGER,
 name CHAR(10)
 END RECORD
 DEFINE attributes DYNAMIC ARRAY OF RECORD
 key STRING,
 name STRING
 END RECORD

 FOR i=1 TO 10
 CALL items.appendElement()
 LET items[i].key = i
 LET items[i].name = "name " || i
 CALL attributes.appendElement()
 IF i MOD 2 = 0 THEN
 LET attributes[i].key = "red"
 LET attributes[i].name = "blue reverse"
 ELSE
 LET attributes[i].key = "green"
 LET attributes[i].name = "magenta reverse"
 END IF

Library reference | 1820

 END FOR

 DISPLAY ARRAY items TO sr.* ATTRIBUTES(UNBUFFERED)
 BEFORE DISPLAY
 CALL DIALOG.setCellAttributes(attributes)
 ON ACTION att_modify_cell
 LET attributes[2].key = "red reverse"
 ON ACTION att_clear_cell
 LET attributes[2].key = NULL
 END DISPLAY

END FUNCTION

The ComboBox class
The ui.ComboBox class provides an interface to the COMBOBOX form field view in the abstract user
interface tree.

In .per form specification files, a COMBOBOX form field defines both a form field and a view for that model.
The ui.ComboBox class is an interface to the view of a COMBOBOX form field. It is typically used to
configure the widget dynamically in programs, for example to create the list of items shown in the drop
down box.

ui.ComboBox methods
Methods of the ui.ComboBox class.

Table 392: Class methods

Name Description

ui.ComboBox.forName(
 name STRING)
 RETURNING result ui.ComboBox

Search for a combobox in the current form.

ui.ComboBox.setDefaultInitializer(
 funcname STRING)

Define the default initializer for combobox form
items.

Table 393: Object methods

Name Description

addItem(
 value STRING,
 label STRING)

Add an element to the item list.

clear()
Clear the item list of a combobox.

getColumnName()
 RETURNING result STRING

Get the column name of the form field.

getIndexOf(
 name STRING)

Get an item position by name.

Library reference | 1821

Name Description

 RETURNING result INTEGER

getItemCount()
 RETURNING result INTEGER

Get the number of items.

getItemName(
 position INTEGER)
 RETURNING result STRING

Get an item name by position.

getItemText(
 position INTEGER)
 RETURNING result STRING

Get the item text by position.

getTableName()
 RETURNING result STRING

Get the table prefix of the form field.

getTag()
 RETURNING result STRING

Get the combobox tag value.

getTextOf(
 name STRING)
 RETURNING result STRING

Get the item text by name.

removeItem(
 name STRING)

Remove an item by name.

ui.ComboBox.setDefaultInitializer
Define the default initializer for combobox form items.

Syntax

ui.ComboBox.setDefaultInitializer(
 funcname STRING)

1. funcname is the name of the initialization function.

Usage

The ui.ComboBox.setDefaultInitializer() class method defines the default initialization function
to be called each time a COMBOBOX form field is created when loading forms. Use this method if you
want to define a global/default initialization function for all comboboxes of the program. For individual
comboboxes, consider using the INITIALIZER form field attribute instead.

Tip: Consider defining the initialization function name in lowercase letters. The language syntax
allows case-insensitive functions names, but to avoid mistakes, it is recommended to use a
common naming convention with lowercase letters.

The function is called with the ui.ComboBox object as the parameter.

The combobox initialization functions are typically used to fill the drop down list with items.

Library reference | 1822

Example

MAIN
 ...
 CALL ui.ComboBox.setDefaultInitializer("cb_init")
 ...
 OPEN FORM f1 FROM "customers"
 DISPLAY FORM f1 -- initialization function is called
 ...
END MAIN

FUNCTION cb_init(cb)
 DEFINE cb ui.ComboBox
 CALL cb.clear()
 CALL cb.addItem(0,"Undefined")
 ...
END FUNCTION

ui.ComboBox.forName
Search for a combobox in the current form.

Syntax

ui.ComboBox.forName(
 name STRING)
 RETURNING result ui.ComboBox

1. name is the name of COMBOBOX form item.

Usage

The ui.ComboBox.forName() class method searches for a ui.ComboBox object by form field name in
the current form.

Important: The form field name must be in lower-case letters: The language syntax allows case-
insensitive form field names, and the runtime system must reference fields in lowercase letters
internally. Since the form compiler converts field names to lowercase in the 42f file, the name must
be lowercase in this method call.

After loading a form with OPEN WINDOW WITH FORM, use the class method to retrieve a ui.ComboBox
object into a variable defined as a ui.ComboBox.

DEFINE cb ui.ComboBox
LET cb = ui.ComboBox.forName("formonly.airport")

Verify the function has returned an object, as the form field may not exist.

IF cb IS NULL THEN
 ERROR "Form field not found in current form"
 EXIT PROGRAM
END IF

Once instantiated, the ui.ComboBox object can be used, for example to fill the items of the drop down list.

CALL cb.clear()
CALL cb.addItem(1,"Paris")
CALL cb.addItem(2,"London")
CALL cb.addItem(3,"Madrid")

Library reference | 1823

ui.ComboBox.addItem
Add an element to the item list.

Syntax

addItem(
 value STRING,
 label STRING)

1. value is the unique key that identifies the item.
2. label is the text to be displayed in the drop down list.

Usage

The addItem() method adds an item to the end of the drop down list of the COMBOBOX.

The first parameter is the value that can be set in the form field. The second parameter is the label to be
displayed in the drop down list. If the second parameter is NULL,the runtime system automatically uses the
first parameter as the display value.

Uniqueness is not checked by the runtime system. Make sure that the items created are unique, regarding
the value key and the display label.

Trailing spaces should be avoided when populating the first parameter because values get truncated when
field validation occurs, and the resulting value (without trailing spaces) will no longer match the COMBOBOX
item name. Additionally, trailing spaces in the second parameter may cause the COMBOBOX to be much
wider than expected. To avoid such problems, use VARCHAR or STRING variables, or use the CLIPPED
operator with CHAR variables.

ui.ComboBox.clear
Clear the item list of a combobox.

Syntax

clear()

Usage

The clear() method clears the item list of the combobox.

If the item list is empty, the COMBOBOX drop-down button shows an empty list on the client side.

ui.ComboBox.getColumnName
Get the column name of the form field.

Syntax

getColumnName()
 RETURNING result STRING

Usage

The getColumnName() method returns the form field column name. The form field column name can be
NULL if not defined at the form field level.

Library reference | 1824

Use the getTableName() and getColumnName() methods together in order to identify the form field
associated with the COMBOBOX. This allows to identify the combobox field in your program, for example to
fill the drop down list with the appropriate items.

IF cb.getTableName()||"."||cb.getColumnName()
 == "customer.cust_city" THEN
 CALL cb.clear()
 CALL cb.addItem(1, "Paris")
 CALL cb.addItem(2, "London")
 CALL cb.addItem(3, "Madrid")
END IF

ui.ComboBox.getIndexOf
Get an item position by name.

Syntax

getIndexOf(
 name STRING)
 RETURNING result INTEGER

1. name is the name of a combobox item.

Usage

The getIndexOf() method takes an item name as parameter and returns the position of the item in the
drop down list.

The first item is at position 1. The method returns 0 (zero) if the item name does not exist.

The next example checks for item existence, before adding the item.

IF cb.getIndexOf("SFO") == 0 THEN
 CALL cb.addItem("SFO", "San Francisco International Airport, CA")
END IF

ui.ComboBox.getItemCount
Get the number of items.

Syntax

getItemCount()
 RETURNING result INTEGER

Usage

The getItemCount() method returns the current number of items defined for the COMBOBOX form field.

The method returns 0 (zero) if no items are defined.

ui.ComboBox.getItemName
Get an item name by position.

Syntax

getItemName(
 position INTEGER)
 RETURNING result STRING

Library reference | 1825

1. position is the index of the combobox item.

Usage

The getItemName() method returns the name of an item at the give position.

The first item starts at position 1.

ui.ComboBox.getItemText
Get the item text by position.

Syntax

getItemText(
 position INTEGER)
 RETURNING result STRING

1. position is the index of the combobox item.

Usage

The getItemText() method returns the display label of an item at the give position.

The first item starts at position 1.

ui.ComboBox.getTableName
Get the table prefix of the form field.

Syntax

getTableName()
 RETURNING result STRING

Usage

The getTableName() method returns the name of the form field table prefix. The form field table prefix
can be NULL if not defined at the form field level.

This allows to identify a COMBOBOX field in your program, for example to fill the drop down list with the
appropriate items.

ui.ComboBox.getTag
Get the combobox tag value.

Syntax

getTag()
 RETURNING result STRING

Usage

The getTag() method returns the value define by the TAG attribute.

Use the tag to mark COMBOBOX form items with your own flags, in order to adapt the configuration of the
combobox dynamically by program. For example, if TAG contains the token "short", fill the drop down list
with short names, otherwise fill with long names. The same code can then be used for different COMBOBOX
form fields.

Library reference | 1826

ui.ComboBox.getTextOf
Get the item text by name.

Syntax

getTextOf(
 name STRING)
 RETURNING result STRING

1. name is the name of a combobox item.

Usage

The getTextOf() method returns the display label of the item identified by the name passed as
parameter.

The method returns NULL if the item name does not exist.

ui.ComboBox.removeItem
Remove an item by name.

Syntax

removeItem(
 name STRING)

1. name is the name of a combobox item.

Usage

The removeItem() method deletes an item from the list. The item to be removed is identified by the
name passed as a parameter. If the item does not exist, the method returns without error.

Examples
Example Get a ComboBox form field view and fill the item list

Form Specification File:

DATABASE FORMONLY
LAYOUT
GRID
{
 Airport: [cb01]
}
END
END
ATTRIBUTES
COMBOBOX cb01 = FORMONLY.airport TYPE CHAR;
END

Program File:

MAIN
 DEFINE cb ui.ComboBox
 DEFINE airport CHAR(3)
 OPEN FORM f1 FROM "combobox"
 DISPLAY FORM f1
 LET cb = ui.ComboBox.forName("formonly.airport")
 IF cb IS NULL THEN
 ERROR "Form field not found in current form"
 EXIT PROGRAM

Library reference | 1827

 END IF
 CALL cb.clear()
 CALL cb.addItem("CDG", "Paris-Charles de Gaulle, France")
 CALL cb.addItem("LCY", "London-City Airport, UK")
 CALL cb.addItem("LHR", "London-Heathrow, UK")
 CALL cb.addItem("FRA", "Frankfurt Airport, Germany")
 IF cb.getIndexOf("SFO") == 0 THEN
 CALL cb.addItem("SFO", "San Francisco International Airport, CA")
 END IF
 INPUT BY NAME airport
END MAIN

Example Using the INITIALIZER attribute in the form file

Form Specification File:

DATABASE FORMONLY
LAYOUT
GRID
{
 Airport: [cb01]
}
END
END
ATTRIBUTES
COMBOBOX cb01 = FORMONLY.airport TYPE CHAR, INITIALIZER=initcombobox;
END

Initialization function:

FUNCTION initcombobox(cb)
 DEFINE cb ui.ComboBox
 CALL cb.clear()
 CALL cb.addItem("CDG", "Paris-Charles de Gaulle, France")
 CALL cb.addItem("LCY", "London-City Airport, UK")
 CALL cb.addItem("LHR", "London-Heathrow, UK")
 CALL cb.addItem("FRA", "Frankfurt Airport, Germany")
 CALL cb.addItem("SFO", "San Francisco International Airport, CA")
END FUNCTION

The DragDrop class
The ui.DragDrop class is used to control the events related to drag & drop events.

When implementing drag & drop in a dialog, the ON DRAG* / ON DROP dialog control blocks take a
ui.DragDrop variable as a parameter to let you configure and control the drag & drop events. The
ui.DragDrop variable must be declared in the scope of the dialog implementing drag & drop.

ui.DragDrop methods
Methods of the ui.DragDrop class.

Table 394: Object methods

Name Description

addPossibleOperation(
Add a possible operation.

Library reference | 1828

Name Description

 oper STRING)

dropInternal()
Perform built-in row drop in trees.

getBuffer()
 RETURNING result STRING

Get drag & drop data from the buffer.

getLocationParent()
 RETURNING result INTEGER

Get the index of the parent node where the object
was dropped.

getLocationRow()
 RETURNING result INTEGER

Get the index of the target row where the object
was dropped.

getOperation()
 RETURNING result STRING

Identify the type of operation on drop.

getSelectedMimeType()
 RETURNING result STRING

Get the previously selected MIME type.

selectMimeType(
 type STRING)

Select the MIME type before getting the data.

setBuffer(
 data STRING)

Set the text data of the dragged object.

setFeedback(
 type STRING)

Define the appearance of the target during Drag &
Drop.

setMimeType(
 type STRING)

Define the MIME type of the dragged object.

setOperation(
 oper STRING)

Define the type of Drag & Drop operation.

ui.DragDrop.addPossibleOperation
Add a possible operation.

Syntax

addPossibleOperation(
 oper STRING)

1. oper is the name of a drag & drop operation.

Library reference | 1829

Usage

Drag & drop actions can be of different kinds; you can do a copy of the dragged object, or move the
dragged object from the source to the destination.

The default drag & drop operation is defined by a call to setOperation() method in ON DRAG_START.
Use the addPossibleOperation() method to define additional operations that are allowed.

See setOperation() for possible values.

ui.DragDrop.dropInternal
Perform built-in row drop in trees.

Syntax

dropInternal()

Usage

In order to simplify drag & drop programming in the same list, the ui.DragDrop class provides the
dropInternal() utility method, to be called in the ON DROP block. This method will perform all the row
changes in the array and move row selection as well as cell attributes.

When implementing drag & drop on a tree-view, dropping an element on the tree requires complex
code in order to handle parent-child relationships. Nodes can be inserted under a parent between two
children, appended at the end of the children list, and at different levels in the tree hierarchy. However, the
dropInternal() method can also be used simple lists displayed in a regular TABLE.

A call to dropInternal() will silently be ignored, if the drag source is not the drop target, or if the
method is called in a different context as ON DROP.

For more details about dropping elements in tree-views, see Drag & drop on page 1411.

ui.DragDrop.getBuffer
Get drag & drop data from the buffer.

Syntax

getBuffer()
 RETURNING result STRING

Usage

After identifying the MIME type of a dropped object with getSelectedMimeType(), you can call the
getBuffer() method to get text data from the drag & drop buffer.

Drag & drop data is only available at ON DROP time, therefore, the getBuffer() method must be called
in ON DROP only.

ui.DragDrop.getLocationParent
Get the index of the parent node where the object was dropped.

Syntax

getLocationParent()
 RETURNING result INTEGER

Library reference | 1830

Usage

When using a tree view, a node can be dropped as a sibling or as a child node to another node. In order
to distinguish between the cases, you must use the getLocationParent() method, which returns the
index of the parent node of the drop target node returned by getLocationRow().

If both methods return the same row index, you must append the dropped row as a child of the target node.
Otherwise, getLocationParent() identifies the parent node where the dropped row has to be added as
a child, and getLocationRow() is the index of a sibling node. In the last case the dropped node must be
inserted before the node identified by getLocationRow().

These methods are typically used in the ON DROP block, but can also be used in ON DRAG_OVER to deny
the drop according to the indexes returned; for example, the program might only allow the drop of objects
as new children for a given parent node.

ui.DragDrop.getLocationRow
Get the index of the target row where the object was dropped.

Syntax

getLocationRow()
 RETURNING result INTEGER

Usage

The getLocationRow() method returns the index of the row in the drop target list pointed to by the
mouse cursor.

This method is typically used in the ON DROP block to get the index of the target row to be modified or
replaced by the dragged object.

The method can also be used in ON DRAG_OVER to deny the drop according to the current target row
returned by getLocationRow()

ui.DragDrop.getSelectedMimeType
Get the previously selected MIME type.

Syntax

getSelectedMimeType()
 RETURNING result STRING

Usage

Before retrieving data from the drag & drop buffer with getBuffer(), first call the
getSelectedMimeType() method to identify the data format that was previously selected by a
selectMimeType() call.

The getSelectedMimeType() method is typically called in ON DROP to identity the format of the
dropped object.

ui.DragDrop.getOperation
Identify the type of operation on drop.

Syntax

getOperation()
 RETURNING result STRING

Library reference | 1831

Usage

The getOperation() method returns the type of the current drag & drop operation ("copy", "move", or
"none").

According to the value returned by this method, the program can make the appropriate changes in the data
model. For example, after a row has been dropped into another list, the source list can remove the original
row if the operation was a "move", but keeps the original row if the operation was a "copy".

The getOperation() method is typically called in the ON DRAG_FINISHED block.

ui.DragDrop.selectMimeType
Select the MIME type before getting the data.

Syntax

selectMimeType(
 type STRING)

1. type defines the MIME type for dragged objects.

Usage

Call the selectMimeType() method to check that data is available in a format identified by the MIME
type passed as parameter.

If this type of data is available in the buffer, the method returns TRUE and you can later get the data with
getBuffer().

The selectMimeType() method is typically used in ON DRAG_ENTER, ON DRAG_OVER to deny the drag
& drop operation if none of the supported MIME types is available in the buffer.

ui.DragDrop.setBuffer
Set the text data of the dragged object.

Syntax

setBuffer(
 data STRING)

1. data is a string expression containing drag & drop data.

Usage

Use the setBuffer() method to provide the text data of objects dragged from the program to an external
application.

The setBuffer() method is typically used in an ON DRAG_START block in conjunction with
setMimeType().

By default, the dialog will serialize the data of the selected rows as a tab-separated list of values.

The text/plain MIME type is the default.

ui.DragDrop.setFeedback
Define the appearance of the target during Drag & Drop.

Syntax

setFeedback(
 type STRING)

Library reference | 1832

1. type is the type of feedback to display during the drag & drop operation.

Usage

The setFeedback() method defines the appearance the target object must have during the drag & drop
process.

For example, in a table or tree view, when the mouse is flying over rows in the drop target, a different
visual indicator will appear according to the value that was passed to setFeedback().

Possible values for the setFeedback() method are:

Table 395: Values for the setFeedback() method

Parameter Values Description

all Dragged object will be dropped somewhere on the
target widget, the exact location does not matter.

insert In lists, dragged object will be inserted in between
existing rows.

select In lists, dragged object will replace the current row
under the mouse.

ui.DragDrop.setMimeType
Define the MIME type of the dragged object.

Syntax

setMimeType(
 type STRING)

1. type defines the MIME type for the drag & drop buffer.

Usage

Objects dragged from the program to an external application need to be identified with a MIME type and
the program must provide the data. The MIME type can be specified with the setMimeType() method.

The setMimeType() method is typically used in an ON DRAG_START block in conjunction with
setBuffer().

By default, the source target will use the text/plain MIME type and copy the data of the selected rows into
the Drag & Drop buffer.

ui.DragDrop.setOperation
Define the type of Drag & Drop operation.

Syntax

setOperation(
 oper STRING)

1. oper is the name of a drag & drop operation.

Usage

Drag & drop actions can be of different kinds; you can do a copy of the dragged object, or move the
dragged object from the source to the destination.

Library reference | 1833

Use the setOperation() method to define/force the type of drag & drop operation or to deny/cancel the
drag & drop process.

Table 396: Parameters for the setOperation() method

Parameter Value Description

NULL To deny/cancel the drag & drop process.

copy To allow drag & drop as a copy of the source
object.

move To allow drag & drop as a move of the source
object.

The setOperation() method can be called in different drag & drop triggers.

A common usage is to deny drag & drop by passing NULL in the ON DRAG_ENTER and/or ON DRAG_OVER
blocks because the dragged object does not correspond to the type of objects the target can receive.

This method is also used in ON DRAG_START to force a specific type of drag & drop operation (copy or
move), or to deny drag start if the context does not allow a drag & drop action.

When called in the ON DRAG_ENTER block, the method forces a specific drag & drop operation.

The om package
These topics cover the built-in classes for the om class

• The DomDocument class on page 1833
• The DomNode class on page 1839
• The NodeList class on page 1858
• The SaxAttributes class on page 1860
• The SaxDocumentHandler class on page 1865
• The XmlReader class on page 1871
• The XmlWriter class on page 1876

The DomDocument class
The om.DomDocument class provides methods to manipulate a data tree, following the DOM standards.

A om.DomDocument object holds a DOM tree of om.DomNode objects.

A unique root om.DomNode object is owned by a om.DomDocument object.

om.DomDocument methods
Methods of the om.DomDocument class.

Table 397: Class methods

Name Description

om.DomDocument.create(
 tag STRING)
 RETURNING result om.DomDocument

Create a new empty om.DomDocument object.

om.DomDocument.createFromString(
 string STRING)

Create a new om.DomDocument object from an
XML string.

Library reference | 1834

Name Description

 RETURNING result om.DomDocument

om.DomDocument.createFromXmlFile(
 filename STRING)
 RETURNING result om.DomDocument

Create a new om.DomDocument object from an
XML file.

Table 398: Object methods

Name Description

createChars(
 string STRING)
 RETURNING result om.DomNode

Create a new text node in the DOM document.

createElement(
 tag STRING)
 RETURNING result om.DomNode

Create a new element node in the DOM document.

createEntity(
 name STRING)
 RETURNING result om.DomNode

Create a new entity node in the DOM document.

copy(
 source om.DomNode,
 deep INTEGER)
 RETURNING result om.DomNode

Create a new element node by copying an existing
node.

getDocumentById(
 id INTEGER)
 RETURNING result om.DomNode

Returns a node element according to the internal
AUI tree id.

getDocumentElement()
 RETURNING result om.DomNode

Returns the root node element of the DOM
document.

removeElement(
 element om.DomNode)

Remove a DomNode object and all its
descendants.

om.DomDocument.create
Create a new empty om.DomDocument object.

Syntax

om.DomDocument.create(
 tag STRING)
 RETURNING result om.DomDocument

1. tag defines the tag name of the root element.

Library reference | 1835

Usage

Use the class method om.DomDocument.create() to instantiate a new, empty DOM document object.

To hold the reference to a DOM document object, define a variable with the type om.DomDocument type.

Example

DEFINE d om.DomDocument
LET d = om.DomDocument.create("Vehicles")

om.DomDocument.createFromString
Create a new om.DomDocument object from an XML string.

Syntax

om.DomDocument.createFromString(
 string STRING)
 RETURNING result om.DomDocument

1. string is the string expression containing XML data.

Usage

Use the class method om.DomDocument.createFromString() to instantiate a new DomDocument
object that is filled with the content of the specified XML formatted string.

To hold the reference to a DOM document object, define a variable with the type om.DomDocument type.

Example

DEFINE d om.DomDocument
LET d = om.DomDocument.createFromString("<Vehicles/>")

om.DomDocument.createFromXmlFile
Create a new om.DomDocument object from an XML file.

Syntax

om.DomDocument.createFromXmlFile(
 filename STRING)
 RETURNING result om.DomDocument

1. filename is the path to the file containing XML data.

Usage

Use the class method om.DomDocument.createFromXmlFile() to instantiate a new DomDocument
object that is filled with the content of the specified XML file.

To hold the reference to a DOM document object, define a variable with the type om.DomDocument type.

Example

DEFINE d om.DomDocument
LET d = om.DomDocument.createFromXmlFile("vehicles.xml")

Library reference | 1836

om.DomDocument.getDocumentElement
Returns the root node element of the DOM document.

Syntax

getDocumentElement()
 RETURNING result om.DomNode

Usage

The method getDocumentElement() returns the root om.DomNode element node of the DOM
document.

To hold the reference to the root node, define a variable with the type om.DomNode type.

Example

DEFINE n om.DomNode
LET n = mydoc.getDocumentElement()

om.DomDocument.getElementById
Returns a node element according to the internal AUI tree id.

Syntax

getDocumentById(
 id INTEGER)
 RETURNING result om.DomNode

Usage

The method getElementById() returns the om.DomNode element of the DOM document according to
the internal id number passed as parameter.

Each DOM node gets an internal integer id when it is created in the abstract user interface tree, and can be
referenced by this unique id. The node id is typically used in other nodes, to reference a node in the DOM
document.

To hold the reference to the root node, define a variable with the type om.DomNode type.

Example

DEFINE n om.DomNode
LET n = mydoc.getElementById()

om.DomDocument.createChars
Create a new text node in the DOM document.

Syntax

createChars(
 string STRING)
 RETURNING result om.DomNode

1. string defines the content of the text node.

Library reference | 1837

Usage

Use the method createChars() to create a new om.DomNode text node. The content of the text node
must be passed as parameter.

The new created node will have the reserved tagName "@chars", and a single attribute named "@chars"
storing the character data.

To hold the reference to the new node, define a variable with the type om.DomNode type.

Example

MAIN
 DEFINE mydoc om.DomDocument
 DEFINE root, text om.DomNode
 LET mydoc = om.DomDocument.create("Test")
 LET root = mydoc.getDocumentElement()
 LET text = mydoc.createChars("Hello, world!")
 DISPLAY text.getAttribute("@chars")
 CALL root.appendChild(text)
 CALL root.writeXML("output.xml")
END MAIN

om.DomDocument.createElement
Create a new element node in the DOM document.

Syntax

createElement(
 tag STRING)
 RETURNING result om.DomNode

1. tag defines the tag name of the node.

Usage

Use the method createElement() to create a new om.DomNode element node. The tag name of the
element must be passed as parameter.

To hold the reference to the new node, define a variable with the type om.DomNode type.

Example

DEFINE n om.DomNode
LET n = mydoc.createElement("Car")

om.DomDocument.createEntity
Create a new entity node in the DOM document.

Syntax

createEntity(
 name STRING)
 RETURNING result om.DomNode

1. name defines the name of the entity node.

Library reference | 1838

Usage

Use the method createEntity() to create a new om.DomNode entity node. The entity name must be
passed as parameter.

The text representation of a entity node is &name;.

The new created node will have the reserved tagName "@entity" , with a single attribute named
"@entity" containing the text of the entity.

To hold the reference to the new node, define a variable with the type om.DomNode type.

Example

DEFINE n om.DomNode
LET n = mydoc.createEntity("quot")

om.DomDocument.copy
Create a new element node by copying an existing node.

Syntax

copy(
 source om.DomNode,
 deep INTEGER)
 RETURNING result om.DomNode

1. source references the source node to copy.
2. deep is a boolean to control the recursive node copy.

Usage

Use the method copy() to create a new om.DomNode element node from an existing node.

Pass TRUE as second parameter to clone a complete tree of nodes.

To hold the reference to the new node, define a variable with the type om.DomNode type.

Example

DEFINE n, s om.DomNode
LET s = mydoc.createElement("Car")
LET n = mydoc.copy(s, TRUE)

om.DomDocument.removeElement
Remove a DomNode object and all its descendants.

Syntax

removeElement(
 element om.DomNode)

1. element is the DOM node to be removed.

Usage

Use the removeElement() method to remove an element and all its descendants from DOM document.

Any reference to the removed om.DomNode objects becomes invalid.

Library reference | 1839

Examples
Example 1: Creating a DOM document

MAIN
 DEFINE d om.DomDocument
 DEFINE r om.DomNode
 LET d = om.DomDocument.create("MyDocument")
 LET r = d.getDocumentElement()
END MAIN

The DomNode class
The om.DomNode class provides methods to manipulate a DOM node of a data tree.

This class follows the DOM standards.

A DomNode object is a node (or element) of a DomDocument.

Tag and attribute names of DOM nodes are case sensitive; "Wheel" is not the same as "wheel".

Text nodes cannot have attributes, but they have plain text. In text nodes, the characters can be accessed
with the @chars attribute name. In XML representation, a text node is the text itself. Do not confuse it with
the parent node. For example, <Item id="32">Red shoes</Item> represents 2 nodes: The parent
'Item' node and a text node with string 'Red shoes'.

If you need to identify an element, use a common attribute like "name". If you need to label an element,
use a common attribute like "text".

om.DomNode methods
Methods of the om.DomNode class.

Table 399: Object methods: Node creation

Name Description

appendChild(
 node om.DomNode)

Adds an existing node at the end of the list of
children in the current node.

createChild(
 tag STRING)
 RETURNING result om.DomNode

Creates and adds an node at the end of the list of
children in the current node.

insertBefore(
 new om.DomNode,
 existing om.DomNode)

Inserts an existing node before the existing node
specified.

removeChild(
 node om.DomNode)

Deletes the specified child node from the current
node.

replaceChild(
 new om.DomNode,
 old om.DomNode)

Replaces a node by another in the children nodes
of the current node.

Library reference | 1840

Table 400: Object methods: In/Out

Name Description

loadXml(
 filename STRING)
 RETURNING result om.DomNode

Load an XML file into the current node.

parse(
 string STRING)
 RETURNING result om.DomNode

Parses an XML formatted string and creates the
DOM structure in the current node.

toString()
 RETURNING result STRING

Serializes the current node into an XML formatted
string.

write(
 sdh om.SaxDocumentHandler)

Processes a DOM document with a SAX document
handler.

writeXml(
 filename STRING)

Creates an XML file from the current DOM node.

Table 401: Object methods: Node identification

Name Description

getId()
 RETURNING result INTEGER

Returns the internal AUI tree id of a DOM node.

getTagName()
 RETURNING result STRING

Returns the XML tag name of a DOM node.

Table 402: Object methods: Attributes management

Name Description

getAttribute(
 name STRING)
 RETURNING result STRING

Returns the value of a DOM node attribute.

getAttributesCount()
 RETURNING result INTEGER

Returns the number of attributes in the DOM node.

getAttributeInteger(
 name STRING,
 def STRING)

Returns the value of a DOM node attribute, with
default integer value.

Library reference | 1841

Name Description

 RETURNING result INTEGER

getAttributeString(
 name STRING,
 def STRING)
 RETURNING result STRING

Returns the value of a DOM node attribute, with
default string value.

getAttributeName(
 index INTEGER)
 RETURNING result STRING

Returns the name of a DOM node attribute by
position.

getAttributeValue(
 index INTEGER)
 RETURNING result STRING

Returns the value of a DOM node attribute by
position.

setAttribute(
 name STRING,
 value STRING)

Sets the value of a DOM node attribute.

removeAttribute(
 name STRING)
 RETURNING result STRING

Delete the specified attribute from the DOM node.

Table 403: Object methods: Tree navigation

Name Description

getChildByIndex(
 index INTEGER)
 RETURNING result om.DomNode

Returns a child DOM node by position.

getChildCount()
 RETURNING result INTEGER

Returns the number of children nodes.

getFirstChild()
 RETURNING result om.DomNode

Returns the first child DOM node.

getLastChild()
 RETURNING result om.DomNode

Returns the last child DOM node.

getNext()
 RETURNING result om.DomNode

Returns the next sibling DOM node of this node.

getParent()
Returns the parent DOM node.

Library reference | 1842

Name Description

 RETURNING result om.DomNode

getPrevious()
 RETURNING result om.DomNode

Returns previous sibling DOM node of this node.

selectByPath(
 xpath STRING)
 RETURNING result om.NodeList

Finds descendant DOM nodes according to an
XPath-like pattern.

selectByTagName(
 tagname STRING)
 RETURNING result om.NodeList

Finds descendant DOM nodes according to a tag
name.

om.DomNode.appendChild
Adds an existing node at the end of the list of children in the current node.

Syntax

appendChild(
 node om.DomNode)

1. node is a reference to a node.

Usage

The appendChild() method takes an existing om.DomNode element node and adds it at the end of the
children of the object node calling the method.

The child node passed to the appendChild() method must have been created from the same DOM
document object, for example with the om.DomDocument.createElement() method.

If the node passed to the appendChild() method is already attached to another parent node, it will be
detached from that parent node before being attached to the new parent node.

Example

MAIN
 DEFINE doc om.DomDocument,
 r om.DomNode,
 p1, p2 om.DomNode,
 c1, c2 om.DomNode

 LET doc = om.DomDocument.create("Items")

 LET r = doc.createElement("Zoo")

 LET p1 = doc.createElement("DodoList")

 -- appends p1 under r
 CALL r.appendChild(p1)

 LET c1 = doc.createElement("Dodo")
 CALL c1.setAttribute("name", "momo")
 CALL c1.setAttribute("gender", "male")
 CALL p1.appendChild(c1)

Library reference | 1843

 LET p2 = doc.createElement("DodoList")
 CALL r.appendChild(p2)
 LET c2 = doc.createElement("Dodo")
 CALL c2.setAttribute("name", "kiki")
 CALL c2.setAttribute("gender", "female")
 CALL p2.appendChild(c2)

 CALL r.writeXml("file1.xml")

 -- moves c1 under p2
 CALL p2.appendChild(c1)

 CALL r.writeXml("file2.xml")
END MAIN

The above program will produce the following XML files:

file.xml

<?xml version='1.0' encoding='ASCII'?>
<Zoo>
 <DodoList>
 <Dodo name="momo" gender="male"/>
 </DodoList>
 <DodoList>
 <Dodo name="kiki" gender="female"/>
 </DodoList>
</Zoo>

file2.xml

<?xml version='1.0' encoding='ASCII'?>
<Zoo>
 <DodoList/>
 <DodoList>
 <Dodo name="kiki" gender="female"/>
 <Dodo name="momo" gender="male"/>
 </DodoList>
</Zoo>

om.DomNode.createChild
Creates and adds an node at the end of the list of children in the current node.

Syntax

createChild(
 tag STRING)
 RETURNING result om.DomNode

1. tag is the tag name of the new node.

Usage

The createChild() method creates a new om.DomNode element with the tag name passed as
parameter, and adds it at the end of the children of the object node calling the method.

The method returns the reference to the new created object.

Library reference | 1844

Example

DEFINE parent, child om.DomNode
...
LET child = parent.createChild("Item")

om.DomNode.insertBefore
Inserts an existing node before the existing node specified.

Syntax

insertBefore(
 new om.DomNode,
 existing om.DomNode)

1. new is a reference to a new created node.
2. existing is a reference to a child node existing in the current node.

Usage

The insertBefore() method takes an existing om.DomNode element node and adds it before the child
node passed as second parameter, in the list of children of the object node calling the method.

The child node passed to the insertChild() method must have been created from the same DOM
document object, for example with the om.DomDocument.createElement() method.

Example

DEFINE parent, other, child om.DomNode
...
LET child = mydoc.createElement("Item")
CALL parent.insertBefore(child, other)

om.DomNode.loadXml
Load an XML file into the current node.

Syntax

loadXml(
 filename STRING)
 RETURNING result om.DomNode

1. filename is the path to the XML file.

Usage

The loadXml() method takes a file path as parameter and loads the XML content into the current node,
by creating a new DOM structure in memory. The method then returns the new created child DOM node.

To hold the reference to the new node, define a variable with the type om.DomNode type.

Example

DEFINE parent, new om.DomNode
...
LET new = parent.loadXml("myfile.xml")

Library reference | 1845

om.DomNode.parse
Parses an XML formatted string and creates the DOM structure in the current node.

Syntax

parse(
 string STRING)
 RETURNING result om.DomNode

1. string is an XML formatted string.

Usage

The parse() method scans the XML formatted string passed as parameter and creates the
corresponding DOM nodes into the current node. The method then returns the new created child DOM
node.

The node must be created before it is passed as parameter to this method, typically, with
om.DomDocument.createElement().

Example

DEFINE parent, child om.DomNode
...
LET child = parent.parse("<Item/>")

om.DomNode.getAttribute
Returns the value of a DOM node attribute.

Syntax

getAttribute(
 name STRING)
 RETURNING result STRING

1. name is the name of the attribute.

Usage

The getAttribute() method returns the value of the attribute passed as parameter, as defined in the
current node.

DOM node attribute names are case-sensitive.

If the attribute does not exist for this node type, or if the attribute is not set, the method returns NULL.

For character nodes (created for example with the createChars() of a DomDocument object), you can
get the text value by passing the @chars attribute name to the method.

Example

DEFINE node om.DomNode
...
DISPLAY node.getAttribute("color")

Library reference | 1846

om.DomNode.getAttributeInteger
Returns the value of a DOM node attribute, with default integer value.

Syntax

getAttributeInteger(
 name STRING,
 def STRING)
 RETURNING result INTEGER

1. name is the name of the attribute.
2. def is the default value.

Usage

The getAttributeInteger() method returns the value of the attribute passed as parameter, as
defined in the current node.

DOM node attribute names are case-sensitive.

If the attribute is not defined, the method returns the default value passed as second parameter.

om.DomNode.getAttributesCount
Returns the number of attributes in the DOM node.

Syntax

getAttributesCount()
 RETURNING result INTEGER

Usage

The getAttributesCount() method returns the number of attributes defined in the current node.

This method is typically used to scan all the attributes of a node by position, with the
getAttributeName() and getAttributeValue() methods.

Example

DEFINE node om.DomNode,
 index INTEGER
...
FOR index = 1 TO node.getAttributesCount()
 DISPLAY node.getAttributeName(index)
END FOR

om.DomNode.getAttributeString
Returns the value of a DOM node attribute, with default string value.

Syntax

getAttributeString(
 name STRING,
 def STRING)
 RETURNING result STRING

1. name is the name of the attribute.
2. def is the default value.

Library reference | 1847

Usage

The getAttributeString() method returns the value of the attribute passed as parameter, as defined
in the current node.

DOM node attribute names are case-sensitive.

If the attribute is not defined, the method returns the default value passed as second parameter.

om.DomNode.getAttributeName
Returns the name of a DOM node attribute by position.

Syntax

getAttributeName(
 index INTEGER)
 RETURNING result STRING

1. index is the index of the attribute, starts at 1.

Usage

The getAttributeName() method returns the name of an attribute by position in the current node.

DOM node attribute names are case-sensitive.

If the attribute does not exist at the given position, the method returns NULL.

Example

DEFINE node om.DomNode
...
DISPLAY node.getAttributeName(12)

om.DomNode.getAttributeValue
Returns the value of a DOM node attribute by position.

Syntax

getAttributeValue(
 index INTEGER)
 RETURNING result STRING

1. index is the index of the attribute, starts at 1.

Usage

The getAttributeValue() method returns the value of an attribute by position in the current node.

DOM node attribute names are case-sensitive.

If the attribute does not exist at the given position, the method returns NULL.

Example

DEFINE node om.DomNode
...
DISPLAY node.getAttributeValue(12)

Library reference | 1848

om.DomNode.getChildByIndex
Returns a child DOM node by position.

Syntax

getChildByIndex(
 index INTEGER)
 RETURNING result om.DomNode

1. index is the index of the child node, starts at 1.

Usage

The getChildByIndex() method returns the child DOM node by position in the current node.

If there is no child node at the give position, the method returns NULL.

om.DomNode.getChildCount
Returns the number of children nodes.

Syntax

getChildCount()
 RETURNING result INTEGER

Usage

The getChildCount() method returns the number of children nodes in the current node.

This method is typically used to scan the children nodes of a DOM node, with the getChildByIndex()
method.

Example

DEFINE parent, child om.DomNode,
 index INTEGER
...
FOR index=1 TO node.getChildCount()
 LET child = parent.getChildByIndex(index)
 ...
END FOR

om.DomNode.getFirstChild
Returns the first child DOM node.

Syntax

getFirstChild()
 RETURNING result om.DomNode

Usage

The getFirstChild() method returns the first child DOM node in the current node.

This method is typically used to scan children nodes with the getNext() method, until getNext()
returns NULL.

Library reference | 1849

Example

DEFINE parent, child om.DomNode
...
LET child = parent.getFirstChild()
WHILE child IS NOT NULL
 ...
 LET child = child.getNext()
END WHILE

om.DomNode.getId
Returns the internal AUI tree id of a DOM node.

Syntax

getId()
 RETURNING result INTEGER

Usage

The getId() method returns to internal integer identifier generated automatically for any om.DomNode
object created in the abstract user interface tree.

The internal id is typically used to reference a DOM node in an attribute of another node, to link logically
nodes together.

If the DOM node does not belong to the AUI tree, the method returns zero.

om.DomNode.getLastChild
Returns the last child DOM node.

Syntax

getLastChild()
 RETURNING result om.DomNode

Usage

The getLastChild() method returns the last child DOM node in the current node.

This method is typically used to scan children nodes with the getPrevious() method, until
getPrevious() returns NULL.

Example

DEFINE parent, child om.DomNode
...
LET child = parent.getLastChild()
WHILE child IS NOT NULL
 ...
 LET child = child.getPrevious()
END WHILE

Library reference | 1850

om.DomNode.getNext
Returns the next sibling DOM node of this node.

Syntax

getNext()
 RETURNING result om.DomNode

Usage

The getNext() method returns the next sibling DOM node following the current node, withing the children
list of the parent node.

om.DomNode.getParent
Returns the parent DOM node.

Syntax

getParent()
 RETURNING result om.DomNode

Usage

The getParent() method returns the parent DOM node of the current node.

If the current node is the root node, the method returns NULL.

Example

DEFINE parent, current om.DomNode
...
LET parent = current.getParent()

om.DomNode.getPrevious
Returns previous sibling DOM node of this node.

Syntax

getPrevious()
 RETURNING result om.DomNode

Usage

The getPrevious() method returns the previous sibling DOM node preceding the current node, withing
the children list of the parent node.

om.DomNode.getTagName
Returns the XML tag name of a DOM node.

Syntax

getTagName()
 RETURNING result STRING

Library reference | 1851

Usage

The getTagName() method returns the XML tag name of the node.

Use this method to identity the type of the node.

om.DomNode.removeAttribute
Delete the specified attribute from the DOM node.

Syntax

removeAttribute(
 name STRING)
 RETURNING result STRING

1. name is the name of the attribute.

Usage

The removeAttribute() method deletes the attribute identified by the name passed as parameter.

DOM node attribute names are case-sensitive.

If the attribute does not exist for this node the method returns silently.

Example

DEFINE node om.DomNode
...
CALL node.removeAttribute("comments")

om.DomNode.removeChild
Deletes the specified child node from the current node.

Syntax

removeChild(
 node om.DomNode)

1. node is a reference to a node.

Usage

The removeChild() method detaches a om.DomNode element node from the current node.

The removed node is not destroyed, if it is still referenced by a variable: The removeChild() method
will only break the link between the parent node and the child node. The child node still exists in the DOM
document, but it is an orphan node, that can be attached to another parent node in the document.

Example

MAIN
 DEFINE doc om.DomDocument,
 r om.DomNode,
 p om.DomNode,
 c om.DomNode

 LET doc = om.DomDocument.create("Items")

 LET r = doc.createElement("Zoo")

Library reference | 1852

 LET p = doc.createElement("DodoList")
 CALL r.appendChild(p)

 LET c = doc.createElement("Dodo")
 CALL c.setAttribute("name", "momo")
 CALL c.setAttribute("gender", "male")
 CALL p.appendChild(c)

 CALL r.writeXml("file1.xml")

 CALL p.removeChild(c)

 -- c is orphan but still exists
 CALL c.writeXml("file2.xml")
 LET c = NULL -- unref/destroy the node

 CALL r.writeXml("file3.xml")
END MAIN

The above program will produce the following files:

file1.xml

<?xml version='1.0' encoding='ASCII'?>
<Zoo>
 <DodoList>
 <Dodo name="momo" gender="male"/>
 </DodoList>
</Zoo>

file2.xml

<?xml version='1.0' encoding='ASCII'?>
<Dodo name="momo" gender="male"/>

file3.xml

<?xml version='1.0' encoding='ASCII'?>
<Zoo>
 <DodoList/>
</Zoo>

om.DomNode.replaceChild
Replaces a node by another in the children nodes of the current node.

Syntax

replaceChild(
 new om.DomNode,
 old om.DomNode)

1. new is a reference to the new node.
2. old is the the node to be replaced.

Usage

The replaceChild() nethod puts the om.DomNode element passed as first parameter at the place of
the node referenced by the second parameter, in the children list of the object node calling the method.

Library reference | 1853

The new child node passed to the replaceChild() method must have been created from the same
DOM document object, for example with the om.DomDocument.createElement() method.

The old node is not destroyed, if it is still referenced by a variable. The old node still exists in the DOM
document, but it is an orphan node, that can be attached to another parent node in the document.

Example

MAIN
 DEFINE doc om.DomDocument,
 r om.DomNode,
 p om.DomNode,
 o om.DomNode,
 n om.DomNode

 LET doc = om.DomDocument.create("Items")

 LET r = doc.createElement("Zoo")

 LET p = doc.createElement("DodoList")
 CALL r.appendChild(p)

 LET o = doc.createElement("Dodo")
 CALL o.setAttribute("name", "momo")
 CALL o.setAttribute("gender", "male")
 CALL p.appendChild(o)

 CALL r.writeXml("file1.xml")

 LET n = doc.createElement("Dodo")
 CALL n.setAttribute("name", "kiki")
 CALL n.setAttribute("gender", "female")

 CALL p.replaceChild(n, o)

 -- o is orphan but still exists
 CALL o.writeXml("file2.xml")
 LET o = NULL -- unref/destroy the node

 CALL r.writeXml("file3.xml")
END MAIN

The above program will produce following files:

file1.xml

<?xml version='1.0' encoding='ASCII'?>
<Zoo>
 <DodoList>
 <Dodo name="momo" gender="male"/>
 </DodoList>
</Zoo>

file2.xml

<?xml version='1.0' encoding='ASCII'?>
<Dodo name="momo" gender="male"/>

file3.xml

<?xml version='1.0' encoding='ASCII'?>
<Zoo>

Library reference | 1854

 <DodoList>
 <Dodo name="kiki" gender="female"/>
 </DodoList>
</Zoo>

om.DomNode.setAttribute
Sets the value of a DOM node attribute.

Syntax

setAttribute(
 name STRING,
 value STRING)

1. name is the name of the attribute.
2. value is the attribute value.

Usage

The setAttribute() method sets the value of an attribute in the current node.

DOM node attribute names are case-sensitive.

Note: Make sure that the strings passed to the method do not contain illegal XML characters:
Illegal XML characters will be silently ignored. Illegal XML characters are any character below
space (ASCII 32), except \r (ASCII 13), \n (ASCII 10) and \t (ASCII 9).

Example

DEFINE node om.DomNode
...
CALL node.setAttribute("name", "tiger")

om.DomNode.toString
Serializes the current node into an XML formatted string.

Syntax

toString()
 RETURNING result STRING

Usage

The toString() method builds an XML formatted string with the DOM structure of the current node and
returns the string.

Example

DEFINE node om.DomNode, s STRING
...
LET s = node.toString()

Library reference | 1855

om.DomNode.write
Processes a DOM document with a SAX document handler.

Syntax

write(
 sdh om.SaxDocumentHandler)

1. sdh references a SAX document handler.

Usage

The write() method processes the current DOM node content with the SAX document handler passed
as parameter.

See the SAX document handler class for more details.

om.DomNode.writeXml
Creates an XML file from the current DOM node.

Syntax

writeXml(
 filename STRING)

1. filename is the path to the XML file.

Usage

The writeXml() method writes the content of the current DOM node to the file passed as parameter.

Example

DEFINE node om.DomNode
...
CALL noe.writeXml("output.xml")

om.DomNode.selectByPath
Finds descendant DOM nodes according to an XPath-like pattern.

Syntax

selectByPath(
 xpath STRING)
 RETURNING result om.NodeList

1. xpath is an XPath-like pattern, using .

Usage

The selectByPath() method scans the DOM tree for descendant nodes according to the specified
XPath-like pattern.

The pattern supported is limited to the following syntax:

{ / | // } TagName [[@AttributeName="Value"]] [...]

DOM node tag names and attributes names are case-sensitive.

Library reference | 1856

The method creates a list of nodes as a om.NodeList object. This list object is then used to process the
nodes found.

Example

DEFINE node om.DomNode,
 nodelist om.NodeList
...
LET nodelist = node.selectByPath("//Grid/Table[@tabName=
\"t1\"]")

om.DomNode.selectByTagName
Finds descendant DOM nodes according to a tag name.

Syntax

selectByTagName(
 tagname STRING)
 RETURNING result om.NodeList

1. tagname is a tag name for the search.

Usage

The selectByTagName() method scans the DOM tree for descendant nodes defined with the tag name
specified as parameter.

DOM node tag names are case-sensitive.

The method creates a list of nodes as a om.NodeList object. This list object is then used to process the
nodes found.

Example

DEFINE node om.DomNode,
 nodelist om.NodeList
...
LET nodelist = node.selectByTagName("Car")

Examples
Example 1: Creating a DOM tree

To create a DOM tree with the following structure (represented in XML format):

<Vehicles>
 <Car name="Corolla" color="Blue" weight="1546">Nice car!</Car>
 <Bus name="Maxibus" color="Yellow" weight="5278">
 <Wheel width="315" diameter="925" />
 <Wheel width="315" diameter="925" />
 <Wheel width="315" diameter="925" />
 <Wheel width="315" diameter="925" />
 </Bus>
</Vehicles>

You write the following:

MAIN
 DEFINE d om.DomDocument
 DEFINE r, n, t, w om.DomNode

Library reference | 1857

 DEFINE i INTEGER

 LET d = om.DomDocument.create("Vehicles")
 LET r = d.getDocumentElement()

 LET n = r.createChild("Car")
 CALL n.setAttribute("name","Corolla")
 CALL n.setAttribute("color","Blue")
 CALL n.setAttribute("weight","1546")

 LET t = d.createChars("Nice car!")
 CALL n.appendChild(t)
 LET t = d.createEntity("nbsp")
 CALL n.appendChild(t)
 LET t = d.createChars("Yes, very nice!")
 CALL n.appendChild(t)

 LET n = r.createChild("Bus")
 CALL n.setAttribute("name","Maxibus")
 CALL n.setAttribute("color","yellow")
 CALL n.setAttribute("weight","5278")
 FOR i=1 TO 4
 LET w = n.createChild("Wheel")
 CALL w.setAttribute("width","315")
 CALL w.setAttribute("diameter","925")
 END FOR

 CALL r.writeXml("Vehicles.xml")

END MAIN

Example 2: Displaying a DOM tree recursively

The following example displays a DOM tree content recursively:

FUNCTION displayDomNode(n,e)
 DEFINE n om.DomNode
 DEFINE e, i, s INTEGER

 LET s = e*2
 DISPLAY s SPACES || "Tag: " || n.getTagName()

 DISPLAY s SPACES || "Attributes:"
 FOR i=1 TO n.getAttributesCount()
 DISPLAY s SPACES || " " || n.getAttributeName(i) ||
 "=[" || n.getAttributeValue(i) ||"]"
 END FOR
 LET n = n.getFirstChild()

 DISPLAY s SPACES || "Child Nodes:"
 WHILE n IS NOT NULL
 CALL displayDomNode(n,e+1)
 LET n = n.getNext()
 END WHILE

END FUNCTION

Example 3: Writing a DOM tree to a SAX handler

The following example outputs a Dom tree without indentation.

MAIN
 DEFINE d om.DomDocument

Library reference | 1858

 DEFINE r, n, t, w om.DomNode
 DEFINE dh om.SaxDocumentHandler

 DEFINE i INTEGER

 LET dh = om.XmlWriter.createPipeWriter("cat")
 CALL dh.setIndent(FALSE)

 LET d = om.DomDocument.create("Vehicles")
 LET r = d.getDocumentElement()

 LET n = r.createChild("Car")
 CALL n.setAttribute("name","Corolla")
 CALL n.setAttribute("color","Blue")
 CALL n.setAttribute("weight","1546")

 LET t = d.createChars("Nice car!")
 CALL n.appendChild(t)

 LET n = r.createChild("Bus")
 CALL n.setAttribute("name","Maxibus")
 CALL n.setAttribute("color","yellow")
 CALL n.setAttribute("weight","5278")
 FOR i=1 TO 4
 LET w = n.createChild("Wheel")
 CALL w.setAttribute("width","315")
 CALL w.setAttribute("diameter","925")
 END FOR

 CALL r.write(dh)

END MAIN

The NodeList class
A om.NodeList object hold a list of DOM nodes.

The list is created from a om.DomNode.selectByTagName() or om.DomNode.selectByPath()
method.

After creating the node list, you can process the nodes withe the getLength() and item() methods of
the om.NodeList object.

om.NodeList methods
Methods of the om.NodeList class.

Table 404: Object methods

Name Description

getLength()
 RETURNING result INTEGER

Returns the number of elements in the node list.

item(index INTEGER)
 RETURNING result om.DomNode

Returns a DOM node element by position in the
node list.

Library reference | 1859

om.NodeList.getLength
Returns the number of elements in the node list.

Syntax

getLength()
 RETURNING result INTEGER

1. node is a reference to a node.

Usage

The getLength() method returns the size of the node list.

Query for node list for elements with the item() method, in the range 1 to getLength().

Example

DEFINE list om.NodeList
...
DISPLAY list.getLength()

om.NodeList.item
Returns a DOM node element by position in the node list.

Syntax

item(index INTEGER)
 RETURNING result om.DomNode

1. index is the ordinal position of the node in the list.

Usage

The item() method returns the om.DomNode object at the position specified.

First element is at position 1.

If there is no element at the specified index, the method returns NULL.

Example

DEFINE list om.NodeList,
 node om.DomNode
...
LET node = list.item(12)

Examples
Example 1: Search for child nodes by tag name

MAIN
 DEFINE nl om.NodeList
 DEFINE r, n om.DomNode
 DEFINE i INTEGER

 LET r = ui.Interface.getRootNode()
 LET nl = r.selectByTagName("Form")

 FOR i=1 to nl.getLength()

Library reference | 1860

 LET n = nl.item(i)
 DISPLAY n.getAttribute("name")
 END FOR

END MAIN

Example 2: Search for child nodes by XPath

MAIN
 DEFINE nl om.NodeList
 DEFINE r, n om.DomNode
 DEFINE i INTEGER

 LET r = ui.Interface.getRootNode()
 LET nl = r.selectByPath("//Window[@name=\"screen\"]")

 FOR i=1 to nl.getLength()
 LET n = nl.item(i)
 DISPLAY n.getAttribute("name")
 END FOR

END MAIN

The SaxAttributes class
The om.SaxAttributes class holds a set of attributes to process with a SAX reader or writer.

To process SAX attributes, create a om.SaxAttributes object with a SAX reader or SAX writer SAX
writer object.

Get an instance of SaxAttributes with the om.XmlReader.getAttributes() method.

om.SaxAttributes methods
Methods of the om.SaxAttributes class.

Table 405: Class methods

Name Description

copy(
 attrs om.SaxAttributes)
 RETURNING result om.SaxAttributes

Clones an existing SAX attributes object.

create()
 RETURNING result om.SaxAttributes

Create a new SAX attributes object.

Table 406: Object methods

Name Description

addAttribute(
 name STRING,
 value STRING)

Appends a new attribute to the end of the list.

clear()
Clears the SAX attribute list.

getLength()
Returns the number of attributes in the list.

Library reference | 1861

Name Description

 RETURNING result INTEGER

getName(
 index INTEGER)
 RETURNING result STRING

Returns the name of an attribute by position.

getValue(
 name STRING)
 RETURNING result STRING

Returns the value of an attribute by name.

getValueByIndex(
 index INTEGER)
 RETURNING result STRING

Returns an attribute value by position.

removeAttribute(
 index INTEGER)

Delete an attribute by position.

setAttributes(
 attrs om.SaxAttributes)

Clears the list and copies the attributes passed.

om.SaxAttributes.addAttribute
Appends a new attribute to the end of the list.

Syntax

addAttribute(
 name STRING,
 value STRING)

1. name is the name of the attribute.
2. value is the value of the attribute.

Usage

The addAttribute() method appends a new attribute with name and value at the end of the list.

Attribute names are case-sensitive.

Note: Make sure that the strings passed to the method do not contain illegal XML characters:
Illegal XML characters will be silently ignored. Illegal XML characters are any character below
space (ASCII 32), except \r (ASCII 13), \n (ASCII 10) and \t (ASCII 9).

Example

DEFINE attrs om.SaxAttributes
...
CALL attrs.addAttribute("name","jo")

Library reference | 1862

om.SaxAttributes.copy
Clones an existing SAX attributes object.

Syntax

copy(
 attrs om.SaxAttributes)
 RETURNING result om.SaxAttributes

1. attrs is a set of SAX attributes to clone.

Usage

The om.SaxAttributes.copy() class method makes a clone of the om.SaxAttributes object
passed as reference and returns the new created object.

Example

DEFINE copy, orig om.SaxAttributes
...
LET copy = om.SaxAttributes.copy(orig)

om.SaxAttributes.create
Create a new SAX attributes object.

Syntax

create()
 RETURNING result om.SaxAttributes

Usage

The om.SaxAttributes.create() class method create a new om.SaxAttributes object returns it.

To hold the reference to a SAX attributes object, define a variable with the type om.SaxAttributes type.

Example

DEFINE attrs om.SaxAttributes
...
LET attrs = om.SaxAttributes.create()

om.SaxAttributes.clear
Clears the SAX attribute list.

Syntax

clear()

Usage

Use the clear() method the clean the SAX attribute list.

Library reference | 1863

om.SaxAttributes.getLength
Returns the number of attributes in the list.

Syntax

getLength()
 RETURNING result INTEGER

Usage

The getLength() method returns the number of attributes in the current SAX attribute list.

Use this method with getName() and getValueByIndex() to retrieve attributes by position.

Example

DEFINE attrs om.SaxAttributes,
 index INTEGER
...
FOR index = 1 TO attrs.getLength()
 DISPLAY attrs.getName(index), " = ",
 attrs.getValueByIndex(index)
END FOR

om.SaxAttributes.getName
Returns the name of an attribute by position.

Syntax

getName(
 index INTEGER)
 RETURNING result STRING

1. index is the position of the attribute in the list.

Usage

The getName() method returns the name of the attribute at the specified ordinal position in the list.

If the attribute does not exist at the given position, the method returns NULL.

om.SaxAttributes.getValue
Returns the value of an attribute by name.

Syntax

getValue(
 name STRING)
 RETURNING result STRING

1. name is the name of an attribute.

Usage

The getValue() method returns the value of the attribute identified by the name passed as parameter.

If the attribute does not exist, the method returns NULL.

Library reference | 1864

Example

DEFINE attrs om.SaxAttributes
...
DISPLAY attrs.getValue("name")

om.SaxAttributes.getValueByIndex
Returns an attribute value by position.

Syntax

getValueByIndex(
 index INTEGER)
 RETURNING result STRING

1. index is the position of the attribute in the list.

Usage

The getValueByIndex() method returns the value of the attribute at the specified ordinal position in the
list.

If the attribute does not exist at the given position, the method returns NULL.

om.SaxAttributes.removeAttribute
Delete an attribute by position.

Syntax

removeAttribute(
 index INTEGER)

1. index is the position of the attribute in the list.

Usage

The removeAttribute() method removes the attribute at the given ordinal position.

If the attribute does not exist at the given position, the method returns silently.

Example

DEFINE attrs om.SaxAttributes
...
CALL attrs.removeAttribute(attrs.getLength())

om.SaxAttributes.setAttributes
Clears the list and copies the attributes passed.

Syntax

setAttributes(
 attrs om.SaxAttributes)

1. attrs is a reference to list of attributes.

Library reference | 1865

Usage

The setAttributes() method takes an existing om.SaxAttributes object reference and makes a
copy of all attributes into the current attribute list.

Example

DEFINE curr, orig om.SaxAttributes
...
CALL curr.setAttributes(orig)

Examples
Example 1: Displaying SAX attributes of an XML node

FUNCTION displayAttributes(a)
 DEFINE a om.SaxAttributes
 DEFINE i INTEGER
 FOR i=1 to a.getLength()
 DISPLAY a.getName(i) || "=[" || a.getValueByIndex(i) || "]"
 END FOR
END FUNCTION

The SaxDocumentHandler class
The om.SaxDocumentHandler class provides an interface to write an XML filter with events.

This class follows the SAX standards.

A om.SaxDocumentHandler object can be used in two different ways:

1. To implement an XML SAX filter, based of functions defined in a .4gl module, by using the
createForName() class method.

2. To write an XML document to a file, process or socket output, by using om.XmlWriter creation
methods, and the om.SaxDocumentHandler processing methods.

The om.SaxDocumentHandler class also provides methods to process all SAX events by hand. This is
useful if you want to chain SAX filters.

om.SaxDocumentHandler methods
Methods of the om.SaxDocumentHandler class.

Table 407: Class methods

Name Description

om.SaxDocumentHandler.createForName(
 module STRING)

 RETURNING result om.SaxDocumentHandler

Creates a new SAX document handler object for
the given .4gl module.

Table 408: Object methods

Name Description

characters(
Processes a text node.

Library reference | 1866

Name Description

 data STRING)

endDocument()
Processes the end of the document.

endElement(
 tagname STRING)

Processes the end of an element.

processingInstruction(
 name STRING,
 data STRING)

Processes a processing instruction.

readXmlFile(
 filename STRING)

Reads and processes an XML file with the SAX
document handler.

setIndent(
 on BOOLEAN)

Controls indentation in XML output.

startDocument()
Processes the beginning of the document.

startElement(
 tagname STRING,
 attrs om.SaxAttributes)

Processes the beginning of an element.

skippedEntity(
 name STRING)

Processes an unresolved entity.

om.SaxDocumentHandler.createForName
Creates a new SAX document handler object for the given .4gl module.

Syntax

om.SaxDocumentHandler.createForName(
 module STRING)
 RETURNING result om.SaxDocumentHandler

1. module is the name of the .4gl module defining the document handler events.

Usage

The om.SaxDocumentHandler.createForName() method creates a om.SaxDocumentHandler
instance and binds the .4gl module passed as argument to the object.

To hold the reference to a SAX document handler object, define a variable with the type
om.SaxDocumentHandler type.

The .4gl module must be available as a compiled 42m file, loadable according to environment settings
(FGLLDPATH).

The .4gl module must implement the following functions to process the SAX filter events:

Library reference | 1867

Table 409: Functions of the SAX document handler module

Function Description

startDocument()
Called once at the beginning of the document
processing.

endDocument()
Called once at the end of the document processing.

startElement(
 tagname STRING,
 attrs om.SaxAttributes)

1. tagname is the tag name of element.
2. attrs is list of attributes.

Called when an XML element is reached. Use
the om.SaxAttributes methods to handle the
attributes of the processed element.

endElement(tagname STRING)

1. tagname is the tag name of element.

Called when the end of an XML element is reached.

processingInstruction(
 piname STRING,
 data STRING)

1. piname is the name of the processing
instruction.

2. data is the content of the processing instruction.

Called when a processing instruction is reached.

characters(data STRING)

1. data is the text data.

Called when a text node is reached.

skippedEntity(name STRING)

1. name is the name of the unknown entity.

Called when an unknown entity node is reached
(like &xxx; for example).

Example

DEFINE f om.SaxDocumentHandler
LET f = om.SaxDocumentHandler.createForName("mysaxmod")

om.SaxDocumentHandler.characters
Processes a text node.

Syntax

characters(
 data STRING)

1. data is the content of the text node.

Library reference | 1868

Usage

The characters() method processes a text node with the SAX interface.

Note: Make sure that the strings passed to the method do not contain illegal XML characters:
Illegal XML characters will be silently ignored. Illegal XML characters are any character below
space (ASCII 32), except \r (ASCII 13), \n (ASCII 10) and \t (ASCII 9).

om.SaxDocumentHandler.endDocument
Processes the end of the document.

Syntax

endDocument()

Usage

The endDocument() method ends the document processing with the SAX interface.

om.SaxDocumentHandler.endElement
Processes the end of an element.

Syntax

endElement(
 tagname STRING)

1. tagname is the tag name of element.

Usage

The endElement() method processes the end of an element with the SAX interface.

om.SaxDocumentHandler.processingInstruction
Processes a processing instruction.

Syntax

processingInstruction(
 name STRING,
 data STRING)

1. name is the name of the processing instruction (token after <?).
2. data is the string in the processing instruction tag.

Usage

The processingInstruction() method processes a processing instruction with the SAX interface.

A processing instruction appears in an XML formatted text as:

<?name data ?>

om.SaxDocumentHandler.readXmlFile
Reads and processes an XML file with the SAX document handler.

Syntax

readXmlFile(

Library reference | 1869

 filename STRING)

1. filename is the path to an XML formatted file.

Usage

Use the readXmlFile() method after creating the om.SaxDocumentHandler object, to process the
XML data from a file input stream.

Example

DEFINE f om.SaxDocumentHandler
LET f = om.SaxDocumentHandler.createForName("mysaxmod")
CALL f.readXmlFile("cars.xml")

om.SaxDocumentHandler.setIndent
Controls indentation in XML output.

Syntax

setIndent(
 on BOOLEAN)

1. on is a boolean: TRUE enables identation; FALSE disables indentation.

Usage

By default, the om.SaxDocumentHandler object outputs XML with indentation.

In order to disable indentation, use the setIndent(FALSE) method.

om.SaxDocumentHandler.startDocument
Processes the beginning of the document.

Syntax

startDocument()

Usage

The startDocument() method begins the document processing with the SAX interface.

om.SaxDocumentHandler.startElement
Processes the beginning of an element.

Syntax

startElement(
 tagname STRING,
 attrs om.SaxAttributes)

1. tagname is the tag name of element.
2. attrs is the list of attributes of the element.

Usage

The startElement() method processes the beginning of an element with the SAX interface.

Library reference | 1870

Use the om.SaxAttributes methods to handle the attributes of an element.

Example

DEFINE out om.SaxDocumentHandler
 attrs om.SaxAttributes,
 node om.DomNode,
 x INTEGER
...
CALL attrs.clear()
FOR x=1 TO r.getAttributesCount()
 CALL attrs.addAttribute(node.getAttributeName(x),
 node.getAttributeValue(x))
END FOR
CALL out.startElement(node.getTagName(), attrs)

om.SaxDocumentHandler.skippedEntity
Processes an unresolved entity.

Syntax

skippedEntity(
 name STRING)

1. name is the name of the unknown entity.

Usage

The skippedEntity() method processes an entity that is not known by the XML parser.

Examples
Example 1: Extracting phone numbers from a directory.

This example shows how to write a SAX filter to extract phone numbers from a directory file written in XML.

MAIN
 DEFINE f om.SaxDocumentHandler
 LET f = om.SaxDocumentHandler.createForName("module1")
 CALL f.readXmlFile("customers")
END MAIN

Note:

1. The parameter of the createForName() method specifies the name of a source file that has been
compiled into a .42m file ("module1.42m" in our example).

The module "module1.4gl":

FUNCTION startDocument()
END FUNCTION

FUNCTION processingInstruction(name,data)
 DEFINE name,data STRING
END FUNCTION

FUNCTION startElement(name,attr)
 DEFINE name STRING
 DEFINE attr om.SaxAttributes
 DEFINE i INTEGER
 IF name="Customer" THEN
 DISPLAY attr.getValue("lname")," ",

Library reference | 1871

 attr.getValue("fname"),":",
 COLUMN 60, attr.getValue("phone")
 END IF
END FUNCTION

FUNCTION endElement(name)
 DEFINE name STRING
END FUNCTION

FUNCTION endDocument()
END FUNCTION

FUNCTION characters(chars)
 DEFINE chars STRING
END FUNCTION

FUNCTION skippedEntity(chars)
 DEFINE chars STRING
END FUNCTION

The XML file "customers":

<Customers>
 <Customer customer_num="101" fname="Ludwig" lname="Pauli"
 company="All Sports Supplies" address1="213 Erstwild Court"
 address2="" city="Sunnyvale" state="CA" zip-code="94086"
 phone="408-789-8075" />
 <Customer customer_num="102" fname="Carole" lname="Sadler"
 company="Sports Spot" address1="785 Geary St"
 address2="" city="San Francisco" state="CA" zip-code="94117"
 phone="415-822-1289" />
 <Customer customer_num="103" fname="Philip" lname="Currie"
 company="Phil's Sports" address1="654 Poplar"
 address2="P. O. Box 3498" city="Palo Alto" state="CA"
 zip-code="94303" phone="415-328-4543" />
</Customers>

The XmlReader class
The om.XmlReader class provides methods to read and process a file written in XML format.

The processing of the XML file is streamed-data based; the file is loaded and processed sequentially
with events. To process XML element attributes, an om.XmlReader object must cooperate with a
om.SaxAttributes object. The XmlReader class can only read from a file. To write to a file, use the
om.XmlWriter class.

Steps to use a XML reader:

1. Declare a variable with the om.XmlReader type.
2. Create the reader object with the createFileReader() method and assign the reference to the

variable.
3. Process SAX events in a WHILE loop, by reading document fragments with the read() method.
4. Inside the loop, according to the SAX event, process element attributes with getAttributes() or get the

element data with the getCharacters() methods.

Library reference | 1872

om.XmlReader methods
Methods of the om.XmlReader class.

Table 410: Class methods

Name Description

createFileReader(
 filename STRING)
 RETURNING result om.XmlReader

Creates an XML reader object from a file.

Table 411: Object methods

Name Description

getCharacters()
 RETURNING result STRING

Returns the character data of the current processed
element.

getAttributes()
 RETURNING result om.SaxAttributes

Builds an attribute list for the current processed
element.

getTagName()
 RETURNING result STRING

Returns the tag name of the current processed
element.

read()
 RETURNING result STRING

Reads the next SAX event to process.

skippedEntity()
 RETURNING result STRING

Returns the name of an unresolved entity.

om.XmlReader.createFileReader
Creates an XML reader object from a file.

Syntax

createFileReader(
 filename STRING)
 RETURNING result om.XmlReader

1. filename is the path to an XML formatted file.

Usage

Use the om.XmlReader.createFileReader() method to create a new om.XmlReader object, to
process the XML data from a file input stream.

To hold the reference to an XmlReader object, define a variable with the type om.XmlReader type.

Example

DEFINE r om.XmlReader

Library reference | 1873

LET r = om.XmlReader.createFileReader("cars.xml")

om.XmlReader.getAttributes
Builds an attribute list for the current processed element.

Syntax

getAttributes()
 RETURNING result om.SaxAttributes

Usage

Use the getAttributes() method create a list of attributes as a om.SaxAttributes object, from the
current processed element, in the StartElement or EndElement event context.

Declare a variable with the om.SaxAttributes type to reference the attribute list.

Note that once created with the getAttributes() method, the om.SaxAttributes object is
automatically updated based on the element currently processed by the om.XmlReader.

Example

DEFINE r om.XmlReader,
 e STRING, i INT
 a om.SaxAttributes
 ...
 LET e = r.read()
 WHILE e IS NOT NULL
 CASE e
 ...
 WHEN "StartElement"
 LET a = r.getAttributes()
 FOR i=1 to a.getLength()
 ...

om.XmlReader.getCharacters
Returns the character data of the current processed element.

Syntax

getCharacters()
 RETURNING result STRING

Usage

Use the getCharacters() method to get the character data of the current processed element, in the
Characters event context.

Example

DEFINE r om.XmlReader,
 e STRING
 ...
 LET e = r.read()
 WHILE e IS NOT NULL
 CASE e
 ...
 WHEN "Characters"

Library reference | 1874

 DISPLAY "Characters:'",r.getCharacters(),"'"
 ...

om.XmlReader.getTagName
Returns the tag name of the current processed element.

Syntax

getTagName()
 RETURNING result STRING

Usage

Use the readXmlFile() method to get the tag name of the current processed element, in the
StartElement or EndElement event context.

Example

DEFINE r om.XmlReader,
 e STRING
 ...
 LET e = r.read()
 WHILE e IS NOT NULL
 CASE e
 ...
 WHEN "StartElement"
 DISPLAY "TagName = ", r.getTagName()
 ...

om.XmlReader.read
Reads the next SAX event to process.

Syntax

read()
 RETURNING result STRING

Usage

The read() method reads the next XML fragment and returns the name of the SAX event to process.

Library reference | 1875

Table 412: Events that can be returned by the read()method

Event name Description Action

StartDocument
Beginning of the document Prepare processing (allocate

resources)

StartElement
Beginning of a node Get current element's tag name

or attributes with getTagName()
getAttributes()

Characters
Value of the current element Get current text element's value

with getCharacters()

SkippedEntity
Reached skipped entity Get current skipped entity element's

value with skippedEntity()

EndElement
Ending of a node Get current element's tagname with

getTagName()

EndDocument
Ending of the document Finish processing (release

resources)

Example

DEFINE r om.XmlReader,
 e STRING
 ...
 LET e = r.read()
 WHILE e IS NOT NULL
 CASE e
 ...
 END CASE
 LET e = r.read()
 END WHILE

om.XmlReader.skippedEntity
Returns the name of an unresolved entity.

Syntax

skippedEntity()
 RETURNING result STRING

Usage

The skippedEntity() method returns the name of the unresolved entity, in the SkippedEntity event
context.

The parser identifies well know character entities such as & / ' / < / > / ", other
character entities are treated as skipped entities and can be processed in the SkippedEntity event.

Example

DEFINE r om.XmlReader,
 e STRING
 ...

Library reference | 1876

 LET e = r.read()
 WHILE e IS NOT NULL
 CASE e
 ...
 WHEN "SkippedEntity"
 DISPLAY "Entity:'",r.skippedEntity(),"'"
 ...

Examples
Example 1: Parsing an XML file

MAIN
 DEFINE i, l INTEGER
 DEFINE r om.XmlReader
 DEFINE e String
 DEFINE a om.SaxAttributes
 LET r = om.XmlReader.createFileReader("myfile.xml")
 LET l = 0
 LET e = r.read()
 WHILE e IS NOT NULL
 CASE e
 WHEN "StartDocument"
 DISPLAY "StartDocument:"
 WHEN "StartElement"
 LET l=l+1
 DISPLAY l SPACES, "StartElement:", r.getTagName()
 LET a = r.getAttributes()
 FOR i=1 to a.getLength()
 DISPLAY l SPACES," ",
 a.getName(i)," = ",
 a.getValueByIndex(i)
 END FOR
 WHEN "Characters"
 DISPLAY l SPACES, " Characters:'",r.getCharacters(),"'"
 WHEN "EndElement"
 DISPLAY l SPACES, "EndElement:", r.getTagName()
 LET l=l-1
 WHEN "EndDocument"
 DISPLAY "EndDocument:"
 OTHERWISE
 DISPLAY "Invalid event: ",e
 END CASE
 LET e=r.read()
 END WHILE
END MAIN

The XmlWriter class
The om.XmlWriter class implements methods to write XML to a stream.

The om.XmlWriter class implements methods to create a om.SaxDocumentHandler object.

Steps to use a XML writer:

1. Declare a variable with the om.SaxDocumentHandler type.
2. Create the writer object with one of the class methods of om.XmlWriter and assign the reference to

the variable.

• om.XmlWriter.createFileWriter(filename) creates an object writing to a file.
• om.XmlWriter.createPipeWriter(command) creates an object writing to a pipe opened by a

sub-process.
• om.XmlWriter.createSocketWriter(hostname,portnum) creates an object writing to the

TCP socket.

Library reference | 1877

3. Output XML data with the methods of the om.SaxDocumentHandler object:

a. Use the method startDocument() to start writing to the output.
b. From this point, the order of method calls defines the structure of the XML document. To write an

element, fill an om.SaxAttributes object with attributes.
c. Then, initiate the element output with the method startElement().
d. Write element data with the characters() method.
e. Entity nodes are created with the skippedEntity() method.
f. Finish element output with a call to the endElement() method.
g. Repeat these steps as many times as you have elements to write.
h. Instead of using the startElement() method, you can generate processing instruction elements

with processingInstruction().
i. Finally, you must finish the document output with a endDocument() call.

om.XmlWriter methods
Methods of the om.XmlWriter class.

Table 413: Class methods

Name Description

om.XmlWriter.createChannelWriter(
 channel base.Channel)

 RETURNING result om.SaxDocumentHandler

Creates an om.SaxDocumentHandler object
writing to a channel object.

om.XmlWriter.createFileWriter(
 filename STRING)

 RETURNING result om.SaxDocumentHandler

Creates an om.SaxDocumentHandler object
writing to a file.

om.XmlWriter.createPipeWriter(
 command STRING)

 RETURNING result om.SaxDocumentHandler

Creates an om.SaxDocumentHandler object
writing to a pipe created for a process.

om.XmlWriter.createSocketWriter(
 host STRING,
 port INTEGER)

 RETURNING result om.SaxDocumentHandler

Creates an om.SaxDocumentHandler object
writing to a socket.

om.XmlWriter.createChannelWriter
Creates an om.SaxDocumentHandler object writing to a channel object.

Syntax

om.XmlWriter.createChannelWriter(
 channel base.Channel)
 RETURNING result om.SaxDocumentHandler

1. channel is a base.Channel object reference.

Library reference | 1878

Usage

The om.XmlWriter.createChannelWriter() class method creates an om.SaxDocumentHandler
object that will write to the specified channel object, when using the om.SaxDocumentHandler methods.

The base.Channel object must exist and be open to receive data from the SAX document handler.

Example

The next example uses the channel to write to stdout, passing NULL as file name to the
base.Channel.openFile() method:

DEFINE w om.SaxDocumentHandler
DEFINE ch base.Channel
...
LET ch = base.Channel.create()
CALL ch.openFile(NULL,"w")
LET w = om.XmlWriter.createChannelWriter(ch)
...

om.XmlWriter.createFileWriter
Creates an om.SaxDocumentHandler object writing to a file.

Syntax

om.XmlWriter.createFileWriter(
 filename STRING)
 RETURNING result om.SaxDocumentHandler

1. filename is the path to the file.

Usage

The om.XmlWriter.createFileWriter() class method creates an om.SaxDocumentHandler
object that will write to the specified file when using the om.SaxDocumentHandler methods.

The file is created if it does not exist. If the file cannot be created, the method returns NULL.

When passing NULL as file name, the XmlWriter can be used to write to stdout.

Example

DEFINE w om.SaxDocumentHandler
...
LET w = om.XmlWriter.createFileWriter("mydata.xml")
IF w IS NULL THEN
 ERROR "Could not create file."
 EXIT PROGRAM 1
END IF
...

-- Create an XmlWriter object to write to stdout:
LET w = om.XmlWriter.createFileWriter(NULL)
...

Library reference | 1879

om.XmlWriter.createPipeWriter
Creates an om.SaxDocumentHandler object writing to a pipe created for a process.

Syntax

om.XmlWriter.createPipeWriter(
 command STRING)
 RETURNING result om.SaxDocumentHandler

1. command is the command to be executed.

Usage

The om.XmlWriter.createPipeWriter() class method creates an om.SaxDocumentHandler
object that will write to a pipe created for the specified command. XML data will be send through the pipe
when using the om.SaxDocumentHandler methods.

If the process or pipe cannot be created, the method returns NULL.

Example

DEFINE w om.SaxDocumentHandler
...
LET w = om.XmlWriter.createPipeWriter("sort -u")
IF w IS NULL THEN
 ERROR "Could not create process."
 EXIT PROGRAM 1
END IF

om.XmlWriter.createSocketWriter
Creates an om.SaxDocumentHandler object writing to a socket.

Syntax

om.XmlWriter.createSocketWriter(
 host STRING,
 port INTEGER)
 RETURNING result om.SaxDocumentHandler

1. host is the name of the host computer listening to the TCP port.
2. port is the port number to connect to.

Usage

The om.XmlWriter.createSocketWriter() class method creates an om.SaxDocumentHandler
object that will write to a socket identified by the host and port number passed as parameters. XML data
will be send through the socket when using the om.SaxDocumentHandler methods.

If the socket cannot be opened, the method returns NULL. No timeout is used.

Example

DEFINE w om.SaxDocumentHandler
...
LET w = om.XmlWriter.createSocketWriter("myhost",8012)
IF w IS NULL THEN
 ERROR "Could not open socket."
 EXIT PROGRAM 1

Library reference | 1880

END IF

Examples
Example 1: Writing XML to a file

MAIN
 DEFINE w om.SaxDocumentHandler
 DEFINE a,n om.SaxAttributes

 LET w = om.XmlWriter.createFileWriter("sample.html")
 LET a = om.SaxAttributes.create()
 LET n = om.SaxAttributes.create()

 CALL n.clear()

 CALL w.startDocument()

 CALL w.startElement("HTML",n)

 CALL w.startElement("HEAD",n)

 CALL w.startElement("TITLE",n)
 CALL w.characters("HTML page generated with XmlWriter")
 CALL w.endElement("TITLE")

 CALL a.clear()
 CALL a.addAttribute("type","text/css")
 CALL w.startElement("STYLE",a)
 CALL w.characters("\nBODY { background-color:#c0c0c0; }\n")
 CALL w.endElement("STYLE")

 CALL w.endElement("HEAD")

 CALL w.startElement("BODY",n)

 CALL addHLine(w)
 CALL addTitle(w,"What is XML?",1,"55ff55")
 CALL addParagraph(w,"XML = eXtensible Markup Language ...")

 CALL addHLine(w)
 CALL addTitle(w,"What is SAX?",1,"55ff55")
 CALL addParagraph(w,"SAX = Simple Api for XML ...")

 CALL w.endElement("BODY")

 CALL w.endElement("HTML")

 CALL w.endDocument()

END MAIN

FUNCTION addHLine(w)
 DEFINE w om.SaxDocumentHandler
 DEFINE a om.SaxAttributes
 LET a = om.SaxAttributes.create()
 CALL a.clear()
 CALL a.addAttribute("width","100%")
 CALL w.startElement("HR",a)
 CALL w.endElement("HR")
END FUNCTION

FUNCTION addTitle(w,t,x,c)

Library reference | 1881

 DEFINE w om.SaxDocumentHandler
 DEFINE t VARCHAR(100)
 DEFINE x INTEGER DEFINE c VARCHAR(20)
 DEFINE a om.SaxAttributes
 DEFINE n varchar(10)
 LET a = om.SaxAttributes.create()
 LET n = "h" || x
 CALL a.clear()
 CALL w.startElement(n,a)
 IF c IS NOT NULL THEN CALL a.addAttribute("color",c)
 END IF CALL w.startElement("FONT",a)
 CALL w.characters(t)
 CALL w.endElement("FONT")
 CALL w.endElement(n)
END FUNCTION

FUNCTION addParagraph(w,t)
 DEFINE w om.SaxDocumentHandler
 DEFINE t VARCHAR(2000)
 DEFINE a om.SaxAttributes
 LET a = om.SaxAttributes.create()
 CALL a.clear()
 CALL w.startElement("P",a)
 CALL w.characters("Text is:")
 CALL w.skippedEntity("nbsp") # Add a non breaking space:
 CALL w.characters("is")
 CALL w.characters(t)
 CALL w.endElement("P")
END FUNCTION

Built-in front calls
This section contains the description of all built-in front calls.

• Built-in front calls on page 1881

• Standard front calls on page 1889
• Webcomponent front calls on page 1902
• Genero Desktop Client front calls on page 1904
• Genero Application Server front calls on page 1924
• Genero Mobile common front calls on page 1925
• Genero Mobile Android front calls on page 1940
• Genero Mobile iOS front calls on page 1945

Built-in front calls
Various front-end functions are implemented within Genero front-ends.

This section describes the front-end functions available for all type of front-ends. Note that several front-
end functions are specific to the type of front-end.

Table 414: Standard front-end functions

Function Name Description GDC GWC-
JS

GMA GMI

ui.Interface.frontCall("standard", "cbAdd",
Adds to the content of the clipboard. Yes No No No

Library reference | 1882

Function Name Description GDC GWC-
JS

GMA GMI

 [text],
 [result])

ui.Interface.frontCall("standard", "cbClear",
 [],
 [result])

Clears the content of the clipboard. Yes No No No

ui.Interface.frontCall("standard", "cbGet",
 [], [text])

Gets the content of the clipboard. Yes No No No

ui.Interface.frontCall("standard", "cbPaste",
 [],
 [result])

Pastes the content of the clipboard to the
current field.

Yes No No No

ui.Interface.frontCall("standard", "cbSet",
 [text],
 [result])

Set the content of the clipboard. Yes No No No

ui.Interface.frontCall("standard", "execute",
 [cmd,wait],
 [result])

Executes a command on the front-end platform,
with or without waiting.

Yes No No No

ui.Interface.frontCall("standard", "feInfo",
 [name],
 [result])

Queries general front-end properties. Yes Yes Yes Yes

ui.Interface.frontCall("standard", "getEnv",
 [name],
 [value])

Returns an environment variable set in the user
session on the front end platform.

Yes No No No

ui.Interface.frontCall("standard", "getWindowId",
 [aui-win-id],
 [loc-win-id])

Returns the local window manager identifier of
the window corresponding to the AUI window id
passed as parameter.

Yes No No No

ui.Interface.frontCall("standard", "hardCopy",
 [pgsize],
 [result])

Prints a screen shot of the current window Yes No No No

ui.Interface.frontCall("standard", "launchURL",

 [url [, mode]
], [])

Opens an URL with the default URL handler of
the front-end.

Yes Yes Yes Yes

ui.Interface.frontCall("standard", "mdClose",
Unloads a DLL or shared library front call
module.

Yes No No No

Library reference | 1883

Function Name Description GDC GWC-
JS

GMA GMI

 [name],
 [result])

ui.Interface.frontCall("standard", "openDir",
 [path,caption],
 [result])

Displays a file dialog window to get a directory
path on the local file system.

Yes No No No

ui.Interface.frontCall("standard", "openFile",
 [path,name,wildcards,caption],
 [result])

Displays a file dialog window to get a path to
open a file on the local file system.

Yes Yes No No

ui.Interface.frontCall("standard", "playSound",
 [filename],
 [])

Plays the sound file passed as parameter on
the front-end platform.

Yes Yes Yes Yes

ui.Interface.frontCall("standard", "saveFile",

 [path,name,filetype,caption],
 [result])

Displays a file dialog window to get a path to
save a file on the local file system.

Yes No No No

ui.Interface.frontCall("standard", "setReportFont",
 [font],
 [result])

Override the font used for report generation for
the current application.

Yes No No No

ui.Interface.frontCall("standard", "setReportPrinter",
 [printer],
 [result])

Override the printer configuration used for
report generation for the current application.

Yes No No No

ui.Interface.frontCall("standard", "setWebComponentPath",
 [path], [])

Defines the base path where web components
are located.

Yes N/A Yes Yes

ui.Interface.frontCall("standard", "shellExec",

 [document, action],
 [result])

Opens a file on the front-end platform with the
program associated to the file extension.

Yes No No No

Table 415: Webcomponent module front-end functions

Function Name Description

ui.Interface.frontCall("webcomponent", "call",
 [aui-name, function-
name, [param1, param2, ...]
],
 [result]

Calls a JavaScript function through the web component.

Library reference | 1884

Function Name Description

)

ui.Interface.frontCall("webcomponent", "frontCallAPIVersion",
 [],[result])

Returns the API version of web component front-end calls.

ui.Interface.frontCall("webcomponent", "getTitle",
 [aui-name], [result])

Returns the title of the HTML doc rendered by a web component.

Table 416: Windows DDE front-end functions

Function name Description

CALL
 ui.Interface.frontCall("WINDDE","DDEConnect",
 [program, document, encoding],
 [result])

DDEConnect opens a DDE connection.

CALL
 ui.Interface.frontCall("WINDDE","DDEExecute",

 [program, document, command, encoding
], [result])

DDEExecute executes a DDE command.

CALL
 ui.Interface.frontCall("WINDDE","DDEFinish",
 [program, document], [result])

DDEFinish closes a DDE connection.

CALL
 ui.Interface.frontCall("WINDDE","DDEFinishAll",
 [], [result])

DDEFinishAll closes all DDE connections.

CALL
 ui.Interface.frontCall("WINDDE","DDEError",
 [], [errmsg])

DDEError returns error information about the last
DDE operation.

CALL
 ui.Interface.frontCall("WINDDE","DDEPeek",

 [program, container, cells, encoding
], [result, value])

DDEPeek retrieves data from the specified program
and document using the DDE channel.

CALL
 ui.Interface.frontCall("WINDDE","DDEPoke",

 [program, container, cells, values, encoding
], [result])

DDEPoke sends data to the specified program and
document using the DDE channel.

Library reference | 1885

Table 417: Windows COM front-end functions

Function name Description

CALL
 ui.Interface.frontCall("WinCOM","CreateInstance",
 [program], [handle])

The CreateInstance function creates an
instance of a registered COM object.

CALL
 ui.Interface.frontCall("WINCOM","CallMethod",
 [handle, method, arg1, ...],
 [result])

CALL
 ui.Interface.frontCall("WINCOM","CallMethod",
 [handle, method(arg1, ...)],
 [result])

The CallMethod function calls a method on a
specified object.

CALL
 ui.Interface.frontCall("WINCOM","GetProperty",
 [handle, member], [result])

The GetProperty function gets a property of an
object.

CALL
 ui.Interface.frontCall("WINCOM","SetProperty",
 [handle, member, value],
 [result])

The SetProperty function sets a property of an
object.

CALL
 ui.Interface.frontCall("WINCOM","GetError",
 [], [result])

The GetError function gets a description of the
last error which occurred.

CALL
 ui.Interface.frontCall("WINCOM","ReleaseInstance",
 [handle], [result])

The ReleaseInstance function releases an
Instance of a COM object.

Table 418: WinMail front-end functions: General

Function name Description

CALL
 ui.Interface.frontCall("WinMail","Init",
 [], [id])

The Init function initializes the module.

CALL
 ui.Interface.frontCall("WinMail","Close",
 [id], [result])

The Close function clears all information
corresponding to a message, and frees the memory
occupied by the message.

CALL
 ui.Interface.frontCall("WinMail","SetBody",

The SetBody function sets the body of the mail.

Library reference | 1886

Function name Description

 [id, body], [result])

CALL
 ui.Interface.frontCall("WinMail","SetSubject",
 [id, subject], [result])

The SetSubject function sets the subject of the
mail.

CALL
 ui.Interface.frontCall("WinMail","AddTo",
 [id, name, address], [result
])

The AddTo function adds a "To" addressee to the
mail.

CALL
 ui.Interface.frontCall("WinMail","AddCC",
 [id, name, address], [result
])

The AddCC function adds a "CC" addressee to the
mail.

CALL
 ui.Interface.frontCall("WinMail","AddBCC",
 [id, name, address], [result
])

The AddBCC function adds a "BCC" addressee to
the mail.

CALL
 ui.Interface.frontCall("WinMail","AddAttachment",
 [id, fileName], [result])

The AddAttachment function adds a file as an
attachment to the mail.

CALL
 ui.Interface.frontCall("WinMail","SendMailSMTP",
 [id], [result])

The SendMailSMTP function sends the mail with
the SMTP protocol.

CALL
 ui.Interface.frontCall("WinMail","SendMailMAPI",
 [id], [result])

The SendMailMAPI function sends the mail with
the MAPI protocol.

CALL
 ui.Interface.frontCall("WinMail","GetError",
 [id], [result])

The GetError function gets a description of the
last error that occurred.

Table 419: WinMail front-end functions: SMTP-specific

Function name Description

CALL
 ui.Interface.frontCall("WinMail","SetSmtp",
 [id, smtp:port], [result])

The SetSmtp function sets the SMTP server to be
used.

CALL
 ui.Interface.frontCall("WinMail","SetFrom",

The SetFrom function sets sender information.

Library reference | 1887

Function name Description

 [id, name, address], [result
])

Table 420: Session module front-end functions

Function name Description

ui.Interface.frontCall("session", "getVar",
 [name],
 [result])

Returns the value of a session variable.

ui.Interface.frontCall("session", "setVar",
 [name,value],
 [result])

Sets a value of a session variable.

Table 421: Common mobile module front-end functions

Function Name Description

ui.Interface.frontCall("mobile", "chooseContact",
 [], [result])

Lets the user choose a contact from the mobile device contact
list and returns the vCard.

ui.Interface.frontCall("mobile", "choosePhoto",
 [], [path])

Lets the user select a picture from the mobile device's photo
gallery and returns a picture identifier.

ui.Interface.frontCall("mobile", "chooseVideo",
 [], [path])

Lets the user select a video from the mobile device's video
gallery and returns a video identifier.

ui.Interface.frontCall("mobile", "composeMail",

 [to, subject, content, cc, bcc, attachments ...],
 [result])

Invokes the user's default mail application for a new mail to
send.

ui.Interface.frontCall("mobile", "composeSMS",
 [recipients, content],
 [result])

Sends an SMS text to one or more phone numbers.

ui.Interface.frontCall("mobile", "connectivity",
 [], [result])

Returns the type of network available for the mobile device.

ui.Interface.frontCall("mobile", "getGeolocation",
 [],
 [status, latitude, longitude])

Returns the Global Positioning System (GPS) location of a
mobile device.

ui.Interface.frontCall("mobile","getRemoteNotifications",
This front call retrieves push notification messages.

Library reference | 1888

Function Name Description

 [sender_id], [data])

ui.Interface.frontCall("mobile", "importContact",
 [vcard], [result])

Creates a new, or merges to an existing entry, the contact
details passed in vCard string.

ui.Interface.frontCall("mobile","registerForRemoteNotifications",
 [sender_id],
 [registration_token])

This front call registers a mobile device for push notifications.

ui.Interface.frontCall("mobile",
 "runOnServer",
 [appurl, timeout],
 [])

Run an application from the Genero Application Server
according to the specified URL.

ui.Interface.frontCall("mobile", "scanBarCode",
 [], [code, type])

Allow the user to scan a barcode with a mobile device

ui.Interface.frontCall("mobile", "takePhoto",
 [], [path])

Lets the user take a picture with the mobile device and returns
the corresponding picture identifier.

ui.Interface.frontCall("mobile", "takeVideo",
 [], [path])

Lets the user take a video with the mobile device and returns the
corresponding video identifier.

ui.Interface.frontCall("mobile","unregisterFromRemoteNotifications",
 [sender_id], [])

This front call unregisters the mobile device from push
notifications.

Table 422: Android module front-end functions

Function Name Description

ui.Interface.frontCall("android","askForPermission",
 [permission], [result])

Ask the user to enable a dangerous feature on the Android
device.

ui.Interface.frontCall("android", "showAbout",
 [],[])

Shows the GMA about box displaying version information.

ui.Interface.frontCall("android", "showSettings",
 [], [])

Shows the GMA settings box controlling debug options.

ui.Interface.frontCall("android","startActivity",

 [action, data, category, type, component, extras],

Starts an external Android application (activity), and returns to
the GMA application immediately.

Library reference | 1889

Function Name Description

 [])

ui.Interface.frontCall("android", "startActivityForResult",

 [action, data, category, type, component, extras],
 [outdata, outextras])

Starts an external application (Android activity) and waits until
the activity is closed.

Table 423: iOS module front-end functions

Function Name Description

ui.Interface.frontCall("ios", "getBadgeNumber",
 [],[value])

Returns the current badge number associated to the app.

ui.Interface.frontCall("ios", "newContact",
 [defaults],[vcard])

Lets the user input contact information to create a new entry in
the contact database of the mobile device.

ui.Interface.frontCall("ios", "setBadgeNumber",
 [value], [])

Sets the current badge number associated to the app.

Standard front calls
Standard front call functions provide common utility APIs to control the front-end.

This table shows the functions implemented by the front-ends in the "standard" module, available on all
front-ends.

Table 424: Standard front-end functions

Function Name Description GDC GWC-
JS

GMA GMI

ui.Interface.frontCall("standard", "cbAdd",
 [text],
 [result])

Adds to the content of the clipboard. Yes No No No

ui.Interface.frontCall("standard", "cbClear",
 [],
 [result])

Clears the content of the clipboard. Yes No No No

ui.Interface.frontCall("standard", "cbGet",
 [], [text])

Gets the content of the clipboard. Yes No No No

ui.Interface.frontCall("standard", "cbPaste",
 [],
 [result])

Pastes the content of the clipboard to the
current field.

Yes No No No

ui.Interface.frontCall("standard", "cbSet",
Set the content of the clipboard. Yes No No No

Library reference | 1890

Function Name Description GDC GWC-
JS

GMA GMI

 [text],
 [result])

ui.Interface.frontCall("standard", "execute",
 [cmd,wait],
 [result])

Executes a command on the front-end platform,
with or without waiting.

Yes No No No

ui.Interface.frontCall("standard", "feInfo",
 [name],
 [result])

Queries general front-end properties. Yes Yes Yes Yes

ui.Interface.frontCall("standard", "getEnv",
 [name],
 [value])

Returns an environment variable set in the user
session on the front end platform.

Yes No No No

ui.Interface.frontCall("standard", "getWindowId",
 [aui-win-id],
 [loc-win-id])

Returns the local window manager identifier of
the window corresponding to the AUI window id
passed as parameter.

Yes No No No

ui.Interface.frontCall("standard", "hardCopy",
 [pgsize],
 [result])

Prints a screen shot of the current window Yes No No No

ui.Interface.frontCall("standard", "launchURL",

 [url [, mode]
], [])

Opens an URL with the default URL handler of
the front-end.

Yes Yes Yes Yes

ui.Interface.frontCall("standard", "mdClose",
 [name],
 [result])

Unloads a DLL or shared library front call
module.

Yes No No No

ui.Interface.frontCall("standard", "openDir",
 [path,caption],
 [result])

Displays a file dialog window to get a directory
path on the local file system.

Yes No No No

ui.Interface.frontCall("standard", "openFile",
 [path,name,wildcards,caption],
 [result])

Displays a file dialog window to get a path to
open a file on the local file system.

Yes Yes No No

ui.Interface.frontCall("standard", "playSound",
 [filename],
 [])

Plays the sound file passed as parameter on
the front-end platform.

Yes Yes Yes Yes

ui.Interface.frontCall("standard", "saveFile",
Displays a file dialog window to get a path to
save a file on the local file system.

Yes No No No

Library reference | 1891

Function Name Description GDC GWC-
JS

GMA GMI

 [path,name,filetype,caption],
 [result])

ui.Interface.frontCall("standard", "setReportFont",
 [font],
 [result])

Override the font used for report generation for
the current application.

Yes No No No

ui.Interface.frontCall("standard", "setReportPrinter",
 [printer],
 [result])

Override the printer configuration used for
report generation for the current application.

Yes No No No

ui.Interface.frontCall("standard", "setWebComponentPath",
 [path], [])

Defines the base path where web components
are located.

Yes N/A Yes Yes

ui.Interface.frontCall("standard", "shellExec",

 [document, action],
 [result])

Opens a file on the front-end platform with the
program associated to the file extension.

Yes No No No

cbAdd
Adds to the content of the clipboard.

Syntax

ui.Interface.frontCall("standard", "cbAdd",
 [text], [result])

1. text - The text to be added.
2. result - Holds the execution result (TRUE=success, FALSE=error).

Usage

The "cbAdd" front call adds the text passed as parameter to the content of the clipboard of the front-end
platform.

cbClear
Clears the content of the clipboard.

Syntax

ui.Interface.frontCall("standard", "cbClear",
 [], [result])

1. result - Holds the execution result (TRUE=success, FALSE=error).

Usage

The "cbClear" front call clears the content of the clipboard. This front call takes no input parameters.

Library reference | 1892

cbGet
Gets the content of the clipboard.

Syntax

ui.Interface.frontCall("standard", "cbGet",
 [], [text])

1. text - Holds the text found in the clipboard.

Usage

The "cbGet" front call returns the current content of the clipboard.

This front call takes no input parameters.

cbPaste
Pastes the content of the clipboard to the current field.

Syntax

ui.Interface.frontCall("standard", "cbPaste",
 [], [result])

1. result - Holds the execution result (TRUE=success, FALSE=error).

Usage

The "cbPaste" front call pastes the content of the clipboard to the current field.

This front call takes no input parameters.

cbSet
Set the content of the clipboard.

Syntax

ui.Interface.frontCall("standard", "cbSet",
 [text], [result])

1. text - The text to be set.
2. result - Holds the execution result (TRUE=success, FALSE=error).

Usage

The "cbSet" front call sets the content of the clipboard with the text passed as parameter.

execute
Executes a command on the front-end platform, with or without waiting.

Syntax

ui.Interface.frontCall("standard", "execute",
 [cmd,wait], [result])

1. cmd - The command to be executed.
2. wait - The wait option (TRUE=wait, FALSE=do not wait).
3. result - Holds the execution result (TRUE=success, FALSE=error).

Library reference | 1893

Usage

The "execute" front call runs a command on the front-end platform, with or without waiting option.

If the second parameter is set to 1 (TRUE), the runtime system will wait until the front-end gives the control
back after the local command was executed.

feInfo
Queries general front-end properties.

Syntax

ui.Interface.frontCall("standard", "feInfo",
 [name], [result])

1. name - The name of the property.
2. result - Holds the value of the property.

Usage

The feInfo front call returns a front-end property value according to the property name passed in as the
parameter.

Some feInfo options take an optional parameter, such as screenresolution:

CALL ui.Interface.frontCall("standard", "feInfo", ["screenResolution", 2],
 [resolution])

Table 425: Property names and descriptions for the standard.feInfo front call

feInfo property values

Property name Description GDC GWC-
JS

GMA GMI

dataDirectoryReturns the directory name that can be used for
temporary files on the front-end side. This directory
is cleaned at front-end startup and end, and is
common to all front-end instances, except GWC.

The possible values returned are:

• With Genero Web Client, this is not applicable.
• With Genero Desktop Client, the local

cache directory. For example, "/home/
username/.cache/Four Js/Genero
Desktop".

• With Genero Mobile for Android™, this is the
GMA application cache directory. Content may
be erased, once the app is closed.

• With Genero Mobile for iOS, this is the
temporary directory in the application sandbox
(iOS NSTemporaryDirectory() system call).
Content may be erased, once the app is closed.

Yes No Yes Yes

dictionariesDirectoryReturns the directory name where spell checking
dictionary files are located.

This parameter is only supported by GDC, for the
spellCheck style attribute of TextEdit elements.

Yes N/A N/A N/A

Library reference | 1894

Property name Description GDC GWC-
JS

GMA GMI

A program can query the
dictionariesDirectory info in order
to send dictionary files to the GDC with an
fgl_putfile() call.

deviceModel Returns the name of the device, e.g. "iPad4,5". Yes No Yes Yes

deviceId • With Genero Mobile for iOS, returns the
identifierForVendor.

• With Genero Mobile for Android, returns this
IMEI, otherwise the Android id (but may change
after device reinstallation)

Yes No Yes Yes

feName

The code identifying the type of front-end
component.

The possible values returned are:

• "Genero Desktop Client" for Genero
Desktop Client.

• "GBC" for Genero Web Client - JavaScript
(GWC-JS).

• "GWC for Genero Web Client - HTML5 theme.
• "GMA" for Genero Mobile for Android.
• "GMI" for Genero Mobile for iOS.

Yes Yes Yes Yes

fePath

The installation directory of the front-end
executable.

• With Genero Desktop Client, it returns the path
to the installation directory of the GDC.

• When Genero Web Client, it returns the path to
the installation directory of the GAS.

• With Genero Mobile for Android, it returns the
installation directory. For example, "/data/
data/com.fourjs.gma/fgl".

• With Genero Mobile for iOS, it returns the
installation directory. For example: "/private/
var/mobile/Applications/B3E6-C48A-
ED4EFA". Below the installation directory
are the "Documents" (which is by default
pwd), "GMI.app" (deployed p-code resides in
GMI.app/app/) and "tmp" directories.

Important: The installation path returned
by this front call may change in future
versions, do not based application code on
this. On mobile devices, consider using the
os.Path.pwd on page 2004 utility function
to get the application working directory
when executing programs.

Yes No Yes Yes

freeStorageSpaceReturns the number of bytes available on the
device.

Yes No Yes Yes

Library reference | 1895

Property name Description GDC GWC-
JS

GMA GMI

iccid • With Genero Mobile for iOS, returns an error
(not allowed).

• With Genero Mobile for Android, returns the
ICCID if available, otherwise raise an error.

N/A N/A Yes Yes

imei • With Genero Mobile for iOS, returns an error
(not allowed).

• With Genero Mobile for Android, returns the
IMEI if available, otherwise raises an error.

N/A N/A Yes Yes

ip

Returns the IP address of the network interface
used for the GUI connection.

For mobile platforms, this is the preferred IP
address of the device: if there is WIFI, either
the IPv4 address is given back (for example:
192.168.0.12) or if there is no IPv4 address,
the IPv6 address is given back (for example:
2a02:810a:82c0:478:d462:e334:6a1d:fb78).
If there is no WIFI, either the cellular IPv4 or IPv6
address is given back. If there is no network, NULL
is returned.

Yes No Yes Yes

isActiveX

Returns "1" if the front-end runs in Active X mode
(GDC specific).

For Genero Mobile clients, the return value will
always be "0"

Yes No Yes Yes

numScreens

Number of screens available on the front-end
platform.

On typical front-end platforms and devices, the
number of screens is 1. In some rare cases, a
desktop computer can be configured with more
than one screen.

Yes No No No

osType

The operating system type where the front-end is
running.

Possible return values include "WINDOWS",
"LINUX", "OSX", "ANDROID", "IOS".

Yes Yes Yes Yes

osVersion
The version of the operating system.

Example of returned values: "4.3", "5.10.15".

Yes No Yes Yes

outputMap Returns the GWC application output map of the
current application. This option is only supported
with a GAS >= 2.22.00.

Example of returned value: "DUA_HTML5", ...

No No No No

ppi Returns the screen pixel density of the front-end
platform (Pixels Per Inch). This front call takes an

Yes No Yes Yes

Library reference | 1896

Property name Description GDC GWC-
JS

GMA GMI

optional screen number as parameter (1 is the
default).

• With Genero Mobile for iOS, returns the
PixelsPerInch of a iOS device.

• With Genero Mobile for Android, returns the DPI
(ppi == dpi)

screenResolution

Returns the screen resolution of the front-end
platform. This front call takes an optional screen
number as parameter (1 is the default).

Example of returned values: "1200x1824",
"1920x1104".

Note: For mobile devices, the value
can change depending on the device
orientation.

Yes Yes Yes Yes

target

Returns the build platform target code name,
identifying the operating system the front-end
binary was compiled. This front call is provided
for debugging purpose, do not base code on the
returned value, it can change if the target OS
version is upgraded for example. Use the ostype
property instead.

Example of returned values:

• "w32v100" = Windows 32 bits, Visual C++ 10.
• "w64v110" = Windows 64 bits, Visual C++ 11.
• "d32a040" = Android 4.0 ARM 32 bits.
• "d32x040" = Android 4.0 x86 32 bits.
• "i32a070" = iOS 7.0 ARM 32 bits.
• "i32x070" = iOS 7.0 x86 32 bits.

Note: For GWC-JS, will return the same
value as osType.

Yes Yes Yes Yes

windowSize

Returns the current size of the front-end view-port.

• For mobile front-ends, this is the size of the
mobile screen.

• For Genero Desktop Client, this is the size of the
current window.

• For Genero Web Client, this is the size of the
browser webview.

Example of returned values: "1200x1824",
"1920x1104".

Yes Yes Yes Yes

Library reference | 1897

getEnv
Returns an environment variable set in the user session on the front end platform.

Syntax

ui.Interface.frontCall("standard", "getEnv",
 [name], [value])

1. name - The name of the environment variable.
2. value - Holds the value of the environment variable.

Usage

The "getEnv" front call returns an environment variable set in the user session on the front-end platform.

getWindowId
Returns the local window manager identifier of the window corresponding to the AUI window id passed as
parameter.

Syntax

ui.Interface.frontCall("standard", "getWindowId",
 [aui-win-id], [loc-win-id])

1. aui-win-id - The id of the window node in the AUI tree.
2. loc-win-id - The id of the window in the window manager where the front-end is running.

Usage
Returns the local identifier that corresponds to the AUI window id passed as parameter, in the window
manager where the front-end is displaying the application forms.

The node id must reference a Window node, otherwise "0" is returned ; in traditional mode, window
widgets are simple frames ; Use "0" as aui-win-id parameter to get the top level window id in the local
windowing system.

hardCopy
Prints a screen shot of the current window

Syntax

ui.Interface.frontCall("standard", "hardCopy",
 [pgsize], [result])

1. pgsize - Pass "1" to adapt the screen shot to the page size.
2. result - Holds the execution result (TRUE=success, FALSE=error).

Usage

The "hardCopy" front call allows you to print a screen shot of the current window.

The pgsize parameter is optional; Either leave out, or enter "1" to indicate that the screen shot must be
adapted to the page size.

Library reference | 1898

launchURL
Opens an URL with the default URL handler of the front-end.

Syntax

ui.Interface.frontCall("standard", "launchURL",
 [url [, mode]], [])

1. url - The URL to invoke.
2. mode (optional) - front-end specific meaning (see below).

Usage (General)

The "launchURL" front call opens an URL with the default URL handler available on the front-end
platform; This is typically the web browser for "HTTP:" URLs, or the mailer for "mailto:" URLs, but the
corresponding application may also be dedicated to the type of object specified by the URL (for example, a
mapping service or to initiate a phone call).

This front call is a powerful feature: Front-end applications can register themselves as URL handlers, so
you can start applications on the front-end through the lauchurl front call.

Supported schemes depend on your system configuration.

Important: Some type of URLs are not supported by all front-end platforms. Make sure that you
test all target front-ends when using a lauchurl front call.

The mode parameter is optional and is interpreted differently according to the front-end type:

• With Genero Web Client (GWC), use "replace" for the mode parameter, if you want the current
application in the browser window or tab to be replaced with the new URL, instead of launching a new
browser window or tab. If it is not present, or if a value other than "replace" is specified, the Genero
Web Client behaves like the Genero Desktop Client, opening the URL in a new browser window.

• With Genero Mobile and Genero Desktop Client (GDC) front-ends, the mode parameter is ignored if
specified.

Example

To invoke Google Play Store:

CALL ui.Interface.frontCall("standard", "launchURL",
 ["market://details?id=com.google.android.apps.currents"], [])

CALL ui.Interface.frontCall("standard", "launchURL",
 ["market://details?id=com.google.zxing.client.android"], [])

To open Google Maps:

CALL ui.Interface.frontCall("standard", "launchURL",
 ["geo:48.613363,7.711083?z=17"], [])

To open Google Street View:

CALL ui.Interface.frontCall("standard", "launchURL",
 ["google.streetview:cbll=48.613363,7.711083&cbp=1,0,,0,1.0&mz=17"],
 [])

Library reference | 1899

To initiate a phone call:

CALL ui.Interface.frontCall("standard", "launchURL", ["tel:
+336717623"], [])

mdClose
Unloads a DLL or shared library front call module.

Syntax

ui.Interface.frontCall("standard", "mdClose",
 [name], [result])

1. name - The name of the module to be closed.
2. result - Holds the result (0 = success, -1 = module not found, -2 = cannot unload (busy)).

Usage
Front call modules are loaded on demand. After calling a function of a specific module, you can use the
"mdClose" front call to unload the shared library and save resources.
openDir
Displays a file dialog window to get a directory path on the local file system.

Syntax

ui.Interface.frontCall("standard", "openDir",
 [path,caption], [result])

1. path - The default path.
2. caption - The caption to be displayed.
3. result - Holds the name of the selected directory (or NULL if canceled).

Usage
When invoking the "openDir" front call, the front-end displays the typical file dialog window on the local
file system, to let the end user enter a directory path.

If the user cancels the dialog, the front call returns NULL in the result variable.

openFile
Displays a file dialog window to get a path to open a file on the local file system.

Syntax

ui.Interface.frontCall("standard", "openFile",
 [path,name,wildcards,caption],
 [result])

1. path - The default path.
2. name - The name to be displayed for the file type.
3. wildcards - A blank separated list of wildcards (for ex: "*.pdf" or "README* test*.txt")
4. caption - The caption to be displayed.
5. result - Holds the name of the selected file (or NULL if canceled).

Usage

When invoking the "openFile" front call, the front-end displays a file dialog window using the local file
system, to let the end user enter a file path, to select an existing file.

Library reference | 1900

If the user cancels the dialog, the front call returns NULL in the result variable.

Note: With the GWS-JS front-end, the path parameter is ignored, and wildcards can only be hold
one type of file extension.

playSound
Plays the sound file passed as parameter on the front-end platform.

Syntax

ui.Interface.frontCall("standard", "playSound",
 [filename], [])

1. filename - The sound file to play.

Usage

The "playSound" front call opens the sound file passed as parameter and plays the sound on the front-
end.

If the file is not located on the front-end, it will automatically be transfered to the front-end through the file-
transfer facility.

Supported sound file format depends on the front-end infastructure (platform, technology, web browser, ...)

Example

CALL ui.Interface.frontCall("standard", "playSound",
 ["/opt/var/sounds/beep.mp3"], [])

saveFile
Displays a file dialog window to get a path to save a file on the local file system.

Syntax

ui.Interface.frontCall("standard", "saveFile",
 [path,name,filetype,caption],
 [result])

1. path - The default path.
2. name - The name to be displayed for the file type.
3. filetype - The file types (as a blank separated list of extensions).
4. caption - The caption to be displayed.
5. result - Holds the name of the selected file (or NULL if canceled).

Usage
When invoking the "saveFile" front call, the front-end displays the typical file dialog window on the local
file system, to let the end user enter a file path, to save data to a new file.

If the user cancels the dialog, the front call returns NULL in the result variable.

setReportFont
Override the font used for report generation for the current application.

Syntax

ui.Interface.frontCall("standard", "setReportFont",
 [font], [result])

Library reference | 1901

1. font - A string describing the font to use for report generation (see Usage for details).
2. result - Holds the execution result (TRUE=success, FALSE=error).

Usage
The "setReportFont" front call allows you to override the font used for report generation for the current
application. You can simply copy/paste the font string from the "Report To Printer" font panel from GDC
Monitor. An empty or null string reset to the default behavior.

The font parameter is a string that describe the font to use for report generation. For example: "Helvetica,
Bold, Italic, 13". Alternatively, you can specify "<ASK_ONCE>" , "<ASK_ALWAYS>" , "<USER_DEFINED>"
or "<USE_DEFAULT>" " which will perform the corresponding actions.

setReportPrinter
Override the printer configuration used for report generation for the current application.

Syntax

ui.Interface.frontCall("standard", "setReportPrinter",
 [printer], [result])

1. printer - A string describing the printer to use for report generation (see Usage for details).
2. result - Holds the execution result (TRUE=success, FALSE=error).

Usage
The "setReportPrinter" front call allows you to override the printer configuration used for report
generation for the current application. You can simply copy/paste the printer string from the "Report To
Printer" printer panel from GDC Monitor. An empty or null string reset to the default behavior.

The printer parameter is a string that describe the printer to use for report generation. For example:
"moliere, Portrait, A4, 96 dpi, 1 copy, Ascendent, Color, Auto". Alternatively, you
can specify "<ASK_ONCE>" , "<ASK_ALWAYS>" , "<USER_DEFINED>" or "<USE_DEFAULT>" " which
will perform the corresponding actions.

setWebComponentPath
Defines the base path where web components are located.

Syntax

ui.Interface.frontCall("standard", "setWebComponentPath",
 [path], [])

1. path - The base url. For example, "http://myserver/components" or "file:///c:/
components".

Usage

This front call defines the base path to find gICAPI web components files.

For the Genero Desktop Client, it defines the base path where web components are located, when GDC is
directly connected to the runtime system. This is ignored when GDC is connected to the GAS.

For Genero Mobile, it sets the main web component lookup path. An URI is expected. For example,
"file:///data/data/com.fourjs.gma/cache/appdata/mywebcomponents"or "http://mygas/
mywebcomponents/".

Library reference | 1902

shellExec
Opens a file on the front-end platform with the program associated to the file extension.

Syntax

ui.Interface.frontCall("standard", "shellExec",
 [document, action], [result])

1. document - The document file to be opened.
2. action - (optional, Windows™ Only!) The action to perform, related to the way the file type is registered

in Windows™ Registry.
3. result - Holds the execution result (TRUE=success, FALSE=error).

Usage
The "shellExec" front call opens a file on the front-end platform with the program associated to the file
extension.

This front call is mainly designed for the Genero Desktop Client on Windows™ platforms.

Important: Under X11 Systems, this uses xdg-open, which needs to be installed and configured
on your system. Kfmclient will be used as a workaround when xdg-open is not available.

Tip: In order to view a document (like a PDF for example), if that document can be displayed by
web browsers, use the launchURL on page 1898 front call instead, especially if you want to use
both the Genero Desktop Client (GDC) and the Genero Web Client (GWC) front-ends.

Webcomponent front calls
This section describes Webcomponent specific front calls.

This table shows the functions provided by the "webcomponent" module on the front-ends supporting web
components.

Table 426: Webcomponent module front-end functions

Function Name Description

ui.Interface.frontCall("webcomponent", "call",
 [aui-name, function-
name, [param1, param2, ...]
],
 [result]
)

Calls a JavaScript function through the web component.

ui.Interface.frontCall("webcomponent", "frontCallAPIVersion",
 [],[result])

Returns the API version of web component front-end calls.

ui.Interface.frontCall("webcomponent", "getTitle",
 [aui-name], [result])

Returns the title of the HTML doc rendered by a web component.

call
Calls a JavaScript function through the web component.

Syntax

ui.Interface.frontCall("webcomponent", "call",

Library reference | 1903

 [aui-name, function-name, [param1, param2, ...]],
 [result]
)

1. aui-name - This is the name of the web component name in the AUI tree.
2. function-name - This is the name of the web component JavaScript function to be called.
3. param1, param2, ... - Optional parameters to be passed to the web component JavaScript function.
4. result - Holds the JavaScript function return value.

Usage

Calls a JavaScript function through the web component. The JavaScript function must be implemented
in the HTML content pointed by the URL-based web component, or in the user-defined JavaScript of a
gICAPI-based web component.

The aui-name and function-name arguments are mandatory.

The arguments following the function-name argument will be passed to the JavaScript function.

That the result variable will contain the value returned by the JavaScript function.

Example

DEFINE result STRING
CALL ui.Interface.frontCall("webcomponent","call",
 ["formonly.data","echoString","abcdef"],[result])

For a complete example, see Example 2: Calling a JavaScript function of a gICAPI web
component on page 1432.

frontCallAPIVersion
Returns the API version of web component front-end calls.

Syntax

ui.Interface.frontCall("webcomponent", "frontCallAPIVersion",
 [],[result])

1. result - Holds the API version for web component front calls.

Usage

This front call can be used to check the API version for the web component front calls.

If the API version changes, you must adapt the code to the expected front call API implemented for the
web components.

The value returned by this front call is a typicaly version number such as 1.0, 1.1, etc.

Example

FUNCTION wc_api_version()
 DEFINE vers STRING
 TRY
 CALL
 ui.Interface.frontCall("webcomponent","frontCallAPIVersion",[],
[vers])
 -- we can safely call "webcomponent" "call" in the code
 RETURN vers
 CATCH
 -- we can't call the "webcomponent" functions...

Library reference | 1904

 RETURN 0
 END TRY
END FUNCTION

getTitle
Returns the title of the HTML doc rendered by a web component.

Syntax

ui.Interface.frontCall("webcomponent", "getTitle",
 [aui-name], [result])

1. aui-name - This is the name of the web component name in the AUI tree.
2. result - Holds the title of of the HTML document.

Usage

This front call can be used to get the title of the HTML document that is rendered by the web component
identified by the aui-name. For more details refer to http://www.w3schools.com/tags/tag_title.asp.

A typical usage of this front call is when implementing a web component based on the O-Auth mechanism
to identify the current user: For example, with the Google accounts authentication service, after the login
and password were validated by Google, the authentication token will be returned in the title of the HTML
document. This token is typically used by the application to identify the user in distant API calls.

Genero Desktop Client front calls
This section describes GDC specific front calls.

The GDC front-end implements the following front call modules:

• Windows DDE Support on page 1904
• Windows COM Support on page 1910
• Windows Mail extension on page 1917

Important: These front call modules are only available on Windows™ platforms.

Windows™ DDE Support
Description of Windows™ DDE support.

Important: The Win DDE front call library is deprecated.

Dynamic Data Exchange (DDE) is a form of inter-process communication implemented by Microsoft™ for
Windows™ platforms. DDE uses shared memory to exchange data between applications. Applications can
use DDE for one-time data transfers and for ongoing exchanges in applications that send updates to one
another as new data becomes available.

Please refer to your Microsoft™ documentation for DDE compatibility between existing versions. As an
example, DDE commands were changed between Office 97 and Office 98.

We provide a DDE interface as a Front-End Extension: WinDDE.DLL

• Using the WinDDE API on page 1905
• The DDE API function list on page 1905
• WinDDE example on page 1909

http://www.w3schools.com/tags/tag_title.asp

Library reference | 1905

Using the WinDDE API
With WinDDE Support, you can invoke a Windows™ application and send or receive data to or from it. To
use this functionality, the program must use the Windows™ Front End.

Before using the DDE functions, the TCP communication channel between the application and the front
end must be established with a display (OPEN WINDOW, MENU, DISPLAY TO).

Figure 103: The four-part procedure of the DDE API

The DDE API is used in a four-part procedure, as described in the following steps:

1. The application sends to the Front End the DDE order using the TCP/IP channel.
2. The Front End executes the DDE order and sends the data to the Windows™ application through the

DDE API.
3. The Windows™ application executes the command and sends the result, which can be data or an error

code, to the Front End.
4. The Windows™ Front End sends back the result to the application using the TCP/IP channel.

A DDE connection is uniquely identified by two values: The name of the DDE Application and the
document. Most DDE functions require these two values to identify the DDE source or target.

The DDE API function list
The DDE API is based on the front call technique.

The DDE API is based on the front call technology. All DDE functions are grouped in the WINDDE front
end function module.

Table 427: Windows DDE front-end functions

Function name Description

CALL
 ui.Interface.frontCall("WINDDE","DDEConnect",
 [program, document, encoding],
 [result])

DDEConnect opens a DDE connection.

CALL
 ui.Interface.frontCall("WINDDE","DDEExecute",

DDEExecute executes a DDE command.

Library reference | 1906

Function name Description

 [program, document, command, encoding
], [result])

CALL
 ui.Interface.frontCall("WINDDE","DDEFinish",
 [program, document], [result])

DDEFinish closes a DDE connection.

CALL
 ui.Interface.frontCall("WINDDE","DDEFinishAll",
 [], [result])

DDEFinishAll closes all DDE connections.

CALL
 ui.Interface.frontCall("WINDDE","DDEError",
 [], [errmsg])

DDEError returns error information about the last
DDE operation.

CALL
 ui.Interface.frontCall("WINDDE","DDEPeek",

 [program, container, cells, encoding
], [result, value])

DDEPeek retrieves data from the specified program
and document using the DDE channel.

CALL
 ui.Interface.frontCall("WINDDE","DDEPoke",

 [program, container, cells, values, encoding
], [result])

DDEPoke sends data to the specified program and
document using the DDE channel.

DDEConnect
DDEConnect opens a DDE connection.

Syntax

CALL ui.Interface.frontCall("WINDDE","DDEConnect",
 [program, document, encoding], [result])

• program is the name of the DDE application.
• document is the document that is to be opened.
• encoding is an optional parameter. It allows to force the encoding to use between ASCII and wide char/

unicode. When not specified, WinDDE will try to retrieve the correct encoding by itself. Possible values
are:

• UNICODE
• ASCII

• result is an integer variable receiving the status.
• result is TRUE if the function succeeded, FALSE otherwise.
• If the function failed, use DDEError to get the description of the error.

Library reference | 1907

Warnings

• If the function failed with DMLERR_NO_CONV_ESTABLISHED, then the DDE application was
probably not running. Use the execute or shellexec front call to start the DDE application.

• In Microsoft™ Office 2010, the use of DDE is disabled by default. You need to uncheck Ignore other
applications that use Dynamic Data Exchange(DDE) in advanced options, otherwise DDEConnect
will fail.

DDEExecute
DDEExecute executes a DDE command.

Syntax

CALL ui.Interface.frontCall("WINDDE","DDEExecute",
 [program, document, command, encoding], [result])

• program is the name of the DDE application.
• document is the document that is to be used.
• command is the command that needs to be executed.
• encoding is an optional parameter. It allows to force the encoding to use between ASCII and wide char/

unicode. When not specified, WinDDE will try to retrieve the correct encoding by itself. Possible values
are: "UNICODE", "ASCII"

• Refer to the program documentation to know the syntax of command.
• result is an integer variable receiving the status.
• result is TRUE if the function succeeded, FALSE otherwise.
• If the function failed, use DDEError to get the description of the error.

Warnings

• The DDE connection must be opened see DDEConnect.

DDEFinish
DDEFinish closes a DDE connection.

Syntax

CALL ui.Interface.frontCall("WINDDE","DDEFinish",
 [program, document], [result])

• program is the name of the DDE application.
• document is the document that is to be closed.
• result is an integer variable receiving the status.
• result is TRUE if the function succeeded, FALSE otherwise.
• If the function failed, use DDEError to get the description of the error.

Warnings

• The DDE connection must be opened, see DDEConnect.

DDEFinishAll
DDEFinishAll closes all DDE connections.

Syntax

CALL ui.Interface.frontCall("WINDDE","DDEFinishAll",
 [], [result])

Library reference | 1908

• result is TRUE if the function succeeded, FALSE otherwise.

Usage

This function closes all DDE connections, as well as the DDE server program.

DDEError
DDEError returns error information about the last DDE operation.

Syntax

CALL ui.Interface.frontCall("WINDDE","DDEError",
 [], [errmsg])

• errmsg is the error message. It is set to NULL if no error occurred.

DDEPeek
DDEPeek retrieves data from the specified program and document using the DDE channel.

Syntax

CALL ui.Interface.frontCall("WINDDE","DDEPeek",
 [program, container, cells, encoding], [result, value])

• program is the name of the DDE application.
• container is the document or sub-document that is to be used. A sub-document can, for example, be a

sheet in Microsoft™ Excel.
• cells represents the working items; see the program documentation to know the format of cells.
• encoding is an optional parameter. It allows to force the encoding to use between ASCII and wide char/

unicode. When not specified, WinDDE will try to retrieve the correct encoding by itself. Possible values
are: "UNICODE", "ASCII"

• value represents the data to be retrieved; see the program documentation to know the format ofvalues.
• result is an integer variable receiving the status.
• result is TRUE if the function succeeded, FALSE otherwise.
• If the function failed, use DDEError to get the description of the error.
• value is a variable receiving the cells values.

Warnings

• The DDE connection must be opened; see DDEConnect.
• DDEError can only be called once to check if an error occurred.

DDEPoke
DDEPoke sends data to the specified program and document using the DDE channel.

Syntax

CALL ui.Interface.frontCall("WINDDE","DDEPoke",
 [program, container, cells, values, encoding], [result])

• program is the name of the DDE application.
• container is the document or sub-document that is to be used. A sub-document can, for example, be a

sheet in Microsoft™ Excel.
• cells represents the working items; see the program documentation to know the format of cells.
• values represents the data to be sent; see the program documentation to know the format of values.

Library reference | 1909

• encoding is an optional parameter. It allows to force the encoding to use between ASCII and wide char/
unicode. When not specified, WinDDE will try to retrieve the correct encoding by itself. Possible values
are: "UNICODE", "ASCII"

• result is an integer variable receiving the status.
• result is TRUE if the function succeeded, FALSE otherwise.
• If the function failed, use DDEError to get the description of the error.

Warnings

• The DDE connection must be opened; see DDEConnect.
• An error may occur if you try to set many (thousands of) cells in a single operation.

WinDDE example
This section provides a WinDDE example.

dde_example.per

DATABASE formonly
SCREEN
{
Value to be given to top-left corner :
[f00]
Value found on top-left corner :
[f01]
}
ATTRIBUTES
 f00 = formonly.val;
 f01 = formonly.rval, NOENTRY;

dde_example.4gl

MAIN
 -- Excel must be open beforehand
 CONSTANT file = "Sheet1"
 CONSTANT prog = "EXCEL"
 DEFINE val, rval STRING
 DEFINE res INTEGER
 OPEN WINDOW w1 AT 1,1 WITH FORM "dde_example.per"
 INPUT BY NAME val
 CALL ui.Interface.frontCall("WINDDE","DDEConnect", [prog,file], [res])
 CALL checkError(res)
 CALL ui.Interface.frontCall("WINDDE","DDEPoke", [prog,file,"R1C1",val],
 [res]);
 CALL checkError(res)
 CALL ui.Interface.frontCall("WINDDE","DDEPeek", [prog,file,"R1C1"],
 [res,rval]);
 CALL checkError(res)
 DISPLAY BY NAME rval
 INPUT BY NAME val WITHOUT DEFAULTS
 CALL ui.Interface.frontCall("WINDDE","DDEExecute", [prog,file,"[save]"],
 [res]);
 CALL checkError(res)
 CALL ui.Interface.frontCall("WINDDE","DDEFinish", [prog,file], [res]);
 CALL checkError(res)
 CALL ui.Interface.frontCall("WINDDE","DDEFinishAll", [], [res]);
 CALL checkError(res)
 CLOSE WINDOW w1
END MAIN

FUNCTION checkError(res)
 DEFINE res INTEGER
 DEFINE mess STRING

Library reference | 1910

 IF res THEN RETURN END IF
 DISPLAY "DDE Error:"
 CALL ui.Interface.frontCall("WINDDE","DDEError",[],[mess]);
 DISPLAY mess
 CALL ui.Interface.frontCall("WINDDE","DDEFinishAll", [], [res]);
 DISPLAY "Exit with DDE Error."
 EXIT PROGRAM (-1)
END FUNCTION

Windows™ COM Support
"COM" stands for Component Object Model. It allows anyone to directly access Windows™ Applications
Objects. You can create instances of those objects, call methods on them, and get or set their properties.

Important: The WinCOM front call library is deprecated.

• Using the WinCOM API on page 1910
• The WinCOM API function list on page 1910
• WinCOM examples on page 1913

Using the WinCOM API
With WinCOM Support, you can invoke a Windows™ application and send or receive data to or from it.

To use this functionality, the program must use the Windows™ Front End.

The WinCOM API function list
The WinCOM API is based on the front call technique as described in Front End Functions. All WinCOM
functions are grouped in the WinCOM front end function module.

Table 428: Windows COM front-end functions

Function name Description

CALL
 ui.Interface.frontCall("WinCOM","CreateInstance",
 [program], [handle])

The CreateInstance function creates an
instance of a registered COM object.

CALL
 ui.Interface.frontCall("WINCOM","CallMethod",
 [handle, method, arg1, ...],
 [result])

CALL
 ui.Interface.frontCall("WINCOM","CallMethod",
 [handle, method(arg1, ...)],
 [result])

The CallMethod function calls a method on a
specified object.

CALL
 ui.Interface.frontCall("WINCOM","GetProperty",
 [handle, member], [result])

The GetProperty function gets a property of an
object.

CALL
 ui.Interface.frontCall("WINCOM","SetProperty",

The SetProperty function sets a property of an
object.

Library reference | 1911

Function name Description

 [handle, member, value],
 [result])

CALL
 ui.Interface.frontCall("WINCOM","GetError",
 [], [result])

The GetError function gets a description of the
last error which occurred.

CALL
 ui.Interface.frontCall("WINCOM","ReleaseInstance",
 [handle], [result])

The ReleaseInstance function releases an
Instance of a COM object.

Supported syntax

COM language syntax is very flexible and allows lots of notation. Genero WinCOM API is slightly more
strict:

• := notation is allowed in version 2.00.1e (or later) only; for instance: myFunction(SourceType:=3)
• "no parenthesis" notation is not allowed; for instance: myFunction 3 must be

writtenmyFunction(3)
• numeric constants are allowed in version 2.00.1e (or later) only. The constant list depends on the

application used via WinCOM, therefore the list is configurable: a file named etc/WinCOM.cst gathers
all the constants provided today by Microsoft™ for Office XP. It can be modified to add user-defined
constants. Example with Word: CALL ui.Interface.frontCall("WINCOM","SetProperty",
[wdapp,"Selection.Font.Bold","9999998"],[wddoc]) Here, "9999998" stands for the
constant wdToggle (see etc/WinCOM.cst).

• There is no way to handle an array as a method argument. This is also due to BDL limitation: you can't
pass BDL Arrays to frontcalls.

CreateInstance
The CreateInstance function creates an instance of a registered COM object.

Syntax

CALL ui.Interface.frontCall("WinCOM","CreateInstance",
 [program], [handle])

• program is the classname of the registered COM object.
• handle is an integer variable receiving the status.
• handle is -1 if there as an error, otherwise an integer value that can be used for a later call to the API.
• If the function failed, use GetError to get the description of the error.

CallMethod
The CallMethod function calls a method on a specified object.

Syntax

CALL ui.Interface.frontCall("WINCOM","CallMethod",
 [handle, method, arg1, ...], [result])

OR

CALL ui.Interface.frontCall("WINCOM","CallMethod",
 [handle, method(arg1, ...)], [result])

Library reference | 1912

• handle is the handle returned by another front call (CreateInstance, CallMethod, GetProperty).
• method is the member name to call.
• arg1 (and ...) are the arguments to pass to the method call. Depending on the syntax allowed by the

version of the program you're interacting with, arguments might be used inside brackets or outside. The
best way for Microsoft™ applications (such as Excel or Word) is to initially test your code with a macro
of the manipulation you're expecting to do. According to the method which is used, arguments may or
may not be optional.

• result is either a handle or a value of a predefined type.
• result is -1 in case of error (use GetError to get the description of the error).

GetProperty
The GetProperty function gets a property of an object.

Syntax

CALL ui.Interface.frontCall("WINCOM","GetProperty",
 [handle, member], [result])

• handle is the handle returned by another front call (CreateInstance, CallMethod, GetProperty).
• member is the member property name to get.
• result is either a handle or a value of a predefined type.
• result is -1 in case of error (use GetError to get the description of the error).

SetProperty
The SetProperty function sets a property of an object.

Syntax

CALL ui.Interface.frontCall("WINCOM","SetProperty",
 [handle, member, value], [result])

• handle is the handle returned by another front call (CreateInstance, CallMethod, GetProperty).
• member is the member property name to set.
• value is the value to which the property will be set.
• result is -1 in case of error (use GetError to get the description of the error), otherwise it is 0.

GetError
The GetError function gets a description of the last error which occurred.

Syntax

CALL ui.Interface.frontCall("WINCOM","GetError",
 [], [result])

• result is the description of the last error.
• the returned value is NULL if there was no error.

ReleaseInstance
The ReleaseInstance function releases an Instance of a COM object.

Syntax

CALL ui.Interface.frontCall("WINCOM","ReleaseInstance",
 [handle], [result])

• handle is the handle returned by another front call (CreateInstance, CallMethod, GetProperty).

Library reference | 1913

• result is -1 in case of error (use GetError to get the description of the error), otherwise it is 0.

WinCOM examples
Various WinCOM examples.

• Wincom and Excel example on page 1913
• Wincom and Word example on page 1914
• Wincom and Outlook example on page 1915
• Wincom and Internet Explorer example on page 1916

Wincom and Excel example
This section provides a Wincom and Excel example.

This example puts "foo" in the first row of the 1st column of an Excel Sheet.

DEFINE xlapp INTEGER
DEFINE xlwb INTEGER
MAIN
 DEFINE result INTEGER
 DEFINE str STRING
--initialization of global variables
 LET xlapp = -1
 LET xlwb = -1
--first, we must create an Instance of an Excel Application
 CALL ui.Interface.frontCall("WinCOM", "CreateInstance",
 ["Excel.Application"], [xlapp])
 CALL CheckError(xlapp, __LINE__)
--then adding a Workbook to the current document
 CALL ui.interface.frontCall("WinCOM", "CallMethod",
 [xlapp, "WorkBooks.Add"], [xlwb])
 CALL CheckError(xlwb, __LINE__)
--then, setting it to be visible
 CALL ui.interface.frontCall("WinCOM", "SetProperty",
 [xlapp, "Visible", true], [result])
 CALL CheckError(result, __LINE__)
--then CALL SetProperty to set the value of the cell
 CALL ui.Interface.frontCall("WinCOM", "SetProperty",
 [xlwb, 'activesheet.Range("A1").Value', "foo"],[result])
 CALL CheckError(result, __LINE__)
--then CALL GetProperty to check the value again
 CALL ui.Interface.frontCall("WinCOM", "GetProperty",
 [xlwb, 'activesheet.Range("A1").Value'], [str])
 CALL CheckError(str, __LINE__)
 DISPLAY "content of the cell is: " || str

 --then Free the memory on the client side
 CALL freeMemory()
END MAIN

FUNCTION freeMemory()
 DEFINE res INTEGER
 IF xlwb != -1 THEN
 CALL ui.Interface.frontCall("WinCOM","ReleaseInstance", [xlwb], [res])
 END IF
 IF xlapp != -1 THEN
 CALL ui.Interface.frontCall("WinCOM","ReleaseInstance", [xlapp], [res])
 END IF
END FUNCTION

FUNCTION checkError(res, lin)
 DEFINE res INTEGER
 DEFINE lin INTEGER
 DEFINE mess STRING

Library reference | 1914

 IF res = -1 THEN
 DISPLAY "COM Error for call at line:", lin
 CALL ui.Interface.frontCall("WinCOM","GetError",[],[mess])
 DISPLAY mess
--let's release the memory on the GDC side
 CALL freeMemory()
 DISPLAY "Exit with COM Error."
 EXIT PROGRAM (-1)
 END IF
END FUNCTION

Wincom and Word example
This section provides a Wincom and Word example.

This example puts "This is a title" centered on the page, underlined, and in bold.

DEFINE wdapp INTEGER
DEFINE wddoc INTEGER
MAIN
 DEFINE result INTEGER
--initialization of global variables
 LET wdapp = -1
 LET wddoc = -1
--first, we must create an Instance of a Word Application
 CALL ui.Interface.frontCall("WINCOM","CreateInstance",
 ["Word.Application"],[wdapp])
 CALL CheckError(wdapp, __LINE__)
--then adding a document
 CALL ui.Interface.frontCall("WINCOM","CallMethod",
 [wdapp,"Documents.Add"],[wddoc])
 CALL CheckError(wddoc, __LINE__)
--then, setting it to be visible
 CALL ui.Interface.frontCall("WINCOM","SetProperty",
 [wdapp,"Visible",true],[result])
 CALL CheckError(result, __LINE__)
--Centering the cursor for the title
 CALL ui.Interface.frontCall("WINCOM","SetProperty",
 [wdapp,"Selection.ParagraphFormat.Alignment","1"],[wddoc])
 CALL CheckError(wddoc, __LINE__)
--Underlining the title
 CALL ui.Interface.frontCall("WINCOM","SetProperty",
 [wdapp,"Selection.Font.Underline","1"],[wddoc])
 CALL CheckError(wddoc, __LINE__)
--Putting the title in bold
 CALL ui.Interface.frontCall("WINCOM","SetProperty",
 [wdapp,"Selection.Font.Bold","9999998"],[wddoc])
 CALL CheckError(wddoc, __LINE__)
--Typing the title's text
 CALL ui.Interface.frontCall("WINCOM","CallMethod",
 [wdapp,'Selection.TypeText("This is a title")'],[wddoc])
 CALL CheckError(wddoc, __LINE__)
--then Free the memory on the client side
 CALL freeMemory()
END MAIN

FUNCTION freeMemory()
 DEFINE res INTEGER
 IF wddoc != -1 THEN
 CALL ui.Interface.frontCall("WinCOM","ReleaseInstance", [wddoc], [res])
 END IF
 IF wdapp != -1 THEN
 CALL ui.Interface.frontCall("WinCOM","ReleaseInstance", [wdapp], [res])
 END IF

Library reference | 1915

END FUNCTION

FUNCTION checkError(res, lin)
 DEFINE res INTEGER
 DEFINE lin INTEGER
 DEFINE mess STRING
 IF res = -1 THEN
 DISPLAY "COM Error for call at line:", lin
 CALL ui.Interface.frontCall("WinCOM","GetError",[],[mess])
 DISPLAY mess
--let's release the memory on the GDC side
 CALL freeMemory()
 DISPLAY "Exit with COM Error."
 EXIT PROGRAM (-1)
 END IF
END FUNCTION

Wincom and Outlook example
This section provides a Wincom and Outlook example.

This example executes Outlook, creates a new contact, and saves it in your contact list.

DEFINE outapp INTEGER
DEFINE outit INTEGER
DEFINE outcon INTEGER
DEFINE outsav INTEGER
MAIN
 DEFINE result INTEGER
 DEFINE str STRING
--initialization of global variables
 LET outapp = -1
 LET outit = -1
 LET outcon = -1
 LET outsav = -1
--first, we must create an Instance of an Outlook Application
 CALL ui.interface.frontcall("WinCOM", "CreateInstance",
 ["Outlook.Application"], [outapp])
 CALL CheckError(outapp, __LINE__)
--then, creating a contact object
 CALL ui.interface.frontcall("WinCOM", "CallMethod",
 [outapp, "CreateItem(olContactItem)"], [outit])
 CALL CheckError(outit, __LINE__)
--then, displaying the contact form
 CALL ui.interface.frontCall("WinCOM", "CallMethod",
 [outit, "Display"], [outcon])
 CALL CheckError(outcon, __LINE__)
--CALL SetProperty to fill the various fields with the values you expect
#First Name
 CALL ui.interface.frontCall("WinCOM", "SetProperty",
 [outit, "FirstName", "Lionel"], [result])
 CALL CheckError(result, __LINE__)
#1st email address
 CALL ui.interface.frontCall("WinCOM", "SetProperty",
 [outit, "Email1Address", "lif@4js.com"], [result])
 CALL CheckError(result, __LINE__)
#Business address
 CALL ui.interface.frontCall("WinCOM", "SetProperty",
 [outit, "BusinessAddress", "1 rue de Berne"], [result])
 CALL CheckError(result, __LINE__)
--then, CALL GetProperty to check the values again
 CALL ui.Interface.frontCall("WinCOM", "GetProperty",
 [outit, "FirstName"], [str])
 CALL CheckError(str, __LINE__)

Library reference | 1916

 DISPLAY "First Name of the new contact is " || str
 CALL ui.Interface.frontCall("WinCOM", "GetProperty",
 [outit, "Email1Address"], [str])
 CALL CheckError(str, __LINE__)
 DISPLAY "1st email of the new contact is " || str
 CALL ui.Interface.frontCall("WinCOM", "GetProperty",
 [outit, "BusinessAddress"], [str])
 CALL CheckError(str, __LINE__)
 DISPLAY "Business Address of the new contact is " || str
--at the end, saving the contact
 CALL ui.interface.frontCall("WinCOM", "CallMethod", [outit, "Save"],
 [outsav])
 CALL CheckError(outsav, __LINE__)
--then Free the memory on the client side
 CALL freeMemory()
END MAIN

FUNCTION freeMemory()
 DEFINE res INTEGER
 IF outit != -1 THEN
 CALL ui.Interface.frontCall("WinCOM","ReleaseInstance", [outit], [res])
 END IF
 IF outapp != -1 THEN
 CALL ui.Interface.frontCall("WinCOM","ReleaseInstance", [outapp],
 [res])
 END IF
END FUNCTION

FUNCTION checkError(res, lin)
 DEFINE res INTEGER
 DEFINE lin INTEGER
 DEFINE mess STRING
 IF res = -1 THEN
 DISPLAY "COM Error for call at line:", lin
 CALL ui.Interface.frontCall("WinCOM","GetError",[],[mess])
 DISPLAY mess
--let's release the memory on the GDC side
 CALL freeMemory()
 DISPLAY "Exit with COM Error."
 EXIT PROGRAM (-1)
 END IF
END FUNCTION

Tip: You may find the various Outlook objects (such as ContactItem object), methods (such as
theCreateItem method), and properties (such as the FirstName or BusinessAddress properties) on
the Microsoft™ Developer Network.

Wincom and Internet Explorer example
This section provides a Wincom and Internet Explorer example.

This example executes Internet Explorer on a defined URL with the address bar masked.

DEFINE ieapp INTEGER
DEFINE ienav INTEGER
MAIN
 DEFINE result INTEGER
--initialization of global variables
 LET ieapp = -1
 LET ienav = -1
--first, we must create an Instance of Internet Explorer application
 CALL ui.Interface.frontCall("WinCOM", "CreateInstance",
 ["InternetExplorer.Application"], [ieapp])
 CALL CheckError(ieapp, __LINE__)

http://msdn.microsoft.com/en-us/library/aa246IBM(office.11).aspx

Library reference | 1917

--then, specifying the URL you want to load
 CALL call ui.interface.frontCall("WinCOM", "CallMethod",
 [ie_app, "Navigate", "www.4js.com"], [ienav])
 CALL CheckError(ienav, __LINE__)
--then, masking the address bar
 CALL ui.interface.frontCall("WinCOM", "SetProperty",
 [ieapp, "AddressBar", false], [result])
 CALL CheckError(result, __LINE__)
--then, setting it to visible
 CALL ui.interface.frontCall("WinCOM", "SetProperty", [ieapp, "Visible",
 true],
 [result])
 CALL CheckError(result, __LINE__)
--then Free the memory on the client side
 CALL freeMemory()
END MAIN

FUNCTION freeMemory()
 DEFINE res INTEGER
 IF ienav != -1 THEN
 CALL ui.Interface.frontCall("WinCOM","ReleaseInstance", [ienav], [res])
 END IF
 IF ieapp != -1 THEN
 CALL ui.Interface.frontCall("WinCOM","ReleaseInstance", [ieapp], [res])
 END IF
END FUNCTION

FUNCTION checkError(res, lin)
 DEFINE res INTEGER
 DEFINE lin INTEGER
 DEFINE mess STRING
 IF res = -1 THEN
 DISPLAY "COM Error for call at line:", lin
 CALL ui.Interface.frontCall("WinCOM","GetError",[],[mess])
 DISPLAY mess
--let's release the memory on the GDC side
 CALL freeMemory()
 DISPLAY "Exit with COM Error."
 EXIT PROGRAM (-1)
 END IF
END FUNCTION

Windows™ Mail extension
Description of the Windows™ Mail extension.

Important: The WinMAIL front call library is deprecated. If used, the GDC executable format must
match the WinAPI executable format: The 32-bit WinAPI can only be used with a 32-bit GDC.

Send mail using MAPI

MAPI is an acronym for Messaging Application Programming Interface. The MAPI extension will create a
new mail in the default mailer software, which needs to be "MAPI" compatible, and ask the user to send the
mail. The mail sent using MAPI will be stored by the default mailer software in the same way as any other
mail created by the user.

Send mail using an SMTP server

Another method of sending mail is to connect directly to an SMTP server (Simple Mail Transfer Protocol
is the de facto standard for email transmission across the Internet). The extension will connect to a given
SMTP server and send the mail through this server. The mail is not kept on the client side.

• The WinMail API on page 1918

Library reference | 1918

• WinMail examples on page 1923

The WinMail API
The WinMail API is based on the front call technique as described in Front End Functions. All WinMail
functions are grouped in the WinMail front end function module.

Table 429: WinMail front-end functions: General

Function name Description

CALL
 ui.Interface.frontCall("WinMail","Init",
 [], [id])

The Init function initializes the module.

CALL
 ui.Interface.frontCall("WinMail","Close",
 [id], [result])

The Close function clears all information
corresponding to a message, and frees the memory
occupied by the message.

CALL
 ui.Interface.frontCall("WinMail","SetBody",
 [id, body], [result])

The SetBody function sets the body of the mail.

CALL
 ui.Interface.frontCall("WinMail","SetSubject",
 [id, subject], [result])

The SetSubject function sets the subject of the
mail.

CALL
 ui.Interface.frontCall("WinMail","AddTo",
 [id, name, address], [result
])

The AddTo function adds a "To" addressee to the
mail.

CALL
 ui.Interface.frontCall("WinMail","AddCC",
 [id, name, address], [result
])

The AddCC function adds a "CC" addressee to the
mail.

CALL
 ui.Interface.frontCall("WinMail","AddBCC",
 [id, name, address], [result
])

The AddBCC function adds a "BCC" addressee to
the mail.

CALL
 ui.Interface.frontCall("WinMail","AddAttachment",
 [id, fileName], [result])

The AddAttachment function adds a file as an
attachment to the mail.

CALL
 ui.Interface.frontCall("WinMail","SendMailSMTP",

The SendMailSMTP function sends the mail with
the SMTP protocol.

Library reference | 1919

Function name Description

 [id], [result])

CALL
 ui.Interface.frontCall("WinMail","SendMailMAPI",
 [id], [result])

The SendMailMAPI function sends the mail with
the MAPI protocol.

CALL
 ui.Interface.frontCall("WinMail","GetError",
 [id], [result])

The GetError function gets a description of the
last error that occurred.

The following functions are needed when you use SMTP server connections:

Table 430: WinMail front-end functions: SMTP-specific

Function name Description

CALL
 ui.Interface.frontCall("WinMail","SetSmtp",
 [id, smtp:port], [result])

The SetSmtp function sets the SMTP server to be
used.

CALL
 ui.Interface.frontCall("WinMail","SetFrom",
 [id, name, address], [result
])

The SetFrom function sets sender information.

Init
The Init function initializes the module.

Syntax

CALL ui.Interface.frontCall("WinMail","Init",
 [], [id])

• ret is the identifier of the message initialized.
• For each Init function, a Close must be called.

Usage

This function initializes the module. It returns the identifier for the message, which will be used in other
functions.

Close
The Close function clears all information corresponding to a message, and frees the memory occupied by
the message.

Syntax

CALL ui.Interface.frontCall("WinMail","Close",
 [id], [result])

• id is the message identifier.

Library reference | 1920

• result is the status of the function.

SetBody
The SetBody function sets the body of the mail.

Syntax

CALL ui.Interface.frontCall("WinMail","SetBody",
 [id, body], [result])

• id is the message identifier.
• body is the string text containing the body of the mail.
• result is the status of the function.

SetSubject
The SetSubject function sets the subject of the mail.

Syntax

CALL ui.Interface.frontCall("WinMail","SetSubject",
 [id, subject], [result])

• id is the message identifier.
• subject is the string text containing the subject of the mail.
• result is the status of the function.

AddTo
The AddTo function adds a "To" addressee to the mail.

Syntax

CALL ui.Interface.frontCall("WinMail","AddTo",
 [id, name, address], [result])

• id is the message identifier.
• name is the name to be displayed in the mail.
• address is the mail address to be used for this addressee.
• result is the status of the function.

Usage

This function adds a "To" Addressee to the mail. The Addressee has a name and a mail address.

AddCC
The AddCC function adds a "CC" addressee to the mail.

Syntax

CALL ui.Interface.frontCall("WinMail","AddCC",
 [id, name, address], [result])

• id is the message identifier.
• name is the name to be displayed in the mail.
• address is the mail address to be used for this addressee.
• result is the status of the function.

Library reference | 1921

Usage

This function adds a "CC" Addressee to the mail. The Addressee has a name and a mail address.

AddBCC
The AddBCC function adds a "BCC" addressee to the mail.

Syntax

CALL ui.Interface.frontCall("WinMail","AddBCC",
 [id, name, address], [result])

• id is the message identifier.
• name is the name to be displayed in the mail.
• address is the mail address to be used for this addressee.
• result is the status of the function.

Usage

This function adds a "BCC" Addressee to the mail. The Addressee has a name and a mail address.

AddAttachment
The AddAttachment function adds a file as an attachment to the mail.

Syntax

CALL ui.Interface.frontCall("WinMail","AddAttachment",
 [id, fileName], [result])

• id is the message identifier.
• fileName is the path of the attachment; the path can be relative to the directory from which GDC is run,

or absolute.
• result is the status of the function.

Usage

This function adds a file as an attachment to the mail. The file must be located on the front-end.

SendMailSMTP
The SendMailSMTP function sends the mail with the SMTP protocol.

Syntax

CALL ui.Interface.frontCall("WinMail","SendMailSMTP",
 [id], [result])

• id is the message identifier.
• result is TRUE in case of success; use GetError to get the description of the error when needed.

Usage

This function sends the mail by using the SMTP protocol. default mailer software is called to create the
mail. The user must press the "send" button to send the mail.

SendMailMAPI

Library reference | 1922

The SendMailMAPI function sends the mail with the MAPI protocol.

Syntax

CALL ui.Interface.frontCall("WinMail","SendMailMAPI",
 [id], [result])

• id is the message identifier.
• result is TRUE in case of success; use GetError to get the description of the error when needed.

Important:

• MAPI needs to log in to the mailer software. The first login could take time, depending on the
mailer software. Your Genero application will be blocked until MAPI returns.

• MAPI depends on the mailer software for error management. For instance, Mozilla Thunderbird
returns "success" when the mail is created, but Outlook 2002 only returns "success" when the
mail is sent.

Usage

This function sends the mail by using the MAPI protocol. With MAPI, the default mailer software is called to
create the mail. The user must press the "send" button to send the mail.

GetError
The GetError function gets a description of the last error that occurred.

Syntax

CALL ui.Interface.frontCall("WinMail","GetError",
 [id], [result])

• id is the message identifier.
• result is the description of the last error.
• the returned value is NULL if there was no error.

SetSmtp
The SetSmtp function sets the SMTP server to be used.

Syntax

CALL ui.Interface.frontCall("WinMail","SetSmtp",
 [id, smtp:port], [result])

• id is the message identifier.
• smtp is the string text containing the SMTP server to be used.
• port is optional. It allows to specify a port for your SMTP server. When not specified, the default port

remains 25.
• result is the status of the function.

SetFrom
The SetFrom function sets sender information.

Syntax

CALL ui.Interface.frontCall("WinMail","SetFrom",
 [id, name, address], [result])

• id is the message identifier.

Library reference | 1923

• name is the name to be displayed in the mail.
• address is the mail address to be used for this addressee.
• result is the status of the function.

WinMail examples
Various WinMail examples.

• Mail using MAPI on page 1923
• Mail using SMTP server on page 1923

Mail using MAPI
This topic provides an example of sending mail using MAPI.

MAIN
 DEFINE result, id INTEGER
 DEFINE str STRING

-- first, we initialize the module
 CALL ui.Interface.frontCall("WinMail", "Init", [], [id])

-- Set the body of the mail
 CALL ui.interface.frontCall("WinMail", "SetBody",
 [id, "This is a text mail using WinMail API - MAPI"], [result])

-- Set the subject of the mail
 CALL ui.interface.frontCall("WinMail", "SetSubject",
 [id, "test mail - ignore it"], [result])

-- Add an Addressee as "TO"
 CALL ui.Interface.frontCall("WinMail", "AddTo",
 [id, "myBoss", "boss@mycompany.com"], [result])

-- Add another Addresse as "BCC"
 CALL ui.Interface.frontCall("WinMail", "AddBCC",
 [id, "my friend", "friend@mycompany.com"], [result])

-- Add Two attachments
 CALL ui.Interface.frontCall("WinMail", "AddAttachment",
 [id, "c:\\mydocs\report.doc"], [result])
 CALL ui.Interface.frontCall("WinMail", "AddAttachment",
 [id, "c:\\mydocs\demo.png"], [result])

-- Send the mail via the default mailer
 CALL ui.Interface.frontCall("WinMail", "SendMailMAPI", [id], [result])
 IF result == TRUE THEN
 DISPLAY "Message sent successfully"
 ELSE
 CALL ui.Interface.frontCall("WinMail", "GetError", [id], [str])
 DISPLAY str
 END IF

 CALL ui.Interface.frontCall("WinMail", "Close", [id], [result])
END MAIN

Mail using SMTP server
This topic provides an example of sending mail using an SMTP server.

MAIN
 DEFINE result, id INTEGER
 DEFINE str STRING

-- first, we initialize the module
 CALL ui.Interface.frontCall("WinMail", "Init", [], [id])

Library reference | 1924

-- Set the body of the mail
 CALL ui.interface.frontCall("WinMail", "SetBody", [id,
 "This is a text mail using WinMail API - MAPI"], [result])

-- Set the subject of the mail
 CALL ui.interface.frontCall("WinMail", "SetSubject", [id,
 "test mail - ignore it"], [result])

-- Set the mail sender
 CALL ui.Interface.frontCall("WinMail", "SetFrom", [id, "mySelf",
 "me@mycompany.com"], [result])

-- Set the SMTP server
 CALL ui.Interface.frontCall("WinMail", "SetSmtp", [id,
 "smtp.mycompany.com"],
 [result])

-- Add an Addressee as "TO"
 CALL ui.Interface.frontCall("WinMail", "AddTo", [id, "myBoss",
 "boss@mycompany.com"], [result])

-- Add another Addressee as "BCC"
 CALL ui.Interface.frontCall("WinMail", "AddBCC", [id, "my friend",
 "friend@mycompany.com"], [result])

-- Add Two attachments
 CALL ui.Interface.frontCall("WinMail", "AddAttachment", [id,
 "c:\\mydocs\report.doc"], [result])
 CALL ui.Interface.frontCall("WinMail", "AddAttachment", [id,
 "c:\\mydocs\demo.png"], [result])

-- Send the mail via smtp
 CALL ui.Interface.frontCall("WinMail", "SendMailSMTP", [id], [result])
 IF result == TRUE THEN
 DISPLAY "Message sent successfully"
 ELSE
 CALL ui.Interface.frontCall("WinMail", "GetError", [id], [str])
 DISPLAY str
 END IF
 CALL ui.Interface.frontCall("WinMail", "Close", [id], [result])
END MAIN

Genero Application Server front calls
Front-end functions of the session module allow you to dynamically set and get session variables from
within your Genero application.

Table 431: Session module front-end functions

Function name Description

ui.Interface.frontCall("session", "getVar",
 [name],
 [result])

Returns the value of a session variable.

ui.Interface.frontCall("session", "setVar",
 [name,value],
 [result])

Sets a value of a session variable.

Library reference | 1925

setVar
Sets a value of a session variable.

Syntax

ui.Interface.frontCall("session", "setVar",
 [name,value], [result])

• name is the name of the session variable.
• value is the value to set to the named session variable.
• result returns 1 if successful; 0 otherwise.

Usage

The setVar function sets a session variable to the value specified.

Setting a variable to an empty string is equivalent to deleting the variable.

getVar
Returns the value of a session variable.

Syntax

ui.Interface.frontCall("session", "getVar",
 [name], [result])

• name is the name of the session variable.
• result is the value of the session variable, or an empty string if the variable does not exist.

Usage

The getVar function retrieves the value for a session variable.

Genero Mobile common front calls
This section describes common front calls provided by all mobile front-ends.

This table shows the functions implemented by all mobile front-ends in the "mobile" module.

Table 432: Common mobile module front-end functions

Function Name Description

ui.Interface.frontCall("mobile", "chooseContact",
 [], [result])

Lets the user choose a contact from the mobile device contact
list and returns the vCard.

ui.Interface.frontCall("mobile", "choosePhoto",
 [], [path])

Lets the user select a picture from the mobile device's photo
gallery and returns a picture identifier.

ui.Interface.frontCall("mobile", "chooseVideo",
 [], [path])

Lets the user select a video from the mobile device's video
gallery and returns a video identifier.

ui.Interface.frontCall("mobile", "composeMail",

 [to, subject, content, cc, bcc, attachments ...],

Invokes the user's default mail application for a new mail to
send.

Library reference | 1926

Function Name Description

 [result])

ui.Interface.frontCall("mobile", "composeSMS",
 [recipients, content],
 [result])

Sends an SMS text to one or more phone numbers.

ui.Interface.frontCall("mobile", "connectivity",
 [], [result])

Returns the type of network available for the mobile device.

ui.Interface.frontCall("mobile", "getGeolocation",
 [],
 [status, latitude, longitude])

Returns the Global Positioning System (GPS) location of a
mobile device.

ui.Interface.frontCall("mobile","getRemoteNotifications",
 [sender_id], [data])

This front call retrieves push notification messages.

ui.Interface.frontCall("mobile", "importContact",
 [vcard], [result])

Creates a new, or merges to an existing entry, the contact
details passed in vCard string.

ui.Interface.frontCall("mobile","registerForRemoteNotifications",
 [sender_id],
 [registration_token])

This front call registers a mobile device for push notifications.

ui.Interface.frontCall("mobile",
 "runOnServer",
 [appurl, timeout],
 [])

Run an application from the Genero Application Server
according to the specified URL.

ui.Interface.frontCall("mobile", "scanBarCode",
 [], [code, type])

Allow the user to scan a barcode with a mobile device

ui.Interface.frontCall("mobile", "takePhoto",
 [], [path])

Lets the user take a picture with the mobile device and returns
the corresponding picture identifier.

ui.Interface.frontCall("mobile", "takeVideo",
 [], [path])

Lets the user take a video with the mobile device and returns the
corresponding video identifier.

ui.Interface.frontCall("mobile","unregisterFromRemoteNotifications",
 [sender_id], [])

This front call unregisters the mobile device from push
notifications.

Library reference | 1927

chooseContact
Lets the user choose a contact from the mobile device contact list and returns the vCard.

Syntax

ui.Interface.frontCall("mobile", "chooseContact",
 [], [result])

• result - The vCard string from the device's contacts database.

Usage

The "chooseContact" front call opens the mobile device contact chooser, lets the user select a contact
and returns the contact as a vCard string.

If the user cancels the contact chooser, NULL is returned.

Example

DEFINE vcard STRING
CALL ui.Interface.frontCall("mobile", "chooseContact", [],
 [vcard])

choosePhoto
Lets the user select a picture from the mobile device's photo gallery and returns a picture identifier.

Syntax

ui.Interface.frontCall("mobile", "choosePhoto",
 [], [path])

1. path - Holds the device opaque path to the chosen photo.

Usage

The "choosePhoto" front call starts the system's photo chooser (the device's photo gallery), allows the
user to choose a photo, and returns the path/URL on the mobile device of the chosen photo.

If the user cancels the photo chooser, NULL is returned.

The value returned in the path variable contains a reference to the system location of the picture on the
mobile device. This path is platform dependent, and may change in future versions. Consider the path
returned by this front call as an opaque local file identifier, and do not use this path as a persistent file
name for the picture.

For more details about mobile image handling, see images handling on mobile devices.

chooseVideo
Lets the user select a video from the mobile device's video gallery and returns a video identifier.

Syntax

ui.Interface.frontCall("mobile", "chooseVideo",
 [], [path])

1. path - Holds the device opaque path to the selected video.

Library reference | 1928

Usage

The "chooseVideo" front call starts the system's video chooser (the device's video gallery), allows the
user to choose a video, and returns the path/URL on the mobile device of the selected video.

If the user cancels the video chooser, NULL is returned.

The value returned in the path variable contains a reference to the system location of the video on the
mobile device. This path is platform dependent, and may change in future versions. Consider the path
returned by this front call as an opaque local file identifier, and do not use this path as a persistent file
name for the video.

Once the video identifier/path is known, it is possible to fetch the video file from the device to the program
context with the fgl_getfile() API. The procedure is similar to fetching photos from the device. For
more details, see the section about video handling on mobile devices.

To play the video, you can perform a "launchURL" front call, with the opaque path returned by this front
call.

composeMail
Invokes the user's default mail application for a new mail to send.

Syntax

ui.Interface.frontCall("mobile", "composeMail",
 [to, subject, content, cc, bcc, attachments ...],
 [result])

• to - A list of recipients, separated by commas. While the list uses commas to separate the recipients in
the list, the list itself is enclosed in a single set of quotes.

• subject - The subject of the email.
• content - The body of the email.
• cc - (optional) A list of recipients for the carbon-copy email field, separated by commas. While the list

uses commas to separate the recipients in the list, the list itself is enclosed in a single set of quotes.
• bcc - (optional) A list of recipients for the blind carbon-copy email field, separated by commas. While the

list uses commas to separate the recipients in the list, the list itself is enclosed in a single set of quotes.
• attachments ... - (optional) All remaining arguments are treated as paths to attachment files. Each

attachment file name is enclosed in its own set of quotes. The comma is used to separate the
attachments in the list.

• result - Holds a status message.

Usage

The "composeMail" front call invokes the user's default mail application and sets up a new mail to send.

The returned result string can take one of the following values:

• "ok": The email was send.
• "cancel": The email was canceled.
• "saved": The email was saved.
• "failed: reason": The email could not be sent.

This example opens an email and populates the To, CC, and BCC fields, the Subject line, the message
body, and it specifies two attachments..

DEFINE result STRING
CALL ui.Interface.frontCall("mobile", "composeMail",
 ["john.doe@4js.com,jane.doe@4js.com", "Hello world",
 "This is the hello world text", "john.doe@4js.com,jane.doe@4js.com",
 "hidden@4js.com",

Library reference | 1929

 "/sdcard/Pictures/photo1.jpg", "/sdcard/Pictures/photo2.jpg"], [result])

The next example opens an email and populates the To field, the Subject line, and the message body. No
CC or BCC recipients and no attachments are specified.

DEFINE result STRING
CALL ui.Interface.frontCall("mobile","composeMail",
 ["huhu@haha.com","test mail","sent from my device"],[result])

composeSMS
Sends an SMS text to one or more phone numbers.

Syntax

ui.Interface.frontCall("mobile", "composeSMS",
 [recipients, content],
 [result])

• recipients - A list of phone numbers, separated by commas. While the list uses commas to separate the
phone numbers in the list, the list itself is enclosed in a single set of quotes.

• content - The SMS message.
• result - Holds a status message.

Usage

The "composeSMS" front call sends an SMS text to one or more phone numbers.

Consider using global phone numbers with a + plus sign, as described in [RFC3966].

The returned result string can take one of the following values:

• "ok": The SMS was send.
• "cancel": The SMS was canceled.
• "failed": The SMS could not be sent.

Error -6333 is raised, if there is no permission to compose an SMS on the mobile phone.

Example

DEFINE result STRING
CALL ui.Interface.frontCall("mobile", "composeSMS",
 ["+332781211,+339956789", "This is the SMS text"],
 [result])

connectivity
Returns the type of network available for the mobile device.

Syntax

ui.Interface.frontCall("mobile", "connectivity",
 [], [result])

• result - Holds the type of network available.

Usage

The "connectivity" front call checks for the best available mobile network connectivity to the internet.

The returned result string can take one of the following values:

http://www.ietf.org/rfc/rfc3966.txt

Library reference | 1930

• "NONE": No connectivity is available to the internet or the specified host.
• "MobileNetwork": Connectivity is available via the mobile network (Edge, 3G, 4G).
• "WIFI": Connectivity is available via a WIFI connection.

Example

DEFINE network STRING
CALL ui.Interface.frontCall("mobile", "connectivity", [],
 [network])
IF network == "WIFI" THEN
 ...
END IF

getGeolocation
Returns the Global Positioning System (GPS) location of a mobile device.

Syntax

ui.Interface.frontCall("mobile", "getGeolocation",
 [], [status, latitude, longitude])

1. status - Holds the status of the front call execution.
2. latitude - Holds the current latitude.
3. longitude - Holds the current longitude.

Usage

The "getGeolocation" front call returns the current location of the mobile device, based on the current
GPS information.

The possible values returned in the status parameter are:

• "ok": The mobile device location could be found.
• In case of failre, the status variable contains the error description, for example, "location services

not enabled".

The returned coordinates should be stored in FLOAT variables.

If the device location cannot be found within a given period, the front call returns an error status.

Example

DEFINE status STRING, latitude, longitude FLOAT
CALL ui.Interface.frontCall("mobile", "getGeolocation",
 [], [status, latitude, longitude])
MESSAGE SFMT(
 "Geo location: (status=%1) Latitude=%2 Longitude=%3",
 status, latitude, longitude)

getRemoteNotifications
This front call retrieves push notification messages.

Syntax

ui.Interface.frontCall("mobile","getRemoteNotifications",
 [sender_id], [data])

Library reference | 1931

1. sender_id - For GMA, the sender_id identifies the mobile device. It's obtained when you create a GCM
project. This parameter is ignored by GMI.

2. data - STRING containing a JSON array of notifications.

Usage

After registering for push notifications with the registerForRemoteNotifications on page 1934 front
call, the getRemoteNotifications front call can be called in the context of an ON ACTION
notificationpushed action handler.

The GMI or GMA front-end will send the notificationpushed special action, when it
receives notifications from the push notification server. When this action is fired, use the
getRemoteNotifications front call to get notification data. On GMA, identify the GCM client by
passing the sender_id obtained from the GCM project as a parameter. On GMI, the sender_id can be
NULL, as it is ignored.

Important:

When an app restarts, if notifications are pending and the app has already registered for push
notification in a previous execution, the notificationpushed action will be raised as soon
as a dialog with the corresponding ON ACTION handler activates. The app should then perform
a getRemoteNotifications on page 1930 front call as in the regular case, to get the pending
notifications pushed to the device while the app was off.

However, special consideration needs to be given to iOS devices. When push notification arrives for
an iOS app that has not started, there is no mechanism to wake up the app and get the push data.
Therefore, when the user starts the app from the springboard, there will never have any push data
available. Depending on the context, implement the following programming patterns to solve this
problem:

1. If the push notification contains a badge number, the app can verify if the badge is greater than
0 (with the getBadgeNumber front call) in order to perform a getRemoteNotifications
front call. Even if there is no data available with the front call, the app should directly ask the
server push provider to get last push data.

2. If the push notification does not contain badge numbers, the app should always perform a
getRemoteNotification front call when it starts. If there is no push data available from the
front call, the app should ask the server push provider if there is push data available. This is by
the way also recommended when receiving a notificationpushed action during application
life time.

3. If the user starts the app from the Notification Center, the app is launched with push data
transmitted from the system, and the notificationpushed action is sent. The app should the
perform, the getRemoteNotifications front call and get the push data.

The "getRemoteNotifications" front call returns a list of notification records as a JSON array string.
Use the util.JSONArray or util.JSON class to extract notification data from the returned string. The structure
of a push notification is platform specific. See below for details.

Important: When an iOS app is in background, silent push notifications can occur, but notification
message data (i.e. the payload) may not be available. In such case, GMI is able to detect
that a notification arrived (i.e. when the app badge number is greater than zero) and raise the
notificationpushed action, but the getRemoteNotifications front call will return no
message data (data return param is NULL). If such case, implement a fallback mechanism (based
on RESTFul web services for example), to contact the push notification provider and retrieve the
message information.

Push notification records with GMA / Android™

The returned JSON string from a GCM notification server contains an array of notification records.

A notification record contains the following JSON keys:

Library reference | 1932

• "type" - can be "message" or "token".
• "data" - Contains notification data.

• When "type":"message", the notification record is a GCM application message, and the data
attribute contains custom notification information.

An element of "data" can be a "genero_notification" record, that will produce an Android
graphical notification. This record must define the following attributes:

• "title" - title of the graphical notification
• "content" - text content of the graphical notification
• "icon" - icon of the graphical notification

The "genero_notification" record can be followed by custom notification data.
• When "type":"token"", the notification record is a registration token update, and the "data"

attribute contains the new registration token, which should be re-sent to the push notification server.
• "from" - Contains the GCM project id.

JSON push notification data example for GMA:

[
 {
 "type": "message",
 "data": { custom-attributes ... },
 "from": "project-id"
 },
 {
 "type": "token",
 "data": "new-registration-token",
 "from": "project-id"
 },
 ...
]

Note that the JSON push notification data can contain a "data" attribute with a
"genero_notification" record, that will produce an Android graphical notification:

[
 {
 "type": "message",
 "data": {
 "genero_notification" :
 {
 "title" : "Game Request!",
 "content" : "Bob wants to play poker...",
 "icon" : "smiley"
 },
 custom-attributes
 ...
 },
 "from": "project-id"
 },
 ...
]

Push notification records with GMI / iOS

The returned JSON string from an Apple Push Notification contains an array of notification records.

A push notification record contains the following JSON attributes:

• "aps" (required) - key to be recognized by devices as an Apple Push Notification

Library reference | 1933

• "alert" (required) - key of the push notification content. If not specified as a single value, the
alert key can hold:

• "title" - title of the alert.
• "body" - the message to be displayed.

• "badge" (optional) - the number to display as the badge of the app icon. If this property is absent,
the badge is not changed. You need to manage it through your push notification provider.

• "sound" (optional) - the sound played by the alert (aiff, wav, or caf format). default value : "default".
To use a custom file you will need to use the gmi extension project and be familiar with Objective-C.
The file must bundled with the app.

• "content-available" (required) - The content-available property with a value of 1 lets the
remote notification act as a “silent” notification. Notifications received in background mode should be
stored for delivery when the app enters foreground mode.

JSON push notification data example for GMI:

[
 {
 "aps" :
 {
 "alert" : "My first push",
 "badge" : 1,
 "sound" : "default",
 "content-available" : 1
 }
 },
 {
 "aps" :
 {
 "alert" :
 {
 "title" : "Push",
 "body" : "My second push"
 }
 "badge" : 2,
 "sound" : "default",
 "content-available" : 1
 },
 "new_ids" : ["XV234", "ZF452", "RT563"],
 "updated_ids" : ["AC634", "HJ153"]
 }
]

In the last record, custom information is provided in the "new_ids" and "updated_ids" attributes, as a
JSON array of identifiers.

For more details, see Apple Push Notification Service.

Example

IMPORT util -- JSON API
CONSTANT GCM_SENDER_ID = "<enter your GCM Sender ID (NULL for
 APNs)>"
...
DEFINE notif_list STRING,
 sender_id STRING

LET sender_id = GCM_SENDER_ID

DIALOG ...
 ...

https://developer.apple.com/library/ios/documentation/NetworkingInternet/Conceptual/RemoteNotificationsPG/Chapters/ApplePushService.html

Library reference | 1934

 ON ACTION notificationpushed

 CALL ui.Interface.frontCall(
 "mobile", "getRemoteNotifications",
 [sender_id], [notif_list])

 -- Analyse content of notiflist
 DISPLAY util.JSON.format(notif_list)
 ...

importContact
Creates a new, or merges to an existing entry, the contact details passed in vCard string.

Syntax

ui.Interface.frontCall("mobile", "importContact",
 [vcard], [result])

1. vcard - Holds a vCard string to be imported into the device's contacts database.
2. result - Holds the completed vCard string.

Usage

The "importContact" front call sends the vCard definition passed as parameter to the mobile device.

If the contact import is canceled, the front-end returns NULL. Otherwise, it returns the vCard data.

On iOS devices, the user has the choice to create a new contact, or complete an existing contact entry.
When creating a new entry, the contact input form is opened on the mobile device, to let the user complete
the default values passed as parameter. When merging contact information to an existing entry, the user
selects an entry from the contact list. If the contact import is validated, the front call returns the completed
vCard string.

On Android™ devices, this front call creates a new contact entry directly in the mobile contact list,
according to the VCard definition passed as parameter, no intermediate input form is proposed to the end
user. If the contact import is validated, the front call returns the original vCard string passed as parameter.

Example

DEFINE vcard, result STRING
LET vcard="BEGIN:VCARD\n"
 ||"VERSION:3.0\n"
 ||"N:Willi;;;;\n"
 ||"TEL;type=HOME;type=VOICE;type=pref:03812225610\n"
 ||"END:VCARD\n"
CALL ui.interface.frontcall("mobile","importContact",[vcard],
[result])

registerForRemoteNotifications
This front call registers a mobile device for push notifications.

Syntax

ui.Interface.frontCall("mobile","registerForRemoteNotifications",
 [sender_id], [registration_token])

1. sender_id - For GMA, the sender_id identifies the mobile device. It's obtained when you create a GCM
project. This parameter is ignored by GMI.

Library reference | 1935

2. registration_token - Registration token to be sent to the push notification provider. For GMA/Android,
this is the "registration token" obtained from GCM, for GMI/iOS, this is the "device token" obtained from
APNs.

Usage

The "registerForRemoteNotifications" front call registers the mobile device for push notifications.
Once the registration procedure is done (see below for platform specifics), it is possible to get notification
events through the notificationpushed predefined action, and retrieve notification data with the
getRemoteNotifications on page 1930 front call.

Note: The app does not need to register for notification each time it is restarted: Even if the app is
closed, the registration is still active until the unregisterFromRemoteNotifications front call
is performed. At first execution, an app will typically ask if the user wants to get push notifications
and register to the push service if needed. To disable push notification, apps usually implement
an option that can be disabled (to unregister) and re-enabled (to register again) by the user. On
Android, that the app must register for notification each time it is upgraded.

On Android when using GCM, you get the sender_id and an API key when you create a GCM project
(see https://developers.google.com/cloud-messaging/android/client#get-config). The registration_token
is the registration token returned by GCM. Once registered with the GCM service, the app must also
send this registration token to the GCM application server. Registration tokens are typically sent to the
GCM application server using a RESTFul HTTP POST. For more details, see GCM documentation on the
Google developer web site. For more details about GCM registration, see About GCM Connection Server.

Note: Android apps using push notification services need specific permissions
to be defined in the manifest, such as android.permission.GET_ACCOUNTS,
com.google.android.c2dm.permission.RECEIVE, and especially application-
package-name.permission.C2D_MESSAGE. These Android permissions will be automatically
set by the gmabuildtool, according to the package name specified with the --build-app-
package-name option. For more details, see GCM documentation.

On iOS when using APNs, the sender_id is ignored. The registration_token is the device token returned
by the Apple Push Notification service. Once registered with the Apple Push Notification service, the app
must also send this device token to the push notification provider, typically using a RESTFul HTTP POST.
For more details about Apple Push Notification Provider, see Provider Communication with Apple Push
Notification Service.

Example

The following code example registers with Google Cloud Messaging or Apple Push
Notification service. It then sends the registration token to the push notification provider
(the get_device_type() function returns the front-end type from the feInfo/feName front
call):

IMPORT com -- For RESTful post
IMPORT util -- JSON API

CONSTANT GCM_SENDER_ID = "<enter your GCM Sender ID (NULL for
 APNs)>"
...

DEFINE sender_id STRING,
 registration_token STRING
DEFINE req com.HTTPRequest,
 obj util.JSONObject,
 resp com.HTTPResponse

-- First get the registration token
LET sender_id = GCM_SENDER_ID
CALL ui.Interface.frontCall(

https://developers.google.com/cloud-messaging/android/client#get-config
https://developers.google.com/cloud-messaging/server
https://developers.google.com/cloud-messaging/android/client#manifest
https://developer.apple.com/library/ios/documentation/NetworkingInternet/Conceptual/RemoteNotificationsPG/Chapters/CommunicatingWIthAPS.html#//apple_ref/doc/uid/TP40008194-CH101-SW1
https://developer.apple.com/library/ios/documentation/NetworkingInternet/Conceptual/RemoteNotificationsPG/Chapters/CommunicatingWIthAPS.html#//apple_ref/doc/uid/TP40008194-CH101-SW1

Library reference | 1936

 "mobile", "registerForRemoteNotifications",
 [sender_id], [registration_token])

-- Then send registration token to push notification provider
TRY
 LET req = com.HTTPRequest.create("http://SERVER_IP:4930")
 CALL req.setHeader("Content-Type", "application/json")
 CALL req.setMethod("POST")
 CALL req.setTimeOut(5)
 LET obj = util.JSONObject.create()
 CALL obj.put("registration_token", registration_token)
 CALL req.doTextRequest(obj.toString())
 LET resp = req.getResponse()
 IF resp.getStatusCode() != 200 THEN
 MESSAGE SFMT("HTTP Error (%1) %2",
 resp.getStatusCode(),
 resp.getStatusDescription())
 ELSE
 MESSAGE "Registration token sent."
 END IF
CATCH
 MESSAGE SFMT("Could not post registration token to server:
 %1", STATUS)
END TRY
...

runOnServer
Run an application from the Genero Application Server according to the specified URL.

Syntax

ui.Interface.frontCall("mobile", "runOnServer",
 [appurl, timeout], [])

• appurl - The GAS URL to the Genero application (this must be a ua/r URL).
• timeout - The timeout (in seconds) to wait for the remote application.

Usage

The runOnServer front call allows you to start an application in the Genero Application Server (GAS),
from an embedded/local application running on the mobile device. The remote application's graphical user
interface displays on the mobile device.

The front call returns when the called application ends, and the control goes back to the initial application
executing on the mobile device.

The applications executed on the GAS server must use the UTF-8 encoding. Mobile front-ends will reject
any attempt to display forms of an application using an encoding other than UTF-8.

The remote application cannot use RUN WITHOUT WAITING to start child programs. Only RUN is
supported.

The first parameter (appurl) identifies the remote application to be started and must contain an "ua/r" URL
syntax (the UA protocol introduced with the GAS 3.00).

For example: http://myappserver:6394/ua/r/myapp.

This URL may contain a query string, with parameters for the application to be executed by the GAS.

The timeout parameter is optional. It can be used to give the control back to the local app, if the remote
app takes too long to respond. If not specified, or when zero is passed, the timeout is infinite.

Library reference | 1937

In case of failure (such as application not found, or timeout expired), the front call raises the runtime error
-6333 and the HTTP status code of the request can be found in the error message details.

Note: The application running on the GAS can only access the data-directory directory, in the
sandbox of the embedded application that executes the runOnServer front call. File handling APIs
like fgl_getfile() and fgl_putfile() can only access this directory on the mobile device. If
no absolute path is specified in the file path for the mobile device, the data-directory is used.

Example

TRY
 CALL ui.interface.frontcall("mobile","runOnServer",["http://
santana:6394/ua/r/orders"],[])
CATCH
 ERROR err_get(STATUS)
END TRY

scanBarCode
Allow the user to scan a barcode with a mobile device

Syntax

ui.Interface.frontCall("mobile", "scanBarCode",
 [], [code, type])

1. code - Holds a string representation of the barcode.
2. type - Holds the name of the barcode type.

Usage

The "scanBarCode" front call starts the barcode scanner to let the user scan a barcode with the device.

After reading the barcode, the front call returns the string representation of the barcode and the barcode
type (i.e. symbology).

The code return parameter contains the barcode string.

The type return parameter indicates the type of barcode that was scanned.

If the barcode scan was canceled, the code return parameter is set to NULL and type is set to "canceled".

• On iOS devices, the barcode reader used by GMI is "ZBar". For more details, see http://
zbar.sourceforge.net

• On Android™ devides, the barcode reader used by GMA is "zxing". The zxing barcode reader must
be installed as a separate app. For more details, see https://play.google.com/store/apps/details?
id=com.google.zxing.client.android.

Table 433: Barcode type codes returned by GMI and GMA

Barcode
type name
(GMI/iOS)

Barcode
type name
(GMA/
Android)

Description

N/A AZTEC Aztec barcode format

N/A CODEBAR CODABAR format

CODE-39 CODE_39 AKA Alpha39, Code 3 of 9 or USD-3 format

CODE-93 CODE_93 Intermec (Canada Post) format

http://zbar.sourceforge.net
http://zbar.sourceforge.net
https://play.google.com/store/apps/details?id=com.google.zxing.client.android
https://play.google.com/store/apps/details?id=com.google.zxing.client.android

Library reference | 1938

Barcode
type name
(GMI/iOS)

Barcode
type name
(GMA/
Android)

Description

CODE-128 CODE_128 High-density barcode (128 chars) format

N/A DATA_MATRIXData Matrix format

EAN-8 EAN_8 European/International Article Number (8 digits) format

EAN-13 EAN_13 European/International Article Number (13 digits) format

I2/5 ITF Interleaved 2 of 5 format

ISBN-10 N/A International Standard Book Number (10 digits) format

ISBN-13 N/A International Standard Book Number (13 digits) format

N/A MAXICODE ISO/IEC 16023 format

PDF417 PDF_417 Portable Data File - 417 format

QR-Code QR_CODE Quick Response Code format

N/A RSS_14 GS1 DataBar (Reduce Space Symbology) format

N/A RSS_EXPANDEDGS1 DataBar Expanded (Reduce Space Symbology expanded) format

UPC-A UPC_A Universal Product Code (12 digits) format

UPC-E UPC_E Universal Product Code (6 digits) format

N/A UPC_EAN_EXTENSIONUPC/EAN extension format

takePhoto
Lets the user take a picture with the mobile device and returns the corresponding picture identifier.

Syntax

ui.Interface.frontCall("mobile", "takePhoto",
 [], [path])

1. path - Holds the device opaque path to the picture that has been taken.

Usage

The "takePhoto" front call invokes the mobile device's camera to let the user take a picture and returns
the local path/URL on the mobile device to the picture.

If the photo is canceled by the user, the front call returns NULL.

The value returned in the path variable contains a reference to the system location of the picture on the
mobile device. This path is platform dependent, and may change in future versions. Consider the path
returned by this front call as an opaque local file identifier, and do not use this path as a persistent file
name for the picture.

For more details about mobile image handling, see images handling on mobile devices.

Library reference | 1939

takeVideo
Lets the user take a video with the mobile device and returns the corresponding video identifier.

Syntax

ui.Interface.frontCall("mobile", "takeVideo",
 [], [path])

1. path - Holds the device opaque path to the video.

Usage

The "takeVideo" front call invokes the mobile device's camera to let the user take a video and returns the
local path/URL to the video on the mobile device.

If the photo is canceled by the user, the front call returns NULL.

The value returned in the path variable contains a reference to the system location of the video on the
mobile device. This path is platform dependent, and may change in future versions. Consider the path
returned by this front call as an opaque local file identifier, and do not use this path as a persistent file
name for the video.

Once the video identifier/path is known, it is possible to fetch the video file from the device to the program
context with the fgl_getfile() API. The procedure is similar to fetching photos from the device. For
more details, see the section about video handling on mobile devices.

To play the video, you can perform a "launchURL" front call, with the opaque path returned by this front
call.

unregisterFromRemoteNotifications
This front call unregisters the mobile device from push notifications.

Syntax

ui.Interface.frontCall("mobile","unregisterFromRemoteNotifications",
 [sender_id], [])

1. sender_id - For GMA, the sender_id identifies the mobile device. It's obtained when you create a GCM
project. This parameter is ignored by GMI.

Usage

The "unregisterFromRemoteNotifications" front call unregisters the device from push notifications
after it has been registered with the registerForRemoteNotifications on page 1934 front call.

On Android with GCM, to unregister the mobile device from GCM push notifications, pass the sender_id
used to identify the GCM client. You obtain the sender_id when you create the GCM project.

On iOS with APNs, provide a NULL as sender_id, to unregister the iOS mobile device from push
notifications.

Example

DEFINE sender_id STRING
...
IF get_device_type() == "GMA" THEN
 LET sender_id = "94019931415" -- Got from GCM project
 creation
ELSE
 LET sender_id = NULL -- Ignored by GMI
END IF

Library reference | 1940

CALL ui.Interface.frontCall(
 "mobile", "unregisterFromRemoteNotifications",
 [sender_id], [])
...

Genero Mobile Android™ front calls
This section describes front calls specific to the Android platform.

This table shows the functions implemented by the Android front-end in the "android" module.

Table 434: Android module front-end functions

Function Name Description

ui.Interface.frontCall("android","askForPermission",
 [permission], [result])

Ask the user to enable a dangerous feature on the Android
device.

ui.Interface.frontCall("android", "showAbout",
 [],[])

Shows the GMA about box displaying version information.

ui.Interface.frontCall("android", "showSettings",
 [], [])

Shows the GMA settings box controlling debug options.

ui.Interface.frontCall("android","startActivity",

 [action, data, category, type, component, extras],
 [])

Starts an external Android application (activity), and returns to
the GMA application immediately.

ui.Interface.frontCall("android", "startActivityForResult",

 [action, data, category, type, component, extras],
 [outdata, outextras])

Starts an external application (Android activity) and waits until
the activity is closed.

askForPermission (Android™)
Ask the user to enable a dangerous feature on the Android device.

Syntax

ui.Interface.frontCall("android","askForPermission",
 [permission], [result])

1. permission - Identifies the Android permission to enable.
2. result - Holds the execution status of the front call:

• "ok" : the user accepted the permission.
• "rejected" : the user refused the permission.

Usage

The "askForPermission" front call opens a message box to let the end user confirm the access to a
"dangerous" Android permission, in order to enable a risky feature of the mobile device for the current app.

Library reference | 1941

Important: Starting with Android 6, permissions to access dangerous mobile functions are no
longer asked during app installation: The app must ask the user for dangerous permissions when
needed, by using the askForPermission front call.

The permissions parameter defines the Android permission to be asked. It must be
a string representing one of the Android permission contants, as defined in Android's
Manifest permissions, prefixed by the "android.permission." string. For example, the
"android.permission.WRITE_EXTERNAL_STORAGE" string can be used to identify the permission to
access the SDCARD storage unit.

Important: Specific Android permissions required by the app still need to be specified when
building the app. However, it is not needed to specifiy Android permissions required for built-in front
calls: For example, if the app code makes a choosePhoto front call, the GMA will implicitely ask
the user and set the Android permission to access the photo gallery. For more details, see Android
permissions on page 2577.

The front call will raise a runtime exception if the permission identifier is not valid.

Example

The following code example asks the user to access the SDCARD, and handles the user
choice:

DEFINE result STRING
CALL ui.Interface.frontCall(
 "android", "askForPermission",
 ["android.permission.WRITE_EXTERNAL_STORAGE"],
 [result])
CASE result
 WHEN "ok"
 CALL os.Path.mkDir("/sdcard/myfiles")
 WHEN "rejected"
 ERROR "SDCARD access was denied by user"
END CASE

showAbout (Android™)
Shows the GMA about box displaying version information.

Syntax

ui.Interface.frontCall("android", "showAbout",
 [],[])

Usage

This front call simply shows a typical about box, indicating GMA version information.

Important: This front call is only available for an application running on an Android device.

No input parameters are required, and no parameters are returned.

showSettings (Android™)
Shows the GMA settings box controlling debug options.

Syntax

ui.Interface.frontCall("android", "showSettings", [], [])

http://developer.android.com/reference/android/Manifest.permission.html
http://developer.android.com/reference/android/Manifest.permission.html

Library reference | 1942

Usage

This front call opens the settings box to enable or disable GMA programming options.

Important: This front call is only available for an application running on an Android device.

No input parameters are required, and no parameters are returned.

The following features can be controlled with the GMA settings box:

• HTTP debug server on port 6480 (to inspect the AUI tree and show app logs)
• GUI display (FGLSERVER on page 185) and remote debug with fgldb on port 6400
• Android logcat recording
• Managing allowed certificates (SSH connections)
• Cookies cleanup (for SSO authentication tokens)

startActivity (Android™)
Starts an external Android application (activity), and returns to the GMA application immediately.

Syntax

ui.Interface.frontCall("android","startActivity",
 [action, data, category, type, component, extras],
 [])

1. action - Identifies the activity to be started on the Android device.
2. data - (optional) The data to operate on in the activity (URL, etc).
3. category - (optional) A comma separated list of categories.
4. type - (optional) Specifies the type of the data passed to the activity.
5. component - (optional) Specifies a component class to use for the intent.
6. extras - (optional) This is a JSON string containing parameters to pass to the activity.

Usage

The "startActivity" front call starts an external application (Android activity), and returns to the GMA
application immediately after invoking the activity.

Important: This front call is only available for an application running on an Android device.

This front call is similar to the RUN WITHOUT WAITING statement: It allows the user to switch between the
GMA and the launched application.

The parameters passed to this front call are used to build an Android "intent" object to start an "activity".
For more details about Android intent object, refer to the Android "Intent" defintion.

The action parameter defines the Android activity to perform, such as
"android.intent.action.MAIN", "android.intent.action.VIEW", and so on.

The data (optional) parameter contains the data to operate on. This is the main parameter to transmit data
to the activity. It can for example be an URL.

The category (optional) parameter contains a comma separated list of categories,
where a category gives additional information about the action to execute. For example,
"android.intent.category.LAUNCHER" means it should appear in the Launcher as a top-level
application. See the Android documentation for details about possible categories for a given activity.

The type (optional) parameter defines the type (in fact, a MIME type) of the activity data. Normally the type
is inferred from the data itself. By setting this attribute, you disable that evaluation and force an explicit
type.

http://developer.android.com/reference/android/content/Intent.html

Library reference | 1943

The component (optional) parameter defines the name of a component class to use for the intent. Normally
this is determined by looking at the other information in the intent. The component name typically specified
as "apk-package-name/java-class-name" or "java-class-name" (the APK package name is
optional). If the APK package is not specified, GMA considers that the Java class is included in the current
APK.

The extras (optional) parameter specifies a JSON string containing parameters to pass to the activity. This
can be used to provide extended information to the component. For example, with an action sending an e-
mail message, the extra data can include data to supply a subject, body, for the e-mail.

Example

The following code example starts the VIEW Android activity to show an image. The
Genero program flow will continue after this call, but the started activity will be shown.
Note that such action is rather performed with a launchurl front call.

CALL ui.Interface.frontCall(
 "android", "startActivity",
 ["android.intent.action.VIEW",
 "file:///storage/path_to_image_file",
 NULL, "image/*"],
 [])

startActivityForResult (Android™)
Starts an external application (Android activity) and waits until the activity is closed.

Syntax

ui.Interface.frontCall("android", "startActivityForResult",
 [action, data, category, type, component, extras],
 [outdata, outextras])

1. action - Identifies the activity to be started on the Android device.
2. data - (optional) The data to operate on in the activity (URL, etc).
3. category - (optional) A comma separated list of categories.
4. type - (optional) Specifies the type of the data passed to the activity.
5. component - (optional) Specifies a component class to use for the intent.
6. extras - (optional) This is a JSON string containing parameters to pass to the activity.

Return values include:

1. outdata - holds the flat value returned by the invoked activity.
2. outextras - holds the JSON data of structured value returned by the invoked activity.

The return values depend entirely on the invoked activity.

Usage

The "startActivityForResult" front call starts an external application (Android activity), then waits for
the user to exit the external application prior to returning the the GMA application.

Important: This front call is only available for an application running on an Android device.

This front call is similar to the RUN statement: The user cannot return to the GMA application while the
activity is executing.

The parameters passed to this front call are used to build an Android "intent" object to start an "activity".
For more details about Android intent object, refer to the Android "Intent" defintion.

http://developer.android.com/reference/android/content/Intent.html

Library reference | 1944

The action parameter defines the Android activity to perform, such as
"android.intent.action.MAIN", "android.intent.action.VIEW", and so on.

The data (optional) parameter contains the data to operate on. This is the main parameter to transmit data
to the activity. It can for example be an URL.

The category (optional) parameter contains a comma separated list of categories,
where a category gives additional information about the action to execute. For example,
"android.intent.category.LAUNCHER" means it should appear in the Launcher as a top-level
application. See the Android documentation for details about possible categories for a given activity.

The type (optional) parameter defines the type (in fact, a MIME type) of the activity data. Normally the type
is inferred from the data itself. By setting this attribute, you disable that evaluation and force an explicit
type.

The component (optional) parameter defines the name of a component class to use for the intent. Normally
this is determined by looking at the other information in the intent. The component name typically specified
as "apk-package-name/java-class-name" or "java-class-name" (the APK package name is
optional). If the APK package is not specified, GMA considers that the Java class is included in the current
APK.

The extras (optional) parameter specifies a JSON string containing parameters to pass to the activity. This
can be used to provide extended information to the component. For example, with an action sending an e-
mail message, the extra data can include data to supply a subject, body, for the e-mail.

The outdata returning argument will contain the flag value returned from the activity, typically when the
data is simple and not structured.

The outextras returning argument can hold JSON data of any structured value returned by the invoked
activity, or NULL in case of error (for example, when the application corresponding to the activity is not
installed)

Example

This example invokes the barcode scanner application, and returns the scanned barcode.

IMPORT util
...
DEFINE data, extras STRING,
 json_object util.JSONObject,
 scanned_value STRING
...
CALL ui.Interface.frontCall(
 "android", "startActivityForResult",
 ["com.google.zxing.client.android.SCAN",
 NULL, "android.intent.category.DEFAULT"],
 [data, extras])
IF extras IS NULL THEN
 -- If the application isn't installed invoke
 -- the Play Store to give the user a chance to install it
 CALL ui.Interface.frontCall("standard", "launchurl",
 ["market://details?
id=com.google.zxing.client.android"], [])
ELSE
 LET json_object = util.JSONObject.parse(extras)
 -- Fetch the scanned value
 LET scanned_value = json_object.get("SCAN_RESULT")
END IF

Library reference | 1945

Genero Mobile iOS front calls
This section describes front calls specific to the iOS platform.

This table shows the functions implemented by the iOS front-end in the "ios" module.

Table 435: iOS module front-end functions

Function Name Description

ui.Interface.frontCall("ios", "getBadgeNumber",
 [],[value])

Returns the current badge number associated to the app.

ui.Interface.frontCall("ios", "newContact",
 [defaults],[vcard])

Lets the user input contact information to create a new entry in
the contact database of the mobile device.

ui.Interface.frontCall("ios", "setBadgeNumber",
 [value], [])

Sets the current badge number associated to the app.

getBadgeNumber (iOS)
Returns the current badge number associated to the app.

Syntax

ui.Interface.frontCall("ios", "getBadgeNumber",
 [],[value])

• value - Holds the current badge number.

Usage

The iOS "getBadgeNumber" front call returns the current badge number associated to the app.

Important: This front call is only available for an application running on an iOS device.

The badge number appears on the app icon and is typically used for Push notifications on page 2599.

Important: In order to query or set the badge number, the app program must have executed
a registerForRemoteNotifications front call before (in the current or prior execution
instance). This registration is required in order to set the appropriate app permissions to access
badge number data.

Example

DEFINE value INTEGER
CALL ui.interface.frontcall("ios","getBadgeNumber",[],[value])

newContact (iOS)
Lets the user input contact information to create a new entry in the contact database of the mobile device.

Syntax

ui.Interface.frontCall("ios", "newContact",
 [defaults],[vcard])

• defaults - A vCard string with default values for the new contact input.

Library reference | 1946

• vcard - Holds the vCard string of the new created contact.

Usage

The iOS "newContact" front call opens the contact input form on the mobile device, with default values
passed in the vCard structure of the first parameter, lets the user enter contact information.

Important: This front call is only available for an application running on an iOS device.

If the contact creation is validated, the front call returns the completed vCard string. If the contact import is
canceled, the front-end returns NULL.

Example

DEFINE defaults, vcard STRING
LET defaults="BEGIN:VCARD\n"
 ||"VERSION:3.0\n"
 ||"N:Willi;;;;\n"
 ||"TEL;type=HOME;type=VOICE;type=pref:03812225610\n"
 ||"END:VCARD\n"
CALL ui.interface.frontcall("ios","newContact",[defaults],
[vcard])

setBadgeNumber (iOS)
Sets the current badge number associated to the app.

Syntax

ui.Interface.frontCall("ios", "setBadgeNumber",
 [value], [])

• value - Holds the badge number to be set.

Usage

The iOS "setBadgeNumber" front call sets the badge number associated to the app.

Important: This front call is only available for an application running on an iOS device.

The badge number appears on the app icon and is typically used for Push notifications on page 2599.

Important: In order to query or set the badge number, the app program must have executed
a registerForRemoteNotifications front call before (in the current or prior execution
instance). This registration is required in order to set the appropriate app permissions to access
badge number data.

Example

DEFINE value INTEGER
LET value = 2
CALL ui.interface.frontcall("ios","setBadgeNumber",[value],[])

Library reference | 1947

Extension packages
Several utility classes and functions are provided in additional packages to be included with the IMPORT
instruction.

• The util package on page 1947
• The os package on page 1990
• The com package on page 2009
• The xml package on page 2103
• The security package on page 2278

The util package
These topics cover the classes for the util package.

The util.Date class
The util.Date class provides DATE data-type related utility methods.

This class is provided in the util C-Extension library; To use the util.Date class, you must import the
util package in your program:

IMPORT util

This class does not have to be instantiated; it provides class methods for the current program.

util.Date methods
Methods for the util.Date class.

Table 436: Class methods

Name Description

util.Date.isLeapYear(year)
 RETURNING res BOOLEAN

Checks is the year passed as parameter
is a leap year.

util.Date.parse(
 src STRING,
 fmt STRING
)
 RETURNING res DATE

Converts a string to a DATE value
according to a format specification.

util.Date.parse
Converts a string to a DATE value according to a format specification.

Syntax

util.Date.parse(
 src STRING,
 fmt STRING
)
 RETURNING res DATE

1. src is the source string to be parsed.
2. fmt is the format specification (see Formatting DATE values on page 220).

Library reference | 1948

Usage

The util.Date.parse() method parses a string according to a format specification, to produce a DATE
value.

The format specification must be a combination of dd, mm, yyyy place holders as with the USING operator.

The method returns NULL, if the source string cannot be converted to a DATE value according to the format
specification.

For more details about the supported formats, see Formatting DATE values on page 220.

Example

IMPORT util
MAIN
 DISPLAY util.Date.parse("2014-03-15", "yyyy-mm-dd")
END MAIN

util.Date.isLeapYear
Checks is the year passed as parameter is a leap year.

Syntax

util.Date.isLeapYear(year)
 RETURNING res BOOLEAN

1. year is an INTEGER representing a year.
2. res is TRUE if year is a leap year, otherwise res is FALSE.

Usage

The util.Date.isLeapYear() method returns TRUE if the year passed in parameter is a leap year.

Example

IMPORT util
MAIN
 DISPLAY util.Date.isLeapYear(2003)
 DISPLAY util.Date.isLeapYear(2004)
END MAIN

The util.Datetime class
The util.Datetime class provides DATETIME data-type related utility methods.

This class is provided in the util C-Extension library; To use the util.Datetime class, you must import
the util package in your program:

IMPORT util

This class does not have to be instantiated; it provides class methods for the current program.

Library reference | 1949

util.Datetime methods
Methods for the util.Datetime class.

Table 437: Class methods

Name Description

util.Datetime.format(
 value DATETIME q1 TO q2,
 fmt STRING
)
 RETURNING res STRING

Formats a datetime value according to
format specification.

util.Datetime.fromSecondsSinceEpoch(
 seconds FLOAT
)
 RETURNING local DATETIME q1 TO q2

Converts a number of seconds since
Epoch to a datetime.

util.Datetime.getCurrentAsUTC()
 RETURNING utc DATETIME YEAR TO FRACTION(5)

Returns the current date/time in UTC.

util.Datetime.parse(
 src STRING,
 fmt STRING
)
 RETURNING res DATETIME q1 TO q2

Converts a string to a DATETIME value
according to a format specification.

util.Datetime.toLocalTime(
 utc DATETIME q1 TO q2
)
 RETURNING local DATETIME q1 TO q2

Converts a UTC datetime to the local
time.

util.Datetime.toSecondsSinceEpoch(
 local DATETIME q1 TO q2
)
 RETURNING seconds FLOAT

Converts a datetime to a number of
seconds since Epoch.

util.Datetime.toUTC(
 local DATETIME q1 TO q2
)
 RETURNING utc DATETIME q1 TO q2

Converts a datetime value to the UTC
datetime.

util.Datetime.format
Formats a datetime value according to format specification.

Syntax

util.Datetime.format(
 value DATETIME q1 TO q2,
 fmt STRING
)

Library reference | 1950

 RETURNING res STRING

1. value is the datetime value to be formatted.
2. fmt is the format string, as described in Formatting DATETIME values on page 221.

Usage

The util.Datetime.format() method formats a DATETIME value according to the format
specification.

The format string must be a combination of place holders such as %Y, %m, %d, as described in Formatting
DATETIME values on page 221.

If the source value is NULL the result will be NULL.

Example

IMPORT util
MAIN
 DISPLAY util.Datetime.format(CURRENT, "%Y-%m-%d %H:%M")
END MAIN

util.Datetime.fromSecondsSinceEpoch
Converts a number of seconds since Epoch to a datetime.

Syntax

util.Datetime.fromSecondsSinceEpoch(
 seconds FLOAT
)
 RETURNING local DATETIME q1 TO q2

1. seconds is the number of seconds since Epoch. This can be a whole integer or a decimal, if the target
datetime

2. local is the local datetime value.

Usage

The util.Datetime.fromSecondsSinceEpoch() method converts the number of seconds since the
Unix Epoch (1970-01-01 00:00:00 GMT) passed as parameter, to a DATETIME value, in the local time.

Important: If the number of seconds passed as parameter is a floating point number including
a fraction of seconds, the result will be a DATETIME YEAR TO FRACTION(N), otherwise it is
DATETIME YEAR TO SECOND.

Example

IMPORT util
MAIN
 DEFINE dt DATETIME YEAR TO SECOND
 LET dt = util.Datetime.fromSecondsSinceEpoch(9876234)
 DISPLAY dt
END MAIN

Library reference | 1951

util.Datetime.getCurrentAsUTC
Returns the current date/time in UTC.

Syntax

util.Datetime.getCurrentAsUTC()
 RETURNING utc DATETIME YEAR TO FRACTION(5)

1. utc is the datetime value in UTC, with the precision DATETIME YEAR TO FRACTION(5).

Usage

The util.Datetime.getCurrentAsUTC() method returns the current system date/time in UTC
(Universal Time).

This method is provided to solve the daylight saving time transition issue of the
util.Datetime.toUTC() method.

Note: The precision of the value returned by this method is a DATETIME YEAR TO
FRACTION(5). Note that this precision is different from the default CURRENT precision when no
qualifiers are specified.

Example

IMPORT util
MAIN
 DEFINE utc DATETIME YEAR TO FRACTION(5)
 LET utc = util.Datetime.getCurrentAsUTC()
 DISPLAY "Current UTC: ", utc
END MAIN

util.Datetime.parse
Converts a string to a DATETIME value according to a format specification.

Syntax

util.Datetime.parse(
 src STRING,
 fmt STRING
)
 RETURNING res DATETIME q1 TO q2

1. src is the source string to be parsed.
2. fmt is the format specification (see Formatting DATETIME values on page 221).

Usage

The util.Datetime.parse() method parses a string according to a format specification, to produce a
DATETIME value.

The format specification must be a combination of place holders such as %Y, %m, %d, etc.

The precision of the resulting DATETIME value depends on the format specification. For example, when
using "%y-%m-%d %H:%M", the resulting value will be a DATETIME YEAR TO MINUTE.

The method returns NULL, if the source string cannot be converted to a DATETIME value according to the
format specification.

For more details about the supported formats, see Formatting DATETIME values on page 221.

Library reference | 1952

Example

IMPORT util
MAIN
 DEFINE dt DATETIME YEAR TO MINUTE
 LET dt = util.Datetime.parse("2014-12-24 23:45", "%Y-%m-%d
 %H:%M")
 DISPLAY dt
END MAIN

util.Datetime.toLocalTime
Converts a UTC datetime to the local time.

Syntax

util.Datetime.toLocalTime(
 utc DATETIME q1 TO q2
)
 RETURNING local DATETIME q1 TO q2

1. utc is the datetime value in UTC.
2. local is the local tinezone datetime value.

Usage

The util.Datetime.toLocalTime() method converts a DATETIME value from "Coordinated Universal
Time" (UTC), also known as "Greenwich Mean Time" (GMT), to the local timezone datetime.

Example

IMPORT util
MAIN
 DEFINE loc DATETIME YEAR TO SECOND
 LET loc = util.Datetime.toLocalTime(DATETIME(2015-08-22
 15:34:56) YEAR TO SECOND)
 DISPLAY "LOC: ", loc
END MAIN

util.Datetime.toSecondsSinceEpoch
Converts a datetime to a number of seconds since Epoch.

Syntax

util.Datetime.toSecondsSinceEpoch(
 local DATETIME q1 TO q2
)
 RETURNING seconds FLOAT

1. local is the local datetime value.
2. seconds is the number of seconds since Epoch. Note that this is a FLOAT value as the source can be a

DATETIME YEAR TO FRACTION(N).

Usage

The util.Datetime.toSecondsSinceEpoch() method converts the DATETIME value passed as
parameter to a number of seconds since the Unix Epoch (1970-01-01 00:00:00 GMT)

Library reference | 1953

Important: The result is a whole number when the source is a DATETIME YEAR TO SECOND,
but will be a floating point number when the source is a DATETIME YEAR TO FRACTION(N), to
include the fractional part.

Example

IMPORT util
MAIN
 DEFINE sec INTEGER, loc DATETIME YEAR TO SECOND
 LET loc = CURRENT YEAR TO SECOND
 LET sec = util.Datetime.toSecondsSinceEpoch(loc)
 DISPLAY sec
END MAIN

util.Datetime.toUTC
Converts a datetime value to the UTC datetime.

Syntax

util.Datetime.toUTC(
 local DATETIME q1 TO q2
)
 RETURNING utc DATETIME q1 TO q2

1. local is the local timezone datetime value.
2. utc is the datetime value in UTC.

Usage

The util.Datetime.toUTC() method converts the local timezone DATETIME value passed as
parameter to the "Coordinated Universal Time" (UTC), also known as "Greenwich Mean Time" (GMT).

The toUTC() method on local timezone information settings.

Fall/Autumn daylight saving time transition period

Important: The toUTC() function cannot determine if the local datetime value represents
a time before or after the daylight saving time change, when the value is in the hour of the
daylight saving time transition period in the fall (this is for example, the hour 02:00 PM to
03:00 PM on the last Sunday of October in Europe and first Sunday of November in the USA).
Depending on the operating system, the toUTC() method can interpret the local time as a
Summer time or as a Winter time. In order to get the current system time in UTC, use the
util.Datetime.getCurrentAsUTC() method.

The DATETIME value passed as parameter to the toUTC() method is the datetime in the local timezone.
However, this value does not contain the GMT offset indicator or daylight saving time information.

When passing local datetime values in the hour of the daylight saving time transition period in the fall
(when clocks roll back one hour), the toUTC() function cannot determine if the local datetime value
represents a point in time before or after the daylight saving time transition occured. Depending on the
operating system, the toUTC() method can interpret the local time as a Summer time or as a Winter time.
As a result, the conversion to the UTC time can be mis-interpreted.

For example, in Europe, the fall daylight saving time changes on the 25 of October, at 3:00 PM. The
ambigous period is between 2:00 PM and 3:00 PM (local time). If you pass for example, the datetime value
2015-10-25 02:34:11 to the toUTC() method, there is no way for the method to know if this local time is
the time before (CEST / UTC+2h) or after (CET / UTC+1h) the daylight saving time change.

Library reference | 1954

This behavior can be illustrated with the following code example:

IMPORT util

MAIN
 DISPLAY "Original UTC Local time (Paris) toUTC(local-time)
 (toUTC() - Orig UCT)"
 CALL test("2015-10-24 23:59:59")
 CALL test("2015-10-25 00:59:59")
 CALL test("2015-10-25 01:59:59")
 CALL test("2015-10-25 02:59:59")
END MAIN

FUNCTION test(utc)
 DEFINE utc, loc, utc2 DATETIME YEAR TO SECOND
 LET loc = util.Datetime.toLocalTime(utc)
 LET utc2 = util.Datetime.toUTC(loc)
 DISPLAY SFMT("%1 %2 %3 %4", utc,loc,utc2,utc2-utc)
END FUNCTION

The above code will produce the following output on Linux, with with TZ='Europe/Paris':

Original UTC Local time (Paris) toUTC(local-time) (toUTC() -
 Orig UCT)
2015-10-24 23:59:59 2015-10-25 01:59:59 2015-10-24 23:59:59 0
 00:00:00
2015-10-25 00:59:59 2015-10-25 02:59:59 2015-10-25 00:59:59 0
 00:00:00
2015-10-25 01:59:59 2015-10-25 02:59:59 2015-10-25 00:59:59 -0
 01:00:00
2015-10-25 02:59:59 2015-10-25 03:59:59 2015-10-25 02:59:59 0
 00:00:00

As you can see, the local time 2015-10-25 02:59:59 is always converted to UTC 2015-10-25 00:59:59.

Example

IMPORT util
MAIN
 DEFINE utc DATETIME YEAR TO SECOND
 LET utc = util.Datetime.toUTC(DATETIME(2015-08-22 15:34:56)
 YEAR TO SECOND)
 DISPLAY "UTC: ", utc
END MAIN

The util.Interval class
The util.Interval class provides INTERVAL data-type related utility methods.

This class is provided in the util C-Extension library; To use the util.Interval class, you must import
the util package in your program:

IMPORT util

This class does not have to be instantiated; it provides class methods for the current program.

Library reference | 1955

util.Interval methods
Methods for the util.Interval class.

Table 438: Class methods

Name Description

util.Interval.format(
 value INTERVAL q1 TO q2,
 fmt STRING
)
 RETURNING res STRING

Formats an interval value according to
format specification.

util.Interval.parse(
 src STRING,
 fmt STRING
)
 RETURNING res DATETIME q1 TO q2

Converts a string to a DATETIME value
according to a format specification.

util.Interval.format
Formats an interval value according to format specification.

Syntax

util.Interval.format(
 value INTERVAL q1 TO q2,
 fmt STRING
)
 RETURNING res STRING

1. value is the interval value to be formatted.
2. fmt is the format string, as described in Formatting INTERVAL values on page 223.

Usage

The util.Interval.format() method formats an INTERVAL value according to the format
specification.

The format string must be a combination of place holders such as %Y, %m, %d, as described in Formatting
INTERVAL values on page 223.

If the source value is NULL the result will be NULL.

Example

IMPORT util
MAIN
 DEFINE iv INTERVAL DAY(6) TO MINUTE
 LET iv = "-157 11:23"
 DISPLAY util.Interval.format(iv, "%d %H:%M")
END MAIN

Library reference | 1956

util.Interval.parse
Converts a string to a DATETIME value according to a format specification.

Syntax

util.Interval.parse(
 src STRING,
 fmt STRING
)
 RETURNING res DATETIME q1 TO q2

1. src is the source string to be parsed.
2. fmt is the format specification (see Formatting INTERVAL values on page 223).

Usage

The util.Interval.parse() method parses a string according to a format specification, to produce an
INTERVAL value.

The format specification must be a combination of place holders such as %Y, %m, %d, etc.

The precision of the resulting INTERVAL value depends on the format specification. For example, when
using "%Y-%m", the resulting value will be an INTERVAL YEAR TO MONTH.

The method returns NULL, if the source string cannot be converted to an INTERVAL value according to the
format specification.

For more details about the supported formats, see Formatting INTERVAL values on page 223.

Example

IMPORT util
MAIN
 DEFINE iv INTERVAL DAY(6) TO FRACTION(5)
 LET iv = util.Interval.parse("-37467 + 23:45:34.12345", "%d
 + %H:%M:%S%F5")
END MAIN

The util.Strings class
The util.Strings class provides STRING data-type related utility methods.

This class is provided in the util C-Extension library; To use the util.Strings class, you must import
the util package in your program:

IMPORT util

This class does not have to be instantiated; it provides class methods for the current program.

util.Strings methods
Methods for the util.Strings class.

Table 439: Class methods

Name Description

util.Strings.base64Decode(
 source STRING,
 filename STRING

Decodes a Base64 encoded string and
writes the bytes to a file.

Library reference | 1957

Name Description

)

util.Strings.base64Encode(
 filename STRING
)
 RETURNING result STRING

Converts the content of a file to a
Base64 encoded string.

util.Strings.base64DecodeToString(
 source STRING
)
 RETURNING result STRING

Decodes a base64 encoded string and
returns the corresponding string.

util.Strings.base64EncodeFromString(
 source STRING
)
 RETURNING result STRING

Converts the string passed as parameter
to a Base64 encoded string.

util.Strings.urlDecode(
 source STRING
)
 RETURNING result STRING

Converts the URL-encoded string to a
string in the current application locale.

util.Strings.urlEncode(
 source STRING
)
 RETURNING result STRING

Converts a string from the current
codeset to a URL-encoded string.

util.Strings.base64Decode
Decodes a Base64 encoded string and writes the bytes to a file.

Syntax

util.Strings.base64Decode(
 source STRING,
 filename STRING
)

1. source is the Base64 encoded string.
2. filename is the name of the file to write to.

Usage

The util.Strings.base64Decode() method converts the Base64 encoded string passed as first
parameter, and writes the bytes to file specified as second parameter.

Example

IMPORT util
MAIN
 DEFINE base64 STRING
 LET base64 = util.Strings.base64Encode("picture1.png")
 DISPLAY base64

Library reference | 1958

 CALL util.Strings.base64Decode(base64, "picture2.png")
END MAIN

util.Strings.base64Encode
Converts the content of a file to a Base64 encoded string.

Syntax

util.Strings.base64Encode(
 filename STRING
)
 RETURNING result STRING

1. filename is the name of the file to read from.
2. result is the resulting Base64 encoded string.

Usage

The util.Strings.base64Encode() method reads the content of the file passed as parameter, and
converts the bytes to a Base64 encoded string.

Example

IMPORT util
MAIN
 DISPLAY util.Strings.base64Encode("picture.png")
END MAIN

util.Strings.base64DecodeToString
Decodes a base64 encoded string and returns the corresponding string.

Syntax

util.Strings.base64DecodeToString(
 source STRING
)
 RETURNING result STRING

1. source is the Base64 encoded string.
2. result is the decoded string.

Usage

The util.Strings.base64DecodeToString() method converts the Base64 encoded string passed
as parameter to an array of bytes, then it converts the byte array to a string representation in the current
locale, and returns that string.

If the Base64 source string contains a sequence of bytes that does not represent a valid character in the
current application locale, the function returns NULL.

Note: In contrast to util.Strings.urlDecode on page 1959, the original string is not converted
from UTF-8 to the application character encoding: The Base64 source string must represent valid
characters in the current application locale.

Example

IMPORT util
MAIN

Library reference | 1959

 DEFINE base64 STRING
 LET base64 = util.Strings.base64EncodeFromString("Forêt")
 DISPLAY base64
 DISPLAY util.Strings.base64DecodeToString(base64)
END MAIN

util.Strings.base64EncodeFromString
Converts the string passed as parameter to a Base64 encoded string.

Syntax

util.Strings.base64EncodeFromString(
 source STRING
)
 RETURNING result STRING

1. source is the source string to convert in Base64.
2. result is the resulting Base64 encoded string.

Usage

The util.Strings.base64EncodeFromString() method first converts the string passed as
parameter to an array of bytes, then it converts the array of bytes the a Base64 representation, and returns
the resulting Base64 encoded string.

Note: In contrast to util.Strings.urlEncode on page 1960, the original string is not converted from
the application locale to UTF-8, before performing the encoding to Base64: The resulting Base64
encoded string will contain byte sequences representing characters in the current application locale.

Example

IMPORT util
MAIN
 DISPLAY util.Strings.base64EncodeFromString("Forêt")
END MAIN

util.Strings.urlDecode
Converts the URL-encoded string to a string in the current application locale.

Syntax

util.Strings.urlDecode(
 source STRING
)
 RETURNING result STRING

1. source is the URL-encoded source string (UTF-8 bytes).
2. result is the resulting Base64 encoded string.

Usage

The util.Strings.urlDecode() method converts the URL-encoded string passed as parameter to a
character string.

The source string must contain ASCII characters and/or %xx hexadecimal representation of UTF-8
encoding bytes.

The decoder is error tolerant:

Library reference | 1960

• Alphabetical characters of a %xx element can be uppercase or lowercase (%b2 = %B2).
• If the source string contains a set of %xx elements that represent a UTF-8 encoded character which is

not existing in the current application locale, it will be converted to a ? question mark.
• If the percent character is not followed by two hexadecimal digits, then a "%" is copied to the result string

and the decoder continues at the next character.

Example

IMPORT util
MAIN
 DISPLAY util.Strings.urlDecode("abc%C3%84%E2%82%AC")
END MAIN

Output:
abcÄ€

util.Strings.urlEncode
Converts a string from the current codeset to a URL-encoded string.

Syntax

util.Strings.urlEncode(
 source STRING
)
 RETURNING result STRING

1. source is the source string to url-encode.
2. result is the resulting url encoded string.

Usage

The util.Strings.urlEncode() method converts the character string passed as parameter to a URL-
encoded string.

All characters not matching [-_.~a-zA-Z0-9] are "percent encoded": Percent-encoding involves
converting those characters to UTF-8 and representing its corresponding byte values by a percent sign
("%") and a pair of hexadecimal digits.

Example

IMPORT util
MAIN
 DISPLAY util.Strings.urlEncode("abcÄ€")
END MAIN

Output:
abc%C3%84%E2%82%AC

The util.Math class
The util.Math class provides basic mathematical functions based on floating point numbers (FLOAT).

This class does not have to be instantiated; it provides class methods for the current program.

This class is provided in the util C-Extension library; To use the util.Math class, you must import the
util package in your program:

IMPORT util

Library reference | 1961

util.Math methods
Methods for the util.Math class.

Table 440: Class methods

Name Description

util.Math.acos(
 val FLOAT)
 RETURNING result FLOAT

Computes the arc cosine of the passed value,
measured in radians.

util.Math.asin(
 val FLOAT)
 RETURNING result FLOAT

Computes the arc sine of the passed value,
measured in radians.

util.Math.atan(
 val FLOAT)
 RETURNING result FLOAT

Computes the arc tangent of the passed value,
measured in radians.

util.Math.cos(
 val FLOAT)
 RETURNING result FLOAT

Computes the cosine of the passed value,
measured in radians.

util.Math.exp(
 val FLOAT)
 RETURNING result FLOAT

Computes the base-e exponential of the value
passed as parameter.

util.Math.log(
 val FLOAT)
 RETURNING result FLOAT

Computes the natural logarithm of the passed
value.

util.Math.pi()
 RETURNING result FLOAT

Returns the FLOAT value of PI.

util.Math.pow(
 x FLOAT,
 y FLOAT)
 RETURNING result FLOAT

Computes the value of x raised to the power y.

util.Math.rand(
 max INTEGER)
 RETURNING result INTEGER

Returns a positive pseudo-random number.

util.Math.sin(
 val FLOAT)
 RETURNING result FLOAT

Computes the sine of the passed value, measured
in radians.

util.Math.sqrt(
 val FLOAT)

Returns the square root of the argument provided.

Library reference | 1962

Name Description

 RETURNING result FLOAT

util.Math.srand()
Initializes the pseudo-random numbers generator.

util.Math.tan(
 val FLOAT)
 RETURNING result FLOAT

Computes the tangent of the passed value,
measured in radians.

util.Math.toDegrees(
 val FLOAT)
 RETURNING result FLOAT

Converts an angle measured in radians to an
approximately equivalent angle measured in
degrees.

util.Math.toRadians(
 val FLOAT)
 RETURNING result FLOAT

Converts an angle measured in degrees to an
approximately equivalent angle measured in
radians.

util.Math.acos
Computes the arc cosine of the passed value, measured in radians.

Syntax

util.Math.acos(
 val FLOAT)
 RETURNING result FLOAT

1. val is a floating point value.

Usage

Returns NULL if the argument provided is invalid.

util.Math.asin
Computes the arc sine of the passed value, measured in radians.

Syntax

util.Math.asin(
 val FLOAT)
 RETURNING result FLOAT

1. val is a floating point value.

Usage

Returns NULL if the argument provided is invalid.

util.Math.atan
Computes the arc tangent of the passed value, measured in radians.

Syntax

util.Math.atan(

Library reference | 1963

 val FLOAT)
 RETURNING result FLOAT

1. val is a floating point value.

Usage

Returns NULL if the argument provided is invalid.

util.Math.cos
Computes the cosine of the passed value, measured in radians.

Syntax

util.Math.cos(
 val FLOAT)
 RETURNING result FLOAT

1. val is a floating point value.

Usage:

Returns NULL if the argument provided is invalid.

util.Math.exp
Computes the base-e exponential of the value passed as parameter.

Syntax

util.Math.exp(
 val FLOAT)
 RETURNING result FLOAT

1. val is a floating point value.

Usage

Returns NULL if the argument provided on error.

util.Math.pi
Returns the FLOAT value of PI.

Syntax

util.Math.pi()
 RETURNING result FLOAT

util.Math.pow
Computes the value of x raised to the power y.

Syntax

util.Math.pow(
 x FLOAT,
 y FLOAT)
 RETURNING result FLOAT

1. x is the value to be raised.
2. y is the power operand.

Library reference | 1964

Usage

The function returns NULL if one of the argument provided is invalid.

If x is negative, the caller should ensure that y is an integer value.

util.Math.rand
Returns a positive pseudo-random number.

Syntax

util.Math.rand(
 max INTEGER)
 RETURNING result INTEGER

1. max is the maximum random number that can be generated.

Usage

The rand() function returns a pseudo-random integer number between zero and max.

Important:

The srand() function initializes the pseudo-random numbers generator. It must be called before
subsequent calls to the rand() function. If you do not call the srand() function, the rand()
function will generate the same sequence of numbers for every program execution. The numbers
generated by rand() can vary according to the operating system.

The maximum random number returned by the rand() function is 2,147,483,646.

The rand() function returns zero if the argument is lower or equal to 0.

Example

IMPORT util
MAIN
 DEFINE i SMALLINT
 DISPLAY "Before srand() call:"
 FOR i=1 TO 3
 DISPLAY util.Math.rand(100)
 END FOR
 CALL util.Math.srand()
 DISPLAY "After srand() call:"
 FOR i=1 TO 3
 DISPLAY util.Math.rand(100)
 END FOR
END MAIN

(run this example several times)

util.Math.sin
Computes the sine of the passed value, measured in radians.

Syntax

util.Math.sin(
 val FLOAT)
 RETURNING result FLOAT

1. val is a floating point value.

Library reference | 1965

Usage

Returns NULL if the argument provided is invalid.

util.Math.sqrt
Returns the square root of the argument provided.

Syntax

util.Math.sqrt(
 val FLOAT)
 RETURNING result FLOAT

1. val is a floating point value.

Usage

The function returns NULL if the argument provided is invalid.

util.Math.srand
Initializes the pseudo-random numbers generator.

Syntax

util.Math.srand()

Usage

The srand() function initializes the pseudo-random numbers generator. It must be called before
subsequent calls to the rand() function. If you do not call the srand() function, the rand() function
will generate the same sequence of numbers for every program execution. The numbers generated by
rand() can vary according to the operating system.

util.Math.tan
Computes the tangent of the passed value, measured in radians.

Syntax

util.Math.tan(
 val FLOAT)
 RETURNING result FLOAT

1. val is a floating point value.

Usage

Returns NULL if the argument provided is invalid.

util.Math.log
Computes the natural logarithm of the passed value.

Syntax

util.Math.log(
 val FLOAT)
 RETURNING result FLOAT

1. val is a floating point value.

Library reference | 1966

Usage

Returns NULL if the argument provided is invalid.

util.Math.toDegrees
Converts an angle measured in radians to an approximately equivalent angle measured in degrees.

Syntax

util.Math.toDegrees(
 val FLOAT)
 RETURNING result FLOAT

1. val is a floating point value to be converted to degrees.

util.Math.toRadians
Converts an angle measured in degrees to an approximately equivalent angle measured in radians.

Syntax

util.Math.toRadians(
 val FLOAT)
 RETURNING result FLOAT

1. val is a floating point value to be converted to radians.

The util.JSON class
The util.JSON class provides a basic interface to convert program variable values to/from JSON data.

The util.JSON class is provided in the util C-Extension library; To use the util.JSON class, you must
import the util package in your program:

IMPORT util

This class does not have to be instantiated; it provides class methods for the current program.

The purpose of the util.JSON class is to convert a JSON string from/to a BDL variable, to interface with
other software based on the JSON format.

The BDL variable can be a simple variable (defined with a primitive type), a structured variable (RECORD),
or dynamic array.

It is not possible to modify JSON elements with this class. In order to manipulate JSON objects, use the
util.JSONObject and util.JSONArray classes.

util.JSON methods
Methods for the util.JSON class.

Table 441: Class methods

Name Description

util.JSON.format(
 source STRING)
 RETURNING result STRING

Formats JSON string with indentation.

util.JSON.parse(
 source STRING,

Parses a JSON string and fills program variables
with the values.

Library reference | 1967

Name Description

 destination { RECORD | DYNAMIC
 ARRAY })

util.JSON.proposeType(
 source STRING)
 RETURNING result STRING

Describes the record structure that can hold a given
JSON data string.

util.JSON.stringify(
 source { RECORD | DYNAMIC ARRAY }
)
 RETURNING result STRING

Transforms a record variable to a flat JSON
formatted string.

util.JSON.format
Formats JSON string with indentation.

Syntax

util.JSON.format(
 source STRING)
 RETURNING result STRING

1. source is a string value that contains JSON formatted data.
2. result is a string that is well formatted and indented.

Usage

The util.JSON.format() class method takes a JSON formatted string as parameter and indents the
JSON string.

The main purpose of this method is to beautify a JSON data string that is on a single line, by adding line
breaks and indentation.

util.JSON.parse
Parses a JSON string and fills program variables with the values.

Syntax

util.JSON.parse(
 source STRING,
 destination { RECORD | DYNAMIC ARRAY })

1. source is a string value that contains JSON formatted data.
2. destination is the variable to be initialized with values of the JSON string.

Important: The dest record is passed by reference to the method.

Usage

The util.JSON.parse() class method scans the JSON source string passed as parameter and fills the
destination variable members by name.

The destination variable should have the same structure as the JSON source data, it can be a RECORD or a
DYNAMIC ARRAY.

Library reference | 1968

See JSON to Genero BDL conversion rules on page 1987 for details on how the destination variable is
populated when the structures are not identical.

Example

IMPORT util
MAIN
 DEFINE cust_rec RECORD
 cust_num INTEGER,
 cust_name VARCHAR(30),
 order_ids DYNAMIC ARRAY OF INTEGER
 END RECORD
 DEFINE js STRING
 LET js='{ "cust_num":2735, "cust_name":"McCarlson",
 "order_ids":[234,3456,24656,34561] }'
 CALL util.JSON.parse(js, cust_rec)
 DISPLAY cust_rec.cust_name
 DISPLAY cust_rec.order_ids[4]
END MAIN

util.JSON.proposeType
Describes the record structure that can hold a given JSON data string.

Syntax

util.JSON.proposeType(
 source STRING)
 RETURNING result STRING

1. source is a string value that contains JSON formatted data.
2. result is a string that represents the definition of a RECORD.

Usage

The util.JSON.proposeType() class method takes a JSON formatted string as parameter and
generates the RECORD definition that corresponds to the source JSON string.

This method is useful to define a record variable that must hold the given JSON string.

Example

IMPORT util
MAIN
 DEFINE js STRING
 LET js='{ "cust_num":2735, "cust_name":"McCarlson",
 "orderids":[234,3456,24656,34561] }'
 DISPLAY util.JSON.proposeType(js)
END MAIN

Displays:

 RECORD
 cust_num FLOAT,
 cust_name STRING,
 orderids DYNAMIC ARRAY OF FLOAT
END RECORD

Library reference | 1969

util.JSON.stringify
Transforms a record variable to a flat JSON formatted string.

Syntax

util.JSON.stringify(
 source { RECORD | DYNAMIC ARRAY })
 RETURNING result STRING

1. source is the program variable to be converted to a JSON string.
2. result is a JSON formatted string created from the source record.

Usage

The util.JSON.stringify() class method takes a RECORD or DYNAMIC ARRAY variable as
parameter, and generates the corresponding data string in JSON format, as defined in the [RFC4627]
specification.

For more details about FGL to JSON conversion, see Genero BDL to JSON conversion rules on page
1988.

The method raises error -8110 if the JSON string cannot be generated.

Example

IMPORT util
MAIN
 DEFINE cust_rec RECORD
 cust_num INTEGER,
 cust_name VARCHAR(30),
 order_ids DYNAMIC ARRAY OF INTEGER
 END RECORD
 DEFINE js STRING
 LET cust_rec.cust_num = 345
 LET cust_rec.cust_name = "McMaclum"
 LET cust_rec.order_ids[1] = 4732
 LET cust_rec.order_ids[2] = 9834
 LET cust_rec.order_ids[3] = 2194
 LET js = util.JSON.stringify(cust_rec)
 DISPLAY util.JSON.format(js)
END MAIN

Displays following output:

{
 "cust_num": 345,
 "cust_name": "McMaclum",
 "order_ids": [4732,9834,2194
]
}

Examples
Example 1: Reading a JSON file

This program reads JSON data from customers.json, parses the line to fill the program variables,
coverts the program variable back to JSON and writes a formatted JSON string to the standard output.

http://www.ietf.org/rfc/rfc4627.txt

Library reference | 1970

We assume that the source file contains the list of customers in a single line that can be read with
base.Channel.readLine():

IMPORT util
MAIN
 DEFINE custlist DYNAMIC ARRAY OF RECORD
 num INTEGER,
 name VARCHAR(40)
 END RECORD
 DEFINE ch base.Channel
 LET ch = base.Channel.create()
 CALL ch.openFile("customers.json","r")
 CALL util.JSON.parse(ch.readLine(), custlist)
 DISPLAY custlist.getLength()
 DISPLAY util.JSON.format(util.JSON.stringify(custlist))
 CALL ch.close()
END MAIN

-- customers.json file:
[{"num":823, "name":"Mark Renbing" }, {"num":234, "name":"Clark
 Gambler" }]

Note that the JSON file does not contain the name of the dynamic array (custlist), but starts directly with
the JSON array in [] square braces.

The util.JSONObject class
The util.JSONObject class provides methods to handle an structured data object following the JSON
string syntax.

The util.JSONObject class is provided in the util C-Extension library; To use the util.JSONObject
class, you must import the util package in your program:

IMPORT util

A JSONObject is an unordered collection of name/value pairs. The format of a JSON object string is a
coma-separated "name":value pairs, wrapped in curly braces. The value can be simple numeric or string
value, but it can also be an array of values enclosed in square braces, or a sub-element enclosed in curly
braces:

{
 "cust_num":2735,
 "cust_name":"McCarlson",
 "order_ids":[234,3456,24656,34561],
 "address": {
 "street":"34, Sunset Bld",
 "city":"Los Angeles",
 "state":"CA"
 }
}

A JSONObject object must be created before usage with one of the class methods like
util.JSONObject.create().

The JSONObject class provides methods for accessing, adding/replacing or deleting the values by name
with the get(), put() and remove() methods.

The get() method can return a simple value, a util.JSONObject or a util.JSONArray object
reference.

The put() method can take a simple value, a RECORD, or an ARRAY as parameter.

Library reference | 1971

If the structure of the JSON object is not known at compile time, you can introspect the elements of the
object with the getLength(), getType() and name() methods.

util.JSONObject methods
Methods for the util.JSONObject class.

Table 442: Class methods

Name Description

util.JSONObject.create()
 RETURNING object util.JSONObject

Creates a new JSON object.

util.JSONObject.fromFGL(
 source RECORD)
 RETURNING object util.JSONObject

Creates a new JSON object from a RECORD.

util.JSONObject.parse(
 source STRING)
 RETURNING result util.JSONObject

Parses a JSON string and creates a JSON object
from it.

Table 443: Object methods

Name Description

util.JSONObject.get(
 name STRING)
 RETURNING result result-type

Returns the value corresponding to the specified
entry name.

util.JSONObject.getLength()
 RETURNING len INTEGER

Returns the number of name-value pairs in the
JSON object.

util.JSONObject.getType(
 name STRING)
 RETURNING type STRING

Returns the type of a JSON object element.

util.JSONObject.has(
 name STRING)
 RETURNING result BOOLEAN

Checks if the JSON object contains a specific entry
name.

util.JSONObject.name(
 index INTEGER)
 RETURNING result STRING

Returns the name of a JSON object entry by
position.

util.JSONObject.put(
 name STRING,
 value value-type)

Sets a name-value pair in the JSON object.

util.JSONObject.remove(
Removes the specified element in the JSON object.

Library reference | 1972

Name Description

 name STRING)

util.JSONObject.toFGL(
 dest RECORD)

Fills a record variable with the entries contained in
the JSON object.

util.JSONObject.toString()
 RETURNING result STRING

Builds a JSON string from the values contained in
the JSON object.

util.JSONObject.create
Creates a new JSON object.

Syntax

util.JSONObject.create()
 RETURNING object util.JSONObject

Usage

The util.JSONObject.create() method create a new JSON object.

The new created object must be assigned to a program variable defined with the util.JSONObject type.

Example

IMPORT util
MAIN
 DEFINE obj util.JSONObject
 LET obj = util.JSONObject.create()
 ...
END MAIN

util.JSONObject.fromFGL
Creates a new JSON object from a RECORD.

Syntax

util.JSONObject.fromFGL(
 source RECORD)
 RETURNING object util.JSONObject

1. source is the RECORD variable used to create the JSON object.

Usage

The util.JSONObject.fromFGL() method creates a new JSON object from the RECORD variable
passed as parameter.

The new created object must be assigned to a program variable defined with the util.JSONObject type.

The members of the RECORD are converted to name/value pairs in the JSON object.

For more details about FGL to JSON conversion, see Genero BDL to JSON conversion rules on page
1988.

Library reference | 1973

Example

IMPORT util
MAIN
 DEFINE cust_rec RECORD
 cust_num INTEGER,
 cust_name VARCHAR(30),
 order_ids DYNAMIC ARRAY OF INTEGER
 END RECORD
 DEFINE obj util.JSONObject
 LET cust_rec.cust_num = 345
 LET cust_rec.cust_name = "McMaclum"
 LET cust_rec.order_ids[1] = 4732
 LET cust_rec.order_ids[2] = 9834
 LET cust_rec.order_ids[3] = 2194
 LET obj = util.JSONObject.fromFGL(cust_rec)
 DISPLAY obj.toString()
END MAIN

util.JSONObject.parse
Parses a JSON string and creates a JSON object from it.

Syntax

util.JSONObject.parse(
 source STRING)
 RETURNING result util.JSONObject

1. source is a string value that contains JSON formatted data.

Usage

The util.JSONObject.parse() method scans the JSON source string passed as parameter and
creates a JSON object from it.

The new created object must be assigned to a program variable defined with the util.JSONObject type.

The source string must follow the JSON format specification. It can contain multi-level structured data, but
it must start with a curly brace.

The method raises error -8109 if the JSON source string is not properly formatted.

Example

IMPORT util
MAIN
 DEFINE js STRING
 DEFINE obj util.JSONObject
 LET js='{ "cust_num":2735, "cust_name":"McCarlson",
 "orderids":[234,3456,24656,34561] }'
 LET obj = util.JSONObject.parse(js)
 DISPLAY obj.get("cust_name")
END MAIN

Library reference | 1974

util.JSONObject.get
Returns the value corresponding to the specified entry name.

Syntax

util.JSONObject.get(
 name STRING)
 RETURNING result result-type

1. name is the string identifying the JSON object property.
2. result-type can be a simple type, a util.JSONObject or a util.JSONArray object reference.

Usage

The get() method returns the value or JSON object corresponding to the element name passed as
parameter.

If the element identified by the name is a simple value, the method returns a string. If the element is
structured, the method returns a util.JSONObject instance and the returned object must be assigned to
a program variable defined with the util.JSONObject type. If the element is a list of values, the method
a util.JSONArray instance and the returned object must be assigned to a program variable defined with
the util.JSONArray type.

A name/value pair can be set with the put() method.

Example

IMPORT util
MAIN
 DEFINE obj, sub util.JSONObject
 DEFINE jarr util.JSONArray
 DEFINE rec RECORD
 id INTEGER,
 name STRING
 END RECORD
 DEFINE arr DYNAMIC ARRAY OF INTEGER
 DEFINE x INT
 LET obj = util.JSONObject.create()
 -- Simple value
 CALL obj.put("simple", 234)
 LET x = obj.get("simple")
 -- Sub-element
 LET rec.id = 234
 LET rec.name = "Barton"
 CALL obj.put("record", rec)
 LET sub = obj.get("record")
 -- Array
 LET arr[1] = 234
 LET arr[2] = 2837
 CALL obj.put("array", arr)
 LET jarr = obj.get("array")
END MAIN

util.JSONObject.getLength
Returns the number of name-value pairs in the JSON object.

Syntax

util.JSONObject.getLength()

Library reference | 1975

 RETURNING len INTEGER

Usage

The getLength() method returns the number of name-value pairs in the JSON object.

This method can be used in conjunction with the name() and getType() methods to read the entries of a
JSON object.

Example

IMPORT util
MAIN
 DEFINE obj util.JSONObject
 DEFINE i INTEGER
 LET obj = util.JSONObject.parse('{"id":123,"name":"Scott"}')
 FOR i=1 TO obj.getLength()
 DISPLAY i, ": ", obj.name(i), "=", obj.get(obj.name(i))
 END FOR
END MAIN

util.JSONObject.getType
Returns the type of a JSON object element.

Syntax

util.JSONObject.getType(
 name STRING)
 RETURNING type STRING

1. name is the name of the element.

Usage

The getType() method returns the JSON data type name corresponding to the entry identified by the
name passed as parameter.

This method can be used in conjunction with the name() and getLength() methods to read the entries
of a JSON object.

Possible values returned by this method are:

• NUMBER: A numeric value.
• STRING: A string value delimited by double quotes.
• BOOLEAN: A boolean value (true/false)
• NULL: A un-existing element.
• OBJECT: A structured object.
• ARRAY: An ordered list of elements.

Example

IMPORT util
MAIN
 DEFINE obj util.JSONObject
 LET obj = util.JSONObject.create()
 CALL obj.put("id", 8723)
 DISPLAY obj.getType("id") -- NUMBER
 CALL obj.put("name", "Brando")
 DISPLAY obj.getType("name") -- STRING

Library reference | 1976

 DISPLAY obj.getType("undef") -- NULL
END MAIN

util.JSONObject.has
Checks if the JSON object contains a specific entry name.

Syntax

util.JSONObject.has(
 name STRING)
 RETURNING result BOOLEAN

1. name is a string identifying a JSON object property.

Usage

The has() method determines if the JSON object holds a property identified by the name passed as
parameter.

The method returns TRUE if the name/value pair exists in the JSON object.

A name/value pair can be set with the put() method.

util.JSONObject.name
Returns the name of a JSON object entry by position.

Syntax

util.JSONObject.name(
 index INTEGER)
 RETURNING result STRING

1. index is the index of the name-value pair in the JSON object.

Usage

The name() method returns the entry name in the JSON object at the given position.

The index corresponding to the first name-value pair is 1.

If no entry exists at the given index, the method returns NULL.

This method can be used in conjunction with the getLength() and getType() methods to read the
entries of a JSON object.

Example

IMPORT util
MAIN
 DEFINE obj util.JSONObject
 DEFINE i INTEGER
 LET obj = util.JSONObject.parse('{"id":123,"name":"Scott"}')
 FOR i=1 TO obj.getLength()
 DISPLAY i, ": ", obj.name(i)
 END FOR
END MAIN

Library reference | 1977

util.JSONObject.put
Sets a name-value pair in the JSON object.

Syntax

util.JSONObject.put(
 name STRING,
 value value-type)

1. name is a string defining the entry name.
2. value is the value to be associated to the name.
3. value-type can be a simple string or numeric type, a RECORD or an DYNAMIC ARRAY.

Usage

The put() method adds a name-value pair to the JSON object.

The first parameter is the name of the element. The second parameter can be a simple string or numeric
value, or a complex variable defined as RECORD or DYNAMIC ARRAY.

If the element exists, the existing value is replaced.

Example

IMPORT util
MAIN
 DEFINE obj util.JSONObject
 DEFINE rec RECORD
 id INTEGER,
 name STRING
 END RECORD
 DEFINE arr DYNAMIC ARRAY OF INTEGER
 LET obj = util.JSONObject.create()
 CALL obj.put("simple", 234)
 LET rec.id = 234
 LET rec.name = "Barton"
 CALL obj.put("record", rec)
 LET arr[1] = 234
 LET arr[2] = 2837
 CALL obj.put("array", arr)
 DISPLAY obj.toString()
END MAIN

util.JSONObject.remove
Removes the specified element in the JSON object.

Syntax

util.JSONObject.remove(
 name STRING)

1. name is the string identifying the JSON object property.

Usage

The remove() method deletes a name-value pair identified by the name passed as parameter.

Library reference | 1978

Example

IMPORT util
MAIN
 DEFINE obj util.JSONObject
 LET obj = util.JSONObject.create()
 CALL obj.put("address", "5 Brando Street")
 CALL obj.remove("address")
 DISPLAY obj.get("address")
END MAIN

util.JSONObject.toFGL
Fills a record variable with the entries contained in the JSON object.

Syntax

util.JSONObject.toFGL(
 dest RECORD)

1. dest is the variable to be set with values of the JSON string.

Important: The dest is a RECORD variable is passed by reference to the method.

Usage

The toFGL() method fills the RECORD variable passed as parameter with the corresponding values
defined in the JSON object.

The destination record must have the same structure as the JSON source data. For more details see
JSON to Genero BDL conversion rules on page 1987.

Example

IMPORT util
MAIN
 DEFINE cust_rec RECORD
 cust_num INTEGER,
 cust_name VARCHAR(30),
 order_ids DYNAMIC ARRAY OF INTEGER
 END RECORD
 DEFINE js STRING
 DEFINE obj util.JSONObject
 LET js='{ "cust_num":2735, "cust_name":"McCarlson",
 "order_ids":[234,3456,24656,34561] }'
 LET obj = util.JSONObject.parse(js)
 CALL obj.toFGL(cust_rec)
 DISPLAY cust_rec.cust_name
 DISPLAY cust_rec.order_ids[4]
END MAIN

util.JSONObject.toString
Builds a JSON string from the values contained in the JSON object.

Syntax

util.JSONObject.toString()
 RETURNING result STRING

Library reference | 1979

Usage

The toString() method produces a JSON formatted string from the name-value pairs contained in the
JSON object.

Example

IMPORT util
MAIN
 DEFINE obj util.JSONObject
 LET obj = util.JSONObject.create()
 CALL obj.put("num", "75263")
 CALL obj.put("name", "Ferguson")
 CALL obj.put("address", "12 Marylon Street")
 DISPLAY obj.toString()
END MAIN

The util.JSONArray class
The util.JSONArray class provides methods to handle an array of values, following the JSON string
syntax.

The util.JSONArray class is provided in the util C-Extension library; To use the util.JSONArray
class, you must import the util package in your program:

IMPORT util

A JSONArray is an sequence of unnamed values. The format of a JSON array string is a list of values
wrapped in square braces with commas between the values:

[123,546,"abc","def","xyz"]

A JSONArray object must be created before usage with one of the class methods like
util.JSONArray.create().

The JSONArray class provides methods for accessing, adding/replacing or deleting the array values by
index with the get(), put() and remove() methods.

If the structure of the JSON array is not known at compile time, you can introspect the elements of the
array with the getLength() and getType() methods.

util.JSONArray methods
Methods for the util.JSONArray class.

Table 444: Class methods

Name Description

util.JSONArray.create()
 RETURNING array util.JSONArray

Creates a new JSON array object.

util.JSONArray.fromFGL(
 source DYNAMIC ARRAY)
 RETURNING array util.JSONArray

Creates a new JSON array object from a DYNAMIC
ARRAY.

util.JSONArray.parse(
 source STRING)

Parses a JSON string and creates a JSON array
object from it.

Library reference | 1980

Name Description

 RETURNING result util.JSONArray

Table 445: Object methods

Name Description

util.JSONArray.get(
 index INTEGER)
 RETURNING result result-type

Returns the value of a JSON array element.

util.JSONArray.getLength()
 RETURNING length INTEGER

Returns the number of elements in the JSON array
object.

util.JSONArray.getType(
 index INTEGER)
 RETURNING type STRING

Returns the type of a JSON array element.

util.JSONArray.put(
 index INTEGER,
 value value-type)

Sets an element by position in the JSON array
object.

util.JSONArray.remove(
 index INTEGER)

Removes the specified entry in the JSON array
object.

util.JSONArray.toFGL(
 dest DYNAMIC ARRAY)

Fills a dynamic array variable with the elements
contained in the JSON array object.

util.JSONArray.toString()
 RETURNING result STRING

Builds a JSON string from the elements contained
in the JSON array object.

util.JSONArray.create
Creates a new JSON array object.

Syntax

util.JSONArray.create()
 RETURNING array util.JSONArray

Usage

The util.JSONArray.create() method create a new JSON array object.

The new created object must be assigned to a program variable defined with the util.JSONArray type.

Example

IMPORT util
MAIN

Library reference | 1981

 DEFINE arr util.JSONArray
 LET arr = util.JSONArray.create()
 ...
END MAIN

util.JSONArray.fromFGL
Creates a new JSON array object from a DYNAMIC ARRAY.

Syntax

util.JSONArray.fromFGL(
 source DYNAMIC ARRAY)
 RETURNING array util.JSONArray

1. source is the DYNAMIC ARRAY variable used to create the JSON array object.

Usage

The util.JSONArray.fromFGL() method creates a new JSON array from the DYNAMIC ARRAY
variable passed as parameter.

The new created object must be assigned to a program variable defined with the util.JSONArray type.

The members of the DYNAMIC ARRAY are converted to a list of name/value pairs in the JSON array object.

The dynamic array can be structured with a RECORD definition: the elements of the array will be converted
individually.

For more details about FGL to JSON conversion, see Genero BDL to JSON conversion rules on page
1988.

Example

IMPORT util
MAIN
 DEFINE da DYNAMIC ARRAY OF INTEGER
 DEFINE arr util.JSONArray
 LET da[1] = 123
 LET da[2] = 972
 LET arr = util.JSONArray.fromFGL(da)
 DISPLAY arr.toString()
END MAIN

util.JSONArray.parse
Parses a JSON string and creates a JSON array object from it.

Syntax

util.JSONArray.parse(
 source STRING)
 RETURNING result util.JSONArray

1. source is a string value that contains JSON formatted data as a list of elements delimited by square
braces.

Usage

The util.JSONArray.parse() method scans the JSON source string passed as parameter and
creates a new JSON array object from it.

Library reference | 1982

The new created object must be assigned to a program variable defined with the util.JSONArray type.

The source string must follow the JSON format specification. Elements of the list can contain multi-level
structured data, but the string must follow the JSON array string syntax '[element, ...]' with square
braces.

The method raises error -8109 if the JSON source string is not properly formatted.

Example

IMPORT util
MAIN
 DEFINE da DYNAMIC ARRAY OF INTEGER
 DEFINE arr util.JSONArray
 LET arr = util.JSONArray.parse("[1,2,3,4,5]")
 DISPLAY arr.toString()
END MAIN

util.JSONArray.get
Returns the value of a JSON array element.

Syntax

util.JSONArray.get(
 index INTEGER)
 RETURNING result result-type

1. index is the index of the element in the JSON array object.
2. result-type can be a simple type, a util.JSONObject or a util.JSONArray object reference.

Usage

The get() method returns the value or JSON object corresponding to the element at the given position.

The index corresponding to the first element is 1.

If no element exists at the given index, the method returns NULL.

If the element identified by the name is a simple value, the method returns a string. If the element is
structured, the method returns a util.JSONObject instance and the returned object must be assigned to
a program variable defined with the util.JSONObject type. If the element is a list of values, the method
a util.JSONArray instance and the returned object must be assigned to a program variable defined with
the util.JSONArray type.

A name/value pair can be set with the put() method.

Example

IMPORT util
MAIN
 DEFINE arr util.JSONArray
 LET arr = util.JSONArray.parse('[123,"abc",null]')
 DISPLAY arr.get(2) -- abc
END MAIN

Library reference | 1983

util.JSONArray.getLength
Returns the number of elements in the JSON array object.

Syntax

util.JSONArray.getLength()
 RETURNING length INTEGER

Usage

The getLength() method returns the number of elements in the JSON array object.

This method can be used in conjunction with the get() and getType() method to read elements of a
JSON array object.

Example

IMPORT util
MAIN
 DEFINE arr util.JSONArray
 DEFINE i INTEGER
 LET arr = util.JSONArray.parse('[123,8723,9232]')
 FOR i=1 TO arr.getLength()
 DISPLAY i, ": ", arr.get(i)
 END FOR
END MAIN

util.JSONArray.getType
Returns the type of a JSON array element.

Syntax

util.JSONArray.getType(
 index INTEGER)
 RETURNING type STRING

1. index is the ordinal position of the element.

Usage

The getType() method returns the data type name corresponding to the JSON array element at the
given position.

The index corresponding to the first element is 1.

This method can be used in conjunction with the getLength() method to read the entries of a JSON
array object.

Possible values returned by this method are:

• NUMBER: A numeric value.
• STRING: A string value delimited by double quotes.
• BOOLEAN: A boolean value (true/false)
• NULL: A un-existing element.
• OBJECT: A structured object.
• ARRAY: An ordered list of elements.

Library reference | 1984

Example

IMPORT util
MAIN
 DEFINE arr util.JSONArray
 LET arr = util.JSONArray.parse('[123,"abc",null]')
 DISPLAY arr.getType(1) -- NUMBER
 DISPLAY arr.getType(2) -- STRING
 DISPLAY arr.getType(3) -- NULL
END MAIN

util.JSONArray.put
Sets an element by position in the JSON array object.

Syntax

util.JSONArray.put(
 index INTEGER,
 value value-type)

1. index is the index of the element in the JSON array object.
2. value is the value to be associated to the index.
3. value-type can be a simple string or numeric type, a RECORD or an DYNAMIC ARRAY.

Usage

The put() method sets an element value by position in the JSON array object.

The first parameter is the index of the element. The second parameter can be a simple string or numeric
value, or a complex variable defined as RECORD or DYNAMIC ARRAY.

The index corresponding to the first element is 1.

If the element exists, the existing value is replaced.

Example

IMPORT util
MAIN
 DEFINE ja util.JSONArray
 DEFINE rec RECORD
 id INTEGER,
 name STRING
 END RECORD
 DEFINE arr DYNAMIC ARRAY OF INTEGER
 LET ja = util.JSONArray.create()
 CALL ja.put(1, 234)
 LET rec.id = 234
 LET rec.name = "Barton"
 CALL ja.put(2, rec)
 LET arr[1] = 234
 LET arr[2] = 2837
 CALL ja.put(3, arr)
 DISPLAY ja.toString()
END MAIN

Library reference | 1985

util.JSONArray.remove
Removes the specified entry in the JSON array object.

Syntax

util.JSONArray.remove(
 index INTEGER)

1. index is the index of the element in the JSON array object.

Usage

The remove() method deletes an element in the JSON array object at the given position.

The index corresponding to the first element is 1.

If no element exists at the specified index, the method returns silently.

Example

IMPORT util
MAIN
 DEFINE arr util.JSONArray
 LET arr = util.JSONArray.parse('["aa","bb","cc"]')
 CALL arr.remove(2)
 DISPLAY arr.get(2) -- cc
END MAIN

util.JSONArray.toFGL
Fills a dynamic array variable with the elements contained in the JSON array object.

Syntax

util.JSONArray.toFGL(
 dest DYNAMIC ARRAY)

1. dest is the array variable to be set with values of the JSON string.

Important: The dest is a dynamic array passed by reference to the method.

Usage

The toFGL() method fills the DYNAMIC ARRAY passed as parameter with the corresponding values
defined in the JSON array object.

The destination array must have the same structure as the JSON source data. For more details see JSON
to Genero BDL conversion rules on page 1987.

Example

IMPORT util
MAIN
 DEFINE ja util.JSONArray
 DEFINE arr DYNAMIC ARRAY OF STRING
 LET ja = util.JSONArray.parse('["aa","bb","cc"]')
 CALL ja.toFGL(arr)
 DISPLAY arr[2] -- bb
END MAIN

Library reference | 1986

util.JSONArray.toString
Builds a JSON string from the elements contained in the JSON array object.

Syntax

util.JSONArray.toString()
 RETURNING result STRING

Usage

The toString() method produces a JSON formatted string from the elements contained in the JSON
array object.

Example

IMPORT util
MAIN
 DEFINE ja util.JSONArray
 LET ja = util.JSONArray.create()
 CALL ja.put(1,"aa")
 CALL ja.put(2,"bb")
 CALL ja.put(3,"cc")
 DISPLAY ja.toString() -- ["aa","bb","cc"]
END MAIN

JSON classes
Gives a basic introduction to JSON.

What is JSON?

JSON (JavaScript™ Object Notation) is a well known lightweight data-interchange format for JavaScript™.

A JSON string (or object) is a comma-separated list of name/value pairs, with a : colon separating the
key and the value. The list of name/value pairs is enclosed in {} curly braces. The names are delimited
by double-quotes. The value can be a single numeric value, a double-quotes string, an array, or a sub-
element. Arrays are defined by a comma-separated list of values enclosed in [] square brackets. Sub-
elements are defined inside {} curly braces and defineds name/value pairs.

For example:

{
 "cust_num":865234,
 "cust_name":"McCarlson",
 "order_ids":[234,3456,24656,34561],
 "address": {
 "street":"34, Sunset Bld",
 "city":"Los Angeles",
 "state":"CA"
 }
}

For more details, see http://www.json.org.

JSON utility classes

The util library provides a set of JSON classes to convert JSON documents to/from RECORD and ARRAY
variables, and to manipulate JSON objects, if you need to handle JSON objects that do not map to a
RECORD or ARRAY:

http://www.json.org

Library reference | 1987

• The util.JSON class on page 1966
• The util.JSONObject class on page 1970
• The util.JSONArray class on page 1979

JSON to Genero BDL conversion rules
The JSON utility classes implement methods that can fill a Genero BDL RECORD or DYNAMIC ARRAY. This
topic describes how JSON data is converted to Genero BDL data.

The destination record or array must have the same structure as the JSON source data.

Each JSON element is assigned to a record member by name, not by position. Elements in the JSON
string can be at a different ordinal position as the corresponding members in the destination record.

Element name matching is case-insensitive. For example, if the Genero BDL record member is defined
as CustNo, and the JSON data string contains the "custno":999 name/value pair, the value will be
assigned. However, since Genero BDL record member names are used as-is to write JSON data, is it
strongly recommended to define the Genero BDL records with the exact names used in JSON data string.

Elements in the JSON string that do not match an Genero BDL record member are ignored; no error is
thrown if there is no corresponding Genero BDL member.

Genero BDL record members that have no matching JSON element are initialized to NULL.

Important: JSON specifications allow you to define element names with characters that
cannot be used in Genero BDL identifiers. For example, a JSON element name can be
"customer.name" or "customer:name", however it is not possible to define a program
variable with these same names. To work around this issue, define the record elements with
underscores in place of unsupported characters, and before assigning the JSON string to the
Genero BDL record, replace all element names by the corresponding record member names (using
base.StringBuffer.replace to do the replacements).

The JSON value must match the data format of the destination member. If the value does not correspond
to the type (for example, if the JSON value is a character string while the target record member is defined
with a numeric type), the target member will be set to NULL.

JSON arrays delimited by square brackets are used to fill a program array of the destination record. The
destination array should be a dynamic array. If the array is defined as static, the additional elements of the
source JSON array will be discarded, while missing elements will be initialized to NULL.

The JSON source string must follow the JSON format specification. It can contain multilevel structured
data. If the source string is not well formatted, the runtime system will throw error -8109.

Table 446: JSON to Genero BDL type conversion rules

Target Genero BDL type Description

BOOLEAN The JSON value should be null, true or false.
If the JSON value is a number or a string, the
language conversion rules from number/string to
BOOLEAN apply.

TINYINT, SMALLINT, INTEGER, BIGINT,
SMALLFLOAT, FLOAT, DECIMAL, MONEY

A JSON number can be assigned to any language
numeric type. The limits of the target type cause
potential overflows errors. On error the target
variable will be initialized to NULL, the parser
continues without an error.

DATE The JSON value must be a string formatted as
"YYYY-MM-DD".

DATETIME If the value is a JSON string, it must be formatted
as "YYYY-MM-DD hh:mm:ss.fffff",

Library reference | 1988

Target Genero BDL type Description

or represent as an ISO 8601 formatted
date-time, in UTC (with Z indicator) or
with a timezone offset (+/-hh[:mm]). For
example: "2013-02-21T15:18:44.456Z",
"2013-02-21T20:18:44.456+02:00".

If the value is a JSON number, it is interpreted as
UNIX™ time (seconds since the Epoch 00:00:00
UTC, January 1, 1970).

Note that the YYYY-MM-DD hh:mm:ss.ffff
format is used to represent the local time. When
exchanging date-time values in communications
across different time zones, consider to convert
date-time values to Coordinated Universal Time
(UTC), by using the util.Datetime methods.

INTERVAL The JSON valid must be a string formatted as
"YYYY-MM" or "DD hh:mm:ss.fffff", according
to interval class of the target variable.

BYTE The JSON string value must be encoded in
Base64. The Base64 encoding is described in
[RFC4648].

TEXT, CHAR, VARCHAR, STRING If the value is a number, the result string uses
the locale specific decimal point. Any character
in the Basic Multilingual Plane (U+0000 through
U+FFFF) may be escaped: \u followed by
exactly 4 hexadecimal digits ([0-9a-fA-
F]). The hexadecimal digits encode the code
point. Escaping of characters outside the Basic
Multilingual Plane my be escaped by there
UTF-16 surrogate pairs. Example: This is the
representation of the G clef character (U+1D11E)
"\uD834\uDD1E".

Genero BDL to JSON conversion rules
The JSON utility classes implement methods that can convert an Genero BDL RECORD or DYNAMIC
ARRAY to a JSON data string. This topic describes how Genero BDL data is converted to JSON data.

To name the JSON elements, the names of the record members are used as defined in the program
source. Since JSON is case-sensitive, make sure the names of the Genero BDL record members match
exactly the names expected in the resulting JSON data string: CustNo will be different from custNo.

Important: JSON specifications allow you to define element names with characters that
cannot be used in Genero BDL identifiers. For example, a JSON element name can be
"customer.name" or "customer:name", however it is not possible to define a program
variable with these same names. To work around this issue, define the record elements with
underscores in place of unsupported characters, and before assigning the JSON string to the
Genero BDL record, replace all element names by the corresponding record member names (using
base.StringBuffer.replace to do the replacements).

If a record member is NULL, then the resulting JSON string or object omits that member.

Program array members in the record are converted to JSON arrays delimited by square brackets ([]).

http://www.ietf.org/rfc/rfc4648.txt

Library reference | 1989

Table 447: Genero BDL to JSON type conversion rules

Target Genero BDL type Description

BOOLEAN Will be serialized with the JSON values true or
false.

TINYINT, SMALLINT, INTEGER, BIGINT,
SMALLFLOAT, FLOAT, DECIMAL, MONEY

Any numeric type will be serialized to this form:
an optional minus sign (-), a sequence of digits
(0-9), containing a optional decimal separator (.),
followed by an optional exponent. The exponent
has the form (e) followed by an optional minus sign
and an sequence of digits. The representation of
numeric values does not depend from the current
locale. The decimal separator is always a dot (.).
MONEY values will be represented like DECIMAL
values: the currency symbol will be omitted.

DATE The date value will be formatted as "YYYY-MM-
DD" (with double quotes)

DATETIME The date-time value will be formatted as "YYYY-
MM-DD hh:mm:ss.fffff" (with double quotes),
according to the date-time type definition. For
example, a DATETIME HOUR TO MINUTE will
produce "hh:mm" formatted values.

Note that the YYYY-MM-DD hh:mm:ss.ffff
format is used to represent the local time. When
exchanging date-time values in communications
across different time zones, consider to convert
date-time values to Coordinated Universal Time
(UTC), by using the util.Datetime methods.

INTERVAL The interval value will be formatted as "YYYY-MM"
or "DD hh:mm:ss.fffff" (with double quotes),
according to the interval type definition.

BYTE Will be serialized to a Base64 encoded double
quoted string. The Base64 encoding is described in
[RFC4648].

TEXT, CHAR, VARCHAR, STRING Character string data will be serialized as a double
quoted string with backslash escaping.

List of characters requiring escaping:

 \\ backslash U+005C
 \" quotation mark U+0022
 \b backspace U+0008
 \f form feed U+000C
 \n line feed U+000A
 \r carriage return U+000D
 \t tab U+0009

Other Any other type will be serialized as a double quoted
(") string.

http://www.ietf.org/rfc/rfc4648.txt

Library reference | 1990

The os package
These topics cover the classes for the os package.

The os.Path class
The os.Path class provides functions to manipulate files and directories on the machine where the
program executes.

This class is provided in the util C-Extension library; To use the os.Path extension, you must import the
os package in your program:

IMPORT os

In order to manipulate files, this API give you access to low-level system functions. Pay attention to
operating system specific conventions like path separators. Some functions are OS specific, like rwx()
which works only on UNIX™ systems.

os.Path methods

Table 448: Class methods

Name Description

os.Path.atime(
 fname STRING)
 RETURNING result STRING

Returns the time of the last file access.

os.Path.baseName(
 filename STRING)
 RETURNING result STRING

Returns the last element of a path.

os.Path.chDir(
 newdir STRING)
 RETURNING result INTEGER

Changes the current working directory.

os.Path.chOwn(
 fname STRING,
 uid INTEGER,
 gui INTEGER)
 RETURNING result INTEGER

Changes the UNIX™ owner and group of a file.

os.Path.chRwx(
 fname STRING,
 mode INTEGER)
 RETURNING result INTEGER

Changes the UNIX™ permissions of a file.

os.Path.chVolume(
 new STRING)
 RETURNING result INTEGER

Changes the current working volume.

os.Path.copy(
 source STRING,
 dest STRING)

Creates a new file by copying an existing file.

Library reference | 1991

Name Description

 RETURNING result INTEGER

os.Path.delete(
 dname STRING)
 RETURNING result INTEGER

Deletes a file or a directory.

os.Path.dirClose(
 dirhandle INTEGER)

Closes the directory referenced by the directory
opened by os.Path.diropen().

os.Path.dirFMask(
 mask INTEGER)

Defines a filter mask for os.Path.dirOpen().

os.Path.dirName(
 filename STRING)
 RETURNING result STRING

Returns all components of a path excluding the last
one.

os.Path.dirNext(
 dirhandle INTEGER)
 RETURNING direntry STRING

Reads the next entry in the directory opened with
os.Path.dirOpen().

os.Path.dirOpen(
 dname STRING)
 RETURNING dirhandle INTEGER

Opens a directory and returns an integer handle to
this directory.

os.Path.dirSort(
 criteria STRING,
 order INTEGER)

Defines the sort criteria and sort order for
os.Path.dirOpen().

os.Path.executable(
 fname STRING)
 RETURNING result INTEGER

Checks if a file is executable.

os.Path.exists(
 fname STRING)
 RETURNING result INTEGER

Checks if a file exists.

os.Path.extension(
 fname STRING)
 RETURNING result STRING

Returns the file extension.

os.Path.fullPath(
 path STRING)
 RETURNING result STRING

Returns the canonical equivalent of a path.

os.Path.gid(
Returns the UNIX™ group id of a file.

Library reference | 1992

Name Description

 fname STRING)
 RETURNING id INTEGER

os.Path.homeDir()
 RETURNING homedir STRING

Returns the path to the HOME directory of the
current user.

os.Path.isDirectory(
 fname STRING)
 RETURNING result BOOLEAN

Checks if a file is a directory.

os.Path.isFile(
 fname STRING)
 RETURNING result BOOLEAN

Checks if a file is a regular file.

os.Path.isHidden(
 fname STRING)
 RETURNING result BOOLEAN

Checks if a file is hidden.

os.Path.isLink(
 fname STRING)
 RETURNING result BOOLEAN

Checks if a file is UNIX™ symbolic link.

os.Path.isRoot(
 path STRING)
 RETURNING result BOOLEAN

Checks if a file path is a root path.

os.Path.join(
 begin STRING,
 end STRING)
 RETURNING result STRING

Joins two path segments adding the platform-
dependent separator.

os.Path.makeTempName()
 RETURNING result STRING

Generates a temporary file name.

os.Path.mkDir(
 dname STRING)
 RETURNING result INTEGER

Creates a new directory.

os.Path.mtime(
 fname STRING)
 RETURNING result STRING

Returns the time of the last file modification.

os.Path.pathSeparator()
Returns the character used in environment
variables to separate path elements.

Library reference | 1993

Name Description

 RETURNING result STRING

os.Path.pathType(
 path STRING)
 RETURNING result STRING

Checks if a path is a relative path or an absolute
path.

os.Path.pwd()
 RETURNING result STRING

Returns the current working directory.

os.Path.readable(
 fname STRING)
 RETURNING result INTEGER

Checks if a file is readable.

os.Path.rename(
 oldname STRING,
 newname STRING)
 RETURNING result INTEGER

Renames a file or a directory.

os.Path.rootDir()
 RETURNING rootdir STRING

Returns the root directory of the current working
path.

os.Path.rootName(
 filename STRING)
 RETURNING result STRING

Returns the file path without the file extension of the
last element of the file path.

os.Path.rwx(
 fname STRING)
 RETURNING mode INTEGER

Returns the UNIX™ file permissions of a file.

os.Path.separator()
 RETURNING result STRING

Returns the character used to separate path
segments.

os.Path.size(
 fname STRING)
 RETURNING result INTEGER

Returns the size of a file.

os.Path.type(
 fname STRING)
 RETURNING result STRING

Returns the file type as a string.

os.Path.uid(
 fname STRING)
 RETURNING id INTEGER

Returns the UNIX™ user id of a file.

os.Path.volumes()
Returns the available volumes.

Library reference | 1994

Name Description

 RETURNING volumes STRING

os.Path.writable(
 fname STRING)
 RETURNING result INTEGER

Checks if a file is writable.

os.Path.atime
Returns the time of the last file access.

Syntax

os.Path.atime(
 fname STRING)
 RETURNING result STRING

1. fname is the name of the file.

Usage

The function returns a string containing the last access time for the specified file, in the standard format
'YYYY-MM-DD HH:MM:SS'.

If the function fails, it returns NULL.

os.Path.baseName
Returns the last element of a path.

Syntax

os.Path.baseName(
 filename STRING)
 RETURNING result STRING

1. filename is the name of the file.

Usage

This method extracts the last component of a path provided as argument.

For example, if you pass "/root/dir1/file.ext" as the parameter, it will return "file.ext".

See Example 1: Extracting the parts of a file name on page 2007 for more examples.

os.Path.copy
Creates a new file by copying an existing file.

Syntax

os.Path.copy(
 source STRING,
 dest STRING)
 RETURNING result INTEGER

1. source is the name of the file to copy.
2. dest is the destination name of the copied file.

Library reference | 1995

Usage

The function returns TRUE if the file has been successfully copied, FALSE otherwise.

os.Path.chDir
Changes the current working directory.

Syntax

os.Path.chDir(
 newdir STRING)
 RETURNING result INTEGER

1. newdir is the directory to select.

Usage

Use this function to change the current working directory.

The function returns TRUE if the current directory could be successfully selected, FALSE otherwise.

os.Path.chRwx
Changes the UNIX™ permissions of a file.

Syntax

os.Path.chRwx(
 fname STRING,
 mode INTEGER)
 RETURNING result INTEGER

1. fname is the name of the file.
2. mode is the UNIX™ permission combination in decimal (not octal!).

Usage

This method can only be used on UNIX™!

Function returns TRUE on success, FALSE otherwise.

The mode must be a decimal value which is the combination of read, write and execution bits for the user,
group and other part of the UNIX™ file permission. Make sure to pass the mode as the decimal version of
permissions, not as octal (the chrwx UNIX™ command takes an octal value as parameter). For example, to
set -rw-r--r-- permissions, you must pass (((4+2) *64) + (4 * 8) + 4) = 420 to this method.

os.Path.chOwn
Changes the UNIX™ owner and group of a file.

Syntax

os.Path.chOwn(
 fname STRING,
 uid INTEGER,
 gui INTEGER)
 RETURNING result INTEGER

1. fname is the name of the file.
2. uid is the user id.
3. gui is the group id.

Library reference | 1996

Usage

This method can only be used on UNIX™!

Function returns TRUE on success, FALSE otherwise.

os.Path.chVolume
Changes the current working volume.

Syntax

os.Path.chVolume(
 new STRING)
 RETURNING result INTEGER

1. new is the volume to select as the new current working volume.

Usage

To change the current volume to C:

LET result = os.Path.chVolume("C:\\")

The function returns TRUE if the current working volume could be successfully changed, FALSE otherwise.

os.Path.delete
Deletes a file or a directory.

Syntax

os.Path.delete(
 dname STRING)
 RETURNING result INTEGER

1. dname is the name of the file or directory to delete.

Usage

A directory can only be deleted if it is empty.

The function TRUE if the file has been successfully deleted, FALSE otherwise.

os.Path.dirClose
Closes the directory referenced by the directory opened by os.Path.diropen().

Syntax

os.Path.dirClose(
 dirhandle INTEGER)

1. dirhandle is the directory handle of the directory to close.

Usage

This function closes the directory search handle opened with os.Path.dirOpen().

Library reference | 1997

os.Path.dirFMask
Defines a filter mask for os.Path.dirOpen().

Syntax

os.Path.dirFMask(
 mask INTEGER)

1. mask defines the filter mask.

Usage

When you call this function, you define the filter mask for any subsequent os.Path.dirOpen() call.

By default, all kinds of directory entries are selected by the dirOpen() function. You can restrict the
number of entries by using a filter mask.

The parameter of the os.Path.dirFMask() function must be a combination of the following bits:

• 0x01 = Exclude hidden files (.*)
• 0x02 = Exclude directories
• 0x04 = Exclude symbolic links
• 0x08 = Exclude regular files

For example, to retrieve only regular files, you must call:

CALL os.Path.dirFMask(1 + 2 + 4)

os.Path.dirName
Returns all components of a path excluding the last one.

Syntax

os.Path.dirName(
 filename STRING)
 RETURNING result STRING

1. filename is the name of the file.
2. result contains all the elements of the path excluding the last one.

Usage

This method removes the last component of a path provided as argument.

For example, if you pass "/root/dir1/file.ext" as the parameter, it will return "/root/dir1".

See Example 1: Extracting the parts of a file name on page 2007 for more examples.

os.Path.dirNext
Reads the next entry in the directory opened with os.Path.dirOpen().

Syntax

os.Path.dirNext(
 dirhandle INTEGER)
 RETURNING direntry STRING

1. dirhandle is the directory handle of the directory to read.
2. direntry is the name of the entry read or NULL if all entries have been read.

Library reference | 1998

Usage

This function returns the next entry of the directory opened with os.Path.dirOpen().

os.Path.dirOpen
Opens a directory and returns an integer handle to this directory.

Syntax

os.Path.dirOpen(
 dname STRING)
 RETURNING dirhandle INTEGER

1. dname is the name of the directory.
2. dirhandle is the directory handle.

Usage

This function creates a handle to scan the elements of a directory.

The function returns a value of 0 if it fails to open the directory.

Before calling the dirOpen() method, you can define a filter with os.Path.dirFMask(), and a sort
order with os.Path.dirSort().

os.Path.dirSort
Defines the sort criteria and sort order for os.Path.dirOpen().

Syntax

os.Path.dirSort(
 criteria STRING,
 order INTEGER)

1. criteria is the sort criteria.
2. order defines ascending (1) or descending (-1) order.

Usage

When you call this function, you define the sort criteria and sort order for any subsequent
os.Path.dirOpen() call.

The criteria parameter must be one of the following strings:

• "undefined" = No sort. This is the default. Entries are read as returned by the OS functions.
• "name" = Sort by file name.
• "size" = Sort by file size.
• "type" = Sort by file type (directory, link, regular file).
• "atime" = Sort by access time.
• "mtime" = Sort by modification time.
• "extension" = Sort by file extension.

When sorting by name, directory entries will be ordered according to the current locale.

When sorting by any criteria other than the file name, entries having the same value for the given criteria
are ordered by name following the value of the order parameter.

Library reference | 1999

os.Path.executable
Checks if a file is executable.

Syntax

os.Path.executable(
 fname STRING)
 RETURNING result INTEGER

1. fname is the file name.

Usage

The function returns TRUE if the file is executable, FALSE otherwise.

os.Path.exists
Checks if a file exists.

Syntax

os.Path.exists(
 fname STRING)
 RETURNING result INTEGER

1. fname is the file name.

Usage

The function returns TRUE if the file exists, FALSE otherwise.

os.Path.extension
Returns the file extension.

Syntax

os.Path.extension(
 fname STRING)
 RETURNING result STRING

1. fname is the file name.

Usage

The function returns the string following the last dot found in fname.

If fname does not have an extension, the function returns NULL.

os.Path.fullPath
Returns the canonical equivalent of a path.

Syntax

os.Path.fullPath(
 path STRING)
 RETURNING result STRING

1. path is the path to complete.

Library reference | 2000

Usage

The os.path.fullPath() class method takes a path as parameter and resolves extra path separator
characters (/ on UNIX™, \ on Windows™), as well as references to current (.) and parent directory (..).
The result is called a canonical path.

On UNIX™, symbolic links are not followed. Use the os.Path.isLink() method to identify symbolic
links.

Example

DISPLAY os.Path.fullPath("/home/usr//scott/tmp/../images")

Resolves to:

/home/usr/scott/images

os.Path.gid
Returns the UNIX™ group id of a file.

Syntax

os.Path.gid(
 fname STRING)
 RETURNING id INTEGER

1. fname is the name of the file.
2. id is the group id.

Usage

This method can only be used on UNIX™!

Function returns -1 if it fails to get the user id.

os.Path.homeDir
Returns the path to the HOME directory of the current user.

Syntax

os.Path.homeDir()
 RETURNING homedir STRING

1. homedir Path to the HOME directory of the user.

os.Path.isDirectory
Checks if a file is a directory.

Syntax

os.Path.isDirectory(
 fname STRING)
 RETURNING result BOOLEAN

1. fname is the file name.

Usage

The function returns TRUE if the file is a directory, FALSE otherwise.

Library reference | 2001

os.Path.isFile
Checks if a file is a regular file.

Syntax

os.Path.isFile(
 fname STRING)
 RETURNING result BOOLEAN

1. fname is the file name.

Usage

The function returns TRUE if the file is a regular file, FALSE otherwise.

os.Path.isHidden
Checks if a file is hidden.

Syntax

os.Path.isHidden(
 fname STRING)
 RETURNING result BOOLEAN

1. fname is the file name.

Usage

The function returns TRUE if the file is hidden, FALSE otherwise.

For example, on UNIX™, files starting with a dot in the file name are considered as hidden when using the
ls command.

os.Path.isLink
Checks if a file is UNIX™ symbolic link.

Syntax

os.Path.isLink(
 fname STRING)
 RETURNING result BOOLEAN

1. fname is the file name.

Usage

The function returns TRUE if the files is a symbolic link, FALSE otherwise.

This method can only be used on UNIX™!

os.Path.isRoot
Checks if a file path is a root path.

Syntax

os.Path.isRoot(
 path STRING)
 RETURNING result BOOLEAN

x

Library reference | 2002

1. path is the path to check.

Usage

The function returns TRUE if the path is a root path, FALSE otherwise.

On UNIX™ the root path is '/'.

On Windows™ the root path matches "[a-zA-Z]:\".

os.Path.join
Joins two path segments adding the platform-dependent separator.

Syntax

os.Path.join(
 begin STRING,
 end STRING)
 RETURNING result STRING

1. begin is the beginning path segment.
2. end is the ending path segment.

Usage

Use this method to construct a path with no system-specific code to use the correct path separator:

LET path = os.Path.join(os.Path.homedir(), name)

This method returns the ending path segment if it is an absolute path.

If one of the arguments is NULL, the function returns NULL.

os.Path.makeTempName
Generates a temporary file name.

Syntax

os.Path.makeTempName()
 RETURNING result STRING

Usage

This method creates a new temporary file path, with the unique file name, in the temporary directory of the
process.

The temporary directory is found according to the type of platform, see DBTEMP environment variable for
more details.

Note: If a file is created with the given path, it must be deleted explicitely.

os.Path.mtime
Returns the time of the last file modification.

Syntax

os.Path.mtime(
 fname STRING)
 RETURNING result STRING

Library reference | 2003

1. fname is the name of the file.
2. result is the last modification time.

Usage

The function returns a string containing the last modification time for the specified file, in the standard
format 'YYYY-MM-DD HH:MM:SS'.

If the function fails, it returns NULL.

os.Path.mkDir
Creates a new directory.

Syntax

os.Path.mkDir(
 dname STRING)
 RETURNING result INTEGER

1. dname is the name of the directory to create.

Usage

The function returns TRUE if the directory has been successfully created, FALSE otherwise.

os.Path.pathSeparator
Returns the character used in environment variables to separate path elements.

Syntax

os.Path.pathSeparator()
 RETURNING result STRING

Usage

You typically use this method to build a path from two components.

On UNIX™, the path separator is ':'.

On Windows™, the path separator is ';'.

os.Path.pathType
Checks if a path is a relative path or an absolute path.

Syntax

os.Path.pathType(
 path STRING)
 RETURNING result STRING

1. path is the path to check.

Usage

The function returns "absolute" if the path is an absolute path, or "relative" if the path is a relative
path.

If the path is NULL, the function returns NULL.

Library reference | 2004

os.Path.pwd
Returns the current working directory.

Syntax

os.Path.pwd()
 RETURNING result STRING

Usage

This function returns the path of the current working directory.

On a mobile device, this front call returns the current application working directory:

• On Android™, it returns the directory where the program executes.
• On iOS, it returns the "Documents" directory under the application directory.

os.Path.readable
Checks if a file is readable.

Syntax

os.Path.readable(
 fname STRING)
 RETURNING result INTEGER

1. fname is the file name.

Usage

The function returns TRUE if the file is readable, FALSE otherwise.

os.Path.rename
Renames a file or a directory.

Syntax

os.Path.rename(
 oldname STRING,
 newname STRING)
 RETURNING result INTEGER

1. oldname is the current name of the file or directory to be renamed.
2. newname is the new name to assign to the file or directory.

Usage

The function returns TRUE if the file or directory has been successfully renamed, FALSE otherwise.

On UNIX™ platforms, you can rename/move files and directories.

On Microsoft™ Windows™ platforms only files can be renamed/moved. However, on Windows™ you can
move files across disks and directories.

os.Path.separator
Returns the character used to separate path segments.

Syntax

os.Path.separator()

Library reference | 2005

 RETURNING result STRING

Usage

Use this method to build a path from two components.

On UNIX™, the directory separator is '/'.

On Windows™, the directory separator is '\'.

os.Path.size
Returns the size of a file.

Syntax

os.Path.size(
 fname STRING)
 RETURNING result INTEGER

1. fname is the file name.

Usage

The function returns the size in bytes for the specified file.

os.Path.rootDir
Returns the root directory of the current working path.

Syntax

os.Path.rootDir()
 RETURNING rootdir STRING

1. rootdir is the root directory of the current working path.

Usage

On UNIX™, it always returns "/".

On Windows™ it returns the current working drive as "[a-zA-Z]:\"

os.Path.rootName
Returns the file path without the file extension of the last element of the file path.

Syntax

os.Path.rootName(
 filename STRING)
 RETURNING result STRING

1. filename is the file path.

Usage

This method removes the file extension from the path provided as parameter.

For example, if you pass "/root/dir1/file.ext" as the parameter it will return "/root/dir1/
file".

See Example 1: Extracting the parts of a file name on page 2007 for more examples.

Library reference | 2006

os.Path.rwx
Returns the UNIX™ file permissions of a file.

Syntax

os.Path.rwx(
 fname STRING)
 RETURNING mode INTEGER

1. fname is the name of the file.
2. mode is the combination of permissions for user, group and other.

Usage

This method can only be used on UNIX™!

Function returns -1 if it fails to get the permissions.

The mode is returned as a decimal value which is the combination of read, write and execution bits for
the user, group and other part of the UNIX™ file permission. For example, if a file has the -rwxr-xr-x
permissions, the method returns ((4+2+1) * 64 + (4+1) * 8) + (4+1)) = 493.

os.Path.type
Returns the file type as a string.

Syntax

os.Path.type(
 fname STRING)
 RETURNING result STRING

1. fname is the file name.

Usage

On UNIX™, this method follows symbolic links. Use the os.Path.islink() method to identify symbolic
links.

The possible values returned by this method are:

1. file: the file is a regular file
2. directory: the file is a directory
3. socket: the file is a socket
4. fifo: the file is a fifo
5. block: the file is a block device
6. char: the file is a character device

os.Path.uid
Returns the UNIX™ user id of a file.

Syntax

os.Path.uid(
 fname STRING)
 RETURNING id INTEGER

1. fname is the name of the file.
2. id is the user id.

Library reference | 2007

Usage

This method can only be used on UNIX™!

Function returns -1 if it fails to get the user id.

os.Path.volumes
Returns the available volumes.

Syntax

os.Path.volumes()
 RETURNING volumes STRING

1. volumes contains the list of all available volumes separated by "|".

Usage

To display the list of available volumes, a volume is identified by its letter, followed by a colon and a
backslash (:\).

DISPLAY os.Path.volumes()

Output example:

C:\|E:\|F:\

os.Path.writable
Checks if a file is writable.

Syntax

os.Path.writable(
 fname STRING)
 RETURNING result INTEGER

1. fname is the file name.

Usage

The function returns TRUE if the file is writable, FALSE otherwise.

Examples
Example 1: Extracting the parts of a file name

This program uses the file functions to extract the directory name, the base name, the root name, and the
file extension:

IMPORT os
MAIN
 DISPLAY "Dir name = ", os.Path.dirName(arg_val(1))
 DISPLAY "Base name = ", os.Path.baseName(arg_val(1))
 DISPLAY "Root name = ", os.Path.rootName(arg_val(1))
 DISPLAY "Extension = ", os.Path.extension(arg_val(1))
END MAIN

Example results:

Library reference | 2008

Table 449: Example results

Path os.Path.dirname os.Path.basename os.Path.rootname os.Path.extension

. . . NULL

.. NULL

/ / / / NULL

/usr/lib /usr lib /usr/lib NULL

/usr/ / usr /usr/ NULL

usr . usr usr NULL

file.xx . file.xx file xx

/tmp.yy/
file.xx

/tmp.yy file.xx /tmp.yy/file xx

/tmp.yy/
file.xx.yy

/tmp.yy file.xx.yy
/tmp.yy/
file.xx

yy

/tmp.yy/ / tmp.yy /tmp.yy/ NULL

/tmp.yy/. /tmp.yy . /tmp.yy/ NULL

These examples use UNIX™ file names. On Windows™ the result would be different, as the file name
separator is a backslash (\).

Example 2: Browsing directories

This program takes a directory path as an argument and scans the content recursively:

IMPORT os

MAIN
 CALL showDir(arg_val(1))
END MAIN

FUNCTION showDir(path)
 DEFINE path STRING
 DEFINE child STRING
 DEFINE h INTEGER

 IF NOT os.Path.exists(path) THEN
 RETURN

Library reference | 2009

 END IF

 IF NOT os.Path.isDirectory(path) THEN
 DISPLAY " ", os.Path.baseName(path)
 RETURN
 END IF

 DISPLAY "[", path, "]"
 CALL os.Path.dirSort("name", 1)
 LET h = os.Path.dirOpen(path)
 WHILE h > 0
 LET child = os.Path.dirNext(h)
 IF child IS NULL THEN EXIT WHILE END IF
 IF child == "." OR child == ".." THEN CONTINUE WHILE END IF
 CALL showDir(os.Path.join(path, child))
 END WHILE

 CALL os.Path.dirClose(h)

END FUNCTION

The com package
The Genero Web Services com package provides classes and methods that allow you to perform tasks
associated with creating Services and Clients, and managing the services.

Use the IMPORT statement at the top of the module using this library:

IMPORT com

Web services classes
The Web services classes manage Web Services servers.

• The WebService class on page 2009
• The WebOperation class on page 2018
• The WebServiceEngine class on page 2025
• The HTTPServiceRequest class on page 2036

The WebService class
The com.WebService class provides an interface to create and manage Genero Web Services.

The com.WebServices class is used to implement a Web Service on the server.

Important: This Web Services class is not supported on GMI mobile devices.

com.WebServices methods
Methods for the com.WebService class.

Table 450: Class methods

Name Description

com.WebService.CreateStatefulWebService(
 name STRING,
 namespace STRING,
 state state-type)
 RETURNING result com.WebService

Creates a new object to implement a stateful
Web Service.

com.WebService.CreateWebService(
 name STRING,

Creates a new object to implement a Web
Service.

Library reference | 2010

Name Description

 namespace STRING)
 RETURNING result com.WebService

Table 451: Object methods

Name Description

createFault(
 fault fault-type,
 encoded BOOLEAN)

Creates a new object to implement a Web Service.

createHeader(
 header header-type,
 encoded BOOLEAN)

Defines the header for the Web Service object.

generateWSDL(
 location STRING)
 RETURNING result xml.DomDocument

Creates a xml.DomDocument object with the
WSDL corresponding to the Web Service object.

publishOperation(
 operation com.WebOperation,
 role STRING)

Publishes a Web Operation.

registerInputHTTPVariable(
 http-in http-in-type)

Registers the record variable for HTTP input.

registerInputRequestHandler(
 funcname STRING)

Registers the function to be executed on incoming
SOAP requests.

registerOutputHTTPVariable(
 http-out http-out-type)

Registers the record variable for HTTP output.

registerOutputRequestHandler(
 funcname STRING)

Registers the function to be executed just before
the SOAP response is forwarded to the client.

registerWSDLHandler(
 funcname STRING)

Registers the function to be executed when a
WSDL is generated.

saveWSDL(
 location STRING)
 RETURNING result INTEGER

Writes to a file the WSDL corresponding to the Web
Service object.

setComment(
Defines the comment for the Web Service object.

Library reference | 2011

Name Description

 comment STRING)

setFeature(
 name STRING,
 value STRING)

Defines a feature for the current Web Service
object.

com.WebService.createFault
Creates a new object to implement a Web Service.

Syntax

createFault(
 fault fault-type,
 encoded BOOLEAN)

1. fault defines the header for the Web Service object.
2. fault-type is a simple data type, a RECORD or an ARRAY.
3. encoded specifies the encoding mechanism.

Usage

The createFault() method creates a global fault for this Web Service object.

The fault parameter can be of any type and defines the SOAP fault in a SOAP response. In case of SOAP
fault, the client for this Web Service will receive a variable with the same structure.

When encoded is TRUE, the SOAP Section 5 encoding mechanism is used, when FALSE, the XML
Schema mechanism is used.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

com.WebService.createHeader
Defines the header for the Web Service object.

Syntax

createHeader(
 header header-type,
 encoded BOOLEAN)

1. header defines the header for the Web Service object.
2. header-type is a simple data type or a RECORD structure, or an ARRAY.
3. encoded specifies the encoding mechanism.

Usage

The createHeader() method creates a global header for the current Web Service object.

The Web Service header is defined by the first parameter. This will define SOAP headers exchanged by
the client and server.

When encoded is TRUE, the SOAP Section 5 encoding mechanism will be used. If FALSE, the XML
Schema mechanism will be used.

http://www.w3.org/TR/2000/NOTE-SOAP-20000508/#_Toc478383512
http://www.w3.org/TR/2000/NOTE-SOAP-20000508/#_Toc478383512

Library reference | 2012

Important: Since Web Services headers are generally in Document Style, we recommend to set
the encoded parameter to FALSE.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

com.WebService.CreateWebService
Creates a new object to implement a Web Service.

Syntax

com.WebService.CreateWebService(
 name STRING,
 namespace STRING)
 RETURNING result com.WebService

1. name is the Web Service identifier.
2. namespace is the name space for the Web Service name.

Usage

The com.WebService.CreateWebService() class method creates a new com.WebService object
implementing a Web Service.

The name and namespace must uniquely identify the Web Service across the entire application, when
multiple Web Service programs run on the same server. In theory, namespace+name must be unique on
the internet.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

com.WebService.CreateStatefulWebService
Creates a new object to implement a stateful Web Service.

Syntax

com.WebService.CreateStatefulWebService(
 name STRING,
 namespace STRING,
 state state-type)
 RETURNING result com.WebService

1. name is the Web Service identifier.
2. namespace is the name space for the Web Service name.
3. state is used to identify the state between the client and server.
4. state-type is a regular data type or RECORD structure.

Usage

The com.WebService.CreateStatefulWebService() class method creates a new
com.WebService object implementing a Web Service that is stateful.

The name and namespace must uniquely identify the Web Service across the entire application, when
multiple Web Service programs run on the same server. In theory, namespace+name must be unique on
the internet.

The state variable used to identify the state between the client and the server:

Library reference | 2013

• For a WS-Addressing stateful service, the state variable must be a RECORD with the following structure,
with the W3CEndpointReference variable attribute:

RECORD ATTRIBUTES(W3CEndpointReference)
 address STRING, -- The location of the Web Service (for ex: URL)
 ref RECORD
 ... (other members defining the state)
 END RECORD
END RECORD

• For a stateful service based on HTTP cookies, the state variable must be a simple variable defined with
a basic data type.

It is up to the programmer to manage the state variable and to restore the service state from a database.

When creating a stateful Web Service, all published Web Operations require a session in the client request
excepted those defined as 'initiateSession'.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

com.WebService.generateWSDL
Creates a xml.DomDocument object with the WSDL corresponding to the Web Service object.

Syntax

generateWSDL(
 location STRING)
 RETURNING result xml.DomDocument

1. location is the URL where the Web Service will be deployed.

Usage

The generateWSDL() method creates a new xml.DomDocument object containing the WSDL data of
the Web Service object.

The URL where the Web Service will be deployed must be specified.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

com.WebService.publishOperation
Publishes a Web Operation.

Syntax

publishOperation(
 operation com.WebOperation,
 role STRING)

1. operation is the Web Operation object.
2. role identifies uniquely the Web Operation.

Usage

The publishOperation() method publishes the Web Operation specified by the com.WebOperation
object passed as parameter.

Library reference | 2014

The role identifies the operation, if several operations have the same name, by setting the SOAPAction
HTTP header. Usually this parameter is set to NULL.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

com.WebService.registerInputHTTPVariable
Registers the record variable for HTTP input.

Syntax

registerInputHTTPVariable(
 http-in http-in-type)

1. http-in is the HTTP input record variable.
2. http-in-type must be a RECORD with following structure:

RECORD
 verb STRING,
 url STRING,
 headers DYNAMIC ARRAY OF RECORD
 name STRING,
 value STRING
 END RECORD
END RECORD

Usage

The registerInputHTTPVariable() method registers a program variable with a specific structure,
that will be filled with the HTTP request headers when a Web Operation arrives.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

com.WebService.registerInputRequestHandler
Registers the function to be executed on incoming SOAP requests.

Syntax

registerInputRequestHandler(
 funcname STRING)

1. funcname is the name of a program function.

Usage

The registerInputRequestHandler() method registers a function to be called when an incoming
SOAP request is received and before the SOAP engine has processed it.

The callback function must be defined with a unique parameter of type xml.DomDocument, and must
return the reference to this object, or NULL:

FUNCTION myRequestInputHandler(in)
 DEFINE in xml.DomDocument
 ...
 RETURN in
END FUNCTION

Library reference | 2015

The input callback function typically modifies the content of the SOAP input request DOM document object
passed as parameter.

When returning NULL from the input callback function, the output callback function will be called with the
default SOAP fault node, which can then be modified.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

com.WebService.registerOutputHTTPVariable
Registers the record variable for HTTP output.

Syntax

registerOutputHTTPVariable(
 http-out http-out-type)

1. http-out is the HTTP output record variable.
2. http-out-type is a RECORD with the following structure:

RECORD
 code INTEGER,
 desc STRING,
 headers DYNAMIC ARRAY OF RECORD
 name STRING,
 value STRING
 END RECORD
END RECORD

Usage

The registerOutputHTTPVariable() method registers a program variable with a specific structure,
that will be used to fill the HTTP response headers when a Web Operation is completed.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

com.WebService.registerOutputRequestHandler
Registers the function to be executed just before the SOAP response is forwarded to the client.

Syntax

registerOutputRequestHandler(
 funcname STRING)

1. funcname is the name of a program function.

Usage

The registerOutputRequestHandler() method registers a function to be called just after the SOAP
engine has processed the request and before the SOAP response is forwarded to the client.

The output callback function must be defined with a unique parameter of type xml.DomDocument, and
must return the reference to this object:

FUNCTION myRequestOutputHandler(out)
 DEFINE out xml.DomDocument
 ...

Library reference | 2016

 RETURN out
END FUNCTION

The output callback function typically modifies the content of the SOAP output request DOM document
object passed as parameter.

If NULL was returned from the input callback function, the output callback function will be called with the
default SOAP fault node.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

com.WebService.registerWSDLHandler
Registers the function to be executed when a WSDL is generated.

Syntax

registerWSDLHandler(
 funcname STRING)

1. funcname is the name of a program function.

Usage

The registerWSDLHandler() method registers a function to be called when the WSDL of the current
Web Service object is generated.

The callback function must be defined with a unique parameter of type xml.DomDocument, and must
return the reference to this object:

FUNCTION myWSDLHandler(wsdl)
 DEFINE wsdl xml.DomDocument
 ...
 RETURN wsdl
END FUNCTION

The callback function typically modifies the content of the WSDL DOM document object passed as
parameter.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

com.WebService.saveWSDL
Writes to a file the WSDL corresponding to the Web Service object.

Syntax

saveWSDL(
 location STRING)
 RETURNING result INTEGER

1. location is the URL where the Web Service will be deployed.

Usage

The saveWSDL() method writes the WSDL data corresponding to the Web Service object.

The URL where the Web Service will be deployed must be specified.

Library reference | 2017

The name of the file will be the name of the Web Service defined by the name parameter passed to the
createWebService() or createStatefulWebService() methods.

The method returns 0 if the file was saved, -1 in case of error.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

com.WebService.setComment
Defines the comment for the Web Service object.

Syntax

setComment(
 comment STRING)

1. comment is the description of the Web Service.

Usage

The setComment() method defines the comment associated to a com.WebService object.

The comment will be used when generating the WSDL file, as defined by the standard.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

com.WebService.setFeature
Defines a feature for the current Web Service object.

Syntax

setFeature(
 name STRING,
 value STRING)

1. name is the name of the Web Service feature.
2. value is the value of the feature.

Usage

The setFeature() method defines a feature for the current Web Service object by specifying a feature
name and a value.

The features names are predefined. The second parameter must a a valid value for the specified feature.

Table 452: Support Web Service features for the setFeature() method

Name Description

Soap1.1 Defines whether the Web Service supports the
SOAP 1.1 protocol. Default value is FALSE.

Soap1.2 Defines whether the Web Service supports the
SOAP 1.2 protocol. Default value is FALSE.

WS-Addressing1.0 Defines whether the Web Service supports WS-
Addressing 1.0. Valid values include:

Library reference | 2018

Name Description

• TRUE - The service supports WS-Addressing 1.0
and accepts requests without WS-Addressing.

• REQUIRED - The service supports WS-
Addressing 1.0 and accepts only requests with
WS-Addressing.

• FALSE - WS-Addressing 1.0 is disabled
(Default).

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

The WebOperation class
The com.WebOperation class provides an interface to create and manage the operations of a Genero
Web Service.

Important: This Web Services class is not supported on GMI mobile devices.

The Web Operation can be created as RPC Style or Document Style. Both RPC/Literal and Doc/Literal
Styles are WS-I compliant (standards set by the Web Services Interoperability organization).

RPC Style Service (RPC/Literal) is generally used to execute a function, such as a service that returns a
stock option. Document Style Service (Doc/Literal) is generally used for more sophisticated operations that
exchange complex data structures, such as a service that sends an invoice to an application, or exchanges
a Word document; this is the MS. Net default. The input or output RECORD cannot have XMLNamespace
attributes set on their members.

Calling the appropriate function to create the desired style is the only difference in your Genero code
that creates the service. The remainder of the code that describes the service is the same, regardless of
whether you want to create an RPC or Document style of service.

Do not use the setInputEncoded() and setOutputEncoded() methods, as they will specify the RPC/
Encoded Style, which is not recommended (see Choosing a Web Service Style).

Since release 2.0 GWS allows you to create RPC Style and Document Style operations in the same Web
Service. However, we do not recommend this, as it is not WS-I compliant.

com.WebOperation methods
Methods for the com.WebOperation class.

Table 453: Class methods

Name Description

com.WebOperation.CreateDOCStyle(
 function STRING,
 operation STRING,
 input RECORD,
 output RECORD)
 RETURNING result com.WebOperation

Creates a new Web Operation object with
Document style.

com.WebOperation.CreateOneWayDOCStyle(
 function STRING,
 operation STRING,
 input RECORD)

Creates a new Web Operation object with
One-Way Document style.

Library reference | 2019

Name Description

 RETURNING result com.WebOperation

com.WebOperation.CreateOneWayRPCStyle(
 function STRING,
 operation STRING,
 input RECORD)
 RETURNING result com.WebOperation

Creates a new Web Operation object with
One-Way RPC style.

com.WebOperation.CreateRPCStyle(
 function STRING,
 operation STRING,
 input RECORD,
 output RECORD)
 RETURNING result com.WebOperation

Creates a new Web Operation object with
RPC style.

Table 454: Object methods

Name Description

addFault(
 fault fault-type,
 wsaaction STRING)

Adds a fault to the current Web Operation
definition.

addInputHeader(
 header header-type)

Adds an input header for the current Web
Operation definition.

addOutputHeader(
 header header-type)

Adds an output header for the current Web
Operation definition.

initiateSession(
 initiator BOOLEAN)

Defines the Web Operation as session initiator.

setComment(
 comment STRING)

Sets the comment for the Web Operation object.

setInputAction(
 ident STRING)

Sets the WS-Addressing action identifier of the
input operation.

setInputEncoded(
 encoded BOOLEAN)

Defines the encoding mechanism for Web
Operation input parameters.

setOutputAction(
 ident STRING)

Sets the WS-Addressing action identifier of the
output operation.

setOutputEncoded(
Defines the encoding mechanism for Web
Operation output parameters.

Library reference | 2020

Name Description

 encoded BOOLEAN)

com.WebOperation.addFault
Adds a fault to the current Web Operation definition.

Syntax

addFault(
 fault fault-type,
 wsaaction STRING)

1. fault is a program variable defining the fault.
2. fault-type is a simple data type, a RECORD or an ARRAY.
3. wsaaction defines the type of action.

Usage

Adds a fault the Web Operation can throw during operation processing, where fault is any variable
previously created as fault of the com.WebService object, and wsaction the WS-Addressing action
identifier if WS-Addressing is supported. If WS-Addressing is not supported, pass NULL as second
parameter.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

com.WebOperation.addInputHeader
Adds an input header for the current Web Operation definition.

Syntax

addInputHeader(
 header header-type)

1. header is a program variable defining the header.
2. header-type is a simple data type, a RECORD or an ARRAY.

Usage

This method adds a header to the Web Operation object for input parameters.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

com.WebOperation.addOutputHeader
Adds an output header for the current Web Operation definition.

Syntax

addOutputHeader(
 header header-type)

1. header is a program variable defining the header.
2. header-type is a simple data type, a RECORD or an ARRAY.

Library reference | 2021

Usage

This method adds a header to the Web Operation object for input parameters.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

com.WebOperation.CreateDOCStyle
Creates a new Web Operation object with Document style.

Syntax

com.WebOperation.CreateDOCStyle(
 function STRING,
 operation STRING,
 input RECORD,
 output RECORD)
 RETURNING result com.WebOperation

1. function is the name of the program function to be called to process the XML operation.
2. operation is the name of the XML operation.
3. input is the variable defining the input parameters of the operation (or NULL if there is none).
4. output is the variable defining the output parameters of the operation (or NULL if there is none).

Usage

This method creates a Request-Response Document style com.WebOperation object, where function is
the name of the program function that is executed to process the XML operation.

The function name must be a string literal, not a string variable, due to operation publication restrictions.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

com.WebOperation.CreateRPCStyle
Creates a new Web Operation object with RPC style.

Syntax

com.WebOperation.CreateRPCStyle(
 function STRING,
 operation STRING,
 input RECORD,
 output RECORD)
 RETURNING result com.WebOperation

1. function is the name of the program function to be called to process the XML operation.
2. operation is the name of the XML operation.
3. input is the input record defining the input parameters of the operation (or NULL if there is none).
4. output is the output record defining the output parameters of the operation (or NULL if there is none).

Usage

This method creates a Request-Response RPC style com.WebOperation object, where function is the
name of the program function that is executed to process the XML operation.

The function name must be a string literal, not a string variable, due to operation publication restrictions.

Library reference | 2022

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

com.WebOperation.CreateOneWayDOCStyle
Creates a new Web Operation object with One-Way Document style.

Syntax

com.WebOperation.CreateOneWayDOCStyle(
 function STRING,
 operation STRING,
 input RECORD)
 RETURNING result com.WebOperation

1. function is the name of the program function to be called to process the XML operation.
2. operation is the name of the XML operation.
3. input is the variable defining the input parameters of the operation (or NULL if there is none).

Usage

This method creates a One-Way DOC style com.WebOperation object, where function is the name of the
program function that is executed to process the XML operation.

The function name must be a string literal, not a string variable, due to operation publication restrictions.

There is no output parameter to be returned to the client.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

com.WebOperation.CreateOneWayRPCStyle
Creates a new Web Operation object with One-Way RPC style.

Syntax

com.WebOperation.CreateOneWayRPCStyle(
 function STRING,
 operation STRING,
 input RECORD)
 RETURNING result com.WebOperation

1. function is the name of the program function to be called to process the XML operation.
2. operation is the name of the XML operation.
3. input is the input record defining the input parameters of the operation (or NULL if there is none).

Usage

This method creates a One-Way RPC Style com.WebOperation object, where function is the name of
the program function that is executed to process the XML operation.

The function name must be a string literal, not a string variable, due to operation publication restrictions.

There is no output parameter to be returned to the client.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

com.WebOperation.initiateSession

Library reference | 2023

Defines the Web Operation as session initiator.

Syntax

initiateSession(
 initiator BOOLEAN)

1. initiator must be TRUE to define a session initiator.

Usage

Pass TRUE as parameter to initiateSession() in order to define the current Web Operation as a
session initiator.

A new session must be instantiated in this operation, and must be returned to the client via the state
variable defined at service creation.

This method works only for stateful web services.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

com.WebOperation.setComment
Sets the comment for the Web Operation object.

Syntax

setComment(
 comment STRING)

1. comment is the comment to be set.

Usage

The setComment() method defines a comment to the current Web Operation object.

The comment will appear in the WSDL of the service.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

com.WebOperation.setInputAction
Sets the WS-Addressing action identifier of the input operation.

Syntax

setInputAction(
 ident STRING)

1. ident is the WSA action identifier.

Usage

When WS-Addressing is enabled, this method defines the WS-Addressing action identifier of the input
operation.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

Library reference | 2024

com.WebOperation.setInputEncoded
Defines the encoding mechanism for Web Operation input parameters.

Syntax

setInputEncoded(
 encoded BOOLEAN)

1. encoded is a boolean defining the encoding mechanism to be used.

Usage

When the parameter is TRUE, the SOAP Section 5 encoding mechanism is used, FALSE indicates the XML
Schema mechanism.

The XML Schema mechanism (FALSE) is not recommended.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

com.WebOperation.setOutputAction
Sets the WS-Addressing action identifier of the output operation.

Syntax

setOutputAction(
 ident STRING)

1. ident is the WSA action identifier.

Usage

When WS-Addressing is enabled, this method defines the WS-Addressing action identifier of the ouput
operation.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

com.WebOperation.setOutputEncoded
Defines the encoding mechanism for Web Operation output parameters.

Syntax

setOutputEncoded(
 encoded BOOLEAN)

1. encoded is a boolean defining the encoding mechanism to be used.

Usage

When the parameter is TRUE, the SOAP Section 5 encoding mechanism is used, FALSE indicates the XML
Schema mechanism.

The XML Schema mechanism (FALSE) is not recommended.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

http://www.w3.org/TR/2000/NOTE-SOAP-20000508/#_Toc478383512
http://www.w3.org/TR/2000/NOTE-SOAP-20000508/#_Toc478383512

Library reference | 2025

The WebServiceEngine class
The com.WebServiceEngine class provides an interface to manage the Web Services engine.

Important: This Web Services class is not supported on GMI mobile devices.

com.WebServiceEngine methods
Methods for the com.WebServiceEngine class.

Table 455: Class methods

Name Description

com.WebServiceEngine.Flush()
 RETURNING status INTEGER

Forces the Web Service engine to
immediately flush the response of the
web service operation.

com.WebServiceEngine.GetHTTPServiceRequest(
 timeout INTEGER)
 RETURNING result com.HTTPServiceRequest

Get a handle for an incoming HTTP
service request.

com.WebServiceEngine.GetOption(
 option STRING)
 RETURNING result STRING

Returns the value of a Web Service
engine option.

com.WebServiceEngine.HandleRequest(
 timeout INTEGER,
 status INTEGER)
 RETURNING result com.HTTPServiceRequest

Get a handle for an incoming HTTP
service request.

com.WebServiceEngine.ProcessServices(
 timeout INTEGER)
 RETURNING status INTEGER

Specifies the wait period for an HTTP
input request, to process an operation of
one of the registered Web Services.

com.WebServiceEngine.RegisterService(
 service com.WebService)

Registers a service in the engine.

com.WebServiceEngine.SetFaultCode(
 code STRING,
 code_ns STRING)

Get a handle for an incoming HTTP
service request.

com.WebServiceEngine.SetFaultDetail(
 fault STRING)

Defines the published SOAP Fault.

com.WebServiceEngine.SetFaultString(
 desc STRING)

Defines the description of a SOAP Fault.

com.WebServiceEngine.SetOption(
 option STRING,

Sets an option for the Web Service
engine.

Library reference | 2026

Name Description

 value STRING)

com.WebServiceEngine.Start()
Starts the Web Service engine.

com.WebServiceEngine.Flush
Forces the Web Service engine to immediately flush the response of the web service operation.

Syntax

com.WebServiceEngine.Flush()
 RETURNING status INTEGER

Usage

The com.WebServiceEngine.flush() class method allows to return the response inside a high-level
web service operation, before the end of the web service function.

When this method is used, any other web operation output parameter changes are ignored.

The status returned by the method provides information about the execution of the last web
operation. A return status of zero means OK. For a complete list of error codes, see Error codes of
com.WebServicesEngine on page 2034

Note: The return status of the com.WebServiceEngine.flush() method has the same
meaning as a status returned by com.WebServiceEngine.ProcessServices(), with the
additional status code -32, meaning that the flush method has been called outside a web operation
execution context.

Note: com.WebServiceEngine.ProcessServices() and
com.WebServiceEngine.HandleRequest() can return the status code of -31, meaning that
the flush function has been called in the last executed web operation.

Example:

In this code example, the flush() method is used to force the response of the web
service operation.

DEFINE echoBoolean_in, echoBoolean_out RECORD
 a_boolean BOOLEAN ATTRIBUTES(XMLName="Boolean")
 END RECORD

MAIN
 DEFINE ret INTEGER
 ...
 WHILE true
 LET ret = com.WebServiceEngine.ProcessServices(-1)
 CASE ret
 WHEN 0
 DISPLAY "Request automatically processed."
 WHEN -31
 DISPLAY "Operation has been flushed."
 ...
 END WHILE
 ...
END MAIN

FUNCTION echoBoolean()

Library reference | 2027

 DEFINE ret INTEGER
 -- Assign output parameter with input parameter
 LET echoBoolean_out.a_boolean = echoBoolean_in.a_boolean
 -- Immediate flush of web operation
 LET ret = com.WebServiceEngine.flush()
 IF ret != 0 THEN
 DISPLAY "ERROR Code : ",ret
 EXIT PROGRAM (1)
 END IF
 -- Changing the output parameters after flush() would have no
 effect.
END FUNCTION

com.WebServiceEngine.GetHTTPServiceRequest
Get a handle for an incoming HTTP service request.

Syntax

com.WebServiceEngine.GetHTTPServiceRequest(
 timeout INTEGER)
 RETURNING result com.HTTPServiceRequest

1. timeout is the timeout in seconds.

Usage

The com.WebServiceEngine.GetHTTPServiceRequest() class method returns a
com.HTTPServiceRequest object to handle an incoming HTTP request, or NULL if there was no request
during the given period of time.

The timeout parameter defines the time in seconds to wait for an incoming request. A value of -1 means
infinite wait. When the timeout occurs, the method returns NULL.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

Any new call to this function will raise an error until the previous HTTP request was handled by sending a
response back to the client, or destroyed.

The error -15575 can be thrown if the GAS disconnects the Web Services program.

URLs are sent in UTF-8 on the network, if the web services server is not able to convert UTF-8 URLs back
to fglrun locale charset, error -15552 will be thrown. As a general advice, run you WS server program in
UTF-8.

Example

TRY
 WHILE true
 LET req = com.WebServiceEngine.getHTTPServiceRequest(-1)
 IF req IS NULL THEN
 DISPLAY "HTTP request timeout...: ", CURRENT YEAR TO
 FRACTION
 ELSE
 CALL req.sendTextResponse(200,NULL,"It works")
 END IF
 END WHILE
CATCH
 IF status == -15575 THEN
 DISPLAY "Disconnected : ",SQLCA.SQLERRM

Library reference | 2028

 ELSE
 DISPLAY "ERROR : ",status,SQLCA.SQLERRM
 END IF
END TRY

com.WebServiceEngine.GetOption
Returns the value of a Web Service engine option.

Syntax

com.WebServiceEngine.GetOption(
 option STRING)
 RETURNING result STRING

1. option is the name of the option to queried.

Usage

The com.WebServiceEngine.GetOption() class method returns the current value of the given the
Web Services engine option.

See WebServiceEngine options on page 2032 for the supported options.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

com.WebServiceEngine.HandleRequest
Get a handle for an incoming HTTP service request.

Syntax

com.WebServiceEngine.HandleRequest(
 timeout INTEGER,
 status INTEGER)
 RETURNING result com.HTTPServiceRequest

1. timeout is the timeout in seconds.
2. status is an INTEGER variable receiving the method execution status.

Usage

The com.WebServiceEngine.HandleRequest() class method returns a
com.HTTPServiceRequest object to handle an incoming HTTP request, or NULL if there was no request
during the given period of time.

The timeout parameter defines the time in seconds to wait for an incoming request. A value of -1 means
infinite wait.

• If there is no request in the given period of time, or if there is an error, the status code is updated by
reference, and a NULL object is returned.

• If the request is intended to a registered web service, it is processed automatically. The status code is
updated by reference and a NULL object is returned.

• If the request isn't dedicated to a registered web service, a status code of value 1 is returned by
reference, and a valid instance of an com.HTTPServiceRequest object, immediately usable to
handle the incoming request, is returned.

Library reference | 2029

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

Any new call to this function will raise an error until the previous HTTP request was handled by sending a
response back to the client, or destroyed.

The status returned by the method provides information about the execution of the last web
operation. A return status of zero means OK. For a complete list of error codes, see Error codes of
com.WebServicesEngine on page 2034

Note: If the com.WebServiceEngine.Flush() method is used, the return status handling must
be done in the web operation function, while com.WebServiceEngine.HandleRequest() will
return the code -31, to indicated that a flush was done.

The error -15575 can be thrown if the GAS disconnects the Web Services program.

URLs are sent in UTF-8 on the network, if the web services server is not able to convert UTF-8 URLs back
to fglrun locale charset, error -15552 will be thrown. As a general advice, run you WS server program in
UTF-8.

com.WebServiceEngine.ProcessServices
Specifies the wait period for an HTTP input request, to process an operation of one of the registered Web
Services.

Syntax

com.WebServiceEngine.ProcessServices(
 timeout INTEGER)
 RETURNING status INTEGER

1. timeout is the timeout in seconds.

Usage

The com.WebServiceEngine.ProcessServices() class method specifies the wait period for an
HTTP input request, to process an operation of one of the registered Web Services.

The timeout parameter defines the wait period for an HTTP input request, to process an operation of one of
the registered Web Services. The value -1 specifies an infinite waiting time.

The status returned by the method provides information about the execution of the last web
operation. A return status of zero means OK. For a complete list of error codes, see Error codes of
com.WebServicesEngine on page 2034

The execution status is typically handled in a CASE / END CASE block, to treat all possible execution
cases. For a complete example of execution status handling, see Process the requests on page 2477.

Note: If the com.WebServiceEngine.Flush() method is used, the return status handling must
be done in the web operation function, while com.WebServiceEngine.ProcessServices()
will return the code -31, to indicated that a flush was done.

com.WebServiceEngine.SetFaultCode
Get a handle for an incoming HTTP service request.

Syntax

com.WebServiceEngine.SetFaultCode(
 code STRING,
 code_ns STRING)

1. code is the timeout in seconds.

Library reference | 2030

2. code_ns is the timeout in seconds.

Usage

The com.WebServiceEngine.SetFaultCode() class method defines a user SOAP Fault code to be
returned to the client, where code is the mandatory SOAP Fault code and code_ns is the mandatory code
namespace.

This method must be called inside a Web Service operation.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

com.WebServiceEngine.SetFaultDetail
Defines the published SOAP Fault.

Syntax

com.WebServiceEngine.SetFaultDetail(
 fault STRING)

1. fault is the published fault.

Usage

The com.WebServiceEngine.SetFaultDetail() class method defines the published SOAP Fault to
be returned to the client when operation has finished, where fault is one of the published variables defined
as Fault for that operation.

This method must be called inside a Web Service operation.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

com.WebServiceEngine.SetFaultString
Defines the description of a SOAP Fault.

Syntax

com.WebServiceEngine.SetFaultString(
 desc STRING)

1. desc is the description of the fault.

Usage

The com.WebServiceEngine.SetFaultString() class method defines a user SOAP Fault
description to be returned to the client, where desc contains the description of the fault.

This method must be called inside a Web Service operation.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

com.WebServiceEngine.SetOption

Library reference | 2031

Sets an option for the Web Service engine.

Syntax

com.WebServiceEngine.SetOption(
 option STRING,
 value STRING)

1. option is the name of the option to set.
2. value is the value of the option to set.

Usage

The com.WebServiceEngine.SetOption() class method configures the Web Services engine with
options.

See WebServiceEngine options on page 2032 for the supported options.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

com.WebServiceEngine.RegisterService
Registers a service in the engine.

Syntax

com.WebServiceEngine.RegisterService(
 service com.WebService)

1. service is the service object to register.

Usage

The com.WebServiceEngine.RegisterService() class method registers the com.WebService
object passed as parameter.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

com.WebServiceEngine.Start
Starts the Web Service engine.

Syntax

com.WebServiceEngine.Start()

Usage
The com.WebServiceEngine.Start() class method starts the engine for all registered Web Services.

If you run the Web Services server program in standalone mode, you must set FGLAPPSERVER. If you
run the Web Services server program through the Genero Application Server, the FGLAPPSERVER
variable is automatically set by the Genero Application Server. Do NOT manually set FGLAPPSERVER in
this case.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

Library reference | 2032

WSDL generation options notes
These notes should be reviewed prior to WSDL generation.

1. For the DECIMAL(5,2) data type, when wsdl_decimalsize is TRUE, the generated WSDL file
contains the total size and the size of the fractional part of the decimal:

<types>
 <schema xmlns="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://www.mycompany.com/types/">
 <simpleType name="echoDecimal5_2_a_dec5_2_out_FGLDecimal">
 <restriction base="decimal">
 <totalDigits value="5" />
 <fractionDigits value="2" />
 </restriction>
 </simpleType>
 </schema>
 </types>
<message name="echoDecimal5_2">
 <part name="dec5_2" type="f:echoDecimal5_2_a_dec5_2_in_FGLDecimal" />
 </message>

When wsdl_decimalsize is FALSE, the total size and the size of the fractional part are not
mentioned:

<message name="echoDecimal5_2">
 <part name="dec5_2" type="xsd:decimal" />
 </message>

2. If the WSDL file does not contain the size, the client application has no way of knowing the size. In this
case, a default value for the size is generated. For example, the exported server type DECIMAL(5,2)
becomes a DECIMAL(32) on the client side.

3. It is better to keep the options wsdl_arraysize, wsdl_stringsize and wsdl_decimalsize set to
TRUE so that the client program can do exact type mapping. The default for all three options is TRUE.

4. When setting a facet constraint attribute on a simple data type, the generation of the WSDL will take
this attribute into account even if an option has been set to perform the opposite.

5. When setting one facet constraint attribute, all of the default constraint attributes won't be generated
anymore unless you specify them as facet constraint attributes.

WebServiceEngine options

Table 456: Options for the com.WebServiceEngine

Flag Client
or
Server

Description

readwritetimeout Client Defines the default maximum time in seconds a client, a HTTP
request/response and a TCP request/response have to wait
before raising an error that the server doesn't return or accept
data.

A value of -1 means infinite wait.

The default is -1.

connectiontimeout Client Defines the default maximum time in seconds a client,
a HTTPRequest and a TCPRequest have to wait for the
establishment of a connection with a server.

A value of -1 means infinite wait.

Library reference | 2033

Flag Client
or
Server

Description

The default is 30 seconds for non-Windows, 5 seconds for
Windows™.

maximumresponselength Both Defines the maximum authorized size in KBytes for a client,
server, HTTP or TCP response, before a break (when it stops
and returns from the function because the amount of data
surpassed the maximumresponselength.)

A value of -1 means no limit.

The default is -1.

wsdl_decimalsize Server Defines whether the precision and scale of a DECIMAL
variable will be taken into account during the WSDL
generation. See WSDL generation options notes on page
2032.

A value of zero means FALSE.

The default is TRUE.

wsdl_arraysize Server Defines whether the size of a BDL array will be taken into
account during the WSDL generation. See WSDL generation
options notes on page 2032.

A value of zero means FALSE.

The default is TRUE.

wsdl_stringsize Server Defines whether the size of a CHAR or VARCHAR variable
will be taken into account during the WSDL generation. See
WSDL generation options notes on page 2032.

A value of zero means FALSE.

The default is TRUE.

http_invoketimeout

(deprecated)

Client Defines the default maximum time in seconds a client has to
wait before the client connection raises an error because the
server is not responding.

A value of -1 means that it has to wait until the server
responds.

The default is -1.

Important: Deprecated - use readwritetimeout

server_readwritetimeout Server Defines how long a socket read or write operation can wait
before before raising an error.

The default value is 5 seconds.

Note: Before this option was introduced, the default
valus was -1 (infinite) and was configurable with the
accept timeout parameter via ProcessServices()
method.

Library reference | 2034

Flag Client
or
Server

Description

SoapModuleURI Both Defines the SOAP role of a Genero application with an URI to
identify it along a SOAP message path.

The default value is NULL.

tcp_connectiontimeout

(deprecated)

Client Defines the default maximum time in seconds a client has to
wait for the establishment of a TCP connection with a server.

A value of -1 means infinite wait.

The default is 30 seconds for non-Windows, 5 seconds for
Windows™.

Important: Deprecated - use connectiontimeout

Error codes of com.WebServicesEngine
Error codes returned by com.WebServiceEngine methods.

Table 457: com.WebServiceEngine error codes

Number Description

-1 Timeout

com.WebServiceEngine.ProcessServices(x) timeout is reached. No requests to
process during x seconds.

-2 AsCloseCommand

GAS tells the DVM to shutdown. You must exit your application.

-3 ConnectionBroken

Client has closed the connection in standalone GWS (without GAS).

-4 ConnectionInterrupted

Ctrl-C received. Interruption received by DVM. You must exit your application.

-5 BadHTTPHeader

Check the message with FGLWSDEBUG or display SQLCA.SQLERRM.

-6 MalformedSOAPEnvelope

Check the message with FGLWSDEBUG or display SQLCA.SQLERRM.

-7 MalformedXMLDocument

Check the message with FGLWSDEBUG or display SQLCA.SQLERRM.

-8 InternalHTTPError

Communication issue with application server or client.

-9 Unsupported operation

The URL of the operation requested is unknown. Check the message with
FGLWSDEBUG or display SQLCA.SQLERRM.DONE

Library reference | 2035

Number Description

-10 UnknownError

This is an internal error, contact the support team. You must exit your application.

-11 WSDL generation failed

You need to debug your application.

-12 WSDL Service not found

Check the message with FGLWSDEBUG or display SQLCA.SQLERRM.

-13 Reserved

No need to exit the application. A new request might not have the issue.

-14 Incoming request overflow

You exceed the data maximum length allowed by
com.WebServiceEngine.SetOption(maximumresponselength).

-15 Server was not started

Call to com.WebServiceEngine.Start() failed. You must exit your application.

-16 Request still in progress

With RESTful service, you are currently processing a request and has not yet send the
response and try to process another request. You need to debug your application. It
depends, you might not need to stop your application.

-17 Stax response error

You need to debug your application. Check the message with FGLWSDEBUG or
display SQLCA.SQLERRM.

-18 Input request handler error

You need to debug your application. Check the message with FGLWSDEBUG or
display SQLCA.SQLERRM.

-19 Output request handler error

You need to debug your application. Check the message with FGLWSDEBUG or
display SQLCA.SQLERRM.

-20 WSDL handler error

You need to debug your application. Check the message with FGLWSDEBUG or
display SQLCA.SQLERRM.

-21 SOAP Version mismatch

Your client SOAP version does not match your server SOAP version, amend either
your client or your server code.

-22 SOAP header not understood

Modify your server code to handled the mustUnderstand attribute. Use the incoming
request handler.

-23 Deserialization error

Library reference | 2036

Number Description

Check the message with FGLWSDEBUG or display SQLCA.SQLERRM.

-24 Reserved error code -24

This error code is reserved for future use.

-25 Web Services Addressing action is mandatory

Check that the WSA action is specified in the SOAP message.

-26 Web Services Addressing message header is invalid

Check that the WSA header is correct in the SOAP message.

-27 Web Services Addressing message header is mandatory

Check that the WSA header is specified in the SOAP message.

-28 Web Services Addressing message protocol does not match

Check that the WSA message uses the protocol version of the client matches the
version expected by the server.

-29 Cookie error

Check that the HTTP request contains a valid cookie.

-30 No active web operation

The method was called outside the context of a web operation processing.

-31 Web Operation was flushed

This code is returned by the ProcessServices() or the HandlerRequest()
method, to indicated that the Flush() method was called during the last web
operation execution.

-32 Serialization error

Check the message with FGLWSDEBUG or display SQLCA.SQLERRM.

The HTTPServiceRequest class
The com.HTTPServiceRequest class provides an interface to process incoming XML and TEXT
requests over HTTP on the server side, with an access to the HTTP layer and additional XML streaming
possibilities.

Important: This Web Services class is not supported on GMI mobile devices.

com.HTTPServiceRequest methods
Methods of the com.HTTPServiceRequest class.

Table 458: Object methods: Reading client requests

Name Description

beginXmlRequest()
 RETURNING reader xml.StaxReader

Starts an HTTP streaming request.

endXmlRequest(
Terminates an HTTP streaming request.

Library reference | 2037

Name Description

 reader xml.StaxReader)

getMethod()
 RETURNING result STRING

Returns the HTTP method of the service request.

getRequestHeader(name STRING)
 RETURNING result STRING

Returns the value of an HTTP header.

getRequestVersion()
 RETURNING result STRING

Returns the HTTP version of the service request.

getURL()
 RETURNING result STRING

Returns the URL of the HTTP service request.

getRequestHeaderCount()
 RETURNING result INTEGER

Returns number of request headers.

getRequestHeaderName(
 index INTEGER)
 RETURNING result STRING

Returns a request header name by position.

getRequestHeaderValue(
 index INTEGER)
 RETURNING result STRING

Returns a request header value by position.

hasRequestKeepConnection()
 RETURNING result BOOLEAN

Returns TRUE if the connection remains after
sending a response.

readDataRequest(
 body BYTE)

Returns the body of a request into a BYTE.

readFileRequest()
 RETURNING filename STRING

Returns the body of a request into a file.

readFormEncodedRequest(
 utf8 BOOLEAN)
 RETURNING result STRING

Returns the string of a GET request with UTF-8
conversion option.

readTextRequest()
 RETURNING result STRING

Returns the request body as a plain string.

readXmlRequest()
 RETURNING result xml.DomDocument

Returns the request body as an XML document.

Library reference | 2038

Table 459: Object methods: Responding to the client

Name Description

beginXmlResponse(
 code INTEGER,
 desc STRING)
 RETURNING writer xml.StaxWriter

Starts an HTTP streaming response.

endXmlResponse(
 writer xml.StaxWriter)

Terminates an HTTP streaming response.

sendDataResponse(
 code INTEGER,
 desc STRING,
 data BYTE)

Sends and HTTP response with data of a BYTE
variable.

sendFileResponse(
 code INTEGER,
 desc STRING,
 filepath STRING)

Sends and HTTP response with the data contained
in a file.

sendResponse(
 code INTEGER,
 desc STRING)

Sends and HTTP response without body.

sendTextResponse(
 code INTEGER,
 desc STRING,
 data STRING)

Sends and HTTP response with data from a plain
string.

sendXmlResponse(
 code INTEGER,
 desc STRING,
 data xml.DomDocument)

Sends and HTTP response with data from a XML
document object.

setResponseCharset(
 charset STRING)

Defines the HTTP response character set.

setResponseHeader(
 name STRING,
 value STRING)

Defines a header for the HTTP response.

setResponseVersion(
 version STRING)

Defines the HTTP response version.

Library reference | 2039

Table 460: Object methods: Incoming multipart request

Name Description

getRequestMultipartType()
 RETURNING type STRING

Returns the multipart type of an incoming request.

getRequestPart(
 idx INTEGER)
 RETURNING part-object com.HTTPPart

Returns the HTTPPart object at the specified index
position.

getRequestPartCount()
 RETURNING num INTEGER

Returns the number of additional multipart
elements.

getRequestPartFromContentID(
 id STRING)
 RETURNING part-object com.HTTPPart

Returns the HTTPPart object of the given Content-
ID value.

Table 461: Object methods: Outgoing multipart request

Name Description

setResponseMultipartType(
 type STRING,
 start STRING,
 boundary STRING)

Sets HTTP response in multipart mode of given
type.

addResponsePart(
 part-object com.HTTPPart)

Adds a new part to the HTTP root part response.

com.HTTPServiceRequest.addResponsePart
Adds a new part to the HTTP root part response.

Syntax

addResponsePart(
 part-object com.HTTPPart)

Usage

Adds a new part to the HTTP root part response. It will be sent after root part has be processed.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

com.HTTPServiceRequest.beginXmlRequest
Starts an HTTP streaming request.

Syntax

beginXmlRequest()

Library reference | 2040

 RETURNING reader xml.StaxReader

1. reader is a new xml.StaxReader object that will be used for streaming.

Usage

The beginXmlRequest() method starts the streaming HTTP request and returns a xml.StaxReader
object ready to read the XML from the client.

Supported methods are PUT and POST.

The request Content-Type header must be of the form */xml or */*+xml. For example: application/
xhtml+xml.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

The INT_FLAG variable is checked during GWS API call to handle program interruptions, for more details,
see Interruption handling in GWS calls (INT_FLAG) on page 2546

com.HTTPServiceRequest.beginXmlResponse
Starts an HTTP streaming response.

Syntax

beginXmlResponse(
 code INTEGER,
 desc STRING)
 RETURNING writer xml.StaxWriter

1. code is the status code of the response.
2. desc is the description of the response.
3. writer is a new xml.StaxWriter the will be used to write the HTTP body.

Usage

The beginXmlResponse() method starts a HTTP streaming response by sending the a status (code)
and description (desc), followed by the headers previously set, and returns a xml.StaxWriter object
ready to send XML as the HTTP body.

If the request failed to be read, its content will be discarded; for example, when a request is not well
formatted.

The default Content-Type header is text/xml, but it can be changed if of the form */xml or */*+xml.
For example: application/xhtml+xml.

In HTTP 1.1, if the body size is greater than 32k, the response will be sent in several chunks of the same
size.

If the description is NULL, a default description according to the status code is sent.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

The INT_FLAG variable is checked during GWS API call to handle program interruptions, for more details,
see Interruption handling in GWS calls (INT_FLAG) on page 2546

com.HTTPServiceRequest.endXmlRequest

Library reference | 2041

Terminates an HTTP streaming request.

Syntax

endXmlRequest(
 reader xml.StaxReader)

1. reader is the xml.StaxReader object used for streaming.

Usage

The endXmlRequest() method ends the streaming HTTP request by closing the xml.StaxReader
object passed as parameter.

The reader object must be created with the beginXmlRequest() method.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

The INT_FLAG variable is checked during GWS API call to handle program interruptions, for more details,
see Interruption handling in GWS calls (INT_FLAG) on page 2546

com.HTTPServiceRequest.endXmlResponse
Terminates an HTTP streaming response.

Syntax

endXmlResponse(
 writer xml.StaxWriter)

1. writer is the xml.StaxWriter used to write the HTTP body.

Usage

The endXmlResponse() method terminates the HTTP streaming response by closing the
xml.StaxWriter object created by beginXmlResponse.

The body of the request is discarded.

New incoming requests can be retrieved again with the
com.WebServiceEngine.GetHTTPServiceRequest() method.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

The INT_FLAG variable is checked during GWS API call to handle program interruptions, for more details,
see Interruption handling in GWS calls (INT_FLAG) on page 2546

com.HTTPServiceRequest.getURL
Returns the URL of the HTTP service request.

Syntax

getURL()
 RETURNING result STRING

Library reference | 2042

Usage

The getURL() method returns the entire URL request containing the host, port, document and query
string.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

URLs are sent in UTF-8 on the network. If the query part of the URL cannot be converted
from UTF-8 to the fglrun locale charset, STATUS will be set to -15552. Is this case, the
document part of the URL is available, but the query string must be retrieved through
HTTPServiceRequest.readFormEncodedRequest(). As a general advice, run you WS server program in
UTF-8.

com.HTTPServiceRequest.getMethod
Returns the HTTP method of the service request.

Syntax

getMethod()
 RETURNING result STRING

Usage

The getMethod() method returns the HTTP method of the request (GET, POST, PUT, HEAD, DELETE).

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

com.HTTPServiceRequest.getRequestVersion
Returns the HTTP version of the service request.

Syntax

getRequestVersion()
 RETURNING result STRING

Usage

The getRequestVersion() method returns the HTTP version of the request (1.0 or 1.1).

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

com.HTTPServiceRequest.getRequestHeader
Returns the value of an HTTP header.

Syntax

getRequestHeader(name STRING)
 RETURNING result STRING

1. name is the name of an HTTP header.

Library reference | 2043

Usage

The getRequestHeader() method returns the value of the HTTP header specified by the name
parameter, or NULL if there is not found.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

com.HTTPServiceRequest.getRequestHeaderCount
Returns number of request headers.

Syntax

getRequestHeaderCount()
 RETURNING result INTEGER

Usage

The getRequestHeaderCount() method returns the entire URL request containing the host, port,
document and query string.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

com.HTTPServiceRequest.getRequestHeaderName
Returns a request header name by position.

Syntax

getRequestHeaderName(
 index INTEGER)
 RETURNING result STRING

1. index is the ordinal position of the header.

Usage

The getRequestHeaderName() method returns the name of the header at the given position.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

com.HTTPServiceRequest.getRequestHeaderValue
Returns a request header value by position.

Syntax

getRequestHeaderValue(
 index INTEGER)
 RETURNING result STRING

1. index is the ordinal position of the header.

Usage

The getRequestHeaderValue() method returns the value of the header at the given position.

Library reference | 2044

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

com.HTTPServiceRequest.getRequestMultipartType
Returns the multipart type of an incoming request.

Syntax

getRequestMultipartType()
 RETURNING type STRING

Usage

Returns the multipart type of an incoming request, returns NULL if not a multipart request.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

com.HTTPServiceRequest.getRequestPart
Returns the HTTPPart object at the specified index position.

Syntax

getRequestPart(
 idx INTEGER)
 RETURNING part-object com.HTTPPart

1. idx is the index position.

Usage

Returns the HTTPPart object at the specified index position.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

Can raise error -15554 (Index is out of bounds).

com.HTTPServiceRequest.getRequestPartCount
Returns the number of additional multipart elements.

Syntax

getRequestPartCount()
 RETURNING num INTEGER

Usage

The root multipart is handled via standard readTextRequest(), readXmlRequest(),
readDataRequest() and beginXmlRequest().

The number of parts is only available when the entire request has been read.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

Library reference | 2045

com.HTTPServiceRequest.getRequestPartFromContentID
Returns the HTTPPart object of the given Content-ID value.

Syntax

getRequestPartFromContentID(
 id STRING)
 RETURNING part-object com.HTTPPart

1. id is a Content-ID value.

Usage

Returns the HTTPPart object of the given Content-ID value, returns NULL if there is none.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

com.HTTPServiceRequest.hasRequestKeepConnection
Returns TRUE if the connection remains after sending a response.

Syntax

hasRequestKeepConnection()
 RETURNING result BOOLEAN

Usage

The hasRequestKeepConnection() method returns whether the request expect the connection to stay
open after the sending of the response.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

com.HTTPServiceRequest.readDataRequest
Returns the body of a request into a BYTE.

Syntax

readDataRequest(
 body BYTE)

1. body is the BYTE variable that will be filled with the request body.

Usage

The readDataRequest() method returns the body of the request in a BYTE.

Supported methods are PUT and POST.

The BYTE variable must be located in memory, and will be filled with the request body. The existing
content of the BYTE will be discarded.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

Library reference | 2046

The INT_FLAG variable is checked during GWS API call to handle program interruptions, for more details,
see Interruption handling in GWS calls (INT_FLAG) on page 2546

com.HTTPServiceRequest.readFileRequest
Returns the body of a request into a file.

Syntax

readFileRequest()
 RETURNING filename STRING

1. filename the absolute path to the file containing the HTTP response.

Usage

The readFileRequest() method returns the body of the request into a file on the disk.

The file is created in the temporary directory used by the runtime system (DBTEMP). The name of the file
will be the basename found in the HTTP Content-Disposition Header, if this basename is not specified, the
filename will be created with a UUID. If a file with the same name already exists in the temporary directory,
the API prefixes the new file with a number. It is then of the form : /tmp/ABC/filename_index.ext,
where index represents the number of files with the same name on disk.

Supported methods are PUT and POST.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

The INT_FLAG variable is checked during GWS API call to handle program interruptions, for more details,
see Interruption handling in GWS calls (INT_FLAG) on page 2546

com.HTTPServiceRequest.readFormEncodedRequest
Returns the string of a GET request with UTF-8 conversion option.

Syntax

readFormEncodedRequest(
 utf8 BOOLEAN)
 RETURNING result STRING

1. utf8 defines if the string must be decoded to the current charset.

Usage

The readFormEncodedRequest() method returns the query of a POST "application/x-www-form-
urlencoded" request or the query string of a GET request, decoded according to HTML4 or XFORM if utf8
is TRUE.

Note: If the result string contains & or = XForms special characters, these are doubled as follows:
na&&me=va==lue.

If the utf8 parameter is TRUE, the decoded query string is translated from UTF-8 to the current character
set. This may lead to a conversion error.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

The INT_FLAG variable is checked during GWS API call to handle program interruptions, for more details,
see Interruption handling in GWS calls (INT_FLAG) on page 2546

Library reference | 2047

com.HTTPServiceRequest.readTextRequest
Returns the request body as a plain string.

Syntax

readTextRequest()
 RETURNING result STRING

Usage

The readTextRequest() method returns the body of the request as a string.

Supported methods are PUT and POST.

The request Content-Type header can be of any form */*. For example: application/json.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

The INT_FLAG variable is checked during GWS API call to handle program interruptions, for more details,
see Interruption handling in GWS calls (INT_FLAG) on page 2546

com.HTTPServiceRequest.readXmlRequest
Returns the request body as an XML document.

Syntax

readXmlRequest()
 RETURNING result xml.DomDocument

Usage

The readXmlRequest() method returns the request as an entire XML document, contained in a
xml.DomDocument object.

Supported methods are PUT and POST.

The request Content-Type header must be of the form */xml or */*+xml. For example: application/
xhtml+xml.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

The INT_FLAG variable is checked during GWS API call to handle program interruptions, for more details,
see Interruption handling in GWS calls (INT_FLAG) on page 2546

com.HTTPServiceRequest.sendDataResponse
Sends and HTTP response with data of a BYTE variable.

Syntax

sendDataResponse(
 code INTEGER,
 desc STRING,
 data BYTE)

1. code is the status code of the response.
2. desc is the description of the response.

Library reference | 2048

3. data is the BYTE variable containing the data to be sent.

Usage

The sendDataResponse() method performs the HTTP response by sending the status (code) and
description (desc), followed by the headers previously set and binary data contained in the BYTE program
variable as body.

It is important for the server to return a correct status code, following the HTTP standards, otherwise the
client may fail to interprete the response. For instance, if the request is malformed, the server should send
an HTTP response with the code of 400 (Bad Request). See HTTP status codes (wikipedia) for more
details about common HTTP response codes.

The data parameter is defined as a BYTE and must be located in memory and not NULL, otherwise the
operation fails.

The default Content-Type header is application/octet-stream, but it can be changed to any other
mime type. For example: image/jpeg.

In HTTP 1.1, if the body size is greater than 32k, the response will be sent in several chunks of the same
size.

If the description is NULL, a default description according to the status code is sent.

New incoming requests can be retrieved again with the
com.WebServiceEngine.GetHTTPServiceRequest() method.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

The INT_FLAG variable is checked during GWS API call to handle program interruptions, for more details,
see Interruption handling in GWS calls (INT_FLAG) on page 2546

com.HTTPServiceRequest.sendFileResponse
Sends and HTTP response with the data contained in a file.

Syntax

sendFileResponse(
 code INTEGER,
 desc STRING,
 filepath STRING)

1. code is the status code of the response.
2. desc is the description of the response.
3. filepath is the path the file containing the data to be send.

Usage

The sendFileResponse() method performs the HTTP response by sending the status (code) and
description (desc), followed by the headers previously set and the data contained in the specified file as
body.

It is important for the server to return a correct status code, following the HTTP standards, otherwise the
client may fail to interprete the response. For instance, if the request is malformed, the server should send
an HTTP response with the code of 400 (Bad Request). See HTTP status codes (wikipedia) for more
details about common HTTP response codes.

If not defined by programmer, the HTTP headers are automatically set as follows:

• Content-Type is defined according to the file name extension. If the file extension is not recognized,
Content-Type defaults to application/octet-stream.

http://en.wikipedia.org/wiki/List_of_HTTP_status_codes
http://en.wikipedia.org/wiki/List_of_HTTP_status_codes

Library reference | 2049

Note: File extensions to Content-Type mapping can be customized in the file FGLDIR/lib/
wse/mime.cfg.

• Content-Disposition is set with the base name of the given filename as follows: attachment;
filename="basename".

For example, when calling the method as follows:

CALL server.sendFileResponse(200, NULL, "/opt/myapp/resources/logo.jpg")

The resulting HTTP headers of the response will look like:

Content-Type: image/jpeg
Content-Disposition: attachment; filename="logo.jpg"

In HTTP 1.1, if the body size is greater than 32k, the response will be sent in several chunks of the same
size.

If the description is NULL, a default description according to the status code is sent.

New incoming requests can be retrieved again with the
com.WebServiceEngine.GetHTTPServiceRequest() method.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

The INT_FLAG variable is checked during GWS API call to handle program interruptions, for more details,
see Interruption handling in GWS calls (INT_FLAG) on page 2546

com.HTTPServiceRequest.sendResponse
Sends and HTTP response without body.

Syntax

sendResponse(
 code INTEGER,
 desc STRING)

1. code is the status code of the response.
2. desc is the description of the response.

Usage

The sendResponse() method performs the HTTP response by sending the a status (code) and
description (desc), followed by the headers previously set, without a body.

It is important for the server to return a correct status code, following the HTTP standards, otherwise the
client may fail to interprete the response. For instance, if the request is malformed, the server should send
an HTTP response with the code of 400 (Bad Request). See HTTP status codes (wikipedia) for more
details about common HTTP response codes.

If the description is NULL, a default description according to the status code is sent.

New incoming requests can be retrieved again with the
com.WebServiceEngine.GetHTTPServiceRequest() method.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

The INT_FLAG variable is checked during GWS API call to handle program interruptions, for more details,
see Interruption handling in GWS calls (INT_FLAG) on page 2546

http://en.wikipedia.org/wiki/List_of_HTTP_status_codes

Library reference | 2050

com.HTTPServiceRequest.sendTextResponse
Sends and HTTP response with data from a plain string.

Syntax

sendTextResponse(
 code INTEGER,
 desc STRING,
 data STRING)

1. code is the status code of the response.
2. desc is the description of the response.
3. data is the string containing the data to be sent.

Usage

The sendTextResponse() method performs the HTTP response by sending the a status (code) and
description (desc), followed by the headers previously set, and text data contained in the string as body.

It is important for the server to return a correct status code, following the HTTP standards, otherwise the
client may fail to interprete the response. For instance, if the request is malformed, the server should send
an HTTP response with the code of 400 (Bad Request). See HTTP status codes (wikipedia) for more
details about common HTTP response codes.

The default Content-Type header is text/plain, but it can be changed if of the form */*. For example:
application/json.

Automatic conversion from locale to user-defined charset is performed when possible, otherwise throws an
exception.

In HTTP 1.1, if the body size is greater than 32k, the response will be sent in several chunks of the same
size.

If the description is NULL, a default description according to the status code is sent.

New incoming requests can be retrieved again with the
com.WebServiceEngine.GetHTTPServiceRequest() method.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

The INT_FLAG variable is checked during GWS API call to handle program interruptions, for more details,
see Interruption handling in GWS calls (INT_FLAG) on page 2546

com.HTTPServiceRequest.sendXmlResponse
Sends and HTTP response with data from a XML document object.

Syntax

sendXmlResponse(
 code INTEGER,
 desc STRING,
 data xml.DomDocument)

1. code is the status code of the response.
2. desc is the description of the response.
3. data is the XML document containing the data to be sent.

http://en.wikipedia.org/wiki/List_of_HTTP_status_codes

Library reference | 2051

Usage

The sendXmlResponse() method performs the HTTP response by sending the a status (code) and
description (desc), followed by the headers previously set, and the XML data contained in the passed
xml.DomDocument object as body.

It is important for the server to return a correct status code, following the HTTP standards, otherwise the
client may fail to interprete the response. For instance, if the request is malformed, the server should send
an HTTP response with the code of 400 (Bad Request). See HTTP status codes (wikipedia) for more
details about common HTTP response codes.

The default Content-Type header is text/xml, but it can be changed if of the form */xml or */*+xml.
For example: application/xhtml+xml.

In HTTP 1.1, if the body size is greater than 32k, the response will be sent in several chunks of the same
size.

If the description is NULL, a default description according to the status code is sent.

New incoming requests can be retrieved again with the
com.WebServiceEngine.GetHTTPServiceRequest() method.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

The INT_FLAG variable is checked during GWS API call to handle program interruptions, for more details,
see Interruption handling in GWS calls (INT_FLAG) on page 2546

com.HTTPServiceRequest.setResponseCharset
Defines the HTTP response character set.

Syntax

setResponseCharset(
 charset STRING)

1. charset is the HTTP response character set.

Usage

The setResponseCharset() method defines the character set to use when sending an HTTP response.

The server must send a response in a character set that the client understands.

If the response character set is not defined by setResponseCharset(), the same character set as the
client request is used, or the implicit ISO-8859-1 charset is used if the character is not defined by the client
request.

The method must be called before sending the response with one of sendResponse,
sendTextResponse, sendXmlResponse, or beginXmlResponse and endXmlResponse methods.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

com.HTTPServiceRequest.setResponseHeader
Defines a header for the HTTP response.

Syntax

setResponseHeader(
 name STRING,

http://en.wikipedia.org/wiki/List_of_HTTP_status_codes

Library reference | 2052

 value STRING)

1. name is the name of a header to define.
2. value is the value of a header to define.

Usage

The setResponseVersion() method sets (or replaces) the name and value of a HTTP response
header.

The Content-Length header cannot be set, because it is computed internally according to the body size.

The method must be called before sending the response with one of sendResponse,
sendTextResponse, sendXmlResponse, or beginXmlResponse and endXmlResponse methods.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

com.HTTPServiceRequest.setResponseMultipartType
Sets HTTP response in multipart mode of given type.

Syntax

setResponseMultipartType(
 type STRING,
 start STRING,
 boundary STRING)

1. type is one of the following:

• form-data: Browser Xform with attachment
• mixed: Parts are independent
• related: Parts are dependent (Required for SOAP)
• alternative: Parts are different type of a same document
• or any other type
• NULL: switch multipart mode off

2. start is the Content-ID value of root multipart document. Must be ASCII. (optional)
3. boundary is the string used as multipart boundary. Must be ASCII. (optional)

Usage

Sets HTTP response in multipart mode of given type. Calling one of the standard request method will send
the HTTP response as given multipart type, even if no other part has been set.

The root HTTP part must be handled via the standard HTTPServiceRequest methods such as
sendTextRequest(), sendXmlRequest(), sendDataRequest() and BeginXmlResponse().

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

com.HTTPServiceRequest.setResponseVersion
Defines the HTTP response version.

Syntax

setResponseVersion(
 version STRING)

Library reference | 2053

1. version is the HTTP response version.

Usage

The setResponseVersion() method defines the HTML response version (1.0 or 1.1).

If not set, the same version as the request is used.

The method must be called before sending the response with one of sendResponse,
sendTextResponse, sendXmlResponse, or beginXmlResponse and endXmlResponse methods.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

HTTP classes
The HTTP classes manage HTTP client network operations on the client side.

• The HTTPRequest class on page 2053
• The HTTPResponse class on page 2070
• The HTTPPart class on page 2077

The HTTPRequest class
The com.HTTPRequest class provides an interface to perform asynchronous XML and TEXT requests
over HTTP for a specified URL, with additional XML streaming possibilities, on the client side.

The STATUS variable is set to zero after a successful method call.

com.HTTPRequest methods
Methods for the com.HTTPRequest class.

Table 462: Class methods

Name Description

com.HTTPRequest.Create(
 url STRING)
 RETURNING result com.HTTPRequest

Creates an new HTTPRequest object from a
URL.

Table 463: Object methods: Configuration methods

Name Description

clearAuthentication()
Removes user-defined authentication.

clearHeaders()
Removes all user-defined HTTP request headers.

removeHeader(
 name STRING)

Removes an HTTP header for the request
according to a name.

setAuthentication(
 login STRING,
 pass STRING,
 scheme STRING,

Defines the user login and password to
authenticate to the server.

Library reference | 2054

Name Description

 realm STRING)

setAutoReply(
 reply BOOLEAN)

Defines the auto reply option for response methods.

setCharset(
 charset STRING)

Defines the charset used when sending text or
XML.

setConnectionTimeOut(
 timeout INTEGER)

Defines the timeout for the establishment of the
connection.

setHeader(
 name STRING,
 value STRING)

Sets an HTTP header for the request.

setMethod(
 method STRING)

Sets the HTTP method of the request.

setKeepConnection(
 keep BOOLEAN)

Defines if connection is kept open if a new request
occurs.

setMaximumResponseLength(
 length INTEGER)

Defines the maximum size in Kbyte of a response.

setTimeOut(
 timeout INTEGER)

Defines the timeout for a reading or writing
operation.

setVersion(
 version STRING)

Sets the HTTP version of the request.

Table 464: Object methods: Sending methods

Name Description

beginXmlRequest()
 RETURNING writer xml.StaxWriter

Starts a streaming HTTP request.

endXmlRequest(
 writer xml.StaxWriter)

Terminates a streaming HTTP request.

doDataRequest(
Performs the request by sending binary data.

Library reference | 2055

Name Description

 data BYTE)

doFileRequest(
 filepath STRING)

Performs the request by sending data contained in
a file.

doFormEncodedRequest(
 query STRING,
 utf8 BOOLEAN)

Performs an "application/x-www-form-urlencoded
forms" encoded query.

doRequest()
Performs the HTTP request.

doTextRequest(
 data STRING)

Performs the request by sending an entire string at
once.

doXmlRequest(
 data xml.DomDocument)

Performs the request by sending an entire XML
document at once.

Table 465: Object methods : Response methods

Name Description

getAsyncResponse()
 RETURNING result com.HTTPResponse

When available, returns the response produced by
one of request methods.

getResponse()
 RETURNING result com.HTTPResponse

Waits and returns the response produced by one of
request methods.

Table 466: Object methods of com.HTTPRequest : Multipart methods

Name Description

addPart(p com.HTTPPart)
Adds a new part to the HTTP root part request.

setMultipartType(
 type STRING,
 start STRING,
 boundary STRING)

Switch HTTPRequest in multipart mode of given
type.

com.HTTPRequest.addPart
Adds a new part to the HTTP root part request.

Syntax

addPart(p com.HTTPPart)

1. p is the HTTPPart object.

Library reference | 2056

Usage

Adds a new part to the HTTP root part request. This part is sent after root part has been processed.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

com.HTTPRequest.beginXmlRequest
Starts a streaming HTTP request.

Syntax

beginXmlRequest()
 RETURNING writer xml.StaxWriter

1. writer is the xml.StaxWriter to be used to write the HTTP request.

Usage

The beginXmlRequest() starts a streaming HTTP request and returns an xml.StaxWriter object
ready to send XML to the server.

Supported methods are PUT and POST.

The default Content-Type header is text/xml, but it can be changed if of the form */xml or */*+xml.
For example: application/xhtml+xml.

In HTTP 1.1, if the body size is greater than 32 KB, the request will be sent in several chunks of the same
size.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

The INT_FLAG variable is checked during GWS API call to handle program interruptions, for more details,
see Interruption handling in GWS calls (INT_FLAG) on page 2546

com.HTTPRequest.clearAuthentication
Removes user-defined authentication.

Syntax

clearAuthentication()

Usage

Removes user-defined authentication.

If an authenticate entry exists in the FGLPROFILE file, it will be used for authentication, even if the user-
defined authentication was removed.

Important: The iOS HTTP stack doesn't provide a simple way to handle authentication. The
GMI front-end uses the global iOS credential management system, that keeps credential value of
previous request according to host and realm, until the keep-alive session is closed. Therefore,
doing a clearAuthentication() on iOS devices is not working immediately.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

com.HTTPRequest.clearHeaders

Library reference | 2057

Removes all user-defined HTTP request headers.

Syntax

clearHeaders()

Usage

Removes all user-defined HTTP request headers defined with the setHeader() method.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

com.HTTPRequest.Create
Creates an new HTTPRequest object from a URL.

Syntax

com.HTTPRequest.Create(
 url STRING)
 RETURNING result com.HTTPRequest

1. url is the URL for the HTTP request.

Usage

Creates an com.HTTPRequest object by providing a mandatory URL with HTTP or HTTPS as protocol.

The url parameter can be an identifier of an URL mapping with an optional alias:// prefix. See
FGLPROFILE Configuration for more details about URL mapping with aliases, and for proxy and security
configuration.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

com.HTTPRequest.doDataRequest
Performs the request by sending binary data.

Syntax

doDataRequest(
 data BYTE)

1. data is the binary data.

Usage

Performs the request by sending binary data contained in the BYTE variable.

Supported methods are PUT and POST.

The BYTE must be located in memory and not NULL otherwise operation fails.

The default Content-Type header is application/octet-stream, but it can be changed to any other
mime type. For example: image/jpeg.

In HTTP 1.1, if the body size is greater than 32k, the request will be sent in several chunks of the same
size.

Library reference | 2058

This HTTP request method is non-blocking: It returns immediatly after the call. Use the
com.HTTPRequest.getResponse on page 2062 method, to perform a synchroneous HTTP request,
suspending the program flow until the response returns from the server. If the program must keep going
on, use the com.HTTPRequest.getAsyncResponse on page 2061 method, to check if a response is
available.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

The INT_FLAG variable is checked during GWS API call to handle program interruptions, for more details,
see Interruption handling in GWS calls (INT_FLAG) on page 2546

com.HTTPRequest.doFileRequest
Performs the request by sending data contained in a file.

Syntax

doFileRequest(
 filepath STRING)

1. filepath is the path to the file containing the data to be send.

Usage

Performs the request by sending data contained in the file passed as parameter. The data is sent as is
without any further conversion.

Supported methods are PUT and POST.

If not defined by programmer, the HTTP headers are automatically set as follows:

• Content-Type is defined according to the file name extension. If the file extension is not recognized,
Content-Type defaults to application/octet-stream.

Note: File extensions to Content-Type mapping can be customized in the file FGLDIR/lib/
wse/mime.cfg.

• Content-Disposition is set with the base name of the given filename as follows: attachment;
filename="basename".

For example, when calling the method as follows:

CALL request.doFileRequest("/opt/myapp/resources/logo.jpg")

The resulting HTTP headers of the POST or PUT will look like:

Content-Type: image/jpeg
Content-Disposition: attachment; filename="logo.jpg"

In HTTP 1.1, if the body size is greater than 32k, the request will be sent in several chunks of the same
size.

This HTTP request method is non-blocking: It returns immediatly after the call. Use the
com.HTTPRequest.getResponse on page 2062 method, to perform a synchroneous HTTP request,
suspending the program flow until the response returns from the server. If the program must keep going
on, use the com.HTTPRequest.getAsyncResponse on page 2061 method, to check if a response is
available.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

Library reference | 2059

The INT_FLAG variable is checked during GWS API call to handle program interruptions, for more details,
see Interruption handling in GWS calls (INT_FLAG) on page 2546

com.HTTPRequest.doFormEncodedRequest
Performs an "application/x-www-form-urlencoded forms" encoded query.

Syntax

doFormEncodedRequest(
 query STRING,
 utf8 BOOLEAN)

1. query is a list of name/value pairs separated by an &.
2. utf8 defines if the query string is UTF-8 encoded.

Usage

The doFormEncodedRequest() metho performs request with an "application/x-www-form-urlencoded
forms" encoded query.

Supported methods are GET and POST.

The query string is a list of name/value pairs separated by an ampersand (&). For example:

name1=value1&name2=value2&name3=value3

Note: If you need to URL-encode the separator characters & and =, double them as following :
na&&me=va==lue.

If the utf8 parameter is TRUE, the query string is encoded in UTF-8 as specified in XForms1.0, otherwise in
ASCII as specified in HTML4.

This HTTP request method is non-blocking: It returns immediatly after the call. Use the
com.HTTPRequest.getResponse on page 2062 method, to perform a synchroneous HTTP request,
suspending the program flow until the response returns from the server. If the program must keep going
on, use the com.HTTPRequest.getAsyncResponse on page 2061 method, to check if a response is
available.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

The INT_FLAG variable is checked during GWS API call to handle program interruptions, for more details,
see Interruption handling in GWS calls (INT_FLAG) on page 2546

com.HTTPRequest.doRequest
Performs the HTTP request.

Syntax

doRequest()

Usage

The doRequest() method performs the HTTP request.

Supported methods are GET, HEAD and DELETE.

This HTTP request method is non-blocking: It returns immediatly after the call. Use the
com.HTTPRequest.getResponse on page 2062 method, to perform a synchroneous HTTP request,
suspending the program flow until the response returns from the server. If the program must keep going

http://www.w3.org/TR/xforms/#serialize-urlencode
http://www.w3.org/TR/1999/REC-html401-19991224/interact/forms.html#h-17.13.4.1

Library reference | 2060

on, use the com.HTTPRequest.getAsyncResponse on page 2061 method, to check if a response is
available.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

The INT_FLAG variable is checked during GWS API call to handle program interruptions, for more details,
see Interruption handling in GWS calls (INT_FLAG) on page 2546

com.HTTPRequest.doTextRequest
Performs the request by sending an entire string at once.

Syntax

doTextRequest(
 data STRING)

1. data is a string containing the request.

Usage

Performs the request by sending an entire string at once.

Supported methods are PUT and POST.

The default Content-Type header is text/plain, but it can be changed if of the form */*. For example:
application/json.

Automatic character set conversion from the application locale to the user-defined charset is performed. In
case of conversion error, the method throws an exception.

Note: To avoid character conversion problems when sending text over HTTP, consider setting the
same user-define character set as the program defined by the application locale (assuming that the
server understands the client application character set).

In HTTP 1.1, if the body size is greater than 32 KB, the request will be sent in several chunks of the same
size.

This HTTP request method is non-blocking: It returns immediatly after the call. Use the
com.HTTPRequest.getResponse on page 2062 method, to perform a synchroneous HTTP request,
suspending the program flow until the response returns from the server. If the program must keep going
on, use the com.HTTPRequest.getAsyncResponse on page 2061 method, to check if a response is
available.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

The INT_FLAG variable is checked during GWS API call to handle program interruptions, for more details,
see Interruption handling in GWS calls (INT_FLAG) on page 2546

com.HTTPRequest.doXmlRequest
Performs the request by sending an entire XML document at once.

Syntax

doXmlRequest(
 data xml.DomDocument)

1. data is the XML document containing the data to be sent..

Library reference | 2061

Usage

The doXmlRequest() method performs the request by sending the entire passed xml.DomDocument at
once.

Supported methods are PUT and POST.

The default Content-Type header is text/xml, but it can be changed if of the form */xml or */*+xml.
For example: application/xhtml+xml.

In HTTP 1.1, if the body size is greater than 32 KB, the request will be sent in several chunks of the same
size.

The character set used to send the XML data is defined by the encoding attribute in the XML
document prolog. It is recommended that you define the HTTP request character set to NULL with the
setCharSet() method, or that you use the same character set that was set in the XML Document.

This HTTP request method is non-blocking: It returns immediatly after the call. Use the
com.HTTPRequest.getResponse on page 2062 method, to perform a synchroneous HTTP request,
suspending the program flow until the response returns from the server. If the program must keep going
on, use the com.HTTPRequest.getAsyncResponse on page 2061 method, to check if a response is
available.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

The INT_FLAG variable is checked during GWS API call to handle program interruptions, for more details,
see Interruption handling in GWS calls (INT_FLAG) on page 2546

com.HTTPRequest.endXmlRequest
Terminates a streaming HTTP request.

Syntax

endXmlRequest(
 writer xml.StaxWriter)

1. writer is the xml.StaxWriter used to write the HTTP request.

Usage

The endXmlRequest() method terminates a streaming HTTP request by closing the xml.StaxWriter
object that was created with the beginXmlRequest() method.

This HTTP request method is non-blocking: It returns immediatly after the call. Use the
com.HTTPRequest.getResponse on page 2062 method, to perform a synchroneous HTTP request,
suspending the program flow until the response returns from the server. If the program must keep going
on, use the com.HTTPRequest.getAsyncResponse on page 2061 method, to check if a response is
available.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

The INT_FLAG variable is checked during GWS API call to handle program interruptions, for more details,
see Interruption handling in GWS calls (INT_FLAG) on page 2546

com.HTTPRequest.getAsyncResponse

Library reference | 2062

When available, returns the response produced by one of request methods.

Syntax

getAsyncResponse()
 RETURNING result com.HTTPResponse

Usage

If a response is available, the getAsyncResponse() method returns a com.HTTPResponse object
corresponding to the response that was produced by a call to one of the request methods: doRequest(),
doTextRequest(), doXmlRequest(), doFormEncodedRequest(), or beginXmlRequest() and
endXmlRequest().

Unlike getResponse(), the getAsyncResponse() method is non-blocking: it returns immediatly and
does not stop the program flow when waiting for a response.

The method returns NULL if the HTTP response was not yet received from the server.

This method is typically called just after a do*Request() call, and if the returned value is NULL, it is
called again after a short period of time, to check for a response. Within a dialog, use an ON IDLE block to
issue a getAsyncRequest() every seconds for example.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

The INT_FLAG variable is checked during GWS API call to handle program interruptions, for more details,
see Interruption handling in GWS calls (INT_FLAG) on page 2546

com.HTTPRequest.getResponse
Waits and returns the response produced by one of request methods.

Syntax

getResponse()
 RETURNING result com.HTTPResponse

Usage

The getResponse() method wait for a resonse from the server and returns a com.HTTPResponse
object corresponding to the response that was produced by a call to one of the request methods:
doRequest(), doTextRequest(), doXmlRequest(), doFormEncodedRequest(), or
beginXmlRequest() and endXmlRequest().

Note: On iOS, a long running HTTP request will display a message box, to let the user cancel the
request. If the user cancels the HTTP request, the error -15578 will be raised. This error can be
trapped with TRY/CATCH.

Unlike getAsyncResponse(), the getResponse() method is blocking: it stops the program flow until
the HTTP response is received from the server.

Define a response timeout with the com.HTTPRequest.setTimeOut on page 2067 method.

Note: On iOS devices, when using this method, it is not possible to distinguish different
timeouts for the connection and for read/write operation, defined respectively by the
setConnectionTimeOut() and setTimeOut() methods. If both timeouts are defined, the
shortest timeout will be used for the connection and read/write operations.

Library reference | 2063

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

The INT_FLAG variable is checked during GWS API call to handle program interruptions, for more details,
see Interruption handling in GWS calls (INT_FLAG) on page 2546

com.HTTPRequest.removeHeader
Removes an HTTP header for the request according to a name.

Syntax

removeHeader(
 name STRING)

1. name is the HTTP header name to remove.

Usage

The removeHeader() method deletes an HTTP header identified by name.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

com.HTTPRequest.setAuthentication
Defines the user login and password to authenticate to the server.

Syntax

setAuthentication(
 login STRING,
 pass STRING,
 scheme STRING,
 realm STRING)

1. login is the login name.
2. pass is the password.
3. scheme defines the method to be used during authentication.
4. realm defines the realm.

Usage

The setAuthentication() method defines the mandatory user login and password to authenticate to
the server.

The scheme parameter defines the method to be used during authentication. The supported values for the
scheme parameter are Anonymous, Basic and Digest. The default is Anonymous.

An optional realm can be specified.

With Anonymous or Digest authentication, you must re-send the request if you get a 401 or 407 HTTP
return code (authorization required)

If a user-defined authentication is set and there is an authenticate entry for this URL in the FGLPROFILE
file, the user-defined authentication has priority.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

Library reference | 2064

com.HTTPRequest.setAutoReply
Defines the auto reply option for response methods.

Syntax

setAutoReply(
 reply BOOLEAN)

1. reply defines auto-reply when TRUE.

Usage

The setAutoReply() method defines whether getResponse() or getAsyncResponse() will
automatically perform another HTTP GET request if response contains HTTP Authentication, Proxy
Authentication or HTTP redirect data.

Available for GET method and the HTTP HEAD method.

The default is TRUE.

Important: On iOS devices, setAutoReply() is ignored for redirection in synchronous requests:
The iOS HTTP stack does not allow to set an auto reply option when doing synchronous requests.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

com.HTTPRequest.setCharset
Defines the charset used when sending text or XML.

Syntax

setCharset(
 charset STRING)

1. charset is the character set to use.

Usage

Defines the character set used when sending an HTTP request.

By default, no character set information will be transmitted in the HTTP header. This is also the case when
specifying NULL as parameter for this method.

If no character set is specified in HTTP headers, ISO8859-1 will implicitely be used as defined by the HTTP
standards.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

com.HTTPRequest.setConnectionTimeOut
Defines the timeout for the establishment of the connection.

Syntax

setConnectionTimeOut(
 timeout INTEGER)

1. timeout is the number of seconds.

Library reference | 2065

Usage

The setConnectionTimeOut() method sets the time value in seconds to wait for the establishment of
the connection, before a break.

The value of -1 means infinite wait.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

com.HTTPRequest.setHeader
Sets an HTTP header for the request.

Syntax

setHeader(
 name STRING,
 value STRING)

1. name is the HTTP header name.
2. value is the HTTP header value.

Usage

The setHeader() method defines an HTTP header with a name and value for the request.

If a header exists with the same name, it is replaced with the new value.

Setting a header after the body has been sent, or if a streaming operation has been started, will only be
taken into account when a new request is reissued.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

com.HTTPRequest.setKeepConnection
Defines if connection is kept open if a new request occurs.

Syntax

setKeepConnection(
 keep BOOLEAN)

1. keep defines if the connection is kept.

Usage

The setKeepConnection() method defines whether the connection should stay open if a new HTTP
request occurs.

The default is FALSE.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

com.HTTPRequest.setMaximumResponseLength

Library reference | 2066

Defines the maximum size in Kbyte of a response.

Syntax

setMaximumResponseLength(
 length INTEGER)

1. length is the maximum size in Kbytes.

Usage

The setMaximumResponseLength() method sets the maximum authorized size in Kbytes of the whole
response (including headers, body and all control characters), before a break.

The value of -1 means no limit.

Note: Setting the maximum response length is ignored for synchronous requests in a Genero
Mobile for iOS (GMI) app: The iOS HTTP stack does not allow you to set a maximum response
length when doing synchronous requests.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

com.HTTPRequest.setMethod
Sets the HTTP method of the request.

Syntax

setMethod(
 method STRING)

1. method is the HTTP method of the request.

Usage

The setMethod() method defines the HTTP method of the request.

Supported methods are GET, PUT, POST, HEAD and DELETE.

The default is GET.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

com.HTTPRequest.setMultipartType
Switch HTTPRequest in multipart mode of given type.

Syntax

setMultipartType(
 type STRING,
 start STRING,
 boundary STRING)

1. type is one of the following:

• form-data: Browser Xform with attachment
• mixed: Parts are independent
• related: Parts are dependent (Required for SOAP)

Library reference | 2067

• alternative: Parts are different type of a same document
• or any other type
• NULL: switch multipart mode off

2. start is the Content-ID value of root multipart document. (optional)
3. boundary is the string used as multipart boundary. (optional)

Usage

Switch HTTPRequest in multipart mode of given type. Calling one of the standard request method will send
the HTTP request as given multipart type, even if no other part has been set.

Important: Multipart HTTP requests is not supported on GMI mobile devices.

The root HTTP part is the part handled via the standard HTTPRequest methods such as
doTextRequest(), doXmlRequest(), doDataRequest() and beginXmlRequest().

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

com.HTTPRequest.setTimeOut
Defines the timeout for a reading or writing operation.

Syntax

setTimeOut(
 timeout INTEGER)

1. timeout specifies the number of seconds.

Usage

The setTimeOut() method defines a delay in seconds, to wait for a HTTP request read or write
operation. If the operation is not terminated after the timeout, it returns immediately with an error.

Use the value of -1 to define an infinite timeout.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

com.HTTPRequest.setVersion
Sets the HTTP version of the request.

Syntax

setVersion(
 version STRING)

1. version is the HTTP version of the request.

Usage

The setVersion() method defines the HTTP version of the request.

Accepted versions are 1.0 and 1.1 (only these two versions are supported).

The default is 1.1.

Library reference | 2068

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

Examples
Examples using methods of the com.HTTPRequest class.

Example 1: HTTP GET request

IMPORT com

MAIN
 DEFINE req com.HTTPRequest
 DEFINE resp com.HTTPResponse
 TRY
 LET req = com.HTTPRequest.Create("http://localhost:8090/MyPage")
 # Set additional HTTP header with name 'MyHeader', and value 'High
 Priority'
 CALL req.setHeader("MyHeader","High Priority")
 CALL req.doRequest()
 LET resp = req.getResponse()
 IF resp.getStatusCode() != 200 THEN
 DISPLAY "HTTP Error ("||resp.getStatusCode()||") ",
 resp.getStatusDescription()
 ELSE
 DISPLAY "HTTP Response is : ",resp.getTextResponse()
 END IF
 CATCH
 DISPLAY "ERROR :",STATUS||" ("||SQLCA.SQLERRM||")"
 END TRY
END MAIN

Example 2 : XForms HTTP POST request

IMPORT com
IMPORT xml

MAIN
 DEFINE req com.HTTPRequest
 DEFINE resp com.HTTPResponse
 DEFINE doc xml.DomDocument
 TRY
 LET req = com.HTTPRequest.Create("http://localhost:8090/MyProcess")
 CALL req.setMethod("POST") # Perform an HTTP POST method
 # Param1 value is 'hello', Param2 value is 'how are you ?'
 CALL req.doFormEncodedRequest("Param1=hello&Param2=how are
 you ?",FALSE)
 LET resp = req.getResponse()
 IF resp.getStatusCode() != 200 THEN
 DISPLAY "HTTP Error ("||resp.getStatusCode()||") ",
 resp.getStatusDescription()
 ELSE
 # Expect a returned content type of the form */xml
 LET doc = resp.getXmlResponse()
 DISPLAY "HTTP XML Response is : ",doc.saveToString()
 END IF
 CATCH
 DISPLAY "ERROR :",STATUS||" ("||SQLCA.SQLERRM||")"
 END TRY
END MAIN

Library reference | 2069

Example 3 : Streaming HTTP PUT request

IMPORT com
IMPORT xml

MAIN
 DEFINE req com.HTTPRequest
 DEFINE resp com.HTTPResponse
 DEFINE writer xml.StaxWriter
 TRY
 LET req = com.HTTPRequest.Create("http://localhost:8090/MyXmlProcess")
 CALL req.setMethod("PUT") # Perform an HTTP PUT method
 CALL req.setHeader("MyHeader","Value of my header")
 # Retrieve an xml.StaxWriter to start xml streaming
 LET writer = req.beginXmlRequest()
 CALL writer.startDocument("utf-8","1.0",true)
 CALL writer.comment("My first XML document sent in streaming with
 genero")
 CALL writer.startElement("root")
 CALL writer.attribute("attr1","value1")
 CALL writer.endElement()
 CALL writer.endDocument()
 CALL req.endXmlRequest(writer) # End streaming request
 LET resp = req.getResponse()
 IF resp.getStatusCode() != 201 OR resp.getStatusCode() != 204 THEN
 DISPLAY "HTTP Error ("||resp.getStatusCode()||") ",
 resp.getStatusDescription()
 ELSE
 DISPLAY "XML document was correctly put on the server"
 END IF
 CATCH
 DISPLAY "ERROR :",STATUS||" ("||SQLCA.SQLERRM||")"
 END TRY
END MAIN

Example 4 : Asynchronous HTTP DELETE request

IMPORT com

MAIN
 DEFINE req com.HTTPRequest
 DEFINE resp com.HTTPResponse
 DEFINE url STRING
 DEFINE quit CHAR(1)
 DEFINE questionStr STRING
 DEFINE timeout INTEGER
 TRY
 WHILE TRUE
 PROMPT "Enter http url you want to delete ? "
 FOR url ATTRIBUTES (CANCEL=FALSE)
 LET req = com.HTTPRequest.Create(url)
 CALL req.setMethod("DELETE")
 CALL req.doRequest()
 # Retrieve asynchronous response for the first time
 LET resp = req.getAsyncResponse()
 CALL Update(resp) RETURNING questionStr,timeout
 WHILE quit IS NULL OR (quit!="Y" AND quit!="N")
 PROMPT questionStr FOR CHAR quit
 ATTRIBUTES (CANCEL=FALSE,ACCEPT=FALSE,SHIFT="up")
 ON IDLE timeout
 IF resp IS NULL THEN # If no response at first try,
 # retrieve it again
 LET resp = req.getAsyncResponse() # as we now have time

Library reference | 2070

 CALL Update(resp) RETURNING questionStr,timeout
 END IF
 END PROMPT
 END WHILE
 IF quit == "Y" THEN
 EXIT PROGRAM
 ELSE
 LET quit = NULL
 END IF
 END WHILE
 CATCH
 DISPLAY "ERROR :",STATUS,SQLCA.SQLERRM
 END TRY
END MAIN

FUNCTION Update(resp)
 DEFINE resp com.HTTPResponse
 DEFINE ret STRING
 IF resp IS NOT NULL THEN
 IF resp.getStatusCode() != 204 THEN
 LET ret = "HTTP Error ("||resp.getStatusCode()||")
 :"||resp.getStatusDescription()||". Do you want to quit ? "
 ELSE
 LET ret = "HTTP Page deleted. Do you want to quit ? "
 END IF
 RETURN ret, 0
 ELSE
 LET ret = "Do you want to quit ? "
 RETURN ret, 1
 END IF
END FUNCTION

The HTTPResponse class
The com.HTTPResponse class provides an interface to perform XML and TEXT responses over HTTP,
with additional XML streaming possibilities, on the client side.

The STATUS variable is set to zero after a successful method call.

com.HTTPResponse methods
Methods for the com.HTTPResponse class.

Table 467: Object methods

Name Description

beginXmlResponse()
 RETURNING writer xml.StaxWriter

Starts a streaming HTTP response.

endXmlResponse(
 writer xml.StaxWriter)

Performs the HTTP request.

getDataResponse(
 data BYTE)

Returns the entire HTTP response in a BYTE.

getFileResponse()
Returns the entire HTTP response in a file on
the disk.

Library reference | 2071

Name Description

 RETURNING filename STRING

getHeader(name STRING)
 RETURNING result STRING

Returns the value of an HTTP header.

getHeaderCount()
 RETURNING result INTEGER

Returns the number of headers.

getHeaderName(
 index INTEGER)
 RETURNING result STRING

Returns the name of a header by position.

getHeaderValue(
 index INTEGER)
 RETURNING result STRING

Returns the value of a header by position.

getStatusCode()
 RETURNING result INTEGER

Returns the HTTP status code.

getStatusDescription()
 RETURNING result STRING

Returns the HTTP status description.

getTextResponse()
 RETURNING data STRING

Returns the entire HTTP response in a string.

getXmlResponse()
 RETURNING data xml.DomDocument

Returns the entire HTTP response in a DOM
document.

Table 468: Object methods: Multipart methods

Name Description

getMultipartType()
 RETURNING result STRING

Returns whether a response is multipart or not, and
the kind of multipart if any.

getPart(
 index INTEGER)
 RETURNING part-object com.HTTPPart

Returns the HTTP part object at the specified index
of the current HTTP response.

getPartCount()
 RETURNING count INTEGER

Returns the number of additional parts in the HTTP
response.

getPartFromContentID(
 id STRING)

Returns the HTTP part object marked with the
given Content-ID value as identifier, or NULL if
none.

Library reference | 2072

Name Description

 RETURNING part-object com.HTTPPart

com.HTTPResponse.beginXmlResponse
Starts a streaming HTTP response.

Syntax

beginXmlResponse()
 RETURNING writer xml.StaxWriter

1. writer is the xml.StaxWriter to be used to write the HTTP request.

Usage

The beginXmlResponse() method the streaming HTTP response and returns a xml.StaxReader
object ready to read XML from the server.

The Content-Type header must be of the form */xml or */*+xml. For example: application/xhtml
+xml.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

The INT_FLAG variable is checked during GWS API call to handle program interruptions, for more details,
see Interruption handling in GWS calls (INT_FLAG) on page 2546

com.HTTPResponse.endXmlResponse
Performs the HTTP request.

Syntax

endXmlResponse(
 writer xml.StaxWriter)

1. writer is the xml.StaxWriter used to write the HTTP response.

Usage

The endXmlResponse() method ends the streaming HTTP response by closing the the
xml.StaxWriter object that was created with the beginXmlResponse() method.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

The INT_FLAG variable is checked during GWS API call to handle program interruptions, for more details,
see Interruption handling in GWS calls (INT_FLAG) on page 2546

com.HTTPResponse.getDataResponse
Returns the entire HTTP response in a BYTE.

Syntax

getDataResponse(
 data BYTE)

1. data is a BYTE variable receiving the HTTP response data.

Library reference | 2073

Usage

The getDataResponse() method returns the body of an HTTP response into a BYTE variable.

The BYTE variable must be located in memory, otherwise operation fails.

Returns binary data as response from a server into a BYTE.

Previous content is discarded.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

The INT_FLAG variable is checked during GWS API call to handle program interruptions, for more details,
see Interruption handling in GWS calls (INT_FLAG) on page 2546

com.HTTPResponse.getFileResponse
Returns the entire HTTP response in a file on the disk.

Syntax

getFileResponse()
 RETURNING filename STRING

1. filename is the absolute path to the file containing the HTTP response.

Usage

Reads an HTTP response and creates a file from it.

The file is created in the temporary directory used by the runtime system (DBTEMP). The name of the file
will be the basename found in the HTTP Content-Disposition Header, if this basename is not specified, the
filename will be created with a UUID. If a file with the same name already exists in the temporary directory,
the API prefixes the new file with a number. It is then of the form : /tmp/ABC/filename_index.ext,
where index represents the number of files with the same name on disk.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

The INT_FLAG variable is checked during GWS API call to handle program interruptions, for more details,
see Interruption handling in GWS calls (INT_FLAG) on page 2546

com.HTTPResponse.getHeader
Returns the value of an HTTP header.

Syntax

getHeader(name STRING)
 RETURNING result STRING

1. name is the name of the HTTP header.

Usage

The getHeader() method returns the value of the HTTP header specified by the name parameter, or
NULL if not found.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

Library reference | 2074

com.HTTPResponse.getHeaderCount
Returns the number of headers.

Syntax

getHeaderCount()
 RETURNING result INTEGER

Usage

The getHeaderCount() method returns the number of headers of the HTTP response.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

com.HTTPResponse.getHeaderName
Returns the name of a header by position.

Syntax

getHeaderName(
 index INTEGER)
 RETURNING result STRING

1. index is the ordinal position of the header.

Usage

The getHeaderName() method returns the name of the HTTP response header according to the position
passed as parameter.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

com.HTTPResponse.getHeaderValue
Returns the value of a header by position.

Syntax

getHeaderValue(
 index INTEGER)
 RETURNING result STRING

1. index is the ordinal position of the header.

Usage

The getHeaderValue() method returns the value of the HTTP response header according to the
position passed as parameter.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

com.HTTPResponse.getMultipartType

Library reference | 2075

Returns whether a response is multipart or not, and the kind of multipart if any.

Syntax

getMultipartType()
 RETURNING result STRING

Usage

Returns whether a response is multipart or not, and the kind of multipart if any.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

com.HTTPResponse.getPartCount
Returns the number of additional parts in the HTTP response.

Syntax

getPartCount()
 RETURNING count INTEGER

Usage

Returns the number of additional parts in the HTTP response. The root part element must be handled via
getXmlResponse(), getTextResponse(), getDataResponse() and beginXmlResponse(). In
other words, there are getPartCount() +1 parts if getMultipartType() does not return NULL.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

com.HTTPResponse.getPart
Returns the HTTP part object at the specified index of the current HTTP response.

Syntax

getPart(
 index INTEGER)
 RETURNING part-object com.HTTPPart

1. index is the index number.

Usage

Returns the HTTP part object at the specified index of the current HTTP response.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

Can raise error -15554 (Index is out of bounds).

com.HTTPResponse.getPartFromContentID

Library reference | 2076

Returns the HTTP part object marked with the given Content-ID value as identifier, or NULL if none.

Syntax

getPartFromContentID(
 id STRING)
 RETURNING part-object com.HTTPPart

1. name is the name of the HTTP header.

Usage

Returns the HTTP part object marked with the given Content-ID value as identifier, or NULL if none.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

com.HTTPResponse.getStatusCode
Returns the HTTP status code.

Syntax

getStatusCode()
 RETURNING result INTEGER

Usage

The getStatusCode() method returns the status code for the HTTP response.

When the returned HTTP status code is 401 or 407, authorization is required.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

com.HTTPResponse.getStatusDescription
Returns the HTTP status description.

Syntax

getStatusDescription()
 RETURNING result STRING

Usage

The getStatusDescription() method returns a description of the HTTP reponse status.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

com.HTTPResponse.getTextResponse
Returns the entire HTTP response in a string.

Syntax

getTextResponse()
 RETURNING data STRING

Library reference | 2077

Usage

The getTextResponse() method returns a HTTP reponse as a entire string.

• The Content-Type header can be of the form */*. For example: application/json.
• Automatic conversion to the locale charset is performed when possible, otherwise throws an exception.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

The INT_FLAG variable is checked during GWS API call to handle program interruptions, for more details,
see Interruption handling in GWS calls (INT_FLAG) on page 2546

com.HTTPResponse.getXmlResponse
Returns the entire HTTP response in a DOM document.

Syntax

getXmlResponse()
 RETURNING data xml.DomDocument

Usage

The getXmlResponse() method returns an HTTP response in a xml.DomDocument object.

The Content-Type header must be of the form */xml or */*+xml. For example: application/xhtml
+xml.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

The INT_FLAG variable is checked during GWS API call to handle program interruptions, for more details,
see Interruption handling in GWS calls (INT_FLAG) on page 2546

Examples
Examples using methods of the com.HTTPResponse class.

For examples, see Examples on page 2068.

The HTTPPart class
The com.HTTPPart class provides an interface to manage the HTTP attachment sent or received in
HTTP.

The STATUS variable is set to zero after a successful method call.

com.HTTPPart methods
Methods for the com.HTTPPart class.

Table 469: Class methods of com.HTTPPart

Name Description

CreateAttachment(
 filename STRING)
 RETURNING part-object com.HTTPPart

Creates a new HTTPPart object based on
given filename located on disk.

CreateFromData(
 b BYTE)

Creates a new HTTPPart object based on
given BYTE located in memory.

Library reference | 2078

Name Description

 RETURNING part-object com.HTTPPart

CreateFromDomDocument(
 x xml.DomDocument)
 RETURNING part-object com.HTTPPart

Creates a new HTTPPart object based on
given XML document.

CreateFromString(
 s STRING)
 RETURNING part-object com.HTTPPart

Creates a new HTTPPart object based on
given string.

Table 470: Object methods of com.HTTPPart

Name Description

getAttachment()
 RETURNING filename STRING

Returns the absolute path to the HTTP part.

getContentAsData(
 b BYTE)

Returns the HTTP part as a BYTE.

getContentAsDomDocument()
 RETURNING domDocument xml.DomDocument

Returns the HTTP part as a XML document.

getHeader(
 name STRING)
 RETURNING value STRING

Setter to handle HTTP multipart headers.

getContentAsString()
 RETURNING str STRING

Returns the HTTP part as a string.

setHeader(
 name STRING,
 value STRING)

Setter to handle HTTP multipart headers.

com.HTTPPart.CreateFromString
Creates a new HTTPPart object based on given string.

Syntax

CreateFromString(
 s STRING)
 RETURNING part-object com.HTTPPart

1. s is a string

Library reference | 2079

Usage

Creates a new HTTPPart object based on given string. To be used via the addPart() method.

Defaults HTTP multipart headers:

• Content-Type: text/plain
• Content-Transfer-Encoding: 8bits

Notice that the string will be converted during request sending into ISO-8859-1 by default, unless a
different charset has been set via setHeader(“Content-Type”,”text/plain; charset=UTF-8”) for instance.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

com.HTTPPart.CreateFromDomDocument
Creates a new HTTPPart object based on given XML document.

Syntax

CreateFromDomDocument(
 x xml.DomDocument)
 RETURNING part-object com.HTTPPart

1. x is an XML document.

Usage

Creates a new HTTPPart object based on given XML document. To be used via the addPart() method.

Defaults HTTP multipart headers:

• Content-Type: text/xml; charset=UTF-8
• Content-Transfer-Encoding: 8bits

A different charset can be set with the setHeader method. For example, setHeader(“Content-
Type”,”text/plain; charset=ISO-8859-1”) sets the charset to ISO-8859-1.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

com.HTTPPart.CreateFromData
Creates a new HTTPPart object based on given BYTE located in memory.

Syntax

CreateFromData(
 b BYTE)
 RETURNING part-object com.HTTPPart

1. b is a BYTE object located in memory.

Usage

Creates a new HTTPPart object based on given BYTE located in memory. To be used via the addPart()
method.

Defaults HTTP headers:

• Content-Type: application/octet-stream
• Content-Transfer-Encoding: base64

Library reference | 2080

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

com.HTTPPart.CreateAttachment
Creates a new HTTPPart object based on given filename located on disk.

Syntax

CreateAttachment(
 filename STRING)
 RETURNING part-object com.HTTPPart

1. filename is the name of a file.

Usage

Creates a new HTTPPart object based on given filename located on disk. To be used via the addPart()
method.

The com.HTTPPart.CreateAttachment() method automatically sets the following headers for the
created HTTPPart object:

• Content-Type is defined according to the file name extension. If the file extension is not recognized,
Content-Type defaults to application/octet-stream.

Note: File extensions to Content-Type mapping can be customized in the file FGLDIR/lib/
wse/mime.cfg.

• Content-Transfer-Encoding is set to "binary".
• Content-Disposition is set with the base name of the given filename as follows: attachment;

filename="basename".

For example, when calling the method as follows:

LET part = com.HTTPPart.CreateAttachment("/opt/myapp/resources/logo.jpg")

The resulting HTTP part headers will look like:

Content-Type: image/jpeg
Content-Transfer-Encoding: binary
Content-Disposition: attachment; filename="logo.jpg"

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

com.HTTPPart.getAttachment
Returns the absolute path to the HTTP part.

Syntax

getAttachment()
 RETURNING filename STRING

Usage

Returns the absolute path location of the received part file.

The file is created in the temporary directory used by the runtime system (DBTEMP). The name of the file
will be the basename found in the HTTP Content-Disposition Header, if this basename is not specified, the

Library reference | 2081

filename will be created with a UUID. If a file with the same name already exists in the temporary directory,
the API prefixes the new file with a number. It is then of the form : /tmp/ABC/filename_index.ext,
where index represents the number of files with the same name on disk.

If the file is encoded in base64, you can use the Genero Web Services fglpass -dec64 command to
convert it back to binary.

It is up to programmer to remove file from the disk when it is no longer needed.

To be used via methods: com.HTTPResponse.getPart on page 2075, com.HTTPResponse.getPartCount
on page 2075, and com.HTTPResponse.getPartFromContentID on page 2075

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

com.HTTPPart.getContentAsData
Returns the HTTP part as a BYTE.

Syntax

getContentAsData(
 b BYTE)

1. b is a variable holding the BYTE data.

Usage

Returns the HTTP part as a BYTE. BYTE data cannot be returned from a function with a RETURN
statement. Therefore, the BYTE parameter must be handled by reference.

To be used via methods: com.HTTPResponse.getPart on page 2075, com.HTTPResponse.getPartCount
on page 2075, and com.HTTPResponse.getPartFromContentID on page 2075

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

The error -15573 is raised if the part cannot be converted to a Genero BYTE.

com.HTTPPart.getContentAsDomDocument
Returns the HTTP part as a XML document.

Syntax

getContentAsDomDocument()
 RETURNING domDocument xml.DomDocument

Usage

Returns the HTTP part as a XML document.

To be used via methods: com.HTTPResponse.getPart on page 2075, com.HTTPResponse.getPartCount
on page 2075, and com.HTTPResponse.getPartFromContentID on page 2075

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

The error -15573 is raised if the part cannot be converted to a XML DomDocument.

com.HTTPPart.getContentAsString

Library reference | 2082

Returns the HTTP part as a string.

Syntax

getContentAsString()
 RETURNING str STRING

Usage

Returns the HTTP part as a string.

To be used via methods: com.HTTPResponse.getPart on page 2075, com.HTTPResponse.getPartCount
on page 2075, and com.HTTPResponse.getPartFromContentID on page 2075

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

The error -15573 is raised if the part cannot be converted to a Genero string or if the charset is not
supported.

com.HTTPPart.getHeader
Setter to handle HTTP multipart headers.

Syntax

getHeader(
 name STRING)
 RETURNING value STRING

1. name is the name of the header part.
2. value is the value for the header part specified by name.

Usage

Getter to handle HTTP multipart headers.

Note: In case of related multipart (i.e., the part is multipart/related and set via the
com.HTTPRequest.setMultipartType("related",NULL,NULL)), it is mandatory
to set a unique Content-ID header. To set up a unique Content-ID header, you can use the
security.RandomGenerator.CreateUUIDString on page 2280 method for that.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

Example

LET val = req.getHeader("MyClientHeader")

com.HTTPPart.setHeader
Setter to handle HTTP multipart headers.

Syntax

setHeader(
 name STRING,
 value STRING)

Library reference | 2083

1. name is the multipart header name.
2. value is the multipart header value (such as HTTP headers).

Usage

Setter to handle HTTP multipart headers.

For instance, when you send a multipart image, you should specify the image mime type with this header
method. If the image is a png, you have to do part.setHeader("Content-Type","image/png"),
which lets the peer know the format of the attached file it has to process.

Note: In case of related multipart (i.e., the part is multipart/related and set via the
com.HTTPRequest.setMultipartType("related",NULL,NULL)), it is mandatory
to set a unique Content-ID header. To set up a unique Content-ID header, you can use the
security.RandomGenerator.CreateUUIDString on page 2280 method for that.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

Example

CALL req.setHeader("MyClientHeader","Hello")

Example
Examples using methods of the com.HTTPPart class.

This example consists of two applications: a client and server exchanging an XML document in multipart
with a image as an attachment.

Client Application

IMPORT com
IMPORT xml

CONSTANT SERVER_URL = "http://localhost:8090/MultipartMixed/Sample"

MAIN

 DEFINE req com.HTTPRequest
 DEFINE resp com.HTTPResponse
 DEFINE doc xml.DomDocument
 DEFINE root xml.DomNode
 DEFINE p com.HTTPPart
 DEFINE type STRING
 DEFINE count INTEGER
 DEFINE ind INTEGER

 LET req = com.HTTPRequest.Create(SERVER_URL)
 CALL req.setMethod("POST")
 CALL req.setHeader("MyClientHeader","Hello")
 TRY
 # Set multipart type
 CALL req.setMultipartType("mixed",NULL,NULL)
 # Add filename as part
 LET p = com.HTTPPart.CreateAttachment("my_picture.png")
 # Set attachment Content-Type
 CALL p.setHeader("Content-Type","image/png")
 # Add part to the request
 CALL req.addPart(p)

Library reference | 2084

 # Perform XML request
 LET doc = xml.DomDocument.CreateDocument("MyXmlDocument")
 CALL req.doXmlRequest(doc)
 # Check response
 LET resp=req.getResponse()
 IF resp.getStatusCode() != 200 THEN
 DISPLAY "HTTP Error ("||resp.getStatusCode()||") ",
 resp.getStatusDescription()
 EXIT PROGRAM (-1)
 END IF
 IF resp.getStatusDescription() != "OK" THEN
 DISPLAY "HTTP Error ("||resp.getStatusCode()||") ",
 resp.getStatusDescription()
 EXIT PROGRAM (-1)
 END IF
 # Check whether multipart response or not
 LET type = resp.getMultipartType()
 IF type IS NULL THEN
 DISPLAY "Failed : Expected multipart in response"
 EXIT PROGRAM (-1)
 ELSE
 DISPLAY "Response is multipart of :",type
 END IF
 # Check response
 LET doc = resp.getXmlResponse()
 IF doc IS NULL THEN
 DISPLAY "Expected XML document as response"
 EXIT PROGRAM (-1)
 ELSE
 DISPLAY "Response is : ",doc.saveToString()
 END IF
 # Process additional parts
 FOR ind = 1 TO resp.getPartCount()
 LET p = resp.getPart(ind)
 IF p.getAttachment() IS NOT NULL THEN
 DISPLAY "Attached file at :",p.getAttachment()
 ELSE
 DISPLAY "Attached part is :",p.getContentAsString()
 END IF
 END FOR
 CATCH
 DISPLAY "unexpected exception :",STATUS," ("||SQLCA.SQLERRM||")"

 EXIT PROGRAM (-1)
 END TRY
END MAIN

Server Application

IMPORT com
IMPORT xml

MAIN

 DEFINE req com.HTTPServiceRequest
 DEFINE url STRING
 DEFINE method STRING
 DEFINE txt STRING
 DEFINE doc xml.DomDocument
 DEFINE type STRING
 DEFINE ind INTEGER
 DEFINE p com.HTTPPart

Library reference | 2085

 CALL com.WebServiceEngine.Start()

 LET req = com.WebServiceEngine.getHTTPServiceRequest(-1)
 LET url = req.getURL()
 IF url IS NULL THEN
 DISPLAY "Failed: url should not be null"
 EXIT PROGRAM (-1)
 END IF
 LET method = req.getMethod()
 IF method IS NULL OR method != "POST" THEN
 DISPLAY "Failed: method should be POST"
 EXIT PROGRAM (-1)
 END IF
 # Check multipart type
 LET type = req.getRequestMultipartType()
 IF type IS NULL THEN
 DISPLAY "Failed: expected multipart in request"
 EXIT PROGRAM (-1)
 END IF
 TRY
 LET doc = req.readXMLRequest()
 DISPLAY "Request is :", doc.saveToString()
 CATCH
 DISPLAY "Failed: unexpected error :", STATUS
 EXIT PROGRAM (-1)
 END TRY
 # Process additional parts
 FOR ind = 1 TO req.getRequestPartCount()
 LET p = req.getRequestPart(ind)
 IF p.getAttachment() IS NOT NULL THEN
 DISPLAY "Attached file at :",p.getAttachment()
 ELSE
 DISPLAY "Attached part is :",p.getContentAsString()
 END IF
 END FOR
 # Set multipart response type
 CALL req.setResponseMultipartType("mixed",NULL,NULL)
 # Add XML Part
 LET p = com.HTTPPart.CreateAttachment("my_other_picture.jpg")
 CALL p.setHeader("Content-Type","image/jpg")
 CALL req.addResponsePart(p)
 LET doc = xml.DomDocument.CreateDocument("MyResponse")
 CALL req.sendXmlResponse(200,NULL,doc)
END MAIN

TCP classes
The TCP classes manage TCP client network operations.

• CLASS TCPRequest
• CLASS TCPResponse

The TCPRequest class
The com.TCPRequest class provides an interface to perform asynchronous XML and TEXT requests over
TCP, with additional XML streaming possibilities.

Important: This Web Services class is not supported on GMI mobile devices.

Library reference | 2086

com.TCPRequest methods
Methods of the com.TCPRequest class.

Table 471: Class methods of com.TCPRequest

Name Description

com.TCPRequest.Create(
 url STRING)
 RETURNING result com.TCPRequest

Creates a new TCP request object.

Table 472: Object methods of com.TCPRequest

Name Description

beginXmlRequest()
 RETURNING writer xml.StaxWriter

Starts a streaming XML request.

doDataRequest(
 data BYTE)

Performs the request by sending binary data.

doRequest()
Performs a TCP request.

doTextRequest(
 data STRING)

Persforms a request with a string.

doXmlRequest(
 document xml.DomDocument)

Persforms a request with a DOM document.

endXmlRequest(
 writer xml.StaxWriter)

Terminates a streaming TCP request.

getAsyncResponse()
 RETURNING response com.TCPResponse

Returns the response after performing a TCP
request, asynchronously.

getResponse()
 RETURNING response com.TCPResponse

Returns the response after performing a TCP
request.

setConnectionTimeOut(
 seconds INTEGER)

Defines the connection time out.

setKeepConnection(
 on BOOLEAN)

Defines if the TCP connection is kept open after
sending a request.

setMaximumResponseLength(
Defines the time out for read/write operations.

Library reference | 2087

Name Description

 length INTEGER)

setTimeOut(
 seconds INTEGER)

Defines the time out for read/write operations.

com.TCPRequest.beginXmlRequest
Starts a streaming XML request.

Syntax

beginXmlRequest()
 RETURNING writer xml.StaxWriter

Usage

The beginXmlRequest() method begins a streaming HTTP request and returns an xml.StaxWriter
object ready to send XML to the server.

After sending all the XML data to the server, you must call the endXmlRequest() method with the
xml.StaxWriter object created by the beginXmlRequest() method.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

The INT_FLAG variable is checked during GWS API call to handle program interruptions, for more details,
see Interruption handling in GWS calls (INT_FLAG) on page 2546

com.TCPRequest.Create
Creates a new TCP request object.

Syntax

com.TCPRequest.Create(
 url STRING)
 RETURNING result com.TCPRequest

1. url is the URL of the TCP request.

Usage

This class method creates a new com.TCPRequest object according to the URL passed as parameter.

The URL must use the TCP or TCPS protocol. Examples of valid URLs include:

• tcp://localhost:4242/

• tcps://localhost:4343/

The URL can be an identifier of an URL mapping with an optional alias:// prefix. See FGLPROFILE
configuration for more details about URL mapping with aliases, and for proxy and security configuration.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

com.TCPRequest.doDataRequest

Library reference | 2088

Performs the request by sending binary data.

Syntax

doDataRequest(
 data BYTE)

1. data is the binary data to be send for a TCP request. The BYTE variable must be located IN MEMORY.

Usage

Performs the TCP request by sending binary data contained in the BYTE variable.

Note: The BYTE variable must be located IN MEMORY.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

com.TCPRequest.doRequest
Performs a TCP request.

Syntax

doRequest()

Usage

The doRequest() method performs the TCP request.

The connection is shutdown for writing, to notify that no data will be sent.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

The INT_FLAG variable is checked during GWS API call to handle program interruptions, for more details,
see Interruption handling in GWS calls (INT_FLAG) on page 2546

Example

IMPORT com
IMPORT XML

MAIN
 DEFINE url STRING
 LET url = "tcp://localhost:4242"
 CALL an_example(url)
END MAIN

FUNCTION an_example(url)
DEFINE url STRING
DEFINE req com.TCPRequest
DEFINE resp com.TCPResponse
DEFINE ret xml.DomDocument

TRY
 LET req = com.TCPRequest.create(url)
 CALL req.doRequest()
 LET resp = req.getResponse()
 LET ret = resp.getXmlResponse()

Library reference | 2089

CATCH
 DISPLAY "ERROR : ", STATUS, SQLCA.SQLERRM
 EXIT PROGRAM(-1)
END TRY

END FUNCTION

com.TCPRequest.doXmlRequest
Persforms a request with a DOM document.

Syntax

doXmlRequest(
 document xml.DomDocument)

1. document is the DOM document describing the request.

Usage

The doXmlRequest() method performs the TCP request by using the information defined in the
xml.DomDocument object passed as parameter.

The connection is shutdown for writing, to notify that no data will be sent.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

The INT_FLAG variable is checked during GWS API call to handle program interruptions, for more details,
see Interruption handling in GWS calls (INT_FLAG) on page 2546

com.TCPRequest.doTextRequest
Persforms a request with a string.

Syntax

doTextRequest(
 data STRING)

1. data is a string describing the request.

Usage

The doTextRequest() method performs the TCP request by using the information defined in string
passed as parameter.

The connection is shutdown for writing, to notify that no data will be sent.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

The INT_FLAG variable is checked during GWS API call to handle program interruptions, for more details,
see Interruption handling in GWS calls (INT_FLAG) on page 2546

com.TCPRequest.endXmlRequest
Terminates a streaming TCP request.

Syntax

endXmlRequest(

Library reference | 2090

 writer xml.StaxWriter)

1. writer is the Stax writer object used for streaming.

Usage

The endXmlRequest() method terminates a streaming TCP request performed with the
xml.StaxWriter object that what created by the beginXmlRequest() method.

The connection is shutdown for writing, to notify that no data will be sent.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

The INT_FLAG variable is checked during GWS API call to handle program interruptions, for more details,
see Interruption handling in GWS calls (INT_FLAG) on page 2546

com.TCPRequest.getResponse
Returns the response after performing a TCP request.

Syntax

getResponse()
 RETURNING response com.TCPResponse

Usage

The getResponse() method returns a TCP response as a com.TCPResponse object, after
a call to doRequest(), doXmlRequest(), doTextRequest(), or beginXmlRequest() /
endXmlRequest() calls.

A call to this methid will stop the program flow until the response is received.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

The INT_FLAG variable is checked during GWS API call to handle program interruptions, for more details,
see Interruption handling in GWS calls (INT_FLAG) on page 2546

com.TCPRequest.getAsyncResponse
Returns the response after performing a TCP request, asynchronously.

Syntax

getAsyncResponse()
 RETURNING response com.TCPResponse

Usage

The getAsyncResponse() method returns a TCP response as a com.TCPResponse object,
after a call to doRequest(), doXmlRequest(), doTextRequest(), or beginXmlRequest() /
endXmlRequest() calls.

Unlike getResponse(), the getAsyncResponse() method does not stop the program flow: The
method returns NULL if the response was not yet received.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

Library reference | 2091

The INT_FLAG variable is checked during GWS API call to handle program interruptions, for more details,
see Interruption handling in GWS calls (INT_FLAG) on page 2546

com.TCPRequest.setTimeOut
Defines the time out for read/write operations.

Syntax

setTimeOut(
 seconds INTEGER)

1. seconds is the time out in seconds.

Usage

This method defines the time value in seconds to wait for a reading or writing operation, before a break.

If the time out is -1, waits infinitely.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

com.TCPRequest.setConnectionTimeOut
Defines the connection time out.

Syntax

setConnectionTimeOut(
 seconds INTEGER)

1. seconds is the time out in seconds.

Usage

This method defines the time value in seconds to wait for a connection, before a break.

If the time out is -1, waits infinitely.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

com.TCPRequest.setKeepConnection
Defines if the TCP connection is kept open after sending a request.

Syntax

setKeepConnection(
 on BOOLEAN)

1. on indicates if the TCP connection must be kept open.

Usage

This method can be used to force the TCP socket to remain open after a send operation, in order to
perform subsequent do*Request() calls, without closing the connection (in write mode).

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

Library reference | 2092

com.TCPRequest.setMaximumResponseLength
Defines the time out for read/write operations.

Syntax

setMaximumResponseLength(
 length INTEGER)

1. length is the max size of a reponse, in Kbytes.

Usage
This method sets the maximum authorized size in Kbyte of the whole response, before a break.

A length of -1 defines no limit.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

The TCPResponse class
The com.TCPResponse class provides an interface to perform XML and TEXT responses over TCP, with
additional XML streaming possibilities.

Important: This Web Services class is not supported on GMI mobile devices.

com.TCPResponse methods
Methods of the com.TCPResponse class.

Table 473: Object methods

Name Description

beginXmlResponse()
 RETURNING reader xml.StaxReader

Starts a streaming TCP response.

endXmlResponse(
 reader xml.StaxReader)

Ends a streaming TCP response.

getDataResponse(
 data BYTE)

Returns a TCP response in binary format.

getTextResponse()
 RETURNING result STRING

Returns a TCP response in string format.

getXmlResponse()
 RETURNING doc xml.DomDocument

Returns an entire DOM document as TCP
response.

com.TCPResponse.beginXmlResponse
Starts a streaming TCP response.

Syntax

beginXmlResponse()

Library reference | 2093

 RETURNING reader xml.StaxReader

Usage

Begins the streaming TCP response and returns an xml.StaxReader object ready to read XML from the
server.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

The INT_FLAG variable is checked during GWS API call to handle program interruptions, for more details,
see Interruption handling in GWS calls (INT_FLAG) on page 2546

com.TCPResponse.endXmlResponse
Ends a streaming TCP response.

Syntax

endXmlResponse(
 reader xml.StaxReader)

1. reader is the STAX reader object created with beginXmlResponse().

Usage

Terminates the streaming TCP response identified by the xml.StaxReader object passed as parameter.
This object must have been created with the beginXmlResponse() method.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

The INT_FLAG variable is checked during GWS API call to handle program interruptions, for more details,
see Interruption handling in GWS calls (INT_FLAG) on page 2546

com.TCPResponse.getDataResponse
Returns a TCP response in binary format.

Syntax

getDataResponse(
 data BYTE)

1. data is the BYTE variable that will hold the response data in binary format. The BYTE variable must be
located IN MEMORY.

Usage

This method retrieves the TCP reponse in binary format into the BYTE variable passed as parameter. The
method will read the TCP stream, until the peer closes the connection.

Note: The BYTE variable must be located IN MEMORY.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

The INT_FLAG variable is checked during GWS API call to handle program interruptions, for more details,
see Interruption handling in GWS calls (INT_FLAG) on page 2546

Library reference | 2094

com.TCPResponse.getTextResponse
Returns a TCP response in string format.

Syntax

getTextResponse()
 RETURNING result STRING

Usage

This method returns a complete streaming TCP response from the server as a string.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

The INT_FLAG variable is checked during GWS API call to handle program interruptions, for more details,
see Interruption handling in GWS calls (INT_FLAG) on page 2546

com.TCPResponse.getXmlResponse
Returns an entire DOM document as TCP response.

Syntax

getXmlResponse()
 RETURNING doc xml.DomDocument

Usage

This method returns a complete xml.DomDocument as streaming TCP response from the server.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

The INT_FLAG variable is checked during GWS API call to handle program interruptions, for more details,
see Interruption handling in GWS calls (INT_FLAG) on page 2546

Helper classes
The Helper classes provide utility classes.

• The Util class on page 2094

The Util class
The com.Util class provides static helper methods.

This class does not have to be instantiated.

Important: This Web Services class is not supported on GMI mobile devices.

com.Util methods
Methods of the com.Util class.

Table 474: Class methods

Name Description

com.Util.UniqueApplicationInstance(
 path STRING)

Checks that the calling application is the only one to
run.

Library reference | 2095

Name Description

 RETURNING result INTEGER

com.Util.UniqueApplicationInstance
Checks that the calling application is the only one to run.

Syntax

com.Util.UniqueApplicationInstance(
 path STRING)
 RETURNING result INTEGER

1. path is the path to the lock file.

Usage

This method checks that the calling application is the only one to run, by trying to get an exclusive lock on
the given file.

If the lock could be set, the method returns 0. Otherwise, returns 1 and updates STATUS with an error
code.

Specific classes
Several classes support specific features.

• The APNS class on page 2095

The APNS class
The com.APNS class implements Apple Push Notification Service APIs.

The com.APNS class implements a set of methods to build and handle push messages to be broadcasted
by the Apple Push Notification service.

APNs SSL certificate
Get and configure an SSL certificate to establish secure connections to the Apple Push Notification
service.

Basics

The Apple Push Notification Certificate identifies the push notification service for a given mobile app. This
certificate will be created from an App ID (a.k.a. Bundle ID) and is used by the APNs system to dispatch
the notification message to the registered devices.

You can create two type of APNs certificates for a given App ID:

• Sandbox (for development and test purpose)
• Production (for deployment)

An APNS push notification provider or an APNS feedback handler needs to establish a secure connection
to Apple's APNs server.

Get an APNs certificate for your app

In this section we will produce the myapp.cer file and myapp-key.p12 file.

To create an Apple Push Notification Certificate:

1. Log to Apple's Member Center with you iOS developer or enterprise account,
2. Select Certificates, Identifiers & Profiles,
3. Under Certificates, select the + symbol,

https://developer.apple.com/membercenter/index.action

Library reference | 2096

4. Select Apple Push Notification service SSL (Sandbox) for development, or Apple Push Notification
service SSL (Production) for production,

5. You need to choose the explicit app ID you want to use for push notifications. Verify before that you
enable Push Notification Service for this app ID (go to App IDs section and edit your app ID),

6. Follow the instructions on the page to create a CSR file then click Continue,
7. Your certificate request is now available. Now you can go back to the Development Certificate section

still active in your browser and click Choose file,
8. Navigate to the file you just saved and choose that file,
9. Click Generate,
10.Once the certificate is generated, click Download. The certificate will download into your Downloads

folder, as a .cer file (for ex: myapp.cer).
11.Double-click this file to install it into Keychain,
12.When done, your new certificate should be listed in the Certificates list,
13.Open your Keychain app and locate the certificate you created, export the private key in p12 format (for

ex myapp-key.p12). Note that you will be asked for a password to encode the .p12 file, and for your
session password, to exported Keychain files.

Configure Genero to use the APNs certificate

On the Genero push provider server, you will need the public certificate (myapp.crt file)
and the private key (myapp-key.pem file) for you app. These files will be referenced in the
security.global.certificate and security.global.privatekey entries of FGLPROFILE.

In order to authenticate the APNs server, you will also need the root certificate authority
(apple_entrust_root_certification_authority.pem), that can be downloaded from Apple's web
site. This file will be referenced by the security.global.ca entry in FGLPROFILE.

Note: When executing on a Mac, the root certificate (security.global.ca entry) is not
required: The Web Services library reads the Keystore of the Mac computer, to authenticate the
APNs server.

Create the myapp.crt file (public certificate) from the myapp.cer file, with the openssl x509
command:

$ openssl x509 -in myapp.cer -inform der -out myapp.crt

Convert the myapp-key.p12 file (containing the private key) to a myapp-key.pem format, with the
openssl pkcs12 command:

$ openssl pkcs12 -nocerts -in myapp-key.p12 -out myapp-key.pem

Note: You need to enter the passphrase for the .p12 file so that openssl can read it. Then you
need to enter a new passphrase that will be used to encrypt the .pem file.

FGLPROFILE entries require encrypted private key files, therefore you need to remove the passphrase
from the myapp-key.pem file, with the openssl rsa command:

$ openssl rsa -in myapp-key.pem -out myapp-key-noenc.pem

Set up your FGLPROFILE with the appropriate security.* entries:

security.global.ca =
 "apple_entrust_root_certification_authority.pem"
security.global.certificate = "myapp.crt"
security.global.privatekey = "myapp-key-noenc.pem"

In the above example:

Library reference | 2097

1. apple_entrust_root_certification_authority.pem is the HTTPS root certificate
authenticating the APNs server (if the computer is not a Mac).

2. myapp.crt is the public certificate for your app.
3. myapp-key-noenc.pem is the private key for your app.

Note: If you want to keep the private key encrypted, you need to configure a password agent, as
described in Using the password agent

com.APNS methods
Methods of the com.APNS class.

Table 475: Class methods

Name Description

com.APNS.DecodeError(
 data BYTE)
 RETURNING uuid STRING, error
 INTEGER

Decodes content of BYTE data returned from the
APNS server in case of error.

com.APNS.DecodeFeedback(
 data BYTE,
 unregs DYNAMIC ARRAY OF RECORD
 timestamp INTEGER,
 deviceToken STRING
 END RECORD
)

Decodes content of BYTE data returned from the
APNS feedback service.

com.APNS.EncodeMessage(
 data BYTE,
 deviceToken STRING,
 json STRING,
 uuid STRING,
 expiration INTEGER,
 priority SMALLINT)
 RETURNING result INTEGER

Encodes an APNS specific push notification
message into a BYTE.

com.APNS.DecodeError
Decodes content of BYTE data returned from the APNS server in case of error.

Syntax

com.APNS.DecodeError(
 data BYTE)
 RETURNING uuid STRING, error INTEGER

1. data is the BYTE variable containing the error data. This BYTE variable must be located IN MEMORY.
2. uuid is a Base64 encoded string containing the push notification identifier.
3. error is the APNS error code returned by the server.

Usage

This method decodes the content of the BYTE variable passed as a parameter and received as response
for a push notification message in the event of an error from the APNs server.

Note: This BYTE variable must be located IN MEMORY.

Library reference | 2098

The uuid is a binary value that identifies the push notification message. It is returned as a Base64-encoded
string.

The error returned value defines the APNs error code. For example, error will be set to 10 if the APNs
server was shutdown. See the Apple Push Notification Service error reference for more details.

In the case of a decoding error, the method will raise the exception -15566, with details in the
SQLCA.SQLERRM register.

Example

DEFINE error_data BYTE,
 uuid STRING,
 error INTEGER

 LOCATE error_data IN MEMORY

 -- Send push notification message TCP request
 ...
 CALL req.doDataRequest(data)
 LET resp = req.getResponse()
 TRY
 CALL resp.getDataResponse(error_data)
 CALL com.APNS.DecodeError(error_data)
 RETURNING uuid, ecode
 ...

For a complete example, see APNs push provider on page 2101.

com.APNS.DecodeFeedback
Decodes content of BYTE data returned from the APNS feedback service.

Syntax

com.APNS.DecodeFeedback(
 data BYTE,
 unregs DYNAMIC ARRAY OF RECORD
 timestamp INTEGER,
 deviceToken STRING
 END RECORD
)

1. data is the BYTE variable containing the feedback data. This BYTE variable must be located IN
MEMORY.

2. unregs is a structured dynamic array that will contain the list of unregistered device tokens.

a. timestamp is the number of seconds since Unix Epoch (in UTC)
b. deviceToken is a APNS device token that has been unregistered (encoded in Base-64)

Usage

Apple recommends to connect frequently to the APNS feedback server in order to verify that your
applications are still registered for push notifications.

To get APNS feedback, you must perform a TCP request (using SSL), to the following specific URI:

tcps://feedback.push.apple.com:2196

The DecodeFeedback() method decodes the content of the BYTE variable, which was passed as a
parameter and received as response for the TCP request to the APNS feedback server.

Library reference | 2099

Note: This BYTE variable must be located IN MEMORY.

For the second parameter, this method takes a structured dynamic array that will be filled with the list of
unregistered APNS device tokens. It is up to the push program to stop sending push notification messages
for these unregistered device tokens.

The timestamp member of an unregs dynamic array element can be used to verify that device tokens have
not been re-registered since the feedback entry was generated. This timestamp is returned as a number
of seconds since the Unix epoch, in UTC. Use the util.Datetime.fromSecondsSinceEpoch on page 1950
utility API to convert timestamp to a DATETIME value in the current local time.

The deviceToken member of an unregs dynamic array element identifies iOS devices that have been
unregistered from the APNS server. Note that these identifier is encoded in Base64.

In the event of a decoding error, the method will raise the exception -15566, with details in the
SQLCA.SQLERRM register.

Example

DEFINE feedback_data BYTE,
 unregs DYNAMIC ARRAY OF RECORD
 timestamp INTEGER,
 deviceToken STRING
 END RECORD,
 i INTEGER

LOCATE feedback_data IN MEMORY

... TCP request to APNS feedback server ...

CALL com.APNS.DecodeFeedback(feedback_data, unregs)

FOR i=1 TO unregs.getLength()
 DISPLAY i, " ", unrefs[i].deviceToken
END FOR

For a complete example, see APNs feedback handler on page 2102.

com.APNS.EncodeMessage
Encodes an APNS specific push notification message into a BYTE.

Syntax

com.APNS.EncodeMessage(
 data BYTE,
 deviceToken STRING,
 json STRING,
 uuid STRING,
 expiration INTEGER,
 priority SMALLINT)
 RETURNING result INTEGER

1. data is the BYTE variable holding the APNS message. This BYTE variable must be located IN MEMORY.
2. deviceToken is an APNS device token (encoded in Base-64).
3. json is a JSON string containing the APNS push message data.
4. uuid is the 4 bytes-long push message identifier (encoded in Base64).
5. expiration is a number of seconds since Unix Epoch defining the expiration date of the message.
6. priority is an integer defining the priority of the message.

Library reference | 2100

Usage

This method builds the APNS push notification message into a BYTE variable, for a given device token.

Note: This BYTE variable must be located IN MEMORY.

Note: The size of an APNS notification payload cannot exceed 2 Kilobytes. Make sure that the
resulting BYTE variable does not exceed this size limitation. If more information needs to be
passed, after receiving the push message, apps must contact the server part to query for more
information. However, this is only possible when network is available.

The APNS push notification message protocol requires some binary data to be encoded in the message
content before it is sent to the APNS server with a TCP (over SSL) request, to specific URIs, namely:

• "tcps://gateway.sandbox.apple.com:2195" (for development)
• "tcps://gateway.push.apple.com:2195" (for production)

You need to provide several parameters in order to build the push notification message:

The deviceToken parameter is an APNS device token encoded in Base-64. It's used to identify the target
device that must receive the push message. The device token identifies a single iOS device: If you have
N devices registered to your push notification provider, you will have N different device tokens. If you want
to send one push notification message to all the devices, you must send N different messages, where the
only difference between the messages is the device token.

Note: It's in your hands to handle the list of registered device tokens. A device token is assigned to
a physical iOS device when the mobile app issues a registerForRemoteNotifications on page 1934
front call. The app must then provide its device token to the push provider program using a method
such as a web service mechanism.

Fill the json parameter with a JSON string containing the APNS push message data. For example:

LET json = '{"aps":{"alert":"Hello,
 world","sound":"default","badge":1,"content-available":1}}'

See APNS documentation for more details about the JSON content of a message.

The uuid parameter is the 4 bytes-long push message identifier, encoded in Base64. This parameter
can used later to identify the message in push notification errors (com.APNS.DecodeError
on page 2097). This parameter can be NULL. To create the uuid parameter, use the
security.RandomGenerator.CreateRandomString on page 2279 API, with a size of 4:

LET uuid = security.RandomGenerator.createRandomString(4)

The expiration parameter is a number of seconds since Unix Epoch. It defines the expiration date of the
message if it can not be sent by the APNS server to the target devices. This parameter can be NULL, to
indicate that there is no expiration date:

LET dt = CURRENT + INTERVAL (10) MINUTE TO MINUTE
LET expiration = util.Datetime.toSecondsSinceEpoch(dt)

The priority parameter can be used to define a priority for the push notification message. Typically, use a
value of 10 for immediate, 5 for delayed. This parameter can be NULL. See APNS documentation for more
details.

If there's an encoding error, the method will raise the exception -15566, with details in the
SQLCA.SQLERRM register.

Example

DEFINE push_data BYTE,
 deviceTokenHexa STRING,

Library reference | 2101

 dt DATETIME YEAR TO FRACTION(3),
 expiration INTEGER,
 json_data STRING,
 uuid STRING

LOCATE push_data IN MEMORY

LET deviceTokenHexa = "84e3................."

LET dt = CURRENT + INTERVAL (10) MINUTE TO MINUTE
LET expiration = util.Datetime.toSecondsSinceEpoch(dt)

LET json_date = util.JSON.stringify(...)

LET uuid = security.RandomGenerator.createRandomString(4)

CALL com.APNS.EncodeMessage(
 push_data,
 security.HexBinary.ToBase64(deviceTokenHexa),
 json_data,
 uuid,
 expiration,
 10
)

IF LENGTH(push_data) > 2000 THEN
 -- Must reduce the message content...
 RETURN FALSE
END IF

-- Do the TCP request with the push_data variable
...

For a complete example, see APNs push provider on page 2101.

APNs examples
APNs push provider

The com.APNS class can be used to implement an APNs push provider.

The following code example implements a push program using the com.APNS API to send a notification
message to devices by using the TCP request API. See also com.APNS methods on page 2097 for more
details about the APNs API.

Note: An SSL certificate needs to be defined in FGLPROFILE, as described in APNs SSL
certificate on page 2095.

Note: The size of the resulting BYTE variable containing the APNS payload cannot exceed 2
Kilobytes.

Important: In order to check that the push message was properly handled by the APNs server,
you need to define a TCP request timeout (2 seconds in this example). In case of error, the APNs
server will return a response immediately. In case of success, there is not a response from the
APNs server. For more details about this protocol, see Apple's APNs documentation.

IMPORT com
IMPORT security
IMPORT util

MAIN
 DEFINE json STRING
 DEFINE deviceTokenHexa STRING
 DEFINE req com.TCPRequest
 DEFINE resp com.TCPResponse

Library reference | 2102

 DEFINE uuid STRING
 DEFINE ecode INTEGER
 DEFINE dt DATETIME YEAR TO SECOND
 DEFINE exp INTEGER
 DEFINE data, err BYTE

 LOCATE data IN MEMORY
 LOCATE err IN MEMORY

 LET deviceTokenHexa = "84e3................."
 LET dt = CURRENT + INTERVAL(10) MINUTE TO MINUTE
 LET exp = util.Datetime.toSecondsSinceEpoch(dt)
 TRY
 LET req = com.TCPRequest.create("tcps://gateway.push.apple.com:2195")
 CALL req.setKeepConnection(true)
 CALL req.setTimeout(2) # Wait 2 seconds for APNs to return an error code
 LET uuid = security.RandomGenerator.createRandomString(4)
 LET json = '{"aps":{"alert":"Hello,
 world","sound":"default","badge":1,"content-available":1}}'
 CALL com.APNS.EncodeMessage(
 data,
 security.HexBinary.ToBase64(deviceTokenHexa),
 json,
 uuid,
 exp,
 10
)
 IF LENGTH(data) > 2000 THEN
 DISPLAY "APNS payload cannot exceed 2 kilobytes"
 EXIT PROGRAM 1
 END IF
 DISPLAY "Sending notif with ID:",uuid," and expiring at ",dt
 CALL req.doDataRequest(data)
 LET resp = req.getResponse()
 TRY
 CALL resp.getDataResponse(err)
 CALL com.APNS.DecodeError(err) RETURNING uuid, ecode
 DISPLAY "ERROR code :",ecode
 DISPLAY "ERROR uuid :",uuid
 CATCH
 CASE STATUS
 WHEN -15553 DISPLAY "Timeout Push sent without error"
 WHEN -15566 DISPLAY "Operation failed :", SQLCA.SQLERRM
 WHEN -15564 DISPLAY "Server has shutdown"
 OTHERWISE DISPLAY "ERROR :",STATUS
 END CASE
 END TRY
 CATCH
 DISPLAY "ERROR :",STATUS||" ("||SQLCA.SQLERRM||")"
 END TRY

END MAIN

APNs feedback handler
The com.APNS class can be used to implement a server application to query the APNs feedback service.

Implement an APNs feedback handler to get a list of unregistered device tokens in order to stop sending
push notification messages to these apps.

Note: An SSL certificate needs to be defined in FGLPROFILE, as described in APNs SSL
certificate on page 2095.

IMPORT com

Library reference | 2103

IMPORT security
IMPORT util

MAIN
 DEFINE req com.TCPRequest
 DEFINE resp com.TCPResponse
 DEFINE feedback DYNAMIC ARRAY OF RECORD
 timestamp INTEGER,
 deviceToken STRING
 END RECORD
 DEFINE timestamp DATETIME YEAR TO SECOND
 DEFINE i INTEGER
 DEFINE data BYTE

 LOCATE data IN MEMORY

 TRY
 LET req = com.TCPRequest.create("tcps://feedback.push.apple.com:2196")
 CALL req.setKeepConnection(true)
 CALL req.setTimeout(2)
 CALL req.doRequest()
 LET resp = req.getResponse()
 CALL resp.getDataResponse(data)
 DISPLAY "Feedback service has responded"
 CALL com.APNS.DecodeFeedback(data,feedback)
 FOR i=1 TO feedback.getLength()
 LET timestamp =
 util.Datetime.fromSecondsSinceEpoch(feedback[i].timestamp)
 DISPLAY "Device Token :",feedback[i].deviceToken, " Timestamp :",
 timestamp
 END FOR
 CATCH
 CASE STATUS
 WHEN -15553 DISPLAY "Timeout: No feedback message"
 WHEN -15566 DISPLAY "Operation failed :", SQLCA.SQLERRM
 WHEN -15564 DISPLAY "Server has shutdown"
 OTHERWISE DISPLAY "ERROR :",STATUS
 END CASE
 END TRY

END MAIN

The xml package
The Genero Web Services XML package provides classes and methods to handle any kind of XML
documents, including documents with namespaces.

The library provides a W3C-compatible DOM API, integrating additional XML Schema and DTD validation
methods. There is also an API compatible with StAX for writing or reading XML documents where
performance and speed are important.

Use the IMPORT statement at the top of the module using this library:

IMPORT xml

Note: The DOM API of the om package is designed to handle specific FGL files or to manipulate
the user interface tree (the AUI tree). For all other cases/scenarios, we recommend that you use the
DOM API of the Web Services xml package.

• The Document Object Modeling (DOM) classes on page 2104
• The streaming API for XML (StAX) classes on page 2170
• XML serialization classes on page 2202

Library reference | 2104

• XML security classes on page 2208
• OM to XML Migration on page 2276

The Document Object Modeling (DOM) classes
The Document Object Modeling (DOM) classes manage XML documents entirely in memory with support
of XML Schema and DTD validation.

• CLASS DomDocument

• Features
• CLASS DomNode

• Types
• CLASS DomNodeList

The DomDocument class
The xml.DomDocument class provides methods to manipulate a data tree, following the DOM standards.

The STATUS variable is set to zero after a successful method call.

xml.DomDocument methods
Methods for the xml.DomDocument class.

Table 476: Class methods: Creation

Name Description

xml.DomDocument.create()
 RETURNING object xml.DomDocument

Constructor of an empty DomDocument object.

xml.DomDocument.createDocument(
 name STRING)
 RETURNING object xml.DomDocument

Constructor of a DomDocument with an XML root
element.

xml.DomDocument.createDocumentNS(
 prefix STRING,
 name STRING,
 ns STRING)
 RETURNING object xml.DomDocument

Constructor of a DomDocument with a root
namespace-qualified XML root element

Table 477: Object methods: Navigation

Name Description

getDocumentElement()
 RETURNING object xml.DomNode

Returns the root XML Element DomNode object for
this DomDocument object.

getDocumentNodesCount()
 RETURNING count INTEGER

Returns the number of child DomNode objects for a
DomDocument object.

getDocumentNodeItem(
 pos INTEGER)

Returns the child DomNode object at a given
position for this DomDocument object.

Library reference | 2105

Name Description

 RETURNING object xml.DomNode

getElementById(
 id STRING)
 RETURNING object xml.DomNode

Returns the element that has an attribute of type ID
with the given value

getElementsByTagName(
 name STRING)
 RETURNING object xml.DomNodeList

Returns a DomNodeList object containing all XML
Element DomNode objects with the same tag name
in the entire document.

getElementsByTagNameNS(
 name STRING,
 ns STRING)
 RETURNING list xml.DomNodeList

Returns a DomNodeList object containing all
namespace qualified XML Element DomNode
objects with the same tag name and namespace in
the entire document

getFirstDocumentNode()
 RETURNING object xml.DomNode

Returns the first child DomNode object for a
DomDocument object.

getLastDocumentNode()
 RETURNING object xml.DomNode

Returns the last child DomNode object for a
DomDocument object.

selectByXPath(
 expr STRING,
 nslist ...)
 RETURNING list xml.DomNodeList

Returns a DomNodeList object containing
all DomNode objects matching an XPath 1.0
expression.

Table 478: Object methods: Management

Name Description

appendDocumentNode(
 node xml.DomNode)

Adds a child DomNode object to the end of the
DomNode children for this DomDocument object.

clone()
 RETURNING object xml.DomDocument

Returns a copy of a DomDocument object.

declareNamespace(
 node xml.DomNode,
 alias STRING,
 ns STRING)

Forces namespace declaration to an XML Element
DomNode for a DomDocument object.

insertAfterDocumentNode(
 node xml.DomNode,

Inserts a child DomNode object after another child
DomNode for a DomDocument object.

Library reference | 2106

Name Description

 ref xml.DomNode)

insertBeforeDocumentNode(
 node xml.DomNode,
 ref xml.DomNode)

Inserts a child DomNode object before another
child DomNode for this DomDocument object.

importNode(
 node xml.DomNode
 deep INTEGER)
 RETURNING object xml.DomNode

Imports a DomNode from a DomDocument object
into its new context (attached to a DomDocument
object).

prependDocumentNode(
 node xml.DomNode)

Adds a child DomNode object to the beginning of
the DomNode children for a DomDocument object

removeDocumentNode(
 node xml.DomNode)

Removes a child DomNode object from the
DomNode children for this DomDocument object.

Table 479: Object methods: Node Creation

Name Description

createAttribute(
 name STRING)
 RETURNING object xml.DomNode

Creates an XML Attribute DomNode object for a
DomDocument object.

createAttributeNS(
 prefix STRING,
 name STRING,
 ns STRING)
 RETURNING object xml.DomNode

Creates an XML namespace-qualified Attribute
DomNode object for a DomDocument object.

createCDATASection(
 cdata STRING)
 RETURNING object xml.DomNode

Creates an XML CData DomNode object for a
DomDocument object.

createComment(
 comment STRING)
 RETURNING object xml.DomNode

Creates an XML Comment DomNode object for a
DomDocument object.

createDocumentFragment()
 RETURNING object xml.DomNode

Creates an XML Document Fragment DomNode
object for a DomDocument object.

createDocumentType(
 name STRING,
 publicID STRING,
 systemID STRING,
 internalDTD STRING)

Creates an XML Document Type (DTD) DomNode
object for a DomDocument object.

Library reference | 2107

Name Description

 RETURNING object xml.DomNode

createElement(
 name STRING)
 RETURNING object xml.DomNode

Creates an XML Element DomNode object for a
DomDocument object

createElementNS(
 prefix STRING,
 name STRING,
 ns STRING)
 RETURNING object xml.DomNode

Creates an XML namespace-qualified Element
DomNode object for a DomDocument object.

createEntityReference(
 ref STRING)
 RETURNING object xml.DomNode

Creates an XML EntityReference DomNode object
for a DomDocument object

createNode(
 str STRING)
 RETURNING object xml.DomNode

Creates an XML DomNode object from a string for
a DomDocument object.

createProcessingInstruction(
 target STRING,
 data STRING)
 RETURNING object xml.DomNode

Creates an XML Processing Instruction DomNode
object for this DomDocument object.

createTextNode(
 text STRING)
 RETURNING object xml.DomNode

Creates an XML Text DomNode object for a
DomDocument object.

Table 480: Object methods: Load and Save

Name Description

load(
 url STRING)

Loads an XML Document into a DomDocument
object from a file or an URL.

loadFromPipe(
 cmd STRING)

Loads an XML Document into a DomDocument
object from a PIPE.

loadFromString(
 str STRING)

Loads an XML Document into a DomDocument
object from a string.

normalize()
Normalizes the entire Document.

save(
Saves a DomDocument object as an XML
Document to a file or URL.

Library reference | 2108

Name Description

 url STRING)

saveToPipe(
 cmd STRING)

Saves a DomDocument object as an XML
Document to a PIPE.

saveToString()
 RETURNING result STRING

Saves a DomDocument object as an XML
Document to a string.

Table 481: Object methods: Configuration

Name Description

getFeature(
 feature STRING)
 RETURNING result STRING

Gets a feature for a DomDocument object.

getXmlEncoding()
 RETURNING result STRING

Returns the document encoding as defined in the
XML document declaration.

getXmlVersion()
 RETURNING result STRING

Returns the document version as defined in the
XML document declaration.

isXmlStandalone()
 RETURNING result INTEGER

Returns whether the XML standalone attribute is
set in the XML declaration.

setFeature(
 feature STRING,
 value STRING)

Sets a feature for a DomDocument object.

setXmlEncoding(
 enc STRING)

Sets the XML document encoding in the XML
declaration.

setXmlStandalone(
 alone INTEGER)

Sets the XML standalone attribute in the XML
declaration to yes or no in the XML declaration.

Table 482: Object methods: Validation

Name Description

validate()
 RETURNING result INTEGER

Performs a DTD or XML Schema validation for a
DomDocument object.

validateOneElement(
 node xml.DomNode)

Performs a DTD or XML Schema validation of an
XML Element DomNode object.

Library reference | 2109

Name Description

 RETURNING result INTEGER

Table 483: Object methods: Error Management

Name Description

getErrorsCount()
 RETURNING count INTEGER

Returns the number of errors encountered during
the loading, saving or validation of an XML
document.

getErrorDescription(
 pos INTEGER)
 RETURNING desc STRING

Returns the error description at given position.

xml.DomDocument.appendDocumentNode
Adds a child DomNode object to the end of the DomNode children for this DomDocument object.

Syntax

appendDocumentNode(
 node xml.DomNode)

1. node is the node to add.

Usage

Adds a child DomNode object to the end of the DomNode children for this DomDocument object, where
node is the node to add.

Only Text nodes, Processing Instruction nodes, Document Fragment nodes, one Element node and one
Document Type node allowed.

Note: A fragment is a structure created to receive xml nodes that are not always valid. Once a
fragment is added to a valid node, the fragment becomes empty as all nodes are moved from the
fragment as a child to the valid node. So developpers can work on the fragment until it is added to
another node. At that time developers should no more work on the fragment but rather on the valid
node.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.DomDocument.clone
Returns a copy of a DomDocument object.

Syntax

clone()
 RETURNING object xml.DomDocument

Usage

Returns a copy of this DomDocument object, or NULL.

Library reference | 2110

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.DomDocument.create
Constructor of an empty DomDocument object.

Syntax

xml.DomDocument.create()
 RETURNING object xml.DomDocument

Usage

Constructor of an empty DomDocument object.

Returns a DomDocument object.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

Example

Create a DomDocument without a root node:

xml.domDocument.create()

Create a DomDocument with an initial root node named ARoot:

xml.domDocument.create("ARoot")

xml.DomDocument.createAttribute
Creates an XML Attribute DomNode object for a DomDocument object.

Syntax

createAttribute(
 name STRING)
 RETURNING object xml.DomNode

1. name is the name of the XML attribute.

Usage

Creates an XML Attribute DomNode object for a DomDocument object, where name is the name of the
XML attribute, cannot be NULL.

Returns a DomNode object, or NULL.

To create a default namespace declaration attribute use xmlns as the name. (Using declareNamespace
instead is recommended)

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.DomDocument.createAttributeNS

Library reference | 2111

Creates an XML namespace-qualified Attribute DomNode object for a DomDocument object.

Syntax

createAttributeNS(
 prefix STRING,
 name STRING,
 ns STRING)
 RETURNING object xml.DomNode

1. prefix is the prefix of the XML attribute.
2. name is the name of the XML attribute.
3. ns is the namespace URI of the XML attribute.

Usage

Creates an XML namespace-qualified Attribute DomNode object for this DomDocument object, where
prefix is the prefix of the XML attribute, cannot be NULL; name is the name of the XML attribute, cannot be
NULL; ns is the namespace URI of the XML attribute, cannot be NULL.

Returns a DomNode object, or NULL.

To create a namespace declaration attribute use xmlns as the prefix and http://www.w3.org/XML/1998/
namespace as the namespace. Using declareNamespace instead is recommended.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.DomDocument.createCDATASection
Creates an XML CData DomNode object for a DomDocument object.

Syntax

createCDATASection(
 cdata STRING)
 RETURNING object xml.DomNode

1. cdata is the data of the XML CData node.

Usage

Creates an XML CData DomNode object for this DomDocument object, where cdata is the data of the XML
CData node, or NULL. Returns a DomNode object, or NULL.

Only the characters #x9, #xA, #xD, [#x20-#xD7FF], [#xE000-#xFFFD] and [#x10000-#x10FFFF] are
allowed in the content of an XML CDATASection node.

The character sequence (Double-Hyphen) '--' is not allowed in the content of an XML CDATASection node.
The saveToFile() and normalize() methods will fail if this sequence or characters other than those
allowed exist in a CDATASection node.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.DomDocument.createComment

Library reference | 2112

Creates an XML Comment DomNode object for a DomDocument object.

Syntax

createComment(
 comment STRING)
 RETURNING object xml.DomNode

1. comment is the data of the XML Comment node.

Usage

Creates an XML Comment DomNode object for this DomDocument object, where comment is the data of
the XML Comment node, or NULL.

Returns a DomNode object, or NULL.

Only the characters #x9, #xA, #xD, [#x20-#xD7FF], [#xE000-#xFFFD] and [#x10000-#x10FFFF] are
allowed in the content of an XML Comment node.

The character sequence (Double-Hyphen) '--' is not allowed in the content of an XML Comment node.
The saveToFile() and normalize() methods will fail if this sequence or characters other than those
allowed exist in a Comment node.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.DomDocument.createDocument
Constructor of a DomDocument with an XML root element.

Syntax

xml.DomDocument.createDocument(
 name STRING)
 RETURNING object xml.DomDocument

1. name is the name of the XML Element.

Usage

Constructor of a xml.DomDocument with an XML root element; where name is the name of the XML
Element.

Returns a DomDocument object or NULL.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.DomDocument.createDocumentFragment
Creates an XML Document Fragment DomNode object for a DomDocument object.

Syntax

createDocumentFragment()
 RETURNING object xml.DomNode

Library reference | 2113

Usage

Creates an XML Document Fragment DomNode object for this DomDocument object.

Returns a DomNode object, or NULL.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.DomDocument.createDocumentNS
Constructor of a DomDocument with a root namespace-qualified XML root element

Syntax

xml.DomDocument.createDocumentNS(
 prefix STRING,
 name STRING,
 ns STRING)
 RETURNING object xml.DomDocument

1. prefix is the prefix of the XML Element or NULL.
2. name is the name of the XML Element.
3. ns is the namespace of the XML Element.

Usage

Constructor of a xml.DomDocument with a root namespace-qualified XML root element where prefix is the
prefix of the XML Element or NULL, name is the name of the XML Element, and ns is the namespace of
the XML Element. Returns a DomDocument object.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

Example

Create a DomDocument with an initial root node named "List" with abc as the prefix
and http://www.mysite.com/xmlapi as the namespace:

xml.domdocument.createDocumentNS("abc","List","http://
www.mysite.com/xmlapi")

Produces:

<abc:List xmlns:abc="http://www.mysite.com/xmlapi">
[...]
</abc:List>

xml.DomDocument.createDocumentType
Creates an XML Document Type (DTD) DomNode object for a DomDocument object.

Syntax

createDocumentType(
 name STRING,
 publicID STRING,
 systemID STRING,
 internalDTD STRING)

Library reference | 2114

 RETURNING object xml.DomNode

1. name is the name of the document type.
2. publicID is the URI of the public identifier.
3. systemID is the URL of the system identifier (Specifies the file location of the external DTD subset).
4. internalDTD is the internal DTD subset.

Usage

Creates an XML Document Type (DTD) DomNode object for this DomDocument object; name is the name
of the document type; publicID is the URI of the public identifier or NULL; systemID is the URL of the
system identifier or NULL (Specifies the file location of the external DTD subset); internalDTD is the internal
DTD subset or NULL.

Returns a DomNode object, or NULL if internalDTD is malformed.

Caution: Not part of W3C API.

Only internal DTDs are supported.

The public identifier cannot be set without the system identifier.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.DomDocument.createElement
Creates an XML Element DomNode object for a DomDocument object

Syntax

createElement(
 name STRING)
 RETURNING object xml.DomNode

1. name is the name of the XML element.

Usage

Creates an XML Element DomNode object for this DomDocument object, where name is the name of the
XML element, cannot be NULL.

Returns a DomNode object, or NULL.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.DomDocument.createElementNS
Creates an XML namespace-qualified Element DomNode object for a DomDocument object.

Syntax

createElementNS(
 prefix STRING,
 name STRING,
 ns STRING)
 RETURNING object xml.DomNode

1. prefix is the prefix of the XML element, or NULL to use the default namespace.

Library reference | 2115

2. name is the name of the XML element.
3. ns is the namespace URI of the XML element.

Usage

Creates an XML namespace-qualified Element DomNode object for this DomDocument object, where
prefix is the prefix of the XML element, or NULL to use the default namespace; name is the name of the
XML element, cannot be NULL; ns is the namespace URI of the XML element, cannot be NULL.

Returns a DomNode object, or NULL.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.DomDocument.createEntityReference
Creates an XML EntityReference DomNode object for a DomDocument object

Syntax

createEntityReference(
 ref STRING)
 RETURNING object xml.DomNode

1. ref is the name of the entity reference.

Usage

Creates an XML EntityReference DomNode object for this DomDocument object, where ref is the name of
the entity reference.

Returns a DomNode object, or NULL.

An Entity Reference node is read-only and cannot be modified.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.DomDocument.createNode
Creates an XML DomNode object from a string for a DomDocument object.

Syntax

createNode(
 str STRING)
 RETURNING object xml.DomNode

1. str is the string representation of the DomNode to be created.

Usage

Creates an XML DomNode object from a string for this DomDocument object; str is the string
representation of the DomNode to be created.

Returns a xml.DomNode object, or NULL.

Caution: Not part of W3C API.

Library reference | 2116

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.DomDocument.createProcessingInstruction
Creates an XML Processing Instruction DomNode object for this DomDocument object.

Syntax

createProcessingInstruction(
 target STRING,
 data STRING)
 RETURNING object xml.DomNode

1. target is the target part of the XML Processing Instruction.
2. data is the data part of the XML Processing Instruction.

Usage

Creates an XML Processing Instruction DomNode object for this DomDocument object, where target is the
target part of the XML Processing Instruction, cannot be NULL; data is the data part of the XML Processing
Instruction, or NULL.

Returns a DomNode object, or NULL.

Only the characters #x9, #xA, #xD, [#x20-#xD7FF], [#xE000-#xFFFD] and [#x10000-#x10FFFF] are
allowed in the content of an XML Processing Instruction node.

The character sequence (Double-Hyphen) '--' is not allowed in the content of an XML Processing
Instruction. The save() and normalize() methods will fail if this sequence or characters other than
those allowed exist in a Processing Instruction node.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.DomDocument.createTextNode
Creates an XML Text DomNode object for a DomDocument object.

Syntax

createTextNode(
 text STRING)
 RETURNING object xml.DomNode

1. text is the data of the XML Text node.

Usage

Creates an XML Text DomNode object for this DomDocument object, where text is the data of the XML
Text node, or NULL.

Returns a DomNode object, or NULL.

Only the characters #x9, #xA, #xD, [#x20-#xD7FF], [#xE000-#xFFFD] and [#x10000-#x10FFFF] are
allowed in the content of an XML Text node. The save() and normalize() methods will fail if characters
other than those allowed exist in a Text node.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

Library reference | 2117

xml.DomDocument.declareNamespace
Forces namespace declaration to an XML Element DomNode for a DomDocument object.

Syntax

declareNamespace(
 node xml.DomNode,
 alias STRING,
 ns STRING)

1. node is the XML Element DomNode that carries the namespace definition.
2. alias is the alias of the namespace to declare.
3. ns is the URI of the namespace to declare.

Usage

Forces namespace declaration to an XML Element DomNode for this DomDocument object ; node is
the XML Element DomNode that carries the namespace definition; alias is the alias of the namespace to
declare, or NULL to declare the default namespace; ns is the URI of the namespace to declare (can only
be NULL if alias is NULL).

Caution: Not part of W3C API.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.DomDocument.getDocumentElement
Returns the root XML Element DomNode object for this DomDocument object.

Syntax

getDocumentElement()
 RETURNING object xml.DomNode

Usage

Returns the root XML Element DomNode object for this DomDocument object.

Returns a DomNode object, or NULL.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.DomDocument.getDocumentNodesCount
Returns the number of child DomNode objects for a DomDocument object.

Syntax

getDocumentNodesCount()
 RETURNING count INTEGER

Usage

Returns the number of child DomNode objects for this DomDocument object.

Library reference | 2118

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.DomDocument.getDocumentNodeItem
Returns the child DomNode object at a given position for this DomDocument object.

Syntax

getDocumentNodeItem(
 pos INTEGER)
 RETURNING object xml.DomNode

1. pos is the position of the node to return (index starts at 1).

Usage

Returns the child DomNode object at a given position for this DomDocument object where pos is the
position of the node to return (Index starts at 1), or NULL.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.DomDocument.getElementById
Returns the element that has an attribute of type ID with the given value

Syntax

getElementById(
 id STRING)
 RETURNING object xml.DomNode

1. id is the Id value.

Usage

Returns the xml.DomNode element that has an attribute of type ID with the given value, or NULL if there is
none.

Attributes with the name "ID" or "id" are not of type ID unless so defined with setIdAttribute or
setIdAttributeNS. However, there is a specific attribute called xml:id and belonging to the namespace
http://www.w3.org/XML/1998/namespace that is always of type ID even if not set with setIdAttributeNS.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.DomDocument.getElementsByTagName
Returns a DomNodeList object containing all XML Element DomNode objects with the same tag name in
the entire document.

Syntax

getElementsByTagName(
 name STRING)
 RETURNING object xml.DomNodeList

1. name is the name of the XML Element tag to match or "*" to match all tags.

Library reference | 2119

Usage

Returns a DomNodeList object containing all XML Element DomNode objects with the same tag name in
the entire document; name is the name of the XML Element tag to match, or "*" to match all tags.

Returns a DomNodeList object, or NULL.

The returned list is ordered using a Depth-First pass algorithm.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.DomDocument.getElementsByTagNameNS
Returns a DomNodeList object containing all namespace qualified XML Element DomNode objects with
the same tag name and namespace in the entire document

Syntax

getElementsByTagNameNS(
 name STRING,
 ns STRING)
 RETURNING list xml.DomNodeList

1. name is the name of the XML Element tag to match or "*" to match all tags.
2. ns is the namespace URI of the XML Element tag to match, or "*" to match all namespaces.

Usage

Returns a xml.DomNodeList object containing all namespace qualified XML Element DomNode objects
with the same tag name and namespace in the entire document; name is the name of the XML Element
tag to match, or "*" to match all tags; ns is the namespace URI of the XML Element tag to match, or "*" to
match all namespaces. Returns a DomNodeList object, or NULL.

The returned list is ordered using a Depth-First pass algorithm.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.DomDocument.getErrorDescription
Returns the error description at given position.

Syntax

getErrorDescription(
 pos INTEGER)
 RETURNING desc STRING

1. pos is the position of the error description (index starts at 1).

Usage

Returns the error description at given position. pos is the position of the error description (index starts at 1).
Returns a string with an error description.

Caution: Not part of W3C API

Example

FOR i=1 TO doc.getErrorsCount()

Library reference | 2120

 DISPLAY "[", i, "] ", doc.getErrorDescription(i)
END FOR

Displays all the errors encountered in the save, load or validate of doc DomDocument.

To display other errors, use the global variable STATUS to get the error code and err_get(status) or
sqlca.sqlerrm to get the description of the error. See error code for more details.

xml.DomDocument.getErrorsCount
Returns the number of errors encountered during the loading, saving or validation of an XML document.

Syntax

getErrorsCount()
 RETURNING count INTEGER

Usage

Returns the number of errors encountered during the loading, the saving or the validation of an XML
document.

Returns the number of errors, or zero if there are none.

Caution: Not part of W3C API

Example

FOR i=1 TO doc.getErrorsCount()
 DISPLAY "[", i, "] ", doc.getErrorDescription(i)
END FOR

Displays all the errors encountered in the save, load or validate of doc DomDocument.

To display other errors, use the global variable STATUS to get the error code and err_get(status) or
sqlca.sqlerrm to get the description of the error. See error code for more details.

xml.DomDocument.getFirstDocumentNode
Returns the first child DomNode object for a DomDocument object.

Syntax

getFirstDocumentNode()
 RETURNING object xml.DomNode

Usage

Returns the first child DomNode object for this DomDocument object, or NULL.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.DomDocument.getFeature
Gets a feature for a DomDocument object.

Syntax

getFeature(
 feature STRING)

Library reference | 2121

 RETURNING result STRING

1. feature is the name of the DomDocument feature.

Usage

Gets a feature for the DomDocument object, where feature is the name of the DomDocument feature.

Returns the value of the feature.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.DomDocument.getLastDocumentNode
Returns the last child DomNode object for a DomDocument object.

Syntax

getLastDocumentNode()
 RETURNING object xml.DomNode

Usage

Returns the last child DomNode object for this DomDocument object, or NULL.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.DomDocument.getXmlEncoding
Returns the document encoding as defined in the XML document declaration.

Syntax

getXmlEncoding()
 RETURNING result STRING

Usage

Returns the document encoding as defined in the XML document declaration, or NULL if there is none.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.DomDocument.getXmlVersion
Returns the document version as defined in the XML document declaration.

Syntax

getXmlVersion()
 RETURNING result STRING

Usage

Returns the document version as defined in the XML document declaration, which is 1.0. No other versions
are supported.

Library reference | 2122

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.DomDocument.importNode
Imports a DomNode from a DomDocument object into its new context (attached to a DomDocument
object).

Syntax

importNode(
 node xml.DomNode
 deep INTEGER)
 RETURNING object xml.DomNode

1. node is the node to import.
2. deep is a boolean identifying whether to import the node only or the node and all its child nodes.

Usage

Imports a DomNode from a DomDocument object into its new context (attached to this DomDocument
object), where node is the node to import. When deep is FALSE only the node is imported; when TRUE the
node and all its child nodes are imported.

Returns the DomNode object that has been imported to this DomDocument, or NULL.

Document and Document Type nodes cannot be imported.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.DomDocument.insertBeforeDocumentNode
Inserts a child DomNode object before another child DomNode for this DomDocument object.

Syntax

insertBeforeDocumentNode(
 node xml.DomNode,
 ref xml.DomNode)

1. node is the node to insert.
2. ref is the reference node (the node before which the new node must be inserted).

Usage

Inserts a child DomNode object before another child DomNode for this DomDocument object; node is the
node to insert, ref is the reference node (the node before which the new node must be inserted).

Only Text nodes, Processing Instruction nodes, Document Fragment nodes, one Element node and one
Document Type node allowed.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.DomDocument.insertAfterDocumentNode

Library reference | 2123

Inserts a child DomNode object after another child DomNode for a DomDocument object.

Syntax

insertAfterDocumentNode(
 node xml.DomNode,
 ref xml.DomNode)

1. node is the node to insert.
2. ref is the reference node (the node after which the new node must be inserted).

Usage

Inserts a child DomNode object after another child DomNode for this DomDocument object ; node is the
node to insert; ref is the reference node (the node after which the new node must be inserted).

Caution: Not part of W3C API.

Only Text nodes, Processing Instruction nodes, Document Fragment nodes, one Element node and one
Document Type node allowed.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.DomDocument.isXmlStandalone
Returns whether the XML standalone attribute is set in the XML declaration.

Syntax

isXmlStandalone()
 RETURNING result INTEGER

Usage

Returns whether the XML standalone attribute is set in the XML declaration.

Returns TRUE if the standalone attribute in the XML declaration is set to yes.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.DomDocument.load
Loads an XML Document into a DomDocument object from a file or an URL.

Syntax

load(
 url STRING)

1. url is a valid URL or the name of the file.

Usage

Loads an XML Document into a DomDocument object from a file or an URL, where url is a valid URL or the
name of the file.

Library reference | 2124

Only the following kinds of URLs are supported: http:// , https:// , tcp:// , tcps:// , file:/// and alias:// .
See Web services configuration on page 2509 for more details about URL mapping with aliases, and for
proxy and security configuration.

See setFeature() to specify how the document can be loaded. HTML parsing is possible when enable-
html-compliancy is enabled.

See getErrorsCount() and getErrorDescription() to retrieve error messages related to XML
document loading.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

Important: On Mac OS X versions prior to 10.9, the libxml library (used by Genero Web Services
classes) has a bug when parsing HTML documents. If you set the HTML compliancy option with
CALL doc.setFeature("enable-html-compliancy",TRUE), loading an HTML document
with xml.DomDocument.load() may produce additional blank TEXT nodes, because the libxml
library loads some ignorable whitespace nodes from the HTML document. Starting with Mac OS X
10.9, the libxml library of the system has fixed this bug.

xml.DomDocument.loadFromPipe
Loads an XML Document into a DomDocument object from a PIPE.

Syntax

loadFromPipe(
 cmd STRING)

1. cmd is the command to read from the PIPE.

Usage

Loads an XML Document into a DomDocument object from a PIPE where cmd is the command to read
from the PIPE.

Caution: Not part of W3C API.

See setFeature() to specify how the document can be loaded. HTML parsing is possible when enable-
html-compliancy is enabled.

See getErrorsCount() and getErrorDescription() to retrieve error messages related to XML
document loading.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.DomDocument.loadFromString
Loads an XML Document into a DomDocument object from a string.

Syntax

loadFromString(
 str STRING)

1. str is the string to load.

Usage

Loads an XML Document into a DomDocument object from a string, where str is the string to load.

Library reference | 2125

Caution: Not part of W3C API.

See setFeature() to specify how the document can be loaded. HTML parsing is possible when enable-
html-compliancy is enabled.

See getErrorsCount() and getErrorDescription() to retrieve error messages related to XML
document loading.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.DomDocument.normalize
Normalizes the entire Document.

Syntax

normalize()

Usage

Normalizes the entire Document. This method merges adjacent Text nodes, removes empty Text nodes
and sets namespace declarations as if the document had been saved.

See getErrorsCount() and getErrorDescription() to retrieve error messages related to XML
document normalization.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.DomDocument.prependDocumentNode
Adds a child DomNode object to the beginning of the DomNode children for a DomDocument object

Syntax

prependDocumentNode(
 node xml.DomNode)

1. node is the node to add.

Usage

Adds a child DomNode object to the beginning of the DomNode children for this DomDocument object;
node is the node to add.

Caution: Not part of W3C API.

Only Text nodes, Processing Instruction nodes, Document Fragment nodes, one Element node and one
Document Type node allowed.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.DomDocument.removeDocumentNode

Library reference | 2126

Removes a child DomNode object from the DomNode children for this DomDocument object.

Syntax

removeDocumentNode(
 node xml.DomNode)

1. node is the node to remove.

Usage

Removes a child DomNode object from the DomNode children for this DomDocument object, where node
is the node to remove.

Only Text nodes, Processing Instruction nodes, Element nodes and Document Type nodes allowed.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.DomDocument.save
Saves a DomDocument object as an XML Document to a file or URL.

Syntax

save(
 url STRING)

1. url is a valid URL or the name of a file.

Usage

Saves a DomDocument object as an XML Document to a file or URL, where url is a valid URL or the name
of the file.

Only the following kinds of URLs are supported: http:// , https:// , tcp:// , tcps:// , file:/// and alias:// .
See Web services configuration on page 2509 for more details about URL mapping with aliases, and for
proxy and security configuration.

See setFeature() to specify how the document can be saved.

See getErrorsCount() and getErrorDescription() to retrieve error messages related to XML
document saving.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.DomDocument.saveToPipe
Saves a DomDocument object as an XML Document to a PIPE.

Syntax

saveToPipe(
 cmd STRING)

1. cmd is the command to start the pipe.

Library reference | 2127

Usage

Saves a DomDocument object as an XML Document to a PIPE, where cmd is the command to start the
pipe.

See setFeature() to specify how the document can be saved.

See getErrorsCount() and getErrorDescription() to retrieve error messages related to XML
document saving.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.DomDocument.saveToString
Saves a DomDocument object as an XML Document to a string.

Syntax

saveToString()
 RETURNING result STRING

Usage

Saves a DomDocument object as an XML Document to a string. Returns the string that will contain the
resulting document.

Caution: Not part of W3C API.

See setFeature() to specify how the document can be saved.

See getErrorsCount() and getErrorDescription() to retrieve error messages related to XML
document saving.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.DomDocument.selectByXPath
Returns a DomNodeList object containing all DomNode objects matching an XPath 1.0 expression.

Syntax

selectByXPath(
 expr STRING,
 nslist ...)
 RETURNING list xml.DomNodeList

1. expr is the XPath1.0 expression
2. nslist is a list of prefixes bounded to namespaces in order to resolve qualified names in the XPath

expression.

Usage

Returns a xml.DomNodeList object containing all DomNode objects matching an XPath 1.0
expression.expr is the XPath1.0 expression, nslist is a list of prefixes bounded to namespaces in order
to resolve qualified names in the XPath expression. This list must be filled with an even number of
arguments, representing the prefix and its corresponding namespace.

Caution: Not part of W3C API.

Library reference | 2128

Valid example:

selectByXPath(
 "//d:Record",
 "d",
 "http://defaultnamespace")
selectByXPath(
 "//ns1:Record",
 NULL)
selectByXPath(
 "//ns1:Records/ns2:Record",
 "ns1",
 "http://namespace1",
 "ns2",
 "http://namespace2")

Invalid example:

selectByXPath(
 "//ns1:Record",
 "ns1")

This example is invalid because the namespace definition is missing.

If the namespaces list is NULL, the prefixes and namespaces defined in the document itself are used if
available.

A namespace must be an absolute URI (ex 'http://', 'file://').

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.DomDocument.setFeature
Sets a feature for a DomDocument object.

Syntax

setFeature(
 feature STRING,
 value STRING)

1. feature is the name of a DomDocument feature.
2. value is the value of a feature.

Usage

Sets a feature for the DomDocument object, where feature is the name of a DomDocument feature, and
value is the value of a feature.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.DomDocument.setXmlEncoding
Sets the XML document encoding in the XML declaration.

Syntax

setXmlEncoding(
 enc STRING)

Library reference | 2129

1. enc is the XML document encoding.

Usage

Sets the XML document encoding in the XML declaration, or NULL.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.DomDocument.setXmlStandalone
Sets the XML standalone attribute in the XML declaration to yes or no in the XML declaration.

Syntax

setXmlStandalone(
 alone INTEGER)

1. alone is a boolean flag.

Usage

Sets the XML standalone attribute in the XML declaration to yes or no in the XML declaration, or NULL.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.DomDocument.validate
Performs a DTD or XML Schema validation for a DomDocument object.

Syntax

validate()
 RETURNING result INTEGER

Usage

Performs a DTD or XML Schema validation for this DomDocument object. Returns the number of validation
errors, or zero if there are none.

Caution: Not part of W3C API.

See setFeature() to specify what kind of validation to do.

See getErrorsCount() and getErrorDescription() to retrieve error messages related to
validation errors.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.DomDocument.validateOneElement
Performs a DTD or XML Schema validation of an XML Element DomNode object.

Syntax

validateOneElement(
 node xml.DomNode)
 RETURNING result INTEGER

Library reference | 2130

1. node is the XML Element DomNode to validate.

Usage

Performs a DTD or XML Schema validation of an XML Element DomNode object; node is the XML
Element DomNode to validate.

Returns the number of validation errors, or zero if there are none.

Caution: Not part of W3C API.

See setFeature() to specify what kind of validation to do.

See getErrorsCount() and getErrorDescription() to retrieve error messages related to
validation errors.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

Navigation methods usage examples
Examples using the navigation methods of the xml.DomDocument class.

DomDocument navigation functions deal with nodes immediately under the DomDocument object, except
for search features. To navigate through all the nodes, you can refer to the navigation functions of the class
xml.DomNode.

<?xml version="1.0" encoding="ISO-8859-1"?>
<?xml-stylesheet type="text/xsl" href="card.xsl"?>
<!-- demo card -->
<CardList xml:id="1" >[...]
</CardList>

The first node of the document is xml-stylesheet. Use getFirstDocumentNode to get the node. The
element at position 2 is the comment <!-- demo card -->. Use getDocumentNodeItem function to
get the node.

The last node of the document is CardList. Use getLastDocumentNode to get the node.

The number of node of the document is 3. This is result of function getDocumentNodeCount. This
function only count the number of children immediately under the DomDocument.

Note that the first line of the example, <?xml version="1.0" encoding="ISO-8859-1"?>, is
not considered as a node. To access to the information of the first line, use getXmlVersion() and
getXmlEncoding functions.

Caution, if the example is in pretty printed format, the results are not the same. There are addition text
nodes representing the carriage returns.

<?xml version="1.0" encoding="ISO-8859-1"?>
<?xml-stylesheet type="text/xsl" href="card.xsl"?>
<!-- demo card -->
<CardList xml:id="1" > [...]
</CardList>

See Cautions section for more details.

You can select nodes using their tag names, by XPath, or by their attributes value (if of type ID, xml:id
for example). The getElementsbyTagName and getElementsbyTagNameNS methods return a
DomNodeList object, unlike the other methods that return a DomNode object. The DomNodeList is

Library reference | 2131

restricted to contain objects with the same tag name and/or namespace. TheselectByXPath method
also returns a DomNodeList object, but each node can have a different name.

getElementsByTagNameNS("message","http://schemas.xmlsoap.org/wsdl/")

Get the message nodes that have http://schemas.xmlsoap.org/wsdl/ as the namespace.

getElementsByTagNameNS("message","*")

Get all the message nodes, regardless of the namespace they have.

getElementsByTagName("message")

Get all the message nodes that do not have any namespace.

selectByXPath("//xs:element",NULL)

Get all the xs:element nodes that has a namespace corresponding to prefix xs .

selectByXPath("//Card",NULL)

Get all the Card nodes that do not have any namespace.

getElementById("1")

Get the unique node whose attribute of type ID has a value of "1".

Node creation methods usage examples
Node creation methods usage examples for the xml.DomDocument class.

Creating a node for the DomDocument is done in two steps:

• Create the node.
• Add the node to the DomDocument.

Each time you create a node, you need to append it at the right place in the DomDocument. To add a node
the document use the DomDocument management methods or the DomNode manipulation methods.

createNode("<LastName>PATTERSON</LastName><FirstName>Andrew</FirstName>")

Creates a structure of nodes.

createElement("CardList")

Produces

<CardList>

createElementNS("cny", "Company", "http://www.mysite.com/")

Produces <cny:Company xmlns:cny="http://www.mysite.com/"/> or <cny:Company />. See
Cautions for more details.

createAttribute("Country")

Creates a Country attribute node.

• To set a value to the attribute, use the method setNodeValue of the xml.DomNode class.

Library reference | 2132

• To add the attribute to an element node, use the method setAttributeNode of the xml.DomNode class.

createAttributeNS("tw","Town","http://www.mysite.com/cities")

Produces xmlns:tw="http://www.mysite.com/cities" tw:Town=""

• To set a value to the attribute use the method setNodeValue of the xml.DomNode class.
• To add the attribute to an element node use the method setAttributeNodeNS of the xml.DomNode

class.
• For optimization reasons, the namespace is not written aside the attribute until the saving of the

DomDocument.
• When accessing the element node, the namespace is not listed in the list of children. In the example

above, tw:Town="" is in the list of children, not xmlns:tw="http://www.mysite.com/cities".
• To access the namespace during the DomDocument building use the method normalize first. Normalize

write the namespace declaration at the appropriate place. If there is no previous declaration, it will be
accessible as an attribute of this element, otherwise it will be an attribute of one of the ancestors of the
element.

createTextNode("My Company")

Creates a text node.

createComment("End of the card")

Produces<!--End of the card-->

createCDATASection("<website>My
Company</website>")

Produces<![CDATA[<website>My Company</website>]]>

createEntityReference("title")

Creates the entity reference &title.

createProcessingInstruction("xml-stylesheet", "type=\"text/xsl\"
href=\"card.xsl\"")

Produces<?xml-stylesheet type="text/xsl"href="card.xsl"?>

createDocumentType("Card", NULL, NULL,"<!ELEMENT
Card (lastname, firstname, company, location)>")

Produces <!DOCTYPE Card [<!ELEMENT Card (lastname , firstname , company ,
location)>]>

• Only inline DTD are supported. The DTD has to been inserted in the DomDocument at an appropriate
place.

createDocumentFragment

Is a method that creates a lightweight DomDocument. It represents a subtree of nodes that do not
need to conform to well-formed XML rules. This makes DocumentFragment easier to manipulate than a
DomDocument.

for i=1 to 5
 let node = doc.createelement("Card")
 call root.appendchild(node) end for

Library reference | 2133

This produces a subtree with 5 Card nodes that do not have any root node. Once the subtree is completed,
it can be added to the DomDocument object like any other node.

HTML document usage example
The HTML language provides tags that allow the user to provide an embedded style sheet (the "style"
tag) and to write embedded client side script (the "script" tag). According to the HTML 4.0 specification,
the content of these tags must be managed as CDATA section.

Note: For more information, see the HTML 4.0 specification.

Because HTML document management via the xml.DomDocument object provides HTML compliancy
only (and not strict HTML management), there is a specific way to add these nodes inside a loaded HTML
document:

1. Create an element node with the name of the tag to be created.
2. Append that element node to its parent.
3. Create a CDATASection node with the wanted embedded piece of style sheet or piece of script content.
4. Append the CDATASection to the previously created element node.

By following this procedure, the "script" and "style" tags content are recognized as CDATA section
content and not TEXT section content and will be preserved. Other methods for adding nodes to the
document manage text and therefore will not treat these types of content properly, resulting in invalid
HTML code.

Example

IMPORT XML

MAIN

 DEFINE myDoc XML.DomDocument
 DEFINE myEltNode, myAttrNode, bodyNode, myCdataNode
 XML.DomNode
 DEFINE nodeLst XML.DomNodeList
 DEFINE i INTEGER

 TRY
 LET myDoc = XML.DomDocument.create()
 CALL myDoc.setFeature("enable-html-compliancy", 1)
 CALL myDoc.load("testHtml.html")

 LET myEltNode = myDoc.CreateElement("script")
 LET myCdataNode =
 myDoc.CreateCDATASection("document.write(\"CDATA\");")
 LET myAttrNode = myDoc.CreateAttribute("type")
 CALL myAttrNode.setNodeValue("text/javascript")

 LET nodeLst = myDoc.getElementsByTagName("body")
 LET docNode = nodeLst.getItem(1)

 CALL docNode.appendChild(myEltNode)
 CALL myEltNode.setAttributeNode(myAttrNode)
 CALL myEltNode.appendChild(myCdataNode)

 CATCH
 DISPLAY "ERROR : ", STATUS, " - ", SQLCA.SQLERRM
 EXIT PROGRAM(-1)
 END TRY

END MAIN

http://www.w3.org/TR/1998/REC-html40-19980424/

Library reference | 2134

Load and save methods usage examples
Load and save methods usage examples for the xml.DomDocument class.

You can load an existing xml document. Before loading an xml document you need to create the
DomDocument object.

A DomDocument can load files using different URI: http://, https://, tcp://, tcps://, file://and alias://. Use
getErrorsCount() and getErrorDescription() to display errors about the document loading.

load("data.xml")
load("http://www.w3schools.com/xml/cd_catalog.xml")
load("https://localhost:6394/ws/r/calculator?WSDL")
load("file:///data/cd_catalog.xml")
load("tcp://localhost:4242/")
load("tcps://localhost:4243/")
load("alias://demo")

where demo alias is defined in fglprofile as ws.demo.url = "http://www.w3schools.com/xml/
cd_catalog.xml"

loadfromstring("<List> <elt>First element</elt>
 <elt>Second element</elt> <elt>Third element</elt> </List>")

Produces a subtree with a root node List and three nodes elt and three textnode.

A DomDocument can be saved at different URI beginning with: http://, https://, tcp://, tcps://,file:// and
alias://. Use getErrorsCount() and getErrorDescription()to display errors about the document
saving.

save("myfile.xml")
save("http://myserver:8080/data/save1.xml")
save("file:///data/save.xml")
save("tcp://localhost:4242/")
save("alias://test")

where test alias is defined in fglprofile as ws.test.url = "http://localhost:8080/data/
save3.xml"

saveToString saves the DomDocument in a string. Use getErrorsCount() and
getErrorDescription() to display errors about the document saving

normalize function emulates a DomDocument save and load. It can be called at any stage of the
DomDocument building. This removes empty Text nodes and sets namespace declarations as if the
document had been saved.

Cautions
Cautions when working with the xml.DomDocument class.

Whitespaces, line feeds and carriage returns between elements are represented as text nodes in memory.
An XML document written in a single line and a human readable (pretty printed format) do not have the
same representation in the DomDocument. Take this under account when navigating in the document.

If a DomNode is not attached to a DomDocument and not referenced by any variable it can be destroyed. If
one child of this node is still referenced, this child is not destroyed but its parent and the others node of the
subtree are destroyed. To check if a node is attached to a DomDocument use isAttached method.

DomDocument remains in memory if any of its node is still referenced in a variable.

Library reference | 2135

DomDocument Features
A list of features for the xml.DomDocument class.

DomDocument features

Table 484: DomDocument Features

Name Description

format-pretty-print Formats the output by adding white space to
produce a pretty-printed, indented, human-readable
form.

Possible values are TRUE or FALSE.

Default value is FALSE.

comments Defines whether the XML comments are kept
during the load of a document into a DomDocument
object.

Possible values are TRUE or FALSE.

Default value is TRUE.

whitespace-in-element-content Defines whether XML Text nodes that can be
considered "Ignorable" are kept during the load of
an XML document into a DomDocument object.

Possible values are TRUE or FALSE.

Default value is TRUE.

cdata-sections Defines whether XML CData nodes are kept or
replaced by XML Text nodes during the load of an
XML document into a DomDocument object.

Possible values are TRUE or FALSE.

Default value is TRUE.

expand-entity-references Defines whether XML EntityReference nodes
are kept or replaced during the load of an XML
document into a DomDocument object.

Possible values are TRUE or FALSE.

Default value is FALSE.

Note: See security issues with expand-
entity-references.

validation-type Defines what kind of validation should be
performed.

Possible values are: DTD, Schema.

Default is Schema.

external-schemaLocation Defines a list of namespace-qualified XML schemas
to use for validation on a DomDocument object.

Library reference | 2136

Name Description

Value is a space-separated string of one or several
pairs of strings representing the namespace URI of
the schema, followed by its location.

Example:

"http://tempuri/org/NS mySchema1.xsd http://
www.mycompany.com mySchema2.xsd"

external-noNamespaceSchemaLocation Defines a list of XML schemas to use for validation
on a DomDocument object.

Value is a space-separated string of one or several
strings representing the location of a schema.

Example:

"mySchema1.xsd mySchema2.xsd"

schema-uriRecovery Changes the schema location of an XML schema
referenced by import tags in other schemas.

Value is a space-separated string of one or several
pairs of strings representing the original schema
location followed by the new schema location

Example:

"http://www.w3.org/2001/xml.xsd myXML.xsd http://
www.mycompany.com/GWS.xsd myGWS.xsd"

load-save-base64-string Changes methods loadFromString() and
saveToString() to handle Base64 strings.

Parsing an XML document is done from a BASE64
encoded string, and saving an XML document
results in a BASE64 encoded string.

Possible values are TRUE or FALSE.

Default is FALSE.

auto-id-attribute Changes the parsing of an XML document in order
to set all unqualified attributes named ID, Id, iD or id
to be of type ID.

They can then be retrieved with method
getElementById() or with an XPath expression
without calling setIdAttribute().

Possible values are TRUE or FALSE.

Default is FALSE.

auto-id-qualified-attribute Changes the parsing of an XML document in order
to set all qualified attributes named ID, Id, iD or id to
be of type ID.

They can then be retrieved with method
getElementById() or with an XPath expression
without calling setIdAttributeNS().

Library reference | 2137

Name Description

Possible values are TRUE or FALSE.

Default is FALSE.

enable-html-compliancy Changes methods to parse, normalize and save
HTML document via the DomDocument object.

Possible values are TRUE or FALSE.

Default value is FALSE.

The HTML parsing isn't namespace qualified, and
document is considered as an XML document after
loading.

Note: This feature works only for HTML 4,
it is not supported for HTML 5.

Security issues with expand-entity-references

When the expand-entity-references document feature is set to TRUE, XML entities referencing
sensitive data may be included when loading the XML document with xml.DomDocument.load on page
2123, xml.DomDocument.loadFromPipe on page 2124, xml.DomDocument.loadFromString on page
2124, or xml.DomDocument.normalize on page 2125.

For example, in its DTD, the following XML file defines the myref ENTITY element referencing the /etc/
passwd file:

<?xml version="1.0" encoding="ISO-8859-1"?>
 <!DOCTYPE foo [
 <!ELEMENT foo ANY >
 <!ENTITY myref SYSTEM "file:///etc/passwd" >
]>
<foo>&myref;</foo>

When loading this XML file with expand-entity-references set to TRUE, the resulting DOM
document will have a <foo> node containing a text node with the content of /etc/passwd.

Examples
Examples involving the xml.DomDocument class.

Example 1 : Create a namespace qualified document with processing instructions

To create the following XML document on disk:

<?Target1 This is my first PI ?>
<MyPre:RootNode xmlns:MyPre="http://www.tempuri.org" >
<MyPre:Element />
</MyPre:RootNode>
<?Target2 This is my last PI ?>

Write the following code:

IMPORT xml

MAIN
 DEFINE doc xml.DomDocument
 DEFINE pi xml.DomNode
 DEFINE node xml.DomNode
 DEFINE elt xml.DomNode

Library reference | 2138

 # Create a document with an initial namespace qualified root node
 LET doc = xml.DomDocument.CreateDocumentNS("MyPre", "RootNode", "http://
www.tempuri.org")
 # Create a Processing instruction
 LET pi = doc.createProcessingInstruction("Target1", "This is my first PI")
 # And add it at the begining of the document
 CALL doc.prependDocumentNode(pi)
 # Create another Processing instruction
 LET pi = doc.createProcessingInstruction("Target2", "This is my last PI")
 # And add it at the end of the document
 CALL doc.appendDocumentNode(pi)
 # Retrieve initial root node of the document
 LET elt = doc.getDocumentElement()
 # Create a new Element node
 LET node = doc.createElementNS("MyPre", "Element", "http://
www.tempuri.org")
 # And add it as child of the RootNode
 CALL elt.appendChild(node)
 # Then save the document on disk
 CALL doc.save("MyFile.xml")
END MAIN

Example 2 : Validating a document against XML schemas or a DTD

This code example loads one or more XML schemas or uses an embedded DTD to validate against a XML
document:

IMPORT xml

MAIN
 DEFINE location STRING
 DEFINE xmlfile STRING
 DEFINE doc xml.DomDocument
 DEFINE ind INTEGER

 IF num_args()<2 THEN
 # Checks the number of arguments
 CALL ExitHelp()
 ELSE
 LET doc = xml.DomDocument.Create()
 LET xmlfile = arg_val(num_args())
 IF num_args() == 2 AND arg_val(1) == "-dtd" THEN
 # User choosed DTD validation
 CALL doc.setFeature("validation-type", "DTD")
 ELSE
 # User choosed XML Schema validation
 IF arg_val(1) == "-ns" THEN
 # Handle namespace qualified XML schemas
 IF num_args() MOD 2 != 0 THEN
 CALL ExitHelp()
 END IF
 FOR ind = 2 TO num_args()-1 STEP 2
 IF location IS NULL THEN
 LET location = arg_val(ind) || " " || arg_val(ind+1)
 ELSE
 LET location = location || " " || arg_val(ind) ||
 " " || arg_val(ind+1)
 END IF
 END FOR
 TRY
 CALL doc.setFeature("external-schemaLocation", location)
 CATCH
 FOR ind = 1 TO doc.getErrorsCount()

Library reference | 2139

 DISPLAY "Schema error ("||
ind||") :",doc.getErrorDescription(ind)
 END FOR
 EXIT PROGRAM (-1)
 END TRY
 ELSE
 # Handle unqualified XML schemas
 FOR ind = 1 TO num_args()-1
 IF location IS NULL THEN
 LET location = arg_val(ind)
 ELSE
 LET location = location || " " || arg_val(ind)
 END IF
 END FOR
 TRY
 CALL doc.setFeature("external-noNamespaceSchemaLocation",
 location)
 CATCH
 FOR ind = 1 TO doc.getErrorsCount()
 DISPLAY "Schema error ("||
ind||") :",doc.getErrorDescription(ind)
 END FOR
 EXIT PROGRAM (-1)
 END TRY
 END IF
 END IF
 END IF
 TRY
 # Load XML document from disk
 CALL doc.load(xmlfile)
 CATCH
 # Display errors if loading failed
 IF doc.getErrorsCount()>0 THEN
 FOR ind = 1 TO doc.getErrorsCount()
 DISPLAY "LOADING ERROR #"||ind||" :",doc.getErrorDescription(ind)
 END FOR
 EXIT PROGRAM(-1)
 ELSE
 DISPLAY "Unable to load file :",xmlfile
 EXIT PROGRAM(-1)
 END IF
 END TRY
 TRY
 # Validate loaded document
 LET ind = doc.validate()
 IF ind == 0 THEN
 # Successful validation
 DISPLAY "OK"
 ELSE
 # Display validation errors
 FOR ind = 1 TO doc.getErrorsCount()
 DISPLAY "VALIDATING ERROR #"||ind||" :",doc.getErrorDescription(ind)
 END FOR
 EXIT PROGRAM(-1)
 END IF
 CATCH
 DISPLAY "Unable to validate file :",xmlfile
 EXIT PROGRAM(-1)
 END TRY
END MAIN

Display help

FUNCTION ExitHelp()

Library reference | 2140

 DISPLAY "Validator < -dtd | -ns [namespace schema]+ | [schema]+ > xmlfile"
 EXIT PROGRAM
END FUNCTION

Example

$ fglrun Validator -dtd MyFile.xml

Validates XML file using DTD embedded in the XML file.

$ fglrun Validator Schema1.xsd Schema2.xsd MyFile.xml

Validates unqualified XML file using two unqualified XML schemas.

$ fglrun Validator -ns http://tempuri.org/one Schema1.xsd
 http://tempuri.org/two Schema2.xsd MyFile.xml

Validates namespace qualified XML file using two namespace qualified XML schemas.

The DomNode class
The xml.DomNode class provides methods to manipulate a node of a DomDocument object.

You can create a DomNode object using creation methods in the DomDocument class.

The STATUS variable is set to zero after a successful method call.

xml.DomNode methods
Methods for the xml.DomNode class.

Table 485: Object methods: Navigation

Name Description

getChildrenCount()
 RETURNING cnt INTEGER

Returns the number of child DomNode objects for a
DomNode object.

getChildNodeItem(
 pos INTEGER)
 RETURNING object xml.DomNode

Returns the child DomNode object at a given
position for a DomNode object.

getFirstChild()
 RETURNING object xml.DomNode

Returns the first child DomNode object for this XML
Element DomNode object.

getFirstChildElement()
 RETURNING object xml.DomNode

Returns the first XML Element child DomNode
object for this DomNode object.

getLastChild()
 RETURNING object xml.DomNode

Returns the last child DomNode object for a XML
Element DomNode object.

getLastChildElement()
Returns the last child XML element DomNode
object for this DomNode object.

Library reference | 2141

Name Description

 RETURNING object xml.DomNode

getNextSibling()
 RETURNING object xml.DomNode

Returns the DomNode object immediately following
a DomNode object.

getNextSiblingElement()
 RETURNING object xml.DomNode

Returns the XML Element DomNode object
immediately following a DomNode object.

getParentNode()
 RETURNING object xml.DomNode

Returns the parent DomNode object for this
DomNode object.

getOwnerDocument()
 RETURNING object xml.DomDocument

Returns the DomDocument object containing this
DomNode object.

getPreviousSibling()
 RETURNING object xml.DomNode

Returns the DomNode object immediately
preceding a DomNode object.

getPreviousSiblingElement()
 RETURNING object xml.DomNode

Returns the XML Element DomNode object
immediately preceding a DomNode object.

hasChildNodes()
 RETURNING flag INTEGER

Returns TRUE if a node has child nodes.

Table 486: Object methods: Manipulation

Name Description

clone(
 deep INTEGER)
 RETURNING object xml.DomNode

Returns a duplicate DomNode object of a node.

appendChild(
 node xml.DomNode)

Adds a child DomNode object to the end of the
child list for a DomNode object

appendChildElement(
 name STRING)
 RETURNING object xml.DomNode

Creates and adds a child XML Element node to the
end of the list of child nodes for an XML Element
DomNode object.

appendChildElementNS(
 prefix STRING,
 name STRING,
 ns STRING)

Creates and adds a child namespace qualified XML
Element node to the end of the list of child nodes
for an XML Element DomNode object.

Library reference | 2142

Name Description

 RETURNING object xml.DomNode

addNextSibling(
 node xml.DomNode)

Adds a DomNode object as the next sibling of a
DomNode object.

addPreviousSibling(
 node xml.DomNode)

Adds a DomNode object as the previous sibling of a
DomNode object.

insertBeforeChild(
 node xml.DomNode,
 ref xml.DomNode)

Inserts a DomNode object before an existing child
DomNode object.

insertAfterChild(
 node xml.DomNode,
 ref xml.DomNode)

Inserts a DomNode object after an existing child
DomNode object.

prependChild(
 node xml.DomNode)

Adds a child DomNode object to the beginning of
the child list for a DomNode object.

prependChildElement(
 name STRING)
 RETURNING object xml.DomNode

Creates and adds a child XML Element node to
the beginning of the list of child nodes for this XML
Element DomNode object.

prependChildElementNS(
 prefix STRING,
 name STRING,
 ns STRING)
 RETURNING object xml.DomNode

Creates and adds a child namespace-qualified XML
Element node to the beginning of the list of child
nodes for an XML Element DomNode object.

removeAllChildren()
Removes all child DomNode objects from a
DomNode object.

removeChild(
 node xml.DomNode)

Removes a child DomNode object from the list of
child DomNode objects.

replaceChild(
 new xml.DomNode,
 old xml.DomNode)

Replaces an existing child DomNode with another
child DomNode object.

Table 487: Object methods: Access

Name Description

getLocalName()
Gets the local name for a DomNode object.

Library reference | 2143

Name Description

 RETURNING str STRING

getNamespaceURI()
 RETURNING str STRING

Returns the namespace URI for a DomNode object.

getNodeName()
 RETURNING str STRING

Gets the name for a DomNode object.

getNodeType()
 RETURNING str STRING

Gets the XML type for this DomNode object.

getNodeValue()
 RETURNING str STRING

Returns the value for a DomNode object.

getPrefix()
 RETURNING str STRING

Returns the prefix for a DomNode object.

isAttached()
 RETURNING num INTEGER

Returns whether the node is attached to the XML
document.

Table 488: Object methods: Modifier

Name Description

setNodeValue(
 val STRING)

Sets the node value for a DomNode object.

setPrefix(
 prefix STRING)

Sets the prefix for a DomNode object.

toString()
 RETURNING STRING

Returns a string representation of a DomNode
object.

Table 489: Object methods: Attribute

Name Description

hasAttribute(
 name STRING)
 RETURNING flag INTEGER

Checks whether an XML Element DomNode object
has the XML Attribute specified by a specified
name.

hasAttributeNS(
 name STRING,
 ns STRING)

Checks whether a namespace qualified XML
Attribute of a given name is carried by an XML
Element DomNode object.

Library reference | 2144

Name Description

 RETURNING flag INTEGER

getAttributesCount()
 RETURNING num INTEGER

Returns the number of XML Attribute DomNode
objects on this XML Element DomNode object.

getAttributeNode(
 name STRING)
 RETURNING object xml.DomNode

Returns an XML Attribute DomNode object for an
XML Element DomNode object

getAttributeNodeItem(
 pos INTEGER)
 RETURNING object xml.DomNode

Returns the XML Attribute DomNode object at a
given position on this XML Element DomNode
object.

getAttributeNodeNS(
 name STRING,
 ns STRING)
 RETURNING object xml.DomNode

Returns a namespace-qualified XML Attribute
DomNode object for an XML Element DomNode
object

getAttribute(
 name STRING)
 RETURNING value STRING

Returns the value of an XML Attribute for an XML
Element DomNode object

getAttributeNS(
 name STRING,
 ns STRING)
 RETURNING value STRING

Returns the value of a namespace qualified XML
Attribute for an XML Element DomNode object

hasAttributes()
 RETURNING flag INTEGER

Identifies whether a node has XML Attribute nodes.

setAttribute(
 name STRING,
 value STRING)

Sets (or resets) an XML Attribute for an XML
Element DomNode object.

setAttributeNode(
 node xml.DomNode)

Sets (or resets) an XML Attribute DomNode object
to an XML Element DomNode object.

setAttributeNodeNS(
 node xml.DomNode)

Sets (or resets) a namespace-qualified XML
Attribute DomNode object to an XML Element
DomNode object.

setAttributeNS(
 prefix STRING,
 name STRING,
 ns STRING,

Sets (or resets) a namespace-qualified XML
Attribute for an XML Element DomNode object.

Library reference | 2145

Name Description

 value STRING)

setIdAttribute(
 name STRING,
 isId INTEGER)

Declare (or undeclare) the XML Attribute of given
name to be of type ID.

setIdAttributeNS(
 name STRING,
 ns STRING,
 isId INTEGER)

Declare (or undeclare) the namespace-qualified
XML Attribute of given name and namespace to be
of type ID.

removeAttribute(
 name STRING)

Removes an XML Attribute for an XML Element
DomNode object.

removeAttributeNS(
 name STRING,
 ns STRING)

Removes a namespace qualified XML Attribute for
an XML Element DomNode object

Table 490: Object methods: Search

Name Description

getElementsByTagName(
 name STRING)
 RETURNING list xml.DomNodeList

Returns a DomNodeList object containing all XML
Element DomNode objects with the same tag
name.

getElementsByTagNameNS(
 name STRING,
 ns STRING)
 RETURNING list xml.DomNodeList

Returns a DomNodeList object containing all
namespace-qualified XML Element DomNode
objects with the same tag name and namespace.

isDefaultNamespace(
 ns STRING)
 RETURNING flag INTEGER

Checks whether the specified namespace URI is
the default namespace.

lookupNamespaceURI(
 prefix STRING)
 RETURNING ns STRING

Looks up the namespace URI associated to a
prefix, starting from a specified node.

lookupPrefix(
 ns STRING)
 RETURNING prefix STRING

Looks up the prefix associated to a namespace
URI, starting from the specified node.

selectByXPath(
 expr STRING,
 NamespacesList ...)

Returns a DomNodeList object containing
all DomNode objects matching an XPath 1.0
expression.

Library reference | 2146

Name Description

 RETURNING list xml.DomNodeList

xml.DomNode.addPreviousSibling
Adds a DomNode object as the previous sibling of a DomNode object.

Syntax

addPreviousSibling(
 node xml.DomNode)

1. node is the node to add.

Usage

Adds a DomNode object as the previous sibling of this DomNode object; node is the node to add.

Caution: Not part of W3C API.

The DomNode object node must be the child of an element or document node; otherwise the operation
fails.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.DomNode.addNextSibling
Adds a DomNode object as the next sibling of a DomNode object.

Syntax

addNextSibling(
 node xml.DomNode)

1. node is the node to add.

Usage

Adds a DomNode object as the next sibling of this DomNode object; node is the node to add.

Caution: Not part of W3C API.

The DomNode object node must be the child of an element or document node, otherwise the operation
fails.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.DomNode.appendChild
Adds a child DomNode object to the end of the child list for a DomNode object

Syntax

appendChild(
 node xml.DomNode)

1. node is the node to add

Library reference | 2147

Usage

Adds a child DomNode object to the end of the child list for this DomNode object.

The DomNode object node must be the child of an element or document node; otherwise the operation
fails.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.DomNode.appendChildElement
Creates and adds a child XML Element node to the end of the list of child nodes for an XML Element
DomNode object.

Syntax

appendChildElement(
 name STRING)
 RETURNING object xml.DomNode

1. name is the XML Element name.

Usage

Creates and adds a child XML Element node to the end of the list of child nodes for this XML Element
DomNode object.

Caution: Not part of W3C API.

Returns the XML Element DomNode object, or NULL.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.DomNode.appendChildElementNS
Creates and adds a child namespace qualified XML Element node to the end of the list of child nodes for
an XML Element DomNode object.

Syntax

appendChildElementNS(
 prefix STRING,
 name STRING,
 ns STRING)
 RETURNING object xml.DomNode

1. prefix is the prefix of the XML Element to add.
2. name is the name of the XML Element to add.
3. ns is the namespace URI of the XML Element to add.

Usage

Creates and adds a child namespace qualified XML Element node to the end of the list of child nodes for
this XML Element DomNode object.

Caution: Not part of W3C API.

Returns the XML Element DomNode object, or NULL.

Library reference | 2148

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.DomNode.clone
Returns a duplicate DomNode object of a node.

Syntax

clone(
 deep INTEGER)
 RETURNING object xml.DomNode

1. deep is a boolean. If deep is TRUE, child DomNode objects are cloned too; otherwise only the
DomNode itself is cloned.

Usage

Returns a duplicate DomNode object of this node. If deep is TRUE, child DomNode objects are cloned too;
otherwise only the DomNode itself is cloned.

Returns a copy of this DomNode object, or NULL.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.DomNode.getAttribute
Returns the value of an XML Attribute for an XML Element DomNode object

Syntax

getAttribute(
 name STRING)
 RETURNING value STRING

1. name is the name of the XML attribute to retrieve.

Usage

Returns the value of an XML Attribute for this XML Element DomNode object. where name is the name of
the XML attribute to retrieve.

Returns the XML Attribute value, or NULL.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.DomNode.getAttributeNode
Returns an XML Attribute DomNode object for an XML Element DomNode object

Syntax

getAttributeNode(
 name STRING)
 RETURNING object xml.DomNode

1. name is the name of the attribute to retrieve.

Library reference | 2149

Usage

Returns an XML Attribute DomNode object for this XML Element DomNode object, or NULL.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.DomNode.getAttributeNodeItem
Returns the XML Attribute DomNode object at a given position on this XML Element DomNode object.

Syntax

getAttributeNodeItem(
 pos INTEGER)
 RETURNING object xml.DomNode

1. pos is the position of the node to return.

Usage

Returns the XML Attribute DomNode object at a given position on this XML Element DomNode object,
where pos is the position of the node to return (Index starts at 1).

Returns the XML Attribute DomNode object at the given position, or NULL.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.DomNode.getAttributeNodeNS
Returns a namespace-qualified XML Attribute DomNode object for an XML Element DomNode object

Syntax

getAttributeNodeNS(
 name STRING,
 ns STRING)
 RETURNING object xml.DomNode

1. name is the name of the XMLAttribute to retrieve.
2. ns is the namespace URI of the XML Attribute to retrieve.

Usage

Returns a namespace-qualified XML Attribute DomNode object for this XML Element DomNode object, or
NULL.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.DomNode.getAttributeNS
Returns the value of a namespace qualified XML Attribute for an XML Element DomNode object

Syntax

getAttributeNS(
 name STRING,
 ns STRING)

Library reference | 2150

 RETURNING value STRING

1. name is the name.
2. ns is the namespace URI of the XML Attribute to retrieve

Usage

Returns the value of a namespace qualified XML Attribute for this XML Element DomNode object, where
name is the name and ns is the namespace URI of the XML Attribute to retrieve.

Returns the XML Attribute value, or NULL.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.DomNode.getAttributesCount
Returns the number of XML Attribute DomNode objects on this XML Element DomNode object.

Syntax

getAttributesCount()
 RETURNING num INTEGER

Usage

Returns the number of XML Attribute DomNode objects on this XML Element DomNode object.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.DomNode.getChildNodeItem
Returns the child DomNode object at a given position for a DomNode object.

Syntax

getChildNodeItem(
 pos INTEGER)
 RETURNING object xml.DomNode

1. pos is the position of the child node in the collection.

Usage

Returns the child DomNode object at a given position for this DomNode object.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.DomNode.getChildrenCount
Returns the number of child DomNode objects for a DomNode object.

Syntax

getChildrenCount()
 RETURNING cnt INTEGER

Library reference | 2151

Usage

Returns the number of child DomNode objects for this DomNode object.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.DomNode.getElementsByTagName
Returns a DomNodeList object containing all XML Element DomNode objects with the same tag name.

Syntax

getElementsByTagName(
 name STRING)
 RETURNING list xml.DomNodeList

1. name is the name of the XML Element tag to match or "*" to match all tags.

Usage

Returns a DomNodeList object containing all XML Element DomNode objects with the same tag name, or
NULL; name is the name of the XML Element tag to match, or "*" to match all tags.

The getElementsByTagName and getElementsByTagNameNS methods return a DomNodeList object,
unlike the other methods that return a DomNode object. The DomNodeList is restricted to contain objects
with the same tag name and/or namespace.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.DomNode.getElementsByTagNameNS
Returns a DomNodeList object containing all namespace-qualified XML Element DomNode objects with
the same tag name and namespace.

Syntax

getElementsByTagNameNS(
 name STRING,
 ns STRING)
 RETURNING list xml.DomNodeList

1. name is the name of the XML Element tag to match or "*" to match all tags.
2. ns is the namespace URI of the XML Element tag to match or "*" to match any namespace.

Usage

Returns a DomNodeList object containing all namespace-qualified XML Element DomNode objects with
the same tag name and namespace, or NULL. name is the name of the XML Element tag to match, or
"*" to match all tags; ns is the namespace URI of the XML Element tag to match, or "*" to match any
namespace.

The getElementsByTagName and getElementsByTagNameNS methods return a DomNodeList object,
unlike the other methods that return a DomNode object. The DomNodeList is restricted to contain objects
with the same tag name and/or namespace.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

Library reference | 2152

xml.DomNode.getFirstChild
Returns the first child DomNode object for this XML Element DomNode object.

Syntax

getFirstChild()
 RETURNING object xml.DomNode

Usage

Returns the first child DomNode object for this XML Element DomNode object, or NULL.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.DomNode.getFirstChildElement
Returns the first XML Element child DomNode object for this DomNode object.

Syntax

getFirstChildElement()
 RETURNING object xml.DomNode

Usage
Returns the first XML Element child DomNode object for this DomNode object, or NULL.

Caution: Not part of W3C API.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.DomNode.getLastChild
Returns the last child DomNode object for a XML Element DomNode object.

Syntax

getLastChild()
 RETURNING object xml.DomNode

Usage

Returns the last child DomNode object for this XML Element DomNode object, or NULL.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.DomNode.getLastChildElement
Returns the last child XML element DomNode object for this DomNode object.

Syntax

getLastChildElement()
 RETURNING object xml.DomNode

Library reference | 2153

Usage

Returns the last child XML element DomNode object for this DomNode object, or NULL.

Caution: Not part of W3C API.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.DomNode.getLocalName
Gets the local name for a DomNode object.

Syntax

getLocalName()
 RETURNING str STRING

Usage

Gets the local name for this DomNode object. If DomNode has a qualified name, only the local part is
returned.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.DomNode.getNamespaceURI
Returns the namespace URI for a DomNode object.

Syntax

getNamespaceURI()
 RETURNING str STRING

Usage

Returns the namespace URI for this DomNode object, or NULL.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.DomNode.getNextSibling
Returns the DomNode object immediately following a DomNode object.

Syntax

getNextSibling()
 RETURNING object xml.DomNode

Usage

Returns the DomNode object immediately following this DomNode object, or NULL.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.DomNode.getNextSiblingElement

Library reference | 2154

Returns the XML Element DomNode object immediately following a DomNode object.

Syntax

getNextSiblingElement()
 RETURNING object xml.DomNode

Usage

Returns the XML Element DomNode object immediately following this DomNode object, or NULL.

Caution: Not part of W3C API.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.DomNode.getNodeName
Gets the name for a DomNode object.

Syntax

getNodeName()
 RETURNING str STRING

Usage

Gets the name for this DomNode object; returns the qualified name of this DomNode object, or NULL. If
DomNode does not have a qualified name, the local part is returned.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.DomNode.getNodeType
Gets the XML type for this DomNode object.

Syntax

getNodeType()
 RETURNING str STRING

Usage

Gets the XML type for this DomNode object; returns one of the XML DomNode types, or NULL.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.DomNode.getNodeValue
Returns the value for a DomNode object.

Syntax

getNodeValue()
 RETURNING str STRING

Library reference | 2155

Usage

Returns the value for this DomNode object, or NULL.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.DomNode.getOwnerDocument
Returns the DomDocument object containing this DomNode object.

Syntax

getOwnerDocument()
 RETURNING object xml.DomDocument

Usage

Returns the DomDocument object containing this DomNode object, or NULL.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.DomNode.getParentNode
Returns the parent DomNode object for this DomNode object.

Syntax

getParentNode()
 RETURNING object xml.DomNode

Usage

Returns the parent DomNode object for this DomNode object, or NULL. In the case of a DomDocument
node, this method will return NULL (parent is not a DomNode object) but isAttached() will return TRUE.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.DomNode.getPrefix
Returns the prefix for a DomNode object.

Syntax

getPrefix()
 RETURNING str STRING

Usage

Returns the prefix for this DomNode object, or NULL.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.DomNode.getPreviousSibling

Library reference | 2156

Returns the DomNode object immediately preceding a DomNode object.

Syntax

getPreviousSibling()
 RETURNING object xml.DomNode

Usage

Returns the DomNode object immediately preceding this DomNode object, or NULL.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.DomNode.getPreviousSiblingElement
Returns the XML Element DomNode object immediately preceding a DomNode object.

Syntax

getPreviousSiblingElement()
 RETURNING object xml.DomNode

Usage

Returns the XML Element DomNode object immediately preceding this DomNode object, or NULL.

Caution: Not part of W3C API.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.DomNode.hasAttribute
Checks whether an XML Element DomNode object has the XML Attribute specified by a specified name.

Syntax

hasAttribute(
 name STRING)
 RETURNING flag INTEGER

1. name is the object name to check.

Usage

Checks whether this XML Element DomNode object has the XML Attribute specified by name. Returns
TRUE if an XML Attribute with the given name is carried by this XML Element DomNode object, otherwise
returns FALSE.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.DomNode.hasAttributeNS

Library reference | 2157

Checks whether a namespace qualified XML Attribute of a given name is carried by an XML Element
DomNode object.

Syntax

hasAttributeNS(
 name STRING,
 ns STRING)
 RETURNING flag INTEGER

1. name the name of the XMLAttribute to check
2. ns the namespace URI of the XML Attribute to check.

Usage

Checks whether a namespace qualified XML Attribute of a given name is carried by this XML Element
DomNode object, where name the name of the XMLAttribute to check; ns the namespace URI of the XML
Attribute to check. Returns TRUE if an XML Attribute with the given name and namespace URI is carried
by this XML Element DomNode object, otherwise returns FALSE.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.DomNode.hasAttributes
Identifies whether a node has XML Attribute nodes.

Syntax

hasAttributes()
 RETURNING flag INTEGER

1. flag acts as a boolean.

Usage

Returns TRUE if this node has XML Attribute nodes; otherwise returns FALSE.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.DomNode.hasChildNodes
Returns TRUE if a node has child nodes.

Syntax

hasChildNodes()
 RETURNING flag INTEGER

Usage

Returns TRUE if this node has child nodes;otherwise, returns FALSE.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.DomNode.insertAfterChild

Library reference | 2158

Inserts a DomNode object after an existing child DomNode object.

Syntax

insertAfterChild(
 node xml.DomNode,
 ref xml.DomNode)

1. node is the node to insert.
2. ref is the reference node (the node before which the new node must be inserted).

Usage

Inserts a DomNode object after an existing child DomNode object; node is the node to insert, ref is the
reference node (the node before which the new node must be inserted).

Caution: Not part of W3C API.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.DomNode.insertBeforeChild
Inserts a DomNode object before an existing child DomNode object.

Syntax

insertBeforeChild(
 node xml.DomNode,
 ref xml.DomNode)

1. node is the node to insert.
2. ref is the reference node (the node before which the new node must be inserted).

Usage

Inserts a DomNode object before an existing child DomNode object; node is the node to insert, ref is the
reference node (the node before which the new node must be inserted).

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.DomNode.isAttached
Returns whether the node is attached to the XML document.

Syntax

isAttached()
 RETURNING num INTEGER

Usage

Returns whether the node is attached to the XML document.

Caution: Not part of W3C API.

Returns TRUE if this DomNode object is attached to a DomDocument object as a child and was not
removed later on; otherwise it returns FALSE.

Library reference | 2159

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.DomNode.isDefaultNamespace
Checks whether the specified namespace URI is the default namespace.

Syntax

isDefaultNamespace(
 ns STRING)
 RETURNING flag INTEGER

1. ns is the namespace URI to look for.

Usage

Checks whether the specified namespace URI is the default namespace, where ns is the namespace URI
to look for. Returns TRUE if the given namespace is the default namespace, FALSE otherwise.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.DomNode.lookupNamespaceURI
Looks up the namespace URI associated to a prefix, starting from a specified node.

Syntax

lookupNamespaceURI(
 prefix STRING)
 RETURNING ns STRING

1. prefix is the prefix to look for.

Usage

Looks up the namespace URI associated to a prefix, starting from this node, where prefix is the prefix to
look for; if NULL, the default namespace URI will be returned. Returns a namespace URI, or NULL.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.DomNode.lookupPrefix
Looks up the prefix associated to a namespace URI, starting from the specified node.

Syntax

lookupPrefix(
 ns STRING)
 RETURNING prefix STRING

1. ns is the namespace URI to look for.

Usage

Looks up the prefix associated to a namespace URI, starting from this node, where ns is the namespace
URI to look for. Returns the prefix associated to this namespace URI, or NULL.

Library reference | 2160

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.DomNode.prependChild
Adds a child DomNode object to the beginning of the child list for a DomNode object.

Syntax

prependChild(
 node xml.DomNode)

1. node is the node to add.

Usage

Adds a child DomNode object to the beginning of the child list for this DomNode object ; node is the node
to add.

Caution: Not part of W3C API.

The DomNode object node must be the child of an element or document node, otherwise the operation
fails.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.DomNode.prependChildElement
Creates and adds a child XML Element node to the beginning of the list of child nodes for this XML
Element DomNode object.

Syntax

prependChildElement(
 name STRING)
 RETURNING object xml.DomNode

1. name is the name of the XML element to add.

Usage

Creates and adds a child XML Element node to the beginning of the list of child nodes for this XML
Element DomNode object; name is the name of the XML element to add.

Returns the XML Element DomNode object, or NULL.

Caution: Not part of W3C API.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.DomNode.prependChildElementNS
Creates and adds a child namespace-qualified XML Element node to the beginning of the list of child
nodes for an XML Element DomNode object.

Syntax

prependChildElementNS(

Library reference | 2161

 prefix STRING,
 name STRING,
 ns STRING)
 RETURNING object xml.DomNode

1. prefix is the prefix of the XML Element to add.
2. name is the name of the XML Element to add.
3. ns is the namespace URI of the XML Element to add.

Usage

Creates and adds a child namespace-qualified XML Element node to the beginning of the list of child
nodes for this XML Element DomNode object.

Returns the XML Element DomNode object, or NULL.

Note: Not part of W3C API.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.DomNode.removeAllChildren
Removes all child DomNode objects from a DomNode object.

Syntax

removeAllChildren()

Usage

Removes all child DomNode objects from this DomNode object.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.DomNode.removeAttribute
Removes an XML Attribute for an XML Element DomNode object.

Syntax

removeAttribute(
 name STRING)

1. name is the name of the XML attribute to remove.

Usage

Removes an XML Attribute for this XML Element DomNode object, where name is the name of the XML
attribute to remove. Status is updated with an error code.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.DomNode.removeAttributeNS

Library reference | 2162

Removes a namespace qualified XML Attribute for an XML Element DomNode object

Syntax

removeAttributeNS(
 name STRING,
 ns STRING)

1. name is the name of the XML Attribute to remove.
2. ns is the namespace URI of the XML Attribute to remove.

Usage

Removes a namespace qualified XML Attribute for this XML Element DomNode object, where name is the
name and ns is the namespace URI of the XML Attribute to remove.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.DomNode.removeChild
Removes a child DomNode object from the list of child DomNode objects.

Syntax

removeChild(
 node xml.DomNode)

1. node is the node to remove.

Usage

Removes a child DomNode object from the list of child DomNode objects, where node is the node to
remove.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.DomNode.replaceChild
Replaces an existing child DomNode with another child DomNode object.

Syntax

replaceChild(
 new xml.DomNode,
 old xml.DomNode)

1. new is the replacement child.
2. old is the child to be replaced.

Usage

Replaces an existing child DomNode with another child DomNode object, where old is the child to be
replaced and new is the replacement child.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

Library reference | 2163

xml.DomNode.selectByXPath
Returns a DomNodeList object containing all DomNode objects matching an XPath 1.0 expression.

Syntax

selectByXPath(
 expr STRING,
 NamespacesList ...)
 RETURNING list xml.DomNodeList

1. expr is the XPath 1.0 expression.
2. NamespacesList is a list of prefixes bounded to namespaces in order to resolve qualified names in the

XPath expression.

Usage

Returns a DomNodeList object containing all DomNode objects matching an XPath 1.0 expression; expr is
the XPath 1.0 expression, NamespacesList is a list of prefixes bounded to namespaces in order to resolve
qualified names in the XPath expression. This list must be filled with an even number of arguments,
representing the prefix and it corresponding namespace.

Caution: Not part of W3C API.

Example

selectByXPath(
 "../../d:Record/*[last()]",
 "d",
 "http://defaultnamespace")
selectByXPath(
 "ns:Record",
 NULL)
selectByXPath(
 "ns1:Records/ns2:Record",
 "ns1",
 "http://namespace1",
 "ns2",
 "http://namespace2")

selectByXPath("ns1:Record", "ns1") is invalid because the namespace definition
is missing.

If the namespaces list is NULL, the prefixes and namespaces defined in the document
itself are used if available.

A namespace must be an absolute URI (ex 'http://', 'file://').

In case of error, the method throws an exception and sets the STATUS variable.
Depending on the error, a human-readable description of the problem is available in the
SQLCA.SQLERRM register. See Error handling in GWS calls (STATUS) on page 2546.

xml.DomNode.setAttribute
Sets (or resets) an XML Attribute for an XML Element DomNode object.

Syntax

setAttribute(
 name STRING,
 value STRING)

Library reference | 2164

1. name is the name of the XML Attribute.
2. val is the value of the XML Attribute.

Usage

Sets (or resets) an XML Attribute for this XML Element DomNode object, where name is the name of the
XML Attribute and val is the value of the XML Attribute.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.DomNode.setAttributeNode
Sets (or resets) an XML Attribute DomNode object to an XML Element DomNode object.

Syntax

setAttributeNode(
 node xml.DomNode)

1. node is the XML Attribute DomNode object to set.

Usage

Sets (or resets) an XML Attribute DomNode object to an XML Element DomNode object, where node is the
XML Attribute DomNode object to set.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.DomNode.setAttributeNodeNS
Sets (or resets) a namespace-qualified XML Attribute DomNode object to an XML Element DomNode
object.

Syntax

setAttributeNodeNS(
 node xml.DomNode)

1. node is the XML Attribute DomNode object to set.

Usage

Sets (or resets) a namespace-qualified XML Attribute DomNode object to an XML Element DomNode
object, where node is the XML Attribute DomNode object to set.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.DomNode.setAttributeNS
Sets (or resets) a namespace-qualified XML Attribute for an XML Element DomNode object.

Syntax

setAttributeNS(
 prefix STRING,
 name STRING,
 ns STRING,

Library reference | 2165

 value STRING)

1. prefix is the prefix of the XMLAttribute.
2. name is the name of the XML Attribute.
3. ns is the namespace URI of the XML Attribute.
4. val is the value of the XML Attribute.

Usage

Sets (or resets) a namespace-qualified XML Attribute for this XML Element DomNode object, where prefix
is the prefix of the XMLAttribute, name is the name of the XML Attribute, ns is the namespace URI of the
XML Attribute, and val is the value of the XML Attribute.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.DomNode.setIdAttribute
Declare (or undeclare) the XML Attribute of given name to be of type ID.

Syntax

setIdAttribute(
 name STRING,
 isId INTEGER)

1. name is the name of the XML Attribute to set.
2. isId declares whether the attribute is a user-determined ID attribute.

Usage

Declare (or undeclare) the XML Attribute of given name to be of type ID. Use the value TRUE for the
parameter isID to declare that attribute for being a user-determined ID attribute, otherwise returns FALSE.

This affects the behavior of getElementById.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.DomNode.setIdAttributeNS
Declare (or undeclare) the namespace-qualified XML Attribute of given name and namespace to be of type
ID.

Syntax

setIdAttributeNS(
 name STRING,
 ns STRING,
 isId INTEGER)

1. name is the name of the XML Attribute to set.
2. ns is the namespace URI of the XML Attribute to set.
3. isId declares whether the attribute is a user-determined ID attribute.

Library reference | 2166

Usage

Declare (or undeclare) the namespace-qualified XML Attribute of given name and namespace to be of
type ID. Use the value TRUE for the parameter isID to declare that attribute for being a user-determined ID
attribute, otherwise returns FALSE.

This affects the behavior of getElementById.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.DomNode.setNodeValue
Sets the node value for a DomNode object.

Syntax

setNodeValue(
 val STRING)

1. val is the node value.

Usage

Sets the node value for this DomNode object, where val is the node value.

This method should only be used for nodes that are not parent of other nodes, which means it can be sued
for a node of type:

• ATTRIBUTE_NODE
• TEXT_NODE
• CDATA_SECTION_NODE
• PROCESSING_INSTRUCTION_NODE
• COMMENT_NODE

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.DomNode.setPrefix
Sets the prefix for a DomNode object.

Syntax

setPrefix(
 prefix STRING)

1. prefix is the prefix for this DomNode object.

Usage

Sets the prefix for this DomNode object.

This method is only valid on namespace qualified Element or Attribute nodes.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.DomNode.toString

Library reference | 2167

Returns a string representation of a DomNode object.

Syntax

toString()
 RETURNING STRING

Usage

Returns a string representation of this DomNode object, or NULL

Caution: Not part of W3C API.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

DomNode types
List of types for the xml.DomNode class.

Table 491: DomNode types

Type Description

ELEMENT_NODE The DomNode is an XML Element node.

ATTRIBUTE_NODE The DomNode is an XML Attribute node.

TEXT_NODE The DomNode is an XML Text node.

CDATA_SECTION_NODE The DomNode is an XML CData Section node.

ENTITY_REFERENCE_NODE The DomNode is an XML Entity Reference node.

PROCESSING_INSTRUCTION_NODE The DomNode is an XML Processing Instruction
node.

COMMENT_NODE The DomNode is an XML Comment node.

DOCUMENT_TYPE_NODE The DomNode is an XML DTD node.

DOCUMENT_FRAGMENT_NODE The DomNode is an XML Document Fragment
node.

Examples
Examples involving the xml.DomNode class.

Example Counting the number of nodes in an XML document

This code example counts the number of nodes of each type.

IMPORT XML

DEFINE nbElt INTEGER
DEFINE nbAttr INTEGER
DEFINE nbComment INTEGER
DEFINE nbPI INTEGER
DEFINE nbTxt INTEGER
DEFINE nbCData INTEGER

MAIN
 DEFINE document xml.DomDocument
 DEFINE ind INTEGER

Library reference | 2168

 # Handle arguments
 IF num_args() !=1 THEN
 CALL ExitHelp()
 END IF
 # Create document, load it, and count the nodes
 LET document = xml.DomDocument.Create()
 CALL document.load(arg_val(1))
 CALL CountDoc(document)
 # Display result
 DISPLAY "Results: "
 DISPLAY " Elements: ",nbElt
 DISPLAY " Attributes:",nbAttr
 DISPLAY " Comments: ",nbComment
 DISPLAY " PI: ",nbPI
 DISPLAY " Texts: ",nbTxt
 DISPLAY " CData: ",nbCData
END MAIN

FUNCTION CountDoc(d)
 DEFINE d xml.DomDocument
 DEFINE n xml.DomNode
 LET n = d.getFirstDocumentNode()
 WHILE (n IS NOT NULL)
 CALL Count(n)
 LET n = n.getNextSibling()
 END WHILE
END FUNCTION

FUNCTION Count(n)
 DEFINE n xml.DomNode
 DEFINE child xml.DomNode
 DEFINE next xml.DomNode
 DEFINE node xml.DomNode
 DEFINE ind INTEGER
 DEFINE name STRING
 IF n IS NOT NULL THEN
 IF n.getNodeType() == "COMMENT_NODE" THEN
 LET nbComment = nbComment + 1
 END IF
 IF n.getNodeType() == "ATTRIBUTE_NODE" THEN
 LET nbAttr = nbAttr + 1
 END IF
 IF n.getNodeType() == "PROCESSING_INSTRUCTION_NODE " THEN
 LET nbPI = nbPI + 1
 END IF
 IF n.getNodeType() == "ELEMENT_NODE" THEN
 LET nbElt = nbElt + 1
 END IF
 IF n.getNodeType() == "TEXT_NODE" THEN
 LET nbTxt = nbTxt +1
 END IF
 IF n.getNodeType() == "CDATA_SECTION_NODE" THEN
 LET nbCData = nbCData + 1
 END IF
 IF n.hasChildNodes() THEN
 LET name = n.getLocalName()
 LET child = n.getFirstChild()
 WHILE (child IS NOT NULL)
 CALL Count(child)
 LET child = child.getNextSibling()
 END WHILE
 END IF
 IF n.hasAttributes() THEN
 FOR ind = 1 TO n.getAttributesCount()

Library reference | 2169

 LET node = n.getAttributeNodeItem(ind)
 CALL Count(node)
 END FOR
 END IF
 END IF
END FUNCTION

FUNCTION ExitHelp()
 DISPLAY "DomCount <xml>"
 EXIT PROGRAM
END FUNCTION

The DomNodeList class
The xml.DomNodeList class provides methods to manipulate a list of DomNode objects.

You can create a DomNodeList object using selection methods in the DomDocument and DomNode
classes. The relationship between the DomNode objects in the list depends on the method used to create
the DomNodeList object.

The STATUS variable is set to zero after a successful method call.

xml.DomNodeList methods
Methods for the xml.DomNodeList class.

Table 492: Object methods

Name Description

getCount()
 RETURNING num INTEGER

Returns the number of DomNode objects in a
DomNodeList object.

getItem(
 pos INTEGER)
 RETURNING object xml.DomNode

Returns the DomNode object at a given position in
a DomNodeList object.

xml.DomNodeList.getCount
Returns the number of DomNode objects in a DomNodeList object.

Syntax

getCount()
 RETURNING num INTEGER

Usage

Returns the number of DomNode objects in a DomNodeList object.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.DomNodeList.getItem
Returns the DomNode object at a given position in a DomNodeList object.

Syntax

getItem(
 pos INTEGER)

Library reference | 2170

 RETURNING object xml.DomNode

1. pos is the position of the DomNode object to return (index starts at 1).

Usage

Returns the DomNode object at the given position in this DomNodeList object, where pos is the position of
the DomNode object to return (Index starts at 1).

Returns NULL when no DomNode object is at the given position.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

The streaming API for XML (StAX) classes
The streaming API for XML (StAX) classes use streaming while managing XML documents.

• CLASS StaxWriter

• Features
• Example

• CLASS StaxReader

• Event types
• Features
• Example

The StaxWriter class
The xml.StaxWriter class provides methods compatible with StAX (Streaming API for XML) for writing
XML documents.

The STATUS variable is set to zero after a successful method call.

xml.StaxWriter methods
Methods for the xml.StaxWriter class.

Table 493: Class methods: Creation

Name Description

xml.StaxWriter.create()
 RETURNING object xml.StaxWriter

Constructor of a StaxWriter object.

Table 494: Object methods: Configuration

Name Description

getFeature(
 feature STRING)
 RETURNING str STRING

Gets a feature of a StaxWriter object.

setFeature(
 feature STRING,
 value STRING)

Sets a feature of a StaxWriter object.

Library reference | 2171

Table 495: Object methods: Output

Name Description

close()
Closes the StaxWriter streaming, and releases all
associated resources.

writeTo(
 url STRING)

Sets the output stream of the StaxWriter object to a
file or an URL, and starts the streaming.

writeToDocument(
 doc xml.DomDocument)

Sets the output stream of the StaxWriter object
to an xml.DomDocument object, and starts the
streaming.

writeToPipe(
 cmd STRING)

Sets the output stream of the StaxWriter object to a
PIPE, and starts the streaming.

writeToText(
 txt TEXT)

Sets the output stream of the StaxWriter object to a
TEXT large object, and starts the streaming.

Table 496: Object methods: Document

Name Description

dtd(
 data STRING)

Writes a DTD to the StaxWriter stream.

endDocument()
Closes any open tags and writes corresponding
end tags.

startDocument(
 encoding STRING,
 version STRING,
 standalone INTEGER)

Writes an XML declaration to the StaxWriter
stream.

Table 497: Object methods: Namespace

Name Description

declareDefaultNamespace(
 defaultNS STRING)

Binds a namespace URI to the default namespace,
and forces the output of the default XML
namespace definition to the StaxWriter stream.

declareNamespace(
 prefix STRING,
 ns STRING)

Binds a namespace URI to a prefix, and forces
the output of the XML namespace definition to the
StaxWriter stream.

setDefaultNamespace(
Binds a namespace URI to the default namespace.

Library reference | 2172

Name Description

 defaultNS STRING)

setPrefix(
 prefix STRING,
 ns STRING)

Binds a namespace URI to a prefix.

Table 498: Object methods: Node

Name Description

attribute(
 name STRING,
 value STRING)

Writes an XML attribute to the StaxWriter stream.

attributeNS(
 name STRING,
 ns STRING,
 value STRING)

Writes an XML namespace qualified attribute to the
StaxWriter stream.

cdata(
 data STRING)

Writes an XML CData to the StaxWriter stream.

characters(
 text STRING)

Writes an XML text to the StaxWriter stream.

comment(
 data STRING)

Writes an XML comment to the StaxWriter stream.

emptyElement(
 name STRING)

Writes an empty XML element to the StaxWriter
stream.

emptyElementNS(
 name STRING,
 ns STRING)

Writes an empty namespace qualified XML element
to the StaxWriter stream.

endElement()
Writes an end tag to the StaxWriter stream relying
on the internal state to determine the prefix and
local name of the last START_ELEMENT.

entityRef(
 name STRING)

Writes an XML EntityReference to the StaxWriter
stream.

processingInstruction(
 target STRING,

Writes an XML ProcessingInstruction to the
StaxWriter stream

Library reference | 2173

Name Description

 data STRING)

startElement(
 name STRING)

Writes an XML start element to the StaxWriter
stream.

startElementNS(
 name STRING,
 ns STRING)

Writes a namespace-qualified XML start element to
the StaxWriter stream.

xml.StaxWriter.attribute
Writes an XML attribute to the StaxWriter stream.

Syntax

attribute(
 name STRING,
 value STRING)

1. name is the local name of the XML attribute. It cannot be NULL.
2. value is the value of the XML attribute. It cannot be NULL.

Usage

Attributes can only be written on the StaxWriter stream if it points to a START_ELEMENT or an
EMPTY_ELEMENT, otherwise the operation fails with an exception; that is, this method can only be called
after a startElement, startElementNS, emptyElement, emptyElementNS, or attribute and
attributeNS.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.StaxWriter.attributeNS
Writes an XML namespace qualified attribute to the StaxWriter stream.

Syntax

attributeNS(
 name STRING,
 ns STRING,
 value STRING)

1. name is the local name of the XML attribute, cannot be NULL.
2. ns is the namespace URI of the XML attribute, cannot be NULL.
3. value is the value of the XML attribute, cannot be NULL.

Usage

Attributes can only be written on the StaxWriter stream if it points to a START_ELEMENT or an
EMPTY_ELEMENT, otherwise the operation fails with an exception; that is, this method can only be called
after a startElement, startElementNS, emptyElement, emptyElementNS, or attribute and
attributeNS.

Library reference | 2174

If namespace URI has not been bound to a prefix with one of the methods setPrefix,
declareNamespace, setDefaultNamespace or declareDefaultNamespace, the operation fails with
an exception.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.StaxWriter.cdata
Writes an XML CData to the StaxWriter stream.

Syntax

cdata(
 data STRING)

1. data is the data contained in the CData section, or NULL.

Usage

This method writes XML character data passed as parameter as a CData.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.StaxWriter.characters
Writes an XML text to the StaxWriter stream.

Syntax

characters(
 text STRING)

1. text is the value to write.

Usage

This method writes the character string passed as parameter as a text element.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.StaxWriter.close
Closes the StaxWriter streaming, and releases all associated resources.

Syntax

close()

Usage

This method closes the stream.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.StaxWriter.comment

Library reference | 2175

Writes an XML comment to the StaxWriter stream.

Syntax

comment(
 data STRING)

1. data is the data in the XML comment, or NULL.

Usage

This method write and XML comment to the stream.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.StaxWriter.create
Constructor of a StaxWriter object.

Syntax

xml.StaxWriter.create()
 RETURNING object xml.StaxWriter

Usage

Returns a new StaxWriter object.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.StaxWriter.declareDefaultNamespace
Binds a namespace URI to the default namespace, and forces the output of the default XML namespace
definition to the StaxWriter stream.

Syntax

declareDefaultNamespace(
 defaultNS STRING)

1. defaultNS is the URI to bind to the default namespace. It cannot be NULL.

Usage

The stream must point to a START_ELEMENT, and the prefix scope is the current START_ELEMENT /
END_ELEMENT pair.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.StaxWriter.declareNamespace

Library reference | 2176

Binds a namespace URI to a prefix, and forces the output of the XML namespace definition to the
StaxWriter stream.

Syntax

declareNamespace(
 prefix STRING,
 ns STRING)

1. prefix is the prefix to be bind to the URI, cannot be NULL.
2. ns is the URI to bind to the default namespace, cannot be NULL.

Usage

The stream must point to a START_ELEMENT, and the prefix scope is the current START_ELEMENT /
END_ELEMENT pair.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.StaxWriter.dtd
Writes a DTD to the StaxWriter stream.

Syntax

dtd(
 data STRING)

1. data is a string representing a valid DTD, cannot be NULL.

Usage

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.StaxWriter.emptyElement
Writes an empty XML element to the StaxWriter stream.

Syntax

emptyElement(
 name STRING)

1. name is the local name of the XML empty element, cannot be NULL.

Usage

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.StaxWriter.emptyElementNS
Writes an empty namespace qualified XML element to the StaxWriter stream.

Syntax

emptyElementNS(

Library reference | 2177

 name STRING,
 ns STRING)

1. name is the local name of the XML empty element, cannot be NULL.
2. ns is the namespace URI of the XML empty element, cannot be NULL.

Usage

If namespace URI has not been bound to a prefix with one of the functions setPrefix,
declareNamespace, setDefaultNamespace or declareDefaultNamespace, the operation fails with
an exception.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.StaxWriter.endDocument
Closes any open tags and writes corresponding end tags.

Syntax

endDocument()

Usage

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.StaxWriter.endElement
Writes an end tag to the StaxWriter stream relying on the internal state to determine the prefix and local
name of the last START_ELEMENT.

Syntax

endElement()

Usage

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.StaxWriter.entityRef
Writes an XML EntityReference to the StaxWriter stream.

Syntax

entityRef(
 name STRING)

1. name is the name of the entity, cannot be NULL.

Usage

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

Library reference | 2178

xml.StaxWriter.getFeature
Gets a feature of a StaxWriter object.

Syntax

getFeature(
 feature STRING)
 RETURNING str STRING

1. feature is the name of a feature.

Usage

Returns the feature value. See StaxWriter Features on page 2182.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.StaxWriter.processingInstruction
Writes an XML ProcessingInstruction to the StaxWriter stream

Syntax

processingInstruction(
 target STRING,
 data STRING)

1. target is the target of the Processing Instruction, cannot be NULL.
2. data is the data of the Processing Instruction, or NULL.

Usage

Writes an XML ProcessingInstruction to the StaxWriter stream, where target is the target of the Processing
Instruction, cannot be NULL; data is the data of the Processing Instruction, or NULL.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.StaxWriter.setDefaultNamespace
Binds a namespace URI to the default namespace.

Syntax

setDefaultNamespace(
 defaultNS STRING)

1. defaultNS is the URI to bind to the default namespace, cannot be NULL.

Usage

Binds a namespace URI to the default namespace. The default namespace scope is the current
START_ELEMENT / END_ELEMENT pair; defaultNS is the URI to bind to the default namespace, cannot
be NULL.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

Library reference | 2179

xml.StaxWriter.setFeature
Sets a feature of a StaxWriter object.

Syntax

setFeature(
 feature STRING,
 value STRING)

1. feature is the name of a feature.
2. value is the value of the feature.

Usage

Sets a feature of a StaxWriter object, where feature is the name of a feature, and value is the value of the
feature. The features can be changed at any time, but will only be taken into account at the beginning of a
new stream (see writeTo or writeToDocument).

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.StaxWriter.setPrefix
Binds a namespace URI to a prefix.

Syntax

setPrefix(
 prefix STRING,
 ns STRING)

1. prefix is the prefix to be bind to the URI, cannot be NULL.
2. ns is the namespace URI to be bind to the prefix, cannot be NULL.

Usage

The prefix scope is the current START_ELEMENT / END_ELEMENT pair.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.StaxWriter.startDocument
Writes an XML declaration to the StaxWriter stream.

Syntax

startDocument(
 encoding STRING,
 version STRING,
 standalone INTEGER)

1. encoding is the encoding of the XML declaration, or NULL to use the default UTF-8 encoding.
2. version is the XML version of the XML declaration, or NULL to use the default 1.0 version
3. standalone when TRUE sets the standalone of the XML declaration to "yes", when FALSE sets it to "no"

or NULL.

Library reference | 2180

Usage

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

Example

This call:

startDocument("utf-8","1.0",true)

Produces:

<?xml version="1.0" encoding="UTF-8" standalone="yes" ?>
dtd("note [<!ENTITY writer \"Donald Duck.\">]")

xml.StaxWriter.startElement
Writes an XML start element to the StaxWriter stream.

Syntax

startElement(
 name STRING)

1. name is the local name of the XML start element, cannot be NULL.

Usage

All startElement methods open a new scope and set the stream to a START_ELEMENT. Writing the
corresponding endElement causes the scope to be closed.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.StaxWriter.startElementNS
Writes a namespace-qualified XML start element to the StaxWriter stream.

Syntax

startElementNS(
 name STRING,
 ns STRING)

1. name is the local name of the XML start element, cannot be NULL.
2. ns is the namespace URI of the XML start element, cannot be NULL.

Usage

All startElementNS methods open a new scope and set the stream to a START_ELEMENT. Writing the
corresponding endElement causes the scope to be closed.

If namespace URI has not been bound to a prefix with one of the functions setPrefix,
declareNamespace, setDefaultNamespace or declareDefaultNamespace, the operation fails with
an exception.

Library reference | 2181

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.StaxWriter.writeTo
Sets the output stream of the StaxWriter object to a file or an URL, and starts the streaming.

Syntax

writeTo(
 url STRING)

1. url is a valid URL or the name of the file that will contain the resulting XML document.

Usage

Only the following kinds of URLs are supported:

• http://
• https://
• tcp://
• tcps://
• file:///
• alias://

See FGLPROFILE Configuration for more details about URL mapping with aliases, and for proxy and
security configuration.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

Examples

writeTo("printerList.xml")

writeTo("http://myserver:1100/documents/printerList.xml")

writeTo("https://myserver:1100/documents/printerList.xml")

writeTo("alias://printerlist")

where printerlist alias is defined in fglprofile as ws.printerlist.url = "http://
myserver:1100/documents/ptinterList.xml".

xml.StaxWriter.writeToDocument
Sets the output stream of the StaxWriter object to an xml.DomDocument object, and starts the streaming.

Syntax

writeToDocument(
 doc xml.DomDocument)

1. doc is the empty xml.DomDocument object that will contain the resulting XML document.

Library reference | 2182

Usage

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.StaxWriter.writeToPipe
Sets the output stream of the StaxWriter object to a PIPE, and starts the streaming.

Syntax

writeToPipe(
 cmd STRING)

1. cmd is the command to start the PIPE that will get the resulting XML document.

Usage

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.StaxWriter.writeToText
Sets the output stream of the StaxWriter object to a TEXT large object, and starts the streaming.

Syntax

writeToText(
 txt TEXT)

1. txt must be a TEXT lob located in memory that will contain the resulting XML document.

Usage

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

StaxWriter Features
Features of the xml.StaxWriter class.

Table 499: StaxWriter features

Feature Description

format-pretty-print Formats the output by adding whitespace to
produce a pretty-printed, indented, human-readable
form.

Default value is FALSE.

smart-ending-elements Outputs each tag closed with an endElement()
call as empty elements if they have no children.

Default value is FALSE.

Library reference | 2183

Example
This example uses methods from the xml.StaxWriter class.

IMPORT xml

FUNCTION save(file)
 DEFINE file STRING
 DEFINE writer xml.StaxWriter
 TRY
 LET writer = xml.StaxWriter.Create()
 CALL writer.setFeature("format-pretty-print",TRUE)
 CALL writer.writeTo(file)
 CALL writer.startDocument("utf-8","1.0",true)
 CALL writer.comment("This is my first comment using a stax writer")
 CALL writer.setPrefix("c","http://www.mycompany.com/c")
 CALL writer.setPrefix("d","http://www.mycompany.com/d")
 CALL writer.setDefaultNamespace("http://www.mycompany.com/d")
 CALL writer.startElementNS("root", "http://www.mycompany.com/d")
 CALL writer.attribute("attr1","value1")
 CALL writer.attribute("attr2","value2")
 CALL writer.attributeNS("attr3", "http://www.mycompany.com/d","value3")
 CALL writer.comment("This is a comment using a stax writer")
 CALL writer.startElementNS("eltA", "http://www.mycompany.com/d")
 CALL writer.CData("<this is a CData section>")
 CALL writer.endElement()
 CALL writer.startElementNS("eltB", "http://www.mycompany.com/c")
 CALL writer.characters("Hello world, I'm from the development team")
 CALL writer.entityRef("one")
 CALL writer.endElement()
 CALL writer.processingInstruction("command1","do what you want")
 CALL writer.endElement()
 CALL writer.comment("This is my last comment using a stax writer")
 CALL writer.endDocument()
 CALL writer.close()
 RETURN TRUE
 CATCH
 DISPLAY "StaxWriter ERROR :",STATUS, SQLCA.SQLERRM
 RETURN FALSE
 END TRY
END FUNCTION

The StaxReader class
The StaxReader class provides methods compatible with StAX (Streaming API for XML) for reading XML
documents.

The STATUS variable is set to zero after a successful method call.

Syntax

xml.StaxReader

xml.StaxReader methods
Methods for the xml.StaxReader class.

Table 500: Class methods: Creation

Name Description

xml.StaxReader.Create()
 RETURNING object xml.StaxReader

Constructor of a StaxReader object.

Library reference | 2184

Table 501: Object methods: Configuration

Name Description

setFeature(
 feature STRING,
 value STRING)

Sets a feature of a StaxReader object.

getFeature(
 feature STRING)
 RETURNING str STRING

Gets a feature of a StaxReader object.

Table 502: Object methods: Input

Name Description

readFrom(
 url STRING)

Sets the input stream of the StaxReader object to a
file or an URL and starts the streaming

readFromDocument(
 doc xml.DomDocument)

Sets the input stream of the StaxReader object to a
DomDocument object and starts the streaming

readFromText(
 txt TEXT)

Sets the input stream of the StaxReader object to a
TEXT large object and starts the streaming.

readFromPipe(
 cmd STRING)

Sets the input stream of the StaxReader object to a
PIPE and starts the streaming.

close()
Closes the StaxReader streaming and releases all
associated resources.

Table 503: Object methods: Access

Name Description

getEventType()
 RETURNING eventtype STRING

Returns a string that indicates the type of event the
cursor of the StaxReader object is pointing to.

hasName()
 RETURNING flag INTEGER

Checks whether the StaxReader cursor points to a
node with a name.

hasText()
 RETURNING flag INTEGER

Checks whether the StaxReader cursor points to a
node with a text value.

isEmptyElement()
Checks whether the StaxReader cursor points to an
empty element node.

Library reference | 2185

Name Description

 RETURNING flag INTEGER

isStartElement()
 RETURNING flag INTEGER

Checks whether the StaxReader cursor points to a
start element node.

isEndElement()
 RETURNING flag INTEGER

Checks whether the StaxReader cursor points to an
end element node.

isCharacters()
 RETURNING flag INTEGER

Checks whether the StaxReader cursor points to a
text node.

isIgnorableWhitespace()
 RETURNING flag INTEGER

Checks whether the StaxReader cursor points to
ignorable whitespace.

Table 504: Object methods: Document

Name Description

getEncoding()
 RETURNING docenc STRING

Returns the document encoding defined in the XML
Document declaration, or NULL.

getVersion()
 RETURNING version STRING

Returns the document version defined in the XML
Document declaration, or NULL.

isStandalone()
 RETURNING flag STRING

Checks whether the document standalone attribute
defined in the XML Document declaration is set to
yes.

standaloneSet()
 RETURNING flag STRING

Checks whether the document standalone attribute
is defined in the XML Document declaration.

Table 505: Object methods: Nodes

Name Description

getPrefix()
 RETURNING prefix STRING

Returns the prefix of the current XML node, or
NULL.

getLocalName()
 RETURNING localname STRING

Returns the local name of the current XML node, or
NULL.

getName()
Returns the qualified name of the current XML
node, or NULL.

Library reference | 2186

Name Description

 RETURNING name STRING

getNamespace()
 RETURNING nsuri STRING

Returns the namespace URI of the current XML
node, or NULL.

getText()
 RETURNING value STRING

Returns as a string the value of the current XML
node, or NULL.

Table 506: Object methods: Processing Instructions

Name Description

getPITarget()
 RETURNING target STRING

Returns the target part of an XML
ProcessingInstruction node, or NULL.

getPIData()
 RETURNING data STRING

Returns the data part of an XML
ProcessingInstruction node, or NULL.

Table 507: Object methods: Attributes

Name Description

getAttributeCount()
 RETURNING num INTEGER

Returns the number of XML attributes defined on
the current XML node, or zero.

getAttributeLocalName(
 pos INTEGER)
 RETURNING localname STRING

Returns the local name of an XML attribute defined
at a given position on the current XML node, or
NULL.

getAttributeNamespace(
 pos INTEGER)
 RETURNING nsuri STRING

Returns the namespace URI of an XML attribute
defined at a given position on the current XML
node, or NULL.

getAttributePrefix(
 pos INTEGER)
 RETURNING prefix STRING

Returns the prefix of an XML attribute defined at a
given position on the current XML node, or NULL.

getAttributeValue(
 pos INTEGER)
 RETURNING value STRING

Returns the value of an XML attribute defined at a
given position on the current XML node, or NULL.

findAttributeValue(
 name STRING,
 ns STRING)
 RETURNING value STRING

Returns the value of an XML attribute of a given
name and/or namespace on the current XML node,
or NULL.

Library reference | 2187

Table 508: Object methods: Namespace

Name Description

lookupNamespace(
 prefix STRING)
 RETURNING nsuri STRING

Looks up the namespace URI associated with a
given prefix starting from the current XML node the
StaxReader cursor is pointing to.

lookupPrefix(
 ns STRING)
 RETURNING prefix STRING

Looks up the prefix associated with a given
namespace URI, starting from the current XML
node the StaxReader cursor is pointing to.

getNamespaceCount()
 RETURNING num INTEGER

Returns the number of namespace declarations
defined on the current XML node, or zero.

getNamespacePrefix(
 pos INTEGER)
 RETURNING prefix STRING

Returns the prefix of a namespace declaration
defined at a given position on the current XML
node, or NULL.

getNamespaceURI(
 pos INTEGER)
 RETURNING nsuri STRING

Returns the URI of a namespace declaration
defined at a given position on the current XML
node, or NULL.

Table 509: Object methods: Navigation

Name Description

hasNext()
 RETURNING flag INTEGER

Checks whether the StaxReader cursor can be
moved to a XML node next to it.

next()
Moves the StaxReader cursor to the next XML
node.

nextTag()
Moves the StaxReader cursor to the next XML
open or end tag

nextSibling()
Moves the StaxReader cursor to the immediate
next sibling XML Element of the current node,
skipping all its child nodes.

xml.StaxReader.close
Closes the StaxReader streaming and releases all associated resources.

Syntax

close()

Usage

This method closes the stream.

Library reference | 2188

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.StaxReader.Create
Constructor of a StaxReader object.

Syntax

xml.StaxReader.Create()
 RETURNING object xml.StaxReader

Usage

Returns a StaxReader object.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.StaxReader.findAttributeValue
Returns the value of an XML attribute of a given name and/or namespace on the current XML node, or
NULL.

Syntax

findAttributeValue(
 name STRING,
 ns STRING)
 RETURNING value STRING

1. name is the name of the attribute to retrieve. It cannot be NULL.
2. ns is the namespace URI of the attribute to retrieve, or NULL if the attribute is not namespace-qualified.

Usage

This method is only valid on a START_ELEMENT node.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.StaxReader.getAttributeCount
Returns the number of XML attributes defined on the current XML node, or zero.

Syntax

getAttributeCount()
 RETURNING num INTEGER

Usage

This method is only valid on a START_ELEMENT node.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.StaxReader.getAttributeLocalName

Library reference | 2189

Returns the local name of an XML attribute defined at a given position on the current XML node, or NULL.

Syntax

getAttributeLocalName(
 pos INTEGER)
 RETURNING localname STRING

1. pos is the position of the attribute to return (Index starts at 1).

Usage

This method is only valid on a START_ELEMENT node.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.StaxReader.getAttributeNamespace
Returns the namespace URI of an XML attribute defined at a given position on the current XML node, or
NULL.

Syntax

getAttributeNamespace(
 pos INTEGER)
 RETURNING nsuri STRING

1. pos is the position of the attribute to return (Index starts at 1).

Usage

This method is only valid on a START_ELEMENT node.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.StaxReader.getAttributePrefix
Returns the prefix of an XML attribute defined at a given position on the current XML node, or NULL.

Syntax

getAttributePrefix(
 pos INTEGER)
 RETURNING prefix STRING

1. pos is the position of the attribute to return (Index starts at 1).

Usage

This method is only valid on a START_ELEMENT node.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.StaxReader.getAttributeValue

Library reference | 2190

Returns the value of an XML attribute defined at a given position on the current XML node, or NULL.

Syntax

getAttributeValue(
 pos INTEGER)
 RETURNING value STRING

1. pos is the position of the attribute to return (Index starts at 1).

Usage

This method is only valid on a START_ELEMENT node.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.StaxReader.getEncoding
Returns the document encoding defined in the XML Document declaration, or NULL.

Syntax

getEncoding()
 RETURNING docenc STRING

Usage

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.StaxReader.getEventType
Returns a string that indicates the type of event the cursor of the StaxReader object is pointing to.

Syntax

getEventType()
 RETURNING eventtype STRING

Usage

See StaxReader Event Types on page 2200 for the full list of StaxReader event types.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.StaxReader.getFeature
Gets a feature of a StaxReader object.

Syntax

getFeature(
 feature STRING)
 RETURNING str STRING

1. feature is the name of a feature.

Library reference | 2191

Usage

See StaxReader Features on page 2200 for the full list of StaxReader features.

Returns the feature value.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.StaxReader.getLocalName
Returns the local name of the current XML node, or NULL.

Syntax

getLocalName()
 RETURNING localname STRING

Usage

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.StaxReader.getName
Returns the qualified name of the current XML node, or NULL.

Syntax

getName()
 RETURNING name STRING

Usage

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.StaxReader.getNamespace
Returns the namespace URI of the current XML node, or NULL.

Syntax

getNamespace()
 RETURNING nsuri STRING

Usage

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.StaxReader.getNamespaceCount
Returns the number of namespace declarations defined on the current XML node, or zero.

Syntax

getNamespaceCount()

Library reference | 2192

 RETURNING num INTEGER

Usage

This method is only valid on a START_ELEMENT node.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.StaxReader.getNamespacePrefix
Returns the prefix of a namespace declaration defined at a given position on the current XML node, or
NULL.

Syntax

getNamespacePrefix(
 pos INTEGER)
 RETURNING prefix STRING

1. pos is the position of the namespace declaration (Index starts at 1).

Usage

This method is only valid on a START_ELEMENT node.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.StaxReader.getNamespaceURI
Returns the URI of a namespace declaration defined at a given position on the current XML node, or
NULL.

Syntax

getNamespaceURI(
 pos INTEGER)
 RETURNING nsuri STRING

1. pos is the position of the namespace declaration (Index starts at 1).

Usage
This method is only valid on a START_ELEMENT node.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.StaxReader.getPIData
Returns the data part of an XML ProcessingInstruction node, or NULL.

Syntax

getPIData()
 RETURNING data STRING

Library reference | 2193

Usage

This method is only valid on a PROCESSING_INSTRUCTION node.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.StaxReader.getPITarget
Returns the target part of an XML ProcessingInstruction node, or NULL.

Syntax

getPITarget()
 RETURNING target STRING

Usage

This method is only valid on a PROCESSING_INSTRUCTION node.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.StaxReader.getPrefix
Returns the prefix of the current XML node, or NULL.

Syntax

getPrefix()
 RETURNING prefix STRING

Usage

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.StaxReader.getText
Returns as a string the value of the current XML node, or NULL.

Syntax

getText()
 RETURNING value STRING

Usage

This method is only valid on CHARACTERS, CDATA, SPACE, COMMENT, DTD and ENTITY_REFERENCE
nodes. For an ENTITY_REFERENCE, this method returns the replacement value, or NULL if none.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.StaxReader.getVersion

Library reference | 2194

Returns the document version defined in the XML Document declaration, or NULL.

Syntax

getVersion()
 RETURNING version STRING

Usage

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.StaxReader.hasName
Checks whether the StaxReader cursor points to a node with a name.

Syntax

hasName()
 RETURNING flag INTEGER

Usage

Returns TRUE if the current XML node has a name, FALSE otherwise. This method returns TRUE for
START_ELEMENT and END_ELEMENT, FALSE for all other nodes.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.StaxReader.hasNext
Checks whether the StaxReader cursor can be moved to a XML node next to it.

Syntax

hasNext()
 RETURNING flag INTEGER

Usage

Returns TRUE if there is still an XML node in the stream, FALSE otherwise.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.StaxReader.hasText
Checks whether the StaxReader cursor points to a node with a text value.

Syntax

hasText()
 RETURNING flag INTEGER

Library reference | 2195

Usage

Returns TRUE if the current XML node has a text value, FALSE otherwise. This method returns TRUE for
CHARACTERS, SPACE, CDATA, COMMENT, ENTITY_REFERENCE and DTD, FALSE for all other nodes.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.StaxReader.isCharacters
Checks whether the StaxReader cursor points to a text node.

Syntax

isCharacters()
 RETURNING flag INTEGER

Usage

Returns TRUE if the current XML node is a text node, FALSE otherwise.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.StaxReader.isEmptyElement
Checks whether the StaxReader cursor points to an empty element node.

Syntax

isEmptyElement()
 RETURNING flag INTEGER

Usage

Returns TRUE if the current XML element node has no children, FALSE otherwise.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.StaxReader.isEndElement
Checks whether the StaxReader cursor points to an end element node.

Syntax

isEndElement()
 RETURNING flag INTEGER

Usage

Returns TRUE if the current XML node is an end element node, FALSE otherwise.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.StaxReader.isIgnorableWhitespace

Library reference | 2196

Checks whether the StaxReader cursor points to ignorable whitespace.

Syntax

isIgnorableWhitespace()
 RETURNING flag INTEGER

Usage

Returns TRUE if the current XML node is an ignorable text node, FALSE otherwise.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.StaxReader.isStandalone
Checks whether the document standalone attribute defined in the XML Document declaration is set to yes.

Syntax

isStandalone()
 RETURNING flag STRING

Usage

Returns TRUE if the standalone attribute in the XML declaration is set to yes, FALSE otherwise.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.StaxReader.isStartElement
Checks whether the StaxReader cursor points to a start element node.

Syntax

isStartElement()
 RETURNING flag INTEGER

Usage

Returns TRUE if the current XML node is a start element node, FALSE otherwise.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.StaxReader.lookupNamespace
Looks up the namespace URI associated with a given prefix starting from the current XML node the
StaxReader cursor is pointing to.

Syntax

lookupNamespace(
 prefix STRING)
 RETURNING nsuri STRING

1. prefix is the prefix to look for; if NULL the default namespace URI will be returned..

Library reference | 2197

Usage

Returns the namespace URI associated with the prefix, or NULL if there is none.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.StaxReader.lookupPrefix
Looks up the prefix associated with a given namespace URI, starting from the current XML node the
StaxReader cursor is pointing to.

Syntax

lookupPrefix(
 ns STRING)
 RETURNING prefix STRING

1. ns is the namespace URI to look for. It cannot be NULL.

Usage

Returns the prefix associated with this namespace URI, or NULL if there is none.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.StaxReader.next
Moves the StaxReader cursor to the next XML node.

Syntax

next()

Usage

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.StaxReader.nextSibling
Moves the StaxReader cursor to the immediate next sibling XML Element of the current node, skipping all
its child nodes.

Syntax

nextSibling()

Usage

The cursor points to the parent end tag if there are no siblings.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.StaxReader.nextTag

Library reference | 2198

Moves the StaxReader cursor to the next XML open or end tag

Syntax

nextTag()

Usage

The cursor points to the end of the document if there is no next XML open or end tag.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.StaxReader.readFrom
Sets the input stream of the StaxReader object to a file or an URL and starts the streaming

Syntax

readFrom(
 url STRING)

1. url is a valid URL or the name of the file to read.

Usage

Only the following kinds of URLs are supported:

• http://
• https://
• tcp://
• tcps://
• file:///
• alias://

See FGLPROFILE Configuration for more details about URL mapping with aliases, and for proxy and
security configuration.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.StaxReader.readFromDocument
Sets the input stream of the StaxReader object to a DomDocument object and starts the streaming

Syntax

readFromDocument(
 doc xml.DomDocument)

1. doc is an XML/DomDocument object that contains an XML document.

Usage

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.StaxReader.readFromPipe

Library reference | 2199

Sets the input stream of the StaxReader object to a PIPE and starts the streaming.

Syntax

readFromPipe(
 cmd STRING)

1. cmd is the command to start the PIPE and where the reader will get the XML from.

Usage

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.StaxReader.readFromText
Sets the input stream of the StaxReader object to a TEXT large object and starts the streaming.

Syntax

readFromText(
 txt TEXT)

1. txt must be a TEXT lob located in memory and containing the XML to read.

Usage

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.StaxReader.setFeature
Sets a feature of a StaxReader object.

Syntax

setFeature(
 feature STRING,
 value STRING)

1. feature is the name of a feature.
2. value is the value of the feature.

Usage

See StaxReader Features on page 2200 for the full list of StaxReader features.

The features can be changed at any time, but will only be taken into account at the beginning of a new
stream (see readFrom or readFromDocument).

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.StaxReader.standaloneSet

Library reference | 2200

Checks whether the document standalone attribute is defined in the XML Document declaration.

Syntax

standaloneSet()
 RETURNING flag STRING

Usage

Returns TRUE if the standalone attribute in the XML declaration is set, FALSE otherwise.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

StaxReader Features
Features of the xml.StaxReader class.

Table 510: StaxReader Features

Feature Description

expand-entity-references Defines whether XML EntityReference nodes are
kept or replaced during the parsing of an XML
document.

Default value is TRUE.

StaxReader Event Types
Event types of the xml.StaxReader class.

Table 511: StaxReader event types

Type Description XML sample

START_DOCUMENT StaxReader cursor
points to the beginning
of the XML document.

<?xml version="1.0"
standalone="no"?>

END_DOCUMENT StaxReader cursor has
reached the end of the
XML document.

No additional parsing
operation will succeed.

START_ELEMENT StaxReader cursor
points to an XML start
element or empty
element node.

<p:elt attr="val"> or <p:elt
attr="val"/>

END_ELEMENT StaxReader cursor
points to an XML end
element node.

</p:elt>

CHARACTERS StaxReader cursor
points to an XML text
node.

... eltA/>This is
text<eltB ...

Library reference | 2201

Type Description XML sample

CDATA StaxReader cursor
points to an XML CData
node.

<![CDATA[<Hello, world!>]]>

SPACE StaxReader cursor
points to an XML text
node containing only
whitespaces.

... eltA/> <eltB ...

COMMENT StaxReader cursor
points to an XML
comment node.

<!-- a comment -->

DTD StaxReader cursor
points to a DTD string.

<!DOCTYPE A [<!ELEMENT B (C
+)>]>

ENTITY_REFERENCE StaxReader cursor
points to an XML entity
reference node.

&ref;

PROCESSING_INSTRUCTION StaxReader cursor
points to an XML
processing instruction
node.

<?target data?>

ERROR StaxReader cursor
points to an unexpected
XML node.

Example
Example using methods of the xml.StaxReader class.

IMPORT xml

FUNCTION parse(file)
 DEFINE file STRING
 DEFINE event STRING
 DEFINE ret INTEGER
 DEFINE ind INTEGER
 DEFINE reader xml.StaxReader
 TRY
 LET reader=xml.StaxReader.Create()
 CALL reader.readFrom(file)
 WHILE (true)
 LET event=reader.getEventType()
 CASE event
 WHEN "START_DOCUMENT"
 DISPLAY "Document reading started"
 DISPLAY "XML Version : ",reader.getVersion()
 DISPLAY "XML Encoding : ",reader.getEncoding()
 IF reader.standaloneSet() THEN
 IF reader.isStandalone() THEN
 DISPLAY "Standalone : yes"
 ELSE
 DISPLAY "Standalone : no"
 END IF
 END IF
 WHEN "END_DOCUMENT"
 DISPLAY "Document reading finished"
 WHEN "START_ELEMENT"

Library reference | 2202

 IF reader.isEmptyElement() THEN
 DISPLAY "<"||reader.getName()||"/>"
 ELSE
 DISPLAY "<"||reader.getName()||">"
 END IF
 FOR ind=1 TO reader.getNamespaceCount()
 DISPLAY "xmlns:"||reader.getNamespacePrefix(ind)||"="
 ||reader.getNamespaceURI(ind)
 END FOR
 FOR ind=1 TO reader.getAttributeCount()
 IF reader.getAttributePrefix(ind) THEN
 DISPLAY reader.getAttributePrefix(ind)||":"
 ||reader.getAttributeLocalName(ind)||"="
 ||reader.getAttributeValue(ind)
 ELSE
 DISPLAY reader.getAttributeLocalName(ind)||"="
 ||reader.getAttributeValue(ind)
 END IF
 END FOR
 WHEN "END_ELEMENT"
 DISPLAY "</"||reader.getName()||">"
 WHEN "CHARACTERS"
 IF reader.hasText() AND NOT reader.isIgnorableWhitespace() THEN
 DISPLAY "CHARACTERS :",reader.getText()
 END IF
 WHEN "COMMENT"
 IF reader.hasText() THEN
 DISPLAY "Comment :",reader.getText()
 END IF
 WHEN "CDATA"
 IF reader.hasText() THEN
 DISPLAY "CDATA :", reader.getText()
 END IF
 WHEN "PROCESSING_INSTRUCTION"
 DISPLAY "PI :",reader.getPITarget(),reader.getPIData()
 WHEN "ENTITY_REFERENCE"
 DISPLAY "Entity name :",reader.getName()
 OTHERWISE
 DISPLAY "Unknown "||event||" node"
 END CASE
 IF reader.hasNext() THEN
 CALL reader.next()
 ELSE
 CALL reader.close()
 EXIT WHILE
 END IF
 END WHILE
 CATCH
 DISPLAY "StaxReader ERROR :",STATUS||" ("||SQLCA.SQLERRM||")"
 END TRY
END FUNCTION

XML serialization classes
The XML serialization classes convert BDL variables to XML and XML to BDL variables.

• CLASS Serializer

• Option flags

The Serializer class
The xml.Serializer class provides methods to manage options for the serializer engine, and to use the
serializer engine to serialize variables and XML element nodes.

This class is a static class and does not have to be instantiated.

Library reference | 2203

The STATUS variable is set to zero after a successful method call.

xml.Serializer methods
Methods for the xml.Serializer class.

Table 512: Class methods

Name Description

xml.Serializer.CreateXmlSchemas(
 var fgl-type,
 ar DYNAMIC ARRAY OF
 xml.DomDocument)

Creates XML schemas corresponding to the given
variable var, and fills the dynamic array ar with
xml.DomDocument objects each representing an
XML schema.

xml.Serializer.DomToStax(
 node xml.DomNode,
 stax xml.StaxWriter)

Serializes an XML node object to a StaxWriter
object.

xml.Serializer.DomToVariable(
 node xml.DomNode,
 var fgl-type)

Serializes an XML element node into a BDL
variable using a DomNode object.

xml.Serializer.GetOption(
 flag STRING)
 RETURNING value STRING

Gets a global option value from the serializer
engine.

xml.Serializer.SetOption(
 flag STRING,
 value STRING)

Sets a global option value for the serializer engine

xml.Serializer.SoapSection5ToVariable(
 node xml.DomNode,
 var fgl-type)

Serializes an XML element node into a BDL
variable in Soap Section 5 encoding.

xml.Serializer.StaxToVariable(
 stax xml.StaxReader,
 var fgl-type)

Serializes an XML element node into a BDL
variable using a StaxReader object.

xml.Serializer.StaxToDom(
 stax xml.StaxReader,
 node xml.DomNode)

Serializes an XML element node into a DomNode
object using a StaxReader object.

xml.Serializer.VariableToDom(
 var fgl-type,
 node xml.DomNode)

Serializes a BDL variable into an XML element
node using a DomNode object.

xml.Serializer.VariableToSoapSection5(
 var fgl-type,

Serializes a BDL variable into an XML element
node in Soap Section 5 encoding.

Library reference | 2204

Name Description

 node xml.DomNode)

xml.Serializer.VariableToStax(
 var fgl-type,
 stax xml.StaxWriter)

Serializes a BDL variable into an XML element
node using a StaxWriter object.

xml.Serializer.CreateXmlSchemas
Creates XML schemas corresponding to the given variable var, and fills the dynamic array ar with
xml.DomDocument objects each representing an XML schema.

Syntax

xml.Serializer.CreateXmlSchemas(
 var fgl-type,
 ar DYNAMIC ARRAY OF xml.DomDocument)

1. var is a given variable.
2. ar is a dynamic array of xml.DomDocument objects, each representing an XML schema.

Usage

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.Serializer.DomToStax
Serializes an XML node object to a StaxWriter object.

Syntax

xml.Serializer.DomToStax(
 node xml.DomNode,
 stax xml.StaxWriter)

1. node is an XML DomNode object.
2. stax is a StaxWriter object.

Usage

The resulting XML element node of the serialization process will be added at the current cursor position of
the StaxWriter object.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.Serializer.DomToVariable
Serializes an XML element node into a BDL variable using a DomNode object.

Syntax

xml.Serializer.DomToVariable(
 node xml.DomNode,
 var fgl-type)

Library reference | 2205

1. node is a DomNode object of type ELEMENT_NODE.
2. var is any BDL variable with optional XML mapping attributes.

Usage

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.Serializer.getOption
Gets a global option value from the serializer engine.

Syntax

xml.Serializer.GetOption(
 flag STRING)
 RETURNING value STRING

1. flag is the option flag.

Usage

Returns the value of the flag.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.Serializer.setOption
Sets a global option value for the serializer engine

Syntax

xml.Serializer.SetOption(
 flag STRING,
 value STRING)

1. flag is the option flag.
2. value is the value of the flag.

Usage

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.Serializer.SoapSection5ToVariable
Serializes an XML element node into a BDL variable in Soap Section 5 encoding.

Syntax

xml.Serializer.SoapSection5ToVariable(
 node xml.DomNode,
 var fgl-type)

1. node is a DomNode object of type ELEMENT_NODE.
2. var is any BDL variable with optional XML mapping attributes.

Library reference | 2206

Usage

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.Serializer.StaxToDom
Serializes an XML element node into a DomNode object using a StaxReader object.

Syntax

xml.Serializer.StaxToDom(
 stax xml.StaxReader,
 node xml.DomNode)

1. stax is a StaxReader object where the cursor points to an XML Element node,
2. node is a DomNode object of type ELEMENT_NODE or DOCUMENT_FRAGMENT_NODE.

Usage

The resulting XML element node of the serialization process will be appended to the last child of the given
node.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.Serializer.StaxToVariable
Serializes an XML element node into a BDL variable using a StaxReader object.

Syntax

xml.Serializer.StaxToVariable(
 stax xml.StaxReader,
 var fgl-type)

1. stax is a StaxReader object where the cursor points to an XML Element node.
2. var is any BDL variable with optional XML mapping attributes.

Usage

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.Serializer.VariableToDom
Serializes a BDL variable into an XML element node using a DomNode object.

Syntax

xml.Serializer.VariableToDom(
 var fgl-type,
 node xml.DomNode)

1. var is any BDL variable with optional XML mapping attributes.
2. node is a DomNode object of type ELEMENT_NODE or DOCUMENT_FRAGMENT_NODE.

Library reference | 2207

Usage

The resulting XML element node of the serialization process will be appended to the last child of the given
node.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.Serializer.VariableToSoapSection5
Serializes a BDL variable into an XML element node in Soap Section 5 encoding.

Syntax

xml.Serializer.VariableToSoapSection5(
 var fgl-type,
 node xml.DomNode)

1. var is any BDL variable with optional XML mapping attributes.
2. node is a DomNode object of type ELEMENT_NODE or DOCUMENT_FRAGMENT_NODE.

Usage

The resulting XML element node of the serialization process will be appended to the last child of the given
node.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.Serializer.VariableToStax
Serializes a BDL variable into an XML element node using a StaxWriter object.

Syntax

xml.Serializer.VariableToStax(
 var fgl-type,
 stax xml.StaxWriter)

1. var is any BDL variable with optional XML mapping attributes.
2. stax is a StaxWriter object.

Usage

The resulting XML element node of the serialization process will be added at the current cursor position of
the StaxWriter object.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

Serialization option flags
Serialization option flags for the xml.Serializer class.

Table 513: Serialization option flags

Flag Description

xml_ignoretimezone Defines whether, during the marshalling and un-
marshalling process of a BDL DATETIME data

Library reference | 2208

Flag Description

type, the Serializer should ignore the time zone
information.

A value of zero means FALSE. The default is
FALSE.

Throws an exception in case of errors, and updates
status with an error code.

xml_usetypedefinition Defines whether the Serializer must specify the
type of data during serialization. This will add an
"xsi:type" attribute to each XML data type.

A value of zero means FALSE. The default is
FALSE.

Throws an exception in case of errors, and updates
status with an error code.

xml_useutctime Defines whether, during the marshalling process of
a BDL DATETIME data type, the Serializer should
convert it into UTC time.

A value of zero means FALSE. The default is
FALSE.

Throws an exception in case of errors, and updates
status with an error code.

xs_processcontents Defines the way to generate wildcard elements and
attributes in XML schemas via the XML schema
processContents tag. See Table 514: Values for
xs_processcontents on page 2208

Throws an exception in case of errors, and updates
status with an error code.

Table 514: Values for xs_processcontents

Value Description

0 No processContents tag will be generated.
(default)

1 Generation of processContents="skip".

2 Generation of processContents="lax".

3 Generation of processContents="strict".

XML security classes
XML Security classes handle encryption and signature of XML documents entirely in memory with keys
and certificates.

Important: The XML security classes are not supported on GMI mobile devices.

• CLASS CryptoKey

• Keys
• CLASS CryptX509

Library reference | 2209

• CLASS Encryption
• CLASS Signature

• Digests
• Transformations

• CLASS KeyStore

The CryptoKey class
The xml.CryptoKey class provides methods to manipulate HMAC, symmetric and asymmetric keys
needed for signing, verifying, encrypting and decrypting XML documents or document fragments.

It follows the XML-Signature and XML-Encryption specifications.

The STATUS variable is set to zero after a successful method call.

Important: This class is not supported on GMI mobile devices.

xml.CryptoKey methods
Methods for the xml.CryptoKey class.

Table 515: Class methods: Creation

Name Description

xml.CryptoKey.Create(
 url STRING)
 RETURNING object xml.CryptoKey

Initializes an xml.CryptoKey object. Constructor of
an empty CryptoKey object depending on a url.

xml.CryptoKey.CreateDerivedKey(
 url STRING)
 RETURNING object xml.CryptoKey

Constructor of an empty CryptoKey object intended
to be derived before use, and depending on a url.

xml.CryptoKey.CreateFromNode(
 url STRING,
 node xml.DomNode)
 RETURNING object xml.CryptoKey

Constructor of a new CryptoKey object depending
on a url and from a XML node, according to the
XML-Signature and XML-Encryption specification.

Table 516: Object methods: Access

Name Description

compareTo(
 secondKey xml.CryptoKey)
 RETURNING flag INTEGER

Compares a CryptoKey object to a second key.

getSHA1()
 RETURNING keyId STRING

Returns the SHA1 encoded key identifier in a
base64 encoded STRING.

getSize()
 RETURNING size INTEGER

Returns the size of the key in bits.

getType()
Returns the type of key.

http://www.w3.org/TR/xmldsig-core/
http://www.w3.org/TR/xmlenc-core/

Library reference | 2210

Name Description

 RETURNING type STRING

getUsage()
 RETURNING usage STRING

Returns the usage of the key.

getUrl()
 RETURNING keyId STRING

Returns the key identifier as an URL, as defined
in the XML-Signature and XML-Encryption
specification.

See also The Diffie-Hellman key agreement algorithm on page 2447.

Table 517: Object methods: Modify

Name Description

deriveKey(
 method STRING,
 label STRING,
 seed STRING,
 created STRING,
 offset INTEGER,
 size INTEGER)

Derives the symmetric or HMAC CryptoKey object
using the given method identifier and concatenating
the optional label, the mandatory seed value and
the optional created date as initial random value.

generateKey(
 size INTEGER)

Generates a random key of given size (in bits).

setKey(
 key STRING)

Defines the value of a HMAC or Symmetric key.

Table 518: Object methods: Load, save, and compute

Name Description

computeKey(
 otherPubKey xml.CryptoKey,
 url STRING)
 RETURNING sharedSecret
 xml.CryptoKey

Computes the shared secret based on the given
modulus, generator, the private key and the other
peer's public key. The returned key can be any of
symmetric/HMAC or symmetric/encryption key type.
It can be used for symmetric signature or symmetric
encryption.

loadBIN(
 file STRING)

Loads a symmetric or HMAC key from a file in raw
format.

loadDER(
 file STRING)

Loads an asymmetric DSA key, an asymmetric
RSA key or Diffie-Hellman parameters from a file in
DER format.

loadFromString(
Loads the given key in BASE64 string format into a
CryptoKey object.

Library reference | 2211

Name Description

 str STRING)

loadPEM(
 file STRING)

Loads an asymmetric DSA key, an asymmetric
RSA key or Diffie-Hellman parameters from a file in
PEM format.

loadPrivate(
 xml xml.DomDocument)

Loads the private asymmetric RSA key in the
given XML document into the private part of this
CryptoKey object, according to the XKMS2.0
specification.

loadPublic(
 xml xml.DomDocument)

Loads the public asymmetric RSA or DSA key in
the given XML document into the public part of this
CryptoKey object, according to the XML-Signature
specification for DSA and RSA key value.

loadPublicFromString(
 pubKeyStr STRING)

Populate the current CryptoKey object with the
passed public key.

savePrivate()
 RETURNING object xml.DomDocument

Saves the private part of an asymmetric RSA
CryptoKey object into a XML document according
to the XKMS2.0 specification.

savePublic()
 RETURNING object xml.DomDocument

Saves the public part of an asymmetric RSA or
DSA CryptoKey object or the parameters and
the public key of the Diffie-Hellman object into a
XML document according to the XML-Signature
specification for DSA and RSA and Diffie-Hellman
key values.

savePublicToString()
 RETURNING str STRING

Save the current xml.CryptoKey's public part in
the returned base64 string.

saveToString()
 RETURNING str STRING

Saves the CryptoKey object into a BASE64 string
format.

Table 519: Object methods: Feature

Name Description

getFeature(
 feature STRING)
 RETURNING value STRING

Returns the value of the given feature for this
CryptoKey object, or NULL.

setFeature(
 feature STRING,
 value STRING)

Sets or resets the value of a feature for a
CryptoKey object.

xml.CryptoKey.compareTo

http://www.w3.org/TR/xkms2/#XKMS_2_0_Section_8_2
http://www.w3.org/TR/xkms2/#XKMS_2_0_Section_8_2
http://www.w3.org/TR/xmldsig-core/#sec-DSAKeyValue
http://www.w3.org/TR/xmldsig-core/#sec-RSAKeyValue
http://www.w3.org/TR/xkms2/#XKMS_2_0_Section_8_2
http://www.w3.org/TR/xmldsig-core/#sec-DSAKeyValue
http://www.w3.org/TR/xmldsig-core/#sec-RSAKeyValue

Library reference | 2212

Compares a CryptoKey object to a second key.

Syntax

compareTo(
 secondKey xml.CryptoKey)
 RETURNING flag INTEGER

1. secondKey is the xml.CryptoKey object to use for comparison to the current CryptoKey object.

Usage

The method verifies if the keys URL, type, size, usage and value are the same. If they are the same, the
two identical keys will produce the same encryption cipher.

The key features are not taken into account during comparison.

Returns TRUE if they are identical, FALSE if they are not identical.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.CryptoKey.computeKey
Computes the shared secret based on the given modulus, generator, the private key and the other peer's
public key. The returned key can be any of symmetric/HMAC or symmetric/encryption key type. It can be
used for symmetric signature or symmetric encryption.

Syntax

computeKey(
 otherPubKey xml.CryptoKey,
 url STRING)
 RETURNING sharedSecret xml.CryptoKey

1. otherPubKey is the other peer's public key (xml.CryptoKey).
2. url is the shared secret key type as an url identifier (STRING)..

Usage

Important: This method is for Diffie-Hellman key-agreement algorithm only.

Returns an xml.CryptoKey sharedSecret: An xml.CryptoKey object of the specified type.

In the 3DES case, no key weakness test is done. If the compound shared secret is week, the other peer
inovled in the communication may raise an error. It depends on the language used on the other side.

In order to be able to compute an AES256 shared secret of the Java™ side, you need to add or relace the
files local_policy.jar and US_export_policy.jar located in $JDK_HOME/jre/lib/security
by the Java™ Cryptographic Extension correspoinding to your JDK version. You can find this extension at
http://www.oracle.com/technetwork/java/javase/downloads/index.html.

If the shared secret key length is less than the Diffie-Hellman key length, only the first needed bytes
will be taken. For example, if the Diffie-Hellman is 512 bits length and the shared secret is a 3DES
key, then only the first 192 bits will be used by the computation. In a 3DES shared secret case,
xml.CryptoKey.computeKey() is calculated, where in AES shared secret case, the Diffie-Hellman key
is truncated.

If the shared secret key length is bigger than the Diffie-Hellman key length, an error is raised.

Library reference | 2213

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.CryptoKey.Create
Initializes an xml.CryptoKey object. Constructor of an empty CryptoKey object depending on a url.

Syntax

xml.CryptoKey.Create(
 url STRING)
 RETURNING object xml.CryptoKey

1. url defines a key identifier according to the XML-Signature and XML-Encryption specification or the
Diffie-Hellman specification.

Usage

Returns a CryptoKey object or NULL.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.CryptoKey.CreateDerivedKey
Constructor of an empty CryptoKey object intended to be derived before use, and depending on a url.

Syntax

xml.CryptoKey.CreateDerivedKey(
 url STRING)
 RETURNING object xml.CryptoKey

1. url defines a key identifier according to the XML-Signature and XML-Encryption specification.

Usage

Returns a CryptoKey object or NULL. Only symmetric and HMAC keys can be derived.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.CryptoKey.CreateFromNode
Constructor of a new CryptoKey object depending on a url and from a XML node, according to the XML-
Signature and XML-Encryption specification.

Syntax

xml.CryptoKey.CreateFromNode(
 url STRING,
 node xml.DomNode)
 RETURNING object xml.CryptoKey

1. url defines a key identifier restricted to PUBLIC/PRIVATE keys.
2. node is an ELEMENT node whose local name is either:

• DSAKeyValue or RSAKeyValue and belonging to the XML-Signature namespace http://
www.w3.org/2000/09/xmldsig#

• RSAKeyPair and belonging to the XKMS 2.0 namespacehttp://www.w3.org/2002/03/xkms#

http://www.w3.org/TR/xmldsig-core/#sec-DSAKeyValue
http://www.w3.org/TR/xmldsig-core/#sec-RSAKeyValue
http://www.w3.org/TR/xkms2/#XKMS_2_0_Section_8_2

Library reference | 2214

Usage

Returns a CryptoKey object or NULL.

If the local name is RSAKeyValue or RSAKeyPair, the URL must be a RSA key. If the local name is
DSAKeyValue, the URL must be a DSA key.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.CryptoKey.deriveKey
Derives the symmetric or HMAC CryptoKey object using the given method identifier and concatenating the
optional label, the mandatory seed value and the optional created date as initial random value.

Syntax

deriveKey(
 method STRING,
 label STRING,
 seed STRING,
 created STRING,
 offset INTEGER,
 size INTEGER)

1. method is the identifier of the algorithm to apply to the password and its inputs.
2. label is the optional label input.
3. seed, the mandatory seed input, is the a valid Base64 string representing a random binary data you can

obtain with the security.RandomGenerator.CreateRandomNumber on page 2279 helper method.
4. created is the optional created date input.
5. offset is the number of bytes the resulting octet stream must be shifted to obtain the derived key.
6. size defines the number of bytes of the resulting derived key.

Usage

If it is a symmetric key, the size can be 0, or must match the original key according to key identifier.

See Derived keys on page 2224 for more details.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.CryptoKey.generateKey
Generates a random key of given size (in bits).

Syntax

generateKey(
 size INTEGER)

1. size is the size of the key to generate.

Usage

For symmetric keys, the size is fixed by the key identifier and cannot be changed. The only authorized
values are the real key size or NULL.

For Diffie-Hellman, the input parameter (size INTEGER) is the size of the Diffie-Hellman modulus. If the
given size is greater than zero (0), it populates the Diffie-Hellman object by randomly generating a modulus

Library reference | 2215

of the given size and a private key, and computes the public key. The used generator is two (2). If the
given size is zero (0), it completes the Diffie-Hellman object by choosing a private key and computing the
public key according to the previously loaded parameters. For more details on loading parameters, see
Table 526: Object methods: Load and save on page 2228.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.CryptoKey.getFeature
Returns the value of the given feature for this CryptoKey object, or NULL.

Syntax

getFeature(
 feature STRING)
 RETURNING value STRING

1. feature is the CryptoKey feature.

Usage

Returns NULL if the feature is not set.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.CryptoKey.getSHA1
Returns the SHA1 encoded key identifier in a base64 encoded STRING.

Syntax

getSHA1()
 RETURNING keyId STRING

Usage

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.CryptoKey.getSize
Returns the size of the key in bits.

Syntax

getSize()
 RETURNING size INTEGER

Usage

For a Diffie-Hellman key, returns the size of the key; the size of a Diffie-Hellman key is actually the size
of the modulus. If the modulus is not available (null or equal to zero), the method returns zero. In this
situation, a return of zero does NOT mean the key is corrupt or unusable.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

Library reference | 2216

xml.CryptoKey.getType
Returns the type of key.

Syntax

getType()
 RETURNING type STRING

Usage

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.CryptoKey.getUrl
Returns the key identifier as an URL, as defined in the XML-Signature and XML-Encryption specification.

Syntax

getUrl()
 RETURNING keyId STRING

Usage

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.CryptoKey.getUsage
Returns the usage of the key.

Syntax

getUsage()
 RETURNING usage STRING

Usage

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.CryptoKey.loadBIN
Loads a symmetric or HMAC key from a file in raw format.

Syntax

loadBIN(
 file STRING)

1. file is the file name or an entry in the FGLPROFILE file.

Usage

Raw format means that the data in the file are read without any transformation, and will be stored as it in
the key.

Library reference | 2217

For instance, if you file contains hello, it has the same effect as calling setKey() with hello as parameter.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.CryptoKey.loadDER
Loads an asymmetric DSA key, an asymmetric RSA key or Diffie-Hellman parameters from a file in DER
format.

Syntax

loadDER(
 file STRING)

1. file is the file name or an entry in the FGLPROFILE file.

Usage

If the DSA or RSA private key or Diffie-Hellman parameters is protected with a password, the
recommended way is to unprotect it with the openssl tool and to put the key file on a restricted file
system. However, you can use a script or the fglpass agent to provide the password to the application.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.CryptoKey.loadFromString
Loads the given key in BASE64 string format into a CryptoKey object.

Syntax

loadFromString(
 str STRING)

1. str is the string to load.

Usage

For Diffie-Hellman, the input parameter is a base64 encoded string containing the Diffie-Hellman
parameters. This method populates the Diffie-Hellman key with the modulus and generator in the base64
encoded string. This is useful for the parameters exchange step between two peers.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.CryptoKey.loadPEM
Loads an asymmetric DSA key, an asymmetric RSA key or Diffie-Hellman parameters from a file in PEM
format.

Syntax

loadPEM(
 file STRING)

1. file is the file name or an entry in the FGLPROFILE file.

Library reference | 2218

Usage

If the DSA or RSA private key or Diffie-Hellman parameters is protected with a password, the
recommended way is to unprotect it with the openssl tool and to put the key file on a restricted file
system. However, you can use a script or the fglpass agent to provide the password to the application.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.CryptoKey.loadPrivate
Loads the private asymmetric RSA key in the given XML document into the private part of this CryptoKey
object, according to the XKMS2.0 specification.

Syntax

loadPrivate(
 xml xml.DomDocument)

1. xml is a DomDocument object.

Usage

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.CryptoKey.loadPublic
Loads the public asymmetric RSA or DSA key in the given XML document into the public part of this
CryptoKey object, according to the XML-Signature specification for DSA and RSA key value.

Syntax

loadPublic(
 xml xml.DomDocument)

Usage

For Diffie-Hellman, the input parameter is an xml.DomDocument object containing a representation of
the Diffie-Hellman key. This method populates the Diffie-Hellman object with the parameters and the
public key contained in the given xml.DomDocument according to the XML-Signature specification for
the Diffie-Hellman key values. If the public key node exists in the xml document but is empty, it won't be
possible to use the key unless the document contains valid modulus and generator parameters and you
call generateKey with a size of zero (0). In this case, you won't be in possession of the other peer's
public key.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.CryptoKey.loadPublicFromString
Populate the current CryptoKey object with the passed public key.

Syntax

loadPublicFromString(
 pubKeyStr STRING)

1. pubKeyStr is the public part of the key in base64 form.

http://www.w3.org/TR/xkms2/#XKMS_2_0_Section_8_2
http://www.w3.org/TR/xmldsig-core/#sec-DSAKeyValue
http://www.w3.org/TR/xmldsig-core/#sec-RSAKeyValue

Library reference | 2219

Usage

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.CryptoKey.savePrivate
Saves the private part of an asymmetric RSA CryptoKey object into a XML document according to the
XKMS2.0 specification.

Syntax

savePrivate()
 RETURNING object xml.DomDocument

Usage

Returns an DomDocument object containing the private part of an asymmetric RSA key.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.CryptoKey.savePublic
Saves the public part of an asymmetric RSA or DSA CryptoKey object or the parameters and the public
key of the Diffie-Hellman object into a XML document according to the XML-Signature specification for
DSA and RSA and Diffie-Hellman key values.

Syntax

savePublic()
 RETURNING object xml.DomDocument

Usage

For Diffie-Hellman, it is useful for the public key exchange between the two peers.

See also the RetrievalMethod feature.

Returns an DomDocumentobject.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.CryptoKey.savePublicToString
Save the current xml.CryptoKey's public part in the returned base64 string.

Syntax

savePublicToString()
 RETURNING str STRING

Usage

Returns the public part of the key in base64 form (STRING).

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

http://www.w3.org/TR/xkms2/#XKMS_2_0_Section_8_2
http://www.w3.org/TR/xmldsig-core/#sec-DSAKeyValue
http://www.w3.org/TR/xmldsig-core/#sec-RSAKeyValue

Library reference | 2220

xml.CryptoKey.saveToString
Saves the CryptoKey object into a BASE64 string format.

Syntax

saveToString()
 RETURNING str STRING

Usage

For Diffie-Hellman, returns the Diffie-Hellman key's modulus and generator in a base64 encoded string.
This is useful for the parameters exchange step between the two peers.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.CryptoKey.setFeature
Sets or resets the value of a feature for a CryptoKey object.

Syntax

setFeature(
 feature STRING,
 value STRING)

1. feature is the name of the feature.
2. value is the value to set for the named feature.

Usage

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.CryptoKey.setKey
Defines the value of a HMAC or Symmetric key.

Syntax

setKey(
 key STRING)

1. key is the value.

Usage

The value can be a password and must be of the size corresponding to the key identifier.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

Library reference | 2221

Supported kind of keys
Supported kind of keys for the xml.CryptoKey class.

Table 520: Supported kind of keys

Identifier Description Usage Type

http://
www.w3.org/2000/09/
xmldsig#dsa-sha1

Asymmetric DSA key
with SHA1 for signature
purposes.

Uses a private DSA
key for signature and
needs an associated
public DSA key or X509
certificate containing it,
to verify it.

See specification for
details.

SIGNATURE PUBLIC or PRIVATE

http://
www.w3.org/2000/09/
xmldsig#rsa-sha1

Asymmetric RSA key
with SHA1 for signature
purposes.

Uses a private RSA
key for signature and
needs an associated
public RSA key or X509
certificate containing it,
to verify it.

See specification for
details.

SIGNATURE PUBLIC or PRIVATE

http://
www.w3.org/2001/04/
xmldsig-more#rsa-
sha256

Asymmetric RSA
key with SHA256 for
signature purposes.

Uses a private RSA
key for signature and
needs an associated
public RSA key or X509
certificate containing it,
to verify it.

See specification for
details.

SIGNATURE PUBLIC or PRIVATE

http://
www.w3.org/2000/09/
xmldsig#hmac-sha1

Message Authentication
Code key with SHA1 for
signature purposes.

Uses a same password
for signature and to
verify it, and key size is
free.

See specification for
details.

SIGNATURE HMAC

http://www.w3.org/TR/xmldsig-core/#sec-SignatureAlg
http://www.w3.org/TR/xmldsig-core/#sec-SignatureAlg
http://www.w3.org/TR/xmldsig-core2/#sec-PKCS1
http://www.w3.org/TR/xmldsig-core/#sec-SignatureAlg

Library reference | 2222

Identifier Description Usage Type

http://
www.w3.org/2001/04/
xmldsig-more#hmac-
sha256

Message Authentication
Code key with SHA256
for signature purposes.

Uses a same password
for signature and to
verify it, and key size is
free.

See specification for
details.

SIGNATURE HMAC

http://
www.w3.org/2001/04/
xmlenc#aes128-cbc

Symmectric AES128 key
for encryption purposes.

Uses a common key of
128bits for encrypting
and decrypting XML
documents.

See specification for
details.

ENCRYPTION SYMMETRIC

http://
www.w3.org/2001/04/
xmlenc#aes192-cbc

Symmetric AES192 key
for encryption purposes.

Uses a common key of
192bits for encrypting
and decrypting XML
documents.

See specification for
details.

ENCRYPTION SYMMETRIC

http://
www.w3.org/2001/04/
xmlenc#aes256-cbc

Symmetric AES256 key
for encryption purposes.

Uses a common key of
256bits for encrypting
and decrypting XML
documents.

See specification for
details.

ENCRYPTION SYMMETRIC

http://
www.w3.org/2001/04/
xmlenc#tripledes-cbc

Symmetric TripleDes key
for encryption purposes.

Uses a common key of
192bits for encrypting
and decrypting XML
documents.

See specification for
details.

ENCRYPTION SYMMETRIC

http://
www.w3.org/2001/04/
xmlenc#kw-aes128

Symmetric AES128 key
wrap for key encryption
purposes.

KEY ENCRYPTION SYMMETRIC

http://www.w3.org/TR/xmldsig-core2/#sec-HMAC
http://www.w3.org/TR/xmldsig-core/#sec-SignatureAlg
http://www.w3.org/TR/xmldsig-core/#sec-SignatureAlg
http://www.w3.org/TR/xmldsig-core/#sec-SignatureAlg
http://www.w3.org/TR/xmldsig-core/#sec-SignatureAlg

Library reference | 2223

Identifier Description Usage Type

Uses a common key of
128bits for encrypting
and decrypting a
symmetric key.

See specification for
details.

http://
www.w3.org/2001/04/
xmlenc#kw-aes192

Symmetric AES192 key
wrap for key encryption
purposes.

Uses a common key of
192bits for encrypting
and decrypting a
symmetric key.

See specification for
details.

KEY ENCRYPTION SYMMETRIC

http://
www.w3.org/2001/04/
xmlenc#kw-aes256

Symmetric AES256 key
wrap for key encryption
purposes.

Uses a common key of
256bits for encrypting
and decrypting a
symmetric key.

See specification for
details.

KEY ENCRYPTION SYMMETRIC

http://
www.w3.org/2001/04/
xmlenc#kw-tripledes

Symmetric TripleDes key
wrap for key encryption
purposes.

Uses a common key of
192bits for encrypting
and decrypting a
symmetric key.

See specification for
details.

KEY ENCRYPTION SYMMETRIC

http://
www.w3.org/2001/04/
xmlenc#rsa-1_5

Asymmetric RSA key for
key encryption purposes.

Uses a public RSA key
or a X509 certificate
containing it to encrypt
a symmetric key, and
needs the associated
private RSA key to
decrypt it.

See specification for
details.

KEY ENCRYPTION PUBLIC or PRIVATE

http://www.w3.org/TR/xmldsig-core/#sec-SignatureAlg
http://www.w3.org/TR/xmldsig-core/#sec-SignatureAlg
http://www.w3.org/TR/xmldsig-core/#sec-SignatureAlg
http://www.w3.org/TR/xmldsig-core/#sec-SignatureAlg
http://www.w3.org/TR/xmldsig-core/#sec-SignatureAlg

Library reference | 2224

Identifier Description Usage Type

http://
www.w3.org/2001/04/
xmlenc#rsa-oaep-mgf1p

Asymmetric RSA key for
key encryption purposes.

Uses a public RSA key
or a X509 certificate
containing it to encrypt
a symmetric key, and
needs the associated
private RSA key to
decrypt it.

See specification for
details.

KEY ENCRYPTION PUBLIC or PRIVATE

Diffie-Hellman
identifier: http://
www.w3.org/2001/04/
xmlenc#DHKeyValue

Diffie-Hellman key
agreement algorithm.
Derives a shared secret.
The resulting shared
secret is a HMAC or
symmetric key for
encryption purposes.

KEY AGREEMENT PUBLIC or PRIVATE

Derived keys

Key derivation is used on symmetric or HMAC keys to avoid the direct usage of a shared secret password
in secured operations. If two parties share a secret password that is successfully hacked by a third party,
any future operation becomes unsecure, and the initial two parties do not even realize that their exchanges
are unsafe. However, if a different password based on that shared secret password is used for each new
secured operation, even if one operation is compromised, it will only unsecure that operation, but not other
operations.

The derivation consists of applying an algorithm with some additional inputs (such as a random seed
value) to a password in order to obtain another password that is then used in one secured operation. Of
course, the algorithm and its additional inputs must also be shared to enable the computation of the same
derived key by someone that is intended to decrypt the message.

Note that passwords are often only composed of alphanumeric characters that eases a bit more the job of
a hacker, whereas a derived key is composed of any binary data produced by the algorithm used for the
derivation.

Table 521: Derived keys methods

Method Description

http://schemas.xmlsoap.org/ws/2005/02/sc/dk/
p_sha1

Only algorithm supported. See specification for
details.

CryptoKey Features
Features of the xml.CryptoKey class.

Table 522: CryptoKey Features

Name Description

KeyName

See specification for details.

Defines or returns whether a user-defined
key name is added during a XMLsignature

http://www.w3.org/TR/xmldsig-core/#sec-SignatureAlg
http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512/ws-secureconversation-1.3-os.html#_Toc162064056
http://www.w3.org/TR/xmldsig-core/#sec-KeyName

Library reference | 2225

Name Description

or encryption in order to identify it to other
applications, or by the key store.

The default value is NULL, meaning that no key
name is used.

KeyValue

See specification for details.

Defines or returns whether the public part of the
asymmetric key is added during a XML signature
or encryption.

Only for RSA and DSA keys.

The default value is FALSE, meaning that no key
value is used.

RetrievalMethod

See specification for details.

Defines or returns the URL where the XML form of:

• a DSA or RSA public key will be set during
a XML signature, and loaded during a XML
verification process.

• a RSA public key will be set and used to encrypt
a XML node during XML encryption

• a symmetric key with encryption usage will be
used to encrypt a XML node or decrypt it back

The default value is NULL, meaning that no
retrieval method is used.

The XML form of a DSA or RSA public key can be
obtain by the savePublic method.

The XML form of a symmetric key can be obtain by
the encryptKey method.

Examples
Examples using the xml.CryptoKey class.

Examples:

• Loading an asymmetric RSA key on page 2225
• Generating a symmetric AES256 key on page 2226
• Setting a HMAC key on page 2226
• Deriving a HMAC key on page 2226
• Computing the shared secret with Diffie-Hellman on page 2227

Loading an asymmetric RSA key

IMPORT xml

MAIN
 DEFINE key xml.CryptoKey
 LET key = xml.CryptoKey.Create("http://www.w3.org/2001/04/xmlenc#rsa-1_5")
 TRY
 CALL key.loadPEM("RSA1024Key.pem")
 CALL key.setFeature("KeyName","MyRsaKey")
 DISPLAY "Key size (in bits) : ",key.getSize() # displays 1024 (bits)
 DISPLAY "Key type : ",key.getType() # displays PRIVATE or PUBLIC
 DISPLAY "Key usage : ",key.getUsage() # displays KEYENCRYPTION
 CATCH
 DISPLAY "Unable to load key :",STATUS

http://www.w3.org/TR/xmldsig-core/#sec-KeyValue
http://www.w3.org/TR/xmldsig-core/#sec-RetrievalMethod

Library reference | 2226

 END TRY
END MAIN

Note: All keys in PEM or DER format were created with the OpenSSL tool.

Generating a symmetric AES256 key

IMPORT xml

MAIN
 DEFINE key xml.CryptoKey
 LET key = xml.CryptoKey.Create("http://www.w3.org/2001/04/xmlenc#aes256-
cbc")
 TRY
 CALL key.generateKey(NULL)
 DISPLAY "Key size (in bits) : ",key.getSize() # displays 256 (bits)
 DISPLAY "Key type : ",key.getType() # displays SYMMETRIC
 DISPLAY "Key usage : ",key.getUsage() # displays ENCRYPTION
 CATCH
 DISPLAY "Unable to generate key :",STATUS
 END TRY
END MAIN

Note: All keys in PEM or DER format were created with the OpenSSL tool.

Setting a HMAC key

IMPORT xml

MAIN
 DEFINE key xml.CryptoKey
 LET key = xml.CryptoKey.Create("http://www.w3.org/2000/09/xmldsig#hmac-
sha1")
 TRY
 CALL key.setKey("secretpassword")
 # displays 112 (size of secretpassword in bits)
 DISPLAY "Key size (in bits) : ",key.getSize()
 DISPLAY "Key type : ",key.getType() # displays HMAC
 DISPLAY "Key usage : ",key.getUsage() # displays SIGNATURE
 CATCH
 DISPLAY "Unable to set key :",STATUS
 END TRY
END MAIN

Note: All keys in PEM or DER format were created with the OpenSSL tool.

Deriving a HMAC key

IMPORT xml
IMPORT com

MAIN
 DEFINE key xml.CryptoKey
 # will contain a random binary data encoded in Base64
 DEFINE seedBase64 STRING
 LET key = xml.CryptoKey.CreateDerivedKey(
 "http://www.w3.org/2000/09/xmldsig#hmac-sha1")
 TRY
 # Creates a random 24 bytes long binary data encoded into a Base64 form
 string
 CALL key.setKey("secretpassword")

Library reference | 2227

 # Derives the 14 bytes long "secretpassword" into a 64 bytes long key
 # from a random 24 bytes long seed value and shifting the resulting key
 # from 255 bytes
 LET seedBase64 = com.Util.CreateRandomString(24)
 CALL key.deriveKey(
 "http://schemas.xmlsoap.org/ws/2005/02/sc/dk/p_sha1",
 NULL,seedBase64,NULL,255,64)
 # Displays 512 (size of 'secretpassword' derivation in bits)
 DISPLAY "Key size (in bits) : ",key.getSize()
 # Note: Key is derived and can be used in
 # any encryption or signature function
 CATCH
 DISPLAY "Unable to derive key :",STATUS
 END TRY
END MAIN

Note: All keys in PEM or DER format were created with the OpenSSL tool.

Computing the shared secret with Diffie-Hellman
Load the Diffie-Hellman parameters from a PEM file, the other peer's public key from an XML file and
compute the shared secret.

Function generateKey is called with a 0, parameters are already filled.

FUNCTION BuildSharedSecret(DHdoc)
 DEFINE myKey, othersPubKey, sharedSecret xml.CryptoKey
 DEFINE DHdoc xml.DomDocument
 LET myKey =
 xml.CryptoKey.Create("http://www.w3.org/2001/04/xmlenc#DHKeyValue")
 LET othersPubKey =
 xml.CryptoKey.Create("http://www.w3.org/2001/04/xmlenc#DHKeyValue ")
 TRY
 CALL othersPubKey.loadPublic(DHdoc)

 # populate myKey with the parameters previously generated by the
 # other peer.
 CALL myKey.loadPEM("DHParam.pem")

 # Randomly generate a private key and compute the public key. Key
 # length is the parameters length.
 CALL myKey.generateKey(0)
 LET sharedSecret = myKey.computeKey(othersPubKey,
 "http://www.w3.org/2000/09/xmldsig#hmac-sha1")

 CATCH
 DISPLAY "ERROR : should not raise exception”
 EXIT PROGRAM (-1)
 END TRY
END FUNCTION

The CryptoX509 class
The xml.CryptoX509 class provides methods to manipulate X509 certificates needed for identification of
individual persons, groups or any entities during XML encryption or signature process.

It also provides additional load and save functions to interact with other applications in XML or in BASE64,
such as in WS-Security compliant applications. It follows the XML-Signature and XML-Encryption
specifications.

The STATUS variable is set to zero after a successful method call.

Important: This class is not supported on GMI mobile devices.

http://www.w3.org/TR/xmldsig-core/
http://www.w3.org/TR/xmlenc-core/

Library reference | 2228

xml.CryptoX509 methods
Methods for the xml.CryptoX509 class.

Table 523: Class methods: Creation

Name Description

xml.CryptoX509.Create()
 RETURNING object xml.CryptoX509

Constructor of an empty CryptoX509 object.

xml.CryptoX509.CreateFromNode(
 node xml.DomNode)
 RETURNING object xml.CryptoX509

Constructor of a new CryptoX509 object from a
XML X509 certificate node, according to the XML-
Signature specification

Table 524: Object methods: Access

Name Description

getIdentifier()
 RETURNING idpart STRING

Gets the identification part of an X509 certificate

getThumbprintSHA1()
 RETURNING setp STRING

Gets the SHA1 encoded thumbprint identifying this
X509 certificate.

Table 525: Object methods: Modify

Name Description

createPublicKey(
 url STRING)
 RETURNING object xml.CryptoX509

Creates a new public CryptoKey object for the
given url, from the public key embedded in a
certificate.

Table 526: Object methods: Load and save

Name Description

load(
 xml xml.DomDocument)

Loads the given XML document with ds:X509Data
as root node according to the XML-Signature
specification, into the CryptoX509 object.

loadDER(
 file STRING)

Loads a X509 certificate from a file in DER format.

loadFromString(
 str STRING)

Loads the given X509 certificate in BASE64 string
format into this CryptoX509 object.

loadPEM(
Loads a X509 certificate from a file in PEM format.

Library reference | 2229

Name Description

 file STRING)

save()
 RETURNING object xml.DomDocument

Saves the CryptoX509 certificate into a XML
document with ds:X509Data as root node according
to the XML-Signature specification.

saveToString()
 RETURNING cert STRING

Saves the CryptoX509 certificate into a BASE64
string format.

Table 527: Object methods: Feature

Name Description

getFeature(
 feature STRING)
 RETURNING value STRING

Get the value of a given feature of a CryptoX509
object.

setFeature(
 feature STRING,
 value STRING)

Sets or resets the given feature for this CryptoX509
object.

xml.CryptoX509.Create
Constructor of an empty CryptoX509 object.

Syntax

xml.CryptoX509.Create()
 RETURNING object xml.CryptoX509

Usage

Returns a CryptoX509 object or NULL.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.CryptoX509.CreateFromNode
Constructor of a new CryptoX509 object from a XML X509 certificate node, according to the XML-
Signature specification

Syntax

xml.CryptoX509.CreateFromNode(
 node xml.DomNode)
 RETURNING object xml.CryptoX509

1. node is an ELEMENT DomNode node with X509Data as local name, and belonging to the XML-
Signature namespace http://www.w3.org/2000/09/xmldsig#.

http://www.w3.org/TR/xmldsig-core/#sec-X509Data

Library reference | 2230

Usage

Returns a CryptoX509 object or NULL.

If the X509 certificate is incomplete, the certificate will be created from the application global certificate list
if one of SubjectName or Issuer matches. (See addCertificate for more details.)

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.CryptoX509.createPublicKey
Creates a new public CryptoKey object for the given url, from the public key embedded in a certificate.

Syntax

createPublicKey(
 url STRING)
 RETURNING object xml.CryptoX509

1. url is the given url.

Usage

Creates a new public CryptoKey object for the given url, from the public key embedded in this certificate if
any; NULL otherwise.

Returns a CryptoX509 object.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.CryptoX509.getFeature
Get the value of a given feature of a CryptoX509 object.

Syntax

getFeature(
 feature STRING)
 RETURNING value STRING

1. feature is a feature of the CryptoX509 object.

Usage

Returns the value of the given feature for this CryptoX509 object, or NULL if feature is not set.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.CryptoX509.getIdentifier
Gets the identification part of an X509 certificate

Syntax

getIdentifier()
 RETURNING idpart STRING

Library reference | 2231

Usage

Returns the identification part of this X509 certificate in a STRING.

Example: /C=FR/ST=France/L=Schiltigheim/O=MC/OU=My Company Name/CN=cert

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.CryptoX509.getThumbprintSHA1
Gets the SHA1 encoded thumbprint identifying this X509 certificate.

Syntax

getThumbprintSHA1()
 RETURNING setp STRING

Usage

Returns the SHA1 encoded thumbprint identifying this X509 certificate in a BASE64 encoded STRING.

Example: CM4y6z7zzLnTGMe1lE46RKIKAPI=

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.CryptoX509.load
Loads the given XML document with ds:X509Data as root node according to the XML-Signature
specification, into the CryptoX509 object.

Syntax

load(
 xml xml.DomDocument)

1. xml is a DomDocument object.

Usage

If the X509 certificate in the XML document is incomplete, the certificate will be loaded from the global
certificate list if one of SubjectName or Issuer matches.

See the w3.org site for more information on ds:X509Data as root node according to the XML-Signature
specification.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.CryptoX509.loadDER
Loads a X509 certificate from a file in DER format.

Syntax

loadDER(
 file STRING)

1. file is the filename or an entry in the FGLPROFILE file.

http://www.w3.org/TR/xmldsig-core/#sec-X509Data

Library reference | 2232

Usage

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.CryptoX509.loadFromString
Loads the given X509 certificate in BASE64 string format into this CryptoX509 object.

Syntax

loadFromString(
 str STRING)

1. str is the X509 certificate in BASE64 string format to load.

Usage

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.CryptoX509.loadPEM
Loads a X509 certificate from a file in PEM format.

Syntax

loadPEM(
 file STRING)

1. file is the filename or an entry in the FGLPROFILE file.

Usage

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.CryptoX509.save
Saves the CryptoX509 certificate into a XML document with ds:X509Data as root node according to the
XML-Signature specification.

Syntax

save()
 RETURNING object xml.DomDocument

Usage

See the w3.org site for more information on ds:X509Data as root node according to the XML-Signature
specification.

(See also the RetrievalMethod feature)

Returns an xml.DomDocument object.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

http://www.w3.org/TR/xmldsig-core/#sec-X509Data

Library reference | 2233

xml.CryptoX509.saveToString
Saves the CryptoX509 certificate into a BASE64 string format.

Syntax

saveToString()
 RETURNING cert STRING

Usage

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.CryptoX509.setFeature
Sets or resets the given feature for this CryptoX509 object.

Syntax

setFeature(
 feature STRING,
 value STRING)

1. feature is the feature to be set.
2. value is the value to set.

Usage

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

CryptoX509 Features
Features of the xml.CryptoX509 class.

Table 528: CryptoX509 Features

Feature Description

X509Certificate

See specification for details.

Defines or returns whether the complete X509
certificate is added during XML signature or
encryption.

Default value is FALSE.

X509SubjectName

See specification for details.

Defines or returns whether the subject name of the
X509 certificate is added during XML signature or
encryption.

Default value is FALSE.

X509IssuerSerial

See specification for details.

Defines or returns whether the issuer name and
serial number of the X509 certificate is added
during XML signature or encryption.

Default value is FALSE.

http://www.w3.org/TR/xmldsig-core/#sec-X509Data
http://www.w3.org/TR/xmldsig-core/#sec-X509Data
http://www.w3.org/TR/xmldsig-core/#sec-X509Data

Library reference | 2234

Feature Description

RetrievalMethod

See specification for details.

Defines or returns the URL where the XML form
of the X509 certificate will be set during a XML
signature, and loaded during a XML verification
process, and based on that CryptoX509 object.

Default value is NULL, meaning that no retrieval
method is used.

Note: The XML form of a X509 certificate
can be obtain by the save() method.

Examples
Examples using the xml.CryptoX509 class.

Topics:

• Loading a certificate from a PEM file on page 2234
• Creating a public key for signature verification from a certificate on page 2234
• Saving the subjectName of a certificate in XML on page 2235

Loading a certificate from a PEM file

IMPORT xml

MAIN
 DEFINE x509 xml.CryptoX509
 LET x509 = xml.CryptoX509.Create()
 TRY
 CALL x509.loadPEM("Certificate.crt");
 DISPLAY "Id : ",x509.getIdentifier()
 CATCH
 DISPLAY "Unable to load certificate :",STATUS
 END TRY
END MAIN

Note: All certificates in PEM format were created with the OpenSSL tool.

Creating a public key for signature verification from a certificate

IMPORT xml

MAIN
 DEFINE x509 xml.CryptoX509
 DEFINE key xml.CryptoKey
 LET x509 = xml.CryptoX509.Create()
 TRY
 CALL x509.loadPEM("RSA1024Certificate.crt");
 CATCH
 DISPLAY "Unable to load certificate :",STATUS
 EXIT PROGRAM
 END TRY
 TRY
 LET key = x509.createPublicKey("http://www.w3.org/2000/09/xmldsig#rsa-
sha1")
 DISPLAY "Key size (in bytes) : ",key.getSize() # displays 1024 (bits)
 DISPLAY "Key type : ",key.getType() # displays PUBLIC
 DISPLAY "Key usage : ",key.getUsage() # displays SIGNATURE
 CATCH
 DISPLAY "Unable to create public key :",STATUS
 END TRY

http://www.w3.org/TR/xmldsig-core/#sec-X509Data

Library reference | 2235

END MAIN

Note: All certificates in PEM format were created with the OpenSSL tool.

Saving the subjectName of a certificate in XML

IMPORT xml

MAIN
 DEFINE x509 xml.CryptoX509
 DEFINE key xml.CryptoKey
 DEFINE doc xml.DomDocument
 LET x509 = xml.CryptoX509.Create()
 TRY
 CALL x509.loadPEM("RSA1024Certificate.crt");
 CATCH
 DISPLAY "Unable to load certificate :",STATUS
 EXIT PROGRAM
 END TRY
 TRY
 CALL x509.setFeature("X509SubjectName",TRUE)
 LET doc = x509.save()
 CALL doc.setFeature("format-pretty-print",TRUE)
 CALL doc.save("RSAX509SubjectName.xml")
 CATCH
 DISPLAY "Unable to save certificate :",STATUS
 END TRY
END MAIN

Note: All certificates in PEM format were created with the OpenSSL tool.

The Signature class
The xml.Signature class provides methods to create detached, enveloped or enveloping XML
signatures of one or more references of XML documents or document fragments, and to determine
whether a signed referenced document has been modified afterwards.

It follows the XML-Signature specifications.

The STATUS variable is set to zero after a successful method call.

Important: This class is not supported on GMI mobile devices.

xml.Signature methods
Methods for the xml.Signature class.

Table 529: Class methods: Creation

Name Description

xml.Signature.Create()
 RETURNING sign xml.Signature

Constructor of a blank Signature object.

xml.Signature.CreateFromNode(
 signode xml.DomNode)
 RETURNING sign xml.Signature

Constructor of a new Signature object
from a XML Signature node, according to
the XML-Signature specification.

http://www.w3.org/TR/xmldsig-core/

Library reference | 2236

Table 530: Class methods: Object access

Name Description

xml.Signature.RetrieveObjectDataListFromSignatureNode(
 sign xml.DomNode,
 ind INTEGER)
 RETURNING nodelist xml.DomNodeList

Returns a DomNodeList
containing all embedded XML
nodes related to the signature
object of index ind in the XML
Signature node sign.

Note: In addition to this class method categorized under Object Access, there are also object
methods. These are listed in Table 537: Object methods: Object access on page 2238.

Table 531: Object methods: Key and certificate

Name Description

setCertificate(
 cert xml.CryptoX509)

Defines the X509 certificate to be added
to the Signature object when signing a
document.

setKey(
 key xml.CryptoKey)

Defines the key used for signing or
validation.

Table 532: Object methods: Modifier

Name Description

setCanonicalization(
 url STRING)

Sets the canonicalization method to use
for the signature.

setID(
 id STRING)

Sets an ID value for the signature.

Table 533: Object methods: Access

Name Description

getCanonicalization()
 RETURNING ident STRING

Returns one of the four canonicalization
identifier of the signature.

getDocument()
 RETURNING doc xml.DomDocument

Returns a new DomDocument object
representing the signature in XML.

getID()
 RETURNING id STRING

Returns the ID value of the signature.

getSignatureMethod()
Returns the algorithm method of the
signature.

Library reference | 2237

Name Description

 RETURNING algo STRING

getType()
 RETURNING str STRING

Returns a string with the type of the
Signature object.

Table 534: Object methods: Reference modifier

Name Description

appendReferenceTransformation(
 ind INTEGER,
 trans STRING,
 ...)

Appends a transformation related to the
reference of index ind, and is executed
before any computation

createReference(
 uri STRING,
 digest STRING)
 RETURNING ind INTEGER

Creates a new reference that will be
signed with the compute() method

setReferenceID(
 ind INTEGER,
 value STRING)

Sets an ID value for the signature
reference of index ind.

Table 535: Object methods: Reference access

Name Description

getReferenceCount()
 RETURNING num INTEGER

Returns the number of references in this
Signature object.

getReferenceDigest(
 ind INTEGER)
 RETURNING algo STRING

Returns the digest algorithm identifier
of the reference of index ind in this
Signature object.

getReferenceURI(
 ind INTEGER)
 RETURNING uri STRING

Returns the URI of the reference of index
ind in this Signature object.

getReferenceID(
 ind INTEGER)
 RETURNING value STRING

Returns the ID value of the reference
of index ind in this Signature object, or
NULL if there is none.

getReferenceTransformation(
 ind INTEGER,
 pos INTEGER)

Gets the transformation identifier related
to the reference of index ind at position
pos in the list of transformation.

Library reference | 2238

Name Description

 RETURNING ident STRING

getReferenceTransformationCount(
 ind INTEGER)
 RETURNING num INTEGER

Returns the number of transformation
related to the reference of index ind.

Table 536: Object methods: Object modifier

Name Description

appendObjectData(
 ind INTEGER,
 node xml.DomNode)

Appends a copy of a XML node node to
the signature object of index ind.

createObject()
 RETURNING ind INTEGER

Creates a new object that will embed
additional XML nodes.

setObjectID(
 ind INTEGER,
 value STRING)

Sets an ID value for the signature object
of index ind.

Table 537: Object methods: Object access

Name Description

getObjectCount()
 RETURNING num INTEGER

Returns the number of objects in this
Signature object.

getObjectId(
 ind INTEGER)
 RETURNING id STRING

Returns the ID value of the signature
object of index ind in this Signature
object.

Note: In addition to these object methods categorized under Object Access, there is also a class
method. It is listed in Table 530: Class methods: Object access on page 2236.

Table 538: Object methods: Signature computation and verification

Name Description

compute(
 doc xml.DomDocument)

Computes the signature of all references
set in this Signature object.

signString(
 key xml.CryptoKey,
 strToSign STRING
)

Sign the passed string according to the
specified key.

Library reference | 2239

Name Description

 RETURNING sig STRING

verify(
 doc xml.DomDocument)
 RETURNING flag INTEGER

Verifies whether all references in this
Signature object haven't changed.

verifyString(
 key xml.CryptoKey,
 signedStr STRING,
 signature STRING)
 RETURNING flag INTEGER

Verify the signature is consistent with the
given key and the original message.

xml.Signature.appendObjectData
Appends a copy of a XML node node to the signature object of index ind.

Syntax

appendObjectData(
 ind INTEGER,
 node xml.DomNode)

1. ind is the index in this Signature object.
2. node is the XML node.

Usage

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.Signature.appendReferenceTransformation
Appends a transformation related to the reference of index ind, and is executed before any computation

Syntax

appendReferenceTransformation(
 ind INTEGER,
 trans STRING,
 ...)

1. ind is the index in this Signature object.
2. trans represents an URL as identifier of the transformation algorithm.

Usage

A transformation modifies the reference URI before signing or validating it. Several transformations are
executed one after another, and only once the last transformation was applied, is the reference really
signed or verified.

Depending on the transformation identifier, additional parameters are necessary.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

Library reference | 2240

xml.Signature.compute
Computes the signature of all references set in this Signature object.

Syntax

compute(
 doc xml.DomDocument)

1. doc is the XML document.

Usage

If the signature type is:

• Enveloping: then doc must be NULL because all document fragment references are inside the
Signature itself

• Enveloped: then doc must be the XML document where the signature must be added afterwards to get
a valid enveloped signature

• Detached: then doc can be NULL if all references are absolute, otherwise it can be the XML document
the fragment references are referencing

See XML Signature concepts for more details.

Also, see Windows™ .NET special recommendation.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.Signature.Create
Constructor of a blank Signature object.

Syntax

xml.Signature.Create()
 RETURNING sign xml.Signature

Usage

Returns a Signature object or NULL.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.Signature.CreateFromNode
Constructor of a new Signature object from a XML Signature node, according to the XML-Signature
specification.

Syntax

xml.Signature.CreateFromNode(
 signode xml.DomNode)
 RETURNING sign xml.Signature

1. sign is the XML Signature node.

Usage

Returns a Signature object or NULL.

Library reference | 2241

The node must be an ELEMENT node with Signature as the local name, and belonging to the XML-
Signature namespace http://www.w3.org/2000/09/xmldsig#, as defined here.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.Signature.createObject
Creates a new object that will embed additional XML nodes.

Syntax

createObject()
 RETURNING ind INTEGER

Usage

The returned value represents the index for any further manipulation of this signature object.

Note: An object is enveloping additional XML nodes, but is not necessarily signed unless there is a
reference on it.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.Signature.createReference
Creates a new reference that will be signed with the compute() method

Syntax

createReference(
 uri STRING,
 digest STRING)
 RETURNING ind INTEGER

1. uri represents the data to be signed.
2. digest is a URL as identifier for the hash algorithm.

Usage

The returned value represents the index for any further manipulation of this reference.

The uri can be:

• An absolute url such as http://, https://, tcp://, tcps://, file:/// and alias:// (see FGLPROFILE
Configuration for more details about URL mapping with aliases), and where the data can be a XML
document or any kind of data such as images or html pages.

• NULL to sign the whole document, but only one NULL is allowed in the entire signature.
• A fragment like #tobesigned. Note that a DOM node fragment is identified via the value of an attribute

of type ID such as xml:id or any attribute whose type was changed to ID with setIdAttribute() or
setIdAttributeNS().

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.Signature.getCanonicalization

http://www.w3.org/TR/xmldsig-core/#sec-Signature

Library reference | 2242

Returns one of the four canonicalization identifier of the signature.

Syntax

getCanonicalization()
 RETURNING ident STRING

Usage

Returns the canonicalization identifier of the signature.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.Signature.getDocument
Returns a new DomDocument object representing the signature in XML.

Syntax

getDocument()
 RETURNING doc xml.DomDocument

Usage

Returns a xml.DomDocument object.

If the type of the signature is enveloped, it's up to the user to add it at the right place in the XML document
it is intended to sign.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.Signature.getID
Returns the ID value of the signature.

Syntax

getID()
 RETURNING id STRING

Usage

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.Signature.getObjectCount
Returns the number of objects in this Signature object.

Syntax

getObjectCount()
 RETURNING num INTEGER

Library reference | 2243

Usage

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.Signature.getObjectId
Returns the ID value of the signature object of index ind in this Signature object.

Syntax

getObjectId(
 ind INTEGER)
 RETURNING id STRING

1. ind is the index in this Signature object.

Usage

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.Signature.getReferenceCount
Returns the number of references in this Signature object.

Syntax

getReferenceCount()
 RETURNING num INTEGER

Usage

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.Signature.getReferenceDigest
Returns the digest algorithm identifier of the reference of index ind in this Signature object.

Syntax

getReferenceDigest(
 ind INTEGER)
 RETURNING algo STRING

1. ind is the index in this Signature object.

Usage

Returns the digest algorithm identifier of the reference of index ind in this Signature object.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.Signature.getReferenceID

Library reference | 2244

Returns the ID value of the reference of index ind in this Signature object, or NULL if there is none.

Syntax

getReferenceID(
 ind INTEGER)
 RETURNING value STRING

1. ind is the index in this Signature object.

Usage

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.Signature.getReferenceTransformation
Gets the transformation identifier related to the reference of index ind at position pos in the list of
transformation.

Syntax

getReferenceTransformation(
 ind INTEGER,
 pos INTEGER)
 RETURNING ident STRING

1. ind is the index in this Signature object.
2. pos is the position in the list of transformation.

Usage

Returns the transformation identifier related to the reference of index ind, and at position pos in the list of
transformation.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.Signature.getReferenceTransformationCount
Returns the number of transformation related to the reference of index ind.

Syntax

getReferenceTransformationCount(
 ind INTEGER)
 RETURNING num INTEGER

1. ind is the index in this Signature object.

Usage

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.Signature.getReferenceURI

Library reference | 2245

Returns the URI of the reference of index ind in this Signature object.

Syntax

getReferenceURI(
 ind INTEGER)
 RETURNING uri STRING

1. ind is the index in this Signature object.

Usage

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.Signature.getSignatureMethod
Returns the algorithm method of the signature.

Syntax

getSignatureMethod()
 RETURNING algo STRING

Usage

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.Signature.getType
Returns a string with the type of the Signature object.

Syntax

getType()
 RETURNING str STRING

Usage

The string can be Detached, Enveloped, Enveloping or Invalid according to the XML-Signature
specification.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.Signature.RetrieveObjectDataListFromSignatureNode
Returns a DomNodeList containing all embedded XML nodes related to the signature object of index ind in
the XML Signature node sign.

Syntax

xml.Signature.RetrieveObjectDataListFromSignatureNode(
 sign xml.DomNode,
 ind INTEGER)
 RETURNING nodelist xml.DomNodeList

http://www.w3.org/TR/xmldsig-core/#def-SignatureDetached
http://www.w3.org/TR/xmldsig-core/#def-SignatureEnveloped
http://www.w3.org/TR/xmldsig-core/#def-SignatureEnveloping

Library reference | 2246

1. sign is the XML Signature node.
2. ind is the index of the signature object.

Usage

Returns a DomNodeList

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.Signature.setCanonicalization
Sets the canonicalization method to use for the signature.

Syntax

setCanonicalization(
 url STRING)

1. url is one of the four canonicalization identifier.

Usage

The default value is the c14nmethod.

Note: Windows™ .NET default c14n canonicalization method is not compatible with the W3C
standard, therefore it is recommended to use the exc-c14n method when inter-operating with a
Windows™ system.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.Signature.setCertificate
Defines the X509 certificate to be added to the Signature object when signing a document.

Syntax

setCertificate(
 cert xml.CryptoX509)

1. cert is the X509 certificate to be added.

Usage

If NULL, no certificate is added.

During the computation of the signature, some certificate information can be added according to the
feature set on that CryptoX509 object. If no features are set, the complete X509 certificate is automatically
added.

During the verification of a signature the certificate set with the setCertificate method isn't used. See XML
Signature concepts for more details.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.Signature.setID

Library reference | 2247

Sets an ID value for the signature.

Syntax

setID(
 id STRING)

1. id is the ID value to be set.

Usage

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.Signature.setKey
Defines the key used for signing or validation.

Syntax

setKey(
 key xml.CryptoKey)

1. key is the key to be used for signing or validation.

Usage

Only RSA, DSA or HMAC keys intended for SIGNATURE are allowed.

During the computation of the signature, some key information can be added according to the feature set
on that CryptoKey object. If no features are set, nothing is added. See XML Signature concepts for more
details.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.Signature.setObjectID
Sets an ID value for the signature object of index ind.

Syntax

setObjectID(
 ind INTEGER,
 value STRING)

1. ind is the index value.
2. value is the value to be set.

Usage

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.Signature.setReferenceID

Library reference | 2248

Sets an ID value for the signature reference of index ind.

Syntax

setReferenceID(
 ind INTEGER,
 value STRING)

1. ind is the index value.
2. value is the value to be set.

Usage

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.Signature.signString
Sign the passed string according to the specified key.

Syntax

signString(
 key xml.CryptoKey,
 strToSign STRING
)
 RETURNING sig STRING

1. key is the key to be used for the signature.
2. strToSign is the string to be sign.

Usage

The key can be a HMAC key, a RSA private key or a DSA private key. The signing process is performed
with SHA-1 digest, as recommended by the XmlSec specification.

Returns sig, or the signature in base64 format.

This method does not belong to the XML encryption specification.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.Signature.verify
Verifies whether all references in this Signature object haven't changed.

Syntax

verify(
 doc xml.DomDocument)
 RETURNING flag INTEGER

1. doc is the XML document.

Usage

Returns TRUE if valid, FALSE otherwise.

If the signature type is:

Library reference | 2249

• Enveloping: then doc must be NULL because all document fragment references are inside the
Signature itself,

• Enveloped: then doc must be the XML document where the signature was enveloped,
• Detached: then doc can be null if all references are absolute, otherwise it can be the XML document the

fragment references are referencing.

See XML Signature concepts for more details.

By default, the validation process uses the CryptoKey set with setKey() to verify the signature.
However, if the signature contains a X509 certificate or a X509 retrieval method, it uses the list of trusted
certificate, or if the signature contains a RSA or DSA retrieval method, it uses the RSA or DSA public key
automatically loaded.

Note: See Windows™ .NET special recommendation.

Before loading the XML document to verifiy the signature, you might need to set some options to retrieve
the "id" nodes with the xml.DomDocument.setFeature() method:

DEFINE doc xml.DomDocument
...
CALL doc.setFeature(feature, TRUE)
...

Here feature must be "auto-id-attribute" if the "id" attribute has no namespace, or "auto-id-
qualified-attribute", when "id" has a namespace.

This is especially needed when you encounter error messages such as:

Xml security operation failed : libxml2 library function failed :
 expr=xpointer(id('id-1436767651')).

Meaning that the parser could not find the "id" attribute in the XML document.

Note that the "auto-id-*" features will declare all XML attributes where the name is "id", "ID", "Id"
or "iD" to be of type ID, and thus be usable via xml.DomDocument.getElementById() method used
during signature validation.

If needed, you can also set features for a specific attribute with the xml.DomNode.setIdAttribute()
method, or with the xml.DomNode.setIdAttributeNS() method.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.Signature.verifyString
Verify the signature is consistent with the given key and the original message.

Syntax

verifyString(
 key xml.CryptoKey,
 signedStr STRING,
 signature STRING)
 RETURNING flag INTEGER

1. key is the key to use for verification.
2. signedStr is the signed string in its clear form.
3. signature is the signature to be verified.

Library reference | 2250

Usage
The key can be a HMAC key, a RSA private key or a DSA private key. The HMAC key must be the same
as the one used for signing. The public RSA and DSA key must be the public key corresponding to the
private key used for signing.

Returns 1 when verification is successful; 0 (zero) is returned if verification fails.

This method does not belong to the XML encryption specification.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

XML Signature concepts
The purpose of a signature is to guarantee the integrity of a XML document, that it was not altered, and
that it still contains the same data as when it was created. An additional purpose of a signature is to
authenticate the author of the document. There are different ways to achieve this guarantee.

Sign and verify with a common shared HMAC key
Use if the sender of the XML document and the receiver share a common secret key.

How to sign

1. Create a HMAC key with the constructor of the CryptoKey class.
2. Set or load the common shared key value in the CryptoKey object.
3. Create a blank signature with the constructor of the Signature class.
4. Assign the CryptoKey object to the Signature object.
5. Create one or more references to be signed.
6. Compute the signature.
7. Retrieve the XML signature document from the Signature object.

How to verify

1. Create a HMAC key with the constructor of the CryptoKey.
2. Set or load the common shared key value in the CryptoKey object.
3. Create a signature with the constructor of the Signature class and from a XML signature node obtain

after the above compute operation.
4. Assign the CryptoKey object to the Signature object.
5. Verify the signature validity.

Sign with the originator private RSA or DSA key, and verify with the originator public RSA or DSA key
Use if the receiver of the XML document has the RSA or DSA public key of the sender.

Only the originator can sign a message with this specific pair of keys. Any other peer needs the
corresponding public key and does not have access to the private key.

How to sign

1. Create a RSA or DSA key with the constructor of the CryptoKey class.
2. Load the RSA or DSA private key into the CryptoKey object.
3. Create a blank signature with the constructor of the Signature class.
4. Assign the CryptoKey object to the Signature object.
5. Create one or more references to be signed.
6. Compute the signature.
7. Retrieve the XML signature document from the Signature object.

How to verify

1. Create a RSA or DSA key with the constructor of the CryptoKey class.

Library reference | 2251

2. Load the RSA or DSA public key into the CryptoKey object.
3. Create a signature with the constructor of the Signature class and from a XML signature node obtain

after the above compute operation.
4. Assign the CryptoKey object to the Signature object.
5. Verify the signature validity.

Sign with the originator private RSA or DSA key, and verify with a RSA or DSA retrieval method
Use if the sender of the XML document provides the public RSA or DSA key in XML form (and via http, tcp
or a file protocol).

Only the originator can sign a message with this specific pair of keys. Any other peer needs the
corresponding public key and does not have access to the private key.

How to sign

1. Create a RSA or DSA key with the constructor of the CryptoKey class.
2. Load the RSA or DSA private key into the CryptoKey object.
3. Set the RetrievalMethod feature on the CryptoKey object with the URL where the XML form of the

public RSA or DSA key is available.
4. Create a blank signature with the constructor of the Signature class.
5. Assign the CryptoKey object to the Signature object.
6. Create one or more references to be signed.
7. Compute the signature.
8. Retrieve the XML signature document from the Signature object.

How to verify

1. Create a signature with the constructor of the Signature class and from a XML signature node obtain
after the above compute operation.

2. Verify the signature validity.

Note: There is no key nor certificate to set in the Signature object during validation.

Sign with the originator private RSA or DSA key, and verify with the originator X509 certificate associated to the private
RSA or DSA key

Use if the receiver of the XML document has the X509 certificate associated to the RSA or DSA private
key.

Only the originator can sign a message with this specific pair of keys. Any other peer needs the
corresponding public key and does not have access to the private key.

How to sign

1. Create a RSA or DSA key with the constructor of the CryptoKey class.
2. Load the RSA or DSA private key into the CryptoKey object.
3. Create a blank signature with the constructor of the Signature class.
4. Assign the CryptoKey object to the Signature object.
5. Create one or more references to be signed.
6. Compute the signature.
7. Retrieve the XML signature document from the Signature object.

How to verify

1. Create a X509 certificate with the constructor of the CryptoX509 class.
2. Load the X509 certificate into the CryptoKey object.
3. Create the RSA or DSA public key from the X509 certificate of the CryptoX509 object.

Library reference | 2252

4. Create a signature with the constructor of the Signature class and from a XML signature node obtain
after the above compute operation.

5. Assign the CryptoKey object containing the public key to the Signature object.
6. Verify the signature validity.

Sign with the originator private RSA or DSA key, and verify with trusted X509 certificates
Use if the sender of the XML document adds a X509 certificate that was signed by another trusted X509
certificate.

Only the originator can sign a message with this specific pair of keys. Any other peer needs the
corresponding public key and does not have access to the private key.

How to sign

1. Create a RSA or DSA key with the constructor of the CryptoKey class.
2. Load the RSA or DSA private key into the CryptoKey object.
3. Create a X509 certificate with the constructor of the CryptoX509 class.
4. Load the X509 certificate associated to the RSA or DSA private key into the CryptoKey object.
5. Create a blank signature with the constructor of the Signature class.
6. Assign the CryptoKey object to the Signature object.
7. Assign the CryptoX509 object to the Signature object.
8. Create one or more references to be signed.
9. Compute the signature.
10.Retrieve the XML signature document from the Signature object.

How to verify

1. Create a X509 certificate with the constructor of the CryptoX509 class.
2. Load the X509 certificate that was used to sign the originator X509 certificate into the CryptoX509

object.
3. Add the X509 certificate as trusted certificate to the application.
4. Create a signature with the constructor of the Signature class and from a XML signature node obtain

after the above compute operation.
5. Verify the signature validity.

Note: Point 1 to 3 can be omitted if entry xml.application.calist has been set in
FGLPROFILE file with the trusted certificate.

Note: There is no key nor certificate to set in the Signature object during validation.

Sign with the originator private RSA or DSA key, and verify with a X509 certificate retrieval method and trusted X509
certificates

Use if the sender of the XML document adds a X509 retrieval method that was signed by another trusted
X509 certificate.

Only the originator can sign a message with this specific pair of keys. Any other peer needs the
corresponding public key and does not have access to the private key.

How to sign

1. Create a RSA or DSA key with the constructor of the CryptoKey class.
2. Load the RSA or DSA private key into the CryptoKey object.
3. Create a X509 certificate with the constructor of the CryptoX509 class.
4. Set the RetrievalMethod feature on the CryptoX509 object with the URL where the XML form of the

originator X509 certificate is available.
5. Create a blank signature with the constructor of the Signature class.
6. Assign the CryptoKey object to the Signature object.

Library reference | 2253

7. Assign the CryptoX509 object to the Signature object.
8. Create one or more references to be signed.
9. Compute the signature.
10.Retrieve the XML signature document from the Signature object.

How to verify

1. Create a X509 certificate with the constructor of the CryptoX509 class.
2. Load the X509 certificate that was used to sign the originator X509 certificate into the CryptoX509

object.
3. Add the X509 certificate as trusted certificate to the application.
4. Create a signature with the constructor of the Signature class and from a XML signature node obtain

after the above compute operation.
5. Verify the signature validity.

Note: Steps 1 - 3 can be omitted if entry xml.application.calist has been set in
FGLPROFILE file with the trusted certificate.

Note: There is no key or certificate to set in the Signature object during validation.

Sign with a named key and verify using the keystore
Use if the sender and the receiver exchange multiple XML documents signed with different keys.

How to sign

1. Create a HMAC, RSA or DSA key with the constructor of the CryptoKey class.
2. Set the HMAC key or load the RSA or DSA key in the CryptoKey object.
3. Set the KeyName feature with the name identifying the key.
4. Create a blank signature with the constructor of the Signature class.
5. Assign the CryptoKey object to the Signature object.
6. Create one or more references to be signed.
7. Compute the signature.
8. Retrieve the XML signature document from the Signature object.

How to verify

1. Create a HMAC, RSA or DSA key with the constructor of the CryptoKey.
2. Set the HMAC key or load the RSA or DSA key in the CryptoKey object.
3. Set the KeyName feature with the name identifying the key.
4. Register the key to be used by key name for any signature verification.
5. Create a signature with the constructor of the Signature class and from a XML signature node obtain

after the above compute operation.
6. Verify the signature validity.

Note: Steps 1 - 4 should be done once at application startup for each key used in the application.
Steps 5 - 6 can then quickly be executed for any XML signature to be checked.

Digest identifier

Table 539: Digest identifiers

Identifier Description

http://www.w3.org/2000/09/xmldsig#sha1

See specification for details.

Computes the digest of the reference set with
createReference(), by applying a hash operation
using a SHA algorithm of 160 bits.

http://www.w3.org/TR/xmldsig-core/#sec-MessageDigests

Library reference | 2254

Identifier Description

Note: It is the only digest algorithm
recommended by the W3C.

http://www.w3.org/2001/04/xmlenc#sha512

See specification for details.

Computes the digest of the reference set with
createReference(), by applying a hash operation
using a SHA algorithm of 512 bits.

http://www.w3.org/2001/04/xmldsig-more#sha384

See specification for details.

Computes the digest of the reference set with
createReference(), by applying a hash operation
using a SHA algorithm of 384 bits.

http://www.w3.org/2001/04/xmlenc#sha256

See specification for details.

Computes the digest of the reference set with
createReference(), by applying a hash operation
using a SHA algorithm of 256 bits.

http://www.w3.org/2001/04/xmldsig-more#sha224

See specification for details.

Computes the digest of the reference set with
createReference(), by applying a hash operation
using a SHA algorithm of 224 bits.

http://www.w3.org/2001/04/xmldsig-more#md5

See specification for details.

Computes the digest of the reference set with
createReference(), by applying a hash operation
using a MD5 algorithm.

http://www.w3.org/2001/04/xmlenc#ripemd160

See specification for details.

Computes the digest of the reference set with
createReference(), by applying a hash operation
using a RIPEMD algorithm.

Transformation identifier

Table 540: Transformation identifiers

Identifier Description Additional
Parameters

http://www.w3.org/2000/09/
xmldsig#base64

See specification for details.

Transforms the output from the previous
transformation (or the reference if there is no
previous transformation), into the raw data
associated to a BASE64 encoded form.

This is intended to sign the raw data associated
with the BASE64 encoded content of an element.

See specification for details.

No

http://www.w3.org/TR/2001/
REC-xml-c14n-20010315

See specification for details.

Transforms the output from the previous
transformation (or the reference if there is no
previous transformation), into a canonicalized XML
document without any XML comments.

This is intended to transform two equivalent XML
documents into a standardized XML representation
in order to obtain the same hash value.

For instance: The following two XML nodes are
equivalent but would produce different hash values
if not canonicalized.

• <tag Attr1="hello" Attr2="world"/>

• <tag Attr2="world" Attr1="hello" />

No

http://www.w3.org/TR/xmldsig-core/#sec-MessageDigests
http://www.w3.org/TR/xmldsig-core/#sec-MessageDigests
http://www.w3.org/TR/xmldsig-core/#sec-MessageDigests
http://www.w3.org/TR/xmldsig-core/#sec-MessageDigests
http://www.w3.org/TR/xmldsig-core/#sec-MessageDigests
http://www.w3.org/TR/xmldsig-core/#sec-MessageDigests
http://www.w3.org/TR/xmldsig-core/#sec-c14nAlg
http://www.w3.org/TR/xmldsig-core/#sec-c14nAlg
http://www.w3.org/TR/xmldsig-core/#sec-c14nAlg

Library reference | 2255

Identifier Description Additional
Parameters

See specification for details.

http://www.w3.org/TR/2001/
REC-xml-c14n-20010315
#WithComments

See specification for details.

Transforms the output from the previous
transformation (or the reference if there is no
previous transformation), into a canonicalized XML
document keeping all XML comments.

This is intended to transform two equivalent XML
documents into a standardized XML representation
in order to obtain the same hash value.

For instance: The following two XML nodes are
equivalent but would produce different hash values
if not canonicalized.

• <tag Attr1="hello" Attr2="world"/>

• <tag Attr2="world" Attr1="hello" />

See specification for details.

No

http://www.w3.org/2001/10/
xml-exc-c14n#

See specification for details.

Transforms the output from the previous
transformation (or the reference if there is no
previous transformation), into a canonicalized
XML document without any XML comments, and
removing all unused namespaces declaration.

This is intended to transform two equivalent XML
documents into a standardized XML representation
in order to obtain the same hash value.

For instance: The following two XML nodes are
equivalent but would produce different hash values
if not canonicalized.

• <tag Attr1="hello" Attr2="world"/>

• <tag Attr2="world" Attr1="hello" />

See specification for details.

No

http://www.w3.org/2001/10/
xml-exc-c14n
#WithComments

See specification for details.

Transforms the output from the previous
transformation (or the reference if there is no
previous transformation), into a canonicalized
XML document keeping all XML comments, and
removing all unused namespaces declaration.

This is intended to transform two equivalent XML
documents into a standardized XML representation
in order to obtain the same hash value.

For instance: Following two XML nodes are
equivalent but would produce different hash values
if not canonicalized.

• <tag Attr1="hello" Attr2="world"/>

• <tag Attr2="world" Attr1="hello" />

See specification for details.

No

http://www.w3.org/TR/xmldsig-core/#sec-Canonicalization
http://www.w3.org/TR/xmldsig-core/#sec-c14nAlg
http://www.w3.org/TR/xmldsig-core/#sec-Canonicalization
http://www.w3.org/TR/xmldsig-core/#sec-c14nAlg
http://www.w3.org/TR/xmldsig-core/#sec-Canonicalization
http://www.w3.org/TR/xmldsig-core/#sec-c14nAlg
http://www.w3.org/TR/xmldsig-core/#sec-Canonicalization

Library reference | 2256

Identifier Description Additional
Parameters

http://www.w3.org/2000/09/
xmldsig #enveloped-
signature

See specification for details.

Transforms the output from the previous
transformation (or the reference if there is no
previous transformation), into the same XML
document or fragment, but without the Signature
node.

This is intended to create enveloped signatures
where the<dsig:Signature> node is inside the
document, but without taking it into account during
signature computation or verification.

See specification for details.

No

http://www.w3.org/TR/1999/
REC-xpath-19991116

See specification for details.

Transforms the output from the previous
transformation (or the reference if there is no
previous transformation), into a XML document
according to a XPath filtering expression applied
to each node of the input document, where the
expression represents a predicate to the XPath
expression(//. | //@* | //namespace::*).

In other words: (//. | //@* | //
namespace::*)[expr]

This is intended to identify the nodes to be signed
using a XPath expression instead of an attribute of
type ID.

For instance: The following samples output only the
MyCode node of the input document:

CALL
 s.appendReferenceTransformation(
 i,
 "http://www.w3.org/TR/1999/
REC-xpath-19991116",
 "ancestor-or-self::MyCode",
 NULL

CALL
 s.appendReferenceTransformation(
 i,
 "http://www.w3.org/TR/1999/
REC-xpath-19991116",
 "ancestor-or-self::p:MyCode",
 "p",
 "http://www.tempuri.org")

See specification for details.

XPath expression,
followed by NULL
or a list of prefix,
namespace
matching the XPath
expression.

http://www.w3.org/2002/06/
xmldsig-filter2

See specification for details.

Transforms the output from the previous
transformation (or the reference if there is no
previous transformation), into a XML document
according to a XPath filtering 2.0 expression
applied to the entire document at once.

XPathFilter2.0 type
(intersect, subtract
or union), followed
by the XPath
expression, followed
by NULL or a list of
prefix, namespace

http://www.w3.org/TR/xmldsig-core/#sec-c14nAlg
http://www.w3.org/TR/xmldsig-core/#sec-EnvelopedSignature
http://www.w3.org/TR/xmldsig-core/#sec-c14nAlg
http://www.w3.org/TR/xmldsig-core/#sec-XPath
http://www.w3.org/TR/xmldsig-core/#sec-c14nAlg

Library reference | 2257

Identifier Description Additional
Parameters

This is intended to identify the nodes to be signed
using a XPath expression instead of an attribute
of type ID, and to perform fast and more complex
operations such as intersect, subtract or union.

For instance: The following samples output the
entire document without the MyCode node child of
the MyElement root node:

CALL
 s.appendReferenceTransformation(
 i,
 "http://www.w3.org/2002/06/
xmldsig-filter2",
 "subtract",
 "/MyElement/MyCode")

CALL
 s.appendReferenceTransformation(
 i,
 "http://www.w3.org/2002/06/
xmldsig-filter2",
 "subtract",
 "/p1:MyElement/p2:MyCode",
 "p2",
 "http://www.tempuri.org/ns2",
 "p1",
 "http://www.tempuri.org/ns1")

See specification for details.

matching the XPath
expression.

Examples
Examples using the XML Signature class.

• Create a detached signature using a HMAC key on page 2257
• Verify a detached signature using a HMAC key on page 2258
• Create an enveloping signature using a DSA key on page 2259
• Verify an enveloping signature using a X509 certificate on page 2260
• Create an enveloped signature using a RSA key on page 2260
• Verify an enveloped signature using a RSA key on page 2261

Create a detached signature using a HMAC key

IMPORT xml

MAIN
 DEFINE doc xml.DomDocument
 DEFINE root xml.DomNode
 DEFINE sig xml.Signature
 DEFINE key xml.CryptoKey
 DEFINE index INTEGER
 # Create DomDocument object
 LET doc = xml.DomDocument.Create()
 # Notice that whitespaces are significant in crytography,
 # therefore it is recommended that you remove unnecessary ones
 CALL doc.setFeature("whitespace-in-element-content",FALSE)
 TRY

http://www.w3.org/TR/xmldsig-filter2/

Library reference | 2258

 # Load document to be signed
 CALL doc.load("MyDocument.xml")
 # Create HMAC key
 LET key = xml.CryptoKey.Create("http://www.w3.org/2000/09/xmldsig#hmac-
sha1")
 CALL key.setKey("secretpassword")
 # Create signature object with the key to use
 LET sig = xml.Signature.Create()
 CALL sig.setKey(key)
 # Set XML node to be signed. In our case, the node with attribute
 # 'xml:id="code"'
 LET index = sig.createReference("#code",
 "http://www.w3.org/2000/09/xmldsig#sha1")
 # Set canonicalization method on the XML fragment to be signed.
 CALL sig.appendReferenceTransformation(index,
 "http://www.w3.org/2001/10/xml-exc-c14n#")
 # Compute detached signature
 CALL sig.compute(doc)
 # Retrieve signature document
 LET doc=sig.getDocument()
 # Save signature on disk
 CALL doc.setFeature("format-pretty-print",TRUE)
 CALL doc.save("MyDocumentDetachedSignature.xml")
 CATCH
 DISPLAY "Unable to create a detached signature :",STATUS
 END TRY
END MAIN

Note: All keys or certificates in PEM or DER format were created with the OpenSSL tool.

Verify a detached signature using a HMAC key

IMPORT xml

MAIN
 DEFINE doc xml.DomDocument
 DEFINE node xml.DomNode
 DEFINE sig xml.Signature
 DEFINE key xml.CryptoKey
 DEFINE isVerified INTEGER
 # Create DomDocument object
 LET doc = xml.DomDocument.Create()
 # Notice that whitespaces are significants in crytography,
 # therefore it is recommended to remove unnecessary ones
 CALL doc.setFeature("whitespace-in-element-content",FALSE)
 TRY
 # Load Signature into a DomDocument object
 CALL doc.load("MyDocumentDetachedSignature.xml")
 # Create signature object from DomDocument root node
 LET sig = xml.Signature.CreateFromNode(doc.getDocumentElement())
 # Create HMAC key and assign it to the signature object
 LET key = xml.CryptoKey.Create("http://www.w3.org/2000/09/xmldsig#hmac-
sha1")
 CALL key.setKey("secretpassword")
 CALL sig.setKey(key)
 # Load original XML document into a DomDocument object
 CALL doc.load("MyDocument.xml")
 # Verify detached signature validity of original document
 LET isVerified = sig.verify(doc)
 # Notice that if something has been modified in the node
 # with attribute 'xml:id="code"' of the original XML document,
 # the program will display "FAILED".
 IF isVerified THEN

Library reference | 2259

 DISPLAY "Signature OK"
 ELSE
 DISPLAY "Signature FAILED"
 END IF
 CATCH
 DISPLAY "Unable to verify the detached signature :",STATUS
 END TRY
END MAIN

Note: All keys or certificates in PEM or DER format were created with the OpenSSL tool.

Create an enveloping signature using a DSA key

IMPORT xml

MAIN
 DEFINE doc xml.DomDocument
 DEFINE root xml.DomNode
 DEFINE sig xml.Signature
 DEFINE key xml.CryptoKey
 DEFINE index INTEGER
 DEFINE objInd INTEGER
 # Create DomDocument object
 LET doc = xml.DomDocument.Create()
 # Notice that whitespaces are significants in crytography,
 # therefore it is recommended to remove unnecessary ones
 CALL doc.setFeature("whitespace-in-element-content",FALSE)
 TRY
 # Load document to be signed
 CALL doc.load("MyDocument.xml")
 # Create DSA key and load it from file
 LET key = xml.CryptoKey.Create(
 "http://www.w3.org/2000/09/xmldsig#dsa-sha1")
 CALL key.loadPEM("DSAKey.pem")
 # Create signature object with the key to use
 LET sig = xml.Signature.Create()
 CALL sig.setKey(key)
 # Create an object inside the signature to envelop the root node
 LET objInd = sig.createObject()
 # Set the object id to get a reference
 CALL sig.setObjectId(objInd,"data")
 # Copy the enveloping node from the document
 CALL sig.appendObjectData(objInd,doc.getDocumentElement())
 # Set the reference to be signed on the object node.
 # In our case, the object node with attribute 'data'
 LET index = sig.createReference("#data",
 "http://www.w3.org/2000/09/xmldsig#sha1")
 # Set canonicalization method on the enveloping object to be signed.
 CALL sig.appendReferenceTransformation(index,
 "http://www.w3.org/2001/10/xml-exc-c14n#")
 # Compute enveloping signature
 CALL sig.compute(NULL)
 # Retrieve signature document
 LET doc=sig.getDocument()
 # Save signature on disk
 CALL doc.setFeature("format-pretty-print",TRUE)
 CALL doc.save("MyDocumentEnvelopingSignature.xml")
 CATCH
 DISPLAY "Unable to create an enveloping signature :",STATUS
 END TRY
END MAIN

Library reference | 2260

Note: All keys or certificates in PEM or DER format were created with the OpenSSL tool.

Verify an enveloping signature using a X509 certificate

IMPORT xml

MAIN
 DEFINE doc xml.DomDocument
 DEFINE node xml.DomNode
 DEFINE sig xml.Signature
 DEFINE cert xml.CryptoX509
 DEFINE pub xml.CryptoKey
 DEFINE isVerified INTEGER
 # Create DomDocument object
 LET doc = xml.DomDocument.Create()
 # Notice that whitespaces are significants in crytography,
 # therefore it is recommended to remove unnecessary ones
 CALL doc.setFeature("whitespace-in-element-content",FALSE)
 TRY
 # Load Signature into a DomDocument object
 CALL doc.load("MyDocumentEnvelopingSignature.xml")
 # Create signature object from DomDocument root node
 LET sig = xml.Signature.CreateFromNode(doc.getDocumentElement())
 # Create X509 certificate
 LET cert = xml.CryptoX509.Create()
 CALL cert.loadPEM("DSACertificate.crt")
 # Create public key from that X509 certificate
 LET pub = cert.createPublicKey(
 "http://www.w3.org/2000/09/xmldsig#dsa-sha1")
 # Assign it to the signature
 CALL sig.setKey(pub)
 # Verify enveloping signature validity
 LET isVerified = sig.verify(NULL)
 # Notice that if something has been modified in the signature
 # or if the certificate isn't associated to the
 # private DSA key of exemple 3,
 # the program will display "FAILED".
 IF isVerified THEN
 DISPLAY "Signature OK"
 ELSE
 DISPLAY "Signature FAILED"
 END IF
 CATCH
 DISPLAY "Unable to verify the enveloping signature :",STATUS
 END TRY
END MAIN

Note: All keys or certificates in PEM or DER format were created with the OpenSSL tool.

Create an enveloped signature using a RSA key

IMPORT xml

MAIN
 DEFINE doc xml.DomDocument
 DEFINE doc2 xml.DomDocument
 DEFINE root xml.DomNode
 DEFINE node xml.DomNode
 DEFINE signNode xml.DomNode
 DEFINE sig xml.Signature
 DEFINE key xml.CryptoKey
 DEFINE index INTEGER

Library reference | 2261

 # Create DomDocument object
 LET doc = xml.DomDocument.Create()
 # Notice that whitespaces are significants in crytography,
 # therefore it is recommended to remove unnecessary ones
 CALL doc.setFeature("whitespace-in-element-content",FALSE)
 TRY
 # Load document to be signed
 CALL doc.load("MyDocument.xml")
 # Create rsa key
 LET key = xml.CryptoKey.Create("http://www.w3.org/2000/09/xmldsig#rsa-
sha1")
 CALL key.loadPEM("RSAKey.pem")
 # Create signature object with the key to use
 LET sig = xml.Signature.Create()
 CALL sig.setKey(key)
 # Set XML node to be signed. In our case, the node with
 # attribute 'xml:id="code"'
 LET index = sig.createReference("#code",
 "http://www.w3.org/2000/09/xmldsig#sha1")
 # Add enveloped method to not take the XML signature node into account
 # when computing the entire document.
 CALL sig.appendReferenceTransformation(index,
 "http://www.w3.org/2000/09/xmldsig#enveloped-signature")
 # Set canonicalization method on the XML fragment to be signed.
 CALL sig.appendReferenceTransformation(index,
 "http://www.w3.org/2001/10/xml-exc-c14n#")
 # Compute enveloped signature
 CALL sig.compute(doc)
 # Retrieve signature document
 LET doc2=sig.getDocument()
 # Append the signature node to the original document to get
 # a valid enveloped signature
 # Notice that the enveloped signature can be added anywhere in the
 # original document
 LET signNode = doc2.getDocumentElement() # Get Signature node
 # Import it into the original document
 LET node = doc.importNode(signNode,true)
 # Retrieve the original document root node
 LET root = doc.getDocumentElement()
 # Append the signature node as last child of the original document
 CALL root.appendChild(node)
 # Save document with enveloped signature back to disk
 CALL doc.setFeature("format-pretty-print",TRUE)
 CALL doc.save("MyDocumentEnvelopedSignature.xml")
 CATCH
 DISPLAY "Unable to create an enveloped signature :",STATUS
 END TRY
END MAIN

Note: All keys or certificates in PEM or DER format were created with the OpenSSL tool.

Verify an enveloped signature using a RSA key

IMPORT xml

MAIN
 DEFINE doc xml.DomDocument
 DEFINE node xml.DomNode
 DEFINE sig xml.Signature
 DEFINE key xml.CryptoKey
 DEFINE list xml.DomNodeList
 DEFINE isVerified INTEGER
 # Create DomDocument object

Library reference | 2262

 LET doc = xml.DomDocument.Create()
 # Notice that whitespaces are significants in crytography,
 # therefore it is recommended to remove unnecessary ones
 CALL doc.setFeature("whitespace-in-element-content",FALSE)
 TRY
 # Load original document with enveloped signature into a DomDocument
 object
 CALL doc.load("MyDocumentEnvelopedSignature.xml")
 # Because the signature can be anywhere in the original document,
 # we must first retrieve it
 LET list = doc.getElementsByTagNameNS("Signature",
 "http://www.w3.org/2000/09/xmldsig#")
 IF list.getCount() != 1 THEN
 DISPLAY "Unable to find one Signature node"
 EXIT PROGRAM (-1)
 ELSE
 LET node = list.getItem(1)
 END IF
 # Create RSA key
 LET key = xml.CryptoKey.Create(
 "http://www.w3.org/2000/09/xmldsig#rsa-sha1")
 CALL key.loadPEM("RSAKey.pem")
 # Create signature object from DomNode object and set RSA key to use
 LET sig = xml.Signature.CreateFromNode(node)
 CALL sig.setKey(key)
 # Verify enveloped signature validity of original document
 LET isVerified = sig.verify(doc)
 # Notice that if something has been modified in the node with
 # attribute 'xml:id="code"' of the original XML document with the
 # enveloped signature, the program will display "FAILED".
 IF isVerified THEN
 DISPLAY "Signature OK"
 ELSE
 DISPLAY "Signature FAILED"
 END IF
 CATCH
 DISPLAY "Unable to verify the enveloped signature :",STATUS
 END TRY
END MAIN

Note: All keys or certificates in PEM or DER format were created with the OpenSSL tool.

The Encryption class
The xml.Encryption class provides methods to encrypt and decrypt XML documents, nodes or
symmetric keys.

It follows the XML-Encryption specifications.

The STATUS variable is set to zero after a successful method call.

Important: This class is not supported on GMI mobile devices.

xml.Encryption methods
Methods for the xml.Encryption class.

Table 541: Class methods: Creation

Name Description

xml.Encryption.Create()
 RETURNING enc xml.Encryption

Constructor of an Encryption object.

http://www.w3.org/TR/xmlenc-core/

Library reference | 2263

Table 542: Class methods: String encryption and decryption

Name Description

xml.Encryption.DecryptString(
 key xml.CryptoKey ,
 str STRING)
 RETURNING rstr STRING

Decrypts the encrypted string str encoded in
BASE64, using the symmetric key key, and returns
the string in clear text.

xml.Encryption.EncryptString(
 key xml.CryptoKey,
 str STRING)
 RETURNING rstr STRING

Encrypts the string str using the symmetric key
key, and returns the encrypted string encoded in
BASE64.

xml.Encryption.RSADecrypt(
 key STRING,
 enc STRING)
 RETURNING rstr STRING

Decrypts the BASE64 encrypted string enc using
the RSA key key and returns it in clear text

xml.Encryption.RSAEncrypt(
 key STRING,
 str STRING)
 RETURNING rstr STRING

Encrypts the string str using the RSA key key and
returns it encoded in BASE64.

The methods listed in Table 542: Class methods: String encryption and decryption on page 2263 do not
belong to the XML encryption specification, but are helper functions to allow BDL application to encrypt and
decrypt short passwords with RSA keys, or big strings by using symmetric keys. Notice that a common way
to encrypt data is to use symmetric keys, and to use RSA keys to encrypt the symmetric key value.

Table 543: Object methods: Key and certificate setting

Name Description

getEmbeddedKey()
 RETURNING key xml.CryptoKey

Get a copy of the embedded symmetric key that
was used in the last decryption operation.

setCertificate(
 cert xml.CryptoX509)

Assigns a copy of the X509 certificate to this
Encryption object.

setKey(
 key xml.CryptoKey)

Assigns a copy of the symmetric key to this
Encryption object.

setKeyEncryptionKey(
 key xml.CryptoKey)

Assigns a copy of the key-encryption key to this
Encryption object.

Library reference | 2264

Table 544: Object methods: XML elements encryption and decryption

Name Description

decryptElement(
 enc xml.DomNode)

Decrypts the EncryptedData DomNode enc using
the symmetric key.

decryptElementContent(
 enc xml.DomNode)

Decrypts the EncryptedData DomNode enc using
the symmetric key.

encryptElement(
 node xml.DomNode)

Encrypts the ELEMENT DomNode node and all its
children using the symmetric key.

encryptElementContent(
 node xml.DomNode)

Encrypts all child nodes of the ELEMENT
DomNode node using the symmetric key.

Table 545: Object methods: Detached XML elements encryption and decryption

Name Description

decryptElementDetached(
 enc xml.DomNode)
 RETURNING node xml.DomNode

Decrypts the EncryptedData DomNode enc
using the symmetric key, and returns it in a new
ELEMENT node

decryptElementContentDetached(
 enc xml.DomNode)
 RETURNING node xml.DomNode

Decrypts the EncryptedData DomNode enc using
the symmetric key, and returns all its children in
one new DOCUMENT_FRAGMENT_NODE node.

encryptElementDetached(
 node xml.DomNode)
 RETURNING rnode xml.DomNode

Encrypts the ELEMENT DomNode node and all its
children using the symmetric key, and returns them
as one new EncryptedData node.

encryptElementContentDetached(
 node xml.DomNode)
 RETURNING rnode xml.DomNode

Encrypts all child nodes of the ELEMENT
DomNode node using the symmetric key, and
returns them as one new EncryptedData node.

Table 546: Object methods: Key encryption and decryption

Name Description

decryptKey(
 xml xml.DomDocument,
 url STRING)
 RETURNING key xml.CryptoKey

Decrypts the EncryptedKey as root in the given
XML document, and returns a new CryptoKey of
the given kind.

encryptKey(
 key xml.CryptoKey)

Encrypts the given symmetric or HMAC key as an
EncryptedKey node and returns it as root node of a
new XML document .

http://www.w3.org/TR/xmlenc-core/#sec-EncryptedData
http://www.w3.org/TR/xmlenc-core/#sec-EncryptedData
http://www.w3.org/TR/xmlenc-core/#sec-EncryptedData
http://www.w3.org/TR/xmlenc-core/#sec-EncryptedData
http://www.w3.org/TR/xmlenc-core/#sec-EncryptedKey

Library reference | 2265

Name Description

 RETURNING doc xml.DomDocument

xml.Encryption.Create
Constructor of an Encryption object.

Syntax

xml.Encryption.Create()
 RETURNING enc xml.Encryption

Usage

Returns a Encryption object or NULL.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.Encryption.decryptElement
Decrypts the EncryptedData DomNode enc using the symmetric key.

Syntax

decryptElement(
 enc xml.DomNode)

1. enc is the encrypted DomNode.

Usage

The encrypted DomNode enc is replaced at the same place in the XML document with the resulting
ELEMENT DomNode and its children.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.Encryption.decryptElementContent
Decrypts the EncryptedData DomNode enc using the symmetric key.

Syntax

decryptElementContent(
 enc xml.DomNode)

1. enc is the encrypted DomNode.

Usage

The encrypted DomNode enc is replaced at the same place in the XML document with the resulting child
nodes.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.Encryption.decryptElementContentDetached

http://www.w3.org/TR/xmlenc-core/#sec-EncryptedData
http://www.w3.org/TR/xmlenc-core/#sec-EncryptedData

Library reference | 2266

Decrypts the EncryptedData DomNode enc using the symmetric key, and returns all its children in one new
DOCUMENT_FRAGMENT_NODE node.

Syntax

decryptElementContentDetached(
 enc xml.DomNode)
 RETURNING node xml.DomNode

1. enc is the encrypted DomNode.

Usage

Returns all its children in one new DOCUMENT_FRAGMENT_NODE node.

The resulting child nodes aren't added at any place in the XML document. It's up to the user to insert it at
the right place, and to remove the encrypted node.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.Encryption.decryptElementDetached
Decrypts the EncryptedData DomNode enc using the symmetric key, and returns it in a new ELEMENT
node

Syntax

decryptElementDetached(
 enc xml.DomNode)
 RETURNING node xml.DomNode

1. enc is the encrypted DomNode.

Usage

The resulting DomNode and its children aren't added at any place in the XML document. It's up to the user
to insert it at the right place, and to remove the encrypted node.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.Encryption.decryptKey
Decrypts the EncryptedKey as root in the given XML document, and returns a new CryptoKey of the given
kind.

Syntax

decryptKey(
 xml xml.DomDocument,
 url STRING)
 RETURNING key xml.CryptoKey

1. xml is the DomDocument object.
2. url is the string.

Usage

Returns a new CryptoKey of the given kind.

http://www.w3.org/TR/xmlenc-core/#sec-EncryptedData
http://www.w3.org/TR/xmlenc-core/#sec-EncryptedData
http://www.w3.org/TR/xmlenc-core/#sec-EncryptedKey

Library reference | 2267

Only symmetric or HMAC keys are allowed.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.Encryption.DecryptString
Decrypts the encrypted string str encoded in BASE64, using the symmetric key key, and returns the string
in clear text.

Syntax

xml.Encryption.DecryptString(
 key xml.CryptoKey ,
 str STRING)
 RETURNING rstr STRING

1. key is the symmetric key to use for decryption.
2. str is the encrypted string for decryption.

Usage

The key must be of usage: encryption.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.Encryption.encryptElement
Encrypts the ELEMENT DomNode node and all its children using the symmetric key.

Syntax

encryptElement(
 node xml.DomNode)

Usage

The ELEMENT DomNode node and all its children are replaced at the same place in the XML document
with the resulting EncryptedData node.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.Encryption.encryptElementContent
Encrypts all child nodes of the ELEMENT DomNode node using the symmetric key.

Syntax

encryptElementContent(
 node xml.DomNode)

Usage

The child nodes of the ELEMENT DomNode node are replaced at the same place in the XML document
with the resulting EncryptedData node.

http://www.w3.org/TR/xmlenc-core/#sec-EncryptedData
http://www.w3.org/TR/xmlenc-core/#sec-EncryptedData

Library reference | 2268

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.Encryption.encryptElementContentDetached
Encrypts all child nodes of the ELEMENT DomNode node using the symmetric key, and returns them as
one new EncryptedData node.

Syntax

encryptElementContentDetached(
 node xml.DomNode)
 RETURNING rnode xml.DomNode

1. node is the ELEMENT DomNode to encrypt.

Usage

Encrypts all child nodes of the ELEMENT DomNode node using the symmetric key, and returns them as
one new EncryptedData node.

The resulting DomNode isn't added at any place in the XML document. It's up to the user to insert it at the
right place, and to remove the nodes in clear form.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.Encryption.encryptElementDetached
Encrypts the ELEMENT DomNode node and all its children using the symmetric key, and returns them as
one new EncryptedData node.

Syntax

encryptElementDetached(
 node xml.DomNode)
 RETURNING rnode xml.DomNode

1. node is the ELEMENT DomNode to encrypt.

Usage

Encrypts the ELEMENT DomNode node and all its children using the symmetric key, and returns them as
one new EncryptedData node.

The resulting DomNode isn't added at any place in the XML document. It's up to the user to insert it at the
right place, and to remove the nodes in clear form.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.Encryption.encryptKey
Encrypts the given symmetric or HMAC key as an EncryptedKey node and returns it as root node of a new
XML document .

Syntax

encryptKey(
 key xml.CryptoKey)

http://www.w3.org/TR/xmlenc-core/#sec-EncryptedData
http://www.w3.org/TR/xmlenc-core/#sec-EncryptedData

Library reference | 2269

 RETURNING doc xml.DomDocument

1. key is the given symmetric or HMAC key as an EncryptedKey node.

Usage

Returns it as root node of a new XML document. The key-encryption key must been set otherwise it will
fail.

Depending on the feature set on the key-encryption key, the returned XML document will contain an
additional KeyInfo node.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.Encryption.EncryptString
Encrypts the string str using the symmetric key key, and returns the encrypted string encoded in BASE64.

Syntax

xml.Encryption.EncryptString(
 key xml.CryptoKey,
 str STRING)
 RETURNING rstr STRING

1. key is the key.
2. str is the string to be encrypted.

Usage

The key must be of usage: encryption.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.Encryption.getEmbeddedKey
Get a copy of the embedded symmetric key that was used in the last decryption operation.

Syntax

getEmbeddedKey()
 RETURNING key xml.CryptoKey

Usage

Returns a copy of the embedded symmetric key that was used in the last decryption operation, or NULL if
there is none.

An embedded symmetric key is always encrypted, and needs therefore a key-encryption key to be set in
order to decrypt it.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.Encryption.RSADecrypt

http://www.w3.org/TR/xmlenc-core/#sec-EncryptedKey

Library reference | 2270

Decrypts the BASE64 encrypted string enc using the RSA key key and returns it in clear text

Syntax

xml.Encryption.RSADecrypt(
 key STRING,
 enc STRING)
 RETURNING rstr STRING

1. key is the file name of a RSA private key in PEM format or an entry in the FGLPROFILE file.
2. enc is a string that was encrypted with the fglpass tool or with the xml.Encryption.RSAEncrypt

method.

Usage

RSA decryption is only intended to short strings that cannot exceed the size of the RSA key minus 12
bytes. For instance, if you have a RSA key of 512 bits, you password cannot exceed 512/8-12 = 52
bytes. If you need to handle big strings, you must use symmetric keys and the DecryptString method.
However, you can use RSA keys to decrypt symmetric key values.

Important: YOU MUST PAY ATTENTION TO RESTRICT ACCESS TO THAT RSA PRIVATE KEY
FILE ONLY TO THE PERSON OR GROUP OF PERSON AUTHORIZED.

If the RSA private key is protected with a password the recommended way is to unprotect it with the
openssl tool and to put the key file on a restricted file system. But you can also use a script or the fglpass
agent to provide the password to the application.

For example, you can encrypt a database password with the fglpass tool and store it in the
FGLPROFILE file, then you can decrypt it with the base.Application.getResourceEntry and the
xml.Encryption.RSADecrypt method to connect to the database.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.Encryption.RSAEncrypt
Encrypts the string str using the RSA key key and returns it encoded in BASE64.

Syntax

xml.Encryption.RSAEncrypt(
 key STRING,
 str STRING)
 RETURNING rstr STRING

1. key is the file name of a RSA public or private key in PEM format or an entry in the FGLPROFILE file.
2. str is the string to be encrypted.

Usage

RSA encryption is only intended to short strings that cannot exceed the size of the RSA key minus 12
bytes. For instance, if you have a RSA key of 512 bits, you password cannot exceed 512/8-12 = 52
bytes. If you need to handle big strings, you must use symmetric keys and the EncryptString method.
However, you can use RSA keys to encrypt symmetric key values.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.Encryption.setCertificate

Library reference | 2271

Assigns a copy of the X509 certificate to this Encryption object.

Syntax

setCertificate(
 cert xml.CryptoX509)

1. cert is the copy of the X509 certificate.

Usage

The certificate will then be added to any further XML document or node encryption.

• NULL is allowed to avoid the certificate being added.
• To encrypt using a certificate, you must use the createPublicKey method of the X509 class to

obtain the public key embedded in the certificate, and then provide it to the encryption object with above
setKeyEncryptionKey method.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.Encryption.setKey
Assigns a copy of the symmetric key to this Encryption object.

Syntax

setKey(
 key xml.CryptoKey)

1. key is the symmetric key.

Usage

Any further XML document or node encryption or decryption will use that symmetric key.

When decrypting a XML document that has an embedded symmetric key, the embedded key will be used
instead.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.Encryption.setKeyEncryptionKey
Assigns a copy of the key-encryption key to this Encryption object.

Syntax

setKeyEncryptionKey(
 key xml.CryptoKey)

1. key is the key-encryption key.

Usage

Any further XML encryption will use that key-encryption key to encrypt the symmetric key set with
setKey() within the resulting XML, and any further XML decryption will use that key-encryption key to
decrypt the embedded symmetric key.

Library reference | 2272

• NULL is allowed, meaning that embedded symmetric keys will not be encrypted nor decrypted
anymore, assuming that they have been exchanged in another way.

• Only public or private RSA keys, or key-wrap keys are allowed.
• Public RSA keys can encrypt but not decrypt.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

Examples
Examples using the xml.Encryption class.

Encrypt a XML node with a symmetric AES128 key

IMPORT xml

MAIN
 DEFINE doc xml.DomDocument
 DEFINE root xml.DomNode
 DEFINE enc xml.Encryption
 DEFINE symkey xml.CryptoKey
 LET doc = xml.DomDocument.Create()
 # Notice that white spaces are significant in crytography,
 # therefore it is recommended that you remove unnecessary ones
 CALL doc.setFeature("whitespace-in-element-content",FALSE)
 TRY
 # Load XML file to be encrypted
 CALL doc.load("XMLFileToBeEncrypted.xml")
 LET root = doc.getDocumentElement()
 # Create symmetric AES128 key for XML encryption purposes
 LET symkey = xml.CryptoKey.Create(
 "http://www.w3.org/2001/04/xmlenc#aes128-cbc")
 CALL symkey.setKey(">secretpassword<") # password of 128 bits
 CALL symKey.setFeature("KeyName","MySecretKey") # Name the password
 # in order to identify the key (Not mandatory)
 # Encrypt the entire document
 LET enc = xml.Encryption.Create()
 CALL enc.setKey(symkey) # Set the symmetric key to be used
 CALL enc.encryptElement(root) # Encrypt
 # Save encrypted document back to disk
 CALL doc.setFeature("format-pretty-print",TRUE)
 CALL doc.save("EncryptedXMLFile.xml")
 CATCH
 DISPLAY "Unable to encrypt XML file :",STATUS
 END TRY
END MAIN

Note: All keys or certificates in PEM or DER format were created with the OpenSSL tool.

Decrypt a XML node with a symmetric AES128 key

IMPORT xml

MAIN
 DEFINE doc xml.DomDocument
 DEFINE node xml.DomNode
 DEFINE enc xml.Encryption
 DEFINE symkey xml.CryptoKey
 DEFINE list xml.DomNodeList
 DEFINE str String
 LET doc = xml.DomDocument.Create()
 # Notice that whitespaces are significants in crytography,
 # therefore it is recommended to remove unnecessary ones

Library reference | 2273

 CALL doc.setFeature("whitespace-in-element-content",FALSE)
 TRY
 # Load encrypted XML file
 CALL doc.load("EncryptedXMLFile.xml")
 # Retrieve encrypted node (if any) from the document
 LET list = doc.getElementsByTagNameNS(
 "EncryptedData","http://www.w3.org/2001/04/xmlenc#")
 IF list.getCount()==1 THEN
 LET node = list.getItem(1)
 ELSE
 DISPLAY "No encrypted node found"
 EXIT PROGRAM
 END IF
 # Check if symmetric key name matches the expected "MySecretKey"
 (Not mandatory)
 LET list = node.selectByXPath(
 "dsig:KeyInfo/dsig:KeyName[position()=1 and
 text()=\"MySecretKey\"]","dsig",
 "http://www.w3.org/2000/09/xmldsig#")
 IF list.getCount()!=1 THEN
 DISPLAY "Key name doesn't match"
 EXIT PROGRAM
 END IF
 # Create symmetric AES128 key for XML decryption purpose
 LET symkey = xml.CryptoKey.Create(
 "http://www.w3.org/2001/04/xmlenc#aes128-cbc")
 CALL symkey.setKey(">secretpassword<") # password of 128 bits
 # Decrypt the entire document
 LET enc = xml.Encryption.Create()
 CALL enc.setKey(symkey) # Set the symmetric key to be used
 CALL enc.decryptElement(node) # Decrypt
 # Save encrypted document back to disk
 CALL doc.setFeature("format-pretty-print",TRUE)
 CALL doc.save("DecryptedXMLFile.xml")
 CATCH
 DISPLAY "Unable to decrypt XML file :",STATUS
 END TRY
END MAIN

Note: All keys or certificates in PEM or DER format were created with the OpenSSL tool.

Encrypt a XML node with a generated symmetric key protected with the public RSA key within a X509 certificate

IMPORT xml

MAIN
 DEFINE doc xml.DomDocument
 DEFINE root xml.DomNode
 DEFINE enc xml.Encryption
 DEFINE symkey xml.CryptoKey
 DEFINE kek xml.CryptoKey
 DEFINE cert xml.CryptoX509
 LET doc = xml.DomDocument.Create()
 # Notice that whitespaces are significants in crytography,
 # therefore it is recommended to remove unnecessary ones
 CALL doc.setFeature("whitespace-in-element-content",FALSE)
 TRY
 # Load XML file to be encrypted
 CALL doc.load("XMLFileToBeEncrypted.xml")
 LET root = doc.getDocumentElement()
 # Load the X509 certificate and retrieve the public RSA key
 # for key-encryption purpose
 LET cert = xml.CryptoX509.Create()

Library reference | 2274

 CALL cert.loadPEM("RSA1024Certificate.crt")
 LET kek = cert.createPublicKey(
 "http://www.w3.org/2001/04/xmlenc#rsa-1_5")
 # Generate symmetric key for XML encryption purpose
 LET symkey = xml.CryptoKey.Create(
 "http://www.w3.org/2001/04/xmlenc#aes256-cbc")
 CALL symkey.generateKey(NULL)
 # Encrypt the entire document
 LET enc = xml.Encryption.Create()
 CALL enc.setKey(symkey) # Set the symmetric key to be used
 CALL enc.setKeyEncryptionKey(kek) # Set the key-encryption key to
 # be used for protecting the symmetric key
 CALL enc.setCertificate(cert) # Set the certificate to be added
 # (not mandatory)
 CALL enc.encryptElement(root) # Encrypt
 # Save encrypted document back to disk
 CALL doc.setFeature("format-pretty-print",TRUE)
 CALL doc.save("EncryptedXMLFile.xml")
 CATCH
 DISPLAY "Unable to encrypt XML file :",STATUS
 END TRY
END MAIN

Note: All keys or certificates in PEM or DER format were created with the OpenSSL tool.

Decrypt a XML node encrypted with a symmetric key protected with a private RSA key

IMPORT xml

MAIN
 DEFINE doc xml.DomDocument
 DEFINE node xml.DomNode
 DEFINE enc xml.Encryption
 DEFINE symkey xml.CryptoKey
 DEFINE kek xml.CryptoKey
 DEFINE list xml.DomNodeList
 LET doc = xml.DomDocument.Create()
 # Notice that whitespaces are significants in crytography,
 # therefore it is recommended to remove unnecessary ones
 CALL doc.setFeature("whitespace-in-element-content",FALSE)
 TRY
 # Load encrypted XML file
 CALL doc.load("EncryptedXMLFile.xml")
 # Retrieve encrypted node (if any) from the document
 LET list = doc.getElementsByTagNameNS("EncryptedData",
 "http://www.w3.org/2001/04/xmlenc#")
 IF list.getCount()==1 THEN
 LET node = list.getItem(1)
 ELSE
 DISPLAY "No encrypted node found"
 EXIT PROGRAM
 END IF
 # Load the private RSA key
 LET kek = xml.CryptoKey.create(
 "http://www.w3.org/2001/04/xmlenc#rsa-1_5")
 CALL kek.loadPEM("RSA1024Key.pem")
 # Decrypt the entire document
 LET enc = xml.Encryption.Create()
 CALL enc.setKeyEncryptionKey(kek) # Set the key-encryption key to
 # decrypted the protected symmetric key
 CALL enc.decryptElement(node) # Decrypt
 # Retrieve the embedded symmetric key for futher usage and display
 # info about it

Library reference | 2275

 LET symkey = enc.getEmbeddedKey()
 DISPLAY "Key size (in bytes) : ",symkey.getSize() # displays 1024
 DISPLAY "Key type : ",symkey.getType() # displays SYMMETRIC
 DISPLAY "Key usage : ",symkey.getUsage() # displays ENCRYPTION
 # Encrypted document back to disk
 CALL doc.setFeature("format-pretty-print",TRUE)
 CALL doc.save("DecryptedXMLFile.xml")
 CATCH
 DISPLAY "Unable to decrypt XML file :",STATUS
 END TRY
END MAIN

Note: All keys or certificates in PEM or DER format were created with the OpenSSL tool.

The KeyStore class
The xml.KeyStore class provides static methods to handle a key store global to the entire application. It
enables to register X509 and trusted certificates, and any kind of key by name for automatic XML signature
validation or XML decryption.

The STATUS variable is set to zero after a successful method call.

Important: This class is not supported on GMI mobile devices.

xml.KeyStore methods
Methods for the xml.KeyStore class.

Table 547: Class methods

Name Description

xml.KeyStore.AddCertificate(
 cert xml.CryptoX509)

Registers the given X509 certificate as a certificate
for the application. It will be used when an
incomplete X509 certificate is detected during
signature or encryption to complete the process
by checking the certificate issuer name and serial
number.

xml.KeyStore.AddKey(
 key xml.CryptoX509)

Registers the given key by name to the application.
It is used for XML signature verification or XML
decryption when a key name was specified in the
XML KeyInfo node and no other key was set in the
Signature or Encryption object.

xml.KeyStore.AddTrustedCertificate(
 cert xml.CryptoX509)

Registers the given X509 certificate as a trusted
certificate for the application. It will be used for
signature verification if no other certificate was set
for that purpose.

xml.KeyStore.AddCertificate
Registers the given X509 certificate as a certificate for the application. It will be used when an incomplete
X509 certificate is detected during signature or encryption to complete the process by checking the
certificate issuer name and serial number.

Syntax

xml.KeyStore.AddCertificate(
 cert xml.CryptoX509)

1. cert is the X509 certificate to register.

Library reference | 2276

Usage

The method has the same effect as the FGLPROFILE entry xml.keystore.x509list.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.KeyStore.AddKey
Registers the given key by name to the application. It is used for XML signature verification or XML
decryption when a key name was specified in the XML KeyInfo node and no other key was set in the
Signature or Encryption object.

Syntax

xml.KeyStore.AddKey(
 key xml.CryptoX509)

1. key is the key object xml.CryptoX509 to add to the keystore.

Usage

Registers the given key by name to the application. It is used for XML signature verification or XML
decryption when a key name was specified in the XML KeyInfo node and no other key was set in the
Signature or Encryption object.

The CryptoKey must have the KeyName feature set, and the name must be unique in the application.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

xml.KeyStore.AddTrustedCertificate
Registers the given X509 certificate as a trusted certificate for the application. It will be used for signature
verification if no other certificate was set for that purpose.

Syntax

xml.KeyStore.AddTrustedCertificate(
 cert xml.CryptoX509)

1. cert is the X509 certificate to register.

Usage

Registers the given X509 certificate as a trusted certificate for the application. It will be used for signature
verification if no other certificate was set for that purpose.

Has the same effect as the FGLPROFILE entry xml.keystore.calist.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

OM to XML Migration
Information to migrate code that uses the language build-in om package, to the Web Services extensions
xml package.

Before you migrate, make sure that you are using the classes from the appropriate package:

• Classes from the om package exist to manipulate the AUI tree.

http://www.w3.org/TR/xmldsig-core/#sec-KeyInfo

Library reference | 2277

• Classes from the xml package provide full support for XML document processing, and should be used
to manipulate XML documents.

Why would you migrate from om to xml classes and methods?

• You need to be able to utilize a feature (such as a StyleSheet) that requires use of methods from the
xml library classes.

OM - XML Mapping

Table 548: OM - XML Mapping

OM class method XML class method(s)

om.DomDocument.create xml.DomDocument.createDocument

om.DomDocument.createFromXmlFile xml.DomDocument.load

om.DomDocument.createFromString xml.DomDocument.loadFromString

om.DomDocument.copy xml.DomNode.clone

om.DomDocument.createChars xml.DomDocument.createTextNode

om.DomDocument.createEntity xml.DomDocument.createEntityReference

om.DomDocument.createElement xml.DomDocument.createElement

om.DomDocument.getDocumentElement xml.DomDocument.getFirstDocumentNode

om.DomDocument.getElementById xml.DomDocument.getElementById
+ xml.DomNode.setIdAttribute or
xml.DomNode.setIdAttributeNS

om.DomDocument.removeElement xml.DomDocument.removeDocumentNode

om.DomNode.appendChild xml.DomDocument.createNode +
xml.DomNode.appendChild

om.DomNode.createChild xml.DomDocument.createNode +
xml.DomNode.appendChild

om.DomNode.insertBefore xml.DomNode.insertBeforeChild

om.DomNode.removeChild xml.DomNode.removeChild

om.DomNode.replaceChild xml.DomNode.replaceChild

om.DomNode.loadXml xml.DomDocument.loadFromString

om.DomNode.parse xml.DomDocument.createNode + add it to the
DomDocument

om.DomNode.toString xml.DomNode.toString

om.DomNode.writeXml xml.DomDocument.save

om.DomNode.write xml.DomNode.toString

om.DomNode.getId N/A

om.DomNode.getTagName xml.DomNode.getLocalName

om.DomNode.setAttribute xml.DomNode.setAttribute

om.DomNode.getAttribute xml.DomNode.getAttribute

Library reference | 2278

OM class method XML class method(s)

om.DomNode.getAttributeInteger xml.DomNode.getAttribute + condition for the
default value and the cast

om.DomNode.getAttributeString xml.DomNode.getAttribute + condition for the
default value and the cast

om.DomNode.getAttributeName xml.DomNode.getAttributeNodeItem +
xml.DomNode.getLocalName

om.DomNode.getAttributesCount xml.DomNode.getAttributesCount

om.DomNode.getAttributeValue xml.DomNode.getAttributeNodeItem +
xml.DomNode.getNodeValue

om.DomNode.removeAttribute xml.DomNode.removeAttribute

om.DomNode.getChildCount xml.DomNode.getChildrenCount

om.DomNode.getChildByIndex xml.DomNode.getChildNodeItem

om.DomNode.getFirstChild xml.DomNode.getFirstChild

om.DomNode.getLastChild xml.DomNode.getLastChild

om.DomNode.getNext xml.DomNode.getNextSibling

om.DomNode.getParent xml.DomNode.getParentNode

om.DomNode.getPrevious xml.DomNode.getPreviousSibling

om.DomNode.selectByTagName xml.DomNode.getElementsByTagName

om.DomNode.selectByPath xml.DomNode.selectByXPath

om.NodeList.item xml.DomNodeList.getItem

om.NodeList.getLength xml.DomNodeList.getCount

For more information on Genero built-in classes (such as the OM class), refer to Built-in packages on page
1687.

The security package
The Genero Web Services security package provides classes and methods to support basic
cryptographic features.

Use the IMPORT statement at the top of the module using this library:

IMPORT security

• The RandomGenerator class on page 2279
• The Base64 class on page 2280
• The HexBinary class on page 2286
• The Digest class on page 2291

Library reference | 2279

The RandomGenerator class
The security.RandomGenerator class includes methods for creating random strings or numbers.
security.RandomGenerator methods
Methods of the security.RandomGenerator class.

Table 549: Class methods

Name Description

security.RandomGenerator.CreateRandomNumber()
 RETURNING result BIGINT

Generates a 8-byte strong
random number.

security.RandomGenerator.CreateRandomString(
 size INTEGER)
 RETURNING result STRING

Creates a random base64 string.

security.RandomGenerator.CreateUUIDString()
 RETURNING result STRING

Creates a new universal unique
identifier (UUID).

security.RandomGenerator.CreateRandomNumber
Generates a 8-byte strong random number.

Syntax

security.RandomGenerator.CreateRandomNumber()
 RETURNING result BIGINT

1. result is a random big integer.

Usage

Generates a 8-byte strong random number and returns it as a BIGINT.

The generated number can then be used for advanced cryptographic features.

This method is based on openssl, using /dev/random on Unix and CryptGenRandom() on Microsoft
Windows, which are following CSPRNG specifications.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

security.RandomGenerator.CreateRandomString
Creates a random base64 string.

Syntax

security.RandomGenerator.CreateRandomString(
 size INTEGER)
 RETURNING result STRING

1. size is the size of the random string.
2. result is the generated random string in Base64.

Library reference | 2280

Usage

Generates a random binary data of size bytes long and returns it in a STRING encoded in a Base64 form.

The size must be greater than 0.

Use this function when randomness is required, such as in xml.CryptoKey.deriveKey() or
security.Digest.CreateDigestString().

This method is based on openssl, using /dev/random on Unix and CryptGenRandom() on Microsoft
Windows, which are following CSPRNG specifications.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

security.RandomGenerator.CreateUUIDString
Creates a new universal unique identifier (UUID).

Syntax

security.RandomGenerator.CreateUUIDString()
 RETURNING result STRING

1. result is the new generated UUID string.

Usage

Generates an universal unique identifier and returns the value as STRING.

The generated strings follows the UUID version 4 specification. Version 4 UUIDs have the form
xxxxxxxx-xxxx-4xxx-yxxx-xxxxxxxxxxxx where x is any hexadecimal digit and y is one of 8, 9, A,
or B.

Note: This method replaces com.Util.CreateUUIDString().

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

The Base64 class
The security.Base64 class includes methods for encoding to base64 or decoding from base64.
security.Base64 methods
Methods of the security.Base64 class.

Table 550: Class methods

Name Description

security.Base64.FromByte(
 source BYTE)
 RETURNING result STRING

Encodes the given BYTE data in base64.

security.Base64.FromHexBinary(
 source STRING)
 RETURNING result STRING

Decodes the given hexadecimal string to base64.

security.Base64.FromString(
 source STRING)

Encodes the given string in base64.

Library reference | 2281

Name Description

 RETURNING result STRING

security.Base64.FromStringWithCharset(
 source STRING,
 charset STRING)
 RETURNING result STRING

Encodes the given string in base64, according to a
given charset.

security.Base64.LoadBinary(
 path STRING)
 RETURNING result STRING

Reads data from a file and encodes to base64.

security.Base64.SaveBinary(
 path STRING,
 data STRING)

Decodes the given base64 string and writes the
data to a file.

security.Base64.ToByte(
 source STRING,
 destination BYTE)

Decodes the given base64 string into a BYTE.

security.Base64.ToHexBinary(
 source STRING)
 RETURNING result STRING

Decodes the given base64 string to hexadecimal.

security.Base64.ToString(
 source STRING)
 RETURNING result STRING

Decodes the given base64 string.

security.Base64.ToStringWithCharset(
 source STRING,
 charset STRING)
 RETURNING result STRING

Decodes the given base64 string, according to a
given charset.

security.Base64.Xor(
 b64str1 STRING,
 b64str2 STRING)
 RETURNING result STRING

Computes the exclusive disjunction between two
base64 encoded strings.

security.Base64.FromByte
Encodes the given BYTE data in base64.

Syntax

security.Base64.FromByte(
 source BYTE)
 RETURNING result STRING

1. source is the BYTE to be encoded.
2. result is the base64 encoded string.

Library reference | 2282

Usage

Encodes the given BYTE data in base64 and returns the string.

Important: The BYTE must be located in memory.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

security.Base64.FromHexBinary
Decodes the given hexadecimal string to base64.

Syntax

security.Base64.FromHexBinary(
 source STRING)
 RETURNING result STRING

1. source is a string in its hexadecimal form
2. result is a string encoded in base64

Usage

Decodes the given hexadecimal string and returns it in base64.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

security.Base64.FromString
Encodes the given string in base64.

Syntax

security.Base64.FromString(
 source STRING)
 RETURNING result STRING

1. source is the string to be encoded.
2. result is the base64 encoded string.

Usage

Encodes the given string and returns it in base64.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

security.Base64.FromStringWithCharset
Encodes the given string in base64, according to a given charset.

Syntax

security.Base64.FromStringWithCharset(
 source STRING,
 charset STRING)
 RETURNING result STRING

Library reference | 2283

1. source is the string to be encoded.
2. charset is the character set to be used.
3. result is the base64 encoded string.

Usage

Encodes the given string and returns it in base64.

Before conversion, the string is converted from the local DVM charset to the specified encoding.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

security.Base64.LoadBinary
Reads data from a file and encodes to base64.

Syntax

security.Base64.LoadBinary(
 path STRING)
 RETURNING result STRING

1. path is the path to the binary file.
2. result is a string encoded in base64.

Usage

Reads the file located at path and encodes these binary data in Base64 format.

For example, this method can be used to send images through a network.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

security.Base64.SaveBinary
Decodes the given base64 string and writes the data to a file.

Syntax

security.Base64.SaveBinary(
 path STRING,
 data STRING)

1. path is the path to the binary file
2. data is a base64 string to be written.

Usage

Decodes the given Base64 string and writes the binary data to the file defined by path.

This method can be used to save data from a network on the disk.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

Library reference | 2284

security.Base64.ToHexBinary
Decodes the given base64 string to hexadecimal.

Syntax

security.Base64.ToHexBinary(
 source STRING)
 RETURNING result STRING

1. source is a string encoded in base64.
2. result is a string decoded in hexadecimal.

Usage

Decodes the given base64 string and returns it in its hexadecimal form.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

security.Base64.ToByte
Decodes the given base64 string into a BYTE.

Syntax

security.Base64.ToByte(
 source STRING,
 destination BYTE)

1. source is a string in base64.
2. destination is the BYTE to fill with data.

Usage

Decodes the given base64 string and fills the BYTE variable with binary data.

Important: The BYTE must be located in memory.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

security.Base64.ToString
Decodes the given base64 string.

Syntax

security.Base64.ToString(
 source STRING)
 RETURNING result STRING

1. source is a string encoded in base64.
2. result is the decoded string.

Usage

Decodes the given base64 string and returns it in its clear (human readable) form.

If the base64 string does not contain a human readable data, the method will raise an exception.

Library reference | 2285

If the base64 string contains bytes sequences that do not match a valid character in the current encoding,
the method raises a conversion error.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

security.Base64.ToStringWithCharset
Decodes the given base64 string, according to a given charset.

Syntax

security.Base64.ToStringWithCharset(
 source STRING,
 charset STRING)
 RETURNING result STRING

1. source is a string encoded in base64.
2. charset is the character set to be used.
3. result is the decoded string.

Usage

Decodes the given base64 string and returns it in its clear human readable form, according to a given
charset.

The original base64 encoded string is first decoded to a string that will be converted from the specified
charset to the local DVM charset. In case of charset conversion error, the error -15700 is raised.

If the base64 string does not contain a human readable data, the method will raise an exception.

If the base64 string contains bytes sequences that do not match a valid character in the current encoding,
the method raises a conversion error.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

security.Base64.Xor
Computes the exclusive disjunction between two base64 encoded strings.

Syntax

security.Base64.Xor(
 b64str1 STRING,
 b64str2 STRING)
 RETURNING result STRING

1. b64str1 is a first string encoded in base64.
2. b64str2 is a second string encoded in base64.
3. result is the xor result encoded in base64.

Usage

Decodes the two given strings and does an exclusive disjunction between the two binary and returns the
result encoded in base64.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

Library reference | 2286

The HexBinary class
The security.HexBinary class includes methods for encoding to hexadecimal or decoding from
hexadecimal.
security.HexBinary methods
Methods of the security.HexBinary class.

Table 551: Class methods

Name Description

security.HexBinary.FromBase64(
 source STRING)
 RETURNING result STRING

Converts a base64 string to the hexadecimal
equivalent.

security.HexBinary.FromByte(
 source BYTE)
 RETURNING result STRING

Encodes BYTE data in hexadecimal.

security.HexBinary.FromString(
 source STRING)
 RETURNING result STRING

Encodes a given string in hexadecimal.

security.HexBinary.FromStringWithCharset(
 source STRING,
 charset STRING)
 RETURNING result STRING

Encodes a given string in hexadecimal, according
to a given charset.

security.HexBinary.LoadBinary(
 path STRING)
 RETURNING result STRING

Reads binary data from a file and converts it to
hexadecimal.

security.HexBinary.SaveBinary(
 path STRING,
 data STRING)

Decodes an hexadecimal strings and writes the
binary data to a file.

security.HexBinary.ToBase64(
 source STRING)
 RETURNING result STRING

Converts an hexadecimal string to the base64
equivalent

security.HexBinary.ToByte(
 source STRING,
 destination BYTE)

Decodes an hexadecimal string into a BYTE
variable.

security.HexBinary.ToString(
 source STRING)
 RETURNING result STRING

Decodes an hexadecimal string to a clear, human-
readable string.

security.HexBinary.ToStringWithCharset(
 source STRING,
 charset STRING)

Decodes an hexadecimal string to a clear, human-
readable string, according to a given charset.

Library reference | 2287

Name Description

 RETURNING result STRING

security.HexBinary.Xor(
 hexstr1 STRING,
 hexstr2 STRING)
 RETURNING result STRING

Computes the exclusive disjunction between two
hexadecimal encoded strings.

security.HexBinary.FromBase64
Converts a base64 string to the hexadecimal equivalent.

Syntax

security.HexBinary.FromBase64(
 source STRING)
 RETURNING result STRING

1. source is a string encoded in base64.
2. result is a string decoded in hexadecimal.

Usage

Decodes the given base64 string and returns it in its hexadecimal form.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

security.HexBinary.FromByte
Encodes BYTE data in hexadecimal.

Syntax

security.HexBinary.FromByte(
 source BYTE)
 RETURNING result STRING

1. source is the BYTE to be encoded in hexadecimal.
2. result is the encoded hexadecimal string.

Usage

Encodes the given BYTE data in hexadecimal and returns the string.

Important: The BYTE must be located in memory.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

security.HexBinary.FromString
Encodes a given string in hexadecimal.

Syntax

security.HexBinary.FromString(

Library reference | 2288

 source STRING)
 RETURNING result STRING

1. source is the source string to be encoded in hexadecimal.
2. result is the encoded hexadecimal string.

Usage

Encodes the given string and returns it in hexadecimal.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

security.HexBinary.FromStringWithCharset
Encodes a given string in hexadecimal, according to a given charset.

Syntax

security.HexBinary.FromStringWithCharset(
 source STRING,
 charset STRING)
 RETURNING result STRING

1. source is the source string to be encoded in hexadecimal.
2. charset is the character set to be used.
3. result is the encoded hexadecimal string.

Usage

Encodes the given string and returns it in hexadecimal.

Before conversion, the string is converted from the local DVM charset to the specified encoding.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

security.HexBinary.LoadBinary
Reads binary data from a file and converts it to hexadecimal.

Syntax

security.HexBinary.LoadBinary(
 path STRING)
 RETURNING result STRING

1. path is the path to the binary file.
2. result is the string in hexadecimal format.

Usage

Reads the file located at path and returns these binary data in hexadecimal format.

For example, this method can be used to send images through a network.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

Library reference | 2289

security.HexBinary.SaveBinary
Decodes an hexadecimal strings and writes the binary data to a file.

Syntax

security.HexBinary.SaveBinary(
 path STRING,
 data STRING)

1. path is the path to the binary file.
2. data is the hexadecimal string to be written.

Usage

Decodes the given hexadecimal string and writes the binary data to the file defined by path.

This method can be used to save data from a network on the disk.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

security.HexBinary.ToBase64
Converts an hexadecimal string to the base64 equivalent

Syntax

security.HexBinary.ToBase64(
 source STRING)
 RETURNING result STRING

1. source is a string in its hexadecimal form.
2. result is a string encoded in base64.

Usage

Decodes the given hexadecimal string and returns it in base64.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

security.HexBinary.ToByte
Decodes an hexadecimal string into a BYTE variable.

Syntax

security.HexBinary.ToByte(
 source STRING,
 destination BYTE)

1. source is a string in hexadecimal.
2. destination is the BYTE to fill with data.

Usage

Decodes the given hexadecimal string and fills the BYTE variable with binary data.

Important: The BYTE must be located in memory.

Library reference | 2290

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

security.HexBinary.ToString
Decodes an hexadecimal string to a clear, human-readable string.

Syntax

security.HexBinary.ToString(
 source STRING)
 RETURNING result STRING

1. source is a string in hexadecimal.
2. result is a human readable string.

Usage

Decodes the given hexadecimal string and returns it in its clear, human readable, form. If the hexadecimal
string does not contain a human readable string, the method will raise an exception.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

security.HexBinary.ToStringWithCharset
Decodes an hexadecimal string to a clear, human-readable string, according to a given charset.

Syntax

security.HexBinary.ToStringWithCharset(
 source STRING,
 charset STRING)
 RETURNING result STRING

1. source is a string in hexadecimal.
2. charset is the character set to be used.
3. result is a human readable string.

Usage

Decodes the given hexadecimal string and returns it in its clear human readable form, according to a given
charset.

The original hexadecimal encoded string is first decoded to a string that will then be converted from the
specified charset to the local DVM charset. In case of charset conversion error, the error -15700 is raised.

If the hexadecimal string does not contain a human readable string, the method will raise an exception.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

security.HexBinary.Xor
Computes the exclusive disjunction between two hexadecimal encoded strings.

Syntax

security.HexBinary.Xor(
 hexstr1 STRING,

Library reference | 2291

 hexstr2 STRING)
 RETURNING result STRING

1. hexstr1 is a first string in hexadecimal.
2. hexstr1 is a second string in hexadecimal.
3. result is the xor result encoded in hexadecimal.

Usage

Decodes the two given string and does an exclusive disjunction between the two binary and returns the
result in hexadecimal.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

The Digest class
The security.Digest class implements digest algorithms to process data.

The class implements several methods that allow you to add data by pieces and process these data with a
specified digest algorithm.

Steps to process data with a digest algorithm:

1. Define the digest algorithm with the security.Digest.CreateDigest method.
2. Add data to the digest buffer with methods such as security.Digest.AddData,

security.Digest.AddBase64Data, security.Digest.AddHexBinaryData,
security.Digest.AddStringData.

3. When all data pieces are added, the buffer can be processed by calling methods like
security.Digest.DoBase64Digest or security.Digest.DoHexBinaryDigest.

Alternatively, a simple data string can be processed with the security.Digest.CreateDigestString
method.

security.Digest methods
Methods of the security.Digest class.

Table 552: Class methods

Name Description

security.Digest.AddData(
 data BYTE)

Adds a data from a BYTE variable to the digest
buffer.

security.Digest.AddBase64Data (
 data STRING)

Adds a data in base64 format to the digest buffer.

security.Digest.AddHexBinaryData(
 data STRING)

Adds a data in hexadecimal format to the digest
buffer.

security.Digest.AddStringData(
 data STRING)

Adds a data string to the digest buffer.

security.Digest.AddStringDataWithCharset(
 data STRING,

Adds a data string to the digest buffer, after
converting to the specified character set.

Library reference | 2292

Name Description

 charset STRING)

security.Digest.CreateDigest(
 algo STRING)

Defines a new digest context by specifying the
algorithm to be used.

security.Digest.CreateDigestString(
 password STRING,
 randBase64 STRING)
 RETURNING result STRING

Creates a SHA1 digest from the given string.

security.Digest.DoBase64Digest()
 RETURNING b64Digest STRING

Creates a digest of the buffered data and returns
the result in base64 format.

security.Digest.DoHexBinaryDigest()
 RETURNING hexBinDigest STRING

Creates a digest of the buffered data and returns
the result in hexadecimal format.

security.Digest.AddData
Adds a data from a BYTE variable to the digest buffer.

Syntax

security.Digest.AddData(
 data BYTE)

1. data is binary data to be added to the digest buffer.

Usage

Adds the binary data contained in the given BYTE to the digest context.

After adding all data pieces, the buffer can be processed by calling
security.Digest.DoBase64Digest or security.Digest.DoHexBinaryDigest.

Important: The BYTE must be located in memory.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

security.Digest.AddBase64Data
Adds a data in base64 format to the digest buffer.

Syntax

security.Digest.AddBase64Data (
 data STRING)

1. data is the base64 data string to be added to the digest buffer.

Usage

Decodes the given base64 string and adds the binary data to the digest buffer.

Library reference | 2293

After adding all data pieces, the buffer can be processed by calling
security.Digest.DoBase64Digest or security.Digest.DoHexBinaryDigest.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

security.Digest.AddHexBinaryData
Adds a data in hexadecimal format to the digest buffer.

Syntax

security.Digest.AddHexBinaryData(
 data STRING)

1. data is the hexadecimal data string to be added to the digest buffer.

Usage

Decodes the given hexadecimal string and adds the binary data to the digest buffer.

After adding all data pieces, the buffer can be processed by calling
security.Digest.DoBase64Digest or security.Digest.DoHexBinaryDigest.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

security.Digest.AddStringData
Adds a data string to the digest buffer.

Syntax

security.Digest.AddStringData(
 data STRING)

1. data is a human-readable character string to be added to the digest buffer.

Usage

Adds the specified string data to the digest buffer.

After adding all data pieces, the buffer can be processed by calling
security.Digest.DoBase64Digest or security.Digest.DoHexBinaryDigest.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

security.Digest.AddStringDataWithCharset
Adds a data string to the digest buffer, after converting to the specified character set.

Syntax

security.Digest.AddStringDataWithCharset(
 data STRING,
 charset STRING)

1. data is a human-readable character string to be added to the digest buffer.
2. charset is the charset to be used.

Library reference | 2294

Usage

Adds the specified string data to the digest buffer.

Before adding the string, it is converted from the local DVM charset to the specified encoding.

After adding all data pieces, the buffer can be processed by calling
security.Digest.DoBase64Digest or security.Digest.DoHexBinaryDigest.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

security.Digest.CreateDigest
Defines a new digest context by specifying the algorithm to be used.

Syntax

security.Digest.CreateDigest(
 algo STRING)

1. algo is the digest algorithm to be used.

Usage

Creates and initializes a digest context to compute data digest according to the given algorithm.

Available digest algorithms are:

• "SHA1"

• "SHA224"

• "SHA256"

• "SHA384"

• "SHA512"

• "MD5"

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

security.Digest.CreateDigestString
Creates a SHA1 digest from the given string.

Syntax

security.Digest.CreateDigestString(
 password STRING,
 randBase64 STRING)
 RETURNING result STRING

1. password is the password to be digested.
2. randBase64 is a random string in Base64.
3. result is a base64 encoded string.

Usage

Computes the SHA1 digest from a password value and an optional randBase64 random Base64 form
string, and returns it into a string encoded in Base64 form.

The random value must be a valid Base64 String. You typically generate this value with the
security.RandomGenerator.CreateRandomString() method.

Library reference | 2295

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

Example

DEFINE password, digest STRING
...
LET digest =
 security.Digest.CreateDigestString(
 password,
 security.RandomGenerator.CreateRandomString(16))

security.Digest.DoBase64Digest
Creates a digest of the buffered data and returns the result in base64 format.

Syntax

security.Digest.DoBase64Digest()
 RETURNING b64Digest STRING

1. b64Digest is the digest in base64

Usage

Processes the digest on all data previously added to the context and encodes it in base64.

After that call, the internal buffer is cleaned and ready to be populated again with new data to be digested.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

security.Digest.DoHexBinaryDigest
Creates a digest of the buffered data and returns the result in hexadecimal format.

Syntax

security.Digest.DoHexBinaryDigest()
 RETURNING hexBinDigest STRING

1. hexBinDigest is the hexadecimal digest.

Usage

Processes the digest on all data previously added to the context and returns it in hexadecimal.

After that call, the internal buffer is cleaned and ready to be populated again with new data to be digested.

In case of error, the method throws an exception and sets the STATUS variable. Depending on the error,
a human-readable description of the problem is available in the SQLCA.SQLERRM register. See Error
handling in GWS calls (STATUS) on page 2546.

Example
Computing a hash value of a string.

Program example ComputeHash.4gl :

IMPORT SECURITY

MAIN

Library reference | 2296

 DEFINE result STRING

 IF num_args() != 2 THEN
 DISPLAY "Usage: ComputeHash <string> <hashcode>"
 DISPLAY " string: the string to digest"
 DISPLAY " hashcode: SHA1, SHA512, SHA384, SHA256, SHA224, MD5"
 ELSE
 LET result = ComputeHash(arg_val(1), arg_val(2))
 IF result IS NOT NULL THEN
 DISPLAY "Hash value is :",result
 ELSE
 DISPLAY "Error"
 END IF
 END IF

END MAIN

FUNCTION ComputeHash(toDigest, algo)

 DEFINE toDigest, algo, result STRING
 DEFINE dgst security.Digest

 TRY
 LET dgst = security.Digest.CreateDigest(algo)
 CALL dgst.AddStringData(toDigest)
 LET result = dgst.DoBase64Digest()
 CATCH
 DISPLAY "ERROR : ", STATUS, " - ", SQLCA.SQLERRM
 EXIT PROGRAM(-1)
 END TRY

 RETURN result
END FUNCTION

Example execution:

$ fglrun ComputeHash "Hello World" SHA1

Hash value is :Ck1VqNd45QIvq3AZd8XYQLvEhtA=

File extensions
This page describes the file extensions used by the language.

Table 553: File extensions

Extension Type Description

.4gl Text Source module

.42m Binary Compiler p-code module

.per Text Form specification file

.42f XML Compiled form specification file

.42s Binary Localized strings compiled file

.4st XML Presentation styles resource file

.4sm XML Startmenu resource file

Library reference | 2297

Extension Type Description

.4tm XML Topmenu resource file

.4tb XML Toolbar resource file

.4ad XML Action defaults resource file

.sch Text Database schema file - column types

.42d Binary (development only) Database schema file index (for .sch)

.str Text Localized strings source file

.val Text Database schema file - form field attributes

.att Text Database schema file - video attributes

.42r Binary Compiled program

.42x Binary Compiled p-code library

.msg Text Message definition source file

.iem Binary Compiled message definition file

Genero BDL errors
System error messages sorted by error number.

Table 554: Genero system error messages

Number Description

-201 A syntax error has occurred.

This general SQL error message indicates mistakes in the syntax of an SQL statement.

Look for missing or extra punctuation; keywords misspelled, misused, or out of
sequence, or a reserved word used as an identifier.

-204 An illegal floating point number has been found in the
statement.

A numeric constant that is punctuated like a floating-point number (with a decimal point
and/or an exponent starting with e) is unacceptable. Possibly the exponent is larger
than can be processed.

-206 The specified table table-name is not in the database.

The database server cannot find a table or view specified in the statement. The table or
view might have been renamed or dropped from the database.

-213 Statement interrupted by user.

The database server received an interrupt signal from the user. The statement ended
early. A program should roll back the current transaction and terminate gracefully.

-217 Column column-name not found in any table in the query.

The column specified does not exist in the database tables used in this SQL statement.

Library reference | 2298

Number Description

-235 Character column size is too big.

The SQL statement specifies a width for a character data type that is greater than
65,534 bytes.

If you need a column of this size, use the TEXT data type, which allows unlimited
lengths. Otherwise, inspect the statement for typographical errors.

-236 Number of columns in INSERT does not match number of VALUES.

Each column that is named or implied in an INSERT statement must have a separate
value expression. If the statement does not list specific columns, review the definition
of the table for the number of columns and their data types. Also check that the list of
expressions in the VALUES clause has no extra or missing comma that might result
in an incorrect number of values. Be especially careful of long character strings and
expressions with parentheses.

-239 Could not insert new row - duplicate value in a UNIQUE INDEX
column.

The row that is being inserted (or being updated to have a new primary key) contains
a duplicate value of some row that already exists, in a column or columns that are
constrained to have unique values.

-244 Could not do a physical-order read to fetch next row.

The database server cannot read the data block for this SQL client program. The
database server returns this error when a record is locked by another process, and the
lock timeout defined by the current program has expired.

Consider using the SET LOCK MODE TO WAIT instruction to define a lock timeout.
By default, with most databases, this timeout is zero and error -244 is returned
immediately when a lock conflict occurs. If all programs do short transactions (holding
locks for a short period of time), it is usually safe to define a lock timeout of 5 to 10
seconds to avoid this SQL error.

-250 Cannot read record from file for update.

The database server cannot get a row of a table prior to update.

-251 ORDER BY or GROUP BY column number is too big.

The ORDER BY or GROUP BY clause uses column-sequence numbers, and at least
one of them is larger than the count of columns in the select list.

-253 Cannot read record from file for update.

The database server cannot get a row of a table prior to update.

-254 Too many or too few host variables given.

The number of host variables that you named in the INTO clause of this statement
does not match the number of columns that you referenced in the SQL statement.

-255 Not in transaction.

Library reference | 2299

Number Description

The database server cannot execute this COMMIT WORK or ROLLBACK WORK
statement because no BEGIN WORK was executed to start a transaction. Because no
transaction was started, you cannot end one.

-256 Transaction not available.

The database server does not support transactions.

-257 System limit on maximum number of statements exceeded, maximum
is count.

The database server can handle only a fixed number of prepared SQL statements
for each user. This limit includes statements that were prepared with the PREPARE
statement and cursors that were declared with the DECLARE statement.

-259 Cursor not open.

The current statement refers to a cursor that has not been opened. Review the logic of
the program to see how it failed to execute the OPEN statement before it reached this
point.

-263 Could not lock row for UPDATE.

This statement, probably a FETCH statement that names a cursor declared FOR
UPDATE, failed because the row it should have fetched could not be locked.

-266 There is no current row for UPDATE/DELETE cursor.

The current statement uses the WHERE CURRENT OF cursor-name clause, but that
cursor has not yet been associated with a current row. Either no FETCH statement has
been executed since it was opened, or the most recent fetch resulted in an error so
that no row was returned. Revise the logic of the program so that it always successfully
fetches a row before it executes this statement.

-268 Unique constraint constraint-name violated.

The current statement uses the WHERE CURRENT OF cursor-name clause, but that
cursor has not yet been associated with a current row. Either no FETCH statement has
been executed since it was opened, or the most recent fetch resulted in an error so
that no row was returned. Revise the logic of the program so that it always successfully
fetches a row before it executes this statement.

-272 No SELECT permission for table/column.

The person who created this table has not granted SELECT privilege to your account
name or to the public for the table or the column. The owner of the table or the DBA
must grant this privilege before you can select data from the table or column.

-273 No UPDATE permission for table/column.

The person who created this table has not granted UPDATE privilege to your account
name or to the public for the table or the column. The owner of the table or the DBA
must grant this privilege before you can update a row in this table or update the
column.

-274 No DELETE permission for table.

Library reference | 2300

Number Description

The person who created this table has not granted DELETE privilege to your account
name or to the public. The owner of the table or the DBA must grant this privilege
before you can delete a row in this table.

-275 The Insert privilege is required for this operation.

The Insert access privilege on this table or column is not currently held by your account
name, nor by the PUBLIC group, nor by your current role. The owner of the table or the
DBA must grant the Insert privilege before you can insert a row into this table.

-280 A quoted string exceeds 256 bytes.

A character literal in this statement exceeds the maximum length. Check the
punctuation and length of all quoted strings in the statement. Possibly two missing
quotes make a long string out of two short ones. You must revise the statement to use
a shorter character string.

-282 Found a quote for which there is no matching quote.

Inspect the current statement, examining the punctuation of all quoted strings.

-284 A subquery has returned not exactly one row.

A subquery that is used in an expression in the place of a literal value must return only
a single row and a single column. In this statement, a subquery has returned more
than one row, and the database server cannot choose which returned value to use in
the expression. You can ensure that a subquery will always return a single row. Use a
WHERE clause that tests for equality on a column that has a unique index. Or select
only an aggregate function. Review the subqueries, and check that they can return only
a single row.

This error can also occur when you use a singleton SELECT statement to retrieve
multiple rows. You must use the DECLARE/OPEN/FETCH series of statements or the
EXECUTE INTO statement to retrieve multiple rows.

-285 Invalid cursor received by sqlexec.

The cursor that this statement uses has not been properly declared or prepared, or
the FREE statement has released it, or an automatic re-prepare has been attempted
while opening the cursor but that operation failed, leaving the cursor unavailable.
Review the program logic to ensure that the cursor has been declared. If it has, and
if the DECLARE statement refers to a statement identifier, check that the referenced
statement has been prepared.

-290 Cursor not declared with FOR UPDATE clause.

This statement attempts to update with a cursor that was not declared for update.
To use a cursor with the UPDATE or DELETE statements, you must declare it FOR
UPDATE. Review the program logic to make sure that this statement uses the intended
cursor.

-294 The column column-name must be in the GROUP BY list.

In a grouping SELECT, you must list every nonaggregate column in the GROUP BY
clause to ensure that a well-defined value exists for each selected column in each
grouped row. A column contains either a single aggregate value or a value unique to
that group. If a selected column were neither an aggregate nor in the list, two or more
values for that column might possibly exist in some group, and the database server

Library reference | 2301

Number Description

could not choose which value to display. Revise the query to include either the column
name or its positional number in the clause.

-307 Illegal subscript.

The substring values (two numbers in square brackets) of a character variable are
incorrect. The first is less than zero or greater than the length of the column, or the
second is less than the first.

Review all uses of square brackets in the statement to find the error. Possibly the size
of a column has been altered and makes a substring fail that used to work.

-309 ORDER BY column or expression must be in SELECT list.

An expression or column name is in the ORDER BY clause of this SELECT statement,
but the expression or column name is not in the select list (the list of values that
follows the word SELECT). This action is not supported when a UNIQUE or DISTINCT
operator is being used in a query.

-316 Index index-name already exists in database.

This statement tries to create an index with the name shown, but an index of that name
already exists. Only one index of a given name can exist in a single database.

-324 Ambiguous column column-name.

The column name appears in more than one of the tables that are listed in the FROM
clause of this query. The database server needs to know which columns to use.
Revise the statement so that this name is prefixed by the name of its table (table-
name.column) wherever it appears in the query.

-329 Database not found or no system permission.

The database you tried to connect to is not known by the db server.

Check database client configuration settings and make sure that there is no spelling
error in the name of the database

-330 Cannot create or rename the database.

Possibly you tried to create a database with the same name as one that already exists
or rename a database to a name that already exists; if so, choose a different name.

-349 Database not selected yet.

The SQL statement cannot be executed because no current database exists. You
must issue a DATABASE or CONNECT TO instruction before executing other SQL
statements.

-350 Index already exists on the column (or on the set of columns).

This CREATE INDEX statement cannot be executed because an index on the same
column or combination of columns already exists. For a given collation order, at
most two indexes can exist on any combination of columns, one ascending and one
descending.

-354 Incorrect database or cursor name format.

Library reference | 2302

Number Description

This statement contains the name of a database or a cursor in some invalid format.
If the statement is part of a program, the name might have been passed in a host
variable.

-360 Cannot modify a table or view that is also used in subquery.

The UPDATE, INSERT, or DELETE statement uses data taken from the same table
in a subquery. Because of the danger of entering an endless loop, this action is not
allowed, except in the case of an uncorrelated subquery in the WHERE clause of the
DELETE or UPDATE statement.

-363 CURSOR not on SELECT statement.

The cursor named in this statement (probably an OPEN) has been associated with a
prepared statement that is not a SELECT statement.

Review the program logic, especially the DECLARE for the cursor, the statement id
specified in it, and the PREPARE that set up that statement. If you intended to use a
cursor with an INSERT statement, you can only do that when the INSERT statement
is written as part of the DECLARE statement. If you intended to execute an SQL
statement, do that directly with the EXECUTE statement, not indirectly through a
cursor.

-366 The scale exceeds the maximum precision specified.

A problem exists with the precision or scale of a DECIMAL or a MONEY data
type usage, for example in a DEFINE statement. The first should be declared as
DECIMAL(p) or DECIMAL(p,s) where p, the precision (total number of digits) is
between 1 and 32, and s, the scale (number of digits to the right of the decimal point)
is greater or equal to zero and not greater than p. The MONEY type follows the same
rules.

Review the DECIMAL or MONEY type definition, and make sure that the precision is in
the range [1,32] and that the scale is in the range [0,precision].

-371 Cannot create unique index on column with duplicate data.

This CREATE UNIQUE INDEX statement cannot be completed because the column (or
columns) contains one or more duplicate rows.

-387 No connect permission.

You cannot access the database that this statement requests because you have
not been granted CONNECT privilege to it. Contact a person who has Database
Administrator privilege to that database and ask to be granted CONNECT privileges to
it.

-388 No resource permission.

If you issued a CREATE TABLE, CREATE INDEX, or CREATE PROCEDURE
statement, you cannot execute this statement because your account has not been
granted the RESOURCE privilege for this database. You need the RESOURCE
privilege to create permanent tables, indexes on permanent tables, and procedures.

-389 No DBA permission.

Library reference | 2303

Number Description

This statement cannot be executed because you have not been granted DBA privilege
for this database. Contact a person who has DBA privilege for the database and ask to
be granted DBA privilege (or simply ask to have this statement executed for you).

-391 Cannot insert a null into column column-name.

This statement tries to put a null value in the noted column. However, that column has
been defined as NOT NULL. Roll back the current transaction. If this is a program,
review the definition of the table, and change the program logic to not use null values
for columns that cannot accept them.

-400 Fetch attempted on unopen cursor.

This FETCH statement names a cursor that has never been opened or has been
closed. Review the program logic, and check that it will open the cursor before this
point and not accidentally close it. Unless a cursor is declared WITH HOLD, it is
automatically closed by a COMMIT WORK or ROLLBACK WORK statement.

-404 The cursor or statement is not available.

You used a statement that names a cursor that is was destroyed. Review the program
logic and check that the cursor specified is declared and opened, but not freed, prior to
reaching this statement.

-410 Prepare statement failed or was not executed.

This EXECUTE statement refers to a statement id that has not been prepared. Either
no PREPARE statement was done, or one was done but returned an error code.
Review the program logic to ensure that a statement is prepared and the PREPARE
return code is checked. A negative error code from PREPARE usually reflects an error
in the statement being prepared.

-412 Command pointer is NULL.

This statement (probably an EXECUTE or DECLARE) refers to a dynamic SQL
statement that has never been prepared or that has been freed. Review the program
logic to ensure that the statement has been prepared, the PREPARE did not return an
error code, and the FREE statement has not been used to release the statement before
this point.

-413 Insert attempted on unopen cursor.

This INSERT statement names a cursor that has never been opened or that has
been closed. Review the program logic, and check that it will open the cursor before
this point and not accidentally close it. An insert cursor is automatically closed by a
COMMIT WORK or ROLLBACK WORK statement.

-422 Flush attempted on unopen cursor.

This FLUSH statement names a cursor that has never been opened or has been
closed. Review the program logic to ensure that it will open the cursor before this point
and not accidentally close it. An insert cursor is automatically closed by a COMMIT
WORK or ROLLBACK WORK.

-450 Illegal ESQL locator, or uninitialized blob variable in BDL.

An SQL statement is using a TEXT or BYTE variable that was not initialized with
LOCATE IN FILE or MEMORY.

Library reference | 2304

Number Description

LOCATE the TEXT or BYTE variable before using it in SQL statements.

-458 Long transaction aborted.

The database server ran out of log space in which to record this transaction. A
transaction that is not fully recorded cannot be rolled back. To preserve database
integrity, the operating system ended the transaction and rolled it back automatically.
All changes made since the start of the transaction have been removed. Terminate the
application, and replan it so that it modifies fewer rows per transaction. Alternatively,
contact the database server administrator to discuss increasing the number or the size
of the logical logs. Be prepared to talk about the number of rows being updated or
inserted and the size of each row.

-481 Invalid statement name or statement was not prepared.

The statement has not been prepared, or the format of the statement name is not valid.
A valid statement name does not exceed the maximum length, begins with a letter
or underscore, does not contain any blanks or nonalphanumeric characters except
underscores.

-482 Invalid operation on a non-SCROLL cursor.

You cannot issue a FETCH PRIOR, FETCH FIRST, FETCH LAST, FETCH CURRENT,
FETCH RELATIVE n, or FETCH ABSOLUTE n statement with a non-scroll cursor. To
do so, you must first declare the cursor as a scroll cursor.

-507 Cursor cursor-name not found.

The cursor that is named in the WHERE CURRENT OF clause in this UPDATE or
DELETE statement does not exist. Review the spelling of the name. If it is as you
intended, check the DECLARE statement to ensure that it has been executed. Also
make sure that the cursor has not been freed with the FREE statement or during a
failed automatic re-prepare attempt.

-513 Statement not available with this database server.

The SQL statement used by the program is not valid for the target database server.

Review the code, the SQL instruction cannot be used.

-517 The total size of the index is too large or too many parts in
index.

All database servers have limits on the number of columns that can be included in an
index and on the total number of bytes in a key (the sum of the widths of the columns).
This CREATE INDEX statement would exceed that limit for this database server.

-522 Table table-name not selected in query.

The table name used in an expression (for example, in the WHERE clause) has not
been listed in the clause definining the tables to be used in the query (typically the
FROM clause in SELECT statements).

-526 Updates are not allowed on a scroll cursor.

For a DECLARE statement, the clause FOR UPDATE is not allowed in conjunction with
the SCROLL keyword.

Library reference | 2305

Number Description

-530 Check constraint constraint-name failed.

The check constraint placed on the table column was violated.

-535 Already in transaction.

This BEGIN WORK statement is redundant; a transaction is already in progress. If
this is a program, review its logic to make sure it has not accidentally failed to end the
previous transaction.

-551 The constraint contains too many columns.

The total number of columns listed in a UNIQUE, PRIMARY KEY, or FOREIGN KEY
clause is limited. The limit depends on the database server in use.

-674 Routine routine-name cannot be resolved.

You called a routine that does not exist in the database, you do not have permission to
execute the routine, or you called the routine with too few or too many arguments.

-681 Column specified more than once in the INSERT list.

The error occurs if the user specifies a column name more than once in the INSERT
column list.

-691 Missing key in referenced table for referential constraint
constraint-name.

A referential constraint has been violated. This condition usually occurs when you are
trying to insert a value into or update the value of a column that is part of a referential
constraint. The value you are trying to enter does not exist in the referenced (parent-
key) column.

-743 Object object_name already exists in database.

You are trying to define an object that already exists in the database.

-768 Internal error in routine routine-name.

If this internal error recurs, note all circumstances and contact your technical support.

-805 Cannot open file for load.

The input file that is specified in this LOAD statement could not be opened.

Check the statement. Possibly a more complete pathname is needed, the file does not
exist, or your account does not have read permission for the file or a directory in which
it resides.

-806 Cannot open file for unload.

The output file that is specified in this UNLOAD statement could not be opened.

Check the statement. Possibly a more complete pathname is needed; the file exists,
but your account does not have write permission for it; or the disk is full.

-809 SQL Syntax error has occurred.

The INSERT statement in this LOAD/UNLOAD statement has invalid syntax.

Library reference | 2306

Number Description

Review it for punctuation and use of keywords.

-846 Number of values in load file is not equal to number of columns.

The LOAD processor counts the delimiters in the first line of the file to determine the
number of values in the load file. One delimiter must exist for each column in the table,
or for each column in the list of columns if one is specified.

Check that you specified the file that you intended and that it uses the correct delimiter
character. An empty line in the text can also cause this error. If the LOAD statement
does not specify a delimiter, verify that the default delimiter matches the delimiter that
is used in the file. If you are in doubt about the default delimiter, specify the delimiter in
the LOAD statement.

-930 Cannot connect to database server servername.

The application is trying to access the database server but failed.

-942 Transaction commit failed - transaction will be rolled back.

This error can occur at transaction-commit time if the database server could not commit
the transaction.

-1102 Field name not found in form.

A field name listed in an INPUT, INPUT ARRAY, CONSTRUCT, SCROLL or DISPLAY
statement does not appear in the form specification of the screen form that is currently
displayed.

Review the program logic to ensure that the intended window is current, the intended
form is displayed in it, and all the field names in the statement are spelled correctly.

-1107 Field subscript out of bounds.

The subscript of a screen array in an INPUT, DISPLAY, or CONSTRUCT statement is
either less than 1 or greater than the number of fields in the array.

Review the program source in conjunction with the form specification to see where the
error lies.

-1108 Record name not in form.

The screen record that is named in an INPUT ARRAY or DISPLAY ARRAY statement
does not appear in the screen form that is now displayed.

Review the program source in conjunction with the form specification to see if the
screen record names match.

-1109 List and record field counts differ.

The number of program variables does not agree with the number of screen fields in a
CONSTRUCT, INPUT, INPUT ARRAY, DISPLAY, or DISPLAY ARRAY statement.

Review the statement in conjunction with the form specification to see where the error
lies. Common problems include a change in the definition of a screen record that is not
reflected in every statement that uses the record, and a change in a program record
that is not reflected in the form design.

-1110 Form file (file-name) not found.

Library reference | 2307

Number Description

The form file that is specified in an OPEN FORM or OPEN WINDOW WITH FORM
statement was not found.

Inspect the form name used in the statement. It should not include the form file suffix.
If the form is not in the current directory, verify that FGLRESOURCEPATH / DBPATH
environment variables contain the path to the form file.

-1112 A form is incompatible with the current BDL version. Rebuild
your form.

The form file that is specified in an OPEN FORM statement is not acceptable. Possibly
it was corrupted in some way, or it was compiled with a version of the Form Compiler
that is not compatible with the version of the BDL compiler that compiled this program.

Use a current version of the Form Compiler to recompile the form specification.

-1114 No form has been displayed.

The current statement requires the use of a screen form. For example, DISPLAY...TO
or an INPUT statement must use the fields of a form. However, the DISPLAY FORM
statement has not been executed since the current window was opened.

Review the program logic to ensure that it opens and displays a form before it tries to
use a form.

-1119 NEXT FIELD name not found in form.

This statement (INPUT or INPUT ARRAY) contains a NEXT FIELD clause that names
a field that is not defined in the form.

Review the form and program logic. Perhaps the form has been changed, but the
program has not.

-1129 Field (field-name) in BEFORE/AFTER clause not found in form.

This statement includes a BEFORE FIELD clause or an AFTER FIELD clause that
names a field that is not defined in the form that is currently displayed.

Review the program to ensure that the intended form was displayed, and review this
statement against the form specification to ensure that existing fields are named.

-1133 The NEXT OPTION name is not in the menu.

This MENU statement contains a NEXT OPTION clause that names a menu-option that
is not defined in the statement.

The string that follows NEXT OPTION must be identical to one that follows a
COMMAND clause in the same MENU statement. Review the statement to ensure that
these clauses agree with each other.

-1140 NEXT OPTION is a hidden option.

The option that is named in this NEXT OPTION statement has previously been hidden
with the HIDE OPTION statement. Because it is not visible to the user, it cannot be
highlighted as the next choice.

Use the SHOW OPTION statement to unhide the menu option.

-1141 Cannot close window with active INPUT, DISPLAY ARRAY, or MENU
statement.

Library reference | 2308

Number Description

This CLOSE WINDOW statement cannot be executed because an input operation is
still active in that window. The CLOSE WINDOW statement must have been contained
in, or called from within, the input statement itself.

Review the program logic, and revise it so that the statement completes before the
window is closed.

-1143 Window is already open.

This OPEN WINDOW statement names a window that is already open.

Review the program logic, and see whether it should contain a CLOSE WINDOW
statement, or whether it should simply use a CURRENT WINDOW statement to bring
the open window to the top.

-1146 PROMPT message is too long to fit in the window.

Although BDL truncates the output of MESSAGE and COMMENT to fit the window
dimensions, it does not do so for PROMPT and the user's response.

Reduce the length of the prompt string, or make the window larger. You could display
most of the prompting text with DISPLAY and then prompt with a single space or colon.

-1150 Window is too small to display this menu.

The window must be at least two rows tall, and it must be wide enough to display the
menu title, the longest option name, two sets of three-dot ellipses, and six spaces.
Revise the program to make the window larger or to give the menu a shorter name and
shorter options.

Review the OPEN WINDOW statement for the current window in conjunction with this
MENU statement.

-1168 Command does not appear in the menu.

The SHOW OPTION, HIDE OPTION, or NEXT OPTION statement cannot refer to an
option (command) that does not exist.

Check the spelling of the name of the option.

-1170 The type of your terminal is unknown to the system.

Check the setting of your TERM environment variable and the setting of your
TERMCAP or TERMINFO environment variable.

Check with your system administrator if you need help with this action.

-1202 An attempt was made to divide by zero.

Zero cannot be a divisor.

Check that the divisor is not zero. In some cases, this error arises because the divisor
is a character value that does not convert properly to numeric.

-1204 Invalid year in date.

The year in a DATE value or literal is invalid. For example, the number 0000 is not
acceptable as the year.

Check the value of year.

Library reference | 2309

Number Description

-1205 Invalid month in date.

The month in a DATE value or literal must be a one- or two-digit number from 1 to 12.

Check the value of month.

-1206 Invalid day in date.

The day number in a DATE value or literal must a one- or two-digit number from 1 to 28
(or 29 in a leap year), 30, or 31, depending on the month that accompanies it.

Check the value of day.

-1210 Date could not be converted to month/day/year format.

The DATE type is compatible with the INTEGER type, but not all integer values are
valid dates. The range of valid integer values for dates is from -693,594 to +2,958,464.
Numbers that are outside this range have no representation as dates.

Check the value of the number used to assign the date variable.

-1212 Date conversion format must contain a month, day, and year
component.

When a date value is converted between internal binary format and display or entry
format, a pattern directs the conversion. When conversion is done automatically, the
pattern comes from the environment variable DBDATE. When it is done with an explicit
call to the rfmtdate(), rdefmtdate(), or USING functions, a pattern string is passed as
a parameter. In any case, the pattern string (the format of the message) must include
letters that show the location of the three parts of the date: 2 or 3 letters d; 2 or 3 letters
m; and either 2 or 4 letters y.

Check the pattern string and the value of DBDATE.

-1213 A character to numeric conversion process failed.

A character value is being converted to numeric form for storage in a numeric column
or variable. However, the character string cannot be interpreted as a number.

Check the character string. It must not contain characters other than white space,
digits, a sign, a decimal, or the letter e. Verify the parts are in the right order. If you
are using NLS, the decimal character or thousands separator might be wrong for your
locale.

-1214 Value too large to fit in a SMALLINT.

The SMALLINT data type can accept numbers with a value range from -32,767 to
+32,767.

To store numbers that are outside this range, redefine the column or variable to use
INTEGER or DECIMAL type.

-1215 Value too large to fit in an INTEGER.

The INTEGER data type can accept numbers with a value range from -2,147,483,647
to +2,147,483,647.

Check the other data types available, such as DECIMAL.

-1218 String to date conversion error.

Library reference | 2310

Number Description

The data value does not properly represent a date: either it has non-digits where
digits are expected, an unexpected delimiter, or numbers that are too large or are
inconsistent.

Check the value being converted.

-1222 Value will not fit in a SMALLFLOAT.

A statement tries to assign a value that exceeds the limits of the SMALLFLOAT data
type.

Review the code and consider using a FLOAT or DECIMAL type.

-1223 Value will not fit in a FLOAT.

A statement tries to assign a value that exceeds the limits of the FLOAT data type.

Review the code and consider using a DECIMAL type.

-1226 Decimal or money value exceeds maximum precision.

The data value has more digits to the left of the decimal point than the declaration of
the variable allows.

Revise the program to define the variable with an appropriate precision.

-1260 It is not possible to convert between the specified types.

Data conversion does not make sense, or is not supported.

Possibly you referenced the wrong variable or column. Check that you have specified
the data types that you intended and that literal representations of data values are
correctly formatted.

-1261 Too many digits in the first field of datetime or interval.

The first field of a DATETIME literal must contain 1 or 2 digits (if it is not a YEAR) or
else 2 or 4 digits (if it is a YEAR). The first field of an INTERVAL literal represents a
count of units and can have up to 9 digits, depending on the precision that is specified
in its qualifier.

Review the DATETIME and INTERVAL literals in this statement, and correct them.

-1262 Non-numeric character in datetime or interval.

A DATETIME or INTERVAL literal can contain only decimal digits and the allowed
delimiters: the hyphen between year, month, and day numbers; the space between day
and hour; the colon between hour, minute, and second; and the decimal point between
second and fraction. Any other characters, or these characters in the wrong order,
produce an error.

Check the value of the literal.

-1263 A field in a datetime or interval is out of range.

At least one of the fields in a datetime or interval is incorrect.

Inspect the DATE, DATETIME, and INTERVAL literals in this statement. In a DATE or
DATETIME literal, the year might be zero, the month might be other than 1 to 12, or the
day might be other than 1 to 31 or inappropriate for the month. Also in a DATETIME

Library reference | 2311

Number Description

literal, the hour might be other than 0 to 23, the minute or second might be other than 0
to 59, or the fraction might have too many digits for the specified precision.

-1264 Extra characters at the end of a datetime or interval.

Only spaces can follow a DATETIME or INTERVAL literal.

Inspect this statement for missing or incorrect punctuation.

-1265 Overflow occurred on a datetime or interval operation.

An arithmetic operation involving a DATETIME and/or INTERVAL produced a result
that cannot fit in the target variable.

Check if the data type can hold the result of the operation. For example, extend the
INTERVAL precision by using YEAR(9) or DAY(9).

-1266 Intervals or datetimes are incompatible for the operation.

An arithmetic operation mixes DATETIME and/or INTERVAL values that do not match.

Check the data types of the variable used in the operation.

-1267 The result of a datetime computation is out of range.

In this statement, a DATETIME computation produced a value that cannot be stored.
This situation can occur, for example, if a large interval is added to a DATETIME value.
This error can also occur if the resultant date does not exist, such as Feb 29, 1999.

Review the expressions in the statement and see if you can change the sequence of
operations to avoid the overflow.

-1268 Invalid datetime or interval qualifier.

This statement contains a DATETIME or INTERVAL qualifier that is not acceptable.
These qualifiers can contain only the words YEAR, MONTH, DAY, HOUR, MINUTE,
SECOND, FRACTION, and TO. A number from 1 to 5 in parentheses can follow
FRACTION.

Inspect the statement for missing punctuation and misspelled words. A common error
is adding an s, as in MINUTES.

-1279 Value exceeds string column length.

You attempted to insert into a CHAR, NCHAR, VARCHAR, NVARCHAR or
LVARCHAR column using a string host variable, but the string is too long.

-1284 Value will not fit in a BIGINT or INT8.

The BIGINT data type can accept numbers with a value range from
-9223372036854775807 to +9223372036854775807.

To store numbers that are outside this range, redefine the column or variable to use the
DECIMAL type.

-1301 This value is not among the valid possibilities.

A list or range of acceptable values has been established for this column in the form-
specification file.

You must enter a value within the acceptable range.

Library reference | 2312

Number Description

-1302 The two entries were not the same -- please try again.

To guard against typographical errors, this field has been designated VERIFY in the
form-specification file. You must enter the value in this field twice, identically.

Carefully reenter the data. Alternatively, you can cancel the form entry with the Interrupt
key.

-1303 You cannot use this editing feature because a picture exists.

This field is defined in the form-specification file with a PICTURE attribute to specify its
format.

You cannot use certain editing keys (for example, CTRL-A, CTRL-D, and CTRL-X)
while you are editing such a field. Use only printable characters and backspace to enter
the value.

-1304 Error in field.

You entered a value in this field that cannot be stored in the program variable that is
meant to receive it.

Possibly you entered a decimal number when the application provided only an integer
variable, or you entered a character string that is longer than the application expected.

-1305 This field requires an entered value.

The cursor is in a form field that has been designated REQUIRED.

You must enter some value before the cursor can move to another field. To enter a null
value, type any printable character and then backspace. Alternatively, you can cancel
the form entry with the Interrupt key.

-1306 Please type again for verification.

The cursor is in a form field that has been designated VERIFY. This procedure helps to
ensure that no typographical errors occur during data entry.

You must enter the value twice, identically, before the cursor can move to another field.
Alternatively, you can cancel the form entry with the Interrupt key.

-1307 Cannot insert another row - the input array is full.

You are entering data into an array of records that is represented in the program by a
static array of program variables. That array is now full; no place is available to store
another record.

Press the ACCEPT key to process the records that you have entered.

-1308 Cannot delete row - it has no data.

You try to delete a row in an empty row. Nothing was deleted.

-1309 There are no more rows in the direction you are going.

You are attempting to scroll an array of records farther than it can go, either scrolling
up at the top or scrolling down at the bottom of the array. Further attempts will have the
same result.

-1312 FORMS statement error number error-num.

Library reference | 2313

Number Description

An error occurred in the form at runtime.

Edit your source file: go to the specified line, correct the error, and recompile the file.

-1313 SQL statement error number error-num.

The current SQL statement returned this error code number.

-1314 Program stopped at 'filename', line number line-number.

At runtime an error occurred in the specified file at the specified line. No .err file is
generated.

Edit your source file, go to the specified line, correct the error, and recompile the file.

-1318 A parameter count mismatch has occurred between the calling
function and the called function.

Either too many or too few parameters were given in the call to the function.

The call is probably in a different source module from the called functions. Inspect the
definition of the function, and check all places where it is called to ensure that they use
the number of parameters that it declares.

-1320 A function has not returned the correct number of values
expected.

A function that returns several variables has not returned the correct number of
parameters.

Check your source code and recompile.

-1321 A validation error has occurred as a result of the VALIDATE
command.

The VALIDATE LIKE statement tests the current value of variables against rules that
are stored in the syscolval table. It has detected a mismatch.

Ordinarily, the program would use the WHENEVER statement to trap this error and
display or correct the erroneous values. Inspect the VALIDATE statement to see which
variables were being tested and find out why they were wrong.

-1322 A report output file cannot be opened: description

The file that the REPORT TO statement specifies cannot be opened. See the
description for more details.

Check that your account has permission to write such a file, that the disk is not full, and
that you have not exceeded some limit on the number of open files.

-1323 A report output pipe cannot be opened.

The pipe that the REPORT TO PIPE statement specifies could not be started.

Check that all programs that are named in it exist and are accessible from your
execution path. Also look for operating-system messages that might give more specific
errors.

-1324 A report output file cannot be written to.

Library reference | 2314

Number Description

The file that the REPORT TO statement specifies was opened, but an error occurred
while writing to it.

Possibly the disk is full. Look for operating- system messages that might give more
information.

-1326 An array variable has been referenced outside of its specified
dimensions.

The subscript expression for an array has produced a number that is either less than
one or greater than the number of elements in the array.

Review the program logic that leads up to this statement to determine how the error
was made.

-1327 An insert statement could not be prepared for inserting rows
into a temporary table used for a report.

Within the report function, BDL generated an SQL statement to save rows into a
temporary table. The dynamic preparation of the statement (see the reference material
on the PREPARE statement) produced an error.

Probably the database tables are not defined now, at execution time, as they were
when the program was compiled. Either the database has been changed, or the
program has selected a different database than the one that was current during
compilation. Possibly the database administrator has revoked SELECT privilege from
you for one or more of the tables that the report uses. Look for other error messages
that might give more details.

-1328 A temporary table needed for a report could not be created in
the selected database.

Within the report definition, BDL generated an SQL statement to save rows into a
temporary table, but the temporary table could not be created.

You must have permission to create tables in the selected database, and there must
be sufficient disk space left in the database. You may already have a table in your
current database with the same name as the temporary table that the report definition
is attempting to create as a sorting table; the sorting table is named "t_ reportname
". Another possible cause with some database servers is that you have exceeded an
operating-system limit on open files.

-1329 A database index could not be created for a temporary database
table needed for a report.

Within the report definition, BDL generated SQL statements to save rows into a
temporary table. However, an index could not be created on the temporary table.

Probably an index with the same name already exists in the database. (The sorting
index is named "i_reportname"; for example, "i_order_rpt".) Possibly no disk space is
available in the file system or dbspace. Another possibility with some database servers
is that you have exceeded an operating-system limit on open files.

-1330 A row could not be inserted into a temporary report table.

Within the report definition, BDL generated SQL statements that would save rows into a
temporary table. However, an error occurred while rows were being inserted.

Library reference | 2315

Number Description

Probably no disk space is left in the database. Look for other error messages that might
give more details.

-1331 A row could not be fetched from a temporary report table.

Within the report definition, BDL generated SQL statements to select rows from a
temporary table. The table was built successfully but now an error occurred while rows
were being retrieved from it.

Almost the only possible cause is a hardware failure or an error in the database server.
Check for operating-system messages that might give more details.

-1332 A character variable has referenced subscripts that are out of
range.

In the current statement, a variable that is used in taking a substring of a character
value contains a number less than one or a number greater than the size of the
variable, or the first substring expression is larger than the second.

Review the program logic that leads up to this statement to find the cause of the error.

-1335 A report is accepting output or being finished before it has
been started.

The program executed an OUTPUT TO REPORT or FINISH REPORT statement
before it executed a START REPORT.

Review the program logic that leads up to this statement to find the cause of the error.

-1337 The variable variable-name has been redefined with a different
type or length, definition in module-name-1.4gl, redefinition in
module-name-2.4gl.

The variable that is shown is defined in the GLOBALS section of two or more modules,
but it is defined differently in some modules than in others.

Possibly modules were compiled at different times, with some change to the common
GLOBALS file between. Possibly the variable is declared as a module variable in some
module that does not include the GLOBALS file.

-1338 The function 'function-name' has not been defined in any module
in the program.

The named function is called from at least one module of the program, but it is defined
in none.

Verify that the module containing the function is a part of the program, and that the
function name is correctly spelled.

-1340 The error log has not been started.

The program called the errorlog() function without first calling the startlog() function.

Review the program logic to find out the cause of this error.

-1349 Character to numeric conversion error.

A character value is being converted to numeric form for storage in a numeric column
or variable. However, the character string cannot be interpreted as a number. It

Library reference | 2316

Number Description

contains some characters other than white space, digits, a sign, a decimal, or the letter
e, or else the parts are in the wrong order so that the number cannot be deciphered.

-1353 Use '!' to edit TEXT and BYTE fields.

This is a normal message text used outside an error context.

-1355 Cannot build temporary file.

A TEXT or BYTE variable has been located in a temporary file using the LOCATE
statement. The current statement assigns a value into that variable, so BDL attempted
to create the temporary file, but an error occurred.

Possibly no disk space is available, or your account does not have permission to
create a temporary file. Look for operating-system error messages that might give more
information.

-1359 Read error on blob file 'file-name'.

The operating system signaled an error during output to a temporary file in which a
TEXT or BYTE variable was being saved.

Possibly the disk is full, or a hardware failure occurred. For more information, look for
operating-system messages.

-1360 No PROGRAM= clause for this field.

No external program has been designated for this field using the PROGRAM attribute
in the form-specification file (For Text User Interface mode on ASCII terminals only)

-1373 The field 'field-name' is not in the list of fields in the
CONSTRUCT/INPUT statement.

The built-in function get_fldbuf() or field_touched() has been called with the field name
shown. However, input from that field was not requested in this CONSTRUCT or
INPUT statement. As a result, the function cannot return any useful value.

Review all uses of these functions, and compare them to the list of fields at the
beginning of the statement.

-1374 SQL character truncation or transaction warning.

The program set WHENEVER WARNING STOP, and a warning condition arose. If the
statement involved is a DATABASE statement, the condition is that the database that
was just opened uses a transaction log. On any other statement, the condition is that a
character value from the database had to be truncated to fit in its destination.

-1375 SQL NULL value in aggregate or mode ANSI database warning.

The program set WHENEVER WARNING STOP, and a warning condition arose. If the
statement that is involved is a DATABASE statement, the condition is that the database
that was just opened is ANSI compliant. On any other statement, the condition is that a
null value has been used in the computation of an aggregate value.

-1376 SQL, database server, or program variable mismatch warning.

The program set WHENEVER WARNING STOP, and a warning condition arose. If
the statement that is involved is a DATABASE or CREATE DATABASE statement, the
condition is that the database server opened the database. On any other statement,

Library reference | 2317

Number Description

the condition is that a SELECT statement returned more values than there were
program variables to contain them.

-1377 SQL float-to-decimal conversion warning.

The program set WHENEVER WARNING STOP, and a warning condition arose. The
condition is that in the database that was just opened, the database server will use the
DECIMAL data type for FLOAT values.

-1378 SQL non-ANSI extension warning.

A database operation was performed that is not part of ANSI SQL, although the current
database is ANSI compliant. This message is informational only.

-1396 A report PRINT FILE source file cannot be opened for reading.

The file that is named in a PRINT FILE statement cannot be opened.

Review the file name. If it is not in the current directory, you must specify the full path. If
the file exists, make sure your account has permissions to read it.

-2017 The character data value does not convert correctly to the field
type.

You have entered a character value (a quoted string) into a field that has a different
data type (for example INTEGER). However, the characters that you entered cannot be
converted to the type of the field.

Re-enter the data.

-2024 There is already a record 'record-name' specified.

A screen record is automatically defined for each table that is used in the ATTRIBUTES
section to define a field. If you define a record with the name of a table, it is seen as a
duplicate.

Check that the record-name of every screen record and screen array is unique in the
form specification.

-2028 The symbol 'symbol-name' does not represent a table prefix used
in this form.

In a SCREEN RECORD statement, each component must be introduced by the name
of the table as defined in the TABLES section or by the word FORMONLY.

Review the spelling of the indicated name against the TABLES section, and check the
punctuation of the rest of the statement.

-2029 Screen record array 'record-name' has different component sizes.

The screen record array name has component sizes which either differ from the
specified dimension of the array or differ among themselves. This error message
appears when one or more of the columns appear a different number of times.

The dimension of the screen array is written in square brackets that follow its name.
Verify that the dimensions of the screen array match the screen fields.

-2039 The attributes AUTONEXT, DEFAULT, INCLUDE, VERIFY, RIGHT and
ZEROFILL are not supported for BLOB fields.

Library reference | 2318

Number Description

Columns of the data type specified cannot be used in the ways that these attributes
imply.

Check that the table and column names are as you intended, and verify the current
definition of the table in the database that the DATABASE statement names.

-2041 The form 'form-name' cannot be opened.

The form filename cannot be opened. This is probably because it does not exist, or the
user does not have read permission.

Check the spelling of filename. Check that the form file exists in your current directory.
If it is in another directory, check that the correct pathname has been provided. On a
UNIX™ system, if these things are correct, verify that your account has read permission
on the file.

-2045 The conditional attributes of a field cannot depend on the
values of other fields.

The boolean expression in a WHERE clause of a COLOR attribute can use only the
name of that field and constants.

Revise this attribute, and recompile the form.

-2100 Field 'field-name' has validation string error, String = string.

One of the formatting or validation strings that is stored in the syscolval or syscolatt
tables is improperly coded. The string is shown as is the field to which it applies.

Update the string in the tables.

-2810 The name 'database-name' is not an existing database name.

This name, which was found in the DATABASE statement at the start of the form
specification, is not a database that can be found.

Check the spelling of the database name and the database entries in the fglprofile file.

-2820 The label name between brackets is incorrectly given or the
label is missing.

In the layout section of a form specification, the brackets should contain a simple name.
Instead, they contain spaces or an invalid name.

Check the layout section of the form for invalid form item labels.

-2830 A left square bracket has been found on this line, with no right
square bracket to match it.

Every left square bracket field delimiter must have a right square bracket delimiter on
the same line.

Review the form definition file to make sure all fields are properly marked.

-2840 The field label 'label-name' was not defined in the form.

The indicated name appears at the left of this ATTRIBUTES statement, but it does not
appear within brackets in the SCREEN section.

Review the field tags that have been defined to see why this one was omitted.

Library reference | 2319

Number Description

-2843 The column 'column-name' does not appear in the form
specification.

A name in this ATTRIBUTES statement should have been defined previously in the
form specification.

Check that all names in the statement are spelled correctly and defined properly.

-2846 The field 'field-name' is not a member of the table 'table-
name'.

Something in this statement suggests that the name shown is part of this table, but that
is not true in the current database.

Review the spelling of the two names. If they are as you intended, check that the
correct database is in use and that the table has not been altered.

-2859 The column 'column-name' is a member of more then one table --
you must specify the table name.

Two or more tables that are named in the TABLES section have columns with the
name shown.

You must make clear which table you mean. To do this, write the table name as a
prefix of the column name, as table.column, wherever this name is used in the form
specification.

-2860 There is a column/value type mismatch for 'column-name'.

This statement assigns a value to the field with the DEFAULT clause or uses its value
with the INCLUDE clause, but it does so with data that does not agree with the data
type of the field.

Review the data type of the field (which comes from the column with which it is
associated), and make sure that only compatible values are assigned.

-2862 The table 'table-name' cannot be found in the database.

The indicated table does not exist in the database that is named in the form.

Check the spelling of the table name and database name. If they are as you intended,
either you are not using the version of the database that you expected, or the database
has been changed.

-2863 The column 'column-name' does not exist among the specified
tables.

The tables that are specified in the TABLES section of the form exist, but column-
name, which is named in the ATTRIBUTES section, does not.

Check its spelling against the actual table. Possibly the table was altered, or the
column was renamed.

-2864 The table 'table-name' is not among the specified tables.

The indicated table is used in this statement but is not defined in the TABLES section
of the form specification.

Check its spelling; if it is as you intended, add the table in the TABLES section.

Library reference | 2320

Number Description

-2865 The column 'column-name' does not exist in the table 'table-
name'.

Something in this statement implies that the column shown is part of the indicated
table (most likely the statement refers to table-name.column-name). However, it is not
defined in that table.

Check the spelling of both names. If they are as you intended, then make sure that
the database schema (.sch) is up to date; possibly the table has been altered or the
column renamed, and thus needs a new db schema extraction with the fgldbsch tool.

-2892 The column 'column-name' appears more then once. If you wish a
column to be duplicated in a form, use the same display field
label.

The same column name is listed in the ATTRIBUTES section more than once.

The expected way to display the same column in two or more places is to put two
or more fields in the screen layout, each with the same tag-name. Then put a single
statement in the ATTRIBUTES section to associate that tag-name with the column
name. The current column value will be duplicated in all fields. If you intended to
display different columns that happen to have the same column-names, prefix each
column with its table-name.

-2893 The display field label 'label-name' appears more than once in
this form, but the lengths are different.

You can put multiple copies of a field in the screen layout (all will display the same
column), but all copies must be the same length.

Review the form definition to make sure that, if you intended to have multiple copies of
one field, all copies are the same.

-2975 The display field label 'label-name' has not been used.

A field tag has been declared in the screen section of the form- specification file but is
not defined in the attributes section.

Check your form-specification file.

-2992 The display label 'label-name' has already been used.

The forms compiler indicates that name has been defined twice. These names must be
defined uniquely in the form specification.

Review all uses of the name to see if one of them is incorrect.

-2997 See error number error-num.

The database server returned an error that is shown.

Look up the shown error in the database server documentation.

-4303 A blob variable or cursor name expected .

The argument to the FREE statement must be the name of a cursor or prepared
statement or, in BDL, the name of a variable with the BYTE or TEXT data type.

Check the name used after the FREE keyword.

Library reference | 2321

Number Description

-4307 The number of variables and/or constants in the display
list does not match the number of form fields in the display
destination.

There must be exactly as many items in the list of values to display as there are fields
listed following the TO keyword in this statement.

Review the statement.

-4308 The number of input variables does not match the number of form
fields in the screen input list.

Your INPUT statement must specify the same number of variables as it does fields.

When checking this, keep in mind that when you refer to a record using an asterisk or
THRU, it is the same as listing each record component individually.

-4309 Printing cannot be done within a loop or CASE statement
contained in report headers or trailers.

BDL needs to know how many lines of space will be devoted to page headers and
trailers; otherwise, it does not know how many detail rows to allow on a page. Since
it cannot predict how many times a loop will be executed, or which branch of a CASE
will be execute, it forbids the use of PRINT in these contexts within FIRST PAGE
HEADER, PAGE HEADER, and PAGE TRAILER sections.

Re-arrange the code to place the PRINT statement where it will always be executed.

-4319 The symbol 'symbol-name' has been defined more than once.

The variable that is shown has appeared in at least one other DEFINE statement
before this one.

Review your code. If this DEFINE is within a function or the MAIN section, the prior one
is also. If this DEFINE is outside any function, the prior one is also outside any function;
however, it might be within the file included by the GLOBALS statement.

-4320 The symbol 'symbol-name' is not the name of a table in the
specified database.

The named table does not appear in the database.

Review the statement. The table name may be spelled wrong in the program, or
the table might have been dropped or renamed since the last time the program was
compiled.

-4322 The symbol 'symbol-name' is not the name of a column in the
specified database.

The preceding statement suggests that the named column is part of a certain table in
the specified database. The table exists, but the column does not appear in it.

Check the spelling of the column name. If it is spelled as you intended, then either the
table has been altered, or the column renamed, or you are not accessing the database
you expected.

-4323 The variable 'variable-name' is too complex to be used in an
assignment statement.

Library reference | 2322

Number Description

The named variable is a complex variable like a record or an array, which cannot be
used in a LET statement.

You must assign groups of components to groups of components using asterisk
notation.

-4324 The variable 'variable-name' is not a character type, and cannot
be used to contain the result of concatenation.

This statement attempts to concatenate two or more character strings (using the
comma as the concatenation operator) and assign the result to the named variable.
Unfortunately, it is not a character variable, and automatic conversion from characters
cannot be performed in this case.

Assign the concatenated string to a character variable; then, if you want to treat the
result as numeric, assign the string as a whole to a numeric variable.

-4325 The source and destination records in this record assignment
statement are not compatible in types and/or length.

This statement uses asterisk notation to assign all components of one record to the
corresponding components of another. However, the components do not correspond.
Note that BDL matches record components strictly by position, the first to the first,
second to second, and so on; it does not match them by name.

If the source and destination records do not have the same number and type of
components, you will have to write a simple assignment statement for each component.

-4328 The variable 'variable-name' is too complex to be used as the
destination of a return from a function.

The named variable is too complex to be assigned directly in a RETURNING clause.

Individual members of the complex variable must be returned separately.

-4333 The function 'function-name' has already been called with a
different number of parameters.

Earlier in the program, there is a call to this same function or event with a different
number of parameters in the parameter list. At least one of these calls must be in error.

Examine the FUNCTION statement for the named function to find out the correct
number of parameters. Then examine all calls to it, and make sure that they are written
correctly.

-4334 The variable 'variable-name' in its current form is too complex
to be used in this statement.

The variable has too many component parts. Only simple variables (those that have a
single component) can be used in this statement.

If variable-name is an array, you must provide a subscript to select just one element. If
it is a record, you must choose just one of its components. (However, if this statement
permits a list of variables, as in the INITIALIZE statement, you can use asterisk or
THRU notation to convert a record name into a list of components)

-4335 The symbol 'field-name' is not an element of the record 'record-
name'.

Library reference | 2323

Number Description

The field name used in a record.field expression is not identified as a member of the
record variable.

Find the definition of the record (it may be in the GLOBALS file), verify the names of its
fields, and correct the spelling of field-name .

-4336 The parameter 'param-name' has not been defined within the
function or report.

The name variable-name appears in the parameter list of the FUNCTION statement for
this function. However, it does not appear in a DEFINE statement within the function.
All parameters must be defined in their function before use.

Review your code. Possibly you wrote a DEFINE statement but did not spell variable-
name the same way in both places.

-4338 The symbol 'symbol-name' has already been defined once as a
parameter.

The name that is shown appears in the parameter list of the FUNCTION statement and
in at least two DEFINE statements within the function body.

Review your code. Only one appearance in a DEFINE statement is permitted.

-4340 The variable 'variable-name' is too complex a type to be used in
an expression.

In an expression, only simple variables (those that have a single component) can be
used.

If the variable indicated is an array, you must provide a subscript to select just one
element. If it is a record or object, you must choose just one of its components.

-4341 Aggregate functions are only allowed in reports and SELECT
statements.

Aggregate functions such as SUM, AVG, and MAX can only appear in SQL statements
and within certain statements that you use in the context of a report body. They are not
supported in ordinary expressions in program statements.

Review the code and check that the aggregate functions are in an SQL statement or in
the correct blocks of the REPORT routine.

-4343 Subscripting cannot be applied to the variable 'variable-name'.

You tried to use a [x,y] subscript expression with a variable that is neither a character
data type or an array type.

Check the variable data type and make sure it can be used with a subscript expression.

-4347 The variable 'variable-name' is not a record. It cannot
reference record elements.

In this statement variable-name appears followed by a dot, followed by another name.
This is the way you would refer to a component of a record variable; however, variable-
name is not defined as a record.

Either you have written the name of the wrong variable, or else variable-name is not
defined the way you intended.

Library reference | 2324

Number Description

-4353 The type of this ORDER BY or GROUP item specified for the report
is not valid for sorting.

A REPORT routine defines an ORDER BY or GROUP clause using a variable defined
with a type such as TEXT and BYTE, that is too complex to be used in comparisons.
As result, columns with such types cannot be used to sort or group rows.

Review the report and sort or group rows by using items defined with simple data
types.

-4356 A PAGE HEADER has already been specified within this report.

Only one PAGE HEADER control block is allowed in a REPORT.

Search for other PAGE HEADER sections and combine all statements in a unique
control block.

-4357 A PAGE TRAILER has already been specified within this report.

Only one PAGE TRAILER control block is allowed in a REPORT.

Search for other PAGE TRAILER sections and combine all statements in a unique
control block.

-4358 A FIRST PAGE HEADER has already been specified within this
report.

Only one FIRST PAGE TRAILER control block is allowed in a REPORT.

Search for other FIRST PAGE TRAILER sections and combine all statements in a
unique control block.

-4359 An ON EVERY ROW clause has already been specified within this
report.

Only one ON EVERY ROW control block is allowed in a REPORT.

Search for other ON EVERY ROW sections and combine all statements in a unique
control block.

-4360 An ON LAST ROW clause has already been specified within this
report.

Only one ON LAST ROW control block is allowed in a REPORT.

Search for other ON LAST ROW sections and combine all statements in a unique
control block.

-4361 Group aggregates can occur only in AFTER GROUP clauses.

The aggregate functions that apply to a group of rows (GROUP COUNT/PERCENT/
SUM/AVG/MIN/MAX) can only be used at the point in the report when a complete
group has been processed, namely, in the AFTER GROUP control block.

Make sure that the AFTER GROUP block exists and was recognized. If you need
the value of a group aggregate at another time (for instance, in a PAGE TRAILER
control block), you can save it in a module variable with a LET statement in the AFTER
GROUP block.

Library reference | 2325

Number Description

-4363 The report cannot skip lines while in a loop within a header or
trailer.

BDL needs to know how many lines of space will be devoted to the page header
and trailer (otherwise it does not know how many detail rows to allow on the page). It
cannot predict how many times a loop will be executed, so it has to forbid the use of
SKIP statements in loops in the PAGE HEADER, PAGE TRAILER, and FIRST PAGE
HEADER sections.

Review the report header or trailer to avoid SKIP in loops.

-4369 The symbol 'symbol-name' does not represent a defined variable.

The name shown appears where a variable would be expected, but it does not match
any variable name in a DEFINE statement that applies to this context.

Check the spelling of the name. If it is the name you intended, look back and find out
why it has not yet been defined. Possibly the GLOBALS statement has been omitted
from this source module, or it names an incorrect file. Possibly this code has been
copied from another module or another function, but the DEFINE statement was not
copied also.

-4371 Cursors must be uniquely declared within one program module.

In the statement DECLARE cursor-name CURSOR, the identifier cursor-name can be
used in only one DECLARE statement in the source file. This is true even when the
DECLARE statement appears inside a function. Although a program variable made
with the DEFINE statement is local to the function, a cursor within a function is still
global to the whole module

Search for duplicated cursor names and change the name to have unique identifiers.

-4372 The cursor 'cursor-name' has not yet been declared in this
program.

The name shown appears where the name of a declared cursor or a prepared
statement is expected; however, no cursor (or statement) of that name has been
declared (or prepared) up to this point in the program.

Check the spelling of the name. If it is the name you intended, look back in the program
to see why it has not been declared. Possibly the DECLARE statement appears in a
GLOBALS file that was not included.

-4374 This type of statement can only be used within a MENU statement.

This statement only makes sense within the context of a MENU statement.

Review the program in this vicinity to see if an END MENU statement has been
misplaced. If you intended to set up the appearance of a menu before displaying it, use
a BEFORE MENU block within the scope of the MENU.

-4375 The page length is too short to cover the specified page header
and trailer lengths.

A REPORT defines page header and trailer sections with a total number of lines that is
not sufficiently less than the specified page length in order to print some detail lines.

Review the [FIRST] PAGE HEADER and PAGE TRAILER blocks to use less lines or
increase the page length.

Library reference | 2326

Number Description

-4379 The input file 'file-name' cannot be opened.

Either the file does not exist, or, on UNIX™, your account does not have permission to
read it.

Possibly the filename is misspelled, or the directory path leading to the file was
specified incorrectly.

-4380 The listing file 'file-name' cannot be created.

The file cannot be created.

Check that the directory path leading to the file is specified correctly and, on UNIX™

systems, that your account has permission to create a file in that directory. Look for
other, more explicit, error messages from the operating system. Possibly the disk is full,
or you have reached a limit on the number of open files.

-4382 Record variables that contain array type elements may not
be referenced by the ".*" or THROUGH shorthand, or used as a
function parameter.

The .* and THROUGH/THRU notation is used to expand a record with an array
member.

It is allowed to define a record with an array member, but this element must always be
used with its full designation of record.array[n]. The .* or THROUGH/THRU notation
only expands simple members of the record.

-4383 The elements 'name-1' and 'name-2' do not belong to the same
record.

The two names shown are used where two components of one record are required;
however, they are not components of the same record.

Check the spelling of both names. If they are spelled as you intended, go back to the
definition of the record and see why it does not include both names as component
fields.

-4402 In this type of statement, subscripting may be applied only to
array.

The statement contains a name followed by square brackets, but the name is not that
of an array variable.

Check the punctuation of the statement and the spelling of all names. Names that
are subscripted must be arrays. If you intended to use a character substring in this
statement, you will have to revise the program.

-4403 The number of dimensions for the variable 'variable-name' does
not match the number of subscripts.

In this statement, the array whose name is shown is subscripted by a different number
of dimensions than it was defined to have.

Check the punctuation of the subscript. If it is as you intended, then review the DEFINE
statement where variable-name is defined.

-4410 There is a numeric constant in the previous line that is too
large or too small.

Library reference | 2327

Number Description

The compiler could not process a numeric constant because it is too big or too small to
represent a valid SMALLINT, INTEGER, BIGINT or DECIMAL constant.

Check the number of digits and the punctuation of the numeric constant. Make sure
you have not typed a letter for a digit for example.

-4414 The label 'label-name' has been used but has never been defined
within the above main program or function.

A GOTO or WHENEVER statement refers to the label shown, but there is no
corresponding LABEL statement in the current function or main program.

Check the spelling of the label. If it is as you intended it, find and inspect the LABEL
statement that should define it. You cannot transfer out of a program block with GOTO;
labels must be defined in the same function body where they are used.

-4415 An ORDER BY or GROUP item specified within a report must be one
of the report parameters.

The names used in a ORDER BY, AFTER GROUP OF, or BEFORE GROUP OF
statement must also appear in the parameter list of the REPORT statement. It is not
possible to order or group based on a global variable or other expression.

Check the spelling of the names in the statement and compare them to the REPORT
statement.

-4416 There is an error in the validation string: 'validation-string'.

The validation string in the syscolval table is not correct.

Change the appropriate DEFAULT or INCLUDE value in the syscolval table.

-4417 This type of statement can be used only in a report.

Statements such as PRINT, SKIP, or NEED are meaningful only within the body of a
report function, where there is an implicit report listing to receive output.

Remove the report specific statement from the code which is not in a report body.

-4418 The variable used in the INPUT ARRAY or DISPLAY ARRAY statement
must be an array.

The name following the words DISPLAY ARRAY or INPUT ARRAY must be that of an
array of records.

Check the spelling of the name. If it is as you intended, find and inspect the DEFINE
statement to see why it is not an array. (If you want to display or input a simple variable
or a single element of an array, use the DISPLAY or INPUT statement.)

-4420 The number of lines printed in the IF part of an IF-THEN-ELSE
statement of a header or trailer clause must equal the number of
lines printed in the ELSE part.

The runtime system needs to know how many lines will be filled in header and trailer
sections (otherwise it could not know how many detail rows to put on the page).
Because it cannot tell which part of an IF statement will be executed, it requires that
both produce the same number of lines of output.

Use the same number of occurrences of PRINT statements in each block of the IF
statement.

Library reference | 2328

Number Description

-4425 The variable 'variable-name' has not been defined like the table
'table-name'.

The named variable has been used in the SET clause of an UPDATE statement or in
the VALUES clause of an INSERT statement, but it was not define LIKE the table being
modified. As a result, then runtime system cannot associate record components with
table columns.

Make sure the schema file is up to date and check that the variable was defined like the
table. You can also rewrite the UPDATE or INSERT statement with a different syntax to
show the explicit relationship between column names and record components.

-4440 The field 'field-name-1' precedes 'field-name-2' in the record
'record-name' and must also precede it when used with the
THROUGH shorthand.

The THROUGH or THRU shorthand requires you to give the starting and ending fields
as they appear in physical sequence in the record.

Check the spelling of the names; if they are as you intended, then refer to the
VARIABLE statement where the record was defined to see why they are not in the
sequence you expected.

-4447 'key-name' is not a recognized key value.

The key name used in an ON KEY clause is not known by the compiler.

Search the documentation for possible key names (F1-F255, Control-?).

-4448 Cannot open the file 'file-name' for reading or writing.

The file cannot be opened.

Verify that the filename is correctly spelled and that your account has permission to
read or write to it.

-4452 The function (or report) 'function-name' has already been
defined.

Each function (or report, which is similar to a function) must have a unique name within
the program.

Change the function or report name.

-4457 You may have at most 4 keys in the list.

An interactive instruction defines a ON KEY() clause with more that 4 keys.

Remove keys from the list.

-4458 One dimension of this array has exceeded the limit of 65535.

The program is using a static array with a dimension that exceeds the limit.

Use a dimension below the 65535 limit.

-4463 The NEXT FIELD statement can only be used within an INPUT or
CONSTRUCT statement.

The NEXT FIELD statement is used outside an INPUT, INPUT ARRAY or
CONSTRUCT statement.

Library reference | 2329

Number Description

Remove the NEXT FIELD statement from that part of the code.

-4464 The number of columns must match the number of values in the SET
clause of an UPDATE statement.

In an UPDATE statement, the number of values used does not match the number of
columns.

Check for the table definition, then either add or remove values or columns from the
UPDATE statement.

-4476 Record members may not be used with database column substring.

This statement has a reference of the form name1.name2[...]. This is the form in which
you would refer to a substring of a column: table.column[...]. However, the names are
not a table and column in the database, so BDL presumes they refer to a field of a
record.

Inspect the statement and determine what was intended: a reference to a column or
to a record. If it is a column reference, verify the names of the table and column in the
database. If it is a record reference, verify that the record and component are properly
defined.

-4477 The variable 'variable-name' is an array. You must specify one
of its elements in this statement.

You tried to use an array without element specification in a SQL statement.

Use one of the members of the array.

-4485 Only blob variables of type BYTE or TEXT may be used in a LOCATE
statement.

The LOCATE statement is using a variable defined with a data type different from
BYTE or TEXT.

Make sure the variables used with LOCATE are defined as BYTE or TEXT.

-4488 The program cannot CONTINUE or EXIT statement-type at this point
because it is not immediately within statement-type statement.

This CONTINUE or EXIT statement is not appropriate in its context.

Review your code. Possibly the statement is misplaced, or the statement type was
specified incorrectly.

-4489 A variable used in the above statement must be a global
variable.

A REPORT routine is defining an OUTPUT REPORT TO using a local function variable
or report parameter.

Review the report clause to use a global or module variable instead.

-4490 You cannot have multiple BEFORE clauses for the same field.

You cannot specify more than one BEFORE FIELD clause for the same field.

Review your code to eliminate multiple BEFORE FIELD clauses.

-4491 You cannot have multiple AFTER clauses for the same field.

Library reference | 2330

Number Description

You cannot specify more than one AFTER FIELD clause for the same field.

Review your code to eliminate multiple AFTER FIELD clauses.

-4534 Wordwrap may not be used within report headers or trailers.

The report routine uses the WORDWRAP clause in the FIRST PAGE HEADER, PAGE
HEADER or PAGE TRAILER sections.

Remove the WORDWRAP clause from the expression.

-4631 Startfield of DATETIME or INTERVAL qualifiers must come earlier
in the time-list than its endfield.

The qualifier for a DATETIME or INTERVAL consists of start TO end, where the start
and end are chosen from this list: YEAR MONTH DAY HOUR MINUTE SECOND
FRACTION.

The keyword for the start field must come earlier in the list than, or be the same as, the
keyword for the end field.

Check the order of the startfield and endfield qualifiers. For example, qualifiers of DAY
TO FRACTION and MONTH TO MONTH are valid but one of MINUTE TO HOUR is
not.

-4632 Parenthetical precision of FRACTION must be between 1 and 5. No
precision can be specified for other time units.

In a DATETIME qualifier only the FRACTION field may have a precision in
parentheses, and it must be a single digit from 1 to 5.

Check the DATETIME qualifiers in the current statement; one of them violates these
rules. The first field of an INTERVAL qualifier may also have a parenthesized precision
from 1 to 5.

-4652 The function 'function-name' can only be used within an INPUT or
CONSTRUCT statement.

The function shown is being used outside of an INPUT or CONSTRUCT statement.
However, it returns a result that is only meaningful in the context of INPUT or
CONSTRUCT.

Review the code to make sure that an END INPUT or END CONSTRUCT statement
has not been misplaced. Review the operation and use of the function to make sure
you understand it.

-4653 No more than one BEFORE or AFTER INPUT/CONSTRUCT clause can
appear in an INPUT/CONSTRUCT statement.

There may be only one BEFORE block of statements to initialize each of these
statement types.

Make sure that the scope of all your INPUT, CONSTRUCT and MENU statements is
correctly marked with END statements. Then combine all the preparation code into a
single BEFORE block for each one.

-4656 CANCEL INSERT can only be used in the BEFORE INSERT clause of an
INPUT ARRAY statement.

Library reference | 2331

Number Description

The CANCEL INSERT statement is being used outside of the BEFORE INSERT clause
of an INPUT ARRAY.

Review the code to make sure that CANCEL INSERT has not been used anywhere
except in the BEFORE INSERT clause.

-4657 CANCEL DELETE can only be used in the BEFORE DELETE clause of an
INPUT ARRAY statement.

The CANCEL DELETE statement is being used outside of BEFORE DELETE clause of
an INPUT ARRAY.

Review the code to make sure that CANCEL DELETE has not been used anywhere
except in the BEFORE DELETE clause.

-4668 The report output, specified by a START REPORT statement, is not
any of file, pipe, screen, printer, pipe in line mode, or pipe
in form mode.

The output of a report can be sent only to any of file, pipe (in form or line modes),
screen, or printer.

Check the START REPORT instruction and make sure that the OUTPUT clause
specifies one of the supported values.

-4900 This syntax is not supported here. Use
[screenrecordname.]screenfieldname.

The field name specification in a BEFORE FIELD or AFTER FIELD is not valid.

Check for the field name and use [screenrecordname.]screenfieldname syntax.

-4901 Fatal internal error: description (line-number).

This generic error occurs when the fglcomp compiler cannot identify the problem and
must stop processing the source.

Check the code near the line displayed in the error message.

-6001 The license manager daemon cannot be started.

This error occurs when a process creation fails during the start of the license manager.

Increase the maximum number of processes allowed (ulimit)

-6012 Cannot get license information. Check your environment and the
license (run 'fglWrt -a info').

See error -6015.

-6013 Time limited version: time has expired.

The license installed is a license with time limit and time has expired. The program can
not start.

Contact your distributor or support center.

-6014 Your serial number is not valid for this version.

The license serial number is invalid for this version of the software.

Library reference | 2332

Number Description

Contact your distributor or support center.

-6015 Cannot get license information. Check your environment and the
license (run 'fglWrt -a info').

It is not possible for the application to check the license validity.

• License manager:

• The license may not have been installed
• The license controller can not communicate with the license manager. Check

that the license manager is started and check that the fglprofile entries flm.server
and flm.service contain valid information.

• The directory $FLMDIR/lock and all the files below must have read/write
permission.

• License controller:

• The license may not have been installed.
• The directory $FGLDIR/lock and all the files below must have read/write

permission.

-6016 Cannot get information for license (Error error-num). Check your
environment and the license (run 'fglWrt -a info').

The application is unable to check the license validity.

See error -6015.

-6017 User limit exceeded. Cannot run this program.

The maximum number of users allowed by the license has been reached. The program
can not start.

Contact your distributor or support center.

-6018 Cannot access internal data file. Cannot continue this program.
Please, check your environment(variable-name).

When a client computer starts an application on the server, the application stores data
in the $FGLDIR/lock directory. The client must have permission to create and delete
files in this directory.

• Do not remove or modify files contained in the directory $FGLDIR/lock
• Change the permissions of the $FGLDIR/lock directory, or connect to the server

with a user name having the correct permissions.

-6019 This demonstration version allows one user only.

The demonstration version is designed to run with only one user. Another user or
another graphical daemon is currently active.

Wait until the user stops the current program, or use the same graphical daemon.

-6020 Installation: Cannot open 'file-name'.

A file is missing or the permissions are not set for the current user.

Check that the file permissions are correct for the user trying to execute the application.
If the file is missing, re-install the compiler package.

Library reference | 2333

Number Description

-6022 Demonstration time has expired. Please, run this program again.

The runtime demonstration version is valid only for a few minutes after you have
started a program.

Restart the program.

-6025 Demonstration time has expired. Please, contact your vendor.

The demonstration version of the product has a time limit of 30 days.

Either reinstall a new demonstration version, or call your software vendor to purchase a
permanent license.

-6026 Bad link for runner demonstration. Please, retry or rebuild your
runner.

The runner is corrupted.

-6027 Cannot access license server. Please check the following:

- the license server entry in your resource file. (service port)

- the license server host.

- the license server program.

You have not specified a value for the environment variable [fgllic|fls|flm].server in the
$FGLDIR/etc/fglprofile file.

Check the fglprofile file for the entry point [fgllic|fls|flm].server and specify the name of
the computer that runs the License Manager.

-6029 Unknown parameter 'param-name' for checking.

The command line of the fglWrt or flmprg tool contains an unknown parameter.

Check your command-line parameters and retry the command.

-6031 Temporary license license-number has expired.

Your temporary runtime license has expired.

Call your software vendor to get a new license.

-6032 command-name: illegal option: 'option-name'.

You are not using a valid option for the specified command.

Check your command line syntax and try again.

-6033 command-name: 'option-name' option requires an argument.

You cannot use this option of the tool without a parameter.

Check your command line and try again.

-6034 Warning! This is a temporary license, installation number is
'installation-number'.

You have installed a temporary license of 30 days. You will have to enter an installation
key before the end of this period if you want to keep on running the program.

Library reference | 2334

Number Description

This is only a warning message.

-6035 Cannot read in directory

The compiler cannot access the $FGLDIR/lock directory. The current user must have
read and write permissions in this directory.

Give the current user read and write permissions to the $FGLDIR/lock directory.

-6041 Can not retrieve network interface information.

An error occurred while retrieving network interface information.

Restart your program. If this does not solve your problem, contact your distributor.

-6042 MAC Address has changed.

The MAC address of the host has changed since the license was first installed.

The license must be reinstalled, or restore the old MAC address.

-6043 The testing period is finished. You must install a new license.

The test time license of has expired.

Call your software vendor to purchase a new license.

-6044 IP Address has changed.

The IP Address of the host has changed.

Restore the IP address of the host, or reinstall the license. This is no longer checked by
the latest versions of the license controller.

-6045 Host name has changed.

The host name has changed.

Restore the host name or reinstall the license. This is no longer checked by the latest
versions of the license controller.

-6046 Could not get file reference number information.

The license could not get information about the license file.

Reinstall the license. Contact your distributor.

-6047 The device number of the license file has changed.

The license file has been touched. The license is no longer valid.

Reinstall the license. Contact your distributor.

-6048 The file reference number of the license file has changed.

The license file has been touched. The license is no longer valid.

Reinstall the license. Contact your distributor.

-6049 This product is licensed for runtime only. No compilation is
allowed.

Library reference | 2335

Number Description

You have a runtime license installed with this package. You cannot compile BDL
source code modules with this license.

If you want to compile .4gl source code, you must purchase and install a development
license. Contact your distributor.

-6050 Temporary license license-number expired. Please contact your
vendor.

A license with a time limit has been installed and the license has expired.

Install a new license to activate the product. Contact your distributor.

-6051 Temporary license license-number expired. Please contact your
vendor.

A license with a time limit has been installed and the license has expired.

Install a new license to activate the product. Contact your distributor.

-6052 Temporary license license-number expired. Please contact your
vendor.

A license with a time limit has been installed and the license has expired.

Install a new license to activate the product. Contact your distributor.

-6053 Installation path has changed. It must hold the original
installation path.

The value of FGLDIR or the location of FGLDIR has been changed.

Ask the person who installed the product for the location of the original installation
directory and then set the FGLDIR environment variable.

-6054 Cannot read a license file. Check installation path and your
environment. Verify if a license is installed.

The file that contains the license is not readable by the current user.

• License controller: Check that the FGLDIR environment variable is correctly set and
that the file $FGLDIR/etc/f4gl.sn is readable by the current user.

• License manager: Check that the file $FLMDIR/etc/license/lic?????.dat is readable
by the current user.

-6055 Cannot update a license file. Check installation path and your
environment. Verify if a license is installed.

The file that contains the license cannot be overwritten by the current user.

• License controller: Check that the FGLDIR environment variable is correctly set and
that the file $FGLDIR/etc/f4gl.sn is writable by the current user.

• License manager: Check that the file $FLMDIR/etc/license/lic?????.dat is writable
by the current user.

-6056 Cannot write into a license file. Please check your rights.

The file that contains the license cannot be overwritten by the current user.

• License controller: Check that the FGLDIR environment variable is correctly set and
that the file $FGLDIR/etc/f4gl.sn is writable by the current user.

Library reference | 2336

Number Description

• License manager: Check that the file $FLMDIR/etc/license/lic?????.dat is writable
by the current user.

-6057 Cannot read a license file. Check installation path and your
environment. Verify if a license is installed.

The file that contains the license cannot be read by the current user.

Check that the current user can read the file $FGLDIR/etc/f4gl.sn. Also check that the
FGLDIR environment variable is set correctly.

-6058 Incorrect license file format. Verify if a license is installed.

The file that contains the license has been corrupted.

Reinstall the license. If you have a backup of the current installation of Genero
Business Development Language, restore the files located in the $FGLDIR/etc
directory.

-6059 Incorrect license file format. Verify if a license is installed.

The file that contains the license has been corrupted.

Reinstall the license. If you have a backup of the current installation of Genero
Business Development Language, restore the files located in the $FGLDIR/etc
directory.

-6061 License 'license-number' not installed.

The license shown is not installed.

Reinstall the license.

-6062 No installed license has been found for 'license-number'.

The add-user license can not be installed. No main license found to add users.

Contact your distributor.

-6063 License 'license-number' is already installed.

The license shown is already installed.

No particular action to be taken.

-6064 The resource 'flm.license.number' is required to use the license
manager.

In order to use a license manager, the FGLPROFILE entry described in the error
message must exist and define a license number.

-6065 The resource 'flm.license.key' is required to use the license
manager.

In order to use a license manager, the FGLPROFILE entry described in the error
message must exist and define a license key.

-6066 License 'license-number' cannot be installed over 'license-
number'.

Library reference | 2337

Number Description

The add-user license does not match the main license. The add-user license can not
be installed.

Contact your distributor.

-6067 You need a installed license if you want to add users.

The add-user license must be installed after the main license.

Install the main license before the add-user license. If this does not solve your problem,
contact your distributor.

-6068 No license installed.

There is no license installed for Genero Business Development Language.

Install a license. If a license is already installed, check that the $FGLDIR environment
variable is set correctly.

-6069 Cannot uninstall the license.

There was a problem during the uninstall of the Genero Business Development
Language license.

Check whether the FGLDIR environment variable is correctly set in your environment
and the current user has permission to delete files in the $FGLDIR/etc directory.

-6070 The license server entry must be set in your resource file in
order to reach the license server.

You are using the remote license process and you have set the value of fgllic.server, in
$FGLDIR/etc/fglprofile, to localhost or to the 127.0.0.1 address.

You must use the real IP address of the computer even if it is the local computer.

-6071 Cannot use directory 'directory-name'. Check installation path
and verify if access rights are 'drwxrwxrwx'.

The compiler needs to operate in the specified directory.

Change the permission of this directory.

-6072 Cannot create file in 'file-name'. Check installation path and
verify if access rights are 'drwxrwxrwx'.

The compiler needs to operate in the specified directory.

Change the permission of this directory to 777 mode.

-6073 Cannot change mode of a file in 'file-name'. Verify if access
rights are 'drwxrwxrwx'.

The compiler needs to operate in the specified directory.

Change the permission of this directory to 777 mode.

-6074 'file-name' does not have 'rwxrwxrwx' rights or isn't a
directory. Check access rights with 'ls -ld <installation-path>/
lock' or execute 'rm -r <installation-path>/lock' if no users
are connected.

The compiler needs to operate in the specified directory.

Library reference | 2338

Number Description

Change the permission of this directory. The $FGLDIR/lock directory contains only
data needed at runtime by BDL applications. When the application is finished, you can
remove this directory. If you delete this directory while BDL applications are running,
the applications will be stopped immediately.

-6075 Cannot read from directory 'directory-name'. Check installation
path and verify if access rights are 'drwxrwxrwx'.

The compiler needs to operate in the specified directory.

Change the permission of this directory.

-6076 Bad lock tree. Please check your environment.

There is a problem accessing the $FGLDIR/lock directory.

Check if the current user has sufficient permission to read and write to the $FGLDIR/
lock directory. Check also if the FGLDIR environment variable is correctly set.

-6077 Bad lock tree. Please check your environment.

There is a problem accessing the $FGLDIR/lock directory.

Check if the current user has sufficient permission to read and write to the $FGLDIR/
lock directory. Check also if the FGLDIR environment variable is correctly set.

-6079 Cannot get machine name or network IP address. Each graphical
client must have an IP address when using a license server.
FGLSERVER must hold the IP address or the host name of the
client.

You are using the remote license process and you have set the value of fgllic.server, in
$FGLDIR/etc/fglprofile, to localhost or to the 127.0.0.1 address.

You must use the real IP address of the computer even if it is the local computer. This
is also true for the value used with the FGLSERVER environment variable.

-6080 Cannot get IP address from 'host-name' host. Check the
'flm.server' resource.

The system cannot find the IP address of the specified host.

This is a configuration issue regarding your system. The command ping should not
reply as well. Correct your system configuration and then try to execute your program.

-6081 Cannot reach host 'host-name' with ping. Check license server
entry in your resource file. Check your network configuration or
increase 'flm.ping' value.

The license server cannot ping the client computer, or it does not get the response in
the time limit specified by the fgllic.ping entry in the $FGLDIR/etc/fglprofile file.

Try to manually ping the specified computer. If this works, try to increase the value
of the fgllic.ping entry in fglprofile. If the ping does not respond, fix the system
configuration problem and then try the program again.

-6082 SYSERROR(error-num) description: Cannot set option TCP_NODELAY
on socket. Check the system error message and retry.

There is a problem with the socket of the Windows™ computer.

Library reference | 2339

Number Description

Check that the system is correctly configured and retry the program.

-6085 SYSERROR(error-num) description: Cannot connect to the license
server on host 'host-name'. Check following things: - license
server entry. - the license server machine. - the license server
TCP port.

The application cannot check the license validity. To do so, it tries to communicate with
the Genero Business Development Language license service running on the computer
where the product is installed.

Check that the Genero Business Development Language License Server is running on
the computer where the product is installed.

-6086 SYSERROR(error-num) description: Cannot send data to the license
server. Check the system error message and retry.

Theres a problem with the socket of the Windows™ computer.

Check that the system is correctly configured and retry the program.

-6087 SYSERROR(error-num) description: Cannot receive data from
license server. Check the system error message and retry.

There is a problem with the socket of the Windows™ computer.

Check that the system is correctly configured and retry the program.

-6088 You are not allowed to be connected for the following reason:
description

The program cannot connect to the license server because of the specified reason.

Try to fix the problem described and rerun your application.

-6089 Each graphical client must have an IP address when using a
license server. FGLSERVER must hold the IP address or the host
name of the client (localhost or 127.0.0.1 are not allowed).

Use the real IP address or hostname of the client.

-6090 SYSERROR(error-num) description: Cannot create a socket to start
the license server. Check the system error message and retry.

There is a problem with the socket of the Windows™ computer.

Check that the system is correctly configured and rerun the program.

-6091 SYSERROR(error-num) description: Cannot bind socket for the
license server. Check the system error message and retry.

There is a problem with the socket of the Windows™ computer.

Check that the system is correctly configured and rerun the program.

-6092 SYSERROR(error-num) description: Cannot listen socket for the
license server.

There is a problem with the socket of the Windows™ computer.

Library reference | 2340

Number Description

Check that the system is correctly configured and rerun the program.

-6093 SYSERROR(error-num) description: Cannot create a socket to
search an active client.

There is a problem with the socket of the Windows™ computer.

Check that the system is correctly configured and rerun the program.

-6094 SYSERROR(error-num) description: This is a WSAStartup error.
Check the system error message and retry.

There is a problem with the socket of the Windows™ computer.

Check that the system is correctly configured and rerun the program.

-6095 License problem: description

License type incompatible. You are installing an earlier version, which was not
designated for use with the current license server.

Reinstall and then contact your vendor.

-6096 Connection refused by the license server.

There is problem connecting the client computer to the Windows™ license server.

There is a configuration problem with the license server computer. Check the
configuration of the computers and of the products.

-6100 Bad format of line sent by the license requester.

The license request sent by the license controller is not understood by the license
manager.

Upgrade your license software to the latest version available. If the issue is not solved,
contact your support center.

-6101 License number 'license-number' does not correspond to license
key 'license-key'.

Either the license number or the license key is invalid.

Check the license number and keys entered and try again. If that does not solve the
issue, upgrade your license software to the latest version available. If the issue is not
solved, contact your support center.

-6102 Verify if resource 'flm.license.number' and 'flm.license.key'
correspond to a valid license.

Either the flm.license.number or flm.license.key entry in fglprofile is
incorrectly filled. Ensure these fglprofile entries contain valid license numbers.

-6103 License 'license-number' is no longer available from the license
server.

The license has been uninstalled from the license server. It may still appear as some
sessions are active, but the license can not be used to start a new session.

Reinstall the license, or contact your support center.

Library reference | 2341

Number Description

-6107 User limit exceeded. Please retry later.

The maximum number of clients that can be run has been reached (due to the license
installed).

Retry later (when the number of current users has decreased) or install a new license
that allows more users.

-6108 Environment is incorrect.

There is no local license, or the environment is not set correctly.

Check your environment and your FGLDIR environment variable.

-6109 Cannot add session #session-number.

You do not have the permissions to create the new session (the directory representing
the new client).

Check the permissions of the dedicated directories.

-6110 Cannot add program 'program-name' (pid=processid).

You do not have the permissions to create the new application (the file representing the
new application) for the current user .

Check the permissions of the dedicated directories.

-6112 Compilation is not allowed: This product is licensed for runtime
only.

Buy and install a development license.

-6113 Compilation is not allowed: Invalid license.

Buy and install a development license.

-6114 Cannot start program 'program-name' or result of process number
is 0.

When fglWrt -u is executed to find the number of users allowed on this installation, the
command "ps" may be launched (only on UNIX™).

Check the permissions for ps.

-6116 Wrong number of characters.

The license number, license key, installation number, installation key or maintenance
key provided is incomplete.

Ensure that provided license numbers are correct and try again.

-6117 The entry must be 12 characters long.

The license number, license key, installation number, installation key or maintenance
key provided is incomplete.

Ensure that provided license numbers are correct and try again.

-6118 Wrong checksum result for this entry.

Library reference | 2342

Number Description

When entering license numbers, the checksum is verified if it is provided. This error
occurs if the checksum computed does not match the provided checksum. Either the
checksum or the license number is wrong.

Ensure that checksum and license numbers are correct and try again.

-6122 You must specify entry 'flm.server' in the resource file.

The fglprofile entry flm.server is missing. This entry should contain the host
name or IP address of the host running the license manager.

Add and configure the fglprofile entry flm.server.

-6123 SYSERROR(error-num) description: Cannot open socket. Check the
system error message and retry.

The license controller can not connect to the license manager.

Check the error message and fix the issue. Ensure that fglprofile entries
flm.server and flm.service are correctly filled. Check your network configuration.

-6129 License uninstalled.

This is an information message.

-6130 This license requires a full installation.

The installed license has not be activated, but can not be used in temporary installation
mode.

Contact your vendor to obtain the activation key.

-6131 This license number is no more valid. Please, contact your
vendor.

The license number is no longer accepted.

Contact your vendor to obtain a new license number.

-6132 Incompatible License Controller (fglWrt/greWrt) version. The
minimum version required is min-version.

Upgrade your license controller version to the specified version or higher.

-6133 This product requires a BDL license. The license number should
start with the letter F.

A BDL license is required for this product.

Call you support center to get a BDL license.

-6134 This product requires a Genero license. The license number
should start with the letter T.

A Genero license is required for this product.

Call you support center to get a Genero license.

-6135 Invalid license key.

The license key does not correspond to the license number.

Library reference | 2343

Number Description

Call you support center to check the license key.

-6136 The date-limited license has expired.

The time limited license has expired, the product is blocked.

Call you support center to get a new license.

-6137 This product requires a GRW license .

A GRW license is required for this product.

Call you support center to get a GRW license.

-6138 GRW licenses are not accepted by this product .

This product does not accept GRW licenses.

Call you support center to check if the license corresponds to the product.

-6140 Version version-number

This is an information message.

-6142 Try and buy demonstration time expired. Please, restart your
application.

Applications started with a Try and Buy version will stop after few minutes of execution.

Restart your application.

-6143 This license requires a valid maintenance key. Check your
environment (run 'fglWrt/greWrt -a info')

Genero 2.20 and higher require a valid maintenance key.

Update your maintenance key.

-6144 The DVM build date is greater than the maintenance key
expiration date. Contact your nearest FourJ's sales
representative to update the maintenance key.

Update your maintenance key or downgrade your Genero installation to an older
version.

-6146 This product requires a Genero Time-Limited Evaluation license.

You have installed a trial version of the Genero product, but the installed license is not
a trial license.

Install a trial license for this product. Contact your support to get a trial license.

-6147 This product requires a GRE Time-Limited Evaluation license.

You have installed a trial version of the GRE product, but the installed license is not a
trial license.

Install a trial license for this product. Contact your support to get a trial license.

-6148 Installation path is not known.

You are handling licenses but the FGLDIR environment variable is not set.

Library reference | 2344

Number Description

Set the FGLDIR environment variable and retry.

-6149 Problem while installing license 'license-number'.

A problem occurred while licensing.

Note the system-specific error number and contact your Technical Support.

-6150 Temporary license not found for this version.

While adding a definitive license key, the temporary license has not been found.

Re-install the license.

-6151 Wrong installation key.

While adding a definitive license key, the installation key was not valid.

Re-install the license.

-6152 Problem during license installation.

A problem occurred while installing the license. Could not write information to the disk
(either own files or system files).

Check the FGLDIR environment variable and the rights of the license files (must be
able to change them).

-6153 License installation failed.

License information could not be written to files.

Check the system error message if provided, check the file permissions for the current
user.

-6154 License installation successful.

This is an information message.

-6156 Too many temporary licenses. You must reinstall a license.

You installed a temporary license too many times.

Contact technical support to get a valid license.

-6158 Cannot store temporary information.

A problem occurred while installing the license. Could not write information to the disk
(either own files or system files).

Check the FGLDIR environment variable and the rights of the license files (you must be
able to change them).

-6159 This kind of license is not permitted.

The license numbers can not be installed.

Contact your support center.

-6160 You do not have the permissions to be connected.

The host running the license controller (where the DVM is running) is not allowed to
connect to this license manager. There is likely a configuration issue.

Library reference | 2345

Number Description

Check your license manager configuration.

-6161 You do not have the permissions to compile.

The compilation request is rejected by the license manager.

Contact your support center.

-6162 Cannot reach the license server. Please check if 'flm.server'
is correctly initialized. ('flmprg -a info up' command should
answer 'ok'). The license server is running but no autocheck
will be done.

While this error is no longer used, it can be raised by older versions of Genero. The
license controller can not connect to the license manager.

Ensure that fglprofile entries flm.server and flm.service are filled correctly.
Ensure that the license manager is running on the specified host and port.

-6168 Cannot get information from directory 'directory-name'.

Failed to read directory information.

Ensure that the user installing a license is the user that installed the product. Ensure
that the user installing a license has read/write permissions on the 'etc' directory of the
product.

-6169 SYSERROR(error-num) description: Cannot set option O_NONBLOCK on
socket. Check the system error message and retry.

Failed to configure the socket in non-blocking mode.

Check the system error message. Contact your support center.

-6170 Old request format to license server detected. You must install
a license program version 2.99 or higher.

The license controller version is too old for the current license manager version.
Requests sent by the license controller are no longer supported by the current license
manager.

Upgrade the license controller to the latest version available.

-6171 A license has been installed temporarily. Only the installation
key is required. You must run 'fglWrt -k <installation-key>' to
install it.

The installed license is temporarily installed, yet it is missing the installation key.

Obtain your installation key and install it.

-6172 Bad parameter: 'parameter' hasn't the right format.

Two issues can raise this error.

1. The license manager can raise this error if it receives a request from the license
controller with unknown commands.

Upgrade the license software version to the latest available. Contact your support
center.

2. The license manager etc/lmprofile configuration is invalid.

Library reference | 2346

Number Description

Check your lmprofile entries flm.license.together and
flm.license.allow.

-6173 Invalid license number or invalid license key.

During the license installation, the license number / license key couple does not match.

Ensure that the license numbers are correct. Upgrade the license software to the latest
version available and retry.

-6174 This option is only available for a local license. And resource
'flm.server' was found in your configuration.

A license server is configured and the user tries to install or uninstall a license using
fglWrt.

Install the license on the license manager (flmprg) Or remove the license manager
configuration from fglprofile and install the license locally.

-6175 License number 'license-number' is invalid.

The license number is not valid.

Ensure that the license number provided is correct. Upgrade the license software to the
latest version available.

-6176 In license server, following problem occurs with license number
'license-number': problem-description

This is a generic error containing the text of another error.

Check the error. Contact your support center.

-6177 Following problem occurs with license number 'license-number':
description

This is a generic error containing the text of another error.

Check the error. Contact your support center.

-6178 Your machine is not allowed to be connected on any of your
authorized licenses.

The CPU license rejects the connection of a new host. All CPU licenses are consumed.

Contact your support center.

-6179 License validity time is reached. The users control is
reactivated.

The CPU license is time limit is reached. The CPU license is degraded and user control
is reactivated.

Contact your support center.

-6180 CPU limit exceeded. The users control is reactivated.

The CPU license has less CPUs available than the number of CPUs on the connected
host, resulting in one or more hosts running in degraded mode. When running in
degraded mode, the number of users allowed is the number of available CPUs in the
license * 100 users. User control is activated for license request coming from that host.

Library reference | 2347

Number Description

For example, say you have a 5 CPU license and are using the license manager.

• Host A with 2 CPUs connects. It consumes 2 CPUs of the 5 CPU license. 3 CPUs
remain free on the license.

• Host B with 2 CPUs connects. It will consume 2 CPUs of the 5 CPU license. 1 CPU
remains free on the license.

• Host C with 2 CPU connects. It should consume 2 CPUs, but only 1 CPU remains
on the license. User control for Host C is enabled, with 1 CPU (the remaining free
CPU) * 100 users allowed.

• Host D connects with N CPU, however there are no CPUs free on the license. Host
D is rejected.

In summary, Host A and B can have unlimited sessions, Host C is limited to 100
sessions as the license is degraded by CPU, and any other host is rejected.

In the case of a single host, user control applies to local licenses as well. If Host A has
6 CPUs, yet has a 5 CPU license, it consumes all of the CPUs for the license and run
in degraded mode. That means 5 * 100 users are allowed.

Contact your support center.

-6181 Cannot get license extension information. Check your
environment, the license (run 'fglWrt -a info') and the fglWrt
version ('fglWrt -V' should give version-number or higher).

License information is invalid. This error is not yet used.

Contact your support center.

-6182 Your license has 'restriction-name' restriction. You are not
allowed to run another mode.

The license has restrictions, and the requested use of the license is not compatible with
these restrictions. For example, the license may have a text-only restriction, where GUI
front-ends are not allowed.

Contact your support center to obtain a license matching your needs.

-6183 Local license controller (fglWrt) may not be compatible with
this runner. Check its version ('fglWrt -V' should give version-
number or higher).

The license controller is incompatible.

Update the license controller to the latest version available.

-6184 You are not authorized to run this version of runner.

Older licenses do not use the maintenance key. The DVM version that can be used is
limited. The DVM version is higher that the allowed DVM version.

Contact your support center. Re-licensing is required.

-6185 Protection file is not compatible with this version of the
runner. You must reinstall your license.

This error is no longer used by the current licensing software, however it may occur
with older versions.

Contact your support center.

Library reference | 2348

Number Description

-6186 Demo version initialization.

This is an information message.

-6188 Your evaluation license period has expired. Contact your support
center.

The software you are using has been installed with a demo license that has expired.

Contact your software vendor to extend the evaluation period or purchase a permanent
license.

-6196 You are not authorized to delete sessions from the license
server 'server-name'.

The command fglWrt -i can only be used with local licenses. If a license server is
configured, this error is raised.

Use the command flmprg instead.

-6197 'extension-name' extension is not allowed with this license
type.

Generic error indicating that an extension check is rejected. For example, if you are
using a non-Informix database, this error will raise if the ODI extension is not set in the
license.

-6198 Product identifier does not correspond to the license number.

This error indicates that a wrong license is installed in the product, such as when you
attempt to use a Genero Report Writer (GRW) license when installing the Genero
Business Development Language (BDL). This error should not be raised, as fglWrt
will reject the installation of a Genero Report Engine (GRE) license when installing
Genero BDL, and conversely greWrt will not allow the installation of a Genero BDL
license.

That being said, the installation checks to ensure the license is valid for the product,
and raises this error it if is not.

Ensure the proper license is used with the proper package.

-6199 Cannot create directory 'directory-name'. Check installation
path and verify your access rights.

The specified directory can not be created or modified.

-6200 Module 'module-name': The function function-signature-1 will be
called as function-signature-2 .

An incorrect number of parameters are used to call a BDL function.

Check your source code and recompile your application.

-6201 Module 'module-name': Bad version: Recompile your sources.

You have compiled your program with an old version. The newly compiled version of
your program is not supported.

Compile all source files and form files again.

Library reference | 2349

Number Description

-6202 filename 'file-name': Bad magic: Code cannot run with this p
code machine.

You have compiled your program with an old version. The new compiled version of
your program is not supported. You might also have a file with the same name as
the .42r. You used the fglrun 42r-Name without specifying the extension.

To resolve this problem, call fglrun with the .42r extension or recompile your
application.

-6203 Module 'module-name-1': The function 'function-name' has already
been defined in module 'module-name-2'.

The specified function is defined for the second time in the application. The second
occurrence of the function is in the specified module.

Eliminate one of the two function definitions from your source code.

-6204 Module 'module-name': Unknown op-code.

An unknown instruction was found in the compiled BDL application.

Check that the version of the Genero Business Development Language package
executing the compiled application is the same as the one that compiled the
application. It is also possible that the compiled module has been corrupted. If so, you
will need to recompile your application.

-6205 INTERNAL ERROR: Alignment.

This error is internal, which should not normally occur.

Contact your Technical Support.

-6206 The 42m module 'module-name' could not be loaded, check
FGLLDPATH environment variable.

The 42m module is not in the current directory or in one of the directories specified by
the FGLLDPATH environment variable.

Set the environment variable FGLLDPATH with the path to the 42m modules to be
loaded.

-6207 The dynamic loaded module 'module-name' does not contain the
function 'function-name'.

A BDL module has been changed and recompiled, but the different modules of the
application have not been linked afterward.

Link the new modules together before you execute your application.

-6208 Module 'module-name' already loaded.

A module was loaded twice at runtime. This can occur because one module has been
concatenated with another.

Recompile and re-link your BDL modules.

-6210 INTERNAL ERROR: exception 2 raised before invoking the exception
handler for exception 1.

Library reference | 2350

Number Description

A module was loaded twice at runtime. This can occur because one module has been
concatenated with another.

Check for function names, recompile and re-link your BDL modules.

-6211 Link has failed.

A problem occurred while linking the BDL program.

Check for function names, recompile and re-link your BDL modules.

-6212 Function function-name : local variables size is too large -
Allocation failed.

A local function variable is too large and runtime could not allocate memory.

Review the variable data types in the function.

-6213 Module module-name : Module's variable size is too large -
Allocation failed.

A module variable is too large and runtime could not allocate memory.

Review the variable data types in the module.

-6214 Global variable variable-name size is too large - Allocation
failed.

A global variable is too large and runtime could not allocate memory.

Review the variable data types in the globals.

-6215 Memory allocation failed. Ending program.

Runtime could not allocate memory.

Check for system resources and verify if the OS user is allowed to allocate as much
memory as the program needs (check for ulimits on UNIX™ systems).

-6216 The global 'constant-name' has been redefined with a different
constant-value.

A global constant has been defined twice with a different value.

A global constant may have only one value. Review your code.

-6217 The global 'variable-name' has been defined as a constant and a
variable.

The same symbol was used to define a constant and a variable.

Use a different name for the constant and the variable. Review your code.

-6218 No runtime. You must call fgl_start() before calling fgl_call().

This error occurs when a C extension has redefined the main() routine, but then does
not call fgl_start() to initialize the BDL runtime environment.

Check the C extension and call fgl_start() before any other operation.

-6219 WHENEVER ERROR CALL: The error-handler recursively calls itself.

Library reference | 2351

Number Description

The function specified with the WHENEVER ERROR CALL instruction raises an error
that would call itself recursively.

Review the function called by the WHENEVER ERROR CALL and make sure it does
not produce a runtime error.

-6220 Could not load C extension library ' library-name'. Reason:
description

Runtime system could not find the shared library for the reason given.

Check if the C extension library exists in one of the directories defined by FGLLDPATH.
If the C extension module depends from other shared libraries, make sure that
these libraries can be found by the library loader of the operating system (check the
LD_LIBRARY_PATH environment variable on UNIX™ or the PATH environment
variable on Windows™).

-6221 C extension initialization failed with status number.

C extension failed to initialize and returned the status shown in the error message.

Check the C extension source or documentation.

-6222 class-name class not found.

The program was compiled with the built-in class class-name but at execution time the
class is not found.

Check you installation, it is possible that you are executing program that was compiled
with a younger version as the version used in the execution context, which certainly is
missing that class in the runtime library.

-6223 No such symbol: symbol-name.

The runtime system loads a module dynamically (on demand) and searches the symbol
in this module. But the symbol could not be found, for example because of an invalid
FGLLDPATH, or because the installed module does no more contain the symbol (after
a recompilation).

-6300 Can not connect to GUI: description

You have run a GUI application but the environment variable FGLSERVER is not set
correctly, or the Genero client (graphical front-end) is not running. See the description
for more details.

The FGLSERVER environment variable should be set to the hostname and port of the
graphical front end used by the runtime system to display the application windows.
Check that the network connection is still available, make sure no firewall denies
access to the workstation, and see whether the front-end is still running.

-6301 Can not write to GUI: description

You are running a GUI application but for an unknown reason the front-end no longer
responds and the runtime system could not write to the GUI socket.

Check that the network connection is still available, make sure no firewall denies
access to the workstation, and see whether the front-end is still running.

-6302 Can not read from GUI: description

Library reference | 2352

Number Description

You are running a GUI application but for an unknown reason the front-end no longer
responds and the runtime system could not read from the GUI socket.

Check that the network connection is still available, make sure no firewall denies
access to the workstation, and see whether the front-end is still running.

-6303 Invalid user interface protocol.

You are trying to execute a program with a runtime system that uses a different AUI
protocol version as the front-end.

Install either a new front-end or a new runtime environment that matches (2.0x with
2.0x, 1.3x with 1.3x).

-6304 Invalid abstract user interface definition.

You are trying to execute a program with a runtime system that uses a different AUI
protocol version as the front-end.

Install either a new front-end or a new runtime environment that matches (2.0x with
2.0x, 1.3x with 1.3x).

-6305 Can not open char table file. Check your fglprofile.

This error occurs if the conversion file defined by the gui.chartable entry, in the
$FGLDIR/etc/fglprofile file, is not readable by the current user.

Check if the gui.chartable entry is correctly set and if the specified file is readable by
the current user.

-6306 Can not open server file. Check installation.

A file on the server side cannot be sent to the graphical interface.

Check the permissions of the file located in the $FGLDIR/etc directory. These files
must have at least read permission for the current user.

-6307 GUI server autostart: can not identify workstation.

GUI Server autostart configuration is wrong. Either DISPLAY, FGLSERVER or fglprofile
settings are invalid.

Set the required environment variables and check for fglprofile autostart entries.

-6308 GUI server autostart: unknown workstation: check
gui.server.autostart entries.

The computer described by the X11 DISPLAY environment variable is neither the local
host, nor is it listed in the fglprofile entries.

Check if the X11 DISPLAY name is correctly set, or review the fglprofile entries.

-6309 Not connected. Cannot write to GUI.

For unknown reasons there was an attempt to write on the GUI socket before the
connection was initiated.

Check the program for invalid GUI operations.

-6310 Not connected. Cannot read from GUI.

Library reference | 2353

Number Description

For unknown reasons there was an attempt to read on the GUI socket before the
connection was initiated.

Check the program for invalid GUI operations.

-6311 No current window.

The program tries to issue a MENU instruction with no current window open.

Review the program logic and make sure a window is open before MENU.

-6312 The type of the user interface (FGLGUI) is invalid.

While initiating the user interface, the runtime system did not recognize the GUI type
and stopped.

Make sure the FGLGUI environment variable has a correct value.

-6313 The UserInterface has been destroyed.

The error occurs when the front-end sends a DestroyEvent event, indicating some
inconsistency with the starting program. This can happen, for example, when multiple
StartMenus are used, or when you try to run an MDI child without a parent container, or
when two MDI containers are started with the same name, etc.

Check for inconsistency and fix it.

-6314 Wrong connection string. Check client version.

While starting the program, the runtime received a wrong or incorrectly constructed
answer from the front-end.

Make sure you are using a front-end that is compatible with the runtime system.

-6315 The form is too complex for the console-ui.

The program tries to display a form with a complex layout that cannot be displayed in
text mode.

Review the form file and use a simple grid with a SCREEN section instead of LAYOUT.

-6316 Error error-num returned from client: description

Front end returned the specified error during GUI connection initialization.

Check the front-end documentation for more details.

-6317 Invalid or unsupported client protocol feature.

The GUI protocol feature you are trying to use is not supported by the front-end. For
example, you are trying to use protocol compression but the runtime is not able to
compress data.

Make sure that the front-end component is compatible with the runtime system
(versions must be close). Check the runtime system version for supported protocol
features. If compression is enabled, check that the zlib library is installed on your
system.

-6318 Choosing the DIALOG implementation by setting the environment
variable FGL_USENDIALOG=0 has been desupported since version
2.20.03.

Library reference | 2354

Number Description

You try to use the old dialog implementation by setting FGL_USENDIALOG to zero.

The old dialog implementation has been removed, you must unset the
FGL_USENDIALOG environment variable.

-6319 Internal error in the database library. Set FGLSQLDEBUG to get
more details.

An unexpected internal error occurred in the database driver.

Set the FGLSQLDEBUG environment variable to level 1, 2, 3 or 4 to get detailed debug
information.

-6320 Can't open file 'file-name'.

The runtime system tried to open a resource file in FGLDIR but access is denied or file
no longer exists.

Check for file permissions and existence in FGLDIR.

-6321 No such interface capability: 'feature-name'.

The runtime system tried to use a front-end protocol capability, but is not able to use it.

Check if the front-end is compatible with the runtime system.

-6322 version-num-1 wrong version. Expecting version-num-2.

Some resource files of FGLDIR have been identified as too old for the current runtime
system.

Re-install the runtime system environment.

-6323 Can't load factory profile 'file-name'.

The default fglprofile file located in FGLDIR/etc is missing or is unreadable.

Check the permission of the file. If the file is missing, reinstall the software.

-6324 Can't load customer profile 'file-name'.

The configuration file defined by the FGLPROFILE environment variable is missing or
unreadable.

Check if the FGLPROFILE environment variable is correctly set and if the file is
readable by the current user.

-6325 Can't load application resources 'file-name'.

The directory specified by the fglrun.default entry in FGLDIR/etc/fglprofile is missing or
not readable for the current user.

Check if the entry fglrun.default is correctly set in FGLDIR/etc/fglprofile and if the
directory specified is readable by the current user.

-6327 Internal error in the run time library file library-name.

Something unpredictable has occurred, generating an error.

Contact your Technical Support.

Library reference | 2355

Number Description

-6328 Bad format of resource 'entry-name' value 'entry-value': you
must use the syntax: entry-name='VARNAME=envvar-value'.

The FGLPROFILE file contains an invalid environment variable definition format.

Check the content of the profile file.

-6329 All TABLE columns must be defined with the same height.

The form layout defines a TABLE with field tags using different heights.

Review all cells of the table to use the same height in all columns.

-6330 Syntax error in profile 'file-name', line number lineno , near
'token'.

The FGLPROFILE file shown in the error message contains a syntax error.

Check the content of the profile file.

-6331 Front end module could not be loaded.

A front call failed because the module does not exist.

The front end is probably not supporting this module.

-6332 Front end function could not be found.

A front call failed because the function does not exist.

The front end is probably not supporting this function.

-6333 Front end function call failed. Reason: description

A front call failed for an unknown reason.

Call the support and report the problem.

-6334 Front end function call stack problem.

A front call failed because the number of parameter or returning values does not match.

Make sure the number of parameters and return values are correct.

-6340 Can't open file: description

The channel object failed to open the file specified.

Make sure the filename is correct and user has permissions to read/write to the file.

-6341 Unsupported mode for 'open file'.

You try to open a channel with an unsupported mode.

See channel documentation for supported modes.

-6342 Can't open pipe.

The channel object failed to open a pipe to execute the command.

Make sure the command you try to execute is valid.

-6343 Unsupported mode for 'open pipe'.

Library reference | 2356

Number Description

You try to open a channel with an unsupported mode.

See channel documentation for supported modes.

-6344 Can't write to unopened file, pipe or socket.

You try to write to a channel object which is not open.

First open the channel, then write.

-6345 Channel write error: description

An unexpected error occurred while writing to the channel. See the description for more
details.

-6346 Cannot read from unopened file, pipe or socket.

You try to read from a channel object which is not open.

First open the channel, then read.

-6360 This runner cannot execute any SQL.

The runtime system is not ready for database connections.

Check the configuration of BDL.

-6361 Dynamic SQL: type unknown: type-name .

The database driver does not support this SQL data type.

You cannot use this SQL data type, review the code.

-6364 Cannot connect to sql back end.

The runtime system could not initialize the database driver to establish a database
connection.

Make sure the database driver exists.

-6365 Database driver not connected yet.

There is an attempt to execute an SQL statement, but no database connect is
established.

First connect, then execute SQL statements.

-6366 Could not load database driver driver-name.

The runtime system failed to load the specified database driver. The database driver
shared object (.so or .DLL) or a dependent library could not be found.

Make sure that the specified driver name does not have a spelling mistake. If the driver
name is correct, there is probably an environment problem. Make sure the database
client software is installed. Check the UNIX™ LD_LIBRARY_PATH environment
variable or the PATH variable on Windows™. These must point to the database client
libraries.

-6367 Incompatible database driver interface.

Library reference | 2357

Number Description

The database driver interface does not match the interface expected by the runtime
system. This can occur if you copy an old database driver into a younger FGLDIR
installation.

Call the support to get a valid database driver.

-6368 SQL driver initialization function failed.

The runtime system failed to initialize the database driver, program must stop because
no database connection can be established.

There is probably an environment problem (for example, INFORMIXDIR or
ORACLE_HOME is not set). Check your environment and try to connect with a
database vendor tool (dbaccess, sqlplus) to identify the problem.

-6369 Invalid database connection mode.

You try to mix DATABASE and CONNECT statements, but this is not allowed.

Use either DATABASE or CONNECT.

-6370 Unsupported SQL feature.

This SQL command or statement is not supported with the current database driver.

Review the code and use a standard SQL feature instead.

-6371 SQL statement error number error-num (native-error).

An SQL error has occurred having the specified error number.

You can query SQLERRMESSAGE or the SQLCA record to get a description of the
error.

-6372 General SQL error, check SQLCA.SQLERRD[2].

A general SQL error has occurred.

You can query SQLERRMESSAGE or the SQLCA record to get a description of the
error. The native SQL error code is in SQLCA.SQLERRD[2].

-6373 Invalid database connection string.

The database connection string that you have used is not valid.

Verify the format of the connection string.

-6374 Wrong database driver context.

You try to EXECUTE, OPEN, FETCH, PUT, FLUSH, CLOSE or FREE a cursor that
was declared or prepared in a different connect and driver.

Issue a SET CONNECTION before the statement to select the same connection and
driver as when the cursor was created.

-6375 LOAD cannot get describe information for table columns.

The LOAD instructions needs column description to allocate the automatic fetch
buffers, but the database driver is not able to describe the table columns used in the
INSERT statement.

Library reference | 2358

Number Description

If the underlying database client API does not provide result set column description, the
LOAD statement cannot be supported.

-6601 Can not open Database dictionary 'directory-name'. Run database
schema extraction tool.

The schema file does not exist or cannot be found.

If the schema file exists, verify that the filename is spelled correctly, and that the file is
in the current directory or the FGLDBPATH environment variable is set to the correct
path. If the file does not exist, run the database schema extraction tool to create a
schema file.

-6602 Can not open globals file 'file-name'.

The globals file does not exist or cannot be found.

Verify that the globals file exists. Check the spelling of the filename, and verify that the
path is set correctly.

-6603 The file 'file-name' cannot be created for writing.

The compiler failed to create the file shown in the error message for writing.

Check for user permissions to make sure that the .42m file can be created.

-6604 The function 'function-name' can only be used within an INPUT
[ARRAY], DISPLAY ARRAY or CONSTRUCT statement.

The language provides built-in functions that can only be used within specific
interactive statements.

Review your code and make the necessary corrections.Check that the function is within
the interactive statement and that appropriate END statements (END INPUT/ARRAY/
DISPLAY ARRAY/CONSTRUCT) have been used.

-6605 The module 'module-name' does not contain function 'function-
name'.

The module shown in the error message does not hold the function name as expected.

The specified function needs to be defined in this module.

-6606 No member function 'function-name' for class 'class-name'
defined.

The function name is misspelled or is not a method of the class for which it is called.

Review your code and the documentation for the method you are attempting to use. If
the function is an object method, make sure the referenced object in your code is of the
correct class.

-6608 Resource error: entry-name :parameter expected

This is a generic error message for resource file problems.

-6609 A grammatical error has been found at 'seen-token' expecting:
expected-token.

A general syntax error message that indicates the location of the problem code and
what code was expected.

Library reference | 2359

Number Description

Review your code, particularly for missing END statements such as END FUNCTION
or END INPUT, etc., and make the necessary corrections.

-6610 The function 'function-name' has already been called with a
different number of parameters.

Earlier in the program, there is a call to this same function or event with a different
number of parameters in the parameter list.

Check the correct number of parameters for the specified function. Then examine all
calls to it, and make sure that they are written correctly.

-6611 Function 'function-name': unexpected number of returned values.

The function shown returned a different number of values as expected.

Check the body of the function for RETURN instructions.

-6612 Redeclaration of function 'function-name'.

The function shown was defined multiple times.

Change the name of conflicting functions.

-6613 The library function 'function-name' is not declared.

The function shown was not declared.

Change the name of the function.

-6614 The function 'function-name' may return a different number of
values.

The function shown contains multiple RETURN instructions which may return different
number of values.

Review the RETURN instructions to return the same number of values.

-6615 The symbol 'symbol-name' is unused.

This is a warning indicating that the shown symbol is defined but never used.

Useless definition can be removed.

-6616 The symbol 'symbol-name' does not represent a defined CONSTANT.

The shown symbol is used as a CONSTANT, but it is not a constant.

Review your code and check for this name.

-6617 The symbol 'symbol-name' is a VARIABLE.

The symbol shown is a VARIABLE which cannot be used in the current context.

Review your code and check for this name.

-6618 The symbol 'symbol-name' is a CONSTANT.

The symbol shown is a CONSTANT which cannot be used in the current context.

Review your code and check for this name.

-6619 The symbol 'symbol-name' is not an INTEGER CONSTANT.

Library reference | 2360

Number Description

The symbol shown is used as if it was an INTEGER constant, but it is not.

Review your code and check for this name.

-6620 The symbol 'symbol-name' is not a REPORT.

The symbol shown is used as a REPORT, but it is not defined as a REPORT.

Review your code and check for this name.

-6621 The symbol 'symbol-name' is not a FUNCTION.

The symbol shown is used as a FUNCTION, but it is not defined as FUNCTION.

Review your code and check for this name.

-6622 The symbol 'symbol-name' does not represent a valid variable
type.

The symbol shown is not known as a valid type to define a program variable.

Review your code and check for the type name.

-6623 The method 'method-name' cannot be called without an object.

The specified method is an object method of its class.

Review your code. Ensure that the required object of the class has been instantiated
and still exists, and that the method is called specifying the object variable as the prefix,
with the period character as a separator.

-6624 The method 'method-name' cannot be called with an object.

The specified method is a class method and cannot be called using an object
reference. No object has to be created.

Review your code. Ensure that the method is called using the class name as the prefix,
with the period character as a separator.

-6625 The statement is not Informix compatible.

The SQL statement is not Informix® compatible.

Change the SQL statement by using Informix® SQL syntax.

-6627 The symbol 'symbol-name' is not a VARIABLE.

The symbol shown is use as a variable, but is not defined as a variable.

Review your code and check for this name.

-6628 The GLOBALS file does not contain a GLOBALS section.

The filename specified in a GLOBALS statement references a file that does not contain
a GLOBALS section.

Review your code to make sure that the file specified by the filename is a valid
GLOBALS file, containing the required GLOBALS section.

-6629 The type 'type-name' is too complex to be used within a C-
extension.

Library reference | 2361

Number Description

The type of the global variable is too complex to be used in a C extension. This error
can occur when the -G option of fglcomp, to generate the C sources to share global
variables with C extensions, when a global variable is defined with complex data types
without a C equivalent.

Review the definition of the global variables and use simple types instead,
corresponding to a C data type. The BYTE, TEXT and STRING types are complex
types.

-6630 Memory overflow occurred during p-code generation. Simplify the
module.

A memory overflow occurred during compilation to p-code because the .4gl source
module is too large.

This problem can occur with very large source files. You must split the module into
multiple sources.

-6631 Incompatible types, found: source-type, required: target-type.

A LET or RETURNING tries to assign a value or an object reference to a variable
defined with a data type or class that is not compatible to the value type. This occurs
usually when using Java™ classes because Java™ is a strongly type language. For
example, assigning a Java™ string to a Java™ StringBuffer raises this error.

Define the target variable with a type corresponding to the assigned value.

-6632 Cannot find symbol symbol-name, location: category type-name.

The symbol used does not exist. This occurs typically when referencing a Java™ class
with an invalid name in the class path, or when referencing a class member that does
not exist.

Check the symbol names used in the instruction.

-6633 primitive-type cannot be dereferenced.

An expression references a method or a field with a primitive Java™ type, but primitive
types are not classes and therefore do not have methods or fields. For example, you
try to call a method with a symbol defined as integer or short in Java™: DISPLAY
java.lang.Short.MAX_VALUE.foo

Review the code using the symbol defined with a primitive type.

-6634 Incompatible or corrupted database dictionary 'database-name'.

The .sch database schema 'database-name' contains incompatible type definitions or is
corrupted.

Re-generate the .sch file with the fgldbsch tool by using the correct command line
options to generate compatible types.

-6636 Invalid usage of NULL in an expression

The compiler detected an NULL constant in an expression that will always evaluate to
NULL or FALSE. For example, when writing IF var == NULL THEN, the program
flow will never enter in the IF block.

-6774 The license 'license-num' is no more valid. Please contact your
vendor.

Library reference | 2362

Number Description

The license number is no longer valid.

Contact your vendor to obtain a new license number.

-6780 Invalid license request format.

The request sent to the license manager was not recognized.

Check that the version of the license manager is compatible with the runtime system.

-6781 Incompatible License Manager (flmprg) version. The minimum
version required is version-num.

The license manager is too old and is not compatible with the current runtime system.

Call the support center to get a new version of the license manager.

-6783 The license number 'license-num' is invalid. Please, contact
your vendor.

The license number could not be validated by the license server.

Call the support center to get a new license number.

-6784 The license 'license-num' has expired. Please, contact your
vendor.

The license is time limited and it has expired.

Call the support center to get a new license number.

-6785 CPU limit exceeded. Please, contact your vendor.

The license is CPU limited and the system has more CPUs as allowed.

Call the support center to get a new license number.

-6786 Report Writer token creation failed.

Check permissions on the lock/token directory (in FGLDIR or FLMDIR).

-6787 This GRW license requires a DVM license with a valid maintenance
date.

GRW licenses with the option 'DVM under maintenance' require that the DVM
maintenance key expiration date not be expired.

Update the DVM maintenance key.

-6788 Cannot get GRW report token information.

Contact your support center.

-6789 The installed license is invalid and cannot be used by this
product.

The current license is not valid for the product you have installed.

Contact your support center to get a license corresponding to the current installed
product.

Library reference | 2363

Number Description

-6802 Can not open Database dictionary 'schema-name'. Run schema
extraction tool.

The schema file does not exist or cannot be found.

If the schema file exists, verify that the filename is spelled correctly, and that the file is
in the current directory or the FGLDBPATH environment variable is set to the correct
path. If the file does not exist, run the database schema extraction tool to create a
schema file.

-6803 A grammatical error has been found at 'line-number', expecting
token-name.

This is a generic message for errors.

-6804 'form-name' form compilation was successful.

This is an information message indicating that the form was compiled without problem.

-6805 Open Form 'form-name', Bad Version: version-1, expecting:
version-2.

You have compiled your form with a version of the form compiler that is not compatible
with that used for compiling the other source code.

Compile your form file and related source code files using the same or compatible
versions of the compilers.

-6807 The label 'label-name' could not be used as column-title.

The form file defines an invalid TABLE column title.

Check for column titles which are not corresponding to column positions.

-6808 The widget 'widget-name' can not be defined as array.

The form file defines an item which is used as a matrix column.

Review your form definition.

-6809 The layout tag 'tag-name' is invalid, expecting: token-name.

The form compiler detected an invalid layout tag specification.

Review your form definition.

-6810 The attribute 'attribute-name' is invalid for item type 'type-
name'.

The form compiler detected an invalid attribute definition for this item type.

Review your form definition and check for invalid attributes.

-6811 Syntax error near 'token-1', expecting token-2.

A general syntax error message that indicates the location of the problem code and
what code was expected.

Review your code and make the necessary corrections.

-6812 Unterminated char constant.

Library reference | 2364

Number Description

The form compiler detected an unterminated character constant.

Review your form definition and check for missing quotes or double-quotes.

-6813 The element 'element-name' conflicts with group-box 'group-
name'.

You have used the same name for an element and for a group-box.

Review your form definition and ensure that the names used are unique.

-6814 All members of the SCREEN RECORD 'screen-record-name' must
reference the same Table or ScrollGrid.

The shown screen record references multiple tables or scrollgrids in your form file.

Review your form definition and use one unique table for a given screen record.

-6815 Invalid indentation in between braces.

The LAYOUT section of your form defines an invalid indentation.

Review your form definition and check for corresponding indentations.

-6817 TABLE container defined without a SCREEN RECORD in the
INSTRUCTION section.

The minimum value of the defined attribute must be lower than the maximum value.

Review your code and make the necessary corrections.

-6818 Min value must be lower that Max value.

The minimum value of the defined attribute must be lower than the maximum value.

Review your code and make the necessary corrections.

-6819 Number of elements in the SCREEN RECORD must match the number of
columns in TABLE container.

The elements defined in the screen record differs from the columns used for the TABLE
container.

Review your form definition and add missing table columns to the screen record, order
does not matter.

-6820 ScrollGrid and/or Group layout tags cannot be nested.

The form definition has nested ScrollGrid and/or Group layout tags. These tags cannot
be nested.

Review your form definition and make the necessary corrections.

-6821 HBOX tags cannot be used for ARRAYS.

The form definition is using an HBOX tag for an array, which is not permitted.

Review your form definition and make the necessary corrections.

-6822 Escaped graphical characters are not accepted in GRID sections.

You try to use Text User Interface graphics in the new GRID container.

Library reference | 2365

Number Description

This is not allowed, use GROUPs instead.

-6823 Close tag does not have a matching tag above.

The form definition has a close tag without a prior matching open tag. Open tags and
close tags must match.

Review your form definition file and make the necessary corrections.

-6824 The table 'table-name' is empty.

The form layout defines a table layout tag identified by tablename , but nothing was
found directly under this table which could be a column or a column title.

Append columns to the table layout region.

-6825 The tag 'tag-name' overlaps with table 'table-name'.

In the form layout, tagname overlaps the layout region of tablename and makes it
invalid.

Move or remove tagname , or redefine the layout region of tablename .

-6826 Checked value must be different from unchecked value for field
'field-name'.

The VALUECHECKED and VALUEUNCHECKED attributes have the same value.
This makes no sense because these attributes define the values corresponding to the
checked and unchecked states of a checkbox.

Use different values for these attributes.

-6827 Duplicated item key found for field 'field-name'.

The ITEMS attribute of field fieldname defines item keys with the same value.

Check ITEMS attribute and use unique key values. Note that '' and NULL are
equivalent.

-6828 The attribute attribute-name must belong to a column of a TABLE.

A form item uses an attribute that references a form field which is not defined or does
not belong to the TABLE.

Check the ATTRIBUTES section for invalid column references.

-6829 The column column-name referenced by the attribute-name
attribute must belong to the TABLE.

A form item uses an attribute that references a form field which is not defined or does
not belong to the TABLE.

Check the ATTRIBUTES section for invalid column references.

-6830 Not implemented (yet): feature-name

The feature or syntax you are using is not implemented yet.

This feature cannot be used in the Genero version you have installed.

-6831 At least one member of the SCREEN RECORD 'screen-record-name'
must not be a PHANTOM field.

Library reference | 2366

Number Description

A screen record is defined with form fields that are all defined as PHANTOM fields.

At least on screen record field must not be a PHANTOM field.

-6832 Repeated screen tags 'tag-name' are misaligned, must align on X
or Y.

The layout defines multiple tags with the same name, but these are not properly
aligned in the X or Y direction.

Edit the form file and make sure that repeated tags are correctly aligned.

-6833 Invalid TREE definition: the field 'field-name' must be an EDIT
or LABEL.

The form defines a TREE container with the field column defined with a wrong item
type.

Replace the item type by EDIT or LABEL.

-6834 Invalid TREE definition: the field 'field-name' must be defined
for the SCREEN RECORD.

The form defines a TREE container with an invalid field set.

Check that mandatory fields such as node name, parent id and node id fields are
defined.

-6835 The fields specified in the THRU option appear in the reverse
order.

The form defines a screen record by using the THRU or THROUGH keyword, but the
first field is defined after the last field in the ATTRIBUTES section.

Exchange the field names specified in the screen record definition, or review the
declaration order in ATTRIBUTES.

-6836 Invalid TREE definition: the attribute 'attribute-name'
conflicts with id or parentid.

The .per form defines a TREE with invalid configuration. You have probably used the
same field for the named attribute and for IDCOLUMN or PARENTIDCOLUMN.

Review the form definition and configure the TREE properly. You must use dedicated
columns for the attributes mentioned.

-6837 Invalid AGGREGATE definition: must be located below a table
column.

The .per form defines an AGGREGATE form item with a field tag that is not aligned
under a table column field tag.

Review the table layout and make sure that all aggregate fields are properly aligned
and placed below column tags.

-6838 This area is reserved for AGGREGATEs.

The .per form defines a TABLE with aggregate fields, but not all aggregate fields are
declared with the AGGREGATE item type.

Review the field definitions in the ATTRIBUTES section.

Library reference | 2367

Number Description

-6839 The screen tag 'tag-name' can not be defined in a TABLE.

The .per form defines a TABLE with columns using different field tag names, an no
AGGREGATE field is defined.

Review columns of the TABLE, each field tag of a given column must use the same tag
name, except if you want to define an AGGREGATE field.

-6840 Columns with AGGREGATE must have type EDIT.

The form field table column corresponding to the aggregate field must be of type EDIT.

-6841 FORM not contain TOPMENU or TOOLBAR.

The form layout includes an external form specification file containing a TOPMENU or a
TOOLBAR. Remove these sections from the included form file.

-6842 FORM is out of date.

The form layout includes an external form specification file the was compiled with a
older version.

-6843 A resizable SCROLLGRID requires the definition of exactly one
template.

A resizable SCROLLGRID (WANTFIXEDPAGESIZE=NO) must define a single row
template.

-6844 None form-field in resizable SCROLLGRID.

Elements in a resizable SCROLLGRID (WANTFIXEDPAGESIZE=NO) can only be
form fields.

-6845 The display field label 'field-name' has already been defined.

The field item tag is defined several times in different containers of the LAYOUT
section.

-6846 The screen tag 'tagname' can not be defined in a SCROLLGRID

A SCROLLGRID contains a layout tag such as <TABLE > or <TREE >. This is not
allowed.

-6847 TABINDEX has to be unique

Some elements of the form define the same TABINDEX. Review the ATTRIBUTE
section and make sure that all TABINDEX values are unique.

-6848 All TABLE columns must have the same size.

In a TABLE or TREE container, all columns must be defined with the same width and
height in the LAYOUT section.

-8000 Dom: Node not found.

The node could not be found in the current document.

Review your code.

-8001 Dom: Invalid Document.

Library reference | 2368

Number Description

The document passed to the DOM API is not a valid document. Review your code.

-8002 Dom: Invalid usage of NULL as parameter.

NULL cannot be used at this place.

Review your code.

-8003 Dom: A node is inserted somewhere it doesn't belong.

You try to insert a node under a parent node which does not allow this type of nodes.

Check for the possible nodes and review your code.

-8004 Sax: Invalid hierarchy.

The SAX handler encountered an invalid hierarchy.

Make sure parent/child relations are respected.

-8005 Deprecated feature: feature-name

The feature you are using will be removed in a next version.

A replacement for the feature is normally available.

-8006 The string resource file 'file-name' cannot be found.

The string file shown could not be found.

Check if file exists and if path is valid.

-8007 The string resource file 'file-name' cannot be read.

The string file shown could not be read.

Check if file exists and if user has read permissions.

-8008 There is no string text defined for the 'key-name' string key.

The runtime system could not find a string resource corresponding to the shown key.

Check if the key is defined in one of the resource files.

-8009 String resource syntax error near 'token-name', expecting token.

The string file compiler detected a syntax error.

Check for invalid syntax in the .str file.

-8012 Duplicate string key 'key-name' (file-name : line) IGNORE
LINE.

The string file compiler detected duplicated string keys.

Review the .str file and remove duplicated keys.

-8013 The string file 'file-name' can not be opened for writing.

The string file compiler could not write to the specified string file.

Make sure the user has write permissions and file name is valid.

-8014 The string file 'file-name' can not be read.

Library reference | 2369

Number Description

The runtime system could not read from the specified string file.

Make sure the user has read permissions.

-8015 Field (field-name) in ON CHANGE clause not found in form.

The field used in the ON CHANGE clauses was not found in the form specification file.

Make sure the field name of the ON CHANGE clause matches a valid form field.

-8016 You cannot have multiple ON CHANGE clauses for the same field.

It is not possible to specify multiple ON CHANGE clauses using the same field.

Remove unnecessary ON CHANGE clauses.

-8017 SFMT: Invalid % index used.

The format string is not valid.

Check for invalid % positions.

-8018 SFMT: Format error.

The format string is not valid.

Check for invalid % positions.

-8020 Multiple ON ACTION clauses with the same action name appear in
the statement.

It is not possible to specify multiple ON ACTION clauses using the same action name.

Remove unnecessary ON ACTION clauses.

-8021 Multiple ON KEY clauses with the same key name appear in the
statement.

It is not possible to specify multiple ON KEY clauses using the same key.

Remove unnecessary ON KEY clauses.

-8022 Dom: Cannot open xml-file.

The file could not be loaded.

Check file name and user permissions.

-8023 Dom: The attribute 'attribute-name' does not belong to node
'node-type'.

You try to set an attribute to a node which does not have such attribute.

This is not allowed, review your code.

-8024 Dom: Character data can not be created here.

You try to create a text node under a node which does not allow such nodes.

This is not allowed, review your code.

-8025 Dom: Cannot set attributes of a character node.

You try to set attributes in a text node.

Library reference | 2370

Number Description

This is not allowed, review your code.

-8026 Dom: The attribute 'attribute-name' can not be removed: the node
'node-type' belongs to the user-interface.

You try to remove a mandatory attribute from an AUI node.

You can only change the value of this attribute, try 'none' or an empty string.

-8027 Sax: can not write.

The SAX handlers could not write to the destination file.

Make sure the file path is correct and the user has write permissions.

-8029 Multiple inclusion of the source file 'file-name'.

The preprocessor detected that the specified file was included several times by the
same source.

Remove unnecessary file inclusions.

-8030 The full path to the source file 'file-name' is too long.

The preprocessor does not support very long file names.

Rename the file.

-8031 The source file 'file-name' cannot be read.

The preprocessor could not read the file specified.

Make sure the use has read permissions.

-8032 The source file 'file-name' cannot be found.

The preprocessor could not find the file specified.

Make sure the file exists.

-8033 Extra token found after 'directive-name' directive.

The preprocessor detected an unexpected token after the shown directive.

Review your code and make the necessary corrections.

-8034 feature-name : This feature is not implemented.

This preprocessor feature is not supported.

Review your code and make the necessary corrections.

-8035 The macro 'macro-name' has already been defined.

The preprocessor found a duplicated macro definition.

Review your code and make the necessary corrections.

-8036 A &else directive found without corresponding &if, &ifdef or
&ifndef directive.

The preprocessor detected an unexpected &else directive.

Library reference | 2371

Number Description

Review your code and make the necessary corrections.

-8037 A &endif directive found without corresponding &if, &ifdef or
&ifndef directive.

The preprocessor detected an unexpected &endif directive.

Review your code and make the necessary corrections.

-8038 Invalid preprocessor directive & name found.

The preprocessor directive shown in the error message does not exist.

Review your code and check valid macros.

-8039 Invalid number of parameters for macro-name.

The number of parameters of the preprocessor macro shown in the error message
does not match de number of parameters in the definition of this macro.

Review your code and check for the number of parameters.

-8040 Lexical error: Unclosed string.

The compiler detected an unclosed string and cannot continue.

Review your code and make the necessary corrections.

-8041 Unterminated condition &if or &else.

The preprocessor found an un-terminated conditional directive.

Review the definition of this directive.

-8042 The operator '##' can only be used with identifiers and numbers.
token is not allowed.

The preprocessor found an invalid usage of the ## string concatenation operator.

Review the definition of this macro.

-8043 Could not run FGLPP, command used: command

The compiler could not run the preprocessor command shown in the error message.

Make sure the preprocessor command exists.

-8044 Lexical error: Unclosed comment.

The compiler detected an unclosed comment and cannot continue.

Review your code and make the necessary corrections.

-8045 This type of statement can only be used within an INPUT, INPUT
ARRAY, DISPLAY ARRAY, CONSTRUCT or MENU statement.

This statement has not been used within a valid interactive statement, which must
be terminated appropriately with END INPUT, END INPUT ARRAY, END DISPLAY
ARRAY, END CONSTRUCT, or END MENU.

Review your code and make the necessary corrections.

Library reference | 2372

Number Description

-8046 This type of statement can only be used within an INPUT, INPUT
ARRAY, DISPLAY ARRAY or CONSTRUCT statement.

This statement has not been used within a valid interactive statement, which must
be terminated appropriately with END INPUT, END INPUT ARRAY, END DISPLAY
ARRAY, or END CONSTRUCT.

Review your code and make the necessary corrections.

-8047 Invalid use of 'dialog'. Must be used within an INPUT, INPUT
ARRAY, DISPLAY ARRAY or CONSTRUCT statement.

The predefined keyword DIALOG has not been used within a valid interactive
statement, which must be terminated appropriately with END INPUT, END INPUT
ARRAY, END DISPLAY ARRAY, or END CONSTRUCT.

Review your code and make the necessary corrections.

-8048 An error occurred while preprocessing the file 'file-name'.
Compilation ends.

The Genero BDL preprocessor could not parse the whole source file and stopped
compilation.

Review the source code and check for not well formed & preprocessor macros.

-8049 The program cannot ACCEPT (INPUT|CONSTRUCT|DISPLAY) at this
point because it is not immediately within (INPUT|INPUT ARRAY|
CONSTRUCT|DISPLAY ARRAY) statement.

ACCEPT XXX has not been used within a valid interactive statement, which must be
terminated appropriately with END INPUT, END PROMPT, or END INPUT ARRAY.

Review your code and make the necessary corrections.

-8050 Dom: Invalid XML data found in source.

ACCEPT DISPLAY has not been used within a valid DISPLAY ARRAY statement,
which must be terminated with END DISPLAY ARRAY.

Review your code and make the necessary corrections.

-8051 Sax: Invalid processing instruction name.

The om.SaxDocumentHandler.processingInstruction() does not allow invalid
processing instruction names such as 'xml'.

<?xml ..?> is not a processing instruction, it is reserved to define the XML file text
declaration. You must use another name.

-8052 Illegal input sequence. Check LANG.

The compiler encountered an invalid character sequence. The source file uses a
character sequence which does not match the locale settings (LANG). Check source
file and locale settings.

-8053 Unknown preprocessor directive 'directive-name'.

The preprocessor directive shown in the error message is not a known directive.

Library reference | 2373

Number Description

Check for typo errors and read the documentation for valid preprocessor directives.

-8054 Unexpected preprocessor directive.

The preprocessor encountered an unexpected directive.

Remove the directive.

-8055 The resource file 'file-name' contains unexpected data.

The XML resource file shown in the error message does not contain the expected
nodes. For example, you try to load a ToolBar with ui.Interface.loadActionDefaults().

Check if the XML file contains the node types expected for this type of resource.

-8056 XPath: Unclosed quote at position integer.

The XPath parser found an unexpected quote at the given position.

Review the XPath expression.

-8057 XPath: Unexpected character 'char' at position pos.

The XPath parser found an unexpected character at the given position.

Review the XPath expression.

-8058 XPath: Unexpected token/string 'token-name' at position pos.

The XPath parser found an unexpected token or string at the given position.

Review the XPath expression.

-8059 SQL statement or language instruction with vendor proprietary
syntax.

The compiler found an SQL statement which is using a database specific syntax. This
statement will probably not run on other database servers as the current.

Review the SQL statement and use standard/common syntax and features.

-8060 Spacer items are not allowed inside a SCREEN sections.

The form contains spacer items in a SCREEN section, while these are only allowed in
LAYOUT.

Review the form specification file.

-8061 A TABLE row should not be defined on multiple lines.

All columns of a row in a TABLE container must be in a single line.

Use a SCROLLGRID if you want to show row cells on multiple lines.

-8063 The client connection timed out, exiting program.

The runtime system could not establish the connection with the front-end after a given
time. This can for example happen during a file transfer, when the front-end takes too
much time to answer to the runtime system.

Check that your network connection is working properly.

-8064 File transfer interrupted.

Library reference | 2374

Number Description

An interruption was caught during a file transfer.

File could not be transferred, you need to redo the operation.

-8065 Network error during file transfer.

An socket error was caught during a file transfer.

Check that your network connection is working properly.

-8066 Could not write destination file for file transfer.

The runtime system could not write the destination file for a transfer.

Make sure the file path is correct and check that user has write permissions.

-8067 Could not read source file for file transfer.

The runtime system could not read the source file to transfer.

Make sure the file path is correct and check that user has read permissions.

-8068 File transfer protocol error (invalid state).

The runtime system encountered a problem during a file transfer.

A network failure has probably raised this error.

-8069 File transfer not available.

File transfer feature is not supported.

Make sure the front-end supports file transfer.

-8070 The localized string file 'file-name' is corrupted.

The shown string resource file is invalid (probably invalid multibyte characters corrupt
the file).

Check for locale settings (LANG), make sure the .str source uses valid characters and
recompile it.

-8071 'symbol-name' is already defined.

The form file defines several elements of the same type with the same name.

Review the form file and use unique identifiers.

-8072 Statement must terminate with ';'.

An ESQL/C preprocessor directive is not terminated with a semicolon.

Add a semicolon to the end of the directive.

-8073 Invalid 'include' directive file name.

An include preprocessor directive is using an invalid file name.

Check the file name.

-8074 A &elif directive found without corresponding &if, &ifdef or
&ifndef directive.

The preprocessor found an &elif directive with no corresponding &if .

Library reference | 2375

Number Description

Add the &if directive before the &elif, or remove the &elif .

-8075 The compiler plugin name could not be loaded.

fglcomp could not load the plugin because it was not found.

Make sure the plugin exists and can be loaded.

-8076 The compiler plugin name does not implement the required
interface.

fglcomp could not load the plugin because the interface is invalid.

Check if the plugin corresponds to the version of the compiler.

-8077 The attribute 'attribute-name' has been defined more than once.

The variable attribute shown in the error message was defined multiple times.

Review the variable definition and remove duplicated attributes.

-8078 The attribute 'attribute-name' is not allowed.

The variable attribute shown in the error message is not allowed for this type of
variable.

Review the possible variable attributes.

-8079 An error occurred while parsing the XML file.

The runtime system could not parse an XML file, which is probably not using a valid
XML format.

Check for XML format typos and if possible, validate the XML file with a DTD.

-8080 Could not open xml file.

The specified XML file cannot be opened.

Make sure the file exists and has access permissions for the current user.

-8081 Invalid multibyte character has been encountered.

A compiler found an invalid multibyte character in the source and cannot compile the
form or module.

Check locale settings (LANG) and verify if there are no invalid characters in your
sources.

-8082 The item 'item-name' is used in an invalid layout context.

The form item name is used in a layout part which does not support this type of form
item. This error occurs for example when you try to define a BUTTON as a TABLE
column.

Review your form definition file and use correct item types.

-8083 NULL pointer exception.

The program is using calling a method thru an object variable which is NULL.

You must assign an object reference to the variable before calling a method.

Library reference | 2376

Number Description

-8084 Can't open socket: description

The channel object failed to open a TCP socket. See the description for more details.

Make sure the IP address and port are correct.

-8085 Unsupported mode for 'open socket'.

You try to open a channel with an unsupported mode.

See channel documentation for supported modes.

-8086 The socket connection timed out.

Socket connect could not be established and timeout expired.

Check all network layers and try again.

-8087 File error in BYTE or TEXT readFile or writeFile.

File I/O error occurred while reading from or writing to a file.

Verify the file name, content and access permissions.

-8088 The dialog attribute 'attribute-name' is not supported.

A dialog instruction was declared with an ATTRIBUTES clause containing an
unsupported option.

Review the ATTRIBUTES clause and remove unsupported option.

-8089 Action 'action-name' not found in dialog.

You try to use and action name that does not exist in the current dialog.

Verify if name of the action is defined by an ON ACTION clause.

-8090 Field 'field-name' already used in this DIALOG.

The DIALOG instruction binds the same field-name or screen-record multiple times.

Review all sub-dialog blocks and check the field-names / screen-records.

-8091 The clause 'clause-name' appears more than once.

You have defined the same dialog control block multiple times. For example, AFTER
ROW was defined twice.

Remove the un-necessary control blocks.

-8092 At least one field for this INPUT ARRAY must be editable.

An INPUT ARRAY is executed on fields that are read-only. At least one field must be
editable and active.

Review the form specification file or check that at least one field is active.

-8093 Multi-range selection is not available in this context.

You try to use multi-range selection but it is not possible in the current dialog type.

Disable this feature.

Library reference | 2377

Number Description

-8094 Multi-range selection is not available in this context.

You try to use multi-range selection but it is not possible in the current dialog type.

Disable this feature.

-8095 Cannot change selection flag for this range of rows.

An attempt of selection flag modification with DIALOG.setSelectionRange() failed
because the range is out of bounds or because there is no multi-range selection
available in this context.

Make sure you can use multi-range selection, and check the start and end index of the
range.

-8096 General SQL Warning, check SQLCA.SQLERRD[2] or SQLSTATE.

The last SQL statement has generated an SQL warning setting the
SQLCA.SQLAWARN flags.

Program execution can continue. However, you should take care and check the native
SQL code and the SQL message in SQLERRMESSAGE.

-8097 Value too large to fit in a TINYINT.

The TINYINT data type can accept numbers with a value range from -128 to +127.

To store numbers that are outside this range, redefine the column or variable to use the
SMALLINT or INTEGER type.

-8098 ON FILL BUFFER conflicts with DISPLAY ARRAY as a tree.

The DISPLAY ARRAY instruction is using a treeview as decoration, but it implements
also an ON FILL BUFFER trigger to do paged mode. The paged mode is not possible
when using a treeview, because all rows of visible nodes are required (i.e. the dialog
cannot display a tree only with a part of the dataset).

To populate dynamically the array for a treeview, use the ON EXPAND to add new
nodes and ON COLLAPSE to remove nodes.

-8099 The form 'form-name' is incompatible with the current runtime
version. Rebuild you forms.

The .42f form was probably compiled with an earlier version as the current runtime
system.

Recompile the form with the fglform compiler corresponding to the current fglrun.

-8100 Attempt to access a closed dialog.

A call to a DIALOG class method is done with a dialog object that has terminated.

Review the program logic and call the DIALOG methods only for active running dialogs.

-8101 The TABLE column tag 'tag-name' appears multiple times in the
row definition.

A TABLE column can only be used once in the row definition, you have probably
repeated the same screen tag by mistake.

Library reference | 2378

Number Description

Modify the TABLE row definition in the layout section in order to use each column only
once.

-8102 Syntax error in preprocessor directive.

The source file contains a preprocessor macro with an invalid syntax.

Check the preprocessor manual page and fix the syntax error.

-8103 The source and destination file name of a file transfer must not
be NULL or empty.

The program is doing an fgl_getfile() or fgl_putfile() and the source or destination file
name is NULL or empty.

Provide a valid file name for both source and destination parameters.

-8104 Cannot read from TUI: system-error .

A program running in text mode (FGLGUI=0) failed to read from console input stream.

Check the console/terminal settings.

-8105 Not found.

This message displayed by the runtime system when a record was not found. It can be
displayed in different contexts, for example when searching a record in a list with the
built-in search feature.

-8106 Field (field-name) in ON ACTION INFIELD not found in form.

The field name used in an ON ACTION INFIELD action handle could not be found in
the form.

Make sure you are using the correct field name and field prefix (table name or screen
record name).

-8107 FGL_LENGTH_SEMANTICS environment variable is invalid. Valid
values are BYTE and CHAR

The value specified in the FGL_LENGTH_SEMANTICS environment variable must be
BYTE or CHAR.

-8108 Subdialog dialog-name: already active

The sub-dialog is already in use.

-8109 JSON parse error: description

Verify the input string passed to the JSON parsing function. See the description for
more details.

-8110 JSON stringify error: description

The JSON serialization failed. See the description for more details.

-8111 Can not happen: description

Library reference | 2379

Number Description

The runtime system encounters an unexpected situation. The message is displayed to
the user, but the program flow will continue. This unexpected situation must be fixed by
programmers.

-8112 Illegal argument.

The runtime system intruction, function or object method does not expect the value
passed as argument. This can for example occur when calling the Array.sort()
method with an invalid array-record member name.

-8113 The actions DETAILACTION and DOUBLECLICK must be different.

The DETAILACTION and DOUBLECLICK attributes are used in DISPLAY ARRAY to
configure a table decoration and behavior. These attributes cannot define the same
action.

-8114 Completer item list too long. The list must not contain more
than 50 items.

The array passed to the setCompleterItems() dialog method is too long, reduce the list.

-8115 Character to boolean conversion error.

The array passed to the setCompleterItems() dialog method is too long, reduce the list.

-8116 Illegal context.

The current instruction is used on a wrong context.

-8117 '##' cannot appear at start of macro expansion.

The preprocessor operator ## must join two identifiers (a ## b).

-8118 '##' cannot appear at end of macro expansion.

The preprocessor operator ## must join two identifiers (a ## b).

-8119 '#' is not followed by a macro parameter.

The preprocessor operator # must be followed by a parameter of the macro.

-8120 File transfer: copy file to file-name failed.

The runtime system could not copy the specified file.

-8121 File transfer: remove file file-name failed.

The runtime system could not delete the specified file.

-8122 File transfer: touch file file-name failed.

The runtime system could not touch the specified file.

-8123 \x used with no following hex digits.

The \xNN character code is malformed.

-8124 hex escape sequence out of range.

Library reference | 2380

Number Description

The \xNN character code contains an invalid hexadecimal value.

-8125 File transfer: create symbolic link file-name failed.

The file transfer required a symbolic link that could not be created.

-8126 Image to font mapping: Font file file-name not found.

The font file could not be found, check FGLIMAGEPATH environment variable.

-8127 Image to font mapping: Format error in file file-name.

The image to font mapping file contains errors.

-8128 Image to font mapping: Cannot open file file-name.

The image to font mapping file could not be found, check FGLIMAGEPATH
environment variable.

-8200 apidoc: parameter name 'param-name' is invalid.

The compiler has detected a comment error while extracting the source documentation:
The @param variable name is not in the list of parameters in the next FUNCTION
definition.

Check the function parameter name.

-8201 apidoc: tag missing: @param param-name.

The compiler has detected a comment error while extracting the source documentation:
There is a missing @param tag that should describe a parameter of the next
FUNCTION definition.

Check the function parameter name.

-8202 apidoc: invalid tag name @ tag-name.

The compiler has detected a comment error while extracting the source documentation:
The @ tag-name tag is not a known tag name.

Check for typo errors in the tag name.

-8300 Cannot load java shared library. Reason: system-error

The runtime system could not load the JVM shared library (or DLL).

Make sure that a JRE is installed on the machine and check the environment
(LD_LIBRARY_PATH on UNIX™ or PATH on Windows™).

-8301 Cannot create java VM.

The runtime system could load the JVM shared library (or DLL), but could not initialize
the Java™ VM with a call to JNI_CreateJavaVM().

Check that the Java™ requirements and resources needs to create a Java™ VM.

-8302 Array element type is not a Java type.

The fglcomp compiler detected a Java™ Array definition which is not using a Java™

type for the elements.

Library reference | 2381

Number Description

Review the DEFINE statement and use a Java™ type.

-8303 Java is not supported.

The platform you are using does not support a recent Java™ version required by
Genero.

You cannot use the Java™ interface in this operating system, you must review your
source code and remove all Java™ related parts.

-8304 Cannot assign a value to final variable 'variable-name'.

The program tries to set a Java™ class variable which is not writable.

Review the program logic.

-8305 The Java variable 'variable-name' can not be used here.

The program tries to use a Java™ class variable in an invalid context. For example, a
Java™ class variable is used in an INPUT instruction.

Review the program logic and use a regular Genero BDL variable.

-8306 Java exception thrown: java-exception-text.

A Java™ exception has been thrown while executing Java™ code.

Check the exception text and review the code.

-8307 Java object required.

A Java™ object reference is expected by the instruction. This error typically occurs in a
CAST() or INSTANCEOF().

Check the expression used in the instruction and make sure it references a Java
object.

-8400 module.name has private access.

An instruction references a module function or module variable which is declared as
private.

Make the function or variable public in the imported module.

-8401 Reference to name is ambiguous.

A function or variable referenced without the module prefix, but exists in several
imported modules. This error can also be printed by the compiler for Java™ calls.

Add the module prefix before the object name to remove the ambiguity.

-8402 Cyclic IMPORT FGL involving module.

Some modules are importing each other and introduce a cyclic reference which is
impossible to resolve.

Extract common language elements into a new module.

-8403 Module name does not exist.

The module name to be imported could not be found.

Library reference | 2382

Number Description

Make sure the module name matches the file name.

-8404 Module name has not been imported.

A statement is referencing module name which has not been imported.

Import the module before usage.

-8405 category-name qualifier-name.symbol-name has not been defined.

The symbol identified by qualifier-name.symbol-name cannot be found. For example,
a START REPORT or SUBDIALOG is referencing a report or sub-dialog symbol with
module prefix, but the symbol is not found in the specified module.

You must import the module defining the referenced symbol.

-8406 The function 'function-name' has not been defined. This
conflicts with IMPORT FGL.

The function name is referenced in the compiled module, but none of the imported
modules define that function.

You must import the module containing the function.

-8407 The type of the parameter 'param-name' is not an SQL type:
cannot be inserted into a temporary table used for this report.

The REPORT parameter name is defined with a BDL type that has no SQL equivalent
and thus cannot be used to create the temporary table needed to sort rows for a two-
pass report.

Define the parameter with an SQL-compatible type (CHAR, VARCHAR, INTEGER,
DECIMAL, etc).

-8408 ON ACTION action-name conflicts with ON action-name.

The dialog block defines conflicting ON ACTION and ON triggers, defining the same
actions. For example, an ON ACTION delete is defined within a dialog block that is also
defining an ON DELETE trigger.

Review the dialog actions, if you want to use ON triggers defining actions.

-8409 The action action-name shadows another action with the same
name.

The dialog defines ON ACTION blocks using the same action name at different levels
(dialog, sub-dialog and field level).

Use different action names when a conflict occurs.

-8410 The symbol 'symbol-name' is not a DIALOG.

The symbol referenced is not defined as a DIALOG subdialog block.

-8500 The Genero Mobile pcode size limit has been reached.

Contact your vendor for details.

-8501 Modules compiled with Genero require a Genero license at
runtime.

Library reference | 2383

Number Description

Contact your vendor for details.

-9000 Value not allowed for this XML attribute.

Remove the value for this attribute or see the "Mapping between simple BDL and XML
data types" section.

-9001 Value mandatory for this XML attribute.

Set a value to the XML attribute. See the "Mapping between simple BDL and XML data
types" section.

-9002 Cannot set the XML attribute, because only one XSD attribute is
allowed per definition.

Select the unique appropriate XSD data type.

-9003 XML Attribute only allowed on a BDL TYPE.

Remove the XML attribute or change your BDL DEFINE instruction into a BDL TYPE
definition.

-9004 XML Attribute is not allowed on a type definition.

Remove the XML attribute or change your BDL TYPE definition into a BDL DEFINE
instruction.

-9005 XML Attribute XSTypeNamespace cannot be set without attribute
XSTypeName.

Add a XSTypeName attribute.

-9006 XML Attribute is only allowed on a simple data type definition.

Remove the XML attribute or change your RECORD or ARRAY into a simple BDL data
type.

-9007 XML Attribute is only allowed on a BDL RECORD definition.

Change your BDL variable definition into a RECORD.

-9008 XML Attribute is only allowed on a one dimentional array
definition.

Remove the XML attribute or use a one dimentional array.

-9009 Attributes XMLAttribute, XMLElement, XMLAny and XMLBase are
exclusives.

Choose only one of the above available choices.

-9010 Attributes XMLChoice, XMLAll, XMLSequence, XMLSimpleContent and
XSComplexType are exclusives.

Choose only one of the above available choices.

-9011 Attribute XSTypeName has been defined twice with the same value
XML attribute and the same XSTypeNamespace value, but not the
same definition.

Library reference | 2384

Number Description

Define a unique (XSTypeName,XSTypeNamespace) couple for your program.

-9012 XMLName or XMLNamespace not allowed on nested XMLChoice
variable.

Remove the XMLName and XMLNamespace attributes.

-9013 XMLName or XMLNamespace not allowed on nested XMLSequence
variable.

Remove the XMLName and XMLNamespace attributes.

-9014 Unrecognized XML attribute value.

Review the available values for this XML attibute.

-9015 XML Attribute is only supported on a member of a record.

Remove the XML attribute.

-9016 XML Attribute is only supported on a record's member when
XMLChoice is defined.

Remove the XML attribute.

-9017 XML Attribute is only supported on a record's member when
XMLSimpleContent is defined.

Remove the XML attribute.

-9018 XML Attribute not supported on this simple type.

Remove the XML attribute or change your BDL type definition.

-9019 Attribute XMLTypeNamespace cannot be set without attribute
XMLTypeName.

Set XMLTypeName attribute.

-9020 XMLSimpleContent attribute supports only XMLAttribute and
XMLAnyAttribute attributes.

Remove the unallowed XML attributes.

-9021 Attribute XMLBase has been defined more than once in the BDL
record.

Set only one XMLBase attribute.

-9022 Attribute XMLSelector has been defined more than once in the BDL
record.

Set only one XMLSelector attribute.

-9023 XML Attribute cannot be set with other attributes.

Remove all the other XML attributes.

-9024 Attribute XMLSelector is missing in the BDL record.

Library reference | 2385

Number Description

Set the XMLSelector attribute on one of the record member.

-9025 Attribute XMLBase is missing in the BDL record.

Set the XMLBase attribute on one of the record member.

-9026 Nested XML attribute cannot be defined on a BDL TYPE.

Remove the Nested XML attribute.

-9027 Nested XML attribute cannot be defined on root variable.

Remove the Nested XML attribute.

-9028 Invalid parameter.

See the documentation about the function paramaters.

-9029 Parameters of a published RPC Web Service operation must be a
Record or NULL.

Review your parameters definition.

-9030 Parameters of a published DOC Web Service operation must be a
Record, an Array or NULL.

Review your parameters definition.

-9031 XML Attribute is not allowed on a BDL record's member.

Remove the XML attribute or set it at the appropriate place.

-9032 XML Attribute can only be set on a ARRAY defined inside a
RECORD.

Remove the XML attribute or set it at the appropriate place.

-9033 XML Attribute cannot be defined at first level of a variable.

Remove the XML attribute or set it at the appropriate place.

-9034 Attributes 'XMLAttribute' are not allowed on nested sequence or
choice.

Remove the XMLAttribute attribute.

-9035 RPC Web Functions cannot have XMLList set on one of the
parameters.

Put your BDL ARRAY inside a BDL RECORD.

-9036 Attribute XMLName is mandatory on BDL variable when used as SOAP
Header.

Add the XMLName attribute.

-9037 RPC Web Functions cannot have XMLNamespace set on one of the
parameters.

Library reference | 2386

Number Description

Remove the XMLNamespace attribute.

-9038 XSComplexType attribute allows only attributes with one optional
nested list or nested record.

Set only one XMLOptional attribute for all nested record members.

-9039 XMLName or XMLNamespace not allowed on nested XMLAll.

Remove XMLName and XMLNamespace.

-9040 Nested XML Attribute is not allowed on an array.

Remove the XML attribute

-9041 XMLBase Attribute allows only one additional XSD attribute.

Set a unique XSD attribute.

-9042 XML Attribute value is not allowed on a BDL record's member.

Set the appropriate value to the specified XML attribute.

-9043 Unsupported facet constraint for the BDL type.

Check the available facet constraint in "Mapping between simple BDL and XML data
types" section.

-9044 Invalid value for facet constraint 'constraint-name'.

Check the available facet constraint value. See XML facet constraint attributes on page
2529.

-9045 Facet constraint attributes cannot be defined without a XSD
simple type attribute.

Add the appropriate XSD attribute.

-9046 Facet XSDLength and XSDMinLength or XSDMaxLength cannot be used
together.

Select only one of the above attributes.

-9047 XML Attribute not allowed on BDL objects.

Remove the XML attribute.

-9048 Attribute XMLName cannot be set with XMLAny or XMLAnyAttribute.

Remove the XMLName attribute.

-9049 XML Attribute not allowed on members of xmlchoice='inherited'
records.

Remove the XML attribute.

-9050 Parameter with public qualifier not allowed.

Remove the PUBLIC instruction.

Library reference | 2387

Number Description

-9051 Parameters of published Web Service operations must be variables
in global or modular scope.

Move your variables to a GLOBALS instruction or to modular scope.

-9052 A published Web service header must be a variable in global or
modular scope.

Move your Web service header to a GLOBALS instruction or to modular scope.

-9053 Web service function with private qualifier not allowed.

Remove the PRIVATE instruction.

-9054 Web service function must be a string literal.

You cannot use a variable for your web service function name.

-9055 XML Attribute is not allowed on an array definition.

Remove the XML attribute.

-9056 Attribute XMLAny has been defined more than once per BDL record.

Use only one XMLAny attribute in a BDL RECORD.

-9057 Attribute XMLAnyAttribute has been defined more than once per
BDL record.

Use only one XMLAnyAttribute attribute in a BDL RECORD.

-9058 Attribute XMLList and XMLAnyAttribute are exclusives.

Use only one of the above XML attributes.

-9059 Element of BDL array with XMLAnyAttribute must be a BDL record
containing three variables for the namespace, name, value of
type STRING.

Example: DEFINE arr DYNAMIC ARRAY OF RECORD ns, name, value STRING END
RECORD

-9060 XML Attribute is only allowed on dynamic arrays.

Change your BDL ARRAY into a DYNAMIC ARRAY.

-9061 XML Attribute cannot be set inside a nested record.

Remove the XML attribute.

-9062 Attribute XMLAttribute is not allowed after attribute
XMLAnyAttribute.

Move the record member with XMLAnyAttribute attribute to the last position.

-9063 A published Web service fault must be in global or modular
scope.

Move your variables to a GLOBALS instruction or to modular scope.

Library reference | 2388

Number Description

-9064 Attribute XMLName is mandatory on the BDL variable when used as
Fault.

Set the XMLName attribute.

-9065 Colon not allowed for XML attribute value.

Remove the colon.

-9066 XML Attribute is only allowed on a root variable.

Remove the attribute or move it to the root variable.

-9067 Bad W3CEndPointReference definition.

Review your RECORD definition. It should match this structure:

RECORD ATTRIBUTES(W3CEndpointReference)
 address STRING, -- The location of the Web Service (for ex:
 URL)
 ref RECORD
 ... (other members defining the state)
 END RECORD
END RECORD

See com.WebService.CreateStatefulWebService on page 2012.

-9068 Invalid state BDL variable, only simple variables or
W3CEndpointReference record allowed.

Check that "state" parameter TYPE of function
com.WebService.CreateStatefulWebService is correct. Its type must be a simple type
definition or a W3CEndPointReference RECORD.

-9069 Registered HTTP variable error.

Check that the BDL variable match the definition set
in com.WebService.registerInputHTTPVariable or
com.WebService.registerOutputHTTPVariable.

-10098 Incorrectly formed hexadecimal value.

You try to load data with LOAD or locate a BYTE variable with a file contained
malformed hexadecimal values.

Check the file content and fix the typos before loading again.

-10099 Invalid delimiter. Do not use '\' or hex digits (0-9, A-F, a-f).

You try to LOAD or UNLOAD data with an invalid field delimiter.

Change the field delimiter to a valid character such as | (pipe) or ^ (caret).

-15500 Internal runtime error occurred in WS server program.

Contact your support center.

-15501 Cannot create WS operation because the given function is not
defined.

Library reference | 2389

Number Description

Verify that the name of the BDL function of fgl_ws_server_publishFunction() is correct.

-15502 Invalid WS-function declaration, no parameters allowed.

Verify that the BDL function has no input and no output parameters.

-15503 Operation name is already used in the current web service.

You must change the name of the Web-Function operation in the function
fgl_ws_server_publishFunction().

-15504 WS server port already used by another application.

You must change the port number in the function Fgl_ws_server_start().

-15505 Some BDL data types are not supported by XML.

Verify that all exposed functions don't contain one of the following data types:

• DATETIME beginning with MINUTE
• DATETIME beginning with SECOND
• INTERVAL beginning with YEAR and/or MONTH

-15511 Invalid fgl_ws_set/getOption() parameter.

Verify that the option flag of the fgl_ws_setOption()/ fgl_ws_getOption() function exists.

-15512 WS input record not defined.

Verify that the name of the input record on the fgl_ws_server_publishFunction() exists.

-15513 WS output record not defined.

Verify that the name of the output record on the fgl_ws_server_publishFunction()
exists.

-15514 The port value from the FGLAPPSERVER environment variable or
from the parameter of the fgl_ws_server_start() function is not
a numeric one.

Verify that the port value contains only digits. See fgl_ws_server_start()

-15515 No application server has been started at specified host.

Verify that FGLAPPSERVER contains the right host and port where the application
server is listening.

-15516 No more licenses available.

Contact your support center.

-15517 Current runner version not compatible with the Web Services
Extension.

Install the right version of the Genero BDL.

-15518 The input namespace of your Web function is missing.

Add a valid input namespace in fgl_ws_server_publishFunction().

Library reference | 2390

Number Description

-15519 The output namespace >namespace of your Web function is missing.

Add a valid output namespace in fgl_ws_server_publishFunction().

-15520 Cannot load a certificate or private key file.

Verify that each ws.ident.security FGLPROFILE entries contain a valid security
identifier.

-15521 Cannot find a certificate in the Windows key store.

Verify that each ws.ident.security FGLPROFILE entries contain a valid Windows™

security identifier.

-15522 Cannot load the Certificate Authorities file.

Verify that the security.global.ca FGLPROFILE entry contains the correct Certificate
Authorities filename.

-15523 Cannot create the Certificate Authorities from the Windows key
store.

Verify that you have enough rights to access the Windows™ key store.

-15524 Cannot set the cipher list.

Verify that all ciphers in the list are valid ones and supported by openssl.

-15525 Unable to reach the HTTP proxy.

Verify that the proxy.http.location FGLPROFILE entry contains the correct HTTP proxy
address.

-15526 Unable to reach the HTTPS proxy.

Verify that the proxy.https.location FGLPROFILE entry contains the correct HTTPS
proxy address.

-15527 Unknown HTTP proxy authenticate identifier.

Verify that the proxy.http.authenticate FGLPROFILE entry contains a valid HTTP
authenticate identifier.

-15528 Unknown HTTPS proxy authenticate identifier.

Verify that the proxy.https.authenticate FGLPROFILE entry contains a valid HTTP
authenticate identifier.

-15529 Cannot create a HTTP authenticate configuration.

Verify that all authenticate logins and passwords are correctly set.

-15530 Cannot create an encrypted HTTP authenticate configuration.

Verify that all authenticate logins and encrypted passwords are correctly set.

-15531 Cannot create a server configuration.

Verify that all ws.ident.url FGLPROFILE entries are correctly set.

Library reference | 2391

Number Description

-15532 Unknown server configuration security identifier.

Verify that all ws.ident.security FGLPROFILE entries contain a valid Security identifier.

-15533 Unknown server configuration authenticate identifier.

Verify that all ws.ident.authenticate FGLPROFILE entries contain a valid HTTP
Authenticate identifier.

-15534 Invalid self object.

Contact your support center.

-15535 Cannot perform operation due to invalid parameters.

Check all parameters against the built-in classes documentation.

-15536 Service registration failed, see SQLCA.SQLERRM for more details.

Check the following :

• A service of the same name already exists
• The namespace of the service is missing
• A header cannot have the same name and namespaces as an operation

-15537 Cannot create web service, see SQLCA.SQLERRM for more details.

Check that the service has a valid name and namespace.

-15538 Cannot create Web operation, see SQLCA.SQLERRM for more details.

Check that operation name and namespace are valid according to the style (Document
or RPC).

-15539 Cannot publish Web operation, see SQLCA.SQLERRM for more
details.

Check that input or output headers have previously been created.

-15540 Published BDL function not found, see SQLCA.SQLERRM for more
details.

Check that BDL function to be publish exists.

-15541 Published BDL function not correctly defined, see SQLCA.SQLERRM
for more details.

Check that BDL function has no input or output parameters.

-15542 Input parameter of published operation error. See SQLCA.SQLERRM
for more details.

Contact your support center.

-15543 Output parameter of published operation error. See SQLCA.SQLERRM
for more details.

Contact your support center.

Library reference | 2392

Number Description

-15544 Web Service header configuration error, see SQLCA.SQLERRM for
more details.

Verify that a one-way function do not have an output header.

-15545 Service is already registered. You cannot modify a service after
it has been registered.

Check that you do not call a service modifier method on a service after registration.

-15546 Invalid option.

Check the option name according to documentation.

-15547 Unsupported web service operation.

Verify if a Document style operation does not perform SOAP Section5 encoding.

-15548 Bad URI.

Check that URI passed to a HttpRequest or TcpRequest is valid.

-15549 HTTP runtime exception, see SQLCA.SQLERRM for more details.

Contact your support center.

-15550 XML runtime exception, see SQLCA.SQLERRM for more details.

Contact your support center.

-15551 WSDL generation failed.

Contact your support center.

-15552 Charset conversion exception, see SQLCA.SQLERRM for more
details.

Change server charset response via a HTTP accept header or change you application
locale.

-15553 TCP runtime exception, see SQLCA.SQLERRM for more details.

If detailed message is 'The TCP connection has been interrupted', then check that your
network was working properly and that the INT_FLAG was not set to TRUE.

When working with a Web Service application, this can the result of a COM error.
Check in FGLWSDEBUG to see whether it was shut down on the client or server side.

For example:

WS-DEBUG (IO ERROR)
Class: TCPConnection::atomicReceive()
Msg: TCP input stream shut down.
Code: 104
WS-DEBUG END=

You can find the 104 code in /usr/include/asm-i386/errno.h (depending on
your system).

Library reference | 2393

Number Description

In this example it correspond to: #define ECONNRESET 104 /* Connection
reset by peer */

• Review the WSDL and see if what we send to the server is correct
• Review the server log and see why it has ended the connection

-15554 Index is out of bound.

Check your index maximum value.

-15555 Unsupported request-response feature.

Check the streaming operations order or for invalid usage. For example, in function
readTextRequest(), the incoming request can be read only once, so processing the
incoming message while sending the response is not allowed.

-15556 No request was sent.

Check that you called one of the doRequest(), doXmlRequest() or doTextRequest()
method before to call getResponse() or getAsyncResponse().

-15557 Request was already sent.

Check that you do not call twice one of the doRequest(), doXmlRequest() or
doTextRequest() method.

-15558 Waiting for a response.

Check that you do not perform a new request before reading the response of previous
one.

-15559 No stream available.

Check that you do not call a method to read on a stream that has not yet been created.

-15560 Streaming is over.

Check that you do not read a streaming response that was closed.

-15561 Streaming in progress.

Check that you do not call twice beginXmlResponse() without a call to
endXmlResponse().

-15562 Streaming not yet started.

Check that you do not call endXmlRequest() or endXmlResponse() without a
beginXmlRequest() or beginXmlResponse().

-15563 Streaming already started.

Check that you do not call twice beginXmlRequest() or beginXmlResponse().

-15564 Unexpected peer stream was shutdown.

The peer closed connection during reading operation.

-15565 Cannot return incoming request, see SQLCA.SQLERRM for more
details.

Library reference | 2394

Number Description

Check detailed message.

-15566 Operation failed, see SQLCA.SQLERRM for more details.

Check the parameter for invalid data.

-15567 Parameter cannot be NULL.

Check that the parameter is not NULL

-15568 BDL callback function not found, see SQLCA.SQLERRM for more
details.

Check that BDL callback function exists.

-15569 BDL callback function requires one input and one output
parameter, see SQLCA.SQLERRM for more details.

Check BDL callback parameters according to documentation.

-15570 Web Service fault error. See SQLCA.SQLERRM for more detail.

Contact your support center.

-15571 Stateful Service error. See SQLCA.SQLERRM for more detail.

Contact your support center.

-15572 Access denied lock error.

Either the file is already locked, or the application does not have the write access right
to the given path.

-15573 HTTP Multipart error : description.

One of the methods of the COM multipart API has failed. See the description for more
details. Contact your support center if the error detail does not provide the information
needed to fix the error.

-15574 Cannot load Certificate Authorities from path : path.

The certificate could not be found according to the current FGLPROFILE configuration.

Check the certificate authority settings as described in: HTTPS configuration on page
2440.

-15575 Incoming request has been closed : reason

The GAS has disconnected the web service server, for example while
calling the com.WebServiceEngine.GetHTTPServiceRequest or
com.WebServiceEngine.HandleRequest methods.

Use a TRY/CATCH block to trap this error, as described in
com.WebServiceEngine.GetHTTPServiceRequest on page 2027.

-15576 Invalid TCP IP version.

The FGLPROFILE configuration parameter ip.global.version defines a value
different from valid possible values (4 and 6).

Library reference | 2395

Number Description

-15577 Unknown network interface name : name.

The FGLPROFILE configuration parameter ip.global.v6.interface.name
defines a network interface that does not exist.

-15578 Request canceled by user.

The HTTP request initiated by a com.HTTPRequest.getResponse() method has
been canceled by the user.

-15598 XML deserialization error.

The WSDL contract does not match the BDL variable definition.

Check that BDL variables are correctly generated according to the WSDL.

-15599 Internal error, should not happen.

Contact your support center.

-15600 Operation failed.

Check method for invalid parameters according to documentation.

-15601 Name cannot be NULL.

Check that name parameter is not NULL.

-15602 Namespace cannot be NULL.

Check that namespace parameter is not NULL.

-15603 Prefix cannot be NULL.

Check that prefix parameter is not NULL.

-15604 Value cannot be NULL.

Check that parameter is not NULL according to documentation.

-15605 Node cannot be NULL.

Check that node parameter is not NULL.

-15606 Text cannot be NULL.

Check that text parameter is not NULL.

-15607 Target of a processing instruction cannot be NULL.

Check that target parameter is not NULL.

-15608 Name of an entity reference cannot be NULL.

Check that entity name parameter is not NULL.

-15609 XPath expression cannot be NULL.

Check that xpath parameter is not NULL.

Library reference | 2396

Number Description

-15610 Filename cannot be NULL.

Check that filename parameter is not NULL.

-15611 Document cannot be NULL.

Check that document parameter is not NULL.

-15612 DTD string cannot be NULL.

Check that dtd parameter is not NULL.

-15613 Stax cannot be NULL.

Check that stax parameter is not NULL.

-15614 Malformed XML name.

Check that xml name is well-formed.

-15615 Malformed XML string.

Check that xml string is well-formed.

-15616 Malformed XML prefix.

Check that xml prefix is well-formed.

-15617 Malformed XML namespace.

Check that xml namespace is well-formed.

-15618 Bad validation type.

Check validation type parameter.

-15619 No XML schema found.

Check that a valid XML schema is used for validation.

-15620 No DTD schema found.

Check that a DTD schema is present in XML document.

-15621 Feature or option cannot be NULL.

Check that parameters are not NULL.

-15622 Feature or option is unsupported.

Check option or feature name according to documentation.

-15623 Feature or option value is invalid.

Check option or feature validity according to documentation.

-15624 Node is not part of the document.

Check that node belong to the same XML document.

Library reference | 2397

Number Description

-15625 Node does not have the correct parent node.

Check that node to remove belongs to the right parent node.

-15626 Node is already linked to another node.

Check that node is not already attached to another node.

-15627 Cannot add a node to itself.

Check that node to add is not itself.

-15628 Index is out of bounds.

Check index maximum value.

-15629 StaxWriter runtime exception: reason

See SQLCA.SQLERRM for more details and check the reason for the error.

-15630 StaxReader runtime exception: reason

See SQLCA.SQLERRM for more details and check the reason for the error.

-15631 Serializer runtime exception: reason

See SQLCA.SQLERRM for more details and check the reason for the error.

-15632 Document loading runtime exception, check
xml.DomDocument.getErrorDescription() for more details.

Check detailed message of dom document.

-15633 Document saving runtime exception, check
xml.DomDocument.getErrorDescription() for more details.

Check detailed message of dom document.

-15634 Invalid encoding.

Check encoding value.

-15635 PublicID of a DTD cannot be set with a SystemID.

Check DTD node creation

-15636 Undefined namespace prefix in the XPath expression.

Check an undeclared prefix used in XPath expression.

-15637 XPath expression error.

Check XPath expression.

-15638 A namespace in the XPath namespace list is missing.

Check for an undeclared namespace used in XPath expression

-15639 XPath function has two mandatory parameters.

Library reference | 2398

Number Description

Check parameters according to documentation.

-15640 Internal XPath error.

Contact your support center.

-15641 Invalid XPath namespace.

Check namespace value passed to XPath method.

-15642 Unable to load schema.

Check XML schema parameters in DomDocument.setFeature().

-15643 Schemas are malformed or inconsistent.

Check XML schema validity in DomDocument.setFeature().

-15644 URI is malformed.

Check that URI is well-formed according to documentation.

-15645 Protocol layer needs a new try to complete operation.

Sax writer close operation requires a new request to complete previous one.

-15646 Charset conversion error.

Check fglrun LANG and system locale.

-15647 Unable to load xml security library.

Contact your support center.

-15648 Xml security operation failed. See SQLCA.SQLERRM for more
detail.

Check detailed message.

-15649 URL cannot be null.

Check if XML-Security URL is NULL.

-15650 CryptoX509 cannot be null.

Verify that CryptoX509 object has been correctly instantiated.

-15651 CryptoKey cannot be null.

Verify that CryptoKey object has been correctly instantiated.

-15652 Bad signature transformation.

Check transformation URL validity passed to appendReferenceTransformation()

-15653 Bad signature digest.

Check digest URL validity passed to createReference().

-15654 Bad signature node.

Library reference | 2399

Number Description

Check XML-Signature node passed to CreateFromNode().

-15655 Bad key type.

Check key identifier URL.

-15656 Bad key usage.

Verify usage of CryptoKey object passed to setKeyEncryptionKey() or setKey().

-15657 Bad XPathFilter2 type, only intersect, subtract or union
allowed.

Verify type used in a XPathFilter2 transformation.

-15658 Bad derived key URL.

Check derived key identifier URL.

-15699 Internal error, should not happen.

Contact your support center.

-15700 Called operation failed, see SQLCA.SQLERRM for more details.

See SQLCA.SQLERRM for details on why the operation failed.

-15701 Invalid parameter.

Check that your security library function has the correct parameters.

-15702 File access denied.

Check that your security library function has the permissions to access to the file.

-15703 File does not exist.

Check that the file exist on your system for the security library function to access.

-15704 Algorithm not supported.

Check that the algorithm is in the supported list for security library function. See
security.Digest.CreateDigest on page 2294.

-15705 Invalid current object.

Check that the context for security library function is correctly initialized. See
security.Digest.CreateDigest on page 2294.

-15799 Internal security error.

Contact your support center.

Web services | 2400

Web services

Create a Web service client or server with Genero BDL.

The Genero APIs for creating Web services can be found in the Library section of this manual. See The
com package on page 2009 and The xml package on page 2103.

•

General
These topics provide you with an introduction to Genero Web Services and the information needed to get
working with the latest version of the software.

• Introduction to Web Services on page 2400
• SOAP Web Services basics on page 2404
• RESTful Web Services basics on page 2416
• Getting started and examples on page 2416
• Debugging on page 2416
• Platform-specific notes on page 2416
• Known issues on page 2419
• Legal Notices on page 2419

Introduction to Web Services

This topic provides an introduction to Web Services with the Genero Web Services Package (GWS). It is
intended to help those using GWS for the first time to understand basic Web Services concepts, and to
quickly start their development with the Genero tools.

Concepts

Web services are a standard way of communicating between applications over an intranet or Internet. They
define how to communicate between two entities:

• A server that exposes services
• A client that consumes services

Server usage example

A server exposes a"StockQuotation" service that responds to an operation "getQuote". For the "getQuote"
operation, the input message is a stock symbol as a string, and the output message is a stock value as a
decimal number.

The "getQuote" operation is a function written in Genero BDL, and it is published on the server. This
function retrieves the stock value for the stock symbol passed in, and returns it.

Client usage example

The Web service client application calls the function as if it were a local function. It passes the stock
symbol in to the function, and stores the returned value in a variable. If the Web Service operation is
named WebService_StockQuotation_getQuote and the local variable is svalue, the Web Service is
called as follows:

LET svalue = WebService_StockQuotation_getQuote("MyStockSymbol")

Web services | 2401

Service Oriented Architecture (SOA) and web services

Service Oriented Architecture (SOA) is a philosophy of how to connect systems and exchange data to
solve business problems. Rather than concentrating on a specific task or transaction, SOA addresses how
to use data from various sources, reduce human work, and mitigate the effects of change in a business
process and its supporting systems.

The SOA defines the services to be provided; Web Services are the means of implementing those
services. Web Services provide a platform-neutral technology to connect multiple systems in a flexible
manner, where the platform-neutrality helps insulate the SOA from changes to the underlying systems.

Web Services work by answering requests for information and returning well defined, structured XML
documents. Because XML is simple text and Web Services can be invoked via the hypertext transfer
protocol (HTTP), it does not matter what platform runs the Web Service, or what platform receives the XML
document.

An SOA's resilience to change is accomplished by adhering to good Web Services design practices:

• Build a Web Service that performs a specific task
• Have a rigid structure for the data

Web Services tell exactly how to ask for the information in an XML document written using the Web
Services Descriptive Language (WSDL). This self-describing document describes the service the Web
Service will perform and how to form the request for its data. Each Web Service must have an associated
WSDL document, so that developers and applications know what to expect from the Web Service, and how
to invoke it.

Migrating to SOA and web services

Developing an SOA and moving to Web Services is an iterative and evolutionary process. It requires work
and diligent design. When switching to Web Services from another integration method, it is recommended
to initially focus on shorter term business benefits, targeting an SOA and Web Services project that has
tangible goals with measurable benefits.

Once an SOA contains some useful services, these services can be arranged together in a workflow that
automates a business process. Web Services can be reused to answer new questions, and implemented
as new business services in an SOA. A well-defined Web Service does not contain business logic or
business process information. Because each Web Service in an SOA can be called individually to perform
a specific task, they can be arranged (orchestrated) together to perform many different business functions.
As a result, companies with a mature SOA in place can change business processes through configuring of
the orchestration software as opposed to programming individual links between systems.

Planning a web service

When creating a Web Service, you not only have to think of the task at hand, but you should also consider
growth. You likely want the Web Service to be flexible; to be able to handle different types of input.
Prepare the Web Service for what is probable. Developers should think bigger than the needs of a single
application. You should think of reusing existing services, and think how your services can be reused by
others.

Security will likely play a larger role than it did previously with existing in-house application infrastructures
using programmed links between systems; you will need to become versed in security issues.

Keep the goals of SOA in mind when designing and coding Web Services: Flexibility. Reusability.
Interoperability.

Genero web services extension

The Genero Web Services Extension (GWS) is an extension to the Genero Business Development
Language. It installs within the Genero Business Development Language directory. The fglgws package
includes both Genero Business Development Language and Genero Web Services.

Web services | 2402

The Genero Application Server is required to manage your Web Services in a deployment environment. It
is not required for Web services development, unless you are interested in testing deployment issues.

Important: When programming a Web service, your applications must include IMPORT com at the
top of each module. This imports the Genero Web Services Extension library named com:

IMPORT com

Web services standards

Web services are platform-independent and programming language-independent. The World Wide Web
consortium defines the Web services standards. For more information about these standards, refer to the
"Web services" section of their web site at http://www.w3.org. The Genero Web Services package supports
the WSDL 1.1 specification of March 15, 2002 as well as some previous specifications.

The standards involved in what is commonly called "Web services" include XML, XML Schema, SOAP,
WSDL, and HTTP.

XML

XML (eXtensible Markup Language) defines a machine-independent way of exchanging data. For
example, an XML representation of the following BDL data structure:

DEFINE Person
RECORD Attribute (XMLName="Person")
 FirstName VARCHAR(32) Attribute (XMLName="FirstName"),
 LastName VARCHAR(32) Attribute (XMLName="LastName"),
 Age INTEGER Attribute (XMLName="Age")
END RECORD

Could be:

<Person>
 <FirstName>John</FirstName>
 <LastName>Smith</LastName>
 <Age>35</Age>
</Person>

The record definition allows you to specify XML attributes for data types. This feature was added with
Genero 2.00.

XML schema

XML Schema defines the elements, entities, and content model of an XML document. For example, for the
example document shown in the topic XML on page 2402, the schema could say that the XML document
contains an element "Person", and that each "Person" contains one and only one element "FirstName",
"LastName", and "Age". The XML Schema has additional capabilities, such as data type control and
content restrictions.

An XML Schema allows an XML document to be validated for correctness.

SOAP

SOAP (Simple Object Access Protocol) is a high-level communication protocol between a server and the
client. It defines the XML data flow between the server and the client. The "StockQuote" service mentioned
in the Concepts section exchanges messages using the following syntax:

Request

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Body>
 <getQuote>
 <stockSymbol>MyCompany</stockSymbol>

http://www.w3.org

Web services | 2403

 </getQuote>
 </soap:Body>
</soap:Envelope>

Response

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Body>
 <getQuoteResponse>
 <stockValue>999.99</stockValue>
 </getQuoteResponse>
 </soap:Body>
</soap:Envelope>

SOAP relies on a lower-level protocol for the transport layer.

Genero Web Services use SOAP over HTTP, and can also perform low-level XML and TEXT over HTTP
communications on the client side. This allows communication between applications using the core Web
technology, taking advantage of the large installed base of tools that can process XML delivered plainly
over HTTP, as well as SOAP over HTTP.

WSDL

The WSDL (Web Services Description Language) file describes the services offered by a server. It
contains:

• The description of the operations offered by the server, and each operation's input and output
messages.

• The location of the SOAP server.
• Internal connection and protocol details (transport layer, encoding, namespaces, and so on).

A WSDL description is sufficient to provide all the information required to communicate with the SOAP
server.

Genero Web Services package provides a tool, fglwsdl, that enables Genero client applications to obtain
the WSDL description of a Web Service.

HTTP

HTTP (Hypertext Transfer Protocol) is the set of rules for exchanging files (text, graphic images, sound,
video, and other multimedia files) on the World Wide Web.

Web services style options

The Web Services Style options available for created Genero Web services are WS-I (Web Services
Interoperability organization) compliant:

• RPC Style Service (RPC/Literal) is generally used to execute a function, such as a service that returns
a stock option.

• Document Style Service (Doc/Literal) is generally used for more sophisticated operations that
exchange complex data structures, such as a service that sends an invoice to an application, or
exchanges a Word document.

• RPC Style Service (RPC/Encoded) is the legacy style, now provided for backwards compatibility. You
most likely will not be using the RPC/Encoded style to create new Web Services.

Web services | 2404

SOAP Web Services basics
Topics in this section are only relevant for Web Services based on the SOAP protocol.

Migration notes
Migrating GWS server applications
What you need to know when migrating GWS server applications.

• Migrating GWS server runners only on page 2404
• Migrating GWS server runners and using new APIs on page 2404
• Operation publication restrictions on page 2405

Migrating GWS server runners only

There is no need to create a special runner for Genero Web Services 2.x. Instead, the GWS 2.x library is
imported into your applications. If you want to migrate your existing 1.x GWS Server application to 2.x to
avoid the need for a special runner, as well as to take advantage of any bug fixes, take the following steps:

1. Add the following statement at the top of any .4gl module where you have used GWS 1.3x functions:

import com

2. Compile and re-link your GWS Server application (.42r).

This imports the new GWS com library, and ensures that any GWS 1.3x functions that you have used will
be compatible. Your existing Genero 1.3x Client applications, as well as third-party Client applications, will
continue to work.

Migrating GWS server runners and using new APIs

If you want to take advantage of the new features and simplify future migrations, you can migrate your
Genero Web Services (GWS) Server runner and also use the new GWS 2.x APIs. All the 1.3x publishing
functions for all the operations in your application must be replaced with 2.x publishing functions. Since
this does not change the interface, all existing Genero 1.3x Client applications, as well as third-party Client
applications, will continue to work.

Since 1.3x only supports RPC-Encoded style services, you must use the RPC style functions of the new
2.x APIs as the replacement functions, with setInputEncoded and setOutputEncoded set to true. And,
you cannot add XML attributes to the records used as Web Service function parameters.

To replace the fgl_ws_server_publishfunction() statement in an existing GWS Server application; for
example:

CALL fgl_ws_server_publishfunction(
 "EchoInteger",
 "http://tempuri.org/webservices/types/in", "echoInteger_in",
 "http://tempuri.org/webservices/types/out", "echoInteger_out",
 "echoInteger")

1. Add this statement at the top of each module:

import com

2. Define variables for the WebService and WebOperation objects:

DEFINE serv com.WebService
DEFINE op com.WebOperation -- Operation of a WebService

3. Create the GWS Server object:

LET serv = com.WebService.CreateWebService(
 "EchoInteger",
 "http://tempuri.org/webservices")

Web services | 2405

4. Use the 2.x publishing functions for each operation:

LET op = com.WebOperation.CreateRPCStyle(
 "echoInteger",
 "EchoInteger",
 echoInteger_in,
 echoInteger_out)
CALL op.setInputEncoded(true)
CALL op.setOutputEncoded(true)
CALL serv.publishOperation(op,NULL)

5. Compile and re-link your GWS Server application (.42r)

GWS 2.x also allows your Server application (.42r) to contain multiple services. If you would like 2.x and
1.3x GWS to coexist in the same .42r executable, replace the existing publishing 1.3x functions.

Operation publication restrictions

If you use a variable as the name of the function to publish, you will have an error message at compile
time.

For example:

com.WebOperation.CreateRPCStyle(test,"Add",add_in,add_out)

Where test is a string variable, add_in and add_out are input and output records.

At compile time, you get the error message:

error:(-9054) Web service function must be a string

The function name in parameter can only be a string literal not a string variable.

Since version 2.21, FGL has introduced the concept of PUBLIC/PRIVATE function, there is a risk for a user
to publish private functions. Private functions are not always available at runtime.

As a workaround you can add a switch depending on the function name value in order to call the
appropriate publication API with the name in a string literal such as following sample:

CASE function_name
 WHEN "Operation1"
 LET op = com.WebOperation.CreateDocStyle(
 "Operation1","Operation1",op1_in,op1_out)
 WHEN "Operation2"
 LET op = com.WebOperation.CreateDocStyle(
 "Operation2","Operation2",op2_in,op2_out)
 OTHERWISE
 DISPLAY "ERROR"
END CASE

In Java™ or in .NET you cannot publish different numbers of operations for a same service, everything is
done at compile time. For instance, when you publish a web service in Java™, only the public methods will
be published as operation of the service. There is no way to add or remove some methods at runtime. The
only way you have is to create another Java™ class.

Be aware that if you dynamically change the service operations names you are creating a different service,
which might be confusing for the web service client.

Enhance the GWS server application to be WS-I compliant (recommended)

Important: You must be able to change all the Client applications that access your migrated
Genero Web Services (GWS) Server.

Web services | 2406

If you use the Literal styles now available in GWS 2.x for your Web Service, your application will be WS-
I compliant. However, the migration techniques still use the RPC/Encoded style (Only RPC/Encoded was
supported in GWS 1.3x.). If you can change all the client applications that access your migrated GWS
Server, we recommend that you enhance the GWS Server application to be WS-I compliant.

1. Replace the publishing functions in the GWS Server application, but omit the setInputEncoded and
setOutputEncoded lines. The resulting style will be Literal.

2. The enhanced GWS Server will have a new RPC/Literal WSDL that must be used to regenerate the
client stub with the fglwsdl tool:

fglwsdl -o NewClientstub http://localhost:8090/MyCalculator?WSDL

3. Compile that new client stub, and re-link it with the GWS Client application. This operation must be
repeated for each Client application accessing that service.

4. Third party Client applications must also be changed to use the new WSDL.

Migrating GWS client applications
Migration from version 1.3x to 2.2x

If you use a Genero 2.2x runner for the GWS Client application, you must:

1. Regenerate the GWS Client stubs using the -compability option of the fglwsdl tool, so the function
prototypes will be compatible:

fglwsdl -compatibility -o NewClientstub http://localhost:8090/
MyCalculator?WSDL

2. Compile the GWS Client stubs and re-link the Client application (.42r).

Migration from version 2.0x to 2.2x

You must regenerate all client stubs into your application using the fglwsdl tool.

This is mandatory because the generated code is based on the low-level COM and XML APIs and is
completely different from versions prior to 2.1x; otherwise, you won't be able to execute the code.

Migration from version 2.1x to 2.2x

It is recommended to regenerate all client stubs into your application using the fglwsdl tool.

Migration from version 2.xx to 2.4x

It is recommended to regenerate all client stubs into your application using the fglwsdl tool.

If you have modified the server location at runtime via the generated global variable in your client
application, you MUST apply following modification:

• Prior to version 2.40, you had something like following:

LET Calculator_CalculatorPortTypeLocation = "http://host:port/Calculator"

• Starting with version 2.40, you must have something like following:

LET Calculator_CalculatorPortTypeEndPoint.Address.Uri =
 "http://host:port/Calculator"

See Change client behavior at runtime.

Migration from version 2.xx to 3.xx

It is recommended to regenerate all client stubs into your application using the fglwsdl tool.

Important: It is mandatory to regenerate the client stubs, to support fault response with HTTP error
code of 200.

See Change client behavior at runtime.

Web services | 2407

WebService engine options

In the class com.WebServiceEngine, two options have been renamed and two options moved to a new
class.

Renamed options
The http_invoketimeout and tcp_connectiontimeout options have been respectively renamed into
readwritetimeout and connectiontimeout, as they are now available for either HTTP or TCP protocol.
While the old option names remain for backward compatibility, using the new option names is strongly
recommended.

Moved options
xml_ignoretimezone and xml_usetypedefinition options were part of the com.WebServiceEngine
class. They have been moved to the class xml.Serializer, which groups functions on serialization.

I4GL migration guide
Migrate an I4GL web service provider to Genero

This section explains how to migrate a I4GL web service provider to a Genero application providing the
same web service in order to let all clients, already accessing that service, unmodified (excepted for the
hostname of course).

Note: The migration will be based on the SOA zipcode demo in the I4GL package.

Step 1: Use the I4GL function and the I4GL .4cf configuration file

Use the I4GL .4cf configuration file to get all information about the I4GL web service

For example, the I4GL zipcode demo has following .4cf configuration file :

[SERVICE]
 TYPE = publisher
 INFORMIXDIR = /dbs/32bits/ifx/11.70.uc2
 DATABASE = i4glsoa
 CLIENT_LOCALE = en_US.8859-1
 DB_LOCALE = en_US.8859-1
 INFORMIXSERVER = ol_moscou1170uc2
 HOSTNAME = moscou.strasbourg.4js.com
 PORTNO = 9876
 I4GLVERSION = 7.50.xC4
 WSHOME = /dbs/32bits/ifx/11.70.uc2/AXIS2C
 WSVERSION = AXIS1.5
 TMPDIR = /tmp/zipcodedemo
 SERVICENAME = ws_zipcode
 [FUNCTION]
 NAME = zipcode_details
 [INPUT]
 [VARIABLE]NAME = pin TYPE = CHAR(10)[END-VARIABLE]
 [END-INPUT]
 [OUTPUT]
 [VARIABLE]NAME = city TYPE = CHAR(100)[END-VARIABLE]
 [VARIABLE]NAME = state TYPE = CHAR(100)[END-VARIABLE]
 [END-OUTPUT]
 [END-FUNCTION]
 [DIRECTORY]
 NAME = /home/f4gl/fg/i4gl
 FILE = soademo.4gl,
 [END-DIRECTORY]
[END-SERVICE]

Web services | 2408

Then simply copy your I4GL function without any modification into a new Genero file and add the Genero
IMPORT com instruction at the beginning of the file.

For example, the I4GL soa demo contains the zipcode_details service (soademo.4gl)

IMPORT com

FUNCTION zipcode_details(pin)
 DEFINE state_rec RECORD
 pin CHAR(10),
 city CHAR(100),
 state CHAR(100)
 END RECORD,
 pin CHAR(10),
 sel_stmt CHAR(512);

 LET sel_stmt= "SELECT * FROM statedetails WHERE pin = ?";
 PREPARE st_id FROM sel_stmt;
 DECLARE cur_id CURSOR FOR st_id;
 OPEN cur_id USING pin;
 FETCH cur_id INTO state_rec.*;
 CLOSE cur_id;
 FREE cur_id;
 FREE st_id;
 RETURN state_rec.city, state_rec.state

END FUNCTION

Note: you may need some minor code modification for compatibility.

Step 2: Create a BDL RECORD for the input parameters

Add a new modular BDL record where all members map to one of your I4GL web service input parameter,
and keep the parameter order as defined in I4gl .4cf file.

You must then specify the web service input message name via the Genero XML attribute called
XMLName, and assign it to the FUNCTION NAME as defined in the I4GL .4cf file.

For example, in the I4GL zipcode demo there is only one parameter: pin . So add the following record at
the beginning of the Genero file :

DEFINE zipcode_details_in RECORD ATTRIBUTES(XMLName="zipcode_details")
 pin CHAR(10)
 END RECORD

Note: Genero Web Services supports complex data type as input parameters.

Step 3: Create a BDL RECORD for the output parameters

Add another modular BDL record where all members map to one of your I4GL web service output
parameter, and keep the parameter order as defined in I4GL .4cf file.

You must then specify the web service output message name via the Genero XML attribute called
XMLName, and assign it to the FUNCTION NAME as defined in the I4GL .xcf file concatenated to
response.

For example, in the I4GL zipcode demo there are two parameters: city and state. So add following record
at the beginning of the Genero file:

DEFINE zipcode_details_out RECORD
 ATTRIBUTES(XMLName="zipcode_detailsresponse)
 city CHAR(100),
 state CHAR(100)

Web services | 2409

 END RECORD

Note: Genero Web Services supports complex data type as output parameters.

Step 4: Create a BDL wrapper function

Create a Genero BDL wrapper function without any parameters that will then use the input and output
record created at Step 2 and 3 to call the I4GL function passing it the parameters retrieved from the
records.

For example, in the I4GL zipcode demo there are 1 input and 2 output parameters. So the BDL wrapper
function must use these records to call the I4GL function as following :

FUNCTION zipcode_details_g()
 CALL zipcode_details(zipcode_details_in.pin)
 RETURNING zipcode_details_out.city,zipcode_details_out.state
END FUNCTION

Step 5: Publish the wrapper function as a Genero web service

Use the COM APIs to publish the I4GL function as a web service based on I4GL .4cf configuration file to
get a compatible Genero Web service.

To create a new BDL function in charge of the service publication, you will need the following elements of
the I4GL .4cf configuration file:

• The name of the service that is defined in the SERVICENAME entry
• The namespace of the service that is defined as http://www.ibm.com/ concatenated to the FUNCTION

NAME
• The name of the function to be published that is defined in the FUNCTION NAME entry

For example, the I4GL zipcode demo has one function published as a Doc/Literal service.

FUNCTION create_zipcode_details_web_service()
 DEFINE serv com.WebService
 DEFINE op com.WebOperation

 #
 # Create the web service based on the entries of the .4cf file
 # SERVICENAME: The name of service is 'ws_zipcode'
 # FUNCTION NAME: The namespace of the service is built from
 # the base url 'http://www.ibm.com/' concatenated to
 # the NAME of the I4GL function 'zipcode_details'
 #
 LET serv = com.WebService.CreateWebService("ws_zipcode",
 "http://www.ibm.com/zipcode_details")

 #
 # Create and publish the Doc/Literal web function based on
 # step 2, step 3 and step 4
 # and from the FUNCTION NAME defined in the .4cf file
 #
 LET op = com.WebOperation.CreateDOCStyle("zipcode_details_g",
 "zipcode_details",
 zipcode_details_in,
 zipcode_details_out)
 CALL serv.publishOperation(op,NULL)

 #
 # Register the service into the SOAP engine
 #
 CALL com.WebServiceEngine.RegisterService(serv)

Web services | 2410

END FUNCTION

Note: I4GL supports only Doc/Literal services.

Note: Genero Web Services can contain several BDL functions in the same service. In other
words, you can group several I4GL services into the same Genero service.

Step 6: Create the server

I4GL uses Axis as server for its services, but Genero has its own server programmable via the COM
library. Create a new file and add the IMPORT com instruction at beginning of the server file, then simply
create the main loop in BDL that will process any incoming HTTP request.

The port of the service defined in the I4GL .4cf configuration file (via the PORTNO entry) can be reused by
setting the FGLAPPSERVER environment variable to the same value before to run the server. However,
only on development or for tests, on production Genero Web services requires an application server called
GAS in charge of load balancing. See the GAS documentation for more details about port configuration for
deployment purpose.

For example, to migrate the I4GL zipcode demo, the service must be created in the server before run the
main loop as following :

MAIN
 DEFINE ret INTEGER
 DEFER INTERRUPT

 # Create zipcode_details service
 CALL create_zipcode_details_web_service()

 # Start the server on port set in FGLAPPSERVER
 # (to be set to same value as PORTNO defined in the .4cf file)
 CALL com.WebServiceEngine.Start()

 # Handle any incoming request in a WHILE loop...
 # See <?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE concept PUBLIC "-//IBM//DTD DITA IBM Concept//EN" "ibm-
concept.dtd">
<concept id="c_gws_server_tutorial_009" xml:lang="en-us">
<title>Step 5: Start the GWS server and process requests</title>
<shortdesc>Once you have registered the Web Service(s), you are ready to
 start the Genero Web
Services (GWS) Server and process the incoming SOAP requests.</shortdesc>
<prolog></prolog>
<conbody>
<p> The GWS Server is located on the same physical machine where the
 application is being executed
(In other words, where <cmdname>fglrun</cmdname> executes).</p>
<p>This is the <codeph>MAIN</codeph> program block of your application.</p>
<section><title>Define a variable for status</title><p>Define a variable
to hold the returned status of the request:<codeblock>MAIN
 DEFINE ret INTEGER</codeblock></p><p>Call the function that you created,
 which defined and registered the service and its
operations:<codeblock> CALL createservice()</codeblock></p></section>
<section><title>Start the GWS Server</title><p>Use the <codeph>Start</
codeph> class method of the <xref href="c_gws_ComWebServiceEngine.dita"
><codeph>WebServiceEngine</codeph></xref> class to start the
server.<codeblock> CALL com.WebServiceEngine.Start()</codeblock></p></
section>
<section id="process_request">
<title>Process the requests</title>
<p>This example uses the <codeph>ProcessServices</codeph> method of the
 <xref

Web services | 2411

href="c_gws_ComWebServiceEngine.dita"><codeph>WebServiceEngine</codeph></
xref> class to process each
incoming request. It returns an integer representing the status. The
 parameter specifies the timeout
period (in seconds) for which the method should wait to process a service.
 The value -1 specifies an
infinite waiting
time.<codeblock> WHILE TRUE
 # Process each incoming requests (infinite loop)
 LET ret = com.WebServiceEngine.ProcessServices(-1)
 CASE ret
 WHEN 0
 DISPLAY "Request processed."
 WHEN -1
 DISPLAY "Timeout reached."
 WHEN -2
 DISPLAY "Disconnected from application server."
 EXIT PROGRAM
 WHEN -3
 DISPLAY "Client Connection lost."
 WHEN -4
 DISPLAY "Server interrupted with Ctrl-C."
 WHEN -10
 DISPLAY "Internal server error."
 EXIT PROGRAM
 WHEN -15
 DISPLAY "Server was not started."
 EXIT PROGRAM
 OTHERWISE
 DISPLAY "ERROR: ", STATUS, SQLCA.SQLERRM
 END CASE
 IF int_flag<>0 THEN
 LET int_flag=0
 EXIT WHILE
 END IF
 END WHILE

 DISPLAY "Server stopped"

END MAIN</codeblock></p><note type="note">For testing purposes only, the GWS
 Server can be started in <xref
href="c_gws_server_tutorial_015.dita#c_gws_server_tutorial_015">standalone
 mode</xref>. In a
production environment, the Genero Application Server (GAS) is required to
 manage your application.
For deployment, the GWS Server application must be added to the GAS
 configuration. See <cite>Adding
Applications</cite> in the <cite>Genero Application Server User Guide</
cite>. </note></section>
</conbody>

</concept>

END MAIN

Note: With Genero Web Services, one server can contain several services. In other words, you
can put all your I4GL services into one server.

Step 7: Configure the database

Based on the DATABASE entry in the I4GL .4cf configuration file, use the Genero instruction to connect to
the informix database at server startup.

Web services | 2412

For example, in the I4GL zipcode demo the service access the database called: i4glsoa . So add
following instruction at the beginning of the server file created in step 6:

DATABASE i4glsoa
MAIN
...
END MAIN

Step 8: Compile and run the Genero service

Compile and link the 2 Genero files created above and run your Genero service. It will be directly available
for any client, and provide the WSDL when requested via a HTTP GET with WSDL as query string.

Example

The Genero web service is accessible on URL: http://hostname:9876/ws_zipcode and
can return the WSDL on URL: http://hostname:9876/ws_zipcode?WSDL.

$ fglcomp -M genero_service.4gl
$ fglcomp -M genero_server.4gl
$ fgllink -o genero_zipcode genero_service.42m genero_server.42m
$ export FGLAPPSEVER=9876
$ fglrun genero_zipcode.42r

Note: The hostname depends on the machine your Genero application is
started.

Note: For deploying the service on production you will need the Genero
application server (GAS) to load-balance the service. See the GAS
documentation about Web Services when deployment is required.

Step 9: Disable Axis support of MTOM/XOP and WS-Addressing

I4GL is based on Axis web service for the SOAP layer and sends by default requests in MTOM/XOPand
with support of WS-Addressing. However, Genero Web services doesn't support MTOM/XOP and WS-
Addressing, therefore you have to unset both features on your Axis installation if you still want your I4GL
client applications to communicate with the Genero web service after migration.

For example, the Axis installation contains a file called axis.xml where following two lines have to be
removed:

<parameter name="enableMTOM" locked="false">true</parameter>
<module ref="addressing"/>

Migrate an I4GL web service consumer to Genero

This section explains how to migrate a I4GL web service consumer to a Genero application accessing the
same web service. Notice that the migration will be based on the soa demo in the I4GL package.

Step 1: Generate the Genero web service stub from an I4GL WSDL

Use the I4GL WSDL located on the Axis server to generate the Genero web service client stub via the tool
called fglwsdl.

For exampl, the WSDL file of the I4GL zipcode demo is located on $INFORMIXDIR/AXIS2C/services/
ws_zipcode/zipcode_details.wsdl. So do following command:

$ fglwsdl -noFacets zipcode_details.wsdl

It will generate these two Genero files:

• ws_zipcode_zipcode_detailsservice.4gl

Web services | 2413

• It contains the Genero functions to connect to the server in SOAP over HTTP.
• Take a look into that file if you are interested into Genero HTTP and XML low-level APIs.

• ws_zipcode_zipcode_detailsservice.inc

• It contains the Genero data types and variables used for XML serialization.
• Take a look into that file if you are interested into Genero XML to BDL variable mapping.

Note: Option -noFacets is required for this demo because the I4GL CHAR data type will be
generated as string in Genero what can lead to XML serialization error if not present.

Step 2: Modify the Genero .inc stubs to fix wrong I4GL WSDL

The I4GL WSDL contains namespace declaration for all I4GL web service data types, but in practice the
I4GL axis server doesn't care about namespaces, but Genero does. So you have to open the generated
Genero .inc file and remove all attributes called XMLNamespace and XSTypeNamespace .

For example, the generated .inc file from the I4GL WSDL must be modified as following:

#---
File: ws_zipcode_zipcode_detailsservice.inc
GENERATED BY fglwsdl 101601
#---
THIS FILE WAS GENERATED. DO NOT MODIFY.
#---

GLOBALS
...
#
TYPE : tzipcode_details
#
TYPE tzipcode_details RECORD
 ATTRIBUTES(XMLSequence,XSTypeName="zipcode_details")
 #,XSTypeNamespace="http://www.ibm.com/zipcode_details")
 pin STRING ATTRIBUTES(XMLName="pin")
END RECORD
#---
#
TYPE : tzipcode_detailsresponse
#
TYPE tzipcode_detailsresponse RECORD
 ATTRIBUTES(XMLSequence,XSTypeName="zipcode_detailsresponse")
 #,XSTypeNamespace="http://www.ibm.com/zipcode_details")
 city STRING ATTRIBUTES(XMLName="city"),
 state STRING ATTRIBUTES(XMLName="state")
END RECORD
...
#---
#
Operation: zipcode_details
#
FUNCTION: zipcode_details_g()
RETURNING: soapStatus
INPUT: GLOBAL zipcode_details
OUTPUT: GLOBAL zipcode_detailsresponse
#
FUNCTION: zipcode_details(p_pin)
RETURNING: soapStatus ,p_city ,p_state
#
FUNCTION: zipcode_detailsRequest_g()
RETURNING: soapStatus
INPUT: GLOBAL zipcode_details
#

Web services | 2414

FUNCTION: zipcode_detailsResponse_g()
RETURNING: soapStatus
OUTPUT: GLOBAL zipcode_detailsresponse
#
#---
VARIABLE : zipcode_details
DEFINE zipcode_details tzipcode_details
 ATTRIBUTES(XMLName="zipcode_details")
 #,XMLNamespace="http://www.ibm.com/zipcode_details")
#---
VARIABLE : zipcode_detailsresponse
DEFINE zipcode_detailsresponse tzipcode_detailsresponse
 ATTRIBUTES(XMLName="zipcode_detailsresponse")
 #,XMLNamespace="http://www.ibm.com/zipcode_details")
END GLOBALS

Note: Genero Web Services provides a lots of XML mapping attributes.

Step 3: Include the generated stub into your I4GL application

Add in all I4GL files calling a web service the generated .inc stub with a GLOBALS instruction.

For example, in the I4GL zipcode demo, only the clsoademo.4gl file uses web services. So add following
line at beginning of the file :

GLOBALS "ws_zipcode_zipcode_detailsservice.inc"
MAIN
...
END MAIN

Note: This allows access to the Genero global variables and data types used in the web service
call, so as the Genero global wsError record to retrieve error codes if any.

Step 4: Modify the I4GL web service function call

The Genero Web service function name is defined in the generated .4gl file and must be used instead of
the I4GL function name.

For example, in the I4GL zipcode demo, the web service function name is cons_ws_zipcode and must be
renamed to zipcode_details as following:

FUNCTION func_cons_ws_zipcode()
 DEFINE state_rec RECORD
 pin CHAR(10),
 city CHAR(100),
 state CHAR(100)
 END RECORD;
 #
 # Genero web service status returning
 # whether web function call was successful or not
 #
 DEFINE soapstatus INTEGER

 #
 # I4GL web service function name is 'cons_ws_zipcode'
 # CALL cons_ws_zipcode("97006")
 # RETURNING state_rec.city, state_rec.state
 # Genero web service function name is 'zipcode_details'
 CALL zipcode_details("97006")
 RETURNING soapstatus, state_rec.city, state_rec.state
 ...
END FUNCTION

Web services | 2415

Note: In Genero Web Services there is an additional returned parameter, soapstatus. If it contains
0 the operation was a success, otherwise an error occurred.

Step 5: Handle Genero web services errors

I4GL web service errors are returned on a non conventional SOAP fault what cannot be handled in
Genero. However the errors are handled through the additional returned parameter soapstatus that must
be checked after each web service call. If its value is not zero, an error has occurred and can be retrieved
via the global Genero wsError record defined in the above generated .inc file.

Example

In the Genero Web Service you must check the soap status after each web service call:

FUNCTION func_cons_ws_zipcode()
 DEFINE state_rec RECORD
 pin CHAR(10),
 city CHAR(100),
 state CHAR(100)
 END RECORD;
 #
 # Genero web service status returning
 # whether web function call was successful or not
 #
 DEFINE soapstatus INTEGER

 # Genero web service function call
 CALL zipcode_details("97006")
 RETURNING soapstatus, state_rec.city, state_rec.state
 # Check soap status for errors after zipcode_details call
 IF soapstatus<>0 THEN
 # Display error information from the server
 DISPLAY "Error:"
 DISPLAY " code :",wsError.code
 DISPLAY " ns :",wsError.codeNS
 DISPLAY " desc :",wsError.description
 DISPLAY " actor:",wsError.action
 ELSE
 # Display results
 DISPLAY "\n ------------------------- \n"
 DISPLAY "SUPPLIED ZIP CODE: 97006 \n"
 DISPLAY " ------------------------- \n"
 DISPLAY "RESPONSE FROM WEB SERVICE \n"
 DISPLAY " ------------------------- \n"
 DISPLAY " CITY:",state_rec.city
 DISPLAY "\n STATE:",state_rec.state
 DISPLAY "\n ======================== \n"
 END IF
 ...
END FUNCTION

Step 6: Compile and run the Genero client

Then simply compile your modified I4GL application for Genero and execute it. Your application will then
connect to the web service passing and returning the parameters as it were only simple BDL function calls.

For example, to compile your I4GL web service application for Genero, you must do the following
commands:

$ fglcomp -M ws_zipcode_zipcode_detailsservice.4gl
$ fglcomp -M clsoademo.4gl
$ fgllink -o clsoademo.42r clsoademo.42m
 ws_zipcode_zipcode_detailsservice.42m

Web services | 2416

$ fglrun clsoademo.42r

Step 7: Disable Axis support of MTOM/XOP and WS-Addressing

I4GL is based on Axis web service for the SOAP layer and sends by default requests in MTOM/XOP and
with support of WS-Addressing. However, Genero Web services doesn't support MTOM/XOP and WS-
Addressing, therefore you have to unset both features on your Axis installation if you want your Genero
client application to communicate with an I4GL web service provider.

For example, the Axis installation contains a file called axis.xml where following two lines have to be
removed:

<parameter name="enableMTOM" locked="false">true</parameter>
<module ref="addressing"/>

Remark: Standalone Axis server is buggy

The I4GL standalone axis server adds an extra CR LF after the body of the SOAP HTTP post response
what leads the Genero client to return the error message : Body content bigger than expected.
This is not allowed as defined in HTTP [RFC2616].

Important: Notice however that Axis works as expected if loaded from Apache server.

RESTful Web Services basics
Topics in this section are only relevant for Web Services based on the SOAP protocol.

Getting started and examples

Genero Web Services code examples are located in FGLDIR/demo/WebServices, where FGLDIR is the
Genero BDL installation directory.

Debugging

The Genero Web Services library gives you the ability to log the data your Web Service application is
receiving from or sending to another application by turning on the debug mode.

Debug information is written to the standard error stream of the console; if needed, it can be redirected to a
file.

To turn on the debugging feature, set the FGLWSDEBUG environment variable before starting the
application.

The level of debugging depends on the value set for the FGLWSDEBUG variable.

Possible values are described in the FGLWSDEBUG environment variable definition.

Note: To debug a Web Service application managed by the Application Server, you have to modify
the value of the FGLWSDEBUG environment variable in the Application Server configuration file.
For more information, refer to the Genero Application Server Manual documentation.

Platform-specific notes

IBM® AIX®

• The "IBM® C++ Runtime Environment Components for AIX®" must be installed in order to use Genero
Web Services Extension 2.0. See the IBM® support center for more information about downloading the
component.

Note: If not installed, you will get the following error message:

Could not load C extension library 'com'. Reason: A file or directory
in the path name does not exist.

http://www.w3.org/Protocols/rfc2616/rfc2616-sec4.html#sec4.1

Web services | 2417

• Due to an IBM® issue on 64-bit platforms, the openssl library is unable to open the system /dev/
urandom device to generate a PRNG number.

You must install the Entropy Gathering Daemon (a.k.a EGD) if you need security in your GWS
application, and especially if you access a server in HTTPS.

GMI / iOS Web Services limitations
Some Web Services classes are not supported on iOS devices (GMI).

Web Services COM package

The following com classes are not supported in GMI:

• com.Util

• com.TCPRequest

• com.TCPResponse

• com.WebService

• com.WebOperation

• com.WebServiceEngine (except for SetOption()/GetOption() methods, for option
SoapModuleURI only)

• com.HTTPServiceRequest

The following methods have a different behavior:

• com.HTTPRequest.setVersion() has no effect, the iOS HTTP stack supports HTTP 1.1 only.
• com.HTTPRequest.getAsyncResponse() is not working asynchronously, it works like

com.HTTPRequest.getResponse().
• com.HTTPRequest.setAutoReply() has no effect, the iOS HTTP stack does not provide an auto

reply option.
• com.HTTPRequest.setMaximumResponseLength() has no effect, the iOS HTTP stack does not

provide a maximum response length option.
• com.HTTPRequest.setConnectionTimeout() and com.HTTPRequest.setTimeout(): the max

of both settings is used as timeout by the iOS HTTP stack.

Web Services XML package

The following xml classes are not supported in GMI:

Note: These classes are currently not supported on iOS, as OpenSSL cannot be used to
implement these classes on iOS. OpenSSL is used to implement these classes for other platforms.

• xml.CryptoKey

• xml.CryptoX509

• xml.Signature

• xml.Encryption

• xml.KeyStore

For all other classes of the xml package, methods using an URL parameter accept only a file URI:

• xml.DomDocument.Load()

• xml.DomDocument.save()

• xml.StaxWriter.writeTo()

• xml.StaxReader.readFrom()

If the parameter is not a file URI, these methods can raise runtime exceptions such as -15629, -15630,
-15632, -15633.

Web services | 2418

SOAP protocol

GMI is not able to handle SOAP errors or faults, as the iOS API does not allow a retrieval of an HTTP
response body if the server uses an HTTP code of 500. As a result, GMI will not get notified about what
went wrong during a remote procedure call.

If the server returns a SOAP error or fault, GMI will raise exception -15559. Modify your call of a remote
web service as follows:

DEFINE wsstatus INTEGER
...
 LET wsstatus = Webservice_Function_g()
 IF wsstatus==-15559 THEN
 MESSAGE "Handle generic SOAP error or fault"
 END IF

Web Services configuration options

GWS configuration entries of FGLPROFILE are not supported on iOS.

FGLPROFILE entries are described here: FGLPROFILE entries on page 2510.

Long running HTTP request popup

If the com.HTTPRequest.getResponse()/getAsyncResponse() methods take more than 5 seconds
to complete, the GMI will show a typical iOS popup message to ask the user if the request must be
canceled. If the user cancels the request, the runtime system raises an exception. A progress bar is
displayed if the Content-Length for a request is available (i.e. self made uploads and most downloads)

HTTP request compression for POST/PUT

HTTP request compression for POST/PUT is not supported on iOS devices.

Multipart HTTP request

On iOS, multipart HTTP requests are not supported. See com.HTTPRequest.setMultipartType on page
2066.

Changing the SOAP client behavior at runtime

The following features have a limited usage on iOS devices:

• HTTP version protocol definition is ignored.
• Connection timeout and read/write timeout are identical.

FGLPROFILE settings for Web Services client

FGLPROFILE settings for Web Services are not supported on iOS:

• Settings for logical names is not supported.
• Settings for HTTP proxy configuration is ignored: Uses device settings.
• Settings for client authentication to server is not supported: Use HTTPRequest API instead.
• Settings for client authentication to proxy is not supported: Uses device settings.
• Settings for server certificate authority is not supported: Uses device KeyChain.

Web services | 2419

GMA / Android™ Web Services requirements
Requirements to use Web Services on Android platforms.

V3 SSL Certicates

The SSL certificates for secured servers must be of type V3: Android does not support other types of SSL
certificates. When creating your own self-signed certificates (to be installed in the "Install from storage"
Keystore of Android), make sure that type V3 is used.

Known issues

Forcing RPC style convention when no input message

In RPC style, the convention defines names for input messages and output messages, but if there is no
input message, its name cannot be redefined.

To workaround this issue, respect RPC style convention in wsdl, or force RPC convention (on client and
server side) by using the -fRPC option of the fglwsdl tool.

Variable names conflicts with library names

The fglwsdl tool can generate variable names conflicting with IMPORT library names.

For example:

DEFINE xml xml.DomDocument

will conflict with the xml library, if the code defines also the instruction:

IMPORT xml

Legal Notices

This product includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit (http://
www.openssl.org/).

This product includes cryptographic software written by Eric Young (eay@cryptsoft.com).

This product includes software developed by CollabNet (http://www.Collab.Net/).

This product includes software developed by the University of California, Berkeley and its contributors.

This product includes software developed or owned by Caldera International, Inc

Concepts
These topics cover various Genero Web Services concepts.

• High-level and low-level web services APIs on page 2420
• SOAP features on page 2420
• Stateful web services on page 2422
• Encryption, base64 and password agent with fglpass tool on page 2429
• HTTP compression on page 2432
• SOAP multipart style requests in GWS on page 2434

http://www.openssl.org/
http://www.openssl.org/
http://www.Collab.Net/

Web services | 2420

High-level and low-level web services APIs
With Genero, we distinguish two type of APIs to implement web services.

• High-level web services are SOAP web services managed on server side with the high-level APIs
WebService and WebOperation, or if you have generated code via the fglwsdl tool (client and server
side).

• Low-level web services are implemented with HTTPRequest, HTTPResponse and
HTTPServiceRequest classes, where you have to write all the HTTP code of your services by hand.

SOAP features

SOAP 1.1 and 1.2

Since 2.40, Genero Web Services (GWS) supports SOAP 1.2. GWS is able to communicate with Web
services provided with SOAP 1.1 or SOAP 1.2.

Server side

A Genero Web Services server can deliver a service in SOAP 1.1 or SOAP 1.2 using the
com.WebService.setFeature function.

For example in $FGLDIR/demo/WebServices/calculator/server/calculatorServer.4gl, the calculator server
offers the service in SOAP 1.1 and SOAP 1.2.

LET serv = com.WebService.CreateWebService("Calculator",serviceNS)
CALL serv.setFeature("Soap1.1",TRUE)
CALL serv.setFeature("Soap1.2",TRUE)

Client side

A GWS client can consume a service in SOAP 1.1 or SOAP 1.2.

For example:

• To create a client that consumes the Calculator service in SOAP 1.1 use command:

fglwsdl -soap11 -o ws_calculator http://localhost:8090/Calculator?WSDL

• To create a client that consumes the Calculator service in SOAP 1.2 use command:

fglwsdl -soap12 -o ws_calculatorSoap12 http://localhost:8090/Calculator?
WSDL

Be aware to generate different clients for each SOAP versions. Even if the same operations are provided,
the services are using different protocols so the underlying generated stubs are also different.

SOAP Fault

Since 2.40, Genero Web Services supports SOAP fault.

For backward compatibility, fglwsdl tool provides option -ignoreFaults to disable SOAP fault management.

Server side

A Genero Web Services server can throw a SOAP fault if any processing error is encountered.

To generate a SOAP fault you need to:

• create the fault variable with com.WebService.createFault()
• add it to your operation with com.WebOperation.addFault
• use it with com.WebServiceEngine.SetFaultDetail

Web services | 2421

For example in $FGLDIR/demo/WebServices/calculator/server/calculatorServer.4gl, the calculator server
has a divide_by_zero SOAP fault. The SOAP fault is raised when you try to divide a number by zero. To
generate a SOAP fault proceed as follow:

Create a SOAP fault

You define the variable to send as a SOAP fault. It can be a simple string like in this example or a complex
type. Remember to assign a XMLName to the variable.

DEFINE divide_by_zero STRING ATTRIBUTES (XMLName="DividedByZero")

Then you inform the service that it can use this fault variable using function com.WebService.createFault().

LET serv = com.WebService.CreateWebService("Calculator",serviceNS)
CALL serv.createFault(divide_by_zero,FALSE)

Add the SOAP fault to an operation

A SOAP fault can be used by an operation to inform the client that an error has occurred. An operation can
use different SOAP faults but only one at a time.

LET op =
 com.WebOperation.CreateRPCStyle("divide","Divide",divide_in,divide_out)
CALL op.addFault(divide_by_zero,NULL)

Here, the SOAP fault is added to the "divide" operation.

Send the SOAP fault

Set the values to the fault variable. The fault message is be sent to the client at the end of the operation
processing.

LET divide_by_zero = "Cannot divide "||divide_in.a||" by zero"
CALL com.WebServiceEngine.SetFaultDetail(divide_by_zero)

Client side

If a SOAP fault occured the operation returns the SOAP fault number in the operation status. The SOAP
fault number is defined in the generated stubs as a BDL constant prefixed with the string FaultID_.

Note: A SOAP fault can occur in case of HTTP error 200 and 500.

For example in $FGLDIR/demo/WebServices/calculator/client/ws_calculator.inc, Divide operation has a
SOAP fault that informs the client when a number is divided by zero.

List of Soap fault constants
CONSTANT FaultID_DividedByZero = 1
...
VARIABLE : DividedByZero
DEFINE DividedByZero STRING ATTRIBUTES(XMLName="DividedByZero",
 XMLNamespace="http://tempuri.org/")
...
Operation: Divide
FAULT #1: GLOBALS DividedByZero

You can test the operation status code accordingly and display the SOAP fault message.

Web services | 2422

For example in $FGLDIR/demo/WebServices/calculator/client/calculatorClient.4gl, when the divide
operation status is 1, DividedByZero message is displayed.

ON ACTION divide
 CALL Divide(op1, op2) RETURNING wsstatus, result, remaind
 CASE wsstatus
 WHEN 0
 DISPLAY BY NAME result,remaind
 DISPLAY "OK" TO msg
 WHEN FaultID_DividedByZero
 DISPLAY DividedByZero TO msg
 OTHERWISE
 DISPLAY wsError.description TO msg
 END CASE

Stateful web services

Concept

A stateful service is a service that maintains a context between a web services client and server. It enables
the service to keep trace of previous requests from that context, in order to manage different states in the
web service server.

Genero Web Services supports two kinds of stateful services:

• Based on the WS-Addressing 1.0 specification to define the XML format used to convey the context
from client to the server

• Based on an HTTP session cookie to convey the context from client to the server

The Genero Web Service engine uses a BDL variable defined at stateful service creation via
createStatefulWebService() as service context. Use that variable to hold a service state in a database.

It is up to the BDL programmer to create, store and remove the service state in the database.

The SOAP engine is responsible for:

• Deserializing the state variable when getting an new incoming request. The programmer can then
read the state variable for any published BDL web service operation and restore the service state
corresponding to that variable.

• Serializing a new instance of the state variable in a web service response for all BDL web service
operations set as session initiator via initiateSession(). The programmer must instantiate a new state by
filling the state variable and storing it into a database for further use.

WS-Addressing 1.0 stateful services

A stateful service based on WS-Addressing uses the WS-Addressing EndpointReference type
as state variable and is independent from the transport layer used. (See WS-Addressing 1.0
EndpointReferenceType). The session state is conveyed from the client to the server as WS-Addressing
1.0 reference parameters.

Server side
Perform these steps to create a WS-Addressing stateful service.
Step 1: Declare a W3CEndpointReference record to be used as state variable

This record MUST have:

• A mandatory member of type STRING, where you can define a different service end point URL,
otherwise the current server URL will be used.

• A sub record to contain one or more BDL variables used as state variables and defined as reference
parameter in the WS-Addressing 1.0 specification.

http://www.w3.org/TR/ws-addr-core/#eprs
http://www.w3.org/TR/ws-addr-core/#eprs

Web services | 2423

For example:

DEFINE EndpointReferenceState RECORD ATTRIBUTES(W3CEndpointReference)
 address STRING, # Mandatory
 ref RECORD # Sub-record Reference parameters containing one
 # or more state variables
 OpaqueID STRING ATTRIBUTES(XMLName="OpaqueID"), # Unique ID to
 #identify the service state in the database
 Expiration DATE ATTRIBUTES(XMLName="Expiration",
 XMLNamespace="http://tempuri.org") # Session state expiration date
 END RECORD
END RECORD

You can use a unique ID of a database table to manage the web services sessions in place of OpaqueID.

Step 2: Create a stateful WS-Addressing enabled web service with W3CEndpointReference record as a
parameter

The Genero Web Service extension provides a new Web service constructor called
createStatefulWebService() to perform stateful services. This function works as the stateless constructor,
but expects a W3CEndpointReference record as parameter.

For example:

DEFINE serv com.WebService
LET serv = com.WebService.CreateStatefulWebService(
 "StatefulWSAddressingService","http://4js.com/services",
 EndpointReferenceState) # Create a stateful service
 # with a W3CEndpointReference state variable
CALL serv.setFeature("WS-Addressing1.0","REQUIRED") # enable
 # support of WS-Addressing 1.0

Step 3: Publish a web service operation returning the W3CEndpointReference state variable and set it as
session initiator

You must define which web service operation will initiate the session on your service and return the
W3CEndpointReference state variable.

All other web service operations (not defined as session initiator) will return an error if they don't get
reference parameters defined in the W3CEndpointReference state variable as WS-Addressing 1.0
headers.

For example:

DEFINE op com.WebOperation
LET op = com.WebOperation.CreateDocStyle("GetInstance",
 "GetInstance",NULL,EndpointReferenceState)
CALL op.initiateSession(TRUE)
CALL serv.publishOperation(op,NULL)

There is no restriction regarding the input parameter of the web service initiator function, but the output
parameter must be the same W3CEndpointReference record passed to the service creation constructor.

It is not required to have a web operation which initiate the session in the same service, but then you have
to return the same W3CEndpointReference record in another web service to instantiate the session, such
as a Factory service that instantiates all sessions for other stateful services.

Step 4: Create the BDL session initiator function and instantiate a new session

In your BDL function declared as session initiator, you have to:

• Handle the creation of the session
• Fill the state variable before to return from the function

Web services | 2424

• Store the new session in a database based on the state variable (in order to keep the session across
consecutive requests from the same client).

For example:

FUNCTION GetInstance()
 LET EndpointReferenceState.address = NULL
 # Use default end point location
 LET EndpointReferenceState.ref.OpaqueID = com.Util.CreateUUIDString()
 # Generate an unique string (can come from a database table id)
 LET EndpointReferenceState.ref.Expiration = CURRENT + INTERVAL HOUR TO
 HOUR (1)
 # Create expiration date in one hour to discard request after that date
 ... Store OpaqueID into database or use directly a database table entry
 ... to hold the session
END FUNCTION

Step 5: Restore the session in any BDL web operation from the W3CEndpointReference record

In any publish BDL web function, the SOAP engine deserializes the WS-Addressing 1.0 reference
parameter headers into the W3CEndpointReference sub-record so that you can retrieve the session from
the state variable.

For example:

FUNCTION MyFunction()
 IF EndpointReferenceState.ref.OpaqueID IS NULL THEN
 CALL com.WebServiceEngine.SetFaultString("Invalid session id")
 RETURN
 ELSE
 ... Restore the service session based on the OpaqueID state
 ... variable from the database
 END IF
 ... Process the operation
END FUNCTION

Client side
Perform these steps to communicate with a stateful web service based on WS-Addressing 1.0.
Step 1: Generate the client stub from your WS-Addressing stateful service

Use the fglwsdl tool as usual. It will detect that the service returns a W3CEndpointReference and generate
the appropriate code.

The WSDL imports the WS-Addressing 1.0 schema, so the fglwsdl tool requires an access to the W3C
server. Use the option -proxy if you need to connect via a proxy server.

For example:

$ fglwsdl -o ws_stub http://localhost:8090/StatefulWSAddressingService?WSDL

The generated .inc file contains a variable of type tWSAGlobalEndpointType to be used to transmit the
WS-Addressing 1.0 reference parameters.

Example of a global variable name

DEFINE
 StatefulWSAddressingService_StatefulWSAddressingServicePortTypeEndpoint
 tGlobalWSAEndpointType

Web services | 2425

Step 2: Create the MAIN application

In your main application:

1. Import the XML library. This is due to the support of WS-Addressing 1.0 with IMPORT XML.
2. Import the generated .inc file with GLOBALS "ws_stub.inc"
3. Manage the WS-Addressing 1.0 reference parameters representing the session state (if your client has

to handle several instances of a same service).

For example:

IMPORT XML # Import the XML library required for WS-Addressing 1.0

GLOBALS "ws_stub.inc" # Import service global definition

TYPE InstanceType DYNAMIC ARRAY OF xml.DomDocument
 # End point WSA reference parameters

DEFINE instance1,instance2,instance3 InstanceType
 # Store the different sessions the client will have to manage

MAIN
 ...
END MAIN

Step 3: Instantiate a new session by calling the web service operation set as session initiator

Call the BDL function generated from the WSDL that is defined as session initiator on the server. This
function returns a W3CEndpointReference parameter that contains the WS-Addressing 1.0 reference
parameters representing the new instance created on server side.

If your application handles several instances, you will have to copy and store those parameters in your
application to identify a service instance for further requests.

As the WS-Addressing 1.0 reference parameters are defined as any XML document, they are represented
as a dynamic list of xml.DomDocument in BDL.

For example:

DISPLAY "Creating a new instance ..."
LET wsstatus = GetInstance_g() # call the service session initiator
 # web function
IF wsstatus == 0 THEN
 FOR ind=1 TO
 ns1GetInstanceResponse.return.ReferenceParameters._LIST_0.getLength()
 LET instance1[ind]=

 ns1GetInstanceResponse.return.ReferenceParameters._LIST_0[ind].clone()
 # copy the service returned WS-Addressing 1.0 reference parameters
 END FOR
ELSE
 ... handle soap errors
END IF

When creating a new instance, ensure that the Parameters member of the generated global variable of
type tWSAGlobalEndpointType has been set to NULL, otherwise the server will complain.

Step 4: Call any web service operation with previously returned WS-Addressing 1.0 reference parameters

Before calling any web service operation, you must set the WS-Addressing 1.0 reference parameters
returned by a session initiator function to identify the session to the server.

Web services | 2426

For example:

LET StatefulWSAddressingService_StatefulWSAddressingServicePortTypeEndpoint.
Address.Parameters.* = instance1.*
assign WS-Addressing 1.0 reference parameters dynamic array by reference
CALL MyFunction("Hello") RETURNING wsstatus,ret
Call web operation MyFunction of instance 1

Stateful services based on HTTP cookies

A stateful service based on HTTP cookies uses the HTTP transport protocol and its ability to convey
cookies, used as session context. Notice that it works only if the communication path between the
client and the server is performed in HTTP, otherwise it is recommended to use WS-Addressing stateful
services.

Server side
Perform these steps to create an HTTP cookie based stateful service.
Step 1: Declare any BDL simple variable to be used as state variable

For example:

DEFINE ServiceState STRING # Unique ID to identify the service state in the
 database

For instance, you can use a unique ID of a database table to manage the web services sessions.

Step 2: Create a stateful web service with state variable as parameter

The Genero Web Service extension provides a new Web service constructor called
createStatefulWebService() to perform stateful services. This function works as the stateless constructor,
but expects a simple state variable as parameter.

Example

DEFINE serv com.WebService
LET serv =
 com.WebService.CreateStatefulWebService("StatefulCookieService",
 "http://4js.com/services",ServiceState)
Create a stateful service with a simple BDL variable as state
 variable

Step 3: Publish a web service operation defined as session initiator

Define which web service operation will initiate the session on your service and instantiate a new session.
All other web service operations (not defined as session initiator) will return an error if they don't get an
HTTP cookie called GSESSIONID.

For example:

DEFINE op com.WebOperation
LET op =
 com.WebOperation.CreateDocStyle("GetInstance","GetInstance",NULL,NULL)
CALL op.initiateSession(true)
CALL serv.publishOperation(op,NULL)

There is no restriction on the web service session initiator function regarding to the input and output
parameters.

Step 4: Create the BDL session initiator function and instantiate a new session

In your BDL function declared as session initiator, you must:

Web services | 2427

• Handle the creation of the session.
• Fill the state variable before to return from the function.
• Store the state variable in a database based on the state variable (in order to keep the session across

consecutive requests from a same client).

For example:

FUNCTION GetInstance()
 # Generate an unique string (can come from a database table id)
 LET ServiceState = com.Util.CreateUUIDString()
 ... Store ServiceState value into database or use directly a
 database table entry to hold the session
END FUNCTION

Step 5: Restore the session in any BDL web operation from the state variable

In any publish BDL web function, the SOAP engine deserializes the HTTP Cookie called GSESSIONID
from the HTTP layer into the state variable. You can then retrieve the session in BDL via that state
variable.

For example:

FUNCTION MyFunction()
 IF ServiceState IS NULL THEN
 CALL com.WebServiceEngine.SetFaultString("Invalid session id")
 RETURN
 ELSE
 ... Restore the service session based on the ServiceState
 variable from the database
 END IF
 ... Process the operation
END FUNCTION

Step 6: Deployment recommendation

When deploying stateful web services based on HTTP cookies, the complete server path will be added into
the cookie when first instantiated, so you must pay attention to that URL. In other words, you MUST always
call the service via the complete URL containing the service name inside. For instance if your service is
named MyService and if you GAS configuration file is called Server.xcf, the stateful service is accessible
at URL: http://localhost:6394/ws/r/group/Server/MyService.

Client side
Perform the following steps to communicate with a stateful web service based on HTTP cookies.
Step 1: Generate the client stub from your stateful service

Use the fglwsdl tool as usual.

For example:

$ fglwsdl -o ws_stub http://localhost:8090/StatefulCookieService?WSDL

The generated .inc file contains a variable of type tGlobalEndpointType to be used to transmit the HTTP
Cookie.

Example of a global variable name

DEFINE StatefulCookieService_StatefulCookieServicePortTypeEndpoint
 tGlobalEndpointType

Step 2: Create the MAIN application

In your main application:

Web services | 2428

• Import the generated .inc file with GLOBALS "ws_stub.inc".
• Manage the HTTP cookies representing the session state (if your client has to handle several instances

of a same service).

For example:

GLOBALS "ws_stub.inc" # Import service global definition

Store the different sessions the client will have to manage
in a string
DEFINE instance1,instance2,instance3 String

MAIN
 ...
END MAIN

Step 3: Instantiate a new session by calling the web service operation set as session initiator

Call the BDL function generated from the WSDL that was defined as session initiator on the server. This
function returns a new HTTP Cookie saved into the Binding.Cookie member of the global service variable
of type tGlobalEndpointType. If your application handles several instances, you will have to copy and store
that cookie in your application to identify a service instance for further requests.

For example:

DISPLAY "Creating a new instance ..."
LET wsstatus = GetInstance_g() # call the service session
 # initiator web function
IF wsstatus == 0 THEN
 # copy the service returned HTTP cookie
 LET instance1 =

 StatefulCookieService_StatefulCookieServicePortTypeEndpoint.Binding.Cookie
ELSE
 ... handle soap errors
END IF

When creating a new instance, ensure that the Binding.Cookie member of the generated global variable
of type tGlobalEndpointType has been set to NULL, otherwise the server will complain.

Step 4: Call any web service operation with previously returned HTTP cookie

Before calling any web service operation, set the HTTP cookie returned by a session initiator function to
identify the session to the server.

For example:

use instance1
LET
 StatefulCookieService_StatefulCookieServicePortTypeEndpoint.Binding.Cookie
 =
 instance1
Call web operation MyFunction of instance 1
CALL MyFunction("Hello") RETURNING wsstatus,ret

Step 5: Troubleshooting

If your Genero application doesn't set the HTTP cookie when accessing a stateful service via the GAS, it is
possible that you didn't use the complete URL when accessing the service.

For instance if your service is named MyService and if you GAS configuration file is called Server.xcf, the
stateful service is accessible at URL: http://localhost:6394/ws/r/group/Server/MyService.

Web services | 2429

Encryption, base64 and password agent with fglpass tool

For security reasons, it is recommended that you avoid storing clear passwords in a file. The Genero Web
Services enables the password encryption of a HTTP Authenticate entry in the FGLPROFILE file. The
encrypted password is decrypted by the Genero Web Services engine when required.

The fglpass tool

The Genero Web Services package provides a command line tool called fglpass. The fglpass tool can
encrypt a password from a X.509 certificate or a RSA private key. The encrypted password is displayed on
the console in a Base64 form, composed only of alphanumeric characters, and therefore easily usable in
any text file.

See fglpass for more details.

Encrypt a HTTP authenticate password

1. Find the HTTP Authenticate entry with the password you want to encrypt:

authenticate.myentry.login = "mylogin"
authenticate.myentry.password = "mypassword"

2. Add the certificate and its private key in the FGLPROFILE file as follows:

security.mykey.certificate = "MyCertificate.crt"
security.mykey.privatekey = "MyPrivateKey.pem"

3. Encrypt the password with fglpass:

$ fglpass -c MyCertificate.crt
Enter password :mypassword

The fglpass output looks like the following:

BASE64 BEGIN
dBy3E5JCVxuoxsR+aOBVfp1j0SwQPt+hdjpMKriWvO2xMd5rFnFEwv+sPPd4w
/onWviG0M5mqubBeS7QUlt/ZK0D1aO9/R5RVa5wylQu//6vxfyd8NG/
SFJmlVH63kuyXfiVfq6bHo5+nlQZpVjSHfF2msET3S9HTpZUt4NblP4=BASE64 END

Note: The encrypted password corresponds to the big suite of alphanumeric characters
between BASE64 BEGIN and BASE64 END. The long line of text is wrapped for display
purposes only.

4. Replace the clear password with the encrypted one, and specify the key used to encrypt it (mykey in
our case):

authenticate.myentry.login = "mylogin"
authenticate.myentry.password.mykey = "dBy3E5JCVxuoxsR+
aOBVfp1j0SwQPt+hdjpMKriWvO2xMd5rFnFEwv+sPPd4w
/onWviG0M5mqubBeS7QUlt/ZK0D1aO9/R5RVa5wylQu//6vxfyd8NG/
SFJmlVH63kuyXfiVfq6bHo5+nlQZpVjSHfF2msET3S9HTpZUt4NblP4="

Note: Do not forget to put quotes around the base64 form; otherwise the '=' character is
interpreted during the loading of FGLPROFILE. The long line of text is wrapped for display
purposes only.

Encrypt a HTTP authenticate password using a certificate in the Windows™ key store

1. Find the HTTP Authenticate entry with the password you want to encrypt:

authenticate.myentry.login = "mylogin"
authenticate.myentry.password = "mypassword"

Web services | 2430

2. Add the subject of the certificate registered in the Windows™ key store:

security.mykey.subject = "Georges"

3. Encrypt the password with fglpass:

$ fglpass -s Georges
Enter password :mypassword

The fglpass output looks like this:

BASE64 BEGIN
dBy3E5JCVxuoxsR+aOBVfp1j0SwQPt+hdjpMKriWvO2xMd5rFnFEwv+sPPd4w
/onWviG0M5mqubBeS7QUlt/ZK0D1aO9/R5RVa5wylQu//6vxfyd8NG/
SFJmlVH63kuyXfiVfq6bHo5+nlQZpVjSHfF2msET3S9HTpZUt4NblP4=
BASE64 END

Note: The encrypted password corresponds to the big suite of alphanumeric characters
between BASE64 BEGIN and BASE64 END. The long line of text is wrapped for display
purposes only.

4. Replace the clear password with the encrypted one, and specify the key used to encrypt it (mykey in
our case):

authenticate.myentry.login = "mylogin"
authenticate.myentry.password.mykey = "dBy3E5JCVxuoxsR+
aOBVfp1j0SwQPt+hdjpMKriWvO2xMd5rFnFEwv+sPPd4w
/onWviG0M5mqubBeS7QUlt/ZK0D1aO9/R5RVa5wylQu//6vxfyd8NG/
SFJmlVH63kuyXfiVfq6bHo5+nlQZpVjSHfF2msET3S9HTpZUt4NblP4="

Note: Do not forget to put quotes around the base64 form; otherwise the '=' character is
interpreted during the loading of FGLPROFILE. The long line of text is wrapped for display
purposes only.

Use the password agent

The fglpass tool can be started as an agent, to help any BDL application who requires a password to grant
access to a private key, by getting it without having to type it. You simply need to enter the password once
for each private key at the agent startup, and then any BDL application started on the same machine
and with the same user name as the agent itself can get rid of entering the different passwords.

Of course, authentication and data encryption are performed between the BDL application and the agent to
guarantee passwords confidentiality, and the passwords are also stored encrypted in the agent memory.

1. To start the password agent at port number 4242 and to serve the BDL applications with the passwords
of the private key RSAKey1.pem and DSAKey2.der, specify the option -agent, followed by a colon,
followed by the port number where it will be reachable, followed by the list of private keys the agent will
handle for all BDL applications.

fglpass -agent:4242 RSAKey1.pem DSAKey2.der

2. The agent will ask you to silently enter the password of the different keys(the passwords are not
displayed to the console when being typed). In this example, you have:

Enter pass phrase for RSAKey1.pem:

Followed by:

Enter pass phrase for DSAKey2.der:

Web services | 2431

3. Once all keys have been treated, it displays following message to notify that the agent is ready to serve.

Agent started

4. To enable one BDL application to use the password agent capability, set the entry called
security.global.agent in the FGLPROFILE file with the port number of the agent.

In our example, with value 4242:

security.global.agent = "4242"

Encrypt a password

The fglpass tool can encrypt a password using an RSA key or certificate, and then encode it in BASE64
form. This allows you to easily add a protected password in the FGLPROFILE file for future use by any
BDL application.

1. To encrypt a password from an RSA key and encoded in BASE64, enter:

fglpass -e -k RSAPub.pem

2. You are prompted to enter the password you want to encrypt.

Enter password :hello

The fglpass tool outputs the BASE64 form of the encrypted password on the console.

BASE64 BEGIN
Pzk/fNRhetdJDZz5kjNg7P0XET4XsW6bys/fi0DvugxRPh9d/s41oAws65
JY0EPb2zytQjxZ/dwaaRzJPYoQmA==
BASE64 END

Note: The BASE64 encrypted password is the string between the BASE64 BEGIN and BASE64
END.

Decrypt a password

The fglpass tool can decrypt a BASE64 encoded and encrypted password using the RSA private key that
was used to encrypt it or that is associated to a certificate containing the public part of that private key.

1. To decrypt a BASE64 encoded and encrypted password from a RSA private key, enter:

fglpass -d -k RSAPriv.pem

2. If the RSA key is protected with a password, you are asked to silently enter that password (the
password is not displayed to the console when being typed).

Enter pass phrase for RSAPriv.pem:

3. You are prompted to enter the BASE64 encoded and encrypted password you want to decrypt.

Enter password :Pzk/fNRhetdJDZz5kjNg7P0XET4XsW6bys/fi0
DvugxRPh9d/s41oAws65JY0EPb2zytQjxZ/dwaaRzJPYoQmA==

The fglpass tool outputs the password in clear text on the console.

hello

Encode a file in BASE64 form

The fglpass tool can encode a file in BASE64 form.

Web services | 2432

1. To encode the file MyFile in BASE64, enter:

fglpass -enc64 MyFile

The fglpass tool outputs the BASE64 form of the file to the console.

BASE64 BEGIN
c2VjdXJpdHkuZ2xvYmFsLmFnZW50ICAgICAgPSAiNDI0MiINCmNyeXB0by
5pZDEua2V5ICAgICAgICAgICAgID0gIlJTQTEwMjRLZXkucGVtIg0KY3J5
cHRvLmlkMi5rZXkgICAgICAgICAgICAgPSAiUlNBMjA0OEtleS5wZW0iDQ
pjcnlwdG8uaWQzLmtleSAgICAgICAgICAgICA9ICJEU0ExMDI0S2V5LnBl
bSINCmNyeXB0by5pZDQua2V5ICAgICAgICAgICAgID0gIlJTQTUxMlByb3
RlY3RlZC5wZW0iDQpjcnlwdG8uaWQ1LmtleSAgICAgICAgICAgICA9ICJE
U0E1MTJSZWFsbHlQcm90ZWN0ZWQucGVtIg0K
BASE64 END

Note:

• The BASE64 encoded file is the string between BASE64 BEGIN and BASE64 END.
• You can redirect the output of fglpass tool to a file. For example:

fglpass -enc64 MyFile > Base64filename

Decode a BASE64 form encoded file

The fglpass tool can decode a BASE64 encoded file.

1. To decode a file encoded in BASE64 form, enter:

fglpass -dec64 Base64filename

The fglpass tool outputs the file in clear form on the console.

security.global.agent = "4242"
crypto.id1.key = "RSA1024Key.pem"
crypto.id2.key = "RSA2048Key.pem"
crypto.id3.key = "DSA1024Key.pem"
crypto.id4.key = "RSA512Protected.pem"
crypto.id5.key = "DSA512ReallyProtected.pem"

Note:

• You don't have to remove the BASE64 BEGIN and BASE64 END tags, if they are present in
the file, because the fglpass tool detects and removes them automatically.

• You can redirect the output of the fglpass tool to a file. For example:

fglpass -dec64 Base64MyFile > MyFile2

HTTP compression
HTTP compression is a capability that can be built into web servers and web clients to make better use of
available bandwidth, and provide greater transmission speeds between both.

There are a variety of places where you can set up HTTP compression.

• You can set up the Web services client to send and receive compressed requests. See Compression
and a Web services client on page 2433.

• You can enable compression for the Web server. Refer to your Web server documentation for details.
• You can enable compression in the Genero Application Server. Compression is enabled by default in

$FGLASDIR/etc/imt.cfg. Refer to the Genero Application Server User Guide for more information.

Web services | 2433

• You can set up the Web services server to send and receive compressed requests. See Compression
and a Web services server on page 2434.

Compression and a Web services client
Send and receive compressed requests from a Web services client.

When you create a low-level Web service and do not have any stubs created by fglwsdl, you need to
manage it by setting the HTTP headers.

Important: HTTP request compression for POST/PUT is not supported on GMI mobile devices.

Send a compressed request

The method used to set up the client for sending a compressed request depends on whether the Genero
Web Services client is a high-level or low-level Web services client. A high-level client is a Genero Web
Services client that includes the stub files created by the fglwsdl tool. A low-level client is a Genero Web
Services client that does not utilize stub files created by the fglwsdl tool.

Regardless of the type of client, the server must be set up to handle such compression, otherwise the
request will be rejected.

Send a compressed request from a high-level client

A high-level client is a Genero Web Services client that includes the stub files created by the fglwsdl tool.

Set the variable Binding.CompressRequest to either "gzip" or "deflate".

LET EchoDocStyle_EchoDocStylePortTypeEndpoint.Binding.CompressRequest =
 "gzip"

The Binding.CompressRequest variable is defined in the stub file, specifically the client's global (inc)
file.

#
Global Endpoint user-defined type definition
#
TYPE tGlobalEndpointType RECORD # End point
 Address RECORD # Address
 Uri STRING # URI
 END RECORD,
 Binding RECORD # Binding
 Version STRING, # HTTP Version (1.0 or 1.1)
 Cookie STRING, # Cookie to be set
 ConnectionTimeout INTEGER, # Connection timeout
 ReadWriteTimeout INTEGER, # Read write timeout
 CompressRequest STRING # HTTP request compression mode (gzip
 or deflate)
 END RECORD
 END RECORD

#
Location of the SOAP endpoint.
You can reassign this value at run-time.
#

DEFINE EchoDocStyle_EchoDocStylePortTypeEndpoint tGlobalEndpointType

Send a compressed request from a low-level client

A low-level client is a Genero Web Services client that does not utilize stub files created by the fglwsdl tool.

Web services | 2434

Set the Content-Encoding field in the request header to either "gzip" or "deflate".

This example sets the Content-Encoding field to "gzip", where the request is a com.HTTPRequest
object.

CALL request.setHeader("Content-Encoding","gzip")

Accept a compressed response

A Genero Web Services client can accept a compressed request if it sets the Accept-Encoding field
in the header to "gzip, deflate". These values represent supported compression schema names (called
content-coding tokens) separated by commas.

This example sets the Accept-Encoding field with the setHeader method, where the request is a
com.HTTPRequest object.

CALL request.setHeader("Accept-Encoding","gzip, deflate")

Compression and a Web services server
Send and receive compressed requests from a Web services server.

If the Genero Web Services client accepts compression, the Genero Web Services server will reply with a
compressed response.

To disable compression, you must disable compression in the Genero Application Server $FGLASDIR/
etc/imt.cfg file. See the Genero Application Server User Guide for more information.

SOAP multipart style requests in GWS
This topic describes multipart support with Genero Web Services

What is multipart style in SOAP?

Multipart style SOAP is the ability to send and receive a SOAP request in multiple pieces. The sending of
attached files in separate parts of the SOAP request is one example of a multipart style SOAP request.

Multipart SOAP on the client

When using a WSDL with multipart style, fglwsdl generates a client-side stub handling multipart
requests. For more details, see Multipart in the client stub on page 2460.

Multipart SOAP on the server

Multipart style is not yet supported with the high-level WS API of Genero.

• It is not possible to write a GWS server handling multipart style SOAP requests with the high-level API.
• When generating code from a WSDL using multipart style, the fglwsdl will produce a warning

message: WARNING : Unable to manage MIME Mutlipart binding on message 'name',
where name is the name of the message in XML.

Implementing multipart using the low-level APIs

If required, you can implement a WS server handling multipart with the low-level APIs of Genero Web
Services. For more details, see com.HTTPServiceRequest.getRequestMultipartType on page 2044.

Web services | 2435

Security
These topics covers security and Genero Web Services.

• Encryption and authentication on page 2435
• Accessing secured services on page 2438
• HTTPS configuration on page 2440
• Certificates in practice on page 2441
• Examining certificates on page 2443
• Troubleshoot common issues on page 2446
• The Diffie-Hellman key agreement algorithm on page 2447

Encryption and authentication
A scenario involving a person (Georges) and his bank guides you through the concepts of secured
communication, certificates, and certificate authorities.

• Secured communications on page 2435
• Certificates on page 2436
• Certificate authorities on page 2437
• Certificates and private keys storage on page 2438

Secured communications
Secured communications are important. If an application wants to send or receive messages from a
financial, business, or personnel application on the web, it must be able to authenticate the origin of the
message, ensure that no malicious application has altered the original message, and ensure that no third
party application can intercept the message.

Suppose that a person named Georges wants to send a message to his bank to transfer some money on
the Internet. In this scenario, he faces the following concerns:

1. The privacy of the message, since it includes his account number and the transfer amount.
2. The integrity of the message, since someone might try to modify the original message or substitute a

different message in order to transfer the money to another account.
3. The authentication of the message, since the bank must ensure that the message was sent from the

right person.

Message privacy

To keep a message private, use a cryptographic algorithm - a technique that transforms a message into an
encrypted form unreadable except by those it is intended for. Once it is in this form, the message may only
be interpreted through the use of a secret key. There are two kinds of cryptography algorithms: symmetric
and asymmetric.

Symmetric means the sender and the receiver of a message have to share the same key used to encrypt
a clear message into an encrypted form, and then to decrypt it back into the original message. If that key
is kept secret, nobody other than the sender and the receiver can read the message. However, the task of
choosing a private key before communicating can be problematic.

Asymmetric means that there are two different keys working as a key-pair. One key is used to encrypt
a message, and the second one is used to decrypt the encrypted message back into its original form.
This solves the problem of key sharing in the symmetric cryptography algorithm, and makes it possible to
receive secure messages, simply by publishing the key used to encrypt messages (the public key), and
keeping secret the key used to decrypt messages (the private key). Anyone can encrypt a message using
the public key, but only the owner of the private key can read it.

Web services | 2436

Important: The use of an asymmetric key-pair (public and private key), allows Georges to send
private messages to his bank, simply by using the bank's public key to encrypt a message. Only the
owner of the corresponding private key (the bank in this scenario) is able to read it.

Message integrity

To guarantee the integrity of a message, send a concise summary of the original message. The receiver of
the message can create its own summary and compare it to the sender's summary. If they are similar, the
message is considered intact, meaning that no third party has modified the original message.

Such a summary is called a message digest and is based on hash algorithms that produce a fixed-length
representation of variable-length messages. Message digests are designed to make it very difficult (if not
impossible) to determine the original message from a summary.

The message digest must be sent to the receiver in a secure way to assure the message integrity. This is
achieved with a digital signature authenticating the sender and containing the sender's message digest.

Important: The use of message digests allows Georges' bank to verify that no one has modified
the original message he sent.

Message authentication

To authenticate a message, add a digital signature to that message.

A digital signature is another message, created by encrypting the message digest, along with some other
information, with the sender's private key. Anyone with the corresponding public key can decrypt the digital
signature. If an application is able to decrypt it, it means the owner of the private key was able to encrypt it,
proving that the message comes from this sender and not from someone else.

Once the sender has been authenticated, the receiver can compare the message digest integrated into the
digital signature to the one it created from the message it receives, in order to check the message integrity.

Important: The use of digital signatures allows Georges' bank to verify that the message really
comes from him.

Certificates
An SSL certificate is a kind of digital identity card that associates the public key with a unique digital
thumbprint identifying an individual, a server, or any other entity.

Now that Georges is able to send a secured message to his bank, there is still a problem. How can
Georges be sure that the server he is connected to is really the bank's server and not a malicious server?

Georges must be sure that the public key he is using to encrypt his message corresponds to the bank's
private key. Similarly, the bank needs to verify that the message signature it receives corresponds to
Georges' signature.

To identify a remote peer, use a certificate - a kind of digital identity card that associates the public key with
a unique digital thumbprint identifying an individual, a server, or any other entity (known as the subject). It
also includes the identification and signature of the Certificate Authority that issued the certificate, and the
period of time during which the certificate is valid. It may have additional information (or extensions) as well
as administrative information for the Certificate Authority's use, such as a serial number.

A standard X.509 certificate contains the following standard fields:

• Certificate version
• Serial number of the certificate
• The distinguished name of the certificate issuer
• The distinguished name of the certificate owner
• The validity period of the certificate
• The public key
• The digital signature of the issuer

Web services | 2437

• Signature algorithm used
• Zero or more certificate extensions

Note:

1. An example of a distinguished name is:
CN=Georges,E=georges@mycompany.com,OU=Sales,O=My Company
Name,C=FR,S=France

2. The CN (Common Name) of the distinguished name of the certificate owner corresponds to the
certificate subject, and identifies the owner of that certificate.

Certificate authorities
When a certificate authority signs a certificate, it is validating that the certificate is valid.

Each time Georges sends a message to his bank, he will present his own certificate to the bank, and
will get the bank's certificate back. But as every one can create a certificate in the name of Georges, a
higher authority that confirms the validity of a certificate is necessary. The bank must be sure it is Georges'
certificate, and that no one else has taken his identity. Similarly, Georges needs an authority that confirms
that the certificate coming from the server is really the bank's certificate.

The solution to validating a certificate is to sign it with a trusted certificate called certificate authority. This
is a certificate in which an application creates total confidence concerning the validity of the certificates it
has signed. Before signing a certificate, a certificate authority must proceed with a strict identification of the
owner of that certificate.

Note: The private key associated to a Certificate Authority must be managed with care, as it is the
entity in charge of the validity of all other certificates it has signed.

There are several companies (such as VeriSign, GlobalSign or RSA Security) that have established
themselves as certificate authorities and provide the following services over the Internet:

• Verifying certificate requests
• Processing certificate requests
• Issuing and managing certificates

Note: It is also possible to create your own Certificate Authority, but it is up to you to manage it
securely.

Root Certificate Authority

A Certificate Authority signed by itself is called a Root Certificate Authority, meaning that the certificate
issuer is the same as the certificate subject. Most of the time, such a certificate belongs to a company
established as a Certificate Authority, and is used to sign certificate requests coming from different
companies that want their own Certificate Authority. If a client certificate is signed by a Certificate Authority
previously signed by a Root Certificate Authority, the client certificate can be validated by the Root
Certificate Authority even if the Certificate Authority is not present.

For example, if a company wants to buy a Certificate Authority from VeriSign, VeriSign signs that
Certificate Authority with its own Root Certificate Authority. The company can then create certificates
with the Certificate Authority provided by VeriSign and connect to secure servers without providing them
their own Certificate Authority. The secure server, of course, has to know the VeriSign Root Certificate
Authority.

Certificate chains

A certificate authority may issue a certificate for another certificate authority. This means that when an
application wants to examine the certificate of the issuer, it must check all parent certificates of that issuer
until it reaches one it which it has confidence.

The certificate chain corresponds to the number of parent certificate authorities allowed to validate a
certificate.

Web services | 2438

Certificate Authority List

A Certificate Authority List is a list of all certificate authorities considered as trusted by one application,
classified by order of importance. Each of these certificates allows the authentication of a certificate
presented to that application from a remote peer.

Note: With most applications, the Certificate Authority List is a concatenated file of all certificate
authorities.

Certificates and private keys storage
The entire concept of security is based on the publication of the public key, and the privacy of the
associated private key. For maximum security, it is critical to restrict the access of the private key to the
owner of the certificate and associated private key.

Note: Some companies provide systems to manage certificates and private keys in complete
security.

UNIX™ systems

As the UNIX™ system is already able to restrict the access of a file to only one person, simply restrict
access to the private key to the owner of that key to achieve a good level of security. This provides enough
security to allow a Genero Web Services client to perform secured communications in the name of the
certificate and private key owner, because access to the private key file is granted only if the correct user
has logged in.

Windows™ systems

The Windows™ system doesn't provide a reliable and sufficiently strong file access rights policy to secure
a file. However, Windows™ has an integrated key store system to manage certificates and private keys. It
allows the registration and the storage of X.509 certificate authorities, as well as personal X.509 certificates
and their associated private keys accessible only if the correct user has logged in. It is recommended that
you store the certificate and associated private key in the Windows™ key store instead of in files on the
disk.

Accessing secured services
Security and authentication are important. Genero Web Services provides various communications options
for a client to connect to a Web Service.

Figure 104: Communications options for a client to connect to a Web Service

HTTP Client connects to a Web Server (or a Web Service)
using HTTP as the communication protocol. (No
security , No authentication).

HTTP with Basic Authentication Client connects to a Web Server using HTTP as
the communication protocol, but a valid login and

Web services | 2439

password are required from the Web Server to
grant access to the Web Service. (No security ,
Weak Authentication). The login and password
are sent in clear text on the communication layer.

HTTP with Digest Authentication Client connects to the Web Server using HTTP
as the communication protocol, but a valid login
and password are required from the Web Server
to grant access to the Web Service. (No security
, Authentication). The login and password are
encoded using a digest algorithm, requiring
additional information from the Web Server. This
means that the first connection will always fail,
but it is necessary in order to return Web Server
additional information back to the client.

HTTPS Client connects to a Web Server using HTTPS
as the communication protocol. (Security , No
authentication). The communication channel is
encrypted by SSL.

HTTPS with Basic Authentication Client connects to a Web Server using HTTPS as
the communication protocol, but a valid login and
password are required from the Web Server to
grant access to the Web Service. (Security , Weak
Authentication). The login and password are sent
in clear text on the communication layer, but the
communication channel is encrypted by SSL.

HTTPS with Digest Authentication Client connects to the Web Server using HTTPS
as the communication protocol, but a valid login
and password are required from the Web Server
to grant access to the Web Service. (Security
, Authentication). The login and password are
encoded using a digest algorithm, requiring
additional information from the Web Server. This
means that the first connection will always fail,
but it is necessary in order to return Web Server
additional information back to the client. The
communication channel is encrypted by SSL.

To improve communication speed with the cache mechanism, or to restrict internet access to specific
clients, Genero Web Services allows a client to connect via proxies. The proxy is in charge of dispatching
the client request to the server, and uses the same protocol as that used by the server. So, when a client
connects via a proxy to access a HTTP server, the configuration of the HTTP proxy is used, and when the
client communicates in HTTPS, the HTTPS proxy configuration is used.

HTTP proxy Client connects via a proxy using HTTP as the
communication protocol.

HTTP proxy with Basic Authentication Client connects via a proxy using HTTP as
the communication protocol, but a valid login
and password are required from the proxy to
dispatch the request to the Web Service. The
login and password are sent in clear text on the
communication layer between client and proxy.

HTTP proxy with Digest Authentication Client connects via a proxy using HTTP as the
communication protocol, but a valid login and
password are required from the proxy to dispatch

Web services | 2440

the request to the Web Service. The login and
password are encoded using a digest algorithm,
requiring additional information from the proxy. This
means that the first connection will always fail, but
it is necessary in order to return proxy additional
information back to the client.

HTTPS proxy Client connects via a proxy using HTTPS as the
communication protocol. The communication
channel is encrypted by SSL.

HTTPS proxy with Basic Authentication Client connects via a proxy using HTTPS as
the communication protocol, but a valid login
and password are required from the proxy to
dispatch the request to the Web Service. The
login and password are sent in clear text on the
communication layer between client and proxy, but
the communication channel is encrypted by SSL.

HTTPS proxy with Digest Authentication Client connects via a proxy using HTTPS as the
communication protocol, but a valid login and
password are required from the proxy to dispatch
the request to the Web Service. The login and
password are encoded using a digest algorithm,
requiring additional information from the proxy. This
means that the first connection will always fail, but
it is necessary in order to return proxy additional
information back to the client. The communication
channel between client and proxy is encrypted by
SSL.

HTTPS configuration
If no HTTPS is provided, Genero Web Services (GWS) does the HTTPS request transparently.

For GWS, use an implicit certificate when no HTTP configuration is provided. For stronger security, you
can provide HTTPS configuration with your own certificates and CA list.

The implicit client certificate

For the implicit certificate, no configuration is required. GWS creates a temporary certificate for the HTTPS
request. The temporary certificate is valid for the application session.

The explicit client certificate

For the explicit certificate, configure your certificate with fglprofile entries.

For access to a specific site, specify security.ident.certificate and
security.ident.privatekey.

If you use the same certificate across all sites, specify security.global.certificate and
security.global.privatekey.

Certificate authorities

Certificate authorities are provided by the system (the operating system keystore). If they are not provided
by the system, they are looked for in FGLDIR/web_utilities/certs. Genero Web Services will laod
the CA from the directories listed in the fglprofile entry "security.global.ca.lookuppath". This
entry is a list of directories, separated by a semicolon.

You can configure your CA list with the fglprofile entry security.global.ca.

Web services | 2441

Mobile platforms

On mobile platforms, no HTTPS configuration is required, because the Web Service library uses the SSL
certificates installed in the key database of the device (Keystore for Android™ and Keychain for iOS).

See also GMA / Android Web Services requirements on page 2419.

Certificates in practice
Procedures and tools for creating, importing, and viewing certificates and keys.

• The OpenSSL (openssl) tool on page 2441
• Create a root certificate authority on page 2441
• Create a certificate authority on page 2442
• Create a certificate on page 2442
• Create a certificate authority list on page 2442
• Import a certificate and its private key into the Windows key store on page 2443
• Import a certificate authority into the Windows key store on page 2443
• View a certificate on page 2443
• HTTPS configuration on page 2440

The OpenSSL (openssl) tool
The openssl command line tool creates certificates for the configuration of secured communications.

It requires a configuration file with the default parameters such as the key size or the private key name.
OpenSSL is provided with a default configuration file openssl.cnf.

The openssl tool looks for the openssl.cnf file in the directory where it is executed; it stops if the file is
not present. To use the openssl tool from any directory, set the OPENSSL_CONF environment variable to
specify the location of the configuration file.

For information on how the openssl tool works, refer to the openssl documentation at http://
www.openssl.org/docs/apps/openssl.html.

Create a root certificate authority
This procedure allows you to create a root certificate authority.

1. Create the root certificate authority serial file:

$ echo 01 > MyRootCA.srl

2. Create a CSR (Certificate Signing Request):

$ openssl req -new -out MyRootCA.csr

This creates a privkey.pem file containing the RSA private key of that certificate and protected by a
password.

3. Remove the password of the private key (Optional):

$ openssl rsa -in privkey.pem -out MyRootCA.pem

Note: Removing the password of a certificate authority's private key is not recommended.

4. Create a self-signed certificate from the Certificate Signing Request for a validity period of 365 days:

$ openssl x509 -trustout -in MyRootCA.csr -out MyRootCA.crt
 -req -signkey MyRootCA.pem -days 365

http://www.openssl.org/docs/apps/openssl.html
http://www.openssl.org/docs/apps/openssl.html

Web services | 2442

Note: If you want an official Root Certificate Authority, you must send the CSR file to one of
the self-established Certificate Authority companies on the Internet (instead of creating it with
openssl).

Create a certificate authority
This procedure allows you to create a certificate authority.

1. Create a CSR (certificate signing request):

$ openssl req -new -out MyCA.csr

This creates a privkey.pem file containing to the RSA private key of that certificate and protected by a
password.

2. Remove the private key password (Optional):

$ openssl rsa -in privkey.pem -out MyCA.pem

Note: Removing the password of a certificate authority's private key is not recommended.

3. Create a certificate from the Certificate Signing Request and trusted by the Root Certificate Authority:

$ openssl x509 -in MyCA.csr -out MyCA.crt -req -signkey MyCA.pem
 -CA MyRootCA.crt -CAkey MyRootCA.pem -days 365

Note: If you want an official Certificate Authority, you must send the CSR file to one of the self-
established Certificate Authority companies on the Internet (instead of creating it with openssl).

Create a certificate
This procedure allows you to create a certificate.

1. Create the certificate serial file:

$ echo 01 > MyCA.srl

2. Create a CSR (Certificate Signing Request):

$ openssl req -new -out MyCert.csr

This command creates a privkey.pem file containing the RSA private key of that certificate and
protected by a password.

3. Remove the private key password (Optional):

$ openssl rsa -in privkey.pem -out MyCert.pem

4. Create a certificate from the Certificate Signing Request and trusted by the Certificate Authority:

$ openssl x509 -in MyCert.csr -out MyCert.crt -req -signkey MyCert.pem
 -CA MyCA.crt -CAkey MyCA.pem -days 365

Note: If you want an official Certificate, you must send the CSR file to one of the self-
established Certificate Authority companies on the Internet (instead of creating it with openssl).

Create a certificate authority list
This procedure allows you to create a certificate authority list using the openssl command.

Concatenate all certificate authorities by order of importance, listing the most important first:

$ openssl x509 -in MyCA1.crt -text >> CAList.pem
$ openssl x509 -in MyCA2.crt -text >> CAList.pem

Web services | 2443

$ openssl x509 -in MyCA3.crt -text >> CAList.pem

Import a certificate and its private key into the Windows™ key store
This procedure allows you to import a certificate and its private key.

1. Create a certificate.

See Create a certificate.

2. Create a specific PKCS12 file containing the certificate and its private key in one file:

$ openssl pkcs12 -export -inkey MyCert.pem -in MyCert.crt -out MyCert.p12

Note: The .p12 generated file is protected by a password and can then be transported without
any risk.

3. On a Windows™ system, open this .p12 file and follow the instructions provided.

Note: If you select strong verification during the importation process, a popup displays each
time an application accesses the private key asking the user whether the application is allowed
to use it.

Import a certificate authority into the Windows™ key store
This procedure allows you to import a certificate authority.

1. Create a certificate authority.

See Create a certificate Authority.

2. Open the .crt certificate file

3. Click Install Certificate and follow the instructions provided.

Windows™ automatically places the certificate in the certificate authority list of the key store.

View a certificate
This procedure allows you to view a certificate using the openssl command.

To view a certificate, enter the x509 command:

openssl x509 -in MyCompanyCA.crt -noout -text

Examining certificates
When you receive a URL in https, you are asked to either accept a certificate or the certificate has already
been accepted. In the second case, you can still check the server certificate.

• Check the server certificate using FireFox on page 2443
• Check the server certificate using Internet Explorer on page 2444
• Selecting the certificate to add on page 2444
• Missing certificates on page 2445

Check the server certificate using FireFox
This procedure allows you to check the server certificate using FireFox.

1. Type the https URL.

2. Once the page is displayed, click on the padlock.

The Page Info for the certificate displays.

3. In the Security tab, click on the View button.

The Certificate Viewer opens.

4. In the Details tab, view the Certificate Hierarchy.

Web services | 2444

Figure 105: Certificate Viewer; Details tab.

Check the server certificate using Internet Explorer
This procedure allows you to check the server certificate using Internet Explorer.

1. Type the https URL.

2. Once the page is displayed, click on the padlock.

The Certificate window displays.

3. On the Certification Path, view the certificate hierarchy.

Selecting the certificate to add
The certificate authority (CA) is the authority that validates the server. The certificate to add to the CA list is
the authority certificate, not the server certificate.

There are default certificates known by browsers like:

• VeriSign: http://www.verisign.com/support/roots.html
• Thawte: http://www.thawte.com/roots/index.html

Get the server issuer certificate (and all the parents, grandparents, and so on).

For example, if your server is validated by Thawte, add the Thawte certificate to the list.

To check whether your certificate is the CA certificate, search for the CNs (Common Names) in the .cer
files. The CA Subject entry should be the Issuer CN in the server certificate.

openssl x509 -in server.pem -noout -subject

gives:

subject= /C=ZA/ST=Western Cape/L=Cape Town/O=Thawte Consulting cc/OU=CertificationServices
Division/ CN=Thawte Server CA /emailAddress=server-certs@thawte.com

http://www.verisign.com/support/roots.html
http://www.thawte.com/roots/index.html

Web services | 2445

To convert a .cer certificate to the .pem format used by Genero Web Services:

openssl x509 -inform DER -in server.cer -outform PEM -out server.crt

Missing certificates

Sometimes the CA hierarchy described in the server certificate is incomplete or needs another certificate
(default ones use by browsers or private ones).

Figure 106: Certificate Viewer in Firefox Web Browser; Details Tab

When this occurs, you will have this kind of error message when you set FGLWSDEBUG:

WS-DEBUG (Security error)
Error with certificate at depth: 3
 issuer = /C=US/O=VeriSign, Inc./OU=Class 3 Public Primary Certification
 Authority

Web services | 2446

 subject = /C=US/O=VeriSign, Inc./OU=Class 3 Public Primary Certification
 Authority
 err 19:self signed certificate in certificate chain
WS-DEBUG END

This means openssl is looking for a third ancestor that is not listed in the hierarchy above. In this example,
gatewaybeta.fedex.com only has two ancestors, and none are named "Class 3 Public Primary Certification
Authority". You need to download the root certificates from VeriSign and add "Class 3 Public Primary
Certification Authority" in your CA list.

Troubleshoot common issues
You may encounter known (and common) issues when completing the Genero Web Services tutorials or
when adding Web services of your own. These issues and their solutions are presented in the following
topics.

HTTP 401 error message
An HTTP 401 error message means the server is asking for, but not receiving, authentication (login and
password).

This means authenticate.xxx.login and authenticate.xxx.password are not correctly configured. The
login and password should be provided in the FGLPROFILE.

Solution:

1. Open the FGLPROFILE used by the application.
2. Add entries for authenticate.xxx.login and authenticate.xxx.password .
3. Save your changes.

Error: Peer certificate is issued by a company not in our CA list
When a client needs to connect to a server with https, the client needs to trust the server it is talking to. So
the client needs to included the server CAs (certificate authorities list) to its trusted CAs.

This error means the client CA list is missing a certificate authority in its CA list.

To display the client CA list, use the following command:

openssl x509 -in ClientCAList.pem -noout -text

Solution:

1. Add the missing CA list to the client CA list.

openssl x509 -in MyCompanyCA.crt -text >> ClientCAList.pem

Theory:

Usually certificates work in pairs: a public key and a private key.

Web services | 2447

Figure 107: Certificates working in pairs: a public key and a private key

This means that the client has a certificate that can be signed by an authority signed itself by a root
authority. Likewise, the server has a certificate that can be signed by an authority signed itself by a root
authority. In some instances, a certificate can be signed by itself.

Things to remember:

• The server certificate should have its hostname as CN (Common Name). For example: if you want to
access the server https://www.mycompany.com the CN should be www.mycompany.com.

• In client CA list you should have all the CA of the server. In this example you need the server CA (5)
and the server CA Root (4). If the server is self-signed then add the server certificate (6) to the client CA
list.

• Sometimes, the needed CAs are not listed in the certificates hierarchy. Setting environment variable
FGLWSDEBUG=3, will give you information about the missing CA.

The Diffie-Hellman key agreement algorithm
Diffie-Hellman is a key-agreement algorithm. It allows two peers to agree on the same symmetric key, the
shared secret, without exchanging confidential data.

The Diffie-Hellman key agreement algorithm is a method that allows two devices to communicate over
a network by establishing a shared secret without exchanging any secret data. Knowing the used key-
agreement algorithm, the two devices only need to exchange their public key. Then, using the other peer's
public key and its own private key, each device performs the algorithm specific key generation operation
to obtain the shared secret. The shared secret is a ready-to-use symmetric key for further signed or
encrypted exchanges between the two peers.

Genero Web Services provides several shared secret type for signature, encryption, or key encryption
purposes. Using the Diffie-Hellman key agreement algorithm, one of the following types of shared secrets
can be computed:

• Symmetric AES128 encryption key
• Symmetric AES192 encryption key
• Symmetric AES256 encryption key
• Symmetric TripleDES encryption key
• Symmetric key wrap AES128 key encryption key
• Symmetric key wrap AES192 key encryption key
• Symmetric key wrap AES256 key encryption key
• Symmetric key wrap TripleDES key encryption key
• Symmetric HMAC-SHA1 signature key

Web services | 2448

In the Diffie-Hellman key agreement algorithm, two shared constants (called parameters) are used in
addition to the private and public key. These two parameters are:

• The modulus (called P): A very big prime number chosen at random.
• The generator (called g): A prime number between two and five. Genero Web Services only uses two

(2) for the generator.

If the private key (Priv) is a big number (not necessarily prime) chosen randomly, the public key (Pub) is
calculated using P, g, and Priv as follows:

Pub = gPriv mod P

Both devices need to use the same parameters for P and g. There are two ways to ensure this happens:
Either P and g are chosen by a third party (such as a security authority) or one of the devices chooses
them and sends them to the other peer with its public key.

Genero Web Services allows the Web service to generate the parameters itself, to load them from a string
or from a PEM or DER file. The public key and the parameters can also be exchanged using an XML file.

This diagram shows the Diffie-Hellman algorithm steps between two devices, A and B, that need to
communicate. Device A is in charge of generating the parameters. The shared secret is labeled K.

Web services | 2449

Figure 108: The Diffie-Hellman algorithm

For complete details about the mathematical basics underlying the Diffie-Hellman algorithm, see
[RFC2631].

http://www.ietf.org/rfc/rfc2631.txt

Web services | 2450

It is nearly impossible to get the private key from the public key, even knowing the values of parameters
P and g. Therefore, a middle man will not be able to obtain the shared secret K. While devices A and
B exchange their public key, and maybe the parameters as well, these values pass through different
intermediate points. It is critical that A receives the correct public key from B, and that B receives the
correct public key from A, in order to establish a common shared secret. A middle man could corrupt or
replace one public key with his own. If that happens, A and B would be able to communicate because
they won't compute the same shared secret. No secret data will be exchanged and readable to the middle
man. To avoid this situation, one can use Digital Certificate that helps to deliver the public key and the
parameters in an authenticated method.

Once the shared secret is established, the Diffie-Hellman public key, private key and parameters are no
longer useful. The Diffie-Hellman key agreement algorithm is achieved.

With the library provided as part of Genero Web Services, the shared secret has been computed to fit
given specifications such as HMAC, 3DES, AES128, AES192, AES256, KW-3DES, KW-AES128, KW-
AES192, or KW-AES256. The shared secret is actually a symmetric key ready to be used in a signature
(HMAC) or cipher algorithm. It allows devices A and B to finally communicate via an authenticated (HMAC)
or encrypted method.

SOAP Web Services
Write a Web Services client or server using the SOAP protocol.

The Genero APIs for creating Web services can be found in the Library section of this manual. See The
com package on page 2009 and The xml package on page 2103.

Writing a Web Services client application
Create, configure and deploy a Genero Web Services client using the SOAP protocol.

• Steps to write a WS client on page 2450
• Change WS client behavior at runtime on page 2453
• WS client stubs and handlers on page 2456
• Using logical names for service locations on page 2462
• Configure a WS client to connect via an HTTP Proxy on page 2463
• Authenticate the WS client to a server on page 2464
• Authenticate the WS client to a proxy on page 2465
• Configure a WS client to access an HTTPS server on page 2466

Steps to write a WS client

The Genero Web Services package (GWS) allows a BDL program to access Web services found on the
Internet. GWS supports the WSDL1.1 specification of March 15, 2002. This example illustrates a client
application that accesses the Add operation in the GWS Web Service MyCalculator.

See Writing a Web server application on page 2473 for information about the Service.

• Obtaining the WSDL information on page 2450
• Calling a web service on page 2452
• Setting a time period for the response on page 2453
• Handling GWS server errors on page 2453
• Compiling the client application on page 2453

Obtaining the WSDL information

To access a remote Web service, you must get the WSDL information from the service provider.
Sample services can be found through UDDI registries or on other sites such as XMethods (http://
www.xmethods.net).

http://www.xmethods.net
http://www.xmethods.net

Web services | 2451

You can use the fglwsdl tool provided by the Genero Web Services package to obtain the necessary
WSDL information. The following example obtains the WSDL information for the GWS Service
MyCalculator created by the Writing a Web server application on page 2473:

fglwsdl -o Example2Client http://localhost:8090/MyCalculator?WSDL

This generates two files:

• Example2Client.inc - the globals file containing the definitions of the input and output records, and
the prototypes of the operations.

• Example2Client.4gl - a module containing the definitions of the functions that can be used in your
GWS client application to perform the requested Web Service operation, and the code that manages
the Web Service request.

Note: The MyCalculator GWS Service must be running on the specified port in order to provide the
WSDL information.

The following definitions were generated in the globals file, Example2Client.inc:

Input and Output records

DEFINE Add RECORD
 ATTRIBUTES(XMLName="Add",
 XMLNamespace="http://tempuri.org/webservices")
 a INTEGER ATTRIBUTES(XMLName="a", XMLNamespace=""),
 b INTEGER ATTRIBUTES(XMLName="b", XMLNamespace="")
END RECORD

DEFINE AddResponse RECORD
 ATTRIBUTES(XMLName="AddResponse",
 XMLNamespace="http://tempuri.org/webservices")
 r INTEGER ATTRIBUTES(XMLName="r",XMLNamespace="")
END RECORD

Since BDL functions cannot have complex structures as parameters, the data types are defined as global
or modular variables.

Function prototypes for the Operations

This globals file contains the prototype of two functions for the Add operation.

The Add function uses input and output parameters, and returns the status and result. This function can
only be used if the input and output parameters are not complex structures such as arrays or records.
Using this function, developers do not access the global records directly.

The Add_g function can be used with the global input and output records. Before calling this function, you
must set the values in the variables of the global input record.

Operation: Add
#
FUNCTION: Add_g()
RETURNING: soapStatus
INPUT: GLOBAL Add
OUTPUT: GLOBAL AddResponse
#
FUNCTION: Add(p_a, p_b)
RETURNING: soapStatus ,p_r

See fglwsdl on page 1503 and WS client stubs and handlers on page 2456 for more details regarding the
fglwsdl tool, its output and the generated functions.

Web services | 2452

Calling a web service
Step 1: Import the COM library of the GWS package

The methods associated with creating and publishing a Web Service are contained in the classes
that make up the Genero Web Services Library (com). If you use any of these methods in your client
application, you must import the library. Since this example application sets the timeout period that the
client will wait for the Service to respond, include the following line at the top of the module:

IMPORT com

If your generated .inc file uses xml class data types, you need to add IMPORT xml.

Step 2: Specify the globals file

Use a GLOBALS statement to specify the generated globals file.

GLOBALS "Example2Client.inc"

Step 3: Write the MAIN program block

Provide values for the input and output messages of the operation, and call one of the generated functions.
Since the input and output messages are simple integers, we can call the Add function.

MAIN
 DEFINE op1 INTEGER
 DEFINE op2 INTEGER
 DEFINE result INTEGER
 DEFINE wsstatus INTEGER

 LET op1 = 1
 LET op2 = 2
 CALL Add(op1, op2) RETURNING wsstatus, result
 IF wsstatus = 0 THEN
 DISPLAY "Result: ", result
 ELSE
 -- Use the global wsError record
 DISPLAY "Error: ", wsError.description
 END IF
END MAIN

Alternatively, we can use the global input and output records directly, calling the Add_g function:

MAIN
 DEFINE wsstatus INTEGER

 LET Add.a = 1
 LET Add.b = 2
 LET wsstatus = Add_g()
 IF wsstatus != 0 THEN
 -- Use the glocal wsError record
 DISPLAY "Error :", wsError.Description
 ELSE
 DISPLAY "Result: ", AddResponse.r
 END IF
END MAIN

These examples are very basic versions of the code. For complete examples, see the code samples
provided with the package in demo/WebServices.

Web services | 2453

Setting a time period for the response
To protect against remote server failure or unavailability, set a timeout value that indicates how long you
are willing to wait for the server to respond to your request.

Use the SetOption() method of the WebServiceEngine class to set the readwritetimeout option.

For example, to wait no more than 10 seconds:

CALL com.WebServiceEngine.SetOption("readwritetimeout", 10)

A timeout value of -1 means "wait forever". This is the default value.

Handling GWS server errors
When a Genero Web Services Service operation returns a status that is non-zero, you can get a more
detailed error description from the global record wsError.

This record is defined defined in the globals .inc file.

DEFINE wsError RECORD
 code STRING, -- Short description of the error
 codeNS STRING, -- The namespace of the error code
 description STRING, -- Long description of the error
 action STRING -- internal "SOAP action"
END RECORD

Compiling the client application

The library file WSHelper.42m, included in the $FGLDIR/lib directory of the Genero Web Services
package, should be linked into every client or server program. Assuming the example client code shown
above is in a module named clientmain.4gl, you can compile and link the client program:

fglcomp clientmain.4gl Example2Client.4gl
fgllink -o myclient.42r clientmain.42m Example2Client.42m WSHelper.42m

Change WS client behavior at runtime

Genero Web Services generates a global record called tGlobalEndpointType to change the client behavior
at runtime without the need to modify any generated client stub. If WS-Addressing 1.0 is enabled, the
global generated record is called tWSAGlobalEndpointType, and if needed you can also access the HTTP
layer via the Request and Response record of the binding section.

• Global Endpoint type definition on page 2453
• WS-Addressing 1.0 Global Endpoint type definition on page 2454
• Change server location on page 2454
• Change the HTTP protocol version on page 2455
• Set an HTTP cookie on page 2455
• Set the connection timeout for a service on page 2455
• Set the read and write timeout for a service on page 2455
• Access HTTP request and response headers for a service on page 2455

Global Endpoint type definition

The following global type is used by any generated client stub to allow the programmer to change the client
behavior at runtime.

TYPE tGlobalEndpointType RECORD # End point
 Address RECORD # Address
 Uri STRING # URI
 END RECORD,
 Binding RECORD # Binding
 Version STRING, # HTTP Version (1.0 or 1.1)

Web services | 2454

 Cookie STRING, # Cookie to be set
 ConnectionTimeout INTEGER,# Connection timeout
 ReadWriteTimeout INTEGER # Read write timeout
 END RECORD
END RECORD

Description of variables:

• Address.Uri: Represents the location of the server.

Important: It replaces the global variable of type STRING generated prior to version 2.40,
therefore it is mandatory to regenerate the client stub and to modify the location assignation in
your application.

• Binding.Version: Represents the HTTP version to use for communication (only 1.0 or 1.1 allowed,
default is 1.1).

• Binding.Cookie: Represents the HTTP cookie to use for communication (or NULL if there is no
cookie to send).

• Binding.ConnectionTimeout : Represents the maximum time in seconds to wait for the
establishment of the connection to the server.

• Binding.ReadWriteTimeout: Represents the maximum time in seconds to wait for a connection
read or write operation before breaking the connection.

WS-Addressing 1.0 Global Endpoint type definition

The following global type is used by any generated client stub where support of WS-Addressing 1.0 is
enabled. It allows the programmer to change the client behavior at runtime, and to send additional WS-
Addressing 1.0 reference parameters to a server.

If this global type is used in your main application, you must add the IMPORT xml instruction.

TYPE tWSAGlobalEndpointType RECORD # End point
 Address RECORD # Address
 Uri STRING, # URI
 Parameters DYNAMIC ARRAY OF xml.DomDocument
 ATTRIBUTES(XMLNamespace="##any",XMLAny) # End point WSA reference
 parameters
 END RECORD,
 Binding RECORD # Binding
 Version STRING, # HTTP Version (1.0 or 1.1)
 Cookie STRING, # Cookie to be set
 ConnectionTimeout INTEGER,# Connection timeout
 ReadWriteTimeout INTEGER # Read write timeout
 END RECORD
END RECORD

Description of variables:

• Address.Parameters: Represents the WS-Addressing 1.0 reference parameter to send to a WS-
Addressing 1.0 compliant server.

Change server location

To change the server location at runtime, set the record Uri member with a valid URL of another service.
All services must respect the same WSDL contract. If you let the variable unset, the client will connect to
the server URL defined in the WSDL at code generation time.

Example:

LET Calculator_CalculatorPortTypeEndpoint.Address.Uri =
 http://zeus:1111/mydomain/Calculator

You can assign this variable with a URL set in the FGLPROFILE (see Logical Service location).

Web services | 2455

If you are migrating from a version prior to 2.40, see the migration note.

Change the HTTP protocol version

To communicate with a service that speaks only a given version of HTTP, set the record Version member
with the desired value. If you let the variable unset, the client will communicate in HTTP 1.1.

Example:

LET Calculator_CalculatorPortTypeEndpoint.Binding.Version = "1.0"

If you do not want the request to be split into chunks, set the HTTP protocol version to 1.0.

Important: On GMI mobile devices, the HTTP protocol version definition is ignored, it will always
be version 1.1.

Set an HTTP cookie

To send an HTTP cookie to the service, set the record Cookie member with the cookie value. If you let the
variable unset, the client won't send any cookie.

Example:

LET Calculator_CalculatorPortTypeEndpoint.Binding.Cookie = "MyCookie=AValue"

Unset that variable if you don't need the cookie to be sent anymore.

Set the connection timeout for a service

To change the default timeout value for the establishment of the connection to the service, set the record
ConnectionTimeout member with the timeout value in seconds.

Example:

LET Calculator_CalculatorPortTypeEndpoint.Binding.ConnectionTimeout = 15

Important: On GMI mobile devices, the max of ConnectionTimeout and ReadWriteTimeout
will be used.

Set the read and write timeout for a service

To change the default time of reading and writing to or from a service, set the record ReadWriteTimeout
member with the time out value in seconds.

Example:

LET Calculator_CalculatorPortTypeEndpoint.Binding.ReadWriteTimeout = 5

Important: On GMI mobile devices, the max of ConnectionTimeout and ReadWriteTimeout
will be used.

Access HTTP request and response headers for a service

To access HTTP headers exchanged between the Genero client and a web service, you must use
following records in the binding section :

• one record called Request in order to customize HTTP headers to be sent to a web service
• one record called Response in order to retrieve all HTTP headers returned by a web service

TYPE tGlobalEndpointWithHttpLayerType RECORD # End point
 Address RECORD # Address
 Uri STRING # URI
 END RECORD,
 Binding RECORD # Binding
 Version STRING, # HTTP Version (1.0 or 1.1)

Web services | 2456

 Cookie STRING, # Cookie to be set
 Request RECORD
 Headers DYNAMIC ARRAY OF RECORD # HTTP Headers
 Name STRING,
 Value STRING
 END RECORD,
 Response RECORD
 Headers DYNAMIC ARRAY OF RECORD # HTTP Headers
 Name STRING,
 Value STRING
 END RECORD,
 ConnectionTimeout INTEGER,# Connection timeout
 ReadWriteTimeout INTEGER # Read write timeout
 CompressRequest STRING # HTTP compression mode (gzip or deflate)
 END RECORD
END RECORD

Description of additional Request and Response variables:

• Binding.Request.Headers: Represents the additional HTTP headers to be sent to the web service.
(Notice that client stub headers will replace user ones if the same name).

• Binding.Response.Headers: Represents the HTTP headers returned by a web service.

WS client stubs and handlers

To access a remote Web Service, you first must get the WSDL information from the service provider.
Sample services can be found through UDDI registries (http://www.uddi.org), or on other sites such as
XMethods (http://www.xmethods.net).

• Generating stub files for a GWS Client on page 2456
• Handling GWS server errors on page 2453
• Global Endpoint user-defined type definition on page 2457
• The generated functions on page 2457
• The generated callback handlers on page 2458
• Example output on page 2459
• Using the generated functions on page 2461

Generating stub files for a GWS Client

Use the fglwsdl tool to generate the BDL stub from a WSDL URL or file.

The next example requests the Calculator Web Service information from the specified URL, and the output
files will have the base name ws_calculator:

fglwsdl -o ws_calculator http://localhost:8090/Calculator?WSDL

For a client application, fglwsdl generates two output files, which should not be modified:

• filename.inc - the globals file, containing declarations of global variables that can be used as input or
output for functions accessing Web Service operations, and the global wsError record. In our example,
the file is ws_calculator.inc.

This file must be listed in a GLOBALS statement at the top of any .4gl modules that you write for your
GWS Client application.

• filename.4gl - containing the definitions of the functions that can be used in your GWS client application
to perform the requested Web Service operation, and the code that manages the Web Service request.
In our example, the file is ws_calculator.4gl.

This file must be compiled and linked into your GWS Client application.

http://www.uddi.org
http://www.xmethods.net

Web services | 2457

Handling GWS server errors
When a Genero Web Services Service operation returns a status that is non-zero, you can get a more
detailed error description from the global record wsError.

This record is defined defined in the globals .inc file.

DEFINE wsError RECORD
 code STRING, -- Short description of the error
 codeNS STRING, -- The namespace of the error code
 description STRING, -- Long description of the error
 action STRING -- internal "SOAP action"
END RECORD

Global Endpoint user-defined type definition

The fglwsdl tool generates the globals (inc) file to use for a Web services client. Part of this globals file is a
global endpoint user-defined type definition.

#
Global Endpoint user-defined type definition
#
TYPE tGlobalEndpointType RECORD # End point
 Address RECORD # Address
 Uri STRING # URI
 END RECORD,
 Binding RECORD # Binding
 Version STRING, # HTTP Version (1.0 or 1.1)
 Cookie STRING, # Cookie to be set
 ConnectionTimeout INTEGER, # Connection timeout
 ReadWriteTimeout INTEGER, # Read write timeout
 CompressRequest STRING # HTTP request compression mode (gzip
 or deflate)
 END RECORD
 END RECORD

#
Location of the SOAP endpoint.
You can reassign this value at run-time.
#

DEFINE EchoDocStyle_EchoDocStylePortTypeEndpoint tGlobalEndpointType

The CompressRequest entry is of type string. It is NULL by default, meaning that no request is
compressed. To compress a request, set this variable to gzip or deflate. The server must support
compression, otherwise the request will be rejected.

The generated functions

Genero Web Services (GWS) client functions have the following requirements:

• The function cannot have input parameters.
• The function cannot have return values.
• The function's input message must be defined as a global or module RECORD.
• The function's output message must be defined as a global or module RECORD.

As a result, two types of GWS functions are generated for the Web Service operation that you requested:

• One function type uses global records for the input and output. The names of these functions end in
"_g". Before calling the function in your GWS Client application, you must set the values in the global
input record. After the function call, the status of the request is returned from the server, and the output
message is stored in the global output record. In addition to performing the desired operation, this
function handles the communication for the SOAP request and response, and sets the values in the
wsError record as needed.

Web services | 2458

• The other function type serves as a "wrapper" for the "_g" function. It passes the values of input
parameters to the "_g" function, and returns the output values and status received from the "_g"
function. Your client application does not need to directly access the global records. This function can
only be used if the parameters are simple variables (no records or arrays).

The generated .inc globals file contains comments that list the prototypes of the functions for the GWS
operation, and the definitions of the global INPUT and OUTPUT records.

The generated callback handlers

More and more Web Services provide support of the different WS-* specifications. To enable a better
interoperability with such services, the fglwsdl tool allows the programmer to modify the SOAP request
before it is sent, and to perform additional verifications of the SOAP response before it is returned from the
BDL function.

When option -domHandler is used, the fglwsdl tool performs the following two operations at once:

• It generates the client stub based entirely on the DOM API to ease the manipulation of the XML
requests and responses.

• It generates additional calls for each operation of a service to execute one of the three callback
handlers the programmer has to implement.

Handler definition

There are three kind of callbacks you must implement for each service generated with the -domHandler
option.

• The request handler that allows the modification of the entire SOAP request before it is send over the
net.

It must be named ServiceName_HandleRequest, where ServiceName is the name of the service
according to the different prefix options used during generation.

It must return TRUE if you want the caller function to continue normally or FALSE to return from the
caller function with a SOAP error you can define via the wsError record.

FUNCTION ServiceName_HandleRequest(operation,doc,header,body)
 DEFINE operation STRING -- Operation name of the
 -- request to be modified.
 DEFINE doc xml.DomDocument -- Entire XML document of the request
 DEFINE header xml.DomNode -- XML node of the SOAP header
 -- of the request
 DEFINE body xml.DomNode -- XML node of the SOAP body of the
 -- request
 CASE operation
 WHEN "Add"
 ... -- Use the DOM APIs to modify the request of the Add operation
 WHEN "Sub"
 ... -- Use the DOM APIs to modify the request of the Sub operation
 OTHERWISE
 DISPLAY "No modification for operation :",operation
 END CASE
 RETURN TRUE -- Continue normally in Add_g() or Sub_g()
END FUNCTION

• The response handler that allows the validation of the entire SOAP response before it is de-serialized
into the corresponding record.

It must be named ServiceName_HandleResponse, where ServiceName is the name of the service
according to the different prefix options used during generation.

It must return TRUE if you want the caller function to continue normally or FALSE to return from the
caller function with a SOAP error you can define via the wsError record.

FUNCTION ServiceName_HandleResponse(operation,doc,header,body)

Web services | 2459

 DEFINE operation STRING -- Operation name of the
 -- response to be checked.
 DEFINE doc xml.DomDocument -- Entire XML document of the response
 DEFINE header xml.DomNode -- XML node of the SOAP header of
 -- the response
 DEFINE body xml.DomNode -- XML node of the SOAP body of the
 -- response
 CASE operation
 WHEN "Add"
 ... -- Use the DOM APIs to check the response of the Add operation
 WHEN "Sub"
 ... -- Use the DOM APIs to check the response of the Sub operation
 OTHERWISE
 DISPLAY "No verification for operation :",operation
 END CASE
 RETURN TRUE -- Continue normally in Add_g() or Sub_g()
END FUNCTION

• The fault response handler that allows the verification of the entire SOAP fault response before it is de-
serialized into the wsError record.

It must be named ServiceName_HandleResponseFault, where ServiceName is the name of the
service according to the different prefix options used during generation. It must return TRUE if you want
the caller function to continue normally or FALSE to return from the caller function with a SOAP error
you can define via the wsError record.

FUNCTION ServiceName_HandleResponseFault(operation,doc,header,body)
 DEFINE operation STRING -- Operation name of the fault
 -- response to be checked.
 DEFINE doc xml.DomDocument -- Entire XML document of the fault
 response
 DEFINE header xml.DomNode -- XML node of the SOAP header of the
 -- fault response
 DEFINE body xml.DomNode -- XML node of the SOAP body of the
 fault
 -- response
 CASE operation
 WHEN "Add"
 ... -- Use the DOM APIs to verify the SOAP fault response
 -- of the Add operation
 WHEN "Sub"
 ... -- Use the DOM APIs to verify the SOAP fault response
 -- of the Sub operation
 OTHERWISE
 DISPLAY "No verification for operation :",operation
 END CASE
 RETURN TRUE -- Continue normally in Add_g() or Sub_g()
END FUNCTION

Example output

The example Web Service for which the WSDL information was requested, Calculator, has an Add
operation that returns the sum of two integers.

The generated file ws_calculator.inc lists the prototype for the Add and Add_g functions, the
asynchronous AddRequest_g and AddResponse_g functions, as well as the definitions of the global
variables Add and AddResponse:

Operation: Add## FUNCTION: Add_g() -- Function that uses the global input
 -- and output records
RETURNING: soapStatus -- An integer where 0 represents
 success
INPUT: GLOBAL Add

Web services | 2460

OUTPUT: GLOBAL AddResponse
#
FUNCTION: Add(p_a, p_b) -- Function with input parameters
 that
RETURNING: soapStatus ,p_r -- correspond to the a and b
 variables
 -- of the global INPUT record
 -- Return values are the status
 integer
 -- and the value in the r variable
 of
 -- the global OUTPUT record
#
FUNCTION: AddRequest_g() -- Asynchronous function that uses
 the
 -- global input record
RETURNING: soapStatus -- An integer where 0 represents
INPUT: GLOBAL Add -- success, -1 error and -2 means
 that
 -- a previous request was sent
 -- and that a response is in progress.
#
FUNCTION: AddResponse_g() -- Asynchronous function that uses
 -- the global output record
RETURNING: soapStatus -- An integer where 0 represents
OUTPUT: GLOBAL AddResponse -- success, -1 error and -2 means that
 -- the response was not
 -- yet received, and that a new call
 -- should be done later.

#VARIABLE : Add -- defines the global INPUT record
DEFINE Add RECORD ATTRIBUTES(XMLName="Add",
 XMLNamespace="http://tempuri.org/")
 a INTEGER ATTRIBUTES(XMLName="a",XMLNamespace=""),
 b INTEGER ATTRIBUTES(XMLName="b",XMLNamespace="")
 END RECORD

VARIABLE : AddResponse -- defines the global OUTPUT record
DEFINE AddResponse RECORD ATTRIBUTES(XMLName="AddResponse",
 XMLNamespace="http://tempuri.org/")
 r INTEGER ATTRIBUTES(XMLName="r",XMLNamespace="")
 END RECORD

Multipart in the client stub
You can generate a client stub for a Web service that has multiple parts.

If the WSDL for a Web service indicates that the Web service uses multiple parts, the client stub generated
will support multiple parts.

For the request

There are as many com.HTTPPart input parameters as parts defined for the input request, plus one
AnyInputParts DYNAMIC ARRAY OF com.HTTPPart parameter, to manage the optional parts a user
can add to the request.

For example:

FUNCTION xxx_g(InputHttpPart_1, ..., InputHttpPart_n, AnyInputParts)
 DEFINE InputHttpPart_1 com.HTTPPart
 ...
 DEFINE InputHttpPart_n com.HTTPPart
 DEFINE AnyInputParts DYNAMIC ARRAY OF com.HTTPPart
 ...

Web services | 2461

 RETURN wsstatus
END FUNCTION

For the response

There are as many com.HTTPPart variables are described in the WSDL, plus one AnyOutputParts
DYNAMIC ARRAY OF com.HTTPPart to handle the optional parts that may be returned by a service.

For example:

FUNCTION xxx_g()
 DEFINE wsstatus INTEGER
 DEFINE OutputHttpPart_1 com.HTTPPart
 DEFINE AnyOutputParts DYNAMIC ARRAY OF com.HTTPPart
 ...
 RETURN wsstatus, OutputHttpPart_1, AnyOutputParts
END FUNCTION

Using the generated functions

The information obtained from the ws_calculator.inc file allows you to write code in your own .4gl module
as part of the Client application, using the Web Service operation Add.

Using parameters and return values

Since the input variables for our example are simple integers, you can call the Add function in your Client
application, defining variables for the parameters and return values.

FUNCTION myWScall()
 DEFINE op1 INTEGER
 DEFINE op2 INTEGER
 DEFINE result INTEGER
 DEFINE wsstatus INTEGER
 ...
 LET op1 = 6
 LET op2 = 8
 CALL Add(op1, op2)
 RETURNING wsstatus, result ...
 DISPLAY result

Using global records

You could choose to call the Add_g function instead, using the global records Add and AddResponse
directly. If the input variables are complex structures like records or arrays, you are required to use this
function.

FUNCTION myWScall()
 DEFINE wsstatus INTEGER
 ...
 LET Add.a = 6
 LET Add.b = 8
 LET wsstatus = Add_g()
 ...
 DISPLAY AddResponse.r

In this case, the status is returned by the function, which has also put the result in the AddResponse
global record.

See Tutorial: Writing a Client Application for more information. The demo/WebServices subdirectory of
your Genero installation directory contains complete examples of Client Applications.

Web services | 2462

Using asynchronous calls

If you don't want your application to be blocked when waiting for the response to a request, you should first
call AddRequest_g; this will send the request using the global Add record to the server. It returns a status
of 0 (zero) if everything goes well, -1 in case of error, or -2 if you tried to resend a new request before the
previous response was retrieved.

FUNCTION sendMyWScall()
 DEFINE wsstatus INTEGER
 ...
 LET Add.a = 6
 LET Add.b = 8
 LET wsstatus = AddRequest_g()
 IF wstatus <> 0 THEN
 DISPLAY "ERROR :", wsError.code
 END IF
 ...

You can then call AddResponse_g to retrieve the response in the AddResponse global record of the
previous request. If returned status is 0 (zero) the response was successfully received, -1 means that there
was an error, and -2 means that the response was not yet received and that the function should be called
later.

FUNCTION retrieveMyWScall()
 DEFINE wsstatus INTEGER
 ...
 LET wsstatus = AddResponse_g()
 CASE wstatus
 WHEN -2
 DISPLAY "No response available, try later"
 WHEN 0
 DISPLAY "Response is :",AddResponse.r
 OTHERWISE
 DISPLAY "ERROR :", wsError.code
 END CASE
 ...

You can mix the asynchronous call with the synchronous one as they are using two different requests. In
other words, you can perform an asynchronous request with AddRequest_g, then a synchronous call with
Add_g, and then retrieve the response of the previous asynchronous request with AddResponse_g.

Important: In development mode, a single BDL Web Service server can only handle one request
at a time, and several asynchronous requests in a row without retrieving the corresponding
response will lead to a deadlock. To support several asynchronous requests in a row, it is
recommended that you are in deployment mode with a GAS as the front end.

Using logical names for service locations

Genero Web Services, starting with version 2.00, provides a repository for Web Service locations using
FGLPROFILE. To achieve maximum flexibility, you can map a logical reference used by your Web
Services Client application to an actual URL. This is subject to the network configuration and access rights
management of the deployment site.

Important: On GMI mobile devices, FGLPROFILE settings for logical names are not supported.

• FGLPROFILE entry on page 2463
• Logical reference in the client application on page 2463
• Logical reference in the URL on page 2463

Web services | 2463

FGLPROFILE entry

The following entry in the FGLPROFILE file maps the logical reference "myservice" to an actual URL:

ws.myservice.url = " http://www.MyServer.com/cgi-bin/fglccgi.exe/ws/r/
MyWebService"

Logical reference in the client application

When you generate a Client stub from WSDL information using the tool fglwsdl, a global variable for the
URL of the Web Service is contained in the .inc file.

For example:

Location of the SOAP server.
You can reassign this value at run-time.
#
DEFINE Calculator_CalculatorPortTypeEndpoint tGlobalEndpointType

You can assign a logical name to this global variable in your Web Services Client application:

LET Calculator_CalculatorPortTypeEndpoint.Address.Uri = "alias://myservice"

When the Client application accesses the Service, the actual location will be supplied by the entry in
FGLPROFILE on the Client machine. This allows you to provide the same compiled .42r application to
different customers. The entries in FGLPROFILE on each customer's machine would customize the Web
Service location for that customer.

If you are migrating from a version prior to 2.40, see migration note.

Logical reference in the URL

When you deploy a Genero Web Service with a GAS behind a Web Server, the service can be accessed
by two different URLs. You can use a logical name in the URL, mapping the actual location of the Web
Service in FGLPROFILE, depending on the location of the client machine.

For example:

• For internal Clients: http://zeus:6394/ws/r/myservice
• For Clients using the Web: http://www.myServer.com/...

These two URLS could be mapped in the FGLPROFILE file on the Client machine, each specifying the
location of the Service.

Configure a WS client to connect via an HTTP Proxy
Configuration steps to connect via a HTTP proxy.

Important: On GMI mobile devices, FGLPROFILE settings are ignored: The device configuration
for proxy will always be used.

1. Add the location of the proxy to fglprofile with the proxy.http.location entry.

Add the entry proxy.http.location to your fglprofile. For the value, provide the IP address
of the HTTP proxy and the port number where the HTTP proxy is listening, separated by a colon. For
example, to have a client connect via a HTTP proxy located at the IP address "10.0.0.170" and listening
on port number "8080", add this entry to your fglprofile:

proxy.http.location = "10.0.0.170:8080"

Note: To configure the client to connect via an HTTPS proxy, replace http with https.

2. Define the list of host names the client will not have to connect to via a proxy with the
proxy.http.list entry.

Web services | 2464

Add the entry proxy.http.list to your fglprofile. For the value, provide a semi-colon
separated list of clients. For example, to exclude all hosts beginning with "www.mycompany.com" or
"www.google." from connecting via a HTTP proxy, add this entry to your fglprofile:

proxy.http.list = "www.mycompany.com;www.google."

Configure a WS client to use IPv6
Configuration steps to customize IPv6 for a WS client.

A Web Services client program can access to a WS server using IPv6.

URLs that map to IPv6 addresses will be automatically handled by the Web Services library. It is also
possible to specify an IPv6 address directly as URL in your BDL code by enclosing the address in []
square brackets, for example:

LET myURL = "http://[fe80::20c:29ff:fe05:9ca3]:80/index.html"

By default, the WS library will automatically use IPv6 addresses if available, and fallback to IPv4 otherwise.
To overcome the default behavior, you can specify explicitely the IP version.

Indeed, the platform where WS client programs execute must support IPv6.

1. If needed, force the IP version with the ip.global.version entry in fglprofile, by specifying "4"
for IPv4 or "6" for IPv6.

For example, to force IPv4 (when IPv6 is available):

ip.global.version = "4"

2. When using IPv6 for link-local addresses, if several network interfaces exist on the machine, you
can explicitely specify what interface must be used with the ip.global.v6.interface.name or
ip.global.v6.interface.id entry in fglprofile.

In order to specify the IPv6 network interface by name, use:

ip.global.v6.interface.name = "eth0"

Important: The ip.global.v6.interface.name entry is not supported on Microsoft™

Windows™ platforms.

In order to specify the IPv6 network interface by id, use:

ip.global.v6.interface.id = "2"

Authenticate the WS client to a server
Configuration steps to authenticate the client to a server (HTTP authentication).

Important: On GMI mobile devices, FGLPROFILE settings are ignored: Use the
com.HTTPRequest.setAuthentication on page 2063 API instead.

1. Add HTTP authenticate entries to fglprofile.

To connect to a server with HTTP Authentication, define the client login and password with the
same values as registered on the server side. These entries must be defined with an unique
identifier (httpauth in this example) to define a HTTP Authentication with "mylogin" as login and
"mypassword" as password:

authenticate.httpauth.login = "mylogin"
authenticate.httpauth.password = "mypassword"

See [RFC2617] for more details.

2. Encrypt the password.

Due to security leaks, it is recommended that you NOT have a password in clear text. The Genero
Web Services package provides the tool fglpass, which encrypts a password with a certificate that is
readable only with the associated private key. To encrypt the HTTP authentication password:

http://www.ietf.org/rfc/rfc2617.txt

Web services | 2465

a) Encrypt the clear text password with fglpass using the client certificate.

$ fglpass -e -c MyClient.crt
Enter password :mypassword

Note: fglpass outputs the encrypted password on the console but can be redirected to a file.

b) Modify the HTTP authentication password entry by specifying the security configuration to use to
decrypt it (id1 in our case)

authenticate.id2.password.id1="HWTFu8QE2t3e5D4joy7js8mB95oOGTzLmcAor9j5DS
+C
loiliGCwZvZ9eWpfmIWSON9IwoiJheYxfnu20uaGGmmiUGiHxT6341ePXNSicu32NtlVp9t6RcS0
wN/p9a6D4XtiD9iHW7iQvXhqC9uamd3gI9Q3GhHwXOMMlY//c8Y="

Note: Hard returns have been added to the code sample above, for the purpose of printing
and viewing within this document. The value for authenticate.id2.password.id1 is a single
string with no spaces.

Note: The size of the encrypted password depends on the size of the public key, and can
change according to the certificate used to encrypt it.

3. Configure the client to authenticate to a server.

As a client is able to connect to different servers that do not know the client with the same login
and password, it is necessary to specify the login and password that correspond to each server.
To authenticate the client known as "myclient" and with the password passphrase by the server
myserver, add the following entry:

ws.myserver.authenticate = "httpauth"

Authenticate the WS client to a proxy
Configuration steps to authenticate the client to a proxy (proxy authentication).

Important: On GMI mobile devices, FGLPROFILE settings are ignored: The device configuration
for proxy will always be used.

1. Add an HTTP authenticate entry to fglprofile.

To connect via a proxy with HTTP Proxy Authentication, it is necessary to define the client login and
password as registered on the HTTP proxy.

The following two entries must be defined with an unique identifier (proxyauth for our example) to
define a HTTP Proxy Authentication with myapplication as login and mypassword as password:

authenticate.proxyauth.login = "myapplication"
authenticate.proxyauth.password = "mypassword"

See [RFC2617] for more details.

2. For proxy authentication, an entry must be made to the HTTP proxy configuration in order to
authenticate a client.

To authenticate a client known as myapplication and with mypassword as password by the HTTP
Proxy, add the following entry to the HTTP proxy configuration:

proxy.http.authenticate = "proxyauth"

Note: To authenticate the client to a HTTPS proxy, replace http with https.

http://www.ietf.org/rfc/rfc2617.txt

Web services | 2466

Configure a WS client to access an HTTPS server
Configuration steps to access a server in HTTPS.

To configure access to an HTTPS server, you will need to configure for the client certificate, configure for
the certificate authority list, and the add additional entries for the server to the fglprofile.

Important: On GMI mobile devices, FGLPROFILE settings are ignored: The device KeyChain
must hold the server certificate authority.

1. Configure for the client certificate. See Configure for the client certificate on page 2466.

2. Configure for the certificate authority list. See Configure for the certificate authority list on page 2467.

3. Add configuration entries for the server to fglprofile.

The Genero Web Services client needs a set of configuration entries that specify the security
configuration and the HTTP authentication when accessing an HTTPS server. The following entries
must be defined with an unique identifier (such as myserver) :

ws.myserver.url =
"https://www.MyServer.com/cgi-bin/fglccgi.exe/ws/r/MyWebService"
ws.myserver.security = "id1"

(line breaks added for document readability)

• The unique identifier myserver can be used in the BDL client code in place of the actual URL.
• The security entry value (id1 in this example) must match the unique identifier defined by the client

security entry created in 3 on page 2467.

Configure for the client certificate
You generate a client certificate and configure your application to use the client certificate generated. For
production systems, you add the configuration details to fglprofile.

During development, if you do not have the certificate information in your fglprofile, Genero creates a
certificate for you. When you move into production, however, the server provides a certificate for you, and
you need to add the certificate information to the fglprofile.

1. Create the root certificate authority.

a) Create the root certificate authority serial file.

$ echo 01 > MyCompanyCA.srl

b) Create the Root Authority's Certificate Signing Request and private key.

$ openssl req -new -out MyCompanyCA.csr -keyout MyCompanyCA.pem

c) Create the Root Certificate Authority for a period of validity of 2 years.

(line breaks added for document readability)

$ openssl x509 -trustout -in MyCompanyCA.csr
-out MyCompanyCA.crt -req -signkey MyCompanyCA.pem
-days 730

(line breaks added for document readability)

Note: The private key file (MyCompanyCA.pem) of a Root Certificate Authority must be
handled with care. This file is responsible for the validity of all other certificates it has signed.
As a result, it must not be accessible by other users.

2. Create the client's X.509 certificate and private key.

a) Create the client serial file.

$ echo 01 > MyClient.srl

b) Create the client's Certificate Signing Request and private key.

$ openssl req -new -out MyClient.csr

Web services | 2467

Note: By default, openssl outputs the private key in the privkey.pem file.

c) Remove the password from the RSA private key.

$ openssl rsa -in privkey.pem -out MyClient.pem

Note: The key is also renamed in MyClient.pem.

d) Create the client's Certificate trusted by the Root Certificate Authority (self-signed X.509 certificate
valid for a period of 1 year).

(line breaks added for document readability)

$ openssl x509 -in MyClient.csr -out MyClient.crt -req
-signkey MyClient.pem -CA MyCompanyCA.crt
-CAkey MyCompanyCA.pem -days 365

Note: Most servers do not check the identity of the clients. For these servers, the client's
certificate does not necessary need to be trusted; it is only used for data encryption purpose.
If, however, the server performs client identification, you must trust a Certificate Authority in
which it has total confidence concerning the validity of the client's certificates.

Note: The purpose of the client's Certificate is to identify the client to any server; therefore
the subject of the certificate must correspond to the client's identity as it is known by the
servers.

Note: To import the certificate in a keystore you can create a pkcs12 certificate.

3. Add the client's security configuration to fglprofile.

The client security entry defines the certificate and the associated private key used by the Genero
Web Services client during communication with an HTTPS communication. The security entry must be
defined with an unique identifier (id1in this example).

security.id1.certificate = "MyClient.crt"
security.id1.privatekey = "MyClient.pem"

Note: If the private key is protected with a password, you must remove it or create a script that
returns the password on demand.

A client certificate is created and your application is configured to use it. The client certificate is not self-
signed but issued by a company, created with a root certificate.
Configure for the certificate authority list
When a client accesses a server with a certificate, the server sends back its certificate. The client needs to
check to see if that certificate is trusted. This is done using a certificate authority list.

1. Create the client's certificate authority list.

a) Save the certificate of the HTTPS server to disk.

Type the server's URL in your Internet browser. When prompted, save the certificate to disk.
b) Create the client's Certificate Authority List from the certificate that you saved to disk.

$ openssl x509 -in ServerCertificate.crt -text >> ClientCAList.pem

Note: All trusted certificate authorities are listed. All other certificates that were trusted by
the Root Certificate Authority will also be considered as trusted by the client.

2. Set the global certificate authority list in fglprofile.

The global certificate authority list entry defines the file containing the certificate authority list used
by the Genero Web Services client to validate all certificates coming from the different servers it will
connect to.

security.global.ca = "ClientCAList.pem"

Web services | 2468

If security.global.ca is not defined, Genero Web Services will look to see whether the operating
system has a keystore, otherwise security.global.ca.lookuppath will be used.

The client application is configured to use the appropriate certificate authority list to validate a server's
certificate.

Writing a Web Services server application
These topics cover creating a Genero Web Services server using the SOAP protocol.

• Writing a Web services server function on page 2468
• WS server stubs and handlers on page 2470
• Writing a Web server application on page 2473
• Get HTTP headers information at WS server side on page 2481
• Choosing a web services style on page 2483
• Web services server program deployment on page 2506
• Configuring the apache web server for HTTPS on page 2507

Writing a Web services server function

Writing a Web service with Genero is quite simple. You create a standard Genero function and publish it
as a Web function (Web services operation) using methods from the classes in the COM library. There
are restrictions on the function - input and output parameters are not allowed. By using global or module
variables, however, to work around this exception.

See also Tutorial: Writing a GWS Server Application

The steps for writing a Web Services function:

1. Define the input parameters on page 2468
2. Define the output parameters on page 2469
3. Write the BDL function on page 2469
4. Create and publish the Web services operation on page 2469

Define the input parameters

As stated in the introduction, input parameters in Genero Web Service operations are not allowed.
However, each Web Function can have one global variable or module variable that defines the input
message of the function. This variable must be a record in which each field represents one of the input
parameters of the Web Function.

The name of each field corresponds to the name used in the SOAP request. These fields are filled with the
contents of the SOAP request by the Web Services engine just before executing the corresponding BDL
function.

Example

DEFINE add_in RECORD
 a INTEGER,
 b INTEGER
END RECORD

Note: Genero version 2.0 allows you to add optional attributes to the
definition of data types. You can use attributes to map the BDL data
types in a Genero application to their corresponding XML data types. See
Attributes to Customize XML Mapping for additional information.

Web services | 2469

Define the output parameters

Output parameters in Genero Web Functions are not allowed, but each Web Function can have one global
variable or module variable that defines the output message of the function. This message must be a
record where each field represents one of the output parameters of the Web Function.

The name of each field corresponds to the name used in the SOAP request. These fields are retrieved
from the Web Services engine immediately after executing the BDL function, and sent back to the client.

Example

DEFINE add_out RECORD
 r INTEGER
END RECORD

Note: GWS 2.0 allows you to add optional attributes to the definition
of data types. You can use attributes to map the BDL data types in a
Genero application to their corresponding XML data types. See Attributes
to Customize XML Mapping for additional information.

Write the BDL function

A Web Function is a normal BDL function that uses the input and output records that you have defined.

Example

FUNCTION add()
 LET add_out.r = add_in.a + add_in.b
END FUNCTION

Create and publish the Web services operation

Methods are available in the Genero Web Services library (com) to:

• Define the Web Service, by creating a WebService object
• Define the Web Services operation for your function, by creating a WebOperation object
• Publish the operation - associate it with the Web Service object that you defined.

The com library must be imported into each module of a Web Services Server application.

The following abbreviated example is from the Web Services Server tutorial:

IMPORT com
...
FUNCTION createservice()
 DEFINE serv com.WebService # A WebService
 DEFINE op com.WebOperation # Operation of a WebService

 --Create WebService object
 LET serv = com.WebService.CreateWebService("MyCalculator",
 "http://tempuri.org/webservices")

 --Create WebOperation object
 LET op = com.WebOperation.CreateRPCStyle("add", "Add", add_in, add_out)

 --Publish the operation, associating it with the WebService object
 CALL serv.publishOperation(op,NULL)
...
END FUNCTION

Web services | 2470

See the Web Services Server tutorial and Choosing a Web Service Style for complete examples and
explanations.

WS server stubs and handlers

To access a remote Web Service, you first must get the WSDL information from the service provider.
Sample services can be found through UDDI registries (http://www.uddi.org), or on other sites such as
XMethods (http://www.xmethods.net).

Generating files for a GWS server

You can write a Genero Web Services Server application for a Web Service that you have created; see
Tutorial: Writing a Server Application.

If you want to make sure your Web Service is compatible with that of a third-party (an accounting
application vendor, for example), you can use the fglwsdl tool to obtain the WSDL information that
complies with that vendor's standards, and to generate corresponding files that can be used in your GWS
Server application.

This example requests the Calculator Web Service information from the specified URL, and the output files
will have the base name "ws_calculator".

fglwsdl -s -o ws_calculator http://localhost:8090/Calculator?WSDL

For a server application, fglwsdl generates two files, which should not be modified:

• filename.inc - the globals file, containing declarations of global variables that can be used
as input or output to functions accessing the Web Service operations. In our example, the file is
ws_calculatorService.inc.

This file must be listed in a GLOBALS statement at the top of any .4gl modules that you write for your
GWS Server application.

• filename.4gl - containing a function that creates the service described in the WSDL,
publishes the operations of the service, and registers the service. In our example, the file is
ws_calculatorService.4gl.

This file must be compiled and linked into your GWS Server application.

Server handlers

The COM library enables to intercept high-level web services operation on server side. You can now define
three BDL functions via the following methods of the web service class. They will be executed at different
steps of a web service request processing in order to modify the SOAP request, response or the generated
WSDL document before or after the SOAP engine has processed it. This helps handle WS-* specifications
not supported in the web service API.

• Method registerWSDLHandler()
• Method registerInputRequestHandler()
• Method registerOutputRequestHandler()

All three kinds of BDL callback functions must conform to this prototype:

FUNCTION CallbackHandler(doc xml.DomDocument)
 RETURNING xml.DomDocument

Example 1: Modify the generation of a WSDL

Register your handler with:

CALL serv.registerWsdlHandler("WSDLHandler")

http://www.uddi.org
http://www.xmethods.net

Web services | 2471

where serv is of class com.WebService and WSDLHandler is the following function:

FUNCTION WSDLHandler(wsdl)
 DEFINE wsdl Xml.DomDocument
 DEFINE node Xml.DomNode
 DEFINE list Xml.DomNodeList
 DEFINE ind INTEGER
 DEFINE name STRING
 # Add a comment
 LET node = wsdl.createComment(
 "First modified WSDL via a BDL callback function")
 CALL wsdl.prependDocumentNode(node)
 # Rename input and output parameter in UPPERCASE
 LET list = wsdl.selectByXPath(
 "//wsdl:definitions/wsdl:types/xsd:schema/
xsd:complexType/xsd:sequence/xsd:element/xsd:complexType/
xsd:sequence/xsd:element",NULL)
-- first input parameter for selectByXPath above
-- one string, no spaces!
 FOR ind=1 TO list.getCount()
 LET node = list.getItem(ind)
 LET name = node.getAttribute("name")
 LET name = name.toUpperCase()
 CALL node.setAttribute("name",name)
 END FOR
 RETURN wsdl
END FUNCTION

If NULL is returned from the callback function, an HTTP error will be sent and the ProcessServices()
returns error code -20.

Example 2: Change the SOAP incoming request

Register your handler with:

CALL serv.registerInputRequestHandler("InputRequestHandler")

where serv is of class com.WebService and InputRequestHandler is this function:

FUNCTION InputRequestHandler(in)
 DEFINE in Xml.DomDocument
 DEFINE ind INTEGER
 DEFINE node Xml.DomNode
 DEFINE copy Xml.DomNode
 DEFINE tmp Xml.DomNode
 DEFINE parent Xml.DomNode
 DEFINE name STRING
 DEFINE list Xml.DomNodeList
 # Change input parameter below myrecord in lower case
 # to follow high-level web service
 LET list = in.SelectByXPath(
 "//SOAP:Envelope/SOAP:Body/fjs:EchoDOCRecordRequest/fjs:myrecord/*",
 "SOAP","http://schemas.xmlsoap.org/soap/envelope/",
 "fjs","http://www.mycompany.com/webservices")
 FOR ind = 1 TO list.getCount()
 LET node = list.getItem(ind)
 LET parent = node.getParentNode()
 LET name = node.getLocalName()
 LET copy = in.createElementNS(node.getPrefix(),
 name.toLowerCase(),node.getNamespaceURI())
 LET tmp = node.getFirstChild()
 LET tmp = tmp.clone(true)

Web services | 2472

 CALL copy.appendChild(tmp)
 CALL parent.replaceChild(copy,node)
 END FOR
 RETURN in
END FUNCTION

If NULL is return from the callback function, a SOAP fault will be sent (but can be changed from the output
handler) and the ProcessServices() returns error code -18.

Example 3: Modify the SOAP outgoing request

Register your handler with:

CALL serv.registerOutputRequestHandler("OutputRequestHandler")

where serv is of class com.WebService and OutputRequestHandler is this function:

FUNCTION OutputRequestHandler(out)
 DEFINE out Xml.DomDocument
 DEFINE ind INTEGER
 DEFINE node Xml.DomNode
 DEFINE copy Xml.DomNode
 DEFINE tmp Xml.DomNode
 DEFINE parent Xml.DomNode
 DEFINE name STRING
 DEFINE list Xml.DomNodeList
 # Change output parameter below myrecord in uppercase
 # before sending back to the client
 LET list = out.SelectByXPath(
 "//SOAP:Envelope/SOAP:Body/fjs:EchoDOCRecordResponse/fjs:myrecord/*",
 "SOAP","http://schemas.xmlsoap.org/soap/envelope/",
 "fjs","http://www.mycompany.com/webservices")
 FOR ind = 1 TO list.getCount()
 LET node = list.getItem(ind)
 LET parent = node.getParentNode()
 LET name = node.getLocalName()
 LET copy = out.createElementNS(node.getPrefix(),name.toUpperCase(),
 node.getNamespaceURI())
 LET tmp = node.getFirstChild()
 LET tmp = tmp.clone(true)
 CALL copy.appendChild(tmp)
 CALL parent.replaceChild(copy,node)
 END FOR
 RETURN out
END FUNCTION

If NULL is return from the callback function, a SOAP fault will be sent and the ProcessServices() returns
error code -19.

Example output

In the generated file ws_calculatorService.inc, the definitions of the variables for the input and output
record are the same as those generated for the Web Service Client application:

#VARIABLE : Add -- defines the global INPUT record
DEFINE Add RECORD ATTRIBUTES(XMLName="Add",
 XMLNamespace="http://tempuri.org/")
 a INTEGER ATTRIBUTES(XMLName="a",XMLNamespace=""),
 b INTEGER ATTRIBUTES(XMLName="b",XMLNamespace="")
END RECORD

VARIABLE : AddResponse -- defines the global OUTPUT record

Web services | 2473

DEFINE AddResponse RECORD ATTRIBUTES(XMLName="AddResponse",
 XMLNamespace="http://tempuri.org/")
 r INTEGER ATTRIBUTES(XMLName="r",XMLNamespace="")
END RECORD

The generated file ws_calculatorService.4gl contains a single function that creates the Calculator
service, creates and publishes the service operations, and registers the Calculator service:

FUNCTION Createws_calculatorService()
 DEFINE service com.WebService
 DEFINE operation com.WebOperation
 ... # Create Web Service
 LET service = com.WebService.CreateWebService("Calculator",
 "http://tempuri.org/")
 # Publish Operation : Add
 LET operation = com.WebOperation.CreateRPCStyle("Add","Add",
 Add,AddResponse)
 CALL service.publishOperation(operation,"") ...
 # Register Service
 CALL com.WebServiceEngine.RegisterService(service)
 RETURN 0
 ...
END FUNCTION

Writing your functions

The ws_calculator.inc file provides you with the global input and output records and function names that
allow you to write your own code implementing the Add operation. Your new code should not be written in
the generated modules. For example, do not add your own version of the Add function to the generated
ws_calculator.4gl module; it can be included in your module containing the MAIN program block, or in a
separate module to be included as part of the Web server application. The function must use the generated
definitions for the global input and output records.

In your version of the operation, this function adds 100 to the sum of the variables in the input record:

FUNCTION Add()
 LET AddResponse.r = (Add.a + Add.b) + 100
END FUNCTION

See Tutorial: Writing a Server application for more information. The demo/WebServices subdirectory of
your Genero installation directory contains complete examples of Server Applications.

Writing a Web server application

This tutorial guides you through the steps to create a Server application for a Genero Web Service that
can be accessed over the web by Client applications. A complete example is provided at $FGLDIR/demo/
WebServices.

You can write your Server application based on input/output records that you have defined. Or, you can
use the fglwsdl tool to include third-party WSDL information in your Server application.

Including the web services library

The methods associated with creating and publishing a Web Service are contained in the classes that
make up the Genero Web Services Library (com). Include this line at the top of each module of your GWS
Server application to import the library:

IMPORT com

Web services | 2474

Example 1: Writing the entire server application

You can define a Web Service in your application and write definitions for the input and output records that
will be used by the Service. This example illustrates a Service that has one operation, Add, to provide the
sum of two numbers.

• Step 1: Define input and output records on page 2474
• Step 2: Write a BDL function for each service operation on page 2474
• Step 3: Create the service and operations on page 2474
• Step 4: Register the service on page 2476
• Step 5: Start the GWS server and process requests on page 2476

Step 1: Define input and output records

Based on the desired functionality of the operations that you plan for the Service, define the input and
output records for each operation. BDL functions that are written to implement a Web Service operation
cannot have input parameters or return values. Instead, each function's input and output message must be
defined as a global or module RECORD.

The Input message

The fields of the global or module record represent each of the input parameters of the Web Function.
The name of each field in the record corresponds to the name used in the SOAP request. These fields
are filled with the contents of the SOAP request by the Web Services engine just before executing the
corresponding BDL function.

The Output message

The fields of the global or module record represent each of the output parameters of the Web Function.
The name of each field in the record corresponds to the name used in the SOAP request. These fields are
retrieved from the Web Services engine immediately after executing the BDL function, and sent back to the
client.

Your Genero Web Services service has one planned operation that adds two integers and returns the
result. The input and output records are defined as follows:

GLOBALS
 DEFINE
 add_in RECORD # input record
 a INTEGER,
 b INTEGER
 END RECORD,
 add_out RECORD # output record
 r INTEGER
 END RECORD
END GLOBALS

Step 2: Write a BDL function for each service operation

You will need to write a function to implement each operation, using the input and output global records.

To implement your Add operation:

#User Public Functions
FUNCTION add()
 LET add_out.r = add_in.a + add_in.b
END FUNCTION

Step 3: Create the service and operations

The Genero Web Services library (com) provides classes and methods that allow you to use Genero BDL
to configure a Web Service and its operations.

Web services | 2475

• WebService - this is a container for web operations.
• WebOperation - describes the operation.

Define variables for the WebService and WebOperation objects

FUNCTION createservice()
 DEFINE serv com.WebService # A WebService
 DEFINE op com.WebOperation # Operation of a WebService

Choose a Namespace

XML uses namespaces to group the element and attribute definitions, and to avoid conflicting names. In
practice, a namespace must be a unique identifier (URI: Uniform Resource Identifier). If you do not know
the unique identifier to use, your company's Web site domain name is guaranteed to be unique (such as
"www.mycompany.com"); then, append any string.

Examples of valid namespaces for the fictional My Company company:

• "http://www.mycompany.com/MyServices"
• "http://www.mycompany.com/any_string"

Another option (for testing only) is to use the temporary namespace "http://tempuri.org/".

Create the WebService object

Call the constructor method of the WebService class. The parameters are:

1. Service name
2. Valid namespace

This example uses the temporary namespace and creates a Service named "MyCalculator".

LET serv =
 com.WebService.CreateWebService("MyCalculator", "http://tempuri.org/
webservices")

Create the WebOperation object

A WebService object can have multiple operations. The operations can be created in RPC style or
Document style by calling the corresponding constructor method of the WebOperation class. The
parameters are:

1. the name of the BDL function that is executed to process the XML operation
2. the name you wish to assign to the XML operation
3. the input record defining the input parameters of the operation (or NULL if there is none)
4. the output record defining the output parameters of the operation (or NULL if there is none)

To create the operation for the previously defined add function in RPC style:

LET op = com.WebOperation.CreateRPCStyle("add", "Add", add_in, add_out)

To create the operation for the previously defined add function in Document style:

LET op = com.WebOperation.CreateDOCStyle("add", "Add", add_in, add_out)

Mixing RPC style and Document style operations in the same service is not recommended, as it is not WS-
I compliant. See Web Services Styles for additional information about styles.

The rest of the code in your application is the same, regardless of the Web Services style that you have
chosen.

Web services | 2476

Publish the operation

Once an operation is defined, it must be associated with its corresponding WebService (the operation must
be published). The publishOperation method of the WebService object has the following parameters:

• the WebOperation to be published
• a string to identify the operation if several operations have the same name; if this is NULL, the default

value is an empty string

For example, to publish the Add operation of the Calculator service, which was defined as op:

CALL serv.publishOperation(op,NULL)

Step 4: Register the service

Once the Service and operations are defined and the operations are published, the WebService and
WebOperation objects have completed their work. Registering a service puts the Genero DVM in charge of
the execution of all the operations of that service - dispatching the incoming message to the right service,
returning the correct output, and so on. The same service may be registered at different locations on the
Web.

The WebServiceEngine is a global built-in object that manages the Server part of the Genero DVM. Use
the RegisterService class method of the WebServiceEngine class. The parameter is:

1. The name of the WebService object

To register the Calculator service example created in Step 3: Create the service and operations on page
2474:

CALL com.WebServiceEngine.RegisterService(serv)
END FUNCTION

Note: If you wanted to create a single GWS Server DVM containing multiple Web Services,
you could define additional input and output records and repeat steps 2 through 6 for each Web
Service. In Step 5: Start the GWS server and process requests on page 2476, a GWS Server
DVM is started, containing as many Web Services as you have defined. See Web services server
program deployment on page 2506 for additional discussion of GWS Services and GWS Servers.

Step 5: Start the GWS server and process requests
Once you have registered the Web Service(s), you are ready to start the Genero Web Services (GWS)
Server and process the incoming SOAP requests.

The GWS Server is located on the same physical machine where the application is being executed (In
other words, where fglrun executes).

This is the MAIN program block of your application.

Define a variable for status

Define a variable to hold the returned status of the request:

MAIN
 DEFINE ret INTEGER

Call the function that you created, which defined and registered the service and its operations:

 CALL createservice()

Web services | 2477

Start the GWS Server

Use the Start class method of the WebServiceEngine class to start the server.

 CALL com.WebServiceEngine.Start()

Process the requests

This example uses the ProcessServices method of the WebServiceEngine class to process each
incoming request. It returns an integer representing the status. The parameter specifies the timeout period
(in seconds) for which the method should wait to process a service. The value -1 specifies an infinite
waiting time.

 WHILE TRUE
 # Process each incoming requests (infinite loop)
 LET ret = com.WebServiceEngine.ProcessServices(-1)
 CASE ret
 WHEN 0
 DISPLAY "Request processed."
 WHEN -1
 DISPLAY "Timeout reached."
 WHEN -2
 DISPLAY "Disconnected from application server."
 EXIT PROGRAM
 WHEN -3
 DISPLAY "Client Connection lost."
 WHEN -4
 DISPLAY "Server interrupted with Ctrl-C."
 WHEN -10
 DISPLAY "Internal server error."
 EXIT PROGRAM
 WHEN -15
 DISPLAY "Server was not started."
 EXIT PROGRAM
 OTHERWISE
 DISPLAY "ERROR: ", STATUS, SQLCA.SQLERRM
 END CASE
 IF int_flag<>0 THEN
 LET int_flag=0
 EXIT WHILE
 END IF
 END WHILE

 DISPLAY "Server stopped"

END MAIN

Note: For testing purposes only, the GWS Server can be started in standalone mode. In a
production environment, the Genero Application Server (GAS) is required to manage your
application. For deployment, the GWS Server application must be added to the GAS configuration.
See Adding Applications in the Genero Application Server User Guide.

Example 2: Writing a server using third-party WSDL (the fglwsdl tool)

To write a Web Service that is compatible with the specification of the input and output records defined by
a third-party (for example, a vendor of manufacturing software, or a WSDL specialist in your company) you
can use the fglwsdl tool to obtain the WSDL information and generate a part of the Server application.
See fglwsdl on page 1503 for a complete description of the tool and its use.

• Step 1: Get the WSDL description and generate files on page 2478
• Step 2: Write a BDL function for your service operation on page 2479
• Step 3: Create service, start server and process requests on page 2479

Web services | 2478

Step 1: Get the WSDL description and generate files

This tutorial uses fglwsdl and the Calculator Service defined in Example 1: Writing the entire server
application on page 2474 to obtain the WSDL information and generate two corresponding BDL files:

• the globals file, containing declarations of global variables that can be used as input or output to
functions accessing the Web Service operations.

• a .4gl file containing a function that creates the service described in the WSDL, publishes the
operations of the service, and registers the service.

fglwsdl -s -o example1 http://localhost:8090/MyCalculator?WSDL

Note: the MyCalculator Genero Web Services Service created in Example 1: Writing the entire
server application on page 2474 must be running in order to obtain the WSDL information.

The generated globals file

The globals file example1Service.inc provides the definition of the global input and output records as
described in the Step 1: Define input and output records on page 2474 of the Example 1: Writing the entire
server application on page 2474 GWS Server program. The names of the input and output records have
been assigned by fglwsdl, in accordance with the Style of the Web Service MyCalculator (created as
RPCStyle in the Example1 program). Do not modify this file.

Input and output records:

VARIABLE : Add
DEFINE Add RECORD
 ATTRIBUTES(XMLName="Add",
 XMLNamespace="http://tempuri.org/webservices")
 a INTEGER ATTRIBUTES(XMLName="a",XMLNamespace=""),
 b INTEGER ATTRIBUTES(XMLName="b",XMLNamespace="")
END RECORD

VARIABLE : AddResponse
DEFINE AddResponse RECORD
 ATTRIBUTES(XMLName="AddResponse",
 XMLNamespace="http://tempuri.org/webservices")
 r INTEGER ATTRIBUTES(XMLName="r",XMLNamespace="")
END RECORD

The generated .4gl file

The example1Service.4glfile contains a single function that creates the service, publishes the operation,
and registers the Service. The Web Service Style that is created is determined by the style specified in the
WSDL information. The functions in this file accomplish the same tasks as Step 3: Create the service and
operations on page 2474 and Step 4: Register the service on page 2476 of Example 1. Do not modify this
file.

example1Service.4gl
Generated file containing the function Createexample1Service

IMPORT com
GLOBALS "example1Service.inc"

FUNCTION Createexample1Service
RETURNING soapstatus
FUNCTION Createexample1Service()
DEFINE service com.WebService
DEFINE operation com.WebOperation
 # Set ERROR handler
WHENEVER ANY ERROR GOTO error

Web services | 2479

 # Create Web Service
LET service = com.WebService.CreateWebService(
 "MyCalculator",
 "http://tempuri.org/webservices")
 # Operation: Add
 # Publish Operation : Add
LET operation = com.WebOperation.CreateRPCStyle(
 "Add",
 "Add",
 Add,
 AddResponse)
CALL service.publishOperation(operation,"")
 # Register Service
CALL com.WebServiceEngine.RegisterService(service)
RETURN 0
 # ERROR handler
LABEL error:
RETURN STATUS
 # Unset ERROR handler
WHENEVER ANY ERROR STOP
END FUNCTION

Step 2: Write a BDL function for your service operation

Using the information from these generated files, the Add operation from Example 1: Writing the entire
server application on page 2474 is rewritten to have different functionality but to still be compatible with the
WSDL description of the operation. This step accomplishes the same thing as Step 2: Write a BDL function
for each service operation on page 2474 in Example 1. In this version of the add operation, the sum of the
two numbers in the input record is increased by 100.

my_function.4gl -- file containing the function
 -- definition
IMPORT com -- import the Web Services library

GLOBALS "example1Service.inc" -- use the generated globals file
#User Public Functions
FUNCTION add() -- new version of the add function
LET AddResponse.r = (Add.a + Add.b)+ 100 -- the global input and output
 -- records are used
END FUNCTION

Step 3: Create service, start server and process requests

Create your own Main module that calls the function from the generated .4gl file to create the service, and
then starts the Genero Web Services Server and manages requests as in Step 5: Start the GWS server
and process requests on page 2476 of Example 1: Writing the entire server application on page 2474.

example2main.4gl file -- contains the MAIN program block

IMPORT com

GLOBALS "example1Service.inc"

MAIN
 DEFINE create_status INTEGER

 DEFER INTERRUPT

 CALL Createexample1Service() -- call the function generated
 -- in example1Service.4gl
 RETURNING create_status
 IF create_status <> 0 THEN
 DISPLAY "error"

Web services | 2480

 ELSE
 # Start the server and manage requests
 CALL ManageService()
 END IF

END MAIN

FUNCTION ManageService()
 DEFINE ret INTEGER
 CALL com.WebServiceEngine.start()
 WHILE TRUE
 # continue as in Step 5 of Example 1
 ...
END FUNCTION

Compiling GWS server applications

The library file WSHelper.42m, included in the $FGLDIR/lib directory of the Genero Web Services
package, should be linked into every GWS Server application.

If your application uses the fglwsdl tool to generate information, link the .4gl generated file into the
application.

Examples

Compiling the Example 1: Writing the entire server application on page 2474 program:

fglcomp example1.4gl
fgllink -o example1.42r example1.42m WSHelper.42m

Compiling the Example 2: Writing a server using third-party WSDL (the fglwsdl tool) on
page 2477 program:

fglcomp example2main.4gl my_function.4gl example1Service.4gl
fgllink - o example2.42r example2main.42m my function.42m
 example1Service.42m WSHelper.42m

Testing the GWS service in stand-alone mode

For testing and development purposes only, the Genero Web Services Server application can be executed
directly, without using the Genero Application Server (GAS).

1. Use the Genero fglrun command to execute the GWS Server application, which must reside on the
same machine:

fglrun <gws application>

This will start the GWS Server on the port specified by the FGLAPPSERVER environment variable. If this
environment variable is not set for the user, port number 80 is used. For example, if FGLAPPSERVER is
set to 8090, the server will be started on that port.

Note: The user must not set the FGLAPPSERVER variable in production environments, since
the port number is selected by the Genero Application Server.

2. Obtain the WSDL information for your Service and write a test Client application. If the GWS Server
in step 1 was started on your local machine, for example, the command to get the WSDL information
would be:

fglwsdl -o <test-client> http://localhost:8090/<service-name>?WSDL

Web services | 2481

Configuring the Genero application server for the GWS Application

The final step is to configure the Genero Application Server (GAS) to handle the GWS application. In a
production environment, Genero Web Services becomes a part of a global application architecture handled
by the application server of the GAS package. See Web services server program deployment on page
2506, as well as Adding Applications in the GAS manual.

Making the GWS service available

Once you compile and deploy your Genero Web Services Server application (see Web services server
program deployment on page 2506), it can be used by others to obtain the WSDL information and write a
client application that accesses your Genero Web Service. See Steps to write a WS client on page 2450.

Your company can provide the location of the GWS Server to potential users of your Web Service in
various ways. For example:

• Provide the location on a company web site
• Register the Web Service with UDDI (Universal Description, Discovery, and Integration) - the XML-

based registry providing Internet listings for companies worldwide
• Communicate directly with your potential users

Get HTTP headers information at WS server side

In high level web services, we now give access to the HTTP headers request and response.

The web service can get information from the request headers and reply with custom headers and status.

1. Declare variables to receive or send HTTP headers.
2. Register these variables to the web service server.

Declare variables to receive or send HTTP headers
The variable for the request headers:

DEFINE http_in RECORD
 verb STRING,
 url STRING,
 headers DYNAMIC ARRAY OF RECORD
 name STRING,
 value STRING
 END RECORD
 END RECORD

After the web service operation has been processed, the variable is set to NULL.

The variable for the response headers:

DEFINE http_out RECORD
 code INTEGER,
 desc STRING,
 headers DYNAMIC ARRAY OF RECORD
 name STRING,
 value STRING
 END RECORD
 END RECORD

After the web service operation has been processed, the variable is set to NULL.

Note: While the variables must follow the structure shown, the variable name can be any name
you choose.

The web service engine headers have precedence. For example, if you set the "Content-Length" value, the
one that is taken into account is the one defined by the Genero Web Services engine.

Web services | 2482

Register the variables to the server

This code example uses two methods, which use the defined variables:

• com.WebService.registerInputHttpVariable(http_in) where http_in is the RECORD
variable for the request headers.

• com.WebService.registerOutputHttpVariable(http_out) where http_out is the RECORD
variable for the response headers

Example

FUNCTION CreateService()

 DEFINE serv com.WebService # WebService
 DEFINE op com.WebOperation # Operation of a WebService

 TRY
 #
 # Create a Web Service
 #
 LET serv = com.WebService.CreateWebService("EchoHttpHeadersService",
 Namespace)
 #
 # Create Document Style Operations
 #
 # EchoDOCRecord
 LET op = com.WebOperation.CreateDOCStyle("echoDocRecord",
 "EchoDOCRecord",
 echoRecordDoc_in,
 echoRecordDoc_out)
 CALL serv.publishOperation(op,NULL)

 # Register HTTP input
 CALL serv.registerInputHttpVariable(http_in)

 # Register HTTP output
 CALL serv.registerOutputHttpVariable(http_out)

 #
 # Register service
 #
 CALL com.WebServiceEngine.RegisterService(serv)
 DISPLAY "EchoHttpHeadersService Service registered"
 CATCH
 DISPLAY "Unable to create 'EchoHttpHeadersService' Web Service : ",
 STATUS||" ("||SQLCA.SQLERRM||")"
 EXIT PROGRAM (-1)
 END TRY

END FUNCTION

FUNCTION echoDocRecord()
 DEFINE ind INTEGER
 DEFINE ok BOOLEAN

 # Check incoming VERB
 IF http_in.verb != "POST" THEN
 LET http_out.code = 400
 LET http_out.desc = "Bad request: method should be POST"
 RETURN
 END IF

 # Check incoming query string
 IF http_in.url.getIndexOF("?MyQuery=OK",1)<=0 THEN

Web services | 2483

 LET http_out.code = 400
 LET http_out.desc = "Bad request: URL should have MyQuery=OK"
 RETURN
 END IF

 # Check incoming header called MyPersonal
 LET ok = FALSE
 FOR ind = 1 TO http_in.headers.getLength()
 DISPLAY ind||"# ",http_in.headers[ind].name,
 "=",http_in.headers[ind].value
 IF http_in.headers[ind].name == "MyPersonal" THEN
 IF http_in.headers[ind].value == "Header" THEN
 LET ok = TRUE
 END IF
 END IF
 END FOR
 IF NOT ok THEN
 LET http_out.code = 400
 LET http_out.desc =
 "Bad request: expected additional header called MyPersonal"
 RETURN
 END IF

 # assign the output record
 LET echoRecordDoc_out.MyRecord.MyInt =
 echoRecordDoc_in.MyRecord.MyInt
 LET echoRecordDoc_out.MyRecord.MyFloat =
 echoRecordDoc_in.MyRecord.MyFloat

 # Add MyPersonalHeader=MyPersonalValue http headers
 LET http_out.headers[1].name = "MyPersonalHeader"
 LET http_out.headers[1].value = "MyPersonalValue"

END FUNCTION

Choosing a web services style

Genero Web Services 2.0 allows you to create Web Services operations in the following styles:

Table 555: Web Services Styles

Web Services Style Description

RPC Style Service (RPC/Literal) Generally used to execute a function, such as a
service that returns a stock option.

Document Style Service (Doc/Literal) Generally used for more sophisticated operations
that exchange complex data structures, such as a
service that sends an invoice to an application, or
exchanges a Word document; this is the MS.Net
default.

Both RPC/Literal and Doc/Literal Styles are
WS-I compliant (Web Services Interoperability
organization).

RPC Style Service (RPC/Encoded) Provided only for backwards compatibility with older
versions of web services already published.

Important: This style is deprecated
by the WS-I organization, and is not
recommended, as most Web Service

Web services | 2484

Web Services Style Description

implementations won't support it in the
future.

The style of service to be created is specified in the Genero application for the Web Service, using the
following methods of the WebOperation class from from the Web Services COM Library (com). The
parameters are the same for both methods:

1. The name of the BDL function that is executed to process the Web Service operation
2. The name you wish to assign to the Web Service operation
3. The input record defining the input parameters of the operation (or NULL if there is none)
4. The output record defining the output parameters of the operation (or NULL if there is none)

LET op = com.WebOperation.CreateRPCStyle("add","Add",
 add_in,add_out)
LET op = com.WebOperation.CreateDOCStyle("checkInvoice",
 "CheckInvoice",invoice_in,invoice_out)

Calling the appropriate function for the desired style is the only difference in your Genero code that creates
the service. The remainder of the code that describes the service is the same, regardless of whether you
want to create an RPC or Document style of service.

Important: Do not use the setInputEncoded() and setOutputEncoded() methods of the
WebService class from the Web Services COM Library (com), as they apply only to RPC/Encoded
Style, which is not recommended.

Note: If you add headers to your RPC Style service, choose the Literal serialization mechanism by
setting the encoded parameter of the createHeader() method to FALSE:

CALL serv.createHeader(var,FALSE)

Note: GWS release 2.0 allows you to create RPC Style and Document Style operations in the
same Web Service. However, we do not recommend this, as it is not WS-I compliant.

How To's
These topics provide you with the information needed to perform specific tasks related to Genero Web
Services using the SOAP protocol.

• How to call Java APIs from Genero in a SOA environment on page 2484
• How to call .NET APIs from Genero in a SOA environment on page 2490
• Compute a hash value from a BDL string on page 2497
• Fix Genero 2.10 to 2.11 WSDL generation issue on page 2499
• How to handle WS security on page 2501

How to call Java™ APIs from Genero in a SOA environment
Overview

This tutorial explains how to call a Java™ library from Genero in a SOA environment, using Genero and
Java™ Web services. This can easily be done using the Java™ JAX-WS framework on a server, and a
Genero application for the client part. Notice that there is no strong linkage between Genero and a java
JVM.

For this tutorial we will use a Java™ barcode creation library to build a picture from a code.

Note: Accessing a .NET library could be done in the same manner.

Web services | 2485

Recommendation

The usage of Genero Web Services to call a Java™ service is recommended in a SOA environment. It
enables several Genero applications to connect to a centralized Java™ service without the need to start a
new JVM for each running Genero application. It also provides more flexibility because there is no strong
linkage between Genero and the Java™ virtual machine. You can for instance upgrade the Java™ service
without changing anything in your Genero code.

However, due to the XML serialization process and the HTTP transport protocol in Web Services, there
can be some performance issues. So if your main concern is performance, it is recommended to use the
Genero Java™ bridge.

Prerequisites

• A JRE 1.5 or above
• The Java™ barcode library (available here)

• You must add these JARs to the Java™ CLASSPATH: barcode.jar and BarcodeReader.jar
• The trial version has some functions partially implemented.

• Download the JAX-WS framework from the Sun metro project here; add this JAR to the java
CLASSPATH: webservices-tools.jar

Using the barcode library

The barcode library is composed of two libraries:

• A library for building a barcode image from a numeric code
• A library for reading a barcode image to return the numeric code

This section depends on the library you want to use in Genero.

In our tutorial, we create two functions called buildImage and readImage.

This is the Java™ implementation:

buildImage(type : String, code : String) : byte[]

try {
 Barcode builder=new Barcode();
 builder.setType(GetBarcodeBuilderType(type));
 builder.setData(data);
 builder.setAddCheckSum(true);
 ByteArrayOutputStream out=new ByteArrayOutputStream();
 if (builder.createBarcodeImage(out)) {
 byte[] ret = out.toByteArray();
 return ret;
 } else {
 return null;
 }
} catch (Exception e) {
 return null;
}

readImage(type : String, img : byte[]) : String

try {
 File f=new File("tmp.jpg");
 FileOutputStream stream=new FileOutputStream(f);
 stream.write(img);
 stream.close(); String[] datas =
 BarcodeReader.read(f, GetBarcodeReaderType(type));
 if (datas==null) {
 return null;
 } else {

http://www.barcodelib.com/java_barcode/main.html
http://java.sun.com/webservices/downloads/index.jsp

Web services | 2486

 String ret = datas[0];
 return ret;
 }
} catch (Exception e) {
 return null;
}

The following two functions convert the type of a code bar to the type expected by the library:

private int GetBarcodeBuilderType(String str) {
 if (str.equals("CODABAR")) {
 return Barcode.CODABAR;
 } else if (str.equals("CODE11")) {
 return Barcode.CODE11;
 } else if (str.equals("CODE128")) {
 return Barcode.CODE128;
 } else if (str.equals("CODE128A")) {
 return Barcode.CODE128A;
 } else if (str.equals("CODE128B")) {
 return Barcode.CODE128B;
 } else if (str.equals("CODE128C")) {
 return Barcode.CODE128C;
 } else if (str.equals("CODE2OF5")) {
 return Barcode.CODE2OF5;
 } else if (str.equals("CODE39")) {
 return Barcode.CODE39;
 } else if (str.equals("CODE39EX")) {
 return Barcode.CODE39EX;
 } else if (str.equals("CODE93")) {
 return Barcode.CODE93;
 } else if (str.equals("CODE93EX")) {
 return Barcode.CODE93EX;
 } else if (str.equals("EAN13")) {
 return Barcode.EAN13;
 } else if (str.equals("EAN13_2")) {
 return Barcode.EAN13_2;
 } else if (str.equals("EAN13_5")) {
 return Barcode.EAN13_5;
 } else if (str.equals("EAN8")) {
 return Barcode.EAN8;
 } else if (str.equals("EAN8_2")) {
 return Barcode.EAN8_2;
 } else if (str.equals("EAN8_5")) {
 return Barcode.EAN8_5;
 } else if (str.equals("INTERLEAVED25")) {
 return Barcode.INTERLEAVED25;
 } else if (str.equals("ITF14")) {
 return Barcode.ITF14;
 } else if (str.equals("ONECODE")) {
 return Barcode.ONECODE;
 } else if (str.equals("PLANET")) {
 return Barcode.PLANET;
 } else if (str.equals("POSTNET")) {
 return Barcode.POSTNET;
 } else if (str.equals("RM4SCC")) {
 return Barcode.RM4SCC;
 } else if (str.equals("UPCA")) {
 return Barcode.UPCA;
 } else if (str.equals("UPCE")) {
 return Barcode.UPCE;
 } else {
 return -1;
 }

Web services | 2487

}

private int GetBarcodeReaderType(String str) {
 if (str.equals("CODABAR")) {
 return BarcodeReader.CODABAR;
 } else if (str.equals("CODE11")) {
 return BarcodeReader.CODE11;
 } else if (str.equals("CODE128")) {
 return BarcodeReader.CODE128;
 } else if (str.equals("CODE39")) {
 return BarcodeReader.CODE39;
 } else if (str.equals("CODE39EX")) {
 return BarcodeReader.CODE39EX;
 } else if (str.equals("CODE93")) {
 return BarcodeReader.CODE93;
 } else if (str.equals("DATAMATRIX")) {
 return BarcodeReader.DATAMATRIX;
 } else if (str.equals("EAN13")) {
 return BarcodeReader.EAN13;
 } else if (str.equals("EAN8")) {
 return BarcodeReader.EAN8;
 } else if (str.equals("INTERLEAVED25")) {
 return BarcodeReader.INTERLEAVED25;
 } else if (str.equals("ITF14")) {
 return BarcodeReader.ITF14;
 } else if (str.equals("ONECODE")) {
 return BarcodeReader.ONECODE;
 } else if (str.equals("PLANET")) {
 return BarcodeReader.PLANET;
 } else if (str.equals("POSTNET")) {
 return BarcodeReader.POSTNET;
 } else if (str.equals("QRCODE")) {
 return BarcodeReader.QRCODE;
 } else if (str.equals("RM4SCC")) {
 return BarcodeReader.RM4SCC;
 } else if (str.equals("RSS14")) {
 return BarcodeReader.RSS14;
 } else if (str.equals("RSSLIMITED")) {
 return BarcodeReader.RSSLIMITED;
 } else if (str.equals("UPCA")) {
 return BarcodeReader.UPCA;
 } else if (str.equals("UPCE")) {
 return BarcodeReader.UPCE;
 } else {
 return -1;
 }
}

Calling Java™ from Genero

The integration of one or several Java™ libraries with multiple methods in a Genero application can be
performed, as described in the following topics.

Step 1: Write a new java class

Instead of writing the functions in 4GL, you simply need to write them in a Java™ class with the methods
you want to use in 4GL. In our example, the two functions are buildImage and readImage. And of course,
don't forget to import the necessary Java™ import instructions.

import com.barcodelib.barcodereader.BarcodeReader;
import com.barcodelib.barcode.Barcode;
import java.io.*;

Web services | 2488

import javax.jws.*;
import javax.jws.soap.SOAPBinding;
import javax.xml.ws.Endpoint;

public class BarcodeService {
 public byte [] buildImage(String type, String data)
 {
 /*BUILDIMAGE IMPLEMENTATION CODE DESCRIBED ABOVE*/
 }
 public String readImage(String type,byte[] img)
 { { { {
 /*READIMAGE IMPLEMENTATION CODE DESCRIBED ABOVE*/
 } }
}

Notice that if you want the service to run standalone, you must also add following the main method to tell
the system the port number on which the service will run:

public static void main(String[] args)
{
 String endpointUri = "http://localhost:9090/";
 Endpoint.publish(endpointUri, new BarcodeService ());
 System.out.println("BarcodeService started at " + endpointUri);
}

Step 2: Transform the Java™ class in a web service

To transform the previous java class in a Web Service, simply add a WebService annotation:

@WebService(targetNamespace = http://www.mycompany.com/barcode ",
 name="Barcode",
 serviceName="BarcodeService")
public class BarcodeService{
...
}

This defines all public and non static methods of the class as operations of the BarcodeService Web
Service.

Step 3: Start the service

Compile the previously created java class, and run it.

Commands to compile and execute the service in standalone mode:

$ javac BarcodeService.java
$ java BarcodeService

Once the service is started, it is ready to accept requests and you can also retrieve its WSDL at following
URL:

http://localhost/9090/BarcodeService?WSDL

Note: If you want the service to be started on a web server, you must deploy it first using Eclipse or
the Web Server deployment tools.

Step 4: Generate BDL stub to access the Java™ library

Use the fglwsdl tool to generate the client stub to access the BarcodeService:

$ fglwsdl http://localhost:9090/BarcodeService?WSDL

Web services | 2489

This will create two .4gl files that must be compiled and linked into your BDL application in order to call the
Java™ barcode library functions. These files contain the BDL interface to access the Java™ library where
you will find the two functions, readImage and buildImage, defined in BDL.

Step 5: Modify your BDL application

The last step is to modify the existing application where you want to use the Java™ library, by calling the
BDL functions generated in the stub. Then compile your application and the previously generated stubs,
and link everything together.

Your application is now ready to use the different features of your Java™ library.

Example program

This program calls the buildImage function of the Barcode Java™ library.

GLOBALS "BarcodeService_BarcodePort.inc"

MAIN

DEFINE wsstatus INTEGER

IF num_args() != 3 THEN
 CALL ExitHelp()
END IF

LET ns1buildImage.arg0 = arg_val(1)
LET ns1buildImage.arg1 = arg_val(2)
LOCATE ns1buildImageResponse.return IN MEMORY

LET wsstatus = buildImage_g()
IF wsstatus <> 0 THEN
 DISPLAY "Error ("||wsError.code||") : ",wsError.description
ELSE IF
 IF ns1buildImageResponse.return IS NULL THEN
 DISPLAY "Encoding failed"
 ELSE
 CALL ns1buildImageResponse.return.writeFile(arg_val(3))
 END IF
END IF

FREE ns1buildImageResponse.return

END MAIN

FUNCTION ExitHelp()
 DISPLAY arg_val(0)||" <type> <data> <filename>"
 DISPLAY "type : barcode type such as EAN8 or CODE128"
 DISPLAY "data : data to be encoded with a barcode [0-9A-D]"
 DISPLAY "filename : resulting image filename"
 DISPLAY "example : createImage EAN8 12358723A mybarcode.jpg"
 EXIT PROGRAM (-1)
END FUNCTION

Conclusion

In a SOA environment, you can call any Java™ library from Genero using Web Services, and without a
strong dependency to a JVM. This follows SOA principles - it allows you to reuse the Java™ library in
another BDL application without any new development, you can update the Java™ part without recompiling
any .4gl source, and integrate any function available from a SOA platform.

Web services | 2490

How to call .NET APIs from Genero in a SOA environment
Overview

This document explains how to call a .NET library from Genero in a SOA environment, using Genero and
Web services, and IIS and Visual Studio .NET.

Notice that there is no strong linkage between Genero and .NET, and you can even call a .NET library from
a non-Windows Genero platform.

For the tutorial, we will use a .NET barcode creation library to build a picture from a numeric code, and C#
as the development language. This will also work with any other .NET language.

Note: Accessing a Java™ library could be done in the same manner.

Prerequisites

• IIS (Internet Information Services) Web server
• Visual Studio Professional Edition C#

• Visual Studio in only needed for development. Once the service is built, you can deploy on any IIS
Web Server.

• The .NET barcode library (available here)

• The trial version has some functions partially implemented.
• The .NET library is called BarcodeLib.Barcode.dll, and must be added to the Visual Studio Project.

Using the barcode library

This section depends on the library you want to use in Genero. In our tutorial, we create one function called
buildImage. This is the C# implementation:

buildImage(type : String, code : String) : byte[]

Linear barcode = new Linear();
barcode.Data = code;
barcode.Type = GetBarcodeBuilderType(type);
barcode.AddCheckSum = true;
// save barcode image into your system
barcode.ShowText = true;
byte[] ret = barcode.drawBarcodeAsBytes();
if (ret != null) return ret;
else return null;

You will also need to convert the type of a code bar to the right type as expected by the library. Therefore,
you will need this function.

private BarcodeType GetBarcodeBuilderType(String str)
{
if (str.Equals("CODABAR")) {
 return BarcodeType.CODABAR;
 } else if (str.Equals("CODE11")) {
 return BarcodeType.CODE11;
 } else if (str.Equals("CODE128")) {
 return BarcodeType.CODE128;
 } else if (str.Equals("CODE128A")) {
 return BarcodeType.CODE128A;
 } else if (str.Equals("CODE128B")) {
 return BarcodeType.CODE128B;
 } else if (str.Equals("CODE128C")) {
 return BarcodeType.CODE128C;
 } else if (str.Equals("CODE2OF5")) {
 return BarcodeType.CODE2OF5;
 } else if (str.Equals("CODE39")) {
 return BarcodeType.CODE39;

http://www.barcodelib.com/net_barcode/main.html

Web services | 2491

 } else if (str.Equals("CODE39EX")) {
 return BarcodeType.CODE39EX;
 } else if (str.Equals("CODE93")) {
 return BarcodeType.CODE93;
 } else if (str.Equals("EAN13")) {
 return BarcodeType.EAN13;
 } else if (str.Equals("EAN13_2")) {
 return BarcodeType.EAN13_2;
 } else if (str.Equals("EAN13_5")) {
 return BarcodeType.EAN13_5;
 } else if (str.Equals("EAN8")) {
 return BarcodeType.EAN8;
 } else if (str.Equals("EAN8_2")) {
 return BarcodeType.EAN8_2;
 } else if (str.Equals("EAN8_5")) {
 return BarcodeType.EAN8_5;
 } else if (str.Equals("INTERLEAVED25")) {
 return BarcodeType.INTERLEAVED25;
 } else if (str.Equals("ITF14")) {
 return BarcodeType.ITF14;
 } else if (str.Equals("ONECODE")) {
 return BarcodeType.ONECODE;
 } else if (str.Equals("PLANET")) {
 return BarcodeType.PLANET;
 } else if (str.Equals("POSTNET")) {
 return BarcodeType.POSTNET;
 } else if (str.Equals("RM4SCC")) {
 return BarcodeType.RM4SCC;
 } else if (str.Equals("UPCA")) {
 return BarcodeType.UPCA;
 } else if (str.Equals("UPCE")) {
 return BarcodeType.UPCE;
 } else {
 throw new Exception();
 }
}

Calling .NET from Genero
Step 1: Create an ASP.NET Web Service Application

Start Visual Studio, and create a new web project with the name BarCodeService.

Web services | 2492

Figure 109: Visual Studio New Project; ASP .NET Web Service Application selected

Step 2: Rename the generated files

Rename the generated class called Service1 with an appropriate name such as BarCode, and the file
Service1.asmx to BarCodeService.asmx, for instance. The .asmx file is the file that is accessible from the
IIS web server once the application is deployed. The .asmx file also contains a reference to the default
generated class, Service1, which must also be renamed to the new name (BarCode in our tutorial), in case
Visual Studio didn't make the change automatically.

The class view after renaming the class:

Figure 110: Class View; BarCode selected

Web services | 2493

The file view after renaming the asmx file:

Figure 111: File View; BarCodeService selected

Step 3: Add the barcode library as a reference

Right-click on the solution explorer, select Add Reference and use the Browse panel to enter the location
of the barcode library called BarcodeLib.Barcode.dll:

Note: By default, the barcode library will be copied to the right place when deploying on the IIS
web server.

Step 4: Add the buildImage method

Remove the default generated HelloWorld method, and create the buildImage method.

Web services | 2494

Add the three using instructions to import the barcode library, and to declare buildImage as a
WebMethod. Use the GetBarcodeBuilderType() method to convert a string to a code as expected by the
barcode library.

using BarcodeLib;
using BarcodeLib.Barcode;
using BarcodeLib.Barcode.Linear;

namespace BarCodeService
{
 /// <summary>
 /// Summary description for Service1
 /// </summary>
 [WebService(Namespace = "http://tempuri.org/")]
 [WebServiceBinding(ConformsTo = WsiProfiles.BasicProfile1_1)]
 [ToolboxItem(false)]
 // To allow this Web Service to be called from script, using ASP.NET
 // [System.Web.Script.Services.ScriptService]
 public class Barcode : System.Web.Services.WebService
 {

 [WebMethod]
 public byte[] buildImage(String type, String code)
 {
 try
 {
 Linear barcode = new Linear();
 barcode.Data = code;
 barcode.Type = GetBarcodeBuilderType(type);
 barcode.AddCheckSum = true;

 // save barcode image into your system
 barcode.ShowText = true;
 byte[] ret = barcode.drawBarcodeAsBytes();
 if (ret !- null) return ret;
 else return null;
 }
 catch (Exception e)
 {
 return null;
 }
 }
 }
}

Web services | 2495

Figure 112: BarCodeService.BarCode

Step 5: Publish the service

Build the entire application, right-click on the solution, and select the publish operation. This will copy all
necessary files to your IIS web server and make your application available at an URL, depending on where
you deploy it on your IIS web server.

In our tutorial, the service will be located at the root of the server. In other words, it will be available at
http://localhost/BarCodeService.asmx and the WSDL at URL http://localhost/BarCodeService.asmx?
WSDL

Web services | 2496

Figure 113: Publish Web dialog

Step 6: Generate .4gl stub to access the .NET library

Use the fglwsdl tool to generate the client stub to access the BarcodeService, as follows:

$ fglwsdl http://localhost/BarCodeService.asmx?WSDL

This will create two .4gl files, which must be compiled and linked into your BDL application in order to call
the .NET barcode library functions. These files contain the BDL interface to access the .NET library where
you will find the function buildImage, defined in BDL.

Step 7: Modify your BDL application

Modify your existing application, where you want to use the .NET library, by calling the BDL functions
generated in the stub. Then compile your application and the previously generated stubs, and link
everything together.

Your application is now ready to use the different features of your .NET library.

Example BDL program

This program calls the buildImage function of the Barcode .NET library.

GLOBALS "BarCode_BarCodeSoap.inc"
MAIN
 DEFINE wsstatus INTEGER

 IF num_args() != 3 THEN
 CALL ExitHelp()
 END IF

 LET buildImage.type = arg_val(1)
 LET buildImage.code = arg_val(2)
 LOCATE buildImageResponse.buildImageResult IN MEMORY

 LET wsstatus = buildImage_g()
 IF wsstatus <> 0 THEN
 DISPLAY "Error ("||wsError.code||") : ",wsError.description
 ELSE
 IF buildImageResponse.buildImageResult IS NULL THEN
 DISPLAY "Encoding failed"
 ELSE

Web services | 2497

 CALL buildImageResponse.buildImageResult.writeFile(arg_val(3))
 END IF
 END IF

 FREE buildImageResponse.buildImageResult

END MAIN

FUNCTION ExitHelp()
 DISPLAY arg_val(0)||" <type> <data> <filename>"
 DISPLAY "type : barcode type such as EAN8 or CODE128"
 DISPLAY "data : data to be encoded with a barcode [0-9A-D]"
 DISPLAY "filename : resulting image filename"
 DISPLAY "exemple : createImage EAN8 12358723A mybarcode.jpg"
 EXIT PROGRAM (-1)
END FUNCTION

Conclusion

It is quite easy to interact with a .NET library from Genero using .NET Visual Studio and the web services.
Of course you also need an IIS web server installed on your Windows™ system. This means that you can,
in the same Genero application, interact with .NET and Java™ libraries without any strong linkage between
Genero and the third party libraries you want to use. This meets the SOA principles that provide more
flexibility to your entire BDL application.

You can integrate any new library from another vendor, without the risk of conflicts between different
libraries that could happen if you had to link everything together in C or Java™.

You can upgrade a third party library without recompiling the BDL application, which will still work.

You can use all these third party libraries in other BDL or other applications.

Compute a hash value from a BDL string
Overview

This document explains how to compute a hash value of a BDL string using the security.Digest API.

Signing a XML document is nothing more than computing a hash over a fragment of XML. If you set the
string you need to hash in an XML node, and use the correct XPath expression, the security.Digest API will
do it for you.

Some special characters are escaped in XML. If you use one of them, the computed hash value will be
wrong because the result is actually computed over the escaped string. The special characters to be aware
of are: ", ', &, < and >.

Sample code

Then uses the security.Digest API to compute a XML digital signature for the content of the root node, or in
other words the string you wish to hash, using a XPath expression.

And finally, retrieves the hash value from the signature and returns it.

The computed hash value is encoded in Base64, so you may have additional conversion to do.

IMPORT SECURITY

MAIN

 DEFINE result STRING

 IF num_args() != 2 THEN
 DISPLAY "Usage: ComputeHash <string> <hashcode>"
 DISPLAY " string: the string to digest"
 DISPLAY " hashcode: SHA1, SHA512, SHA384, SHA256, SHA224, MD5"
 ELSE

Web services | 2498

 LET result = ComputeHash(arg_val(1), arg_val(2))
 IF result IS NOT NULL THEN
 DISPLAY "Hash value is: ",result
 ELSE
 DISPLAY "Error"
 END IF
 END IF

END MAIN

FUNCTION ComputeHash(toDigest, algo)

 DEFINE toDigest, algo, result STRING
 DEFINE dgst security.Digest

 TRY
 LET dgst = security.Digest.CreateDigest(algo)
 CALL dgst.AddStringData(toDigest)
 LET result = dgst.DoBase64Digest()
 CATCH
 DISPLAY "ERROR : ", STATUS, " - ", SQLCA.SQLERRM
 EXIT PROGRAM(-1)
 END TRY

 RETURN result
END FUNCTION

Example of usage:

$ fglrun ComputeHash "Hello, world !!!" SHA1

$ Hash value is: Ck1VqNd45QIvq3AZd8XYQLvEhtA=

Example
Computing a hash value of a string.

Program example ComputeHash.4gl :

IMPORT SECURITY

MAIN

 DEFINE result STRING

 IF num_args() != 2 THEN
 DISPLAY "Usage: ComputeHash <string> <hashcode>"
 DISPLAY " string: the string to digest"
 DISPLAY " hashcode: SHA1, SHA512, SHA384, SHA256, SHA224, MD5"
 ELSE
 LET result = ComputeHash(arg_val(1), arg_val(2))
 IF result IS NOT NULL THEN
 DISPLAY "Hash value is :",result
 ELSE
 DISPLAY "Error"
 END IF
 END IF

END MAIN

FUNCTION ComputeHash(toDigest, algo)

 DEFINE toDigest, algo, result STRING
 DEFINE dgst security.Digest

Web services | 2499

 TRY
 LET dgst = security.Digest.CreateDigest(algo)
 CALL dgst.AddStringData(toDigest)
 LET result = dgst.DoBase64Digest()
 CATCH
 DISPLAY "ERROR : ", STATUS, " - ", SQLCA.SQLERRM
 EXIT PROGRAM(-1)
 END TRY

 RETURN result
END FUNCTION

Example execution:

$ fglrun ComputeHash "Hello World" SHA1

Hash value is :Ck1VqNd45QIvq3AZd8XYQLvEhtA=

Fix Genero 2.10 to 2.11 WSDL generation issue
These topics explain how to convert a WSDL generated from Genero 2.11 and later, to a WSDL as
generated in Genero 2.10.
Overview

Since Genero 2.11, each BDL variable generates a associated named complexType in the WSDL and
references it. Notice that this does not impact the web service at all, but some tools will then generate
additional client stubs to follow the WSDL definition with the name of such complexType. This means that a
client program written from a WSDL generated in 2.10 must be reviewed if it uses now a WSDL generated
in 2.11 or later.

If you do not want to modify your application, you can use following program that will remove the named
complexType and add the unnamed equivalent as child node of the parameter variable of all web service
operations, so in other words, as if the WSDL would have been generated in 2.10.

WSDL conversion tool

This program reads a WSDL, looks for all named complexType used in all the web operation parameters
and modifies them in order to have unamed complexType instead.

IMPORT XML
MAIN
 DEFINE
 doc xml.DomDocument,
 list, elist, tlist xml.DomNodeList,
 node, enode, nnode xml.DomNode,
 i, j, k, idx INTEGER,
 ename, tname STRING

 IF num_args() <> 1 THEN
 CALL display_help()
 RETURN 0
 END IF

 TRY
 LET doc = xml.DomDocument.Create()
 CALL doc.setFeature("whitespace-in-element-content",FALSE)
 CALL doc.load(arg_val(1))
 # get the list of input/output message
 # check if their names (x) are defined as elements with types (y)
 # if yes then
 # copy the complextype y definition to element name x
 # and remove the complexe type y definition
 # for example:
 # message
 # <wsdl:message name="is_OKIn">

Web services | 2500

 # <wsdl:part name="parameters" element="fjs:is_OKRequest" />
 # </wsdl:message>
 # <wsdl:message name="is_OKOut">
 # <wsdl:part name="parameters" element="fjs:is_OKResponse" />
 # </wsdl:message>
 # element
 # <xsd:element name="is_OKResponse"
 # type="s1:is_OKResponse_is_OKResponse" />
 # type
 # <xsd:complexType name="is_OKRequest_is_OKRequest">
 LET list =
 doc.selectByXPath("//wsdl:part[@name='parameters']/@element",
 "wsdl","http://schemas.xmlsoap.org/wsdl/")
 IF list IS NULL THEN
 DISPLAY "Nothing to convert."
 END IF
 FOR i=1 TO list.getCount()
 LET node = list.getItem(i)
 LET ename = node.getNodeValue()
 LET idx = ename.getIndexOf(":",1)
 IF idx <> 0 THEN
 LET ename = ename.subString(idx+1,ename.getLength())
 END IF
 # get the element
 LET elist =
 doc.selectByXPath("//xsd:element[@name='" || ename || "']",
 "xsd","http://www.w3.org/2001/XMLSchema")
 IF elist IS NOT NULL THEN
 FOR j=1 TO elist.getCount()
 LET enode = elist.getItem(j)
 LET tname = enode.getAttribute("type")
 CALL enode.removeAttribute("type")
 LET idx = tname.getIndexOf(":",1)
 IF idx <> 0 THEN
 LET tname = tname.subString(idx+1,tname.getLength())
 END IF
 # get the type
 LET tlist =
 doc.selectByXPath("//xsd:complexType[@name='" || tname || "']",
 "xsd","http://www.w3.org/2001/XMLSchema")
 IF tlist IS NOT NULL THEN
 FOR k=1 TO tlist.getCount()
 LET node = tlist.getItem(k)
 LET nnode = node.clone(TRUE)
 CALL nnode.removeAttribute("name")
 CALL enode.appendChild(nnode)
 END FOR
 END IF
 FOR k=1 TO tlist.getCount()
 LET node = tlist.getItem(k)
 LET nnode = node.getParentNode()
 CALL nnode.removeChild(node)
 END FOR
 END FOR
 END IF
 END FOR
 CALL doc.setFeature("format-pretty-print",TRUE)
 CALL doc.save("result.wsdl")
 DISPLAY "Document is saved in result.wsdl"
 CATCH
 DISPLAY "ERROR[" || STATUS || "]"
 FOR i=1 TO doc.getErrorsCount()
 DISPLAY "[", i, "] ", doc.getErrorDescription(i)
 END FOR

Web services | 2501

 END TRY
END MAIN

FUNCTION display_help()
 DISPLAY "Usage: fglrun " || arg_val(0) || " wsdlfile"
END FUNCTION

Example of usage:

$ fglrun Convert Genero2_21.wsdl

$ Document is saved in result.wsdl

How to handle WS security

Genero Web Services does not entirely manage WS-Security. We provide XML APIs to help the
development of Web Services with security.

Introduction

This topic describes how to handle WS Security using the demo wssecuritymessage. It is a sample that
you can adapt to your needs. The demo will be enhanced to illustrate new features that will be introduced
to fully support WS-Security.

The demo involves three clients exchanging secured messages. Those clients post and retrieve messages
on a secured server. Each client is identified by a certificate and sign their messages.

We assume that you are familiar with security concepts described in topic " Encryption and Authentication
Concepts".

The demo assumes that all the clients have sent their public keys to the other clients and to the server.
Those keys are kept in each host's (server or clients) keystore. The certificates included in this package
are provided for demonstration purposes only. As they are distributed with this package, anybody using
this product can decrypt the messages exchanged. Do NOT use them in production.

Server side

We provide 3 handlers to handle WS Security:

• Method com.WebService.registerWSDLHandler() to modify the wsdl to add WS policy.
• Method com.WebService.registerInputRequestHandler() to handle WS Security in an incoming request
• Method com.WebService.registerOutputRequestHandler() to handle WS Security in an outgoing

request

In this demo, a received message is processed:

1. Identify the sender and validate the sender (search in keystore)
2. Decrypt the symmetric key with the server private key
3. Decrypt the body
4. Check the signature with the sender public key
5. Store the message in the box (thanks to the "To" field, "subject" and "message")
6. Create the outgoing message
7. Sign the outgoing message
8. Encrypt the outgoing message with a generated symmetric key. This symmetric key is then encrypted

with the client public key.

Client side

The client consists in sending a message and retrieving messages clients sent to it.

Before that, create the client stub from the wsdl:

• fglwsdl -domHandler myservice.wsdl

The client stub reference handlers:

Web services | 2502

• SecureMessageBox_HandleRequest
• SecureMessageBox_HandleResponse
• SecureMessageBox_HandleResponseFault

For more details about client SOAP handlers see Client stub and handlers.

What to do when a message is sent:

• Sign and encrypt the request for the server (WS-Security)

• sign with client private key
• encrypt with server public key

• Send key information in the request

• key to identify the sender/client
• key to identify the recipient/server
• key used to encrypt the data (usually a symmetric key encrypted by the recipient public key)

• If the message has to be encrypted for the final recipient (XML-Security)

• sign the message
• encrypt the message

What to do to retrieve messages:

• Identify the sender and validate the sender (search in keystore)
• Identify the recipient (should be the server itself)
• Decrypt the request
• Check the signature
• Retrieve messages for the recipient

SOAP security standards

The policy documentation can be found here.

The demo policy is divided into sections (make sure that the naming are correct and that the structure is
understandable):

• Security bindings on page 2502
• SOAP message security options on page 2505
• SignedParts on page 2505
• EncryptedParts on page 2505

WS Security section begins with:

<wsp:Policy xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy ... />

It defines rules:

<wsp:ExactlyOne>

Only one assertion should be fulfilled.

<wsp:All>

All the assertions should be fulfilled.

Security bindings

There are 3 types of security binding:

• TransportBinding
• SymmetricBinding

http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/ws-securitypolicy-1.2-spec-os.pdf

Web services | 2503

• AsymmetricBinding

The current demo uses the Asymmetric binding.

Asymmetric Binding

This section is divided in sub sections:

• InitiatorToken
• RecipientToken
• AlgorithmSuite
• Layout
• Additional assertions

AsymmetricBinding is the root node for protection description.

<sp:AsymmetricBindingxmlns:sp=
"http://schemas.xmlsoap.org/ws/2005/07/securitypolicy">

InitiatorToken

InitiatorToken is the message sender (client)

For example:

<sp:InitiatorToken>
 <wsp:Policy>
 <sp:X509Token sp:IncludeToken="http://schemas.xmlsoap.org/ws/
 2005/07/securitypolicy/IncludeToken/AlwaysToRecipient">
 <wsp:Policy>
 <sp:RequireThumbprintReference />
 <sp:WssX509V1Token10 />
 </wsp:Policy>
 </sp:X509Token>
 </wsp:Policy>
</sp:InitiatorToken>

Note: The value for the sp:IncludeToken attribute is one contiguous string with no spaces. For this
document, it is shown covering two lines.

The token is used for the message signature from initiator to recipient and encryption from recipient to
initiator.

The initiator key is a X509 certificate that is always sent to the recipient.

sp:IncludeToken attribute indicates if the token must be included.

IncludeToken/AlwayToRecipient means each requests sent to the recipient must include the initiator
token. But the token should not be included in messages from recipient to initiator.

The token must send its Thumbprint Reference.

The token must be of type X509 version 1 as defined in "X509 token profile 1.0".

What should be done in BDL is decribed in Client Side section.

To retrieve the thumbprint reference you can use the API function xml.CryptoX509.getThumbprintSHA1

To create the x509 certificate use an appropriate tool like openssl.

Web services | 2504

RecipientToken

RecipientToken is the message receiver (server)

<sp:RecipientToken>
 <wsp:Policy>
 <sp:X509Token sp:IncludeToken="http://schemas.xmlsoap.org/
 ws/2005/07/securitypolicy/IncludeToken/Never">
 <wsp:Policy>
 <sp:RequireThumbprintReference />
 <sp:WssX509V3Token10 />
 </wsp:Policy>
 </sp:X509Token>
 </wsp:Policy>
</sp:RecipientToken>

Note: The value for the sp:IncludeToken attribute is one contiguous string with no spaces. For this
document, it is shown covering two lines.

The token is used for encryption from initiator to recipient, and for the message signature from recipient to
initiator.

The recipient key is a X509 certificate that is never sent to the initiator.

sp:IncludeToken attribute indicates if the token must be included.

IncludeToken/Never means the token should not be included in any requests between the initiator and
the recipient.

Instead the recipient ThumbprintReference is sent.

The token must be of type X509 version 3 as defined in "X509 token profile 1.0"

What should be done in BDL is described in Server Side section. To retrieve the thumbprint reference you
can use the API function xml.CryptoX509.getThumbprintSHA1. To create the appropriate certificate use an
appropriate tool like openssl.

AlgorithmSuite

AlgorithmSuite tells which algorithm is used to encrypt the data.

<sp:AlgorithmSuite>
 <wsp:Policy>
 <sp:TripleDesRsa15 />
 </wsp:Policy>
</sp:AlgorithmSuite>

TripleDesRsa15 refers to key http://www.w3.org/2001/04/xmlenc#tripledes-cbc.

Layout

Layout describes the way information are added to the message header.

<sp:Layout>
 <wsp:Policy>
 <sp:Strict />
 </wsp:Policy>
</sp:Layout>

For example, with Strict layout, token that are included in the message must be declared before use. For
more details on the rules to follow see the security policy specifications section 7.7.

Web services | 2505

Additional Assertations

PartsToSign

<sp:OnlySignEntireHeadersAndBody />

The assertion means if there is any signature on the header or the body it should be on the entire header
and the entire body not on their child element.

SOAP message security options

<sp:Wss10 xmlns:sp="http://schemas.xmlsoap.org/ws/2005/07/securitypolicy">
 <sp:MustSupportRefKeyIdentifier />
 <sp:MustSupportRefIssuerSerial />

• MustSupportRefKeyIdentifier means that initiator and recipient are able to generate and process key
identifier reference.

• MustSupportRefIssuerSerial means that initiator and recipient are able to generate and process issuer
and token serial reference.

SignedParts

The SignedParts section tells which part of the message should be signed.

<sp:SignedParts xmlns:sp="http://schemas.xmlsoap.org/ws/2005/07/
securitypolicy">
<sp:Body />

• Only the body needs to be signed

EncryptedParts

The section EncryptedParts tells which part of the message should be encrypted.

<sp:EncryptedParts xmlns:sp="http://schemas.xmlsoap.org/ws/2005/07/
securitypolicy">
 <sp:Body />

• sp:Body indicates the body message needs to be encrypted

Encrypt the body using the algorithm referenced in assertion AlgorithmSuite:

• create an encryption key using TripleDesRsa15 algorithm (i.e. generate a TripleDES symmetric key and
then encrypt it with a RSA1.5 public key) like example2 in crypto key chapter that uses AES256.

• encrypt the body with the created key

To find the exact syntax of security message read the specifications "Web Services Security: SOAP
Message Security 1.0".

Useful links

• Security Policy specifications v1.2
• SOAP Message Security 1.0
• X.509 Token Profile 1.1

RESTful Web Services
While RESTful Web Services are supported, the RESTful Web Services documentation is not yet
completed.

The Genero APIs for creating Web services can be found in the Library section of this manual. See The
com package on page 2009 and The xml package on page 2103.

http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/ws-securitypolicy-1.2-spec-os.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf
http://www.oasis-open.org/committees/download.php/16785/wss-v1.1-spec-os-x509TokenProfile.pdf

Web services | 2506

Deploy a Web Service

Web services server program deployment

Introduction

In a production environment, Genero Web Services becomes a part of a global application architecture
handled by the Genero Application Server (GAS). The GWS DVMs are managed by the GAS.

This architecture takes care of:

• Security issues
• Scalability

• Load management
• Balancing of the Web service requests amongst the available virtual machines

• Runtime monitoring

GAS configuration

For deployment, the GWS Server application must be added to the GAS configuration. See Adding
Applications in the GAS manual.

The web services application can be added to the GAS in different ways:

• GWS Server application implementing a single Web Service.

This application could be deployed on various physical machines. A Genero Web Services VMProxy
(GWSProxy) is started on each machine where the GWS Server application is executed, to manage
the requests for a service and manage the DVMs that handle the requests. A single VMProxy can
communication with multiple GWS DVMs, and manage the load balancing.

• GWS Server application implementing multiple Web Services.

The GWSproxy would manage the client requests, dispatching the request to the appropriate DVM and
the appropriate web service.

Note: A Web Service Server must be stateless; several instances of the same Service can be
created to support load balancing.

The basic deployment strategy can be implemented in varying permutations, depending on your business
needs and the volume of requests.

Figure 114: Deployment strategy

• Using the World Wide Web, a Web Service client requests WSDL information for a particular Web
Service from the Web Server.

• The Web Service client uses this information to make a Web Service request from the Web Server.
• The Web server passes the request to the GAS dispatcher.

Web services | 2507

• The GAS dispatcher starts a GWSProxy, which will be in charge of the pool of DVMs that will serve the
web service application.

• The GWSProxy will start the number of DVMs specified by the START element defined for the web
service application.

For a more detailed explanation of the Services Pool for web services, refer to the GAS Architecture topic
in the Genero Application Server manual.

Access the web services server from a client application

To reach the web service from the internet, client applications must use the following URL form:

http://host_name/ws/r/app_id

1. host_name defines the web server host name where the GAS is running.
2. app_id is the XCF file of the GAS web services application.

Configuring the apache web server for HTTPS

The first three steps are for the creation of all X.509 certificates.

• Step 1: Create the Root Certificate Authority
• Step 2: Create the server's certificate and private key
• Step 3: Create the server's certificate authority list

The next three steps are for server configuration.

• Step 4: Register the server as a Web Service in the GAS
• Step 5: Configure apache for HTTPS
• Step 6: Configure apache for HTTP basic authentication

Step 1: Create the root certificate authority

• Create the root certificate authority serial file:

$ echo 01 > MyCompanyCA.srl

• Create the Root Authority's Certificate Signing Request and private key:

$ openssl req -new -out MyCompanyCA.csr -keyout MyCompanyCA.pem

• Create the Root Certificate Authority for a period of validity of 2 years:

$ openssl x509 -trustout -in MyCompanyCA.csr -out MyCompanyCA.crt
 -req -signkey MyCompanyCA.pem -days 730

Note: The private key file (MyCompanyCA.pem) of a RootCertificate Authority must be handled
with care. This file is responsible for the validity of all other certificates it has signed. As a result, it
must not be accessible by other users.

Step 2: Create the server's certificate and private key

• Create the server's serial file:

$ echo 01 > MyServer.srl

• Create the server's Certificate Signing Request and private key:

$ openssl req -new -out MyServer.csr

Note: By default, openssl outputs the private key in the privkey.pem file.

Web services | 2508

• Remove the password from the private key:

$ openssl rsa -in privkey.pem -out MyServer.pem

Note: The key is also renamed in MyServer.pem.

• Create the server's Certificate trusted by the Root Certificate Authority:

$ openssl x509 -in MyServer.csr -out MyServer.crt
 -req -signkey MyServer.pem -CA MyCompanyCA.crt -CAkey MyCompanyCA.pem

Note: The purpose of the server's Certificate is to identify the server to any client that connects to
it. Therefore, the subject of that server's certificate must match the hostname of the server as
it is known on the network; otherwise the client will be suspicious about the server's identity and
stop the communication. For instance, if the URL of the server is https:///www.MyServer.com/cgi-
bin/fglccgi.exe/ws/r/MyWebService, the subject must be www.MyServer.com.

Step 3: Create the server's certificate authority list

• Create the server's Certificate Authority List:

$ openssl x509 -in MyCompanyCA.crt -text >> ServerCAList.pem

Note: As the server trusts only the Root Certificate Authority, the list contains only that one
certificate authority; all other certificates that were trusted by the Root Certificate Authority will also
be considered as trusted by the server.

Step 4: Register the server as a web service in the GAS

As the Web Server is in charge of the complete HTTPS protocol with all the clients, there is no additional
GAS configuration needed to add security. Simply register the BDL server to the list of Web Services of the
GAS. For more information, refer to the Genero Application Server User Guide.

For more details, see Web services server program deployment on page 2506.

Step 5: Configure apache for HTTPS

You must configure Apache to support HTTPS by adding the required modules. Please refer to the Apache
Web server documentation for more information.

• For the Apache 1.3 manual, go to http://httpd.apache.org/docs/1.3.
• For the Apache 2.0 manual, go to http://httpd.apache.org/docs/2.0/.

Once the Apache Web server supports HTTPS, you must change or add the following directives to the
apache configuration file:

• Set the Apache Web server Certificate Authority List directive created in Step 4 :

SSLCACertificateFile D:/Apache-Server/conf/ssl/ServerCAList.pem
• Set the Apache Web server Certificate and associated private key directives created in Step 2 :

SSLCertificateFile D:/Apache-Server/conf/ssl/MyServer.crt

SSLCertificateKeyFile D:/Apache-Server/conf/ssl/MyServer.pem
• Require the Apache Web server to verify the validity of all client certificates:

SSLVerifyClient require

Note: The Apache Web server must be started on a machine where the host is the same asthe
one defined in the subject of the server's certificate (www.MyServer.com in our case).

http://httpd.apache.org/docs/1.3/
http://httpd.apache.org/docs/2.0

Web services | 2509

Step 6 : Configure apache for HTTP basic authentication

You must configure Apache to support HTTP basic authentication by adding the required modules.

Please refer to the Apache Web server documentation for more information.

• For the Apache 1.3 manual, go to http://httpd.apache.org/docs/1.3.
• For the Apache 2.0 manual, go to http://httpd.apache.org/docs/2.0/.

Once the Apache Web server supports HTTP basic authentication, you must:

1. Add an user to the Apache Web server basic authentication file with the same login and password as
defined for the client.

Apache provides the tool htpasswd that you can use to create the file and add the user. To add the
user mylogin with the password mypassword to a new file called myusers:

$ htpasswd -c myusers mylogin mypassword

Note: To add additional users, remove the option '-c'.

2. Add an Apache Web server location directive that enables you to group several directives for one URL.
(In our case, the URL is /cgi-bin/fglccgi.exe/ws/r/MyWebService).

The following example (based on Apache 2.0) defines the HTTP authentication type (Basic), with a user
file (user-basic) containing the login and password of those who are allowed to access the service.

 <Location /cgi-bin/fglccgi.exe/ws/r/MyWebService>
 AllowOverride None
 Order allow,deny
 Allow from all
 #
 # Basic HTTP authenticate configuration
 #
 AuthName "Top secret"
 AuthType Basic
 AuthUserFile "D:/Apache-Server/conf/authenticate/myusers"
 Require valid-user # Means any user in the password file
</Location>

For more information about Apache Web server directives, refer to the Apache Web Server manual.

Reference
These topics are the reference guides for Genero Web Services.

• Web services configuration on page 2509
• Attributes to customize XML serialization on page 2517
• Error handling in GWS calls (STATUS) on page 2546
• Interruption handling in GWS calls (INT_FLAG) on page 2546
• Server API functions - version 1.3 only on page 2546
• Configuration API functions - version 1.3 only on page 2552
• Using fglwsdl to generate code from WSDL or XSD schemas on page 2555

Web services configuration
The Genero Web Services secured communication and the support of XML-Security is based on the
OpenSSL engine. It allows a BDL Web Services client, or a BDL application using the com or xml API, to

http://httpd.apache.org/docs/1.3/
http://httpd.apache.org/docs/2.0

Web services | 2510

communicate with any secured server over HTTP or HTTPS, and to handle encrypted and/or signed XML
document in BDL coming from any other application.

The configuration is defined from entries in the fglprofile file. When using BDL Web Services on server
side, it is the Web Server that is in charge of the BDL Web Services server security, not the BDL server
application itself. You must refer to your Web Server manual to secure the server part of the Web Services.

Note: This is useful for deployment purposes, as no additional code modification is necessary,
even if the location of the different servers changes, or if different cryptography keys or X509
certificates are necessary for a same application but intended to several customers with their own
needs.

FGLPROFILE entries
The fglprofile entries relating to Genero Web Services are divided between five categories: security, basic
or digest HTTP authentication, proxy configuration, server configuration, and XML cryptography.

Important: Web Services FGLPROFILE configuration options are not supported on GMI mobile
devices.

• HTTPS and password encryption on page 2510
• Basic or digest HTTP authentication on page 2512
• Proxy configuration on page 2512
• Server configuration on page 2513
• XML configuration on page 2514

HTTPS and password encryption

The following table lists the FGLPROFILE entries specifying the security certificates and algorithms the
Web Services client uses for HTTPS and password encryption. These entries specify how an application
using the low-level com or xml APIs performs secured communications.

Table 556: Security Configuration FGLPROFILE entries

Entry Description

security.global.script
Filename of a script executed each time a
password of a private key is required by the
client. The security script accepts one argument
corresponding to the filename of the private key
for which the password is required, and must
return the correct password or the client stops. For
script examples, see Windows™ Password Script
Example or UNIX™ Password Script Example. This
entry cannot be used if security.global.agent is set.

security.global.agent
Port number where the fglpass agent is waiting
for requests. It returns the password that grants
access to a private key when needed by a BDL
application. The DVM and the fglpass agent
perform authentication and exchange encrypted
data over the local host network only. Refer to
Using the password agent for details. This entry
cannot be used if security.global.script is set.

security.global.protocol The SSL protocol to use for secured
communications.

Possible values are:

• TLSv1.2
• TLSv1.1

Web services | 2511

Entry Description

• TLSv1 (version 1.0)
• SSLv3
• SSLv23 (The default, enabling all supported

protocols)

security.global.ca
Filename of the Certificate Authority list, with the
concatenated PEM-encoded third party X.509
certificates considered as trusted, and in order of
preference.

security.global.windowsca
If set to true, build the Certificate Authority
list from the Certificate Authorities stored in the
Windows™ key store. This entry is only valid on
Windows™ systems where security.global.ca is not
set.

security.global.cipher
The list of encryption, digest, and key exchange
algorithms the client is allowed to use during a
secured communication. If this entry is omitted, all
algorithms are supported. For more details about
cipher, refer to www.openssl.org.

security.global.certificate
Filename of the PEM-encoded client X.509
certificate to be used for any secured connection if
not redefined in a specific server configuration.

security.global.privatekey
Filename of the PEM-encoded private key
associated to the above X509 certificate and to be
used for any secured connection if not redefined in
a specific server configuration.

security.global.keysubject
The subject string of a X.509 certificate and its
associated private key registered in the Windows™

key store to be used for any secured connection if
not redefined in a specific server configuration. This
entry is valid only on Windows™ systems.

security.ident.certificate
Filename of the PEM-encoded client X.509
certificate.

security.ident.privatekey
Filename of the PEM-encoded private key
associated to the above X509 certificate.

security.ident.keysubject
The subject string of a X.509 certificate and its
associated private key registered in the Windows™

key store. This entry is valid only on Windows™

systems.

Note:

1. The ident keyword must be replaced with your own identifier, and all necessary entries must be
set. See FGLPROFILE setting.

2. If an entry is defined more that once, only the last occurrence is taken into account.

http://www.openssl.org

Web services | 2512

Basic or digest HTTP authentication

The following table lists the FGLPROFILE entries that specify the login and password to use in the case of
HTTP authentication to a server or a proxy. The entries also specify the login and password to use in an
application using the low-level com or xml API.

Table 557: HTTP basic or digest Authentication FGLPROFILE entries

Entry Description

authenticate.ident.login
The login identifying the client to a server during
HTTP Authentication.

authenticate.ident.password
The password validating the login of a client to a
server during HTTP Authentication. As passwords
should never be in clear text, it is recommended
that you encrypt them with the fglpass tool. For
more information, see FGLPROFILE password
encryption.

authenticate.ident.realm
The string identifying the server to the client
during HTTP Authentication. If the string does
not match the server's string, authentication fails.
This parameter is optional, but it is recommended
that you check the server identity, especially if the
server's location is suspicious.

authenticate.ident.scheme
One of the following strings representing the
different HTTP Authentication mechanisms.

• Anonymous (default value) - The client does
not know anything about the server, and
performs a first request to retrieve the server
authentication mechanism. It then uses the
login and password to authenticate to the
server using the Basic or Digest mechanism,
depending on the server returned value.

• Basic - The client authenticates itself to the
server at first request, by sending the login and
the password using the Basic authentication
mechanism.

• Digest - The client performs a first request
without any login and password, to retrieve the
server information before authenticating itself to
the server in a second request using the Digest
mechanism.

Note:

1. The ident keyword must be replaced with your own identifier, and all necessary entries must be
set. See FGLPROFILE setting.

2. If an entry is defined more that once, only the last occurrence is taken into account.

Proxy configuration

The following table lists the FGLPROFILE entries that specify how the Web Services client communicates
with a proxy. The entries specify the way an application using the low-level com or xml API communicates
with a proxy.

Web services | 2513

Table 558: Proxy Configuration FGLPROFILE entries

Entry Description

proxy.http.location
Location of the HTTP proxy defined as host:port or
ip:port. If the port is omitted, the port 80 is used.

proxy.http.list
The list of beginning host names, separated with
semicolons, for which the Web Services client does
not go via the HTTP proxy.

proxy.http.authenticate
The HTTP Authenticate identifier the Web Services
client uses to authenticate itself to the HTTP proxy.

proxy.https.location
Location of the HTTPS proxy defined as host:port
or ip:port. If the port is omitted, the port 443 is
used

proxy.https.list
The list of beginning host names, separated with
semicolons, for which the Web Services client does
not go via this HTTPS proxy.

proxy.https.authenticate
The HTTP Authenticate identifier the Web Services
client uses to authenticate itself to the HTTPS
proxy.

Note: If an entry is defined more that once, only the last occurrence is taken into account.

IPv6 configuration

The following table lists the FGLPROFILE entries that specify how the Web Services client uses the IPv6
network protocol.

Table 559: IPv4 and IPv6 FGLPROFILE entries

Entry Description

ip.global.version
Defines the IP version to be used. Possible values
are "4" (IPv4) or "6" (IPv6). By default, when
this entry is not defined, the WS library will try to
use IPv6 and fallback to IPv4, according to the
operating system.

ip.global.v6.interface.name

Important: This entry is not supported on
Microsoft™ Windows™ platforms.

Defines the name of the network interface to be
used for IPv6 link-local addresses. For example,
this entry can get values such as "eth0", "en0",
"ethernet_5".

ip.global.v6.interface.id
Defines the id of the network interface to be used
for IPv6 link-local addresses. For example, this
entry can get values such as "1", "2", "11".

Note: If an entry is defined more that once, only the last occurrence is taken into account.

Server configuration

The following table lists the FGLPROFILE entries that specify the correct way a Web Services client
connects to an end point (usually a server). Notice that the entries specify also the way an application
using the low-level com or xml API connects to an end point.

Web services | 2514

Table 560: Server Configuration FGLPROFILE entries

Entry Description

ws.ident.url
The endpoint URL of the server.

By using a wildcard in the URL, you can create
a URL base that applies to multiple server
applications. URLs that have the same URL
base can share server configuration (such as
authentication and HTTPS). See Wildcards in the
URL base on page 2517.

ws.ident.cipher
The list of encryption, digest and key exchange
algorithms the client is allowed to use during a
secured communication to that server. It overwrites
the global definition.

ws.ident.verifyserver
If set to true, the client performs a strict server
identity validation. If not fulfilled, it stops the
communication; otherwise no server identity
verification is performed. The default value is true.

ws.ident.security
The security identifier the client uses to perform an
HTTPS communication to the server.

ws.ident.authenticate
The HTTP authenticate identifier the client uses to
authenticate itself to the server.

Note:

1. The ident keyword must be replaced with your own identifier. All necessary entries, depending
on the remote server's configuration, must be set. See FGLPROFILE setting.

2. You can use the unique identifier in the .4gl code instead of the server URL, with the alias://
prefix. For example, alias://ident.

3. If an entry is defined more that once, only the last occurrence is taken into account.

XML configuration

The following table lists the FGLPROFILE entries that control XML to Genero values conversion, and XML
cryptography key or certificate mapping.

Table 561: XML configuration FGLPROFILE entries

Entry Description

xml.keystore.calist
The list of PEM-encoded third party X.509
certificates, separated with semicolons, of the
Certificate Authority considered as trusted, in order
of preference.

xml.keystore.x509list
The list of PEM-encoded third party X.509
certificates, separated with semicolons, to be
used to find out the correct X.509 certificate when

Web services | 2515

Entry Description

getting an incomplete one in a XML signature or an
encrypted XML document.

xml.ident.key
The filename of a cryptography key. For instance
RSA.pem, DSA.der or HMAC.bin.

xml.ident.x509
The filename of a cryptography x509 certificate. For
instance Cert.crt.

xml.serializer.supportEmptyStrings Controls empty string XML nodes conversion to
Genero STRING values.

The default is false, empty XML tags are
converted to NULL.

If set to true, an empty XML tag is converted to
an empty STRING value. As result, in Genero, the
LENGTH() function will return zero and the IS
NULL comparison operator will evaluate to FALSE.

Note that this entry only works for the STRING data
type, and if the tag is not present, the STRING is set
to NULL.

xml.signature.prefix = { "prefix" |
 "<none>" }

Defines the prefix for an XML Signature.

Use "<none>" to specify no prefix.

By default, the XML Signature prefix is "dsig".

xml.encryption.prefix = { "prefix" |
 "<none>" }

Defines the prefix for an XML Encrypted data.

Use "<none>" to specify no prefix.

By default, the XML Encrypted data prefix is
"xenc".

Note:

1. The ident keyword must be replaced with your own identifier. See FGLPROFILE sample 2.
2. You can use the unique identifier in the .4gl code instead of the filename.
3. If an entry is defined more that once, only the last occurrence is taken into account.

Examples
Windows™ password script example

@echo off
REM -- Windows password script
IF "%1" == "Cert/MyPrivateKeyA.pem" GOTO KeyA
IF "%1" == "Cert/MyPrivateKeyB.pem" GOTO KeyB
GOTO end
:KeyA
ECHO PasswordA
GOTO end
:KeyB
ECHO PasswordB
GOTO end
:end
GOTO :EOF

Web services | 2516

UNIX™ password script example

UNIX password script
if ["$1" == "Cert/MyPrivateKeyA.pem"]
 then
 echo PasswordA
fi
if ["$1" == "Cert/MyPrivateKeyB.pem"]
 then
 echo PasswordB
fi

FGLPROFILE sample

The following is an FGLPROFILE sample, configured for a connection to a HTTPS server via a proxy, and
with HTTP and Proxy Authentication.

Security configuration
security.global.script = "Cert/password.sh"
security.global.ca = "Cert/CAList.pem"
security.global.cipher = "HIGH" # Use only HIGH encryption ciphers
security.mykey.certificate = "Cert/MyCertificateA.crt"
security.mykey.privatekey = "Cert/MyPrivateKeyA.pem"

Proxy HTTP Authentication
authenticate.proxyauth.login = "myapplication"
authenticate.proxyauth.password = "mypswd"
authenticate.proxyauth.scheme = "Basic"

HTTPS Proxy configuration
proxy.https.location = "10.0.0.170"
proxy.https.list = "www.mycompany.com;www.mycompany.com"
proxy.https.authenticate = "proxyauth"

Server HTTP Authentication
authenticate.serverauth.login = "mylogin"
authenticate.serverauth.password = "password"

Server configuration
ws.myserver.url = "https://www.MyMachine.com/cgi-bin/fglccgi.exe/ws/r/
MyWebService"
ws.myserver.authenticate = "serverauth"
ws.myserver.security = "mykey"

FGLPROFILE sample 2

The following is an FGLPROFILE sample, configured for XML cryptography and using the fglpass agent to
get the private key passwords.

Security configuration
security.global.agent = "4444"

Crypto configuration
xml.keystore.calist = "RSARootCertificate.crt;DSARootCertificate.crt"
xml.keystore.x509list = "RSA1024Certificate.crt;DSA1024Certificate.crt"
xml.id1.x509 = "RSA1024Certificate.crt"
xml.id2.x509 = "DSA1024Certificate.crt"
xml.id3.key = "RSA1024Key.pem"
xml.id4.key = "DSA1024Key.der"
xml.id5.key = "HMAC.bin"

Web services | 2517

Wildcards in the URL base
By using a wildcard in the URL, you can create a URL base that applies to multiple server applications.
URLs that have the same URL base can share server configuration (such as authentication and HTTPS).

To create a URL base, add a wildcard (/*) to the end of a URL in the fglprofile entry. A server application
that starts with this URL (and that is not explicitly defined elsewhere) shares the configuration with other
applications that also start with the same base URL. If an application has its own server configuration
explicitly defined, it uses its specific entries instead of those defined by the wildcard configuration.

Consider this excerpt from a hypothetical fglprofile:

authenticate.auth.login = "xxx"
authenticate.auth.password = "yyy"
authenticate.auth.scheme = "Basic"

security.sec.certificate = "client.crt"
security.sec.privatekey = "client.pem"

ws.myapp.url = "http://mycompany.com/sample/*"
ws.myapp.authenticate = "auth"
ws.myapp.security = "sec"

ws.thirdapp.url = "http://mycompany.com/sample/application3"
ws.thirdapp.authenticate = "auth3"

authenticate.auth3.login = "aaa"
authenticate.auth3.password = "bbb"
authenticate.auth3.scheme = "Basic"

Based on this example:

• Requests to "http://mycompany.com/sample/application1" and "http://mycompany.com/
sample/demos/shoppingcart" use the same authentication and HTTPS configuration.

• A request to "http://mycompany.com/sample/application3" uses its specific authentication
"auth3". No security configuration is defined for this URL, nor does it fall back on the shared security
configuration defined for the base URL.

Note: This applies to:

• com.HTTPRequest.Create on page 2057com.HTTPRequest.Create()
• xml.DomDocument.load on page 2123xml.DomDocument.load()
• xml.DomDocument.save on page 2126xml.DomDocument.save()
• xml.StaxReader methods
• xml.StaxWriter methods
• com.TCPRequest.Create on page 2087

Attributes to customize XML serialization

See The Serializer class on page 2202 for information on setting serialization options when mapping BDL
and XML data.

BDL to/from XML type mappings

Starting with Genero 2.0, you can add optional attributes to the definition of program variables to be used
for XML serialization. These attributes can be used to map a BDL data type used in the input or output
message of a Genero Web Service application to a specific XML data type, rather than using the default.

For example, if an XML Schema boolean data type is required for an application, and the corresponding
BDL type is a SMALLINT, you can use an attribute to map the BDL SMALLINT variable to the XML
boolean.

Web services | 2518

The following example uses the XSDBoolean attribute to map a BDL SMALLINT variable to an XML
Schema boolean type, and assigns an uppercase name as the XMLName attribute:

GLOBALS
DEFINE invoice_out RECORD
 ok SMALLINT ATTRIBUTES(XSDBoolean,XMLName="OK")
END RECORD

END GLOBALS

If you assign your own XMLName attributes, be sure to respect the conventions when using the RPC
Service Style.

See the Tutorial: Writing a GWS Server application for additional information about input and output
messages.

Default BDL/XML mapping

By default, Genero Web Services maps BDL variables in the input or output messages of a WS application
to their corresponding XML data types, enabling values to be passed between applications and Web
Services. The XML data types conform to the standard XML Schema Definition (XSD):

Table 562: Default XML Mapping

data type of BDL variable Default XML data type

BYTE xsd:base64binary

CHAR xsd:string

DATE xds.date

DATETIME YEAR TO FRACTION(1-5) xsd:dateTime

DATETIME YEAR TO SECOND xsd:dateTime

DATETIME YEAR TO HOUR xsd:dateTime

DATETIME YEAR TO MINUTE xsd:dateTime

DATETIME YEAR TO YEAR xsd:gYear

DATETIME YEAR TO MONTH xsd:gYearMonth

DATETIME YEAR TO DAY xsd:date

DATETIME MONTH TO MONTH xsd:gMonth

DATETIME MONTH TO DAY xsd:gMonthDay

DATETIME DAY TO DAY xsd:gDay

DATETIME HOUR TO HOUR xsd:time

DATETIME HOUR TO MINUTE xsd:time

DATETIME HOUR TO SECOND xsd:time

DATETIME HOUR TO FRACTION(1-5) xsd:time

DECIMAL xsd:decimal

FLOAT xsd:double

INTEGER xsd:int

Web services | 2519

data type of BDL variable Default XML data type

INTERVAL xsd:duration

SMALLFLOAT xsd:float

SMALLINT xsd:short

STRING xsd:string

TEXT xsd:string

VARCHAR xsd:string

TINYINT xsd:byte

BIGINT xsd:long

BOOLEAN xsd:boolean

In addition, the Web Service Style that you use determines what default XMLName attributes are assigned
to variables.

Type mapping attributes

The attributes listed in this table cannot have values.

Table 563: Mapping between simple BDL and XML data types

Attribute Definition

XSDAnySimpleType Map BDL STRING or VARCHAR to XML Schema
simpleType.

XSDAnyType Map BDL STRING or VARCHAR to XML Schema
anyType.

XSDAnyURI Map BDL STRING or VARCHAR to XML Schema
anyURI.

XSDBase64binary Map BDL BYTE to the XML Schema base64binary.

XSDBoolean Map BDL BOOLEAN, SMALLINT or INTEGER to
XML Schema boolean.

XSDByte Map BDL TINYINT, SMALLINT or BIGINT to XML
Schema byte.

XSDDate Map BDL DATE or DATETIME to XML Schema
date.

XSDDateTime Map BDL DATETIME to XML Schema dateTime.

XSDDecimal Map BDL DECIMAL to XML Schema decimal.

XSDDouble Map BDL FLOAT to XML Schema double.

XSDDuration Map BDL INTERVAL to XML Schema duration.

XSDEntities Map BDL STRING or VARCHAR to XML Schema
entities.

XSDEntity Map BDL STRING or VARCHAR to XML Schema
entity.

XSDFloat Map BDL SMALLFLOAT to XML Schema float.

Web services | 2520

Attribute Definition

XSDGday Map BDL DATETIME to XML Schema gDay.

XSDGMonth Map BDL DATETIME to XML Schema gMonth.

XSDGMonthDay Map BDL DATETIME to XML Schema gMonthDay.

XSDGYear Map BDL DATETIME to XML Schema gYear.

XSDGYearMonth Map BDL DATETIME to XML Schema gYearMonth.

XSDHexBinary Map BDL BYTE to XML Schema hexBinary.

XSDID Map BDL STRING or VARCHAR to XML Schema
id.

XSDIDREF Map BDL STRING or VARCHAR to XML Schema
idRef.

XSDIDREFS Map BDL STRING or VARCHAR to XML Schema
idRefs.

XSDInt Map BDL INTEGER or BIGINT to XML Schema int.

XSDInteger Map BDL DECIMAL to XML Schema integer.

XSDLanguage Map BDL STRING or VARCHAR to XML Schema
language.

XSDLong Map BDL BIGINT or DECIMAL to XML Schema
long.

XSDNCName Map BDL STRING or VARCHAR to XML Schema
NCName.

XSDName Map BDL STRING or VARCHAR to XML Schema
Name.

XSDNegativeInteger Map BDL DECIMAL to XML Schema
negativeInteger.

XSDNMTOKEN Map BDL STRING or VARCHAR to XML Schema
NMToken.

XSDNMTOKENS Map BDL STRING or VARCHAR to XML Schema
NMTokens.

XSDNonNegativeInteger Map BDL DECIMAL to XML Schema
nonNegativeInteger.

XSDNonPositiveInteger Map BDL DECIMAL to XML Schema
nonPositiveInteger.

XSDNormalizedString Map BDL STRING or VARCHAR to XML Schema
normalizedString.

XSDNotation Not supported.

XSDPositiveInteger Map BDL DECIMAL to XML Schema
positiveInteger.

XSDQName Map BDL STRING or VARCHAR to XML Schema
QName.

Web services | 2521

Attribute Definition

XSDShort Map BDL SMALLINT or BIGINT to XML Schema
short.

XSDString Map BDL STRING , Char, Text or VarChar to XML
Schema string.

XSDTime Map BDL DATETIME to XML Schema time.

XSDToken Map BDL STRING or VARCHAR to XML Schema
token.

XSDUnsignedByte Map BDL SMALLINT or BIGINT to XML Schema
unsignedByte.

XSDUnsignedInt Map BDL BIGINT or DECIMAL to XML Schema
unsignedInt.

XSDUnsignedLong Map BDL DECIMAL to XML Schema
unsignedLong.

XSDUnsignedShort Map BDL INTEGER or BIGINT to XML Schema
unsignedShort.

XSDAnySimpleType

Map BDL STRING or VARCHAR to XML Schema anySimpleType.

XSDAnyType

Map BDL STRING or VARCHAR to XML Schema anyType.

XSDAnyURI

Map BDL STRING or VARCHAR to XML Schema anyURI.

XSDBase64binary

Map BDL BYTE to XML Schema base64binary.

Example

DEFINE myVar RECORD ATTRIBUTES(XMLName="Root")
 val1 BYTE ATTRIBUTES(XSDBase64binary,XMLName="Val")
END RECORD

<Root>
 <Val>F0FFC8D27FF001547FC219E1FFF009F0FFC8D27FF001547D</Val>
</Root>

XSDBoolean

Map BDL BOOLEAN, SMALLINT or INTEGER to XML Schema boolean.

Example

DEFINE myVar RECORD ATTRIBUTES(XMLName="Root")
 val1 INTEGER ATTRIBUTES(XSDBoolean,XMLName="Val")
END RECORD

<Root>
 <Val>true</Val>

http://www.w3.org/TR/xmlschema-2/#dt-anySimpleType
http://www.w3.org/TR/2001/REC-xmlschema-1-20010502/#key-urType
http://www.w3.org/TR/xmlschema-2/#anyURI
http://www.w3.org/TR/xmlschema-2/#base64binary
http://www.w3.org/TR/xmlschema-2/#boolean

Web services | 2522

</Root>

XSDByte

Map BDL TINYINT, SMALLINT or BIGINT to XML Schema byte.

Example

DEFINE myVar RECORD ATTRIBUTES(XMLName="Root")
 val1 SMALLINT ATTRIBUTES(XSDByte,XMLName="Val")
END RECORD

<Root>
 <Val>-126</Val>
</Root>

XSDDate

Map BDL DATE or DATETIME to XML Schema date.

Example

DEFINE myVar RECORD ATTRIBUTES(XMLName="Root")
 val1 DATE ATTRIBUTES(XSDDate,XMLName="Val")
END RECORD

<Root>
 <Val>2006-06-29+01:00</Val>
</Root>

XSDDateTime

Map BDL DATETIME to XML Schema dateTime.

Example

DEFINE myVar RECORD ATTRIBUTES(XMLName="Root")
 val1 DATETIME ATTRIBUTES(XSDDateTime,XMLName="Val")
END RECORD

<Root>
 <Val>2006-06-29T09:35:26.13584+01:00</Val>
</Root>

XSDDecimal

Map BDL DECIMAL to XML Schema decimal.

Example

DEFINE myVar RECORD ATTRIBUTES(XMLName="Root")
 val1 DECIMAL(5,3) ATTRIBUTES(XSDDecimal,XMLName="Val")
END RECORD

<Root>
 <Val>12.345</Val>

http://www.w3.org/TR/xmlschema-2/#byte
http://www.w3.org/TR/xmlschema-2/#date
http://www.w3.org/TR/xmlschema-2/#dateTime
http://www.w3.org/TR/xmlschema-2/#decimal

Web services | 2523

</Root>

XSDDouble

Map BDL FLOAT to XML Schema double.

Example

DEFINE myVar RECORD ATTRIBUTES(XMLName="Root")
 val1 FLOAT ATTRIBUTES(XSDDouble,XMLName="Val")
END RECORD

<Root>
 <Val>12.78e-2</Val>
</Root>

XSDDuration

Map BDL INTERVAL to XML Schema duration.

Example

DEFINE myVar RECORD ATTRIBUTES(XMLName="Root")
 val1 INTERVAL DAY TO SECOND
 ATTRIBUTES(XSDDuration,XMLName="Val")
END RECORD

<Root>
 <Val>P3DT10H30M45S</Val>
</Root>

XSDEntities

Map BDL STRING or VARCHAR to XML Schema ENTITIES.

XSDEntity

Map BDL STRING or VARCHAR to XML Schema ENTITY.

XSDFloat

Map BDL SMALLFLOAT to XML Schema float.

Example

DEFINE myVar RECORD ATTRIBUTES(XMLName="Root")
 val1 SMALLFLOAT ATTRIBUTES(XSDFloat,XMLName="Val")
END RECORD

<Root>
 <Val>126.435</Val>
</Root>

XSDGDay

Map BDL DATETIME to XML Schema gDay.

http://www.w3.org/TR/xmlschema-2/#double
http://www.w3.org/TR/xmlschema-2/#duration
http://www.w3.org/TR/xmlschema-2/#entities
http://www.w3.org/TR/xmlschema-2/#entity
http://www.w3.org/TR/xmlschema-2/#float
http://www.w3.org/TR/xmlschema-2/#gDay

Web services | 2524

Example

DEFINE myVar RECORD ATTRIBUTES(XMLName="Root")
 val1 DATETIME DAY TO DAY ATTRIBUTES(XSDGDay,XMLName="Val")
END RECORD

<Root>
 <Val>---25</Val>
</Root>

XSDGMonth

Map BDL DATETIME to XML Schema gMonth.

Example

DEFINE myVar RECORD ATTRIBUTES(XMLName="Root")
 val1 DATETIME MONTH TO MONTH
 ATTRIBUTES(XSDGMonth,XMLName="Val")
END RECORD

<Root>
 <Val>--12</Val>
</Root>

XSDGMonthDay

Map BDL DATETIME to XML Schema gMonthDay.

Example

DEFINE myVar RECORD ATTRIBUTES(XMLName="Root")
 val1 DATETIME MONTH TO DAY
 ATTRIBUTES(XSDGMonthDay,XMLName="Val")
END RECORD

<Root>
 <Val>--12-31</Val>
</Root>

XSDGYear

Map BDL DATETIME to XML Schema gYear.

Example

DEFINE myVar RECORD ATTRIBUTES(XMLName="Root")
 val1 DATETIME YEAR TO YEAR ATTRIBUTES(XSDGYear,XMLName="Val")
END RECORD

<Root>
 <Val>2006</Val>
</Root>

XSDGYearMonth

Map BDL DATETIME to XML Schema gYearMonth.

http://www.w3.org/TR/xmlschema-2/#gMonth
http://www.w3.org/TR/xmlschema-2/#gMonthDay
http://www.w3.org/TR/xmlschema-2/#gYear
http://www.w3.org/TR/xmlschema-2/#gYearMonth

Web services | 2525

Example

DEFINE myVar RECORD ATTRIBUTES(XMLName="Root")
 val1 DATETIME YEAR TO MONTH
 ATTRIBUTES(XSDGYearMonth,XMLName="Val")
END RECORD

<Root>
 <Val>2006-06</Val>
</Root>

XSDHexBinary

Map BDL BYTE to XML Schema hexBinary.

Example

DEFINE myVar RECORD ATTRIBUTES(XMLName="Root")
 val1 BYTE ATTRIBUTES(XSDHexBinary,XMLName="Val")
END RECORD

<Root>
 <Val>0FB6</Val>
</Root>

XSDID

Map BDL STRING or VARCHAR to XML Schema ID.

XSDIDREF

Map BDL STRING or VARCHAR to XML Schema IDREF.

XSDIDREFS

Map BDL STRING or VARCHAR to XML Schema IDREFS.

XSDInt

Map BDL INTEGER or BIGINT to XML Schema int.

Example

DEFINE myVar RECORD ATTRIBUTES(XMLName="Root")
 val1 INTEGER ATTRIBUTES(XSDInt,XMLName="Val")
END RECORD

<Root>
 <Val>-1258</Val>
</Root>

XSDInteger

Map BDL DECIMAL to XML Schema integer.

Example

DEFINE myVar RECORD ATTRIBUTES(XMLName="Root")
 val1 DECIMAL(32,0) ATTRIBUTES(XSDInteger,XMLName="Val")

http://www.w3.org/TR/xmlschema-2/#hexBinary
http://www.w3.org/TR/xmlschema-2/#id
http://www.w3.org/TR/xmlschema-2/#idRef
http://www.w3.org/TR/xmlschema-2/#idRefs
http://www.w3.org/TR/xmlschema-2/#int
http://www.w3.org/TR/xmlschema-2/#integer

Web services | 2526

END RECORD

<Root>
 <Val>12678</Val>
</Root>

XSDLanguage

Map BDL STRING or VARCHAR to XML Schema language.

XSDLong

Map BDL BIGINT or DECIMAL to XML Schema long.

Example

DEFINE myVar RECORD ATTRIBUTES(XMLName="Root")
 val1 DECIMAL(19,0) ATTRIBUTES(XSDLong,XMLName="Val")
END RECORD

<Root>
 <Val>1267488</Val>
</Root>

XSDNCName

Map BDL STRING or VARCHAR to XML Schema NCName.

XSDName

Map BDL STRING or VARCHAR to XML Schema Name.

XSDNegativeInteger

Map BDL DECIMAL to XML Schema negativeInteger.

Example

DEFINE myVar RECORD ATTRIBUTES(XMLName="Root")
 val1 DECIMAL(32,0)
 ATTRIBUTES(XSDNegativeInteger,XMLName="Val")
END RECORD

<Root>
 <Val>-4828</Val>
</Root>

XSDNMTOKEN

Map BDL STRING or VARCHAR to XML Schema NMToken.

XSDNMTOKENS

Map BDL STRING or VARCHAR to XML Schema NMTokens.

XSDNonNegativeInteger

Map BDL DECIMAL to XML Schema nonNegativeInteger.

Example

DEFINE myVar RECORD ATTRIBUTES(XMLName="Root")

http://www.w3.org/TR/xmlschema-2/#language
http://www.w3.org/TR/xmlschema-2/#long
http://www.w3.org/TR/xmlschema-2/#NCName
http://www.w3.org/TR/xmlschema-2/#Name
http://www.w3.org/TR/xmlschema-2/#negativeInteger
http://www.w3.org/TR/xmlschema-2/#NMToken
http://www.w3.org/TR/xmlschema-2/#NMTokens
http://www.w3.org/TR/xmlschema-2/#nonNegativeInteger

Web services | 2527

 val1 DECIMAL(32,0)
 ATTRIBUTES(XSDNonNegativeInteger,XMLName="Val")
END RECORD

<Root>
 <Val>1589</Val>
</Root>

XSDNonPositiveInteger

Map BDL DECIMAL to XML Schema nonPositiveInteger.

Example

DEFINE myVar RECORD ATTRIBUTES(XMLName="Root")
 val1 DECIMAL(32,0)
 ATTRIBUTES(XSDNonPositiveInteger,XMLName="Val")
END RECORD

<Root>
 <Val>-8574</Val>
</Root>

XSDNormalizedString

Map BDL STRING or VARCHAR to XML Schema normalizedString.

XSDnotation

Not supported.

XSDPositiveInteger

Map BDL DECIMAL to XML Schema positiveInteger.

Example

DEFINE myVar RECORD ATTRIBUTES(XMLName="Root")
 val1 DECIMAL(32,0)
 ATTRIBUTES(XSDPositiveInteger,XMLName="Val")
END RECORD

<Root>
 <Val>+41893</Val>
</Root>

XSDQName

Map BDL STRING or VARCHAR to XML Schema QName.

XSDShort

Map BDL SMALLINT or BIGINT to XML Schema short.

Example

DEFINE myVar RECORD ATTRIBUTES(XMLName="Root")
 val1 SMALLINT ATTRIBUTES(XSDShort,XMLName="Val")

http://www.w3.org/TR/xmlschema-2/#nonPositiveInteger
http://www.w3.org/TR/xmlschema-2/#normalizedString
http://www.w3.org/TR/xmlschema-2/#positiveInteger
http://www.w3.org/TR/xmlschema-2/#QName
http://www.w3.org/TR/xmlschema-2/#short

Web services | 2528

END RECORD

<Root>
 <Val>12678</Val>
</Root>

XSDString

Map BDL STRING, CHAR, TEXT or VARCHAR to XML Schema string.

Example

DEFINE myVar RECORD ATTRIBUTES(XMLName="Root")
 val1 STRING ATTRIBUTES(XSDString,XMLName="Val")
END RECORD

<Root>
 <Val>Hello world, how are you ?</Val>
</Root>

XSDTime

Map BDL DATETIME to XML Schema time.

Example

DEFINE myVar RECORD ATTRIBUTES(XMLName="Root")
 val1 DATETIME ATTRIBUTES(XSDTime,XMLName="Val")
END RECORD

<Root>
 <Val>23:16:03.589+01:00</Val>
</Root>

XSDToken

Map BDL STRING or VARCHAR to XML Schema token.

XSDUnsignedByte

Map BDL SMALLINT or BIGINT to XML Schema unsignedByte.

Example

DEFINE myVar RECORD ATTRIBUTES(XMLName="Root")
 val1 SMALLINT ATTRIBUTES(XSDUnsignedByte,XMLName="Val")
END RECORD

<Root>
 <Val>254</Val>
</Root>

XSDUnsignedInt

Map BDL BIGINT or DECIMAL to XML Schema unsignedInt.

http://www.w3.org/TR/xmlschema-2/#string
http://www.w3.org/TR/xmlschema-2/#time
http://www.w3.org/TR/xmlschema-2/#token
http://www.w3.org/TR/xmlschema-2/#unsignedByte
http://www.w3.org/TR/xmlschema-2/#unsignedInt

Web services | 2529

Example

DEFINE myVar RECORD ATTRIBUTES(XMLName="Root")
 val1 DECIMAL(32,0) ATTRIBUTES(XSDUnsignedInt,XMLName="Val")
END RECORD

<Root>
 <Val>1267896754</Val>
</Root>

XSDUnsignedLong

Map BDL DECIMAL to XML Schema unsignedLong.

Example

DEFINE myVar RECORD ATTRIBUTES(XMLName="Root")
 val1 DECIMAL(32,0) ATTRIBUTES(XSDUnsignedLong,XMLName="Val")
END RECORD

<Root>
 <Val>12678967543233</Val>
</Root>

XSDUnsignedShort

Map BDL INTEGER or BIGINT to XML Schema unsignedShort.

Example

DEFINE myVar RECORD ATTRIBUTES(XMLName="Root")
 val1 INTEGER ATTRIBUTES(XSDUnsignedShort,XMLName="Val")
END RECORD

<Root>
 <Val>65535</Val>
</Root>

XML facet constraint attributes

The following attributes are facet constraints depending on the XSD data type used on a simple BDL
variable to restrict the allowed value-space.

(Notice that some attributes are allowed only on some XSD data types).

Several facet constraints can be set on the same data type, and a mandatory values is expected (for
example, XSDMinLength="8".)

Table 564: Facet constraints between simple BDL and XML data types

Attribute Definition

XSDLength Define the exact number of XML character or bytes.

XSDMinLength Define the minimum number of XML character or
bytes.

http://www.w3.org/TR/xmlschema-2/#unsignedLong
http://www.w3.org/TR/xmlschema-2/#unsignedShort

Web services | 2530

Attribute Definition

XSDMaxLength Define the maximum number of XML character or
bytes.

XSDEnumeration Define a list of allowed values separated by the
character |.

XSDWhiteSpace Perform a XML string manipulation before
serialization or deserialization.

XSDPattern Define the regular expression the value has to
match.

XSDMinInclusive Define the inclusive minimum value according to
the data type where it is set.

XSDMaxInclusive Define the inclusive maximum value according to
the data type where it is set.

XSDMinExclusive Define the exclusive minimum value according to
the data type where it is set.

XSDMaxExclusive Define the exclusive maximum value according to
the data type where it is set.

XSDTotalDigits Define the total number of digits.

XSDFractionDigits Define the number of digits of the fraction part.

XSDLength

Restrict the length of the data to the exact number of XML characters allowed when set on a BDL STRING,
VARCHAR, CHAR or TEXT, or the number of bytes allowed when set on a BDL BYTE.

Note:

1. XSDMinLength and XSDMaxLength can be used together, but XSDMaxLength value must be
greater then XSDMinLength

2. XSDMaxLength cannot be used with XSDLength

Example

DEFINE myStr STRING ATTRIBUTES(XSDString, XSDLength="12",
 XMLName="MyString")

DEFINE myByte BYTE ATTRIBUTES(XSDBase64Binary, XSDLength="8000",
 XMLName="MyPicture")

XSDMinLength

Restrict the length of the data to the minimum number of XML characters allowed when set on a BDL
STRING, VARCHAR, CHAR or TEXT, or the number of bytes allowed when set on a BDL BYTE.

Note:

1. XSDMinLength and XSDMaxLength can be used together, but XSDMaxLength value must be
greater then XSDMinLength

2. XSDMaxLength cannot be used with XSDLength

Web services | 2531

Example

DEFINE myStr STRING ATTRIBUTES(XSDString, XSDMinLength="12",
 XMLName="MyString")

DEFINE myByte BYTE ATTRIBUTES(XSDBase64Binary,
 XSDMinLength="8000",
 XMLName="MyPicture")

XSDMaxLength

Restrict the length of the data to the maximum number of XML characters allowed when set on a BDL
STRING, VARCHAR, CHAR or TEXT, or the number of bytes allowed when set on a BDL BYTE.

Note:

1. XSDMinLength and XSDMaxLength can be used together, but XSDMaxLength value must be
greater then XSDMinLength

2. XSDMaxLength cannot be used with XSDLength

Example

DEFINE myStr STRING ATTRIBUTES(XSDString, XSDMaxLength="12",
 XMLName="MyString")

DEFINE myByte BYTE ATTRIBUTES(XSDBase64Binary,
 XSDMaxLength="8000",
 XMLName="MyPicture")

XSDEnumeration

Restrict the allowed value-space to a list of values separated by the characters |.

Note:

1. To escape the separator character, simply double it like the following ||
2. This attribute can be set on any simple BDL variable excepted on XSDBoolean.

Example

DEFINE myStr STRING ATTRIBUTES(XSDString,
 XSDEnumeration="one|two|three|four", XMLName="MyString")

DEFINE myDec DECIMAL(3,1) ATTRIBUTES(XSDDecimal,
 XSDEnumeration="12.1|11.8|-24.7", XMLName="MyDecimal")

XSDWhiteSpace

Perform a XML string manipulation before serialization or deserialization according to one of the three
allowed values:

• preserve: the XML string is not modified.
• replace: the XML string is modified by replacing each \n, \t, \r by a single space.
• collapse: the XML string is modified by replacing each \n, \t, \r by a single space, then each sequence

of several spaces are replaced by one single space. Leading and trailing spaces are removed too.

Note:

Web services | 2532

1. The whiteSpace facet is always performed before any other facet constraints, or serialization or
deserialization process.

2. For any BDL variable excepted STRING, CHAR and VARCHAR, only collapse is allowed.

Example

DEFINE myStr STRING ATTRIBUTES(XSDString,
 XSDWhiteSpace="replace",
 XMLName="MyString")

DEFINE myDec DECIMAL(3,1) ATTRIBUTES(XSDDecimal,
 XSDWhiteSpace="collapse", XMLName="MyDecimal")

XSDPattern

Define a regular expression the value has to match to be serialized or deserialized without any error.

Note:

1. The regular expression is defined in the XML Schema Part 2 specification available here.
2. Backslash characters '\' in a regular expression must be escaped by duplicating it.

Example

DEFINE myStr STRING ATTRIBUTES(XSDString, XSDPattern="A.*Z",
 XMLName="MyString")

DEFINE myZipCode INTEGER ATTRIBUTES(XSDInt, XSDPattern="[0-9]
{5}",
 XMLName="MyZipCode")

DEFINE myOtherZipCode INTEGER ATTRIBUTES(XSDInt,
 XSDPattern="\\d{5}", XMLName="myOtherZipCode") # regex is \d{5}
 see note

XSDMinInclusive

Define the minimum inclusive value allowed and depending on the data type where it is set, namely all
numeric, date and time data types.

Note: The minimum value cannot exceed the implicit minimum value supported by the data type
itself or the compiler will complain. For instance, with XSDShort the minimum value is -32768.

Example

DEFINE myCode SMALLINT ATTRIBUTES(XSDShort,
 XSDMinInclusive="-1000",
 XMLName="MyCode")

DEFINE myRate DECIMAL(4,2) ATTRIBUTES(XSDDecimal,
 XSDMinInclusive="100.01",
 XMLName="MyRate")

XSDMaxInclusive

Define the maximum inclusive value allowed and depending on the data type where it is set, namely all
numeric, date and time data types.

http://www.w3.org/TR/xmlschema-2/#regexs

Web services | 2533

Note: The maximum value cannot exceed the implicit maximum value supported by the data type
itself or the compiler will complain. For instance, with XSDShort the maximum value is 32767.

Example

DEFINE myCode SMALLINT ATTRIBUTES(XSDShort,
 XSDMaxInclusive="1000",
 XMLName="MyCode")

DEFINE myRate DECIMAL(4,2) ATTRIBUTES(XSDDecimal,
 XSDMaxInclusive="299.99",
 XMLName="MyRate")

XSDMinExclusive

Define the minimum exclusive value allowed and depending on the data type where it is set, namely all
numeric, date and time data types.

Note: The minimum value cannot exceed or be equal to the implicit minimum value supported by
the data type itself or the compiler will complain. For instance, with XSDShort the minimum value is
-32768.

Example

DEFINE myCode SMALLINT ATTRIBUTES(XSDShort,
 XSDMinExclusive="-1000",
 XMLName="MyCode")

DEFINE myRate DECIMAL(4,2) ATTRIBUTES(XSDDecimal,
 XSDMinExclusive="100.01",
 XMLName="MyRate")

XSDMaxExclusive

Define the maximum exclusive value allowed and depending on the data type where it is set, namely all
numeric, date and time data types.

Note: The maximum value cannot exceed or be equal to the implicit maximum value supported by
the data type itself or the compiler will complain. For instance, with XSDShort the maximum value is
32767.

Example

DEFINE myCode SMALLINT ATTRIBUTES(XSDShort,
 XSDMaxExclusive="1000",
 XMLName="MyCode")

DEFINE myRate DECIMAL(4,2) ATTRIBUTES(XSDDecimal,
 XSDMaxExclusive="299.99",
 XMLName="MyRate")

XSDTotalDigits

Define the maximum number of digits allowed on a numeric data type, fraction part inclusive if there is one.

Note:

1. The total digits value cannot be equal or lower then 0.

Web services | 2534

2. On a BDL decimal, the total digits value cannot be lower than the precision of the BDL decimal
itself.

3. Notice that a decimal without any precision and scale value is a decimal(16), therefore the total
digits value must be equal or greater than 16.

Example

DEFINE myCode SMALLINT ATTRIBUTES(XSDShort, XSDTotalDigits="4",
 XSDMaxExclusive="1000", XMLName="MyCode")

DEFINE myRate DECIMAL(4,2) ATTRIBUTES(XSDDecimal,
 XSDTotalDigits="5",
 XSDMaxExclusive="299.99", XMLName="MyRate")

XSDFractionDigits

Define the maximum number of digits allowed on the fraction part of a numeric data type.

Note:

1. The fraction digits value set on a BDL data type without XSDDecimal set, can only be 0.
2. On a BDL DECIMAL, the fraction digits value cannot be lower than the scale of the BDL

DECIMAL itself, and must be lower than the XSDTotalDigits value if set.

Example

DEFINE myCode SMALLINT ATTRIBUTES(XSDShort,
 XSDFractionDigits="0",
 XSDMaxExclusive="1000", XMLName="MyCode")

DEFINE myRate DECIMAL(4,2) ATTRIBUTES(XSDDecimal,
 XSDTotalDigits="5",
 XSDFractionDigits="3", XSDMaxExclusive="299.99",
 XMLName="MyRate")

Customizing XML serialization

The following attributes are used to change the default serialization of BDL into XML, and vice-versa.
Some of these attributes cannot have values; for the others a value is mandatory.

The following attributes cannot have values:

Table 565: XML Serialization customizing - Attributes that cannot have values

Attribute Definition

XMLOptional Define whether the variable can be missing.

XMLElement Map a BDL simple data type to an XML Element.

XMLAttribute Map a BDL simple data type to an XML Attribute.

XMLBase Set the base type of an XML Schema
simpleContent.

XMLAll Map a BDL Record to an XML Schema all
structure.

Web services | 2535

Attribute Definition

XMLChoice Map a BDL Record to an XML Schema choice
structure.

XMLSequence Map a BDL Record to an XML Schema sequence
structure.

XMLSimpleContent Map a BDL Record to an XML Schema
simpleContent structure.

XSComplexType Map a BDL Record type definition to an XML
Schema complexType.

XMLList Map a one-dimensional array to an XML Schema
list.

XMLSelector Define which member of an XMLChoice record is
selected.

XMLAny Map a Xml.DomDocument object to a wildcard XML
element node.

XMLAnyAttribute Map a BDL one-dimensional dynamic array of a
record with 3 strings to XML wildcard attributes.

Values are mandatory for the following attributes: (for example, XMLName="myname")

Table 566: XML Serialization customizing - Attributes that must have values

Attribute Definition

XMLName Define the XML Name of a variable in an XML
document.

XMLNamespace Define the XML Namespace of a variable in an
XML document.

XMLType Force the XML type name of a variable.

XMLTypenamespace Force the XML type namespace of a variable.

XSTypename Define the XML Type Name of a BDL type
definition.

XSTypenamespace Define the XML Type Namespace of a BDL type
definition.

XMLElementNamespace Define the default XML namespace of all children
defined as XMLElement in a Record.

XMLAttributeNamespace Define the default XML namespace of all children
defined as XMLAttribute in a Record.

XMLElement (Optional)

Map a BDL simple data type to an XML Element.

Note: The attribute cannot be set on a type definition.

Example

DEFINE myVar RECORD ATTRIBUTES(XMLName="Root")

Web services | 2536

 val1 INTEGER ATTRIBUTES(XMLElement, XSDunsignedShort,
 XMLName="Val1"),
 rec RECORD ATTRIBUTES(XMLName="Rec")
 val2 FLOAT ATTRIBUTES(XMLElement, XMLName="Val2"),
 val3 STRING ATTRIBUTES(XMLElement, XMLName="Val3")
 END RECORD
END RECORD

<Root>
 <Val1>148</Val1>
 <Rec1>
 <Val2>25.8</Val2>
 <Val3>Hello world</Val3>
 </Rec1>
</Root>

XMLAttribute

Map a BDL simple data type to an XML Attribute.

Note:

1. The attribute cannot be set on a type definition.
2. The attribute can only be set on a RECORD's member.

Example

DEFINE myVar RECORD ATTRIBUTES(XMLName="Root")
 val1 INTEGER
 ATTRIBUTES(XMLAttribute,XSDunsignedShort,XMLName="Val1"),
 rec RECORD ATTRIBUTES(XMLName="Rec1")
 val2 FLOAT ATTRIBUTES(XMLAttribute,XMLName="Val2"),
 val3 STRING ATTRIBUTES(XMLElement,XMLName="Val3")
 END RECORD
END RECORD

<Root Val1="148">
 <Rec1 Val2="25.8">
 <Val3>Hello world</Val3>
 </Rec1>
</Root>

XMLBase

Define the simple BDL variable used as the base type of an XML Schema simpleContent structure.

The attribute can be set on one and only one member of a RECORD defined with the XMLSimpleContent
attribute

XMLAll

Map a BDL Record to an XML Schema all structure.

The order in which the record members appear in the XML document is not significant.

Example

DEFINE myall RECORD ATTRIBUTES(XMLAll,XMLName="Root")
 val1 INTEGER ATTRIBUTES(XMLName="Val1"),
 val2 FLOAT ATTRIBUTES(XMLAttribute,XMLName="Val2"),
 val3 STRING ATTRIBUTES(XMLName="Val3")

http://www.w3.org/TR/xmlschema-1/#element-simpleContent
http://www.w3.org/TR/xmlschema-1/#element-all

Web services | 2537

END RECORD

<Root Val2="25.8">
 <Val3>Hello world</Val3>
 <Val1>148</Val1>
</Root>

<Root Val2="25.8">
 <Val1>148</Val1>
 <Val3>Hello world</Val3>
</Root>

XMLChoice

Map a BDL Record to an XML Schema choice structure. The choice of the record's member is performed
at runtime, and changes dynamically according to a mandatory member. This specific member must be
of type SMALLINT or INTEGER, and have an XMLSelector attribute set. The XMLChoice attribute also
supports a "nested" value that removes the surrounding XML tag.

Note:

1. Valid selector values are indexes referring to members considered as XML element nodes. All
other values will raise XML runtime errors.

2. Nested choice records cannot be defined as main variables; there must always be a surrounding
variable.

Example

DEFINE mychoice RECORD ATTRIBUTES(XMLChoice,XMLName="Root")
 val1 INTEGER ATTRIBUTES(XMLName="Val1"),
 val2 FLOAT ATTRIBUTES(XMLAttribute,XMLName="Val2"),
 sel SMALLINT ATTRIBUTES(XMLSelector),
 val3 STRING ATTRIBUTES(XMLName="Val3")
END RECORD

Case where "sel" value is 4

<Root Val2="25.8">
 <Val3>Hello world</Val3>
</Root>

Case where "sel" value is 1

<Root Val2="25.8">
 <Val1>148</Val1>
</Root>

Nested example:

DEFINE myVar RECORD ATTRIBUTES(XMLName="Root")
 val1 INTEGER ATTRIBUTES(XMLName="Val1"),
 val2 FLOAT ATTRIBUTES(XMLAttribute,XMLName="Val2"),
 choice RECORD ATTRIBUTES(XMLChoice="nested")
 choice1 INTEGER ATTRIBUTES(XMLName="ChoiceOne"),
 choice2 FLOAT ATTRIBUTES(XMLName="ChoiceTwo"),
 nestedSel SMALLINT ATTRIBUTES(XMLSelector)
 END RECORD,
 val3 STRING ATTRIBUTES(XMLName="Val3")
END RECORD

http://www.w3.org/TR/xmlschema-1/#element-choice

Web services | 2538

Case where "nestedSel" value is 1

<Root Val2="25.8">
 <Val1>148</Val1>
 <ChoiceOne>6584</ChoiceOne>
 <Val3>Hello world</Val3>
</Root>

Case where "nestedSel" value is 2

<Root Val2="25.8">
 <Val1>148</Val1>
 <ChoiceTwo>85.8</ChoiceTwo>
 <Val3>Hello world</Val3>
</Root>

XMLSequence (Optional)

Map a BDL RECORD to an XML Schema sequence structure.The order in which the record members
appear in the XML document must match the order of the BDL RECORD. The XMLSequence attribute also
supports a "nested" value that removes the surrounding XML tag.

Note: Nested sequence records cannot be defined as main variables; there must always be a
surrounding variable.

Example

DEFINE mysequence RECORD ATTRIBUTES(XMLSequence,XMLName="Root")
 val1 INTEGER ATTRIBUTES(XMLName="Val1"),
 val2 FLOAT ATTRIBUTES(XMLAttribute,XMLName="Val2"),
 val3 STRING ATTRIBUTES(XMLName="Val3")
END RECORD

<Root Val2="25.8">
 <Val1>-859</Val1>
 <Val3>Hello world</Val3>
</Root>

Nested example:

DEFINE myVar RECORD ATTRIBUTES(XMLName="Root")
 val1 INTEGER ATTRIBUTES(XMLName="Val1"),
 val2 FLOAT ATTRIBUTES(XMLAttribute,XMLName="Val2"),
 sequence RECORD ATTRIBUTES(XMLSequence="nested")
 seq1 INTEGER ATTRIBUTES(XMLName="SeqOne"),
 seq2 FLOAT ATTRIBUTES(XMLName="SeqTwo")
 END RECORD,
 val3 STRING ATTRIBUTES(XMLName="Val3")
END RECORD

<Root Val2="25.8">
 <Val1>148</Val1>
 <SeqOne>6584</SeqOne>
 <SeqTwo>85.597</SeqTwo>
 <Val3>Hello world</Val3>
</Root>

XMLSimpleContent

Map a BDL RECORD to an XML Schema simpleContent structure.

http://www.w3.org/TR/xmlschema-1/#element-sequence
http://www.w3.org/TR/xmlschema-1/#element-simpleContent

Web services | 2539

Note: One member must have the XMLBase attribute; all other members must have an
XMLAttribute attribute. If not, the compiler complains.

Example

DEFINE mysimpletype RECORD
 ATTRIBUTES(XMLSimpleContent,XMLName="Root")
 base STRING ATTRIBUTES(XMLBase),
 val1 INTEGER ATTRIBUTES(XMLAttribute,XMLName="Val1"),
 val2 FLOAT ATTRIBUTES(XMLAttribute,XMLName="Val2")
END RECORD

<Root Val1="148" Val2="25.8">
 Hello
</Root>

XSComplexType

Map a BDL RECORD type definition to an XML Schema complexType.

Note: You can have one member as a nested sequence or choice, or as an XMLList array with a
nested sequence or choice as the array's elements; all other members must have an XMLAttribute
attribute. If not, the compiler complains.

Example

TYPE mycomplextype RECORD ATTRIBUTES(XSComplexType,
 XSTypeName="MyComplexType",XSTypeNamespace="http://
tempuri.org")
 name DYNAMIC ARRAY ATTRIBUTES(XMLList) OF RECORD
 ATTRIBUTES(XMLSequence="nested")
 firstname STRING ATTRIBUTES(XMLName="FirstName"),
 lastname STRING ATTRIBUTES(XMLName="LastName")
END RECORD,
 date DATE ATTRIBUTES(XMLAttribute,XMLName="Date")
END RECORD

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://tempuri.org"
 elementFormDefault="qualified" >
 <xsd:complexType name="MyComplexType">
 <xsd:sequence maxOccurs="unbounded">
 <xsd:element name="FirstName" type="xsd:string" />
 <xsd:element name="LastName" type="xsd:string" />
 </xsd:sequence>
 <xsd:attribute name="Date" type="xsd:date" use="required"/>
 </xsd:complexType>
</xsd:schema>

XMLList

Map a one dimensional array to an XML Schema element that has more than one occurrence.

Example

DEFINE myVar RECORD ATTRIBUTES(XMLName="Root")
 val1 INTEGER ATTRIBUTES(XMLName="Val1"),
 list DYNAMIC ARRAY ATTRIBUTES(XMLList) OF STRING
 ATTRIBUTE(XMLName="Element"),
 val2 FLOAT ATTRIBUTES(XMLName="Val2")

http://www.w3.org/TR/xmlschema-1/#Complex_Type_Definitions

Web services | 2540

END RECORD

<Root>
 <Val1>148</Val1>
 <Element>hello</Element>
 <Element>how</Element>
 <Element>are</Element>
 <Element>you</Element>
 <Val2>0.58</Val2>
</Root>

Note: It is not possible to define an XMLList attribute on a main array.

XMLSelector

Define the index of the candidate among all members of an XMLChoice record that will be serialized or de-
serialized at runtime.

The index starts at 1.

The selector data type must be a SMALLINT or a INTEGER.

XMLAny

Map a Xml.DomDocument object to a wildcard XML element:

DEFINE myVar RECORD ATTRIBUTES(XMLName="Root",XMLNamespace="http://
tempuri.org")
 val1 INTEGER ATTRIBUTES(XMLName="Val1"),
 any Xml.DomDocument ATTRIBUTES(XMLAny,XMLNamespace="##other"),
 val2 FLOAT ATTRIBUTES(XMLName="Val2")
END RECORD

<pre:Root xmlns:pre="http://tempuri.org" >
 <pre:Val1>148</pre:Val1>
 <pre2:Doc xmlns:pre2="http://www.mycompany.com">
 <pre2:Element>how</pre2:Element>
 <pre2:Element>are</pre2:Element>
 <pre2:Element>you</pre2:Element>
 </pre2:Doc>
 <pre:Val2>
0.58</pre:Val2>
</pre:Root>

Note: Associated with XMLAny, the XMLNamespace attribute requires either:

• A list of space-separated URIs to accept each attribute belonging to one of this namespace URI as a
wildcard attribute.

• The value ##any to accept any attribute as a wildcard attribute.
• The value ##other to accept any attribute not in the main schema namespace as a wildcard attribute.

For example:

• If XMLNamespace="http://tmpuri.org http://www.mycompany.com", then only the XML documents
belonging to one of those namespaces will be accepted and serialized (or de-serialized) into the
Xml.DomDocument object.

• If XMLNamespace="##any", then any XML document will be accepted and serialized (or de-serialized)
into the Xml.DomDocument object.

• If XMLNamespace="##other", then any XML document not belonging to the targetNamespace of the
XML Schema where the any definition is used will be accepted and serialized (or de-serialized) into the
Xml.DomDocument object.

Web services | 2541

XMLAnyAttribute

Map a one-dimensional dynamic array to wildcard XML attributes.

Example

DEFINE myVar RECORD ATTRIBUTES(XMLName="Root",
 XMLNamespace="http://tempuri.org")
 val1 INTEGER ATTRIBUTES(XMLName="Val1"),
 val2 FLOAT ATTRIBUTES(XMLName="Val2"),
 attr STRING ATTRIBUTES(XMLName="Attr", XMLAttribute),
 any DYNAMIC ARRAY ATTRIBUTES(XMLAnyAttribute,
 XMLNamespace="##other")OF RECORD
 ns STRING,
 name STRING,
 value STRING
 END RECORD
END RECORD

<pre:Root xmlns:pre="http://tempuri.org" pre:Attr="10"
 xmlns:pre2="http://www.mycompany.com" pre2:AnyAttr1="10"
 pre2:AnyAttr2="">
 <pre:Val1>148</pre:Val1>
 <pre:Val2>0.58</pre:Val2>
</pre:Root>

Note:

1. The attribute XMLAnyAttribute is only allowed on a one-dimensional
dynamic array of a record with three members of type STRING. The
first member is for the namespace of the wildcard attribute, the
second member is for the name of the wildcard attribute, and the third
member is for the value of the wildcard attribute. The name cannot be
null.

2. Associated with the XMLAnyAttribute, the XMLNamespace attribute
requires either:

• A list of space-separated URIs to accept each attribute belonging to
one of the namespace URIs as a wildcard attribute.

• The value ##any to accept any attribute as a wildcard attribute.
• The value ##other to accept any attribute not in the main schema

namespace as a wildcard attribute.

For example:

• If XMLNamespace="http://tmpuri.org http://www.mycompany.com",
then only the attributes belonging to one of those namespaces will
be accepted and serialized (or deserialized) into the array.

• If XMLNamespace="##any", then any attribute will be accepted and
serialized (or deserialized) into the array.

• If XMLNamespace="##other", then any attributes not belonging to
the targetNamespace of the XML Schema where the anyAttribute
definition is used will be accepted and serialized (or deserialized)
into the array.

XMLName

Define the name of a variable in an XML document.

Note: The attribute cannot be set on a type definition.

Web services | 2542

Example

DEFINE myVar RECORD ATTRIBUTES(XMLName="Root")
 val1 INTEGER ATTRIBUTES(XMLName="Val1"),
 val2 FLOAT,
 val3 INTEGER ATTRIBUTES(XMLName="Val3")
END RECORD

<Root>
 <Val1>148</Val1>
 <val2>0.5</val2>
 <Val3>-18547</Val3>
</Root>

XMLNamespace

Define the namespace of a variable in an XML document.

Note:

1. If the attribute is set on a Record, by default all members defined as XMLElement of that record
are in the same namespace.

2. If the attribute is set on an Array, by default all elements defined as XMLElement of that array
are in the same namespace.

3. The attribute cannot be set on a type definition.

Example

DEFINE myVar RECORD ATTRIBUTES(XMLName="Root",
 XMLNamespace="http://tempuri.org")
 attr1 INTEGER ATTRIBUTES(XMLAttribute,XMLName="Attr1"),
 val1 FLOAT ATTRIBUTES(XMLName="Val1", XMLNamespace="http://
www.mycompany.com"),
 val2 INTEGER ATTRIBUTES(XMLName="Val2"),
 attr2 STRING ATTRIBUTES(XMLAttribute, XMLName="Attr2",
 XMLNamespace="http://anyuri.org")
END RECORD

<fjs1:Root xmlns:fjs1="http://tempuri.org" Attr1="158"
 xmlns:fjs3="http://anyuri.org" fjs3:Attr2="Hello">
 <fjs2:Val1 xmlns:fjs2="http://www.mycompany.com">0.5</
fjs2:Val1>
 <fjs1:Val2>-18547</fjs1:Val2>
</fjs1:Root>

XMLType

Force the XML type name of a variable by adding xsi:type at serialization or by checking xsi:type at
deserialization.

Note: The attribute must be used with the XMLTypenamespace attribute; otherwise, the compiler
complains.

Example

DEFINE myVar RECORD ATTRIBUTES(XMLName="Root",
 XMLNamespace="http://tempuri.org")
 val1 FLOAT ATTRIBUTES(XMLName="Val1"),
 val2 INTEGER ATTRIBUTES(XMLName="Val2",

Web services | 2543

 XMLType="MyRecord",
 XMLTypenamespace="http://
mynamespace.org")
END RECORD

<fjs1:Root xmlns:fjs1="http://tempuri.org">
 <fjs1:Val1>0.5</fjs1:Val1>
 <fjs1:Val2 xmlns:fjs2="http://mynamespace.org"
 xsi:type="fjs2:MyRecord">-18547</fjs1:Val2>
</fjs1:Root>

XMLTypenamespace

Force the XML type namespace of a variable by adding xsi:type at serialization or by checking xsi:type at
de-serialization.

Note: The attribute must be used with the XMLType attribute; otherwise the compiler complains.

Example

DEFINE myVar RECORD ATTRIBUTES(XMLName="Root",
 XMLNamespace="http://tempuri.org")
 val1 FLOAT ATTRIBUTES(XMLName="Val1"),
 val2 INTEGER ATTRIBUTES(XMLName="Val2",
 XMLType="MyRecord",
 XMLTypenamespace="http://
mynamespace.org")
END RECORD

<fjs1:Root xmlns:fjs1="http://tempuri.org">
 <fjs1:Val1>0.5</fjs1:Val1>
 <fjs1:Val2 xmlns:fjs2="http://mynamespace.org"
 xsi:type="fjs2:MyRecord">-18547</fjs1:Val2>
</fjs1:Root>

XSTypename

Define the XML Schema name of a BDL type definition.

Note:

1. The attribute must be used with the XSTypenamespace attribute; otherwise the compiler
complains.

2. The attribute is only allowed on a type definition.

Example

TYPE myType RECORD ATTRIBUTES(XMLSequence,
 XSTypeName="MyFirstType",
 XSTypeNamespace="http://
tempuri.org")
 val1 FLOAT ATTRIBUTES(XMLElement,XMLName="Val1"),
 val2 INTEGER
 ATTRIBUTES(XMLElement,XMLName="Val2",XMLOptional),
 attr STRING ATTRIBUTES(XMLAttribute,XMLName="Attr")
END RECORD

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

Web services | 2544

 targetNamespace="http://tempuri.org"
 elementFormDefault="qualified" >
 <xsd:complexType name="MyFirstType">
 <xsd:sequence>
 <xsd:element name="Val1" type="xsd:double" />
 <xsd:element name="Val2" type="xsd:int" minOccurs="0" />
 </xsd:sequence>
 <xsd:attribute name="Attr" type="xsd:string"
 use="required" />
 </xsd:complexType>
</xsd:schema>

XSTypenamespace

Define the XML Schema namespace of a BDL type definition.

Note:

1. The attribute must be used with the XSType attribute; otherwise the compiler complains.
2. The attribute is only allowed on a type definition.

Example

TYPE myType RECORD ATTRIBUTES(XMLChoice,
 XSTypeName="MyFirstChoice",
 XSTypeNamespace="http://
tempuri.org")
 val1 FLOAT ATTRIBUTES(XMLElement,XMLName="Val1"),
 val2 INTEGER
 ATTRIBUTES(XMLElement,XMLName="Val2",XMLOptional),
 attr STRING
 ATTRIBUTES(XMLAttribute,XMLName="Attr",XMLOptional),
 set INTEGER ATTRIBUTES(XMLSelector)
END RECORD

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://tempuri.org"
 elementFormDefault="qualified" >
 <xsd:complexType name="MyFirstChoice">
 <xsd:choice>
 <xsd:element name="Val1" type="xsd:double" />
 <xsd:element name="Val2" type="xsd:int" minOccurs="0" />
 </xsd:choice>
 <xsd:attribute name="Attr" type="xsd:string" />
 </xsd:complexType>
</xsd:schema>

XMLElementNamespace

Define the default namespace of all members of a record also defined as XML elements.

Example

DEFINE myVar RECORD ATTRIBUTES(XMLName="Root",
 XMLNamespace="http://tempuri.org",
 XMLElementNamespace="http://www.mycompany.com")
 val1 FLOAT ATTRIBUTES(XMLElement,XMLName="Val1"),
 val2 INTEGER ATTRIBUTES(XMLElement,XMLName="Val2"),
 attr STRING ATTRIBUTES(XMLAttribute,XMLName="Attr"),

Web services | 2545

 END RECORD

<fjs1:Root xmlns:fjs1="http://tempuri.org" Attr="Hello"
 xmlns:fjs2="http://www.mycompany.com">
 <fjs2:Val1>0.5</fjs2:Val1>
 <fjs2:Val2>-18547</fjs2:Val2>
</fjs1:Root>

XMLAttributeNamespace

Define the default namespace of all members of a record also defined as XML attributes.

Example

DEFINE myVar RECORD ATTRIBUTES(XMLName="Root",
 XMLNamespace="http://tempuri.org",
 XMLAttributeNamespace="http://www.mycompany.com")
 val1 FLOAT ATTRIBUTES(XMLElement,XMLName="Val1"),
 val2 INTEGER ATTRIBUTES(XMLElement,XMLName="Val2"),
 attr1 STRING ATTRIBUTES(XMLAttribute,XMLName="Attr1"),
 attr2 DATE ATTRIBUTES(XMLAttribute,
 XMLName="Attr2",XMLNamespace="http://anyuri.org"),
END RECORD

<fjs1:Root xmlns:fjs1="http://tempuri.org"
 fjs2:Attr1="Hello" xmlns:fjs2="http://www.mycompany.com"
 xmlns:fjs3="http://anyuri.org" fjs3:Attr2="2006-06-24">
 <fjs1:Val1>0.5</fjs1:Val1>
 <fjs1:Val2>-18547</fjs1:Val2>
</fjs1:Root>

XMLOptional

Define whether the variable can be missing or not. It specifies how a NULL value is interpreted in XML.

Note:

1. The attribute cannot be set on a type definition.
2. The attribute cannot be set if the main variable is not a RECORD.

Example

DEFINE myVar RECORD ATTRIBUTES(XMLName="Root")
 val1 INTEGER ATTRIBUTES(XSDint,XMLName="ValOne"),
 val2 FLOAT ATTRIBUTES(XSDdouble,XMLName="ValTwo",XMLOptional)
END RECORD

<Root>
 <ValOne>458</ValOne>
 <ValTwo>58.48</ValTwo>
</Root>

<Root>
 <ValOne>458</ValOne>
</Root>

Web services | 2546

Error handling in GWS calls (STATUS)
In case of problem, the methods of GWS classes can throw an exception and set the STATUS variable with
the appropriate error number.

By default, the program will stop if an exception is thrown. You can trap the GWS errors with a WHENEVER
ERROR handler or with a TRY/CATCH block. In the next example, the readTextRequest() API is
surrounded by a TRY/CATCH block:

DEFINE req com.HTTPServiceRequest,
 data STRING
...
LET req = com.WebServiceEngine.getHTTPServiceRequest(5)
...
TRY
 ...
 CALL req.readTextRequest() RETURNING data
 ...
CATCH
 CALL show_err(SFMT("Unexpected HTTP request read exception: %1", STATUS))
END TRY

For some errors, a human-readable description of the error code is available in the SQLCA.SQLERRM
register.

Interruption handling in GWS calls (INT_FLAG)

In order to check if an application has been interrupted, GWS tests the INT_FLAG. If the INT_FLAG is
set to TRUE, then the GWS function processing is interrupted and an exception is raised with error code
-15553.

Important: Make sure that the INT_FLAG register is set to FALSE before calling a GWS function:
For example, after a dialog was stopped with cancel action, the INT_FLAG is set to TRUE. If you do
not reset INT_FLAG to FALSE, the next GWS function may be canceled.

As a general rule, surroung GWS calls with a TRY/CATCH block (or WHENEVER ERROR handler), to detect
both communication errors and interruptions:

TRY
 LET INT_FLAG=FALSE
 ...
 CALL req.sendXMLRequest(doc)
 ...
CATCH
 CASE STATUS
 WHEN -15553 -- TCP socket error
 IF INT_FLAG THEN
 MESSAGE "An interruption occured."
 ELSE
 ERROR "TCP socket error: ", SQLCA.SQLERRM
 END IF
 ...
 END CASE
END TRY

Server API functions - version 1.3 only

The following table lists the APIs to create a Web Services server in BDL.

Note: These functions are valid for backwards compatibility, but they are not the preferred way to
handle Genero Web Services. See the GWS COM Library classes and methods.

Web services | 2547

Table 567: APIs to create a Web Services server in BDL (version 1.3 only)

Function Description

fgl_ws_server_setNamespace() Defines the namespace of the service on the Web.

fgl_ws_server_start() Creates and starts the Web Service server.

fgl_ws_server_publishFunction() Publishes the BDL function as a Web Function.

fgl_ws_server_generateWSDL() Generates the WSDL file.

fgl_ws_server_process() Waits for and processes incoming SOAP requests.

fgl_ws_server_setFault() Sets the SOAP fault string for a Web Function.

fgl_ws_server_getFault() Retrieves the fault string that was set for a Web
Function, for testing purposes.

fgl_ws_server_setNamespace() (version 1.3)

Purpose

This function defines the namespace of the service on the Web and must be called first, before all other
functions of the API.

Syntax

FUNCTION fgl_ws_server_setNamespace(namespace VARCHAR)

Parameters

• namespace is the name of the namespace.

Return values

• None

Example

 CALL fgl_ws_server_setNamespace("http://tempuri.org/")

fgl_ws_server_start() (version 1.3)

Purpose

This function creates and starts the server. For development or testing purposes, you may start a Web
Service server as a single server where only one request at a time will be able to be processed. For
deployment, you may start a Web Service server with an application server able to handle several
connections at one time using a load-balancing algorithm. The value of the parameter passed to the
function determines which method is used.

Syntax

FUNCTION fgl_ws_server_start(tcpPort VARCHAR)

Web services | 2548

Parameters

• tcpPort is a string representing either:

• the socket port number (for a single Web Service server)
• the host and port value separated by a colon (for a Web Service server connecting to an application

server). The value of port is an offset beginning at 6400.

Note: If the FGLAPPSERVER environment variable is set, the tcpPort value is ignored, and replaced
by the value of FGLAPPSERVER.

Return values

• None

Examples:

To start a standalone Web Service server:

 CALL fgl_ws_server_start("8080") # A single Server is listening
 # on port number: 8080

To start a Web Service server attempting to connect to an application server:

 CALL fgl_ws_server_start("zeus:5") # The server attempt to
 connect
 # to an application server
 located
 # on host zeus and listening
 # on the port number 6405

Possible runtime errors

• -15504: PORT_ALREADY_USED
• -15514: PORT_NOT_NUMERIC
• -15515: NO_AS_FOUND
• -15516: LICENSE_ERROR

fgl_ws_server_publishFunction() (version 1.3)

Purpose

This function publishes the given BDL function as a Web-Function on the Web.

Syntax

FUNCTION fgl_ws_server_publishFunction(
 operationName VARCHAR,
 inputNamespace VARCHAR,
 inputRecordName VARCHAR,
 outputNamespace VARCHAR,
 outputRecord VARCHAR,
 functionName VARCHAR)

Parameters

• operationName is the name by which the operation will be defined on the Web. The name is case
sensitive.

Web services | 2549

• inputNamespace is the namespace of the incoming operation message.
• inputRecordName is the name of the BDL record representing the Web Function input message or "" if

there is none.
• outputNamespace is the namespace of the outgoing operation message.
• outputRecord is the name of the BDL record representing the Web Function output message or "" if

there is none.
• functionName is the name of the BDL function that is executed when the Web Service engine receives

a request with the operation name defined above.

Return values

• None

Example

CALL fgl_ws_server_publishFunction(
 "MyWebOperation",
 "http://www.tempuri.org/webservices/","myfunction_input",
 "http://www.tempuri.org/webservices/","myfunction_output",
 "my_bdl_function")

Possible runtime errors

• -15503: FUNCTION_ALREADY_EXISTS
• -15501: FUNCTION_ERROR
• -15502: FUNCTION_DECLARATION_ERROR
• -15512: INPUT_VARIABLE_ERROR
• -15513: OUTPUT_VARIABLE_ERROR
• -15503: BDL_XML_ERROR
• -15518: INPUT_NAMESPACE_MISSING
• -15519: OUTPUT_NAMESPACE_MISSING

fgl_ws_server_generateWSDL() (version 1.3)

Purpose

This function generates the WSDL file according to the BDL-server program.

Syntax

FUNCTION fgl_ws_server_generateWSDL(
 serviceName VARCHAR,
 serviceLocation VARCHAR,
 fileName VARCHAR)
 RETURNING resultStatus INTEGER

Parameters

• serviceName is the name of the web service.
• serviceLocation is the URL of the server.
• fileName is the name of the file that will be generated.

Return values

• resultStatus is a status containing:

Web services | 2550

• 0 if the file has been correctly generated.
• Any other values if the operation has failed.

Example

DEFINE mystatus INTEGER

LET mystatus=fgl_ws_server_generateWSDL(
 "CustomerService",
 "http://localhost:8080",
 "C:/mydirectory/myfile.wsdl")

IF mystatus=0 THEN
 DISPLAY "Generation of WSDL done..."
ELSE
 DISPLAY "Generation of WSDL failed!"
END IF

fgl_ws_server_process() (version 1.3)

Purpose

This function waits for an incoming SOAP request for a given time (in seconds) and then processes the
request, or returns, if there has been no request during the given time. If a DEFER INTERRUPT or DEFER
QUIT instruction has been defined, the function returns even if it is an infinite wait.

Syntax

FUNCTION fgl_ws_server_process(timeout INTEGER)
 RETURNING resultStatus INTEGER

Parameters

• timeout is the maximum waiting time for an incoming request (or -1 for an infinite wait)

Return values

• resultStatus is a status containing:

• 0 Request has been processed
• -1 Timeout has been reached
• -2 The application server asks the runner to shutdown
• -3 A client connection has been unexpectedly broken
• -4 An interruption has been raised
• -5 The HTTP header of the request was incorrect
• -6 The SOAP envelope was malformed
• -7 The XML document was malformed

Example

DEFER INTERRUPT
DEFINE mystatus INTEGER
LET mystatus=fgl_ws_server_process(5)# wait for 5 seconds
 # for incoming request
IF mystatus=0 THEN
 DISPLAY "Request processed."

Web services | 2551

END IF
IF mystatus=-1 THEN
 DISPLAY "No request."
END IF
IF mystatus=-2 THEN # terminate the application properly
 EXIT PROGRAM # if connected to application server
END IF
IF mystatus=-3 THEN
 DISPLAY "Client connection unexpectedly broken."
END IF
IF mystatus=-4 THEN
 DISPLAY "Server process has been interrupted."
END IF
IF mystatus=-5 THEN
 DISPLAY "Malformed or bad HTTP request received."
END IF
IF int_flag<>0 THEN
 LET int_flag=0
 EXIT PROGRAM
END IF

fgl_ws_server_setFault() (version 1.3)

Purpose

This function can be called in a published Web-Function in order to return a SOAP fault string to the client
at the end of the function's execution.

Syntax

FUNCTION fgl_ws_server_setFault(faultMessage VARCHAR)

Parameters

• faultMessage is a string containing the SOAP Fault string that will be returned to the client.

Return values

• None

Example

 CALL fgl_ws_server_setFault(
 "The server is not able to manage this request.")

fgl_ws_server_getFault() (version 1.3)

Purpose

This function retrieves the last fault string the user has set in a Web-Function, or an empty string if there is
none.

Note: This function is only for testing the Web Services functions before they are published on the
Web.

Web services | 2552

Syntax

FUNCTION fgl_ws_server_getFault()
 RETURNING faultMessage VARCHAR

Parameters

• None

Return values

• faultMessage is the string containing the SOAP Fault string.

Example

 DEFINE div_input RECORD
 a INTEGER,
 b INTEGER
 END RECORD

 DEFINE div_output RECORD
 result INTEGER
 END RECORD

 FUNCTION TestServices()
 DEFINE string VARCHAR(100)
 ...
 # Test divide by zero operation
 LET div_input.a=15
 LET div_input.b=0
 CALL service_operation_div()
 LET string=fgl_ws_server_getFault()
 DISPLAY "Operation div error: ", string
 ...
 END FUNCTION

 FUNCTION service_operation_div()
 ...
 IF div_input.b = 0 THEN
 CALL fgl_ws_server_setFault("Divide by zero")
 RETURN
 END IF
 ...
 END FUNCTION

Configuration API functions - version 1.3 only

The following table lists those configuration API functions that can modify the behavior of the Web Services
engine for the client as well as for the server.

Note: These functions are valid for backwards compatibility, but they are not the preferred way to
handle Genero Web Services. See the COM Library classes and methods.

Table 568: Configuration API functions for Web Services engine behavior modification

Function Description

fgl_ws_setOption() Sets an option flag with a given value.

fgl_ws_getOption() Returns the value of an option flag.

Web services | 2553

fgl_ws_setOption()
This function sets an option flag with a given value, changing the global behavior of the Web Services
engine.

Syntax

FUNCTION fgl_ws_setOption(optionName VARCHAR,
 optionValue INTEGER)

Parameters

• optionName is one of the global flags.
• optionValue is the value of the flag.

Return values

• None

Example

CALL fgl_ws_setOption("http_invoketimeout",5)

Possible runtime errors

• -15511: INVALID_OPTION_NAME

fgl_ws_getOption()
This function returns the value of an option flag.

Syntax

FUNCTION fgl_ws_getOption(optionName VARCHAR)
 RETURNING optionValue INTEGER

Parameter

• optionName is one of the global flags.

Return values

• optionValue is the value of the flag.

Example

DEFINE value INTEGER
LET value=fgl_ws_getOption("http_invoketimeout")

Possible runtime errors

• -15511: INVALID_OPTION_NAME

Web services | 2554

Option flags

Table 569: Option flags

Flags Client or Server Commentary

http_invoketimeout Client Defines the maximum time in
seconds a client has to wait
before the client connection
raises an error because the
server is not responding.

A value of -1 means that it has to
wait until the server responds.

The default value is -1.

tcp_connectiontimeout Client Defines the maximum time in
seconds a client has to wait
for the establishment of a TCP
connection with a server.

A value of -1 means infinite wait.

The default value is 30 seconds
except for Windows™, where it is
5 seconds.

soap_ignoretimezone Both Defines if, during the marshalling
and unmarshalling process of a
BDL DATETIME data type, the
SOAP engine should ignore the
time zone information.

A value of zero means false.

The default value is false.

soap_usetypedefinition Both Defines if the Web Services
engine must specify the type of
data in all SOAP requests. This
will add an "xsi:type" attribute to
each parameter of the request.

A value of zero means false.

The default value is false.

wsdl_decimalsize Server Defines if, during the WSDL
generation, the precision and
scale of a DECIMAL variable will
be taken into account. See WSDL
generation option notes on page
2555.

A value of zero means false.

The default value is true.

wsdl_arraysize Server Defines if, during the WSDL
generation, the size of a BDL

Web services | 2555

Flags Client or Server Commentary

array will be taken into account.
See WSDL generation option
notes on page 2555.

A value of zero means false.

The default value is true.

wsdl_stringsize Server Defines if, during the WSDL
generation, the size of a CHAR
or VARCHAR variable will be
taken into account. See WSDL
generation option notes on page
2555.

A value of zero means false.

The default value is true.

WSDL generation option notes

1. For a BDL type DECIMAL(5,2), when wsdl_decimalsize is TRUE, the generated WSDL file contains
the total size and the size of the fractional part of the decimal:

<types>
 <schema xmlns="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://www.mycompany.com/types/">
 <simpleType name="echoDecimal5_2_a_dec5_2_out_FGLDecimal">
 <restriction base="decimal">
 <totalDigits value="5" />
 <fractionDigits value="2" />
 </restriction>
 </simpleType>
 </schema>
</types>
<message name="echoDecimal5_2">
 <part name="dec5_2" type="f:echoDecimal5_2_a_dec5_2_in_FGLDecimal" />
</message>

When wsdl_decimalsize is FALSE, the total size and the size of the fractional part are not mentioned:

<message name="echoDecimal5_2">
 <part name="dec5_2" type="xsd:decimal" />
</message>

2. If the WSDL file does not contain the size, the client application has no way of knowing the size.
In this scenario, a default value for the size is generated. For example, the exported server type
DECIMAL(5,2) becomes a DECIMAL(32) on the client side.

3. It is better to keep the options wsdl_arraysize, wsdl_stringsize and wsdl_decimalsize set to TRUE
(default) so that the BDL client application can do an exact type mapping.

Using fglwsdl to generate code from WSDL or XSD schemas

This section covers the different options of the fglwsdl tool. This tool is used to generate .4gl code from
WSDL / XSD schemas.

Generate TYPE definitions from global XML elements or attributes

If a WSDL or a XSD has global XML elements or attributes defined with an inlined type, the -
fInlineTypes option of fglwsdl generates a TYPE definition representing that inline type, using the original

Web services | 2556

WSDL/XSD name of the element or attribute, concatenated with the string 'GlobalAttributeType' or
'GlobalElementType'.

For example, when using fglwsdl -fInlineTypes, the following schema:

<xs:element name="getAlertListRequestFlow">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="getAlertListRequest"
 type="amp:getAlertListRequest" />
 </xs:sequence>
 </xs:complexType>
</xs:element>

Will produce:

TYPE tgetAlertListRequestFlowGlobalElementType RECORD
 ATTRIBUTES(XMLSequence)
 getAlertListRequest tgetAlertListRequest
 ATTRIBUTES(XMLName="getAlertListRequest")
END RECORD
DEFINE getAlertListRequestFlow tgetAlertListRequestFlowGlobalElementType
 ATTRIBUTES(XMLName="getAlertListRequestFlow")

Instead of:

DEFINE getAlertListRequestFlow RECORD
 ATTRIBUTES(XMLName="getAlertListRequestFlow",XMLSequence)
 getAlertListRequest tgetAlertListRequest
 ATTRIBUTES(XMLName="getAlertListRequest")
END RECORD

Mobile applications | 2557

Mobile applications

These topics cover programming subjects about mobile applications

• Types of Genero Mobile apps on page 2557
• Language limitations on page 2560
• Environment variables on mobile on page 2560
• App localization on page 2560
• Apps user interface on page 2561
• Database support on mobile devices on page 2567
• Web Services on mobile devices on page 2569
• Accessing device functions on page 2569
• Debugging a mobile app on page 2570
• Deploying mobile apps on page 2572
• Push notifications on page 2599

Types of Genero Mobile apps
A mobile app is an app that runs on a mobile device, such as a tablet or a phone. There are different types
of mobile apps.

When you are developing your app, and you execute the app on your development machine for display on
a device or emulator, you are running the app in development mode.

When you follow the procedure to deploy your application to the device for testing or to distribute your app
to your end users, you have a deployed app. A deployed app might be an app that executes irrespective
of network availability, it might be an app that accesses device peripherals, it might be an app that requires
network access.

Here are the categories, or application types, for deployed apps.

Standalone apps

A standalone app has the DVM and display client entirely on the mobile device. This app executes
irrespective of network availability and can access device peripherals such as the camera, contacts, email,
calendar, GPS, and storage via exposed APIs (front calls). For database needs, this app can only connect
to a local SQLite database.

Note: The DVM refers to the dynamic virtual machine, which is the process that runs the app.

Mobile applications | 2558

Figure 115: Standalone app

Partially-connected apps

A partially-connected app has the DVM and display client entirely on the mobile device, yet this app
includes items that require a network connection. This app must be able to run when no network
connection is available. This app uses a network API to talk to any back-end.

Examples include:

• Web Services performed with JSON over HTTP; use RESTful methods to write data synchronization
routines. With this example, business logic executes within the device’s Virtual Machine and the user is
able to store captured data to a local SQLite database. When the network becomes available, the user
synchronizes the stored data with the remote server’s database.

Note: As of Genero Mobile 1.1, you can also write a Web Service using SOAP.

• A web component that runs Google Maps.

This app first operates without a network connection, and must be able to run without a network
connection. Once network connectivity is restored, the app can perform network-dependent tasks such as
synchronizing with a remote database, make a web service call, or use a web component.

If you are using GMI, and the device goes into standby mode, the application does not run in the
background and activities with the network are suspended.

Mobile applications | 2559

Figure 116: Partially-connected app (example showing data synchronization via JSON)

Client-server apps

With a client-server app or connected app, the bulk of the app runs on a remote server and the display
client sits on the mobile device.

As with any deployed app, this app first starts on the mobile device; the DVM for the deployed app runs
on the mobile device. The role of the deployed app, however, is to connect to a remote corporate server
as an online terminal. It is the deployed app that launches the remote application using the runOnServer
frontcall. The remote application's DVM and business logic reside on the remote server, somewhere in the
network. The remote application is not limited to a SQLite database.

In the event that the network is interrupted, the Genero Mobile client app is suspended until service
resumes.

Figure 117: Client-server app

See Running mobile apps on an application server in the Genero Business Development Language User
Guide for more information.

Mobile applications | 2560

Language limitations
Parts of the Genero language are not supported on mobile devices.

Important: This topic is provided as a quick glance at Genero Business Development Language
limitations in mobile applications. Details can be found in the BDL reference topics.

The following language options have limited support:

• The RUN instruction has limited support on mobile platforms.

• The RUN instruction is not supported on mobile devices, because of operating system limitations.
• RUN command WITHOUT WAITING is not supported when programs run on an application server

and display on a mobile device, because the Genero GUI protocol is not able to handle multiple
connections at the same time.

The following language features are not supported.

• The INPUT ARRAY instruction is not supported.
• The base.Channel.openPipe method is not supported.

Environment variables on mobile
You may need to set environment variables for your app.

Set environment variables

Set environment variables for your app must be done in an fglprofile file. This fglprofile file must be
located beside the main program module.

To add an environment variable for your mobile app, use the following syntax:

mobile.environment.DBFORMAT="$:,:.:"

Any existing environment variable setting is overwritten by the value set (using
mobile.environment.envvarname) in the fglprofile file.

For more details, see Setting environment variables in FGLPROFILE (mobile) on page 170.

Note: Environment variables set in an FGLPROFILE file are only read when the deployed
application runs the mobile device. They are not read during development mode (i.e. when the VM
runs on the development machine and the mobile client displays on the device). The FGLPROFILE
environment variable settings are only for the VM component and are ignored by the GMA/GMI
front-end component.

App localization
Mobile apps can be designed to display localized texts according to the current language selected on the
device.

Localized string files (.42s) must be deployed in directories matching the language identifiers (en for
English, zh_TW for simplified chinese, etc), beside the program module.

The list of .42s files required by the application must be defined in the unique fglprofile configuration
file located beside the program module of your application.

For more details, see Localized string files on mobile devices on page 333 and Deploying mobile apps on
page 2572.

Mobile applications | 2561

Apps user interface
This section includes topics about user interface programming for mobile.

In general, the user interface of a mobile app written in Genero displays and reacts as a desktop or web
application, while simultaneously respecting the device operating system look-and-feel. There are parts of
the interface, however, that display and react in a specific way.

Take a look at each of the user interface items in this chapter, to understand how they are portrayed in
a mobile app. A user interface feature not listed means there is nothing mobile-specific to its display or
behavior.

Action rendering
How actions are rendered varies between OS type of the mobile device.

The top and/or bottom parts of the mobile app screen is dedicated to displaying default action views to the
user. A default action view is an implicit graphical item that can be tapped to fire the corresponding action.

The default action views are rendered on the mobile device according to platform-specific standards, which
are covered in Rendering default action views on mobile on page 1279.

Figure 118: Action rendering example on an Android device

Mobile applications | 2562

Figure 119: Action rendering example on an iOS device

Images and icons
For this topic, an image can refer to the IMAGE item type or the icons used in the app.

Image format support

Mobile apps written in Genero supports all image formats supported by the device OS, however each
platform has its own restrictions on which image formats it supports:

• Android image format support
• iOS image format support

Mobile devices have a much higher pixel density (a higher resolution) than classic desktop monitors. An
image which looks nice on a desktop can appear small or as an upscaled image on a mobile device.

Providing the image resource

Genero supports different solutions to provide the image data in a mobile app, depending on the need
(button icon, application picture, etc). To understand how to get image resource on mobile apps with
Genero, see Providing the image resource on page 784.

Image sizing on mobile devices

The IMAGE item type defines an area for the display of an image on a form.

http://developer.android.com/guide/appendix/media-formats.html
https://developer.apple.com/library/ios/documentation/uikit/reference/UIImage_Class/Reference/Reference.html

Mobile applications | 2563

Image layout and sizing can be controlled with form item attributes to adapt to the type of mobile device.

For more details, see Controlling the image layout on page 783.

Default action icons

In general, you want the icons used for your mobile app to be the standard icons used by all apps for the
mobile platform. Genero is set up to use such icons by default. For more details, see Rendering default
action views on mobile on page 1279.

Genero also supports icon centralization based on TTF icons, to get a global consistent look and feel for all
your mobile apps. For more details, see Providing the image resource on page 784.

Keyboard type
Depending on the data being entered, a mobile device should display the keyboard that is appropriate for
the data.

There are a variety of keyboard types for mobile devices. A field dedicated to phone number input should
display a keyboard easying phone number input.

The KEYBOARDHINT form field attribute provides a hint regarding the kind of data the form field contains.
Valid values include DEFAULT, EMAIL, NUMBER, and PHONE:

ATTRIBUTES
EDIT f01 = customer.cust_phone, KEYBOARDHINT = PHONE;
...

Although Genero mostly respects the provided hint, the variable data type that is bound to the form field is
also examined, to determine what keyboard to display:

• If the field is defined as a DATE or DATETIME field, the date picker displays regardless of the
KEYBOARDHINT setting.

• If the field is a TEXT data, a text keyboard displays regardless of the KEYBOARDHINT setting.

For more details, see KEYBOARDHINT attribute on page 973.

List views
Form tables in a mobile app render as list views.

List views are commonly used in mobile apps to present an indexed list of items or selectable list of
options. They are also used to let users navigate through hierarchically structured data.

List views are displayed as either full list views or embedded list views.

The list view only displays the first two columns' content and any associated row image, regardless of the
number of columns defined.

No column header/title is displayed in mobile list views. Thus the mobile user cannot manipulate columns
(hide, reorder, resize, or sort).

With full list views, the built-in reduce filter allows the user to filter the rows displayed.

The JUSTIFY attribute of the second column can influence how the rows are displayed.

Various options affect the rendering and behavior, by defining TABLE container attributes, DISPLAY
ARRAY dialog attributes and ON ACTION handler attributes.

For complete details on implementing table views in a mobile app, see Using tables on mobile devices on
page 1362.

Mobile applications | 2564

Split views
Split views refer to the ability to access two forms side by side on a mobile device.

Side by side views on mobile apps

Many mobile apps offer a specific form layout, splitting the screen in two in order to shows a list of the left
side and a detail form on the right side. Such kind of layout can be implemented in Genero with the Split
views on page 1395.

Differences in how split views are handled by the clients

There are differences between the Genero Mobile for iOS (GMI) and Genero Mobile for Android (GMA)
implementations of split views and parallel dialogs, to include:

• When the application displays in a single pane or in two panes.
• How a user switches between the two panes.

There are also differences in how the split view renders between GMA and GMI.

Figure 120: The stores2 demo rendered on an Android device

With Genero Mobile for Android:

• The navigator pane renders as a menu in the left-hand side of the title bar.
• All buttons are merged.
• The title is not displayed when there is a navigator pane. If there is no navigator pane, the title of the

current window is displayed.

Mobile applications | 2565

With Genero Mobile for iOS:

• The navigator pane renders along the bottom of the app.
• Each window has its own title and its own buttons.

Figure 121: The stores2 demo rendered on an iOS device

Toolbars
Toolbars allow to control over where actions display (and in what order).

For desktop applications, the toolbar is a series of buttons typically contained in a toolbar object, located
at the top of the form. For Genero mobile apps, the toolbars are rendering according to the mobile platform
standards.

Table 570: Mobile platform differences for toolbars

GMA GMI

Genero Mobile for Android does not have toolbars.
The action views appear in the Android action bar.
Toolbar action views are listed first and ordered
as they are defined in the toolbar, followed by the
action views from the action panel.

Disabled actions are greyed out.

The toolbar items render in the iOS toolbar pane.
The iosSeparatorStretch toolbar style attribute
can be used to stretch the separators to give more
space between actions.

Disabled actions are greyed out.

For more information, see Toolbars on mobile devices on page 1025. Default action views are rendered on
mobile devices according to the rules covered in Rendering default action views on mobile on page 1279.

Topmenus
Topmenus provide a hierarchical menu in the app.

The rendering of a TOPMENU depends on the mobile operating system.

Mobile applications | 2566

Table 571: Genero Mobile and topmenus

GMA GMI

Figure 122: Navigation drawer for Android

A navigation drawer is visible in the action bar if
a topmenu is available to the displayed form. The
navigation drawer is a panel to the left of the app
icon (seen as three bars). Tap and the navigation
drawer transitions in from the left edge of the
screen and displays the app’s main navigation
actions.

Restricted to two levels.

Figure 123: Menu button for iOS

A menu button is visible in the navigation bar if a
topmenu is available to the displayed form.

There are no restrictions on the number of levels.

For complete details on implementing top menus in your app, see Topmenus on page 1027.

Front call support
Genero Mobile provides front calls to interface with the device capabilities.

Use front calls to access mobile devices capabilities. For example, with the mobile/takePhoto front call,
you can open the camera app of the device to take a picture.

Note: In a classical Genero client/server configuration, a frontcall is a remote procedure call that
involves a round-trip between the front-end and the server where the application executes. For a
standalone mobile app, this does not cause any latency. For a server-side app (i.e. runOnServer),
however, latency can result.

The details for each frontcall can be found in Built-in front calls on page 1881.

Color and theming
Mobile applications must follow the platform colors and theming.

User interface design on mobile devices

Genero BDL provides several ways to define colors and styles for a mobile app. This section introduces
features that can be used to customize your mobile app and adapt to the target platform user interface
design. As a general rule, avoid to use non-standard ergonomics and decorations, using defaults to let
Genero render your forms according to the platform standards. For example, the GMA front-end will use
Google material design on Android devices.

Defining TTF icon colors

By default, TTF icons get a the color of the platform theme. A default color can be defined for all TTF icons
of a window with the defaultTTFColor style attribute. In order to define a color for a specific icon, add
an #RGB color specification in your image to font glyph mapping file.

For more details, see Using a simple image name (centralized icons) on page 785

App color theme on Android

Android apps can be created with a specific color theme following the Google material design.

When building the APK with the gmabuildtool, you can specify the general app colors with the --build-
app-colors option.

Mobile applications | 2567

For more details, see Define app's color theme on page 2578.

Database support on mobile devices
On the device, a Genero app can use SQL for data management.

Databases supported on mobile devices

Only SQLite can be used on mobile devices. SQLite has a small footprint, is free and readily available.

The database driver (dbmsqt) and the SQLite library are built into the runtime system for mobile Genero
apps. No database driver specification is required when running on mobile.

To read more about SQLite programming, see Using SQLite database in mobile apps on page 2567.

Synchronizing data with a central database

When local mobile app data needs to be synchronized with a central database, you must write your own
synchronization routines using Web Services. You must implement a back-end service to collect mobile
database updates and to send central database changes back to the mobile app.

Important: If you are using GMI, and the device goes into standby mode, the application does not
run in the background and activities with the network are suspended. If you are synchronizing data
with the server, and the device goes into standby, the synchronization is suspended until the device
resumes from standby. If you have a long synchronization, you need to either disable the sleep to
allow the synchronization to complete, or accept that the synchronization will suspend when the
device goes into standby mode.

Using SQLite database in mobile apps
On the device, Genero Mobile uses the SQLite database only.

Running an app in development mode

When running an app in development mode (where the app runs on a computer), you can use any
database server that Genero supports for the operating system of the server-side app.

Running an app on a mobile device

When running the application on the device, only SQLite can be used. The database must be created
at the first application execution, or it must be delivered as the default database in the .ipa or .apk
package.

Locale character set and length semantics

SQLite stores data in UTF-8 codeset, mobile apps will by default run in UTF-8 and with character length
semantics (FGL_LENGTH_SEMANTICS=CHAR).

Creating the database

Mobile applications usually create their database at first execution. The SQLite database file must be
created in the application sandbox, in a writable directory. If the database file does not exist in the current
working directory (os.Path.pwd()), create an empty file and then perform a CONNECT TO instruction.

For more details, see Creating a database from programs on page 414.

Mobile applications | 2568

Providing a default database

SQLite database file format is cross-platform. Instead of creating the database the first time the application
starts, you might want to prepare a default database file in your development environment, and include it in
the .ipa / .apk package.

Data types with SQLite

SQLite does not have strict data type checking as traditional databases. If you define a table column as a
DECIMAL, you can still store character values in that column. Pay attention to this SQLite specific feature,
to avoid invalid storage and type conversion errors in your application.

Consider using the following data types for maximum portability, especially when data needs to be
synchronized with a central database server, where the data types must match to the types used in
the mobile application: CHAR, VARCHAR, DATE, DATETIME YEAR TO MINUTE, DATETIME YEAR TO
FRACTION(3), DECIMAL, SMALLINT, INTEGER, BIGINT, BYTE, TEXT.

Optimizing data changes

SQLite can be slow at doing commits, due to the data integrity technique used for transactions. Since each
INSERT / UPDATE / DELETE statements acts as an individual transaction (i.e., auto-commit), there will be
as many transactions/commits as data manipulation statements. For example, it takes about 10 seconds to
insert 1000 rows on an Intel core i7 2.60GHz CPU / 5400.0 RPM HDD computer.

When executing code that modifies a lot of rows (for example, when inserting default data at first
application execution, or when doing synchronization with a central database), enclose the SQL
statements within a BEGIN WORK / COMMIT WORK transaction block to speed up the process:

BEGIN WORK
FOR i=1 TO mylog.getLength()
 -- INSERT / UPDATE / DELETE statements
END FOR
COMMIT WORK

Enforcing foreign key constraints

SQLite 3.6.19 and + support foreign key constraints, with ON DELETE CASCADE and ON UPDATE
CASCADE options. By default, however, foreign key constraints are not enforced. Each application must
explicitly turn on the feature with a PRAGMA command. Immediately after the database connection, you can
perform the PRAGMA command in an EXECUTE IMMEDIATE statement:

CONNECT TO connstr AS "c1"
EXECUTE IMMEDIATE "PRAGMA foreign_keys = ON"

Truncating the SQLite database file

By default, when deleting rows, SQLite keeps the unused database file pages for future storage. As
result, when deleting a large amount of data, the database file might be larger than necessary. Consider
truncating the database file with the VACUUM SQL command (in an EXECUTE IMMEDIATE statement), if
disk space is limited and when a lot of database rows were deleted.

Depending on the application, the VACUUM command can be executed:

• when starting the application, just after connecting to the database,
• after doing a large database operation (such as a synchronization with a central database),
• as a manual option that the user can trigger.

For example, after connecting to the database:

CONNECT TO connstr AS "c1"

Mobile applications | 2569

EXECUTE IMMEDIATE "VACUUM"

Sharing database files between Android apps

Two different Android apps (each packaged as a separate .apk) execute in their own sandbox, but have
access to the storage area (SD-CARD) and therefore could share a common database file.

SQLite handles concurrent access to the same database file by setting a lock on the entire db file when
modifying data (INSERT/UPDATE/DELETE). By default, if a writer process locks the file, other processes
must wait until the lock owner process completes its transaction and releases the lock.

Because of Informix compatibility, Genero BDL uses a default lock timeout or zero (i.e., not waiting for
locks to be released). As result, when writing to a database file that is locked by another process, if the
isolation level is SERIALIZATION (the default with SQLite), an application will get the SQL error -244.

To avoid this problem, you must change the default lock timeout with the SET LOCK MODE instruction,
after starting the database session:

CONNECT TO connstr AS "c1"
SET LOCK MODE TO 5 -- seconds

The second process will then wait until the first process releases the lock. If transactions are short
(milliseconds), having processes waiting for each other is transparent to the user.

Accessing device functions
Mobile apps can access device functions by using front calls.

Mobile applications typically want to acces device functions such as geolocation, multi-media content
(photos, videos), messaging (contacts database, email, sms).

This can be easily achieved by using front calls dedicated to mobile features. Note that some functions are
platform specific, for example to launch an Android activity, or access to iOS device settings.

As a general rule, execute your front call in a TRY / CATCH block to catch errors:

DEFINE status STRING,
 latitude, longitude FLOAT
TRY
 CALL ui.Interface.frontCall("mobile", "getGeolocation",
 [], [status, latitude, longitude])
CATCH
 ERROR "Could not get coordinates..."
END TRY

For more details, see Genero Mobile common front calls on page 1925, Genero Mobile Android front calls
on page 1940, Genero Mobile iOS front calls on page 1945.

Web Services on mobile devices
Web Services can be used within mobile applications.

Genero Mobile for Android

Requirements for Web Services on Android platforms:

• V3 SSL Certificates

For complete details about the requirements for Web Services on GMA, see GMA / Android Web Services
requirements on page 2419

Mobile applications | 2570

Genero Mobile for iOS

Requirements for Web Services on iOS platforms:

• Some com classes are not supported.
• Some methods of the com.HTTPRequest class have a different behavior on GMI.
• Some xml classes are not supported.
• For supported classes of the xml package, methods using an URL parameter accept only a file URI.
• SOAP errors and faults are not handled; an application may handle the error -15559.
• GWS configuration entries of FGLPROFILE are not supported.
• A long running HTTP request popup displays after some seconds, giving the user the option to cancel

the request.
• HTTP request compression for POST/PUT is not supported.
• Multipart HTTP requests are not supported.
• Limited configuration of SOAP client.

For complete details about limitations for Web Services on GMI, see GMI / iOS Web Services limitations on
page 2417.

Debugging a mobile app
Different solutions are available to debug a mobile app.

Debugging a mobile app in development mode

When executing a mobile app program on a server, displaying the user interface on a mobile front-end
defined by FGLSERVER, it is possible to debug the BDL code with the fglrun -d option:

$ export FGLSERVER=device-ip-address
$ fglrun -d main.42m

For more details, see Starting fglrun in debug mode on page 1532.

AUI protocol debugging

With app running on a server or on the device, it is possible to show AUI protocol exchanges in the console
running the program on the server, by setting the FGLGUIDEBUG envrionment variable to 1. When this
variable set, you can watch user interface events that occur during program execution and how they are
treated by the runtime system.

To set the FGLGUIDEBUG environment variable for an app running on the device, use an FGLPROFILE
fglrun.environment entry. The output can be inspected with the program logs as described later in
this section.

For more details, see FGLGUIDEBUG on page 181.

AUI protocol logging in development mode

With app running on a server, it can be useful to log AUI protocol exchanges betweem the runtime system
and the mobile front-end, to inspect the content, or replay a scenario. This is possible with the --start-
guilog and --run-guilog options of fglrun:

$ fglrun --start-guilog=case1.log

The AUI protocol log file produced by the --start-guilog option can then be shared for analysis.

For more details, see Front-end protocol logging on page 759.

Mobile applications | 2571

Debugging a mobile app running on the device

When executing the mobile app on a device, and if the app has been created with debug mode, it is
possible to establish a connection to the runtime system executing on the mobile device, by using the
fgldb command line tool.

Important: On iOS devices, after installing the app, you need to enable the debug port in the app
settings, otherwise the app will not listen to the debug port.

For example:

$ fgldb -m 192.168.1.23:6400
108 DISPLAY ARRAY contlist TO sr.*
(fgldb)

This way you can debug an app running on a device, by using the source code located on the server
where the fgldb command is executed.

For more details, see Debugging on a mobile device on page 1534.

Building mobile apps in debug mode

In order to enable debug features of an app running on a mobile device, you need to build the app in
debug mode:

• For Android:

The gmabuildtool provides the --mode debug option, to create a debug version of the APK.

For more details, see Building Android apps with Genero on page 2574.
• For iOS:

The gmibuildtool provides the --mode debug option, to create a debug version of the IPA. The
certificate defined in the provisioning profile must be a development certificate.

Note: After installing the debug version of the app on your iOS device, you need to enable the
debug port in the app settings.

For more details, see Building iOS apps with Genero on page 2586.

Browse the AUI tree created on the mobile front-end side

The content of the Abstract User Interface tree created on the mobile front-end side can be inspected from
a web browser, when the app has been created with debug mode, or in development mode by executing
the app on a server and displaying on the device.

To inspect AUI tree, open a web browser and enter the following URL:

http://device-ip-address:6480 (or 6400)

For more details, see Inspecting the AUI tree of a front end on page 751.

Viewing embedded app program logs

The program logs of an app running on a device can be viewed in a browser, if the app was created
in debug mode. VM messages (runtime errors, standard output and standard error) are available. This
feature is not availbale if the app is build in release mode.

To inspect program logs, open a web browser and enter the following URL:

http://device-ip-address:6480 (or 6400)

A menu will then appear in the web page, where you can choose the VM output to be inspected.

Mobile applications | 2572

Deploying mobile apps
This section describes how to build and deploy mobile apps with Genero.

• Deploying mobile apps on Android devices on page 2572
• Deploying mobile apps on iOS devices on page 2584
• Running mobile apps on an application server on page 2595

Deploying mobile apps on Android™ devices
This section contains information to create a mobile application to be deployed on Android devices.

Directory structure for GMA apps
Platform-specific rules need to be considered when deploying on Android devices (GMA).

The application sandbox

On Android devices, applications are deployed in an application sandbox. The application can access and
store data outside of its space, but then the data is also accessible by the other applications.

Directory structure for a GMA application

Inside its application sandbox, an Android app uses the following directory structure:

appdir/
|-- main.42m --
|-- *.42m |
|-- *.42f |
|-- fglprofile |
| ... |
|-- *.42s |
|-- de/ | Program files
| |-- *.42s |
|-- fr/ |
| |-- *.42s |
|-- zh/ |
| |-- *.42s |
| ... |
|-- ... other resource files/dirs ... |
| ... |
|-- webcomponents |
	-- component-type
	-- component-type.html
	-- other-web-comp-resource
... --	

|-- appdata/
 |-- ... writable app files ...

tmpdir/
|-- ... temporary files ...

Program files directory (appdir)

Application program files (.42m, .42f, and so on) need to be deployed in the appdir application base
directory.

Mobile applications | 2573

The program files directory can be found in programs with the base.Application.getProgramDir on
page 1705 method.

Important: On Android, the program files directory returned by the
base.Application.getProgramDir() method is the same directory as the default working
directory, returned by os.Path.pwd().

The FGLAPPDIR environment variable is automatically set to the appdir directory.

Program name (MAIN)

When deploying on mobile devices, the name of the program file must be main.42m or main.42r.

Note: When using the command-line app build scripts, the name of the program file must be
main.42?. When using Genero Studio, the packaging script takes care of renaming this file, if you
have not named it main.

As with other program files, the "MAIN" module must be located under the appdir application program
directory.

Working directory

On Android devices, the default current working directory is the appdir directory, and can be used for
writable files.

The current working directory can be found in programs with the os.Path.pwd on page 2004 method.

Files that need to be writable (such as SQLite database files) can be created directly under the appdir
directory. However, to better organize application files, create sub-directories such as appdir/appdata,
keeping original files directly under the appdir directory. For example, create the application database
under os.Path.pwd() || "/database".

Temporary directory (tmpdir)

A temporary directory is available for the application.

In order to find the temporary directory for the app, use the standard.feInfo front call, with the
"dataDirectory" parameter.

To create a temporary file name, use the os.Path.makeTempName() method.

Language directories for localized strings

When the app starts, the appropriate .42s string files will be loaded from the directory corresponding
to the current language settings of the mobile device. String files to be loaded can be defined in app's
fglprofile, or you can use the main program name to avoid fglprofile settings.

For each language supported by your application, a directory must exist under appdir, with a name
including the locale codes. Consider also providing default string files (in English for ex) directly under
appdir, in case if the regional settings of the device do not match one of the locale directories of the app,
otherwise the application will stop with error -8006.

For example:

appdir/mystrings.42s
appdir/fr/mystrings.42s
appdir/de/mystrings.42s

For more details, see Localized string files on mobile devices on page 333.

Mobile applications | 2574

Deploying a custom fglprofile file

If you need to set fglprofile entries for your mobile application, create a file with the name fglprofile,
and deploy it under the appdir directory, along with the other program files.

See Understanding FGLPROFILE on page 164 for more details about fglprofile settings.

Creating the initial database file

When a mobile application starts for the first time, it typically creates a new database, or copies a existing
database template file from the file directory (base.Application.getProgramDir on page 1705) to
the working directory (os.Path.pwd on page 2004).

Note: Different database file names should be used for the original and final application database,
as folders pointed by base.Application.getProgramDir() and os.Path.pwd() can be the
same on Android devices.

For more details about database creation on mobile devices, see Creating a database from programs on
page 414.

Building Android™ apps with Genero
Genero provides a command-line tool to create applications for Android devices.

Basics

Genero mobile apps for Android are distributed as APK packages like any other Android app. Genero
provides a command line tool to build the APK package for your mobile application. For testing purposes,
the tool can also deploy and automatically launch the app on a specific device or simulator. The tool has
also an option to update the Android SDK.

Note: This documentation section implies that you are familiar with Android app programming
concepts and requirements. For example, you will need the Android SDK tools to be installed (and
up to date) to build your Android apps. For more details, visit the Android developer site at https://
developer.android.com.

Prerequisites

Before starting the command line tool to build or deploy the app, fulfill the following prerequisites:

• The Genero BDL development environment (FGLDIR) must be installed on the computer to compile
your program files.

• The Java JDK must be installed. The minimum required version is 1.7.
• The Android SDK must be installed (the buildtool uses the "Gradle" utility).

Note: The first time the Android tools are called, they will automatically check for updates.
Therefore, you need an internet connection.

• All Android SDK packages required by GMA must be downloaded. In order to download the required
Android SDK packages, execute the gmabuildtool updatesdk command.

Note: Execute the gmabuildtool updatesdk command every time a new version of the
GMA buildtool and GMA binary archive is installed.

• The GMA buildtool and the GMA binary archive must be installed.

The GMA buildtool and GMA binary archive are provided in the GMA distribution archive (fjs-gma-
*.zip).

To setup the GMA buildtool perform the following steps:

1. Create a dedicated directory (gma-install-dir) and extract the content of the fjs-gma-*.zip.
This will contain the gmabuildtool command. Add the gma-install-dir directory to your PATH
environment variable.

https://developer.android.com
https://developer.android.com

Mobile applications | 2575

2. Create a directory (gma-scaffold-project) for the GMA binary archive, and extract gma-install-
dir/artifacts/fjs-gma-*-android-scaffolding.zip into this directory. This direcory will
be specified with the --build-project option of gmabuildtool.

• Android specific app resources such as icons (in all required sizes) are required, along with the
application program files.

• If you plan to publish your app on Google Play, register to Google Play as a developer and create a
Google Play project.

Environment settings

Define the following environment variables before starting the command-line buildtool:

• Android SDK env settings (ANDROID_HOME, PATH)
• Java JDK env settings (JAVA_HOME, PATH)

Update the Android SDK with the GMA buildtool

After a fresh installation of the GMA buildtool and GMA binary archive, upgrade the Android SDK and
downnload all Android SDK packages required by GMA, by executing the gmabuildtool updatesdk
command:

gmabuildtool updatesdk
 --android-sdk /use/local/32bits/android-sdk/r22.6.2

The Android SDK installation directory is required for the SDK update, and is found in ANDROID_HOME
environment variable, or with the --android-sdk option.

If you need to specify a proxy to download the Android SDK, use the --proxy-host and --proxy-port
options:

gmabuildtool updatesdk
 --proxy-host amadeus --proxy-port 3232
 ...

Building and deploying with the GMA buildtool

The gmabuildtool build ... command creates the APK from a set of files, and according to the
options passed as parameter.

gmabuildtool build
 ... build options ...

Once the APK file is created, use the gmabuildtool test --test-apk command to install the app on
the Android device plugged to the computer, and start the app automatically.

gmabuildtool test
 --test-apk path-to-the-apk-file

For a complete description of command options, see gmabuildtool on page 2580.

Cleaning the scaffold files

The build process is optimized to avoid a complete APK rebuild every time you invoke the GMA buildtool:
When application program file changes are detected, the GMA buildtool will create archive files that can be
reused in the next build if no changes are detected. However, files used for the optimized build might be
corrupted, for example in case of user interruption or graddle build failure.

https://developer.android.com/distribute/googleplay/start.html
https://developer.android.com/distribute/googleplay/start.html

Mobile applications | 2576

In this situation, you can use the --clean option of the gmabuildtool build ... command, to
cleanup the scaffold build directory, and continue with a fresh build:

gmabuildtool build --clean
 ... build options ...

Using an options file

To simplify option speciciation, create an file with the list of options to be passed to the gmabuildtool
with the --input-options argument. The options file must contain a line for each option/value peer:

$ cat myoptions.txt
--build-output-apk-name MyApp
--build-app-name MyApp
--build-app-package-name com.example.myapp
...
$ gmabuildtool --input-options ./myoptions.txt

Elements used to building the Android app

The gmabuildtool build command builds the Android APK package from the following:

• The GMA binary archive, containing the GMA front end and the FGL runtime system.

Note: You must unzip the fjs-gma-*-android-scaffolding.zip file.

• The compiled application program and resource files (.42m, .42f, etc) (--build-app-genero-
program* options),

• The prefix for the APK file name to be generated (--build-output-apk-name option),
• The name of the app (--build-app-name option),
• The version code of the app (--build-app-version-code option),
• The version name of the app (--build-app-version-name option),
• Android app specific resources:

• Android app icons (all sizes) (--build-app-icon* options).
• Android app specifics (to sign the app, not required in development mode):

• The keystore alias, used with the keytool to generate the keystore file (--build-jarsigner-
alias option).

• The keystore file, generated from keytool (for the --build-jarsigner-keystore option).

Generate the keystore file to sign your app

In order to build an APK that can be deployed on the market (Google Play), you need to sign your Android
app.

First, you need to generate a keystore file with the keytool Android utility.

The keystore file and keystore alias will be used by the gmabuildtool to sign the APK with the
jarsigner utility. These signing credentials are passed to the buildtool with the --build-jarsigner-
keystore and --build-jarsigner-alias options.

For more details, see manual Android application signing.

Generated APK file name

The file name of the APK package is formed from:

1. the APK file name prefix defined by the --build-output-apk-name option (by default, "app"),
2. the target type (-arm or -x86),

https://developer.android.com/tools/publishing/app-signing.html#signing-manually

Mobile applications | 2577

3. if building a debug version, the -debug suffix,
4. the .apk file extension.

For example, if the APK file name prefix is MyApp and the target architecture is arm in debug mode, the
resulting APK file name will be: MyApp-arm-debug.apk.

Default build directory structure

For convenience, the buildtool supports a default directory structure to find all files required to build the
APK:

top-dir
|
|-- main.42m and other program files, as described in Directory structure
 for GMA apps on page 2572
|
|-- gma
| |-- project
| | ...
| |-- temp
| | ...
| |-- ic_app_hdpi.png
| |-- ic_app_mdpi.png
| |-- ic_app_xhdpi.png
| |-- ic_app_xxhdpi.png
| | ...

In the above directory structure:

1. top-dir is the top directory of the default structure. It will typically hold your application program files.
The program files directory can be specified with the --build-app-genero option.

2. top-dir/gma is the default directory containing the GMA binary archive, the temp directory and the
app icons.

3. top-dir/gma/project must contain the unzipped GMA binary archive (fjs-gma-*-android-
scaffolding.zip). This directory can be specified with the --build-project option.

Android permissions

In order to use a device feature such as the camera, an Android app must be created by specifying
the corresponding Android permissions. Furthermore, Android distinguishes "normal" and "dangerous"
permissions. While both type of permissions just need to be specified when building the app, "dangerous"
permissions require a user validation: A popup dialog will appear to let the user confirm that the dangerous
feature can be accessed. Before Android 6, dangerous permissions defined by the app were asked at app
installation. Starting with Android 6, dangerous permissions must be asked by the app code on demand.

Android permissions required for the built-in front calls are automatically set by GMA, which ask
automatically user confirmation if the permission is dangerous. For example, if the app code makes a
chooseContact front call, the GMA will automatically ask the user for the Android permission to access
the contacts database, and set the corresponding permission on confirmation. When building your app,
there is no need to specify permissions required for built-in front calls.

Other permissions (not involved by built-in front calls) need to be defined when building the app, and
"dangerous" permissions need to be asked to the user when needed. In order to ask the user for a given
permission, the app must use the askForPermission front call.

Android permissions can be specified with the --build-app-permissions option of the
gmabuildtool. Define the list of permissions as a single argument, by using the comma as separator.

For example:

gmabuildtool build \

Mobile applications | 2578

 ...
 --build-app-permissions android.permission.READ_CALENDAR,... \
 ...

Android permissions listed below are defined by default by GMA and therefore do not need to be specified
when building your app. For "dangerous" permissions, the GMA will automatically ask the user to access
the feature, when corresponding front call is performed:

• Normal permissions set by default in GMA (no user confirmation required):

• android.permission.INTERNET

• android.permission.ACCESS_NETWORK_STATE

• android.permission.CHANGE_NETWORK_STATE

• android.permission.ACCESS_WIFI_STATE

• android.permission.WAKE_LOCK

• com.google.android.c2dm.permission.RECEIVE

• packageName.permission.C2D_MESSAGE

• Dangerous permissions set by default in GMA (requires user confirmation):

• android.permission.ACCESS_FINE_LOCATION

• android.permission.ACCESS_COARSE_LOCATION

• android.permission.READ_CONTACTS

• android.permission.GET_ACCOUNTS

• android.permission.MOUNT_FORMAT_FILESYSTEMS

• android.permission.READ_LOGS

• android.permission.READ_PHONE_STATE

• android.permission.WRITE_EXTERNAL_STORAGE

• android.permission.READ_EXTERNAL_STORAGE

Other permissions required by the app but not listed here need to be specified when building your app, and
if the permission enters in the "dangerous" category, the app code must issue an askForPermission
front call before using the feature. For a complete list of Android permissions, see Android's Manifest
permissions.

Define app's color theme

Android apps can be created with a color theme defined by four basic colors to customize your app, that
can be defined with the --build-app-colors option.

Note: This feature is only available with Android 5.0 / SDK 21 and higher. With older versions of
Android, the colors specified with the --build-app-colors option will not take effect.

The value provided to the --build-app-colors option must be a comma-separated list of four
hexadecimal RGB colors.

The position of the color defines its purpose:

1. Primary color: This is the main color used in the app.
2. Primary dark color: This is the color used for the status bar and the navigation bar.
3. Accent color: This is the color used for widgets and table lines.
4. Action bar text color: This is the foreground color for the texts in the action bar.

By default, the color theme is the Genero purple color.

For example, to define a red color theme, use the following combination:

gmabuildtool build \
 ...
 --build-app-colors "#F44336,#B71C1C,#EF9A9A,#FFFFFF" \

http://developer.android.com/reference/android/Manifest.permission.html
http://developer.android.com/reference/android/Manifest.permission.html

Mobile applications | 2579

 ...

For more details about Android color shemes, see Android Colors

Debug and release versions

Android apps can be generated in a debug or release version. Release version are prepared for
distribution on Google Play, while debug versions are used in development. In debug mode, the app
installed on the device will listen on the debug TCP port to allow fgldb -m connections.

Debug or release mode can be controlled with the --build-mode option of the gmabuildtool
command:

gmabuildtool build \
 --build-mode debug \
 ...

By default the app is build in release mode.

Building an Android app with gmabuildtool

Follow the next steps to setup a GMA app build directory in order to create an Android app, based on the
default directory structure:

1. Create the root distribution directory (top-dir)
2. Copy compiled program files (.42m, .42f, fglprofile, application images, web component files, etc)

under top-dir.
3. Copy the default English .42s compiled string resource file under top-dir.
4. Create non-English langage directories (fr, ge, ...) under top-dir and copie the corresponding .42s

files.
5. Copy default application data files (database file for ex) under top-dir.
6. Create the top-dir/gma directory.
7. Copy Android app resources (icons) under top-dir/gma.

Once the build directory is prepared, issue the following commands to build the APK:

$ cd top-dir
$ gmabuildtool build \
 --android-sdk /home/mike/android/sdk \
 --build-project /home/mike/work/example/scaffold_project \
 --build-apk-outputs /home/mike/work/example/outputs \
 --build-output-apk-name MyApp \
 --build-app-name MyApp \
 --build-app-package-name com.example.myapp \
 --build-app-version-code 1002 \
 --build-app-version-name "10.02" \
 --build-jarsigner-alias android_alias \
 --build-jarsigner-keystore /home/mike/work/example/sign/android.keystore
 \
 --build-mode release \
 --build-app-permissions
 android.permission.ACCESS_WIFI_STATE,android.permission.CALL_PHONE

Important: The directory specified with the --build-project option must contain the unzipped
GMA binary archive (fjs-gma-*-android-scaffolding.zip).

Building an app with GMA custom extensions

The gmabuildtool build command supports APK creation for applications using GMA custom
extensions written in Java.

https://www.google.com/design/spec/style/color.html#color-color-palette

Mobile applications | 2580

Before building the APK package, create the custom GMA binary archive with your extensions, as
described in Packaging custom Java extensions for GMA on page 1590.

When your custom GMA binary archive is complete, build the APK package with the gmabuildtool
build command. Use the --build-project option to specify the path to the Android Studio project that
was used to build your custom GMA binary archive:

$ gmabuildtool build
 ...
 --build-project /home/mike/android_project/mycustgma
 ...

Note: Other options have to be specified as for a regular build using the original standard GMI
binary archive.

Deploy and launch the app

After building the APK package, for testing purposes, you can deploy and launch your app from the
command line with the gmabuildtool test command.

Note: The test command is provided for development only. To deploy your app in production for
several devices, use the regular publication channel of Android apps.

In order to deploy and launch the app, you must provide:

1. the path to the APK file

There must be only one Android device connected or running Android emulator.

$ gmabuildtool test \
 --test-apk /home/mike/work/example/outputs/MyApp-arm-debug.apk

gmabuildtool
The gmabuildtool is a utility to create and test applications for an Android devices.

Syntax

gmabuildtool { build | test | updatesdk } [options]

1. build is the command to build an APK package.
2. test is the command to deploy and launch an app.
3. updatesdk is the command to update the Android SDK to download packages required by GMA.
4. options are described in Table 572: gmabuildtool options on page 2580.

Options

Table 572: gmabuildtool options

Option
Short
option

Description

--android-sdk path -as

The path to the Android SDK installation directory.

If not specified, defaults to the ANDROID_HOME
environment variable.

--build-app-colors color-
list

-bc Define the Android color theme for the app (Android
5.0+ / SDK 21+)

Mobile applications | 2581

Option
Short
option

Description

The value must be a comma-separated list of four
hexadecimal RGB colors.

The position of the color defines its purpose:

1. Primary color: This is the main color used in the app.
2. Primary dark color: This is the color used for the status

bar and the navigation bar.
3. Accent color: This is the color used for widgets and

table lines.
4. Action bar text color: This is the foreground color for

the texts in the action bar.

By default, the color theme is the Genero purple color.

--build-app-genero-
program-main path

-bgpm

Relative path to the main module of the application (can
be .xcf, .42m or .42r).

Defaults to main.42m

--build-app-genero-
program path

-bgp

Defines the path to the application program files
(.42m, .42f, etc)

The contents of this directory will be zipped and bundled
inside APKs. This option can handle an already zipped
Genero program archive.

If not specified, defaults to the current working directory.

--build-app-icon-hdpi
path

-bih

Defines the path to application icon in hdpi.

Default is ./gma/ic_app_hdpi.png, in the current
working directory.

--build-app-icon-mdpi
path

-bim

Defines the path to application icon in mdpi.

Default is ./gma/ic_app_mdpi.png, in the current
working directory.

--build-app-icon-xhdpi
path

-bixh

Defines the path to application icon in xhdpi.

Default is ./gma/ic_app_xhdpi.png, in the current
working directory.

--build-app-icon-xxhdpi
path

-bixxh

Defines the path to application icon in xxhdpi.

Default is ./gma/ic_app_xxhdpi.png, in the current
working directory.

--build-app-name app-name -bn

Application name.

If not specified, the application name defaults to the
current working directory.

--build-app-package-name
name

-bpn
APK package name.

The package name should be formatted as
"com.organization-name.app-name".

Mobile applications | 2582

Option
Short
option

Description

If not specified, the application package name defaults to
com.example.current-working-directory

--build-app-permissions
permissions

-ba

Android application permissions.

The list of permissions is provided as a comma separated
list of android.permission.* identifiers.

For more details, see Android permissions on page
2577.

--build-app-version-code
version-code

-bvc

Application version code.

For example: 100915

The value of this option must be an integer (do not use
decimal numbers).

--build-app-version-name
version-name

-bvn

Application version name.

For example: 10.09.15

This will be the actual app version visible on devices.

--build-apk-outputs path -bo
Defines the destination folder where the APK packages
must be created.

--build-distribution path -bd

Distribution folder path.

Used to have a location to store the extracted scaffold
folder, and be able to build GMA APKs if the project
folder is an extension project.

Default is ./gma/temp, in the current working directory.

--build-jarsigner-alias
alias

-bja

Jarsigner alias.

This is the alias provided to the keystore utility to build
the keystore file to sign the app.

Used when APK artifacts are signed.

--build-jarsigner-keypass
keypass

-bjk

Jarsigner keypass.

Specifies the password used to protect the private key of
the keystore entry addressed by the alias specified in the
--build-jarsigner-alias option. The password is required
when using jarsigner to sign a JAR file.

Used when APK artifacts are signed.

--build-jarsigner-
keystore path

-bjks

Jarsigner keystore path.

This is the path to the keystore file generated by the
keystore utility to sign the app.

Used when APK artifacts are signed.

--build-jarsigner-
storepass storepass

-bjs Jarsigner storepass.

Mobile applications | 2583

Option
Short
option

Description

Specifies the password that is required to access the
keystore.

Used when APK artifacts are signed.

--build-mode
{release|debug}

-bm

Package build mode, to build a release version or a
development/debug version.

Default: release

--build-output-apk-name
name

-ban

Defines the prefix for the APK packages names.

By default, this prefix is "app".

The file name of the APK package is formed from:

1. the APK file name prefix defined by the --build-
output-apk-name option (by default, "app"),

2. the target type (-arm or -x86),
3. if building a debug version, the -debug suffix,
4. the .apk file extension.

For example, if the APK file name prefix is MyApp and the
target architecture is arm in debug mode, the resulting
APK file name will be: MyApp-arm-debug.apk.

--build-project path -bp

Defines the path to the directory containing the original
(unzipped) GMA binary archive files, or the directory
containing the Android Studio project, when building a
customized GMA.

Note: When using the original GMA binary
archive, the zip file must be uncompressed before
executing the build.

Default is ./gma/project, in the current working
directory.

--build-types
{x86|arm|x86,arm}

-bt

Target platform type.

This option accepts a list of platform types separated by a
comma (x86,arm)

If not specified, both x86 and arm APKs will be
generated.

--clean -c

Clean the scaffold build directory before a rebuild.

This option can be used with the build command, to
cleanup the scaffold directories containing the application
files, before a new build.

To be used in case if the previous build was interrupted
or has failed.

--input-options path -i Path to the file containing gmabuildtool options.

Mobile applications | 2584

Option
Short
option

Description

Define all options in a file and pass the file to the
gmabuildtool command with the --input-options
argument.

The options file must use the following format:

option-name option-value
...

--java-home path -jh
Java home path.

Default is JAVA_HOME.

--proxy-host host -ph Defines the proxy host for the updatesdk command.

--proxy-host port -pp Defines the proxy port for the updatesdk command.

--test-apk path -ta
Path to the APK file to deploy and launch with the test
command.

--help -h Display the list of options.

--update-sdk-project
<arg>

-up
Update SDK project folder path, used with the
updatesdk command.

--verbose-fine -v Verbose mode (level 1)

--verbose-finer -vv Verbose mode (level 2)

--verbose-finest -vvv Verbose mode (level 3) - shows all possible logs.

--version -V Display GMA build tool version.

Deploying mobile apps on iOS devices
This section contains information to create a mobile application to be deployed on iOS devices.

Directory structure for GMI apps
Platform-specific rules need to be considered when deploying on iOS devices (GMI).

The application sandbox

On iOS devices, program interactions with the file system are limited to the directories inside the app's
sandbox.

Directory structure for a GMI application

Inside its application sandbox, an iOS app uses the following directory structure:

appdir/
|-- main.42m --
|-- *.42m |
|-- *.42f |
|-- fglprofile |
| ... |

Mobile applications | 2585

|-- *.42s |
|-- de/ | Program files
| |-- *.42s |
|-- fr/ |
| |-- *.42s |
|-- zh/ |
| |-- *.42s |
|-- ... other resource files/dirs ... |
| ... |
|-- webcomponents |
	-- component-type
	-- component-type.html
	-- other-web-comp-resource
... --	

Documents/
|-- ... writable app files ...

tmpdir/
|-- ... temporary files ...

Program files directory (appdir)

Application program files (.42m, .42f, as well as other program resources) need to be deployed in the
appdir directory.

Important: On iOS, the application program directory is read-only. Only the "Documents" directory
is writable.

The program files directory can be found in programs with the base.Application.getProgramDir on
page 1705 method.

The FGLAPPDIR environment variable is automatically set to the appdir directory.

Program name (MAIN)

When deploying on mobile devices, the name of the program file must be main.42m or main.42r.

Note: When using the command-line app build scripts, the name of the program file must be
main.42?. When using Genero Studio, the packaging script takes care of renaming this file, if you
have not named it main.

As with other program files, the "MAIN" module must be located under the appdir application program
directory.

Working directory

The current working directory for an iOS application is typically a writable "Documents" directory, in
the private folder of the app. For example, the path to the working directory can be "/private/var/
mobile/.../Documents".

The current working directory can be found in program with the os.Path.pwd on page 2004 method.

Note: Any file access without an absolute path will be relative to the current working directory.

Files that need to be writable (such as SQLite database files) must be created or copied from the
program files directory into the working directory. Copy must be done by the app at first execution, by
using base.Application.getProgramDir on page 1705, to find the program files directory, and
os.Path.pwd(), to find the working directory.

Mobile applications | 2586

Temporary directory (tmpdir)

A temporary directory is available for the application.

In order to find the temporary directory for the app, use the standard.feInfo front call, with the
"dataDirectory" parameter.

To create a temporary file name, use the os.Path.makeTempName() method.

Language directories for localized strings

When the app starts, the appropriate .42s string files will be loaded from the directory corresponding
to the current language settings of the mobile device. String files to be loaded can be defined in app's
fglprofile, or you can use the main program name to avoid fglprofile settings.

For each language supported by your application, a directory must exist under appdir, with a name
including the locale codes. Consider also providing default string files (in English for ex) directly under
appdir, in case if the regional settings of the device do not match one of the locale directories of the app,
otherwise the application will stop with error -8006.

For example:

appdir/mystrings.42s
appdir/fr/mystrings.42s
appdir/de/mystrings.42s

For more details, see Localized string files on mobile devices on page 333.

Deploying a custom fglprofile file

If you need to set fglprofile entries for your mobile application, create a file with the name fglprofile,
and deploy it under the appdir directory, along with the other program files.

See Understanding FGLPROFILE on page 164 for more details about fglprofile settings.

Creating the initial database file

When a mobile application starts for the first time, it typically creates a new database, or copies a existing
database template file from the appdir program file directory (base.Application.getProgramDir
on page 1705) to the working directory (os.Path.pwd on page 2004).

For more details about database creation on mobile devices, see Creating a database from programs on
page 414.

Building iOS apps with Genero
Genero provides a command-line tool to build applications for iOS devices.

Basics

Genero mobile apps for iOS are distributed as IPA packages like any other iOS app. Genero provides a
command line tool to build the .ipa package for your mobile application, or the .app directory for simulators.

Note: This documentation section assumes that you are familiar with iOS app programming
concepts and requirements. In order to build your apps, you must have an Apple developer
account, as well as certificates and provisioning profiles to deploy your apps. For more details, visit
the Apple developer site at https://developer.apple.com.

Prerequisites

Before starting the command line tool to build or deploy the app, fulfill the following prerequisites:

https://developer.apple.com

Mobile applications | 2587

• The Genero BDL development environment (FGLDIR) must be installed on the Mac computer to
compile your program files.

• The GMI build tool must be installed and available (check that the gmibuildtool command is
available).

Note: The GMI build tool is provided as a ZIP archive (fjs-fglgmi-*.zip) that must be
extracted directly into FGLDIR.

Important: When re-installing a new GMI archive, remove all "build" directories created by
the gmibuildtool.

• An Apple developer account, device identifiers (UDID) and corresponding identifiers to sign your iOS
app (certificate, bundle id, provisioning profile).

Important: The UDID is the identifier of your physical device, it can be found with the
instruments -s command when the device is plugged to the Mac. When deploying on a
physical device, make sure that the UDID of the device is listed in the Apple Developer account
that is used to generate the provisioning profiles.

• XCode must be installed on your Mac OS X computer (utilities from XCode toolchain are required).

Note: Make sure that the installed XCode version supports the iOS versions of your mobile
devices. As a general rule, update the XCode and iOS to the latest versions.

• iOS app resources such as icons and launch images (in all required sizes).

Finding the UDID of the plugged device

In order to find the UDID of the device plugged to your Mac, execute the instruments -s command,
and identify the line describing your physical device:

$ instruments -s
Known Devices:
fraise [55D6D6C1-DE87-52F0-865E-3C6DC79F13D7]
Fourjs2 iPod touch (9.1) [78b7452fa9462c98c3bc7047da344314fd032004]
iPad 2 (9.0) [19CDA827-CA55-46F1-9376-BF61E2ECFDBB]
iPad Air (9.0) [F55E1207-C42B-472E-BD76-5B5AE46DE77A]
iPad Air 2 (9.0) [A0E8C4CD-67CD-42CB-84DF-9C75AC773293]
...
Known Templates:
"Activity Monitor"
"Allocations"
...

In the above output, the UDID of the iPod is 78b7452fa9462c98c3bc7047da344314fd032004.

Environment settings

Before starting the command-line build tool,

• Make sure that XCode tools are available (try xcodebuild from the command line)

Creating the GMI front-end for development purpose

Four Js is not allowed to provide a ready-to-use front-end component for iOS devices, because of iOS app
limitations defined by Apple: An iOS app shipped on the App Store cannot listen to a TCP port to provide a
GUI service. Therefore, you will have to create your own GMI front-end, with your own Apple certificate and
provisioning profile. The generated GMI can then be deployed on your device or simulator for development
purpose listening on the port 6400, to display applications running on a server (FGLSERVER).

In order to build your own GMI front-end:

1. Make sure that the gmibuildtool is available (if not done yet, extract the fjs-fglgmi*.zip archive into
FGLDIR).

Mobile applications | 2588

2. Go to the FGLDIR/demo/MobileDemo/gmiclient directory.
3. Delete the complete build directory if it exists (can be done with a make clean command).
4. Make the GMI app with make (program files like main.42m file must exist).
5. Build the GMI front-end:

• In order to build only the GMI front-end (GMI.app directory) for the simulator, execute the
gmibuildtool command without any parameter:

$ gmibuildtool

• In order to build and install the GMI front-end on the simulator, first make sure that the simulator
is started (open -a simulator command), then execute the gmibuildtool command with
following parameters:

$ gmibuildtool --device booted

• In order to build only the GMI front-end IPA for devices, get a development certificate and
provisioning profile and execute the gmibuildtool command with following parameters:

$ gmibuildtool \
 --device phone \
 --certificate HGRW8... \
 --provisioning "~/Library/MobileDevice/Provisioning Profiles/
myapp.mobileprovision"

The generated IPA file can be found in the build subdirectory. This IPA file can be installed on your
devices by using iTunes.

• In order to build and install the GMI front-end on the device plugged to your Mac, get a development
certificate and provisioning profile, and the exact device name (with the instruments -s
command) and execute the gmibuildtool command with following parameters::

$ gmibuildtool \
 --device "Mike's iPhone 6 (9.0)" \
 --certificate HGRW8... \
 --provisioning "~/Library/MobileDevice/Provisioning Profiles/
myapp.mobileprovision"

Specifying the target to build and deploy the iOS app

The gmibuildtool command can build and install iOS apps for the simulator or for physical devices.

The build and/or install action is controlled by the --device option:

• By default, when not specifying the --device option, a GMI.app directory is created for the simulator.
• When specifying the --device booted option, the GMI.app directory is created and the app is

installed on the booted simulator.
• When specifying the --device phone option, the GMI.app directory and .ipa file are created.
• When specifying the --device physical-device-name option (with a real physical device name

plugged on your Mac), the GMI.app directory and .ipa file are created and the app is installed on the
device.

By default, the generated GMI.app directory and .ipa archive can be found in $PWD/build sub-
directories. However you can specify the destination IPA file with the --output option.

Elements used to build the iOS app

The gmibuildtool command builds the iOS app package from the following:

• The GMI binary archive, containing the GMI front end and the FGL runtime system library,

Mobile applications | 2589

Note: These files are provided in the fjs-fglgmi-*.zip archive that must be extracted
directly under FGLDIR.

Important: When re-installing a new GMI archive, remove all "build" directories created by
the gmibuildtool.

• The compiled application program and resource files (.42m, .42f, etc),

Note: The application program files must include a main.42m or main.42r module.

• The display name of the app (--app-name parameter),
• The version of the app (--app-version parameter),
• The debug or release mode (--mode parameter),
• The certificate (to sign the app) (--certificate parameter),
• The bundle Identifier (--bundle-id parameter),
• The app provisioning profile (.mobileprovision file) (--provisioning parameter),
• iOS app specific resources:

• App icons (--icons parameter),
• Launch images (--launch-images parameter) or launch storyboard file (--storyboard

parameter).

For a complete description of command options, see gmibuildtool on page 2592.

Default build directory structure

For convenience, the build tool supports a default directory structure to find all files required to build the
app:

top-dir
|
|-- main.42m and other program files, as described in Directory structure
 for GMI apps on page 2584
|
|-- gmi
| |
| |-- Info.plist
| |
| |-- LaunchScreen.storyboard
| |
| |-- Default@2x.png
| |-- Default-568h@2x.png
| |-- Default-Landscape.png
| |-- Default-Landscape-667h@2x.png
| |-- Default-Landscape-736h@3x.png
| |-- Default-Landscape@2x.png
| |-- Default-Portrait.png
| |-- Default-Portrait-736h@3x.png
| |-- Default-Portrait-667h@2x.png
| |-- Default-Portrait@2x.png
| | ...
| |-- icon_29x29.png
| |-- icon_40x40.png
| |-- icon_57x57.png
| |-- icon_58x58.png
| |-- icon_72x72.png
| |-- icon_76x76.png
| |-- icon_80x80.png
| |-- icon_120x120.png
| |-- icon_152x152.png
| | ...

Mobile applications | 2590

In the above directory structure:

1. top-dir is the top directory of the default structure. It will typically hold your application program files.
A different program files directory can be specified with the --program-files option.

2. top-dir/gmi is the default directory containing the app resource files such as icons:

a. Info.plist is the Information Property List File that will be used to build the app. Some properties
will be overwritten by gmibuildtool options like --app-name and --app-version.

b. LaunchScreen.storyboard is the default storyboard file for the app launch screen. This file can
be specified with the gmibuildtool --storyboard option.

c. Default-*.png are the app launch image files. The directory to find launch images can be
specified with the gmibuildtool --launch-images option.

d. icon_*.png are the app icon files. The directory to find icons can be specified with the
gmibuildtool --icons option.

Debug and release versions

iOS apps can be generated in a debug or release version. Release version are prepared for distribution on
the App Store, while debug versions are used in development.

In debug mode, the app installed on the device can listen on the debug TCP port to allow fgldb -m
connections, after enabling the debug port in the app settings.

Debug or release mode must be specified in the command line with the --mode debug or --mode
release option. Additionnally, if you want to deploy on a physical device, you need to use a provisioning
profile corresponding to the debug or release mode:

• In debug mode, the certificate must be a development certificate.
• In release mode, the certificate must be a distribution certificate.

Defining the app version and build number

Apple distinguishes the app version number of a bundle (visible to the end user), from the build version
number of a bundle (called a release version number in Apple docs).

You specify the app version number with the --app-version option of the gmibuildtool command.
This option sets the CFBundleVersion property of the Info.plist file), and must match the version
specified in iTunes Connect.

In order to distinguish multiple builds (Apple's term is "releases") of the same app version number,
define the build version number of your app with the --build-number option. This option sets the
CFBundleShortVersionString property of the Info.plist file. For a given app version, you need to
increase this build number, to be able to upload a new binary on iTunes Connect.

Note: If you do not specify the --build-number option, the build version number defaults to the
app version specified with the --app-version option.

Defining app properties in the ./gmi/Info.plist file

iOS app are created with a set of properties that are essential configuration information for a bundled
executable. These properties are defined in the "Information Property List File", an XML formatted file,
named Info.plist by convention.

Most important Info.plist properties are defined with gmibuildtool options such as --app-name
and --app-version. However, you may need to define other properties that are out of the scope of the
build tool. For example: background modes, device capabilities, screen orientations, permanent wifi, etc.

In order to define specific app properties, setup an Info.plist file in top-dir/gmi directory, before
executing the gmibuildtool. Properties covered by the build tool will be overwritten, while any other
property defined in the top-dir/gmi/Info.plist file will be left untouched.

Mobile applications | 2591

For more details about the Info.plist file structure, see Apple developer site page about Information
Property List File.

Building an iOS app with gmibuildtool

Follow the next steps to setup a GMI app build directory in order to create an iOS app, based on the
default directory structure:

1. Create the root distribution directory (top-dir)
2. Copy compiled program files (.42m, .42f, fglprofile, application images, web component files, etc)

under top-dir.
3. Copy the default English .42s compiled string resource file under top-dir.
4. Create non-English langage directories (fr, ge, ...) under top-dir and copie the corresponding .42s

files.
5. Copy default application data files (database file for ex) under top-dir.
6. Create the top-dir/gmi directory.
7. Copy iOS app resources (icons, launch screen, storyboard) under top-dir/gmi.
8. If needed, create an top-dir/gmi/Info.plist file, to define specific iOS app properties.

Once the build directory is prepared, issue the following commands:

$ cd top-dir
$ gmibuildtool \
 --output myapp.ipa \
 --app-name "My App" \
 --app-version "v3.1.6" \
 --bundle-id "com.example.mycompany.myapp" \
 --mode release \
 --certificate HGRW8... \
 --provisioning "~/Library/MobileDevice/Provisioning Profiles/
myapp.mobileprovision" \
 --device phone

Building a GMI app with C extensions or custom front calls

In order to create an iOS app using C extensions written in Objective-C as in Implementing C-Extensions
for GMI on page 1613, you need to setup a Makefile calling the FGLDIR/lib/Makefile-gmi generic
makefile file.

In your Makefile, define the following variables to be passed to the generic makefile:

• APPNAME: Defines the display name of the app.
• BUNDLE_IDENTIFIER: Defines the Bundle Id (or App Id) of the app.
• IDENTITY: Defines the certificate to be used for this app.
• PROVISIONING_PROFILE: Defines the provisioning profile generated for this app.
• USEREXTENSION: Defines the lib name containing the C extensions.
• TARGET: Defines the device where the app must be installed (can be phone or simulator).

Custom Makefile example:

...

all: $(MODULES) $(FORMS) ...

run: all userextension.dylib
 fglrun -e userextension main

userextension.dylib: userextension.c
 fglmkext $?
...

https://developer.apple.com/library/ios/documentation/General/Reference/InfoPlistKeyReference/Articles/AboutInformationPropertyListFiles.html
https://developer.apple.com/library/ios/documentation/General/Reference/InfoPlistKeyReference/Articles/AboutInformationPropertyListFiles.html

Mobile applications | 2592

GMI_OPTIONS = \
 APPNAME=MyApp \
 BUNDLE_IDENTIFIER=com.mycomany.myapp \
 IDENTITY=HGRW8... \
 PROVISIONING_PROFILE=~/Library/MobileDevice/Provisioning\ Profiles/
myapp.mobileprovision \
 USEREXTENSION=userextension.o \
 TARGET=phone

GMI_MAKE = make -f $(FGLDIR)/lib/Makefile-gmi $(GMI_OPTIONS)

gmi.all: all
 $(GMI_MMAKE) all

gmi.install: all
 $(GMI_MMAKE) install

gmi.uninstall:
 $(GMI_MMAKE) uninstall

gmi.info:
 $(GMI_MMAKE) info

gmi.clean:
 ~$(GMI_MMAKE) clean

The same technique can be used to build apps that must include custom front calls.

For complete examples, see FGLDIR/demo/MobileDemo/userextension and FGLDIR/demo/
MobileDemo/userfrontcall

gmibuildtool
The gmibuildtool is a utility to create and test applications for an iOS devices.

Syntax

gmibuildtool [options]

1. options are described in Table 573: gmibuildtool options on page 2592.

Options

Table 573: gmibuildtool options

Option Description

--app-name application-name

Display name of the mobile app.

This option can be specified to define the display name of
the app, it sets the CFBundleDisplayName property in the
Info.plist file.

If not specified, the name defaults to "Noname".

--app-version application-
version

Defines app version visible to the users on the App Store.

This option is mandatory and sets CFBundleVersion
properties in the Info.plist file.

Mobile applications | 2593

Option Description

Note: If the --build-number option is not
used, --app-version will also set the both the
CFBundleShortVersionString property.

In iTunes Connect, you define the version of your app, that must
match the CFBundleVersion property in the Info.plist
file of the app. If these versions do not match, the app cannot
be published. Once the app is visible on App Store, the version
specified in iTunes Connect shows up in the "Version" section of
the application page.

The app version number should be a string comprised of three
period-separated integers. For example: "1.4.2"

--bundle-id bundle-
identifier

Defines the Bundle Identifier (a.k.a. App Id) for the app.

This option is mandatory and sets the CFBundleIdentifier
property in the Info.plist file.

A bundle identifier is the unique identifier of your app, to let iOS
recognize new app versions. When developing for the simulator,
you can choose your own identifier. When creating an application
for the App Store, the bundle identifier must be registered with
Apple.

If not specified, the name defaults to "noname" (for prototyping).

--build-number build-number

Defines the build number used to upload a new binary of the
same app version.

This option must be used to distinguish different builds for the
same app version. It sets the CFBundleShortVersionString
property in the Info.plist file.

The build number needs to be incremented in order to upload a
new binary version of the same app version in iTunes Connect.

If this option is not used, the build number defaults to the version
specified with the --app-version option.

The build number is a string comprised of three period-separated
integers. For example: "1.4.2"

--certificate identity

Name of a certificate to sign the app.

This option is mandatory to build apps for a physical device or for
the app store.

The certificate can be found in the Keychain access program, in
the "Common Name" field of the certificate panel.

The command security find-identity -v can be used to
list all available certificates.

--device device-name
Defines the name of a device or simulator.

• By default, when not specifying the --device option, a
GMI.app directory is created for the simulator.

Mobile applications | 2594

Option Description

• When specifying the --device booted option, the
GMI.app directory is created and the app is installed on the
booted simulator.

• When specifying the --device phone option, the GMI.app
directory and .ipa file are created.

• When specifying the --device physical-device-name
option (with a real physical device name plugged on your
Mac), the GMI.app directory and .ipa file are created and
the app is installed on the device.

Note: Use the instruments -s XCode command to
find the list of available devices (simulators or connected
devices).

--help Display the help of the command tool.

--icons icons-dir

Provides the directory where the application icons are located.

By default, the application icons directory is current-
working-dir/gmi.

The name of the app icon files must be: icon_57x57.png,
icon_72x72.png, icon_29x29.png, icon_40x40.png,
icon_120x120.png, icon_152x152.png,
icon_58x58.png, icon_76x76.png, icon_80x80.png

--launch-images launch-
images-dir

The directory where launch images are located.

By default, the launch images directory is current-working-
dir/gmi.

Note: This option is ignored if the --storyboard
option is provided.

The name of the image files must be: Default.png,
Default@2x.png Default-568h@2x.png,
Default-Portrait-667h@2x.png Default-
Landscape-667h@2x.png, Default-
Portrait-736h@3x.png, Default-
Landscape-736h@3x.png, Default-Portrait.png,
Default-Landscape.png Default-Portrait@2x.png,
Default-Landscape@2x.png.

Each file name corresponds to a device type (you may not need
to provide all files if you target only recent iOS devices), see
Apple Developer documentation for more details about launch
images.

--mode {debug|release}

Controls the debug or release mode for the app.

By default, the mode is debug.

Note that the provisioning profile must correspond:

• --mode debug: Development provisioning profile.
• --mode release: Distribution provisioning profile.

--output ipa-file-name Path to output IPA and APP files to be generated.

Mobile applications | 2595

Option Description

By default, a "build" directory is created, with subdirectories
containing the .ipa and .app files.

An IPA file is created when building an application for a physical
device and the App Store. The IPA file is not needed and will not
be created when building for the simulator.

--program-files program-dir

Path to Genero BDL program files (.42m, .42f, etc).

By default, the program files directory is the current work
directory.

Following files are automaticlly excluded: *.4gl, *.per, *.msg,
*.str, *.sch, [Mm]akefile, *.42d, [Mm]akefile, *.
[chdmo], *.xib, build/ (the build directory), gmi/ (this folder
is the default location of LaunchScreens and AppIcons).

If the file gmiignore exists, then this file contains additional files
to be ignored.

--provisioning provisioning-
file

Path to the provisioning profile (.mobileprovision).

The provisioning profile is mandatory to build apps for a physical
device or for the app store.

Provisioning profiles can be found in $HOME/Library/
MobileDevice/Provisioning\ Profiles/

--storyboard storyboard-file

Path to the storyboard file, to get a splash screen to be displayed
when the app starts.

This file is an alternative for Launch Screens (--launch-
images option). This option is mandatory if you do not provide
launch images with the --launch-images option.

The default storyboard is an empty screen.

Running mobile apps on an application server
From the mobile device, programs can be started remotely on an application server, and displayed on the
device.

Purpose of remote application execution for mobile devices

Remote applications displayed on a mobile device allow the use of the processor, memory, storage and
software resources available on a server, for mobile users.

Note: Executing remote/server applications for display on a mobile device requires a reliable and
constant network connection. If the network connection fails, the application will stop, as with other
client/server Genero front-ends.

Server applications can only be started through the Genero Application Server (GAS), by using the UA
protocol available since version 3.00. You must set up and configure the GAS for the programs you want to
start remotely. See the GAS documentation for more details.

Note: Applications executed on the GAS server must use the UTF-8 encoding. Mobile front-ends
will reject any attempt to display forms of an application using an encoding other than UTF-8.

Mobile applications | 2596

Implementing the embedded mobile app

Create a small application to be deployed on the mobile device, which then starts the application(s) on an
GAS server.

The server application is started from the embedded application through the runOnServer front call. The
embedded mobile application can be a very simple MAIN / END MAIN program, only performing the
"runOnServer" front call.

For example, this is the very minimal embedded application, starting a program on the GAS:

MAIN
 CALL ui.interface.frontcall("mobile","runOnServer",
 ["http://myappserver:6394/ua/r/myapp"],[])
END MAIN

When the remote application starts, the graphical user interface displays on the mobile device.

The runOnServer front call returns when the called application ends, control goes back to the initial
application executing on the mobile device.

Note: In development context, it is possible to execute the parent starter app on a server, display
on a mobile device with FGLSERVER on page 185 set properly, and use the runOnServer front
call. Because starting remote GAS applications is done with a front call, this configuration mimics
an embedded starter app running on the device.

Using the runOnServer front call

The application executed on the server-side is identified by the first parameter of the runOnServer front
call. This application must be delivered by the Genero Application Server. The parameter must contain an
"ua/r" URL syntax (the UA protocol introduced with the GAS 3.00).

For example: http://myappserver:6394/ua/r/myapp

The URL may contain a query string, with parameters for the application to be executed by the GAS.

If needed, you can add a second argument to define a timeout as a number of seconds. The embedded
application will wait for the remote application to start, until the timeout expired. If no timeout parameter is
specified, or when zero is passed, the timeout is infinite.

In case of failure (application not found, timeout expired), the front call raises the runtime error -6333 and
the HTTP status code of the request can be found in the error message details. Use a TRY/CATCH block to
check if the execution the server application was successful:

MAIN
 TRY
 CALL ui.interface.frontcall("mobile","runOnServer",
 ["http://myappserver:6394/ua/r/myapp"],[])
 CATCH
 ERROR err_get(STATUS)
 END TRY
END MAIN

Subsequent server-side application runs are allowed; the last active application will display on the device.
However, it is not possible to navigate between started applications. Therefore, an application started
with the runOnServer front call must only use the RUN instruction to start sub-programs. RUN WITHOUT
WAITING is not supported.

Mobile applications | 2597

Passing parameters to the server application

If needed, the embedded app can pass arguments to the server application by using parameter
specification in the URL string, with the ?Arg=value1&Arg=value1&... notation:

DEFINE params, base, complete_url STRING
LET params = "Arg=verbose&Arg=5677"
LET url = "http://myappserver:6394/ua/r/myapp"
LET complete_url = base || "?" || params

The remote program can retrieve the parameters with the arg_val() built-in function.

Note: It is not needed to URL-encode the string passed to the runOnServer front call.

See the GAS documentation (AllowUrlParameters attribute) about passing parameters in the
application URL.

This is an example of an embedded application to be deployed on the mobile device, which passes
parameters to a server-side application:

IMPORT util

MAIN
 DEFINE arr DYNAMIC ARRAY OF STRING, x INT
 MENU "test"
 COMMAND "runOnServer"
 CALL arr.clear()
 LET arr[1] = "first argument"
 LET arr[2] = "second argument"
 LET x = do_run("http://10.0.40.29:6394/ua/r/test1", 10, arr)
 COMMAND "exit"
 EXIT MENU
 END MENU
END MAIN

FUNCTION do_run(url,timeout,params)
 DEFINE url STRING,
 timeout SMALLINT,
 params DYNAMIC ARRAY OF STRING
 DEFINE i, r INTEGER, tmp STRING
 LET r = 0
 LET tmp = url
 FOR i=1 TO params.getLength()
 LET tmp = tmp || IIF(i==1,"?","&") || "Arg=" || params[i]
 END FOR
 TRY
 CALL ui.interface.frontcall("mobile","runOnServer",[tmp,timeout],[])
 CATCH
 ERROR err_get(STATUS)
 LET r = -1
 END TRY
 RETURN r
END FUNCTION

A sample server-side application:

MAIN
 MENU "Prog1"
 COMMAND "arg1" MESSAGE "Arg 1 = ", arg_val(1)
 COMMAND "arg2" MESSAGE "Arg 2 = ", arg_val(2)
 COMMAND "arg3" MESSAGE "Arg 3 = ", arg_val(3)
 COMMAND "Quit" EXIT MENU
 END MENU

Mobile applications | 2598

END MAIN

Sharing files between embedded and server app

If files need to be shared between the embedded application and the server application, the application
running on the GAS can only access the data-directory directory, in the sandbox of the embedded
application that executes the "runOnServer" front call.

This matters when using file handling APIs such as fgl_putfile() and fgl_getfile() or front calls
like takePhoto and launchURL.

The data-directory on the mobile device can be found with the feInfo/dataDirectory front call. In both
the embedded app and the app running on the server, this front-call will return the same directory.

The following workflow can be used:

1. Before starting the server application with a runOnServer front call, the embedded app must copy files
to the data-directory.

2. While executing, the server application can retrieve files from the data-directory with fgl_getfile(),
and send its own files to the data-directory, with fgl_putfile().

3. When the server application terminates, the embedded app can read files the server application left in
the data-directory.

Note: If several remote applications are started successively on the server with a RUN instruction,
make sure to not overwrite files written by other server programs.

In order to write code for the embedded app, that can be executed in development mode (running on a
server) and on the mobile device, you can adapt to the execution context: Make a simple file copy when
executing on the mobile device, or do an fgl_putfile() call, when running on the development server.
Check the execution context with the base.Application.isMobile() method.

This example, in the embedded app on the mobile device, copies a file from the device private directory to
the data-directory:

IMPORT os
...
 CALL mobile_copy_to_data_dir("myfile.txt")
...
FUNCTION mobile_copy_to_data_dir(fn)
 DEFINE fn, dd, dst STRING, r INT
 CALL ui.interface.frontcall("standard","feInfo",["dataDirectory"],[dd])
 -- Always use / as path sep for Android/iOS dirs.
 LET dst = dd || "/" || os.Path.basename(fn)
 IF base.Application.isMobile() THEN
 -- Executing on device: make a simple copy to data-dir
 LET r = os.Path.copy(fn, dst)
 MESSAGE SFMT("COPY status = %1", r)
 ELSE
 -- Executing on dev server: make a file transfer to data-dir
 CALL fgl_putfile(fn, dst)
 END IF
END FUNCTION

Note: We do not use the os.Path.join() method here because it would add the path
separator according to the operating system where the application is executed. This would not be
a problem when executing on the mobile device or Unix-like platforms. However, when running on
a Windows platform, the os.Path.join() method would join the directory and the file name with
a backslash, and the resulting path would not fit Android or iOS directory path specification for the
data-directory.

Mobile applications | 2599

In the server application, use the fgl_getfile() function, to transfer a file from the mobile device data-
directory to the local server disk:

IMPORT os
...
 CALL server_get_from_data_dir("myfile.txt", "/tmp/server_file.txt")
...
FUNCTION server_get_from_data_dir(fn, dst)
 DEFINE fn, dst, dd, src STRING
 CALL ui.interface.frontcall("standard","feInfo",["dataDirectory"],[dd])
 -- Use / as path sep for Android/iOS dirs!
 LET src = dd || "/" || fn
 CALL fgl_getfile(src, dst)
END FUNCTION

Similarly, in the server application, use the fgl_putfile() function, to copy a file from the server
application to the data-directory of the embedded app:

IMPORT os
...
 CALL server_put_to_data_dir("/tmp/server_file.txt", "myfile.txt")
...
FUNCTION server_put_to_data_dir(src, fn)
 DEFINE src, fn, dd, dst STRING
 CALL ui.interface.frontcall("standard","feInfo",["dataDirectory"],[dd])
 -- Use / as path sep for Android/iOS dirs!
 LET dst = dd || "/" || fn
 CALL fgl_putfile(src, dst)
END FUNCTION

Push notifications
This section describes how to implement push notification with Genero.

A push notification is a short message sent by a central server entity to an app installed on a mobile
device. In order to be notified, the app+device must register itself to a push service (a global service such
as Google Cloud Messaging), and register also to a push provider (part of the custom application). To
indicate that fresh information is available, notifications are sent by push providers to the push service,
which broadcasts notifications to registered devices. The apps can then get details about the notification
and display a little hint to the end user. Enterprise mobile applications can use push notifications to
produce urgent and important updates for users.

Mobile applications | 2600

Figure 124: This figure describes the workflow for a push notification (items in yellow are the
components that can be implemented with Genero BDL)

Workflow:

1. The app registers to the push service.
2. The push service generates a unique token to identify the device+app and returns this token to the app.
3. The app transmits the token to the token maintainer.
4. The token maintainer stores the new token in a database.
5. Some event occurs in the global application workflow that requires a push notification to warn all

registered devices/apps.
6. The push provider reads the database for registered tokens.
7. The push provider sends push notification requests to the push service.
8. The push service broadcasts the notification messages to all registered devices.

There are several push notification mechanisms available. This chapter covers the Google Cloud
Messaging (GCM) and Apple Push Notification services (APNs).

Common components can be implemented on the same code base for both GCM and APNs push
notification mechanisms: The mobile app and the token maintainer.

Google Cloud Messaging (GCM)
Follow this procedure to implement push notification with GCM.

Introduction to GCM push notification

The push notification solution described in this section is based on the Google Cloud Messaging service.
Familiarize yourself with GCM by visiting the https://developers.google.com/cloud-messaging web site.

Google Cloud Message services allow push servers to send notification message data to registered
Android™ or iOS devices.

The system involves the following actors:

• The Google Cloud Message service (GCM):

https://developers.google.com/cloud-messaging

Mobile applications | 2601

GCM provides push server and client identification. It also handls all aspects of queuing of messages
and delivery to the target application running on registered devices.

• The registration tokens maintainer:

A Web Services server program maintaining the database of registration tokens with application user
information. This program must listen to new device registration events and store them in a database.
The push server program can then query this database to build the list of registration tokens to identify
the devices to be notified.

• The push server program:

Implemented by a third-party service or as a Genero BDL program using the Web Services API. This
push server program will send notification messages to GCM with two connection servers (HTTP and
XMPP).

• Devices running the Genero app registered to the push notification server:

Registered devices use the push notification client API to register, get notification data and unregister
from the service.

Note: The database used to store registration tokens must be a multi-user database (do not use
SQLite for example), since two distinct programs will use the database.

Creating a GCM project

To initiate a push notification service dedicated to your applications, you must first create a Google Cloud
Messaging project on the Google web site. Creating a GCM project will give you the API Key and the
Sender ID. The API Key is the authentication key to access Google services. The Sender ID identifies your
GCM project; this id will be used by your mobile app to indicate that it wants to get messages from this
GCM project.

To get details about GCM project creation, visit: https://developers.google.com/cloud-messaging.

To create a GCM project and get the API Key and Sender ID, follow the steps at: https://
developers.google.com/cloud-messaging/android/client#get-config.

Write down the API Key and the Sender ID generated for you, as these will be used later on.

Implementing the registration tokens maintainer

To handle device registrations on the server side of your application, the same code base can be used for
GCM and other token-based frameworks.

For more details, see Implementing a token maintainer on page 2611.

Implementing the push server

The push server will produce application notification messages that will be transmitted to the GCM service.
The GCM service will then spread them to all mobile devices registered to the service with the Sender ID.

Important: The size of an GCM notification content cannot exceed 4 Kilobytes. If more information
needs to be passed, after receiving the push message, apps must contact the server part to query
for more information. However, this is only possible when network is available.

The push server will use RESTFul HTTP POST requests to send notifications through the GCM service to
the following URL:

"https://gcm-http.googleapis.com/gcm/send".

The HTTP POST header must contain the following attributes:

Content-Type:application/json
Authorization:key=API_Key

https://developers.google.com/cloud-messaging
https://developers.google.com/cloud-messaging/android/client#get-config
https://developers.google.com/cloud-messaging/android/client#get-config

Mobile applications | 2602

where API_Key is the API Key obtained during GCM project creation.

The push server program can be implemented with the Web Services API to make RESTFul requests as
follows:

IMPORT com
IMPORT util

FUNCTION gcm_send_notif_http(api_key, notif_obj)
 DEFINE api_key STRING,
 notif_obj util.JSONObject

 DEFINE req com.HTTPRequest,
 resp com.HTTPResponse,
 req_msg STRING

 TRY
 LET req = com.HTTPRequest.Create("https://gcm-http.googleapis.com/gcm/
send")
 CALL req.setHeader("Content-Type", "application/json")
 CALL req.setHeader("Authorization", SFMT("key=%1", api_key))

 CALL req.setMethod("POST")
 LET req_msg = notif_obj.toString()
 IF req_msg.getLength() >= 4096 THEN
 LET res = "ERROR : GCM message cannot exceed 4 kilobytes"
 RETURN res
 END IF
 CALL req.doTextRequest(req_msg)
 LET resp = req.getResponse()
 IF resp.getStatusCode() != 200 THEN
 DISPLAY SFMT("HTTP Error (%1) %2",
 resp.getStatusCode(),
 resp.getStatusDescription())
 ELSE
 DISPLAY "Push notification sent!"
 END IF
 CATCH
 DISPLAY SFMT("ERROR : %1 (%2)", STATUS, SQLCA.SQLERRM)
 END TRY

END FUNCTION

The body of the HTTP POST request must be a JSON formatted record using a structure similar to the
following example:

{
 "collapse_key": "stock_update",
 "time_to_live": 108,
 "delay_while_idle": true,
 "data":
 {
 "stock_change":
 {
 "stock_id" : "STK-034" ,
 "timestamp" : "2015-02-24 15:10:34.18345",
 "item_count" : 15023
 },
 },
 "registration_ids" : ["APA91b...", "Hun4MxP...", "5ego..."]
}

Mobile applications | 2603

Note: This notification message uses the "registration_ids" attribute to provide a list of
devices to be notified. If you want to notify a single device, use the "to" attribute instead of
"registration_ids", and pass a single registration token instead of a JSON array.

For more details about the JSON request structure in a GCM HTTP POST, see https://
developers.google.com/cloud-messaging/http.

By convention, if the "data" member of the JSON request defines a "genero_notification"
member, the front-end will show graphical notification (popup hint) with the "title", "content" and the
"icon" values.

Note: With GMA, the icon should be packaged in the APK and should be accessible by name (as
the gma_ic_genero.png in the drawable folders)

For example:

...
 "data":
 {
 "genero_notification":
 {
 "title": "Stock has changed",
 "content": "New stock information will be retrieved from the backend
 server...",
 "icon": "stock_update"
 },
 ...
 },
 "registration_ids" : ["APA91b...", "Hun4MxP...", "5ego..."]
}

The next code example implements a function that creates the JSON object, which can be passed to the
gcm_send_notif_http() function described above. The only purpose of this notification message is
to test the "genero_notification" popup hint. The function takes an array of registration tokens as a
parameter, which will be used to set the "registration_ids" attribute:

FUNCTION gcm_simple_popup_notif(reg_ids, notif_obj, popup_msg)
 DEFINE reg_ids DYNAMIC ARRAY OF STRING,
 notif_obj util.JSONObject,
 popup_msg STRING
 DEFINE data_obj, popup_obj util.JSONObject

 CALL notif_obj.put("registration_ids", reg_ids)

 LET data_obj = util.JSONObject.create()

 LET popup_obj = util.JSONObject.create()
 CALL popup_obj.put("title", "Notification message!")
 CALL popup_obj.put("content", popup_msg)
 CALL popup_obj.put("icon", "genero")

 CALL data_obj.put("genero_notification", popup_obj)
 CALL data_obj.put("other_info", "Additional data...")

 CALL notif_obj.put("data", data_obj)

END FUNCTION

The gcm_simple_popup_notif() and gcm_send_notif_http() functions can then be used as
follows:

IMPORT com

https://developers.google.com/cloud-messaging/http
https://developers.google.com/cloud-messaging/http

Mobile applications | 2604

IMPORT util

MAIN
 CONSTANT api_key = "xyz..."
 DEFINE reg_ids DYNAMIC ARRAY OF STRING,
 notif_obj util.JSONObject

 LET reg_ids[1] = "APA91bHun..."
 LET reg_ids[2] = "B4AA2q7xa..."

 LET notif_obj = util.JSONObject.create()
 CALL gcm_simple_popup_notif(reg_ids, notif_obj, "This is my message!")
 CALL gcm_send_notif_http(api_key, notif_obj)

END MAIN

In order to use the tokens database maintained by a token maintainer program, your GCM push server can
collect registration tokens as shown in the following example:

FUNCTION gcm_collect_tokens(reg_ids)
 DEFINE reg_ids DYNAMIC ARRAY OF STRING
 DEFINE rec RECORD
 id INTEGER,
 sender_id VARCHAR(150),
 registration_token VARCHAR(250),
 badge_number INTEGER,
 app_user VARCHAR(50),
 reg_date DATETIME YEAR TO FRACTION(3)
 END RECORD
 DECLARE c1 CURSOR FOR
 SELECT * FROM tokens
 WHERE sender_id IS NOT NULL -- In case if APNs tokens remain in the
 db
 CALL reg_ids.clear()
 FOREACH c1 INTO rec.*
 CALL reg_ids.appendElement()
 LET reg_ids[reg_ids.getLength()] = rec.registration_token
 END FOREACH
END FUNCTION

The above function can then be used by another function to send the push message to all registered
devices:

FUNCTION gcm_send_text(api_key, the_text)
 DEFINE api_key, the_text STRING
 DEFINE reg_ids DYNAMIC ARRAY OF STRING,
 notif_obj util.JSONObject,
 info_msg STRING
 CALL gcm_collect_tokens(reg_ids)
 IF reg_ids.getLength() == 0 THEN
 RETURN "No registered devices..."
 END IF
 LET notif_obj = util.JSONObject.create()
 CALL gcm_simple_popup_notif(reg_ids, notif_obj, the_text)
 LET info_msg = gcm_send_notif_http(api_key, notif_obj)
 RETURN info_msg
END FUNCTION

Handle push notifications in mobile apps

To handle push notifications in mobile apps, the same code base can be used for GCM and other token-
based frameworks.

Mobile applications | 2605

For more details see Handling notifications in the mobile app on page 2617.

Apple Push Notification Service (APNs)
Follow this procedure to implement push notification with APNs.

Introduction to APNs push notification

The push notification solution described in this section is based on the Apple Push Notification Service.
Familiarize yourself with APNs by visiting the Apple Push Notification Service web site.

Apple Push Notification service allows push servers to send notification message data to registered iOS
(and OS X) devices.

The APNs service transports and routes a remote notification from a given provider to a given device. A
notification is a short message built from two pieces of data: the device token and the payload.

Note: Each device needs to be identified by its device token, and the provider must send individual
notification messages for each registered device.

The system involves the following actors:

• The Apple Push Notification Service (APNs):

APNs provides push server and client identification. It also handles all aspects of message queuing
and delivery to the target applications running on registered devices. The APNs system includes a
feedback service that can be queried to check for devices that have unregistered and no longer need to
be notified.

• The device tokens maintainer:

A Web Services server program maintaining the database of device tokens, with application user
information. This program must listen to new device registration events, store them in a database, and
from time to time query the APNs feedback service to check for unregistrations.

• The push provider:

This program will send notification messages to the APNs server by using the com.APNS class and
TCP request API. The push provider program will query the device token database to know which
devices need to be notified.

• Devices running the Genero app registered to the push notification server:

Registered devices use the push notification client API to register, get notification data and unregister
from the service.

Note: The database used to store device tokens must be a multi-user database (do not use SQLite
for example), since two distinct programs will use the database.

APNS push notification security

iOS apps must be created with an Apple certificate for development or distribution, linked to an App ID (or
Bundle ID) with push notification enabled. The provisioning profile used when building the IPA must be
linked to the App ID with push enabled. Certificate, provisioning and bundle id must be specified to the GMI
build tool.

To create the push provider linked to your app, usually you need to create two Apple Push Notification
certificates linked to your App ID (you select the App ID when you create a push certificate in the Apple
member center): One certification for development and another for distribution. For more details about the
push provider certificates, see APNs SSL certificate on page 2095.

Check also Apple Push Notification documentation for more details about certificate requirements for push
notifications.

https://developer.apple.com/library/ios/documentation/NetworkingInternet/Conceptual/RemoteNotificationsPG/Chapters/ApplePushService.html

Mobile applications | 2606

Identifying target devices

Each APNs client device is identified by a device token. A device token is an opaque identifier of a device
that APNs gives to the device when an app registers itself for push notification. It enables APNs to locate
in a unique manner the device on which the client app is installed. The device shares the device token with
the push provider. The push provider must produce notification messages for each device by including the
device token in the message structure.

Important: The mobile app obtains its device token by registering to the APNs service with the
registerForRemoteNotifications on page 1934 front call. It is then in charge of sending its device
token to the push provider; typically through a RESTFul request. The push provider must collect
and store the device tokens, as they need to be specified in a push notification message send by
the push provided.

Notification content (payload)

In a notification message, the payload is a JSON-defined property list that specifies how the user of an app
on a device is to be alerted.

Important: The size of an APNS notification payload cannot exceed 2 Kilobytes. Make sure that
the resulting BYTE variable does not exceed this size limitation. If more information needs to be
passed, after receiving the push message, apps must contact the server part to query for more
information. However, this is only possible when network is available.

The payload must contain a list of "aps" records. Each "aps" record represents a notification message to
be displayed as a hint on the device (for example, by adding a badge number to the app icon). The "aps"
records can also contain custom data in a separate set of JSON attributes.

In the Genero mobile app, the notification messages are obtained by using the getRemoteNotifications on
page 1930 front call, after a notificationpushed action was detected with an ON ACTION handler.

Important: When an iOS app is in background, silent push notifications can occur, but notification
message data (i.e. the payload) may not be available. In such case, GMI is able to detect
that a notification arrived (i.e. when the app badge number is greater than zero) and raise the
notificationpushed action, but the getRemoteNotifications front call will return no
message data (data return param is NULL). If such case, implement a fallback mechanism (based
on RESTFul web services for example), to contact the push notification provider and retrieve the
message information.

Example of notification record list (JSON array) returned by the getRemoteNotifications front call:

[
 {
 "aps" :
 {
 "alert" : "My first push",
 "badge" : 1,
 "sound" : "default",
 "content-available" : 1
 }
 },
 {
 "aps" :
 {
 "alert" :
 {
 "title" : "Push",
 "body" : "My second push"
 }
 "badge" : 2,
 "sound" : "default",
 "content-available" : 1

Mobile applications | 2607

 },
 "new_ids" : ["XV234", "ZF452", "RT563"],
 "updated_ids" : ["AC634", "HJ153"]
 }
]

Badge number handling

With APNs, badge number handling is in charge of the application code: The push provider sends a badge
number in the payload records, the app can check the message content, and must communicate with a
server component, to indicate that the notification message has been consumed. The server program can
then maintain a badge number for each registered device, decrementing the badge number.

In order to set or query the badge number for your app, use the following front calls:

• setBadgeNumber (iOS) on page 1946
• getBadgeNumber (iOS) on page 1945

In this tutorial, badge numbers are stored on the server database. The token maintainer handlers requests
from apps to sync the badge number for a given device token, and the push provider program reads the
database to set the badge number in the notification payload. When the app consumes messages, it
queries and resets the app badge number with the getBadgeNumber/setBadgeNumber front calls, and
informs the token maintainer to sync the badge number in the central database.

Communication channels

A provider communicates with Apple Push Notification service over a binary network interface, using a
streaming TCP socket design in conjunction with binary content:

• The binary interface of the APNs development environment is available through the URL
gateway.sandbox.push.apple.com on port 2195.

• The binary interface of the APNs production environment is available through the URL
gateway.push.apple.com on port 2195.

• The binary interface of the APNs feedback service is available through the URL
feedback.push.apple.com on port 2196.

For each interface, use TLS (or SSL) to establish a secured communication channel. The SSL certificate
required for these connections is obtained from Apple's Member Center.

To establish a TLS session with APNs, an Entrust Secure CA root certificate must be installed on the
provider’s server. If the server is running OS X, this root certificate is already in the keychain. On other
systems the certificate might not be available.

Creating an APNs certificate for the app

The Apple Push Notification Certificate identifies the push notification service for a given mobile app. This
certificate will be created from an App ID (a.k.a. Bundle ID) and is used by the APNs system to dispatch
the notification message to the registered devices.

For more details, see APNs SSL certificate on page 2095.

Implementing the device tokens maintainer

To handle device registrations on the server side of your application, the same code base can be used for
APNs and other token-based frameworks.

For more details, see Implementing a token maintainer on page 2611.

Mobile applications | 2608

Implementing the push provider

The push provider will produce application notification messages that will be transmitted to the APNs
service. The APNs service will then spread them to all registered mobile devices, identified by their device
token.

To send notification messages, the push provider must build binary messages by using the com.APNS
API, provided by the Web Services library, and send TCP message requests over SSL to the following
URLs:

• "tcps://gateway.sandbox.apple.com:2195" (for development)
• "tcps://gateway.push.apple.com:2195" (for production)

Note: In order to establish a secure connection to the APNs framework an SSL certificate needs to
be defined in FGLPROFILE, as described in APNs SSL certificate on page 2095.

To send a notification message, the push provider must know the device tokens of the registered devices /
applications.

Note: A distinct notification message must be sent for each registered device.

The following example demonstrates how to implement a function to send an APNs notification
message. The function takes a device token and a JSON object as parameters. First, build
the binary data with the com.APNS.EncodeMessage() method, then POST the data with
a com.TCPRequest.doDataRequest() method. In case of success, the TCP request
timeout will occur (APNs service only responds immediately in case of error), then use
the com.TCPResponse.getDataResponse() method, to get status information. See
com.APNS.EncodeMessage() for more details about notification message creation.

IMPORT com
IMPORT security
IMPORT util

FUNCTION apns_send_notif_http(deviceTokenHexa, notif_obj)
 DEFINE deviceTokenHexa STRING,
 notif_obj util.JSONObject
 DEFINE req com.TCPRequest,
 resp com.TCPResponse,
 uuid STRING,
 ecode INTEGER,
 dt DATETIME YEAR TO SECOND,
 exp INTEGER,
 data, err BYTE,
 res STRING

 LOCATE data IN MEMORY
 LOCATE err IN MEMORY

 LET dt = CURRENT + INTERVAL(10) MINUTE TO MINUTE
 LET exp = util.Datetime.toSecondsSinceEpoch(dt)

 TRY
 LET req = com.TCPRequest.create("tcps://
gateway.push.apple.com:2195")
 CALL req.setKeepConnection(true)
 CALL req.setTimeout(2) # Wait 2 seconds for APNs to return error
 code
 LET uuid = security.RandomGenerator.createRandomString(4)
 CALL com.APNS.EncodeMessage(
 data,
 security.HexBinary.ToBase64(deviceTokenHexa),
 notif_obj.toString(),
 uuid,

Mobile applications | 2609

 exp,
 10
)
 IF LENGTH(data) > 2000 THEN
 LET res = "ERROR : APNS payload cannot exceed 2 kilobytes"
 RETURN res
 END IF
 CALL req.doDataRequest(data)
 TRY
 LET resp = req.getResponse()
 CALL resp.getDataResponse(err)
 CALL com.APNS.DecodeError(err) RETURNING uuid, ecode
 LET res = SFMT("APNS result: UUID: %1, Error code:
 %2",uuid,ecode)
 CATCH
 CASE STATUS
 WHEN -15553 LET res = "Timeout Push sent without error"
 WHEN -15566 LET res = "Operation failed :", SQLCA.SQLERRM
 WHEN -15564 LET res = "Server has shutdown"
 OTHERWISE LET res = "ERROR :",STATUS
 END CASE
 END TRY
 CATCH
 LET res = SFMT("ERROR : %1 (%2)", STATUS, SQLCA.SQLERRM)
 END TRY
 RETURN res
END FUNCTION

The next code example implements a function that creates the JSON object defining notification content
(payload). That object can be passed to the apns_send_notif_http() function described above:

FUNCTION apns_simple_popup_notif(notif_obj, msg_title, user_data,
 badge_number)
 DEFINE notif_obj util.JSONObject,
 msg_title, user_data STRING,
 badge_number INTEGER
 DEFINE aps_obj, data_obj util.JSONObject

 LET aps_obj = util.JSONObject.create()
 CALL aps_obj.put("alert", msg_title)
 CALL aps_obj.put("sound", "default")
 CALL aps_obj.put("badge", badge_number)
 CALL aps_obj.put("content-available", 1)
 CALL notif_obj.put("aps", aps_obj)

 LET data_obj = util.JSONObject.create()
 CALL data_obj.put("other_info", user_data)

 CALL notif_obj.put("custom_data", data_obj)

END FUNCTION

The apns_simple_popup_notif() and apns_send_notif_http() functions can then be used as
follows:

IMPORT com
IMPORT util

MAIN
 DEFINE reg_ids DYNAMIC ARRAY OF STRING,
 notif_obj util.JSONObject,
 i INTEGER

Mobile applications | 2610

 LET notif_obj = util.JSONObject.create()
 CALL gcm_simple_popup_notif(notif_obj, "This is my message!", 1)

 LET reg_ids[1] = "APA91bHun..."
 LET reg_ids[2] = "B4AA2q7xa..."
 ...
 FOR i=1 TO reg_ids.getLength()
 DISPLAY gcm_send_notif_http(reg_ids[i], notif_obj)
 END FOR

END MAIN

In order to use the tokens database maintained by a token maintainer program, your APNs push provider
can collect device tokens as shown in the example below. Note that the dynamic array contains token ids
and badge numbers:

FUNCTION apns_collect_tokens(reg_ids)
 DEFINE reg_ids DYNAMIC ARRAY OF RECORD
 token STRING,
 badge INTEGER
 END RECORD
 DEFINE rec RECORD
 id INTEGER,
 sender_id VARCHAR(150),
 registration_token VARCHAR(250),
 badge_number INTEGER,
 app_user VARCHAR(50),
 reg_date DATETIME YEAR TO FRACTION(3)
 END RECORD,
 x INTEGER
 DECLARE c1 CURSOR FOR
 SELECT * FROM tokens
 WHERE sender_id IS NULL -- In case if GCM tokens remain in the db
 CALL reg_ids.clear()
 FOREACH c1 INTO rec.*
 LET x = reg_ids.getLength() + 1
 LET reg_ids[x].token = rec.registration_token
 LET reg_ids[x].badge = rec.badge_number
 END FOREACH
END FUNCTION

In order to handle badge numbers for each registered device, implement a function to update badge
numbers in database:

FUNCTION save_badge_number(token, badge)
 DEFINE token STRING,
 badge INT
 UPDATE tokens SET
 badge_number = badge
 WHERE registration_token = token
END FUNCTION

The above functions can then be used to send a push message to all registered devices:

FUNCTION apns_send_message(msg_title, user_data)
 DEFINE msg_title, user_data STRING
 DEFINE reg_ids DYNAMIC ARRAY OF RECORD
 token STRING,
 badge INTEGER
 END RECORD,
 notif_obj util.JSONObject,

Mobile applications | 2611

 info_msg STRING,
 new_badge, i INTEGER
 CALL apns_collect_tokens(reg_ids)
 IF reg_ids.getLength() == 0 THEN
 RETURN "No registered devices..."
 END IF
 LET info_msg = "Send:"
 FOR i=1 TO reg_ids.getLength()
 LET new_badge = reg_ids[i].badge + 1
 CALL save_badge_number(reg_ids[i].token, new_badge)
 LET notif_obj = util.JSONObject.create()
 CALL apns_simple_popup_notif(notif_obj, msg_title, user_data,
 new_badge)
 LET info_msg = info_msg, "\n",
 apns_send_notif_http(reg_ids[i].token, notif_obj)
 END FOR
 RETURN info_msg
END FUNCTION

See also Provider Communication with Apple Push Notification Service.

Handle push notifications in mobile apps

To handle push notifications in mobile apps, the same code base can be used for APNs and other token-
based frameworks.

For more details see Handling notifications in the mobile app on page 2617.

Implementing a token maintainer
The token maintainer is a BDL Web Services server program that handles push token registration from
mobile apps.

Basics

In order to implement a push notification mechanism, you need to set up a server part (token maintainer
and push notification server), in conjunction with a push notification framework such as Google Cloud
Messaging (GCM) or Apple Push Notification service (APNs). In addition, you need to handle notification
events in your mobile app. This section describes how to implement the token maintainer, the server
program that maintains the list of registered devices (i.e. registration tokens for GCM or device tokens for
APNs).

Note: The max length of a push client token can vary according to the push framework provider.
If you need to store registration tokens in a database, check the max size for a token and consider
using a large column type such as VARCHAR(250).

The same code base can be used for Android (using GCM) and iOS (using APNs) applications: The token
maintainer will basically handle RESTful HTTP requests coming from the internet for token registration and
token un-registration. For each of these requests, the program will insert a new record or delete an existing
record in a dedicated database table.

Note: The database used to store tokens must be created before starting the token maintainer
program. By default, the program uses SQLite (dbmsqt) and the name of the database is "tokendb".
To create this SQLite database, simply create an empty file with this name.

The push provider/server program can then query the tokens table to build the list of target devices for
push notifications.

In the context of APNS, the token maintainer must also handle badge numbers for each registered device:
When connsuming notification messages, the iOS app must inform the token maintainer that the badge
number has changed. This function is implemented with the "badge_number" command.

https://developer.apple.com/library/ios/documentation/NetworkingInternet/Conceptual/RemoteNotificationsPG/Chapters/CommunicatingWIthAPS.html#//apple_ref/doc/uid/TP40008194-CH101-SW1

Mobile applications | 2612

The token maintainer is a Web Services server program which must be deployed behind a GAS to handle
load balancing. You can, however, write code to test your program in development without a GAS.

The act of registering/unregistering push tokens is application specific: When registering tokens, you
typically want to add application user information. Genero BDL allows you to implement a token maintainer
in a simple way.

Note: When executing this token maintainer program with APNs, you must pass the "APNS"
command line argument to execute APNs feedback queries.

MAIN block and database creation

Start with the MAIN block, and the connection to a database. In this tutorial, we use SQLite as the
database. The program will automatically create the database file and the tokens table if it does not yet
exist.

...

MAIN
 CALL open_create_db()
 CALL handle_registrations()
END MAIN

FUNCTION open_create_db()
 DEFINE dbsrc VARCHAR(100),
 x INTEGER
 LET dbsrc = "tokendb+driver='dbmsqt'"
 CONNECT TO dbsrc
 WHENEVER ERROR CONTINUE
 SELECT COUNT(*) INTO x FROM tokens
 WHENEVER ERROR STOP
 IF SQLCA.SQLCODE<0 THEN
 CREATE TABLE tokens (
 id INTEGER NOT NULL PRIMARY KEY,
 sender_id VARCHAR(150),
 registration_token VARCHAR(250) NOT NULL UNIQUE,
 badge_number INTEGER NOT NULL,
 app_user VARCHAR(50) NOT NULL, -- UNIQUE
 reg_date DATETIME YEAR TO FRACTION(3) NOT NULL
)
 END IF
END FUNCTION

Handling registration and unregistration requests

The next function is typical Web Service server code using the Web Services API to handle RESTful
requests. Note that the TCP port is defined as a constant that is used to set FGLAPPSERVER
automatically when not running behind the GAS:

IMPORT util
IMPORT com

CONSTANT DEFAULT_PORT = 9999

MAIN
 ...
 CALL handle_registrations()
END MAIN

FUNCTION handle_registrations()
 DEFINE req com.HTTPServiceRequest,
 url, method, version, content_type STRING,

Mobile applications | 2613

 reg_data, reg_result STRING
 IF LENGTH(fgl_getenv("FGLAPPSERVER"))==0 THEN
 -- Normally, FGLAPPSERVER is set by the GAS
 DISPLAY SFMT("Setting FGLAPPSERVER to %1", DEFAULT_PORT)
 CALL fgl_setenv("FGLAPPSERVER", DEFAULT_PORT)
 END IF
 CALL com.WebServiceEngine.Start()
 WHILE TRUE
 TRY
 LET req = com.WebServiceEngine.getHTTPServiceRequest(20)
 CATCH
 IF STATUS==-15565 THEN
 CALL show_verb("TCP socket probably closed by GAS, stopping
 process...")
 EXIT PROGRAM 0
 ELSE
 DISPLAY "Unexpected getHTTPServiceRequest() exception: ",
 STATUS
 DISPLAY "Reason: ", SQLCA.SQLERRM
 EXIT PROGRAM 1
 END IF
 END TRY
 IF req IS NULL THEN -- timeout
 DISPLAY SFMT("HTTP request timeout...: %1", CURRENT YEAR TO
 FRACTION)
 CALL check_apns_feedback()
 CALL show_tokens()
 CONTINUE WHILE
 END IF
 LET url = req.getURL()
 LET method = req.getMethod()
 IF method IS NULL OR method != "POST" THEN
 IF method == "GET" THEN
 CALL req.sendTextResponse(200,NULL,"Hello from token
 maintainer...")
 ELSE
 DISPLAY SFMT("Unexpected HTTP request: %1", method)
 CALL req.sendTextResponse(400,NULL,"Only POST requests
 supported")
 END IF
 CONTINUE WHILE
 END IF
 LET version = req.getRequestVersion()
 IF version IS NULL OR version != "1.1" THEN
 DISPLAY SFMT("Unexpected HTTP request version: %1", version)
 CONTINUE WHILE
 END IF
 LET content_type = req.getRequestHeader("Content-Type")
 IF content_type IS NULL
 OR content_type NOT MATCHES "application/json*" -- ;Charset=UTF-8
 THEN
 DISPLAY SFMT("Unexpected HTTP request header Content-Type: %1",
 content_type)
 CALL req.sendTextResponse(400,NULL,"Bad request")
 CONTINUE WHILE
 END IF
 TRY
 CALL req.readTextRequest() RETURNING reg_data
 CATCH
 DISPLAY SFMT("Unexpected HTTP request read exception: %1", STATUS)
 END TRY
 LET reg_result = process_command(url, reg_data)
 CALL req.setResponseCharset("UTF-8")
 CALL req.setResponseHeader("Content-Type","application/json")

Mobile applications | 2614

 CALL req.sendTextResponse(200,NULL,reg_result)
 END WHILE
END FUNCTION

Processing registration and unregistration commands

The next function is called when a RESTful request is to be processed. The URL will define the type of
command to be executed by the server:

• If the URL contains "/token_maintainer/register", a new token must be inserted in the database.
• If the URL contains "/token_maintainer/unregister", an existing token must be deleted from the

database.

FUNCTION process_command(url, data)
 DEFINE url, data STRING
 DEFINE data_rec RECORD
 sender_id VARCHAR(150),
 registration_token VARCHAR(250),
 app_user VARCHAR(50)
 END RECORD,
 p_id INTEGER,
 p_ts DATETIME YEAR TO FRACTION(3),
 result_rec RECORD
 status INTEGER,
 message STRING
 END RECORD,
 result STRING
 LET result_rec.status = 0
 TRY
 CASE
 WHEN url MATCHES "*token_maintainer/register"
 CALL util.JSON.parse(data, data_rec)
 SELECT id INTO p_id FROM tokens
 WHERE registration_token = data_rec.registration_token
 IF p_id > 0 THEN
 LET result_rec.status = 1
 LET result_rec.message = SFMT("Token already registered:\n
 [%1]", data_rec.registration_token)
 GOTO pc_end
 END IF
 SELECT MAX(id) + 1 INTO p_id FROM tokens
 IF p_id IS NULL THEN LET p_id=1 END IF
 LET p_ts = util.Datetime.toUTC(CURRENT YEAR TO FRACTION(3))
 WHENEVER ERROR CONTINUE
 INSERT INTO tokens
 VALUES(p_id, data_rec.sender_id,
 data_rec.registration_token, data_rec.app_user, p_ts)
 WHENEVER ERROR STOP
 IF SQLCA.SQLCODE==0 THEN
 LET result_rec.message = SFMT("Token is now registered:\n
 [%1]", data_rec.registration_token)
 ELSE
 LET result_rec.status = -2
 LET result_rec.message = SFMT("Could not insert token in
 database:\n [%1]", data_rec.registration_token)
 END IF
 WHEN url MATCHES "*token_maintainer/unregister"
 CALL util.JSON.parse(data, data_rec)
 DELETE FROM tokens
 WHERE registration_token = data_rec.registration_token
 IF SQLCA.SQLERRD[3]==1 THEN

Mobile applications | 2615

 LET result_rec.message = SFMT("Token unregistered:\n [%1]",
 data_rec.registration_token)
 ELSE
 LET result_rec.status = -3
 LET result_rec.message = SFMT("Could not find token in
 database:\n [%1]", data_rec.registration_token)
 END IF
 WHEN url MATCHES "*token_maintainer/badge_number"
 CALL util.JSON.parse(data, data_rec)
 WHENEVER ERROR CONTINUE
 UPDATE tokens
 SET badge_number = data_rec.badge_number
 WHERE registration_token = data_rec.registration_token
 WHENEVER ERROR STOP
 IF SQLCA.SQLCODE==0 THEN
 LET result_rec.message = SFMT("Badge number update
 succeeded for Token:\n [%1]\n New value for badge number :[%2]\n",
 data_rec.registration_token, data_rec.badge_number)
 ELSE
 LET result_rec.status = -4
 LET result_rec.message = SFMT("Could not update badge number
 for token in database:\n [%1]", data_rec.registration_token)
 END IF
 END CASE
 CATCH
 LET result_rec.status = -1
 LET result_rec.message = SFMT("Failed to register token:\n [%1]",
 data_rec.registration_token)
 END TRY
LABEL pc_end:
 DISPLAY result_rec.message
 LET result = util.JSON.stringify(result_rec)
 RETURN result
END FUNCTION

Showing the current registered tokens

The following function is called after a WebServiceEngine timeout, when no request is to be processed. Its
purpose is just to show the current list of registered tokens in a server log (stdout):

FUNCTION show_tokens()
 DEFINE rec RECORD
 id INTEGER,
 sender_id VARCHAR(150),
 registration_token VARCHAR(250),
 badge_number INTEGER,
 app_user VARCHAR(50),
 reg_date DATETIME YEAR TO FRACTION(3)
 END RECORD
 DECLARE c1 CURSOR FOR SELECT * FROM tokens ORDER BY id
 FOREACH c1 INTO rec.*
 IF rec.sender_id IS NULL THEN
 LET rec.sender_id = "(null)"
 END IF
 DISPLAY " ", rec.id, ": ",
 rec.app_user[1,10], " / ",
 rec.sender_id[1,20],"... / ",
 "(",rec.badge_number USING "<<<<&", ") ",
 rec.registration_token[1,20],"..."
 END FOREACH
 IF rec.id == 0 THEN
 DISPLAY "No tokens registered yet..."

Mobile applications | 2616

 END IF
END FUNCTION

APNs feedback checking

When using Apple Push Notification service, the device token maintainer can also handle device
unregistration by querying the APNs feedback service. The APNs feedback service will provide the list of
device tokens that are no longer valid because the app on the devices has unregistered.

Note: When using the APNs feedback service, an SSL certificate needs to be defined in
FGLPROFILE as described in APNs SSL certificate on page 2095.

To get the list of device tokens failed for remote notifications, send HTTP POST request to the following
URL:

tcps://feedback.push.apple.com:2196

The token maintainer can use this service to clean up the token database.

The next function is called after a timeout when no request needs to be processed by the token maintainer:

FUNCTION check_apns_feedback()
 DEFINE req com.TCPRequest,
 resp com.TCPResponse,
 feedback DYNAMIC ARRAY OF RECORD
 timestamp INTEGER,
 deviceToken STRING
 END RECORD,
 timestamp DATETIME YEAR TO FRACTION(3),
 token VARCHAR(250),
 i INTEGER,
 data BYTE

 IF arg_val(1)!="APNS" THEN RETURN END IF
 DISPLAY "Checking APNS feedback service..."

 LOCATE data IN MEMORY

 TRY
 LET req = com.TCPRequest.create("tcps://
feedback.push.apple.com:2196")
 CALL req.setKeepConnection(true)
 CALL req.setTimeout(2)
 CALL req.doRequest()
 LET resp = req.getResponse()
 CALL resp.getDataResponse(data)
 CALL com.APNS.DecodeFeedback(data,feedback)
 FOR i=1 TO feedback.getLength()
 LET timestamp =
 util.Datetime.fromSecondsSinceEpoch(feedback[i].timestamp)
 LET timestamp = util.Datetime.toUTC(timestamp)
 LET token = feedback[i].deviceToken
 DELETE FROM tokens
 WHERE registration_token = token
 AND reg_date < timestamp
 END FOR
 CATCH
 CASE STATUS
 WHEN -15553 DISPLAY "APNS feedback: Timeout: No feedback
 message"
 WHEN -15566 DISPLAY "APNS feedback: Operation failed :",
 SQLCA.SQLERRM
 WHEN -15564 DISPLAY "APNS feedback: Server has shutdown"
 OTHERWISE DISPLAY "APNS feedback: ERROR :",STATUS

Mobile applications | 2617

 END CASE
 END TRY
END FUNCTION

For more details about APNs feedback service, see The Feedback Service in Apple's APNs
documentation.

Handling notifications in the mobile app
This topic describes how to handle push notification in the app running on mobile devices.

Basics

In order to implement a push notification mechanism, you need to set up a server part (token maintainer
and push notification server), in conjunction with a push notification framework such as Google Cloud
Messaging (GCM) or Apple Push Notification service (APNs). In Addition, you need to handle notification
events in your mobile app. This section describes how to implement push notification in the app with the
push notification API available in Genero BDL.

The same code base can be used to handle push notifications for Android (using GCM) and iOS (using
APNs) devices. Only the content of the notification message will have to be processed with specific code,
as the structure of the message differs according to standards defined by the push notification framework.

Genero API for push notifications

Genero BDL provides an API to handle push notification on mobile apps. Dedicated front calls are
available to register to a push server, fetch push notification data, and unregister:

• registerForRemoteNotifications on page 1934
• getRemoteNotifications on page 1930
• unregisterFromRemoteNotifications on page 1939

To detect when a notification message arrives from the push server, a specific action called
notificationpushed must be used by app code on a ON ACTION handler. This special action is
referenced as a predefined action.

Android app permissions for GCM push notifications

Android apps using push notification services need specific permissions (Android manifest), such as:

• android.permission.INTERNET

• android.permission.GET_ACCOUNTS

• android.permission.WAVE_LOCK

• com.google.android.c2dm.permission.RECEIVE

• application-package-name.permission.C2D_MESSAGE where application-package-name is the
Android package name of your app (for example, com.mycompany.pushclient)

Permissions will be automatically set when building the Android APK packages with the GMA build tool,
according to the package name specified with the --build-app-package-name option.

See the GCM documentation for more details about required permissions for push notifications.

iOS app certificates for APNS push notifications

iOS apps must be created with an Apple certificate for development or distribution, linked to an App ID (or
Bundle ID) with push notification enabled. The provisioning profile used when building the IPA must be
linked to the App ID with push enabled. Certificate, provisioning and bundle id must be specified to the GMI
build tool.

https://developer.apple.com/library/prerelease/watchos/documentation/NetworkingInternet/Conceptual/RemoteNotificationsPG/Chapters/CommunicatingWIthAPS.html#//apple_ref/doc/uid/TP40008194-CH101-SW3

Mobile applications | 2618

Handling push notification in the app

To handle push notifications in your mobile app, perform the following steps:

1. Register to the push service and get the registration token
2. Send the push notification token to your token maintainer
3. Handle notification events with the notificationpushed action
4. Eventually un-register from the push servers

1 - Registering to the push service and to the push provider

Register the app to the push notification service with the "registerForRemoteNotifications" front
call.

• When using GCM, you must provide Sender ID to identify the GCM project.
• When using APNs, you can leave the Sender ID to NULL.

Note: The app does not need to register for notification each time it is restarted: Even if the app is
closed, the registration is still active until the unregisterFromRemoteNotifications front call
is performed. At first execution, an app will typically ask if the user wants to get push notifications
and register to the push service if needed. To disable push notification, apps usually implement
an option that can be disabled (to unregister) and re-enabled (to register again) by the user. On
Android, that the app must register for notification each time it is upgraded.

Important:

When an app restarts, if notifications are pending and the app has already registered for push
notification in a previous execution, the notificationpushed action will be raised as soon
as a dialog with the corresponding ON ACTION handler activates. The app should then perform
a getRemoteNotifications on page 1930 front call as in the regular case, to get the pending
notifications pushed to the device while the app was off.

However, special consideration needs to be given to iOS devices. When push notification arrives for
an iOS app that has not started, there is no mechanism to wake up the app and get the push data.
Therefore, when the user starts the app from the springboard, there will never have any push data
available. Depending on the context, implement the following programming patterns to solve this
problem:

1. If the push notification contains a badge number, the app can verify if the badge is greater than
0 (with the getBadgeNumber front call) in order to perform a getRemoteNotifications
front call. Even if there is no data available with the front call, the app should directly ask the
server push provider to get last push data.

2. If the push notification does not contain badge numbers, the app should always perform a
getRemoteNotification front call when it starts. If there is no push data available from the
front call, the app should ask the server push provider if there is push data available. This is by
the way also recommended when receiving a notificationpushed action during application
life time.

3. If the user starts the app from the Notification Center, the app is launched with push data
transmitted from the system, and the notificationpushed action is sent. The app should the
perform, the getRemoteNotifications front call and get the push data.

The registerForRemoveNotifications front call will return a registration token for the app which will
be used by the push server (a.k.a push provider).

• When using GCM, the returned identifier is the GCM "registration token".
• When using APNs, the returned identifier is the APNs "device token".

CONSTANT GCM_SENDER_ID = "<enter your GCM Sender ID ('' for APNs)>"

...

Mobile applications | 2619

 LET rec.tm_host = "https://pushreg.example.orion"
 LET rec.tm__port = 4930
 LET rec.app_user = "mike"

 LET rec.registration_token = register(GCM_SENDER_ID, rec.app_user)

...

FUNCTION register(sender_id, app_user)
 DEFINE sender_id STRING,
 app_user STRING
 DEFINE registration_token STRING
 TRY
 CALL ui.Interface.frontCall(
 "mobile", "registerForRemoteNotifications",
 [sender_id], [registration_token])
 IF tm_command("register", sender_id, registration_token, app_user,
 0) < 0 THEN
 RETURN NULL
 END IF
 CATCH
 MESSAGE "Registration failed."
 RETURN NULL
 END TRY
 MESSAGE SFMT("Registration succeeded (token=%1)", registration_token)
 RETURN registration_token
END FUNCTION

2 - Sending a push notification token to your token maintainer

Once registered to the GCM or APNs service, the app must also register to the push server or push
provider by sending the token obtained in step 1.

This is typically done by using a RESTFul HTTP POST, sending the token (along with additional
application user information) to a dedicated server program that maintains the list of registered devices/
tokens.

The device token maintainer can be implemented in BDL as a Web Service program, as described in
Implementing a token maintainer on page 2611.

In this tutorial, the tm_command() function implements token registration (as well as badge number
handling for APNS):

IMPORT com
IMPORT util

...
 LET rec.tm_host = "https://pushreg.example.orion"
 LET rec.tm__port = 4930
...

FUNCTION tm_command(command, sender_id, registration_token, app_user,
 badge_number)
 DEFINE command STRING,
 sender_id STRING,
 registration_token STRING,
 app_user STRING,
 badge_number INTEGER
 DEFINE url STRING,
 json_obj util.JSONObject,
 req com.HTTPRequest,
 resp com.HTTPResponse,
 json_result STRING,

Mobile applications | 2620

 result_rec RECORD
 status INTEGER,
 message STRING
 END RECORD
 TRY
 LET url = SFMT("http://%1:%2/token_maintainer/%3",
 rec.tm_host, rec.tm_port, command)
 LET req = com.HTTPRequest.create(url)
 CALL req.setHeader("Content-Type", "application/json")
 CALL req.setMethod("POST")
 CALL req.setConnectionTimeOut(5)
 CALL req.setTimeOut(5)
 LET json_obj = util.JSONObject.create()
 CALL json_obj.put("sender_id", sender_id)
 CALL json_obj.put("registration_token", registration_token)
 CALL json_obj.put("app_user", app_user)
 CALL json_obj.put("badge_number", badge_number)
 CALL req.doTextRequest(json_obj.toString())
 LET resp = req.getResponse()
 IF resp.getStatusCode() != 200 THEN
 MESSAGE SFMT("HTTP Error (%1) %2",
 resp.getStatusCode(),
 resp.getStatusDescription())
 RETURN -2
 ELSE
 LET json_result = resp.getTextResponse()
 CALL util.JSON.parse(json_result, result_rec)
 IF result_rec.status >= 0 THEN
 RETURN 0
 ELSE
 MESSAGE SFMT("Notification maintainer message:\n %1",
 result_rec.message)
 RETURN -3
 END IF
 END IF
 CATCH
 MESSAGE SFMT("Failed to post token registration command: %1",
 STATUS)
 RETURN -1
 END TRY
END FUNCTION

When the app is declared as push notification client to the push server, continue with the normal program
flow.

3 - Handling push notification events

To get and handle notification events, the current active dialog must implement the
notificationpushed special action.

In the ON ACTION block for this action, query for notification messages by using the
"getRemoteNotifications" front call, (passing the Sender ID as parameter when using GCM, for
APNs the Sender ID must be NULL). This front call returns a JSON string containing a list of notification
messages to be processed:

...
 DIALOG ...
 ...
 ON ACTION notificationpushed
 CALL handle_notification(sender_id)
 ...
 END DIALOG
...

Mobile applications | 2621

FUNCTION handle_notification(sender_id)
 DEFINE sender_id STRING
 DEFINE notif_list STRING,
 notif_array util.JSONArray,
 notif_item util.JSONObject,
 notif_data util.JSONObject,
 notif_fld util.JSONObject,
 gcm_data, info STRING,
 i INTEGER
 CALL ui.Interface.frontCall(
 "mobile", "getRemoteNotifications",
 [sender_id], [notif_list])
 TRY
 LET notif_array = util.JSONArray.parse(notif_list)
 IF notif_array.getLength() > 0 THEN
 CALL setup_badge_number(notif_array.getLength())
 END IF
 FOR i=1 TO notif_array.getLength()
 LET info = NULL
 LET notif_item = notif_array.get(i)
 -- Try APNs msg format
 LET notif_data = notif_item.get("custom_data")
 IF notif_data IS NULL THEN
 -- Try GCM msg format
 LET gcm_data = notif_item.get("data")
 IF gcm_data IS NOT NULL THEN
 LET notif_data = util.JSONObject.parse(gcm_data)
 END IF
 END IF
 IF notif_data IS NOT NULL THEN
 LET info = notif_data.get("other_info")
 END IF
 IF info IS NULL THEN
 LET info = "Unexpected message format"
 END IF
 MESSAGE CURRENT HOUR TO SECOND, ": ", info
 SLEEP 1
 END FOR
 CATCH
 ERROR "Could not extract notification info"
 END TRY
END FUNCTION

When using APNS, the app must handle the badge numbers attached to the device token. The app must:

1. Query the current badge number with the getBadgeNumber front call.
2. Compute the new badge number according to the number of notifications consumed.
3. Reset the badge number with the setBadgeNumber front call.
4. Inform the token maintainer to sync the badge number in the central database.

The following function handles badge numbers for the app:

FUNCTION setup_badge_number(consumed)
 DEFINE consumed INTEGER
 DEFINE badge_number INTEGER
 TRY -- If the front call fails, we are not on iOS...
 CALL ui.Interface.frontCall("ios", "getBadgeNumber", [],
 [badge_number])
 CATCH
 RETURN
 END TRY
 IF badge_number>0 THEN

Mobile applications | 2622

 LET badge_number = badge_number - consumed
 END IF
 CALL ui.Interface.frontCall("ios", "setBadgeNumber", [badge_number], [])
 IF tm_command("badge_number",
 rec.sender_id, rec.registration_token,
 rec.user_name, badge_number) < 0 THEN
 ERROR "Could not send new badge number to token maintainer."
 RETURN
 END IF
END FUNCTION

4 - Unregistering the app from push notification

If the app no longer wants to get push notifications, unregister from the push provider (using a RESTful
POST, in the regunreg_token() function), and unregister from the push service by using the
"unregisterFromRemoteNotifications" front call.

• When using GCM, you must pass the GCM Sender ID as parameter.
• When using APNs, the parameter must be NULL.

...

 LET rec.tm_host = "https://pushreg.example.orion"
 LET rec.tm__port = 4930

 CALL unregister(GCM_SENDER_ID, rec.registration_token, rec.app_user)

...

FUNCTION unregister(sender_id, registration_token, app_user)
 DEFINE sender_id STRING,
 registration_token STRING,
 app_user STRING
 IF tm_command("unregister", sender_id, registration_token, app_user,
 0) < 0 THEN
 RETURN
 END IF
 TRY
 CALL ui.Interface.frontCall(
 "mobile", "unregisterFromRemoteNotifications",
 [sender_id], [])
 CATCH
 MESSAGE "Un-registration failed (broacast service)."
 RETURN
 END TRY
 MESSAGE "Un-registration succeeded"
END FUNCTION

	Contents
	Genero Business Development Language User Guide
	What's new in Genero Business Development Language, v 3.00
	General
	Documentation conventions
	Syntaxes
	Warnings
	Code examples
	Enhancement references

	General terms used in this documentation
	Introduction to Genero BDL programming
	Overview of Genero BDL
	Separation of business logic and user interface
	Portability - write once, deploy anywhere

	Genero BDL concepts
	Genero programs
	Integrated SQL support
	XML support
	The user interface
	Language library
	Windows and forms
	Interactive instructions
	Responding to user actions
	Producing reports
	Internationalization
	Web services support
	Extending the language
	Programming tools
	Compiling a program
	Deploying an application

	Installation
	Documentation resources for upgrades
	Software requirements
	Supported operating systems
	Database client software
	C compiler for C extensions
	Java™ runtime environment
	IPv6 support with Genero

	Installing Genero BDL
	Upgrading Genero BDL
	Platform specific notes
	HP-UX configuration notes
	IBM® AIX® configuration notes
	Mac OS X configuration notes
	Microsoft™ Windows™ configuration notes
	Web Services platform notes

	Upgrading
	New Features
	Version 3.00 (Maintenance Releases)
	Version 3.00
	Version 2.51
	Version 2.50
	Version 2.41
	Version 2.40
	Version 2.32
	Version 2.30
	Version 2.21
	Version 2.20
	Version 2.11
	Version 2.10
	Version 2.02
	Version 2.01
	Version 2.00
	Version 1.33
	Version 1.32
	Version 1.31
	Version 1.30
	Version 1.20
	Version 1.10

	Frequently asked questions
	FAQ001: Why do I have a different display with Genero than with BDS V3?
	FAQ002: Why does an empty window always appear?
	FAQ003: Why do some COMMAND KEY buttons no longer appear?
	FAQ004: Why aren't the elements of my forms aligned properly?
	FAQ005: Why doesn't the ESC key validate my input?
	FAQ006: Why doesn't the Ctrl-C key cancel my input?
	FAQ007: Why do the gui.* FGLPROFILE entries have no effect?
	FAQ008: Why do I get invalid characters in my form?
	FAQ009: Why do large static arrays raise a stack overflow?
	FAQ010: Why do I get error -6366 "Could not load database driver drivername"?

	Upgrade Guides
	General upgrade guide
	Runtime system and front-end compatibility
	P-Code compatibility accross versions
	Genero Web Services migration notes

	3.00 upgrade guide
	Form definitions for mobile applications
	Desupported database drivers
	Web Services changes
	Oracle DB NUMBER type
	Oracle DB scroll cursor emulation removal
	MySQL VARCHAR size limit
	MySQL DATETIME fractional seconds
	PostgreSQL DATETIME type mapping change
	MariaDB support
	FreeTDS driver supports SQL Server 2008, 2012, 2014
	FGL_GETVERSION() built-in function
	Built-in front-end icons desupport
	Presentation style attribute changes
	Modifications in front calls
	SERIAL emulation with SQL Server
	Improved compilation time
	Preprocessor changes
	Current system time in UTC
	Structured ARRAYs in list dialogs

	2.51 upgrade guide
	Desupported database drivers
	New database driver name specification
	The FIELD form item type and .val schema file
	TRY/CATCH and ERROR LOG
	DATETIME types with SQLite
	Desupport of C-Extension API functions

	2.50 upgrade guide
	Desupported database drivers
	TEXT/BYTE support with FTM/ESM database drivers
	Presentation style attribute changes
	Floating point to string conversion
	Web Services changes
	Implicit creation of certificates for HTTPS
	PostgreSQL schema extraction needs namespace
	Client stubs managing multipart changes

	2.40 upgrade guide
	Desupported database drivers
	Program size option removal (fglrun -s)
	Informix® SERIAL emulation with SQL Server
	SIZEPOLICY attribute removal for containers
	The LVARCHAR type in IBM® Informix® databases
	Right-trim collation for character types in SQLite
	Message files support now 4-bytes integer message numbers
	MySQL client library version change in MySQL 5.5.11
	New compiler warning to avoid action shadowing
	Runtime error raised when report dimensions are invalid
	Linker checks all referenced functions

	2.32 upgrade guide
	Front-end protocol compression disabled
	SQLite driver does no longer need libiconv on Windows™
	Need for Informix® CSDK to compile C extensions
	FESQLC tool removal

	2.30 upgrade guide
	GUI server auto start
	Form compiler is more strict
	ORACLE and INTERVAL columns
	DIALOG.setCurrentRow() changes row selection flags
	Schema extractor needs table owner
	Windows™ installation for all users only
	MenuAction close no longer created by default
	Emulated scrollable cursor temp files in DBTEMP
	Modifying tree view data during dialog execution
	FPI tool removal

	2.21 upgrade guide
	PostgreSQL 8.4 and INTERVAL type
	fglcomp --build-rdd compiles the module
	Unique and primary key constraint violation
	IMPORT with list of C-Extensions
	Initializing dynamic arrays to null
	Strict screen record definition for tables

	2.20 upgrade guide
	Sort is now possible during INPUT ARRAY
	Cell attributes and buffered mode
	Field methods are more strict
	Strict variable identification in SQL statements
	SQL Warnings with non-Informix databases
	SERIALREG table for 64-bit serial emulation
	Extracting the database schema with fgldbsch
	Database driver internal error changed from -768 to -6319
	Searching for image files on the application server
	Strict action identification in dialog methods
	Strict field identification in dialog methods
	Form compiler checking invalid layout definition
	Database schema compatibility
	Predefined actions get automatically disabled according to context
	BEFORE ROW no longer executed when array is empty
	Controlling INPUT ARRAY temporary row creation

	2.11 upgrade guide
	Writing timestamp information in p-code modules

	2.10 upgrade guide
	XML declaration added automatically

	2.02 upgrade guide
	Automatic HBox/VBox

	2.01 upgrade guide
	2.00 upgrade guide
	Runner creation is no longer needed
	Desupported Informix® client environments
	Desupported database drivers
	fglmkrtm tool removed
	fglinstall tool removed
	Linking the utility functions library
	Dynamic C extensions
	WANTCOLUMNSANCHORED is desupported
	PIXELWIDTH / PIXELHEIGHT are desupported
	Pre-fetch parameters with Oracle
	Preprocessor directive syntax changed
	Static SQL cache is removed
	Connection database schema specification
	Changes in the schema extraction tools
	Global and module variables using the same name
	Connection parameters in FGLPROFILE when using Informix®
	Inconsistent USING clauses
	Usage of RUN IN FORM MODE
	TTY and COLOR WHERE attribute

	1.33 upgrade guide
	Desupported database drivers

	1.32 upgrade guide
	1.31 upgrade guide
	1.30 upgrade guide
	Action and field activation
	Using HBox tags in forms
	Width of ButtonEdit/DateEdit/ComboBox
	Form fields default sample
	Size policy for ComboBoxes
	Action defaults at form level
	Compiled string files have now .42s extension

	Planned desupport
	Migrating from IBM® Informix® 4gl to Genero BDL
	Introduction to I4GL migration
	IBM® Informix® 4GL and Genero BDL products
	IBM® Informix® 4GL reference version

	Installation and setup topics
	Using C extensions
	Localization support in Genero
	Database schema extractor
	Compiling 4GL to C

	User interface topics
	Easy user interface migration with traditional mode
	SCREEN versus LAYOUT
	Migrating screen arrays to tables
	Review TUI specifics
	The default SCREEN window
	Specifying WINDOW position and size
	Right justified field labels
	Using widgets instead of multiple text screens
	Review application ergonomics
	Subscripted form fields are not supported

	4GL programming topics
	Dynamic arrays
	Debugger command syntax
	Mismatching global variable definitions
	Strict function signature checking
	STRING versus CHAR/VARCHAR
	Review user-made C routines
	Web Services support
	File I/O statements and APIs
	OPEN USING followed by FOREACH

	Migrating from Four Js BDS to Genero BDL
	Installation and setup topics
	License controller
	Runner linking is no longer needed
	Localization support
	Database schema extractor
	C-Code compilation is desupported
	Desupported environment variables
	Desupported FGLPROFILE entries

	User interface topics
	Easy user interface migration with traditional mode
	Front-end compatibility
	FGLGUI is 1 by default
	FGLPROFILE: GUI configuration
	Key labels versus action defaults
	Migrating form field widgets
	SCREEN versus LAYOUT
	Migrating screen arrays to tables
	Review TUI specifics
	The default SCREEN window
	Specifying WINDOW position and size
	Front-end configuration tools
	Function key mapping

	4GL Programming topics
	FGLPROFILE: VM configuration
	Calling fgl_init4gl() initialization function
	Static versus Dynamic Arrays
	Debugger syntax changed
	fgl_system() function
	The Channel:: methods
	STRING versus CHAR/VARCHAR
	Review user-made C routines
	Strict variable identification in SQL statements
	Default action of WHENEVER ANY ERROR

	Configuration
	The FGLPROFILE file
	Understanding FGLPROFILE
	FGLPROFILE entry syntax
	List of FGLPROFILE entries

	Environment variables
	Setting environment variables on UNIX™
	Setting environment variables on Windows™
	Setting environment variables in FGLPROFILE (mobile)
	Operating system environment variables
	LC_ALL (or LANG)
	LD_LIBRARY_PATH
	PATH
	TERM
	TERMCAP
	TERMINFO
	TMPDIR, TEMP, TMP

	Database client environment variables
	Genero environment variables
	DBCENTURY
	DBDATE
	DBDELIMITER
	DBEDIT
	DBFORMAT
	DBMONEY
	DBPATH
	DBPRINT
	DBSCREENDUMP
	DBSCREENOUT
	DBTEMP
	FGL_LENGTH_SEMANTICS
	FGLAPPDIR
	FGLAPPSERVER
	FGLDBPATH
	FGLDIR
	FGLGUI
	FGLGUIDEBUG
	FGLIMAGEPATH
	FGLLDPATH
	FGLPROFILE
	FGLRESOURCEPATH
	FGLSERVER
	FGLSOURCEPATH
	FGLSQLDEBUG
	FGLWRTUMASK
	FGLWSDEBUG
	INFORMIXTERM

	Configuring the front-end connection
	Configuring the database server connections

	Language basics
	Syntax features
	Lettercase insensitivity
	Whitespace separators
	Quotation marks
	Escape symbol
	Statement terminator
	Comments
	Identifiers
	Preprocessor directives

	Data types
	BIGINT
	BYTE
	BOOLEAN
	CHAR(size)
	DATE
	DATETIME qual1 TO qual2
	DECIMAL(p,s)
	FLOAT
	INTEGER
	INTERVAL qual1 TO qual2
	MONEY(p,s)
	SMALLFLOAT
	SMALLINT
	STRING
	TINYINT
	TEXT
	VARCHAR(size)

	Type conversions
	When does type conversion occur?
	Data type conversion reference
	Handling type conversion errors
	Formatting numeric values
	Formatting DATE values
	Formatting DATETIME values
	Formatting INTERVAL values

	Literals
	Integer literals
	Numeric literals
	Text literals
	Datetime literals
	Interval literals

	Expressions
	Understanding expressions
	Boolean expressions
	Integer expressions
	Numeric expressions
	String expressions
	Date expressions
	Datetime expressions
	Interval expressions

	Operators
	Order of precedence
	General warnings regarding expressions
	List of expression elements
	Comparison operators
	IS NULL
	LIKE
	MATCHES
	Equal to (==)
	Different from (!=)
	Lower (<)
	Lower or equal (<=)
	Greater (>)
	Greater or equal (>=)
	NVL()
	IIF()

	Logical operators
	NOT
	AND
	OR

	Arithmetic operators
	Addition (+)
	Subtraction (-)
	Multiplication (*)
	Division (/)
	Exponentiation (**)
	MOD

	Character string operators
	ASCII()
	COLUMN
	Concatenate (||)
	Append (,)
	Substring ([s,e])
	USING
	CLIPPED
	ORD()
	SPACES
	LSTR()
	SFMT()

	Associative syntax operators
	Parentheses (())
	Membership (object.member)
	Variable parameter list ([])

	SQL related operators
	SQLSTATE
	SQLERRMESSAGE

	Data type operators
	CAST
	INSTANCEOF

	Assignment operators
	Assignment (:=)

	Date and time operators
	CURRENT
	EXTEND()
	DATE()
	TIME()
	TODAY
	YEAR()
	MONTH()
	DAY()
	WEEKDAY()
	MDY()
	UNITS

	Dialog handling operators
	GET_FLDBUF()
	INFIELD()
	FIELD_TOUCHED()

	Flow control
	CALL
	RETURN
	CASE
	CONTINUE block-name
	EXIT block-name
	FOR
	GOTO
	IF
	LABEL
	SLEEP
	WHILE

	Functions
	Understanding functions
	FUNCTION blocks
	Using functions in programs
	Examples
	Example 1: Function fetching customer number
	Example 2: Private function definition

	Variables
	Understanding variables
	DEFINE
	Declaration context
	Structured types
	Database column types
	User defined types
	Variable initialization values
	INITIALIZE
	LOCATE (for TEXT/BYTE)
	FREE (for TEXT/BYTE)
	LET
	VALIDATE
	THRU operator
	Examples
	Example 1: Local function variables
	Example 2: PRIVATE module variables
	Example 3: PUBLIC module variables
	Example 4: Global variables

	Constants
	Understanding constants
	CONSTANT
	Examples
	Example 1: Defining and using constants

	Records
	Understanding records
	DEFINE ... RECORD
	Examples
	Example 1: Defining a record with explicit member types
	Example 2: Defining a record with a database table structure
	Example 3: Assigning an comparing records

	Arrays
	Understanding arrays
	DEFINE ... ARRAY
	Static arrays
	Controlling out of bound in static arrays

	Dynamic arrays
	Array methods
	Copying complete arrays
	Examples
	Example 1: Using static and dynamic arrays
	Example 2: Fetching database rows into a dynamic array

	Types
	Understanding type definition
	TYPE
	Using types in programs
	Examples
	Example 1: Defining a type with a record structure
	Example 2: Defining a type an using it in another module

	Advanced features
	Localization
	Application locale
	Quickstart guide for locale settings
	Locale and character set basics
	Why do I need to care about the locale and character set?
	Characters, code points, character sets, glyphs and fonts
	The ASCII character set
	Single-byte character sets (SBCS)
	Double-byte character sets (DBCS)
	Multibyte character sets (MBCS)
	Character size unit and length semantics
	The UNICODE Standard
	When do I need a UNICODE character set?
	What is the standard?
	What is my current character set?

	Understanding locale settings
	Defining the application locale
	Language and character set settings
	Length semantics settings
	Collation ordering settings
	Numeric and currency locale settings
	Date and time locale settings

	Database client settings
	Front-end settings
	Writing programs
	Runtime system messages
	Using the charmap.alias file
	Date, numeric and monetary formats
	Using the Ming Guo date format
	Troubleshooting locale issues
	Locale settings (LANG) corrupted on Microsoft™ platforms
	A form is displayed with invalid characters
	Checking the locale configuration on UNIX™ platforms
	Verifying if the locale is properly supported by the runtime system
	How to retrieve the list of available locales on the system
	How to retrieve the list of available codesets on the system

	Localized strings
	Steps for application internationalization
	Creating source string files
	Localized strings in program sources
	Localized strings in XML resource files
	Extracting strings from sources
	Compiling string files
	Using localized strings at runtime
	Predefined application strings
	Example

	Runtime stack
	Passing simple typed values as parameter
	Passing a record as parameter
	Passing a static array as parameter
	Passing a dynamic array as parameter
	Passing objects as parameter
	Passing a TEXT/BYTE as parameter
	Returning simple typed values from functions
	Returning dynamic arrays from functions
	Returning TEXT/BYTE values from functions
	Implicit data type conversion on the stack

	Exceptions
	Understanding exceptions
	Exception classes
	Exception actions
	WHENEVER instruction
	TRY - CATCH block
	Tracing exceptions
	Default exception handling
	Non-trappable errors
	Examples
	Example 1: Defining a error handler function
	Example 2: SQL error handling with WHENEVER
	Example 3: Typical TRY / CATCH block
	Example 4: TRY / CATCH in conjuction with WHENEVER
	Example 5: WHENEVER RAISE expection propagation

	OOP support
	Understanding classes and objects
	DEFINE ... package.class
	Distinguish class and object methods
	Working with objects
	What class packages exist?

	XML support
	DOM and SAX standards
	DOM and SAX built-in classes
	Limitations of XML built-in classes
	Exception handling with XML classes
	Controlling the user interface with XML classes

	Globals
	Understanding global blocks
	GLOBALS
	Rules for globals usage
	Database schema in globals
	Content of a globals file
	Examples
	Example 1: Multiple GLOBALS file

	Database schema
	Understanding database schemas
	SCHEMA
	Structure of database schema files
	Column Definition File (.sch)
	Column Validation File (.val)
	Column Video Attributes File (.att)

	Database schema extractor options
	Specifying the database source
	Specifying the database driver
	Passing database user login and password
	Data type conversion control
	Specifying the table owner
	Force extraction of system tables
	Specifying the output file name
	Extracting definition of a single table
	Controlling the character case
	Using the verbose mode
	IBM® Informix® synonym tables
	IBM® Informix® shadow columns
	Running schema extractor in old mode

	Programs
	Structure of a program
	Structure of a module
	The MAIN block
	Importing modules
	IMPORT C-Extension
	IMPORT FGL module
	IMPORT JAVA classname

	Predefined constants
	NULL
	TRUE
	FALSE
	NOTFOUND

	Configuration options
	OPTIONS (Compilation)
	Controlling semantics of AND / OR operators

	OPTIONS (Runtime)
	Defining the position of reserved lines
	Defining default TTY attributes
	Defining the field input loop
	Defining field tabbing order
	Application termination
	Front-end termination
	Defining the message file
	Defining control keys
	Setting default screen modes for sub-programs
	Enabling/disabling SQL interruption

	Runtime configuration in FGLPROFILE
	Responding to CTRL_LOGOFF_EVENT

	DEFER INTERRUPT / QUIT

	Program registers
	STATUS
	INT_FLAG
	QUIT_FLAG

	Program execution
	Executing programs
	RUN
	EXIT PROGRAM
	BREAKPOINT

	Front calls
	Understanding front calls
	ui.Interface.frontCall
	User-defined front calls

	SQL support
	SQL programming
	SQL basics
	SQL execution diagnostics
	The SQLCA diagnostic record
	SQL error identification
	SQL interruption
	Debugging SQL
	Cursors and connections
	Implicit database connection
	The database utility library
	Handling nested transactions
	Transaction blocks across connections
	The base.SQLHandle built-in class

	SQL security
	Database user authentication
	Avoiding SQL injection

	SQL portability
	Database entities
	Database users and security
	Creating a database from programs
	Data definition statements
	Using portable data types
	Data manipulation statements
	CHAR and VARCHAR types
	Byte or Character Length semantics?
	SQL character type for Unicode/UTF-8
	Empty strings and NULLs
	Trailing blanks in CHAR/VARCHAR
	What should you do?

	Concurrent data access
	Scrollable cursors
	Optimistic locking
	Auto-incremented columns (serials)
	Solution 1: Use database specific serial generators
	Solution 2: Generate serial numbers from your own sequence table
	Solution 3: Use native SEQUENCE database objects

	IBM® Informix® SQL ANSI Mode
	Positioned updates/deletes
	WITH HOLD and FOR UPDATE
	Insert cursors
	String literals in SQL statements
	Date and time in SQL statements
	Naming database objects
	Name syntax
	Case-sensitivity
	Size of identifiers

	Temporary tables
	Outer joins
	Substring expressions
	Using ROWIDs
	MATCHES and LIKE operators
	GROUP BY clause
	The LENGTH() function in SQL
	Transaction savepoints
	Stored procedures
	Specifying input and output parameters
	Stored procedures returning a result set
	Calling stored procedures with supported databases
	Stored procedure call with IBM® Informix®
	Stored functions returning values
	Stored functions defined with output parameters
	Stored functions returning a result set

	Stored procedure call with Oracle DB
	Stored procedures with output parameters
	Stored functions with a return value
	Stored procedures producing a result set

	Stored procedure call with IBM® DB2®
	Stored procedures with output parameters
	Stored procedures producing a result set
	Stored procedures with output parameters and result set

	Stored procedure call with Microsoft™ SQL Server
	Stored procedures with output parameters
	Stored procedures producing a result set
	Stored procedures returning a cursor as output parameter
	Stored procedures with return code
	Stored procedures with output parameters, return code and result set

	Stored procedure call with PostgreSQL
	Stored functions with output parameters
	Stored functions producing a result set
	Stored functions with output parameters and result set

	Stored procedure call with Oracle MySQL
	Stored procedures with output parameters
	Stored functions returning values
	Stored procedures producing a result set

	Stored procedure call with SAP Sybase ASE
	Stored procedures with output parameters
	Stored procedures producing a result set
	Stored procedures with output parameters, return code and result set

	SQL performance
	Performance with dynamic SQL
	Performance with transactions
	Avoiding long transactions
	Declaring prepared statements
	Saving SQL resources
	Optimizing scrollable cursors

	Database connections
	Understanding database connections
	Opening a database connection
	Database client environment
	IBM® DB2 Universal Database™
	IBM® Informix® Dynamic Server
	Oracle MySQL
	Oracle database
	PostgreSQL
	Microsoft™ SQL Server
	SQLite
	Sybase Adaptive Server Enterprise (ASE)

	Connection parameters
	Database source specification (source)
	Database driver specification (driver)
	Default database driver
	User name and password (username/password)

	Connection parameters in database specification
	Direct database specification method
	Indirect database specification method
	IBM® Informix® emulation parameters in FGLPROFILE
	Database vendor specific parameters in FGLPROFILE
	IBM® DB2® specific FGLPROFILE parameters
	Oracle DB specific FGLPROFILE parameters
	Oracle MySQL / MariaDB specific FGLPROFILE parameters
	SQL Server (Native Client driver) specific FGLPROFILE parameters
	SQL Server (FreeTDS driver) specific FGLPROFILE parameters
	SQL Server (EasySoft driver) specific FGLPROFILE parameters
	Sybase ASE specific FGLPROFILE parameters

	Database user authentication
	Specifying a user name and password with CONNECT
	Specifying a user name and password with DATABASE
	User authentication callback function
	Order of precedence for database user specification

	Unique session mode connection instructions
	DATABASE
	CLOSE DATABASE

	Multi-session mode connection instructions
	CONNECT TO
	SET CONNECTION
	DISCONNECT

	Miscellaneous SQL statements
	SET EXPLAIN
	UPDATE STATISTICS

	Database transactions
	Understanding database transactions
	BEGIN WORK
	SAVEPOINT
	COMMIT WORK
	ROLLBACK WORK
	RELEASE SAVEPOINT
	SET ISOLATION
	SET LOCK MODE

	Static SQL statements
	Understanding static SQL statements
	Using program variables in static SQL
	Table and column names in static SQL
	SQL texts generated by the compiler
	INSERT
	UPDATE
	DELETE
	SELECT
	SQL ... END SQL
	CREATE SEQUENCE
	ALTER SEQUENCE
	DROP SEQUENCE
	CREATE TABLE
	ALTER TABLE
	DROP TABLE
	CREATE INDEX
	ALTER INDEX
	DROP INDEX
	CREATE VIEW
	DROP VIEW
	CREATE SYNONYM
	DROP SYNONYM
	RENAME

	Dynamic SQL management
	Understanding dynamic SQL
	PREPARE (SQL statement)
	EXECUTE (SQL statement)
	FREE (SQL statement)
	EXECUTE IMMEDIATE

	Result set processing
	Understanding database result sets
	DECLARE (result set cursor)
	OPEN (result set cursor)
	FETCH (result set cursor)
	CLOSE (result set cursor)
	FREE (result set cursor)
	FOREACH (result set cursor)

	Positioned updates/deletes
	Understanding positioned update or delete
	DECLARE (SELECT ... FOR UPDATE)
	UPDATE ... WHERE CURRENT OF
	DELETE ... WHERE CURRENT OF
	Examples
	Example 1: Positioned UPDATE statement

	SQL insert cursors
	Understanding SQL insert cursors
	DECLARE (insert cursor)
	OPEN (insert cursor)
	PUT (insert cursor)
	FLUSH (insert cursor)
	CLOSE (insert cursor)
	FREE (insert cursor)
	Examples
	Example 1: Insert Cursor declared with a Static INSERT
	Example 2: Insert Cursor declared with an SQL text
	Example 3: Insert Cursor declared with 'hold' option

	SQL load and unload
	LOAD
	UNLOAD

	SQL adaptation guides
	SQL guide for IBM® Informix® database servers 5.x, 7.x, 8.x, 9.x, 10.x, 11.x
	Purpose of the Informix® SQL guide
	Installation (Runtime Configuration)
	Supported IBM® Informix® server and CSDK versions
	Install IBM® Informix® and create a database - database configuration/design tasks
	Prepare the runtime environment - connecting to the database

	Fully supported IBM® Informix® SQL features
	What are the supported IBM® Informix® SQL features?

	Partially supported IBM® Informix® SQL features
	The BIGSERIAL / SERIAL8 data types
	The NCHAR / NVARCHAR data types
	The LVARCHAR data type
	DISTINCT data types
	Stored Procedures
	Database Triggers
	Optimizer directives
	XML publishing support
	DataBlade® modules
	Specific CREATE INDEX clauses
	Other SQL instructions

	Unsupported IBM® Informix® SQL features
	CLOB and BLOB data types
	The LIST data type
	The MULTISET data type
	The SET data type
	The ROW data types
	OPAQUE data types
	The :: cast operator
	Table inheritance

	SQL adaptation guide for IBM® DB2® UDB 10.x
	Installation (Runtime Configuration)
	Install DB2® and create a database - database configuration/design tasks
	Prepare the runtime environment - connecting to the database

	Database concepts
	Database concepts
	Data storage concepts
	Data consistency and concurrency
	Transactions handling
	Database users
	Setting privileges

	Data dictionary
	BOOLEAN data type
	CHARACTER data types
	NUMERIC data types
	DATE and DATETIME data types
	INTERVAL data type
	SERIAL data types
	ROWIDs
	Large OBject (LOB) types
	Constraints
	Triggers
	Stored procedures
	Name resolution of SQL objects
	The ALTER TABLE instruction
	Data type conversion table: Informix to DB2

	Data manipulation
	Reserved words
	Outer joins
	Transactions handling
	Temporary tables
	Substrings in SQL
	String delimiters
	Getting one row with SELECT
	MATCHES and LIKE in SQL conditions
	SQL functions
	Querying system catalog tables
	The GROUP BY clause
	The star (asterisk) in SELECT statements
	The LENGTH() function

	BDL programming
	Informix® specific SQL statements in BDL
	INSERT cursors
	Cursors WITH HOLD
	SELECT FOR UPDATE
	SQL parameters limitation
	The LOAD and UNLOAD instructions
	SQL Interruption
	Scrollable Cursors

	Connecting to DB2® OS/400®
	DB2® Architecture on OS/400®
	Login to the AS/400® server
	Collection (Schema) Creation
	Source Physical File Creation
	Trigger Creation
	Permission Definition
	Relational DB Directory Entry Creation
	DB2® Client Configuration on Windows™
	Differences Between DB2® UNIX™ & DB2® OS/400®
	Naming Conventions

	SQL adaptation guide for IBM® Netezza® 6.x
	Installation (Runtime Configuration)
	Install IBM® Netezza® and create a database - database configuration/design tasks
	Prepare the runtime environment - connecting to the database

	Database concepts
	Database concepts
	Data consistency and concurrency
	Transactions handling
	Database users

	Data dictionary
	BOOLEAN data type
	CHARACTER data types
	NUMERIC data types
	DATE and DATETIME data types
	INTERVAL data type
	SERIAL data types
	ROWIDs
	Indexes
	Large OBject (LOB) types
	Constraints
	Triggers
	Stored procedures
	Name resolution of SQL objects
	Data type conversion table: Informix to Netezza

	Data manipulation
	Reserved words
	Outer joins
	Transactions handling
	Temporary tables
	Substrings in SQL
	The LENGTH() function
	Name resolution of SQL objects
	String delimiters
	MATCHES and LIKE in SQL conditions
	Querying system catalog tables
	Syntax of UPDATE statements

	BDL programming
	UPDATE limitations in Netezza
	Informix® specific SQL statements in BDL
	INSERT cursors
	Cursors WITH HOLD
	SELECT FOR UPDATE
	UPDATE/DELETE WHERE CURRENT OF
	The LOAD and UNLOAD instructions
	SQL Interruption
	Scrollable Cursors

	SQL adaptation guide for SQL SERVER 2005, 2008, 2012, 2014
	Installation (Runtime Configuration)
	Install SQL SERVER and create a database - database configuration/design tasks
	Prepare the runtime environment - connecting to the database

	Database concepts
	Database concepts
	Data storage concepts
	Data consistency and concurrency
	Transactions handling
	Database users
	Setting privileges

	Data dictionary
	BOOLEAN data type
	CHARACTER data types
	NUMERIC data types
	DATE and DATETIME data types
	INTERVAL data type
	SERIAL data types
	SQL Server UNIQUEIDENTIFIER data type
	SQL Server ROWVERSION data type
	ROWIDs
	Case sensitivity
	Large OBject (LOB) types
	The ALTER TABLE instruction
	Constraints
	Triggers
	Stored procedures
	Name resolution of SQL objects
	Data type conversion table: Informix to SQL Server

	Data manipulation
	Reserved words
	Outer joins
	Transactions handling
	Temporary tables
	Substrings in SQL
	String delimiters
	Getting one row with SELECT
	MATCHES and LIKE in SQL conditions
	Querying system catalog tables
	Syntax of UPDATE statements
	The LENGTH() function
	String concatenation operator

	BDL programming
	Executing SQL statements
	Informix® specific SQL statements in BDL
	INSERT cursors
	Cursors WITH HOLD
	SELECT FOR UPDATE
	The LOAD and UNLOAD instructions
	SQL Interruption
	Scrollable Cursors

	SQL adaptation guide for Oracle MySQL 5.x, MariaDB 10.x
	Installation (Runtime Configuration)
	Install MySQL/MariaDB and create a database - database configuration/design tasks
	Prepare the runtime environment - connecting to the database

	Database concepts
	Database concepts
	Data storage concepts
	Data consistency and concurrency
	Transactions handling
	Database users

	Data dictionary
	BOOLEAN data type
	CHARACTER data types
	NUMERIC data types
	DATE and DATETIME data types
	INTERVAL data type
	SERIAL data type
	ROWIDs
	Large OBject (LOB) types
	Constraints
	Name resolution of SQL objects
	Data type conversion table: Informix to MySQL

	Data manipulation
	Reserved words
	Outer joins
	Transactions handling
	Temporary tables
	Substrings in SQL
	Database object name delimiters
	MATCHES and LIKE in SQL conditions
	Syntax of UPDATE statements

	BDL programming
	Informix-specific SQL statements in BDL
	INSERT cursors
	Cursors WITH HOLD
	SELECT FOR UPDATE
	UPDATE/DELETE WHERE CURRENT OF
	The LOAD and UNLOAD instructions
	SQL Interruption
	Scrollable Cursors

	SQL adaptation guide for Oracle Database 11, 12
	Installation (Runtime Configuration)
	Install Oracle and create a database - database configuration/design tasks
	Prepare the runtime environment - connecting to the database

	Database concepts
	Database concepts
	Data storage concepts
	Data consistency and concurrency
	Transactions handling
	Database users
	Setting privileges

	Data dictionary
	BOOLEAN data type
	CHARACTER data types
	NUMERIC data types
	DATE and DATETIME data types
	INTERVAL data type
	SERIAL data types
	ROWIDs
	The RAW data type
	Large OBject (LOB) types
	The ALTER TABLE instruction
	Constraints
	Triggers
	Stored procedures
	Name resolution of SQL objects
	NULLs in indexed columns
	Data type conversion table: Informix to Oracle

	Data manipulation
	Reserved words
	Outer joins
	Transactions handling
	Temporary tables
	Using the default temporary table emulation
	Using the global temporary table emulation

	Substrings in SQL
	The LENGTH() function
	Empty character strings
	String delimiters and object names
	Getting one row with SELECT
	MATCHES and LIKE in SQL conditions
	SQL functions
	Querying system catalog tables
	Syntax of UPDATE statements
	The USER constant
	The GROUP BY clause
	The star (asterisk) in SELECT statements

	BDL programming
	Handling SQL errors when preparing statements
	Informix® specific-SQL statements in BDL
	INSERT cursors
	Cursors WITH HOLD
	SELECT FOR UPDATE
	UPDATE/DELETE WHERE CURRENT OF
	The LOAD and UNLOAD instructions
	SQL Interruption
	Scrollable cursors

	SQL adaptation guide for PostgreSQL 9.x
	Installation (Runtime Configuration)
	Install PostgreSQL and create a database - database configuration/design tasks
	Prepare the runtime environment - connecting to the database

	Database concepts
	Database concepts
	Data storage concepts
	Data consistency and concurrency
	Transactions handling
	Database users
	Setting privileges

	Data dictionary
	BOOLEAN data type
	CHARACTER data types
	NUMERIC data types
	DATE and DATETIME data types
	INTERVAL data type
	SERIAL data types
	ROWIDs
	Large OBject (LOB) types
	Constraints
	Triggers
	Stored procedures
	Name resolution of SQL objects
	Data type conversion table: Informix to PostgreSQL

	Data manipulation
	Reserved words
	Outer joins
	Transactions handling
	Temporary tables
	Substrings in SQL
	String delimiters
	Using column aliases in SELECT
	MATCHES and LIKE in SQL conditions
	Querying system catalog tables
	Syntax of UPDATE statements
	The LENGTH() function

	BDL programming
	Handling SQL errors when preparing statements
	Informix® specific SQL statements in BDL
	INSERT cursors
	Cursors WITH HOLD
	SELECT FOR UPDATE
	UPDATE/DELETE WHERE CURRENT OF
	The LOAD and UNLOAD instructions
	SQL Interruption
	Scrollable Cursors

	SQL adaptation guide for SQLite 3.x
	Installation (Runtime Configuration)
	Install SQLite and create a database - database configuration/design tasks
	Prepare the runtime environment - connecting to the database

	Database concepts
	Database concepts
	Concurrency management
	Transactions handling
	Database users

	Data dictionary
	BOOLEAN data type
	CHARACTER data types
	NUMERIC data types
	DATE and DATETIME data types
	INTERVAL data type
	SERIAL data types
	ROWIDs
	Foreign key support
	Large OBject (LOB) types
	Data type conversion table: Informix to SQLite

	Data manipulation
	Outer joins
	Transactions handling
	Temporary tables
	MATCHES and LIKE in SQL conditions
	Syntax of UPDATE statements

	BDL programming
	Informix-specific SQL statements in BDL
	INSERT cursors
	SELECT FOR UPDATE
	UPDATE/DELETE WHERE CURRENT OF
	The LOAD and UNLOAD instructions
	Scrollable Cursors
	Modifying many rows in a table
	Optimizing database file usage

	SQL adaptation guide for SAP Sybase ASE 16.x
	Installation (Runtime Configuration)
	Install Sybase ASE and create a database - database configuration/design tasks
	Prepare the runtime environment - connecting to the database

	Database concepts
	Database concepts
	Data consistency and concurrency
	Transactions handling
	Database users
	Setting privileges

	Data dictionary
	BOOLEAN data type
	CHARACTER data types
	NUMERIC data types
	DATE and DATETIME data types
	INTERVAL data type
	SERIAL data type
	ROWIDs
	Case sensitivity
	Large OBject (LOB) types
	The ALTER TABLE instruction
	Constraints
	Triggers
	Stored procedures
	Name resolution of SQL objects
	Data type conversion table: Informix to Sybase ASE

	Data manipulation
	Reserved words
	Outer joins
	Transactions handling
	Temporary tables
	Substrings in SQL
	String delimiters
	Getting one row with SELECT
	MATCHES and LIKE in SQL conditions
	Querying system catalog tables
	Syntax of UPDATE statements

	BDL programming
	Informix-specific SQL statements in BDL
	Insert cursors
	Cursors WITH HOLD
	SELECT FOR UPDATE
	The LOAD and UNLOAD instructions
	SQL Interruption
	Scrollable Cursors

	User interface
	User interface basics
	The dynamic user interface
	The abstract user interface tree
	What does the abstract user interface tree contain?
	Manipulating the abstract user interface tree
	XML node types and attribute names
	Actions in the abstract user interface tree
	Inspecting the AUI tree of a front end

	Genero user interface modes
	Text mode rendering
	Graphical mode rendering
	Traditional GUI mode

	Establish a GUI front-end connection
	Connecting with a front-end
	The front end protocol
	Front-end identification
	Configure the GUI connection timeout
	Wait for front end ping timeout
	GUI protocol compression
	Front-end errors
	Debugging the front-end protocol
	Front-end protocol logging

	Special user interface features
	Setting key labels
	Automatic front end startup
	Text mode screen dump

	Configuring a text terminal
	TERMINFO terminal capabilities
	TERMCAP terminal capabilities
	Termcap syntax
	Genero-specific termcap definitions

	Form definitions
	Windows and forms
	Understanding windows and forms
	OPEN WINDOW
	Window position and size
	OPEN WINDOW attributes
	The WITH FORM clause
	Window styles
	Window titles
	Window icons
	Window types

	CLOSE WINDOW
	CURRENT WINDOW
	CLEAR WINDOW
	OPEN FORM
	DISPLAY FORM
	CLOSE FORM
	CLEAR SCREEN
	DISPLAY AT

	Using images
	Image handling basics
	Controlling the image layout
	Providing the image resource
	Static images
	Runtime images

	Accessibility guidelines
	Keyboard access
	Form description for screen readers
	Usability and ergonomics

	Message files
	Understanding message files
	Syntax of message files (.msg)
	Using message files
	Compiling message files
	Using message files at runtime

	Examples
	Example 1: Help message file used in a MENU

	Action defaults files
	Understanding action defaults files
	Syntax of action defaults file (.4ad)
	Action default attributes reference (.4ad)
	Using action defaults files
	Using action defaults files at runtime

	Examples
	Example 1: Loading a global action defaults file

	Presentation styles
	Understanding presentation styles
	Syntax of presentation styles file
	Using presentation styles
	Defining a style
	Pseudo selectors
	Using a style
	Order of precedence
	Combining styles
	Style attribute inheritance
	Presentation styles in the AUI tree
	Loading presentation styles
	Combining TTY and style attributes
	Element types

	Predefined attribute values
	Colors
	Fonts
	Font families
	Font sizes
	Font styles
	Font weights

	Statusbar types

	Style attributes reference
	Common style attributes
	Button style attributes
	ButtonEdit style attributes
	CheckBox style attributes
	ComboBox style attributes
	DateEdit style attributes
	Default action view style attributes
	Edit style attributes
	HBox style attributes
	Folder style attributes
	Image style attributes
	Label style attributes
	Menu style attributes
	Message style attributes
	ProgressBar style attributes
	RadioGroup style attributes
	Table style attributes
	TextEdit style attributes
	Rich Text Editing

	Toolbar style attributes
	Window style attributes

	Examples
	Example 1: Defining styles for grid elements
	Example 2: Defining styles for table rows

	Form specification files
	Understanding form files
	Form file concepts
	Form items
	Satellite items
	Static items
	Layout items
	Stack items
	Action views
	Form fields
	Database column fields
	Formonly fields
	Phantom fields
	Aggregate fields

	Identifying form items
	Screen records
	Form tags
	Layout tags
	Item tags
	Hbox tags

	Form item types
	BUTTON item type
	BUTTONEDIT item type
	CHECKBOX item type
	COMBOBOX item type
	DATEEDIT item type
	DATETIMEEDIT item type
	EDIT item type
	FOLDER item type
	GRID item type
	GROUP item type
	IMAGE item type
	LABEL item type
	PAGE item type
	PROGRESSBAR item type
	RADIOGROUP item type
	SCROLLGRID item type
	SLIDER item type
	SPINEDIT item type
	TABLE item type
	TEXTEDIT item type
	TIMEEDIT item type
	TREE item type
	WEBCOMPONENT item type

	External form inclusion
	Boolean expressions in forms

	Form file structure
	SCHEMA section
	ACTION DEFAULTS section
	TOPMENU section
	TOOLBAR section
	SCREEN section
	LAYOUT section
	FORM clause
	HBOX container
	VBOX container
	GROUP container
	FOLDER container
	PAGE container
	GRID container
	STACK container
	BUTTON stack item
	BUTTONEDIT stack item
	CHECKBOX stack item
	COMBOBOX stack item
	DATEEDIT stack item
	DATETIMEEDIT stack item
	EDIT stack item
	FOLDER stack item
	GROUP stack item
	IMAGE stack item
	LABEL stack item
	PAGE stack item
	PHANTOM stack item
	PROGRESSBAR stack item
	RADIOGROUP stack item
	SLIDER stack item
	SPINEDIT stack item
	TABLE stack item
	TEXTEDIT stack item
	TIMEEDIT stack item
	WEBCOMPONENT stack item

	SCROLLGRID container
	TABLE container
	TREE container

	TABLES section
	ATTRIBUTES section
	AGGREGATE item definition
	PHANTOM item definition
	BUTTON item definition
	BUTTONEDIT item definition
	CANVAS item definition
	CHECKBOX item definition
	COMBOBOX item definition
	DATEEDIT item definition
	DATETIMEEDIT item definition
	EDIT item definition
	GROUP item definition
	IMAGE item definition
	LABEL item definition
	PROGRESSBAR item definition
	RADIOGROUP item definition
	SCROLLGRID item definition
	SLIDER item definition
	SPINEDIT item definition
	TABLE item definition
	TEXTEDIT item definition
	TIMEEDIT item definition
	TREE item definition
	WEBCOMPONENT item definition

	INSTRUCTIONS section
	KEYS section

	Form item attributes
	ACCELERATOR attribute
	ACCELERATOR2 attribute
	ACCELERATOR3 attribute
	ACCELERATOR4 attribute
	ACTION attribute
	AGGREGATETEXT attribute
	AGGREGATETYPE attribute
	AUTOSCALE attribute
	AUTONEXT attribute
	BUTTONTEXTHIDDEN attribute
	CENTURY attribute
	CLASS attribute
	COLOR attribute
	COLOR WHERE Attribute
	CONFIG Attribute
	CONTEXTMENU attribute
	COMMENT attribute
	COMPLETER attribute
	COMPONENTTYPE attribute
	DEFAULT attribute
	DEFAULTVIEW attribute
	DISPLAY LIKE attribute
	DISCLOSUREINDICATOR attribute
	DOUBLECLICK attribute
	DOWNSHIFT attribute
	EXPANDEDCOLUMN attribute
	FONTPITCH attribute
	FORMAT attribute
	GRIDCHILDRENINPARENT attribute
	HIDDEN attribute
	HEIGHT attribute
	IDCOLUMN attribute
	IMAGE attribute
	IMAGECOLUMN attribute
	IMAGECOLLAPSED attribute
	IMAGEEXPANDED attribute
	IMAGELEAF attribute
	INCLUDE attribute
	INITIALIZER attribute
	INVISIBLE attribute
	ISNODECOLUMN attribute
	ITEMS attribute
	JUSTIFY attribute
	KEY attribute
	KEYBOARDHINT attribute
	MINHEIGHT attribute
	MINWIDTH attribute
	NOENTRY attribute
	NOT NULL attribute
	NOTEDITABLE attribute
	OPTIONS attribute
	ORIENTATION attribute
	PARENTIDCOLUMN attribute
	PICTURE attribute
	PROGRAM attribute
	PROPERTIES attribute
	QUERYEDITABLE attribute
	REQUIRED attribute
	REVERSE attribute
	SAMPLE attribute
	SCROLL attribute
	SCROLLBARS attribute
	SIZEPOLICY attribute
	SPACING attribute
	SPLITTER attribute
	STEP attribute
	STRETCH attribute
	STYLE attribute
	TABINDEX attribute
	TAG attribute
	TEXT attribute
	TITLE attribute
	UNSORTABLE attribute
	UNSORTABLECOLUMNS attribute
	UNSIZABLE attribute
	UNSIZABLECOLUMNS attribute
	UNHIDABLE attribute
	UNHIDABLECOLUMNS attribute
	UNMOVABLE attribute
	UNMOVABLECOLUMNS attribute
	UPSHIFT attribute
	VALIDATE attribute
	VALIDATE LIKE attribute
	VALUEMIN attribute
	VALUEMAX attribute
	VALUECHECKED attribute
	VALUEUNCHECKED attribute
	VERIFY attribute
	VERSION attribute
	WANTFIXEDPAGESIZE attribute
	WANTNORETURNS attribute
	WANTTABS attribute
	WIDGET attribute
	WIDTH attribute
	WINDOWSTYLE attribute
	WORDWRAP Attribute

	Examples
	Example 1: Grid-based layout form
	Example 2: Stack-based layout form

	Form rendering
	Form rendering basics
	Character set usage
	Adapting to viewport changes

	Grid-based layout
	Packed and unpacked grids
	Automatic HBoxes and VBoxes
	Widget position and size in grid
	Form item dependencies in grids
	Complex grid layout example
	Using hbox tags to align form items
	Defining hbox tags in grids
	Spacer items in hbox tags
	Widget size within hbox tags

	Stack-based layout
	Label internationalization
	Stacked group rendering

	Toolbars
	Understanding toolbars
	Syntax of a toolbar file (.4tb)
	Using toolbars
	Defining toolbars in the form file
	Loading a toolbar from an XML file
	Loading a default toolbar from an XML file
	Creating the toolbar manually with DOM
	Toolbars on mobile devices

	Examples
	Example 1: Toolbar in XML format
	Example 2: Toolbar created dynamically
	Example 3: Toolbar section in form file

	Topmenus
	Understanding topmenus
	Syntax of a topmenu file (.4tm)
	Using topmenus
	Defining the topmenu in a form file
	Loading a topmenu from an XML file
	Loading a default topmenu from an XML file
	Creating the topmenu dynamically
	Topmenus on mobile devices

	Examples
	Example 1: Topmenu in XML format
	Example 2: Topmenu section in form file

	Dialog instructions
	Static display (DISPLAY/ERROR/MESSAGE/CLEAR)
	Display of data and messages
	DISPLAY (to stdout)
	MESSAGE
	ERROR
	DISPLAY TO
	DISPLAY BY NAME
	CLEAR FORM
	CLEAR SCREEN ARRAY
	CLEAR field-list
	SCROLL

	Prompt for values (PROMPT)
	Understanding the PROMPT instruction
	Syntax of PROMPT instruction
	Using simple prompt inputs
	PROMPT programming steps
	PROMPT instruction configuration
	Default actions in PROMPT
	Interaction blocks
	ON ACTION block
	ON IDLE block
	ON KEY block
	ON TIMER block

	Examples
	Example 1: Simple PROMPT statements
	Example 2: Simple PROMPT with Interrupt Checking
	Example 3: PROMPT with ATTRIBUTES and ON ACTION handlers

	Ring menus (MENU)
	Understanding ring menus
	Syntax of the MENU instruction
	MENU programming steps
	Using ring menus
	Rendering modes of a menu
	Binding action views to menu options
	MENU instruction configuration
	Default actions in MENU
	MENU control blocks
	BEFORE MENU block

	MENU interaction blocks
	COMMAND [KEY()] "option" block
	COMMAND KEY() block
	ON ACTION block
	ON IDLE block
	ON TIMER block

	MENU control instructions
	SHOW/HIDE OPTION instruction
	EXIT MENU instruction
	CONTINUE MENU instruction

	Examples
	Example 1: MENU with abstract action options
	Example 2: MENU with text-mode options
	Example 3: MENU with STYLE="dialog"

	Record input (INPUT)
	Understanding the INPUT instruction
	Syntax of the INPUT instruction
	INPUT programming steps
	Using simple record inputs
	Variable binding in INPUT
	INPUT instruction configuration
	Default actions in INPUT
	INPUT control blocks
	INPUT control blocks execution order
	BEFORE INPUT block
	AFTER INPUT block
	BEFORE FIELD block
	ON CHANGE block
	AFTER FIELD block

	INPUT interaction blocks
	ON ACTION block
	ON IDLE block
	ON KEY block
	ON TIMER block

	INPUT control instructions
	ACCEPT INPUT instruction
	CONTINUE INPUT instruction
	EXIT INPUT instruction
	CLEAR instruction in dialogs

	Examples
	Example 1: INPUT with binding by field position
	Example 2: INPUT with binding by field name

	Read-only record list (DISPLAY ARRAY)
	Understanding the DISPLAY ARRAY instruction
	Syntax of DISPLAY ARRAY instruction
	DISPLAY ARRAY programming steps
	Using read-only record lists
	Variable binding in DISPLAY ARRAY
	DISPLAY ARRAY instruction configuration
	Default actions in DISPLAY ARRAY
	DISPLAY ARRAY data blocks
	ON FILL BUFFER block
	ON EXPAND block
	ON COLLAPSE block

	DISPLAY ARRAY control blocks
	DISPLAY ARRAY control blocks execution order
	BEFORE DISPLAY block
	AFTER DISPLAY block
	BEFORE ROW block
	AFTER ROW block

	DISPLAY ARRAY interaction blocks
	ON ACTION block
	ON IDLE block
	ON KEY block
	ON TIMER block
	ON APPEND block
	ON INSERT block
	ON UPDATE block
	ON DELETE block
	ON SELECTION CHANGE block
	ON SORT block
	ON DRAG_START block
	ON DRAG_FINISHED block
	ON DRAG_ENTER block
	ON DRAG_OVER block
	ON DROP block

	DISPLAY ARRAY control instructions
	CONTINUE DISPLAY instruction
	EXIT DISPLAY instruction
	ACCEPT DISPLAY instruction

	Examples
	Example 1: DISPLAY ARRAY using full list mode
	Example 2: DISPLAY ARRAY using paged mode
	Example 3: DISPLAY ARRAY using modification triggers

	Editable record list (INPUT ARRAY)
	Understanding the INPUT ARRAY instruction
	Syntax of INPUT ARRAY instruction
	INPUT ARRAY programming steps
	Using editable record lists
	Variable binding in INPUT ARRAY
	INPUT ARRAY instruction configuration
	Default actions in INPUT ARRAY
	INPUT ARRAY control blocks
	INPUT ARRAY control blocks execution order
	BEFORE INPUT block
	AFTER INPUT block
	BEFORE ROW block
	ON ROW CHANGE block
	AFTER ROW block
	BEFORE INSERT block
	AFTER INSERT block
	BEFORE DELETE block
	AFTER DELETE block
	BEFORE FIELD block
	ON CHANGE block
	AFTER FIELD block

	INPUT ARRAY interaction blocks
	ON ACTION block
	ON IDLE block
	ON KEY block
	ON SORT block
	ON TIMER block

	INPUT ARRAY control instructions
	ACCEPT INPUT instruction
	EXIT INPUT instruction
	CANCEL DELETE instruction
	CANCEL INSERT instruction
	CONTINUE INPUT instruction
	NEXT FIELD instruction
	CLEAR instruction in dialogs

	Examples
	Example 1: INPUT ARRAY with empty record list
	Example 2: INPUT ARRAY using a static array
	Example 3: INPUT ARRAY using a dynamic array
	Example 4: INPUT ARRAY updating the database table

	Query by example (CONSTRUCT)
	Understanding the CONSTRUCT instruction
	Syntax of CONSTRUCT instruction
	CONSTRUCT programming steps
	Using query by example
	Form field specification in CONSTRUCT
	Query operators in CONSTRUCT
	CONSTRUCT instruction configuration
	Default actions IN CONSTRUCT
	CONSTRUCT control blocks
	CONSTRUCT control blocks execution order
	BEFORE CONSTRUCT block
	AFTER CONSTRUCT block
	BEFORE FIELD block
	AFTER FIELD block

	CONSTRUCT interaction blocks
	ON ACTION block
	ON IDLE block
	ON KEY block
	ON TIMER block

	CONSTRUCT control instructions
	ACCEPT CONSTRUCT instruction
	CONTINUE CONSTRUCT instruction
	EXIT CONSTRUCT instruction
	NEXT FIELD instruction
	CLEAR instruction in dialogs

	Examples
	Example 1: CONSTRUCT with binding by field position
	Example 2: CONSTRUCT with binding by field name

	Multiple dialogs (DIALOG)
	Understanding multiple dialogs
	Syntax of the procedural DIALOG instruction
	Procedural dialog programming steps
	Using multiple dialogs
	Identifying sub-dialogs in procedural DIALOG
	Structure of a procedural DIALOG block
	The INPUT sub-dialog
	The CONSTRUCT sub-dialog
	The DISPLAY ARRAY sub-dialog
	The INPUT ARRAY sub-dialog
	The SUBDIALOG clause

	Procedural DIALOG block configuration
	DIALOG ATTRIBUTES clause
	INPUT ATTRIBUTES clause
	DISPLAY ARRAY ATTRIBUTES clause
	INPUT ARRAY ATTRIBUTES clause
	CONSTRUCT ATTRIBUTES clause

	Default actions created by a DIALOG block
	DIALOG data blocks
	ON FILL BUFFER block
	ON EXPAND block
	ON COLLAPSE block

	DIALOG control blocks
	Control block execution order in multiple dialogs
	BEFORE DIALOG block
	AFTER DIALOG block
	BEFORE FIELD block
	AFTER FIELD block
	ON CHANGE block
	BEFORE INPUT block
	AFTER INPUT block
	BEFORE CONSTRUCT block
	AFTER CONSTRUCT block
	BEFORE DISPLAY block
	AFTER DISPLAY block
	BEFORE ROW block
	ON ROW CHANGE block
	AFTER ROW block
	BEFORE INSERT block
	AFTER INSERT block
	BEFORE DELETE block
	AFTER DELETE block

	DIALOG interaction blocks
	ON ACTION block
	ON IDLE block
	ON KEY block
	ON TIMER block
	COMMAND [KEY] block
	ON APPEND block
	ON INSERT block
	ON UPDATE block
	ON DELETE block
	ON SELECTION CHANGE block
	ON SORT block
	ON DRAG_START block
	ON DRAG_FINISHED block
	ON DRAG_ENTER block
	ON DRAG_OVER block
	ON DROP block

	DIALOG control instructions
	NEXT FIELD instruction
	CLEAR instruction in dialogs
	DISPLAY TO / BY NAME instruction
	CONTINUE DIALOG instruction
	EXIT DIALOG instruction
	ACCEPT DIALOG instruction
	CANCEL DELETE instruction
	CANCEL INSERT instruction

	Examples
	Example 1: DIALOG controlling two lists
	Example 2: DIALOG with CONSTRUCT and DISPLAY ARRAY
	Example 3: DIALOG with SUBDIALOG

	Parallel dialogs (START DIALOG)
	Understanding parallel dialogs
	Syntax of the declarative DIALOG block
	Syntax of the START DIALOG instruction
	Syntax of the TERMINATE DIALOG instruction
	Parallel dialog programming steps
	Using parallel dialogs
	Structure of a declarative DIALOG block
	The DEFINE clause
	The MENU sub-dialog
	The INPUT sub-dialog
	The CONSTRUCT sub-dialog
	The DISPLAY ARRAY sub-dialog
	The INPUT ARRAY sub-dialog

	Declarative DIALOG block configuration
	INPUT ATTRIBUTES clause
	DISPLAY ARRAY ATTRIBUTES clause
	INPUT ARRAY ATTRIBUTES clause
	CONSTRUCT ATTRIBUTES clause

	Default actions created by a DIALOG block
	DIALOG data blocks
	ON FILL BUFFER block
	ON EXPAND block
	ON COLLAPSE block

	DIALOG control blocks
	Control block execution order in parallel dialogs
	BEFORE FIELD block
	AFTER FIELD block
	ON CHANGE block
	BEFORE INPUT block
	AFTER INPUT block
	BEFORE CONSTRUCT block
	AFTER CONSTRUCT block
	BEFORE DISPLAY block
	AFTER DISPLAY block
	BEFORE ROW block
	ON ROW CHANGE block
	AFTER ROW block
	BEFORE INSERT block
	AFTER INSERT block
	BEFORE DELETE block
	AFTER DELETE block
	BEFORE MENU block

	DIALOG interaction blocks
	ON ACTION block
	ON IDLE block
	ON KEY block
	ON TIMER block
	ON APPEND block
	ON INSERT block
	ON UPDATE block
	ON DELETE block
	ON SELECTION CHANGE block
	ON SORT block
	ON DRAG_START block
	ON DRAG_FINISHED block
	ON DRAG_ENTER block
	ON DRAG_OVER block
	ON DROP block

	DIALOG control instructions
	NEXT FIELD instruction
	CLEAR instruction in dialogs
	DISPLAY TO / BY NAME instruction
	CONTINUE DIALOG instruction
	EXIT DIALOG instruction
	ACCEPT DIALOG instruction
	CANCEL DELETE instruction
	CANCEL INSERT instruction

	Examples
	Example 1: Two independent record lists

	User interface programming
	Dialog programming basics
	The model-view-controller paradigm
	Introducing dialogs
	Dialog configuration with FGLPROFILE
	The DIALOG control class
	Dialog control functions
	User interruption handling
	Get program control if user inactivity
	Get program control on a regular (timed) basis
	Implementing dynamic dialogs

	Input fields
	Field input length
	The buffered and unbuffered modes
	Binding variables to form fields
	Form field initialization
	Input field modification flag
	Reacting to field value changes
	Immediate detection of user changes
	Form-level validation rules
	Form field deactivation
	Identifying sub-dialogs in procedural DIALOG
	Defining the tabbing order
	Which form item has the focus?
	Giving the focus to a form element
	Detection of focus changes
	Enabling autocompletion

	Dialog actions
	Action handling basics
	Defining action views in forms
	Implementing dialog action handlers
	Binding action views to action handlers
	Default action views
	Rendering default action views on mobile
	Navigation controller on iOS devices
	Default action views decoration on iOS devices
	Action bar on Android™ devices
	Floating action button on Android™ devices
	Default action views decoration on Android™ devices

	Configuring actions
	Action attributes context usage
	Using attributes of action defaults
	Dialog action handler attributes
	Text attribute shows default action view
	Defining keyboard accelerators
	Action attributes list
	ACCELERATOR action attribute
	ACCELERATOR2 action attribute
	ACCELERATOR3 action attribute
	ACCELERATOR4 action attribute
	COMMENT action attribute
	CONTEXTMENU action attribute
	DEFAULTVIEW action attribute
	DISCLOSUREINDICATOR action attribute
	IMAGE action attribute
	ROWBOUND action attribute
	TEXT action attribute
	VALIDATE action attribute

	Data validation at action invocation
	Enabling and disabling actions
	Hiding and showing default action views
	Sub-dialog actions in procedural DIALOG blocks
	Field-specific actions (INFIELD clause)
	Multilevel action conflicts
	Action display in the contextual menu
	Implementing the close action
	Predefined actions
	Automatic and local actions with same name
	Overwriting predefined actions with ON ACTION
	Predefined actions enabled according to context
	Binding action views to predefined actions
	List of predefined actions

	Keyboard accelerator names
	Virtual keys
	Accelerator keys
	Accelerator key modifiers

	Table views
	Understanding tables views
	Defining tables in the layout
	Binding tables to arrays in dialogs
	Controlling table rendering
	Controlling the total number of rows
	Handling the current row
	Displaying column images
	Defining actions on list columns with images
	Built-in table features
	Columns layout
	List ordering
	Find function
	Keyboard seek
	Reduce filter

	Summary lines in tables
	Defining the action for a row choice
	Actions bound to the current row
	Using tables on mobile devices
	Unsupported table features
	Two-column display
	Full and Embedded list views
	The DOUBLECLICK (tap) action
	Rowbound actions
	Close, accept and cancel actions
	Row configuration on iOS devices

	Populating a DISPLAY ARRAY
	Full list mode of DISPLAY ARRAY
	Paged mode of DISPLAY ARRAY

	INPUT ARRAY row modifications
	INPUT ARRAY temporary rows
	DISPLAY ARRAY modification triggers
	Cell color attributes
	Multiple row selection
	Examples
	Example 1: Simple list view

	Tree views
	Understanding tree-views
	Defining a TREE container
	Defining the program array for tree-views
	Filling the program array with rows
	Controlling a tree-view with DISPLAY ARRAY
	Modifying the tree during dialog execution
	Using regular DISPLAY ARRAY control blocks
	Dynamic filling of very large trees
	Built-in sort and tree-views
	Multi-row selection and tree-views
	Drag and drop in tree-views
	Examples
	Example 1: Static tree view (filled before dialog starts)
	Example 2: Dynamic tree view (filled on demand)

	Split views
	Understanding split views
	Creating split view windows
	Parallel dialogs for split views
	Refreshing a parallel dialog
	One or two panes
	Switching between panes
	Navigator pane
	Rendering an HBox as a split view
	Examples
	Example 1: Single split view application
	Example 2: Multiple split views with navigation bar
	Example 3: Split view using an HBox

	Drag & drop
	Understanding drag & drop
	Syntax of drag & drop interaction blocks
	Default drag & drop operation
	Control block execution order
	Handle drag & drop data with MIME types
	Examples
	Example 1: Two lists side-by-side with drag & drop

	Web components
	Understanding web components
	WEBCOMPONENT item type
	Controlling the web component layout
	Using a URL-based web component
	Defining a URL-based web component in forms
	Specifying the URL source of a web component
	Controlling the URL web component in programs

	Using a gICAPI web component
	HTML document and JavaScript for the gICAPI object
	The gICAPI web component interface script
	Deploying the gICAPI web component files
	Defining a gICAPI web component in forms
	Controlling the gICAPI web component in programs
	Using image resources with the gICAPI web component

	Examples
	Example 1: URL-based web component using Google maps
	Example 2: Calling a JavaScript function of a gICAPI web component
	Example 3: Implementing Google+ authentication with a URL-based web component
	Example 4: Color picker gICAPI web component
	Example 5: Application images in gICAPI web component

	Canvases
	Understanding canvases
	CANVAS item definition
	Syntax of canvas nodes
	Using canvases
	Canvas drawing area
	Step by step canvas example
	Canvas drawing functions

	Start menus
	Understanding start menus
	Syntax of start menu files (.4sm)
	Using start menus
	Loading a start menu from an XML file
	Creating the start menu dynamically

	Examples
	Example 1: Start menu in XML format
	Example 2: Start menu created dynamically

	Window containers (WCI)
	Understanding the Window Container Interface
	Configuration of WCI parent programs
	Configuration of WCI child programs
	Implement tabbed WCI containers

	Reports
	Understanding reports
	XML output for reports
	Writing an XML report driver and routine
	Structure of XML report output
	Conditional statement output in XML reports

	The report driver
	START REPORT
	OUTPUT TO REPORT
	FINISH REPORT
	TERMINATE REPORT

	The report routine
	The report prototype
	DEFINE section in REPORT
	OUTPUT section in REPORT
	ORDER BY section in REPORT
	FORMAT section in REPORT
	FORMAT EVERY ROW
	FIRST PAGE HEADER
	PAGE HEADER
	PAGE TRAILER
	BEFORE/AFTER GROUP OF
	ON EVERY ROW
	ON LAST ROW

	Prohibited report routine statements

	Two-pass reports
	Report instructions
	EXIT REPORT
	PRINT
	PRINTX
	NEED
	PAUSE
	SKIP

	Report operators
	LINENO
	PAGENO
	SPACES
	WORDWRAP

	Report aggregate functions
	COUNT
	PERCENT
	SUM
	AVG
	MIN
	MAX

	Report engine configuration

	Programming tools
	Command line tools
	fglrun
	fglform
	fgl2p
	fglcomp
	fgllink
	fglmkmsg
	fglmkext
	fgldb
	fgldbsch
	fglmkstr
	fglwsdl
	fglpass
	fglWrt

	Compiling source files
	Compiling form files
	Compiling message files
	Compiling string files
	Compiling source code
	Importing modules
	Linking libraries
	Linking programs
	Using makefiles
	Module build information

	Source code edition
	Choosing the correct locale
	Avoid Tab characters in screen layouts
	Code completion and syntax highlighting with VIM

	Source documentation
	Understanding source code documentation
	Prerequisites for source documentation generation
	Documentation structure
	Adding comments to sources
	Commenting a function
	Commenting a report
	Commenting a module
	Commenting a package
	Commenting a project

	Run the documentation generator

	The preprocessor
	Understanding the preprocessor
	Compilers command line options
	File inclusion
	Simple macro definition
	Function macro definition
	Stringification operator
	Concatenation operator
	Predefined macros
	Undefining a macro
	Conditional compilation

	The debugger
	Understanding the debugger
	Prerequisites to run the debugger
	Starting fglrun in debug mode
	Attaching to a running program
	Debugging on a mobile device
	Stack frames in the debugger
	Setting a breakpoint programmatically
	Expressions in debugger commands
	Debugger commands
	backtrace / where
	break
	call
	clear
	continue
	define
	delete
	detach
	disable
	display
	down
	echo
	enable
	finish
	frame
	help
	ignore
	info
	list
	next
	output
	print
	ptype
	quit
	run
	set
	source
	signal
	step
	tbreak
	tty
	undisplay
	until
	up
	watch
	whatis

	The profiler
	Syntax of the program profiler
	Usage
	Understanding the profiler
	Profiler output: Flat profile
	Profiler output: Call graph

	Example

	Optimization
	Runtime system basics
	Dynamic module loading
	Elements shared by multiple programs
	Elements shared by multiple modules
	Objects private to a program

	Check runtime system memory leaks
	Optimize your programs
	Finding program bottlenecks
	Optimizing SQL statements
	Passing small CHAR parameters to functions
	Compiler removes unused variables
	Saving memory by splitting modules
	Saving memory by using STRING variables
	Saving memory by using dynamic arrays

	Logging options

	Extending the language
	The Java™ interface
	Prerequisites and installation
	Learn about Java™ and OOP
	Java software requirements
	How to set up Java™
	Platform-specific notes for the JVM

	Getting started with the Java™ interface
	Import a Java™ class
	Define an object reference variable
	Instantiate a Java™ class
	Calling a method of a class
	Calling a method of an object

	Advanced programming
	Using JVM options
	Case sensitivity with Java™
	Method overloading in Java™
	Passing Java™ objects to functions
	Garbage collection of unused objects
	Using the method return as an object
	Ignorable return of Java™ methods
	Static fields of Java™ classes
	Mapping native and Java™ data types
	Using the DATE type
	Using the DATETIME type
	Using the DECIMAL type
	Using the TEXT type
	Using the BYTE type
	Using the INTERVAL type

	Identifying Genero data types in Java™ code
	Using Genero records
	Formatting data in Java™ code
	Character set mapping
	Using Java™ arrays
	Passing variable arguments (varargs)
	The CAST operator
	The INSTANCEOF operator
	Java exception handling
	Executing Java™ code with GMA
	Standard Java™ and Android™ library usage
	Implement Java user extensions in GMA
	Implement Android™ activities in GMA
	Packaging custom Java™ extensions for GMA
	Custom GMA binary archive build

	Examples
	Example 1: Using the regex package
	Example 2: Using the Apache POI framework
	Example 3: Using Java on Android™

	C-Extensions
	Understanding C-Extensions
	Header files for ESQL/C typedefs
	Creating C-Extensions
	Creating Informix® ESQL/C Extensions
	The C interface file
	Linking programs using C-Extensions
	Loading C-Extensions at runtime
	Runtime stack functions
	C-Extension data types and structures
	Calling C functions from programs
	Calling program functions from C
	Sharing global variables
	Simple C-Extension example
	Implementing C-Extensions for GMI

	User-defined front calls
	Implement front call modules for GDC
	Implement front call modules for GMA
	Implement front call modules for GMI
	Implement front call modules for GWC - HTML5 theme
	Implement front call modules for GWC - JavaScript

	Web Components

	Library reference
	Built-in functions
	Built-in functions
	arg_val()
	arr_count()
	arr_curr()
	downshift()
	scr_line()
	num_args()
	err_get()
	err_print()
	err_quit()
	errorlog()
	fgl_buffertouched()
	fgl_db_driver_type()
	fgl_decimal_truncate()
	fgl_decimal_sqrt()
	fgl_decimal_exp()
	fgl_decimal_logn()
	fgl_decimal_power()
	fgl_dialog_getbuffer()
	fgl_dialog_setbuffer()
	fgl_dialog_getfieldname()
	fgl_dialog_infield()
	fgl_dialog_setcursor()
	fgl_dialog_setfieldorder()
	fgl_dialog_setcurrline()
	fgl_dialog_getbufferstart()
	fgl_dialog_getbufferlength()
	fgl_dialog_getcursor() / fgl_getcursor()
	fgl_dialog_getkeylabel()
	fgl_dialog_getselectionend()
	fgl_dialog_setkeylabel()
	fgl_dialog_setselection()
	fgl_drawbox()
	fgl_drawline()
	fgl_eventloop()
	fgl_getenv()
	fgl_gethelp()
	fgl_getpid()
	fgl_getfile()
	fgl_getkey()
	fgl_getkeylabel()
	fgl_getresource()
	fgl_getversion()
	fgl_getwin_height()
	fgl_getwin_width()
	fgl_getwin_x()
	fgl_getwin_y()
	fgl_keyval()
	fgl_lastkey()
	fgl_putfile()
	fgl_report_print_binary_file()
	fgl_report_set_document_handler()
	fgl_setkeylabel()
	fgl_scr_size()
	fgl_setsize()
	fgl_settitle()
	fgl_setenv()
	fgl_set_arr_curr()
	fgl_system()
	fgl_width()
	fgl_window_getoption()
	length()
	set_count()
	showhelp()
	startlog()
	upshift()

	List of desupported built-in functions
	The key code table

	Utility functions
	Common dialog utility functions (IMPORT FGL fgldialog)
	fgl_winbutton()
	fgl_winmessage()
	fgl_winprompt()
	fgl_winquestion()
	fgl_winwait()

	Database utility functions (IMPORT FGL fgldbutl)
	db_get_database_type()
	db_get_sequence()
	db_start_transaction()
	db_finish_transaction()
	db_is_transaction_started()

	Front-end dialog utility functions (IMPORT FGL fglwinexec)
	winopendir()
	winopenfile()
	winsavefile()
	winexec() MS Windows™ FE Only!
	winexecwait() MS Windows™ FE Only!
	winshellexec() MS Windows™ FE Only!

	vCard utility functions (IMPORT FGL VCard)
	VCAddress type
	VCName type
	VCPerson type
	format_person()
	scan_address()
	scan_email()
	scan_name()
	scan_person()
	scan_phone()

	Built-in packages
	BDL data types package
	The BYTE data type as class
	BYTE data type methods
	BYTE.readFile
	BYTE.writeFile

	The STRING data type as class
	STRING data type methods
	STRING.append
	STRING.equals
	STRING.equalsIgnoreCase
	STRING.getCharAt
	STRING.getIndexOf
	STRING.getLength
	STRING.subString
	STRING.toLowerCase
	STRING.toUpperCase
	STRING.trim
	STRING.trimLeft
	STRING.trimRight

	The TEXT data type as class
	TEXT data type methods
	TEXT.getLength
	TEXT.readFile
	TEXT.writeFile

	DYNAMIC ARRAY as class
	DYNAMIC ARRAY methods
	DYNAMIC ARRAY.appendElement
	DYNAMIC ARRAY.clear
	DYNAMIC ARRAY.deleteElement
	DYNAMIC ARRAY.getLength
	DYNAMIC ARRAY.insertElement
	DYNAMIC ARRAY.sort

	The Java Array type as class
	Java Array type methods
	java-array-type.create
	java-array.getLength

	The base package
	The Application class
	base.Application methods
	base.Application.getArgument
	base.Application.getArgumentCount
	base.Application.getFglDir
	base.Application.getProgramDir
	base.Application.getProgramName
	base.Application.getResourceEntry
	base.Application.getStackTrace
	base.Application.isMobile

	The Channel class
	base.Channel methods
	base.Channel.create
	base.Channel.close
	base.Channel.dataAvailable
	base.Channel.isEof
	base.Channel.openClientSocket
	base.Channel.openFile
	base.Channel.openPipe
	base.Channel.openServerSocket
	base.Channel.read
	base.Channel.readLine
	base.Channel.readOctets
	base.Channel.setDelimiter
	base.Channel.write
	base.Channel.writeLine
	base.Channel.writeNoNL

	Usage
	Read and write formatted data
	Read and write simple lines
	Line terminators on Windows™ and UNIX™
	Handle channel exceptions
	Implementing a TCP socket channel

	Examples
	Example 1: Reading formatted data from a file
	Example 2: Executing the ls UNIX™ command
	Example 3: Reading lines from a file
	Example 4: Communicating with an HTTP server
	Example 5: Sending mails through an SMTP server

	The SqlHandle class
	base.SqlHandle methods
	base.SqlHandle.create
	base.SqlHandle.close
	base.SqlHandle.execute
	base.SqlHandle.fetch
	base.SqlHandle.fetchAbsolute
	base.SqlHandle.fetchFirst
	base.SqlHandle.fetchLast
	base.SqlHandle.fetchPrevious
	base.SqlHandle.fetchRelative
	base.SqlHandle.flush
	base.SqlHandle.getResultCount
	base.SqlHandle.getResultName
	base.SqlHandle.getResultType
	base.SqlHandle.getResultValue
	base.SqlHandle.open
	base.SqlHandle.openScrollCursor
	base.SqlHandle.prepare
	base.SqlHandle.put
	base.SqlHandle.setParameter

	Usage
	Examples
	Example 1: SQL statement without a result set
	Example 2: SQL statement with a result set

	The StringBuffer class
	base.StringBuffer methods
	base.StringBuffer.create
	base.StringBuffer.append
	base.StringBuffer.clear
	base.StringBuffer.equals
	base.StringBuffer.equalsIgnoreCase
	base.StringBuffer.getCharAt
	base.StringBuffer.getIndexOf
	base.StringBuffer.getLength
	base.StringBuffer.insertAt
	base.StringBuffer.replace
	base.StringBuffer.replaceAt
	base.StringBuffer.subString
	base.StringBuffer.toLowerCase
	base.StringBuffer.toString
	base.StringBuffer.toUpperCase
	base.StringBuffer.trim
	base.StringBuffer.trimLeft
	base.StringBuffer.trimRight

	Examples
	Example 1: Add strings to a StringBuffer
	Example 2: Modify a StringBuffer with a function

	The StringTokenizer class
	base.StringTokenizer methods
	base.StringTokenizer.create
	base.StringTokenizer.createExt
	base.StringTokenizer.countTokens
	base.StringTokenizer.hasMoreTokens
	base.StringTokenizer.nextToken

	Examples
	Example 1: Split a UNIX™ directory path
	Example 2: Escaped delimiters and NULL tokens
	Example 3: Specify a backslash as a delimiter

	The TypeInfo class
	base.TypeInfo methods
	base.TypeInfo.create()

	The MessageServer class
	base.MessageServer methods
	base.MessageServer.connect
	base.MessageServer.send

	Examples
	Example 1: Simple MessageServer usage

	The ui package
	The Interface class
	ui.Interface methods
	ui.Interface.frontCall
	ui.Interface.filenameToURI
	ui.Interface.getChildCount
	ui.Interface.getChildInstances
	ui.Interface.getContainer
	ui.Interface.getDocument
	ui.Interface.getFrontEndName
	ui.Interface.getFrontEndVersion
	ui.Interface.getImage
	ui.Interface.getName
	ui.Interface.getRootNode
	ui.Interface.getText
	ui.Interface.getType
	ui.Interface.loadActionDefaults
	ui.Interface.loadStartMenu
	ui.Interface.loadStyles
	ui.Interface.loadToolBar
	ui.Interface.loadTopMenu
	ui.Interface.setContainer
	ui.Interface.setImage
	ui.Interface.setName
	ui.Interface.setSize
	ui.Interface.setText
	ui.Interface.setType
	ui.Interface.refresh

	Examples
	Example 1: Get the type and version of the front end
	Example 2: Get the AUI root node and save it to a file in XML format
	Example 3: Using the Window Container Interface
	Example 4: Synchronizing the AUI tree with the front end

	The Window class
	ui.Window methods
	ui.Window.forName
	ui.Window.createForm
	ui.Window.getCurrent
	ui.Window.getForm
	ui.Window.getNode
	ui.Window.findNode
	ui.Window.getImage
	ui.Window.getText
	ui.Window.setImage
	ui.Window.setText

	Examples
	Example 1: Get a window by name and change the title
	Example 2: Get a the current form and hide a groupbox

	The Form class
	ui.Form methods
	ui.Form.setDefaultInitializer
	ui.Form.ensureElementVisible
	ui.Form.ensureFieldVisible
	ui.Form.getNode
	ui.Form.findNode
	ui.Form.loadActionDefaults
	ui.Form.loadToolBar
	ui.Form.loadTopMenu
	ui.Form.setElementHidden
	ui.Form.setElementImage
	ui.Form.setElementStyle
	ui.Form.setElementText
	ui.Form.setFieldHidden
	ui.Form.setFieldStyle

	Examples
	Example 1: Implement a global form initialization function
	Example 2: Hide form elements dynamically
	Example 3: Change the title of table column headers

	The Dialog class
	ui.Dialog methods
	ui.Dialog.createConstructByName
	ui.Dialog.createInputByName
	ui.Dialog.createDisplayArrayTo
	ui.Dialog.getCurrent
	ui.Dialog.setDefaultUnbuffered
	ui.Dialog.accept
	ui.Dialog.addTrigger
	ui.Dialog.appendRow
	ui.Dialog.appendNode
	ui.Dialog.arrayToVisualIndex
	ui.Dialog.deleteAllRows
	ui.Dialog.deleteNode
	ui.Dialog.deleteRow
	ui.Dialog.getArrayLength
	ui.Dialog.getCurrentItem
	ui.Dialog.getCurrentRow
	ui.Dialog.getFieldBuffer
	ui.Dialog.getFieldTouched
	ui.Dialog.getFieldValue
	ui.Dialog.getForm
	ui.Dialog.getQueryFromField
	ui.Dialog.getSortKey
	ui.Dialog.getSortReverse
	ui.Dialog.insertNode
	ui.Dialog.insertRow
	ui.Dialog.isRowSelected
	ui.Dialog.nextEvent
	ui.Dialog.nextField
	ui.Dialog.selectionToString
	ui.Dialog.setActionActive
	ui.Dialog.setActionHidden
	ui.Dialog.setArrayAttributes
	ui.Dialog.setArrayLength
	ui.Dialog.setCellAttributes
	ui.Dialog.setCompleterItems
	ui.Dialog.setCurrentRow
	ui.Dialog.setFieldActive
	ui.Dialog.setFieldTouched
	ui.Dialog.setFieldValue
	ui.Dialog.setSelectionMode
	ui.Dialog.setSelectionRange
	ui.Dialog.validate
	ui.Dialog.visualToArrayIndex

	Usage
	Referencing the current dialog
	Passing a dialog reference to functions
	Identifying actions in dialog methods
	Identifying fields in dialog methods

	Examples
	Example 1: Disable fields dynamically
	Example 2: Get the form and hide fields
	Example 3: Pass a dialog object to a function
	Example 4: Set display attributes for cells

	The ComboBox class
	ui.ComboBox methods
	ui.ComboBox.setDefaultInitializer
	ui.ComboBox.forName
	ui.ComboBox.addItem
	ui.ComboBox.clear
	ui.ComboBox.getColumnName
	ui.ComboBox.getIndexOf
	ui.ComboBox.getItemCount
	ui.ComboBox.getItemName
	ui.ComboBox.getItemText
	ui.ComboBox.getTableName
	ui.ComboBox.getTag
	ui.ComboBox.getTextOf
	ui.ComboBox.removeItem

	Examples
	Example Get a ComboBox form field view and fill the item list
	Example Using the INITIALIZER attribute in the form file

	The DragDrop class
	ui.DragDrop methods
	ui.DragDrop.addPossibleOperation
	ui.DragDrop.dropInternal
	ui.DragDrop.getBuffer
	ui.DragDrop.getLocationParent
	ui.DragDrop.getLocationRow
	ui.DragDrop.getSelectedMimeType
	ui.DragDrop.getOperation
	ui.DragDrop.selectMimeType
	ui.DragDrop.setBuffer
	ui.DragDrop.setFeedback
	ui.DragDrop.setMimeType
	ui.DragDrop.setOperation

	The om package
	The DomDocument class
	om.DomDocument methods
	om.DomDocument.create
	om.DomDocument.createFromString
	om.DomDocument.createFromXmlFile
	om.DomDocument.getDocumentElement
	om.DomDocument.getElementById
	om.DomDocument.createChars
	om.DomDocument.createElement
	om.DomDocument.createEntity
	om.DomDocument.copy
	om.DomDocument.removeElement

	Examples
	Example 1: Creating a DOM document

	The DomNode class
	om.DomNode methods
	om.DomNode.appendChild
	om.DomNode.createChild
	om.DomNode.insertBefore
	om.DomNode.loadXml
	om.DomNode.parse
	om.DomNode.getAttribute
	om.DomNode.getAttributeInteger
	om.DomNode.getAttributesCount
	om.DomNode.getAttributeString
	om.DomNode.getAttributeName
	om.DomNode.getAttributeValue
	om.DomNode.getChildByIndex
	om.DomNode.getChildCount
	om.DomNode.getFirstChild
	om.DomNode.getId
	om.DomNode.getLastChild
	om.DomNode.getNext
	om.DomNode.getParent
	om.DomNode.getPrevious
	om.DomNode.getTagName
	om.DomNode.removeAttribute
	om.DomNode.removeChild
	om.DomNode.replaceChild
	om.DomNode.setAttribute
	om.DomNode.toString
	om.DomNode.write
	om.DomNode.writeXml
	om.DomNode.selectByPath
	om.DomNode.selectByTagName

	Examples
	Example 1: Creating a DOM tree
	Example 2: Displaying a DOM tree recursively
	Example 3: Writing a DOM tree to a SAX handler

	The NodeList class
	om.NodeList methods
	om.NodeList.getLength
	om.NodeList.item

	Examples
	Example 1: Search for child nodes by tag name
	Example 2: Search for child nodes by XPath

	The SaxAttributes class
	om.SaxAttributes methods
	om.SaxAttributes.addAttribute
	om.SaxAttributes.copy
	om.SaxAttributes.create
	om.SaxAttributes.clear
	om.SaxAttributes.getLength
	om.SaxAttributes.getName
	om.SaxAttributes.getValue
	om.SaxAttributes.getValueByIndex
	om.SaxAttributes.removeAttribute
	om.SaxAttributes.setAttributes

	Examples
	Example 1: Displaying SAX attributes of an XML node

	The SaxDocumentHandler class
	om.SaxDocumentHandler methods
	om.SaxDocumentHandler.createForName
	om.SaxDocumentHandler.characters
	om.SaxDocumentHandler.endDocument
	om.SaxDocumentHandler.endElement
	om.SaxDocumentHandler.processingInstruction
	om.SaxDocumentHandler.readXmlFile
	om.SaxDocumentHandler.setIndent
	om.SaxDocumentHandler.startDocument
	om.SaxDocumentHandler.startElement
	om.SaxDocumentHandler.skippedEntity

	Examples
	Example 1: Extracting phone numbers from a directory.

	The XmlReader class
	om.XmlReader methods
	om.XmlReader.createFileReader
	om.XmlReader.getAttributes
	om.XmlReader.getCharacters
	om.XmlReader.getTagName
	om.XmlReader.read
	om.XmlReader.skippedEntity

	Examples
	Example 1: Parsing an XML file

	The XmlWriter class
	om.XmlWriter methods
	om.XmlWriter.createChannelWriter
	om.XmlWriter.createFileWriter
	om.XmlWriter.createPipeWriter
	om.XmlWriter.createSocketWriter

	Examples
	Example 1: Writing XML to a file

	Built-in front calls
	Built-in front calls
	Standard front calls
	cbAdd
	cbClear
	cbGet
	cbPaste
	cbSet
	execute
	feInfo
	getEnv
	getWindowId
	hardCopy
	launchURL
	mdClose
	openDir
	openFile
	playSound
	saveFile
	setReportFont
	setReportPrinter
	setWebComponentPath
	shellExec

	Webcomponent front calls
	call
	frontCallAPIVersion
	getTitle

	Genero Desktop Client front calls
	Windows™ DDE Support
	Using the WinDDE API
	The DDE API function list
	DDEConnect
	DDEExecute
	DDEFinish
	DDEFinishAll
	DDEError
	DDEPeek
	DDEPoke

	WinDDE example

	Windows™ COM Support
	Using the WinCOM API
	The WinCOM API function list
	CreateInstance
	CallMethod
	GetProperty
	SetProperty
	GetError
	ReleaseInstance

	WinCOM examples
	Wincom and Excel example
	Wincom and Word example
	Wincom and Outlook example
	Wincom and Internet Explorer example

	Windows™ Mail extension
	The WinMail API
	Init
	Close
	SetBody
	SetSubject
	AddTo
	AddCC
	AddBCC
	AddAttachment
	SendMailSMTP
	SendMailMAPI
	GetError
	SetSmtp
	SetFrom

	WinMail examples
	Mail using MAPI
	Mail using SMTP server

	Genero Application Server front calls
	setVar
	getVar

	Genero Mobile common front calls
	chooseContact
	choosePhoto
	chooseVideo
	composeMail
	composeSMS
	connectivity
	getGeolocation
	getRemoteNotifications
	importContact
	registerForRemoteNotifications
	runOnServer
	scanBarCode
	takePhoto
	takeVideo
	unregisterFromRemoteNotifications

	Genero Mobile Android™ front calls
	askForPermission (Android™)
	showAbout (Android™)
	showSettings (Android™)
	startActivity (Android™)
	startActivityForResult (Android™)

	Genero Mobile iOS front calls
	getBadgeNumber (iOS)
	newContact (iOS)
	setBadgeNumber (iOS)

	Extension packages
	The util package
	The util.Date class
	util.Date methods
	util.Date.parse
	util.Date.isLeapYear

	The util.Datetime class
	util.Datetime methods
	util.Datetime.format
	util.Datetime.fromSecondsSinceEpoch
	util.Datetime.getCurrentAsUTC
	util.Datetime.parse
	util.Datetime.toLocalTime
	util.Datetime.toSecondsSinceEpoch
	util.Datetime.toUTC

	The util.Interval class
	util.Interval methods
	util.Interval.format
	util.Interval.parse

	The util.Strings class
	util.Strings methods
	util.Strings.base64Decode
	util.Strings.base64Encode
	util.Strings.base64DecodeToString
	util.Strings.base64EncodeFromString
	util.Strings.urlDecode
	util.Strings.urlEncode

	The util.Math class
	util.Math methods
	util.Math.acos
	util.Math.asin
	util.Math.atan
	util.Math.cos
	util.Math.exp
	util.Math.pi
	util.Math.pow
	util.Math.rand
	util.Math.sin
	util.Math.sqrt
	util.Math.srand
	util.Math.tan
	util.Math.log
	util.Math.toDegrees
	util.Math.toRadians

	The util.JSON class
	util.JSON methods
	util.JSON.format
	util.JSON.parse
	util.JSON.proposeType
	util.JSON.stringify

	Examples
	Example 1: Reading a JSON file

	The util.JSONObject class
	util.JSONObject methods
	util.JSONObject.create
	util.JSONObject.fromFGL
	util.JSONObject.parse
	util.JSONObject.get
	util.JSONObject.getLength
	util.JSONObject.getType
	util.JSONObject.has
	util.JSONObject.name
	util.JSONObject.put
	util.JSONObject.remove
	util.JSONObject.toFGL
	util.JSONObject.toString

	The util.JSONArray class
	util.JSONArray methods
	util.JSONArray.create
	util.JSONArray.fromFGL
	util.JSONArray.parse
	util.JSONArray.get
	util.JSONArray.getLength
	util.JSONArray.getType
	util.JSONArray.put
	util.JSONArray.remove
	util.JSONArray.toFGL
	util.JSONArray.toString

	JSON classes
	JSON to Genero BDL conversion rules
	Genero BDL to JSON conversion rules

	The os package
	The os.Path class
	os.Path methods
	os.Path.atime
	os.Path.baseName
	os.Path.copy
	os.Path.chDir
	os.Path.chRwx
	os.Path.chOwn
	os.Path.chVolume
	os.Path.delete
	os.Path.dirClose
	os.Path.dirFMask
	os.Path.dirName
	os.Path.dirNext
	os.Path.dirOpen
	os.Path.dirSort
	os.Path.executable
	os.Path.exists
	os.Path.extension
	os.Path.fullPath
	os.Path.gid
	os.Path.homeDir
	os.Path.isDirectory
	os.Path.isFile
	os.Path.isHidden
	os.Path.isLink
	os.Path.isRoot
	os.Path.join
	os.Path.makeTempName
	os.Path.mtime
	os.Path.mkDir
	os.Path.pathSeparator
	os.Path.pathType
	os.Path.pwd
	os.Path.readable
	os.Path.rename
	os.Path.separator
	os.Path.size
	os.Path.rootDir
	os.Path.rootName
	os.Path.rwx
	os.Path.type
	os.Path.uid
	os.Path.volumes
	os.Path.writable

	Examples
	Example 1: Extracting the parts of a file name
	Example 2: Browsing directories

	The com package
	Web services classes
	The WebService class
	com.WebServices methods
	com.WebService.createFault
	com.WebService.createHeader
	com.WebService.CreateWebService
	com.WebService.CreateStatefulWebService
	com.WebService.generateWSDL
	com.WebService.publishOperation
	com.WebService.registerInputHTTPVariable
	com.WebService.registerInputRequestHandler
	com.WebService.registerOutputHTTPVariable
	com.WebService.registerOutputRequestHandler
	com.WebService.registerWSDLHandler
	com.WebService.saveWSDL
	com.WebService.setComment
	com.WebService.setFeature

	The WebOperation class
	com.WebOperation methods
	com.WebOperation.addFault
	com.WebOperation.addInputHeader
	com.WebOperation.addOutputHeader
	com.WebOperation.CreateDOCStyle
	com.WebOperation.CreateRPCStyle
	com.WebOperation.CreateOneWayDOCStyle
	com.WebOperation.CreateOneWayRPCStyle
	com.WebOperation.initiateSession
	com.WebOperation.setComment
	com.WebOperation.setInputAction
	com.WebOperation.setInputEncoded
	com.WebOperation.setOutputAction
	com.WebOperation.setOutputEncoded

	The WebServiceEngine class
	com.WebServiceEngine methods
	com.WebServiceEngine.Flush
	com.WebServiceEngine.GetHTTPServiceRequest
	com.WebServiceEngine.GetOption
	com.WebServiceEngine.HandleRequest
	com.WebServiceEngine.ProcessServices
	com.WebServiceEngine.SetFaultCode
	com.WebServiceEngine.SetFaultDetail
	com.WebServiceEngine.SetFaultString
	com.WebServiceEngine.SetOption
	com.WebServiceEngine.RegisterService
	com.WebServiceEngine.Start

	WSDL generation options notes
	WebServiceEngine options
	Error codes of com.WebServicesEngine

	The HTTPServiceRequest class
	com.HTTPServiceRequest methods
	com.HTTPServiceRequest.addResponsePart
	com.HTTPServiceRequest.beginXmlRequest
	com.HTTPServiceRequest.beginXmlResponse
	com.HTTPServiceRequest.endXmlRequest
	com.HTTPServiceRequest.endXmlResponse
	com.HTTPServiceRequest.getURL
	com.HTTPServiceRequest.getMethod
	com.HTTPServiceRequest.getRequestVersion
	com.HTTPServiceRequest.getRequestHeader
	com.HTTPServiceRequest.getRequestHeaderCount
	com.HTTPServiceRequest.getRequestHeaderName
	com.HTTPServiceRequest.getRequestHeaderValue
	com.HTTPServiceRequest.getRequestMultipartType
	com.HTTPServiceRequest.getRequestPart
	com.HTTPServiceRequest.getRequestPartCount
	com.HTTPServiceRequest.getRequestPartFromContentID
	com.HTTPServiceRequest.hasRequestKeepConnection
	com.HTTPServiceRequest.readDataRequest
	com.HTTPServiceRequest.readFileRequest
	com.HTTPServiceRequest.readFormEncodedRequest
	com.HTTPServiceRequest.readTextRequest
	com.HTTPServiceRequest.readXmlRequest
	com.HTTPServiceRequest.sendDataResponse
	com.HTTPServiceRequest.sendFileResponse
	com.HTTPServiceRequest.sendResponse
	com.HTTPServiceRequest.sendTextResponse
	com.HTTPServiceRequest.sendXmlResponse
	com.HTTPServiceRequest.setResponseCharset
	com.HTTPServiceRequest.setResponseHeader
	com.HTTPServiceRequest.setResponseMultipartType
	com.HTTPServiceRequest.setResponseVersion

	HTTP classes
	The HTTPRequest class
	com.HTTPRequest methods
	com.HTTPRequest.addPart
	com.HTTPRequest.beginXmlRequest
	com.HTTPRequest.clearAuthentication
	com.HTTPRequest.clearHeaders
	com.HTTPRequest.Create
	com.HTTPRequest.doDataRequest
	com.HTTPRequest.doFileRequest
	com.HTTPRequest.doFormEncodedRequest
	com.HTTPRequest.doRequest
	com.HTTPRequest.doTextRequest
	com.HTTPRequest.doXmlRequest
	com.HTTPRequest.endXmlRequest
	com.HTTPRequest.getAsyncResponse
	com.HTTPRequest.getResponse
	com.HTTPRequest.removeHeader
	com.HTTPRequest.setAuthentication
	com.HTTPRequest.setAutoReply
	com.HTTPRequest.setCharset
	com.HTTPRequest.setConnectionTimeOut
	com.HTTPRequest.setHeader
	com.HTTPRequest.setKeepConnection
	com.HTTPRequest.setMaximumResponseLength
	com.HTTPRequest.setMethod
	com.HTTPRequest.setMultipartType
	com.HTTPRequest.setTimeOut
	com.HTTPRequest.setVersion

	Examples
	Example 1: HTTP GET request
	Example 2 : XForms HTTP POST request
	Example 3 : Streaming HTTP PUT request
	Example 4 : Asynchronous HTTP DELETE request

	The HTTPResponse class
	com.HTTPResponse methods
	com.HTTPResponse.beginXmlResponse
	com.HTTPResponse.endXmlResponse
	com.HTTPResponse.getDataResponse
	com.HTTPResponse.getFileResponse
	com.HTTPResponse.getHeader
	com.HTTPResponse.getHeaderCount
	com.HTTPResponse.getHeaderName
	com.HTTPResponse.getHeaderValue
	com.HTTPResponse.getMultipartType
	com.HTTPResponse.getPartCount
	com.HTTPResponse.getPart
	com.HTTPResponse.getPartFromContentID
	com.HTTPResponse.getStatusCode
	com.HTTPResponse.getStatusDescription
	com.HTTPResponse.getTextResponse
	com.HTTPResponse.getXmlResponse

	Examples

	The HTTPPart class
	com.HTTPPart methods
	com.HTTPPart.CreateFromString
	com.HTTPPart.CreateFromDomDocument
	com.HTTPPart.CreateFromData
	com.HTTPPart.CreateAttachment
	com.HTTPPart.getAttachment
	com.HTTPPart.getContentAsData
	com.HTTPPart.getContentAsDomDocument
	com.HTTPPart.getContentAsString
	com.HTTPPart.getHeader
	com.HTTPPart.setHeader

	Example

	TCP classes
	The TCPRequest class
	com.TCPRequest methods
	com.TCPRequest.beginXmlRequest
	com.TCPRequest.Create
	com.TCPRequest.doDataRequest
	com.TCPRequest.doRequest
	com.TCPRequest.doXmlRequest
	com.TCPRequest.doTextRequest
	com.TCPRequest.endXmlRequest
	com.TCPRequest.getResponse
	com.TCPRequest.getAsyncResponse
	com.TCPRequest.setTimeOut
	com.TCPRequest.setConnectionTimeOut
	com.TCPRequest.setKeepConnection
	com.TCPRequest.setMaximumResponseLength

	The TCPResponse class
	com.TCPResponse methods
	com.TCPResponse.beginXmlResponse
	com.TCPResponse.endXmlResponse
	com.TCPResponse.getDataResponse
	com.TCPResponse.getTextResponse
	com.TCPResponse.getXmlResponse

	Helper classes
	The Util class
	com.Util methods
	com.Util.UniqueApplicationInstance

	Specific classes
	The APNS class
	APNs SSL certificate
	com.APNS methods
	com.APNS.DecodeError
	com.APNS.DecodeFeedback
	com.APNS.EncodeMessage

	APNs examples
	APNs push provider
	APNs feedback handler

	The xml package
	The Document Object Modeling (DOM) classes
	The DomDocument class
	xml.DomDocument methods
	xml.DomDocument.appendDocumentNode
	xml.DomDocument.clone
	xml.DomDocument.create
	xml.DomDocument.createAttribute
	xml.DomDocument.createAttributeNS
	xml.DomDocument.createCDATASection
	xml.DomDocument.createComment
	xml.DomDocument.createDocument
	xml.DomDocument.createDocumentFragment
	xml.DomDocument.createDocumentNS
	xml.DomDocument.createDocumentType
	xml.DomDocument.createElement
	xml.DomDocument.createElementNS
	xml.DomDocument.createEntityReference
	xml.DomDocument.createNode
	xml.DomDocument.createProcessingInstruction
	xml.DomDocument.createTextNode
	xml.DomDocument.declareNamespace
	xml.DomDocument.getDocumentElement
	xml.DomDocument.getDocumentNodesCount
	xml.DomDocument.getDocumentNodeItem
	xml.DomDocument.getElementById
	xml.DomDocument.getElementsByTagName
	xml.DomDocument.getElementsByTagNameNS
	xml.DomDocument.getErrorDescription
	xml.DomDocument.getErrorsCount
	xml.DomDocument.getFirstDocumentNode
	xml.DomDocument.getFeature
	xml.DomDocument.getLastDocumentNode
	xml.DomDocument.getXmlEncoding
	xml.DomDocument.getXmlVersion
	xml.DomDocument.importNode
	xml.DomDocument.insertBeforeDocumentNode
	xml.DomDocument.insertAfterDocumentNode
	xml.DomDocument.isXmlStandalone
	xml.DomDocument.load
	xml.DomDocument.loadFromPipe
	xml.DomDocument.loadFromString
	xml.DomDocument.normalize
	xml.DomDocument.prependDocumentNode
	xml.DomDocument.removeDocumentNode
	xml.DomDocument.save
	xml.DomDocument.saveToPipe
	xml.DomDocument.saveToString
	xml.DomDocument.selectByXPath
	xml.DomDocument.setFeature
	xml.DomDocument.setXmlEncoding
	xml.DomDocument.setXmlStandalone
	xml.DomDocument.validate
	xml.DomDocument.validateOneElement

	Navigation methods usage examples
	Node creation methods usage examples
	HTML document usage example
	Load and save methods usage examples
	Cautions
	DomDocument Features
	Examples
	Example 1 : Create a namespace qualified document with processing instructions
	Example 2 : Validating a document against XML schemas or a DTD

	The DomNode class
	xml.DomNode methods
	xml.DomNode.addPreviousSibling
	xml.DomNode.addNextSibling
	xml.DomNode.appendChild
	xml.DomNode.appendChildElement
	xml.DomNode.appendChildElementNS
	xml.DomNode.clone
	xml.DomNode.getAttribute
	xml.DomNode.getAttributeNode
	xml.DomNode.getAttributeNodeItem
	xml.DomNode.getAttributeNodeNS
	xml.DomNode.getAttributeNS
	xml.DomNode.getAttributesCount
	xml.DomNode.getChildNodeItem
	xml.DomNode.getChildrenCount
	xml.DomNode.getElementsByTagName
	xml.DomNode.getElementsByTagNameNS
	xml.DomNode.getFirstChild
	xml.DomNode.getFirstChildElement
	xml.DomNode.getLastChild
	xml.DomNode.getLastChildElement
	xml.DomNode.getLocalName
	xml.DomNode.getNamespaceURI
	xml.DomNode.getNextSibling
	xml.DomNode.getNextSiblingElement
	xml.DomNode.getNodeName
	xml.DomNode.getNodeType
	xml.DomNode.getNodeValue
	xml.DomNode.getOwnerDocument
	xml.DomNode.getParentNode
	xml.DomNode.getPrefix
	xml.DomNode.getPreviousSibling
	xml.DomNode.getPreviousSiblingElement
	xml.DomNode.hasAttribute
	xml.DomNode.hasAttributeNS
	xml.DomNode.hasAttributes
	xml.DomNode.hasChildNodes
	xml.DomNode.insertAfterChild
	xml.DomNode.insertBeforeChild
	xml.DomNode.isAttached
	xml.DomNode.isDefaultNamespace
	xml.DomNode.lookupNamespaceURI
	xml.DomNode.lookupPrefix
	xml.DomNode.prependChild
	xml.DomNode.prependChildElement
	xml.DomNode.prependChildElementNS
	xml.DomNode.removeAllChildren
	xml.DomNode.removeAttribute
	xml.DomNode.removeAttributeNS
	xml.DomNode.removeChild
	xml.DomNode.replaceChild
	xml.DomNode.selectByXPath
	xml.DomNode.setAttribute
	xml.DomNode.setAttributeNode
	xml.DomNode.setAttributeNodeNS
	xml.DomNode.setAttributeNS
	xml.DomNode.setIdAttribute
	xml.DomNode.setIdAttributeNS
	xml.DomNode.setNodeValue
	xml.DomNode.setPrefix
	xml.DomNode.toString

	DomNode types
	Examples
	Example Counting the number of nodes in an XML document

	The DomNodeList class
	xml.DomNodeList methods
	xml.DomNodeList.getCount
	xml.DomNodeList.getItem

	The streaming API for XML (StAX) classes
	The StaxWriter class
	xml.StaxWriter methods
	xml.StaxWriter.attribute
	xml.StaxWriter.attributeNS
	xml.StaxWriter.cdata
	xml.StaxWriter.characters
	xml.StaxWriter.close
	xml.StaxWriter.comment
	xml.StaxWriter.create
	xml.StaxWriter.declareDefaultNamespace
	xml.StaxWriter.declareNamespace
	xml.StaxWriter.dtd
	xml.StaxWriter.emptyElement
	xml.StaxWriter.emptyElementNS
	xml.StaxWriter.endDocument
	xml.StaxWriter.endElement
	xml.StaxWriter.entityRef
	xml.StaxWriter.getFeature
	xml.StaxWriter.processingInstruction
	xml.StaxWriter.setDefaultNamespace
	xml.StaxWriter.setFeature
	xml.StaxWriter.setPrefix
	xml.StaxWriter.startDocument
	xml.StaxWriter.startElement
	xml.StaxWriter.startElementNS
	xml.StaxWriter.writeTo
	xml.StaxWriter.writeToDocument
	xml.StaxWriter.writeToPipe
	xml.StaxWriter.writeToText

	StaxWriter Features
	Example

	The StaxReader class
	xml.StaxReader methods
	xml.StaxReader.close
	xml.StaxReader.Create
	xml.StaxReader.findAttributeValue
	xml.StaxReader.getAttributeCount
	xml.StaxReader.getAttributeLocalName
	xml.StaxReader.getAttributeNamespace
	xml.StaxReader.getAttributePrefix
	xml.StaxReader.getAttributeValue
	xml.StaxReader.getEncoding
	xml.StaxReader.getEventType
	xml.StaxReader.getFeature
	xml.StaxReader.getLocalName
	xml.StaxReader.getName
	xml.StaxReader.getNamespace
	xml.StaxReader.getNamespaceCount
	xml.StaxReader.getNamespacePrefix
	xml.StaxReader.getNamespaceURI
	xml.StaxReader.getPIData
	xml.StaxReader.getPITarget
	xml.StaxReader.getPrefix
	xml.StaxReader.getText
	xml.StaxReader.getVersion
	xml.StaxReader.hasName
	xml.StaxReader.hasNext
	xml.StaxReader.hasText
	xml.StaxReader.isCharacters
	xml.StaxReader.isEmptyElement
	xml.StaxReader.isEndElement
	xml.StaxReader.isIgnorableWhitespace
	xml.StaxReader.isStandalone
	xml.StaxReader.isStartElement
	xml.StaxReader.lookupNamespace
	xml.StaxReader.lookupPrefix
	xml.StaxReader.next
	xml.StaxReader.nextSibling
	xml.StaxReader.nextTag
	xml.StaxReader.readFrom
	xml.StaxReader.readFromDocument
	xml.StaxReader.readFromPipe
	xml.StaxReader.readFromText
	xml.StaxReader.setFeature
	xml.StaxReader.standaloneSet

	StaxReader Features
	StaxReader Event Types
	Example

	XML serialization classes
	The Serializer class
	xml.Serializer methods
	xml.Serializer.CreateXmlSchemas
	xml.Serializer.DomToStax
	xml.Serializer.DomToVariable
	xml.Serializer.getOption
	xml.Serializer.setOption
	xml.Serializer.SoapSection5ToVariable
	xml.Serializer.StaxToDom
	xml.Serializer.StaxToVariable
	xml.Serializer.VariableToDom
	xml.Serializer.VariableToSoapSection5
	xml.Serializer.VariableToStax

	Serialization option flags

	XML security classes
	The CryptoKey class
	xml.CryptoKey methods
	xml.CryptoKey.compareTo
	xml.CryptoKey.computeKey
	xml.CryptoKey.Create
	xml.CryptoKey.CreateDerivedKey
	xml.CryptoKey.CreateFromNode
	xml.CryptoKey.deriveKey
	xml.CryptoKey.generateKey
	xml.CryptoKey.getFeature
	xml.CryptoKey.getSHA1
	xml.CryptoKey.getSize
	xml.CryptoKey.getType
	xml.CryptoKey.getUrl
	xml.CryptoKey.getUsage
	xml.CryptoKey.loadBIN
	xml.CryptoKey.loadDER
	xml.CryptoKey.loadFromString
	xml.CryptoKey.loadPEM
	xml.CryptoKey.loadPrivate
	xml.CryptoKey.loadPublic
	xml.CryptoKey.loadPublicFromString
	xml.CryptoKey.savePrivate
	xml.CryptoKey.savePublic
	xml.CryptoKey.savePublicToString
	xml.CryptoKey.saveToString
	xml.CryptoKey.setFeature
	xml.CryptoKey.setKey

	Supported kind of keys
	Derived keys
	CryptoKey Features
	Examples
	Loading an asymmetric RSA key
	Generating a symmetric AES256 key
	Setting a HMAC key
	Deriving a HMAC key
	Computing the shared secret with Diffie-Hellman

	The CryptoX509 class
	xml.CryptoX509 methods
	xml.CryptoX509.Create
	xml.CryptoX509.CreateFromNode
	xml.CryptoX509.createPublicKey
	xml.CryptoX509.getFeature
	xml.CryptoX509.getIdentifier
	xml.CryptoX509.getThumbprintSHA1
	xml.CryptoX509.load
	xml.CryptoX509.loadDER
	xml.CryptoX509.loadFromString
	xml.CryptoX509.loadPEM
	xml.CryptoX509.save
	xml.CryptoX509.saveToString
	xml.CryptoX509.setFeature

	CryptoX509 Features
	Examples
	Loading a certificate from a PEM file
	Creating a public key for signature verification from a certificate
	Saving the subjectName of a certificate in XML

	The Signature class
	xml.Signature methods
	xml.Signature.appendObjectData
	xml.Signature.appendReferenceTransformation
	xml.Signature.compute
	xml.Signature.Create
	xml.Signature.CreateFromNode
	xml.Signature.createObject
	xml.Signature.createReference
	xml.Signature.getCanonicalization
	xml.Signature.getDocument
	xml.Signature.getID
	xml.Signature.getObjectCount
	xml.Signature.getObjectId
	xml.Signature.getReferenceCount
	xml.Signature.getReferenceDigest
	xml.Signature.getReferenceID
	xml.Signature.getReferenceTransformation
	xml.Signature.getReferenceTransformationCount
	xml.Signature.getReferenceURI
	xml.Signature.getSignatureMethod
	xml.Signature.getType
	xml.Signature.RetrieveObjectDataListFromSignatureNode
	xml.Signature.setCanonicalization
	xml.Signature.setCertificate
	xml.Signature.setID
	xml.Signature.setKey
	xml.Signature.setObjectID
	xml.Signature.setReferenceID
	xml.Signature.signString
	xml.Signature.verify
	xml.Signature.verifyString

	XML Signature concepts
	Sign and verify with a common shared HMAC key
	Sign with the originator private RSA or DSA key, and verify with the originator public RSA or DSA key
	Sign with the originator private RSA or DSA key, and verify with a RSA or DSA retrieval method
	Sign with the originator private RSA or DSA key, and verify with the originator X509 certificate associated to the private RSA or DSA key
	Sign with the originator private RSA or DSA key, and verify with trusted X509 certificates
	Sign with the originator private RSA or DSA key, and verify with a X509 certificate retrieval method and trusted X509 certificates
	Sign with a named key and verify using the keystore

	Digest identifier
	Transformation identifier
	Examples
	Create a detached signature using a HMAC key
	Verify a detached signature using a HMAC key
	Create an enveloping signature using a DSA key
	Verify an enveloping signature using a X509 certificate
	Create an enveloped signature using a RSA key
	Verify an enveloped signature using a RSA key

	The Encryption class
	xml.Encryption methods
	xml.Encryption.Create
	xml.Encryption.decryptElement
	xml.Encryption.decryptElementContent
	xml.Encryption.decryptElementContentDetached
	xml.Encryption.decryptElementDetached
	xml.Encryption.decryptKey
	xml.Encryption.DecryptString
	xml.Encryption.encryptElement
	xml.Encryption.encryptElementContent
	xml.Encryption.encryptElementContentDetached
	xml.Encryption.encryptElementDetached
	xml.Encryption.encryptKey
	xml.Encryption.EncryptString
	xml.Encryption.getEmbeddedKey
	xml.Encryption.RSADecrypt
	xml.Encryption.RSAEncrypt
	xml.Encryption.setCertificate
	xml.Encryption.setKey
	xml.Encryption.setKeyEncryptionKey

	Examples
	Encrypt a XML node with a symmetric AES128 key
	Decrypt a XML node with a symmetric AES128 key
	Encrypt a XML node with a generated symmetric key protected with the public RSA key within a X509 certificate
	Decrypt a XML node encrypted with a symmetric key protected with a private RSA key

	The KeyStore class
	xml.KeyStore methods
	xml.KeyStore.AddCertificate
	xml.KeyStore.AddKey
	xml.KeyStore.AddTrustedCertificate

	OM to XML Migration
	OM - XML Mapping

	The security package
	The RandomGenerator class
	security.RandomGenerator methods
	security.RandomGenerator.CreateRandomNumber
	security.RandomGenerator.CreateRandomString
	security.RandomGenerator.CreateUUIDString

	The Base64 class
	security.Base64 methods
	security.Base64.FromByte
	security.Base64.FromHexBinary
	security.Base64.FromString
	security.Base64.FromStringWithCharset
	security.Base64.LoadBinary
	security.Base64.SaveBinary
	security.Base64.ToHexBinary
	security.Base64.ToByte
	security.Base64.ToString
	security.Base64.ToStringWithCharset
	security.Base64.Xor

	The HexBinary class
	security.HexBinary methods
	security.HexBinary.FromBase64
	security.HexBinary.FromByte
	security.HexBinary.FromString
	security.HexBinary.FromStringWithCharset
	security.HexBinary.LoadBinary
	security.HexBinary.SaveBinary
	security.HexBinary.ToBase64
	security.HexBinary.ToByte
	security.HexBinary.ToString
	security.HexBinary.ToStringWithCharset
	security.HexBinary.Xor

	The Digest class
	security.Digest methods
	security.Digest.AddData
	security.Digest.AddBase64Data
	security.Digest.AddHexBinaryData
	security.Digest.AddStringData
	security.Digest.AddStringDataWithCharset
	security.Digest.CreateDigest
	security.Digest.CreateDigestString
	security.Digest.DoBase64Digest
	security.Digest.DoHexBinaryDigest

	Example

	File extensions
	Genero BDL errors

	Web services
	General
	Introduction to Web Services
	Concepts
	Server usage example
	Client usage example
	Service Oriented Architecture (SOA) and web services
	Migrating to SOA and web services
	Planning a web service
	Genero web services extension
	Web services standards
	XML
	XML schema
	SOAP
	WSDL
	HTTP

	Web services style options

	SOAP Web Services basics
	Migration notes
	Migrating GWS server applications
	Migrating GWS server runners only
	Migrating GWS server runners and using new APIs
	Operation publication restrictions

	Enhance the GWS server application to be WS-I compliant (recommended)
	Migrating GWS client applications
	Migration from version 1.3x to 2.2x
	Migration from version 2.0x to 2.2x
	Migration from version 2.1x to 2.2x
	Migration from version 2.xx to 2.4x
	Migration from version 2.xx to 3.xx

	WebService engine options

	I4GL migration guide
	Migrate an I4GL web service provider to Genero
	Step 1: Use the I4GL function and the I4GL .4cf configuration file
	Step 2: Create a BDL RECORD for the input parameters
	Step 3: Create a BDL RECORD for the output parameters
	Step 4: Create a BDL wrapper function
	Step 5: Publish the wrapper function as a Genero web service
	Step 6: Create the server
	Step 7: Configure the database
	Step 8: Compile and run the Genero service
	Step 9: Disable Axis support of MTOM/XOP and WS-Addressing

	Migrate an I4GL web service consumer to Genero
	Step 1: Generate the Genero web service stub from an I4GL WSDL
	Step 2: Modify the Genero .inc stubs to fix wrong I4GL WSDL
	Step 3: Include the generated stub into your I4GL application
	Step 4: Modify the I4GL web service function call
	Step 5: Handle Genero web services errors
	Step 6: Compile and run the Genero client
	Step 7: Disable Axis support of MTOM/XOP and WS-Addressing
	Remark: Standalone Axis server is buggy

	RESTful Web Services basics
	Getting started and examples
	Debugging
	Platform-specific notes
	IBM® AIX®
	GMI / iOS Web Services limitations
	GMA / Android™ Web Services requirements

	Known issues
	Legal Notices

	Concepts
	High-level and low-level web services APIs
	SOAP features
	SOAP 1.1 and 1.2
	Server side
	Client side

	SOAP Fault
	Server side
	Client side

	Stateful web services
	Concept
	WS-Addressing 1.0 stateful services
	Server side
	Step 1: Declare a W3CEndpointReference record to be used as state variable
	Step 2: Create a stateful WS-Addressing enabled web service with W3CEndpointReference record as a parameter
	Step 3: Publish a web service operation returning the W3CEndpointReference state variable and set it as session initiator
	Step 4: Create the BDL session initiator function and instantiate a new session
	Step 5: Restore the session in any BDL web operation from the W3CEndpointReference record

	Client side
	Step 1: Generate the client stub from your WS-Addressing stateful service
	Step 2: Create the MAIN application
	Step 3: Instantiate a new session by calling the web service operation set as session initiator
	Step 4: Call any web service operation with previously returned WS-Addressing 1.0 reference parameters

	Stateful services based on HTTP cookies
	Server side
	Step 1: Declare any BDL simple variable to be used as state variable
	Step 2: Create a stateful web service with state variable as parameter
	Step 3: Publish a web service operation defined as session initiator
	Step 4: Create the BDL session initiator function and instantiate a new session
	Step 5: Restore the session in any BDL web operation from the state variable
	Step 6: Deployment recommendation

	Client side
	Step 1: Generate the client stub from your stateful service
	Step 2: Create the MAIN application
	Step 3: Instantiate a new session by calling the web service operation set as session initiator
	Step 4: Call any web service operation with previously returned HTTP cookie
	Step 5: Troubleshooting

	Encryption, base64 and password agent with fglpass tool
	The fglpass tool
	Encrypt a HTTP authenticate password
	Encrypt a HTTP authenticate password using a certificate in the Windows™ key store
	Use the password agent
	Encrypt a password
	Decrypt a password
	Encode a file in BASE64 form
	Decode a BASE64 form encoded file

	HTTP compression
	Compression and a Web services client
	Compression and a Web services server

	SOAP multipart style requests in GWS

	Security
	Encryption and authentication
	Secured communications
	Certificates
	Certificate authorities
	Certificates and private keys storage

	Accessing secured services
	HTTPS configuration
	Certificates in practice
	The OpenSSL (openssl) tool
	Create a root certificate authority
	Create a certificate authority
	Create a certificate
	Create a certificate authority list
	Import a certificate and its private key into the Windows™ key store
	Import a certificate authority into the Windows™ key store
	View a certificate

	Examining certificates
	Check the server certificate using FireFox
	Check the server certificate using Internet Explorer
	Selecting the certificate to add
	Missing certificates

	Troubleshoot common issues
	HTTP 401 error message
	Error: Peer certificate is issued by a company not in our CA list

	The Diffie-Hellman key agreement algorithm

	SOAP Web Services
	Writing a Web Services client application
	Steps to write a WS client
	Obtaining the WSDL information
	Calling a web service
	Step 1: Import the COM library of the GWS package
	Step 2: Specify the globals file
	Step 3: Write the MAIN program block

	Setting a time period for the response
	Handling GWS server errors
	Compiling the client application

	Change WS client behavior at runtime
	Global Endpoint type definition
	WS-Addressing 1.0 Global Endpoint type definition
	Change server location
	Change the HTTP protocol version
	Set an HTTP cookie
	Set the connection timeout for a service
	Set the read and write timeout for a service
	Access HTTP request and response headers for a service

	WS client stubs and handlers
	Generating stub files for a GWS Client
	Handling GWS server errors
	Global Endpoint user-defined type definition
	The generated functions
	The generated callback handlers
	Handler definition

	Example output
	Multipart in the client stub
	Using the generated functions

	Using logical names for service locations
	FGLPROFILE entry
	Logical reference in the client application
	Logical reference in the URL

	Configure a WS client to connect via an HTTP Proxy
	Configure a WS client to use IPv6
	Authenticate the WS client to a server
	Authenticate the WS client to a proxy
	Configure a WS client to access an HTTPS server
	Configure for the client certificate
	Configure for the certificate authority list

	Writing a Web Services server application
	Writing a Web services server function
	Define the input parameters
	Define the output parameters
	Write the BDL function
	Create and publish the Web services operation

	WS server stubs and handlers
	Generating files for a GWS server
	Server handlers
	Example output
	Writing your functions

	Writing a Web server application
	Including the web services library
	Example 1: Writing the entire server application
	Step 1: Define input and output records
	Step 2: Write a BDL function for each service operation
	Step 3: Create the service and operations
	Step 4: Register the service
	Step 5: Start the GWS server and process requests

	Example 2: Writing a server using third-party WSDL (the fglwsdl tool)
	Step 1: Get the WSDL description and generate files
	Step 2: Write a BDL function for your service operation
	Step 3: Create service, start server and process requests

	Compiling GWS server applications
	Testing the GWS service in stand-alone mode
	Configuring the Genero application server for the GWS Application
	Making the GWS service available

	Get HTTP headers information at WS server side
	Choosing a web services style

	How To's
	How to call Java™ APIs from Genero in a SOA environment
	Overview
	Recommendation
	Prerequisites
	Using the barcode library
	Calling Java™ from Genero
	Step 1: Write a new java class
	Step 2: Transform the Java™ class in a web service
	Step 3: Start the service
	Step 4: Generate BDL stub to access the Java™ library
	Step 5: Modify your BDL application

	Example program
	Conclusion

	How to call .NET APIs from Genero in a SOA environment
	Overview
	Prerequisites
	Using the barcode library
	Calling .NET from Genero
	Step 1: Create an ASP.NET Web Service Application
	Step 2: Rename the generated files
	Step 3: Add the barcode library as a reference
	Step 4: Add the buildImage method
	Step 5: Publish the service
	Step 6: Generate .4gl stub to access the .NET library
	Step 7: Modify your BDL application

	Example BDL program
	Conclusion

	Compute a hash value from a BDL string
	Overview
	Sample code
	Example

	Fix Genero 2.10 to 2.11 WSDL generation issue
	Overview
	WSDL conversion tool

	How to handle WS security
	Introduction
	Server side
	Client side
	SOAP security standards
	Security bindings
	SOAP message security options
	SignedParts
	EncryptedParts

	Useful links

	RESTful Web Services
	Deploy a Web Service
	Web services server program deployment
	Configuring the apache web server for HTTPS
	Step 1: Create the root certificate authority
	Step 2: Create the server's certificate and private key
	Step 3: Create the server's certificate authority list
	Step 4: Register the server as a web service in the GAS
	Step 5: Configure apache for HTTPS
	Step 6 : Configure apache for HTTP basic authentication

	Reference
	Web services configuration
	FGLPROFILE entries
	HTTPS and password encryption
	Basic or digest HTTP authentication
	Proxy configuration
	IPv6 configuration
	Server configuration
	XML configuration

	Examples
	Windows™ password script example
	UNIX™ password script example
	FGLPROFILE sample
	FGLPROFILE sample 2
	Wildcards in the URL base

	Attributes to customize XML serialization
	BDL to/from XML type mappings
	Default BDL/XML mapping
	Type mapping attributes
	XSDAnySimpleType
	XSDAnyType
	XSDAnyURI
	XSDBase64binary
	XSDBoolean
	XSDByte
	XSDDate
	XSDDateTime
	XSDDecimal
	XSDDouble
	XSDDuration
	XSDEntities
	XSDEntity
	XSDFloat
	XSDGDay
	XSDGMonth
	XSDGMonthDay
	XSDGYear
	XSDGYearMonth
	XSDHexBinary
	XSDID
	XSDIDREF
	XSDIDREFS
	XSDInt
	XSDInteger
	XSDLanguage
	XSDLong
	XSDNCName
	XSDName
	XSDNegativeInteger
	XSDNMTOKEN
	XSDNMTOKENS
	XSDNonNegativeInteger
	XSDNonPositiveInteger
	XSDNormalizedString
	XSDnotation
	XSDPositiveInteger
	XSDQName
	XSDShort
	XSDString
	XSDTime
	XSDToken
	XSDUnsignedByte
	XSDUnsignedInt
	XSDUnsignedLong
	XSDUnsignedShort

	XML facet constraint attributes
	XSDLength
	XSDMinLength
	XSDMaxLength
	XSDEnumeration
	XSDWhiteSpace
	XSDPattern
	XSDMinInclusive
	XSDMaxInclusive
	XSDMinExclusive
	XSDMaxExclusive
	XSDTotalDigits
	XSDFractionDigits

	Customizing XML serialization
	XMLElement (Optional)
	XMLAttribute
	XMLBase
	XMLAll
	XMLChoice
	XMLSequence (Optional)
	XMLSimpleContent
	XSComplexType
	XMLList
	XMLSelector
	XMLAny
	XMLAnyAttribute
	XMLName
	XMLNamespace
	XMLType
	XMLTypenamespace
	XSTypename
	XSTypenamespace
	XMLElementNamespace
	XMLAttributeNamespace
	XMLOptional

	Error handling in GWS calls (STATUS)
	Interruption handling in GWS calls (INT_FLAG)
	Server API functions - version 1.3 only
	fgl_ws_server_setNamespace() (version 1.3)
	fgl_ws_server_start() (version 1.3)
	fgl_ws_server_publishFunction() (version 1.3)
	fgl_ws_server_generateWSDL() (version 1.3)
	fgl_ws_server_process() (version 1.3)
	fgl_ws_server_setFault() (version 1.3)
	fgl_ws_server_getFault() (version 1.3)

	Configuration API functions - version 1.3 only
	fgl_ws_setOption()
	fgl_ws_getOption()
	Option flags
	WSDL generation option notes

	Using fglwsdl to generate code from WSDL or XSD schemas
	Generate TYPE definitions from global XML elements or attributes

	Mobile applications
	Types of Genero Mobile apps
	Language limitations
	Environment variables on mobile
	App localization
	Apps user interface
	Action rendering
	Images and icons
	Keyboard type
	List views
	Split views
	Toolbars
	Topmenus
	Front call support
	Color and theming

	Database support on mobile devices
	Using SQLite database in mobile apps

	Accessing device functions
	Web Services on mobile devices
	Debugging a mobile app
	Deploying mobile apps
	Deploying mobile apps on Android™ devices
	Directory structure for GMA apps
	Building Android™ apps with Genero
	gmabuildtool

	Deploying mobile apps on iOS devices
	Directory structure for GMI apps
	Building iOS apps with Genero
	gmibuildtool

	Running mobile apps on an application server

	Push notifications
	Google Cloud Messaging (GCM)
	Apple Push Notification Service (APNs)
	Implementing a token maintainer
	Handling notifications in the mobile app

	Index

