
Four Js Genero Application Server User Guide

Contents | 2

Contents

Genero Application Server User Guide...7

What's new in Genero Application Server (GAS), v 3.00 (Maintenance Releases)9

Genero Application Server overview...10
What is the Genero Application Server?.. 10
Standalone Genero Application Server...13
Front Ends and Extensions...14

GAS Quick Start Guide... 15
Quick start guide to exploring resources.. 15
Quick start guide for applications with UI... 16

Quick start guide to launching first application.. 16
Quick start guide to configuring an application.. 18
Quick start guide to running an application... 18
Quick start guide to deploying an application.. 20

Quick start guide for web services applications..21
What is Web Service?..21
Quick start guide to exploring Genero Web service (server side)..21
Quick start guide to configuring a Web service... 22
Running a client application on Web service using GWC..23
Quick start guide to deploying a Web service... 24

Genero demo applications.. 25
Find the demo applications.. 25
Display demo applications with the Genero Web Client.. 25

GAS Basics.. 27
Architecture of the Genero Application Server... 27

Architecture overview... 27
Reliability inherent in the architecture.. 29
Development architecture (standalone GAS)...29
Deployment (production) architecture.. 29
Services Pool (GWS Only)...31

Components of the Genero Application Server.. 35
What is a dispatcher?...35
What is a proxy?.. 36
What is a DVM?... 37

What is auto logout?... 37
What is delegation?...37
What is Single sign-on (SSO)?...37
GAS directories... 38
Application environment.. 42
Internationalization...43

Encoding Architecture...43
Charsets Configuration... 44

Contents | 3

Translations for GWC-JS..47
Application Web Address.. 49

URIs acknowledged by the GAS..49
URI Examples...55

Configuring the Genero Application Server... 57
System Requirements... 57

Operating systems..57
Web servers..57
User agents.. 57
Databases... 58

GAS Configuration Check... 58
Managing Access Rights..58
Validating the Installation with the Genero Web Client..58
Validating the Installation with the GDC.. 59
Troubleshooting Configuration Issues.. 60

Licensing..61
Licensing - Base Example..61
Licensing - Using the RUN command..62
Licensing - Multiple User Agents... 62
Licensing - Summary Case.. 63
Genero Front Ends and License Counting...64
Licensing Tips and Tricks / Troubleshooting..65

ISAPI Extension Installation and Web Server Configuration.. 65
The Genero Application Server and IIS... 66
Install the ISAPI dispatcher.. 66
GAS ISAPI Extension configuration file... 83
Troubleshooting installation.. 84
Restarting the ISAPI dispatcher... 84

FastCGI Installation and Web Server Configuration...85
Using the FastCGI dispatcher.. 85
FastCGI GAS configuration on various Web Server..85
Troubleshooting.. 89
Restarting the FastCGI dispatcher...90

Java
™

 Servlet Installation and Web Server Configuration.. 91
Using the GAS Java

™
 dispatcher...91

Building the Java
™

 Web Archive (WAR).. 91
Deploying on a Java

™
 Web Server.. 92

Restarting the J2EE dispatcher..93
Validating configuration files..93

What is an XML Schema Definition file?... 93
Why specify the XML Schema Definition file?... 93
Validating with the gasadmin tool.. 94
Selecting an XML editor...94

Configuring applications on GAS.. 95
Application Configuration Overview..95
Creating Abstract Applications... 96
Creating an application Group... 96
Create an application configuration file..98
Using External Application Configuration Files.. 100
Configure DVM environment variables...103
Use a script to set the environment...104
What if the application doesn't start?...104
Next steps...105

How to implement delegation..105

Contents | 4

How delegation works.. 105
Configure delegation for application or service..107
From the user agent to the REST service... 108
From the REST service to the proxy... 110
REST service example...111
Delegation use cases... 114

How to implement Single sign-on (SSO).. 114
OpenID Connect SSO.. 115
OpenID SSO...120
SAML SSO... 128
How to implement custom single sign-on.. 138
Connect to the application database with SSO... 144

Compression in Genero Application Server..146
Configuring development environment..147
Configuring Multiple Dispatchers...148

Administering the Genero Application Server......................................150
Monitoring.. 150

Usage..150
Statistics..150

Logging.. 156
Using the debugger...157

Using the Debugger for the GAS on the Windows
™

 platform.. 157
Using the Debugger for the GAS on UNIX

™
.. 158

Performance tuning... 158
Web server configuration: Keep Alive..158
SPDY.. 158

Load balancing.. 159
GAS requests... 159
Sessionless request processing... 160
Session-bound request processing.. 161
Load Balancing Configuration Examples... 165

Developing Web applications...173
Genero Web Client for JavaScript (GWC-JS)...173

What is GWC-JS?.. 173
Starting GWC-JS applications.. 188
GWC-JS applications and use of cookies..189
Customization for GWC-JS applications.. 189
Migrating from GDC to GWC-JS..208
Migrating from GWC-HTML5 to GWC-JS.. 212

Genero Web Client for HTML5 (GWC-HTML5).. 214
Genero Web Services... 214

Accessing the Web Service (Web Services URI information)..214
Service invalidation...215
Sticky Web services... 215

Deploying with Genero Archive... 217
What is a Genero Archive?...217
Quick start: deploying applications..218

Application deployment overview... 218
Paths to application resources... 219
Quick start: Genero Archive... 220

Contents | 5

Deploying application resources for GWC for HTML5... 222
Deploying application resources for GWC-JS..223

Genero Archive lifecycle..224
The MANIFEST file... 224

TRIGGERS (for manifest)...224
File system layout of a deployed archive... 225
Genero Archive procedures.. 226

Create a Genero Archive... 226
Deploy an archive...227
List all deployed archives... 228
Activate (enable) a deployed archive...229
Deactivate (disable) a deployed archive.. 230
Undeploy a deployed archive...230
Clean up undeployed archives...231
Upgrade an archive.. 232

Genero Archive deployment service... 232

Upgrading... 234
New Features of the Genero Application Server.. 234

What's new in Genero Application Server (GAS), v 3.00 (Maintenance Releases)..............234
What's new in Genero Application Server, v 3.00... 235
Genero Application Server v 2.50 New Features...237
Genero Application Server 2.41 New Features... 240
Genero Application Server 2.40 New Features... 241
Genero Application Server 2.32 New Features... 242
Genero Application Server 2.30 New Features... 242
Genero Application Server 2.22 New Features... 244
Genero Application Server 2.21 New Features... 245
Genero Application Server 2.20 New Features... 246

Upgrade Guides for the Genero Application Server... 247
GAS 3.00 upgrade guide..248
GAS 2.50 upgrade guide..250
GAS 2.41 upgrade guide..251
GAS 2.40 upgrade guide..251
GAS 2.30 upgrade guide..253
GAS 2.22 upgrade guide..256
GAS 2.21 upgrade guide..256
GAS 2.20 upgrade guide..256
Upgrading from GAS 2.10.x or GWC 2.10.x..258
GAS (GWC) 2.10 upgrade guide... 260
GAS 2.00 upgrade guide..261

Migrating Templates and Snippets Customizations.. 262

Reference..263
Tools and Commands... 263

Dispatcher: httpdispatch... 263
Dispatcher: fastcgidispatch...265
Dispatcher: java-j2eedispatch...266
Proxy: uaproxy..266
Proxy: gwsproxy... 267
Proxy: html5proxy... 267
The fglxslp command... 267
The fglgar command...267
The gasadmin command.. 269

Contents | 6

Ghost Client and Testing Tools..272
Automatic discovery of User Agent (adua.xrd)... 282

What is an Output Map?.. 282
How an Output Map is chosen.. 283
Modify the adua.xrd file to specify custom Output Maps... 284
Specify the Output Map in the application URI..284
ADUA Syntax Diagrams... 284
adua.xrd usage example.. 286

GAS Predefined resources..287
GAS predefined resources overview..287
Common GAS predefined resources... 288

GAS Configuration Reference...288
GAS configuration file...289
Application configuration files... 289
Configuration file hierarchies.. 290
Configuration file elements... 296

Glossary and Acronyms... 363

Legal Notices... 365

Genero Application Server User Guide | 7

Genero Application Server User Guide

Manual organization at a glance.

Genero Application
Server overview on
page 10

GAS Quick Start Guide
on page 15

GAS Basics on page
27

Configuring the
Genero Application
Server on page 57

• What's new in
Genero Application
Server (GAS), v
3.00 (Maintenance
Releases) on page
9

• What is the Genero
Application Server?
on page 10

• Standalone Genero
Application Server on
page 13

• Front Ends and
Extensions on page
14

• Quick start guide to
exploring resources
on page 15

• Quick start guide for
applications with UI
on page 16

• Quick start guide
for web services
applications on page
21

• Genero demo
applications on page
25

• Architecture of the
Genero Application
Server on page 27

• Components of the
Genero Application
Server on page 35

• What is auto logout?
on page 37

• What is delegation?
on page 37

• What is Single sign-
on (SSO)? on page
37

• GAS directories on
page 38

• Application
environment on page
42

• Internationalization
on page 43

• Application Web
Address on page
49

• System
Requirements on
page 57

• GAS Configuration
Check on page 58

• Licensing on page
61

• ISAPI Extension
Installation and Web
Server Configuration
on page 65

• FastCGI Installation
and Web Server
Configuration on
page 85

• Java Servlet
Installation and Web
Server Configuration
on page 91

• Validating
configuration files on
page 93

• Configuring
applications on GAS
on page 95

• How to implement
delegation on page
105

• How to implement
Single sign-on (SSO)
on page 114

• Compression in
Genero Application
Server on page 146

• Configuring
development
environment on page
147

• Configuring Multiple
Dispatchers on page
148

Genero Application Server User Guide | 8

Administering the
Genero Application
Server on page 150

Developing Web
applications on page
173

Deploying with Genero
Archive on page 217

Upgrading on page
234

• Monitoring on page
150

• Logging on page
156

• Using the debugger
on page 157

• Performance tuning
on page 158

• Load balancing on
page 159

• Genero Web Client
for JavaScript (GWC-
JS) on page 173

• Genero Web Client
for HTML5 (GWC-
HTML5) on page
214

• Genero Web
Services on page
214

• What is a Genero
Archive? on page
217

• Quick start: deploying
applications on page
218

• Genero Archive
lifecycle on page
224

• The MANIFEST file
on page 224

• File system layout of
a deployed archive
on page 225

• Genero Archive
procedures on page
226

• Genero Archive
deployment service
on page 232

• New Features of the
Genero Application
Server on page 234

• Upgrade Guides
for the Genero
Application Server on
page 247

Reference on page
263

Appendices

• Tools and
Commands on page
263

• Automatic discovery
of User Agent
(adua.xrd) on page
282

• GAS Predefined
resources on page
287

• GAS Configuration
Reference on page
288

• Glossary and
Acronyms on page
363

• Legal Notices on
page 365

What's new in Genero Application Server (GAS), v 3.00 (Maintenance Releases) | 9

What's new in Genero Application Server (GAS), v 3.00
(Maintenance Releases)

This topic includes information about new features added for 3.00 Maintenance Releases (MRs) of the
GAS and changes in existing functionality.

Important: Please read What's new in Genero Application Server, v 3.00 on page 235, for a list
of features that were introduced with Genero 3.00 General Availability release.

Table 1: Genero Web Client for JavaScript (GWC-JS), Version 3.00

Overview Reference

Enhancements for the GWC-JS (v1.00.16):

• Canvas elements are now supported.
• Front calls setvar and getvar are supported for session variable

management. See the Genero Business Development Language User
Guide for more details about their usage.

See Features and limitations on
page 176.

Table 2: Engine and Architecture, Version 3.00 (Maintenance Releases)

Overview Reference

The GWC_JS_LOOKUP_PATH element (added as a child of
INTERFACE_TO_CONNECTOR on page 324) allows you to configure
the location of your custom GWC-JS front end.

See GWC_JS_LOOKUP_PATH on
page 320

A new URI dedicated to the lookup of the GWC-JS directory. The
complete format of the URI is ua/w/$(GWC-JS)/<filename>.

See Application URIs on page
49

Table 3: Deployment, Version 3.00 (Maintenance Releases)

Overview Reference

The WEB_COMPONENT_DIRECTORY element allows for multiple paths to
be specified.

See
WEB_COMPONENT_DIRECTORY
on page 361

Note: The new features listed in this topic are available in the latest version of the GAS. Contact
your support channel for more details.

Genero Application Server overview | 10

Genero Application Server overview

The Genero Application Server (GAS) provides you with a server environment to create Genero
applications and to deploy and run them on front end clients through various protocols, proxies and
dispatchers.

• What's new in Genero Application Server (GAS), v 3.00 (Maintenance Releases) on page 9
• What is the Genero Application Server? on page 10
• Standalone Genero Application Server on page 13
• Front Ends and Extensions on page 14

What is the Genero Application Server?
The Genero Application Server (GAS) is an engine that delivers Genero applications for various Genero
front-ends in both development and production environments.

Manages Communication between Front end
and DVM

The GAS creates relationships between various
front ends and the Dynamic Virtual Machines
(DVMs) which run the applications.

Embeds a Web Server A Web server to handle requests from the Internet
is embedded in the GAS. It includes dispatcher and
proxy processes. Communication between the Web
server and the GAS is handled by dispatchers.

Simplifies Application Deployment The GAS simplifies the deployment phase by taking
care of the connection to the applications. For
applications deployed to Web clients no software
installation or configuration is needed on the client;
only a browser is required to access the program.

Controls Interaction between DVM and Front
ends

The GAS supports the development of Genero
Business Development Language (BDL)
applications on a single source code stream that
can be run on both a browser or on a desktop.
If the same application is delivered to either the
Genero Web Client for JavaScript (GWC-JS) or the
Genero Desktop Client (GDC), the GAS handles the
communication with the DVM through its proxy and
dispatcher components in much the same way. See
the examples, GAS Role in GWC-JS Application
Delivery on page 10 and GAS Role in GDC
Application Delivery on page 11.

Provides Genero Web Services (GWS) for
clients

The GAS can also be configured to provide Genero
Web Services (GWS) for clients. GWS DVMs are
managed in a pool by the GAS to provide resources
to clients when requested. See the example GAS
Role in GWS on page 12.

GAS Role in GWC-JS Application Delivery
The GWC-JS front end is provided as part of the GAS installation. This front end allows users to run
applications from their browser. The following describes the processes involved, highlighting the role of the
GAS and its components as it delivers an application to the browser.

Genero Application Server overview | 11

Figure 1: GWC-JS Application Delivery

1. A request is sent to the dispatcher to run the application from the browser.
2. The dispatcher checks the application configuration in the configuration files (xcf, xrd) and routes the

request to the required proxy.
3. The proxy starts a DVM using configuration files and runs the application.
4. The DVM returns an Abstract User Interface (AUI) tree describing the objects of the user interface and

sends rendering instructions to the proxy.
5. The client browser interprets the DVM instructions and builds the Web interfaces from widget

components that are defined by Cascading Style Sheets (CSS), JavaScript, and HTML code to provide
the dynamic behavior for the application.

GAS Role in GDC Application Delivery
The GDC front end allows you to run applications locally using native screens on your Windows™, Linux®,
or MAC® OS® for user interaction. The following example highlights the role of the GAS and its components
as a GDC application starts up.

Genero Application Server overview | 12

Figure 2: GDC application delivery

1. A request is sent to the dispatcher to run the application from the GDC.
2. The dispatcher checks the application configuration in the configuration files (xcf, xrd) and routes the

request to the required proxy.
3. The proxy starts a DVM using configuration files and runs the application.
4. The DVM returns an Abstract User Interface (AUI) tree describing the objects of the user interface and

sends rendering instructions to the proxy.
5. The GDC interprets the DVM instructions and AUI tree to create the screens natively on your system so

as to provide the user interface.

GAS Role in GWS

The GAS allows you to provide Web services to clients. Web Services configured on your GAS installation
are started automatically when the GAS starts and services listen for requests from clients. For more
information on Web services, see What is Web Service? on page 21.

The following example highlights the role of the GAS and its components in exposing a Web service to a
client that requests the functions of its services over the internet via the hypertext transfer protocol (HTTP).

Genero Application Server overview | 13

Figure 3: GWS Server/Client

1. An HTTP request to perform a function of the Web service is sent to the dispatcher from the client.
2. The dispatcher checks the application configuration in the configuration files (xcf, xrd) and routes the

request to the GWS proxy.
3. The GWSProxy is in charge of the pool of DVMs that will serve the Web service application, and

perform the requested functions.
4. The DVM returns a HTTP response with requested data, and response codes to indicate success or

failure.
5. The client interprets the HTTP response instructions and processes the returned data, for example, for

display.

• Standalone Genero Application Server on page 13
• What is a dispatcher? on page 35
• What is a proxy? on page 36
• Front Ends and Extensions on page 14

Standalone Genero Application Server
With the support of the HTTP protocol, the Genero Application Server provides a direct connection for
access to applications without using a Web server.

The standalone server (see Dispatcher: httpdispatch on page 263) is provided for the development
cycle only, allowing you to remove the Web server from your development architecture. For production
environments, a Web server is mandatory.

Genero Application Server overview | 14

Front Ends and Extensions
The Genero Application Server can serve applications using various front ends and extensions.

Genero Desktop Client (GDC) The Genero Desktop Client allows you to run
the application through the GAS, yet deliver
the application locally using the GDC. For more
information about the GDC, refer to the Genero
Desktop Client User Guide.

Genero Web Client for JavaScript (GWC-JS) The GWC-JS allows you to deliver Genero
applications in a Web browser on the client
machine. It is a JavaScript client that works with
Node technology. The Genero Web Client is
provided as part of the Genero Application Server
installation. For more information about the GWC-
JS, see What is GWC-JS? on page 173.

Genero Web Services (GWS) Genero Web Services allows you to implement
Web services. Web services are a standard way
of communicating between applications over
the internet or an intranet. A web service can be
a server that exposes services or a client that
consumes a service. For more information, see
What is Web Service? on page 21.

Genero Web Client (GWC-HTML5) The Genero Web Client for HTML5 allows you
to deliver Genero applications in a Web browser
without having to install any software on the
client machine. It uses browser-based themes.
The Genero Web Client is provided as part of
the Genero Application Server installation. This
version of the GWC has been deprecated; new
development should use the GWC-JS instead. For
more information about the Genero Web Client,
refer to the Genero Application Server 2.50 User
Guide.

GAS Quick Start Guide | 15

GAS Quick Start Guide

To give you an idea of what the GAS does and help you to get started, this section guides you with
examples for configuring, running, and deploying basic types of applications on the GAS.

• Quick start guide to exploring resources on page 15
• Quick start guide for applications with UI on page 16
• Quick start guide for web services applications on page 21
• Genero demo applications on page 25

Quick start guide to exploring resources
This section provides a brief introduction to the relative path mechanism of the GAS installation and
application data directories, and provides you with a quick start guide to finding files you need when
working with GAS.

Paths to files and directories of your GAS installation are set by resources in the GAS configuration
file,as.xcf, see GAS configuration file on page 289.

Note: Resources are like variables that identify or name the resource. For example res.path.as
identifies the GAS installation directory while the value of this resource will contain the absolute
path to your GAS installation directory.

<RESOURCE Id="res.path.as" Source="INTERNAL">C:\4js\gas\2.50.34</
RESOURCE>

When, for example, you deploy applications you do not need to know where the real resources are actually
located in the production environments because you can map to real resources with a reference using this
syntax, $(RESOURCE Id). Therefore $(res.path.as) references the GAS installation directory in all
hosts where GAS is installed.

Typical resources and relative path locations
The following are some typical resources and relative path locations to some of the more common
installation and application data files which you will need to run or reference:

$(res.path.as)/etc/as.xcf
$(res.path.as)/bin/httpdispatch.exe
$(res.fgldir)/fglrun.exe
$(res.appdata.path)/app
$(res.appdata.path)/deployment

Note: Installation directories may also be identified by environment variables which are set at
installation time by script files, see Table 4: $FGLASDIR directories and files on page 39.

1. To find the absolute path of resources, you will need to first locate your as.xcf file where these
predefined resources are set.

The as.xcf file is an XML file which contains the default configuration for the GAS. You must search
your disk for it in directories where the file is likely to be located.

2. In a text editor or with Genero Studio, open the as.xcf file and locate the source of your
$(res.path.as) resource. You should find its source path amongst the RESOURCE list elements for
your platform (e.g. WNT or UNX).

The source path for $(res.path.as) is platform dependent.

• On UNIX™, it is also represented by the environment variable $FGLASDIR.

GAS Quick Start Guide | 16

• On Windows™ by the environment variable %FGLASDIR%.

Knowing the source of this resource, you will be able to locate the binary file of, for example the
Dispatcher: httpdispatch on page 263, the standalone dispatcher used by the GAS.

3. In the as.xcf file, locate and note the source of your $(res.appdata.path) resource.

• On UNIX™ it is also represented by $FGLASDIR/appdata
• On Windows™, for example, C:/ProgramData/vendor/gas/gas_version.

Quick start guide for applications with UI
Quick start guides to help you configure, run, and deploy an application with user interface (UI)

• Quick start guide to launching first application on page 16
• Quick start guide to configuring an application on page 18
• Quick start guide to running an application on page 18
• Quick start guide to deploying an application on page 20

Quick start guide to launching first application
This quick start guide provides you with the steps to launch the Genero Application Server and view demo
applications delivered by the GAS to both Genero Web Client and Genero Desktop Client.

Before you begin, you must:

• Have the Genero product suite installed locally.
• Have Genero Studio installed (which by default includes the Genero Business Development Language,

Genero Application Server, and Genero Desktop Client).

The goal of this quick start is to provide you with some basic experience in using the Genero Application
Server to start a demo application. We will be using the standalone GAS dispatcher (httpdispatch),
which limits this quick start to a completely local install but simplifies the process by bypassing the need for
a Web server.

Note: The standalone GAS dispatcher is for development and testing only, a Web server is
required for a production environment.

1. Start the standalone dispatcher from the command line, for details about starting httpdispatch see
Dispatcher: httpdispatch on page 263.
The application server (the httpdispatch dispatcher) is started.

2. Open the GAS demos page from a browser by entering the address, http://localhost:6394/
demos.html.

Note: By default, access to the demos page is allowed only to localhost. The GAS configuration
ACCESS_CONTROL on page 298 element defines where access is allowed. For more
information on GAS configuration see GAS configuration file on page 289.

The Genero Application Server responds, and you should see the Genero Application Server welcome
page displayed. This indicates that the GAS dispatcher is working.

3. Examine the demo application delivered by the Genero Application Server to two frontend clients; the
GWC-JS and the GDC (see Front Ends and Extensions on page 14).

a) To view the demo application displayed using the Genero Web Client, click on the demos link.

GAS Quick Start Guide | 17

Alternatively, you can enter the address http://localhost:6394/ua/r/gwc-demo. (For more
information on the application URI see Application URIs on page 49)

The application displays in the browser.

Figure 4: Demo application launched by the Genero Web Client for JavaScript
b) To view the demo application displayed using the Genero Desktop Client for HTTP, enter the

address http://localhost:6394/da/r/gdc-demo in a new browser tab.

If asked, elect to Open with gdc-demo.gdc. For more information on GDC shortcuts see URI
Examples on page 55.

The Demos application opens in the Genero Desktop Client.

Figure 5: Demo application launched in the Genero Desktop Client for HTTP

GAS Quick Start Guide | 18

Quick start guide to configuring an application
Before you run an application you need to configure it so that it can be executed by the Genero Application
Server.

The goal of this quick start is to provide you with some basic experience in configuring information
needed by the Genero Application Server to start an application. You provide these details in a separate
application-specific configuration file, see Create an application configuration file on page 98 (one per
application).

For the purposes of this quick start, you can create a custom configuration file for the HelloWorld
application located in your Genero Studio's installation $GSTDIR/samples directory.

1. Create a new directory (e.g. you can name it "HelloWorld_config") on your disk where you will store the
HelloWorld application source files.

2. Copy all the files from $GSTDIR/samples/HelloWorld directory to your new local directory.

3. Create a minimal configuration file for your HelloWorld application. Provide an absolute path to the
location of your compiled application files in the PATH element, and in the MODULE element specify the
module required to launch your application.

Use a text editor or if you are using Studio, go to File >> New >> Web/AS >> Application
Configuration (.xcf)

Note: The Parent attribute references defaultgwc, which provides default configuration for all
GWC applications (see GAS configuration file on page 289).

<?xml version="1.0" encoding="UTF-8" ?>
<APPLICATION Parent="defaultgwc" xmlns:xsi="http://www.w3.org/2001/
XMLSchema-instance" xsi:noNamespaceSchemaLocation="http://www.4js.com/ns/
gas/3.00/cfextwa.xsd">
 <EXECUTION>
 <PATH><path_to_your_local_directory></PATH>
 <MODULE>HelloWorld.42r</MODULE>
 </EXECUTION>
</APPLICATION>

4. Name your file with the same name as the application (this is not mandatory but it may help you identify
the file), e.g. HelloWorld, with the xcf extension.

5. Save the configuration file in your $(res.appdata.path)/app directory.

The default directory for external application configuration files is the $(res.appdata.path)/app
directory, see Quick start guide to exploring resources on page 15. The default directory resource
is set in the GAS configuration file on page 289 file's GROUP element:

<GROUP Id="_default">$(res.path.app)</GROUP>

You have successfully configured an application.

What to do next

When you have completed the above steps, your next task is to test your application to see if it is
configured correctly as detailed in Quick start guide to running an application on page 18.

Quick start guide to running an application
After configuring your application, you can test it to see if it is configured correctly by running it on the GAS.
There are several ways of running your application.

For the purposes of this quick start, you can run the HelloWorld application you have already configured,
see Quick start guide to configuring an application on page 18.

Before you begin, you must:

• Have the Genero product suite installed locally.

GAS Quick Start Guide | 19

• You must have Genero Studio installed (which by default includes the Genero Business Development
Language, Genero Application Server, and Genero Desktop Client).

Refer to the Genero Installation Guide for installation guidance.

The goal of this quick start is to provide you with some basic experience of running applications in GAS
using the two front-end clients, GWC-JS and GDC, and from Genero Studio.

1. Run your application on the GWC-JS front-end client.

a) If your standalone dispatcher is not running, start it from the command line, for details about starting
httpdispatch see Dispatcher: httpdispatch on page 263

b) To run your HelloWorld application, in a browser enter the application address: http://
localhost:6394/ua/r/HelloWorld

For more information on the application URI see Application URIs on page 49.

You have launched the application in the GAS.

2. To run your application on GDC from the browser, enter the address http://localhost:6394/da/
r/HelloWorld in a browser tab.

If asked, elect to Open gdc-demo.gdc. For more information on GDC shortcuts see URI Examples on
page 55.

The HelloWorld application opens in the Genero Desktop Client.

3. To run your application from within Genero Studio, complete the following sub-steps:

a) If your standalone dispatcher is running, close your open applications and shut down the dispatcher.
To shut down the standalone dispatcher, see Dispatcher: httpdispatch on page 263.

You do not need to start the GAS dispatcher if you are running an application from within Genero
Studio.

b) In Genero Studio, the combobox in the bottom right corner of the main window displays the currently
active configuration. Make sure the selected option is <GAS version> Desktop.

c) Select the HelloWorld application from the Projects panel.

If the application is not listed in your Projects panel, you must search your disk for
HelloWorld.4pw in directories where the file is likely to be located.

The HelloWorld project opens in the Projects panel.
d) Run your HelloWorld application.

Select Debug >> Execute.

The application opens in a GDC window.

4. To run your application from within Genero Studio to the GDC using HTTP, complete the following sub-
steps:

a) In Genero Studio, the combobox in the bottom right corner of the main window displays the currently
active configuration. Select the <GAS version> (GWC) configuration option instead of <GAS
version> Desktop to have Studio launch the application for GWC client.

b) Run your HelloWorld application.

Select Debug >> Execute.

The application opens in a browser.

You have successfully run an application.

What to do next

When you have completed the above steps, your next task is to deploy your application as detailed in
Quick start guide to deploying an application on page 20.

GAS Quick Start Guide | 20

Quick start guide to deploying an application
When you have your application configured correctly and running on the GAS, you are now ready to
package the files required to deploy it as an application.

The goal of this quick start is to provide you with some basic experience in packaging an application
for deployment so that it can be launched in GAS installations on other hosts. The example in this topic
provides you with steps to configure and deploy an application that you can test on your own machine.

For the purposes of this quick start, you can use the configuration files created for the HelloWorld.xcf
application, see Quick start guide to configuring an application on page 18.

1. Update the application configuration file <PATH> element as follows:

<PATH>$(res.deployment.path)</PATH>

2. Create a new directory where you will archive the application's source files (you can name it, for
example, "helloworld_deploy").

3. Copy all the HelloWorld application source files from $GSTDIR/samples to the archive directory.

Note: If you are deploying resources (e.g. images or Web components) with your application,
these need to go in dedicated directories in the archive. For details about building an archive
with public resources, please see Quick start: Genero Archive on page 220.

4. Copy the updated application configuration file (e.g. HelloWorld.xcf) to the directory with the
application source files.

5. In the same directory, create a MANIFEST file (see The MANIFEST file on page 224) and save it with
the name "MANIFEST" (without extension).

<MANIFEST>
 <DESCRIPTION></DESCRIPTION>
 <APPLICATION xcf="HelloWorld.xcf"/>
</MANIFEST>

6. Create an archive (gar) file to deploy your application by performing the following steps:

a) From the command line, navigate to the directory that contains the application source files AND the
MANIFEST file.

b) Enter the command: fglgar --gar.

A Genero archive file (gar) is created in your current directory that has the same name as the
directory. See The fglgar command on page 267.

Deploy your application on your machine

About this task:

Once you have configured your application for deployment and created an archive for it in the steps above,
you can now deploy your application locally on your machine to test it as described in the next steps.

1. Deploy your (gar) file locally on your machine.

To deploy an archive named HelloWorld_deploy.gar:

gasadmin --deploy-archive HelloWorld_deploy

A subdirectory is created in your $(res.deployment.path) directory identified by the archive
name and the date and time deployed,, e.g. HelloWorld_deploy-20150423-130838. All the files
contained in archive (gar) are placed in the directory.

2. Enable your deployed application locally on your GAS.

GAS Quick Start Guide | 21

To list all deployed archives:

gasadmin --list-archives

To enable the archive, reference it by its archive name:

gasadmin --enable-archive HelloWorld_deploy

This enables the application by copying its configuration file (e.g. HelloWorld.xcf) to your
$(res.appdata.path) directory.

Run the deployed application

About this task:

Once you have deployed your application on your machine in the steps above, you can now run your
application locally to test it as described in the next steps.

1. Start the standalone dispatcher from the command line by typing httpdispatch.

2. In a browser enter the address of your deployed application, e.g. http://localhost:6394/ua/r/
HelloWorld
The Genero Application Server responds, and you should see your application displayed and be able to
interact with it. You have successfully deployed an application.

Quick start guide for web services applications
Quick start guides to help you configure, run, and deploy a web service application

• What is Web Service? on page 21
• Quick start guide to exploring Genero Web service (server side) on page 21
• Quick start guide to configuring a Web service on page 22
• Running a client application on Web service using GWC on page 23
• Quick start guide to deploying a Web service on page 24

What is Web Service?
Web service is an interface where data is exchanged between applications instead of users. You can add
web services to your applications to offer specific functionality to users.

A Web service provides data as a service over the HTTP protocol. Web services allow applications built
using different technologies to communicate with each other. Typically, web services use the SOAP or
REST protocols to define the communication and structure of messages, while XML or JSON are the
formats used for the data exchanged.

Examples of web services that you may be familiar with are those providing weather or news updates that
you can use on your site or application; you can see an example of this type of web service in Genero's
RSS demo application. See Genero demo applications on page 25. For more information on Web
service, refer to the Genero Business Development Language User Guide.

Quick start guide to exploring Genero Web service (server side)
You can explore the Web services that the GAS can deliver by launching demo applications that invoke
them.

The goal of this quick start is to provide you with some basic experience in using the GAS's GWS server to
start a web service and launch an application to use the service.

1. Start the standalone dispatcher from the command line, for details about starting httpdispatch see
Dispatcher: httpdispatch on page 263.
The application server (the httpdispatch dispatcher) is started.

GAS Quick Start Guide | 22

2. To show for example that the Web service called Calculator is working, you can retrieve its Web
Service Description Location (WSDL)

Enter the address http://localhost:6394/ws/r/demo/Calculator?WSDL in a browser

Note: The WSDL provides you with details such as the address location of the service. For
more information on WSDL, please see the Genero Business Development Language User
Guide.

<?xml version="1.0" encoding="UTF-8" ?>
-<wsdl:definitions targetNamespace="http://tempuri.org/" name="Calculator"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:soap12="http://
schemas.xmlsoap.org/wsdl/soap12/" xmlns:soap="http://schemas.xmlsoap.org/
wsdl/soap/" xmlns:fjs="http://tempuri.org/" xmlns:wsdl="http://
schemas.xmlsoap.org/wsdl/">
...
 <wsdl:service name="Calculator">
 <wsdl:port name="CalculatorPortType" binding="fjs:CalculatorBinding">
 <soap:address location="http://localhost:6394/ws/r/demo/Calculator"/>
 </wsdl:port>
 <wsdl:port name="CalculatorPortTypeSoap12"
 binding="fjs:CalculatorBindingSoap12">
 <soap12:address location="http://localhost:6394/ws/r/demo/Calculator"/
>
 </wsdl:port>
 </wsdl:service>
</wsdl:definitions>

3. To show for example that the Web service called Calculator is working, you can also start an
application that uses it by performing the following steps:

a) Now that the GWS has started the Web service, return to the Demos tab of your browser. In
the Topic tree, navigate to WebServices >> Calculator >> Client. Double-click on the demo
Calculator Soap 1.2.
The Web Services URL dialog appears. From the drop down menu select the URL stating http://
localhost:6394/ws/r/demo/Calculator.

b) In the Web Services URL dialog, click OK.
You should see a calculator screen and be able to interact with it.

Quick start guide to configuring a Web service
Before a client application can use your Web service, you need to create a configuration file with the details
the Genero Application Server needs to deliver the Web service to client applications.

The goal of this quick start is to provide you with some basic experience in configuring information needed
by the Genero Application Server to deliver Web services to client applications. You provide the necessary
details in a separate configuration file, see Configuring applications for Web service on page 101, very
similar to that used for applications.

For the purposes of this quick start, you can create a custom configuration file for the Calculator web
service located in your $FGLASDIR/demo/WebServices/calculator/ directory.

1. Create a new directory (e.g. you can name it "calculator_config") on your disk where you will store the
Calculator web service source files.

2. Copy all the files from $FGLASDIR/demo/WebServices/calculator/server to your new local
directory.

3. Create a minimal configuration file for your Calculator Web service. Provide a path to the location of
your compiled application files in the PATH element, and in the MODULE element specify the module
required to launch your Web service.

Use a text editor or if you are using Studio, go to File >> New >> Web/AS >> Application
Configuration (.xcf).

GAS Quick Start Guide | 23

Note: The Parent attribute reference to ws.default provides default configuration for all
applications of the Web service type (see GAS configuration file on page 289).

<?xml version="1.0" encoding="UTF-8" ?>
<APPLICATION Parent="ws.default" xmlns:xsi="http://www.w3.org/2001/
XMLSchema-instance" xsi:noNamespaceSchemaLocation="http://www.4js.com/ns/
gas/3.00/cfextws.xsd">
 <EXECUTION>
 <PATH><path_to_your_local_directory></PATH>
 <MODULE>CalculatorServer.42r</MODULE>
 </EXECUTION>
</APPLICATION>

4. Save your Web service configuration file, e.g. mycalculator.xcf, in the directory
$(res.path.services)

The default services directory is set by the res.path.services resource in the GAS configuration file on
page 289 file:

<RESOURCE Id="res.path.services" Source="INTERNAL">$(res.appdata.path)/
services</RESOURCE>

Running a client application on Web service using GWC
After configuring your Web service, you can test it to see if it is configured correctly by starting the Web
service and running a client application with it on the standalone GWS.

For this quick start, you must have Genero Business Development Language, and Genero Application
Server installed. Refer to the Genero Installation Guide for installation guidance.

For the purposes of this quick start, you can run the mycalculator web service you have already
configured, see Quick start guide to configuring a Web service on page 22 and use the calculator client
application available from the the Genero Application Server demos page, see Display demo applications
with the Genero Web Client on page 25, to interact with it.

The goal of this quick start is to provide you with some basic experience in starting a Web service and
running and testing a client application on the GWC front end, which you can use for testing your Web
services and client applications. For production, you will use the GAS.

1. Start the standalone dispatcher from the command line, for details about starting httpdispatch see
Dispatcher: httpdispatch on page 263.

2. To check that the mycalculator web service is reachable, you can retrieve its WSDL. To perform
this, enter the address of the Web service application, e.g. http://localhost:6394/ws/r/
mycalculator?WSDL, in a browser tab.

3. To interact with the mycalculator service and show it is working, open another browser tab and enter
the address of the demo applications, http://localhost:6394/ua/r/gwc-demo.

4. In the Topic tree, navigate to WebServices >> Calculator >> Client. Double-click on the demo
Calculator Soap 1.2.
The Web Services URL dialog appears. From the drop down menu select the option (Customize)
Click here to add your own URL and provide the URL to your configured web service, e.g. http://
localhost:6394/ws/r/mycalculator.

5. In the Web Services URL dialog, click OK.
You should see a calculator screen and be able to interact with it.

GAS Quick Start Guide | 24

Quick start guide to deploying a Web service
When you have your Web service application configured correctly and running on the GWS, you are now
ready to package the files required to deploy it as a Web service on the Genero Application Server.

The goal of this quick start is to provide you with some basic experience in deploying Web services. It
provides you with steps to configure and deploy a web service on your own machine that you can easily
adapt for deployment on GAS installation on other hosts.

For the purposes of this quick start, you can use the configuration files created for the Calculator Web
service , see Quick start guide to configuring a Web service on page 22.

1. Update the Web service configuration file, i.e.Calculator.xcf <PATH> element as follows:

<PATH>$(res.deployment.path)/server</PATH>

2. Create a new directory where you will archive the Web service source files (e.g. you can name it
"calculator_deploy") and in it create a sub-directory called "server" .

3. Copy the application source files to the archive directory as follows:

a) Copy all the files from $FGLASDIR/demo/WebServices/calculator/server to the server
subdirectory in your archive directory

b) Copy the updated Web service configuration file, Calculator.xcf, to the server subdirectory.

4. Create a MANIFEST file and save it with the name "MANIFEST" (without extension) to the directory that
contains the application source files. For more information see The MANIFEST file on page 224.

<MANIFEST>
 <DESCRIPTION>This archive contains one service</DESCRIPTION>
 <SERVICE xcf="Calculator.xcf" />
</MANIFEST>

5. Create an archive (gar) file to deploy your application with the following steps:

a) From the command line, navigate to the archive directory that contains the application source files
AND the MANIFEST file.

b) Enter the command: fglgar --gar.
A Genero archive (gar) file is created in your current directory that has the same name as the
directory.

Test the deployment on your standalone dispatcher.

6. To deploy your (gar) file locally on your GAS, unpack its files in your $(res.deployment.path)
deployment directory.

To deploy an archive named calculator_deploy.gar:

gasadmin --deploy-archive calculator_deploy.gar

A subdirectory is created in your $(res.deployment.path) directory identified by the archive
name and the date and time deployed, e.g. calculator_deploy-20150423-130838. All the files
contained in archive (gar) are placed in the directory.

7. To enable your deployed Web service locally on your GAS, perform the following steps:

To list all deployed archives:

gasadmin --list-archives

To enable the archive, reference it by its archive name:

gasadmin --enable-archive calculator_deploy

This enables the Web server by copying the configuration file to the $(res.path.services)
directory.

GAS Quick Start Guide | 25

To test the deployed Web service, start the Calculator server and run a client application that uses the
service by performing the following steps:

8. Start the standalone dispatcher from the command line, for details about starting httpdispatch see
Dispatcher: httpdispatch on page 263.

9. To start the Calculator web service, in a browser tab enter the address of the web service application,
e.g. http://localhost:6394/ws/r/Calculator

10.To interact with the Calculator service and show it is working, open another browser tab and enter the
address of the demo applications, http://localhost:6394/ua/r/gwc-demo.

11.In the Topic tree, navigate to WebServices >> Calculator >> Client. Double-click on the demo
Calculator Soap 1.2.
The Web Services URL dialog appears. From the drop down menu select the URL stating http://
localhost:6394/ws/r/demo/Calculator or select the option (Customize) Click here to add
your own URL and provide the url to your configured web service.

12.In the Web Services URL dialog, click OK.
You should see a calculator screen and be able to interact with it. You have successfully deployed a
Web service.

Genero demo applications
A variety of demo applications are provided to demonstrate Genero functionality.

• Find the demo applications on page 25
• Display demo applications with the Genero Web Client on page 25

Find the demo applications
A variety of demo applications have been provided to showcase Genero features.

The demo applications for the Genero Application Server are provided as part of the Genero Business
Development Language with Web Services installation.

Demos included with Genero Studio

We have demos that are bundled with Genero Studio. Access the demo applications from the Tutorials &
Samples tab.

From your file system, you can find these demos within My Genero Files/samples.

Demos bundled with Genero BDL

• $FGLDIR/demo provides the Genero Business Development Language demos.
• $FGLDIR/web_utilities provides additional materials for delegation services (SAML, SSO, tutorials

and more).

Display demo applications with the Genero Web Client
The Genero Application Server displays the demos application. The demos application is restricted to
localhost by default.

Accessing the demos page

The demos application is defined in the Genero Application Server configuration file with an Id of gwc-
demo

<!--Sample application for GWC-->
<APPLICATION Id="gwc-demo" Parent="defaultgwc">
 <EXECUTION>
 <PATH>$(res.path.fgldir.demo)</PATH>

GAS Quick Start Guide | 26

 <MODULE>demo.42r</MODULE>
 <ACCESS_CONTROL>
 <ALLOW_FROM>127.0.0.1</ALLOW_FROM>
 </ACCESS_CONTROL>
 </EXECUTION>
</APPLICATION>

Note:

To avoid having this application working on production sites, the default configuration restricts
access to the localhost (127.0.0.1). If you want to enable it for other client machines / IP addresses,
you must customize the ALLOW_FROM tag or remove the ACCESS_CONTROL tag.

To access the Genero Application Server gwc-demo application, you can use the Genero Web Client user
interface, see User interface: home page on page 180 or you can enter this URL:

http://localhost:6394/demos.html

From this page, you can click on the Genero demos link to open the demos application. The Genero
Application Server must be running (standalone) or must be integrated with a Web server and able to start
the required proxies and DVMs.

The demos application can also be accessed directly

You can access the demos application directly by entering the following URL: http://
localhost:6394/ua/r/gwc-demo

GAS Basics | 27

GAS Basics

These topics provide an architecture overview, highlight the main features of the GAS, and provide an
insight into how the GAS delivers applications.

• Architecture of the Genero Application Server on page 27
• Components of the Genero Application Server on page 35
• What is auto logout? on page 37
• What is delegation? on page 37
• What is Single sign-on (SSO)? on page 37
• GAS directories on page 38
• Application environment on page 42
• Internationalization on page 43
• Application Web Address on page 49

Architecture of the Genero Application Server
For an administrator, it is important to understand the different architectures available for the Genero
Application Server, and the implications of each architecture choice.

• Architecture overview on page 27
• Reliability inherent in the architecture on page 29
• Development architecture (standalone GAS) on page 29
• Deployment (production) architecture on page 29
• Services Pool (GWS Only) on page 31

Architecture overview
The architecture of the Genero Application Server uses dispatchers and proxies for optimal reliability,
performance and integration in web servers.

The role of the dispatcher is to forward each new incoming request to the appropriate proxy (, uaproxy
or gwsproxy). The dispatcher handles the GAS configuration and keeps a persistent session table of all
proxies it has started. In case of failure, the web server restarts the dispatcher, which uses the session
table to reconnect to the proxies (and therefore to the applications).

GAS Basics | 28

Figure 6: GAS with VMProxy Architecture

Components

• Web Server
• GAS Dispatchers
• VMProxies
• DVMs
• Database Server

Note: The Genero Application Server and the Genero BDL runtime should be installed on the
same machine.

How it works: the high-level overview

1. In order to request an application, the end-user enters a URI that specifies which application to launch
(based upon the GAS configuration file and application configuration files). For example, the alias
to serve up the GWC demo application via a web server would be http://mywebserver/gas/
ua/r/gwc-demo. In development environments, it is possible to exclude the Web Server. For more
information, see Architecture for Development (Standalone GAS).

2. The Web Server routes the request to the GAS dispatcher. GAS dispatchers refer to the connectors in
charge of dispatching a GAS request to the appropriate proxy. There are different GAS dispatchers,
each designed for a specific Web Server. For example, the fastcgidispatch.exe is for use with
FASTCGI-compliant Web Servers such as Apache, while the isapidispatch.dll is for the Information
Internet Services (IIS) Web Server.

3. The GAS Dispatcher starts the VMProxy to handle the request. Each session requesting an application
results in a VMProxy starting up; as a result, you will likely see multiple proxies running concurrently.
The type of proxy started (uaproxy or gwsproxy) will depend on the application being requested. The
dispatcher will route to the correct proxy. The dispatcher tracks the session and proxy information
in a persistent session table. The presence of this information in the session table ensures that if a
dispatcher is killed or restarted, the information needed to return to the proxy and running application
is still present. For more information on the responsibilities of the GAS dispatcher, see GAS Dispatcher
responsibilities.

GAS Basics | 29

4. The VMProxy then launches the DVM for the requested application. It handles any child DVMs, keeps
the DVM connections up, and handles the requests and responses appropriate for the type of proxy.
For more information of the VMProxy responsibilities, see VMProxy responsibilities.

5. The DVM interacts with the database server, as needed.

Reliability inherent in the architecture
The architecture of the Genero Application Server supports reliability.

• If an application is running, and the dispatcher is killed, the session information is saved. When the
dispatcher restarts, the application continues from where it left off.

• With the one-to-one relationship between a VMProxy and a running application, you can stop or kill
an application's VMProxy without affecting any other applications that are running concurrently. If
two applications are running and you kill the VMProxy for one application, the other application is not
affected.

• The architecture provides capabilities for tuning your system.

Development architecture (standalone GAS)
Use the standalone GAS when developing your applications. The simplified architecture of the standalone
GAS removes the Web server from the environment, allowing the developer to concentrate on the
application. The standalone GAS is for development only, provided to simplify your development setup and
configuration.

The httpdispatch process allows you to connect directly to a GAS dispatcher without involving a Web
server. This direct connection is provided to simplify the setup of development environments, and is the
typical connection method used during development.

Figure 7: Architecture for stand-alone GAS

To use the standalone GAS, simply start the httpdispatch process. On Windows™ machines, this can be
started from the Start menu. On Linux®, you start the process from the command line.

Once the process is started, connect by providing the machine name and port number. These examples
assume you are connecting from the local machine and have not changed the default port number):

• http://localhost:6394/demos.html opens the demo page.
• http://localhost:6394/ua/r/gwc-demo opens the GWC demo application.

Important: The standalone GAS is for development only, provided to simplify your development
setup and configuration. For deployment and production systems, you must include a Web server.

Deployment (production) architecture
For deployment and production systems, you must include a Web server.

A Web server:

• Enables load balancing.
• Handles HTTPS.
• Handles authentication. You can use the Web server to handle authentication. Alternatively, you can

use a single sign-on solution.

GAS Basics | 30

GAS deployment example 1: all-in-one machine

You can have the Genero Application Server on the same machine as the Web server.

GAS deployment example 2: Database on separate server

GAS Basics | 31

GAS deployment example 3: Behind frontal web server

If you already have a Web server (server A) on the internet (a non-protected area / inside a DMZ) and do
not want to have Genero on this server, you will need to add another Web server (shown in Server 1 in
the drawing) to manage the Genero Application Server. This second Web server would sit in the protected
network. The frontal Web server would forward application requests to the internal web server on server 1.

Production deployment should be supervised by a Web specialist to avoid any security issues.

Services Pool (GWS Only)
When you define a Web service application, you specify execution parameters that determine the number
of Dynamic Virtual Machines (DVMs) that can be available to service a request for that Web service. These
parameters are defined in the Application Server configuration file.

Why do we need Services Pool for GWS? The main reason is to due to the way the DVM is unable to
support more than one application at a time, see Reliability inherent in the architecture on page 29. The
GWS proxy needs to launch new DVM (fglrun process) for each request on the Web server. If traffic to
a Web server was to become very high with, for example, hundreds of requests at any period, this could
potentially result in slow response time or even overloading of the server.

To avoid unnecessary use of resources, therefore, and to respond as fast as possible to client requests,
the GWS proxy manages DVM processes in a pool. From the pool it can release inactive DVMs or launch
new ones when required; up to the maximum number of DVM processes specified for the application.

This topic details the configuration of the pool element of a Web service application and shows some
examples of how the GWS proxy manages the DVM pool.

Defining the Pool Element of a Web service Application

When you define a Web service application, the EXECUTION element sets the runtime environment for
that application by specifying the parameters for executing the Web service application. This application
configuration can either reference a predefined SERVICE_APPLICATION_EXECUTION_COMPONENT
(inheriting the runtime environment settings defined for that component) or the individual execution
elements can be explicitly set for the application.

Within the EXECUTION element, the POOL element sets the limitations regarding the number of DVMs that
are attached to a Web service.

GAS Basics | 32

• The START element specifies the number of Virtual Machines to start when the Genero Application
Server starts.

• The MIN_AVAILABLE element specifies the minimum number of Virtual Machines to have alive while
the Genero Application Server is running.

• The MAX_AVAILABLE element specifies the maximum number of Virtual Machines to have alive while
the Genero Application Server is running.

• The MAX_REQUESTS_PER_DVM element specifies the maximum number of requests a DVM can handle
before being stopped by the pool manager.

Releasing DVMs not Actively Processing Requests

Genero Web Service DVMs are not shutdown immediately after they stop processing requests. Instead
DVM shutdown is optimized by the gwsproxy from request statistics and frequency of use that best
determined the use of resources at runtime. The gwsproxy calculates this based on a combination of the
following factors:

Time to Start a New DVM The gwsproxy waits at least the time it takes to
start a new DVM before deciding if a DVM can be
shutdown.

Three Times the Last Request Execution Time If their is only one request, a DVM shutdown
takes place after waiting three times the request
execution time from when the last request took
place.

Three Times the Average Request Frequency If there is more than one request, a DVM is
shutdown after waiting three times the average
request frequency. For example, the GWS proxy
calculates the elapsed time since it received the last
new incoming request. If this is three times greater
than the average frequency of new requests it has
been receiving, it stops one inactive DVM.

The time to shutdown a DVM will therefore vary depending on how great the Web service's request
load has been for the previous period but eventually DVMs are released to reach the value specified by
MIN_AVAILABLE because the gwsproxy calculation is also bound by a minimum (one second) and a
maximum (ten minutes) limit.

Minimum (one second) If time to shutdown is less than one second, the
gwsproxy waits a full one second before shutting
down the DVM.

Maximum (ten minutes) If time to shutdown is more than ten minutes, the
gwsproxy waits no longer than ten minutes before
shutting down a DVM.

Example 1: One GWSProxy Starts three DVMs

Assume the following values have been specified for a Web service application:

<POOL>
 <START>3</START>
 <MIN_AVAILABLE>2</MIN_AVAILABLE>
 <MAX_AVAILABLE>5</MAX_AVAILABLE>
</POOL>

When the Genero Application Server first starts, the START element defines how many DVMs to start for a
particular Web service. There is one GWSProxy in charge of the pool of DVMs for the Web service. For our
example, this means that one GWSProxy will launch three DVMs.

GAS Basics | 33

Example 2: GWSProxy Releases Inactive DVMs

While the START element defines the number of DVMs to start initially, DVMs that are not actively
processing requests can be released based on GAS statistics. For example, the GWS proxy calculates the
elapsed time since it received the last new incoming request. If this is three times greater than the average
frequency of new requests it has been receiving, it stops one inactive DVM. See Releasing DVMs not
Actively Processing Requests on page 32.

Continuing with our example, if all of the DVMs are not actively processing requests, then one DVM will
eventually be released, bringing the total number of DVMs to the MIN_AVAILABLE amount of two.

Example 3: GWSProxy Launches new DVMs when Required up to MAX_AVAILABLE

As requests come in, the GWS proxy determines whether there is a need to start up new DVMs. For the
number of pending requests in the queue, the GWS proxy computes the average request execution time
against the time to start a DVM. If dispatching all pending requests over the active DVMs takes less time
than starting a new DVM, no new DVM will be started. In other words, a new DVM will only be started if
it will help to decrease the waiting time of all pending requests. At most, MAX_AVAILABLE DVMs can be
started.

Continuing with our example, up to five DVMs can be launched to handle requests.

GAS Basics | 34

Example 4: GWSProxy Managing a Connection Queue

What happens when there are MAX_AVAILABLE DVMs actively processing requests, and a new request
comes in? The new request is placed in a connection queue, waiting for a DVM to become available. The
new requests could (in theory) be waiting indefinitely, except:

• There is the option of a timeout in the Web server to handle infinite wait.
• Any Web service client can define its own timeout limit. If a client is willing to wait indefinitely for a Web

service response, it is permitted.

Continuing with our example, this means that if all five DVMs are actively processing requests, and a sixth
requests comes in, that request is placed in the connection queue until a DVM is available to process the
request, or a timeout is reached based on settings in either the Web server or the Web service client.

GAS Basics | 35

Components of the Genero Application Server
UI or Web service applications, and where they are launched from, have specific requirements of the GAS.
The GAS performs its function by routing requests to the required process or component so as to deliver
applications correctly.

• What is a dispatcher? on page 35
• What is a proxy? on page 36
• What is a DVM? on page 37

What is a dispatcher?
The Genero Application Server uses dispatchers specific to the web server to start proxies that handle
application requests. Dispatchers play a vital role in GAS configuration integration with the web server and
provide performance reliability by handling reconnection to the application in case of failure.

When an end-user enters a URI that specifies an application to launch, the Web Server routes the request
to the GAS dispatcher based upon the GAS configuration file and the application configuration files.

Types of GAS Dispatchers

There are different GAS dispatchers, each designed for a specific Web Server:

• httpdispatch: standalone dispatcher for development only, provided to simplify your development
setup and configuration through a direct connection without a Web Server, see Dispatcher: httpdispatch
on page 263

• isapidispatch: dispatcher for Internet Information Services (IIS)
• fastcgidispatch: dispatcher for Fast CGI compliant web servers like Apache, see Dispatcher:

fastcgidispatch on page 265
• java-j2eedispatch: dispatcher for Java™ Server (like JBoss, Tomcat or WebSphere®) , see

Dispatcher: java-j2eedispatch on page 266

Each dispatcher performs the same role of forwarding the request to the appropriate proxy, and the proxy
in turn processes the request by launching the DVM.

GAS Dispatcher and VMProxy

The GAS dispatcher starts a VMProxy to handle the application request. Each session requesting an
application results in a VMProxy starting up, so several VMProxies may be running concurrently. The
dispatcher tracks the session and proxy information in a persistent session table and routes requests to the
correct proxy.

Note: The presence of this information in the session table ensures that if a dispatcher is killed or
restarted, the information needed to return to the proxy and running application is still present.

GAS Dispatcher responsibilities

The GAS Dispatcher, in summary, is responsible for the following:

• Launching VMProxies
• Handling and validating the application or service configuration
• Providing the application configuration to the VMProxy via environment variables
• Handling a persistent and shared session table that manages the forwarding of application requests to

the corresponding VMProxies
• Stopping the VMProxies when the Web Server shuts down
• Handling static file requests

GAS Basics | 36

What is a proxy?
The Genero Application Server launches VMProxies specific to the application type. The VMProxy starts
the Dynamic Virtual Machines (DVM) for the application and handles the connection, requests and
responses appropriate for the type of proxy.

Types of VMProxies

There are different types of GAS VMProxies, each designed for a specific type of application:

• uaproxy: a universal proxy for applications using GDC and GWC-JS interfaces, see Proxy: uaproxy on
page 266

• gwsproxy: proxy for Genero Web Service (GWS) type applications, see Proxy: gwsproxy on page
267

• html5proxy: proxy for the legacy Genero Web Client (GWC) type applications (now deprecated), see
Proxy: html5proxy on page 267

VMProxy responsiblities

In general, a VMProxy is responsible for the following:

• Launching the DVM (see What is a DVM? on page 37)
• Handling child DVMs
• Maintaining the DVM connections

Additional responsibilities depend on the VMProxy type:

• The uaproxy is also responsible for the following:

• Handling HTTP client-side front end (CSF) requests (see USER_AGENT on page 355)
• Generating JavaScript responses
• Handling sessions when the client is GDC or GWC-JS
• Generating the HTML page when the client is GWC-JS

• The gwsproxy is also responsible for the following:

• Handling the GWS DVM pool (see Services Pool (GWS Only) on page 31)
• Handling HTTP Web Services requests
• Forwarding HTTP Web Services responses (SOAP, REST, XML over HTTP)

GAS Basics | 37

What is a DVM?
The Dynamic Virtual Machine (DVM) is the software or runtime system (fglrun) where applications'
business logic is processed. The DVM executes BDL code to retrieve data, it responds to incoming service
requests, and dispatches output to the service.

What is auto logout?
The GAS supports a timeout feature called AUTO_LOGOUT which can be configured to display a log out
page after a specified time of user inactivity on a Genero Web Client (GWC) application is detected.

What is delegation?
With the delegation mechanism, the GAS is able to delegate the start of a web application or a web service
to another Genero REST service in order to perform some controls before granting access and starting the
application.

When you configure delegation, it introduces an additional step in the Genero Application Server workflow
in order to, for example, perform some controls such as authentication, authorization, monitoring, or
whatever is required before the requested application or service is started.

Note: Delegation is required if you want to enable Single-sign-on (SSO) authentication for remote
access to applications, see What is Single sign-on (SSO)? on page 37).

What is Single sign-on (SSO)?
Single sign-on allows a user to enter one name and password in order to access multiple applications.

For more information on Single Sign-on and how to implement it see How to implement Single sign-on
(SSO) on page 114.

Genero Application Server supports various kinds of Single sign-on.

OpenID Connect

OpenID Connect is the latest evolution of the OpenID authentication technology used for Web applications
that handle many users. OpenID Connect is intended for public Web applications. You have to be
registered on one of the trusted identity providers so that users can be authenticated with Single sign-on on
different web sites. You can exchange custom information (attributes) on the identity.

See OpenID Connect SSO on page 115.

OpenID

OpenID is used for standard Web applications that handle many users. OpenID is intended for public Web
applications. A user has the same identifier that he can use on different web sites. Information maintained
on the identity of the user is limited.

See OpenID SSO on page 120.

SAML

SAML is used for standard Web applications that handle many users. SAML is intended for private or
intranet Web applications. You have to be referenced on one of the trusted identity providers. You can
exchange custom information (attributes) on the identity.

See SAML SSO on page 128

GAS Basics | 38

GAS directories
This section describes the relative path mechanism of the GAS installation and application data directories,
and provides you with a lookup guide to file locations you need to know about when working with GAS.

The two main directories of the GAS are:

Installation directory Where the installation files are located (identified
by the environment variable $FGLASDIR and set
by the resource $(res.path.as) in the GAS
configuration file, see GAS configuration file on
page 289).

Application directory Where the application data files managed by
the GAS are located. The "appdata" directory,
as it is commonly known, is set by the resource
$(res.appdata.path) in the GAS configuration file.

GAS has the following prerequisites for application
data:

• The appdata directory and all of the
$FGLIMAGEPATH (search paths for VM
server image files) must be located on
the same filesystem. For more details on
$FGLIMAGEPATH, see the Genero Business
Development Language User Guide.

• The DVM uses hard links to avoid file copies. As
hard links are direct pointers to data on the disk,
they can not span filesystems.

Note: It is not recommended to change the
location of appdata.

If you need to customized the application file
directory location due to, for example, disk space
constraints, it is recommended that you move the
entire directory hierarchy starting from the root
directory at appdata and ensure that all appdata
files are relocated on the same filesystem.

Caution: A partition A and a partition B are
considered two distinct filesystems even if
stored on the same physical device.

To implement a location change on the GAS for
appdata, there are two recommended options:

• You can reset the resource
$(res.appdata.path) in the GAS
configuration file with an absolute path
reference to the new location. The example
shows appdata located in the path of the GAS
installation resource, $(res.path.as):

<RESOURCE Id="res.appdata.path"
 Source="INTERNAL">$(res.path.as)/
appdata</RESOURCE>

• Or alternatively, at the command line you
can override the GAS configuration file

GAS Basics | 39

$(res.appdata.path) resource with
dispatcher option -E. For more information
on using dispatcher options, see the relevant
dispatcher page: Dispatcher: httpdispatch on
page 263,Dispatcher: fastcgidispatch on page
265,Dispatcher: java-j2eedispatch on page
266

Table 4: $FGLASDIR directories and files

Directory File or Details Description

$FGLASDIR GAS installation directory.

On UNIX™: envas

On Windows™: envas.bat

Script for setting environment
variables.

$FGLASDIR/bin GAS dispatchers and VMProxy
executables.

$FGLASDIR/etc as.xcf Default GAS configuration file.

$FGLASDIR/ISAPI isapidispatch.ini ISAPI extension configuration file.

$FGLASDIR/lib Library files.

$FGLASDIR/license *.txt License agreement text files.

$FGLASDIR/pic Default image directory.

$FGLASDIR/release Licensing and release notes.

$FGLASDIR/tpl Project file for Genero
Web Client for JavaScript
(GWC-JS) application
customization,
e.g. fjs-gbc-xxx-
build123456789-
project.zip. See Configuring
your Environment on page 198.

$FGLASDIR/tpl/common

$FGLASDIR/tpl/setHTML5

$FGLASDIR/tpl/shortcut

Contain template and snippet
files for the rendering and display
of HTML5 v1 type application
objects in the UI. GWC-HTML5 is
now deprecated.

$FGLASDIR/war Java dispatcher directory.

$FGLASDIR/web demos.html Root directory for direct
communication to the application
server. The demos.html file
provides access to Demos
applications.

$FGLASDIR/web/gwc-js bootstrap.html Bootstrap mechanism for
rendering default GWC-JS type
applications. See Starting GWC-
JS applications on page 188.
Root directory to files to be
used by all GWC-JS clients -

GAS Basics | 40

Directory File or Details Description

images, cascading style sheets,
JavaScripts, etc.

Table 5: appdata directories and files

Directory File or Details Description

appdata On UNIX™: $FGLASDIR/
appdata

On Windows™: C:
\ProgramData\vendor\gas
\gas_version

GAS application data directory.

appdata/app .xcf Default application group; the
default location for applications
configuration files.

appdata/deployment Within the deployment
directory, a different directory is
created for each application.

Applications deployed with
Genero Archive.

appdata/public Caution: Public images
should not be placed
in the /public root
directory as the fglrun
does not look for images
to be served via the GAS
there; searches start in
subdirectory paths, i.e.
public/common and
public/deployment.

A public resource path for all
applications.

appdata/public/common Default PUBLIC_IMAGEPATH
directory, a resource for common
images used by applications.

appdata/public/deployment Within the /public/
deployment directory, a
different directory is created for
each application.

Public images deployed with
applications by deployment
framework (fglgar), see
Application deployment overview
on page 218

appdata/
log/dispatcher_name/date

appdata/log/gasadmin/date

Within the log directory, a
different directory is created
for each dispatcher. The
dispatcher_name refers to the
dispatcher:

• httpdispatch (for the
standalone GAS)

• isapidispatch (for the
ISAPI dispatcher)

• j2eedispatch (for the
Java™ dispatcher)

Log directories for dispatchers;
the gasadmin directory is the log
directory for gasadmin actions.

Note: This directory
is created with write
permissions for users
that are in the same
group as the user who
installed the Genero
Application Server. If
the user that starts the
Genero Application
Server (for example

GAS Basics | 41

Directory File or Details Description

The logs for a given day are
stored in a directory named for
that date.

apache) is not that group,
then you need to grant
write permission to that
user.

Note: DVM logs are
redirected to files when
DAILYFILE is set for the
log output type.

appdata/
session/dispatcher_name

Within the session directory,
a different directory is created
for each dispatcher. The
dispatcher_name refers to the
dispatcher:

• httpdispatch (for the
standalone GAS)

• isapidispatch (for the
ISAPI dispatcher)

• j2eedispatch (for the
Java™ dispatcher)

Caution: The session
directory should only be
used to store session
files, which are required
to reconnect dispatchers
to proxies. It should not
contain other files or
subdirectories.

Persistent session table
information.

Note: This directory
is created with write
permissions for users
that are in the same
group as the user who
installed the Genero
Application Server. If
the user that starts the
Genero Application
Server (for example
apache) is not that group,
then you need to grant
write permission to that
user.

Note: appdata/
session/gasadmin
may exist, but it is not
used by gasadmin.

appdata/
tmp/dispatcher_name

appdata/tmp/gasadmin

Within the tmp directory, a
different directory is created
for each dispatcher. The
dispatcher_name refers to the
dispatcher:

• httpdispatch (for the
standalone GAS)

• isapidispatch (for the
ISAPI dispatcher)

• j2eedispatch (for the
Java™ dispatcher)

Default file transfer directory. The
gasadmin directory is for the
result of gasadmin actions, such
as exploring the configuration
(xcf) files.

Note: This directory
is created with write
permissions for users
that are in the same
group as the user who
installed the Genero
Application Server. If
the user that starts the
Genero Application
Server (for example
apache) is not that group,
then you need to grant
write permission to that
user.

appdata/services *.xcf Default services group; the
default place for web services
configuration files.

GAS Basics | 42

Application environment
When the Genero Application Server starts an application process, it sets environment variables from
various sources.

The application process can be started as a DVM (fglrun), as an intermediate script or whatever is
specified in the application configuration file.

Environment inheritance

Environment variable settings are inherited by the DVM in the following order:

1. The environment of the dispatcher that starts the proxy.
2. The environment variables defined in the application configuration file (ENVIRONMENT_VARIABLE

elements).
3. Additionally, some specific environment variables can be defined by the front-end; whether this is

Genero Desktop Client, Genero Web Client, (see How GDC and GWC handle environment variables on
page 42) or is a Genero Web Service (see How GWS handle HTTP request headers on page 42)
or is a Genero Web Service using delegation, see How GWS with delegation handles HTTP request
headers on page 42.

How GDC and GWC handle environment variables

With Genero Desktop Client and Genero Web Client applications, variables can be set in the HTTP request
that starts the application. All HTTP request headers will be transformed into environment variables, by
adding the FGL_WEBSERVER_HTTP_ prefix.

Note: Dash (or minus) (-) characters are replaced by underscore (_) characters. For example, the
header "User-Agent" will define the FGL_WEBSERVER_HTTP_USER_AGENT environment variable.

The following exceptions are supported for backward compatibility:

• FGL_WEBSERVER_REMOTE_USER holds the REMOTE_USER value provided by the Web Server.
• FGL_WEBSERVER_REMOTE_ADDR holds the REMOTE_ADDR value provided by the Web Server.

How GWS handle HTTP request headers

With Genero Web Services applications, environment variables cannot be used to pass HTTP request
headers. Low-level APIs are used to retrieve values from the HTTP request headers. The header name
has the following form:

X-FourJs-Environment-Parameter-name

Where name is the header name. To get the header value, you must use the
com.HTTPRequest.getRequestHeader() method. For example:

LET param = req.getRequestHeader("X-FourJs-Environment-Parameter-
MyHeaderName")

The server name can be found in X-FourJs-Environment-Variable-SERVER_NAME.

Note: For more information on com.HTTPRequest methods, please see the Genero Business
Development Language User Guide.

How GWS with delegation handles HTTP request headers

When delegation is used in Genero Web Services, the X-FourJs-Environment-
Parameter-<parameter_name> is used by the delegate mechanism to pass any additional parameters

GAS Basics | 43

defined in the as.xcf file of the application to the delegate service. For instance, in the following xcf
delegation setting example using Security Assertion Markup Language (SAML) service :

<DELEGATE service="services/SAMLServiceProvider">
 <IDFORMAT>ABC</IDFORMAT>
 <AUTHCONTEXT>123</AUTHCONTEXT>
</DELEGATE>

The parameters IDFORMAT and AUTHCONTEXT are free, and can be passed to the delegate service as
HTTP headers in the following form:

X-FourJs-Environment-Parameter-IDFORMAT : ABC

X-FourJs-Environment-Parameter-AUTHCONTEXT : 123

Internationalization
How the Genero Application Server handles international applications.

• Encoding Architecture on page 43
• Charsets Configuration on page 44
• Translations for GWC-JS on page 47

Note: You can customize rendering engine output encoding as well as preferred input encoding.
You are also able to use User Agent-preferred encodings.

Encoding Architecture
International applications use one or more character sets to support different languages.

Character set encodings are used in different areas such as configuration files, templates, operating
system interaction and user applications.

This diagram summarizes the GAS character set encoding architecture:

Figure 8: GAS Encoding Architecture

GAS Basics | 44

The GAS uses:

• XML File Encoding
• Template Charset
• Operating system locale

The DVM uses:

• Operating system locale

Charsets Configuration
Charsets can be defined in four places.

1. With environment locales when launching a DVM.
2. In HTML charset in template.
3. Inside XML files used by the GAS.
4. With environment locales when launching the GAS.

• DVM Locale on page 44
• HTML charset on page 45
• XML Encoding on page 45
• GAS System Encoding on page 46
• Default Encoding on page 47

DVM Locale
If application files (such as.4gl, .per, .4st files) contain characters in a specific encoding, the DVM has to
run in this encoding.

Setting a DVM locale is described in the Genero Business Development Language User Guide, chapter
"Localization".

On UNIX, the DVM locale is defined by the LANG or LC_ALL environment variables, which can be
specified in the GAS executing environment, or with the ENVIRONMENT_VARIABLE on page 314 child
of a WEB_APPLICATION_EXECUTION_COMPONENT on page 356 element, inside the as.xcf file.

Example in as.xcf defining a KOI8-R (Russian) charset for the DVM:

<?xml version="1.0" encoding="UTF-8"?>
...
 <COMPONENT_LIST>
 <WEB_APPLICATION_EXECUTION_COMPONENT Id="cpn.wa.execution.local">
 <ENVIRONMENT_VARIABLE Id="FGLDIR">$(res.fgldir)</
ENVIRONMENT_VARIABLE>
 <ENVIRONMENT_VARIABLE Id="FGLGUI">$(res.fglgui)</
ENVIRONMENT_VARIABLE>
 <ENVIRONMENT_VARIABLE Id="PATH">$(res.path)</ENVIRONMENT_VARIABLE>
 ...
 <ENVIRONMENT_VARIABLE Id="LC_ALL">ru_RU.KIO8-R</ENVIRONMENT_VARIABLE>
 <DVM>$(res.dvm.wa)</DVM>
 </EXECUTION_COMPONENT>
...
</COMPONENT_LIST>

Such WEB_APPLICATION_EXECUTION_COMPONENT definition can then be referenced by an
APPLICATION (for an application) on page 301 element using the <EXECUTION
Using="identifier"> tag.

Important: Keep in mind that the character set used by the server at runtime (during program
execution) must match the character set used to write programs. So source files must be created/
edited in the encoding of the server where fglcomp and fglrun will be executed.

GAS Basics | 45

HTML charset
In order to correctly handle application data in the User Agent, the HTML page charset needs to be set.

As the Genero Application Server (GAS) generates HTML5 pages from templates, and uses the
$FGLASDIR/web/gwc-js/bootstrap.html (GWC-JS) file, the charset is defined in the prolog or
metadata of these files. The charset defined here takes precedence over system locale settings.

Example

The code example comes from the bootstrap.html using the UTF-8 encoding:

<!DOCTYPE html>

<!--
 FOURJS_START_COPYRIGHT(D,2014)
 Property of Four Js*
 (c) Copyright Four Js 2014, 2015. All Rights Reserved.
 * Trademark of Four Js Development Tools Europe Ltd
 in the United States and elsewhere

 This file can be modified by licensees according to the
 product manual.
 FOURJS_END_COPYRIGHT
 -->

<html>

<head>
 <meta charset="utf-8">
 <title>Genero Browser Client</title>

 <meta http-equiv="X-UA-Compatible" content="IE=edge">
 <meta name="viewport" content="width=device-width, initial-scale=1">

 ...
 };
</script>
</head>
...

XML Encoding
Configuration for the Genero Application Server involves XML files (with xcf file extension).

These XML files can include international characters and multiple languages so the UNICODE standard
UTF-8 is typically used. How to define an encoding in an XML file is described in Extensible Markup
Language - Character Encoding. The charset defined in XML files takes precedence over system locale
settings.

Example in as.xcf with UTF-8 (UNICODE) character set:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<!-- comments -->
<CONFIGURATION ...>
...

Example in as.xcf with ISO-8858-6 (Arabic) character set:

<?xml version="1.0" encoding="ISO-8859-6" standalone="yes"?>
<!-- comments -->
<CONFIGURATION ...>

http://www.w3.org/TR/2004/REC-xml-20040204/#charencoding
http://www.w3.org/TR/2004/REC-xml-20040204/#charencoding

GAS Basics | 46

...

GAS System Encoding
System character encoding matters when Genero Application Server interacts with the operating system.

For example, the Genero Application Server:

• Writes log files.
• Opens files defined in the Genero Application Server configuration file.
• Reads arguments from the command line.

In these cases and more, the Genero Application Server uses the character encoding set by the operating
system. In the UNIX™operating system encoding is defined via environment variables LANG or LC_ALL.
For more information see the "Localization" topics in Genero Business Development Language User Guide
or see The Single UNIX - Specification Version 2 - Locale.

In the Windows™ operating system typically the GAS defaults to the system locale as defined in the
language and regional settings. There should be no need to set the LANG variable, except your application
uses a different character set to the Windows system locale.

Displaying locale settings

Locales supported by a UNIX operating system can be displayed with the locale -a command.

On Windows™ platforms, code pages that define the encoding can be displayed in the console window
with the chcp command.

Setting system encoding

By default GAS uses the UTF-8 character set as an Unicode standard to support international characters
and multiple languages. If your operating system doesn't support the desired character encoding, or if you
need a specific encoding, you can set the system encoding with the LANG variable in Windows or in UNIX
systems with either the LANG or LC_ALL environment variables. For example, to set encoding to UTF-8 on
a Windows platform:

C:\ set LANG=.fglutf8

For example setting encoding on UNIX to US English:

$ LC_ALL=en_US.iso88591; export LC_ALL

How GAS does character set conversion

The GAS software takes care of character set conversions:

• For xcf files, it does the conversion based on what the XML prolog specifies as charset to the GAS
locale, for example:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

• For templates files (GWC-JS), the charset in the metadata of $FGLASDIR/web/gwc-js/
bootstrap.html file is used.

• For the front end clients such as GWC-JS that use UTF-8 encoding, the DVM (V3) does the conversion
in the DVM locale, see DVM Locale on page 44.

Note: Operating system character sets may have different names across operating systems. To
unify character set names in the application server environment, the GAS manages a character set
encoding name conversion to map the operating system character encoding name to a canonical
name:

http://www.opengroup.org/onlinepubs/007908799/xbd/locale.html

GAS Basics | 47

• A charset.alias file is provided. This file is located in the $FGLASDIR/etc directory of the
GAS.

Default Encoding
By default, GAS uses UTF-8 encoding for handling all Unicode characters.

See Unicode characters for more information.

Translations for GWC-JS
Add your custom translation texts in the locale file and reference them in the HTML code in the widget
template file.

The Genero Web Client for JavaScript (GWC-JS) front-end client provides support for language selection
based on locale. This topic details how you can use translation texts to provide localization mainly to text in
the following GWC-JS front-end components:

• Welcome Page
• Ending Page
• Calendar Widget
• Contextual Menu For Tables
• File Transfer Dialog

You will find the locale files in your <project_dir>/src/locales/xx-YY.json, where "xx-YY"
follows the standard localization code used for languages, for example, en-US, de-DE, fr-FR, etc.

Excerpt from US English Locale File

Locale files are json files which have a typical json structure of keys and values separated by colons, ":".
A sample from the US English locale file is shown.

{
 "gwc": {
 "lngName" : "English",
 "app": {
 […]
 "waiting": "Waiting for connection",
 "restart": "Restart the same application",
 "run": "Run",
[…]
}

Retrieving Localized Texts

The GWC-JS is able to retrieve the required translated text by referencing the HTML language attribute
data-i18n in the widget template files.

data-i18n="key"

Where "key" is the localization key in the locale file.

In the Widget file
This sample from the <project_dir>/src/js/base/widget/widgets/application/
SessionEndWidget.tpl.html shows default text for the ending page component.

Restart the same application</
span>

http://www.unicode.org/charts/

GAS Basics | 48

GWC-JS will replace the text "Restart the same application" within the element with that
referenced by the gwc.app.restart key in the locale file. If the key is not found, the GWC-JS falls back to the
default locale, "en-US". If the entry is still not found, then the translation value will be the key name.

In the JavaScript

Internationalization is done by the GWC-JS JavaScript function i18n.t. This function takes the
localization key as argument and returns the translation text.

For example retrieving the value of the key "gwc.app.restart":

i18n.t('gwc.app.restart')

Selecting a Language

By default, the GWC-JS language defaults to the browser language but the user can change the interface
language from within the user interface of an application open in a browser window by performing the
following steps:

• Selecting the Settings menu from the developer toolbar.

Figure 9: GWC-JS User Interface Menus
• Choosing the language from the Interface language list in the Stored Settings configuration window

that pops up.

GAS Basics | 49

Figure 10: Stored Settings configuration Window

The name of the language, like "English", that you see displayed is defined in the locale file by the entry
gwc.lngName, for example, as in the en-US.json:

{
 "gwc": {
 "lngName" : "English",

[…]
}

Application Web Address
To access an application, you specify the necessary information in the browser's address bar by entering
in the appropriate application URI.

Note: For details on the URI for integrated application servers, see:

• GAS ISAPI Installation / Web Server Configuration
• GAS FastCGI Installation / Web Server Configuration

• URIs acknowledged by the GAS on page 49
• URI Examples on page 55

URIs acknowledged by the GAS
The URIs acknowledged by the Genero Application Server fall into two categories: application URIs and
file serving URIs.

• Application URIs on page 49
• File serving URIs on page 53

Application URIs
To access an application, you enter the appropriate application URI in your browser's address bar.

URI Syntax

This topic describes the URIs acknowledged by the GAS based on the standard syntax shown below and
explained in Table 6: Explanation of URI syntax options on page 50. This topic provides you with URIs

GAS Basics | 50

to access your Genero applications. The information is intended to help you tune and monitor your web
server configuration for Genero.

http[s]://
 {
 web-server[:web-server-port]
 [
 /directory [...]
]
 |
 app-server[:app-server-port]
 }
 /scope
 /action
 /group
 /
 {
 web-application-id
 }
 [
 ?
 parameter=parameter-value
 [
 &
 parameter=parameter-value
]
 [...]
]

Table 6: Explanation of URI syntax options

Option Description Valid Values

web-server Name or IP address of the Web
Server

e.g. localhost

web-server-port Port on which the Web Server
listens

e.g. 1100

directory A directory or virtual directory
on the Web Server defined by
the $(connector.uri) resource in
as.xcf

Typically this directory is called
"gas".

Note: If you are using
a direct connection
to the GAS like the
standalone dispatcher,
httpdispatch, the
resource connector.uri is
not used, instead the URI
syntax will look like this,
http://localhost:port/
ua/r/app-name

app-server Name or IP address of the
Application Server

e.g. localhost

app-server-port Port on which the Application
Server listens

e.g. 6394

GAS Basics | 51

Option Description Valid Values

scope Scope or protocol you are
working on, e.g. uaproxy or Web
service

ua, ws

action Action requested of the
Application Server

See Application URIs
acknowledge by the GAS

group Application group defined in
as.xcf

see GROUP (for an application)
on page 318

web-application-id Web application identifier e.g. gwc-demo

parameter Parameter to communicate to
the Application Server to start
application with arguments

See Example: Starting
applications with arguments on
page 55

parameter-value Parameter value See Example: Starting
applications with arguments on
page 55

Table 7: Application URIs Acknowledged by the GAS

URI path Description

/ua/r
GWC-JS application is started with a /ua/r
request, see Example: Calling a Web application on
page 56;

/ua/sua
Once the startup request has been answered,
the DVM uses /ua/sua requests to submit user
actions and communicate with the front-end client.

/ua/ft
GWC-JS file transfer

/ua/interrupt
Front-end client uses the interrupt request to send
an interrupt message to the DVM.

/ua/i
Resource, e.g. a fully-qualified URL pointing to an
application's image file, see Table 8: File serving
URIs on page 54

/ua/components
Web component resource, e.g. a fully-qualified URL
pointing to an application's web component file, see
Table 8: File serving URIs on page 54

/ua/close
Front-end client sends a close request to the DVM
to stop an application.

/ua/newtask
Front-end client sends a newtask request to ask the
GAS if it has any pending applications that have not
been already notified to the client.

/ua/report/viewer
URL with the report/viewer prefix is
used by the Genero Report Engine (GRE)
running in local mode to load the HTML report
viewer implementation. It is bound to the

GAS Basics | 52

URI path Description

$(GREDIR)/viewer directory by default, see
REPORT_VIEWER_DIRECTORY on page 340.

/ua/report/public
URL with the report/public prefix is used by
the GRE to access public resources or documents
shared between applications on the local server, for
example, report fonts.

/ua/report/private/$(session.id)/
reports

URL with the report/private prefix is used by
the GRE to access private resources or documents
locally. These resources are not shared between
applications or users and are deleted when the
session ends.

/ua/report-r/viewer
URL with the report-r/viewer prefix is used
by the GAS running a GRE in distributed mode
to load the HTML report viewer implementation.
Adding a REPORT_REMOTE_URL_PREFIX
configuration entry in the GAS as.xcf
configuration file enables distributed mode support.

/ua/report-r/public
URL with the report-r/public prefix is
used for by GAS to access public resources or
documents on remote server shared between
applications, for example, report fonts.

/ua/report-r/private/$(session.id)/
reports

URL with the report-r/private prefix is
used by the GAS to access private resources or
documents on a remote server. These resources
are not shared between applications or users and
are deleted when the session ends.

/reports/delete/${sessionid}
The GAS will send an HTTP request to the remote
host to notify it that the session has ended.
The remote server is responsible for removing
recursively private data identified by the session
identifier. For example,

DELETE /reports/delete/
ebf19aba4d09e80cd19cfea7868a9a2a

/ua/w
URL dedicated to the look up of the GWC-JS
directory. The complete format of the URI is ua/
w/$(GWC-JS)/<filename>, where files served
directly by the dispatcher for the customized GWC-
JS are found. The GAS searches for the GWC-JS

GAS Basics | 53

URI path Description

directory in one of the paths specified as document
root in GWC_JS_LOOKUP_PATH on page 320.

/ws/r
GWS request to start Web service application, see
Example: Calling a Web Service application on
page 56

/da/r
Request to start application using the GDC from
URI, see Example: Calling Desktop application on
page 55

/monitor
Monitor requests

/monitor/log
Monitor logs requests

/monitor/configuration/application/
group

Returns a list of all groups configured for
applications, see Example: Get the groups for all
applications on page 56.

/monitor/configuration/application/
name?abstract

Returns a list of all application names (or only the
abstract applications if ?abstract is specified).

/monitor/configuration/application/
dua?appId

Returns a list of all DUAs allowed for the application
identified by appId

/monitor/configuration/service/group
Returns a list of all groups configured for services.

/monitor/configuration/service/
name?abstract

Returns a list of all service names (or only the
abstract services if ?abstract is specified).

/monitor/configuration/service/
invalid

Returns a list of static and dynamic services that
have been invalidated by the dispatcher because
first request did not succeed in starting a DVM.
See Example: Get list of services invalidated by
dispatcher on page 56

Note: A URI path is a string without line breaks. Line breaks have been added to the URIs above
to support the printed version of our documentation.

File serving URIs
This topic explains how GAS uses the URL of a request to determine the file system location from where to
serve a file.

This topic provides examples of how the GAS uses configuration elements defined in your GAS
configuration file to locate a file resource specified in an application's URL path (e.g. http://
localhost:6394/demos.html) .

GAS Basics | 54

Table 8: File serving URIs

URI path Description

/ The slash (/) is the path to the document root configured in the Genero Application
Server (GAS) configuration file. The DOCUMENT_ROOT element is located at /
CONFIGURATION/APPLICATION_SERVER/INTERFACE_TO_CONNECTOR/
DOCUMENT_ROOT, see DOCUMENT_ROOT on page 312.

For example, this excerpt is from the default GAS configuration file (as.xcf).

...
 <RESOURCE_LIST>
 <PLATFORM_INDEPENDENT>
 ...
 <RESOURCE Id="res.path.docroot" Source="INTERNAL">
$(res.path.as)/web</RESOURCE>
 ...
 </PLATFORM_INDEPENDENT>
 </RESOURCE_LIST>
 ...
 <INTERFACE_TO_CONNECTOR>
 ...
 <DOCUMENT_ROOT>$(res.path.docroot)</DOCUMENT_ROOT>
 ...
 </INTERFACE_TO_CONNECTOR>
...

In this example, when calling the demo page using the URL http://
localhost:6394/demos.html, you expect to find the demos.html file in the directory
specified by the DOCUMENT_ROOT entry, i.e. the /web directory in your application server
path.

/ua/i/ In this URL the slash (/) following the ua/i / is the path to the public resource directory,
where resources such as images are found, see Paths to application resources on page
219.

In this example, when accessing the photo.jpeg with the URL http://
localhost:6394/ua/i/photo.jpeg, you expect to find the photo.jpeg
file in the directory specified by the $(res.public.resources), which expands to
$(res.appdata.path)/public/common directory in your application server's
application data path.

/ua/
components

In this URL the slash (/) following the ua/components/ is the path to the web
component directory configured in the Genero Application Server (GAS) configuration
file where web components are found. The WEB_COMPONENT_DIRECTORY
element is located at /CONFIGURATION/APPLICATION_SERVER/
WEB_APPLICATION_EXECUTION_COMPONENT/WEB_COMPONENT_DIRECTORY, see
WEB_COMPONENT_DIRECTORY on page 361 .

For example, this excerpt is from the default GAS configuration file (as.xcf).

 ...
 <WEB_APPLICATION_EXECUTION_COMPONENT
 Id="cpn.wa.execution.local">
 ...
 <WEB_COMPONENT_DIRECTORY>$(application.path)/
webcomponents</WEB_COMPONENT_DIRECTORY>
 ...
 </WEB_APPLICATION_EXECUTION_COMPONENT>

GAS Basics | 55

URI path Description

...

In this example, when accessing a web component with the URL http://
localhost:6394/ua/components/mywebcomponent, you expect to find the
file in the directory specified by the WEB_COMPONENT_DIRECTORY entry, i.e. the /
webcomponents directory in your application path.

URI Examples
Several URI examples.

This topic provides you with some typical examples of ways of starting web (GWC-JS or GDC-HTTP) and
web services applications (GWS).

Example: Direct connection to standalone GAS

Calls the "myApp" Web application on the "myApplicationServer" Application Server, listening to port 6394:

http://myApplicationServer:6394/ua/r/myApp

If the application is in the default group (_default), you can use the same URL or you can include the
group name:

http://myApplicationServer:6394/ua/r/_default/myApp

The use of the _default group name is optional.

Example: Connection through a Web Server

Calls the "myApp" application through the "myWebServer" Web Server.

http://myWebServer/gas/ua/r/myApp

Example: Connection using a group
Calls the "myApp" application defined in group "demo" through the "myWebServer" Web Server.

http://myWebServer/gas/ua/r/demo/myApp

Example: Starting applications with arguments

Calls the "myApp" application with arguments, through the "myWebServer" Web Server:

http://myWebServer/gas/ua/r/myApp?Arg=Val1&Arg=Val2

Note:

1. A question mark (?) follows the application name.
2. Val1 is the value of the first argument and Val2 is the value of the second argument.
3. Each argument is separated by an ampersand (&).

Example: Calling Desktop application

Using the URL with "da" launches the "appid" application via the Genero Desktop Client monitor.

http://appserver:6394/da/r/appid

GAS Basics | 56

Note: Prerequisites:

1. GDC is installed
2. Application extension associations for gdc are set

Example: Calling a Web Service application

To get the WSDL for a specified service:

http://appserver:6394/ws/r/appid/service?WSDL

To access the Web service:

http://appserver:6394/ws/r/appid/service

If the Web service uses a group:

http://appserver:6394/ws/r/groupid/appid/service

Access through a Web server:

http://webserver/gas/ws/r/appid/service

Example: Calling a Web application

Calls the "myApp" application:

http://appserver:6394/ua/r/myApp

Example: Get the groups for all applications

To retrieve the list of all groups configured for applications on an application server listening to port 6394,
enter the following URL in a browser:

http://myApplicationServer:6394/monitor/configuration/application/group

and you will get a XML document like following:

<?xml version='1.0' encoding='UTF-8'?>
 <RESPONSE Request='/monitor/configuration/application/group'>
 <ENTRY Value='C:\gas-current\pkg-ebiz-appserver/app' Name='_default'/>
 <ENTRY Value='C:\gas-current\pkg-ebiz-appserver/demo/app' Name='demo'/>
 <ENTRY Value='C:\gas-current\common\repository' Name='common'/>
 <ENTRY Value='C:\gas-current\tests' Name='qa-test'/>
</RESPONSE>

Example: Get list of services invalidated by dispatcher

To retrieve a list of all services that have been invalidated by the dispatcher, enter the following URL in a
browser:

http://myApplicationServer:6394/monitor/configuration/service/invalid

You should get a page displaying a list of invalid configuration files (if any).

Note: If the list is formatted via an XSLT style sheet, the name of the xcffile, its group (if any), and
the absolute path to the external xcf (if any) is displayed.

If there are no invalid services, you should get a page displaying, "There are no invalid configuration files".

Configuring the Genero Application Server | 57

Configuring the Genero Application Server

Configure the Genero Application Server to work with your Web server.

• System Requirements on page 57
• GAS Configuration Check on page 58
• Licensing on page 61
• ISAPI Extension Installation and Web Server Configuration on page 65
• FastCGI Installation and Web Server Configuration on page 85
• Java Servlet Installation and Web Server Configuration on page 91
• Validating configuration files on page 93
• Configuring applications on GAS on page 95
• How to implement delegation on page 105
• How to implement Single sign-on (SSO) on page 114
• Compression in Genero Application Server on page 146
• Configuring development environment on page 147
• Configuring Multiple Dispatchers on page 148

System Requirements
Failure to meet system requirements can result in unexpected behavior.

• Operating systems on page 57
• Web servers on page 57
• User agents on page 57
• Databases on page 58

Operating systems
The Genero Application Server (GAS) is supported for a variety of operating systems, to include Linux®,
IBM® AIX®, HP-UX, SUN Solaris and Microsoft™ Windows™.

For a detailed list of supported operating systems, refer to the system support matrix available on the Four
Js web site documentation or download area, or contact your support center.

Web servers
Web server support depends on the platform hosting the Genero Application Server.

On Windows™ platforms, typically Internet Information Services is used. For more information on
prerequisites and configuration see ISAPI installation.

On UNIX™ platforms, we recommend Apache httpd, lighttpd and nginx. However, any Web server that is
compatible with fastcgi can be used. For more information, refer to http://httpd.apache.org. To install and
configure the required components , see FastCGI installation.

GAS has a dedicated dispatcher for Java™ Application Servers. For more information, see Java™ Servlet
installation.

User agents
A User Agent is a client agent. It can be a Web browser, the Genero Desktop Client, or a Web Services
client.

For the Genero Web Client, the supported user agents are agents supporting HTML5.

http://httpd.apache.org

Configuring the Genero Application Server | 58

We support the up-to-date browsers for each of the supported browsers. Users must update their browsers
to the latest version.

Supported browsers are:

• Microsoft™ Internet Explorer
• Microsoft™ Edge
• Google Chrome

Note: As development work continues in Genero V3, we will update this page when support for
other browsers is available.

Databases
Any database accessible from the DVM or from the ODI is supported.

For a detailed list of supported databases, refer to the system support matrix available on the Four Js web
site documentation or download area, or contact your support center.

GAS Configuration Check
It is recommended that you verify your install and configuration of Genero Application Server prior to
working with your own applications.

• Managing Access Rights on page 58
• Validating the Installation with the Genero Web Client on page 58
• Validating the Installation with the GDC on page 59
• Troubleshooting Configuration Issues on page 60

Managing Access Rights
When the Genero Application Server starts an application, the fglrun process executes in the context of
the operating system user running the Genero Application Server. Generally, this is the user running IIS
when using the ISAPI connector or the user running Apache when using the FastCGI connector.

You must ensure that the user has the permissions needed to:

• Execute the DVM fglrun program
• Access any needed DVM resources (ODI add-ons, configuration files, and so on)
• Access any needed program files and resources (42r files, 42m files, 42f files, and so on)

Validating the Installation with the Genero Web Client
For the Genero Web Client, you can validate with and without a Web server.

Important: After you upgrade the Genero Application Server, you must clear the CSS and
JavaScript™ downloaded to the browser cache by clearing the browser cache. For many browsers,
you can accomplish this by pressing CTRL + F5.

• Validate the installation for GWC without a Web server on page 58
• Validate the integration for GWC with a Web server on page 59

Validate the installation for GWC without a Web server
To validate the installation of the Genero Application Server without involving a Web server, launch the
stand-alone Genero Application Server and run a Genero Web Client demo application.

Before you begin:

Due to configuration settings in the Genero Application Server configuration file, access to demo
applications needs to be configured. Make sure you have provided access to run the demo applications
from the localhost, see Example configuring access control for demo applications on page 299.

Configuring the Genero Application Server | 59

1. Set the GAS environment by executing the script $FGLASDIR/envas.

2. Launch the GAS Standalone: httpdispatch

For more information on starting the GAS standalone, and the various command options available, see
Tools and Commands on page 263.

3. From your web browser, check the connection to the application server by displaying the Demos page,
using a URI that provides a direct connection to the standalone GAS:

http://localhost:6394/demos.html

4. Launch the GWC Demos program using a URI that provides a direct connection to the standalone GAS:

http://localhost:6394/ua/r/gwc-demo

The Demos application provided with the installation files, is preconfigured and ready to run.

Important: When you install the GAS using the .msi setup program, it sets the ADDRESS
element (child of INTERFACE_TO_DVM) to "127.0.0.1" within the as.xcf file. When validating your
installation, if the Demos application fails to display (and you receive a runtime error), you may have
to replace the INTERFACE_TO_DVM's ADDRESS element with the true IP address of the host
machine.

Validate the integration for GWC with a Web server
To validate the installation of the Genero Application Server using a Web server, specify the Web server as
part of the application URI and run a Genero Web Client demo application.

Before you begin:

Due to configuration settings in the Genero Application Server configuration file, access to demo
applications needs to be configured. Make sure you have provided access to run the demo applications
from the localhost, see Example configuring access control for demo applications on page 299.

Important: The following instructions assume that "gas" is the virtual directory defined for the GAS
(to be part of the URLs accessing the GAS) . For information on defining a virtual directory, see
either ISAPI installation or FastCGI installation or Java™ Servlet installation.

1. Before you begin, you should have first validated the installation as a standalone GAS. See Validate the
installation for GWC without a Web server on page 58.

2. From your web browser, ensure that your web server is correctly configured by accessing a static page
(such as index.html), or simply http://localhost.

3. Display the Demos page:

http://myWebServer/gas/demos.html

4. Launch the GWC Demos program.

http://myWebServer/gas/ua/r/gwc-demo

Validating the Installation with the GDC
The Genero Application Server can deliver clients to the Genero Desktop Client.

The Genero Desktop Client (GDC) must be installed prior to starting this validation procedure. It can be
installed on the same host, or it can be installed on a separate client machine. For instructions on installing
the GDC, refer to the Genero Desktop Client User Guide.

• Validate the installation for GDC without a Web server on page 60

Configuring the Genero Application Server | 60

Validate the installation for GDC without a Web server
To validate the installation of the Genero Application Server without involving a Web server, launch the
stand-alone Genero Application Server and run a Genero Desktop Client demo application.

Before you begin:

Due to configuration settings in the Genero Application Server configuration file, access to demo
applications needs to be configured. Make sure you have provided access to run the demo applications
from the localhost, see Example configuring access control for demo applications on page 299.

1. Set the GAS environment by executing the script $FGLASDIR/envas.

2. Launch the GAS Standalone: httpdispatch

For more information on starting the GAS standalone, and the various command options available, see
Startup and Command Options.

3. Within the GDC, create a shortcut pointing to the demo application.

To create the shortcut, you must start the GDC in administrative mode using the --admin or -a
option. Refer to the Genero Desktop Client User Guide for more information on creating shortcuts.

a) On the first page of the New Shortcut wizard, select the HTTP, through a web server option.
b) On the second page of the New Shortcut wizard - the HTTP connection information page - provide

the application URL (http://myApplicationServer:6394/ua/r/gdc-demo) and specify the
HTTP Proxy mode as Direct connection.

On most systems, you can replace the myApplicationServer with localhost for this test: http://
localhost:6394/ua/r/gdc-demo.

c) For the remaining pages of the Shortcut Wizard, you can accept the defaults and click Finish.

The shortcut is added to the GDC.

4. To run the application, select the shortcut and click Start!.

Important: When you install the GAS using the .msi setup program, it sets the ADDRESS
element (child of INTERFACE_TO_DVM) to "127.0.0.1" within the as.xcf file. When validating your
installation, if the Demos application fails to display (and you receive a runtime error), you may have
to replace the INTERFACE_TO_DVM's ADDRESS element with the true IP address for the host
machine.

Troubleshooting Configuration Issues
Troubleshooting tips are provided for the most common issues encountered.

• Proxy errors on Windows platform on page 60
• Cannot find 127.0.0.1 or localhost on Windows on page 61
• Application does not start on page 61

Proxy errors on Windows™ platform
On Windows™, if you find the error "Proxy refuses to start with socket error code 10038" in the proxy log,
it means that the proxy refused to start and returned a socket error code of 10038. This can occur due to
issues with the drivers provided by some third-party layered service providers (LSPs).

To rectify this situation, you need to run the following from the command line:

netsh winsock reset catalog

The command resets the Winsock Catalog to a clean state. Be aware that it might affect your installed
applications that use the internet. You might need to reconfigure or reinstall such applications, so use the
command cautiously. The command will ask to restart Windows™.

Configuring the Genero Application Server | 61

Cannot find 127.0.0.1 or localhost on Windows™

Users on Windows™ 64-bit machines who are using a network proxy: The browser cannot open 127.0.0.1
or localhost unless you modify your Advanced Network settings to avoid going through the proxy for these
addresses.

Application does not start
If an application does not start, you can debug the problem by manually launching the program from a
command shell.

To run the FGL debugger, the dispatcher must open a DOS command or a xterm window so that you can
run fglrun -d. For example, on Windows™ platform, start the dispatcher with the command to open a
DOS window and override some of the settings for res.dvm.wa:

httpdispatch -E res.dvm.wa="cmd /K start cmd"

When the GAS starts an application from a Web browser with a given URI, instead of displaying the
application forms in the Web browser, a command window will open with all environment settings for that
application. You can then manually run your application in debug mode, for example with fglrun -d
progname to enter the command-line debugger fgldb (application forms will then display in the Web
browser).

For more information on starting the standalone dispatcher to open a command window and on using the
FGL debugger for your platform, please see the following:

• Using the Debugger for the GAS on UNIX on page 158
• Using the Debugger for the GAS on the Windows platform on page 157

Licensing
The documentation provides an explanation of how licensing works through the use of diagrams. It does
not replace the license agreement.

• Licensing - Base Example on page 61
• Licensing - Using the RUN command on page 62
• Licensing - Multiple User Agents on page 62
• Licensing - Summary Case on page 63
• Genero Front Ends and License Counting on page 64
• Licensing Tips and Tricks / Troubleshooting on page 65

Important: This topic discusses Genero licensing. Some of the demos accessed via the
demos.html page use third-party components which are NOT delivered, licensed or supported
by your Genero provider. They are just bundled for the purpose of demonstrating the various
capabilities of some of the GWC modes. Before using a demo code snippet for your own
development, take care that you fulfill the corresponding licenses from all third-party components.

Licensing - Base Example
This scenario shows two User Agents connected to two DVMs.

Configuring the Genero Application Server | 62

The connection is made via the Web server, the ISAPI or FastCGI extension, and dispatchers.

In this scenario, two (2) runtime licenses are used.

Note: Most browsers now support tabs. It is important to understand that for this discussion, each
browser is assumed to be using only one tab. If you open two tabs in a browser, and each tab
connects to its own DVM, then it is just as if two browsers were being used, and two (2) runtime
licenses are used.

Licensing - Using the RUN command
This scenario shows two User Agents connected to an application, which in turn calls other applications
using the Genero BDL RUN command or the RUN WITHOUT WAITING statement.

In this scenario, two (2) runtime licenses are used.

Licensing - Multiple User Agents
This scenario shows four User Agents running on two different PCs and connected to four DVMs.

Configuring the Genero Application Server | 63

In this scenario, four (4) runtime licenses are used.

Licensing - Summary Case
This scenario shows four User Agents running on two different PCs and connected to four DVMs, some of
which are running external DVMs using the Genero BDL RUN command.

Configuring the Genero Application Server | 64

In this scenario, four (4) runtime licenses are used.

Genero Front Ends and License Counting
A Genero Front End (GWC, GDC-HTTP) does not require any additional license information.

When a user requests an application, the dispatcher starts a DVM to handle the request. It is the DVM that
consumes a license. For example, one license is used when an application is started from a User Agent. If
within this application, a RUN or a RUN WITHOUT WAITING is executed, the same license is used, even if
the first User Agent opens new User Agents.

If, however, an application is started in another User Agent (without RUN or RUN WITHOUT WAITING), a
new license is used.

For GWC applications, one license is consumed per application started (note as stated above no extra
licence for any RUN). Thus, size the license number requested to run your applications. Another solution is
to use CPU licenses.

For GDC applications, one license is consumed per monitor/console, no matter how many applications are
run from this monitor.

When the license is freed depends on how the application is exited. A license is freed when the
applications closes, or to be more exact, when the DVM is shut down. If the user exits the application
by clicking on the cancel or exit button, the DVM is shut down and the license is immediately freed. If,
however, the user does not exit the application but instead closes the User Agent, the DVM continues to
run until the application times out (the number of seconds is set for the USER_AGENT timeout). After the
timeout period passes, the proxy closes the connection to the DVM, the DVM shuts down, and the license
is freed.

To determine the number of licenses used, run "fglWrt -u" followed by "fglWrt -a info users" on
the application server where the Genero runtime is installed.

Configuring the Genero Application Server | 65

Important: When you do a refresh on a GWC application, if the current page is the first page of the
application this will not refresh the application page but start a new application. Thus, consume an
extra license.

Licensing Tips and Tricks / Troubleshooting
Identify GAS configuration elements that can impact licensing and identify additional licensing
considerations.

• The ADDRESS element on page 65
• The USER_AGENT timeout element on page 65
• The MAX_AVAILABLE element for a Web Service on page 65
• Evaluate licensing when migrating from GDC on page 65

The ADDRESS element
In the Genero Application Server configuration file, within the INTERFACE_TO_DVM/ADDRESS element, it is
not recommended to use either localhost or 127.0.0.1, as the license server requires the real address of
the machine to check the licenses.

If your machine is not well configured, a bad address is returned to the license server, which will then
refuse to start a new DVM.

The USER_AGENT timeout element
With the Genero Web Client, the USER_AGENT timeout element proves to be particularly useful.

As with the other Front End clients, when a user properly exits an application, the DVM handling that
application is properly shut down and the license that the application consumed is released back into the
Genero license application pool.

However, when the user does not properly exit the application, the DVM remains alive and continues to
consume a license even though the front end has stopped. This can occur with the Genero Web Client,
when a user closes the browser instead of properly exiting the application; the front end has no mechanism
to tell the Genero Application Server that the user has closed his browser.

To bypass this limitation, you can define the USER_AGENT timeout parameter to count user inactivity.
When this timeout occurs, Genero Application Server unilaterally closes the socket to the DVM, which
causes the DVM to shut down and the license to be released.

The MAX_AVAILABLE element for a Web Service
The MAX_AVAILABLE element explicitly limits the number of DVMs that can be started for a specific Web
service.

No more DVMs are started beyond this limit, once MAX_AVAILABLE DVMs have been reached. You can
use this parameter to assist in limiting the number of licenses consumed.

Evaluate licensing when migrating from GDC
Evaluate licensing when migrating from the Genero Desktop Client (GDC).

For Genero Web Client (GWC) applications, we recommend CPU licenses. GWC applications cannot
detect if the user has left the application, if the user has simply closed the browser (as opposed to stopping
the application by explicitly exiting the application by selecting the appropriate action). If the user closed
the browser without exiting the application, the application is still running and continues to consume a
license. A timeout can be configured to release the DVM, which in turn releases the license. To minimize
the impact, a solution is to use an application launcher: a main application that executes RUNs of sub-
applications or a startmenu.

ISAPI Extension Installation and Web Server Configuration
• The Genero Application Server and IIS on page 66

Configuring the Genero Application Server | 66

• Install the ISAPI dispatcher on page 66
• GAS ISAPI Extension configuration file on page 83
• Troubleshooting installation on page 84
• Restarting the ISAPI dispatcher on page 84

The Genero Application Server and IIS
The Genero Application Server (GAS) is embedded within the ISAPI extension itself, and is directly
loaded by an Internet Information Services (IIS) worker process. This improves performance and allows
administration of the server with IIS tools.

The GAS is seen by IIS as a script engine, enabled to handle every request to the virtual directory bound to
the GAS.

Note: The GAS must already be installed in a directory reachable by IIS. The GAS installation
directory is referenced as FGLASDIR. See the appropriate installation guide for your installation for
more information.

To take full advantage of this type of installation, you must create a new web site, or a new application or
virtual directory on an existing web site, e.g. IIS "Default Web Site". This section shows how to:

• Create and set up a virtual directory using the Windows installer, see Installing with the Microsoft
Installer on page 66

• Activate IIS for your installation (see the appropriate configuration guide for your installation)
• Configure application pool
• Create an application
• Create a GAS ISAPI Extension configuration file

For further details about IIS, see the IIS documentation for your installation, see IIS 6.0 Operations Guide
or Learn IIS.

Install the ISAPI dispatcher
Install the ISAPI dispatcher within the IIS framework.

• Installing with the Microsoft Installer on page 66
• Manual configuration for IIS 6.0 on page 69
• Manual configuration for IIS 7.x on page 70
• Manual configuration for IIS 8.x and IIS 10.x on page 76
• Finishing the installation on page 83

Installing with the Microsoft™ Installer
When you launch the Microsoft™ Installer (MSI) for your product, it automatically attempts to install the
ISAPI dispatcher within the IIS framework.

Download the appropriate version of the software for your operating system. For Windows™, this means
downloading either the 32-bit or 64-bit version. The file is downloaded as an executable (.exe) file.

Once the file is downloaded, click on the file to execute the installation wizard. You will follow the
instructions provided by the wizard, to include selecting the install directory, providing the Start Menu
Folder name, and specifying the appropriate FGLDIR to use for this GAS installation.

At this point in the wizard, you are asked whether you want to install the ISAPI Extension. If you select
NOT to install the ISAPI Extension, then you will either only have a standalone GAS or you will have to
install the ISAPI Extension manually at a later time. By default, it will attempt to install the ISAPI Extension.

http://technet.microsoft.com/en-us/library/cc785089(WS.10).aspx
http://learn.iis.net/

Configuring the Genero Application Server | 67

Figure 11: Wizard, Product Features page

If the ISAPI Extension is selected, you must complete three wizard pages.

On the first wizard page, you select the Web Site where you want to add your Web application.

Figure 12: Wizard, ISAPI (1 of 3) - Web Site page

On the second wizard page, you provide the name for the Web Application. This is the name that will be
included as the path to the GAS in the URL for your applications.

Configuring the Genero Application Server | 68

Figure 13: Wizard, ISAPI (2 of 3) - Web Application Name page

On the third wizard page, you specify the web application path. It is within this directory that the
isapidispatch.ini file will be created.

Figure 14: Wizard, ISAPI (3 of 3) - Web Application Path page

At this point, and Install button appears, and the installation takes place.

Once the install is complete, the GAS ISAPI Extension should be ready to use. Open a web browser and
enter the URL to the "demos.html" page. The URL should look like:

http://<server>:<port>/<virtual directory>/demos.html

For example, if the server is "localhost", the port is the default port, and the virtual directory is "gas", then
the URL should be:

http://localhost/gas/demos.html

If you have an installation failure, or if you opted not to include the ISAPI Extension, the next sections help
you to manually configure the ISAPI Extension.

Configuring the Genero Application Server | 69

Manual configuration for IIS 6.0
These are the instructions for the manual configuration of the ISAPI dispatcher for IIS 6.0.

Configuring IIS 6.0 application pools

The application pool should be configured according to the kind of application the GAS ISAPI Extension
will run. If the GAS ISAPI Extension runs only Web service applications, it is fully compatible with
application pool parameters. If it runs Web or Desktop applications, IIS should drive all requests to the
same worker process; therefore, a dedicated application pool should be created.

To create an application pool:

1. In IIS manager, right-click Application Pools, and then click New and Application Pool...
2. In the Add New Application Pool dialog, enter a name for the application pool ID, for example

"GASAppPool".
3. Click OK.

To configure the application pool to run Web and Desktop applications:

1. In IIS manager, right-click the application pool, and then click Properties.
2. Click the Recycling tab.
3. Ensure that all checkboxes are unchecked.
4. Click the Performance tab.
5. In the Idle timeout section, ensure that the Shutdown worker processes after being idle for

checkbox is unchecked, or that its value is greater than the USER_AGENT timeout value of 4GL
applications that the application pool will run.

6. In the Web garden section, ensure that the value of Maximum number of worker process is 1.
7. Click OK.

The GAS ISAPI Extension will be executed on behalf of the user that is registered in the pool's properties.
That user must have access to the FGLASDIR directory. To change the user identity that runs the GAS:

1. In IIS manager, right-click the application pool, and then click Properties.
2. Click the Identity tab.
3. According to your security policy, either select a built-in account or set a custom account.
4. Click OK.

Note: In order to configure application pools according to the type of applications that will be run,
two different virtual directories, each with its own application pool, may be created on the same
instance of IIS - one that will run only Web service applications, and another that will run only Web
and Desktop applications.

Configuring an IIS 6.0 application

To create a virtual directory:

1. Create a directory on the disk that will be the application root for the application. For further details
about IIS-related vocabulary, see Microsoft's documentation for IIS 6.0.

2. In IIS Manager, right-click the web site on which you want to add the virtual directory, for example
"Default Web Site", and then click New and Virtual Directory...

3. Click Next on the first sheet of the Virtual Directory Creation wizard.
4. Enter the alias of the virtual directory, for example "gas". This name will be the virtual directory part of

the URLs accessing the GAS. Click Next.
5. Enter the path to the directory created in step 1. Click Next.
6. On the Virtual Directory Access Permissions sheet, uncheck the Read checkbox and check Run

scripts (such as ASP). Click Next.
7. Click Finish.

On IIS 6.0, to bind the virtual directory to the GAS ISAPI extension:

http://technet.microsoft.com/en-us/library/cc785089(WS.10).aspx

Configuring the Genero Application Server | 70

1. In IIS Manager, right-click the virtual directory previously created, and then click Properties .
2. Click the Virtual Directory tab.
3. In the Application settings area, click Configuration..., and then click the Mappings tab.
4. Optionally, in the Mappings tab, remove all predefined application extensions.
5. In the Wilcard application maps area, click Insert...
6. Enter the path to the GAS ISAPI Extension DLL: FGLASDIR\bin\isapidispatch.dll.
7. Uncheck the Verify that file exists checkbox.
8. Click Ok.
9. In the Application Configuration dialog, click Ok.
10.In the Properties dialog, click Ok.

On IIS 6.0, to allow the GAS ISAPI Extension to run:

1. In IIS Manager, click Web Service Extensions.
2. Click Add a new Web service extension...
3. Enter an extension name, for example "Genero Application Server".
4. Click Add...
5. Enter the path to the GAS ISAPI Extension DLL: FGLASDIR\bin\isapidispatch.dll.
6. Click Ok.
7. Check the Set extension status to Allowed checkbox.
8. Click Ok.

Post requisites

After you have finished the installation, you now need to configure the GAS ISAPI Extension configuration
file, see Finishing the installation on page 83 .

Manual configuration for IIS 7.x
These are the instructions for the manual configuration of the ISAPI dispatcher for IIS 7.0.

Prerequisites

The installer needs some IIS features to be activated:

• IIS Management Scripts and Tools
• ASP.NET
• .NET Extensibility
• ISAPI Extensions
• ISAPI Filters

To activate "IIS Management Scripts and Tools" on a Windows™ Server 2008:

• Click on Start -> Control Panel -> Administrative Tools -> Server Manager -> Roles -> Web Server (IIS)
• Right Click -> Add Role Services
• Select "Management Tools"
• Check "IIS Management Scripts and Tools"
• Click the "Install" Button

Do the same for the other features.

Example:

Figure 15: Role services dialog

Configuring the Genero Application Server | 71

To activate IIS Management Scripts and Tools on Windows™ 7

To activate IIS Management Scripts and Tools on Windows™ 7 and validate the basic IIS configuration
requirements:

1. Verify IIS is installed. In Control Panel > Administrative Tools, you must have an entry called
Internet Information Services (IIS) Manager.

Figure 16: Control Panel with IIS Manager highlighted
2. Verify IIS is well-started. Open a browser and enter the URL: http://localhost. The IIS welcome

screen displays.

Configuring the Genero Application Server | 72

Figure 17: IIS Welcome Screen
3. Set the appropriate Windows™ Features. Go to Control Panel >> Programs and Features. Click Turn

Windows™ features on or off.

Configuring the Genero Application Server | 73

Figure 18: Turn Windows™ features on or off link
4. In the Windows™ Features dialog, select IIS Management Scripts and Tools, and verify that the

ASP and the ISAPI options are also selected. When checking these options, other options may also be
automatically checked. That is normal behavior, as they are combined options.

Configuring the Genero Application Server | 74

Figure 19: Turn Windows™ features on or off dialog

Configuring IIS 7.x application pools

The application pool should be configured according to the kind of application the GAS ISAPI Extension
will run. If the GAS ISAPI Extension runs only Web service applications, it is fully compatible with
application pool parameters. If it runs Web or Desktop applications, IIS should drive all requests to the
same worker process; therefore, a dedicated application pool should be created.

To create an application pool:

1. In IIS manager, right-click Application Pools and click Add Application Pool....
2. In the Add Application Pool dialog, enter a name for the application pool, for example "GASAppPool".
3. In the .NET Framework version box, select No Managed Code.
4. In the Managed pipeline mode box, select Classic.
5. Click OK.

To configure the application pool to run Web and Desktop applications:

1. In IIS Manager, right-click the application pool, and click Advanced Settings...
2. In the Advanced Settings dialog, in the Process Model area, set the Idle Time-out (minutes) field

to "0" or to a value that is greater than the USER_AGENT timeout value of 4GL applications that the
application pool will run.

3. In the Process Model area, set the Maximum Worker Processes field to 1.
4. In the Recycling area, set the Disable Overlapped Recycle flag to True.
5. In the Recycling area, set the Disable Recycling for Configuration Changes flag to True.
6. Click OK.

Configuring the Genero Application Server | 75

The GAS ISAPI Extension will be executed on behalf of the user that is registered in the pool's properties.
That user must have access to the FGLASDIR directory. To change the user identity that runs the GAS:

1. In IIS Manager, right-click the application pool, and click Advanced Settings...
2. In the Advanced Settings dialog, in the Process Model area, click the Identity field.
3. Click ... to open the Application Pool Identity dialog.
4. According to your security policy, either select a built-in account or set a custom account.
5. Click OK.
6. In the Advanced Settings dialog, click OK.

Note: In order to configure application pools according to the type of applications that will be run,
two different virtual directories, each with its own application pool, may be created on the same
instance of IIS - one that will run only Web service applications, and another that will run only Web
and Desktop applications.

Configuring an IIS 7.x application

To create an application:

1. Create a directory on the disk that will be the application root for the application, the directory is for
example $FGLASDIR/ISAPI.

2. In IIS Manager, right-click the web site on which you want to add the application, for example "Default
Web Site", and then click Add Application...

3. In the Add Application dialog, enter the alias of the application, for example "gas". This name will be
the virtual directory part of the URLs accessing the GAS.

4. Enter the physical path to the directory created in step 1.
5. Click Select...
6. In the Select Application Pool dialog, select the application pool that has been defined previously.
7. Click OK.
8. In the Add Application dialog, click OK.

The authentication configuration depends on your security policy. If all users have access to the
application, the identity of the anonymous user should be configured as following:

1. In IIS Manager, click the application on which you want to configure the identity of the anonymous user.
2. In the Features View panel, double-click the Authentication icon.
3. In the Authentication feature, select the Anonymous Authentication line.
4. Ensure that the status is Enabled.
5. In the Actions area, click Edit...
6. In the Edit Anonymous Authentication Credentials dialog, select Application pool identity.
7. Click OK.

To bind the application to the GAS ISAPI Extension:

1. In IIS Manager, click the application on which you want to bind the application to the GAS ISAPI
Extension.

2. In the Features View panel, double-click the Handler Mappings icon.
3. In the Handler Mappings feature, in the Actions area, click Add Wildcard Script Map...
4. In the Add Wildcard Script Map dialog, enter the path to the GAS ISAPI Extension DLL:

FGLASDIR\bin\isapidispatch.dll.
5. Enter a name for this mapping, for example "GAS ISAPI Extension".
6. Click OK.
7. To the question Do you want to allow this ISAPI extension?, click Yes.
8. In the Handler Mappings feature, in the Actions area, click View Ordered List...
9. Ensure that the GAS ISAPI Extension is at the top of the list.
10.Click View Unordered List...

Configuring the Genero Application Server | 76

11.In the Actions area, click Edit Feature Permissions...
12.In the Edit Feature Permissions, ensure that Script is selected and all other are unselected.
13.Click OK.

Although the GAS ISAPI Extension has been allowed automatically when you answered Do you want to
allow this ISAPI extension? with Yes, to do it manually:

1. In IIS Manager, click the root node, the one that contains the host name.
2. In the Features View panel, double-click the ISAPI and CGI Restrictions icon.
3. In the ISAPI and CGI Restrictions feature, in the Actions area, click Add...
4. In the Add ISAPI or CGI Restriction dialog, enter the path to the GAS ISAPI Extension DLL:

FGLASDIR\bin\isapidispatch.dll.
5. Enter a description, for example "GAS ISAPI Extension".
6. Ensure that the Allow extension path to execute checkbox is checked.
7. Click OK.

Post requisites

After you have finished the installation, you now need to configure the GAS ISAPI Extension configuration
file, see Finishing the installation on page 83 .

Manual configuration for IIS 8.x and IIS 10.x
These are the instructions for the manual configuration of the ISAPI dispatcher for IIS 8.0 and IIS 10.0.

Prerequisites

The installer needs some IIS features to be activated:

• IIS Management Scripts and Tools
• ASP.NET
• .NET Extensibility
• ISAPI Extensions
• ISAPI Filters

To activate IIS on a Windows™ Server 2012:

• Open Server Manager
• Under the Manage menu, select Add Roles and Features to launch the Add Roles and Features

Wizard
• For Installation type, check the option Role-based or Feature-based Installation and click Next
• For Server Selection, select the appropriate server, (the local server is selected by default) and click

Next
• For Server Roles, check Web Server (IIS) and click Next
• For Features, accept the default settings and verify that the IIS Management Scripts and Tools, IIS

Management Console, ASP.NET, .NET Extensibility, ISAPI Extensions, and ISAPI Filters options are
selected and click Next

• For Web Server Role (IIS), accept defaults and click Next
• For Role Services, accept the default settings that have already been selected for you, and then click

Next
• For Confirmation, click the Install button. (When the IIS installation completes, the wizard shows the

installation status in the Results screen)
• Click Close to exit the wizard

Configuring the Genero Application Server | 77

To activate IIS Management Scripts and Tools on Windows™ 8 and 10

To activate IIS Management Scripts and Tools on Windows™ 8 and 10 and validate the basic IIS
configuration requirements:

1. Verify IIS is installed. In Control Panel > Administrative Tools, you must have an entry called
Internet Information Services (IIS) Manager.

Figure 20: Administrative Tools window with IIS Manager highlighted
2. Verify IIS is well-started. Open a browser and enter the URL: http://localhost. The IIS welcome

screen displays.

Figure 21: IIS Welcome Screen
3. Set the appropriate Windows™ Features. Go to Control Panel >> Programs and Features. Click Turn

Windows features on or off.

Configuring the Genero Application Server | 78

Figure 22: Turn Windows™ features on or off link
4. In the Windows™ Features dialog, select IIS Management Scripts and Tools, and verify that the

ASP and the ISAPI options are also selected. When checking these options, other options may also be
automatically checked. That is normal behavior, as they are combined options.

Configuring the Genero Application Server | 79

Figure 23: Turn Windows™ features on or off dialog

Configuring IIS 8.x and IIS 10.x application pools

The application pool should be configured according to the kind of application the GAS ISAPI Extension
will run. If the GAS ISAPI Extension runs only Web service applications, it is fully compatible with
application pool parameters. If it runs Web or Desktop applications, IIS should drive all requests to the
same worker process; therefore, a dedicated application pool should be created.

To create an application pool:

1. In IIS manager, right-click Application Pools and click Add Application Pool....

Configuring the Genero Application Server | 80

Figure 24: Internet Information Services (IIS) Manager Application Pools screen
2. In the Add Application Pool... dialog, enter a name for the application pool, for example

"GASAppPool".
3. In the .NET CLR version box, select No Managed Code.
4. In the Managed pipeline mode box, select Classic.
5. Click OK.

To configure the application pool to run Web and Desktop applications:

1. In IIS Manager, right-click the application pool, and click Advanced Settings...
2. In the Advanced Settings dialog, in the Process Model area, set the Idle Time-out (minutes) field

to "0" or to a value that is greater than the USER_AGENT timeout value of 4GL applications that the
application pool will run.

3. In the Process Model area, set the Maximum Worker Processes field to 1.
4. In the Recycling area, set the Disable Overlapped Recycle flag to True.
5. In the Recycling area, set the Disable Recycling for Configuration Changes flag to True.
6. Click OK.

The GAS ISAPI Extension will be executed on behalf of the user that is registered in the pool's properties.
That user must have access to the FGLASDIR directory. To change the user identity that runs the GAS:

1. In IIS Manager, right-click the application pool, and click Advanced Settings...
2. In the Advanced Settings dialog, in the Process Model area, click the Identity field.
3. Click ... to open the Application Pool Identity dialog.
4. According to your security policy, either select a built-in account or set a custom account.
5. Click OK.
6. In the Advanced Settings dialog, click OK.

Note: In order to configure application pools according to the type of applications that will be run,
two different virtual directories, each with its own application pool, may be created on the same
instance of IIS - one that will run only Web service applications, and another that will run only Web
and Desktop applications.

Configuring the Genero Application Server | 81

Configuring an IIS 8.x and IIS 10.x application

To create an application:

1. Create a directory on the disk that will be the application root for the application, the directory is for
example $FGLASDIR/ISAPI.

2. In IIS Manager, right-click the web site on which you want to add the application, for example "Default
Web Site", and then click Add Application...

Figure 25: Internet Information Services (IIS) Manager Default Web Site Home screen
3. In the Add Application dialog, enter the alias of the application, for example "gas". This name will be

the virtual directory part of the URLs accessing the GAS.
4. Enter the physical path to the directory created in step 1.
5. Click Select...
6. In the Select Application Pool dialog, select the application pool that has been defined previously.
7. Click OK.
8. In the Add Application dialog, click OK.

The authentication configuration depends on your security policy. If all users have access to the
application, the identity of the anonymous user should be configured as following:

1. In IIS Manager, click the application on which you want to configure the identity of the anonymous user.
2. In the Features View panel, double-click the Authentication icon.
3. In the Authentication feature, select the Anonymous Authentication line.
4. Ensure that the status is Enabled.
5. In the Actions area, click Edit...
6. In the Edit Anonymous Authentication Credentials dialog, select Application pool identity.

Configuring the Genero Application Server | 82

7. Click OK.

To bind the application to the GAS ISAPI Extension:

1. In IIS Manager, click the application on which you want to bind the application to the GAS ISAPI
Extension.

2. In the Features View panel, double-click the Handler Mappings icon.
3. In the Handler Mappings feature, in the Actions area, click Add Wildcard Script Map...
4. In the Add Wildcard Script Map dialog, enter the path to the GAS ISAPI Extension DLL:

FGLASDIR\bin\isapidispatch.dll.
5. Enter a name for this mapping, for example "GAS ISAPI Extension".
6. Click OK.
7. To the question Do you want to allow this ISAPI extension?, click Yes.
8. In the Handler Mappings feature, in the Actions area, click View Ordered List...
9. Ensure that the GAS ISAPI Extension is at the top of the list.
10.Click View Unordered List...
11.Select the GAS ISAPI Extension in the Actions area, click Edit
12.In the Edit Script Map dialog, click on Request Restrictions
13.In the Request Restrictions dialog's Mapping panel, uncheck the Invoke handler only if requests is

mapped to: option
14.In the Request Restrictions dialog's Access panel, select the Script option
15.Click OK.

Although the GAS ISAPI Extension has been allowed automatically when you answered Do you want to
allow this ISAPI extension? with Yes, to do it manually:

1. In IIS Manager, click the root node, the one that contains the host name.
2. In the Features View panel, double-click the ISAPI and CGI Restrictions icon.

Figure 26: Internet Information Services (IIS) Manager Connections root node screen
3. In the ISAPI and CGI Restrictions feature, in the Actions area, click Add...
4. In the Add ISAPI or CGI Restriction dialog, enter the path to the GAS ISAPI Extension DLL:

FGLASDIR\bin\isapidispatch.dll.

Configuring the Genero Application Server | 83

5. Enter a description, for example "GAS ISAPI Extension".
6. Ensure that the Allow extension path to execute checkbox is checked.
7. Click OK.

Post requisites

After you have finished the installation, you now need to configure the GAS ISAPI Extension configuration
file, see Finishing the installation on page 83 .

Finishing the installation
After you have finished ISAPI installation, you need to create a configuration file and verify that your
installation and basic configuration was successful.

Prerequisites

It is assumed you have your ISAPI already installed and activated, and that you have created a directory
on your disk which will be the application root (i.e. the virtual directory):

To finish the installation:

1. Create a file called isapidispatch.ini in the application root directory; a sample file can be found in
the FGLASDIR\etc directory.

• The options section of the file must contain at least the as-directory property.
• The value of the as-directory must be set to FGLASDIR.

See GAS ISAPI Extension configuration file on page 83 for details about the content of this file.
2. The GAS ISAPI Extension should be ready to use. Open a web browser and enter the URL to the

"demos.html" page. The URL should look like:

http://<server>:<port>/<virtual directory>/demos.html

For example, if the server is "localhost", the port is the default port, and the virtual directory is "gas",
then the URL should be:

http://localhost/gas/demos.html

If everything is correct, the "demos" page should be displayed; otherwise, see Troubleshooting
installation.

Note:

1. All requests having an URL that begins with the virtual directory name, for example "/gas/",
will be served by the GAS ISAPI Extension. Files present in the application root directory will
not be served by IIS. There is no way to configure IIS to change this behavior. Therefore, the
isapidispatch.ini file should be the only file present in the application root directory.

2. While IIS allows you to map more than one wildcard application to a virtual directory, the GAS
ISAPI Extension should be the last one of the list, as it will not forward URLs to other ones.

3. As in the standalone GAS, the GAS ISAPI Extension serves application resource files and static
files, such as demos.html.

GAS ISAPI Extension configuration file
The GAS ISAPI Extension configuration file is an (ini) file called isapidispatch.ini. It contains
several options that the GAS ISAPI Extension uses when starting up. The isapidispatch.ini file is
created during the installation; you must copy this file into the ISAPI Extension root directory.

This file is read on startup only. If the file is modified, the GAS ISAPI Extension has to be restarted before
the changes are recognized.

The GAS ISAPI Extension configuration file may contain the following sections and properties:

Configuring the Genero Application Server | 84

Table 9: GAS ISAPI Extension sections and properties

Section Property Default value Required Comment

Options as-directory N/A YES The FGLASDIR
directory

Options configuration-file FGLASDIR\etc
\as.xcf

NO The GAS
configuration file

Sample isapidispatch.ini

GAS ISAPI Extension configuration file
...
[Options]
The GAS installation directory.
This option is required.

as-directory=C:\FourJs\gas

The GAS main configuration file
This option is optional
Default value: <as-directory>\etc\as.xcf

#configuration-file=

Troubleshooting installation
If the demos page cannot be reached after the installation process, this topic may help you understand
what went wrong.

The GAS and Genero BDL must be correctly installed. To check this, try to reach the demos page by using
the standalone GAS. If you are using Internet Explorer as the web browser, ensure that the Show friendly
HTTP error messages in the Advanced tab of the internet options dialog is unchecked.

If the page that displayed is like the following, check that the GAS ISAPI Extension configuration file is
located in the application root directory and named isapidispatch.ini:

Genero Application Server - 2.20.01-41876 - Failed to start!
Started on 2008/09/29 16:25:51
Branding ..
 [done]
File System initialization ..
 [fail]
The installation directory was not found.

The message displayed could help to find out what part of the start up process has failed. See GAS ISAPI
Extension configuration file on page 83.

In all other cases, check the installation process.

Restarting the ISAPI dispatcher
The Internet Information Services (IIS) Administration tools provide the mechanism to restart the ISAPI
dispatcher.

Please consult your IIS documentation for details.

Restarting the ISAPI dispatcher does not stop all proxies. Sessions are reloaded and applications continue
to work. Proxies are only stopped when the USER_AGENT timeout expires.

Configuring the Genero Application Server | 85

FastCGI Installation and Web Server Configuration
How to configure the FastCGI extension for various Web Servers.

This section presumes that you have knowledge of fastcgi. This page will only help you configure
the fastcgi module to properly work with GAS in a standard way. If you encounter any issues on
fastcgi installation or need additional configuration (like fastcgi options), please refer to the fastcgi
documentation or contact your system administrator.

GAS supports mod_fastcgi but not mod_fcgid.

• Using the FastCGI dispatcher on page 85
• FastCGI GAS configuration on various Web Server on page 85
• Troubleshooting on page 89
• Restarting the FastCGI dispatcher on page 90

Using the FastCGI dispatcher
The GAS supports FastCGI. FastCGI is a protocol for interfacing the Web Server and Application Server,
like the Common Gateway Interface (CGI) protocol.

The main advantages of FastCGI include:

• Independence of Web Server used. The Web Server simply needs to have a FastCGI extension.
• Instead of creating a new process for every request (as is done with CGI), FastCGI communicates with

the GAS, which handles many requests over its lifetime.
• FastCGI can manage the GAS dispatcher process [Start, Stop, Relaunch on Failure].

FastCGI extension manages the GAS dispatcher process:

• The Web Server and GAS will have the same lifetime: starting the Web Server will start the GAS
process, while stopping the Web Server will stop the GAS dispatcher process. If the GAS dispatcher
fails, the Web Server restarts a new GAS process.

• The Web Server and GAS must be on the same computer.

GAS FastCGI support is provided by using the fastcgidispatch executable, see Dispatcher:
fastcgidispatch on page 265).

FastCGI GAS configuration on various Web Server

Details are provided for various configurations. Regardless of the configuration, a common URL launches a
Genero application using the Genero Application Server.

A typical URL would be:

http://host/gas/ua/r/application

Note: Assume the Genero Application Server is installed in the following directory (FGLASDIR): /
opt/gas. Make the appropriate substitution for the FGLASDIR when applying these examples to
your own configuration.

• Apache: mod_fastcgi on page 86
• Apache 2.4: mod_proxy_fcgi on page 87
• Fastcgi for nginx on page 87
• Lighttpd on page 88
• Sun Java System Web Server 7.0 on page 89

http://www.fastcgi.com/mod_fastcgi/docs/mod_fastcgi.html
http://www.fastcgi.com/mod_fastcgi/docs/mod_fastcgi.html

Configuring the Genero Application Server | 86

Apache: mod_fastcgi
Module mod_fastcgi is the Apache module for FastCGI support.

Note: Assume the Genero Application Server is installed in the following directory (FGLASDIR): /
opt/gas. Make the appropriate substitution for the FGLASDIR when applying these examples to
your own configuration.

Important: Apache 2.4 does not support mod_fastcgi. If you are using Apache 2.4, use
mod_proxy_fcgi instead, see Apache 2.4: mod_proxy_fcgi on page 87.

Note: For more information on the Apache module mod_fastcgi, please refer to the Apache
documentation.

mod_fastcgi installation

Install software package for your system or use these instructions.

mod_fastcgi configuration to manage GAS process

Add these lines to your Apache configuration file:

LoadModule fastcgi_module /usr/lib/apache2/modules/mod_fastcgi.so

<IfModule mod_fastcgi.c>
 FastCgiServer /opt/gas/bin/wrapper.fcgi -idle-timeout 300
 -initial-env FGLASDIR=/opt/gas
 Alias /gas /opt/gas/bin/wrapper.fcgi
</IfModule>

set permissions for /gas alias
<Location /gas>
 Order Deny,Allow
 Deny from all
 Allow from mycompany.com
</Location>

In the fastcgi configuration example:

• wrapper.fcgi is a script delivered with GAS installation that simplifies FastCGI configuration. You
can amend this script to add options for fastcgidispatch, like -f to specify a custom configuration
file.

• /gas directory is just a virtual directory, no need to create one.
• /gas alias permission is set to deny all access to GAS except for clients from mycompany.com. You

can modify the alias configuration to your needs. For more details on Apache directives, see Apache
documentation.

• "-idle-timeout" must be greater than REQUEST_RESULT timeout in GAS configuration. [By default:
<REQUEST_RESULT> : 240 seconds, mod_fastcgi"-idle-timeout" : 300 seconds]

Using mod_deflate for compression with mod_fastcgi
Normally on Apache web server, compression is enabled through the mod_deflate module. You should be
aware that there is a known bug (see https://bugs.launchpad.net/ubuntu/+source/libapache-mod-fastcgi/
+bug/381384) resulting in incorrect content-length header being returned when pages are loaded as the
content-length is not updated after compression. You may begin, therefore, to notice a slow down in your
applications as:

• The client (user agent) waits to receive content that doesn't exist while it is unaware that it already has
the entire response.

• The client (user agent) waits until eventually a timeout is reached.

http://www.fastcgi.com/mod_fastcgi/docs/mod_fastcgi.html
http://www.fastcgi.com/mod_fastcgi/docs/mod_fastcgi.html
http://www.fastcgi.com/mod_fastcgi/INSTALL
http://www.fastcgi.com/mod_fastcgi/docs/mod_fastcgi.html
http://www.fastcgi.com/mod_fastcgi/docs/mod_fastcgi.html
https://bugs.launchpad.net/ubuntu/+source/libapache-mod-fastcgi/+bug/381384
https://bugs.launchpad.net/ubuntu/+source/libapache-mod-fastcgi/+bug/381384

Configuring the Genero Application Server | 87

Moreover as GAS does compression by default (see Compression in Genero Application Server on page
146), mod_deflate's functionality is really unnecessary. It is therefore recommended that you disable
mod_deflate. For more information on disabling mod_deflate, please refer to the fastcgi documentation or
contact your system administrator.

Apache 2.4: mod_proxy_fcgi
With Apache 2.4, mod_proxy_fcgi is used instead of mod_fastcgi.

Note: Assume the Genero Application Server is installed in the following directory (FGLASDIR): /
opt/gas. Make the appropriate substitution for the FGLASDIR when applying these examples to
your own configuration.

Apache 2.4 does not officially support mod_fastcgi, use mod_proxy_fcgi instead. This module requires
Genero Application Server 2.50 (or later).

Note: For more information on the Apache Module mod_proxy_fcgi, please refer to the Apache
documentation.

1. Find the httpd.conf file. For example, it might be located in /etc/apache2/.
2. Add the following lines to the httpd.conf file:

Note: Starting with Apache 2.4.11, you can add the enablereuse=on option in the ProxyPass
configuration line, in order to recycle connections to the fastcgi dispatcher.

...
<IfModule mod_proxy_fcgi.c>
 #No PATH_INFO with mod_proxy_fcgi unless this is set
 SetEnvIf Request_URI . proxy-fcgi-pathinfo=1

 ProxyPass /gas/ fcgi://localhost:6394/ enablereuse=on
 Alias /gas /opt/gas/bin/fastcgidispatch
</IfModule>
...

In this excerpt:

• localhost is where the fastcgidispatch is running
• 6394 is the por fastcgidispatch is listening to

3. Start fastcgidispatch in standalone mode with fastcgidispatch -s. If this dispatcher fails, it must be
restarted manually.

Fastcgi for nginx
Nginx has a fastcgi module. The nginx' fastcgi module is not the same as mod_fastcgi for Apache.

Note: Assume the Genero Application Server is installed in the following directory (FGLASDIR): /
opt/gas. Make the appropriate substitution for the FGLASDIR when applying these examples to
your own configuration.

Edit the Web site configuration file (for example, located in /etc/nginx/sites-enabled/default).

Before the server {...} paragraph, add:

...
upstream fcgi_backend {
 server 127.0.0.1:6394;
 keepalive 32;
}
...

In this excerpt:

• 127.0.0.1 is the ip where the fastcgidispatch is running.
• 6394 is the port where fastcgidispatch listens to.

http://www.fastcgi.com/docs/faq.html
http://httpd.apache.org/docs/2.4/mod/mod_proxy_fcgi.html
http://httpd.apache.org/docs/2.4/mod/mod_proxy_fcgi.html

Configuring the Genero Application Server | 88

Inside the server {...} paragraph, configure the fastcgi module to reuse socket connections for
requests:

...
location /gas/ {
 fastcgi_keep_conn on;
 fastcgi_pass fcgi_backend;
 include fastcgi_params;
 }
...

In the fastcgi_params file (for example, located in /etc/nginx/), add:

...
 fastcgi_split_path_info (/gas)(/?.+)$;
 fastcgi_param SCRIPT_FILENAME /path/to/php$fastcgi_script_name;
 fastcgi_param PATH_INFO $fastcgi_path_info;
 fastcgi_param PATH_TRANSLATED $document_root$fastcgi_path_info;
...

In this excerpt:

• /gas is the gas connector alias.

In the fastcgi_params file, find the line that reads:

fastcgi_param SERVER_NAME $server_name;

and replace with:

fastcgi_param SERVER_NAME $host;

The fastcgidispatch needs to be started in standalone mode: fastcgidispatch -s.

If this dispatcher fails, it must be restarted manually.

Lighttpd
The Lighttpd Web server supports natively FastCGI protocol.

Note: Assume the Genero Application Server is installed in the following directory (FGLASDIR): /
opt/gas. Make the appropriate substitution for the FGLASDIR when applying these examples to
your own configuration.

For more information, see the ModFastCGI documentation provided by Apache.

ModFastCGI configuration to manage GAS

Add these lines to your Lighttpd configuration file:

server.modules += ("mod_fastcgi")
fastcgi.server = (
 "/gas" =>
 ((
 "host" => "127.0.0.1",
 "port" => <gas-server-port>,
 "check-local" => "disable",
 "bin-path" => "/opt/gas/bin/wrapper.fcgi",
 "bin-environment" => (
 "FGLASDIR" => "/opt/gas"
),
 "max-procs" => 1
))

http://trac.lighttpd.net/trac/wiki/Docs:ModFastCGI

Configuring the Genero Application Server | 89

)

Note:

• The "server.max-write-idle" global parameter must be greater than<REQUEST_RESULT>
timeouts in the GAS configuration.

Sun Java™ System Web Server 7.0
Sun Web Server 7 has an integrated FastCGI support.

Note: Assume the Genero Application Server is installed in the following directory (FGLASDIR): /
opt/gas. Make the appropriate substitution for the FGLASDIR when applying these examples to
your own configuration.

For more information, see the FastCGI Plug-in documentation provided by Sun.

Enable FastCGI Plug-in

Add this line to your magnus.conf configuration file:

Init fn="load-modules" shlib="libfastcgi.so"

FastCGI Plug-in configuration to manage GAS

Add these lines in your obj.conf configuration file:

<Object name="default">
 ...
 NameTrans fn="assign-name" from="/gas/*" name="gas.config"
 ...
</Object>

<Object name="gas.config">
 Service fn="responder-fastcgi" app-env="FGLASDIR=/opt/gas"
 app-path="/opt/gas/bin/wrapper.fcgi" reuse-connection="true"
 resp-timeout="300" restart-interval="0"
</Object>

Note:

• The "resp-timeout" must be greater than the <REQUEST_RESULT> timeouts in the GAS
configuration.

Troubleshooting
Troubleshooting tips addressing common issues.

• Why does my application timeout on Apache? on page 89
• Why does my application not work with fastcgi? on page 90
• Invalid installation directory on page 90
• Applications all down at the same time on page 90

Why does my application timeout on Apache?

The Apache module mod_reqtimeout controls the request data rate. If the reception of the data is
considered too slow, Apache can close an HTTP connection before other configured timeouts have
expired. When this happens, the dispatcher will log an error.

To avoid this, you should match the GAS timeout with the Apache timeout. For more information on
setting the Apache timeout, see the Apache documentation https://httpd.apache.org/docs/2.4/mod/
mod_reqtimeout.html.

http://docs.sun.com/app/docs/doc/819-2629/6n4tgd28c?a=view
https://httpd.apache.org/docs/2.4/mod/mod_reqtimeout.html
https://httpd.apache.org/docs/2.4/mod/mod_reqtimeout.html

Configuring the Genero Application Server | 90

Why does my application not work with fastcgi?

Your fastcgi might be misconfigured or does not have the right permissions.

To debug, add these lines in your $FGLASDIR/bin/wrapper.fcgi:

echo $FGLASDIR >> /work/tmp/log.txt
ls -al $FGLASDIR >> /work/tmp/log.txt
strace -f -F -tt -s 3000 "$FGLASDIR"/bin/fastcgidispatch >> /work/tmp/
log.txt 2>&1

log.txt shows the system calls. Most of the time, you can see "permission denied" on some directories or
files.

If you do not find any clues, please contact your local support center with log.txt attached.

Invalid installation directory
The fastcgi does not start the Genero Application Server and displays "Invalid installation directory".

Examine two items:

• The FGLASDIR environment variable must be set to the Genero Application Server installation
directory.

• The Genero Application server may have been installed by a different user than the one starting the
fastcgi (typically, the user owning the web server process). To start the Genero Application Server, the
user needs permissions on the Genero Application Server log directories and $FGLASDIR/tmp.

Applications all down at the same time

The GAS is probably down. You can find some clues in:

• GAS logs (See Table 5: appdata directories and files on page 40 for details on the location of log files)
• Web server logs

One reason could be a cron or a script that periodically shuts down and restarts the web server. For
example, in the Apache log_error file you can find messages like:

... [notice] SIGUSR1 received. Doing graceful restart

... [error] [client xx] (4)Interrupted system call: FastCGI: comm with
server "/opt/gas/bin/wrapper.fcgi" aborted: poll() failed
... [error] [client xx] FastCGI: incomplete headers (0 bytes) received
from server "/opt/gas/bin/wrapper.fcgi"

Apache received a SIGUSR1 signal. If you search through the error_log, you might have the message
daily at the same hour. This is probably due to logrotate (see /etc/logrotate.d).

In order to archive the logs, logrotate asks Apache to restart gracefully, so it shuts down the fastcgi, the
dispatcher and all Genero applications. You can check if it is really the culprit by using this command (or an
equivalent one):

/etc/cron.daily/logrotate --force /etc/logrotate.d/apache2

To solve, amend your logrotate to process when Apache stops, or at night, or save the logs of the previous
day so that you can archive the logs without stopping Apache.

Restarting the FastCGI dispatcher

To restart fastcgidispatch, use:

kill -9

Configuring the Genero Application Server | 91

Once the web server restarts the dispatcher, the dispatcher uses the session table to reconnect to the
various proxies. The applications are still maintained by proxies, are still running, and once the dispatcher
is relaunched, the user can continue his or her work.

Ctrl + C or sending SIGTERM will stop the standalone dispatcher, and in both cases the dispatcher
will request all proxies to stop.The fastcgi dispatcher will stop sessions on Ctrl-C as well if started in
standalone mode - but not on SIGTERM.

With kill -9 the dispatcher process is killed yet the sessions remain alive and untouched. When the
dispatcher is restarted, the sessions continue to be active.

Java™ Servlet Installation and Web Server Configuration
Details around the Java™ Servlet installation and Web Server configuration.

• Using the GAS Java dispatcher on page 91
• Building the Java Web Archive (WAR) on page 91
• Deploying on a Java Web Server on page 92
• Restarting the J2EE dispatcher on page 93

Using the GAS Java™ dispatcher
A default Java™ dispatcher called java-j2eedispatch is configured by default to use the Genero
Application Server.

The Genero Application Server can be deployed on any Java™ server supporting servlets (such as
Tomcat, WebSphere®, GlassFish or JBoss) and be able to use the java-j2eedispatch dispatcher.

Note: Make sure you are using a Java™ servlet container compatible with J2EE Servlet API v.3.0
or above.

The Java™ servlet dispatcher, java-j2eedispatch, is located in $FGLASDIR/war. It provides the same
functionality as the other GAS dispatchers, see GAS Dispatchers on page 263.

URLs used to access the Java™ dispatcher depends on the port number configured for the Java™ server
and the servlet name defined in the Java™ servlet deployment file (web.xml), but typically will have the
following form:

http://host:port/java-j2eedispatch/ua/r/app_name

For example:

http://localhost:6394/java-j2eedispatch/ua/r/gwc-demo

Typically no configuration is necessary, unless you make changes to the default location of the Genero
Application Server installation, for example the configuration file (default as.xcf). Then you will need to
reconfigure and redeploy the new Java™ servlet configuration as detailed in the topics in this section:

• Building the Java Web Archive (WAR) on page 91
• Deploying on a Java Web Server on page 92

Building the Java™ Web Archive (WAR)
Changes to default locations of the GAS installation affect the Java™ servlet, which can be reconfigured by
building a new Java™ Web archive using the fglgar tool.

You will only need to perform the tasks described here if one or all of following changes have been made
to the default GAS installation:

• Change to the default location for the GAS installation directory (%FGLASDIR%).
• Change to the default location of the GAS configuration file (default %FGLASDIR%/etc/as.xcf).
• Change to the default name of the Java servlet and Java dispatcher (default java-j2eedispatch).

Configuring the Genero Application Server | 92

For example, the following step describes how to generate a Web archive for the Java™ Servlet and
dispatcher with the following GAS configuration:

• The Genero Application Server located at C:/usr/gas/3.00
• The GAS configuration file located at C:/conf/as.xcf
• The servlet and dispatcher named java-j2eedispatch

1. Rename the defaultJava™ servlet deployment file (default $FGLASDIR/war/WebContent/WEB-INF/
web.xml) to, for example, web.old

2. Create a copy of the default backup deployment file (default $FGLASDIR/war/WebContent/WEB-
INF/web.bak) to web.xml

Caution: Do not delete, rename, or make any modifications to web.bak. It may only be used to
make a copy.

3. Execute the fglgar command in the $FGLASDIR/war/WebContent directory replacing your options
for the settings for the GAS installation (--asdir) and configuration (--asxcf) for those shown in the
example:

fglgar --war --asdir C:\usr\gas\3.00 --asxcf C:\conf\as.xcf --output java-
j2eedispatch

Note: The name of the archive must match the servlet name set in the deployment file,
web.xml. For example, if the servlet is called java-j2eedispatch, generate a Web archive
called java-j2eedispatch.war. The fglgar tool does this automatically for you.

A Web archive, e.g. java-j2eedispatch.war, is created.

When you have completed building the Web archive in the above step, your next task is to deploy the new
Java Servlet. This is detailed in Deploying on a Java Web Server on page 92.

Deploying on a Java™ Web Server
Deploying a WAR on a Java™ Web server depends on the Java™ server; however it is relatively easy using
this procedure.

1. Using your browser, go to the Java™ Server manager web page.

2. In the deployment section, choose the java-j2eedispatch.war file (created previously, see Building the
Java Web Archive (WAR) on page 91) to download.

3. Click on the deploy button.

4. Check that java-j2eedispatch is available in the list of web applications, with a status of success.

5. In another browser tab, check that you can load the GAS demos page.

For example:

• http://host:port/java-j2eedispatch/demos.html
• http://host:port/java-j2eedispatch/ua/r/gwc-demo
• http://host:port/java-j2eedispatch/ws/r/Echo?WSDL

The application opens, and the Java™ dispatcher is ready to serve GAS requests, in accordance with the
as.xcf configuration file set.

Note: In case of failure, refer to your Java™ server war deployment guide.

Configuring the Genero Application Server | 93

Restarting the J2EE dispatcher
Restarting the Java™ servlet and Java dispatcher depends on the Java™ server; however it is relatively
easy using this procedure.

Restarting the java-j2eedispatch dispatcher depends on the J2EE Server. Typically, there is a simple
Web interface to deploy and undeploy the war files. Please consult your J2EE Server manual about how to
restart.

Note: When you restart Java servlet and Java dispatcher, the session tables, which are stored in
memory, are lost. As a result, it is not possible to recover applications after a restart.

1. Using your browser, go to the Java™ Server manager web page.

2. To stop the java-j2eedispatch dispatcher, select the option to undeploy the war file

3. To restart, select the option to deploy the war file as detailed in Deploying on a Java Web Server on
page 92.

4. Check that java-j2eedispatch is available in the list of web applications, with a status of success.

5. In another browser tab, check that you can load the GAS demos page.

For example:

• http://host:port/java-j2eedispatch/demos.html

The application opens in a browser, and the Java™ dispatcher is ready to serve GAS requests.

Note: In case of failure, refer to your Java™ server war deployment guide.

Validating configuration files
The Genero Application Server provides XML Schema Definition (XSD) files, which can be used to validate
your Genero Configuration Files (XCF) in Genero Studio or well as any enhanced XML editor.

By default, Genero Studio is configured to support all Genero Application Server configuration grammar.

• What is an XML Schema Definition file? on page 93
• Why specify the XML Schema Definition file? on page 93
• Validating with the gasadmin tool on page 94
• Selecting an XML editor on page 94

What is an XML Schema Definition file?
An XML Schema Definition (XSD) describes the structure of an XML document.

An XML Schema defines the building blocks of the XML document. An XSD describes the elements and
attributes that can appear in a document, the data types for elements and attributes, the number of (and
order of) child elements, as well as default and fixed values for elements and attributes.

XSD is fully recommended by W3C consortium as a standard for defining an XML document, and has
replaced the use of Document Type Definition (DTD) files. For more information on XSD, please refer to
the W3C consortium web site at http://www.w3.org.

Why specify the XML Schema Definition file?
When you create a configuration file for the Genero Application Server or for an application, you provide
the path to an XML schema definition file (xsd).

• In the GAS configuration file (as.xcf by default), this entry exists:

xsi:noNamespaceSchemaLocation="http://www.4js.com/ns/gas/3.00/cfas.xsd"

http://www.w3.org

Configuring the Genero Application Server | 94

• For external application configuration files, this entry should exist:

xsi:noNamespaceSchemaLocation="http://www.4js.com/ns/gas/3.00/cfextwa.xsd"

These references to an XML schema definition file are used by XML editors, in order to provide validation
and syntax hints while editing the configuration files. The XML editor either looks on the Web or in its local
schemas catalog for the specified XML schema definition file.

While the Genero Application Server validates the configuration files, it does not rely on these entries
within the configuration files themselves. The validation is completed by the dispatcher using the schemas
provided in $FGLASDIR/etc.

Validating with the gasadmin tool
Some options that can prove useful in validating the GAS configuration file with the gasadmin command.

--configuration-check

The configuration-check option validates the GAS configuration file and exits. Errors are displayed to error
output.

--configuration-explode

The configuration-explode option explodes the GAS configuration file into separate files, one for each
application, which are then stored in the temporary directory defined by the res.path.tmp resource
of the GAS configuration file (see GAS configuration file on page 289). Each file lists the entire
configuration for an application, expanding the inherited components.

<EXECUTION>
<ENVIRONMENT_VARIABLE Id="FGLDIR">$(res.fgldir)</ENVIRONMENT_VARIABLE>
<ENVIRONMENT_VARIABLE Id="GREDIR">$(res.gredir)</ENVIRONMENT_VARIABLE>
<ENVIRONMENT_VARIABLE Id="PATH">$(res.path)</ENVIRONMENT_VARIABLE>
<ENVIRONMENT_VARIABLE Id="FGLLDPATH">$(res.fglldpath)</ENVIRONMENT_VARIABLE>
<PATH>$(res.path.fgldir.demo.services)/calculator/server</PATH>
...
</EXECUTION>

--configuration-expand-resources

The configuration-expand-resources option expands the GAS configuration file's resource elements and
replaces them with real values. Can be used in combination with --configuration-explode or --
configuration-explode-external options to expand components of the configuration file.

<EXECUTION>
<ENVIRONMENT_VARIABLE Id="FGLDIR">C:\4js\fgl</ENVIRONMENT_VARIABLE>
<ENVIRONMENT_VARIABLE Id="GREDIR">#!GREDIR!#</ENVIRONMENT_VARIABLE>
<ENVIRONMENT_VARIABLE Id="PATH">C:\Windows;C:\4js\gas\2.50.34\bin;#!GREDIR!#
\bin;C:\4js\fgl\bin;C:\4js\fgl\lib</ENVIRONMENT_VARIABLE>
<ENVIRONMENT_VARIABLE Id="FGLLDPATH">C:\4js\gas\2.50.34\lib;#!GREDIR!#
\lib;C:\4js\fgl\lib</ENVIRONMENT_VARIABLE>
<PATH>C:\4js\fgl/demo/WebServices/calculator/server</PATH>
...
</EXECUTION>

Selecting an XML editor
With a good XML editor, you can validate your configuration files.

With a good XML editor, you can:

1. Check that your XML file is well-formed.
2. Validate your XML file against the referenced XML Schema Definition file.
3. Add new elements with completion assistance.

Configuring the Genero Application Server | 95

Genero Studio can be used to write and edit configuration files for the Genero Application Server, using the
XML Schema Definition referenced in the file to validate.

Any XML editor that use the XML Schema Definition file (xsd) to validate the XML is a valid candidate. Any
search for "XML editor" will return a long list of such XML editors. One well-known XML editor is Altova
XML (XML Spy). A fuller list of tools can be found on the XML Schema page of the W3C consortium, under
Tools (http://www.w3.org/XML/Schema).

Configuring applications on GAS
Understand the options available for configuring and deploying applications on the GAS.

Note: For examples of how to get started with configuring, running, and deploying basic types of
applications on the GAS, please see GAS Quick Start Guide on page 15.

The topics in this section provide more options for delivering applications on the GAS.

• Application Configuration Overview on page 95
• Creating Abstract Applications on page 96
• Creating an application Group on page 96
• Create an application configuration file on page 98
• Using External Application Configuration Files on page 100
• Configure DVM environment variables on page 103
• Use a script to set the environment on page 104
• What if the application doesn't start? on page 104
• Next steps on page 105

Application Configuration Overview
To run an application, information must be provided to the Genero Application Server.

Much of this information is common across a set of applications. Rather than have you provide all the
information each time you configure an application, Genero supports the concept of inheritance. You define
abstract applications to hold the basic information that is common across your applications, and then you
configure your application to inherit the settings of the abstract application. There is no limit to the levels of
inheritance: an application can inherit from another application (abstract or not) that inherits from another
application, and so on. To inherit a base configuration from another application, you specify the other
application as the parent.

An abstract application is typically defined first. This abstract application is not executable. It is intended to
provide the baseline default configuration for other applications to inherit. You can create as many abstract
applications as you require. Abstract applications can inherit a default configuration from another abstract
application.

When configuring an application that is to be an executable, you can either provide the configuration
details in the GAS configuration file, or you can create a separate application-specific configuration, see
Create an application configuration file on page 98 (one per application).

When you add the application to the GAS configuration file, you must restart the GAS for the application
to be recognized. When you create an external application configuration file and add the file into a defined
GROUP directory, see Creating an application Group on page 96. The application is immediately
available without having to do a GAS restart.

http://www.w3.org/XML/Schema

Configuring the Genero Application Server | 96

Creating Abstract Applications
To simplify application configuration, an application can specify a parent application to provide a default
configuration for the application.

An abstract application is not an executable application. It is only intended to be a parent application,
providing configuration defaults for executable applications. You should create your own abstract
application and use it as the parent for a set of programs that share common configurations.

Tip: If you use this inheritance mechanism efficiently, you can configure new applications with only
a few entries in the configuration file.

Important: Abstract applications can only be defined in the GAS configuration file. They cannot be
defined using an external application configuration file.

Default Genero Web Client abstract application

The default application for the Genero Web Client (GWC) is found in the Genero Application Server
configuration file.

<!--This is the default application for GWC-->
<APPLICATION Id="defaultgwc" Parent="defaultwa" Abstract="TRUE">
 <OUTPUT Rule="UseGWC">
</APPLICATION>

1. This application inherits the configuration of the defaultwa abstract application, also defined in the
GAS configuration file.

2. To specify an abstract application, set the Abstract attribute to TRUE.
3. The OUTPUT Rule identifies which Front End is used to display the application, as set in the

defaultwa abstract application. In this case the front end target is the Web client, GWC-JS.

Example for Web services abstract application

<APPLICATION Id="ws.default" Abstract="TRUE">
 <EXECUTION Using="cpn.ws.execution.local"/>
 <TIMEOUT Using="cpn.ws.timeout.set1"/>
</APPLICATION>

Creating an application Group
A group defines an alias for a directory where application configuration files can be stored. The alias
is used in the application URL, letting the Genero Application Server (GAS) know where to find the
application configuration file.

A group consists of an alias (Id) and a directory (path). When a front-end requests an application whose
configuration information is stored in an external application configuration file, it provides the group alias,
which directs the GAS to the directory where the application configuration file sits. The application name
identifies which application configuration file to read (as the application and the configuration file share the
same name). A GROUP element can be added to the APPLICATION_LIST component within the GAS
configuration file.

Syntax

<GROUP Id="groupId">path</GROUP>

1. groupId is the alias
2. path is the physical path to the directory

Configuring the Genero Application Server | 97

Usage

You can use application groups to organize your applications into logical groups or a hierarchy. For
example, consider this URL:

http://<server>/gas/ua/r/accounting/app1

In this URL, both a group (accounting) and an application name (app1) are specified. The GAS,
on receiving this application request, uses the group alias to identify the directory holding the external
application configuration file:

<GROUP Id="accounting">/path/config/accounting</GROUP>

In this directory, the GAS expects to find a file whose name matches the name of the application with an
xcf suffix. For this example, the GAS would be looking for a file named app1.xcf.

The default group

The GAS configuration file provides a default group, defined using the name _default. When an
application configuration file is added to this group, the application URL can omit using a group name and
simply reference the application. For example, consider this URL:

http://server/gas/ua/r/Edit

The application URL does not specify a group, and the Edit application is not defined internally. It must
therefore be defined in an external application configuration file, located in the directory defined for the
_default alias.

<GROUP Id="_default">$(res.path.app)</GROUP>

The resource $(res.path.app) resolves to appdata/app, appdata is described in GAS directories
on page 38. In this directory, you would expect to find Edit.xcf, the Edit application's application
configuration file.

Example 1: "myapp" group defined by path to directory

<GROUP Id="_default">$(res.path.app)</GROUP>
<GROUP Id="myapp">$(res.path.app)/myapp</GROUP>

Example 2: "demo" group defined by resource

<GROUP Id="demo">$(res.path.demo.app)</GROUP>

This example assigns the alias demo to the directory containing the external application configuration files
for demo applications. The path is defined using the resource $(res.path.demo.app). By wisely using
a resource, a change to the directory structure only requires a change to a single RESOURCE element in the
configuration file.

To access an application that has its configuration file stored in the group directory, enter an application
URL that includes the group alias in its path: http://server/gas/ua/r/demo/CardStep1

Based on this URL, the GAS would expect to find the configuration file CardStep1.xcf within the
directory specified for the demo group.

Configuring the Genero Application Server | 98

Create an application configuration file
An application configuration file provides the Genero Application Server with the information needed to
run an application. It becomes available for use as soon as it is created and added to a recognized group
directory.

Once you have created an application, you need to configure it so that it can be executed by the Genero
Application Server. For this you need to create an application configuration file. Typically, the name of the
file matches the name of the application and has an xcf suffix. For example, if the application name was
"app1", create a configuration file named app1.xcf.

Save the file in a defined GROUP directory. By default, the directory where the GAS searches for external
application configuration files is defined in the GAS configuration file (default as.xcf) by the tag <GROUP
Id="_default">directory</GROUP>. You can specify alternate directories; see GROUP (for an
application) on page 318 or GROUP (for a service) on page 319.

The configuration file defines an application environment, and starts with the Application element.
Within this element, you can define local resources, change the execution environment, the timeout
settings, the image, and output settings. You can refer to previously defined components by using the tag
attribute Using.

The organization of the elements within the application configuration file depend on the type of application.
See Application configuration files on page 289.

These examples show some well-formed external application configuration files.

Example 1 - A simple application configuration file

The simplest application configuration file specifies a parent application and the path to the compiled
application files. The application inherits the configuration of the parent application. The file is named
appname.xcf, where appname is the name of the application.

<APPLICATION Parent="defaultgwc">
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="http://www.4js.com/ns/gas/3.00/
cfextwa.xsd">
 <EXECUTION>
 <PATH>$(res.path.fgldir.demo)/Widgets</PATH>
 </EXECUTION>
</APPLICATION>

In this example, the external application configuration file Edit.xcf provides a configuration for the Edit
application. Things to note:

1. The application name is the name of the configuration file. The GAS uses the configuration file name
to identify the application. The Id attribute of <APPLICATION> element is omitted; even if included, its
value is not read.

2. The application configuration file is re-read at each application launch. There is no need to restart the
GAS after modifying an application configuration file.

3. In this example, the Parent application is defaultgwc. A parent application is an abstract application
that must be defined in the GAS configuration file. It provides default component configurations, which
applications can inherit. See Creating Abstract Applications on page 96.

4. The path to the application executables is defined by the PATH component. See PATH (under
EXECUTION) on page 332.

5. The MODULE element can specify the name of the .42r module to run. If the module name is the same
as the configuration file name, the MODULE element is not necessary, the module name used is the
name of the application. See MODULE on page 329.

Configuring the Genero Application Server | 99

Example 2 - Specifying a custom GWC-JS directory

While an application inherits its base configuration from the parent application, additional configuration
elements can be added and existing configuration elements can be overwritten.

This next example configuration file is for a GWC-JS Web application.

<APPLICATION Parent="defaultgwc">
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="http://www.4js.com/ns/gas/3.00/
cfextwa.xsd">
 <EXECUTION>
 <PATH>$(res.path.fgldir.demo)/Widgets</PATH>
 </EXECUTION>
 <!-- Override the default gwc-js with gwc-js-custom-->
 <UA_OUTPUT>
 <PROXY>$(res.uaproxy.cmd)</PROXY>
 <PUBLIC_IMAGEPATH>$(res.public.resources)</PUBLIC_IMAGEPATH>
 <GWC-JS>gwc-js-custom</GWC-JS>
 <TIMEOUT> Using="cpn.wa.timeout"</TIMEOUT>
 </UA_OUTPUT>
 </APPLICATION>

1. The UA_OUTPUT on page 354 element provides configuration details for applications rendered by
the UA proxy.

2. The GWC-JS on page 319 element provides the directory name gwc-js-custom for the customized
project, for more information on customization see Configuring your Environment on page 198.

Example 3 - Specifying the use of the HTML5 theme (and other overrides)

This next example is of a hypothetical external application configuration file, tutorialStep1.xcf, for a
GWC-HTML5 Web application.

Note: The GWC-HTML5 Web client has been deprecated; new development should use the GWC-
JS instead.

<APPLICATION Parent="demo-tut-abstract">
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="http://www.4js.com/ns/gas/3.00/
cfextwa.xsd">
 <!-- Define a resource to the template HTML file -->
 <RESOURCE Id="res.template.tutorial"
 Source="INTERNAL">$(res.path.demo.dem-tut)/web/tutorial/
tutorialStep1.html
 </RESOURCE>
 <EXECUTION>
 <PATH>$(res.path.demo.dem-tut)/src</PATH>
 <MODULE>tutStep1.42r</MODULE>
 </EXECUTION>
 <!-- Override default rendering template -->
 <OUTPUT>
 <MAP Id="DUA_HTML5">
 <THEME>
 <TEMPLATE Id="_default">$(res.template.tutorial)</TEMPLATE>
 </THEME>
 <OUTPUT>
 </APPLICATION>

1. The Parent attribute of the APPLICATION element defines the parent application as "demo-tut-
abstract". The child application inherits the configuration elements defined by the parent application.

2. The RESOURCE element defines a local resource. This resource maps to a template file. See
RESOURCE (for an application) on page 343.

Configuring the Genero Application Server | 100

3. The PATH element lists the path to the executable. See PATH (under EXECUTION) on page 332.
4. The MODULE elements provide the path and file name of the program executable. The MODULE element

is often excluded, when the executable name matches the application name as provided in the URL.
In this example, had the external application configuration file been named "tutStep1.xcf", then the
MODULE element could have been excluded. See MODULE on page 329.

5. The Id attribute of the MAP element defines the output map as DUA_HTML5. This means that the
application will use the deprecated GWC for HTML5 theme. See MAP on page 327.

6. The TEMPLATE element overrides the default template (Id="_default") with the template defined by
the resource "$(res.template.tutorial)". Recall that this resource was defined at the start of this
file using a RESOURCE element. See TEMPLATE on page 350.

Using External Application Configuration Files
To configure an application with an external application configuration file, you provide the same
configuration details that you would for adding the application directly in the Genero Application Server
configuration file (as.xcf), however you write the configuration XML in a separate file, where the file name
matches the name of the application.

For example, to create an external application configuration file for a program named gwc-demo, you
would:

1. Add a file named gwc-demo.xcf. You must use the xcf suffix.
2. Place the file in a GROUP directory, as defined in the Genero Application Server configuration file.

• Configuring Web client applications on page 100
• Configuring applications for Web service on page 101
• Configuring GDC applications on page 102

Configuring Web client applications
What do you need to configure a Genero Web Client application?

To add an application for GWC-JS, you need to specify:

• An application Id (a unique name for this APPLICATION element)

Note: Applications defined in the GAS configuration file require an Id attribute. For external
configuration files, if the application and the configuration file share the same name, there is no
need to specify the Id attribute.

• The parent application from which to inherit configuration details (defaultgwc in this example)
• The path to the compiled application files
• The name of the application to launch
• The access control allowing access (optional)
• The customization project directory to use for the application user interface look and feel (if using a

customized project)

Example: simple application for GWC-JS Web client

<APPLICATION Id="gwc-demo" Parent="defaultgwc">
 <EXECUTION>
 <PATH>$(res.path.fgldir.demo)</PATH>
 <MODULE>demo.42r</MODULE>
 </EXECUTION>
</APPLICATION>

1. The application inherits the configuration settings of its parent ("defaultgwc" in this example).
2. The path used in this example is a RESOURCE; you could also use the absolute path name leading to

your application files.
3. The MODULE contains the name of the application to launch.

Configuring the Genero Application Server | 101

Example: gwc-demo-external.xcf

The main differences between this example and the example shown in Example: simple application for
GWC-JS Web client on page 100 are the lack of the Id attribute and the reference to the XML schema.

<APPLICATION Parent="defaultgwc"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="http://www.4js.com/ns/gas/3.00/cfextwa.xsd">
 <EXECUTION>
 <PATH>$(res.path.fgldir.demo)</PATH>
 <MODULE>demo.42r</MODULE>
 <ACCESS_CONTROL>
 <ALLOW_FROM>$(res.access.control)</ALLOW_FROM>
 </ACCESS_CONTROL>
 </EXECUTION>
 <UA_OUTPUT>
 <PROXY>$(res.uaproxy.cmd)</PROXY>
 <PUBLIC_IMAGEPATH>$(res.public.resources)</PUBLIC_IMAGEPATH>
 <GWC-JS>gwc-dev</GWC-JS>
 <TIMEOUT> Using="cpn.wa.timeout"</TIMEOUT>
 </UA_OUTPUT>
</APPLICATION>

1. The ALLOW_FROM on page 300 element specifies from what hosts access is allowed, the example
here is defined in a RESOURCE.

2. The GWC-JS on page 319 configuration element, specifies the customization project directory you
used to provide the application look-and-feel. See Customization for GWC-JS applications on page
189.

Configuring applications for Web service
Create a separate application configuration (xcf) file for each Web services application.

What do you need to configure a Genero Web Service application?

To add an application for a Genero Web Service, you need to specify:

• Your application Id

Note: Applications defined in the GAS configuration file require an Id attribute. For external
configuration files, if the application and the configuration file share the same name, there is no
need to specify the Id attribute.

• The parent application where the main configuration is set (in this example, ws.default)
• The path to your compiled files
• The main module to launch
• The access control allowing access (optional)
• The number of DVMs (fglrun) to start for this Web Service when the GAS starts, and the minimum

and maximum number of DVMs allowed.

Example: simple Web service application

In the following example the configuration is for a Web service defined in the GAS configuration file. The
PATH is a resource. The path can also be an absolute path to your application files. This configures a
GWS server that any Web service client can connect to.

<APPLICATION Id="calculator" Parent="ws.default">
 <EXECUTION>
 <PATH>$(res.path.fgldir.demo)/WebServices/calculator/server</PATH>
 <MODULE>calculatorServer</MODULE>
 </EXECUTION>
</APPLICATION>

Configuring the Genero Application Server | 102

1. The application inherits the configuration settings of its parent ("ws.default" in this example).
2. The path used in this example references a RESOURCE root for demo applications; you could also use

the absolute path name leading to your application files.

Example: Web Service Calculator.xcf

In the following example, if the file was named "Calculator.xcf, then this configuration file would accomplish
the same task as when included in the GAS configuration file as in the example in Example: simple Web
service application on page 101. The main differences are the lack of the Id attribute and the reference to
the XML schema.

Note: Because a DVM can have several services defined in it, the Web Service DVM is an
application. The services defined inside are still named service. The published functions are named
operations.

<APPLICATION Parent="ws.default"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="http://www.4js.com/ns/gas/3.00/
cfextws.xsd">
 <EXECUTION>
 <PATH>$(res.path.fgldir.demo)/WebServices/calculator/server</PATH>
 <MODULE>calculatorServer</MODULE>
 <ACCESS_CONTROL>
 <ALLOW_FROM>$(res.access.control)</ALLOW_FROM>
 </ACCESS_CONTROL>
 <POOL>
 <START>0</START>
 <MIN_AVAILABLE>0</MIN_AVAILABLE>
 <MAX_AVAILABLE>1</MAX_AVAILABLE>
 </POOL>
 </EXECUTION>
</APPLICATION>

1. The ALLOW_FROM on page 300 element specifies from what hosts access is allowed, the example
here is defined in a RESOURCE.

2. The POOL on page 337 element specifies the number of DVMs to start for this Web Service when
the GAS starts. In this example zero DVMs at start means the Web service is not set to start with the
GAS. And the maximum allowed is one DVM.

This example file can be found in $FGLDIR/demo/WebServices. In conjunction with the Example 2:
"demo" group defined by resource on page 97 definition, to access the WSDL of this demo, you can use
this kind of URL:

http://appserver:6394/ws/r/demo/calculator?WSDL

See Accessing the Web Service (Web Services URI information) on page 214.

Configuring GDC applications
What do you need to configure a Genero Desktop Client (GDC) application?

To add an application for GDC, you need to specify:

• An application Id (a unique name for this APPLICATION element)

Note: Applications defined in the GAS configuration file require an Id attribute. For external
configuration files, if the application and the configuration file share the same name, there is no
need to specify the Id attribute.

• The parent application from which to inherit configuration details ("defaultgdc" in this example)
• The path to the compiled application files
• The name of the application to launch
• The access control allowing access (optional)

Configuring the Genero Application Server | 103

Example: simple configuration for GDC application
In the following example the configuration is for a GDC application defined in the GAS configuration file.

<APPLICATION Id="my-app" Parent="defaultgdc">
 <EXECUTION>
 <PATH>$(res.path.fgldir.demo)</PATH>
 <MODULE>demo.42r</MODULE>
 </EXECUTION>
</APPLICATION>

1. The application inherits the configuration settings of its parent ("defaultgdc" in this example).
2. The path used in this example is a RESOURCE; you could also use the absolute path name leading to

your application files.
3. The MODULE contains the name of the application to launch.

Example: gdc-demo-external.xcf

This external configuration file would accomplish the same task as the Example: simple configuration for
GDC application on page 103 that is defined in the GAS configuration file. The only differences are the
lack of the Id attribute and the reference to the XML schema.

<APPLICATION Parent="defaultgdc"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="http://www.4js.com/ns/gas/3.00/cfextwa.xsd">
 <EXECUTION>
 <PATH>$(res.path.fgldir.demo)</PATH>
 <MODULE>demo.42r</MODULE>
 <ACCESS_CONTROL>
 <ALLOW_FROM>$(res.access.control)</ALLOW_FROM>
 </ACCESS_CONTROL>
 </EXECUTION>
</APPLICATION>

The ALLOW_FROM on page 300 element specifies from what hosts access is allowed, the example here
is defined in a RESOURCE.

Configure DVM environment variables
The application configuration file can be used to define environment variables for the DVM.

Environment variables are set with ENVIRONMENT_VARIABLE elements in the application configuration
file.

Syntax

<ENVIRONMENT_VARIABLE Id="env_var">env_value</ENVIRONMENT_VARIABLE>

1. env_var is the environment variable name.
2. env_value is the value used to set the variable name.

Example

Example (using Informix® database client):

<APPLICATION Id="myapp" Parent="defaultgwc">
 <EXECUTION>
 <ENVIRONMENT_VARIABLE Id="DBDATE">DBMY4/</ENVIRONMENT_VARIABLE>
 <ENVIRONMENT_VARIABLE Id="FGLRESOURCEPATH">/home/myapp/resources</
ENVIRONMENT_VARIABLE>

Configuring the Genero Application Server | 104

 <ENVIRONMENT_VARIABLE Id="INFORMIXDIR">/opt/informix</
ENVIRONMENT_VARIABLE>
 <ENVIRONMENT_VARIABLE Id="INFORMIXSERVER">ORION</ENVIRONMENT_VARIABLE>
 <ENVIRONMENT_VARIABLE Id="LD_LIBRARY_PATH">/opt/informix/lib:...</
ENVIRONMENT_VARIABLE>
 <PATH>/home/myapp/bin</PATH>
 <MODULE>app.42r</MODULE>
 </EXECUTION>
</APPLICATION>

For more details, see ENVIRONMENT_VARIABLE on page 314.

Use a script to set the environment
Specify a command script for the application to launch the application.

Alternatively to the ENVIRONMENT_VARIABLE elements, you can use the DVM element to define a
command that will set the environment and launch the application.

On UNIX platforms, use the DVM element to define a shell command that will execute a shell script defined
with the MODULE element:

<APPLICATION Id="kiosk" Parent="defaultgwc">
 <EXECUTION>
 <PATH>/home/f4gl/gep/configfiles/officestoredemo</PATH>
 <DVM>/bin/sh</DVM>
 <MODULE>gdc-kiosk.sh</MODULE>
 </EXECUTION>
</APPLICATION>

1. PATH element defines where the script is stored.
2. DVM element defines the command to execute the shell script defined in MODULE.
3. MODULE element defines the shell script file.

On Windows platforms, use the DVM element to define a .BAT command file, including environment
settings and program execution:

<APPLICATION Id="myprog" Parent="defaultgdc">
 <EXECUTION>
 <PATH>$(res.fgldir)/demo</PATH>
 <DVM>c:\myprog\launch.bat</DVM>
 </EXECUTION>
</APPLICATION>

1. PATH element defines where the script is stored.
2. DVM element defines the BAT command to be executed.

What if the application doesn't start?
What to do when you request an application and it does not start.

The first thing to check is the configuration information - to ensure that all components are set properly.

• Check your environment variables in $FGLASDIR/etc/as.xcf.
• The Genero Application Server creates separate log files for its dispatchers, proxies, and the DVMs

started by those proxies. Examine the logs as they may provide you with some helpful information or
error messages. For more information about accessing log files see Logging on page 156

• To troubleshoot and debug an application, you may need to run it in debug mode using the FGL
debugger, i.e. fglrun -d. See Using the debugger on page 157.

Note:

Configuring the Genero Application Server | 105

• You can use the graphical debugger in Genero Studio. For more information, see the Genero
Studio User Guide.

• The debug facility of the Genero Desktop Client includes logging and the debug console.
For more information on using the GDC debug facility, see the Genero Desktop Client User
Guide.

• For details about debugging GWC-JS applications, see Configuring development
environment on page 147.

When you receive the Error: Runtime error. Try again ... page

Simply put, your application cannot start and you must check your application configuration. This error is
typically the result of an incorrect path to the program executable.

Next steps
Other topics provide more details on application configuration and deployment.

See also:

• Developing Web applications on page 173
• Adding a Web Services Application
• Quick start: deploying applications on page 218
• Application List Reference

How to implement delegation
The GAS is able to delegate the start of a web application or a web service to another Genero REST
service in order to perform some controls before granting access and starting the application.

• How delegation works on page 105
• Configure delegation for application or service on page 107
• From the user agent to the REST service on page 108
• From the REST service to the proxy on page 110
• REST service example on page 111
• Delegation use cases on page 114

How delegation works
This section gives details about the delegation process.

Following steps are performed when an delegation occurs:

1. An application or web service start is requested. The type of request is defined by the /ua/r, /wa/r, /
ja/r, or /ws/r path segments in the URI.

2. The Genero Application Server dispatcher passes the request to the REST service identified as the
delegation service. The delegation service is specified in the application's configuration. The delegation
service is written in Genero and managed by the Genero Application Server as a standard REST Web
service. The delegation service should reside on the same GAS as the application.

3. The REST service instructs the Genero Application Server to either:

• Refuse the start of the application or service.
• Allow the start the application. The delegate service is able to add some environment variables to

give additional information to the allowed application.
• Allow for a service any request forwarded to it. All Web services requests are in /ws/r so they all go

to the delegate service.

Configuring the Genero Application Server | 106

The delegation REST service refuses the start of the application or service

In this scenario, the delegation REST service refuses the start of the application or service. The REST
service communicates with the user agent in HTTP using the com.HTTPServiceRequest object. For
example, it could return an XHTML form asking for a user name and password to grant access to the
application or service.

Figure 27: REST service communicates with User Agent but does not start the application or
service

In this figure:

• (1) Start a new application or service of the form /wa/r, /ja/r or /ws/r.
• (D) Delegate application or service start to the service described in the configuration file (xcf).
• (2) Forward the request to REST service for delegation process
• (A) REST program responds directly to the User Agent (with a login page, for instance).
• (3) (4) Response is sent back to the User Agent.

The delegation REST service allows the start of the application or service

In this scenario, the delegation REST service allows the start the application or service as if launched
directly from the user agent.

Configuring the Genero Application Server | 107

Figure 28: REST service approves application or service start

In this figure:

• (1) Start a new application or service of the form /wa/r, /ja/r, or /ws/r.
• (D) Delegate application or service start to the service described in the configuration file (xcf).
• (2) Forward request to REST service for delegation process
• (B) Genero REST program allows to start the proxy (login and password are correct, for instance).
• (3) (4) Response is sent back to the User Agent.
• (5) REST program response with HTTP code 307 and description string.
• (C) Dispatcher detects REST command and starts the proxy
• (6) Dispatcher forwards response from REST program to proxy
• (7) (8) Any request is forwarded to the proxy without going to the REST service (excepted for GWS that

starts a new delegation process).

To allow the application to start, the Genero REST service returns a specific HTTP code and description
to the dispatcher using the com.HTTPServiceRequest object. When the dispatcher gets such an HTTP
response from the REST service, it starts a new proxy and forwards the request to it, as if no delegation
had taken place.

Configure delegation for application or service
To delegate the start of an application or service to a Genero REST service, specify a DELEGATE element
in the EXECUTION component of your application or service.

The DELEGATE element requires an attribute called service. For the service attribute, specify the
Genero REST service that will be in charge of all delegated requests for the application or service. The
REST service must be correctly configured in the Genero Application Server.

Configuring the Genero Application Server | 108

You can define optional parameters for the REST service to be sent each time a starting request is
received. No validation is made for these optional parameters, the REST service must check them and
return an error when necessary.

Note: A starting request is a URL with /r. When you see an application URI with /sua, the
application has been validated and the delegation REST service is no longer involved. For more
information see Application URIs on page 49

Delegate configuration example

<EXECUTION>
 <PATH>$(res.path)</PATH>
 <MODULE>myApp.42r</MODULE>
 <DELEGATE service="MyGroup/MyDelegateService">
 <AnyParameter>MyFirstParameter</AnyParameter>
 <Other>MySecondParameter</Other>
 </DELEGATE>
</EXECUTION>

Parameters defined in the DELEGATE configuration, such as AnyParameter and Other
in this example, are transmitted to the REST service. See Passing parameters to the
REST service on page 108 for details on receiving the parameters in the REST service.

From the user agent to the REST service
Each request of the form /ua/r, /ja/r and /ws/r coming from the user agent are delegated to the
Genero REST service via its entry point.

REST service entry point

When a /ua/r, /ja/r or /ws/r request is delegated to the REST service, the dispatcher appends
the string /Delegate to the service URL in order to distinguish a dispatcher delegation from any other
standard REST request. In other words, if an application has delegation, the REST service is called with a
/Delegate appended in the URL.

IMPORT com
DEFINE req com.HTTPServiceRequest
...
LET req = com.WebServiceEngine.GetHttpServiceRequest(-1)
LET url = req.getUrl()
IF url.getIndexOf("/ws/r/RestGroup/RestService/Delegate",1)>1 THEN
 CALL HandleDelegation(req)
ELSE
 CALL HandleStandardService(req)
END IF
...

Passing parameters to the REST service

If parameters are defined in the DELEGATE configuration, they will be transmitted to the Genero REST
service at each /wa/r, /ja/r and /ws/r request as HTTP headers.

There is one HTTP header per parameter set in the configuration, and it is of the form X-FourJs-
Environment-Parameter-XXX where XXX is the parameter name and the parameter value is the HTTP
header value.

REST sample:

IMPORT com
DEFINE req com.HTTPServiceRequest

Configuring the Genero Application Server | 109

...
LET param1 = req.getRequestHeader("X-FourJs-Environment-Parameter-
AnyParameter")
DISPLAY param1 # Displays MyFirstParameter
LET param2 = req.getRequestHeader("X-FourJs-Environment-Parameter-Other")
DISPLAY param2 # Displays MySecondParameter
...

The sample is based on this configuration:

<EXECUTION>
 <PATH>$(res.path)</PATH>
 <MODULE>myApp.42r</MODULE>
 <DELEGATE service="MyGroup/MyDelegateService">
 <AnyParameter>MyFirstParameter</AnyParameter>
 <Other>MySecondParameter</Other>
 </DELEGATE>
</EXECUTION>

Passing the user agent URL to the REST service

When a /wa/r, /ja/r or /ws/r request is delegated to a REST service, the original URL is transmitted
to the service in the URL query string of the request.

For example, if the user types the following original URL in a browser:

http://host:port/ua/r/MyGrp/MyApp?P1=1&P2=2

The resulting URL passed to the delegation service will be:

http://localhost:port/ws/r/MyGroup/MyDelegateService/Delegate?
http://host:port/ua/r/MyGrp/MyApp?P1=1&P2=2

To process the request in the delegation service, if the service handles only delegation, you can directly
extract the original URL with the readFormEncodedRequest() method:

IMPORT com
...
DEFINE req com.HTTPServiceRequest
DEFINE original STRING
DEFINE url STRING
DEFINE query STRING
...
LET original = req.readFormEncodedRequest(false)
CALL SplitUrl(original) RETURNING url, query
DISPLAY url # http://host:port/ua/r/MyGrp/MyApp
DISPLAY query # P=1&P=2
...

If the service must also handle non-delegated requests, use the getURL() method to retrieve the REST
operation to perform. If the REST URL contains the "/Delegate" string, it is a delelation request and you
need to extract the original URL after the ? character. You can then check the original URL the user agent
wants to access, and extract potential parameters in its query string:

IMPORT com
...
DEFINE req com.HTTPServiceRequest
DEFINE url STRING
DEFINE rest_url STRING
DEFINE original STRING
DEFINE orig_url STRING

Configuring the Genero Application Server | 110

DEFINE query STRING
...
LET url = req.getURL()
CALL SplitUrl(url) RETURNING rest_url, original
CASE
 WHEN rest_url.getIndexOf("/Delegate",1)
 CALL SplitUrl(original) RETURNING orig_url, query
 DISPLAY orig_url # http://host:port/ua/r/MyGrp/MyApp
 DISPLAY query # P=1&P=2
 WHEN rest_url.getIndexOf("/GetCurstomerInfo",1)
 # Handle regular REST request
 ...
 OTHERWISE
 CALL req.sendTextResponse(400, NULL, "Invalid REST request")
END CASE
...

From the REST service to the proxy
The delegation REST service must notify the dispatcher when it approves the start of an application or
service.

Approve the proxy start

To approve the start of an application or a service proxy or the service forwarding (because if it is a web
service using delegation, the service may be already started), the Genero REST service must return the
following HTTP code and description: The HTTP return code must be 307 and the description must be the
string _GENERO_INTERNAL_DELEGATE_.

Returning this HTTP code and description notifies the dispatcher to start the application or service proxy as
the response to the current user-agent request.

IMPORT com
DEFINE req com.HTTPServiceRequest
...
CALL req.sendResponse(307,"_GENERO_INTERNAL_DELEGATE_")
...

Note: You can return a body from the REST service that is then transmitted to the proxy if original
incoming request was POST or PUT, otherwise body is skipped.

Passing parameters to the proxy

When you need to pass additional parameters to a starting proxy, you can do it via environment variables
that are then set in a gwc or gdc proxy environment before the dispatcher starts it. Each parameter must
be set in the HTTP header response when you specify the 307 HTTP return code. The HTTP header
name must be of the form X-FourJs-Environment-XXX where XXX is the name of the variable to pass
to the proxy and as HTTP header value, the value of the environment variable. Then, with a call to the
Genero function fgl_getenv(), you can retrieve them in your Genero program.

Passing parameters to a proxy is not possible for Web services requests, as the proxy is already started.
The only way to send the environment with a Web services request is through the HTTP header.

REST sample:

IMPORT com
DEFINE req com.HTTPServiceRequest
...
CALL req.setResponseHeader("X-FourJs-Environment-Hello","World")
CALL req.setResponseHeader("X-FourJs-Environment-Name","Georges")
CALL req.sendResponse(307,"_GENERO_INTERNAL_DELEGATE_")

Configuring the Genero Application Server | 111

...

Genero program sample:

MAIN
...
DISPLAY fgl_getenv("Hello") -- Displays "World"
DISPLAY fgl_getenv("Name") -- Displays "Georges"
...

REST service example
In this example, the REST service returns an HTTP error code 404 to the browser until the query string
contains the string ByPass.

When the GWC application is started, the parameter ACCESS is also set and can be retrieved in the
Genero program with fgl_getenv("ACCESS").

IMPORT COM
IMPORT XML

PRIVATE CONSTANT C_BASEURL = "/ws/r/qa-test/delegateService/"
PRIVATE CONSTANT C_X_FOURJS_ENVIRONEMENT_ = "X-FourJs-Environment-"
PRIVATE CONSTANT C_X_FOURJS_ENVIRONEMENT_PARAMETER_ =
 "X-FourJs-Environment-Parameter-"
PRIVATE CONSTANT C_GENERO_INTERNAL_DELEGATE = "_GENERO_INTERNAL_DELEGATE_"

MAIN
 DEFINE req com.HttpServiceRequest
 DEFINE methd STRING
 DEFINE url STRING
 DEFINE path STRING
 DEFINE query STRING
 DEFINE ind INTEGER
 DEFINE tmp STRING

 CALL com.WebServiceEngine.Start()

 WHILE TRUE
 TRY
 LET req = com.WebServiceEngine.GetHttpServiceRequest(-1)
 IF req IS NULL THEN
 EXIT WHILE
 ELSE
 LET url = req.getUrl()
 DISPLAY "URL : ",url
 LET methd = req.getMethod()
 CALL SplitUrl(url) RETURNING path, query
 DISPLAY "Incoming request: ",methd," path=",path," query=",query
 LET ind = path.getIndexOf(C_BASEURL,1)
 IF ind<1 THEN
 CALL req.sendResponse(400,"Invalid request")
 ELSE
 CALL DispatchService(req,path.subString(ind+C_BASEURL.getLength(),
 path.getLength()),query)
 END IF
 DISPLAY "Sent response: ",methd," path=",path," query=",query
 END IF
 CATCH
 EXIT WHILE
 END TRY
 END WHILE

Configuring the Genero Application Server | 112

END MAIN

FUNCTION DispatchService(req,path,query)
 DEFINE req com.HttpServiceRequest
 DEFINE path STRING
 DEFINE query STRING
 DEFINE ind INTEGER
 LET ind = path.getIndexOf("/",1)
 IF ind>0 THEN
 CALL req.sendResponse(400,"invalid path")
 ELSE
 CASE path
 WHEN "Delegate" # Handle a dispatcher delegate service
 CALL DelegateWA(req,query)
 OTHERWISE
 CALL req.sendResponse(400,"unknown service '"||path||"'.");
 END CASE
 END IF
END FUNCTION

#
Delegate WA service
If browser URL doesn't contain 'ByPass' in query string then return a 404
 error,
otherwise start GWC application

FUNCTION DelegateWA(req,query)
 DEFINE req com.HttpServiceRequest
 DEFINE query STRING
 DEFINE url STRING
 DEFINE queryString STRING
 DEFINE parameter STRING
 DEFINE ind INTEGER
 DEFINE ByPass BOOLEAN
 DEFINE q DYNAMIC ARRAY OF RECORD
 qname STRING,
 qvalue STRING
 END RECORD
 # Read requests
 LET query = req.readFormEncodedRequest(false)
 IF query IS NULL THEN
 CALL req.sendResponse(400,"no query string")
 ELSE
 LET ByPass = FALSE
 CALL SplitUrl(query) RETURNING url,queryString
 CALL ParseQueryString(queryString) RETURNING q
 # Check if user-agent query string has a ByPass string ?
 FOR ind=1 TO q.getLength()
 IF q[ind].qname="ByPass" THEN
 LET ByPass = TRUE
 END IF
 END FOR
 IF NOT ByPass THEN
 # return error
 CALL req.sendResponse(404,"ByPass is missing")
 ELSE
 # Set parameter for GWC application via enviroment variable: ACCESS=OK
 CALL req.setResponseHeader(C_X_FOURJS_ENVIRONEMENT_||"ACCESS","OK")
 # Start application with HTTP code 307
 CALL req.sendResponse(307,C_GENERO_INTERNAL_DELEGATE)
 END IF
 END IF

END FUNCTION

Configuring the Genero Application Server | 113

#
Parse given string and returns a dynamic array of the element inside the
query string
#
FUNCTION ParseQueryString(str)
 DEFINE str STRING
 DEFINE tkz base.StringTokenizer
 DEFINE token STRING
 DEFINE ind INTEGER
 DEFINE ret DYNAMIC ARRAY OF RECORD
 qname STRING,
 qvalue STRING
 END RECORD
 INITIALIZE ret TO NULL
 LET tkz = base.StringTokenizer.create(str,"&")
 WHILE (tkz.hasMoreTokens())
 LET token = tkz.nextToken()
 CALL ret.appendElement()
 LET ind = ind + 1
 CALL ExtractKeyValueFromQuery(token) RETURNING
 ret[ind].qname,ret[ind].qvalue
 END WHILE
 RETURN ret
END FUNCTION

#
Extract Key and Value from query string
#
FUNCTION ExtractKeyValueFromQuery(str)
 DEFINE str STRING
 DEFINE ind INTEGER
 LET ind = str.getIndexOf("=",1)
 IF ind>1 THEN
 RETURN str.subString(1,ind-1),str.subString(ind+1,str.getLength())
 ELSE
 RETURN str,NULL
 END IF
END FUNCTION

#
Splits an URL into path and query string parts

FUNCTION SplitUrl(url)
 DEFINE url STRING
 DEFINE ind INTEGER
 DEFINE query STRING
 DEFINE path STRING
 LET ind = url.getIndexOf("?",1)
 IF ind>1 THEN
 LET query = url.subString(ind+1,url.getLength())
 LET path = url.subString(1,ind-1)
 ELSE
 LET query = NULL
 LET path = url.subString(1,url.getLength())
 END IF
 RETURN path, query
END FUNCTION

Configuring the Genero Application Server | 114

Delegation use cases
Three examples of possible uses for the delegation mechanism.

Simple local authentication / authorization mechanism

You can develop a simple delegation service to authenticate and authorize users to have access to one or
several applications on the Genero Application Server.

The delegation service will respond to the request with an HTML form, asking for a user name and
password. In this case, HTTPS is required; otherwise the login and password will be sent in clear text.

A request with user name and password as parameters will be processed by the delegation service. The
service will check for the user name and password in its database. If the user name and password are
correct, a digest authentication will be created, stored in the database, and sent back to the user-agent in a
cookie. The delegation service will instruct the user agent to delegate on the same URL (so the user agent
will use its newly set cookie).

A request with a cookie will be processed by the delegation service. The cookie will be checked in the
database. The corresponding user id, as well as the user role (administrator, user, guest, and so on), will
be set as application parameters and the Genero Application Server will be instructed to allow the launch
of the application.

A simple local authentication / authorization mechanism is provided in the Genero Application Server
tutorials located at $FGLDIR/web_utilities/services/simplesso.

Authentication / authorization Single sign-on (SSO) mechanism

You can develop a delegation service to authenticate and authorize users to access one or more
applications on the Genero Application Server based on standard SSO services such as OpenID Connect
(see OpenID Connect SSO on page 115) or SAML (see SAML SSO on page 128).

The delegation service responds to a simple request for delegation to the SSO service, with reference to
the requested application.

A request with a cookie will be processed by the delegation service. The cookie will be checked by the
SSO service (by means specific to the SSO protocol). The corresponding user id and user role (as allowed
by the SSO protocol) will be set as application parameters and the Genero Application Server will be
instructed to allow the launch of the application.

Samples for implementing OpenID Connect and SAML authentication and authorization services are
provided in $FGLDIR/web_utilities/services, ready for you to use.

Monitoring or logging requests for a Genero Web service

You can develop a simple delegation service to monitor and log all requests to a given service. Each
request can be logged in a dedicated database by the delegation service. The Genero Application Server
can then be instructed to pass the request to the GWSProxy. The delegation for Web services is called
each time a request is sent to that service.

Note: For applications, logging is only performed at application start up.

How to implement Single sign-on (SSO)
You can add Single sign-on (SSO) to your applications to allow users to enter one name and password in
order to access multiple applications. Genero Application Server supports different kinds of Single sign-on.

• OpenID Connect SSO on page 115
• OpenID SSO on page 120
• SAML SSO on page 128

Configuring the Genero Application Server | 115

• How to implement custom single sign-on on page 138
• Connect to the application database with SSO on page 144

OpenID Connect SSO
OpenID Connect is a Single sign-on (SSO) protocol supported by the Genero Application Server. It is
based on a Genero REST service and is delivered in the Genero Web Services package under $FGLDIR/
web_utilities/services/openid-connect/.

OpenID Connect providers include Google and Microsoft. To learn more about OpenID Connect, see the
OpenID Connect web site.

The Genero OpenID Connect solution is supported on to the GAS delegation mechanism. See What is
delegation? on page 37.

OpenID Connect implementation creates a circle of trust between the Genero Application Server and an
OpenId Connect provider. This method may vary depending on the IdP, but typically it consists of the
following:

• Getting the OAuth2 PUBLIC and SHARED SECRET ID from the IdP to be used in Genero SSO
applications, see Quick start: Set up OpenID Connect in the GAS on page 115

• Providing the IdP redirect URL of the GAS to the IdP, see Add OpenID Connect SSO to Genero Web
application on page 117

• Quick start: Set up OpenID Connect in the GAS on page 115
• Configure GAS for OpenID Connect SSO on page 116
• Configure OpenID Connect identity on Google on page 116
• Add OpenID Connect SSO to Genero Web application on page 117
• Retrieve the OpenID Connect user identifier on page 117
• Authorization and OpenID Connect SSO on page 118
• Genero OpenID Connect FGLPROFILE on page 119
• Genero OpenID Connect log file on page 119

Quick start: Set up OpenID Connect in the GAS
Follow these steps to quickly set up OpenID Connect for your Genero Application Server and Genero Web
Client applications.

Before you begin, you must Configure GAS for OpenID Connect SSO on page 116.

In this quick start, you add OpenID Connect Single sign-on (SSO) to a Genero Web Client application, then
execute the application with SSO.

1. Add OpenID Connect SSO to a Genero Web Client application requiring SSO.

a) Add the DELEGATE element to all Genero Web Client applications requiring SSO

The first three parameters are mandatory:

• IDP : the provider of the IdP account (e.g. https://accounts.google.com)
• CLIENT_PUBLIC_ID : the OAuth2 public ID provided by the IdP
• CLIENT_SECRET_ID : the OAuth2 shared secret ID provided by the IdP
• SCOPE : (optional) the OpenID Connect attributes you want to get from the user at time of

authentication (e.g. email, phone, address).

<APPLICATION Parent="defaultgwc">
 <EXECUTION>
 <PATH>$(res.path.mypath)/myapplication</PATH>
 <MODULE> myapp.42r</MODULE>
 <DELEGATE service="services/OpenIDConnectServiceProvider">
 <IDP>https://accounts.google.com</IDP>
 <SCOPE>email</SCOPE>

http://openid.net/http://openid.net/connect/

Configuring the Genero Application Server | 116

 <CLIENT_PUBLIC_ID>XXXXXXXX.apps.googleusercontent.com</
CLIENT_PUBLIC_ID>
 <CLIENT_SECRET_ID>XXXXXX-XXXXXX</CLIENT_SECRET_ID>
 </DELEGATE>
 </EXECUTION>
 </APPLICATION>

2. Execute a Genero Web Client application with SSO.

a) Start your browser and enter the application URL.
You are prompted to enter your OpenID Connect credentials.

b) Click the signin button.
Your browser is redirected to the Identity Provider (IdP).

c) Enter your credentials.

If your credentials are valid, your browser is redirected to the Genero Web Client application. The
application can then get OpenID Connect user information through environment variables such as
OIDC_SUB.

Note: The fglrun process is executed in the context of the GAS operating system user.
For example, when using Apache, the program process will run in the context of the Apache
user.

The next time you start the same application - or any application delivered by the same Genero Application
Server - you will not be prompted for your credentials. The application will start and be authenticated by the
same OpenID Connect user.

Tip: Read all of the OpenID Connect topics in the Genero Application Server User Guide for details
on features provided by OpenID Connect SSO support in the Genero Application Server; including
attributes gathering or authorization control.

Configure GAS for OpenID Connect SSO
Follow these steps to configure the Genero Application Server for OpenID Connect Single sign-on (SSO).

1. Create an account with an OpenID Connect provider that will provide authentication services for you,
e.g. see Configure OpenID Connect identity on Google on page 116.

Through this one account, the IdP provides you with an authentication services that identifies to the
GAS the users that access your application. Add the public and shared secret ids obtained from the IdP
to your application's configuration files, see Add OpenID Connect SSO to Genero Web application on
page 117.

2. If the Genero Application Server is located behind a proxy, configure the proxy in the OpenID Connect
fglprofile file in $FGLDIR/web_utilities/services/openid-connect/res.

Remove the comment and set the correct value for the entry called proxy.http.location and
proxy.https.location.

3. Start your dispatcher (if not behind a web server).

Note: Genero OpenId Connect service requires HTTPS communication with the IdP. If needed,
you may have to configure SSL and CA authority in the fglprofile file. (see the Genero Business
Development Language User Guide for details).

The Genero Application Server is ready to use OpenID Connect SSO to authenticate end users.

Configure OpenID Connect identity on Google
Follow these steps to configure an OpenID Connect Single sign-on (SSO) identity on Google.

1. Go to the Google developer console page https://console.developers.google.com/)

2. Create a new project (or use an existing one)

3. From the project page select Credentials under APIs and auth

4. In the Credentials page, select Create new Client ID

This will open a new window where you can create a client identity and select a product.

https://console.developers.google.com/

Configuring the Genero Application Server | 117

a) Choose Web Application as product
b) In the Authorized JavaScript origins field, specify your JavaScript hostname (e.g.

https://host:port/gas)
c) In the Authorized redirect URIs fields, specify the URI redirection where the GAS

is listening for the response (i.e. https://host:port/gas/ws/r/services/
OpenIDConnectServiceProvider/oauth2callback)

The OAuth2 PUBLIC and SHARED SECRET IDs are displayed

Note: You will need to save these in your web service application configuration file.

You have now setup Google as your IdP for your web services to use OpenID Connect SSO.

Add OpenID Connect SSO to Genero Web application
Follow these steps to add OpenID Connect SSO to a Genero Web application.

This task must be performed in the .xcf application configuration file for the Genera Application Server.

Add <DELEGATE service="services/OpenIDConnectServiceProvider"> to the application
configuration (.xcf) file.

Add the DELEGATE tag to all Genero Web Client applications requiring Single sign-on (SSO), plus the
following 3 mandatory parameters :

• IDP : the IdP account (e.g. https://accounts.google.com)
• CLIENT_PUBLIC_ID : the OAuth2 public id from the IdP
• CLIENT_SECRET_ID : the OAuth2 shared secret id from the IdP
• SCOPE : (optional) the OpenID Connect attributes you want to get at authentication (e.g. email,

phone, address)

<?xml version="1.0"?>
<APPLICATION Parent="defaultgwc"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="http://www.4js.com/ns/gas/2.50/
cfextwa.xsd">
 <EXECUTION>
 <PATH>$(res.path.qa)/applications/myapp</PATH>
 <MODULE>App.42r</MODULE>
 <DELEGATE service="services/OpenIDConnectServiceProvider" >
 <IDP>https://accounts.google.com</IDP>
 <SCOPE>email</SCOPE>
 <CLIENT_PUBLIC_ID>XXXXXXXX.apps.googleusercontent.com</
CLIENT_PUBLIC_ID>
 <CLIENT_SECRET_ID>XXXXXX-XXXXXX</CLIENT_SECRET_ID>
 <DELEGATE>
 </EXECUTION>
</APPLICATION>

With the above configuration and default GAS configuration, the delegation will point to the $FGLDIR/
web_utilities/services/OpenIDConnectServiceProvider.xcf file.

For more information about the DELEGATE configuration element, see How to implement delegation on
page 105.

The Genero Application Server will handle the OpenID Connect protocol and start the Genero web
application only when the user has been authenticated, otherwise an HTML error page is returned.

Retrieve the OpenID Connect user identifier
Follow these steps to retrieve the OpenID Connect Single sign-on (SSO) user identifier in your Genero
application.

To retrieve the OpenID Connect user identifier, add this code to your Genero application:

Configuring the Genero Application Server | 118

Once the user has been successfully authenticate and before starting the proxy, the OpenID Connect
service sets all attributes coming from the IdP with the prefix OIDC_ . (OIDC stands for OpenID
Connect).

Note: Even if there are no attributes being sent by the IdP (maybe because the user has not
allowed the Google console API to send them), the OIDC_SUB attribute will always be available.
This attribute is an opaque value representing the user subject at IdP.

For example, if you set email in the SCOPE parameter of your application configuration (see Quick
start: Set up OpenID Connect in the GAS on page 115), you will have an attribute called OIDC_email
set that is then retrievable with the instruction : fgl_getenv("OIDC_email") in your application.

LET userEmail = fgl_getenv("OIDC_email")

Authorization and OpenID Connect SSO
Authorize whether a user already authenticated by OpenID Connect SSO can access a Genero
application.

The GAS must be configured for OpenID Connect Single sign-on (SSO). See Configure GAS for OpenID
Connect SSO on page 116.

With the Genero OpenID Connect implementation, you can add an external program to determine whether
an already authenticated user can access a Genero Web application.

This external program can be written in Genero or in another programming language.

The authorization program expects two mandatory arguments and the list of OpenID Connect attributes
received from the OpenID Connect provider:

access-program oidc-userid app-xcf-path [attribute value [...]]

• The first argument is the OpenID Connect identifier (typically an opaque value returned by the IdP)
• The second argument is the application path.
• Next arguments are optional and define OpenID attributes/value pairs.

Example with a Genero authorization program:

fglrun AccessProgram
 "101516043183449889392" \
 "qa-test/application" \
 "fullname" "genero test" \
 "email" "genero@4js.com" \
 "country" "France"

The application AccessProgram.4gl in $FGLDIR/web_utilities/services/openid-connect
provides an example of an authorization application written in Genero.

The external program is specified in the application configuration element by adding an AUTHORIZATION
element in the DELEGATE element.

If the AUTHORIZATION element is not defined, any user authenticated by an OpenID Connect provider can
access the Genero Web application. It is therefore recommended that you add an authorization program to
filter access to your applications.

Note: The external program must be deployed beside the OpenIDConnectServer.42r
program, because it will be executed by that service program. This is by default under $FGLDIR/
web_utilities/services/openid-connect/bin.

1. Add an AUTHORIZATION element as a child of the DELEGATE element in the application configuration
(xcf) file.

Configuring the Genero Application Server | 119

2. Within the AUTHORIZATION element, specify the command to execute the external authorization
program.

<?xml version="1.0"?>
<APPLICATION Parent="defaultgwc"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="http://www.4js.com/ns/gas/2.50/
cfextwa.xsd">
 <EXECUTION>
 <PATH>$(res.path.qa)/applications/myapp</PATH>
 <MODULE>App.42r</MODULE>
 <DELEGATE service="services/OpenIDConnectServiceProvider">
 <AUTHORIZATION>fglrun AccessProgram</AUTHORIZATION>
 </DELEGATE>
 </EXECUTION>
</APPLICATION>

The authorization program will be called before access to the Web application is granted. If the
authorization program exits with an error code of zero (0), then access is granted for the user. Any exit
code other than zero indicates access for the user is denied. In the last case, the end user will be warned
with a error page in the web browser, generated by the OpenID Connect service.

Genero OpenID Connect FGLPROFILE
Genero OpenID Connect implementation uses its own FGLPROFILE file.

The Genero OpenID Connect Single sign-on (SSO) implementation uses its own FGLPROFILE file in
$FGLDIR/web_utilities/services/openid-connect/res.

This file can be modified to define the following features:

• ODI database driver definition.
• HTTP and HTTPS proxy configuration.
• X509 and SSL keys for handling HTTPS connection (if needed).

When to modify this file:

• If you want a database engine other than SQLite.
• If your Genero Application Server installation requires proxy configuration to connect to an OpenID

Connect provider.

Genero OpenID Connect log file
The Genero OpenID Connect implementation produces a log file that helps to identify issues.

The log file of the Genero OpenID Connect Single sign-on (SSO) implementation is called OIDC.log and
is located in $(res.appdata.path)/log. This log file contains all incoming and outgoing requests. It
can help to debug OpenID Connect issues.

You can specify the level of detail recorded to the log with the -debug category option of the OpenID
Connect server program. There are two categories that can be logged individually or together:

• MSG - Standard information regarding access and errors. By default, only access and error information
are logged.

• DEBUG - Traces the entire process of single sign-on (SSO).

To add debugging information to the OIDC.log, modify OpenIDConnectServiceProvider.xcf to
include the -debug DEBUG option as first argument in the command defined by the MODULE element:

<APPLICATION Parent="ws.default"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="http://www.4js.com/ns/gas/2.50/
cfextwa.xsd">
 <EXECUTION>
 <ENVIRONMENT_VARIABLE Id="FGLPROFILE">

Configuring the Genero Application Server | 120

 $(res.path.fgldir.services)/openid/res/fglprofile</
ENVIRONMENT_VARIABLE>
 <PATH>$(res.path.fgldir.services)/openid-connect/bin</PATH>
 <MODULE>OpenIDConnectServer -logfile "$(res.appdata.path)" -debug
 DEBUG</MODULE>
 <POOL>
 <START>1</START>
 <MIN_AVAILABLE>0</MIN_AVAILABLE>
 <MAX_AVAILABLE>10</MAX_AVAILABLE>
 </POOL>
 </EXECUTION>
</APPLICATION>

Note: Logging is based on the Genero ERRORLOG() function. As several instances of the same
OpenID Connect server can write into the log file, the PID of the server is written to the log file as
well.

OpenID SSO
OpenID is a Single sign-on (SSO) protocol supported by the Genero Application Server. It is based
on a Genero REST service and is delivered in the Genero Web Services package under $FGLDIR/
web_utilities/services/openid.

OpenID providers include Google and Yahoo. To learn more about OpenID, see the OpenID web site.

Note: Genero implements only version 2.0 of the OpenID specification and is only intended for
Genero Web Client applications.

The Genero OpenID solution is supported on the GAS delegation mechanism. See What is delegation? on
page 37.

Important: Genero OpenID service uses an SQLite database to store authentication data. If
you do not configure another database, Genero OpenID service will use the openid.db SQLite
database located in $FGLDIR/web_utilities/services/openid/bin. The OpenID REST
service will execute in the context of the Genero Application Server. This user must have write
permission on the openid.db file and the parent bin directory, otherwise the service will fail to
insert data into the SQLite database.

• Quick start: Set up OpenID in the GAS on page 120
• Configure GAS for OpenID SSO on page 121
• Add OpenID SSO to a Genero Web application on page 122
• Retrieve the OpenID user identifier on page 122
• Retrieve identity attributes with OpenID SSO on page 122
• Authorization and OpenID SSO on page 123
• Execute an application with OpenID SSO on page 124
• Distinct user authentication per application on page 124
• Genero OpenID configuration file on page 125
• Specify a database to store OpenID data on page 126
• Genero OpenID FGLPROFILE on page 127
• Genero OpenID log file on page 127

Quick start: Set up OpenID in the GAS
Follow these steps to quickly set up OpenID Single sign-on (SSO) for your Genero Application Server and
Genero Web Client applications.

Before you begin, you must Configure GAS for OpenID SSO on page 121.

In this quick start, you add OpenID Single sign-on (SSO) to a Genero Web Client application, then execute
the application with SSO.

1. Add OpenID SSO to a Genero Web Client application.

http://openid.net/get-an-openid/what-is-openid/

Configuring the Genero Application Server | 121

a) Add the DELEGATE element to all Genero Web Client applications requiring SSO.

<APPLICATION Parent="defaultgwc">
 <EXECUTION>
 <PATH>$(res.path.mypath)/myapplication</PATH>
 <MODULE>myapp.42r</MODULE>
 <DELEGATE service="services/OpenIDServiceProvider" />
 </EXECUTION>
</APPLICATION>

b) Add a PROVIDER element to indicate which identity provider to use for the application.

<APPLICATION Parent="defaultgwc">
 <EXECUTION>
 <PATH>$(res.path.mypath)/myapplication</PATH>
 <MODULE>myapp.42r</MODULE>
 <DELEGATE service="services/OpenIDServiceProvider">
 <PROVIDER>google.com</PROVIDER>
 </DELEGATE>
 </EXECUTION>
</APPLICATION>

If a provider is not defined, a page with the list of available ID provides is displayed.

2. Execute a Genero Web Client application with SSO.

a) Start your browser and enter the application URL.
You are prompted to enter your openid.

b) Click the signin button.
Your browser is redirected to the OpenID provider.

c) Enter your credentials.

If your credentials are valid, your browser is redirected to the Genero Web Client application.
The application can then get OpenID user information through environment variables such as
OPENID_CLAIMED_ID.

Note: The fglrun process is executed in the context of the GAS operating system user. For
example, when using apache, the program process with run in the context of the apache
user.

The next time you start the same application - or any application delivered by the same Genero Application
Server - you will not be prompted for your credentials. The application will start and get the same OpenID
user information.

Tip: Read all of the OpenID topics in the Genero Application Server User Guide for details on
features provided by OpenID SSO support in the Genero Application Server, to include attributes
gathering or authorization control.

Configure GAS for OpenID SSO
Follow these steps to configure the Genero Application Server for OpenID Single sign-on (SSO).

1. Create one or more OpenID users on an OpenID provider.

2. If the Genero Application Server is located behind a proxy, configure the proxy in the OpenID
fglprofile in $FGLDIR/web_utilities/services/openid/res.

Remove the comment and set the correct value for the entry called proxy.http.location and
proxy.https.location.

3. Start your dispatcher (if not behind a web server).

The Genero Application Server is ready to use OpenID SSO to authenticate end users.

Configuring the Genero Application Server | 122

Add OpenID SSO to a Genero Web application
Follow these steps to add OpenID Single sign-on (SSO) to a Genero Web application.

This task must be performed in the .xcf application configuration file for the Genera Application Server.

Add <DELEGATE service="services/OpenIDServiceProvider"/> to the application
configuration (.xcf) file.

<?xml version="1.0"?>
<APPLICATION Parent="defaultgwc"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="http://www.4js.com/ns/gas/2.50/
cfextwa.xsd">
 <EXECUTION>
 <PATH>$(res.path.qa)/applications/myapp</PATH>
 <MODULE>App.42r</MODULE>
 <DELEGATE service="services/OpenIDServiceProvider"/>
 </EXECUTION>
</APPLICATION>

With the above configuration and default GAS configuration, the delegation will point to the $FGLDIR/
web_utilities/services/OpenIDServiceProvider.xcf file.

For more information about the DELEGATE configuration element, see How to implement delegation on
page 105.

The Genero Application Server will handle the OpenID protocol and start the Genero web application only
when the user has been authenticated, otherwise an HTML error page is returned.

Retrieve the OpenID user identifier
Follow these steps to retrieve the OpenID user identifier in your Genero application.

To retrieve your OpenID Single sign-on (SSO) user identifier, add this code to your Genero application:

LET id = fgl_getenv("OPENID_CLAIMED_ID")

More OpenID user information can be retrieved, for details see Retrieve identity attributes with OpenID
SSO on page 122.

Retrieve identity attributes with OpenID SSO
Follow these steps to retrieve additional attributes about user identity when authenticating to an OpenID
provider.

As a prerequisite, identify which identity attributes are supported by the OpenID provider (i.e. the identity
provider - IDP). The Genero OpenID Single sign-on (SSO) implementation automatically detects which
attribute exchange protocol is supported.

There are two kinds of attribute exchange protocols:

• OpenID Simple Registration Extension (default for Genero)

• Specifications
• List of attributes

• OpenID Attribute Exchange (used if default is not available)

• Specifications
• List of attributes are specific to an OpenID provider and must be mapped to a single name in the

configuration file of the Genero OpenID implementation.

Complete this procedure to retrieve additional attributes about your identity when authenticating to an
OpenID provider. For example, you can retrieve the email, full name, or country of the user.

http://openid.net/specs/openid-simple-registration-extension-1_0.html
http://openid.net/specs/openid-simple-registration-extension-1_0.html#response_format
http://openid.net/specs/openid-authentication-2_0.html

Configuring the Genero Application Server | 123

1. Add an ATTRIBUTES element as a child of the OpenID DELEGATE element in the application
configuration (xcf) file. Provide a comma-separated list of OpenID attributes within the ATTRIBUTES
element.

In this example, the email, fullname, and country openid attributes are specified.

<?xml version="1.0"?>
<APPLICATION Parent="defaultgwc"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="http://www.4js.com/ns/gas/2.50/
cfextwa.xsd">
 <EXECUTION>
 <PATH>$(res.path.qa)/applications/myapp</PATH>
 <MODULE>App.42r</MODULE>
 <DELEGATE service="services/OpenIDServiceProvider">
 <ATTRIBUTES>email,fullname,country</ATTRIBUTES>
 </DELEGATE>
 </EXECUTION>
</APPLICATION>

2. To retrieve the OpenID attributes in your Genero application, add a fgl_getenv() call for each
attribute specified in the XCF file with a prefix of OPENID_.

LET email = fgl_getenv("OPENID_email")
LET fullname = fgl_getenv("OPENID_fullname")
LET country = fgl_getenv("OPENID_country")

The Genero application retrieves the requested identity attributes.

Authorization and OpenID SSO
Authorize whether an user already authenticated by OpenID SSO can access a Genero application.

The GAS must be configured for OpenID Single sign-on (SSO). See Configure GAS for OpenID SSO on
page 121.

With the Genero OpenID implementation, you can add an external program to determine whether an
already authenticated user can access a Genero Web application.

This external program can be written in Genero or in another programming language.

The authorization program expects two mandatory arguments and the list of OpenID attributes received
from the OpenID provider:

access-program openid-userid app-xcf-path [attribute value [...]]

• The first argument is the OpenID identifier.
• The second argument is the application path.
• Next arguments are optional and define OpenID attributes/value pairs.

Example with a Genero authorization program:

fglrun AccessProgram
 "genero-user.pip.verisignlabs.com" \
 "qa-test/application" \
 "fullname" "genero test" \
 "email" "genero@4js.com" \
 "country" "France"

The application AccessProgram.4gl in $FGLDIR/web_utilities/services/openid provides an
example of an authorization application written in Genero.

Configuring the Genero Application Server | 124

The external program is specified in the application configuration element by adding a AUTHORIZATION
element in the DELEGATE element.

If the AUTHORIZATION element is not defined, any user authenticated by an OpenID provider can access
the Genero Web application. It is recommended that you add an authorization program to filter the access
to your applications.

Note: The external program must be deployed beside the OpenIDServer.42r program, because
it will be executed by that service program. This is by default under $FGLDIR/web_utilities/
services/openid/bin.

1. Add an AUTHORIZATION element as a child of the OpenID DELEGATE element in the application
configuration (xcf) file.

2. Within the AUTHORIZATION element, specify the command to execute the external authorization
program.

<?xml version="1.0"?>
<APPLICATION Parent="defaultgwc"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="http://www.4js.com/ns/gas/2.50/
cfextwa.xsd">
 <EXECUTION>
 <PATH>$(res.path.qa)/applications/myapp</PATH>
 <MODULE>App.42r</MODULE>
 <DELEGATE service="services/OpenIDServiceProvider">
 <ATTRIBUTES>email,fullname,country</ATTRIBUTES>
 <AUTHORIZATION>fglrun AccessProgram</AUTHORIZATION>
 </DELEGATE>
 </EXECUTION>
</APPLICATION>

The authorization program will be called before access to the Web application is granted. If the
authorization program exits with an error code of zero (0), then access is granted for the user. Any exit
code other than zero indicates access for the user is denied. In the last case, the end user will be warned
with a error page in the web browser, generated by the OpenID service.

Execute an application with OpenID SSO
Follow these steps to execute a Genero Web Client application and authenticate user with OpenID Single
sign-on (SSO).

1. Open a browser and enter the application URL.
You will be prompted to enter your openid in the form xxx.openid.com.

2. Click the signin button.
Your browser redirects to the OpenID provider.

3. Enter your credentials.

If the credentials are valid, your browser redirects to your Genero Web Client application that starts and
runs as the entered OpenID user.

When you next start the same application, or any application served from the same Genero Application
Server, you will not be prompted for your credentials. The Genero Web Client application will start and
authenticate with the same OpenID user.

Distinct user authentication per application
Use the realm parameter to define specific domains for a set of applications.

By default, the OpenID Connect Single sign-on (SSO) service is launched with a realm parameter set to
auto. All applications using this OpenID service are authenticated by the OpenID provider as coming from
the same domain, and thus only require one authentication process for all of them.

Configuring the Genero Application Server | 125

The realm parameter can be changed from auto to an exact domain name (such as
www.4js.com:6394/gas):

<EXECUTION>
 ...
 <PATH>$(res.path.fgldir.services)/openid/bin</PATH>
 <MODULE>OpenIDServer -realm www.mycompany.com:6394/gas -logPath
 "$(res.appdata.path)"</MODULE>
 ...
</EXECUTION>

When using an exact domain name, ensure that all URLs for accessing your Genero Web applications
have that form, otherwise you will get an OpenID error message.

To force the OpenID authentication login for any application executed by the GAS, remove the realm
parameter from the $FGLDIR/web_utilities/services/OpenIDServiceProvider.xcf file.
The end user will then be requested for credentials for any single application, even if they use the same
OpenID service.

Genero OpenID configuration file
Specify OpenID provider constraints and mappings in the configuration file.

The Genero OpenID Single sign-on (SSO) implementation provides a configuration file named
configuration.xml in $FGLDIR/web_utilities/services/openid/res.

The OpenID configuration file allows you to:

• Specify OpenID provider constraints about unsupported features (encryption and signature methods)
• Map the OpenID attributes URL to a single name if OpenID Attribute Exchange protocol is required.

Server constraints

Some OpenID providers do not support all encryption and signature methods recommended in the
specification. To bypass this issue, you can specify the supported method for each individual OpenID
provider. By default, Genero OpenID implementation supports the strongest one.

The encryption method defines how the Genero OpenID implementation and the OpenID provider will
exchange the signature key. Supported methods are:

no-encryption Requires HTTPS as communication channel
between the OpenID provider and the Genero
implementation. SSL certificate and keys must be
specified in the fglprofile of the OpenID service
($FGLDIR/web_utilities/services/
openid/res/fglprofile).

DH-SHA Default. No specific communication channel
required. The signature key is exchanged using a
public/private Diffie-Hellman key agreement method
fully secured.

The signature method defines how the Genero OpenID implementation validates what comes from the
OpenID provider. Supported methods are:

direct Requires HTTPS as communication channel
between the OpenID provider and the
Genero implementation in order to validate an
authentication. Each authentication process
requires an additional connection to the OpenID
provider.

Configuring the Genero Application Server | 126

HMAC-SHA1 Default. No specific communication channel
required. The Genero OpenID implementation can
validate the authentication without any additional
request to the OpenID provider.

Each server has a secured attribute that ensures that if a combination of encryption and signature method
is not fully secured, the authentication process fails with a specific message in the log file.

If you set this attribute to false, the authentication process would not be fully secured as keys are
exchanged between the OpenID provider and the Genero implementation on unsecured channels and thus
vulnerable to malicious attacks.

OpenID Attribute Exchange mapping

If an OpenID provider uses the OpenID Attribute Exchange protocol, the configuration file must define an
URL for each kind of attributes the OpenID provider supports.

This example illustrates how this is completed for the Google OpenID provider.

<Server secured="true" provider="google.com">
 <URL>www.google.com/accounts/o8/ud</URL>
 <Encryption>no-encryption</Encryption>
 <Signature>HMAC-SHA1</Signature>
 <AttributeProfile>http://openid.net/srv/ax/1.0</AttributeProfile>
 <Attribute name="email">http://axschema.org/contact/email</Attribute>
 <Attribute name="country">http://axschema.org/contact/country/home</
Attribute>
 <Attribute name="firstname">http://axschema.org/namePerson/first</
Attribute>
 <Attribute name="lastname">http://axschema.org/namePerson/last</Attribute>
 <Attribute name="language">http://axschema.org/pref/language</Attribute>
</Server>

The identity provider given in the application configuration file must match an identify provider configured in
$FGLDIR/services/openid/res/configuration.xml.

The response from the ID provider should contain the provider identity ("google.com" in the above
example).

The AttributeProfile element indicates the method to retrieve the attributes.

Specify a database to store OpenID data
Follow these steps to specify a database different from the default for the Genero OpenID implementation.

The implementation of Genero OpenID Single sign-on (SSO) requires a database to store OpenID data
related to the protocol. By default, the database engine is SQLite and the database file is $FGLDIR/
web_utilities/services/openid/bin/openid.db. This database is fully functional after installing
the Genero Application Server.

1. Create a new or use a existing database, eventually on a dedicated machine, if several GAS servers
are configured for load balancing. There must be a unique database, to centralize all OpenID
authentication data.

2. In the file server.4gl, modify the functions BDConnect() and DBDisconnect() to handle and
customize the database connection. Recompile the server.4gl source.

server.4gl is found in $FGLDIR/web_utilities/services/openid/src

3. Modify the FGLPROFILE file in $FGLDIR/web_utilities/services/openid/res to include the
connection information for the database.

4. Create OpenID tables with the CreateDatabase.4gl program. Define the database permissions
required to let the Genero Application Server modification the OpenID tables in the new database.

CreateDatabase.4gl is found in $FGLDIR/web_utilities/services/openid/src

Configuring the Genero Application Server | 127

5. If needed, define the PATH (Windows) or LD_LIBRARY_PATH (UNIX) environment
variables in $FGLDIR/web_utilities/services/OpenIDServiceProvider.xcf with
ENVIRONMENT_VARIABLE elements, in order to find the database client libraries required by Genero
OpenID service.

Note: If you use SQLite (by default), you do not need to add the path to the library since it is
integrated in the ODI driver on most systems.

The alternate database is now used for the Genero OpenID implementation.

Genero OpenID FGLPROFILE
Genero OpenID implementation uses its own FGLPROFILE file.

The Genero OpenID Single sign-on (SSO) implementation uses its own FGLPROFILE file in $FGLDIR/
web_utilities/services/openid/res/fglprofile.

This file can be modified to define the following features:

• ODI database driver definition.
• HTTP and HTTPS proxy configuration.
• X509 and SSL keys for handling a HTTPS connection.

When to modify this file:

• If you want a database engine other than SQLite.
• If your Genero Application Server installation requires proxy configuration to connect to an OpenID

provider.
• If you need HTTPS specific settings to communicate with your OpenID provider.

Genero OpenID log file
The Genero OpenID implementation produces a log file that helps to identify issues.

The log file of the Genero OpenID implementation is called OpenID.log and is located in $FGLDIR/
web_utilities/services/openid/bin. This log file contains all incoming and outgoing requests. It
can help to debug OpenID Single sign-on (SSO) issues.

You can specify the level of detail recorded to the log with the -debug category option of the OpenID
server program. There are two categories that can be logged individually or together:

• MSG - Standard information regarding access and errors. By default, only access and error information
are logged.

• DEBUG - Traces the entire SSO process.

To add debugging information to the log, modify OpenIDServiceProvider.xcf to include the -debug
DEBUG option as first argument in the command defined by the MODULE element:

<APPLICATION Parent="ws.default"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="http://www.4js.com/ns/gas/2.50/
cfextwa.xsd">
 <EXECUTION>
 <ENVIRONMENT_VARIABLE Id="FGLPROFILE">
 $(res.path.fgldir.services)/openid/res/fglprofile</
ENVIRONMENT_VARIABLE>
 <PATH>$(res.path.fgldir.services)/openid/bin</PATH>
 <MODULE>OpenIDServer -debug DEBUG</MODULE>
 <POOL>
 <START>1</START>
 <MIN_AVAILABLE>0</MIN_AVAILABLE>
 <MAX_AVAILABLE>10</MAX_AVAILABLE>
 </POOL>
 </EXECUTION>
</APPLICATION>

Configuring the Genero Application Server | 128

Note: Logging is based on the Genero ERRORLOG() function. As several instances of the same
OpenID server can write into the log file, the PID of the server is written to the log file as well.

SAML SSO
Security Assertion Markup Language (SAML) is a Single sign-on (SSO) protocol supported by the Genero
Application Server. It is based on a Genero REST service and is delivered in the Genero Web Services
package under $FGLDIR/web_utilities/services/saml.

Genero SAML will establish a circle of trust between the service provider (the Genero Application Server)
and the SAML identity provider (the entity in charge of managing and authenticating the users).

If you don't configure another database, Genero SAML service will by default use the saml.db SQLite
database located in $FGLDIR/web_utilities/services/saml/bin. If Genero is installed with a
different user than the user who runs the web server, you must (as a minimum) set write permissions for
that user on the openid.db file and its parent bin directory, otherwise the service will fail to insert data
into the SQLite database.

Note: Genero implements only version 2.0 of the SAML specification and supports only the HTTP-
POST bindings. It is only intended for Genero Web Client applications.

• Quick start: Set up SAML in the GAS on page 128
• Configure GAS to support SAML SSO on page 129
• The ImportIdP program on page 130
• Add SAML SSO to a Genero Web application on page 131
• Select the SAML server (Identity Provider) on page 131
• Define the SAML ID format on page 132
• Retrieve the SAML user identifier on page 133
• Set the authentication context on page 133
• Retrieve identity attributes with SAML on page 133
• Authorization and SAML SSO on page 134
• Execute an application with SAML SSO on page 135
• Genero SAML configuration on page 135
• Specify a database to store SAML data on page 137
• Genero SAML FGLPROFILE on page 137
• Genero SAML log file on page 137

Quick start: Set up SAML in the GAS
Follow these steps to quickly set up SAML for your Genero Application Server and Genero Web Client
applications.

In this quick start, you add SAML Single sign-on (SSO) to a Genero Web Client application, then execute
the application with SSO.

1. Configure the GAS for SAML SSO:

a) If your GAS is located behind a proxy, configure the proxy in the SAML fglprofile, located in
$FGLDIR/web_utilities/services/saml/res. Uncomment and set values for the entries
proxy.http.location and proxy.https.location.

b) SAML requires digital signatures. Create a X509 Certificate and its private key (see the Genero
Business Development Language User Guide for details), then modify the SAML configuration file
located in $FGLDIR/web_utilities/services/saml/res:

• Uncomment and set values for the entries xml.saml_signature.x509 and
xml.saml_signature.key.

• If your Genero Web Client applications must be accessible by HTTP, to be fully secured you
must use that key and certificate for XML-Encryption. Uncomment and set the same value for the
entries xml.saml_encryption.x509 and xml.saml_encryption.key.

c) Create a circle of trust between the Genero Application Server and a SAML provider.

Configuring the Genero Application Server | 129

• Go to $FGLDIR/web_utilities/services/saml.
• Set the SAML environment using the scripts envsaml.bat or envsaml.sh.
• Launch the ImportIdP application with the SAML Provider URL.

• Example: fglrun ImportIdp http://host:port/openam_954/saml2/jsp/
exportmetadata.jsp

• See SAML provider documentation about how to retrieve the Metadata.
• If needed, retrieve the SAML provider Certificate and add it as trusted certificate in the SAML

configuration file.

• Uncomment and set values for the entry xml.keystore.calist; see the Genero Business
Development Language User Guide for more details.

• See SAML provider documentation about how to retrieve its X509 certificate.
d) Create a circle of trust between the SAML provider and the Genero Application Server.

• Start the dispatcher (if needed).
• Log into your SAML provider and create a circle of trust based on the Genero Application Server

SAML metadata available at this URL: http[s]://host:port/[gas/]ws/r/services/
SAMLServiceProvider/Metadata

• See SAML provider documentation for information on creating the circle of trust.
• Genero Application Server default SAML identity name is "urn:genero". If needed, you can

change the identifier by modifying the saml.entityID entry in the fglprofile file.

2. Add SAML SSO to a Genero Web Client application:

a) Add the DELEGATE tag to all Genero Web Client applications requiring SSO.

<DELEGATE service="services/SAMLServiceProvider" />

For example:

<APPLICATION Parent="defaultgwc">
 <EXECUTION>
 <PATH>$(res.path.mypath)/myapplication</PATH>
 <MODULE>myapp.42r</MODULE>
 <DELEGATE service="services/SAMLServiceProvider" />
 </EXECUTION>
</APPLICATION>

3. Execute a Genero Web Client application with SSO:

a) Start your browser and enter the application URL.
You are redirected to the SAML provider and prompted to enter your credentials.

b) Enter your credentials and click the signin button.

If your credentials are valid, your browser is redirected to the Genero Web Client application. The
application starts and runs as the entered SAML user.

The next time you start the same application - or any application delivered by the same Genero Application
Server - you will not be prompted for your credentials. The application will start (and be authenticated for)
the same SAML user.

Configure GAS to support SAML SSO
Follow these steps to setup Genero SAML service.

Before you can use SAML Single sign-on (SSO) with the Genero Application Server, a circle of trust must
be established between the service providers (the Genero Application Servers) and one or more SAML
identity providers (an entity in charge of managing and authenticating the users). This is established via
SAML metadata exchange, where each party imports the metadata from the other party. Each party's
metadata defines how to communicate with it.

Configuring the Genero Application Server | 130

Note: An X509 certificate authority file can also be exchanged in order to validate SAML
signatures. See Certificate authority on page 137.

1. If the Genero Application Server is located behind a proxy, configure the proxy in the SAML
FGLPROFILE.

Uncomment and set correct values for the entries proxy.http.location and
proxy.https.location.

2. Create an X509 Certificate and its private key.

SAML requires digital signatures. See the Genero Business Development Language User Guide for
information on creating the certificate and its private key.

3. Modify the SAML configuration file and enter the X509 certificate and private key information.

The SAML configuration file is located in $FGLDIR/web_utilities/services/saml/res.

Remove the comment and set correct values for the entries xml.saml_signature.x509 and
xml.saml_signature.key.

If your Genero Web application must be accessible in HTTP, you must also use that key and
certificate for XML-Encryption to be fully secure. Uncomment and set the same values for the entries
xml.saml_encryption.x509 and xml.saml_encryption.key.

4. Create a circle of trust between the Genero Application Server and a SAML provider. Import the IdP
metadata file into the Genero Application Server SAML service provider.

a) Go to $FGLDIR/web_utilities/services/saml.
b) Set SAML environment via envsaml.bat or envsaml.sh.
c) Launch the ImportIdP application using the SAML Provider URL.

Refer to the IdP documentation for information on generating the metadata file (or the url) from the
SAML identity provider.

$fglrun ImportIdP http://host:port/openam_954/saml2/jsp/exportmetadata.jsp

d) Retrieve the SAML provider Certificate and add it as a trusted certificate in the SAML configuration
file (if needed).

Uncomment and set the correct values for the entry xml.keystore.calist. Refer to the Genero
Business Development Language User Guide for more information.

Refer to the SAML Identity Provider (IdP) documentation for information about retrieving its X509
certificate.

5. Create a circle of trust between the SAML provider and the Genero Application Server.

a) Start the dispatcher (if needed).
b) Log in to your SAML provider and create a circle of trust based on the Genero Application Server

SAML metadata.

Generate the metadata from this URL: http[s]://host:port/[gas/]ws/r/services/
SAMLServiceProvider/Metadata

Refer to the SAML Identity Provider (IdP) documentation for information about importing the Genero
Application Server SAML metadata.

The Genero Application Server is ready to support SAML SSO.

The ImportIdP program
Use the ImportIdP program to register a SAML identity provider.

With the Genero ImportIdP program, you can:

• Register a new SAML identity provider (IdP) into the Genero Application Server for SAML Single sign-
on (SSO).

• Lists all registered IdPs
• Remove the Idp identified by its URI.

To register a new IdP, you must execute the ImportIdP program with the IdP metadata file or URL. Using a
URL can require a proxy configuration in the FGLPROFILE file.

Configuring the Genero Application Server | 131

The ImportIdP.4gl source code is provided in $FGLDIR/web_utilities/services/saml/src,
and the compiled version is in the bin directory.

Syntax

fglrun ImportIdP [options] <url|file>

Note:

1. options are described in Table 10: ImportIdP options on page 131.
2. url is the url of a SAML identity provider.
3. file is the metadata file of a SAML identity provider.

Table 10: ImportIdP options

Option Description

-import
Import the IdP specified by the URL or metadata
file.

-list List all registered IdPs.

-remove Remove the registered IdPs.

Add SAML SSO to a Genero Web application
Follow these steps to add SAML SSO to a Genero Web application.

This task must be performed in the .xcf application configuration file for the Genera Application Server.

Add the <DELEGATE service="services/SAMLServiceProvider"/> element to the application
configuration (.xcf) file.

<?xml version="1.0"?>
<APPLICATION Parent="defaultgwc"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="http://www.4js.com/ns/gas/2.50/
cfextwa.xsd">
 <EXECUTION>
 <PATH>$(res.path.qa)/applications/myapp</PATH>
 <MODULE>App.42r</MODULE>
 <DELEGATE service="services/SAMLServiceProvider"/>
 </EXECUTION>
</APPLICATION>

With the above configuration and default GAS configuration, the delegation will point to the $FGLDIR/
web_utilities/services/SAMLServiceProvider.xcf file.

For more information about the DELEGATE configuration element, see How to implement delegation on
page 105.

The Genero Application Server will handle the SAML protocol and start the Genero web application only
when the user has been authenticated, otherwise an HTML error page is returned.

Select the SAML server (Identity Provider)
Follow these steps to specify the SAML server a Genero application must use as its Identity Provider (IdP).

Before you begin, determine the EntityID name for the IdP server you wish to specify. Use the ImportIdP
program with the -list option to identify the EntityID name.

Complete this procedure to specify which SAML server a Genero application must use as its Identity
Provider (IdP).

Configuring the Genero Application Server | 132

If the IDP element is not set in the DELEGATE element of the application configuration file, the Genero
Application Server will retrieve the unique registered IdP. It will raise an error if more than one IdP is
registered.

Add an IDP element as a child of the SAML DELEGATE element in the application configuration (xcf)
file. Enter the EntityID name in the IDP tag.

<?xml version="1.0"?>
<APPLICATION Parent="defaultgwc"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="http://www.4js.com/ns/gas/2.50/
cfextwa.xsd">
 <EXECUTION>
 <PATH>$(res.path.qa)/applications/myapp</PATH>
 <MODULE>App.42r</MODULE>
 <DELEGATE service="services/SAMLServiceProvider">
 <IDP>http://idp.4js.com</IDP>
 </DELEGATE>
 </EXECUTION>
</APPLICATION>

The Genero Application Server will use the specified IdP as its Single sign-on (SSO) identity provider.

Define the SAML ID format
Follow these steps to define the ID format to receive from the SAML IdP.

The SAML Single sign-on (SSO) protocol allows federation of identities. This means that a single user can
have different identities on different SAML IdPs. To federate a same user across several IdPs, the notion of
ID format was introduced.

The default ID format is transient, meaning that the returned ID is only valid for the current session and
has only a meaning for the IdP the GAS is connected to. Other formats exist such as email or persistent,
but you must be sure that your IdP supports them, otherwise you will get an error. The IdP decides which
format they support. See SAML core specification for more details about the supported ID format.

The ID format allows you to specify how the user is represented to a Service Provider. For Genero
Application Server, it defines what piece of data is sent from the IdP to the Genero Application Server to
represent the user.

To define the ID format you want to receive from your IdP:

Add an IDFORMAT element with a valid SAML URN as a child of the SAML DELEGATE element in the
application configuration (xcf) file.

In this example, the IdP will return the email of the authenticated user to the Genero Application Server
as SAML_ID environment variables

<?xml version="1.0"?>
<APPLICATION Parent="defaultgwc"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="http://www.4js.com/ns/gas/2.50/
cfextwa.xsd">
 <EXECUTION>
 <PATH>$(res.path.qa)/applications/myapp</PATH>
 <MODULE>App.42r</MODULE>
 <DELEGATE service="services/SAMLServiceProvider">
 <IDFORMAT>urn:oasis:names:tc:SAML:1.1:nameid-format:emailAddress</
IDFORMAT>
 </DELEGATE>
 </EXECUTION>
</APPLICATION>

Configuring the Genero Application Server | 133

When set, the SAML_ID environment variable retrieved in the application program will be in the format
specified in the IDFORMAT element of the configuration file.

Retrieve the SAML user identifier
Follow these steps to retrieve the SAML user identifier in your Genero application.

To retrieve the SAML ID returned by the SAML Single sign-on (SSO) Identity Provider (IdP) in your
Genero application, add this code:

LET id = fgl_getenv("SAML_ID")

Set the authentication context
At the Genero Application Server level, you can specify how the Identity Provider must authenticate a user
that wants to access a Genero Web application via a browser.

As a prerequisite, see the SAML core specification for the list of supported URNs. There are several
methods -- password protected, X509 certificate, PGP -- but not all work for Web-based Single sign-on
(SSO).

Note: For most Web Single sign-on, the default authentication method is password protected.

SAML provides a mechanism that allows a service provider (Genero Application Server) to define how
a user must be authenticated by the Identity Provider (IdP). The Genero Application Server supports an
optional element (AUTHCONTEXT) that allows you to specify which authentication method to use.

If the AUTHCONTEXT element is not defined, the default mechanism set in the IdP is used.

Important: Do not specify this tag unless you require a specific authentication method.

Add an AUTHCONTEXT element as a child of the SAML DELEGATE element in the application
configuration (xcf) file. Enter a valid authentication method in the text of the AUTHCONTEXT element.

<?xml version="1.0"?>
<APPLICATION Parent="defaultgwc"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="http://www.4js.com/ns/gas/2.50/
cfextwa.xsd">
 <EXECUTION>
 <PATH>$(res.path.qa)/applications/myapp</PATH>
 <MODULE>App.42r</MODULE>
 <DELEGATE service="services/SAMLServiceProvider">
 <AUTHCONTEXT>urn:oasis:names:tc:SAML:2.0:ac:classes:X509</
AUTHCONTEXT>
 </DELEGATE>
 </EXECUTION>
</APPLICATION>

When set, the authentication context method is defined. If the IdP does not support the specified method,
or if it uses another mechanism, the Genero Application Server will return an access denied page.

Retrieve identity attributes with SAML
Follow these steps to retrieve attributes about user identity when authenticating to SAML IdP.

As a prerequisite, SAML Single sign-on (SSO) protocol does not provide a mechanism to request specific
attributes to be returned when authenticated. You must configure that list at the IdP level. As SAML
supports identity federation, it provides a mechanism to map user-specific attributes between different IdPs
- an attribute called with one name in one IdP can be called a different name in another IdP. If federation is
in use, map them according to other IdPs if needed. Refer to your IdP documentation for more information
on how to map and define the list of attributes to pass to the GAS during authentication setup.

Configuring the Genero Application Server | 134

To retrieve the SAML attributes returned by the IdP in your Genero application, add a fgl_getenv()
call for each attribute specified in the XCF file with a prefix of SAML_.

LET email = fgl_getenv(“SAML_email”)
LET fullname = fgl_getenv(“SAML_fullname”)
LET country = fgl_getenv(“SAML_country”)

The Genero application retrieves the requested identity attributes.

Authorization and SAML SSO
Authorize whether an user already authenticated by SAML Single sign-on (SSO) can access a Genero
application.

The GAS must be configured for SAML SSO. See Configure GAS to support SAML SSO on page 129.

With the Genero SAML implementation, you can add an external program to determine whether an already
authenticated user can access a Genero Web application.

This external program can be written in Genero or in another programming language.

The authorization program expects two mandatory arguments and the list of SAML attributes received from
the Identity Provider (IdP):

access-program saml-userid app-xcf-path [attribute value [...]]

• The first argument is the SAML identifier. It depends on the ID format specified in the Genero
Application Server configuration and by the IdP.

• The second argument is the application path.
• Next arguments are optional and define SAML attributes/value pairs.

Example with a Genero authorization program:

fglrun AccessProgram
 "AZEd3R4" \
 "qa-test/application" \
 "fullname" "genero test" \
 "email" "genero@4js.com" \
 "country" "France"

The application AccessProgram.4gl in $FGLDIR/web_utilities/services/openid provides an
example of an authorization application written in Genero.

The external program is specified in the application configuration element by adding a AUTHORIZATION
element in the DELEGATE element.

If the AUTHORIZATION element is not defined, any user registered in the SAML IdP can access the
Genero Web application. It is recommended that you add an authorization program to filter the access to
your application.

Note: The external program must be deployed beside the SAMLServer.42r program, because
it will be executed by that service program. This is by default under $FGLDIR/web_utilities/
services/saml/bin.

1. Add an AUTHORIZATION element as a child of the SAML DELEGATE element in the application
configuration (xcf) file.

2. Within the AUTHORIZATION tag, specify the external authorization program.

<?xml version="1.0"?>
<APPLICATION Parent="defaultgwc"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="http://www.4js.com/ns/gas/2.50/
cfextwa.xsd">

Configuring the Genero Application Server | 135

 <EXECUTION>
 <PATH>$(res.path.qa)/applications/myapp</PATH>
 <MODULE>App.42r</MODULE>
 <DELEGATE service="services/SAMLServiceProvider">
 <AUTHORIZATION>fglrun AccessProgram</AUTHORIZATION>
 </DELEGATE>
 </EXECUTION>
</APPLICATION>

The authorization program will be called before access to the Web application is granted. If the
authorization program exits with an error code of zero (0), then access is granted for the user. Any exit
code other than zero indicates access for the user is denied. In the last case, the end user will be warned
with a error page in the web browser, generated by the SAML service.

Execute an application with SAML SSO
Follow these steps to execute a Genero Web Client application and authenticate user with SAML Single
sign-on (SSO).

1. Open a browser and enter the application URL.
You are redirected to the SAML provider and prompted to enter your credentials.

2. Enter your credentials.

3. Click the signin button.

If the credentials are valid, your browser redirects to your Genero Web Client application, which starts and
runs as the entered SAML user.

When you next start the same application, or any application served from the same Genero Application
Server, you will not be prompted for your credentials. The Genero Web Client application will start and
authenticate with the same SAML user.

Genero SAML configuration
Specify FGLPROFILE entries to configure the Genero SAML service provider.

The Genero SAML implementation provides a list of FGLPROFILE entries to configure the Genero SAML
service provider. The configuration file is located in $FGLDIR/web_utilities/services/saml/res.

Table 11: SAML-related FGLPROFILE entries

FGLPROFILE entry Description

saml.entityID Defines the SAML entity name for the Genero
Application Server, which is how the Genero
Application Server is represented to other SAML
partners. Mandatory. Default is urn:genero.

saml.allowUnsecure Defines whether the GAS accepts unsecured
authentication mechanisms. Default is false
(recommended).

A SAML authentication mechanism is unsecured if
communication between the Identity Provider (IdP)
and the Genero Application Server is not performed
either over HTTPS or with XML encryption.

To secure a SAML communication, use HTTPS
(via ISAPI or FastCGI) or use XML-Encryption
by setting the xml.saml_encryption entries as
described in Assertion encryption on page 136.

saml.wantAssertionsSigned Defines whether SAML assertions coming from
Identity Providers (IdPs) must be signed. Default is

Configuring the Genero Application Server | 136

FGLPROFILE entry Description

true (recommended). It is recommended to have
either (or both) saml.wantAssertionsSigned and
saml.wantResponseSigned set to true, to ensure
the request was not altered.

If not signed and entry is set to true, the Genero
Application Server returns an access denied HTML
page.

This entry also adds the wantAssertionsSigned
attribute to the SAML metadata describing the
SAML needs of the Genero Application Server.

saml.wantResponseSigned Defines whether SAML requests coming from
the Identity Providers (IdPs) must be signed.
Default is false. It is recommended to have
either (or both) saml.wantAssertionsSigned and
saml.wantResponseSigned set to true, to ensure
the request was not altered. You must also take into
account the configuration of the Identity Provider
(IdP).

If not signed and entry is set to true, the Genero
Application Server returns an access denied HTML
page.

Assertion encryption

To support assertion encryption, you must add an X509 certificate and its RAS private key to handle XML-
Encryption using the Genero Web Services xml key mapping. There are two entries to be set:

• xml.saml_encryption.x509: path to the X509 certificate
• xml.saml_encryption.key: path to the RSA private key

You can use the same X509 certificate and RSA private key for signature, encryption and metadata
signature.

Authentication signature

To sign the authenticate request the Genero Application Server sends to the Identity Provider (IdP), you
must add an X509 certificate and its RSA private key to handle XML-Signature using the Genero Web
Services xml key mapping. There are two entries to be set:

• xml.saml_signature.x509: path to the X509 certificate
• xml.saml_signature.key: path to the RSA private key

You can use the same X509 certificate and RSA private key for signature, encryption and metadata
signature.

Metadata signature

To sign the generated SAML metadata, add an X509 certificate and its RSA private key in charge of XML-
Signature using the Genero Web Services xml key mapping. There are two entries to be set:

• xml.saml_metadata_signature.x509: path to the X509 certificate
• xml.saml_metadata_signature.key: path to the RSA private key

You can use the same X509 certificate and RSA private key for signature, encryption and metadata
signature.

Configuring the Genero Application Server | 137

Certificate authority

As XML-Signature and XML-Encryption are in use to secure SAML communication, you must specify the
list of trusted certificate authorities. This is done via the Genero Web Services key mapping mechanism,
where this entry must be added, containing the list of trusted X509 certificates (coming from the Identity
Provider (IdP)).

• xml.keystore.calist: path of colon-separated certificate authorities the Genero SAML service
provider trusts.

Specify a database to store SAML data
Follow these steps to specify a database different from the default database for the Genero SAML
implementation.

The implementation of Genero SAML Single sign-on (SSO) requires a database, to store SAML data
related to the protocol. By default, the database engine is SQLite and the database file is $FGLDIR/
web_utilities/services/saml/bin/saml.db. This database is fully functional after installing the
Genero Application Server.

1. Create a new or use a existing database, eventually on a dedicated machine, if several GAS
servers are configured for load balancing. There must be a unique database, to centralize all SAML
authentication data.

2. In the file DBase.4gl, modify the functions BDConnect() and DBDisconnect() to handle and
customize the database connection. Recompile the DBase.4gl source.

DBase.4gl is found in $FGLDIR/web_utilities/services/saml/src.

3. Modify fglprofile in $FGLDIR/web_utilities/services/saml/res to include the connection
information for the database.

4. Create SAML tables with the CreateDatabase.4gl program. Define the database permissions
required to let the Genero Application Server modification the SAML tables in the new database.

CreateDatabase.4gl is found in $FGLDIR/web_utilities/services/saml/src.

5. If needed, define the PATH (Windows) or LD_LIBRARY_PATH (UNIX) environment
variables in $FGLDIR/web_utilities/services/SAMLServiceProvider.xcf with
ENVIRONMENT_VARIABLE elements, in order to find the database client libraries required by Genero
SAML service. Note that if you use SQLite (by default), you do not need to add the path to the library
since it is integrated in the ODI driver on most systems.
The alternate database is now used for the Genero SAML implementation.

Genero SAML FGLPROFILE
Genero SAML Single sign-on (SSO) implementation uses its own FGLPROFILE file.

The file is located in $FGLDIR/web_utilities/services/saml/res/fglprofile.

This file can be modified to define the following features:

• ODI database driver definition.
• HTTP and HTTPS proxy configuration. This is needed only when the ImportFGL tool is used.

When to modify this file:

• If you want a database engine other than SQLite.
• If your Genero Application Server installation requires proxy configuration to connect to an SAML

provider.

Genero SAML log file
The Genero SAML Single sign-on (SSO) implementation produces a log file that helps to identify issues.

The log file of the Genero SAML implementation is called SAML.log and is located in $FGLDIR/
web_utilities/saml/bin. This log file contains all incoming and outgoing requests. It can help to
debug SAML issues.

Configuring the Genero Application Server | 138

You can specify the level of detail recorded to the log with the -debug category option of the SAML
server program. There are two categories that can be logged individually or together:

• MSG - Standard information regarding access and errors. By default, only access and error information
are logged.

• DEBUG - Traces the entire process of single sign-on (SSO).

To add debugging information to SAML.log, modify SAMLServiceProvider.xcf to include the -debug
DEBUG option in the command defined by the MODULE element:

<APPLICATION Parent="ws.default"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="http://www.4js.com/ns/gas/2.50/
cfextws.xsd">
 <RESOURCE Id="res.saml.db" Source="INTERNAL"/>
 <EXECUTION>
 <!-- ENVIRONMENT_VARIABLE entries removed for this example -->

 <PATH>$(res.path.fgldir.services)/saml/bin</PATH>
 <MODULE>SAMLServer -logPath $(res.appdata.path) -debug DEBUG -debug MSG</
MODULE>
 <POOL>
 <START>0</START>
 <MIN_AVAILABLE>0</MIN_AVAILABLE>
 <MAX_AVAILABLE>10</MAX_AVAILABLE>
 </POOL>
 </EXECUTION>
</APPLICATION>

Note: Logging is based on the FGL ERRORLOG() function. As several instances of the same
SAML server can write to a single log file, the PID of the server is written to the log file as well.

How to implement custom single sign-on
The aim of this tutorial is to show the basics for delegating the start of a Genero application to another
service, in order to handle the authentication via a REST service.

Tutorial overview

Genero Application Server Single sign-on (SSO) solution is based on the "delegate" mechanism. For more
details, see How to implement delegation on page 105.

The purpose of this tutorial is to:

• Prevent direct access to the application and force the end user to enter a login and password via an
XHTML page.

• Add a cookie mechanism allowing the password to be kept by the browser, in order to allow future
connections without requiring another login.

• Add a simple method for logging out.

This example can be adapted for your own application needs.

Important: This tutorial will help you to understand how to handle authentication using a
REST service, using a basic authentication mechanism with a username/password and
cookie management. On production sites, the security must be improved. Please consider the
recommendations mentioned in the last step of this tutorial.

Workflow

The end user types the URL of the application in his web browser (step 1 in the workflow). Instead of
starting the application program directly, the GAS forwards the HTTP request to the SSOService program.

Configuring the Genero Application Server | 139

This program checks the user credentials or cookie validity, and returns the appropriate HTTP response.
The response is one of the following:

• indicates the user credential are not valid;
• indicates the user credentials are valid, and creates and sets a cookie in the browser; or
• if an existing cookie is received, allows the execution of the application.

Figure 29: Single sign-on tutorial workflow

As shown in the diagram, the following steps are performed:

1. The user enters a URL in the web browser.

Figure 30: Application URL
2. The Genero REST service receives the HTTP request and checks for a valid cookie.
3. If the cookie is valid, the REST service returns an HTTP response with code 307, and the description

_GENERO_INTERNAL_DELEGATE_, to notify the GAS dispatcher to start the application.
4. If the cookie is not valid, the REST service returns a login page to the browser, with HTTP code 200.
5. The end user enters a name and password, and submits the HTML form to the GAS.
6. The Genero REST service receives the HTTP request and checks the user credentials.
7. If the user is invalid, the REST service returns an HTTP request with an error page, with HTTP code

200.
8. If the user is authenticated, the REST service creates a new cookie, and returns and HTTP response

with code 302, to redirect the browser to the application URL.
9. The browser receives the HTTP response, and redirects to the application URL, with the new cookie

returned by the REST service. Then return to step 2 (above).

Configuring the Genero Application Server | 140

Initial workflow path

The first time the user enters the application URL, it is redirected to the login page.

Figure 31: Login page

Based on XHTML standards, when the login button is clicked, all data entered in fields of the form, as
well the checking of the box “Would you like to keep password?”, are set as parameters in the URL query
string.

Important: Use HTTPS in production. This example uses a POST method to submit the login
form. With the POST method, the username and password are not visible in the browser URL field,
however they are passed in clear text in the body of the POST request. You should use HTTPS
in order to encrypt and secure on any production site, and avoid clear data being sent through the
network.

In step 2 of the workflow, the SSOService program checks the existence of a valid cookie, and analyzes
the URL query string parameters in order to find values for the user login and password. Since this is the
first start, there is no existing valid cookie (step 3b of the workflow) and the query string is null because the
HTML login form was not yet submitted (step 4 on the workflow). As a result, the connection is refused and
the user is directed by the service to a login XHTML page.

• GAS configuration for delegation on page 140
• Handle login and password input on page 141
• Cookie handling on page 141
• Disconnect (log off) on page 143
• Production recommendations on page 143

GAS configuration for delegation
Delegate the start of an application to a REST service program.

Configure the application for Simple SSO provider

Modify your customization to delegate the execution of the application to a REST web service.

Add a DELEGATE element under the EXECUTION element in the customization file (xcf), with a reference
to the SimpleSSOServiceProvider service:

<EXECUTION>
 <PATH>$(res.path)</PATH>
 <MODULE>myApp.42r</MODULE>
 <DELEGATE service="services/SimpleSSOServiceProvider">
 </DELEGATE>

Configuring the Genero Application Server | 141

</EXECUTION>

Configure the SSO service program

The name SimpleSSOServiceProvider maps to the SimpleSSOServiceProvider.xcf
configuration file, located in $FGLDIR/web_utilities/services. This configuration file contains these
execution settings:

<EXECUTION>
 <PATH>$(res.path.fgldir.services)/simplesso/bin</PATH>
 <MODULE>SSOService.42r</MODULE>
</EXECUTION>

In this example, the SSO service program is SSOService.42r, and the fglrun execution context in
$FGLDIR/web_utilities/services/simplesso/bin.

Handle login and password input
Prevent direct access to the application and force the end user to enter a login and password.

URL handling in the Simple SSO service program

Once the login page has been submitted (step 4 in the workflow), the incoming URL is split in 2 parts:

• the base URL
• the query string

The query string is parsed by the SSOService.4gl code, to retrieve values for the user name, the
password, the state of the “keeping password” checkbox, and any potential query string parameters the
user may have manually entered in the URL:

CALL parseQueryString(query) RETURNING user, pwd, userQueryString, isCookie

Important: Consider reviewing the functions included in the sample. They are intended to be
simple examples. For a production site, you would want to avoid data transmitted in clear.

Once the user and password have been retrieved from the query string, the service program checks
whether the user name and password are valid.

If the user name and password are valid, the application can be started by creating the cookie for the user,
as explained in Cookie handling on page 141.

If the user could not be authenticated, the Genero REST service returns an HTTP request with an error
page, with HTTP code 200:

CALL req.setResponseHeader("Content-Type", "text/html")
CALL req.sendTextResponse(200,"Access Forbidden", html-error-page-string)

Cookie handling
The cookie mechanism allows the browser to permanently keep the password, eliminating the need to
login when the user revisits the application.

How does the cookie mechanism work?

If the user name and password are valid, the REST service program creates a new cookie to be sent to
the browser in the HTTP response. An instantaneous redirection is done, this valid cookie is checked by
the service (it returns to step 2 of the workflow) and the connection is accepted (step 3a of the workflow).
The next time the user starts the application, the SSO service program will check the validity of this cookie.
According to the cookie's expiration, the application may start automatically without requiring the user to
login again or returning a new login page.

Configuring the Genero Application Server | 142

The cookie is set via the HTTP header “Set-Cookie” and requires a name-value pair that can be sent to the
browser by a request on the form.

CALL req.setResponseHeader("Set-Cookie", myCookie)

Where myCookie is a string containing a name-value pair, with optional parameters, for example:

LET myCookie = COOKIE_NAME, "=",
 CookieEncrypt(user,pwd,expiredDate,key), "; ",
 "Path=", getCookiePath(path)

Note that the following information should also be set:

• A expiration date for the cookie (cookie attributes "max-age" or "expires").
• A path for limiting the validity of the cookie to the current application (cookie attribute “path”).

Cookie expiration date handling

The date of expiration is usually defined by the cookie attribute “max-age”. It represents a value in seconds
relative to the current date and time. For instance, max-age=3600 means that the cookie will expire in 1
hour.

The max-age attribute is not supported by Internet Explorer. The service could use the attribute “expires”,
however it requires an absolute GMT hour and Genero currently doesn't handle this format.

To solve this problem, the expiration date is directly included (and encrypted) inside the cookie value.

The cookie structure

To ease the understanding of this example, the cookie has a simple structure:

'name=value;Path=path_value'

• The name of the cookie is hard-coded in the SSOUserFunctions.4gl code with the COOKIE_NAME
constant.

• value of the cookie is an encrypted combination of username, password and expiration date,
separated by a given separator. Once decrypted, value of the cookie can be something like
'userName="myuser";password="mypassword";expirationDate="12/12/2018"'.

The separator and the name of attributes can be changed by the constants C_USERNAME (for the
username attribute), C_PASSWORD (for the password attribute), C_EXPIRATION (for the expiration date
attribute) and C_SEP (for the separator) in theSSOUserFunctions.4gl module.

• Path remains the normal “Path” cookie attribute. path_value should correspond to what is after “http://
host:port” in the URL.

How the cookie is handled in the Simple SSO service

The cookie needs to be checked initially by the Simple SSO service (step 2 of the workflow) in order to
know if the application can be executed directly or if the end user needs to login again.

There are three options.

1. The cookie is valid (step 3a of the workflow).

The connection is accepted immediately and the application executed. For checking if the cookie is
valid, the service needs to retrieve the content of the “Cookie” HTTP header. Once this content has
been retrieved, the service decrypts the value of the expiration date. If the expiration date is later than
the current date (CURRENT value), the connection is accepted using HTTP code 307 and the description
_GENERO_INTERNAL_DELEGATE_.

2. The cookie is no longer valid as the cookie expiration date has expired (step 3b of the workflow).

Configuring the Genero Application Server | 143

A cookie cannot be valid if the date has expired. The cookie is set to a new value (in our example,
the user and password values are set to -1 before being encrypted in this new cookie value) and a
redirection is done on the same URL. After redirection, the cookie is decrypted and values “-1” are
found for login and password. They are considered as invalid and the user is redirected again to the
login page. Specifically, in our sample, it's redirected to an XHTML login page indicating “the session
has expired”.

3. The cookie is NULL (step 3b of the workflow).

For the initial connection, the cookie is NULL. It can be redirected to a simple “Welcome” page rather
than the login page.

Expiration date of the cookie

When the cookie is created, it is handled like this:

• If the “keeping password” box has been checked (password kept), the expiration date is set by default
to one year later.

• If “keeping password” box has not been checked (password not kept), the expiration date is almost
instantaneous (10 seconds by default, so that the cookie remains only valid one time for redirection)

It can be easily changed by the constants C_EXPIRATION_COOKIE_CHECKED (value in years) and
C_EXPIRATION_COOKIE_UNCHECKED (value in seconds) of the SSOUserFunctions.4gl module.

Disconnect (log off)
How does the user disconnect after a permanent cookie is set?

If the end user wants to re-connect when a permanent cookie has been set, the disconnect=true
parameter must be added to the URL:

http://host:6394/ua/r/myapp?disconnect=true

The user will be automatically redirected to the login page.

When the cookie has expired, the user name and password are set to -1 before being encrypted in the
cookie value. In such instances, redirection is also done to the login page.

Production recommendations
It is important to improve security beyond the tutorial.

The tutorial is designed to convey single sign-on basics. Consider these recommendations when preparing
for your production system.

• For easing the understanding of this sample, user, password and expiration date have been encrypted
directly in the cookie. This should not be done on a production site. If somebody found the decryption
algorithm, he would be able to read user and password values in clear. We recommend you review the
encryption mechanism and provide better security by encrypting a hash of the login + password, instead
of the login + password.

• Function shown in this sample are “fake” functions adapted especially for this example. They may
contain some dummy code. Review these functions in detail before adapting them to your production
environment.

• A single unique user name and password are hard-coded in the sample source code. A production site
requires a complete user management solution.

• Production sites requires the use of the HTTPS protocol rather than HTTP in order to avoid the
transmission of clear data through the network.

Configuring the Genero Application Server | 144

Connect to the application database with SSO
There are several solutions for automatically connecting to the database server, after starting an
application program with a Single sign-on (SSO) delegation.

Overview

The goal of a complete SSO solution is to let the end-user enter credentials once in a login form on the
front-end, authenticate that user with an GAS/SSO mechanism, then start the application program and
connect to the database without having the end user input other credentials for the database server.

Depending on the features of the target database server, you can implement different techniques to
connect to the database automatically, without having to provide more credentials.

The goal of this topic is not to provide a complete example. There are different authentication methods
available, and your SSO solution must be adapted to the type of database and operating system. Consider
learning about database user security within the database engine of your application.

Note: Because Kerberos SSO support is deprecated by the Genero Application Server, this type of
SSO mechanism is not covered in this topic. However, database engines like IBM® Informix® IDS
support Kerberos SSO with the Generic Security Services CSM (GSSCM) feature.

User handling depends on the type of Web Application

Regarding application users, we can distinguish the following type of web applications:

• Typical public web applications, for an undefined number of end users, who can register themselves to
the application.

• Typical enterprise web applications, for a defined number of known end users, with strong data access
control, managed by application administrators in an enterprise directory.

The SSO solution implemented will depend on the type of web application.

Connecting to the database from the application program

Once the end user is authenticated with one of the SSO mechanisms supported by the GAS, the
application is started in the context of the GAS operating system user. For example, when on an Apache
server, the application program will execute as the apache user.

Most application programs then connect to a database server, to store and query application data.
Connecting to a database server requires the application to identify and authenticate the end user as a
database user.

Note: A database user is typically created by a CREATE USER SQL statement.

The most common way to authenticate a user in a database connection is to provide the login name and
the associated password of the user object existing in the database:

MAIN
 DEFINE uname, upswd VARCHAR(50)
 ...
 CONNECT TO "dbsource" USER uname USING upswd
 ...
END MAIN

For more details about the CONNECT TO instruction, see "Database Connections" chapter in the Genero
Business Development Language Reference Guide.

Note: With IBM® Informix® IDS servers, database users are traditionally authenticated at the OS
level; there must be an OS login from group "informix", created for each DB user. However, IDS
11.7 introduces the concept of internal users, to integrate with external authentication mechanisms
or to define pure database users based on logins and passwords.

Configuring the Genero Application Server | 145

Database user creation

In order to use database engine features to control privileges and audit activity, end users must be
identified in the database server, as db user objects in the database system. This is typically done with the
CREATE USER SQL instruction.

When creating a database user object, you must specify the authentication method.

The basic default authentication method is to specify a password be provided each time the SQL session is
created. For example, to create a database user with password authentication in an Oracle® database:

CREATE USER username IDENTIFIED BY password

It is also possible to define database users with an authentication method based on credentials issued from
a trusted part. For example, in Oracle, you can create a database user that will be authenticated with the
Oracle Internet Directory®:

CREATE USER username IDENTIFIED GLOBALLY AS distinguished name (LDAP DN)

Connecting to the DB with predefined database users

This technique can be implemented for a web application where the number of end users is unknown,
and where users can register themselves to the application with requiring the database admministrators to
create database users. End users enter an application login and password, that will be checked and stored
by the application in a dedicated table of the database.

In this solution, use an SSO technology where end users can create credentials from an open identity
provider (IdP), as with the GAS OpenID implementation. Since anyone can freely register with the web
application, there is no application administrator task regarding the creation of an application user.

To access the application data, a set of predefined database users must be exist in the database, with
a fixed name and password, that are hidden to the end users. Each predefined database user will be
assigned to several real physical end users. For example, you can create four types of database users,
each with specific application permissions and database privileges:

• An application administrator can manage application users, can read/write all application data.
• A read/write access user can read/write all data of the application.
• A read access user can only read all application data.
• A guest user can only read a limited set of application data.

Application users are managed and controlled at the application level, and stored in a database table, or in
an external resource file (with passwords encrypted).

Important: Because application programs will implicitly connect to the database with predefined
database users, no security holes can exist in programs that would allow an end user to connect as
a database user to attack the database, for example by using SQL injection.

Once the web application is allowed by the GAS SSO mechanism to start and needs to connect to the
database, the program must get application user information (login name, password and type of user), from
the GAS SSO procedure. For example, when using OpenID, the web application must get the end user
login, password and user type from OpenID attributes through the corresponding environment variables:

LET user_name = FGL_GETENV("OPENID_user_name")
LET user_pswd = FGL_GETENV("OPENID_user_pswd")
LET user_type = FGL_GETENV("OPENID_user_type")

The user type identifies the predefined database user that will be used to connect to the database, and in
turn determines the privileges allowed for the end user.

Configuring the Genero Application Server | 146

In order to connect to the database server, the predefined database credentials must be found according to
the user type got from the SSO attributes. For example, the program can get the database user name and
password from a encrypted configuration file:

CALL get_db_login("config_file", user_type) RETURNING db_user, db_pswd
CONNECT TO dbname USER db_user USING db_pswd

Once connected to the database, the application program can issue SQL queries as the predefined
database user.

Note: Because physical/end users are mapped to predefined/anonymous database users, db
server auditing services will not be able to trace end user activity. If needed, this feature must be
implemented at the application level.

At this level, the application user must be validated with simple SQL queries. The application user definition
can be stored in an application table, where the password should be encrypted:

LET user_pswd_encrypted = my_encode(user_pswd)
SELECT last_login INTO ts FROM app_users
 WHERE app_users.u_name = user_name
 AND app_users.u_pswd = user_pswd_encrypted
IF SQLCA.SQLCODE == 100 THEN
 -- application user does not exist: ask for registration, or deny access
 ...
END IF

Connecting to the DB with custom SSO implementation

This technique can be implemented for a public web application (where end users can register
themselves), or for an enterprise web application (where end users are known and where creation is
controlled).

The principle is similar to the Connecting to the DB with predefined database users solution, but instead of
using an standard SSO protocol, the GAS SSO delegation feature is used to implement a custom single
sign-on procedure.

Application users (SSO login and password) are handled by the delegation program, and associated
database user credentials can be stored in a file or light-weight database, which can then be passed
through environment variables to the application program. The application program then issues a regular
CONNECT TO instruction with USER db_username USING db_password option.

Compression in Genero Application Server
Compression is enabled by default for the Genero Application Server. You can disable compression on
selected resources or for the entire Genero Application Server.

Files managed by the Genero Application Server can be compressed to reduce the size of files sent to
the User Agent. The files can be compressed by hand and deployed in the GAS, but it is also possible to
configure the GAS to compress application files on the fly.

Compression is configured in the $FGLASDIR/etc/imt.cfg file. This file lists the type of resources that
can be compressed. GAS automatically compresses the files with the file extensions listed in imt.cfg.

When does compression take place?
Compression takes place at:

• Installation time
• At application deployment with Genero Archive

Configuring the Genero Application Server | 147

• At runtime, when communication files, i.e. HTTP request/response type files that do not need to be
saved on disk, are exchanged between GAS and applications. These are compressed on the fly.

• At runtime when files on disk are requested by applications.

Note: At runtime, the GAS checks the imt.cfg to see if the requested file is expected to be
a compressed file. If the compressed file is not up to date or is missing, the GAS performs the
following:

• It compresses the requested resource on the fly and sends a compressed result.
• A warning is displayed in the GAS log (see Logging on page 156) if the compressed file is

out of date or is missing. (To prevent these warnings, you will need to update compressed
files. You can manually generate the compress files (.gz) with the gasadmin -z command
or using another appropriate compression utility command).

• You can compress static files as required using the gasadmin -z command, see gasadmin tool.

Enabling and disabling GAS compression
Both the gasadmin -z compression command and the GAS use the imt.cfg file to identify the
resources that can be compressed.

imt.cfg sample:

[-] Internet media type Extension
The optional '-' sign at the beginning can be used to explicitly
disable compression when sending resources
Example: see below application/java-archive
#
Uncomment the following line to completely disable compression
gas:disable-compression
application/andrew-inset ez
- application/java-archive jar
application/font-woff woff
application/mac-binhex40 hqx
application/mac-compactpro cpt
application/msword doc
...

To disable compression for a specific resource, place a '-' sign at the beginning of that resource in the
listing. For example:

- application/java-archive jar

To disable all compression by the Genero Application Server, uncomment the gas:disable-
compression entry in the file.

Compression enabled (entry is a comment; default):

gas:disable-compression

Compression disabled (entry is not a comment):

gas:disable-compression

Configuring development environment
Configure a development environment to troubleshoot an application.

To troubleshoot and debug an application, you may need to view the application log files and the AUI tree.
For this you will need to set up a development environment. For example, to configure a development
environment for applications using uaproxy protocol, perform the following steps:

Configuring the Genero Application Server | 148

1. In the GAS configuration file (default %FGLASDIR%/etc/as.xcf), change:

<RESOURCE Id="res.uaproxy.param" Source="INTERNAL"></RESOURCE>

to:

<RESOURCE Id="res.uaproxy.param" Source="INTERNAL">--development</
RESOURCE>

Tip:

Or alternatively:

You can also run the dispatcher from the command line and override the settings in the GAS
configuration file for res.uaproxy.param:

httpdispatch.exe -E res.uaproxy.param=--development

2. Restart the dispatcher.

The dispatcher must be restarted whenever you modify the application server configuration file in order
for the changes to take effect.

3. Enter the application URL in your browser.

You should now see the Debug Tools icon (next to the close application icon) on the right-hand side of
your web application window.

4. Click on the Debug Tools icon to open the GWC-JS Debug tools page in a new browser tab.

An AUI tree is displayed showing the node and properties of the user interface screen you are currently
working on.

Configuring Multiple Dispatchers
If you need to configure multiple dispatchers, you must configure log, temporary and session directories in
order to distinguish the entries for each dispatcher.

Multiple dispatchers are typically not needed; in fact they are rarely used. You would need to start
multiple dispatchers if you needed to have different environments using the same version of the Genero
Application Server on the same host. For example, you may wish to co-locate your production, training,
and development environments.

To start multiple dispatchers on a single host, you create a copy of the application server configuration
file (default as.xcf) for each dispatcher you will start. At a minimum, each dispatcher will have its own
uniquely-named configuration file, and the file will have different values for the listening port.

It is important to also ensure that your log, temporary and session directories remain independent. In the
default application server configuration file, these directories are located under the directory specified by
the resource res.appdata.path. These examples are extracted from the default application server
configuration file:

-- res.appdata.path specifies the directory for application data
-- for the dispatcher

<RESOURCE Id="res.appdata.path"
 Source="INTERNAL">C:\ProgramData\FourJs\gas\2.50.07-130789</RESOURCE>

-- res.log.output.path specifies the log directory,
-- as specified by the LOG element

<RESOURCE Id="res.log.output.path"
 Source="INTERNAL">$(res.appdata.path)/log</RESOURCE>

Configuring the Genero Application Server | 149

<LOG>
 <OUTPUT Type="$(res.log.output.type)">$(res.log.output.path)</OUTPUT>
 <FORMAT Type="TEXT">$(res.log.format)</FORMAT>
 <CATEGORIES_FILTER>$(res.log.categories_filter)</CATEGORIES_FILTER>
 <RAW_DATA MaxLength="$(res.log.raw_data.maxlength)" />
</LOG>

-- res.path.tmp specifies the temporary directory,
-- as specified by the TEMPORARY_DIRECTORY element

<RESOURCE Id="res.path.tmp"
 Source="INTERNAL">$(res.appdata.path)/tmp</RESOURCE>
<TEMPORARY_DIRECTORY>$(res.path.tmp)</TEMPORARY_DIRECTORY>

-- SESSION_DIRECTORY specifies the session directory,
-- as specified by the SESSION_DIRECTORY element

<SESSION_DIRECTORY>$(res.appdata.path)/session</SESSION_DIRECTORY>

The quickest (and recommended) way to ensure that a dispatcher's information is not mixing with other
dispatcher information is to change the value of the res.appdata.path resource to a directory value
unique for the dispatcher. This is the recommended approach.

Alternatively, you can change the values for the OUTPUT element of the LOG element,
TEMPORARY_DIRECTORY and SESSION_DIRECTORY directly.

Administering the Genero Application Server | 150

Administering the Genero Application Server

Understand the options available for the administration of the Genero Application Server.

• Monitoring on page 150
• Logging on page 156
• Using the debugger on page 157
• Performance tuning on page 158
• Load balancing on page 159

Monitoring
The GAS Monitor displays information on the GAS dispatcher and on active applications. This information
is available via an URL, as an XML document.

Statistics about the GAS are provided as an XML document through the /monitor URL. You can modify
the Statistics presentation by customizing the monitor.xslt file located in $FGLASDIR/web/fjs.

• Usage on page 150
• Statistics on page 150

Usage
Enter a URL to access the monitor.

Standard URL with direct connection:

http://appserver:port/monitor

For more details on monitor configuration, see Monitor - Configuration Reference in the Configuration
Reference section.

If you are using a web server, you will enter in a different URL. Refer to The Application Web Address for
more information.

Statistics
The statistics or information provided by the GAS Monitor can be viewed in two steps.

Step 1: Viewing information about the dispatcher

When you first access the GAS Monitoring page, information is provided about the Dispatcher.

Example: http://localhost:6394/monitor provides the dispatcher details.

http://localhost:6394/monitor

Administering the Genero Application Server | 151

Figure 32: Monitoring: Dispatcher details

Example: http://localhost/gas/monitor provides the dispatcher details.

http://localhost/gas/monitor

Administering the Genero Application Server | 152

Figure 33: Monitoring: Dispatcher details

From this page, you can view Dispatcher Resources usage information by clicking on the Dispatcher
Resources usage link.

Administering the Genero Application Server | 153

Figure 34: Monitoring: Dispatcher Resources usage

Administering the Genero Application Server | 154

You can monitor detailed information per request type by clicking one of the request type links. For more
information on what each of the request types are, see URIs Acknowledged by the GAS.

For example, to see statistics relating to the launching of a GWC application, you could select to view the
statistics for the request type /wa/r.

Figure 35: Monitor: Statistics for /wa/r

Administering the Genero Application Server | 155

Step 2: Viewing information about the VMProxies

In addition to viewing statistics about the dispatcher, you can also view statistics about a session by
clicking on session links under the Monitoring for GWS / GDC / GWC proxies sections. The statistics
and information for the session - for the proxy - appear in a separate window. To return to the Dispatcher
window, you must close the Session window.

Figure 36: Viewing proxy statistics

Administering the Genero Application Server | 156

Logging
The Genero Application Server creates separate log files for its dispatchers, proxies, and the DVMs started
by those proxies.

• A log file is generated for each dispatcher. This log file captures incoming requests, the starting of
proxies, responses sent, and system error messages.

• A log file is generated for each proxy started. A separate log file is generated for each proxy started.
• A log file is generated for each DVM started. DVM standard error and standard output are sent to the

dedicated DVM log files.

When in development mode, the ending page for a GWC-JS Web application contains a link to the DVM
log file.

Figure 37: Example GWC-JS application ended page

Log files are also accessible from the Genero Application Server monitor via the (LOG) link next to the
proxy name or PID display.

Note: See Table 5: appdata directories and files on page 40 for details on the location of log files.

Log file names

For the dispatcher log, the name specifies the type of dispatcher. Example:

• httpdispatch.log

For the proxy log, the name indicates the type of proxy. Examples:

• uaproxy-<session-id>.log

• gwsproxy-<group>-<app>.log

For the DVM log, if the DVM is started by the gdcproxy or gwcproxy, the name includes the session-id:

• vm-<session-id>.log

When working with Web services, a GWS proxy can spawn multiple DVMs. Each DVM gets its own log file.
The log file is suffixed with a number from 0 to MAX_AVAILABLE-1. A log file is reused for new DVM logs if
the previous DVM has finished, to avoid the accumulation of log files on disk.

• vm-<group>-<app>-<number>.log

Examples:

Administering the Genero Application Server | 157

• vm-demo-Calculator-0.log

• vm-demo-Calculator-1.log

Manage the Genero Application Server log files

The GAS creates a log for each application session. As a result, you can end up with a lot of log files.
You should have some plan for archiving and removing log files. For UNIX-based platforms, you can use
utilities such as logrotate to compress and move log files. For Windows™, any program that can compress
and archive log files can be used.

Note: If using logrotate on Apache web server logs, lograte will start and stop the Apache
server. When Apache restarts, it also starts a new fastcgidispatch process (see Apache:
mod_fastcgi on page 86) while it may not stop the existing process. If you observe this behavior,
you can set logrotate's prerotate script to get the pid of the running fastcgidispatch process,
it should then be possible to stop the old fastcgidispatch process in the postrotate script,
for more information see Logrotate.

Using the debugger
This section provides instructions for using the debugger for the httpdispatch.

In addition to using the instructions below, you can use the graphical debugger in Genero Studio. For more
information on the graphical debugger, refer to the Genero Studio User Guide.

• Using the Debugger for the GAS on the Windows platform on page 157
• Using the Debugger for the GAS on UNIX on page 158

Using the Debugger for the GAS on the Windows™ platform
To run the FGL debugger, the dispatcher must open a DOS command or a xterm window and then run
"fglrun -d".

1. In the GAS configuration file (default %FGLASDIR%/etc/as.xcf), change:

<RESOURCE Id="res.dvm.wa" Source="INTERNAL">
 $(res.fgldir)\bin\fglrun.exe</RESOURCE>

to:

<RESOURCE Id="res.dvm.wa" Source="INTERNAL">
 c:\fjs\gas\debug.bat</RESOURCE>

(Windows™) for example, where debug.bat contains cmd /K start cmd

2. In the application configuration file, change the DVM availability timeout value to allow you time to type
your debug commands.

For example, change:

<DVM_AVAILABLE>10</DVM_AVAILABLE>

to:

<DVM_AVAILABLE>60</DVM_AVAILABLE>

This change allows you 60 seconds in which to type your debug commands.

3. Restart the dispatcher.

(The dispatcher must be restarted whenever you modify the application server configuration file in order
for the changes to take effect.)

http://linuxcommand.org/man_pages/logrotate8.html

Administering the Genero Application Server | 158

4. Enter the application URL in your browser.

This opens a shell window.

5. Type the commands to run the application:

fglrun -d test.42r <<< Opens the debugger tool and sets it on program test.42r.

(fgldb)b test:20 <<< Sets a break point at line 20.

(fgldb)run <<< Runs the application.

This refreshes the browser, like the FGL debugger does with the GDC.

Tip:

You can also run the dispatcher from the command line and override some of the settings for
res.dvm.wa:

httpdispatch -E res.dvm.wa="cmd /K start cmd" (Windows™)

Using the Debugger for the GAS on UNIX™

These instructions assume that you are operating within a graphical environment. If you are not operating
within a graphical environment, simply enter the commands you want to process in the script.

To run the dispatcher, enter the following:

httpdispatch -E res.dvm.wa="/home/test/xterm.sh"

In the xterm.sh shell, you have: /usr/bin/xterm (the complete path to xterm).

This removes all of the options given by the dispatcher along with all error messages. A new xterm is
opened. At this point, proceed as you would if you were running your applications from a Windows™

platform.

Performance tuning
These topics cover various performance tuning considerations for configuring your Web server, your
Genero Application Server, and your Genero applications.

• Web server configuration: Keep Alive on page 158
• SPDY on page 158

Web server configuration: Keep Alive
Recommendations for the keep alive settings on the Web server.

To improve performance, we recommend that you turn on the HTTP Keep-Alive feature on the Web server.

Prior to version 2.50, if you were connecting to the GDC through the GAS (via the GDCProxy), it was
recommended that the connection timeout be longer than 120 seconds. The recommendation is removed
starting with version 2.50.

SPDY
SPDY (pronounced "SPeeDY") is an experimental network protocol created to transport Web content. The
Genero Application Server is compatible with the SPDY protocol.

The main goal of SPDY is to reduce web page load time by:

• Multiplexing unlimited concurrent file transfers over a single connection. In other words, it allows many
concurrent HTTP requests across a single TCP connection.

• Ordering file transfers by priority, preventing the channel from being congested with non-critical
resources.

Administering the Genero Application Server | 159

• Reduce bandwidth by compressing headers and eliminating unnecessary headers. For example, User-
Agent, Host, Accept* are typically static and do not need to be resent.

• To enable the server to initiate communications with the client and push data to the client whenever
possible.

• SSL is the underlying transport protocol:

• better security
• compatibility with existing network infrastructure
• ensure communication across existing proxies is not broken

The SPDY protocol is built-in with Firefox (version 13 and greater) and Google Chrome.

It is the responsibility of the system administrator to install SDPY for their Web servers (where available). It
is transparent to the GAS.

Important: GAS 2.50 provides a built-in compression feature. If SPDY is used and compression
is active in SPDY, you should disable the built-in GAS compression. SPDY will do a better job of
compression as it can compress HTTP headers as well as HTTP request/response bodies.

For more information:

• SPDY home page
• SPDY white paper
• SPDY protocol
• Apache module for SPDY / installation instructions

Load balancing
One way to increase the capacity of the Genero Application Server (GAS) is to scale it out by deploying
multiple instances of the GAS on different servers.

As the GAS is fully integrated with existing Web Servers, third-party tools can be used to implement load
balancing. GAS applications can be load balanced using standard load balancing techniques, including
software load balancers such as Windows™ Network Load Balancing or HAProxy, as well as hardware-
based load balancing appliances.

Note: There is no reason to have a Web server, its dispatcher, and the VMProxy on different
machines. While the load balancer will balance load across different machines, on each machine
you will find one Web server, one dispatcher, all attached proxies, and all attached DVMs. In
production, you should think of the GAS as a group comprised of the web server, dispatcher and
proxies, and DVMs.

This section discuss considerations for load balancing GAS applications on multiple instances. The
provided examples illustrate simple configurations for Internet Information Services and Apache Web
Servers.

• GAS requests on page 159
• Sessionless request processing on page 160
• Session-bound request processing on page 161
• Load Balancing Configuration Examples on page 165

GAS requests
The secret to load balancing GAS requests involves equally dispatching the requests between the different
GAS instances.

However, all requests are not the same. Some requests must go to a specific GAS instance. These
requests can be recognized through the session identifier that is part of their URL. The session identifier
represents a GAS session, and because a GAS session is known by a single GAS instance only, all
requests that are relative to that session must be driven to that specific GAS instance.

http://dev.chromium.org/spdy
http://dev.chromium.org/spdy/spdy-whitepaper
http://dev.chromium.org/spdy/spdy-protocol
http://code.google.com/p/mod-spdy/
http://go.microsoft.com/fwlink/?linkid=110362
http://haproxy.1wt.eu/

Administering the Genero Application Server | 160

Figure 38: Load Balancing GAS Requests

Session-bound requests that share the same session identifier are part of a specific GAS session. Of
the various kinds of GAS applications, only two create a session: GDC and GWC applications. Since
GWS applications don't create sessions, GWS requests can always be routed to any of the available GAS
instances. Sites that serve only GWS applications do not have to deal with session-bound request issues.
However, if a site serves all kind of applications, it must be configured to serve session-bound requests
only.

Managing the load balancing means handling the two types of requests:

• Load balancing sessionless requests among several GAS instances.
• Driving session-bound requests to the GAS instance that handles the session.

Sessionless request processing
Load balancing sessionless requests among several GAS instances does not require any particular
knowledge of the incoming request.

Generally, the load balancing tool offers rules to do sessionless load balancing by itself. Depending on the
tool, those rules may go from a simple round-robin algorithm to more sophisticated ones like choosing a
server according to the available memory or to the time that it takes to respond to a network request.

Administering the Genero Application Server | 161

Figure 39: Sessionless Request Processing

Figure 39: Sessionless Request Processing on page 161shows the processing of a sessionless request.
It takes the following steps:

1. A Web Service client tool sends a request to the load balancer server.
2. The load balancer server is configured to dispatch the requests over two GAS instances. It does not

matter if those instances are installed on separate servers, or if they are on the same server configured
to listen at different ports. The routing really depends only on the capabilities of the load balancing tool.
In this example, it happens to choose the instance G1.

3. The request is forwarded to G1.
4. The response is returned to the load balancer server.
5. The response is returned to the client.

Session-bound request processing
With session-bound requests, more work has to be done in order to route session-bound requests to the
GAS (G1) instance that handles the session.

For them, G1 must be retrieved from the data of the request. The load balancing tool does not record the
currently active GAS sessions. Actually, it even doesn't know anything about GAS sessions at all. It offers
other means to retrieve G1: either through a cookie sent along with the request that will contain the identity
of G1 or through a part of the URL of the request that will link to G1. This piece of information is added to
the request that will create the session. This starting-session request is sessionless, and can therefore be
processed by any of the available GAS instances. However, once that instance has been chosen (G1 in
our example) , the piece of information to identify G1 will be added to the request and/or to its response in
order to route following requests to G1.

The following paragraphs discuss the two kinds of configuration for the load balancing of session-bound
requests: cookie-based and path-based. For each method, first the processing of the starting-session
request is shown, and then the processing of the session-bound requests is shown.

Administering the Genero Application Server | 162

Cookie-based starting-session request processing

Figure 40: Cookie-based starting-session request processing

Figure 40: Cookie-based starting-session request processing on page 162shows the processing of a
cookie-based starting-session request. It takes the following steps:

1. GDC (or a user agent on the behalf of GWC) sends a request to the load balancer server.
2. The load balancer server is configured to dispatch the requests over two GAS instances. In this

example, it happens to choose the instance G1.
3. The request is forwarded to G1.
4. G1 creates the session S1.
5. The response is returned to the load balancer server.
6. A session cookie that holds the identity of G1 is added to the response so that following requests will

also contain this cookie.
7. The response is returned to the client.

Administering the Genero Application Server | 163

Cookie-based session-bound request processing

Figure 41: Cookie-based session-bound request processing

Figure 41: Cookie-based session-bound request processing on page 163shows the processing of a
cookie-based session-bound request. It takes the following steps:

1. GDC (or a user agent in behalf of GWC) sends a request that contains the cookie C1 to the load
balancer server.

2. The load balancer server, thanks to C1, recognizes that the request must be routed to G1.
3. The request is forwarded to G1.
4. The response is returned to the load balancer server.
5. The response is returned to the client.

Note: Every request received by the load balancer server that contain C1 will be routed to G1,
whether it is a session-bound or a sessionless request.

Administering the Genero Application Server | 164

Path-based starting-session request processing

Figure 42: Path-based starting-session request processing

Figure 42: Path-based starting-session request processing on page 164shows the processing of a path-
based starting-session request. It takes the following steps:

1. GDC (or a user agent in behalf of GWC) sends a request to the load balancer server.
2. The load balancer server is configured to dispatch the requests over two GAS instances. Each of these

instances must be configured so that URLs that it handles begin with a part that is unique between all
GAS instances, whether the GAS instances are installed on the same machine or different ones. In this
example, G1 handles requests whose URLs begin with /GAS1, and G2 handles requests whose URLs
begin with /GAS2. In this example, it happens to choose the instance G1.

3. Once G1 has been chosen, the URL of the request is rewritten so that it begins with /GAS1. This prefix
will be recognized by the GAS as the connector URI part of the URL. The GAS adds the connector URI
to every URL that is part of the request responses.

4. The request is forwarded to G1.
5. G1 creates the session S1.
6. The response is returned to the load balancer server.
7. The response is returned to the client.

Administering the Genero Application Server | 165

Path-based session-bound request processing

Figure 43: Path-based session-bound request processing

Figure 43: Path-based session-bound request processing on page 165shows the processing of a path-
based session-bound request. It takes the following steps:

1. GDC (or a user agent in behalf of GWC) sends a request who's URL begins with /GAS1 to the load
balancer server.

2. The load balancer server, thanks to the /GAS1 prefix, recognizes that the request must be routed to G1.
3. The request is forwarded to G1.
4. The response is returned to the load balancer server.
5. The response is returned to the client.

Note: Every request received by the load balancer server that begins with /GAS1, respectively /
GAS2, will be routed to G1, respectively G2, whether it is a session-bound or a sessionless request.

Load Balancing Configuration Examples
Configuration examples depend on the tools available on the Web Server.

The following configuration examples are based on two sample architectures. The first architecture is
configured as follows:

Administering the Genero Application Server | 166

Figure 44: Load Balancing Sample Architecture 1

• Three machines.
• The load balancer machine contains all the tools to do the load balancing.
• Two machines each contain a GAS instance. Each GAS instance listens to the default HTTP port and

are configured on the same virtual directory.
• The host names of the machines that contain the GAS instances are GAS1.corporate.com and

GAS2.corporate.com.

The second architecture is configured as follows:

Figure 45: Load Balancing Sample Architecture 2

• It is the same configuration as Figure 44: Load Balancing Sample Architecture 1 on page 166, but the
load balancer server is configured on the gas virtual directory and the GAS instances are configured on
distinct virtual directories.

• Internet Information Services 5.x and 6.0 on page 167
• Internet Information Services 7.x on page 168
• Apache 1.3.x and 2.0.x on page 170
• Apache 2.2.x on page 171

Administering the Genero Application Server | 167

Internet Information Services 5.x and 6.0
Internet Information Services (IIS) 5.x and 6.0 have no built-in tools to do load balancing. However, third
party tools do exist.

One third-party tool is ISAPI_Rewrite, which aims to enable Apache mod_rewrite on IIS.

Sessionless requests

The following example shows how to configure the ISAPI_Rewrite filter to do load balancing for
sessionless requests. It assumes the architecture illustrated by the sample architecture 1.

Helicon ISAPI_Rewrite configuration file
Version 3.1.0.66

RewriteEngine on

RewriteMap servers rnd:hosts.txt

RewriteRule ^/(.*) http://${servers:host}/$1 [P,L]

• These configuration entries can be put at the server level in the httpd.conf file.
• The RewriteMap instruction uses a round-robin algorithm to select a host based on the content of the

hosts.txt file, which has following content:

host GAS1.corporate.com|GAS2.corporate.com

• The RewriteRule instruction replaces the server host of incoming requests by the content of the
servers:host variable, then forwards the request to the chosen machine.

For example, the http://localhost/ws/r/echo URL will be rewritten to http://
GAS1.corporate.com/ws/r/echo, assuming that the GAS1.corporate.com server has been chosen.

Session-bound requests

The following example shows how to configure the ISAPI_Rewrite filter to do load balancing for session-
bound requests. It assumes the architecture illustrated by the sample architecture 2. ISAPI_Rewrite
doesn't support cookie-based request routing. The example illustrates path-based session-bound request
routing.

Helicon ISAPI_Rewrite configuration file
Version 3.1.0.66

RewriteEngine on

RewriteMap servers rnd:vdirs.txt

RewriteRule ^/gas/(.*) /${servers:vdir}/$1
RewriteRule ^/GAS1/(.*) http://GAS1.corporate.com/GAS1/$1 [P,L]
RewriteRule ^/GAS2/(.*) http://GAS2.corporate.com/GAS2/$1 [P,L]

• These configuration entries can be put at the server level in the httpd.conf file.
• The RewriteMap instruction uses a round-robin algorithm to set the value of the servers:vdir

variable based on the content of the vdirs.txt file, which has following content:

 vdir GAS1|GAS2

• For starting-session requests, the RewriteRule instruction replaces the gas part of the URL by the
content of the servers:vdir variable, which is either GAS1 or GAS2; then other rewrite rules will be
applied to set the host. For session-bound requests, the rule will not match so the rule doesn't apply.

• The host name of requests who's URL begin with /GAS1/ will be set to GAS1.corporate.com.

http://www.helicontech.com/isapi_rewrite/

Administering the Genero Application Server | 168

• The host name of requests who's URL begin with /GAS2/ will be set to GAS2.corporate.com.

For example, the http://localhost/gas/ua/r/gwc-demo URL will be rewritten to http://
localhost/GAS2/ua/r/gwc-demo, assuming that the servers:vdir variable contains GAS2
at this time, then will be rewritten to http://GAS2.corporate.com/GAS2/wa/r/gwc-demo.
Likewise, the http://localhost/GAS2/wa/sua/93837374/1 URL will be rewritten to http://
GAS2.corporate.com/GAS2/wa/sua/93837374/1.

Internet Information Services 7.x
Internet Information Services (IIS) 7.x provides load balancing tools through IIS extensions.

The IIS extensions are:

• Application Request Routing
• IIS URL Rewrite

Both tools are required to do the job.

The following examples show the resulting configuration entries. It can be done either by editing the
configuration files manually or by using the IIS manager user interface. For more information on how to use
the IIS manager user interface, see HTTP Load Balancing using Application Request Routing.

Sessionless requests

The following example shows how to configure IIS 7.x to do load balancing for sessionless requests. It
assumes the architecture illustrated by the sample architecture 1.

<configuration>
 ...
 <system.webServer>
 ...
 <rewrite>
 <globalRules>
 ...
 <rule name="ARR_GASFarm_loadbalance" enabled="true"
 patternSyntax="Wildcard" stopProcessing="true">
 <match url="*" />
 <conditions />
 <action type="Rewrite" url="http://GASFarm/{R:0}" />
 </rule>
 </globalRules>
 </rewrite>

 <proxy enabled="true" />

 </system.webServer>
 ...
 <webFarms>
 ...
 <webFarm name="GASFarm" enabled="true">
 <server address="GAS1.corporate.com" enabled="true">
 <applicationRequestRouting weight="100" />
 </server>
 <server address="GAS2.corporate.com" enabled="true">
 <applicationRequestRouting weight="100" />
 </server>
 <applicationRequestRouting>
 <loadBalancing algorithm="WeightedRoundRobin" />
 <affinity useCookie="false" />
 </applicationRequestRouting>
 </webFarm>
 </webFarms>
 ...

http://technet.microsoft.com/en-us/library/dd443531(WS.10).aspx
http://technet.microsoft.com/en-us/library/ee215194(WS.10).aspx
http://learn.iis.net/page.aspx/486/http-load-balancing-using-application-request-routing/

Administering the Genero Application Server | 169

</configuration>

• These configuration entries can be put at the server level in the applicationHost.config file.
• In the globalRules section of the rewrite section, the rule named ARR_GASFarm_loadbalance tells

the module to rewrite all incoming requests so that they are routed to the GASFarm web farm.
• The proxy is enabled in order to forward the requests to the two GAS servers.
• The web farm named GASFarm is declared with the two GAS servers.

For example, the http://localhost/ws/r/echo URL will be rewritten to http://
GAS1.corporate.com/ws/r/echo, assuming that the GAS1.corporate.com server has been chosen.

Session-bound requests

The following example shows how to configure IIS 7.x to do load balancing for session-bound requests.
It assumes the architecture illustrated by the sample architecture 1. The example illustrates cookie-based
request routing.

<configuration>
 ...
 <system.webServer>
 ...
 <rewrite>
 <globalRules>
 ...
 <rule name="ARR_GASFarm_loadbalance" enabled="true"
 patternSyntax="Wildcard" stopProcessing="true">
 <match url="*" />
 <conditions />
 <action type="Rewrite" url="http://GASFarm/{R:0}" />
 </rule>
 </globalRules>
 </rewrite>

 <proxy enabled="true" />

 </system.webServer>
 ...
 <webFarms>
 ...
 <webFarm name="GASFarm" enabled="true">
 <server address="GAS1.corporate.com" enabled="true">
 <applicationRequestRouting weight="100" />
 </server>
 <server address="GAS2.corporate.com" enabled="true">
 <applicationRequestRouting weight="100" />
 </server>
 <applicationRequestRouting>
 <loadBalancing algorithm="WeightedRoundRobin" />
 <affinity useCookie="true" />
 </applicationRequestRouting>
 </webFarm>
 </webFarms>
 ...
</configuration>

• These configuration entries can be put at the server level in the applicationHost.config file.
• In the globalRules section of the rewrite section, the rule named ARR_GASFarm_loadbalance tells

the module to rewrite all incoming requests so that they are routed to the GASFarm web farm.
• The proxy is enabled in order to forward the requests to the two GAS servers.
• The web farm named GASFarm is declared with the two GAS servers.

Administering the Genero Application Server | 170

• The useCookie attribute of the affinity element is set to true; actually, this is the only difference
compared to the sessionless request routing.

For example, the http://localhost/ua/r/gwc-demo URL will be rewritten to http://
GAS1.corporate.com/ua/r/gwc-demo, assuming that the GAS1.corporate.com server has been
chosen.

Apache 1.3.x and 2.0.x
Apache HTTP Server versions 1.3.x and 2.0.x provide load balancing by using mod_rewrite Apache
module.

Refer to the following:

• Apache 1.3: Module mod_rewrite: URL Rewriting Engine
• Apache 2.0: Module mod_rewrite

All configurations examples explained here work on both Apache version 1.3.x and 2.0.x

Sessionless requests

The following example shows how to configure the Apache mod_proxy module to do load balancing for
sessionless requests. It assumes the architecture illustrated by the sample architecture 1.

Apache configuration file
<IfModule mod_rewrite.c>

RewriteEngine on

RewriteMap servers rnd:hosts.txt

RewriteRule ^/(.*) http://${servers:host}/$1 [P,L]

</IfModule>

• These configuration entries can be put at the server level in the httpd.conf file.
• The RewriteMap instruction uses a round-robin algorithm to select a host based on the content of the

hosts.txt file, which has following content:

host GAS1.corporate.com|GAS2.corporate.com

• The RewriteRule instruction replaces the server host of incoming requests by the content of the
servers:host variable, then forwards the request to the chosen machine.

For example, the http://localhost/ws/r/echo URL will be rewritten to http://
GAS1.corporate.com/ws/r/echo, assuming that the GAS1.corporate.com server has been chosen.

Session-bound requests

The following example shows how to configure the Apache mod_proxy module to do load balancing for
session-bound requests. It assumes the architecture illustrated by the sample architecture 2. The example
illustrates path-based session-bound request routing.

Apache configuration file
<IfModule mod_rewrite.c>

RewriteEngine on

RewriteMap servers rnd:vdirs.txt

RewriteRule ^/gas/(.*) /${servers:vdir}/$1
RewriteRule ^/GAS1/(.*) http://GAS1.corporate.com/GAS1/$1 [P,L]
RewriteRule ^/GAS2/(.*) http://GAS2.corporate.com/GAS2/$1 [P,L]

http://httpd.apache.org/docs/1.3/mod/mod_rewrite.html
http://httpd.apache.org/docs/2.0/mod/mod_rewrite.html

Administering the Genero Application Server | 171

</IfModule>

• These configuration entries can be put at the server level in the httpd.conf file.
• The RewriteMap instruction uses a round-robin algorithm to set the value of the servers:vdir

variable based on the content of the vdirs.txt file, which has following content:

vdir GAS1|GAS2

• For starting-session requests, the RewriteRule instruction replaces the gas part of the URL by the
content of the servers:vdir variable, which is either GAS1 or GAS2; then other rewrite rules will be
applied to set the host. For session-bound requests, the rule will not match so the rule doesn't apply.

• The host name of requests who's URL begin with /GAS1/ will be set to GAS1.corporate.com.
• The host name of requests who's URL begin with /GAS2/ will be set to GAS2.corporate.com.

For example, the http://localhost/gas/ua/r/gwc-demo URL will be rewritten to http://
localhost/GAS2/ua/r/gwc-demo, assuming that the servers:vdir variable contains GAS2
at this time, then will be rewritten to http://GAS2.corporate.com/GAS2/ua/r/gwc-demo.
Likewise, the http://localhost/GAS2/ua/sua/93837374/1 URL will be rewritten to http://
GAS2.corporate.com/GAS2/ua/sua/93837374/1.

Apache 2.2.x
Apache HTTP Server versions 2.2.x provides load balancing tools through two Apache modules

The two modules are:

• Apache 2.2: Module mod_proxy_balancer
• Apache 2.2: Apache Module mod_headers

The mod_proxy_balancer module provides support of HTTP requests load balancing. The mod_headers
module provides HTTP cookies management needed by the Cookie-based request processing. For
Sessionless request processing, the mod_headers module is not required.

Sessionless requests

The following example shows how to configure Apache 2.2.x to do load balancing for sessionless requests.
It assumes the architecture illustrated by Session-bound request processing on page 161.

<IfModule mod_proxy.c>
 ProxyPass / balancer://GASFarm
 <Proxy balancer://GASFarm>
 BalancerMember http://GAS1.corporate.com
 BalancerMember http://GAS2.corporate.com
 </Proxy>
</IfModule>

• These configuration entries can be put at the server level in the httpd.conf file.
• The ProxyPass instruction tells the module to rewrite all incoming requests so that they are routed to

the GASFarm web farm.
• The <Proxy balancer://GASFarm>...</Proxy> block defines which are the members of

GASFarm web farm.
• The BalancerMember instructions declare two HTTP web server members of GASFarm web farm:

GAS1.corporate.com and GAS2.corporate.com.

For example, the http://localhost/ws/r/echo URL will be rewritten to http://
GAS1.corporate.com/ws/r/echo, assuming that the GAS1.corporate.com server has been chosen.

http://httpd.apache.org/docs/2.2/mod/mod_proxy_balancer.html
http://httpd.apache.org/docs/2.2/mod/mod_headers.html

Administering the Genero Application Server | 172

Session-bound requests

The following example shows how to configure Apache 2.2.x to do load balancing for session-bound
requests. It assumes the architecture illustrated by Session-bound request processing on page 161. The
example illustrates cookie-based request routing.

<IfModule mod_proxy.c>
 ProxyPass / balancer://GASFarm stickysession=GAS_AFFINITY
 <Proxy balancer://GASFarm>
 BalancerMember http://GAS1.corporate.com route=GAS1
 BalancerMember http://GAS2.corporate.com route=GAS2
 </Proxy>
</IfModule>

<IfModule mod_headers.c>
 Header add Set-Cookie "GAS_AFFINITY=balancer.%{BALANCER_WORKER_ROUTE}e;
 path=/; domain=.corporate.com" env=BALANCER_WORKER_ROUTE
</IfModule>

• These configuration entries can be put at the server level in the httpd.conf file.
• The ProxyPass instruction tells the module to rewrite all incoming requests so that they are routed

to the GASFarm web farm. The stickysession parameter gives the name of the cookie to use to
retrieve the GAS that holds the session.

• The <Proxy balancer://GASFarm>...</Proxy> block declares which are the members of
GASFarm web farm.

• The BalancerMember instructions declare two HTTP web server members of the GASFarm web farm:
GAS1.corporate.com and GAS2.corporate.com. The route parameter gives the name of the
route associated with that member. If that route name is found in the request cookie, then that member
will be chosen.

• The Header instruction will set, in the HTTP response, the cookie named GAS_AFFINITY to value
balancer.BALANCER_WORKER_ROUTE. The BALANCER_WORKER_ROUTE variable is assigned to the
route of the GASFarm member that has be chosen for the current request. Lastly, the env parameter
tells the module to set that cookie only if the BALANCER_WORKER_ROUTE variable is defined.

For example, the http://localhost/ua/r/gwc-demo URL will be rewritten to http://
GAS1.corporate.com/ua/r/gwc-demo, assuming that the GAS1.corporate.com server has been
chosen.

Developing Web applications | 173

Developing Web applications

The Genero Application Server allows you to deliver Web applications across a variety of clients, as well as
Web services.

Attention: As of Genero version 3.00, the Snippet-Based Rendering Engine (SBRE) and all
themes using template paths are deprecated. Output maps (e.g. DUA_HTML5) are no longer used
to specify output theme, as the wa protocol did previously. For information on how templates and
snippets were used by the Front End clients, please refer to the Genero Application Server 2.50
User Guide.

For new development, use GWC for JavaScript, see Genero Web Client for JavaScript (GWC-JS)
on page 173.

• Genero Web Client for JavaScript (GWC-JS) on page 173
• Genero Web Client for HTML5 (GWC-HTML5) on page 214
• Genero Web Services on page 214

Genero Web Client for JavaScript (GWC-JS)
These topics provide information about the Genero Web Client for JavaScript (GWC-JS) client.

Developing and deploying Web applications can be as simple as configuring the Genero Application
Server to launch the application, or it may require some slight modifications to the existing applications to
work properly given the limitations of what an application can do from a browser. A general knowledge of
how the Genero Web Client for JavaScript operates can be helpful in the planning and deploying of Web
applications.

• What is GWC-JS? on page 173
• Starting GWC-JS applications on page 188
• GWC-JS applications and use of cookies on page 189
• Customization for GWC-JS applications on page 189
• Migrating from GDC to GWC-JS on page 208
• Migrating from GWC-HTML5 to GWC-JS on page 212

What is GWC-JS?
The Genero Web Client for JavaScript is a Web client that delivers your applications over the Web using
the latest technologies for web application development.

The Genero Web Client for JavaScript (GWC-JS) is a Web client that runs in a browser. It is a JavaScript
client that works with the well-known and widely-used frameworks like node.js and sass. Its UI is adapted
from concepts of material design inspired by the material design recommendations from Google. This
innovative approach opens up limitless possibilities for you to customize the GWC-JS features and styles
according to your requirements.

The GWC-JS allows you to deliver true Web applications developed in the Genero Business Development
Language (BDL). Having the underlying source written in Genero BDL means that the GWC-JS is flexible
enough to let you build a full range of Web applications, from simple to corporate applications, with few
limitations on what you can achieve.

GWC-JS brings Genero applications to the Internet world with the capacity of integration in a Web site. It
provides you with the opportunity of working with state of the art web technologies.

Why deliver an application as a Web application?

• Web application deployment is easier and cheaper than desktop application deployment.

https://www.google.com/design/spec/material-design/introduction.html

Developing Web applications | 174

• The end user requires a browser; no software needs to be installed on the client by the end user.

GWC-JS principles

GWC-JS has evolved from the earlier GWC for HTML5 client, but unlike the earlier version, which used
themes comprised of templates and snippet sets to create dynamic web pages that were rendered on the
Application Server for delivery to the client browser, the GWC-JS is a JavaScript client that works with
Node technology. The GWC-JS client supports Genero real-time Web applications based on the following
principles:

• Nothing is computed or rendered on the Application Server side.
• Genero applications are rendered based on DVM instructions (not HTML).
• GWC-JS interprets the same protocol as Genero Desktop Client (GDC) to build web interfaces.
• GWC-JS project sources are provided in the GAS package. You can modify and adapt these sources

(JavaScript, HTML and CSS) to customize your application's features and styles to meet your needs,
see Configuring your Environment on page 198.

GWC-JS can deliver an application to any device as long as your browser supports HTML5.

• Key Players on page 174
• How GWC-JS works on page 175
• Features and limitations on page 176
• GWC-JS Web Client interface: Overview on page 180
• Quick Start: Tour of GWC-JS interface on page 183

Key Players
When working with applications deployed in a Web environment, you will need to identify or add team
members who are proficient in various Web technologies. Many of these technologies will be unfamiliar to
your traditional Genero BDL application developer.

The key players involved in developing Web-based applications are listed by area:

Table 12: Web application development key players

Area Player Responsibility

Application Design Responsible for the customization of aspects of the application within GWC-JS
by adding and modifying CSS using Sass to influence the look-and-feel of the
application. Members of this team should be proficient with HTML, CSS, Sass
and Grunt.

Application Development Responsible for the development of the Genero application, concentrating on
the business logic. Members of this team should be proficient with Genero
BDL.

Advanced Production . Responsible for the additional functionality and navigation added to
an application through the use of the CSS to link BDL form objects and
JavaScript™ and to define the behavior. Members of this team should be
proficient with the non-Genero languages and tools that can be involved in
customization, such as HTML, CSS, Node.js, Sass, Grunt, and JavaScript™.

Deployment and
Infrastructure

Responsible for the complete GWC-JS solution from a component
perspective: the installation and configuration of the application server
and Web server; the communication between the user agent, Web server,
application server, DVM, and database server. Members of this team should
be proficient in working on the different platforms and operating systems
where the application will reside and proficient in administration of the Web
server.

Developing Web applications | 175

It is rare that a single person fulfills the requirements demanded in each of these areas.

If you are working with the Genero Web Client for JavaScript, you must have some understanding of Web
technologies like HTML, XML, style sheets, Node.js, Sass, Grunt, and JavaScript™. You can find Web
standards at the World Wide Web Consortium (W3C) site.

Tip: For basic tutorials about Web standards, visit http://www.w3schools.com. While the w3schools
site provides basic, free tutorials, it is a private venture and not affiliated with the W3C. It provides a
starting point for learning new Web technologies.

How GWC-JS works
The GWC-JS Web client uses AUI tree, controllers and widgets to create and manage Document Object
Model (DOM) elements. JavaScript uses the DOM to build and manage the UI interface dynamically.

How GWC-JS works

The GWC-JS Web client interface is built dynamically using JavaScript. When the GWC-JS is launched,
it receives an AUI tree from the GAS. Effectively each node of the AUI tree is managed by a GWC-JS
controller and widget.

The GWC-JS uses its controller and widget elements to create the HTML DOM. Through DOM elements,
JavaScript is able to dynamically implement the elements of the HTML pages of the UI by responding to
changes to their properties and listening for events that change their behavior. See this illustrated in Figure
46: GWC-JS Controller and Widget Function on page 175.

Figure 46: GWC-JS Controller and Widget Function

GWC-JS Controller

The GWC-JS controller and widget elements are interdependent but have specific and distinct roles. The
JavaScript controller (_Controller.js) plays a role in:

• Creating the widget.
• Maintaining its behaviors.

Behaviors involves mapping one or more attributes of the AUI tree to an aspect of the widget. For example,
the color and reverse attributes control a widget's background color. To reflect the two-way interaction

http://www.w3.org/
http://www.w3schools.com/

Developing Web applications | 176

between the Web client and the application, there are two types of behavior that a controller needs to
maintain:

• VM behavior: the controller is listening to the DVM and applying the changes received from DVM
instructions.

• UI behavior: the controller is also listening to the UI and sending UI modification to the DVM.

Note: These built-in behaviors are internal and not meant to be modified by users.

GWC-JS Widget

The JavaScript widget (_Widget.js) plays a role in updating the DOM tree to reflect the application state.
It has:

• APIs to manipulate the DOM.
• Listeners to react to DOM events.

• Understanding GWC-JS widgets on page 194

Features and limitations
While a Genero application largely reacts the same across the different Front End clients (GWC-JS, GDC,
and so on), there are limitations for applications.

These tables list the features and limitations for Genero Front Ends. This is to help you determine which
Front End is the most suitable for your applications.

Note: Some features of the new Genero Web Client for JavaScript (GWC-JS) are currently not yet
available. As development work continues, we will update this page as new versions of the GWC-
JS are released.

Legend

• X : available
• X* : available with limitations
• NA : not available

Table 13: Rendering: Features and limitations for Genero Front Ends

GDC GWC-HTML5 GWC-JS

Look windows
manager theme

custom theme custom theme

Layout X X* X*

MDI windows X NA NA

Stacked window X X* X

Styles: .4st colors, fonts (common styles) X X X

Styles: .4st positioning X X X

Widgets Customization NA X X

Web Components X X X

Traditional GUI Mode X X NA

Developing Web applications | 177

Table 14: Behavior: Features and limitations for Genero Front Ends

GDC GWC-HTML5 GWC-JS

Synchronous triggers X X X

Drag and Drop X X X

Keying: Dialogtouched X X X

Keying: Type ahead X X NA

Keying: Accelerator keys X X X

Keying: Local actions X X* X*

Natural accelerator X X* X*

Cursor: fgl_dialog_getselectionend X NA X

Cursor: fgl_dialog_setselection X NA X

Cursor: fgl_dialog_getcursor X NA X

Cursor: fgl_dialog_setcursor X NA X

Cursor: fgl_getcursor X NA X

Widgets X X* X*

RIP widgets X NA NA

Table: Resizing columns X X X

Table: Display/Hide columns X X X

Table: Frozen columns X X X

Dockable toolbars/menus X NA NA

GRV X NA NA

CANVAS X X X

Richtext X X NA

PictureFlow X X NA

Table 15: Interaction (with third party): Features and limitations for Genero Front Ends

GDC GWC-HTML5 GWC-JS

File transfer X X X

Session variables/Cookies NA X X

Stored settings X X NA

Front End Call X X* X*

Table 16: Deployment: Features and limitations for Genero Front Ends

GDC GWC-HTML5 GWC-JS

Front End System All / Internet
Explorer

HTML5 Browsers HTML5 Browsers

Developing Web applications | 178

GDC GWC-HTML5 GWC-JS

Connections: HTTP / HTTPS X X X

Connections: rlogin / telnet / SSH / SSH2 X* NA NA

Single Sign On X X X

• Non-supported hot keys on page 178

Non-supported hot keys
Some hot key combinations are not supported by specific browsers for the Genero Web Client for
JavaScript.

The table below identifies which hot keys are NOT supported by browser type, for applications delivered by
the GWC-JS.

Important: An 'NS' in a browser's column indicates that the hot key combination is NOT
supported for that browser.

Important: Details about hot key support for Microsoft™ Edge and Safari browsers will be added in
a future update to this topic.

Table 17: Hot keys NOT supported by GWC-JS by browser

Hot key combination Microsoft™

Internet
Explorer

Microsoft™

Edge
Google Chrome Safari

Menu NS NS

Windows NS NS

Shift - Menu NS

Shft - Ctrl NS

Ctrl - F4 NS

Ctrl - Menu NS

Ctrl - 0 (zero) NS

Ctrl - + (plus sign) NS

Ctrl - + (plus sign on the Numeric
pad)

NS

Ctrl - - (minus sign on the Numeric
pad)

NS

Ctrl - N NS

Ctrl - O (letter O) NS

Ctrl - P NS

Ctrl - T NS

Ctrl - W NS

Alt - F4 NS

Alt - Enter NS

Alt - Space NS NS

Alt - A NS

Developing Web applications | 179

Hot key combination Microsoft™

Internet
Explorer

Microsoft™

Edge
Google Chrome Safari

Alt - C NS

Alt - E NS

Alt - F NS

Alt - H NS

Alt - T NS

Alt -V NS

Alt - X NS

Alt - Z NS

Ctrl - Shift - Menu NS

Ctrl - Shift - + (plus sign) NS

Ctrl - Shift - + (plus sign on the
Numeric pad)

NS

Ctrl - Shift - - (minus sign on the
Numeric pad)

NS

Ctrl - Shift - N NS

Ctrl - Shift - T NS

Ctrl - Shift - W NS

Ctrl - Alt - Menu NS

Ctrl - Alt - Delete NS NS

Ctrl - Alt - Delete (on the Numeric
pad)

NS NS

Ctrl - Alt - Arrows (up/down/left/
right)

NS NS

Ctrl - Alt - F12 NS NS

Ctrl - Alt - 3 NS

Ctrl - Alt - 8 NS

Ctrl - Alt - Shift - Menu NS

Ctrl - Alt - Shift - 2 (on the Numeric
pad)

NS

Ctrl - Alt - Shift - 4 (on the Numeric
pad)

NS

Ctrl - Alt - Shift - 6 (on the Numeric
pad)

NS

Ctrl - Alt - Shift - 8 (on the Numeric
pad)

NS

Developing Web applications | 180

GWC-JS Web Client interface: Overview
When you launch a Genero Web Client for JavaScript application, it is displayed in the browser tab within
the GWC-JS client interface. The interface consists of the application panel and a navigation side bar. The
interface also provides a toolbar with various menu options including a close application option.

• User interface: home page on page 180
• User interface: menus on page 182
• Debug interface on page 183

User interface: home page
The Genero Web Client page is displayed when the interface is launched. From this page, you can open
an application.

To open the GWC-JS user interface, type the URL into your browser as follows: http://host:port/
gas/gwc-js/index.html. For example working on the standalone dispatcher as the Web server, enter
http://localhost:6394/gwc-js/index.html.

Figure 47: Genero Web Client user interface home page

You can run an application by typing its name (e.g. type gwc-demo to open the demo applications) in the
UA Url launcher field and clicking Run.

Or you can open a recent application by selecting it in the History panel. If you have bookmarked an
application, you can select it to open from the Bookmarks panel.

Panels

Panels organize the Genero Web Client home page into sections.

History Open a recently-opened application.

Bookmarks Open a bookmarked application.

• User interface: navigation on page 181

Developing Web applications | 181

User interface: navigation
The GWC-JS interface provides a navigation panel or side bar showing the list of running applications.

The navigation panel lists all the applications that you have currently open in the Genero Web Client user
interface. You can switch between your open applications, or windows of an application if more than one,
by selecting them from the list to make them active in the main application panel to the right.

Note: Depending on your browser's window size, you may not see the sidebar but just the
"hamburger icon"

(three horizontal stripes) displayed. When you click on it, a drawer opens giving you access to all
your opened applications.

When you close an application, it is removed from the navigation list.

Figure 48: Genero Web Client user interface sidebar navigation

Developing Web applications | 182

User interface: menus
The GWC-JS interface provides various menu options for working with applications.

Figure 49: Genero Web Client user interface menus

From the Genero Web Client menus at the top of an application window, you can bookmark the
application by clicking on the Bookmark icon. Selecting an application in the navigation panel activates
the Close window icon for that application. Clicking on the Close window icon closes the selected
application and returns you to either:

• The next application on the navigation list.
• Or, when closing the last application on the navigation list, you are returned to The application

ended page from where you can, for example, view DVM and GWC proxy logs or restart the closed
application.

Clicking on the Application information menu opens the Product identification window, which displays
information about the GWC-JS version and the application URL.

Clicking on the Debug Tools menu opens the Debug interface window, see Debug interface on page
183.

Menus

When an application is selected in the Genero Web Client user interface, the following menu items may
be shown in the panel at the top of the application page.

Bookmark Bookmark the current application.

Close window Close the application window.

Note: The Close window menu may not
be shown while an application is expecting
user input or other action.

Application information Open the Product identification window.

Debug Tools Open the Debug interface.

Developing Web applications | 183

Note: If you do not see the Debug Tools
menu icon, you will need to configure
debug mode. For details about launching
the dispatcher in this mode, please see
Configuring development environment on
page 147

Debug interface
To troubleshoot and debug an application, you may need to view the application log files and the AUI tree.

To open the Debug interface, click on the Debug Tools icon (next to the application information icon)
on the right-hand side of your web application window. The GWC-JS Debug tools page opens in a new
browser tab. You can troubleshoot an application by selecting the nodes of its AUI tree in the panel on the
left of the window. Their properties and values will be shown in the panel to the right.

Note: If you do not see the Debug Tools menu icon, you will need to configure debug mode.
For details about launching the dispatcher in this mode, please see Configuring development
environment on page 147

Figure 50: Genero Web Client for JavaScript debug interface

Panels

Panels organize the Debug interface into sections.

AUI Tree Shows the AUI tree of the current application which
is open in the GWC-JS user interface browser tab.

AUI node properties Displays the properties of the selected node in the
AUI tree.

 Quick Start: Tour of GWC-JS interface
Use this tour to quickly become familiar with the GWC-JS client interface while exploring the demo
applications.

• Quick start: stacked windows on page 184

Developing Web applications | 184

• Quick start: run without waiting on page 185

Quick start: stacked windows
The GWC-JS user interface provides a mechanism for working with applications that use stacked windows.

This quick start guide provides you with the steps to explore working with stacked windows in the demos
Web application using GWC-JS . Imagine an application's window stack is composed of several windows,
W1, W2, ..., Wn. Typically, the GWC-JS only displays the window at the top of the stack - the Wn window;
also called the current window. The other windows, W1 to Wn-1, are not displayed but you can access
them from the Navigation panel.

Before you begin:

Start the standalone dispatcher from the command line using httpdispatch and then open the demos
application in your browser by entering the URL http://localhost:6394/gwc-js/index.html?
app=gwc-demo.

1. In the Topic tree of the demo directory, navigate to User Interface >> UI Basics>> Window. Double-
click on the demo CurrentWindow1 in the panel to the right.

Figure 51: Application windows in GWC-JS user interface

• The window at the top of the stack (Screen) is displayed.
• The Navigation panel is updated with the CurrentWindow1 application tree, which has the

following links to windows in the stack:

• Screen
• Window w1
• Window w2
• Window w3

2. To set an active window of the CurrentWindow1 application, in the menu panel called Test, click on
one of its menu buttons:

The menu button options are:

• w1
• w2
• w3
• Screen

The Is current field displays YES for the current window.

Developing Web applications | 185

3. In the Navigation panel, click on one of the links in the CurrentWindow1 tree to set the focus to a
window in the stack.

Note: Although you can switch to windows other than the active or current window in the
CurrentWindow1 stack, their functions are disabled and their menus invisible. In this example,
you can only have one current window in the stack.

The result of your window selection will depend on the following:

• On the current window, the Is current field value is YES and the Test menu panel is displayed.
• On the window not current, the Is current field value is NO and the Test menu panel is not

displayed.

4. To change the current window to another window in the stack:

In the current window's Test menu panel, select one of the other windows by clicking on its menu
button. For example, if Screen is the current window, click on its w1 button to make Window w1
current.

What to do next

When you have completed the above steps, you can explore the mechanism for running Web applications
in the background and switching between these using the GWC-JS user interface as described in Quick
start: run without waiting on page 185 .

Quick start: run without waiting
The GWC-JS provides a mechanism for applications to be run as child programs that execute in the
background, that is the parent program can continue to run without waiting for the child program to finish.

About this task:

This task provides you with the steps to explore working with GWC-JS when an application has sub
processes running in the background. The example BDL program (Navigation.42m) starts an application
with stacked windows. It gives you the option to use a RUN WITHOUT WAITING command to start another
instance of the application as a background process.

1. Copy the example BDL program code to a text file and save it as Navigation.4gl

Property of Four Js*
(c) Copyright Four Js 1995, 2015. All Rights Reserved.
* Trademark of Four Js Development Tools Europe Ltd
in the United States and elsewhere

Four Js and its suppliers do not warrant or guarantee that these
samples are accurate and suitable for your purposes. Their inclusion is
purely for information purposes only.

MAIN
 DEFINE cw STRING
 DEFINE i INT

 IF num_args() = 0 THEN LET i=1 ELSE LET i=arg_val(1) END IF

 OPEN FORM f FROM "Navigation"
 DISPLAY FORM f
 DISPLAY "screen" TO fname

 OPEN WINDOW w1 WITH FORM "Navigation"
 CALL fgl_setTitle("Window w1 - " || i)
 DISPLAY "w1" TO fname

 OPEN WINDOW w2 WITH FORM "Navigation"
 CALL fgl_setTitle("Window w2 - " || i)
 DISPLAY "w2" TO fname

Developing Web applications | 186

 OPEN WINDOW w3 WITH FORM "Navigation"
 CALL fgl_setTitle("Window w3 - " || i)
 DISPLAY "w3" TO fname

 WHILE 1
 DISPLAY "YES" TO info
 MENU "Test"
 COMMAND "w1" LET cw="w1" EXIT MENU
 COMMAND "w2" LET cw="w2" EXIT MENU
 COMMAND "w3" LET cw="w3" EXIT MENU
 COMMAND "screen" LET cw="screen" EXIT MENU
 COMMAND "RWW" RUN "fglrun Navigation " || i+1 WITHOUT WAITING
 COMMAND KEY(INTERRUPT) "Exit" EXIT PROGRAM
 END MENU
 DISPLAY "NO" TO info
 CASE cw
 WHEN "w1" CURRENT WINDOW IS w1
 WHEN "w2" CURRENT WINDOW IS w2
 WHEN "w3" CURRENT WINDOW IS w3
 OTHERWISE CURRENT WINDOW IS SCREEN
 END CASE
 DISPLAY "YES" TO info
 END WHILE
END MAIN

The program's main code block opens four windows and displays form menus.

Note: The "RWW" menu option with the following command:

COMMAND "RWW" RUN "fglrun Navigation " || i+1 WITHOUT WAITING

contains the instruction which allows you to start another instance of the application.

2. Copy the program's form specification code to a text file and save it as Navigation.per

Property of Four Js*
(c) Copyright Four Js 1995, 2015. All Rights Reserved.
* Trademark of Four Js Development Tools Europe Ltd
in the United States and elsewhere

Four Js and its suppliers do not warrant or guarantee that these
samples are accurate and suitable for your purposes. Their inclusion is
purely for information purposes only.

LAYOUT
GROUP(text="Test Current Window")
GRID
{
Window name [fw]
Is current [info]
}
END
END
ATTRIBUTES
 LABEL fw=formonly.fname;
 EDIT info=formonly.info;
END

3. At the command line, compile the source code modules you have created (Navigation.4gl and
Navigation.per) by using the fglcomp and fglform tools, e.g.

Run the following commands:

fglcomp Navigation.4gl

Developing Web applications | 187

fglform Navigation.per

Compiled files are created: Navigation.42f, is created for the form and Navigation.42m for the
source code module.

4. Create an application configuration file for your Navigation application. Provide an absolute path to the
location of your compiled application file in the PATH element, and in the MODULE element specify the
Navigation.42m module required to launch your application.

Use a text editor or if you are using Studio, go to File >> New >> Web/AS >> Application
Configuration (.xcf)

<?xml version="1.0" encoding="UTF-8" ?>
<APPLICATION Parent="defaultgwc" xmlns:xsi="http://www.w3.org/2001/
XMLSchema-instance" xsi:noNamespaceSchemaLocation="http://www.4js.com/ns/
gas/3.00/cfextwa.xsd">
 <EXECUTION>
 <PATH><path_to_your_local_directory></PATH>
 <MODULE>Navigation.42m</MODULE>
 </EXECUTION>
 <UA_OUTPUT>
 <GWC-JS>gwc-js</GWC-JS>
 </UA_OUTPUT>
</APPLICATION>

5. Save the configuration file (e.g. Navigation.xcf) in your $(res.appdata.path)/app directory.

6. Start the GAS standalone dispatcher from the command line using httpdispatch

7. Open the Navigation application in your browser by entering the URL http://localhost:6394/ua/
r/Navigation.

Figure 52: Application's current window in GWC-JS user interface

• The current window at the top of the stack (W3) is displayed in the GWC-JS user interface. The
current window's menu button options are:

• w1
• w2
• w3
• Screen
• RWW

Developing Web applications | 188

• Exit
• The Window Name field displays W3 for the current window.
• The Is current field displays YES for the current window.
• The Navigation panel or side bar is updated with the Navigation application tree, which has the

following links to windows in the stack:

• Screen
• Window w1 - 1
• Window w2 - 1
• Window w3 - 1

8. To have another instance of the Navigation application running at the same time:

In the current window's Test menu panel, select the RWW menu button.

The Navigation panel or side bar is updated with another Navigation application tree.

Figure 53: Two instances of an application in GWC-JS interface

9. From the Navigation panel or side bar, select the current windows in each running instance of the
Navigation application, for example complete the following steps:

a) Select Window w3 - 1
b) Select Window w3 - 2

You should see that both applications have current windows. The first instance of the Navigation
application you started (the parent program) continues to run without waiting for the second instance of
Navigation (the child program) to finish. The result of your selection will depend on the following:

• On the current window, the Is current field value is YES and the Test menu panel is displayed.
• On the window not current, the Is current field value is NO and the Test menu panel is not

displayed.

Starting GWC-JS applications
As GWC-JS type applications start, a bootstrap mechanism is called to initialize information.

To start a GWC-JS type application, type the URL of your application into your browser as follows:
http://host:port/gas/ua/r/group/myapp

As the application starts, a bootstrap.html file is called. This bootstrap page loads the required
JavaScript files and provides information for rendering the application, such as the following:

• The application style sheet.

Developing Web applications | 189

• The application icon.
• The JavaScript injectors.

The bootstrap is configured in the GWC-JS element of the UA_OUTPUT configuration element, see
UA_OUTPUT on page 354.

The bootstrap.html file, including all the resources required for rendering the application, are located in
the directory referenced by the GWC-JS element. The default directory is gwc-js located in $FGLASDIR/
web/.

GWC-JS applications and use of cookies
This topic provides information about the use of cookies in GWC-JS Web applications.

Using cookies in GWS-JS Web applications
Currently GWC-JS Web applications do not use cookies. Nevertheless, you can use cookies in your
applications if you decide to save or exchange some data that you want to persist between different runs of
an application.

For example, Web applications that run on the same domain as your GAS and whose GWC cookie is set
on the root path (/) of the URL are able to retrieve cookies in future requests for an application. When a
request is made, the cookie is sent back from browsers to the GAS where it is recognized.

Note: Even though GWC-JS Web applications do not use cookies, user agent browsers generally
need to accept cookies because browsers themselves may need cookies turned on. With Firefox,
for example, cookies and local storage are tied together. As GWC-JS uses local storage, if you do
not have cookies turned on in your Firefox browser, you may get a blank page.

Customization for GWC-JS applications
This section provides you with topics about how to customize the GWC-JS user interface. It provides you
with a customization overview and some procedures to get started with customizing the theme and adding
headers and footers.

Note: As development work on the GWC-JS continues, we will update this section with more
customization options as new versions of the GWC-JS are released.

• Customization framework on page 189
• Project directory on page 192
• Understanding GWC-JS widgets on page 194
• Configuring your Environment on page 198
• Activating Customization with custom.json on page 206
• Customizing the theme on page 200
• Adding Header and Footer text on page 202
• Configuring Applications for Custom GWC-JS on page 206
• Adding Localized Texts on page 205

Customization framework
The GWC-JS framework consists of a set of JavaScript (js), template HTML (.tpl.html) and sass
stylesheets (.scss) files that implement the various the components of the front-end. Customization
consists of adapting these files that define the components in your project and implementing the change
with the grunt tool to build the front end.

The customization framework overview

The GWC-JS infrastructure consists of two components:

Project directory This directory contains the customizable JavaScript
(js), template HTML (.tpl.html) and sass stylesheets
(.scss) files used to create the front-end client

Developing Web applications | 190

application, for more information see Project
directory on page 192 page.

Tools To develop and compile GWC-JS, you will
need some third-party tools installed in your
system: These tools should be downloaded by the
developer working on the customization.

Note: The Node.js download contains
npm. Running npm install commands for
Bower and Grunt completes the tools
installation process, see Configuring your
Environment on page 198

Tool Description Project
directories/
files

Node.js
(http://
nodejs.org/)

Node.js is a
JavaScript
runtime built
on Chrome's
V8 JavaScript
engine. Node.js
uses an event-
driven, non-
blocking I/O
model that
makes your
GWC-JS Web
applications
lightweight and
efficient.

\customization
\js

git (http://git-
scm.com/)

Git looks after
the version
control for
the project
development,
i.e. keeping
track of the
changes you
make to your
project.

n/a

npm Node Package
Manager (npm)
keeps track of
your project's
packages
and their
dependencies
in a manifest
file.

package.json

Bower Bower is
a package
manager for
the web. It

bower.json

Developing Web applications | 191

Tool Description Project
directories/
files

downloads
and installs
packages
the GWC-
JS requires.
Bower keeps
track of these
packages in a
manifest file.

Grunt Grunt is the
JavaScript
task runner
which builds
the project with
compilation
options and
automates the
compilation
and the
reconfiguration
of the GWC-
JS client after
customization.

Gruntfile.js

Sass Sass is an
extension
of CSS that
allows use
of variables,
mixins, and
inline imports
to implement
the various
components
of the GWC-
JS. The project
directory
contains a
set of sass
stylesheets that
provide default
definitions for
all key HTML
components
and Genero
application
elements;
such as forms,
buttons,
navigation and
other interface
components.

\customization
\sass

Developing Web applications | 192

Tool Description Project
directories/
files

By editing
these styles
in the scss
files, you
customize the
components in
your project.

Note:
The
open
source
text
editor
Brackets
(http://
brackets.io/)
makes
working
with
scss
and
json
files
much
easier.

Project directory
The project directory contains the files needed to create your own customization for the look and feel of
your GWC-JS front end Web client.

Sources are provided so you can customize the front end Web client to comply with your company's
graphical and visual styles and theme layout.

Before you can customize your front end Web client, you need to unzip the project zip file to a directory so
that you can modify the required files, see Configuring your Environment on page 198. A project directory
is created and amongst its directories and files you will find the following:

project_dir The GWC-JS project root directory, the default
location is in your $FGLASDIR/tpl directory.

customization The customization directory is dedicated to your
project's customization. It contains a default
directory, which provides you with sample
customized files in its sub directories.

It is recommended that you add within the
customization directory, a subdirectory for each
customization that you want to implement. You
can have as many customizations as you wish
while allowing you to activate them as required, see
Activating Customization with custom.json on page
206.

Developing Web applications | 193

To create your own customization, add a directory,
for example, myCustomizedApp, and within it
add sub directories as described in the table Your
Customization Directory:

Table 18: Your Customization Directory

Directory Description Examples

img For your project's
logo and image files
that customize the
front-end look and
feel.

n/a

js For your project's
JavaScript and
widget template
HTML files.

• See How
GWC-JS
works on
page 175

• See Adding
Header and
Footer text
on page
202

locales For your project's
translation texts for
localization.

See Adding
Localized Texts
on page 205

sass Cascading Style
Sheet files for
instructing the
browser how to
display specific
widgets. You can
change colors, font,
layout, and how text
is positioned, etc.

See Widget
scss file on
page 197

theme.scss.jsonChange the default
GWC-JS color and
theme settings
for your windows,
widgets, messages,
buttons, tables, etc.

See
Customizing the
theme on page
200

src The project_dir/src directory contains the
JavaScript, CSS, locale, and all the core source
files that make up the default Web client. It is
recommended that you examine the source files
to familiarize yourself with how the front-end is
implement. When you customize your Web client,
you can extend the standard widget classes you
need in new widget js files in your customized
directory.

Developing Web applications | 194

Caution: We recommend that you leave
the core sources untouched.

dist It contains the web subdirectory where the
outputted/generated files, the result of your
customization, are combined in a single file, or in as
few files as possible, to reduce network traffic and
for the benefit of the browser cache.

Make your custom GWC-JS alias/link in
($FGLASDIR/web) point to this “web” directory or
you can configure the GWC_JS_LOOKUP_PATH
on page 320 element with the path to your
project_dir/dist, see Configuring Applications
for Custom GWC-JS on page 206.

• Configuring your Environment on page 198
• Customizing the theme on page 200

Understanding GWC-JS widgets
An understanding of how GWC-JS widgets works can aide you in your customization efforts.

The GWC-JS relies on a number of basic/built-in widgets that define the user interface: such as
application, application host, layout grids, and widgets for form objects, and so on. Each widget is defined
with the following:

• A JavaScript (js) file to manage the widget's creation, behavior, and listeners
• A template HTML (.tpl.html) file which contains a minimal HTML code structure of the widget
• A sass (.scss) file which defines the widget style

It is recommended that you examine the core source widget files that make up the default Web client in
your project_dir/src directory to familiarize yourself with how the front-end is implement. The topics in
this section will help you understand what widgets you need to extend to change the look and feel of your
application.

This section explains how you can create your own customized widgets by extending the built-in widgets in
your project's GWC-JS front-end web client.

• Widget template file on page 194
• Widget JavaScript file on page 195
• Widget scss file on page 197

Widget template file
The GWC-JS widget templates provides you with the basis for creating and customizing widgets.

The GWC-JS contains blocks of HTML code that can be easily selected by CSS. GWC-JS widget
templates define two main types of HTML elements:

• Simple widget
• Container widget

Simple widget
Simple widget defines elements that implement basic functions such as form field elements. The
EditWidget, LabelWidget, TextEditWidget, etc. are good examples where the <div> container
holds code for a single widget. For example the project_dir/src/js/base/widget/widgets/
formfields/EditWidget.tpl.html template is shown in the sample.

<div class="mt-field gbc_dataContentPlaceholder">
 <input type="text" />
</div>

Developing Web applications | 195

The CSS selector targets elements of both the mt-field and gbc_dataContentPlaceholder CSS
classes. When a widget is used in the DOM, elements and attributes of these classes will be appended in
the DOM node. The input element with type "text" represents markup that will be placed inside the DOM
node.

Container widget
The container widget provides a placeholder for child widgets. It is defined with a class attribute with its
value set to containerElement. The project_dir/src/js/base/widget/widgets/actions/
MenuWidget.tpl.html template shown is a good example of this type of template.

<div>
 <div class="gbc_MenuWidgetTitle">
 <div class="gbc_MenuWidgetText"></div>
 </div>
 <div class="gbc_MenuWidgetScrollContainer">
 <div class="containerElement"></div>
 </div>
</div>

Widget JavaScript file
The GWC-JS widget js file contains the JavaScript code of the widget.

The GWC-JS stores the JavaScript code for widgets in a separate js file. The js file contains functions for
rendering the widget template file and dynamically building the DOM element. If you wish to customize a
widget, you only need to extend the standard widget class in a new widget js file in your project directory
and make any changes required to the HTML structure in a new widget template file (.tpl.html). The
sample code shows the minimal code you need to extend a basic widget in js.

Extending a basic widget

"use strict";

modulum('newWidget', ['baseWidget', 'WidgetFactory'],
 function(context, cls) {

 cls.newWidget = context.oo.Class(cls.baseWidget, function($super) {
 return {
 __name: "newWidget",

 /* your custom code */
 };
 });
 cls.WidgetFactory.register('widgetType', ‘widgetStyle’, cls.newWidget);
 });

Where:

• newWidget is your custom widget
• baseWidget is the built-in widget that it extends

The widgetStyle is registered as the new widget so that you can reference it in your Genero BDL
application code:

EDIT f01 = formonly.edit, STYLE=”widgetStyle”;

Then only fields with the new style widgetStyle applied will be customized.

Developing Web applications | 196

Example customizing a simple edit widget

For simple widget customization, see the example in project_dir/customization/default/js/
MyEditWidget.js:

"use strict";

modulum('MyEditWidget', ['EditWidget', 'WidgetFactory'],

 function(context, cls) {

 /**
 * Edit widget.
 * @class classes.MyEditWidget
 * @extends classes.EditWidget
 */
 cls.MyEditWidget = context.oo.Class(cls.EditWidget, function($super) {
 /** @lends classes.MyEditWidget.prototype */
 return {
 __name: "MyEditWidget".

 setTitle: function(title) {
 $(this.getElement()).find(".title").text(title);
 },

 getTitle: function() {
 return $(this.getElement()).find(".title").text();
 }
 };
 });
 cls.WidgetFactory.register('Edit', cls.MyEditWidget);
 });

In this case, the customization extends the built-in EditWidget. You can refer to an element in the HTML
template for the widget (project_dir/customization/default/js/MyEditWidget.tpl.html) by
using this.getElement() function.

Example extending a container widget

For container widget customization, see the example in project_dir/customization/default/
js/MyApplicationHostMenuWidget.js

"use strict";

modulum('MyApplicationHostMenuWidget', ['WidgetGroupBase', 'WidgetFactory'],

 function(context, cls) {

 cls.MyApplicationHostMenuWidget = context.oo.Class(cls.WidgetGroupBase,
 function($super) {
 /** @lends classes.MyApplicationHostMenuWidget.prototype */
 return {
 __name: "MyApplicationHostMenuWidget",

 _windowIconImage: null,
 _titleElement: null,
 _defaultTitle: "Customized Title Bar",

 _aboutMenu: null,
 _debugMenu: null,

 constructor: function() {

Developing Web applications | 197

 $super.constructor.call(this);
 this._aboutMenu =
 cls.WidgetFactory.create('ApplicationHostAboutMenu');
 this._debugMenu =
 cls.WidgetFactory.create('ApplicationHostDebugMenu');
 this.addChildWidget(this._aboutMenu);
 this.addChildWidget(this._debugMenu);
 },

 [...]
 destroy: function() {
 this.removeChildWidget(this._aboutMenu);
 this.removeChildWidget(this._debugMenu);
 this._aboutMenu.destroy();
 this._aboutMenu = null;
 this._debugMenu.destroy();
 this._debugMenu = null;
 $super.destroy();
 },
 [...]
 };
 });
 cls.WidgetFactory.register('ApplicationHostMenu',
 cls.MyApplicationHostMenuWidget);
 });

For a Container widget the base widget is always WidgetGroupBase. You then add the child elements with
this.addChildWidget or remove them with this.removeChildWidget.

Widget scss file
The GWC-JS widget scss file contains the widget styles.

The GWC-JS stores the style for widgets in a separate scss file. The scss file contains the colors, fonts
and variables that define the style. When the sass file is processed, it takes the variables you define
for colors, for example $gbc-primary-medium-color, and outputs normal CSS with our variable values
placed in the CSS. The sample code shows the project_dir/customization/default/sass/
MyEditWidget.scss::

Extending a basic widget style

.gbc_MyEditWidget {
 > .title {
 padding: 0 5px;
 font-size: 8pt;
 color: $gbc-primary-medium-color;
 text-transform: none;
 }
 > input {
 flex: 1 1 0;
 line-height: 32px;
 border-bottom: solid 2px $gbc-primary-light-color;
 }
 &.gbc_Focus > input {
 border-bottom: solid 2px $gbc-primary-medium-color;
 }
}

A widget with a style in the form has a dedicated selector:

For example, in the Genero BDL application code for your form (per) file you have:

EDIT f01 = formonly.edt, STYLE="mystyle1 mystyle2 …";

Developing Web applications | 198

You get a generated selector in the HTML structure:

class="… gbc_style_mystyle1 gbc_style_mystyle2 …"

Configuring your Environment
This topic provides information about how to configure your environment to customize the Genero Web
Client for JavaScript (GWC-JS) front-end for your application.

About this task

The following procedure guides you through the process of configuring an environment for customizing a
GWC-JS application.

Before you begin

To develop and compile GWC-JS, you will need to install the following tools, which can be downloaded
from the URLs provided:

• node.js: https://nodejs.org/
• git: http://git-scm.com/download/

Note: It is recommended that you download the stable version (v4.2.2) of node.js. To check you
installation version, type the command: node --version at the command line.

1. Navigate to your $FGLASDIR/tpl directory and unzip the following zip file fjs-gwc-js-xxx-
build123456789-project.zip to, for example, your $FGLASDIR/tpl/ directory.

Note: You can unzip the project files anywhere you wish, however it is not recommended to put
them in the $FGLASDIR/web/ directory as this is the public directory where your sources may
be exposed.

• gwc-js-xxx is the version number, for example gwc-js-1.00.02
• 123456789 is the build number, for example 201504141750.

A directory is created in the extracted location using the version number as the title in the format of gwc-
js-xxx. This is your project_dir, see Project directory on page 192.

2. Navigate to your project_dir directory and open the readme.md file using a text editor.

3. To install all necessary tools, complete the following sub-steps, which can also be found in the
readme.md file.

a) Open the Node.js command prompt window at administrator level on Windows™, or as the user
with privileges to install in Linux® or MAC® OS®.

b) Navigate to your project_dir and enter the following Node Package Manager (npm) commands:

• npm install

• npm install -g grunt-cli

• npm install -g bower

• grunt deps

Note:

• The two npm install commands with the global option (-g) are required only the first
time you install node.js on the machine. You can omit running them if you already have
node.js installed and just run npm install and grunt deps.

• For installation on Unix, you can use the Node Version Manager (nvm) tool nvm tool to
install node.js. It allows you to switch between different versions of node.js. To install and
use, for example, node.js 4.2.2, run these commands:

• nvm install 4.2.2

• nvm use 4.2.2

https://nodejs.org/
http://git-scm.com/download/
https://github.com/creationix/nvm

Developing Web applications | 199

Node.js is now installed for your project and npm and bower dependency packages have been
updated by grunt. If you encounter any problems during the installation, see Troubleshooting on
page 199.

4. To build the project with default compilation options, you must run grunt
When you have completed the above step, you should see that a dist directory has been created in
project_dir. Inside the dist/web directory there is now a compiled version of the GWC-JS front-end.

5. Now that your project_dir/dist/web directory is created, you can use your custom GWC-JS
directly in your local GAS server by creating a symbolic link (link_name) to this directory in your
$FGLASDIR/web directory. To create a link, navigate to $FGLASDIR/web/, and choose from the
following options:

• On Windows®, run the command mklink /D link_name project_dir/dist/web.
• On Linux®/UNIX™, run the command ln -s project_dir/dist/web link_name

Tip: Alternatively, you can configure the GWC_JS_LOOKUP_PATH element to specify the path to
your custom GWC-JS front-end client, see GWC_JS_LOOKUP_PATH on page 320.

What to do next

When you have completed configuring your environment in the above steps, make sure your GWC-
JS Web client is working as expected by opening an application in your browser. You can do this by
configuring an application for your project, see Configuring demo application for custom GWC-JS on page
207.

If your GWC-JS Web client is working, your next task is to activate customization in your project_dir/
custom.json. This is detailed in Activating Customization with custom.json on page 206.

Troubleshooting

Unable to connect to github.com

Git is required to fetch bower components. When doing a grunt deps, if you get this error:

fatal: unable to connect to github.com: github.com
[0: 192.30.252.129]: errno=Connection refused Warning: Task "bower-install-
simple:default" failed.
Use --force to continue.

This may mean that you may have a proxy that is preventing the retrieving of bower components. A
solution is to perform the procedure described in the following steps:

1. Configure git by typing the following at the command line

git config --global url.https://github.com/.insteadOf git://github.com/

2. Clean your installation by choosing from the following options:

grunt clean

or

npm cache clean

Or, you can remove the project_dir/node_modules directory.

3. Redo the node components installation as described in steps in Install Components

For more information and support contact your local Four Js support center.

Developing Web applications | 200

Customizing the theme
The simplest way to customize the look and feel of your GWC-JS front end Web client is to change styles
in the theme.scss.json file.

theme.scss.json

This topic describes how you can modify the default GWC-JS theme to customize your Web client.
Understanding this customization requires some knowledge of JSON file syntax.

The theme.scss.json file in your project_dir/customization/mycustomization directory
allows you to edit and change the main GWC-JS theme settings for windows, widgets, messages, buttons,
tables, etc. For example, you can set the UI's primary and secondary colors, background colors, border
styles, window size for sidebar size, etc., as required with theme settings.

Note: You are not modifying the theme installed with your product, you are modifying the theme for
your project. This means that you will not lose your work when you upgrade the product.

Syntax
The syntax of each theme setting consists of a variable_name, followed by a colon (:) and then the
variable_value. Variable names and values are in double quotes. Theme styles are separated by
commas.

"variable_name" : "variable_value",

• The variable_name is a unique identifier used throughout the GWC-JS project to set theme styles,
e.g. the UI window's primary color is referenced by the variable gbc-primary-background-color. These
variables are standard theme variables and should not be subject to change.

• The variable_value can be a color, a number or a variable, depending on the style. If the value is
defined by a variable, for example $vname, “vname” is an existing variable name in the GWC-JS
project.

Color variables naming convention
Variables that define colors follow this naming convention:

$mt-colorname[-intensity]

• colorname is the name of the color as defined in the material color palette.
• intensity (optional) is the number for the gradient, for example: "$mt-grey-200", defines an intensity of

light grey. For more information on material color, go to http://www.google.com/design and navigate to
the "Color palette" page.

Example of customized theme styles

The theme.scss.json file contains a typical list of styles you can customize as shown in the example.
See the table Table 19: theme.scss.json on page 201 for a description of the variables and values.

{
 "gbc-primary-background-color" : "$mt-grey-200",
 "gbc-secondary-background-color" : "$mt-white",
 "gbc-field-background-color" : "$mt-white",
 "gbc-field-disabled-background" : "rgba(0,0,0,0.04)",
 "gbc-primary-color" : "$mt-green-700",
 "gbc-primary-medium-color" : "$mt-green-500",
 "gbc-primary-light-color" : "$mt-green-100",
 "gbc-secondary-color" : "$mt-grey-600",
 "gbc-disabled-color" : "$mt-grey-400",
 "gbc-separator-color" : "$mt-grey-400",
 "gbc-header-color" : "$mt-grey-100",
 "gbc-message-color" : "$mt-grey-800",

http://www.google.com/design

Developing Web applications | 201

 "gbc-error-color" : "$mt-red-800",
 "gbc-sidebar-always-visible-min-width" : "999999px",
 "gbc-sidebar-default-width" : "350px",
 "gbc-animation-duration" : "0.200s"
}

Table 19: theme.scss.json

Variable name Variable Value Description

gbc-primary-background-color $mt-grey-200 Window primary color

gbc-secondary-background-color $mt-white Window/containers (group, drop-
down menu) secondary color

gbc-field-background-color $mt-white Widget's background (bg) color

gbc-field-disabled-background rgba(0,0,0,0.04) Widget's disabled background
color grey specified with an
opacity value (.04) using the
alpha property with rgba.

gbc-primary-color $mt-green-700 Button/widget's color gradient for
dark green

gbc-primary-medium-color $mt-green-500 Button/widget's color gradient for
normal intensity green

gbc-primary-light-color $mt-green-100 Button/widget's color gradient for
light green

gbc-secondary-color $mt-grey-600 Widget's (RADIOGROUP,
CHECKBOX) border color

gbc-disabled-color $mt-grey-400 Widget's disabled color grey

gbc-separator-color $mt-grey-400 Toolbar separator color grey

gbc-header-color $mt-grey-100 Table header background color
light grey

gbc-message-color $mt-grey-800 Message background color dark
grey

gbc-error-color $mt-red-800 Error message background color
deep red

gbc-sidebar-always-visible-min-
width

999999px Window size (in pixels) for
sidebar to appear. This settings
hides the sidebar.

gbc-animation-duration 0.200s Animation duration (in
seconds), e.g. Speed of product
identification window pop-down
appearance.

The UA_OUTPUT on page 354 configuration element of your application will need to specify the
customization project directory you used to provide the application look-and-feel.

• Configuring your Environment on page 198

Developing Web applications | 202

Adding Header and Footer text
The topic provides information on how to add text to the header and footer of the GWC-JS user interface.

About this task:

The GWC-JS provides place holders that state "Place your header here" and "Place your footer here" in a
customized widget for the main application container widget. To add header and footer text to your GWC-
JS project user interface, modify the place holders in the MyMainContainerWidget.tpl.html file.

Before you begin:

It is assumed you have created a project directory and your project_dir/customization/
default/js directory contains the widget template file for the main container,
MyMainContainerWidget.tpl.html.

1. To customize the header and footer, navigate to the project_dir/customization/default/js
directory and open the MyMainContainerWidget.tpl.html file with a text editor.

2. To change the header and footer text, replace the place holder text between the header and footer tags
with your text and save your changes:

<div>
 <header>
 Place your header here
 </header>
 <!-- GWC-JS will be rendered in this div -->
 <div class="containerElement"></div>
 <footer>
 Place your footer here
 </footer>
</div>

3. To compile the changes, in the Node.js command prompt window, navigate to project_dir and run
grunt or alternatively you can run grunt dev to continuously build the project.

What to do next

View the changes by opening the GAS demos application in your browser. You can do this by configuring
the demos application for your project, see Configuring demo application for custom GWC-JS on page
207.

The GWC-JS header and footer text is now changed.

Creating your own widgets
The ModelHelper class in the GWC-JS project provides APIs to help you customize widgets.

The GWC-JS two main widgets types:

• Simple widget, (for an example of creating and customizing, see Simple widget on page 194)
• Container widget (see Container widget on page 195)

The ModelHelper class in the GWC-JS project provides APIs to help customization. It is available at
project_dir/src/js/base/helpers/ModelHelper.js.

The table shows a list of the ModelHelper APIs and describes their function.

Table 20: ModelHelper APIs

Function Description

addNewApplicationListener(fct)

returns unfct

fct is the function called when a new application is
started.

unfct is the function to call to unregister the
listener

Developing Web applications | 203

Function Description

addCloseApplicationListener(fct)

returns unfct

fct is the function called when a new application is
started.

unfct is the function to call to unregister the
listener

addCurrentWindowChangeListener(fct)

returns unfct

fct is the function called when the current window
changes.

unfct is the function to call to unregister the
listener

addAuiUpdateListener(fct)

returns unfunct

fct is the function called when any DVM response
is received . Be aware that this mechanism is global
to all applications. On heavy updates this can slow
down the application.

unfct is the function to call to unregister the
listener

getCurrentApplication

returns win

win is the current application object or null if the
application cannot be found

getApplication

returns app

app is the application to which the widget belongs

getNode(idref)

returns node

idref is the AUI tree id reference

node is the related widget node or null if the node
is not found

getUserInterfaceNode

returns node

node is the widget representing the User Interface
node in the AUI tree or null if not found

getAnchorNode

returns node

node is the node holding the representation of
value in the AUI tree

getFieldNode

returns node

Applies to FormField, Matrix or TableColumn

node is the field node corresponding to the widget
or null if it does not apply

getDecorationNode

returns node

Applies to FormField, Matrix or TableColumn

node is the node holding the visual information
(Edit, CheckBox, ComboBox, etc...) or null if not
found

Extending a basic widget using ModelHelper

The sample code creates a basic widget for the header bar using some functions in the ModelHelper
class. The code in the example is found in project_dir/customization/default/js/
MyHeaderBarWidget.js

"use strict";

modulum('MyHeaderBarWidget', ['WidgetBase', 'WidgetFactory'],

Developing Web applications | 204

 /**
 * @param {gbc} context
 * @param {classes} cls
 */
 function(context, cls) {

 /**
 * @class classes.MyHeaderBarWidget
 * @extends classes.WidgetBase
 */
 cls.MyHeaderBarWidget = context.oo.Class(cls.WidgetBase,
 function($super) {
 /** @lends classes.MyHeaderBarWidget.prototype */
 return {
 __name: "MyHeaderBarWidget",
 /** @type {classes.ModelHelper} */
 _model: null,
 /** @type {number} */
 _appsCount: null,

 constructor: function() {
 $super.constructor.call(this);
 this._appsCount = 0;
 this._model = new cls.ModelHelper(this);

 this._model.addNewApplicationListener(this.onNewApplication.bind(this));

 this._model.addCloseApplicationListener(this.onCloseApplication.bind(this));

 this._model.addCurrentWindowChangeListener(this.onCurrentWindowChanged.bind(this));
 },

 onNewApplication: function(application) {
 ++this._appsCount;
 var elt = this.getElement().querySelector(".MyHeaderBarWidget-
counter");
 elt.textContent = this._appsCount.toString();
 },

 onCloseApplication: function(application) {
 --this._appsCount;
 var elt = this.getElement().querySelector(".MyHeaderBarWidget-
counter");
 elt.textContent = this._appsCount.toString();
 },

 onCurrentWindowChanged: function(windowNode) {
 var elt = this.getElement().querySelector(".MyHeaderBarWidget-
title");
 if (windowNode) {
 elt.textContent = windowNode.attribute('text');
 } else {
 elt.textContent = "<NONE>";
 }
 }
 };
 });
 }
);

Developing Web applications | 205

Adding Localized Texts
You can customize localization by adding your custom translation texts in the locale file and referencing
them in a widget template file.

Adding a Custom Title for the Current Window
The Genero Web Client for JavaScript (GWC-JS) front-end provides a mechanism to internationalize your
application interface. For more details about this mechanism see Translations for GWC-JS on page 47 For
example to add a custom title for the current window, perform the following:

• Add a Localization Key

In the <project_dir>/src/locales directory, choose your localization file or create your own one
named xx-YY.json, where "xx-YY" follows the standard localization code used for languages. For
example, to the locale file for French <project_dir>/src/locales/fr-FR.json, add your custom
keys:

{
 "mycusto":{
 "window":{
 "currentTitle": "Titre de la fenêtre courante"
 }
 }
}

In this case the translation key is mycusto.window.currentTitle
• Reference the Translation Key in a Widget Template file

Reference your custom translation key with the HTML attribute data-i18n in the widget template
file for the header bar. For example, in <project_dir>/customization/default/js/
MyHeaderBarWidget.tpl.html add this within a element with default text.

Currently opened
 window title

Figure 54: GWC-JS User Interface French Locale

An English browser displays "Currently opened window title", and a French browser displays "Titre de la
fenêtre courante".

Developing Web applications | 206

Activating Customization with custom.json
This topic provides information about how to activate customization for your Genero Web Client -
JavaScript (GWC-JS) customization project.

About this task

The following procedure provides you with the steps to set compilation options and activate your GWC-JS
project for customization using custom.json.

1. Navigate to your project_dir directory and open the custom.json file using a text editor.

{
 "compile": {
 "mode": "cdev",
 "customization": true,
 "with": {
 "nwjs": false,
 "android": false,
 "ios": false
 }
 }
}

2. To set the value for compilation mode, set the value for mode to cdev.

Note: Compilation modes are set to "cdev” for development, and "prod" for production
customization set.

3. To specify a project to activate, set the value for customization to a directory in your project_dir/
customization that contains your project, for example customization/my_project_directory
as shown in the example.

{
 "compile": {
 "mode": "cdev",
 "customization": "customization/my_project_directory",
 "with": {
 "nwjs": false,
 "android": false,
 "ios": false
 }
 }
}

Tip: If you wish to use the default GWC-JS user interface instead of your customized project,
you can simple set customization to false.

4. Save your changes.

5. To compile the changes, in the Node.js command prompt window, navigate to project_dir and run
grunt or alternatively you can run grunt dev to continuously build the project.

What to do next

To view your customized GWC-JS Web client, open an application in your browser. You can do this by
configuring an application for your project, see Configuring demo application for custom GWC-JS on page
207.

Configuring Applications for Custom GWC-JS
This topic provides information on how to configure applications to use your custom GWC-JS.

About this task:

To configure the application to use your custom GWC-JS, you need to configure the GWC-JS element in
your application's xcf file as shown in this procedure.

Developing Web applications | 207

Before you begin:

The following is assumed:

• Your have created a project directory project_dir
• You have created an alias/link in $FGLASDIR/web to point to the directory project_dir/dist/web.

If not, see Configuring your Environment on page 198.

1. Create an application configuration file for your application, for example myapp.xcf. Provide an
absolute path to the location of your compiled application files in the PATH element, and in the MODULE
element specify the module required to launch your application.

Use a text editor or if you are using Studio, go to File >> New >> Web/AS >> Application
Configuration (.xcf)

<?xml version="1.0" encoding="UTF-8" ?>
<APPLICATION Parent="defaultgwc" xmlns:xsi="http://www.w3.org/2001/
XMLSchema-instance" xsi:noNamespaceSchemaLocation="http://www.4js.com/ns/
gas/3.00/cfextwa.xsd">
 <EXECUTION>
 <PATH>/home/generoapps/prog1</PATH>
 <MODULE>myapp.42m</MODULE>
 </EXECUTION>
 <UA_OUTPUT>
 <PUBLIC_IMAGEPATH>$(res.public.resources)</PUBLIC_IMAGEPATH>
 <GWC-JS>gwc-dev</GWC-JS>
 </UA_OUTPUT>
</APPLICATION>

Note: gwc-dev is a symbolic link from $FGLASDIR/web to your project_dir/dist/web
directory.

2. Save the configuration file (e.g. myapp.xcf) in your $(res.appdata.path)/app directory.

What to do next

When you have completed the above steps, view the application in your browser. You can do this by
starting the standalone dispatcher from the command line using httpdispatch and then opening
the application in your browser by entering the URL http://localhost:6394/ua/r/myapp. Your
application should load. If the application fails to load, see Troubleshooting on page 208.

Configuring demo application for custom GWC-JS

About this task:

To configure the GAS demos application to use your custom GWC-JS, you need to create a configuration
xcf file for it and you need to configure its GWC-JS element as shown in this procedure.

Before you begin:

The following is assumed:

• Your have created a project directory project_dir
• You have created an alias/link in $FGLASDIR/web to point to the directory project_dir/dist/web.

If not, see Configuring your Environment on page 198.

1. Create an application configuration file, for example cust_demo.xcf.

Use a text editor, or if you are using Studio, go to File >> New >> Web/AS >> Application
Configuration (.xcf)

<APPLICATION Parent="defaultgwc" xmlns:xsi="http://www.w3.org/2001/
XMLSchema-instance" xsi:noNamespaceSchemaLocation="http://www.4js.com/ns/
gas/3.00/cfextwa.xsd">
 <EXECUTION>
 <PATH>$(res.path.fgldir.demo)</PATH>

Developing Web applications | 208

 <MODULE>demo.42r</MODULE>
 </EXECUTION>
 <UA_OUTPUT>
 <PROXY>$(res.uaproxy.cmd)</PROXY>
 <PUBLIC_IMAGEPATH>$(res.public.resources)</PUBLIC_IMAGEPATH>
 <GWC-JS>gwc-dev</GWC-JS>
 <TIMEOUT>Using="cpn.wa.timeout"</TIMEOUT>
 </UA_OUTPUT>
</APPLICATION>

Note: gwc-dev is a symbolic link from $FGLASDIR/web to your project_dir/dist/web
directory.

2. Save the configuration file (e.g. cust_demo.xcf) in your $(res.appdata.path)/app directory.

What to do next

When you have completed the above steps, view the demo application in your browser. You can do this
by starting the standalone dispatcher from the command line using httpdispatch and then opening
the GAS demos application in your browser by entering the URL http://localhost:6394/ua/r//
cust_demo. The demo application should load. If the application fails to load, see Troubleshooting on
page 208.

Troubleshooting

If the application fails to load in your browser, for example you get:

• “Unable to expand bootstrap template”. This means that your “bootstrap.html” has not been found. You
may need to rebuild your project directory.

• Or if the GWC-JS displays a blank page, check to see in your browser's debug window if you are
getting a JavaScript "HandleBars is missing" message. This may indicate that you have forgotten to do
grunt deps before compiling your custom GWC-JS with grunt.

For more information see Configuring your Environment on page 198, or contact your local Four Js
support center.

Migrating from GDC to GWC-JS
There are features supported by the Genero Desktop Client (GDC) that are not fully supported by the
Genero Web Client for JavaScript (GWC-JS). Understanding these limitations and planning for them during
the migration will greatly help your migration efforts.

Read about the HTML5 theme and understand the features and limitations prior to migrating from the GDC
application to the GWC-JS. This will help you determine whether the GWC-JS is a suitable Front End for
your application.

Note: This document does not intend to be complete. It gives you tips and recommendations
based on experience.

• Evaluate your GWC-JS application needs on page 208
• Migration tips on page 210

Evaluate your GWC-JS application needs
Even if most Genero Desktop Client (GDC) features are supported in Genero Web Client for JavaScript
(GWC-JS), you still have points to consider before migrating.

Before you migrate your application for the GWC-JS, examine the limitations and authentication specifics.
You must modify your application to handle unsupported features.

• Features and limitations on page 176
• Evaluate authentication on page 210

Developing Web applications | 209

One method of evaluating is to run the application and see what happens! If you encounter an issue, you
need to determine if this is a limitation, a customization or a bug. See Migration tips on page 210 for hints
aimed at helping you solve your issues during migration.

Evaluate limitations

These limitations are grouped under rendering or behaviors.

• Rendering on page 209
• Behaviors on page 209

Rendering

Pop-up windows

If you have some pop-up windows in your GDC application, set the windowType attribute to modal in the
Genero Style for Window.dialog in order to achieve a similar display with the GWC-JS.

Note: Any style (4st) element bound to a Window may contain the windowType attribute.

Excerpt from $FGLDIR/lib/default.4st:

<Style name="Window.dialog">
 <StyleAttribute name="windowType" value="modal" />
 <StyleAttribute name="sizable" value="no" />
 <StyleAttribute name="position" value="center" />
 <StyleAttribute name="actionPanelPosition" value="bottom" />
 <StyleAttribute name="ringMenuPosition" value="bottom" />
 <StyleAttribute name="toolBarPosition" value="none" />
 <StyleAttribute name="statusBarType" value="none" />
 <StyleAttribute name="errorMessagePosition" value="popup" />
</Style>

If you use the predefined style dialog, the window displays as a pop-up window.

Example of Genero code:

OPEN window msg WITH FORM "MyWindow" ATTRIBUTES (STYLE="dialog")

Multiple Document Interface

Multiple Document Interface (MDI) is not applicable for web applications.

Behaviors

File transfer

Due to browser securities, FILE_TRANSFER on page 317 in GWC-JS is not transparent. The browser
asks for permission before downloading anything on the client side.

Front End Calls

Due to browser securities, intrusive operations cannot be performed. Front end calls that access the
desktop file systems (disk) are not supported (including file transfer). Check the available Front End
function calls for GWC-JS in the Genero Business Development Language User Guide. The alternative is
to write your own Front End Call in JavaScript™.

Developing Web applications | 210

Evaluate authentication

Most GDC applications connect to the server with the user permissions and profile. As a result, the
applications are run under this user identity.

When the application is deployed through GAS, the user is the user that started the GAS. All the
applications are launched using that specific user, unless you ask GAS to impersonate. Depending on the
authentication system, adaptations may be needed.

Authentication
The Single sign-on (SSO) authentication mechanism now works for both Genero Desktop Client (GDC)
and GWC-JS. If you were using SSO with GDC, you can continue to use it with the GAS. See How to
implement Single sign-on (SSO) on page 114 for more details.

System users

If only the login is needed, you can get the web server to make a preliminary authentication. This
authentication is transmitted to Genero applications by the dispatcher as an environment variable. The
user login can be retrieved from the runtime environment with the FGL instruction:

fgl_getenv("FGL_WEBSERVER_REMOTE_USER")

Application login

With an application login, there is nothing additional to do as the application handles the login.

Migration tips
When migrating an application from the Genero Desktop Client (GDC) to the Genero Web Client for
JavaScript (GWC-JS), you may encounter issues. Here are some tips for when you encounter migration
issues.

Topics:

• Configuration issues on page 210
• Rendering issues on page 211
• Application issues on page 211
• Network issues on page 212
• Web Components on page 212

Configuration issues

The GAS is likely serving several types of applications, which might use different versions of the Genero
Business Development Language and different databases. You need to tell the GAS in which environment
your application will be running. This is done through a configuration file.

If you already have your application configured for GDC-HTTP, you simply need to enable the rendering for
GWC-JS.

Example of configuration for a GDC application:

<APPLICATION Id="my-app" Parent="defaultgdc">
 <EXECUTION>
 <PATH>$(res.path.fgldir.demo)</PATH>
 <MODULE>demo.42r</MODULE>
 </EXECUTION>
</APPLICATION>

To allow GWC-JS rendering, simply replace defaultgdc by defaultgwc:

<APPLICATION Id="my-app" Parent="defaultgwc">

Developing Web applications | 211

 <EXECUTION>
 <MODULE>demo.42r</MODULE>
 </EXECUTION>
</APPLICATION>

The first time you configure an application for GWC-JS, see the Configuring applications on GAS on page
95 topic to configure your execution environment, the database access and the resource deployment
(pictures, reports, and so on).

If the application fails to start, check the Genero Application Server logs to see what happened. Check the
dispatcher log first, then check the session log. To get the session number, click on AUI tree and have a
look at the application URL or view the HTML source page.

Example Log Entry:

/ua/sua/7e26fadb0c9f6939c65702fc9a1ff2a4/0

The session number is 7e26fadb0c9f6939c65702fc9a1ff2a4.

To debug the configuration, see the Using the debugger on page 157 topic to assist you in setting up a
console. With a console, the GAS does not launch the application, but instead launches a console with the
application environment set up. You can then compare the environment variables to your GDC working
environment, you can run command lines to check and update your environment variables, and you
can even display the application on the GDC by changing the FGLSERVER variable and verify that the
application runs properly with GDC.

Rendering issues

Graphical widgets that are not rendered properly or displayed with a different style are considered
rendering issues. Examples of rendering issues include misalignments, 4st colors not applied, and widgets
that are rendered when they should not.

When you encounter a rendering issue:

1. First check in AUI tree (equivalent of GDC debug tree for GWC-JS) to verify that node and properties
of the user interface screen you are currently working on are loaded properly and that the widgets
attributes are correctly set. See Configuring development environment on page 147

2. Use Firebug on FireFox or Developer Tools for Internet Explorer to check:

• That the resources files (.css, .js, and so on) are accessible and not displaying a 404 error message.
• That the HTML is properly generated. For example, check whether the color for the edit is set or is

missing in the generated page.

Application issues

Application issues are behavior related. Most of the time you need to contact your local support center. But
you can first check for:

• Relevant messages in the logs
• JavaScript™ errors

If clues are provided in either the logs or in the errors, try to build a simple test program that replicates the
issue and contact your local support center.

If your application involves a Rich Text version of a textedit widget, review the migration note regarding
Rich Text editing and the differences between the Genero Desktop Client and the Genero Web Client for
JavaScript.

Developing Web applications | 212

Network issues

Once the migration is almost done and you are in load tests phase, you might encounter sporadic
disconnections. Carefully read the chapters on GAS installation for your web server and verify the web
servers and GAS timeouts are compatible. You can also have a look at:

• Web server log (error/access log)
• The Genero Application Server logs
• Network sniffer (like Wireshark)

Web Components

In GAS 2.50, web components are deployed under $FGLASDIR/web/components directory.

Starting from GAS 3.00, with uaproxy, the default path for a web component is appdir/
webcomponents, where "appdir" is the application directory. See the WEB_COMPONENT_DIRECTORY
element in your $FGLASDIR/etc/as.xcf configuration file:

<WEB_APPLICATION_EXECUTION_COMPONENT Id="cpn.wa.execution.local">
 […]
 <DVM>$(res.dvm.wa)</DVM>
 <WEB_COMPONENT_DIRECTORY>$(application.path)/webcomponents</
WEB_COMPONENT_DIRECTORY>
</WEB_APPLICATION_EXECUTION_COMPONENT>

You can change the default web components location by configuring a WEB_COMPONENT_DIRECTORY
element in your application's configuration. In this example, the web component is no longer located in
appdir/webcomponents but in appdir/mycomponents.

<APPLICATION Parent="defaultgwc" …>
 <EXECUTION>
 <PATH>/home/myapp</PATH>
 <MODULE>myapp</MODULE>
 <WEB_COMPONENT_DIRECTORY>/home/myapp/mycomponents</
WEB_COMPONENT_DIRECTORY>
 </EXECUTION>
</APPLICATION>

Migrating from GWC-HTML5 to GWC-JS
Moving your Genero Web Client for HTML5 (GWC-HTML5) applications to Genero Web Client for
JavaScript (GWC-JS) involves some changes to the customization used, topics to help your migration
efforts.

Note: It is important to review the features and limitations prior to migrating from the GWC-HTML5
application to the GWC-JS. This topic provides you with tips and recommendations based on
migration experience.

Navigating Open Applications

With GWC for HTML5, each application started with RUN or RUN WITHOUT WAITING opens a new tab in
your browser. GWC for JavaScript provides a Navigation panel (sidebar). Each application started with
RUN or RUN WITHOUT WAITING replaces the application in the current window. You can access the other
applications and make them current by selecting them from the Navigation panel or sidebar. See User
interface: navigation on page 181.

Developing Web applications | 213

File Upload to Server

To upload a file with GWC-HTML5 Web client, you used an EDIT field with the style FileUpload to
create a file chooser dialog.

EDIT sfile1=formonly.sfile1, style="FileUpload";

Important: The FileUpload style is not supported by GWC-JS.

To migrate from GWC-HTML5 to GWC-JS, you need to remove FileUpload style and add a call to
openFile front call, followed by call to fgl_getfile. This is the same file upload method as you use in
Genero Desktop Client (GDC):

1. Use the openFile front call to open the file chooser dialog so that the user can select a file to upload.

DEFINE infile STRING

 CALL ui.Interface.frontCall("standard", "openFile",
 ["c:\\fjs\\doc","doc.pdf","*.pdf","Choose a file to upload"],
 infile)

Note: For GWC-JS, the path parameter is ignored, and wildcards can only hold one type of file
extension. For more information on the use of this command, please see the "Standard front
calls" section in the Genero Business Development Language User Guide.

Figure 55: GWC-JS File Upload Pop-up Window
2. Use the fgl_getfile to upload the file the user has chosen. The call to the fgl_getfile function

requires no interaction from the user so it can be called immediately to upload the file to a directory
specified in the application server.

TRY
 CALL fgl_getfile(infile, /opt/myapp/received_files)
 CALL fgl_winmessage("File uploaded", infile, "info") # Display a
 window with message after uploading
 CATCH
 ERROR sqlca.sqlcode, " ", sqlca.sqlerrm # Catch runtime execution
 errors from the SQLCA diagnostic record
 END TRY

Developing Web applications | 214

Genero Web Client for HTML5 (GWC-HTML5)
GWC-HTML5 delivers your applications over the Web using browser-based themes. This version of the
GWC has been deprecated; new development should use the Genero Web Client for JavaScript (GWC-JS)
instead.

GWC for HTML5

The GWC-HTML5 is installed as part of the Genero Application Server.

The GWC-HTML5 allows you to deliver true Web applications with applications developed in the Genero
Business Development Language (BDL). Having the underlying source written in Genero BDL means that
the GWC is flexible enough to let you build from a simple Web application to a corporate Web application
with only a few limitations. It brings BDL applications to the Internet world and the ability to be integrated in
a Web site.

GWC-HTML5 uses themes, comprised of templates and snippet sets, to create dynamic web pages.

Note: For details regarding these themes, consult the Genero Application Server 2.50 User Guide.

The GWC-HTML5 is no longer the default client for all Genero Web Client applications. The GWC-JS is
another Web client that is also installed as part of the Genero Application Server, see Genero Web Client
for JavaScript (GWC-JS) on page 173.

How the GWC-HTML5 works

The GWC-HTML5's snippet-based rendering engine (SBRE) creates application Web pages dynamically
on the Application Server for delivery to the client browser using technologies, such as Client-Side
Framework, understood by a browser. The AUI tree (provided by the DVM) and the template and snippet
files (set by the application configuration) are used to create an XML / xHTML document that is passed to
the user agent.

It can deliver the application to any device equipped with a Web browser.

Genero Web Services
Add a Web service application.

When configuring a Web services application, you can either provide the configuration details in the
GAS configuration file, or you can create a separate application-specific configuration, see Configuring
applications for Web service on page 101 (one per application). For complete details on configuring Web
services applications and the configuration parameters and settings, see SERVICE_LIST on page 346.

The topics in this section provide more options for accessing, validating, and delivering Web Services
applications on the GAS.

• Accessing the Web Service (Web Services URI information) on page 214
• Service invalidation on page 215
• Sticky Web services on page 215

Accessing the Web Service (Web Services URI information)
Examples of the Web Services URI.

In the following examples, "appid" would be replaced by the application Id and "service" would be replaced
by the name of the service.

Developing Web applications | 215

To get the WSDL for a specified service:

http://appserver:6394/ws/r/appid/service?WSDL

To access the Web service:

http://appserver:6394/ws/r/appid/service

If the Web service uses a group:

http://appserver:6394/ws/r/groupid/appid/service

Access through a Web Server:

http://<webserver>/gas/ws/r/appid/service

Service invalidation
The service invalidation feature provides notification for when the configuration of a Genero Web service is
invalid. The configuration must be modified before the service can start.

A Web service is typically an automated process, called on behalf of a user or process. When a Web
service has an invalid configuration, there is no graphical message informing an end user of the error.
Requests continue to fail. To prevent requests from failing forever, if the Genero Web Services service
(gwsproxy) cannot start within DVM_AVAILABLE on page 313 time, it informs the dispatcher.

For troubleshooting and monitoring Web services, please see Example: Get list of services invalidated by
dispatcher on page 56.

The next time a request is received, the dispatcher remembers that the Proxy: gwsproxy on page
267 cannot be started and sends a 503 HTTP status to the user agent.

The first time a service is not able to start, this message is returned:

Application or service has been stopped due to a fatal error

Any new request returns this message until the configuration is modified and corrected:
Bad configuration prevents application or service to start.

The service resumes when the configuration is updated.

If the service is configured in the Genero Application Server configuration file, you must restart the Genero
Application Server.

If the service is configured in an external application configuration file (xcf), the configuration is reloaded
each time it is modified. You do not need to restart the Genero Application Server.

This feature is only supported for Genero Web services. It is not supported for Genero Desktop Client or
Genero Web Client applications.

Sticky Web services
A sticky Web service is instantiated to handle all requests coming from a specific user agent. The
gwsproxy manages HTTP cookies to implement sessions with sticky Web services.

A sticky Web service is a Web service that uses an HTTP cookie to ensure that requests from a specific
user agent are always routed to the same DVM handling the Web service by the Genero Application
Server.

The first time a user agent connects to the Genero Application Server, the Proxy: gwsproxy on page
267 starts a new DVM to handle the sticky Web service instance. The sets an HTTP cookie, called
GWS_S_SESSION, in the first response to the user agent. This cookie is then sent with any further requests

Developing Web applications | 216

from the user agent to the Genero Application Server. The gwsproxy can use the cookie to identify the
DVM in charge of that cookie and dispatch the request to the correct DVM.

Configure a sticky Web service

To enable sticky sessions in a Web service, add the mode attribute to the application node in the Web
service application configuration, and set the value to "sticky". The KEEP_ALIVE element specifies the
session lifetime, in seconds.

<APPLICATION Parent="ws.default" mode="sticky">
<EXECUTION>
 <PATH>$(res.path.app)/services/sticky-ws-service</PATH>
 <MODULE>sticky-main</MODULE>
</EXECUTION>
<TIMEOUT>
 <KEEP_ALIVE>60</KEEP_ALIVE>
</TIMEOUT>
</APPLICATION>

You can change the name of the cookie by setting the environment variable
FGL_GWSPROXY_COOKIE_NAME in the application configuration with the value of the new cookie name.

<APPLICATION Parent="ws.default" mode="sticky">
<EXECUTION>
 <ENVIRONMENT_VARIABLE Id="FGL_GWSPROXY_COOKIE_NAME">NEW_NAME
 </ENVIRONMENT_VARIABLE>
 <PATH>$(res.path.app)/services/sticky-ws-service</PATH>
 <MODULE>sticky-main</MODULE>
</EXECUTION>
<TIMEOUT>
 <KEEP_ALIVE>60</KEEP_ALIVE>
</TIMEOUT>
</APPLICATION>

When does a session expire

The KEEP_ALIVE element specifies the session lifetime, in seconds. A DVM that does not get a request
from the user agent it is servicing will stop after the time specified by KEEP_ALIVE has passed.

If a request comes from the user agent after the time specified by KEEP_ALIVE, and therefore after the
DVM has stopped, it will return an HTTP 400 error.

Stop a sticky Web service

To properly stop a sticky Web service, have a dedicated method to be called by the user agent when it
needs to close the session. The DVM can respond to the request, unset the cookie, and stop the Genero
program properly.

Deploying with Genero Archive | 217

Deploying with Genero Archive

The Genero Archive deployment feature provides a simple process for packaging applications and services
into an archive to deploy on a GAS installation. After deployment, the applications and services packaged
are available and can be used.

The deployment framework provides an interface to:

• Deploy applications and services packaged into a Genero Archive
• List deployed archives
• Disable a deployed archive
• Enable / disable applications and services provided by an archive
• List enabled / disabled applications and services
• Undeploy a deployed archive

The deployment of applications and services does not include:

• Database installation and setup
• Any Genero software packages installation and setup
• Any other form of external dependencies

Any operation on Genero Archive MUST be performed in mutual exclusion to ensure the deployment
process and archive management safety.

• What is a Genero Archive? on page 217
• Quick start: deploying applications on page 218
• Genero Archive lifecycle on page 224
• The MANIFEST file on page 224
• File system layout of a deployed archive on page 225
• Genero Archive procedures on page 226
• Genero Archive deployment service on page 232

What is a Genero Archive?
A Genero Archive is a zip archive containing a MANIFEST file providing installation instructions and the list
of application and services to make available.

The Genero Archive is a simple zip file of a directory (or files). The archive name can be any name you
wish. It need not reflect the applications or services contained within.

The MANIFEST file provides deployments instructions, and must be at the root of the archive tree.

It is possible to embed external tools into a Genero Archive, as the content is not strictly restricted to
compiled Genero applications. But taking advantage of it must remain the responsibility of the user
packaging the applications (portability considerations, etc.)

Example

An example Genero Archive file could include:

• ./MANIFEST

• ./modules/app.42m

• ./modules/app.42r

• ./forms/app.42f

• ./xcf/app.xcf

Deploying with Genero Archive | 218

In the previous example, the files were organized within the root directory by a series of sub-directories.
Such directories are not required. We could have placed all the files directly in the root and have provided
the following archive contents for the same application:

• ./MANIFEST

• ./app.42m

• ./app.42r

• ./app.42f

• ./app.xcf

Quick start: deploying applications
The procedures in this section provide you with methods to deploy applications and services.

• Application deployment overview on page 218
• Paths to application resources on page 219
• Quick start: Genero Archive on page 220
• Deploying application resources for GWC for HTML5 on page 222
• Deploying application resources for GWC-JS on page 223

Application deployment overview
Some ways to manage public and private images when deploying applications.

Before deploying applications, it is recommended that you plan how images are going to be used by your
applications so as to take advantage of the optimization and caching feature provided by the GAS for Web
and GDC applications. For examples, you can divide your images into these two categories:

Public images Images that are common or that can be shared by
all your applications

Private images Images that are private or specific to an application

Public images shared by your applications

Images (e.g. logos, background images, etc.) that are common to all or several of your GWC-JS
applications and that do not change during an application's lifetime, are considered "public".

This means that at runtime images found in subdirectory paths of the $(res.public.resources) and the
$(res.appdata.path)/public/deployment directory (see Paths to application resources on page
219) will be put in the browser cache where they can be delivered quickly to the front end client without
having to access an application's configuration file each time.

You can deploy public images in either of the following ways:

• Using the deployment framework (Recommended):

Initially, you need to place public images in a specific directory in the application archive, see Building
an archive with public resources on page 221. The resources switch of the framework (e.g. fglgar
--resources) specifies the directory in the archive with your public images. Then when you deploy
the archive, the deployment framework will deploy it as follows:

• A subdirectory is created in your $(res.appdata.path)/deployment directory identified by
the archive name and the date and time deployed, e.g. $(res.appdata.path)/deployment/
myApp1_20150423-130838.

The application configuration file (xcf) and all the source files contained in the archive (gar) are
placed in this directory.

Deploying with Genero Archive | 219

• Another subdirectory is created in your $(res.appdata.path)/public/deployment/
directory identified by just the archive name, e.g. $(res.appdata.path)/public/
deployment/myApp1.

All the image files contained in the archive's resource directory are copied into this directory
and the xcf files of the archive will get updated in order to have their public directory resource
$(res.public.resources) set to this directory.

• Or if you would prefer not to use the deployment framework, you must then copy your public images by
hand into the directory specified in your PUBLIC_IMAGEPATH.

Caution: Public images should not be placed in the /public root directory as the fglrun
does not look for images to be served via the GAS there; searches start in subdirectory paths,
i.e. public/common and public/deployment.

Sample application and image deployment

####$(res.appdata.path)
 ####deployment
 # ##myApp1_dateTimeStamp (deployed application and private
 images)
 # ##webcomponents (deployed application's Web
 components)
 ####public
 ##-common (default PUBLIC_IMAGEPATH directory containing
 public images)
 #
 ##-deployment
 ##myApp1 (public images deployed with application by
 deployment framework)

Private images of your application
Private images are resources that are only used by one application. Before deploying, you should place
them in the root directory of the application's archive. Then when you deploy the application with fglgar,
they will be placed in the $(res.appdata.path)/deployment/ directory created for the application.
The fglrun automatically searches for application resources in the application's root directory.

Note: If you change your application’s private resource location down into subdirectories of the
root, you will need to ensure that the environment variable FGLIMAGEPATH is included in the
application's configuration file (.xcf) and is configured correctly, as shown in the example.

<ENVIRONMENT_VARIABLE Id="FGLIMAGEPATH">pics$(sep)images$(sep)private/
images</ENVIRONMENT_VARIABLE>

You can specify a hierarchy of directories, e.g. "private/images", but then only the $(root)/
private/images directory will be searched by fglrun for images, not the parent directory. If
there are resources in several subdirectories then you have to specify each subdirectory separately
(note $(sep) is a built-in path delimiter which can be used for both Windows™ and Unix™ platforms).
For more details on $FGLIMAGEPATH, see the Genero Business Development Language User
Guide.

Paths to application resources
Describes paths to directories specific to application resource used by the DVM.

Starting with Genero 3.00, three new predefined resources have been added:

• A public resource path for all applications,$(res.appdata.path)/public
• A resource for common images used by applications, $(res.public.resources), which expands to

$(res.appdata.path)/public/common

Deploying with Genero Archive | 220

• A resource where the Application Server stores files temporarily during file transfer, $(res.path.tmp),
which expands to $(res.appdata.path)/tmp/$(dispatcher.name)

At dispatcher start up, a public directory with write permissions located in $(res.appdata.path)/
public is created (if it doesn't already exists) which contains two sub directories:

• common

• deployment

These directories will contain public images (i.e. images common to all applications) that are cacheable by
the browser and from where they can be delivered quickly to the front end client without having to access
an application's configuration file each time.

For details about deploying public images, see Application deployment overview on page 218 and
Building an archive with public resources on page 221.

Note: To ensure that resources are cacheable by the browser, the default public resource settings,
/public and /public/common, are not configurable.

Quick start: Genero Archive
Follow these steps to quickly archive and deploy applications and services.

As a prerequisite, you must have your applications and/or services created and tested. You must have
created an external configuration file for each application or service.

This initial procedure provides you with a quick overview of the main tasks of archiving and deploying an
application followed by some examples of building archives and deploying applications:

• Building an archive with public resources on page 221
• Building an archive with deployment triggers on page 221
• Deploy your application on your machine on page 221
• Run the deployed application on page 222

For a full understanding of what Genero archiving offers, please read all archiving topics.

1. Consolidate all necessary files under a root directory.

Within this directory, you must have a subdirectory for public images if you are deploying public images
with your application, see Building an archive with public resources on page 221. You can also have
sub-directories as needed to assist with the organization of your files.

Note: When you create the archive, you will specify a root directory only. All files and directories
within that directory will be included in the archive. If you wish to add a subset of the files in a
directory, you can use another zip tool to create the file. See Create a Genero Archive on page
226.

2. Update the application's configuration file (xcf) to set all resources relative to the resource
$(res.deployment.path). See Create a Genero Archive on page 226.

3. Create a MANIFEST file by hand (optional) or (recommended) use the deployment framework feature
of fglgar to automatically generate the MANIFEST.

See The MANIFEST file on page 224 and The fglgar command on page 267.

4. Create the archive file.

See Create a Genero Archive on page 226.

5. Deploy the archive file.

If you are on the application server, you deploy with the gasadmin command. See Deploy an archive
on page 227.

If you are on a remote computer, you can deploy with the FGL tool, PublishGar, or you can use other
tools such as curl. See Genero Archive deployment service on page 232.

6. Enable the archive.

See Activate (enable) a deployed archive on page 229.

Deploying with Genero Archive | 221

The applications, services and resources included in the archive are available for your end users.

Building an archive with public resources

About this task:

This procedure guides you through steps for building an archive for an application that is deployed with
public images. At this stage it is assumed you have :

• Consolidated all the necessary files for your application archive under a root directory.
• Updated the application's configuration file (e.g. xcf) to set its deployment <PATH> element to the

resource $(res.deployment.path).

1. Put your application's public images in a dedicated directory (you can name it, for example,
"myAppPublicImages") in your archive.

2. Create the MANIFEST file by hand (optional) or (recommended) use the deployment framework feature
of fglgar to automatically generate the MANIFEST, as shown in the next step.

The RESOURCES element specifies your public images directory. See Application deployment
overview on page 218 and The MANIFEST file on page 224.

3. Create the archive (gar) file to deploy your application by typing the following in a terminal window of
the archive directory:

fglgar --gar --resource myAppPublicImages --application myApp.xcf

A Genero archive file (gar) is created in your current directory that has the same name as the directory.
For more information about fglgar, see The fglgar command on page 267.

Building an archive with deployment triggers

About this task:

This procedure guides you through steps for building an archive for an application that is deployed with
trigger commands or programs to execute when deploying and undeploying your application on the GAS.
Before you begin make sure you have:

• Consolidated all the necessary files for your application archive under a root directory.
• Updated the application's configuration file (e.g. xcf) to set its deployment <PATH> element to the

resource $(res.deployment.path).

1. Create the MANIFEST file by hand (optional) (see The MANIFEST file on page 224) or
(recommended) use the deployment framework feature of fglgar to automatically generate the
MANIFEST while creating the archive file, as shown in the next step.

2. Create an archive (gar) file to deploy your application.

To have fglgar create the MANIFEST file and the archive (gar), type the following in a terminal
window of the archive directory.

Note: The --deploy-trigger and --undeploy-trigger (see TRIGGERS (for manifest) on page
224) switches contain your DEPLOY and UNDEPLOY commands, as shown in the example.

fglgar --gar --application myApp.xcf --trigger-component
cpn.wa.execution.local --deploy-trigger "fglrun mydeploy.42r" --undeploy-
trigger "fglrun myundeploy.42r"

A Genero archive file (gar) is created in your current directory that has the same name as the directory.
For more information about fglgar, see The fglgar command on page 267.

Deploy your application on your machine

About this task:

Deploying with Genero Archive | 222

Once you have created an archive for your application in the steps above, you can now deploy your
application locally on your machine to test it by performing the following tasks:

1. Start the standalone dispatcher from the command line by typing httpdispatch.

2. Deploy your (gar) file locally on your machine.

To deploy an archive named myApp_deploy.gar:

fglrun $(FGLDIR)/web_utilities/services/deployment/bin/PublishGar http://
localhost:6394/gas deploy myApp_deploy.gar

3. Enable your deployed application locally on your GAS with the PublishGar tool.

fglrun $(FGLDIR)/web_utilities/services/deployment/bin/PublishGar http://
localhost:6394/gas enable myApp_deploy.gar

This enables the application by copying its configuration file (e.g. myApp.xcf) to your
$(res.appdata.path) directory. It modifies the application's xcf file so that fglrun knows where
to look first for the application-specific resources.

Run the deployed application

About this task:

Once you have deployed your application on your machine in the steps above, you can now run your
application. If the standalone dispatcher is not already started, start it from the command line using
httpdispatch:

In a browser enter the address of your deployed application, e.g. http://localhost:6394/ua/r/
myApp
You should see your application displayed and be able to interact with it. You have successfully
deployed an application.

Deploying application resources for GWC for HTML5
To enable access to your images and Web components add them to one of the default directories.

This topic describes features the GAS provides for deploying resources with applications for GWC
HTML5v1 applications.

Deploying application images for GWC for HTML5

By default, the GAS looks for images in $FGLASDIR/pic and in the application directory (defined by the
PATH element). To quickly enable access to your images, add them to one of these directories.

The default image directory is set by the WEB_APPLICATION_PICTURE_COMPONENT element, see
WEB_APPLICATION_PICTURE_COMPONENT on page 357.

For example, if you are deploying an application using GWC for HTML5, this
WEB_APPLICATION_PICTURE_COMPONENT defines the default image directory:

<WEB_APPLICATION_PICTURE_COMPONENT Id="cpn.gwc.html5.picture">
 <PATH Id="Resource" Type="WEBSERVER">$(connector.uri)/fjs</PATH>
 <PATH Id="Image" Type="APPSERVER"
 ExtensionFilter="$(res.image.extensions);.less;.svg">
 $(res.path.tpl.html5)/img;$(res.path.pic);$(application.path)</PATH>
 <PATH Id="SetHtml5" Type="APPSERVER"
 ExtensionFilter="$(res.web.extensions);.less;.svg"
 DVMFallbackAllowed="FALSE">$(res.path.tpl.html5);$(res.path.tpl.common)</
PATH>

</WEB_APPLICATION_PICTURE_COMPONENT>

Deploying with Genero Archive | 223

Note: For your legacy GWC-HTML5 applications, the WEB_COMPONENT_DIRECTORY configuration
entry is ignored. Web components in this case are still required to be located in $(FGLASDIR)/
web/components as before. For more details on web component usage, see the Genero Business
Development Language User Guide.

To explicitly override with an image path specific to the application, add a PICTURE element to the
application configuration file. In this example, a PICTURE path is added for the GWC for HTML5 theme:

<APPLICATION Parent="defaultgwc"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="http://www.4js.com/ns/gas/2.50/
cfextwa.xsd">
 <RESOURCE Id="application.path"
 Source="INTERNAL">$(res.path.demo.app)/card/src</RESOURCE>
 <EXECUTION>
 <PATH>$(res.path.demo.app)/card/src</PATH>
 <MODULE>card.42r</MODULE>
 </EXECUTION>
 <OUTPUT>
 <MAP Id="DUA_HTML5">
 <PICTURE>
 <PATH Id="Image" Type="APPSERVER">
 $(res.path.demo.app)/card/src/photo;
 $(res.path.pic);$(application.path)</PATH>
 </PICTURE>
 </MAP>
 </OUTPUT>
</APPLICATION>

Deploying application resources for GWC-JS
To enable access to your application's images and Web components, add them to the relevant directory.

This topic describes features the GAS provides for deploying resources with applications for GWC-JS
applications.

Deploying application images for GWC-JS

A public data directory (see Paths to application resources on page 219) is used especially for ua
protocol applications to enable quicker access to common or public resources such as images, reports,
etc. belonging to all deployed applications on the GAS.

This allows the dispatcher to cache resources, which can then be served without having to access an
application's configuration file each time.

For example, if your FGL application has an instruction to display a public image, such as DISPLAY
"photo.jpg", you must put the image file in the default $(APPDATA)/public/common , the default
PUBLIC_IMAGEPATH directory so that it can be correctly served by the GAS.

You can also use the application deployment framework method to add public images, see Application
deployment overview on page 218 and Building an archive with public resources on page 221.

Deploying web components for GWC-JS

You can add Web components manually for your applications in the default
$(application.path)/webcomponents directory, or you can add them to any directory
provided the WEB_COMPONENT_DIRECTORY element is correctly configured to reflect it, see
WEB_COMPONENT_DIRECTORY on page 361

Deploying with Genero Archive | 224

Genero Archive lifecycle
A Genero Archive has five stages in its lifecycle: deployed, active, deactivated, undeployed, and cleaned.

Once you have created a Genero Archive, the lifecycle of that archive can include these five stages:

• Deployed - The archive is deployed but not activated.
• Active - Applications and services provided by an archive are available to users.
• Deactivated - Applications and services provided by an archive are no longer available to users. A

deactivated archive can be reactivated.
• Undeployed - The archive is no longer deployed, and cannot be reactivated. The MANIFEST file is

removed. Physical cleanup of the archive is not done.
• Cleaned - The archive is physically removed.

The MANIFEST file
A Genero Archive MANIFEST file is a simple XML file providing the list of applications and services to make
available. The MANIFEST file MUST be included in any Genero Archive file. You must create a MANIFEST
file for each archive you create.

A MANIFEST file has a MANIFEST element at its root. Child elements can include the following,

Important: Element order. If child elements are present, they must be set in the order listed below
or as shown in the sample.

• One DESCRIPTION element. The DESCRIPTION element provides a textual description of the archive.
It displays when listing archives.

• 0, or 1 TRIGGERS element. The TRIGGERS element (see TRIGGERS (for manifest) on page 224)
specifies a trigger component which contains a program (e.g. fglrun) or script to run to deploy or
undeploy the application if the deployment framework is used.

• 0, or 1 RESOURCES element. The RESOURCES element specifies the directory in your archive file where
images that are specific to your applications are found. The directory must be in the archive.

• 0, 1 or more APPLICATION elements. The APPLICATION element takes one mandatory attribute. The
xcf attribute specifies the path to the application configuration file. The application configuration file
must be in the archive. Include an APPLICATION element for each application in the archive.

• 0, 1 or more SERVICE elements. The SERVICE element takes one mandatory attribute. The xcf
attribute specifies the path to the Web service configuration file. The Web service configuration file must
be in the archive. Include a SERVICE element for each service in the archive.

Sample MANIFEST file:

<MANIFEST>
 <DESCRIPTION>my description</DESCRIPTION>
 <TRIGGERS component='comp_name'>
 <DEPLOY>deploy.sh</DEPLOY>
 <UNDEPLOY>undeploy.sh</UNDEPLOY>
 </TRIGGERS>
 <RESOURCES>res_dir</RESOURCES>
 <APPLICATION xcf='app.xcf' />
 <SERVICE xcf='app.xcf' />
</MANIFEST>

• TRIGGERS (for manifest) on page 224

TRIGGERS (for manifest)

The TRIGGERS element defines a set of deployment parameters that can be used when deploying
an application with the deployment framework. It takes a component attribute, which specifies the

Deploying with Genero Archive | 225

environment context for the runtime (fglrun) required by the DEPLOY and UNDEPLOY elements. These
child elements specify commands to execute when deploying and undeploying applications on the GAS.

Syntax

<TRIGGERS component ='comp_name'>
 <DEPLOY> myDeploy </DEPLOY >
 <UNDEPLOY> myUnDeploy </UNDEPLOY>
</TRIGGERS>

Child elements

The TRIGGERS element may contain the following child elements:

1. Zero or one DEPLOY element.
2. Zero or one UNDEPLOY element.

Example

<TRIGGERS component = 'cpn.wa.execution.local'>
 <DEPLOY>fglrun mydeploy.42r</DEPLOY>
 <UNDEPLOY>fglrun myundeploy.42r</UNDEPLOY>
</TRIGGERS>

In this example, the component value - cpn.wa.execution.local - can be referenced by the --trigger-
component and the DEPLOY value by --deploy-trigger when you are creating an application archive
using fglgar, for example:

fglgar --gar --application myapp.xcf --trigger-component
cpn.wa.execution.local --deploy-trigger "fglrun mydeploy.42r" --undeploy-
trigger "fglrun myundeploy.42r"

Note:

• In the case that the --deploy-trigger fails, the entire deployment will fail. Whereas if the --
undeploy-trigger fails, the undeployment is still carried out.

• Deployment triggers are typically not required, you can deploy your applications without them by
simply specifying the application's xcf file. See The MANIFEST file on page 224.

Parent elements
This element is a child of the MANIFEST element in The MANIFEST file on page 224

File system layout of a deployed archive
A Genero Archive contains application source files organised into subdirectories for modules, forms, etc.
includes the MANIFEST and the external application configuration file. The directory structure is recreated
when deployed.

Genero Archives are unpacked into a deployment directory. The deployment directory path is available
and configurable in the GAS configuration files. The resource res.deployment.root points to the
root directory for deployed archives. By default, it is configured with the value $(res.appdata.path)/
deployment.

Each archive is unpacked into a dedicated directory under the $(res.deployment.root) directory.
By default, the deployment tool will use the archive name (without the file extension) as the deployment
directory. The directory name is completed with a timestamp representing the installation date.

Deploying with Genero Archive | 226

Example

If the Genero Archive file included these files (in the same root directory):

• ./MANIFEST

• ./modules/app.42m

• ./modules/app.42r

• ./forms/app.42f

• ./xcf/app.xcf

The directory structure after unpacking the Genero archive would be similar to this, with the current
timestamp used:

• <APPDATA>/deployment/myapp-20130522-123456/MANIFEST

• <APPDATA>/deployment/myapp-20130522-123456/modules/app.42m

• <APPDATA>/deployment/myapp-20130522-123456/modules/app.42r

• <APPDATA>/deployment/myapp-20130522-123456/forms/app.42f

• <APPDATA>/deployment/myapp-20130522-123456/xcf/app.xcf

Genero Archive procedures
The procedures provide you with the instructions to create and use your Genero Archives when on the
application server host.

Tip: Use the Genero Archive deployment service, see Genero Archive deployment service on page
232, when working from a remote server.

• Create a Genero Archive on page 226
• Deploy an archive on page 227
• List all deployed archives on page 228
• Activate (enable) a deployed archive on page 229
• Deactivate (disable) a deployed archive on page 230
• Undeploy a deployed archive on page 230
• Clean up undeployed archives on page 231
• Upgrade an archive on page 232

Create a Genero Archive
A Genero Archive is a zip archive containing a MANIFEST file providing installation instructions and the list
of application and services to make available.

As a prerequisite, all of your application files, along with your application configuration (xcf) file, must sit
under one directory. For example, this would be a valid organization of files:

./fuzzy/modules/app.42m

./fuzzy/modules/app.42r

./fuzzy/forms/app.42f

./fuzzy/xcf/app.xcf

./fuzzy/appPublicImages/

Note: Public images need to go in a dedicated directory, for more information on deploying images
see Application deployment overview on page 218.

Follow these steps to create a Genero Archive from the contents of a directory. All folders and files in the
directory are included in the archive.

Note: When you use the fglgar tool to create an archive, you are creating a zip file. The tool is
designed to take a single directory as its parameter. If you need a more sophisticated archive tool

Deploying with Genero Archive | 227

(to add only specific files to the archive, for example), you can use any other zip tool to create your
GAR archive.

1. Create a MANIFEST file. See The MANIFEST file on page 224.

2. Update the application's configuration file (xcf).

All resources must be set relative to the resource res.deployment.path. For example, if your
compiled files were in the /bin directory of your archive, you would update <PATH> to:

<PATH>$(res.deployment.path)/bin</PATH>

Complete this change for all resources used in the configuration file: pictures, templates, forms,
modules, and so on.

3. Use the fglgar tool to create a Genero Archive.

If you are in the directory containing your MANIFEST file and your program files:

fglgar --gar

This creates an archive (gar) file with the same name as the archive directory.

If you need to specify the directory where the archive content is located, include the --input-source
option:

fglgar --gar --input-source ./fuzzy

This creates an archive file with the same name as your program, drawing its content from the ./
fuzzy directory.

If you wish to specify a name for your archive, use the --output option:

fglgar --gar --input-source ./fuzzy --output myfuzzy.gar

This creates an archive file with the name myfuzzy.gar, drawing its content from the ./fuzzy
directory.

Note: The archive name has no importance.

Deploy an archive
When you deploy an archive on a Genero Application Server, the applications and services referenced in
the archive are placed on the host, yet are not yet available to users.

As a prerequisite, you have a Genero Archive file.

The archive will be unpacked in the deployment directory. Static resources are zipped for better
performance at runtime.

gasadmin will deploy the .gar but the application deployed is named with the .xcf.

Enter the gasadmin command with the appropriate arguments.

To deploy an archive named fuzzy.gar:

gasadmin --deploy-archive fuzzy.gar

By default, the results are output in text format. When the console output uses the form of an XML
document, it can be easier to parse by other applications than textual output. To output in XML, specify
the --xml-output option:

gasadmin --deploy-archive fuzzy.gar --xml-output

The exit status is a 0 (zero) in case of success, 1 in case of error.

Deploying with Genero Archive | 228

XML output example:

<DEPLOYMENT success=”TRUE”>
 <MESSAGE>Genero Archive successfully deployed.</MESSAGE>
</DEPLOYMENT>

<DEPLOYMENT success=”FALSE”>
 <ERROR>Failed to deploy the Genero Archive</ERROR>
 <ERROR>An archive with the same name is already deployed</ERROR>
</DEPLOYMENT>

Text output example:

Command succeeded.
Genero archive successfully deployed.

Command failed.
ERROR: Failed to deploy the Genero Archive
ERROR: An archive with the same name is already deployed.

All applications and services are deployed in the default group of the application server.

List all deployed archives
You can list all deployed archives with a single command.

Enter the gasadmin command with the appropriate arguments.

To list all deployed archives:

gasadmin --list-archives

By default, the results are output in text format. When the console output uses the form of an XML
document, it can be easier to parse by other applications than textual output. To output in XML, specify
the --xml-output option:

gasadmin --list-archives --xml-output

The exit status is a 0 (zero) in case of success, 1 in case of error.

An example of text output for an archive listing:

Command succeeded.

2 archives deployed:

 Name : archive1
 State : Disabled
 Description : This my incredible first archive
 Application(s):
 - 22223.xcf
 - 22224.xcf
 Service(s) :
 - 15233.xcf

 Name : archive2
 State : Disabled
 Description : This my incredible second archive
 Application(s):
 - 22315.xcf
 Service(s) :

Deploying with Genero Archive | 229

 - 17746.xcf
 - 19164.xcf

An example of XML output for an archive listing:

<DEPLOYMENT success=”TRUE”>
 <ARCHIVE name=”MyArchive” enabled=”TRUE”>
 <DESCRIPTION> This is my first achive </DESCRIPTION>
 <APPLICATION xcf=”MyApp1.xcf” />
 <APPLICATION xcf=”MyApp2.xcf” />
 <SERVICE xcf=”MyServ1.xcf” />
 <SERVICE xcf=”MyServ2.xcf” />
 </ARCHIVE>
 <ARCHIVE name=”MyArchive2” enabled=”TRUE”>
 <DESCRIPTION> This is my second archive </DESCRIPTION>
 <APPLICATION xcf=”app/MyApp3.xcf” />
 <APPLICATION xcf=”app/MyApp4.xcf” />
 </ARCHIVE>
</DEPLOYMENT>

Note: The DEPLOYMENT node may contains some MESSAGE or ERROR nodes.

Activate (enable) a deployed archive
A deployed archive is not implicitly activated. When you activate (enable) a deployed archive, the
applications and services provided by the archive become available to users.

Enabling an archive means enabling all applications and services provided by the Genero Archive.

1. Enter the gasadmin command with the appropriate arguments.

To show a list of archives and details of their status:

gasadmin --list-archives

To enable an archive named fuzzy:

gasadmin --enable-archive fuzzy

By default, the results are output in text format. When the console output uses the form of an XML
document, it can be easier to parse by other applications than textual output. To output in XML, specify
the --xml-output option:

gasadmin --enable-archive fuzzy --xml-output

The exit status is a 0 (zero) in case of success, 1 in case of error.

2. Copy the application configuration file (xcf) into a group directory, if desired.

XML Output examples:

<DEPLOYMENT success=”TRUE”>
 <MESSAGE>Archive <archive-name> successfully enabled</MESSAGE>
</DEPLOYMENT>

<DEPLOYMENT success=”FALSE”>
 <ERROR>Failed to enable <archive-name> archive.</ERROR>
 <ERROR>... and error messages indicating the reasons of the failure....</
ERROR>
</DEPLOYMENT>

Deploying with Genero Archive | 230

Deactivate (disable) a deployed archive
When you deactivate (disable) a deployed archive, the applications and services provided by the archive
are not exposed (no longer available to users).

As a prerequisite, you have a deployed archive that has been enabled.

Disabling an archive means disabling all applications and services provided by the Genero Archive. The
archive remains deployed. Any running applications or services are not stopped.

Tip: To disable a single application or service, remove its configuration file from the group
directory. The original configuration files remain available in the deployed archive directory.

Enter the gasadmin command with the appropriate arguments.

To disable a Genero Archive named fuzzy.gar:

gasadmin --disable-archive fuzzy.gar

By default, the results are output in text format. When the console output uses the form of an XML
document, it can be easier to parse by other applications than textual output. To output in XML, specify
the --xml-output option:

gasadmin --disable-archive fuzzy.gar --xml-output

The exit status is a 0 (zero) in case of success, 1 in case of error.

XML output examples:

<DEPLOYMENT success=”TRUE”>
 <MESSAGE>Archive <archive-name> successfully undeployed</MESSAGE>
</DEPLOYMENT>

<DEPLOYMENT success=”FALSE”>
 <ERROR>Failed to undeploy <archive-name> archive.</ERROR>
 <ERROR>... and error messages indicating the reasons of the failure....</
ERROR>
</DEPLOYMENT>

Undeploy a deployed archive
When you undeploy an archive, the archive is no longer deployed and cannot be reactivated.

An archive can be undeployed. When you undeploy an archive:

• All applications and services provided by the archive that are not disabled are disabled at this time.
• The MANIFEST file renames to MANIFEST.undeployed. Any archive with the file

MANIFEST.undeployed represents an undeployed archive.

When you undeploy an archive, no files are removed. The cleanup of the undeployed archive directory
must be explicitly requested.

Enter the gasadmin command with the appropriate arguments.

To undeploy an archive named fuzzy.gar:

gasadmin --undeploy-archive fuzzy.gar

By default, the results are output in text format. When the console output uses the form of an XML
document, it can be easier to parse by other applications than textual output. To output in XML, specify
the --xml-output option:

gasadmin --undeploy-archive fuzzy.gar --xml-output

Deploying with Genero Archive | 231

The exit status is a 0 (zero) in case of success, 1 in case of error.

XML output examples:

<DEPLOYMENT success=”TRUE”>
 <MESSAGE>Archive <archive-name> successfully undeployed</MESSAGE>
</DEPLOYMENT>

<DEPLOYMENT success=”FALSE”>
 <ERROR>Failed to undeploy <archive-name> archive.</ERROR>
 <ERROR>... and error messages indicating the reasons of the failure...</
ERROR>
</DEPLOYMENT>

Text output examples:

Command suceeded.
Genero archive successfully deployed.

Command failed.
ERROR: Failed to undeploy the Genero Archive
ERROR: ... and error messages indicating the reasons of the failure...

Clean up undeployed archives
The deployment tool provides a cleanup command that physically removes undeployed archives. This
process is executed on user request.

As a prerequisite ensure that applications you want to remove are not running any more. You can list the
running applications with "gasadmin -l".

One or more archives have been undeployed.

The cleanup operation will only remove directories in the deployment directory if:

• The directory name matches a deployment directory name pattern, i.e. archive-name-timestamp
• The archive directory contains a file name MANIFEST.undeployed.

1. Enter the gasadmin command with the appropriate arguments.

To clean up all undeployed archives:

gasadmin --clean-archives

For each undeployed archive, you are asked to confirm the cleanup by entering y to clean up, n to skip
and continue to the next undeployed archive.

By default, the results are output in text format. When the console output uses the form of an XML
document, it can be easier to parse by other applications than textual output. To output in XML, specify
the --xml-output option:

gasadmin --clean-archives --xml-output

To disable confirmation for each archive removal, add the -all option:

gasadmin --clean-archives -all

The exit status is a 0 (zero) in case of success, 1 in case of error.

2. To quit the clean up, enter quit.

Deploying with Genero Archive | 232

Upgrade an archive
You can upgrade an application without having to kill processes or wait for users to log out.

As a prerequisite, your applications and services were previously deployed as an archive. You still have
the requisite archive files (see Create a Genero Archive on page 226.)

1. Deploy the new version of the archive. See Deploy an archive on page 227.

2. Disable the previously deployed archive. See Deactivate (disable) a deployed archive on page 230.

3. Enable the newly deployed archive. See Activate (enable) a deployed archive on page 229.

4. Undeploy the previously deployed archive. See Undeploy a deployed archive on page 230.

Genero Archive deployment service
A deployment service has been written in Genero and can be accessible on a base URL of /ws/r/
services/DeploymentService. It provides several actions in the form of REST APIs.

The deployment service is a Web service provided for the Genero Application Server. To prevent
this application being accessed remotely, the default configuration restricts access to the localhost
(127.0.0.1). If you want to enable it for other client machines / IP addresses, you must customize the
ALLOW_FROM tag or remove the ACCESS_CONTROL tag. The service configuration can be found at
$FGLDIR/web_utilities/services/DeploymentService.xcf.

Table 21: Actions available for the Genero Archive deployment service

Action Description HTTP request details

deploy Deploys a Genero Archive on the
Genero Application Server by calling
gasadmin --deploy-archive.

Returns the command result in XML
format.

HTTP PUT request of following form:

URL: /ws/r/services/DeploymentService/
deploy?archive=name

Note: archive=name is mandatory to
identify the archive on the GAS.

To send the archive to the Genero Application
Server, you could use curl with a PUT
instruction:

curl -X PUT -T test.gar
http://app_server:port/connector
/ws/r/services/DeploymentService/
deploy?archive=name

where:

• app_server is the server name or IP
address.

• port is the port where the application server
or Web server is listening.

• connector is the Genero Application Server
connector (/gas, for example).

enable Enables all applications and services
of a given archive by calling gasadmin
--enable-archive.

Returns the command result in XML
format.

HTTP GET request of following form:

URL: /ws/r/services/DeploymentService/
enable?archive=name

Deploying with Genero Archive | 233

Action Description HTTP request details

disable Disables all applications and services
of given archive by calling gasadmin
-–disable-archive.

Returns the command result in XML
format.

HTTP GET request of following form:

URL: /ws/r/services/DeploymentService/
disable?archive=name

undeploy Undeploys a genero archive on the
Genero Application Server by calling
gasadmin –-undeploy-archive.

HTTP GET request of following form:

URL: /ws/r/services/DeploymentService/
undeploy?archive=name

list Returns a list and status of all archives
available on the Genero Application
Server by calling gasadmin --list-
archive.

Returns the command result in XML
format.

HTTP GET request of following form:

URL: /ws/r/services/DeploymentService/list

cleanup The cleanup operation is not available
withthe REST service, as it requires
user interaction to its prompts. To
perform a cleanup operation, you must
use gasadmin on the application
server(performed by gasadmin --
clean-archives).

N/A

Upgrading | 234

Upgrading

These topics talk about what steps you need to take to upgrade to the next release of Genero Application
Server, and allows you to identify which features were added for a specific version.

Review the list of migration recommendations each time you move to a new version of the Genero
Application Server. Failure to do so can result in issues when rendering your Web applications.

• New Features of the Genero Application Server on page 234
• Upgrade Guides for the Genero Application Server on page 247
• Migrating Templates and Snippets Customizations on page 262

New Features of the Genero Application Server
These topics provide an look back at the new features introduced with each release of the Genero
Application Server.

• What's new in Genero Application Server, v 3.00 on page 235
• Genero Application Server v 2.50 New Features on page 237
• Genero Application Server 2.41 New Features on page 240
• Genero Application Server 2.40 New Features on page 241
• Genero Application Server 2.32 New Features on page 242
• Genero Application Server 2.30 New Features on page 242
• Genero Application Server 2.22 New Features on page 244
• Genero Application Server 2.21 New Features on page 245
• Genero Application Server 2.20 New Features on page 246

What's new in Genero Application Server (GAS), v 3.00 (Maintenance Releases)
This topic includes information about new features added for 3.00 Maintenance Releases (MRs) of the
GAS and changes in existing functionality.

Important: Please read What's new in Genero Application Server, v 3.00 on page 235, for a list
of features that were introduced with Genero 3.00 General Availability release.

Table 22: Genero Web Client for JavaScript (GWC-JS), Version 3.00

Overview Reference

Enhancements for the GWC-JS (v1.00.16):

• Canvas elements are now supported.
• Front calls setvar and getvar are supported for session variable

management. See the Genero Business Development Language User
Guide for more details about their usage.

See Features and limitations on
page 176.

Table 23: Engine and Architecture, Version 3.00 (Maintenance Releases)

Overview Reference

The GWC_JS_LOOKUP_PATH element (added as a child of
INTERFACE_TO_CONNECTOR on page 324) allows you to configure
the location of your custom GWC-JS front end.

See GWC_JS_LOOKUP_PATH on
page 320

Upgrading | 235

Overview Reference

A new URI dedicated to the lookup of the GWC-JS directory. The
complete format of the URI is ua/w/$(GWC-JS)/<filename>.

See Application URIs on page 49

Table 24: Deployment, Version 3.00 (Maintenance Releases)

Overview Reference

The WEB_COMPONENT_DIRECTORY element allows for multiple paths to
be specified.

See
WEB_COMPONENT_DIRECTORY
on page 361

Note: The new features listed in this topic are available in the latest version of the GAS. Contact
your support channel for more details.

What's new in Genero Application Server, v 3.00
This topic includes information about new features and changes in existing functionality.

Table 25: GWC for HTML5, Version 3.00

Overview Reference

Genero Web Client for JavaScript (GWC-JS) is a new Web client for
developing Genero Web Client applications.

See Genero Web Client for
JavaScript (GWC-JS) on page 173
.

Table 26: Single Sign-On, Version 3.00

Overview Reference

The Single sign-on (SSO) mechanism now works for all clients: Genero
Desktop Client (GDC) and Genero Web Client (GWC).

See What is Single sign-on (SSO)?
on page 37.

OpenID Connect is introduced as SSO protocol supported by the
Genero Application Server. It is based on a Genero REST service and
is delivered in the Genero Web Services package under $FGLDIR/
web_utilities/services/openidconnect.

See OpenID Connect SSO on page
115

Table 27: Web Services and the GAS, Version 3.00

Overview Reference

A new element called REQUEST_RESULT has been added to the Web
services time out component, which, if set, allows the GWS proxy to
release the DVM in charge of a service that has not responded within a
given time frame (seconds).

See
SERVICE_APPLICATION_TIMEOUT_COMPONENT
on page 345

Table 28: Engine and Architecture, Version 3.00

Overview Reference

The gasadmin command has been updated with new features to
manage archives. You can now list, enable, deploy and undeploy
archives with options of the gasadmin command.

See The gasadmin command on
page 269.

The GAS supports a new timeout feature called
AUTO_LOGOUT_COMPONENT which can be defined in the timeout

See AUTO_LOGOUT_COMPONENT
on page 305

Upgrading | 236

Overview Reference

component for GWC and GDC applications. If set, an application will
get a logout page or screen after a specified time (in seconds) of user
inactivity.

GAS 3.00 introduces a new universal proxy for applications using GDC
v3 and GWC-JS interfaces. It is called uaproxy (ua). It replaces the
gdcproxy and html5proxy proxies. It provides protocol improvements
and better performance overall.

See Proxy: uaproxy on page 266

There is a new bootstrap mechanism for starting GWC-JS applications,
which is used to initialize information for rendering an application.

See Starting GWC-JS applications
on page 188

A new element called GWC_JS_LOOKUP_PATH added to
INTERFACE_TO_CONNECTOR on page 324 allows you to configure the
location of your custom GWC-JS front end.

See GWC_JS_LOOKUP_PATH on
page 320

The new user agent protocol, the uaproxy for GDC, GMA, GMI and
GWC-JS, introduces a new set of resource URLs. The ua protocol does
not use snippets sets or output maps as the wa protocol did previously to
specify output theme.

See Application URIs on page 49

Genero Ghost Client is a new Java framework introduced for testing
different scenarios by emulating user interaction on Genero applications.

See Ghost Client and Testing Tools
on page 272

GAS 3.00 introduces a new configuration entry for the Report Viewer
which allows you to configure the location of the Genero Web Report
Viewer. A corresponding report viewer URL prefix /ua/grv is provided
to the Genero Report Engine (GRE).

See
REPORT_VIEWER_DIRECTORY
on page 340

See Application URIs on page 49.

Table 29: Deployment, Version 3.00

Overview Reference

The deployment framework (fglgar tool) provides you with new
resource management features for public image files.

See The fglgar command on page
267

Three new predefined resources have been added:

• A public resource path for all applications, $(res.appdata.path)/
public

• A resource for common images used by applications,
$(res.public.resources)

• A resource where the Application Server stores files temporarily
during file transfer, $(res.path.tmp)

See GAS directories on page 38
and Paths to application resources
on page 219

A WEB_COMPONENT_DIRECTORY has been added, it contains the path(s)
where Web components are located for an application. It replaces
the WEB_COMPONENT element, which has been removed from the
EXECUTION element of an application.

See
WEB_COMPONENT_DIRECTORY
on page 361

The DOCUMENT_ROOT now allows multiple document root paths. See DOCUMENT_ROOT on page
312

New entries in the application MANIFEST file:

• A new RESOURCES entry is added to the MANIFEST file that specifies
the directory in your archive file where public images for your
applications are found.

See The MANIFEST file on page
224 and TRIGGERS (for manifest)
on page 224

Upgrading | 237

Overview Reference

• A new TRIGGERS element defines a set of deployment parameters
that can be used when deploying an application with the deployment
framework.

Table 30: Miscellaneous, Version 3.00

Overview Reference

The GAS can now be plugged in to Internet Protocol Version 6 (IPv6)
Web servers without any additional configuration if the front-ends (GWC-
JS, GDC, Web Service) need to use IPv6 user agents. As communication
between the GAS and Web servers is on localhost, IPv4 continues to be
used.

Note: If you have to
restrict access of some
applications to specific IP
addresses, in that case
the ACCESS_CONTROL
entry must be configured
with IPv6 addresses. See
ACCESS_CONTROL on
page 298

In addition to specifying access by IP address, the ACCESS_CONTROL
and MONITOR configuration elements have been updated with two access
control keywords (NOBODY, ALL) which can be used with ALLOW_FROM.

See ALLOW_FROM on page 300

Introducing a new resource, res.access.control, that specifies
access control for Web services, application programs, such as demos,
and MONITOR. It is defined with the keyword NOBODY by default.

Note: The default
deployment does not allow
access to demo programs
and MONITOR. Access has
to be configured explicitly
with ALLOW_FROM. See
MONITOR on page 328
and ACCESS_CONTROL
on page 298

A new element called ROOT_URL_PREFIX added to
INTERFACE_TO_CONNECTOR on page 324 supports the use of
reverse proxy server between the client and the GAS. It allows for a URL
prefix to be specified for the Web server so as to provide the correct
interface to the client.

See ROOT_URL_PREFIX on page
344

Genero Application Server v 2.50 New Features
Features introduced with Genero Application Server 2.50.

Table 31: GWC for HTML5, Version 2.50

Overview Reference

The HTML5 is now the default theme for all Genero Web
Client applications. The AJAX, Silverlight, iPhone and
Basic themes are deprecated.

The supporting topics have been removed, as
the HTML5 theme is deprecated. Please see
the topic, Browser-based themes, in the Genero
Application Server 2.50 User Guide.

HTML5 theme: while you can still customize your Genero
Web Client application with CSS, the files involved have
changed and any previous customization efforts will need
to be revisited.

The supporting topics have been removed, as
the HTML5 theme is deprecated. Please see the
topics:

• Cascading Style Sheets

Upgrading | 238

Overview Reference

• HTML5 theme

in the Genero Application Server 2.50 User Guide.

The HTML5 theme adds support for frozen columns,
splitters (in forms, between the form and the
actionPanel, between the form and the startMenu), and
GridChildrenInParent.

The supporting topics have been removed, as the
HTML5 theme is deprecated. Please see Html5
Theme topics in Genero Application Server 2.50
User Guide.

The html5proxy manages Genero Web Client applications
using the HTML5 theme.

The supporting topics have been removed, as the
HTML5 theme is deprecated. Please see Html5
Theme topics in the Genero Application Server
2.50 User Guide.

The HTML5 theme supports StartMenus and applications
displayed in folder tabs.

The supporting topics have been removed, as
the HTML5 theme is deprecated. Please see the
topic, Enable the StartMenu and applications in
folder tabs, in the Genero Application Server 2.50
User Guide.

Add language support to a snippet file (HTML5). The supporting topics have been removed, as
the HTML5 theme is deprecated. Please see the
topic, Translations in the snippets, in the Genero
Application Server 2.50 User Guide.

Start an application while ignoring the application's stored
settings (HTML5).

The supporting topics have been removed, as
the HTML5 theme is deprecated. Please see the
topic, Start an application without stored settings
(GWC for HTML5), in the Genero Application
Server 2.50 User Guide.

GDCAX is deprecated in favor of the HTML5 theme. GDC
HTTP is still supported.

The supporting topics have been removed, as
the HTML5 theme is deprecated. Please see
the topics, Html5 Theme, in Genero Application
Server 2.50 User Guide.

Control the folder size of an application rendered by the
HTML5 client.

The supporting topics have been removed, as
the HTML5 theme is deprecated. Please see
the topic, Control the folder size, in Genero
Application Server 2.50 User Guide.

UI enhancements for the GWC (HMTL5 theme):

• The tooltip now displays beside the field. An icon
(triangle) allows you to show or hide the tooltip. You can
also hide the tooltip by clicking on the message text.

• The display of the calendar widget has been improved
to prevent overlapping with other widgets. While it
usually displays under the date field, it displays to the
side if there is not enough space under.

The supporting topics have been removed, as
the HTML5 theme is deprecated. Please see the
topic, Features and limitations, in the Genero
Application Server 2.50 User Guide.

The browser back and forward buttons can now trigger
actions.

See Browser Back and Forward Buttons.

The demos application is restricted to localhost by default. See Display demo applications with the Genero
Web Client on page 25.

Upgrading | 239

Table 32: Single Sign-On, Version 2.50

Overview Reference

Kerberos is deprecated. Promoted SSO solutions are
OpenID and SAML.

See What is Single sign-on (SSO)? on page 37.

Security Assertion Markup Language (SAML) is a
Single sign-on (SSO) protocol supported by the Genero
Application Server. It is based on a Genero REST service
and is delivered in the Genero Web Services package
under $FGLDIR/web_utilities/services/saml.

See SAML SSO on page 128.

OpenID is a Single sign-on (SSO) protocol supported by
the Genero Application Server. It is based on a Genero
REST service and is delivered in the Genero Web Services
package under $FGLDIR/web_utilities/services/
openid.

See OpenID SSO on page 120.

Delegate the start of a GWC (/wa/r) or GDC (/ja/
r) application or a GWS (/ws/r) service to another
REST service in order to perform some controls (such as
authentication, authorization, or monitoring) in a single and
centralized Genero program.

See How to implement delegation on page 105.

Table 33: Web Services and the GAS, Version 2.50

Overview Reference

Support for sticky Web services. See Sticky Web services on page 215.

Service invalidation provides notification when a Genero
Web Service configuration is invalid. Once identified as
having invalid configuration, the dispatcher will not attempt
to start the gwsproxy for the service until the configuration
is modified.

See Service invalidation on page 215.

Table 34: Engine and Architecture, Version 2.50

Overview Reference

Better internal/temporary data organization. See GAS directories on page 38.

The gasadmin command has been updated to handle
multiple dispatchers. You can target the dispatcher with the
-d option of the gasadmin command.

See The gasadmin command on page 269.

DVM standard error and standard output are now directed
to dedicated log files.

See Logging on page 156.

The Genero Application Server on UNIX™ will use UNIX™

domain sockets to communicate between the dispatcher
and the proxies.

See SOCKET_FAMILY on page 348 and
SOCKET_PATH on page 349.

Enable and disable resource compression in the imt.cfg
file. Compress resources (static files) using the -z option of
the gasadmin command.

See Compression in Genero Application Server
on page 146 and The gasadmin command on
page 269.

Upgrading | 240

Table 35: Deployment, Version 2.50

Overview Reference

Genero Archive provides a means for packaging and
deploying applications.

See Deploying with Genero Archive on page 217.

Table 36: Miscellaneous, Version 2.50

Overview Reference

Genero Front Call ActiveX is deprecated. No additional reference.

Genero Application Server 2.41 New Features
Features introduced with Genero Application Server 2.41.

Table 37: Genero Application Server Version 2.41 New Features

Overview Reference

When using GWC for Silverlight, if the toolbar is larger than
the form, the default behavior is to have a left and right
button on the toolbar (horizontal scrolling).

The supporting topic has been removed, as the
Silverlight theme is deprecated. Please see the
Genero Application Server 2.41 User Guide.

GWC for HTML5 is a supported theme. It is no longer
considered a "preview version".

Important: The default theme for the next major
release of Genero will be GWC for HTML5. Both
the AJAX and iPhone themes will be deprecated
in the next major release. If you are developing
applications for the iPhone, it is recommended that
you use the HTML5 theme, which is fully supported
on iOS.

The supporting topic has been removed, as the
HTML5 theme is deprecated. Please see the
topic, Html5 Theme, in the Genero Application
Server 2.41 User Guide.

The Basic theme is deprecated. There will be no further
development on the Basic theme. It is recommended that
you use the HTML5 theme for future development.

No additional reference.

The GWC hybrid mode takes Genero applications and
delivers them as native applications for Android or iOS
mobile platforms.

The supporting topic has been removed, as GWC
hybrid mode is deprecated. Please see the topic,
Genero Web Client hybrid mode, in the Genero
Application Server 2.41 User Guide.

New template paths: Application hierarchy, Window
hierarchy, Layout hierarchies, and Widgets hierarchies
have been added.

The supporting topics have been removed, as the
template paths theme is deprecated. Please see
the topics:

• Template Paths - Application hierarchy
• Template Paths - Window hierarchy
• Template Paths - Layout hierarchies
• Template Paths - Widgets hierarchies

in the Genero Application Server 2.41 User Guide.

Upgrading | 241

Genero Application Server 2.40 New Features
Features introduced with Genero Application Server 2.40.

Table 38: 2.40 New Features: Common

Overview Reference

Support to add summary lines on TABLEs defining
AGGREGATE form fields for the Genero Web Client.

Please see the topic, Features and limitations, in
the Genero Application Server 2.40 User Guide.

The Genero Application Server can handle submit
parameters with the POST method.

See Handling POST Method Submit Parameters.

Performance improvements on the GAS have been made
to provide users with a better experience using Genero
Web Applications.

• Less memory consumed for GWC rendering
• Less data traffic for tables and windows
• Better stack management in threads

No additional reference.

Table 39: 2.40 New Features: Silverlight theme

Overview Reference

The Silverlight theme layout is improved to closely match
the layout proportions (widgets size, widgets redesign after
window resizing,etc,) found in Genero Desktop Client.

The supporting topic has been removed, as the
Silverlight theme is deprecated. Please see the
Genero Application Server 2.40 User Guide.

In the Silverlight theme, user preferences are saved in the
stored settings and frozen columns for tables are supported

The supporting topic has been removed, as the
Silverlight theme is deprecated. Please see the
Genero Application Server 2.40 User Guide.

In the Silverlight theme, most decoration common style
attributes described in the Genero Business Development
Language User Guide are now supported. Some
decoration common style attributes not supported are:

• border
• localAccelerators
• imageCache
• showAcceleratorInToolTip

The supporting topic has been removed, as the
Silverlight theme is deprecated. Please see the
Genero Application Server 2.40 User Guide.

In the Silverlight theme, rich text editing is now supported
for TextEdit fields with textFormat html. An embedded
toolbox with classic editing actions (bold, italic, underline,
font size, etc.) is provided for text editing.

Text editing limitations compared to GDC / GWC for
Ajax

• No list (ordered or unordered)
• No text indentation
• No local action binding
• xHTML is mandatory
• New lines in paragraph are replaced by spaces

The supporting topic has been removed, as the
Silverlight theme is deprecated. Please see the
Genero Application Server 2.40 User Guide.

Upgrading | 242

Overview Reference

The Silverlight theme provides a user-friendly file download
window.

The supporting topic has been removed, as the
Silverlight theme is deprecated. Please see the
Genero Application Server 2.40 User Guide.

The Silverlight theme provides support for type ahead
inputs.

The supporting topic for Silverlight has been
removed, as the Silverlight theme is deprecated.
Please see the Genero Application Server 2.40
User Guide. For generic information about the
Type Ahead input mechanism, see Type Ahead.

Table 40: 2.40 New Features: HTML5 theme

Overview Reference

Introduction to the HTML5 theme (preview version) for
the Genero Web Client. The DUA_HTML5 output map is
provided as a preview set. It is designed to run on modern
desktop browsers as well as on mobile browsers.

Important: The next major release of Genero
will find the default theme changed to the HTML5
theme. The AJAX theme will be desupported in the
subsequent release (the second major release after
the current 2.40 release).

The supporting topics have been removed, as
the HTML5 theme is deprecated. Please see the
Genero Application Server 2.40 User Guide.

Genero Application Server 2.32 New Features
Features introduced with Genero Application Server 2.32.

Table 41: Genero Application Server Version 2.32 New Features

Overview Reference

The Genero Application Server adminstration tool
gasadmin is provided. This tool is a command to list, ping
and kill applications sessions.

See The gasadmin command on page 269.

MAX_REQUESTS_PER_DVM is a new entry for GWS pool
configuration. It allows a limited number of requests to be
processed before the DVM is stopped.

See MAX_REQUESTS_PER_DVM on page
328.

A new log output allows logging both in a directory and to
the console.

See LOG on page 326.

Genero Application Server 2.30 New Features
Features introduced with Genero Application Server 2.30.

Table 42: 2.30 New Features: New architecture

Overview Reference

GAS 2.30 introduces dispatchers and proxies for more
reliability, better performances and better integration in web
servers.

See Overview and What is a dispatcher? on page
35

Upgrading | 243

Overview Reference

Java™ Application Server integration: The GAS server can
now be fully integrated into any J2EE Servlet container
using the GWC dispatcher j2eedispatch.

See Java Servlet Installation and Web Server
Configuration on page 91.

New monitoring information: The monitor has been
revised to display information that is relevant to the new
architecture. In addition to application-specific information,
there are also statistics shown for the dispatchers and
proxies.

See Monitoring on page 150.

New LOG system: The log format and categories have
been adapted to the new architecture with log files created
for each dispatcher, proxy, and DVM started.

See LOG on page 326.

The web services pool management has been enhanced
to explicitly limit the number of DVMs that can be started
for a specific Web service. The Timeout configuration
has changed to prevent the GWS proxy and DVMs from
running indefinitely if the GAS dispatcher or the web server
crashes.

See Services Pool (GWS Only) on page 31

Table 43: 2.30 New Features: GWC themes

Overview Reference

GWC for Silverlight is based on Microsoft™ Silverlight
technology. It is a fully-implemented Genero Front-end,
like the Genero Desktop Client, with the ability to be
customized, like GWC for AJAX.

The supporting topic has been removed, as the
Silverlight theme is deprecated. Please see the
Genero Application Server 2.30 User Guide.

GWC for iPhone provides a dedicated Genero Web Client
template and set of snippets to render Genero applications
as close as possible to native iPhone applications.

The supporting topic has been removed, as the
iPhone theme is deprecated. Please see the
Genero Application Server 2.30 User Guide.

GWC for AJAX provides support for iPhone and iPad web
browsers. With Safari on iPhone providing the interface
for all web content on iPhone, most of the feature set of a
desktop browser is made available to mobile users. When
it comes to displaying GWC applications on the iPhone or
iPod Touch, the AJAX mode is fully functional with Safari
on iPhone.

The supporting topic has been removed, as
the AJAX theme is deprecated. Please see the
Genero Application Server 2.30 User Guide.

Table 44: 2.30 New Features: Miscellaneous

Overview Reference

GWC for AJAX and GWC for Silverlight support drag-and-
drop.

The supporting topics have been removed, as
the AJAX and Silverlight themes are deprecated.
Please see the Genero Application Server 2.30
User Guide.

GAS provides a URI to launch GDC applications without
having to configure a shortcut in the GDC monitor.
Shortcuts can be exported as .gdc. GAS delivers these
shortcuts through a URI for any application.

See URI Examples on page 55

Upgrading | 244

Overview Reference

Note:

• On Mac, you need to manually add the .gdc
association for Safari or save the .gdc and
double click to launch the application

• Currently, any access to /da/r url is handled by
DUA_GDC map, no matter which OutputMap
argument is set in the url

The ACCESS_CONTROL element specifies which IP
addresses are allowed to execute an application or web
service. By default, all IP addresses are allowed.

See ACCESS_CONTROL on page 298.

The new resource configuration.filepath provides
the absolute path to the GAS configuration file.

See Common GAS predefined resources on page
288.

New topics have been introduced to the documentation
about each of the following themes (snippet sets):

• AJAX theme
• Silverlight theme
• Basic theme
• iPhone theme

The supporting topics have been removed, as the
AJAX, Silverlight, Basic and iPhone themes are
deprecated. Please see the Genero Application
Server 2.30 User Guide.

New topics have been introduced to the documentation
about ISAPI, FastCGI, and JAVA GAS dispatcher
configuration, installation and integration to their dedicated
Web servers. New topic added explaining GDC to GWC
migration.

See

• ISAPI Installation
• FastCGI Installation
• Java™ Servlet Installation
• The supporting topics, as the GWC HTMLv1

theme is deprecated. Please see the GDC to
GWC migration topic in the Genero Application
Server 2.30 User Guide.

Genero Application Server 2.22 New Features
Features introduced with Genero Application Server 2.22.

Table 45: 2.22 New Features

Overview Reference

Applications started by a StartMenu can be rendered in
folder tabs.

See Enable the StartMenu and applications in
folder tabs.

Textedit with textFormat html now displays a toolbox with
classic editing actions (bold, italic, fontsize, and so on).
Local actions are also created so you can create your own
action views (global toolbar, and so on).

See Rich text editing.

Upgrading | 245

Genero Application Server 2.21 New Features
Features introduced with Genero Application Server 2.21.

Table 46: 2.21 New Features: Backwards compatibility

Overview Reference

GAS 2.21 is compatible with the Genero 2.11 product suite
(FGL, GWS).

No additional reference.

Table 47: 2.21 New Features: Genero Web Client New Features

Overview Reference

The layout of the AJAX output driver has been enhanced in
several ways.

The supporting topic has been removed, as the
AJAX theme is desupported. Please see the
Genero Application Server 2.21 User Guide.

Picture deployment enhancements

• The list of file system paths searched for images can be
configured according to the user agent type.

• Pictures that are not found on the GAS file system are
requested from the DVM. The ResourceURI has been
enhanced to support these requests.

The supporting topic has been removed, as the
template path theme is desupported. Please see
the Genero Application Server 2.21 User Guide.

Internet Explorer 8 is now supported. The supporting topic has been removed as GWC
for HTML5v1 is deprecated. Please see the topic,
Features / browsers supported, in the Genero
Application Server 2.21 User Guide.

The authenticated user and the remote IP address from
the client is accessible to the Genero application through
environment variables.

See Application environment on page 42

The list of supported snippet-based rendering engine
(SBRE) template paths is accessible through a specific
URL.

The supporting topic has been removed, as the
template path theme is desupported. Please
see the topic, Template Paths Overview, in the
Genero Application Server 2.21 User Guide.

The Template Element Identifiers feature provides a means
to customize the template element identifier name used to
reference elements during the incremental update of the
page, according to the target markup language.

The supporting topic has been removed, as the
template path theme is desupported. Please see
the topic,Template Element Identifiers, in the
Genero Application Server 2.21 User Guide.

The application/ui/decimalSeparator path gets
access to the currently active decimal separator character.

The supporting topic has been removed, as the
template path theme is desupported. Please see
the topic,Template Paths - Application hierarchy,
in the Genero Application Server 2.21 User Guide.

The SpinEdit/minValue and SpinEdit/maxValue
paths get access to the corresponding SpinEdit attributes.

The supporting topic has been removed, as the
template path theme is desupported. Please see
the topics:

• SpinEdit/minValue
• SpinEdit/maxValue

in the Genero Application Server 2.21 User Guide.

Applications in configuration files support both a short
description and a long description.

See DESCRIPTION on page 311

Upgrading | 246

Genero Application Server 2.20 New Features
Features introduced with Genero Application Server 2.20.

Note: Links to outdated documentation pages have been removed. If you are using version 2.20,
you may wish to view the documentation created for version 2.20.

Table 48: 2.20 New Features: Application Server

Overview Reference

Multi-threaded capabilities adapt the Genero Application
Server daemon (gasd) capabilities to the Application
Server demand. One gasd process will be able to adapt
itself to the number of pending requests, providing better
efficiency.

The architecture of the Genero Application Server
has since changed. See Architecture of the
Genero Application Server on page 27.

The following improvements have been made in GAS 2.20:

• New plug-able components (GAS Isapi and GAS
FastCGI) are available for each targeted application
server, providing a new connection architecture that
adapts the external world model to the GAS model.

• A new generic resourceURI() function associated to
the new PATH element definition allows you to specify
multiple resource locations accessible from the browser
on an application-level basis.

The architecture of the Genero Application Server
has since changed. See Architecture of the
Genero Application Server on page 27.

The GAS gives access to server and applications details
through the "/monitor" URL. The monitor page exposes
details about DVMs, Web applications, Web services, GDC
applications, and GAS activity.

See Monitoring on page 150.

Table 49: 2.20 New Features: GDCAX management

Overview Reference

Protocol between GDC and the application server is
no longer character-oriented; it is now binary-oriented.
As such, the connection is more efficient. They now
communicate on a unique URL, which improves the
authenticated and secured connections.

The supporting topic has been removed, as
the Genero Desktop Client ActiveX feature is
deprecated. Please see the Genero Application
Server 2.20 User Guide.

Table 50: 2.20 New Features: Web application management (Genero Web Client)

Overview Reference

Tree views are fully supported by the Genero Web Client. The supporting topic has been removed, as
the HTML5 theme is deprecated. Please see
the Limitations topic in the Genero Application
Server 2.20 User Guide for a complete listing of
limitations of what the HTML5 theme supports .

The new XUL snippet set offers a desktop-like rendering.
The XUL snippet set will be activated if you use a Prism
user agent. You can also activate XUL snippet sets in any
Firefox browser by using the DUA_XUL output map.

The supporting topic has been removed, as the
XUL theme is deprecated. Please see the Genero
Application Server 2.20 User Guide.

Upgrading | 247

Overview Reference

A new GAS 2.20 framework allows JavaScript™ functions to
handle the BDL frontCall function on the browser.

BDL 2.20 also introduces two new frontcall functions
(launchUrl and feinfo/screenresolution) which are fully
supported by the GWC.

The frontcall supporting topic has been removed,
as the HTML5 theme is deprecated. Please see
the JavaScript topic in the Genero Application
Server 2.20 User Guide.

Modern browsers fully support SVG and SWF. Image
widget snippets create the correct HTML code so the
browser will render images with the extension .svg or
.swf.

The supporting topic has been removed, as the
HTML5v1 theme is deprecated. Please see the
Genero Application Server 2.20 User Guide.

Select multiple rows using the usual key and mouse
combination to enhance your Display Array.

The supporting topic has been removed, as
the HTML5 theme is deprecated. Please see
the Limitations topic in the Genero Application
Server 2.20 User Guide for a complete listing of
limitations of what the HTML5 theme supports .

Enable Sorting in Input Array is now possible. The supporting topic has been removed, as
the HTML5 theme is deprecated. Please see
the Limitations topic in the Genero Application
Server 2.20 User Guide for a complete listing of
limitations of what the HTML5 theme supports .

Hyperlinks in Label / TextEdit are now supported. See Display a widget as a hyperlink

Button type <<link>>: A classic Genero BDL button, but
displayed as an hyperlink.

No additional reference.

Upgrade Guides for the Genero Application Server
Each upgrade guide is an incremental upgrade guide that covers only topics related to a specific version
of Genero. It is important that you read all of the upgrade guides that sit between your existing version and
the desired version.

• GAS 3.00 upgrade guide on page 248
• GAS 2.50 upgrade guide on page 250
• GAS 2.41 upgrade guide on page 251
• GAS 2.40 upgrade guide on page 251
• GAS 2.30 upgrade guide on page 253
• GAS 2.22 upgrade guide on page 256
• GAS 2.21 upgrade guide on page 256
• GAS 2.20 upgrade guide on page 256
• Upgrading from GAS 2.10.x or GWC 2.10.x on page 258
• GAS (GWC) 2.10 upgrade guide on page 260
• GAS 2.00 upgrade guide on page 261

Upgrading | 248

GAS 3.00 upgrade guide
Complete these tasks when migrating to Genero Application Server 3.00 from version 2.50. If you are
migrating from an earlier version of Genero Application Server, first complete the migration tasks for all
versions between your existing version and the target version.

Genero Web Client

GWC for JavaScript will be the default rendering for Genero Web Client applications, replacing GWC for
HTML5. New development should use GWC for JavaScript.

Genero Desktop Client ActiveX (GDCAX) is desupported

For new development, use GWC for JavaScript.

Single Sign-On Authentication

The Kerberos authentication mechanism for Single Sign-on authentication is deprecated. Any new
development requiring Single Sign-on should plan to use OpenID Connect, SAML or OpenID. See How
to implement Single sign-on (SSO) on page 114. For alternative solutions, please contact your Four Js
support center.

Java Dispatcher

For Genero 3.0, the Java Dispatcher, see Dispatcher: java-j2eedispatch on page 266, requires at least
version 3.0 of the Java servlet API. This is supported on the following Java web servers:

• IBM® WebSphere® (since version 8.0), see http://en.wikipedia.org/wiki/
IBM_WebSphere_Application_Server

• Tomcat (since version 7.0.x), see http://tomcat.apache.org/whichversion.html
• Glassfish (since version 3.0), see https://glassfish.java.net/public/comparing_v2_and_v3.html

Web Services

For Genero 3.0, the following FGLGWS connections and web services are supported:

• FGLGWS 3.00

Protocols FGLGWS 3.00

ua GDC 3.00, GWC-JS, GMA, GMI

ja n/a

wa n/a

• FGLGWS 2.50

Protocols FGLGWS 2.50

ua n/a

ja GDC 2.50

wa GWC-HTML5

http://en.wikipedia.org/wiki/IBM_WebSphere_Application_Server
http://en.wikipedia.org/wiki/IBM_WebSphere_Application_Server
http://tomcat.apache.org/whichversion.html
https://glassfish.java.net/public/comparing_v2_and_v3.html

Upgrading | 249

Web Server side Resources

In GAS 2.50, using gwcproxy and html5proxy proxies, the path to the image directory is configured to
fetch resources on the Web server side in the PATH element, see PATH with Type WEBSERVER on page
333.

<PICTURE>
 <PATH type="WEBSERVER">a_uri</PATH>
</PICTURE>

This is usually configured to improve performance. The Web server delivers static files or images instead
of the GAS.

With GAS 3.00, for uaproxy, all the resources are delivered by the GAS. By default the application's
public directory is defined by the PUBLIC_IMAGEPATH in $FGLASDIR/etc/as.xcf configuration file:

<PUBLIC_IMAGEPATH>$(res.public.resources)</PUBLIC_IMAGEPATH>

Note: $(res.public.resources) defaults to the path appdata/public/common, see
PUBLIC_IMAGEPATH on page 338.

If you use Genero Archive you can specify public resources for your applications by adding
a RESOURCES element in the Genero Archive manifest. Then the resources are copied in
$FGLASDIR/appdata/public/deployment/deployappname, where "deployappname" is the name
given to the deployed application directory by the Genero Archive. See Application deployment overview
on page 218.

Web Components

In GAS 2.50, web components are deployed under $FGLASDIR/web/components directory, see
WEB_COMPONENT_DIRECTORY on page 361.

Starting from GAS 3.00, with uaproxy, the default path for a web component is appdir/
webcomponents, where "appdir" is the application directory. See the WEB_COMPONENT_DIRECTORY
element in your $FGLASDIR/etc/as.xcf configuration file:

<WEB_APPLICATION_EXECUTION_COMPONENT Id="cpn.wa.execution.local">
 […]
 <DVM>$(res.dvm.wa)</DVM>
 <WEB_COMPONENT_DIRECTORY>$(application.path)/webcomponents</
WEB_COMPONENT_DIRECTORY>
</WEB_APPLICATION_EXECUTION_COMPONENT>

You can change the default web components location by configuring a WEB_COMPONENT_DIRECTORY
element in your application's configuration. In this example, the web component is no longer located in
appdir/webcomponents but in appdir/mycomponents.

<APPLICATION Parent="defaultgwc" …>
 <EXECUTION>
 <PATH>/home/myapp</PATH>
 <MODULE>myapp</MODULE>
 <WEB_COMPONENT_DIRECTORY>/home/myapp/mycomponents</
WEB_COMPONENT_DIRECTORY>
 </EXECUTION>
</APPLICATION>

For more details on Web component usage, see the Genero Business Development Language User
Guide.

Upgrading | 250

Genero Web Client hybrid mode (deprecated)

The GWC hybrid mode feature has been deprecated. Applications for Android or iOS mobile platforms
which used the GWC hybrid mode will now need to use the more-featured GMA or GMI instead. If you do
not have equivalent features in GM, contact your local Four Js support center.

GWC-JS LOOKUP PATH

The GWC_JS_LOOKUP_PATH on page 320 is a new mandatory element in as.xcf. If you are
upgrading to GAS versions 3.00.11 or later and wish to keep your existing as.xcf configuration file, you
need to add this element to the INTERFACE_TO_CONNECTOR on page 324 element. Otherwise, you
will see the following error message at GAS startup:

Application Server startup
 httpdispatch
"Configuration ERROR" Code:1871 Message:Element 'TEMPORARY_DIRECTORY': This
 element is not expected. Expected is (GWC_JS_LOOKUP_PATH).
[fail] httpdispatch "Main Configuration"
Cannot build main configuration

To find out your GAS version, at the command line run the gasadmin -V command. For more information
on the gasadmin tool, see The gasadmin command on page 269 topic.

GAS 2.50 upgrade guide
Complete these tasks when migrating to Genero Application Server 2.50 from version 2.40. If you are
migrating from an earlier version of Genero Application Server, first complete the migration tasks for all
versions between your existing version and the target version.

• GWC for HTML5 will be the default rendering for Genero Web Client applications, replacing GWC for
AJAX. Any new development should plan to use GWC for HTML5.

• Customization using CSS has changed to provide a flat design to fit all platforms (desktop,
tablet, and smartphone) using the HTML5 theme. All CSS customization is now contained within
css_customization.css. This should ease both customization and migration between versions of
the Genero Application Server. As the HTML5 theme is deprecated, please see the Cascading Style
Sheets and HTML5 theme topics in the Genero Application Server 2.50 User Guide.

• The Genero Administration Application (GAD) is no longer supported.
• The ForwardDVMStdout attribute for the MAP element is no longer permitted in the configuration file,

as the DVM output and errors are now logged to a separate log file. Remove this attribute from your
Genero Application Server configuration file.

• The CONNECTOR_PREFIX element is no longer valid in the Genero Application Server configuration file.
Remove it from your configuration file, if present.

• The behavior of a simple RUN command has changed.

Previously, when an child application was launched using a simple RUN command, the child application
replaced the main application in the same browser window. Only the child application was visible. When
you exited the child application, the main application resumed. Throughout, there was a single browser
window.

With version 2.50, an application launched by a simple RUN command opens a second window (or
browser) containing the child application, as it also does for RUN WITHOUT WAITING. The child
application runs normally. The main application is frozen, waiting for the child application to terminate.
If you attempt to leave or close the main application when a child application is still running, a prompt
asks you to confirm that you want to leave.

• Genero Front Call ActiveX is now deprecated.
• Logging for the Genero Application Server has changed. Logs are now created for the dispatchers, the

proxies, and the virtual machines. DVM logs are redirected to files when DAILYFILE is set for the log
output type.

Upgrading | 251

• The default location of the Genero Application Server log files has moved. If you set logrotate or
another tool to manage your GAS log files, you will need to reset. See GAS directories on page 38 for
details on the location of log files.

• Some Windows™ directories have restricted permissions. Depending on where the Genero Application
Server is installed, you might not have access to log, tmp and sessions directories. These directories
are now located at C:\ProgramData\FourJs\gas\gas_version where gas_version
is the version of the Genero Application Server. You can configure their location by modifying
"res.appdata.path" in the Genero Application Server configuration file.

GAS 2.41 upgrade guide
There are no migration tasks specific for the Genero Application Server 2.41 release.

While there are no migration tasks specific for the Genero Application Server 2.41 release, you should be
aware that starting with the next major release (tentatively 2.50):

• GWC for HTML5 will be the default rendering for Genero Web Client applications, replacing GWC for
AJAX. Any new development should plan to use GWC for HTML5.

• The Genero Administration Application (GAD) will be de-supported.

GAS 2.40 upgrade guide
Complete these tasks when migrating to Genero Application Server 2.40 from version 2.30. If you are
migrating from an earlier version of Genero Application Server, first complete the migration tasks for all
versions between your existing version and the target version.

• Template and snippets on page 251
• Template paths on page 252

Template and snippets

Namespaces

To optimize template and snippets rendering, all namespaces need to be declared in the main template.
You need to move all the namespaces used in your snippets to the main template. The changes have to be
applied on all snippet sets.

Example in 2.3x:

$FGLASDIR/tpl/SetAjax/main.xhtml

<html xmlns:gwc="http://www.4js.com/GWC" xmlns="http://www.w3.org/1999/
xhtml"
 ...>

$FGLASDIR/tpl/common/Canvas.xhtml

<svg:svg
 xmlns:svg="http://www.w3.org/2000/svg"
 viewBox="0 0 1000 1000"
 preserveAspectRatio="none">
 <svg:rect x="0" y="0" width="1000" height="1000" fill="lightgray"
 stroke="black"/>

</svg:svg>

Example in 2.40:

$FGLASDIR/tpl/SetAjax/main.xhtml

<html xmlns:gwc="http://www.4js.com/GWC" xmlns="http://www.w3.org/1999/
xhtml"

Upgrading | 252

 xmlns:svg="http://www.w3.org/2000/svg" ...>

GWC for Silverlight behaviors

Starting with GAS 2.40, GWC for Silverlight follows the Model-View-ViewModel (MVVM) pattern to enable
even more designers to customize the view of their applications with tools like Microsoft™ Expression
Blend.

This change leads to the replacement of the GWC.Behaviors module by a view models layer. Therefore all
the XAML markup that used the bhv prefix needs to be updated. Here is an example of the migration of an
action view.

In 2.32:

<sr:Button
 bhv:Action.Observer="{action && action/isActive ?
 [action/IDID, 'Activate'] : null}"
 bhv:Media.URI="['{resourceURI("images/close.png",
 "SetSL")}', 'SmallImage']"
 IsEnabled="{action/isActive || false}"
 IsTabStop="False" />

In 2.40:

<sr:Button
 Command="{{Binding ClickCommand,Mode=OneTime}"
 SmallImage="{{Binding Image.Source}"
 IsEnabled="{action/isActive || false}"
 IsTabStop="False">
 <sr:Button.DataContext>
 <vm:ActionView Image="{resourceURI('images/close.png','SetSL')}">
 <vm:ActionView.ServerActions
 gwc:condition="action && action/isActive">
 <vmsa:Action ServerID="{action/IDID}"
 IsEnabled="True" Event="Click" />
 </vm:ActionView.ServerActions>
 </vm:ActionView>
 </sr:Button.DataContext>
</sr:Button>

The bhv:Action.Observer and bhv:Media.URI behaviors have been replaced by a more conventional
mechanism based on Data bindings that gets their properties from the ActionView view model.

GWC for Silverlight template snippet splitting

To ease the customization, some template snippets have been splitted into more parts:

• The user interface part of the main.xaml template has been put into the UserInterface.xaml snippet.
• The ending part of the main.xaml template has been put into the EndingPage.xaml snippet.
• The toolbar and the top menu parts of the WindowContent.xaml snippet have been put into the

ToolMenu.xaml snippet.

Template paths

application/interrupt/did and application/interrupt/xdid template paths are replaced by application/
interrupt/url. For more details on the new template path usage see the main templates.

http://msdn.microsoft.com/en-us/magazine/dd419663.aspx
http://www.microsoft.com/expression/products/Blend_Overview.aspx
http://www.microsoft.com/expression/products/Blend_Overview.aspx
http://msdn.microsoft.com/en-us/library/cc278072(v=vs.95).aspx

Upgrading | 253

GAS 2.30 upgrade guide
Complete these tasks when migrating to Genero Application Server 2.30 from version 2.22. If you are
migrating from an earlier version of Genero Application Server, first complete the migration tasks for all
versions between your existing version and the target version.

• Starting the GAS on page 253
• Configuration on page 253
• Support on page 255
• Template functions on page 255
• XPathConfig migration on page 255
• Legacy connectors on page 255
• Mod_fcgid on page 255

Starting the GAS

The gasd command no longer exists, it is replaced by dispatchers. To run the GAS in standalone mode
use httpdispatch command. On windows, from the start menu, there is a shortcut to start the dispatcher in
standalone mode.

Configuration

Starting with version 2.30, the configuration file has been simplified. Some configuration parameters are
no longer needed due to the new architecture, and others are now handled transparently (such as the web
services pool and load).

--development

To start a GWC application in development mode, you must add the option --development to the gwcproxy
entry in the appropriate xcf file.

Example:

<RESOURCE Id="res.gwcproxy.param" Source="INTERNAL">--development</RESOURCE>

This resource res.gwcproxy.param is used as parameter when launching the GWC proxy

<RESOURCE Id="res.gwcproxy" Source="INTERNAL">
 "$(res.path.as)/bin/gwcproxy" $(res.gwcproxy.param)
</RESOURCE>

Configuration file (xcf) inheritance

Prior to version 2.30, when an application was started with a RUN, the child application inherited the
configuration of the parent unless the child application has its own configuration file. If the child application
had its own configuration file (where the .xcf file shares the same name as the child application), then the
child configuration took priority over the parent configuration, and was used for the child application.

Starting with version 2.30, this is no longer true. A 4gl application started with RUN or RUN WITHOUT
WAITING will inherit the configuration of the parent application, and this cannot be changed. The
configuration used to start the first application (the first FGLRUN) will be used for all child applications
(child FGLRUNs).

While you might want to review your parent/child applcations, this will likely not have an impact, as a
customer survey determined that most had only provided a configuration file for the parent application and
had not provided a configuration file for the child applications.

Resource of type FILE

Starting with version 2.30, resources of type FILE are no longer supported.

Upgrading | 254

Example:

<RESOURCE Id="res.theme.default.gdc.template" Source="FILE">
 $(res.path.tpl)/fglgdcdefault.html
</RESOURCE>

ALIAS entry removed

Starting with version 2.30, the entry ALIAS has been removed. You can configure PICTURE element
instead.

THREAD_POOL entry removed

Starting with version 2.30, the entry THREAD_POOL has been removed.

LOG output of type PATH de-supported

Starting with version 2.30, you cannot set a log output of type PATH.

REQUEST_QUEUE and REQUEST_RESULT for Web Services are removed

Starting with version 2.30, Web Service REQUEST_QUEUE and REQUEST_RESULT have been
removed.

Instead of these timeouts, the web server one is used. For example, the fastcgi idle timeout.

DVM_FREE removed

Starting with version 2.30, Web Service DVM_FREE has been removed.

It is no more needed as the Web Service pool management uses statistics of previous requests to decide
whether to stop a DVM or not.

Hot Restart no longer necessary

There is no longer a need for a hot restart, as changes in an external XCF file are immediately taken into
account at:

• Application startup for a web application
• GWS DVM startup for web services that could be at each new request

As a result, you should check the changes you have made to your XCF files and ensure they are correct
before you save the file. For example, you could create a test.xcf file and validate that the test.xcf file
is correct; then replace the production xcf file (assume the file is named prod.xcf for this discussion) by
archiving prod.xcf and renaming test.xcf to prod.xcf.

Socket port selection

The following three entries of the INTERFACE_TO_DVM configuration are deprecated and will be removed
in the next release.

The selection of a free socket port will be in charge of the operating system for performance issues.

• TCP_BASE_PORT
• TCP_PORT_RANGE
• EXCLUDED_PORT

License Consumption and Web Service Applications

Prior to this release, when it came to consuming licenses, you were able to go over the setting of
MAX_AVAILABLE, up to the limit specified for the application by the MaxLicenseConsumption attribute.

Upgrading | 255

This is no longer the case. MaxLicenseConsumption is no longer available as an application attribute
and will be ignored by the Genero Application Server. The maximum limit for licenses is now given by
MAX_AVAILABLE. You will not be allowed to go over this limit.

Support

XUL snippets set is no longer supported

Starting with version 2.30, the XUL snippet set is no longer supported. Instead, there is GWC for
Silverlight, which covers the same kind of usage as the XUL snippet set, but with a more powerful
technology.

Following OS are no longer supported: osf0510, sco0507 and uxw0711

These Operating Systems (HP Tru64 unix V5.1B, SCO OpenServer 5.0.7 and SCO UnixWare 7.1.3 - 7.1.4
& OpenServer 6.00) are very old and do not fit with the minimal OS requirements needed for the GAS
redesign (specifically multi-threading).

Template functions

XPathConfig migration

Starting with version 2.30, the configuration provided in XML format to the GWC has changed; you have to
adapt all of your customized snippet files containing XPathConfig expressions. Only the XML configuration
needed by the GWC is loaded, so all the XPathConfig expressions must be simplified as follows:

• Remove APPLICATION node

XPathConfig('/APPLICATION/TIMEOUT/USER_AGENT/text()')

to

XPathConfig('/OUTPUT/MAP/TIMEOUT/USER_AGENT/text()')

• Remove DUA Id attribute

XPathConfig('APPLICATION/OUTPUT/MAP[@Id='DUA_AJAX']/RENDERING/MIME_TYPE/
text()')

to

XPathConfig('/OUTPUT/MAP/RENDERING/MIME_TYPE/text()')

It is no longer possible to access all XPATH with function XPathConfig(). We can only access the node
OUTPUT and its descendants.

Legacy connectors

Starting with version 2.30, due to the new multi-threaded architecture, legacy connectors are no longer
provided in the package.

Mod_fcgid

Mod_fcgid is no more supported. Mod_fcgid architecture did not fit GAS 2.2x stateful process. Mod_fgcid
has not been reconsidered in GAS 2.30.

Upgrading | 256

GAS 2.22 upgrade guide
Complete these tasks when migrating to Genero Application Server 2.22 from version 2.21. If you are
migrating from an earlier version of Genero Application Server, first complete the migration tasks for all
versions between your existing version and the target version.

Template path application/meta/variable

application/meta/variable[name] no longer returns the value of the variable.

To get the variable value, use the new path: application/meta/variable[name]/value.

If the new path is not used, you will get an error such as this:

Rendering error...
Template snippet: _default, style '_default', line 107
 Message: The 'variable' path element cannot be rendered
 automatically; please use its attributes

GAS 2.21 upgrade guide
Complete these tasks when migrating to Genero Application Server 2.21 from version 2.20. If you are
migrating from an earlier version of Genero Application Server, first complete the migration tasks for all
versions between your existing version and the target version.

Topics

• Configuration

Configuration

• Picture

For web applications, the picture configuration has moved from APPLICATION/PICTURE to
APPLICATION/OUTPUT/MAP/PICTURE.

See PICTURE on page 335 configuration for more details.

GAS 2.20 upgrade guide
Complete these tasks when migrating to Genero Application Server 2.20 from version 2.10.x. If you are
migrating from an earlier version of Genero Application Server, first complete the migration tasks for all
versions between your existing version and the target version.

• Configuration on page 256
• Snippets sets on page 257
• Legacy connectors installation on page 257
• Templates and snippets on page 257

Configuration

Timeout

For web applications, the timeout configuration has moved from APPLICATION/TIMEOUT to
APPLICATION/OUTPUT/MAP/TIMEOUT.

See TIMEOUT configuration for more details.

Session Variables and Cookies

The cookie configuration has moved from APPLICATION/OUTPUT/MAP to APPLICATION/OUTPUT.

Upgrading | 257

See HTTP_COOKIES configuration for more details.

Blob URLs

If you are using blob urls (Note: for more information please see the Template Paths - Document hierarchy
topic in the Genero Application Server 2.20 User Guide), beginning with 2.20, you need to allow the access
to the resources, by default the access is disabled. See WEB_APPLICATION_EXECUTION_COMPONENT
on page 356 for more details.

DVM ping timeout

Since 2.20.09, the DVM ping timeout is configurable. DVM_PINGTIMEOUT

Error document

INTERFACE_TO_CONNECTOR/ERROR_DOCUMENT is no more available. This should now be
configured and handled by the web server.

Snippets sets

The snippets sets are renamed with more explicit names. set1 is renamed into setAjax. set2 and set3 are
merged and becomes setBasic. A new set, setXul, for output map DUA_XUL is added.

These changes imply some migrations for your customized snippets.

• setAjax (formely known as set1)

Adapt main.xhtml to reflect the last enhancement on resource deployment.
• setBasic (formely known as set2 and set3)

As setBasic is the result of the merging of set2 and set3, it is recommended that you rework your
customization from this new set.

Legacy connectors installation

Such an architecture is no longer recommended. It is provided to ease the migration to 2.20. The
installation of the connector assumes that you have the rights to install the product in the web server
directories.

To install the legacy connectors:

• On IIS, you have to create a virtual directory named "gas" for example and assign execution
permission to this virtual directory

• On Apache, configure your own ScriptAlias named "gas" for example or use the default ScriptAlias
directory "/cgi-bin/".

• Then copy the content of $FGLASDIR/legacy_connectors to the directory.

Validate the installation by accessing demo program with a URL like:

http://myWebServer/gas/fglcisapi.dll/ua/r/gwc-demo (with IIS)
http://myWebServer/gas/fglccgi.exe/ua/r/gwc-demo (with Apache)
http://myWebServer/gas/fglccgi/ua/r/gwc-demo

If you encounter any issues or need to configure connector.xcf, please refer to GAS manual prior to 2.20.

Templates and snippets

• double the left curly brace "{{" to escape the embedded expression processing.

Upgrading | 258

Upgrading from GAS 2.10.x or GWC 2.10.x
Complete these tasks when migrating from Genero Application Server 2.10.x to a later version.

• Application configuration on page 258
• Template and snippets on page 260
• Deprecated functions and paths on page 260

Application configuration

Add noNamespaceSchemaLocation attribute in external application configuration file

All external application configuration files must be updated by adding the noNamespaceSchemaLocation
attribute. When defining external application files, the "noNamespaceSchemaLocation" attribute should
have this value:

• For web applications: xsi:noNamespaceSchemaLocation="http://www.4js.com/ns/
gas/2.11/cfextwa.xsd"

• For web services applications:xsi:noNamespaceSchemaLocation="http://www.4js.com/ns/
gas/2.11/cfextws.xsd"

For example, consider the following examples of the Edit.xcf web application configuration file:

The old Edit.xcf:

01 <?xml version="1.0" encoding="UTF-8"?>
02 <APPLICATION Parent="defaultgwc">
03 <EXECUTION>
04 <PATH>$(res.path.fgldir.demo)/Widgets</PATH>
05 </EXECUTION>
06 </APPLICATION>

The new Edit.xcf:

01 <?xml version="1.0" encoding="UTF-8"?>
02 <APPLICATION Parent="defaultgwc"
03 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
04 xsi:noNamespaceSchemaLocation="http://www.4js.com/ns/gas/2.11/
cfextwa.xsd">
05 <EXECUTION>
06 <PATH>$(res.path.fgldir.demo)/Widgets</PATH>
07 </EXECUTION>
08 </APPLICATION>

If this attribute is missing, the corresponding application will fail to start, and the following message will be
written to the log file:

Can't find 'noNamespaceSchemaLocation' attribute in external
 application file '/home/f4gl/gwc/app/Edit.xcf'.

Output drivers for Internet Explorer

Specific output drivers DUA_AJAX_HTML and DUA_PAGE_HTML have been added to support certain
features (such as the Canvas widget) on Internet Explorer. As a result, all customized snippets specified
for DUA_AJAX will also need to be specified for DUA_AJAX_HTML.

The original CardStep1.xcf:

01 <?xml version="1.0" encoding="UTF-8"?>
02 <APPLICATION Parent="defaultgwc"
03 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

Upgrading | 259

04 xsi:noNamespaceSchemaLocation="http://www.4js.com/ns/gas/2.11/
cfextwa.xsd">
05 <EXECUTION>
06 <PATH>$(res.path.demo.app)/card/src</PATH>
07 <MODULE>card.42r</MODULE>
08 </EXECUTION>
09 <OUTPUT>
10 <MAP Id="DUA_AJAX">
11 <THEME>
12 <SNIPPET Id="Image" Style="Picture">
 $(res.path.demo.app)/card/tpl/set1/Image.xhtml</SNIPPET>
13 </THEME>
14 </MAP>
15 </OUTPUT>
16 </APPLICATION>

The new CardStep1.xcf:

01 <?xml version="1.0" encoding="UTF-8"?>
02 <APPLICATION Parent="defaultgwc"
03 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
04 xsi:noNamespaceSchemaLocation="http://www.4js.com/ns/gas/2.11/
cfextwa.xsd">
05 <EXECUTION>
06 <PATH>$(res.path.demo.app)/card/src</PATH>
07 <MODULE>card.42r</MODULE>
08 </EXECUTION>
09 <OUTPUT>
10 <MAP Id="DUA_AJAX">
11 <THEME>
12 <SNIPPET Id="Image"
 Style="Picture">$(res.path.demo.app)/card/tpl/set1/Image.xhtml
 </SNIPPET>
13 </THEME>
14 </MAP>
15 <MAP Id="DUA_AJAX_HTML">
16 <THEME>
17 <SNIPPET Id="Image"
 Style="Picture">$(res.path.demo.app)/card/tpl/set1/Image.xhtml
 </SNIPPET>
18 </THEME>
19 </MAP>
20 </OUTPUT>
21 </APPLICATION>

Likewise, all customized snippets specified for DUA_PAGE will also need to be specified for
DUA_PAGE_HTML.

To change output drivers default behaviors, see Automatic Discovery of User Agent.

URL parameters

By default, parameters in the URL are not taken into account. They are not transmitted to the DVM. Only
the parameters defined in the configuration files are transmitted.

To use URL parameters, in the EXECUTION tag, you have to set AllowUrlParameters to TRUE.

Caution, parameters are transmitted to the DVM in this order: configured parameters in PARAMETERS on
page 331 tag followed by the URL parameters.

Upgrading | 260

Template and snippets

Attention: As of Genero version 3.00, the Snippet-Based Rendering Engine (SBRE) and all
themes using template paths are deprecated. Output maps (e.g. DUA_HTML5) are no longer used
to specify output theme, as the wa protocol did previously. For information on how templates and
snippets were used by the Front End clients, please refer to the Genero Application Server 2.50
User Guide.

For new development, use GWC for JavaScript, see Genero Web Client for JavaScript (GWC-JS)
on page 173.

Deprecated functions and paths

Some functions have been renamed due to enhancements on the Front End protocol. The default logging
includes the DEPRECATED category that displays warnings. If any deprecated functions are used, this
kind of warning is logged:

[TASK=1808 VM=1860 WA=115128484 TEMPLATE]
 Event(Time='7.481526', Type='Using deprecated function')
 / function(Name='makescrollpagesizedid')

Deprecated template paths

• DID becomes IDID

Deprecated template functions

• makeCompoundRowSelectionDID becomes makeRowSelectionIDID
• makeScrollPageSizeDID becomes makePageSizeIDID
• makeScrollOffsetDID becomes makeScrollOffsetIDID

GAS (GWC) 2.10 upgrade guide
If you have been working with the Genero Web Client prior to the release of GWC 2.10, you will have
already done some configuration and possibly customization to deliver your Genero applications as Web
applications using the initial built-in rendering engine (no longer supported).

All new development and advances is focused on the snippet-based rendering engine introduced with
GWC 2.10.

• Migrating to the snippet-based rendering engine on page 260

Migrating to the snippet-based rendering engine

To take full advantage of the snippet-based rendering engine, you must follow the procedures outlined in
this manual, regardless of whether or not you have previously deployed your application using the pre-2.10
GWC.

If you have previously deployed the application with the pre-2.10 GWC, ensure you revisit the following:

• Customization now includes presentation styles and snippet sets; previous customization of the
template files are no longer valid with the snippet-based rendering engine. Customization previously
implemented using JavaScript™ will now likely be implemented using HTML.

• The limitations of the GWC prior to 2.10 included lack of accelerator key support, StartMenus,
ProgressBars, ON IDLE, StatusBars, and Genero Presentation Styles. You may have modified your
application to work around these limitations. (Please see the topic, Features and limitations, in the
Genero Application Server 2.10 User Guide.)

Note: Links to pages made obsolete by more current releases have been removed from this page.
If you are migrating to GWC 2.10, we recommend you use the documentation released with version
2.10.

Upgrading | 261

GAS 2.00 upgrade guide
Complete these tasks when migrating to Genero Application Server 2.00 from any earlier version of the
Genero Application Server.

• fglxslp migration tool on page 261
• fglxmlp XML preprocessor on page 261

fglxslp migration tool

When migrating from Genero Application Server (GAS) 1.3x to 2.00, it is necessary to update your GAS
configuration file to conform to the XML specifications of GAS 2.00. A migration tool, fglxslp, has been
added to assist you in this migration.

Usage:

$FGLASDIR/bin/fglxslp $FGLASDIR/etc/gasxcf1xxto200.xsl
 $FGLASDIR/etc/as-132.xcf > $FGLASDIR/etc/myas.xcf

Note:

• fglxslp is the migration tool.
• gasxcf1xxto200.xsl is the XSL style sheet that describes the GAS 2.00 XML configuration file
• as-132.xcf is the configuration file to migrate (GAS 1.3x).
• myas.xcf is the result (new configuration file for GAS 2.00).

fglxmlp XML preprocessor

The XML Preprocessor can be used as part of the BDL development process. It fetches data in a XML
resource file to "fill" the content of a source file that contains the dollar tag expression.

Usage:

$FGLASDIR/bin/fglxmlp -i src1.4gx -o src1.4gl -r resource.xrf

Note:

• src1.4gx is the file to be processed through the XML Preprocessor.
• src1.4gl is the output file.
• resource.xrf is the XML resource file containing the definition of a complex 4GL record.

Using the XML Preprocessor

In this example, two source files will be "expanded" through the XML resource file. The resource file
contains the definition of a complex 4GL record. The extension of files to be processed through the XML
Preprocessor is .4gx. The extension for the resource file is .xrf (XML Resource File).

fglxmlp -i src1.4gx -o src1.4gl -r resource.xrf

fglxmlp -i src2.4gx -o src2.4gl -r resource.xrf

The resulting.4gl files are compiled and link as usual:

fglcomp -c src1.4gl

fglcomp -c src2.4gl

fgllink -o project.42r src1.42m src2.42m

Upgrading | 262

Files used in the example

src1.4gx :

01 FUNCTION useRecord (myRecord)
02 DEFINE myRecord $(record)
...
06 END FUNCTION

resource.xrf :

01 <?xml version="1.0" ?>
02
03 <RESOURCE_FILE>
04 <RESOURCE_LIST>
05 <RESOURCE Name="record"><![CDATA[
06 RECORD
07 nb_columns INTEGER,
08 nb_lines INTEGER,
09 name CHAR (8)
10 END RECORD
11]]></RESOURCE>
12 </RESOURCE_LIST>
13 </RESOURCE_FILE>

The output file src1.4gl :

01 FUNCTION useRecord (myRecord)
02 DEFINE myRecord
03 RECORD
04 nb_columns INTEGER
05 nb_lines INTEGER,
06 name CHAR (8)
07 END RECORD
...
15 END FUNCTION

Migrating Templates and Snippets Customizations
Starting with Genero 3.00, templates and snippets are deprecated

Attention: As of Genero version 3.00, the Snippet-Based Rendering Engine (SBRE) and all
themes using template paths are deprecated. Output maps (e.g. DUA_HTML5) are no longer used
to specify output theme, as the wa protocol did previously. For information on how templates and
snippets were used by the Front End clients, please refer to the Genero Application Server 2.50
User Guide.

For new development, use GWC for JavaScript, see Genero Web Client for JavaScript (GWC-JS)
on page 173.

Reference | 263

Reference

Genero Application Server reference.

• Tools and Commands on page 263
• Automatic discovery of User Agent (adua.xrd) on page 282
• GAS Predefined resources on page 287
• GAS Configuration Reference on page 288

Tools and Commands
Information about the dispatchers, proxies, and command line utilities.

GAS Dispatchers

GAS dispatchers refer to the connectors in charge of dispatching a GAS request to the appropriate proxy.

• httpdispatch (Standalone)
• fastcgidispatch (Web Server)
• java-j2eedispatch (Java Servlet)
• isapidispatch, delivered as a DLL; dedicated to IIS (Windows™ platforms)

Proxy

Proxies refer to binaries started by a dispatcher to serve a type of request.

• uaproxy (GWC-JS, GDC)
• gwsproxy (GWS)

Utility

Binaries delivered to ease XML files processing, such as configuration migration.

• fglxslp
• fglgar
• gasadmin

• Dispatcher: httpdispatch on page 263
• Dispatcher: fastcgidispatch on page 265
• Dispatcher: java-j2eedispatch on page 266
• Proxy: uaproxy on page 266
• Proxy: gwsproxy on page 267
• Proxy: html5proxy on page 267
• The fglxslp command on page 267
• The fglgar command on page 267
• The gasadmin command on page 269
• gas_ghost_client.ditamap

Dispatcher: httpdispatch
httpdispatch is the standalone dispatcher that starts the Genero Application Server (GAS) in command
line. No web server is needed. It is only used in development mode.

Important: The standalone GAS is for development only, provided to simplify your development
setup and configuration. For deployment and production systems, you must include a Web server.

Reference | 264

Note: The GAS is configured through the GAS configuration file. This configuration file can be the
default configuration file ($FGLASDIR/etc/as.xcf) or a custom configuration file that is specified
when the Genero Application Server is started. For more information on configuration parameters,
see GAS configuration file on page 289.

Syntax

httpdispatch [options]

Options

Table 51: httpdispatch options

Option Description

-h

--help

Displays help information.

-p directory

--as-directory directory

Specify the Genero Application Server directory.

-f configuration_file

--configuration-file
configuration_file

Specify which configuration file to use when
starting the Genero Application Server dispatcher.
If not specified, the default configuration file,
$FGLASDIR/etc/as.xcf, is used.

-k

--no-keepalive

Disable keep alive for http connections. For debug
purpose only.

-E name=value

--resource-overwrite name=value

Overwrites the resource defined in the configuration
file or creates a new one.

Example:

httpdispatch
 -E res.dvm.wa=$FGLDIR/bin/myrun

If in the configuration file "res.dvm.wa" has another
value it is now set to myrun. The final value is the
one set in the option.

-V

--version

Displays version information.

What does "address already in use" mean ?

The message "address already in use" means that an application server (dispatcher) has already been
started on the same port. Check the GAS configuration file (default $FGLASDIR/etc/as.xcf) to identify
the port where the application server (dispatcher) started. The port number is identified in the following
section:

<INTERFACE_TO_CONNECTOR>
 <TCP_BASE_PORT>6300</TCP_BASE_PORT>
 <TCP_PORT_OFFSET>94</TCP_PORT_OFFSET>

Reference | 265

 ...
</INTERFACE_TO_CONNECTOR>

The default port specified is 6394 - derived by adding the base port (6300) to the port offset (94). Set the
values to a port which is not used by another application, see INTERFACE_TO_CONNECTOR on page
324.

Restarting the standalone GAS

To restart httpdispatcher, use:

kill -9

Once the web server restarts the dispatcher, the dispatcher uses the session table to reconnect to the
various proxies. The applications are still maintained by proxies, are still running, and once the dispatcher
is relaunched, the user can continue his or her work.

Ctrl + C or sending SIGTERM will stop the standalone dispatcher, and in both cases the dispatcher will
request all proxies to stop. With kill -9 the dispatcher process is killed yet the sessions remain alive
and untouched. When the dispatcher is restarted,the sessions continue to be active. Notice, the fastcgi
dispatcher will stop sessions on Ctrl-C too if started in standalone mode. But not on SIGTERM.

Dispatcher: fastcgidispatch
fastcgidispatch is the dispatcher for web server supporting FastCgi protocol.

It can be started by the web server or in command line. See FastCGI Installation and Web Server
Configuration on page 85 for more details.

Syntax

fastcgidispatch [options]

Options

Table 52: fastcgidispatch options

Option Description

-p directory

--as-directory directory

Specify the Genero Application Server directory.

-f configuration_file

--configuration-file
configuration_file

Specify which configuration file to use when
starting the Genero Application Server dispatcher.
If not specified, the default configuration file,
$FGLASDIR/etc/as.xcf, is used.

-E name=value

--resource-overwrite name=value

Overwrites the resource defined in the configuration
file or creates a new one.

Example:

fastcgidispatch
 -E res.dvm.wa=$FGLDIR/bin/myrun

If in the configuration file "res.dvm.wa" has another
value it is now set to myrun. The final value is the
one set in the option.

Reference | 266

Option Description

-s

--standalone

Start the fastcgi dispatcher in standalone mode,
where the dispatcher is started prior to any actual
request from an application or web server. The web
server's FastCGI extension must be configured to
connect to an external GAS.

-h

--help

Displays help information.

-V

--version

Displays version information.

For information on restarting the fastcgidispatch, see Restarting the FastCGI dispatcher on page 90.

Dispatcher: java-j2eedispatch
The java-j2eedispatch is a Java servlet that manages the Genero Application Server in a Java Web
container, such as Tomcat™ or JBoss.

The Genero Application Server provides a Java servlet dispatcher called java-j2eedispatch by
default, which can be deployed on any Java server supporting servlets. It offers the same functionality
as Dispatcher: httpdispatch on page 263 and Dispatcher: fastcgidispatch on page 265 but has the
advantage of opening the Genero technology to the Java web servers such as Tomcat™, WebSphere®,
GlassFish or JBoss.

The java-j2eedispatch dispatcher requires at least version 3.0 of the Java servlet API. This is
supported on the following Java web servers :

• WebSphere (since version 8.0), see http://en.wikipedia.org/wiki/IBM_WebSphere_Application_Server
• Tomcat™ (since version 7.0.x), see http://tomcat.apache.org/whichversion.html
• Glassfish (since version 3.0), see https://glassfish.java.net/public/comparing_v2_and_v3.html

Proxy: uaproxy
The uaproxy manages a GWC-JS or GDC application session.

It must be started by a dispatcher. If you attempt to run the uaproxy from the command line, you will likely
get an error. The proxies are not intended to be run from the command line, but started by a dispatcher in
the proper environment.

Syntax

uaproxy [options]

Options

Table 53: uaproxy options

Option Description

-h, --help Display help.

-V, --version Show version.

http://en.wikipedia.org/wiki/IBM_WebSphere_Application_Server
http://tomcat.apache.org/whichversion.html
https://glassfish.java.net/public/comparing_v2_and_v3.html

Reference | 267

Option Description

--development Enable the development mode that gives access to
the application AUI tree and logs. See Configuring
development environment on page 147

Proxy: gwsproxy
The gwsproxy manages all services for a single Genero web application.

The gwsproxy must be started by a dispatcher.

If you run the gwsproxy from the command line, you will get the message "ERROR:
FGL_VMPROXY_SESSION_ID not set".

Proxy: html5proxy
Starting with Genero 3.00, the html5proxy proxy is deprecated.

It must be started by a dispatcher. If you attempt to run the html5proxy from the command line, you
will likely get an error. The proxies are not intended to be run from the command line, but started by a
dispatcher in the proper environment.

Syntax

html5proxy [options]

Options

Table 54: html5proxy options

Option Description

--development Enable the development mode that gives access to
the application gtree and log.

--dump-io Enable scenario dump. Log internal information for
debugging purpose. Do not set it unless directed by
your support center.

The fglxslp command

The fglxslp command is the same tool as the xsltproc tool (a command line tool for applying XSLT
stylesheets to XML documents), mainly used to have a XSLT processor on every system. For more details
on the fglxslp command, enter fglxslp -h from the command line.

Important: This utility is not supported.

The fglgar command
The Genero Archiver tool (fglgar) enables you to build a java Web Archive (war) to deploy Genero
Application Server (GAS) on Java Web servers or to build a Genero archive (gar) to deploy Genero
applications on GAS.

It configures the Java™ Servlet to use the GAS directory and GAS configuration file. It also provides a
deployment framework for managing application resources and deploying public images on the GAS.

Reference | 268

Syntax

fglgar [options]

Options

Table 55: fglgar options

Option Description

-V

--version

Displays version information.

-h

--help

Displays help information.

-o

--output

Name of archive file to create.

-v

--verbose

Displays the verbose output of additional
information.

-q

--quiet

Silent mode

-d

--output-directory

Directory where to save the archive file.

-s directory

--input-source directory

Directory to archive.

-w

--war

Option to generate the Java™ Web Archive.

To run fglgar --war on a Windows or Mac,
the user running the command must have write
permission on the FGLASDIR directory.

If you cannot grant write permissions on the
FGLASDIR directory, move all of the FGLASDIR/
war directory to another directory with write
permission. See Building the Java Web Archive
(WAR) on page 91

-g

--gar

Option to generate the Genero Web Archive.

-p directory

--as-directory directory

Specify the Genero Application Server directory.

-a directory

--asdir directory

Specify the Genero Application Server directory.

Reference | 269

Option Description

-x config_file

--asxcf config_file

Specify which configuration file to use when starting
the Java™ dispatcher. If not specified, the default
configuration file, $FGLASDIR/etc/as.xcf, is
used.

-f config_file

--configuration-file config_file

Specify which configuration file to use when starting
the Java™ dispatcher. If not specified, the default
configuration file, $FGLASDIR/etc/as.xcf, is
used.

--resource directory Specify the Genero archive resource directory. See
Application deployment overview on page 218

--trigger-component Genero archive trigger execution component, see
TRIGGERS (for manifest) on page 224.

--deploy-trigger command Genero archive deploy trigger command. See
TRIGGERS (for manifest) on page 224

--undeploy-trigger command Genero archive undeploy trigger command. See
TRIGGERS (for manifest) on page 224

--application config_file Genero archive application configuration file.

--service config_file Genero archive service configuration file.

Example building a Web archive

fglgar --war --asdir C:\usr\gas\3.00 --asxcf C:\conf\as.xcf --output java-
j2eedispatch

Generates a Java™ Servlet called java-j2eedispatch.war using the Genero Application Server located at
C:\usr\gas\3.00 and with the configuration file located at C:\conf\as.xcf, and accessible via URL of type
http://host:port/java-j2eedispatch/demos.html.

fglgar --war --asdir C:\usr\gas\3.00 --output connector

Generates a Java™ Servlet called connector.war using the Genero Application Server located at C:\usr
\gas\3.00 and accessible via URL of type http://host:port/connector/demos.html.

The gasadmin command
The gasadmin tool is provided as an administrative command for the Genero Application Server.

With this tool, you can:

• Display GAS version information, see Display GAS version.
• Specify the GAS application directory, see Specify GAS directory
• List all sessions of a specified dispatcher, see List sessions
• Stop dispatcher sessions, see Kill sessions
• Validate the GAS configuration, see Validating with the gasadmin tool on page 94
• Explode the GAS configuration, see Explode configuration file
• Ping dispatchers active sessions, see Ping active sessions
• Manage archive files, see Genero Archive procedures on page 226

Reference | 270

Syntax

gasadmin [options]

Options

Table 56: gasadmin options

Option Description

-p directory

--as-directory directory

Specify the Genero Application Server directory.

-f configuration-file

--configuration-file configuration-
file

Specify the configuration file to use. If not specified,
the default configuration file, $FGLASDIR/etc/
as.xcf, is used.

-E name=value

--resource-overwrite name=value

Define or overwrite a resource.

-c

--configuration-check

Check the configuration file, then exit.

-e

--configuration-explode

Explode the GAS configuration into files, one for
each application.

-t

--configuration-explode-external

Explode the given external configuration file in
current directory.

-r

--configuration-expand-resources

Expand resources and replace with real values.
Used with --configuration-explode or --
configuration-explode-external.

-d dispatcher-name

--dispatcher dispatcher-name

Used by session-related options to select the target
dispatcher.

-K -d dispatcher-name

--kill-all-sessions

--kill-all-sessions --dispatcher
dispatcher-name

Note: The option -d
<dispatcher_name> is optional. If
omitted, the option kills all sessions of all
dispatchers.

-k session-id -d dispatcher-name

--kill-session session-id --dispatcher
dispatcher-name

Terminate (kill) the requested session id of the
specified dispatcher.

Important: The option -d
<dispatcher_name> is required, as the
same session identifier can exist for the
various dispatchers.

-X

-X -d dispatcher-name

Ping all active sessions of the specified dispatcher.

Reference | 271

Option Description

--ping-all-sessions

--ping-all-sessions --dispatcher
dispatcher-name

Note: The option -d
<dispatcher_name> is optional. If
omitted, the option pings all active sessions
of all dispatchers.

-x session-id -d dispatcher-name

--ping-session session-id --dispatcher
dispatcher-name

Ping the request session id of the specified
dispatcher.

-l

-l -d dispatcher-name

--list-sessions

--list-sessions --dispatcher
dispatcher-name

List all sessions of the specified dispatcher.

Note: The option -d
<dispatcher_name> is optional. If
omitted, the option lists all sessions of all
dispatchers.

-z paths

--compress-resources paths

Compress the resources located in specified paths.
The path separator is a comma (,). See example.

-C

--session-cleanup

Clear remaining Unix Domain sockets.

-h

--help

Display help information.

-V

--version

Display GAS version information. See example

-q

--quiet

Silent mode.

--deploy-archive archive file Unpack the specified archive content into the
deployment directory.

--undeploy-archive archive file Undeploy the specified archive.

--enable-archive archive file Expose all services and applications contained in
the specified archive.

--disable-archive archive file Unexpose all services and applications contained in
the specified archive.

--list-archives List all archives deployed on the Genero
Application Server.

--clean-archives Clean up all undeployed archives.

--xml-output List all archives and applications deployed on the
Genero Application Server. Only compatible with
archive options.

-y Do not prompt for confirmation.

Reference | 272

Option Description

--yes

Usage Examples

gasadmin -t demo/Card Explode external configuration file demo/Card.xcf
and expand its resources and its parent's resources
into an XML file.

gasadmin -r -t demo/Card Explode external configuration file demo/Card.xcf,
replace its resources and its parent resources with
real values, and expand them into individual XML
files.

gasadmin -X -f as1.xcf -d httpdispatch List all sessions having as1.xcf as configuration
file for dispatcher httpdispatch.

gasadmin -k
d98290172c8f7c0d861db329f1ce6597 -f
as1.xcf -d isapidispatch

Kill the session with the id
d98290172c8f7c0d861db329f1ce6597 that has
as1.xcf as its configuration file, and isapidispatch
as its dispatcher.

gasadmin -z $FGLASDIR/app,$FGLASDIR/
services,$FGLASDIR/web,$FGLASDIR/tpl

Compress the resources located in the paths
$FGLASDIR/app, $FGLASDIR/services,
$FGLASDIR/web and $FGLASDIR/tpl

gasadmin -V Display GAS version information.

Figure 56: Sample GAS Version Information

Ghost Client and Testing Tools
This section provides an overview of the Genero Ghost Client (GGC) Java framework API and
describes procedures that you can use for testing Genero applications.

The Genero Ghost Client is a Java framework tool that allows you to test different scenarios by
emulating user interaction on applications running on a Genero server (i.e. Genero Application Server and
runtime).

You can use the Ghost Client to automate, for example, the following tests:

• Unit tests
• Load tests
• Performance tests

Test scenarios can be developed in two ways:

• Tests can be written using both Java and BDL and be compiled to Java for testing by the Ghost
Client.

• Test scenarios can also be generated from the behavior described in a log file recorded by the GDC or
the GWC-JS clients. The Ghost Generator feature generates Java files automatically from the log file
data, which allows you to replay the resulting scenarios with the Ghost Client, see Generating test
scenarios from log file on page 281.

Reference | 273

One of the key features of testing with the Ghost Client is that you do not need to modify the original
application code to write test scenarios. The Ghost Client allows you to develop working test case
scenarios that can be run as required to test the stability of your applications before release. The Ghost
Client allows you to test applications that are targeted for different Genero clients, i.e. GWC-HTML5,
GDC, GWC-JS, GMA, or GMI.

• Installing Ghost Client on page 273
• Configuring your environment for Ghost Client on page 273
• How Ghost Client works on page 275
• Unit testing with Ghost Client on page 277
• Load testing with Ghost Client on page 278
• Exploring Ghost Client Java demos on page 279
• Exploring Ghost Client BDL demos on page 280
• How to compile and run tests on page 280
• Generating test scenarios from log file on page 281

Installing Ghost Client
This topic provides information about how to install your Ghost Client API package.

About this task

The procedure in this topic shows you how to carry out an installation of Ghost Client.

Before you begin:

• Ensure Genero Ghost Client is supported for your operating system. For a list of supported operating
systems, refer to the download page (available on the Four Js Web site) or contact your support center.

• To use Genero Ghost Client API, you need a Java Development Kit (JDK). Make sure that your JDK
version is at least version 1.7 or greater.

Once the JDK has been installed, you are ready to install the Ghost Client as described in the
next step.

1. Download the package appropriate for your operating system.

2. Unzip the GGC package to a directory in your server .

Now that you have installed GGC, your next task is to configure your environment for the Ghost Client as
detailed in Configuring your environment for Ghost Client on page 273.

Configuring your environment for Ghost Client
This topic provides information about how to configure your environment to use the Ghost Client.

About this task

The procedure in this topic shows you how to configure your environment so that Ghost Client can use
Java.

Before you begin:

To use Genero Ghost Client, you need to have Java Development Kit installed. Make sure that your
JDK is installed. See Installing Ghost Client on page 273.

Important: Before you can run scenarios with the GGC, you need to set up your PATH and
CLASSPATH environment variables as described in the next steps.

1. Set your PATH environment variable to include the Java Development Kit bin directory.

On Linux®/UNIX™/MAC®:

export PATH= /path-to-jdk/bin:$PATH

On Windows™:

set PATH = C:\path-to-jdk\bin;%PATH%

Reference | 274

2. To be able to compile and run test scenarios from any directory on your disk, set your CLASSPATH
environment variable to the absolute path to the ggc.jar and fgl.jar files.

Note: You can also specify the path to jar libraries directly at the command line using the Java -
classpath (-cp) option, see Example using Java -cp option below.

On Windows®:

set CLASSPATH = C:\path-to-the-ggcdir\ggc.jar;C:\path-to-fgldir\fgl.jar

On Linux®/UNIX™/Mac®:

export CLASSPATH =/path-to-the-ggcdir/ggc.jar:/path-to-fgldir/fgl.jar

Note: As the CLASSPATH now references the jars needed by the GGC, you can compile and
run your scenarios as shown in the examples:.

• Compiling:

javac userWorkspace/path/to/generated/.*java
• Running:

java com.fourjs.ggc.Launcher -s
userWorkspace.path.to.generated.UserClass -u http://application/url

An alternative to setting the CLASSPATH environment variable is to specify the absolute
path to the ggc.jar file using the java -classpath (-cp) option at runtime. Below are
some examples.

On Linux®/UNIX™/Mac®:

• Compiling:

javac -cp /absolute/path/to/userWorkspace:/absolute/path/to/
ggc.jar userWorkspace/path/to/generated/.*java

• Running:

java -cp /absolute/path/to/userWorkspace:/absolute/
path/to/ggc.jar com.fourjs.ggc.Launcher -s
userWorkspace.path.to.generated.UserClass -u http://application/
url

On Windows®:

• Compiling:

javac -cp C:\absolute\path\to\userWorkspace;C:\absolute\path\to
\ggc.jar userWorkspace\path\to\generated\.*java

• Running:

java -cp C:\absolute\path\to\userWorkspace;C:
\absolute\path\to\ggc.jar com.fourjs.ggc.Launcher -s
userWorkspace.path.to.generated.UserClass -u http://application/
url

For more information on -classpath (-cp) option, see the Java documentation.

Reference | 275

How Ghost Client works
This topic provides an overview of the Ghost Client infrastructure and describes how it works.

The Ghost Client infrastructure overview

The Ghost Client is a Java framework that provides you with the API structure of interfaces,
classes and methods for building application tests. The Ghost Client infrastructure consists of three
components:

Launcher This is the Ghost Client Java program which
starts a testing session for an application.

SessionManager The SessionManager is the interface that
manages the runtime and the test Scenario.

Scenario The Scenario is the interface that contains the
sequence of tests run during a given session.

Ghost Client interfaces and classes
The GGC's main public classes are described in the table below. The GhostRunner class, for example, is
the entry point for test case scenarios.

Table 57: Ghost Client classes

Class Description

Session Exposes the application object to your BDL
program so that it can be retrieved from the
session.

Application Exposes the application user interface to your BDL
program so that form objects such as field values
can be retrieved and set.

GhostRunner Provides methods to control a Genero application
running in a Genero Application Server. It contains
methods for a set of possible actions that an end-
user might do on the running application, e.g. set
focus on a field, set a value in a field, etc.

Log Implements the logging mechanism.

The complete details of the packages that make up the Ghost Client and the classes and interfaces
it uses can be found in the /doc directory of your GGC package. For more information about specific
functions along with detailed information about each class and interface, please see the help file by
launching the /doc/index.html file in your browser.

Developing tests with Ghost Client
When you write tests to be run by the Ghost Client, you need to implement its two main interfaces: the
SessionManager and the Scenario. The following describes generally the function each provides and
the methods the GGC needs from their implementation:

Table 58: Ghost Client interfaces

Class Description

SessionManager Instantiates and manages Scenario instances
according to incoming VM connections and new
runtime launches.

Reference | 276

Class Description

Scenario A Scenario describes the action sequence played
during the GhostRunner session to simulate user
actions on a Genero application.

• The SessionManager requires you to include a getScenario() method in your SessionManager
class that instantiates the Scenario or sequence of scenarios required to run your tests.

• Your Scenario class requires two methods:

• A play(GhostRunner runner) method, which describes the user interaction sequence to play;
that is the sequence of tests it plays.

• An InvokeFrontcall(String module, String name, String[] args) method, which
describes how to handle the call to the front-end client when and if it is required by the application.

For more detailed information on developing tests with Ghost Client see Unit testing with Ghost Client
on page 277.

Launching a test with Ghost Client

To launch a Ghost Client test, at the command line you run Java with the Launcher program
providing the URL of your application and the path to the SessionManager as shown in the sample
syntax below:

java com.fourjs.ggc.Launcher -u http://<host>:<port>/gas/ua/r/<group>/<myapp>
-s path.to.mySessionManager.mySessionManager.java <-options>

Note: Depending on the user agent protocol in the URL you provide (e.g. /wa/r/, /ja/r/, /
ua/r/), the Ghost Client will run the application tests behaving as either a GWC-HTML5, GDC, or
version 3 client (i.e. GWC-JS, GMA, or GMI).

The Ghost Client allows you to run tests with different options, for example, you can specify that it
launches the test for all protocols with the --all_mode switch. For more information on available options,
see below.

Table 59: Ghost Client options

Option Description

-u URL Specify the URL of your application.

-s path.to.mySessionManager Specify the SessionManager java file to use.

-t value Specify the number of thread instances to launch to
simulate the number of users using an application.

-td value Define the delay in seconds between the launch of
each thread instance.

--all_mode Launch the test for all protocols, /wa/r/, /ja/r/,
/ua/r/.

--log

(-l) path/to/log_file

Specify a log file to use to generate a test set, see
Generating test scenarios from log file on page
281

--write

(-w) path/to/generate/java_files

Write Java files generated from a log file to
specified path

Reference | 277

Unit testing with Ghost Client
This topic describes the processes you can use for developing unit tests for your Genero applications.

What is unit testing?

The aim of unit testing is to test each feature of your application in isolation to make sure it works as
expected. A good unit test should provide you with the correct responses to a given set of anticipated
user input, showing that the feature is able to handle correct as well as incorrect input. As a developer
approaching unit testing for the first time, the following is recommended as good practice when designing
unit tests:

• It is recommended that each 4gl application should have its own Scenario.
• Make a complete list of the application features, from the smallest (for example, displaying the About...

screen), to the biggest and / or the most important ones.
• For each feature in this list, write a single test that will test one (and only one) feature.
• If a primary feature implies a secondary feature (for example, to register a new customer, you need to

fill out a form), the secondary feature's test should take place before the primary feature's test in the test
sequence.

Unit testing with Ghost Client

The GGC provides a simple framework to write and automate unit tests. You can develop these tests
separate to your actual 4gl application source code via the SessionManager and the Scenario
interfaces. Typically, these are written as individual classes:

• The SessionManager is a Java class that manages the whole test session life cycle. You
must include in this the Scenario instance creation that the main application (i.e. the first one
launched) needs to get to run the tests. If child applications are run by the main application, the
SessionManager will also get each Scenario and instantiate it, as shown in the example.

import com.fourjs.ggc.Scenario;
import com.fourjs.ggc.SessionManager;

public class mySessionManager
 implements SessionManager
{
 boolean mStarted = false;
 public Scenario getScenario()
 {
 if (!mStarted) {
 mStarted = true;
 return new FirstScenario(); << will be given to the first 4gl
 application, the mother
 } else {
 return new SecondScenario(); << will be given to the second
 4gl application, the child launched via run or run without waiting by the
 mother
 }
 }
}

• A Scenario is a Java class that tests different functions of your application. You can decide what tests
are to be carried out by providing within the play method the required user interactions. Any interaction
a user would normally do on an application, can be played by a Ghost Client API method. For
example, if you want to have your application launch an action, you can get the Ghost Client to play
the interaction by passing the action name in the sendAction method, as shown in the example.

Reference | 278

Note: For more information about GhostRunner methods, please see the Scenario samples
included in the /samples/java directory of your GGC package or see the help file located in
the /doc directory.

/**
 * The Scenario to test the "ButtonEdit" application from FGLGWS demo
 */
public class ButtonEditScenario
 implements Scenario
{
 @Override
 public void play(GhostRunner runner)
 {
 Log.info("ButtonEditDelegatedScenario: started.");
 try {
 runner.sendAction("INPUT");
 // TODO need to check/do something
 // After that we close the application
 runner.sendAction("close");
 runner.close();
 } catch (GhostException e) {
 Log.error("ButtonEditDelegatedScenario: exception raised!", e);
 }
 Log.info("ButtonEditDelegatedScenario: done.");
 }
 @Override
 public String[] invokeFrontcall(String module, String name, String[]
 param)
 {
 return null;
 }
}

Note: Both Java and BDL can be used to write SessionManager and Scenario classes but
these must be compiled to Java to be run by the GGC. In Genero Studio you can write tests using
BDL and compile them to Java using the Ghost Client infrastructure through the Java Bridge.
The Java Bridge allows you to import GGC classes, which opens up their methods for use. For more
information about using BDL, please see the Genero Studio project, BDLSample.4pw, available in
the samples/BDL directory.

Load testing with Ghost Client
This topic describes the processes you can use to implement load testing for your Genero applications.

What is load testing?

This testing strategy consists of simulating a specified number of user, all of them using your application
at the same time and at normal human speed. You can use the GGC to test your application during
development to see how it would behave in conditions in a production environment. This can help you
identify, for example, server (e.g. how many servers, how much memory, etc.) and network requirements
based on the number of anticipated users. Observations made under these test conditions will also show
up the application's weaknesses and will allow you to fix them before release.

Load testing with Ghost Client

The GGC allows you to specify several options through the Launcher class for load testing:

• The thread_number option allows you to set the number of users to simulate, one thread representing
one user.

• The thread_delay option allows you to set a delay between each user's connection. In a real life
situation where, for example, a thousand users could potentially launch an application, the likelihood

Reference | 279

of them all connecting at the exact same time is quite remote, so the thread delay option helps you to
recreate a more real life situation.

You can specify the number of threads (users) and the thread delay using the command
line switches when launching tests. As shown in the example below, the GGC will launch the
IntegrityTestsSessionManager with 3 users, allowing a 3 second delay between each launch.

java com.fourjs.ggc.Launcher -s
com.fourjs.ggc.testcases.IntegrityTestsSessionManager -u http://
localhost:6394/ua/r/gwc-demo -t 3 -td 3

Developing Scenario for load testing

The Scenario for load testing needs to reflect how a real user would use an application. For example,
the setDelay() method can be set to make the GhostRunner instance wait for a specified number of
seconds between each action. This allows you to try to reproduce the human speed of interaction with
an application, which is usually much slower than computer speed. Apart from that any interaction a user
would normally do on an application can be played.

Performance testing

Performance testing is similar to load testing as it also consists of simulating a significant number of users
but the aim is to determine when the system's performance will start to degrade. So, in this case you would
specify the number of simulated user as high as possible so as to observe when the request/response
delay begins to be affected by the number of users.

Exploring Ghost Client Java demos
This topic provides information about how to view the Ghost Client Java demos provided with the
installation.

About this task

The procedure in this topic shows you how to use the Java demos provided with the Ghost Client
installation to run integrity tests on the gwc-demo applications via the Ghost Client.

Before you begin:

• Make sure that the directory where your GGC package is installed has the following samples included in
its /samples/java directory:

• One SessionManager implementation named IntegrityTestsSessionManager.java that
will manage the testing session

• One Scenario implementation named GenericScenario.java that will instantiate real
scenarios depending on the application launched by the GAS

• Several simple Scenario implementations that will be invoked through the GenericScenario
• Make sure your GAS version is at least version 2.50.34 or greater.
• Make sure your environment is configured to run Java and the GGC, see Configuring your environment

for Ghost Client on page 273.
• Make sure that the standalone dispatcher httpdispatch see Dispatcher: httpdispatch on page 263

is started and that you can access the GAS demos welcome page, http://localhost:6394/
demos.html, from your browser.

1. To run the test simulating a GDC 2.50 over HTTP client, type the command as shown below:

java com.fourjs.ggc.Launcher -u http://localhost:6394/ja/r/gwc-demo -s
com.fourjs.ggc.testcases.IntegrityTestsSessionManager

Below is sample output logged by the GGC to the console during the running of integrity tests for
CustomerOrderScenario.

...

Reference | 280

[INFO] (tid:18) 12:5:26:926 GenericScenario.java:57
 > GenericScenario: ApplicationName=CustOrders /
 remainingScenario=null,null,null,fglp
ed,CustOrders,
[INFO] (tid:18) 12:5:26:927 GenericScenario.java:62 >
 GenericScenario: ApplicationName=[CustOrders] started.
[INFO] (tid:18) 12:5:26:927 CustomerOrderScenario.java:41 >
 CustomerOrderScenario: started.
[INFO] (tid:18) 12:5:27:40 CustomerOrderScenario.java:67 >
 CustomerOrderScenario: Creating a new customer ...
[INFO] (tid:18) 12:5:27:101 CustomerOrderScenario.java:93 >
 CustomerOrderScenario: Searching a given customer (with cust_id=3) ...
[INFO] (tid:18) 12:5:27:116 CustomerOrderScenario.java:100 >
 CustomerOrderScenario: checking this customer orders ...
[INFO] (tid:18) 12:5:27:121 CustomerOrderScenario.java:129 >
 CustomerOrderScenario: modifying one of his orders (order_id=305) ...
[INFO] (tid:18) 12:5:27:181 CustomerOrderScenario.java:151 >
 CustomerOrderScenario: Use the zoom to select the item.
[INFO] (tid:18) 12:5:27:218 CustomerOrderScenario.java:170 >
 CustomerOrderScenario: Check the new order is correct.
[INFO] (tid:18) 12:5:27:227 CustomerOrderScenario.java:182 >
 CustomerOrderScenario: done.
[INFO] (tid:18) 12:5:27:230 GenericScenario.java:71 >
 GenericScenario: ApplicationName=[CustOrders] done.
...

2. To run the test simulation on GDC, GWC-JS, GMA, or GMI clients, type the command shown below:

java com.fourjs.ggc.Launcher -u http://localhost:6394/ua/r/gwc-demo -s
com.fourjs.ggc.testcases.IntegrityTestsSessionManager

Exploring Ghost Client BDL demos
This topic provides information about how to view the BDL demos provided with the Ghost Client
installation.

About this task

The procedure in this topic shows you how to use the BDL demos provided with the Ghost Client
installation to test the integrity of the gwc-demo applications in simulation mode via the Ghost Client.

Before you begin:

• Make sure that the samples/BDL directory where your GGC package is installed has the
DemoTests.4gl file included.

• Make sure your GAS version is at least version 2.50.34 or greater.
• To compile and run the test you need to have your environment configured to load the Java Virtual

Machine, see Configuring your environment for Ghost Client on page 273.

1. To compile DemoTests.4gl, at the command line of the directory where the GGC is installed, type the
following:

cd samples/BDL ; fglcomp DemoTests.4gl

2. To run the test, at the command line of the directory where the GGC is installed, type the following:

cd samples/BDL ; fglrun DemoTests http://localhost:6394

How to compile and run tests
This topic provides information about how to compile and run your own tests.

About this task

The procedure in this topic shows you how to compile and run tests you have developed.

Reference | 281

Before you begin:

• It is assumed that you have built two new test java files:

• One SessionManager implementation named, for example, mySessionManager.java that will
manage the testing session

• One Scenario implementation named, for example, myScenario.java that will instantiate real
scenarios based on the application launched by the GAS

• It is assumed that your new test java files are in the package path.to.myTests and therefore you
have placed them in the directory path/to/myTests.

• It is assumed your environment is configured to run Java and the GGC, see Configuring your
environment for Ghost Client on page 273.

• Make sure your GAS version is at least version 2.50.34 or greater.

1. To compile your newly created tests, type the following:

javac path/to/myTests/*.java

2. To run the tests, type the command shown below:

java com.fourjs.ggc.Launcher -u http://localhost:6394/ua/r/myApplication -s
path.to.myTests.mySessionManager

Generating test scenarios from log file
This topic provides information about how to generate test scenarios from a log of user actions recorded by
the GDC or the GWC-JS.

About this task

The procedure in this topic shows you how to generate a Java file set of SessionManager and
Scenario classes from a recorded log file found in your GGC package installation. It also shows you how
to run integrity tests on the gwc-demo applications from the generated Scenario.

Before you begin:

• Make sure your GAS version is at least version 2.50.34 or greater.
• Make sure that the /samples directory where your GGC package is installed has the StartMenu.log

and DemoPanel.log files included.
• It is assumed your environment is configured to run Java and the GGC, see Configuring your

environment for Ghost Client on page 273.

1. To generate a Java file set using sample log files, type the command shown below:

java com.fourjs.ggc.Launcher --write path/to/generate/DemoPanel --log
samples/DemoPanel.log

Note:

• If some or all directories in the specified path, path/to/generate/, do not already exist,
they will be created.

• If the path specified is not absolute, GGC will consider its directory as root.
• The classes generated will be of package path.to.generate.
• If Java files with the same name already exist at the same location, an error will be raised.

Once the Ghost Generator feature has been run, the generated Java files need to be compiled as
described in the next step.

2. To compile your newly generated tests, type the following:

javac path/to/generate/*.java

Running the generated SessionManager

About this task:

Reference | 282

Once you have compiled the files in the steps above, you can now run them to test the integrity of the
gwc-demo applications from the generated scenarios as described in the next steps.

Before you begin:

• Make sure that the standalone dispatcher httpdispatch see Dispatcher: httpdispatch on page 263
is started and that you can access the GAS demos welcome page, http://localhost:6394/
demos.html, from your browser.

1. To run the test simulation for GWC-JS clients, type the commands shown below:

java com.fourjs.ggc.Launcher -u http://localhost:6394/ua/r/gwc-demo -s
 path.to.generate.StartMenuSessionManager
java com.fourjs.ggc.Launcher -u http://localhost:6394/ua/r/gwc-demo -s
 path.to.generate.DemoPanelSessionManager

2. To run the test simulation for GWC-HTML5 clients, type the commands shown below:

java com.fourjs.ggc.Launcher -u http://localhost:6394/wa/r/gwc-demo -s
 path.to.generate.StartMenuSessionManager
java com.fourjs.ggc.Launcher -u http://localhost:6394/wa/r/gwc-demo -s
 path.to.generate.DemoPanelSessionManager

3. To run the test simulation for GDC clients, type the commands shown below:

java com.fourjs.ggc.Launcher -u http://localhost:6394/ja/r/gwc-demo -s
 path.to.generate.StartMenuSessionManager
java com.fourjs.ggc.Launcher -u http://localhost:6394/ja/r/gwc-demo -s
 path.to.generate.DemoPanelSessionManager

Automatic discovery of User Agent (adua.xrd)
adua.xrd is the configuration file used by the Genero Application Server (GAS) to determine which
Output Map to use, based on the User Agent that submits the request for a specific application.

The auda.xrd file is located in the $FGLASDIR/etc directory.

Tip: Under most circumstances, modification of this file is not necessary.

• What is an Output Map? on page 282
• How an Output Map is chosen on page 283
• Modify the adua.xrd file to specify custom Output Maps on page 284
• Specify the Output Map in the application URI on page 284
• ADUA Syntax Diagrams on page 284
• adua.xrd usage example on page 286

What is an Output Map?
When the application server needs to render an application, it relies on the application having one or more
MAP components defined in its configuration. Each MAP component specifies a RENDERING engine to be
used. These MAP elements are child elements of the OUTPUT element, thus the name "Output Map".

Attention: As of Genero version 3.00, the Snippet-Based Rendering Engine (SBRE) and all
themes using template paths are deprecated. Output maps (e.g. DUA_HTML5) are no longer used
to specify output theme, as the wa protocol did previously. For information on how templates and
snippets were used by the Front End clients, please refer to the Genero Application Server 2.50
User Guide.

For new development, use GWC for JavaScript, see Genero Web Client for JavaScript (GWC-JS)
on page 173.

Reference | 283

How an Output Map is chosen
The Output Map chosen for an application is based on the detected browser type, as specified in the
adua.xrd file.

Attention: As of Genero version 3.00, the Snippet-Based Rendering Engine (SBRE) and all
themes using template paths are deprecated. Output maps (e.g. DUA_HTML5) are no longer used
to specify output theme, as the wa protocol did previously. For information on how templates and
snippets were used by the Front End clients, please refer to the Genero Application Server 2.50
User Guide.

For new development, use GWC for JavaScript, see Genero Web Client for JavaScript (GWC-JS)
on page 173.

The Genero Application Server first identifies the value of the RULE element for the application. The RULE
element is defined in (or inherited by) the application configuration.

For example, if the value of the RULE element is UseGWC, then drop into that element. Once inside that
element, the type of browser being used to display the application determines which Output Map is used to
render the application.

<?xml version="1.0" encoding="UTF-8"?>
<!--
 FOURJS_START_COPYRIGHT(D,2000)
 Property of Four Js*
 (c) Copyright Four Js 2000, 2013. All Rights Reserved.
 * Trademark of Four Js Development Tools Europe Ltd
 in the United States and elsewhere

 This file can be modified by licensees according to the
 product manual.
 FOURJS_END_COPYRIGHT
 -->
<RULE_LIST
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="http://www.4js.com/ns/gas/2.50/xrd.xsd">
 <!-- Output Driver Determination (XRD - XML Rule Definition) -->
 <RULE Id="UseGDC">
 <TABLE Id="1" Key="User-Agent">
 <ROW>
 <IN>MSIE</IN>
 <ACTION Type="RESULT">DUA_GDC</ACTION>
 </ROW>
 <ROW>
 <IN>GDC</IN>
 <ACTION Type="RESULT">DUA_GDC</ACTION>
 </ROW>
 </TABLE>
 </RULE>
 <RULE Id="UseGWC">
 <TABLE Id="1" Key="User-Agent">
 <ROW>
 <IN>GDC</IN>
 <ACTION Type="RESULT">DUA_GDC</ACTION>
 </ROW>
 <ROW>
 <ACTION Type="RESULT">DUA_HTML5</ACTION>
 </ROW>
 </TABLE>
 </RULE>
</RULE_LIST>

Reference | 284

Based on this sample adua.xrd file:

If the RULE is UseGDC:

• For MSIE or GDC, the DUA_GDC Output Map is chosen.

If the RULE is UseGWC (for most desktop browsers):

• For the GDC, the DUA_GDC Output Map is chosen.
• Otherwise the DUA_HTML5 Output Map is chosen.

Modify the adua.xrd file to specify custom Output Maps
If you create a custom Output Map, you can modify the adua.xrd file to reference your new Output Map.

Attention: As of Genero version 3.00, the Snippet-Based Rendering Engine (SBRE) and all
themes using template paths are deprecated. Output maps (e.g. DUA_HTML5) are no longer used
to specify output theme, as the wa protocol did previously. For information on how templates and
snippets were used by the Front End clients, please refer to the Genero Application Server 2.50
User Guide.

For new development, use GWC for JavaScript, see Genero Web Client for JavaScript (GWC-JS)
on page 173.

For example, you create an Output Map named DUA_HTML5_CUSTOM. You would modify the adua.xrd
file and identify those browsers where that application should use your custom Output Map. The decision is
still based on the browser type that is displaying the application.

...
<ROW>
 <ACTION Type="RESULT">DUA_HTML5_CUSTOM</ACTION>
</ROW>
...

Specify the Output Map in the application URI
You can force an application to use a specific Output Map by providing the Output Map as an argument in
the application URL.

Attention: As of Genero version 3.00, the Snippet-Based Rendering Engine (SBRE) and all
themes using template paths are deprecated. Output maps (e.g. DUA_HTML5) are no longer used
to specify output theme, as the wa protocol did previously. For information on how templates and
snippets were used by the Front End clients, please refer to the Genero Application Server 2.50
User Guide.

For new development, use GWC for JavaScript, see Genero Web Client for JavaScript (GWC-JS)
on page 173.

ADUA Syntax Diagrams
Define valid syntax for the auda.xrd file.

• RULE_LIST
• RULE
• TABLE
• ROW

Syntax

<RULE_LIST>
 <RULE Id="useId">
 <TABLE Id="numId" Key="keyType">
 <ROW>

Reference | 285

 <IN>inType</IN>
 <OUT>outType</OUT>
 <ACTION Type="actionType">actionName</ACTION>
 </ROW>
 [<ROW> ...]
 </TABLE>
 </RULE>
 [<RULE> ...]
</RULE_LIST>

Example

<RULE_LIST>
 <RULE Id="UseGDC">
 <TABLE Id="1" Key="User-Agent">
 <ROW>
 <IN>MSIE</IN>
 <ACTION Type="RESULT">DUA_GDC</ACTION>
 </ROW>
 <ROW>
 <IN>GDC</IN>
 <ACTION Type="RESULT">DUA_GDC</ACTION>
 </ROW>
 </TABLE>
 </RULE>
</RULE_LIST>

• RULE_LIST on page 285
• RULE on page 285
• TABLE on page 285
• ROW on page 286

RULE_LIST
The RULE_LIST element is the main element of an XRD (XML Rule Definition) used by the GAS.

The RULE_LIST element contains the following child element:

1. One or more RULE elements.

RULE
The RULE element defines a unique rule.

The RULE element must specify an Id attribute; this required attribute takes a string value. The identifier
(Id) of the rule defines its name, as it is going to be used later, in files such as the GAS configuration file.
Valid values for the Id attribute include:

• UseGDC
• UseGWC
• UseGWCMobile (deprecated)

The RULE element contains the following child element:

1. One or more TABLE elements. Each rule uses tables, which can be linked in order to have a complete
process.

TABLE
The TABLE element must specify two attributes, an Id attribute and a Key attribute.

• The required Id attribute takes a string value. This attribute provides the table with a unique identifier
(Id), which is necessary for linking tables.

Reference | 286

• The required Key attribute takes a string value (NMToken). The Key attribute defines what is going to
be analyzed. Currently, only two values are supported: Accept and User-Agent.

The TABLE element contains the following child element:

1. One or more ROW elements. Each table contains on or more rows. Rows are processed sequentially in
order of appearance in the XRD file; therefore rows are not named.

ROW
The ROW element contains the required ACTION element, along with the optional IN and OUT elements.

The ROW element may contain the following child elements:

1. Zero or more IN elements (optional). The IN element takes a string value, and specifies a string or
substring that must be in the HTTP header referenced by the TABLE key attribute.

2. Zero or more OUT elements (optional). The OUT element takes a string value, and specifies a string
or substring that must not be in the HTTP header referenced by the TABLE key attribute (they must be
OUT).

3. One ACTION element (required). The ACTION element must specify a Type attribute and takes a
required string (NMToken) value. If the string matches the IN and OUT rules (i.e., the IN and OUT
conditions are met), this element defines the action to perform. Valid values for this element type are:

• GOTO_TABLE - Jumps to the specified table.
• RESULT - Sends the result.

adua.xrd usage example
This topic explains an automatic user agent discovery configuration example.

Attention: As of Genero version 3.00, the Snippet-Based Rendering Engine (SBRE) and all
themes using template paths are deprecated. Output maps (e.g. DUA_HTML5) are no longer used
to specify output theme, as the wa protocol did previously. For information on how templates and
snippets were used by the Front End clients, please refer to the Genero Application Server 2.50
User Guide.

For new development, use GWC for JavaScript, see Genero Web Client for JavaScript (GWC-JS)
on page 173.

Suppose you want to use the DUA_GDC output map for Internet Explorer browsers and DUA_XXX for all
other user agents. To achieve this, you have to configure your application to support both Output Maps.

In your GAS configuration file (as.xcf), add an OUTPUT element with a rule identified by
UseAllOutputDriver, defining the rendering and theme for two MAP elements identified by the
DUA_GDC and DUA_XXX names:

<APPLICATION Id="test" Parent="defaultwa">
 <EXECUTION>
 <PATH>$(res.path.fgldir.demo)</PATH>
 <MODULE>demo.42r</MODULE>
 </EXECUTION>
 <OUTPUT Rule="UseAllOutputDriver">
 <MAP Id="DUA_XXX" Allowed="TRUE">
 <RENDERING Using="cpn.rendering.wa"/>
 <THEME Using="cpn.theme.default.xxx"/>
 </MAP>
 <MAP Id="DUA_GDC" Allowed="TRUE">
 <RENDERING Using="cpn.rendering.wa"/>
 <THEME Using="cpn.theme.default.gdc"/>
 </MAP>
 </OUTPUT>
</APPLICATION>

Reference | 287

In the adua.xrd file, define the UseAllOutputDriver rule to associate a User-Agent type to a MAP
element defined in the as.xcf file:

<RULE Id="UseAllOutputDriver">
 <TABLE Id="1" Key="User-Agent">
 <ROW>
 <IN>MSIE</IN>
 <ACTION Type="RESULT">DUA_GDC</ACTION>
 </ROW>
 <ROW>
 <ACTION Type="RESULT">DUA_XXX</ACTION>
 </ROW>
 </TABLE>
</RULE>

With this example, if the User-Agent value contains MSIE, GDCAX will be used (identified by DUA_GDC);
otherwise the mapping that corresponds to the DUA_XXX will be used.

GAS Predefined resources
Predefined resources for the Genero Application Server can be general or front-end specific.

• GAS predefined resources overview on page 287
• Common GAS predefined resources on page 288

GAS predefined resources overview
This topic describes the syntax used in the GAS configuration file for predefined resources (i.e. variables). .

While most resources are defined in the GAS configuration file, predefined resources can not be explicitly
defined as they are automatically replaced depending on the path of the application you are executing.
Therefore, in order that they are available for use, they are predefined as resources using an XML tagging
mechanism, which is described in this topic.

Syntax 1

$(resource-name)

1. resource-name is the name of a resource defined in the GAS configuration file.

Syntax 2

<tag gwc:tpl-attribute="tpl-value" [...]>...</tag>

1. tag is an HTML tag.
2. tpl-attribute is an attribute.
3. tpl-value is the value of the attribute.

Usage example

For example, we can define the path to an application's web component directory as follows:

<WEB_COMPONENT_DIRECTORY>$(application.path)/webcomponents</
WEB_COMPONENT_DIRECTORY>

Reference | 288

Common GAS predefined resources
These Genero Application Server predefined resources are available for any Front End .

These resources include:

Table 60: Common GAS predefined resources

Predefined Resource Description

application.id Application identifier in as.xcf or, in the case where an external application
configuration file is used, the name of the .xcf file.

application.group Application Group name.

application.name Application name.

application.path Handles the path of the application (the path defined in the /
APPLICATION/EXECUTION/PATH element).

For example, we can define the resource domain "Image" as follows:

<WEB_APPLICATION_PICTURE_COMPONENT
 Id="cpn.gwc.picture">
 ...
 <PATH Id="Image" Type="APPSERVER">
 $(res.path.pic);$(application.path)
 </PATH>
 ...
</WEB_APPLICATION_PICTURE_COMPONENT>

connector.uri Will be replaced by the URL path to the connector. For more information
on application URIs See Table 6: Explanation of URI syntax options on
page 50.

For example, if the URL is:

http://localhost/gas/ua/r/demo?Arg=val1&Arg=val2

The value of connector.uri will be /gas.

server.version Will be replaced by GAS software version.

configuration.filepath The absolute path of the configuration file used to start the GAS.

GAS Configuration Reference
These topics provide reference details for Genero Application Server configuration.

• GAS configuration file on page 289
• Application configuration files on page 289
• Configuration file hierarchies on page 290
• Configuration file elements on page 296

Reference | 289

GAS configuration file
The Genero Application Server is configured through a configuration file. The default configuration file is
as.xcf, located in the $FGLASDIR/etc directory.

To create a new Genero Application Server configuration file, create a copy of the default and make
modifications in the copy. Use the -f option to specify which configuration file to use when starting the
Genero Application Server. If you do not specify a specific file, the default (as.xcf) is used.

The configuration file is an XML file. The root element in the Application Server configuration file is the
CONFIGURATION element. A configuration file will have one CONFIGURATION element which serves as
the global configuration element. There are no attributes available for the CONFIGURATION element. The
CONFIGURATION element contains a single child element, the APPLICATION_SERVER element. The
Application Server configuration starts with this element. See GAS configuration file hierarchy on page
290 for a full list of valid elements and their place in the file hierarchy.

When you make a change to the GAS configuration file, you must restart the dispatcher before the
changes take effect. Depending on the dispatcher, you may or may not have the applications (e.g. proxies)
stopped; some of the dispatchers can recover the application after the restart and continue where the
application left off. For more information on restarting the GAS dispatcher, refer to the dispatcher-specific
help topics:

• Restarting the standalone dispatcher
• Restarting the ISAPI dispatcher
• Restarting the FastCgi dispatcher
• Restarting the J2EE dispatcher on page 93

Application configuration files
Configure Genero Web applications and services using a subset of the elements provided for the Genero
Application Server configuration.

The application configuration details can either be:

• added to the Genero Application Server configuration file.
• provided in application-specific configuration files. Each application would have its own configuration

file, written in XML.

Elements in an application's configuration

The top-most element for application configuration is the APPLICATION element. The elements allowed,
and how they are used, depend on whether the application is a web application (GWC) or a web service
(GWS). For a full list of valid elements and their place in the file hierarchy, see the appropriate topic:

• GWC configuration file hierarchy on page 294
• GWS configuration file hierarchy on page 295

Use application-specific configuration files
When you add application configuration details to the Genero Application Server configuration file, you
must restart the dispatcher before the changes take effect. You must also take care during upgrades, that
the GAS configuration file is not overwritten and you lose your changes.

When you create a new application configuration file, or make changes to an existing application
configuration file, you do not need to restart any dispatchers. All applications started after you save your
changes use the changed settings. The files are easily archived apart from the GAS configuration file, and
not overwritten by newer versions during upgrades.

For these reasons, it is recommended that you use application-specific configuration files.

Reference | 290

Configuration file hierarchies
Configuration files define the initial configuration settings for the GAS and for individual applications. Each
configuration file is made up of elements in a predefined hierarchy.

• GAS configuration file hierarchy on page 290
• GWC configuration file hierarchy on page 294
• GWS configuration file hierarchy on page 295

GAS configuration file hierarchy
A listing of elements valid in the Genero Application Server configuration file, shown hierarchically.

Select an element name to be taken to the topic discussing that element.

• CONFIGURATION

• APPLICATION_SERVER

• RESOURCE_LIST

• PLATFORM_INDEPENDENT

• RESOURCE
• WNT

• RESOURCE
• UNX

• RESOURCE
• COMPONENT_LIST

• WEB_APPLICATION_EXECUTION_COMPONENT

• ENVIRONMENT_VARIABLE
• PATH
• DVM
• WEB_COMPONENT_DIRECTORY on page 361
• MODULE
• PARAMETERS

• PARAMETER
• ACCESS_CONTROL

• ALLOW_FROM
• DELEGATE

• SERVICE_APPLICATION_EXECUTION_COMPONENT

• ENVIRONMENT_VARIABLE
• PATH
• DVM
• MODULE
• PARAMETERS

• PARAMETER
• ACCESS_CONTROL

• ALLOW_FROM
• DELEGATE
• POOL

• START
• MIN_AVAILABLE
• MAX_AVAILABLE

Reference | 291

• MAX_REQUESTS_PER_DVM
• WEB_APPLICATION_TIMEOUT_COMPONENT

• USER_AGENT
• REQUEST_RESULT (for an application) on page 341
• DVM_AVAILABLE
• DVM_PINGTIMEOUT

• AUTO_LOGOUT_COMPONENT on page 305

• TIMEOUT (for auto logout) on page 353
• COMMAND (for auto logout) on page 309

• SERVICE_APPLICATION_TIMEOUT_COMPONENT

• DVM_AVAILABLE
• KEEP_ALIVE
• REQUEST_RESULT (for a service) on page 341

• WEB_APPLICATION_PICTURE_COMPONENT

• PATH
• WEB_APPLICATION_RENDERING_COMPONENT

• OUTPUT_DRIVER
• XML_DECLARATION
• HTTP_RESPONSE_ENCODING
• HTTP_REQUEST_ENCODING
• MIME_TYPE
• DOC_TYPE

• NAME
• EXTERNAL_ID
• SYSTEM_ID

• WEB_APPLICATION_HTTP_COOKIES_COMPONENT

• HTTP_COOKIE

• CONSTANT
• VARIABLE

• WEB_APPLICATION_THEME_COMPONENT

• BOOTSTRAP
• TEMPLATE
• SHORTCUT
• SNIPPET

• INTERFACE_TO_CONNECTOR

• ROOT_URL_PREFIX on page 344
• TCP_BASE_PORT
• TCP_PORT_OFFSET
• DOCUMENT_ROOT
• GWC_JS_LOOKUP_PATH on page 320
• TEMPORARY_DIRECTORY
• SESSION_DIRECTORY
• REPORT_VIEWER_DIRECTORY on page 340
• SOCKET_FAMILY
• SOCKET_PATH
• ERROR_DOCUMENT

Reference | 292

• INTERFACE_TO_DVM

• ADDRESS
• LOG

• OUTPUT
• FORMAT
• CATEGORIES_FILTER
• RAW_DATA

• MONITOR

• ALLOW_FROM
• FILE_TRANSFER

• TIMEOUT
• APPLICATION_LIST

• GROUP
• APPLICATION

• DESCRIPTION

• SHORT
• LONG

• RESOURCE
• EXECUTION

• ENVIRONMENT_VARIABLE
• PATH
• DVM
• MODULE
• PARAMETERS

• PARAMETER
• ACCESS_CONTROL

• ALLOW_FROM
• DELEGATE
• WEB_COMPONENT_DIRECTORY on page 361

• UA_OUTPUT

• PROXY
• PUBLIC_IMAGEPATH
• GWC-JS on page 319
• TIMEOUT

• USER_AGENT
• REQUEST_RESULT
• DVM_AVAILABLE
• DVM_PINGTIMEOUT

• OUTPUT

• HTTP_HEADER
• HTTP_COOKIES

• HTTP_COOKIE

• CONSTANT
• VARIABLE

• MAP

Reference | 293

• PROXY
• PICTURE

• PATH
• TIMEOUT

• USER_AGENT
• REQUEST_RESULT
• DVM_AVAILABLE
• DVM_PINGTIMEOUT

• RENDERING

• OUTPUT_DRIVER
• XML_DECLARATION
• HTTP_RESPONSE_ENCODING
• HTTP_REQUEST_ENCODING
• MIME_TYPE
• DOC_TYPE

• NAME
• EXTERNAL_ID
• SYSTEM_ID

• THEME

• BOOTSTRAP
• TEMPLATE
• SHORTCUT
• SNIPPET

• SERVICE_LIST

• GROUP
• APPLICATION

• DESCRIPTION

• SHORT
• LONG

• RESOURCE
• PROXY
• EXECUTION

• ENVIRONMENT_VARIABLE
• PATH
• DVM
• MODULE
• WEB_COMPONENT_DIRECTORY on page 361
• PARAMETERS

• PARAMETER
• ACCESS_CONTROL

• ALLOW_FROM
• DELEGATE
• POOL

• START
• MIN_AVAILABLE

Reference | 294

• MAX_AVAILABLE
• MAX_REQUESTS_PER_DVM

• TIMEOUT

• DVM_AVAILABLE
• KEEP_ALIVE

GWC configuration file hierarchy
A listing of the elements valid for a Genero Web Client (GWC) application configuration file, shown
hierarchically.

This is a complete listing of all of the elements available for a Genero Web Client external application
configuration file. It is a subset of the elements available for the Genero Application Server configuration
file. The APPLICATION element is the root element for that application's configuration. For a Web
application, the APPLICATION element is the child of the APPLICATION_LIST element in the Genero
Application Server configuration file.

The elements are described in detail; select an element name to be taken to the topic discussing that
element.

• APPLICATION

• DESCRIPTION

• SHORT
• LONG

• RESOURCE
• EXECUTION

• ENVIRONMENT_VARIABLE
• PATH
• DVM
• MODULE
• PARAMETERS

• PARAMETER
• ACCESS_CONTROL

• ALLOW_FROM
• DELEGATE
• WEB_COMPONENT_DIRECTORY on page 361

• UA_OUTPUT

• PROXY
• PUBLIC_IMAGEPATH
• GWC-JS on page 319
• TIMEOUT

• USER_AGENT
• REQUEST_RESULT
• DVM_AVAILABLE
• DVM_PINGTIMEOUT

• OUTPUT

• HTTP_HEADER
• HTTP_COOKIES

• HTTP_COOKIE

• CONSTANT

Reference | 295

• VARIABLE
• MAP

• PROXY
• PICTURE

• PATH
• TIMEOUT

• USER_AGENT
• REQUEST_RESULT
• DVM_AVAILABLE
• DVM_PINGTIMEOUT

• RENDERING

• OUTPUT_DRIVER
• XML_DECLARATION
• HTTP_RESPONSE_ENCODING
• HTTP_REQUEST_ENCODING
• MIME_TYPE
• DOC_TYPE

• NAME
• EXTERNAL_ID
• SYSTEM_ID

• THEME

• BOOTSTRAP
• TEMPLATE
• SHORTCUT
• SNIPPET

GWS configuration file hierarchy
A listing of available elements valid for a Genero Web Services (GWS) application configuration file, shown
hierarchically.

This is a complete listing of all of the elements available for a Genero Web Services external application
configuration file. It is a subset of the elements available for the Genero Application Server configuration
file. The APPLICATION element is the root element for that application's configuration. For a Web service,
the APPLICATION element is the child of the SERVICE_LIST element in the Genero Application Server
configuration file.

The elements are described in detail; select an element name to be taken to the topic discussing that
element.

• APPLICATION

• DESCRIPTION

• SHORT
• LONG

• RESOURCE
• PROXY
• EXECUTION

• ENVIRONMENT_VARIABLE
• PATH
• DVM
• MODULE

Reference | 296

• WEB_COMPONENT_DIRECTORY on page 361
• PARAMETERS

• PARAMETER
• ACCESS_CONTROL

• ALLOW_FROM
• DELEGATE
• POOL

• START
• MIN_AVAILABLE
• MAX_AVAILABLE
• MAX_REQUESTS_PER_DVM

• TIMEOUT

• DVM_AVAILABLE
• KEEP_ALIVE

Configuration file elements
An alphabetical listing of the elements used across the Genero Application Server configuration files.

• ACCESS_CONTROL on page 298
• ADDRESS on page 299
• ALLOW_FROM on page 300
• APPLICATION (for an application) on page 301
• APPLICATION (for a service) on page 301
• APPLICATION_LIST on page 302
• APPLICATION_SERVER on page 303
• AUTO_LOGOUT on page 304
• AUTO_LOGOUT_COMPONENT on page 305
• BOOTSTRAP (GWC-HTML5) on page 306
• CATEGORIES_FILTER on page 307
• COMPONENT_LIST on page 308
• COMMAND (for auto logout) on page 309
• CONFIGURATION on page 310
• CONSTANT on page 310
• DELEGATE on page 311
• DESCRIPTION on page 311
• DOC_TYPE on page 312
• DOCUMENT_ROOT on page 312
• DVM_AVAILABLE on page 313
• DVM_PINGTIMEOUT on page 314
• DVM on page 314
• ENVIRONMENT_VARIABLE on page 314
• ERROR_DOCUMENT on page 315
• EXECUTION (for an application) on page 315
• EXECUTION (for a service) on page 316
• EXTERNAL_ID on page 317
• FILE_TRANSFER on page 317
• FORMAT on page 317
• GROUP (for an application) on page 318
• GROUP (for a service) on page 319

Reference | 297

• GWC-JS on page 319
• GWC_JS_LOOKUP_PATH on page 320
• HTTP_COOKIE on page 321
• HTTP_COOKIES on page 322
• HTTP_HEADER on page 323
• HTTP_REQUEST_ENCODING on page 323
• HTTP_RESPONSE_ENCODING on page 323
• INTERFACE_TO_CONNECTOR on page 324
• INTERFACE_TO_DVM on page 325
• KEEP_ALIVE on page 326
• LONG on page 326
• LOG on page 326
• MAP on page 327
• MAX_AVAILABLE on page 327
• MAX_REQUESTS_PER_DVM on page 328
• MONITOR on page 328
• MIME_TYPE on page 329
• MIN_AVAILABLE on page 329
• MODULE on page 329
• NAME on page 330
• OUTPUT (under LOG) on page 330
• OUTPUT (under APPLICATION) on page 331
• OUTPUT_DRIVER on page 331
• PARAMETERS on page 331
• PATH (under EXECUTION) on page 332
• PATH (under PICTURE) on page 332
• PATH with Type WEBSERVER on page 333
• PATH with Type APPSERVER on page 334
• PICTURE on page 335
• PLATFORM_INDEPENDENT on page 337
• POOL on page 337
• PROXY (for an application) on page 338
• PROXY (for a service) on page 338
• RAW_DATA on page 339
• RENDERING on page 339
• REPORT_VIEWER_DIRECTORY on page 340
• REQUEST_RESULT (for an application) on page 341
• REQUEST_RESULT (for a service) on page 341
• RESOURCE on page 342
• RESOURCE (for a service) on page 343
• RESOURCE (for an application) on page 343
• RESOURCE_LIST on page 343
• ROOT_URL_PREFIX on page 344
• SERVICE_APPLICATION_EXECUTION_COMPONENT on page 344
• SERVICE_APPLICATION_TIMEOUT_COMPONENT on page 345
• SERVICE_LIST on page 346
• SESSION_DIRECTORY on page 346
• SHORT on page 347
• SHORTCUT on page 347
• SNIPPET on page 348

Reference | 298

• SOCKET_FAMILY on page 348
• SOCKET_PATH on page 349
• START on page 349
• SYSTEM_ID on page 350
• TCP_BASE_PORT on page 350
• TCP_PORT_OFFSET on page 350
• TEMPLATE on page 350
• TEMPORARY_DIRECTORY on page 351
• THEME on page 351
• TIMEOUT (for a file transfer) on page 352
• TIMEOUT (for an application) on page 352
• TIMEOUT (for a service) on page 353
• TIMEOUT (for auto logout) on page 353
• UA_OUTPUT on page 354
• UNX on page 355
• USER_AGENT on page 355
• VARIABLE on page 355
• WEB_APPLICATION_EXECUTION_COMPONENT on page 356
• WEB_APPLICATION_HTTP_COOKIES_COMPONENT on page 357
• WEB_APPLICATION_PICTURE_COMPONENT on page 357
• WEB_APPLICATION_RENDERING_COMPONENT on page 358
• WEB_APPLICATION_THEME_COMPONENT on page 359
• WEB_APPLICATION_TIMEOUT_COMPONENT on page 360
• WEB_COMPONENT_DIRECTORY on page 361
• WNT on page 361
• XML_DECLARATION on page 362

ACCESS_CONTROL

The ACCESS_CONTROL element specifies access from a list of IP allowed to access applications or
services. Access can be globally denied or allowed by keywords (NOBODY, ALL) .

By default, an application or a service is not accessible by anyone. It needs to be explicitly configured with
the ALLOW_FROM element.

Syntax

<ACCESS_CONTROL>
[<ALLOW_FROM> ip_address </ALLOW_FROM> [...]]
</ACCESS_CONTROL>

where ip_address is a valid IPv4 or IPv6 address. For IPv4 it can be a complete IP address or a network
address (ending with a dot)..

Important: Depending on the network configuration, it is not always possible to get the actual
client IP address. If there is a proxy server between the client and the server, for example, the client
IP address seen by the GAS may be the address from the proxy server.

Child elements

• Zero or more ALLOW_FROM on page 300 elements.

Example

<ACCESS_CONTROL>

Reference | 299

 <ALLOW_FROM>127.0.0.1</ALLOW_FROM>
 <ALLOW_FROM>10.</ALLOW_FROM>
 <ALLOW_FROM>192.168.</ALLOW_FROM>
 <ALLOW_FROM>fdbd:2768:c176:1::323a</ALLOW_FROM>
</ACCESS_CONTROL>

In this example, an application or a service is reachable from the localhost (127.0.0.1), and
all IP addresses that begin with "192.168." or "10.". The consecutive colons (::) notation in
"fdbd:2768:c176:1::323a" shows an example of a collapsed IPv6 address, where the colons represent four
successive 16-bit blocks that contain zeros.

Example configuring access control for demo applications

The default deployment of the demo application is specified by the resource res.access.control, which is
defined with the value NOBODY by default.

Note: Access control rules will be ignored by the standalone dispatcher (httpdispatch).

Important: The standalone GAS is for development only, provided to simplify your development
setup and configuration. For deployment and production systems, you must include a Web server.

To allow access from the localhost, in the GAS configuration file (default %FGLASDIR%/etc/as.xcf) you
need to change the application element for gwc-demo from:

<!--Sample application for GWC-->
<APPLICATION Id="gwc-demo" Parent="defaultgwc">
 <EXECUTION>
 <PATH>$(res.path.fgldir.demo)</PATH>
 <MODULE>demo.42r</MODULE>
 <ACCESS_CONTROL>
 <ALLOW_FROM>$(res.access.control)</ALLOW_FROM>
 </ACCESS_CONTROL>
 </EXECUTION>
</APPLICATION>

To:

 <!--Sample application for GWC-->
<APPLICATION Id="gwc-demo" Parent="defaultgwc">
 <EXECUTION>
 <PATH>$(res.path.fgldir.demo)</PATH>
 <MODULE>demo.42r</MODULE>
 <ACCESS_CONTROL>
 <ALLOW_FROM>127.0.0.1 </ALLOW_FROM>
 </ACCESS_CONTROL>
 </EXECUTION>
</APPLICATION>

Parent elements
This element is a child of one of the following elements:
SERVICE_APPLICATION_EXECUTION_COMPONENT on page 344,
WEB_APPLICATION_EXECUTION_COMPONENT on page 356,EXECUTION (for an application)
on page 315, EXECUTION (for a service) on page 316

ADDRESS

The ADDRESS element specifies the name or IP address of the machine where the Genero Application
Server runs. This address is used by the DVM to set (build) the FGLSERVER environment variable.

Reference | 300

Usage examples

<ADDRESS>app_server</ADDRESS>
<ADDRESS>192.127.45.17</ADDRESS>
<ADDRESS>zeus</ADDRESS>

Note: It is not recommended to use localhost or 127.0.0.1 because the license server requires the
real address of the machine to check the licenses, and if your machine is not well configured, a bad
address is returned to the license server that will then refuse to start a new DVM.

Parent elements
This element is a child of one of the following elements: INTERFACE_TO_DVM on page 325

ALLOW_FROM

The ALLOW_FROM element specifies access control rules to allow access from hosts. This can be specified
by a host's IP address, or access can either be globally denied or allowed by the following keywords:

• NOBODY
• ALL

Syntax

<ALLOW_FROM>NOBODY</ALLOW_FROM>[...]

<ALLOW_FROM>ALL</ALLOW_FROM>[...]

<ALLOW_FROM>ip_address</ALLOW_FROM>[...]

where ip_address is a valid IPv4 or IPv6 address. For IPv4 it can be a complete IP address or a network
address (ending with a dot)..

<ALLOW_FROM>$(res.access.control)</ALLOW_FROM>[...]

where res.access.control is a resource defined with the value NOBODY by default. The default GAS
deployment for demo applications and MONITOR on page 328 references this resource. For more
information on configuring access control, see Example configuring access control for demo applications
on page 299

Note: Access control rules will be ignored by the standalone dispatcher (httpdispatch).

Important: The standalone GAS is for development only, provided to simplify your development
setup and configuration. For deployment and production systems, you must include a Web server.

How access control rules are applied
If more than one access control rule (i.e. ALLOW_FROM element) is specified, the following describes the
order rules are applied:

1. NOBODY always gets the highest priority regardless of other rules, which means that nobody gets
access.

2. ALL gets priority over specific IP addresses when the keyword NOBODY is not provided, which means
that access is allowed to all.

3. If neither the keyword NOBODY nor ALL is provided, the remaining access control rules are applied.

Parent elements
This element is a child of one of the following elements: ACCESS_CONTROL on page 298, MONITOR on
page 328

Reference | 301

APPLICATION (for an application)

An APPLICATION element defines an application. Attributes for this element include:

• Id (required for applications defined within the Genero Application Server configuration file; optional for
applications defined in an external application configuration file) - A string used to uniquely identify this
application configuration element. The Id specified is compared to the application name in the request.

• Parent - A string that identifies the parent application, or the application from which this application will
inherit its default configuration/settings.

• Abstract - Defines whether this application configuration element is an abstract application. It expects
a boolean string; the valid values for this type are "TRUE" and "FALSE". An Abstract application
can not instantiate Virtual Machines. Abstract configurations are used purely in the scope of future
inheritance of the configuration for other Web applications. Abstract applications can only be defined in
the application server configuration file, they cannot be defined in an external application configuration
file.

• mode - When set to "sticky", defines a Web service as a sticky Web service.

Child elements

The APPLICATION element may contain the following elements:

1. Zero or one DESCRIPTION element.
2. Zero or more RESOURCE elements.
3. Zero or one EXECUTION elements.
4. Zero or one UA_OUTPUT on page 354 elements. This element is used for all UI applications, with the

exception of applications using GWC for HTML5.
5. Zero or one OUTPUT elements. This element is deprecated; only used for UI applications using GWC for

HTML5.

Example

<APPLICATION Id="gwc-demo" Parent="defaultgwc">
 <EXECUTION>
 <PATH>$(res.path.fgldir.demo)</PATH>
 <MODULE>demo.42r</MODULE>
 </EXECUTION>
 <UA_OUTPUT> </UA_OUTPUT>
</APPLICATION>

For more information, see Configuring applications on GAS on page 95.

Parent elements
When used in an application configuration file, it is the top-most element.

When used in the GAS configuration file, this element is a child of one of the following elements:
APPLICATION_LIST on page 302.

APPLICATION (for a service)

An APPLICATION element defines an application. For each Web Service you wish to make accessible
through the Genero Application Server, you must create an APPLICATION element. Attributes for this
element include:

• Id (required for Web services applications defined within the Genero Application Server configuration
file; optional for applications defined in an external application configuration file) - A string to uniquely
identify this Web service application configuration element. The Id specified is compared to the
application name in the request.

• Parent - A string that identifies the parent application, or the application from which this application will
inherit its default configuration/settings.

Reference | 302

• Abstract - Defines whether this application configuration element is an abstract application. It expects a
boolean string; the valid values for this type are "TRUE" and "FALSE". An Abstract application can not
instantiate Virtual Machines. Abstract configurations are used purely in the scope of future inheritance
of the configuration for other Web services applications. Abstract applications can only be defined in the
application server configuration file, they cannot be defined in an external application configuration file.

• mode - When set to "sticky", defines a Web service as a sticky Web service.

Note: With the release of Genero 2.0, Web services are named applications as they host several
Web services in one DVM.

Child elements

When you define a Web service application, you can specify the following elements:

1. Zero or one DESCRIPTION element.
2. Zero or more RESOURCE elements.
3. Zero or one EXECUTION element.
4. Zero or more TIMEOUT elements.

Example

<APPLICATION Id="webapp" Parent="abswebapp">
 <EXECUTION>
 <PATH>$(res.path.fgldir.demo)</PATH>
 <MODULE>webapp.42r</MODULE>
 </EXECUTION>
 <TIMEOUT> </TIMEOUT>
</APPLICATION>

Parent elements
When used in an application configuration file, it is the top-most element.

When used in the GAS configuration file, this element is a child of one of the following elements:
SERVICE_LIST on page 346

APPLICATION_LIST

For each application to be serviced by the Genero Application Server, you must provide the details for that
application in either the Genero Application Server configuration file or in an external application server
configuration file.

For information about the general process of defining applications and groups, refer to the Configuring
applications on GAS on page 95 section of this manual.

The APPLICATION_LIST element provides a list of groups and Web applications (for Web applications
defined within the Genero Application Server configuration file).

Syntax

<APPLICATION_LIST>
 [<GROUP element.>] [...]
 [<APPLICATION>] [...]
 ...
</APPLICATION_LIST>

Child elements

The APPLICATION_LIST element may contain the following child elements:

Reference | 303

1. Zero or more GROUP elements.
2. Zero or more APPLICATION elements.

Example

<APPLICATION LIST>
 <GROUP Id="appgroup">/home/appgroup</GROUP>
 <APPLICATION Id="gwc-demo" Parent="defaultgwc">
 <EXECUTION>
 <PATH>$(res.path.fgldir.demo)</PATH>
 <MODULE>demo.42r</MODULE>
 </EXECUTION>
 </APPLICATION>
</APPLICATION_LIST>

Parent elements
This element is a child of one of the following elements: APPLICATION_SERVER on page 303

APPLICATION_SERVER
This element acts as a parent container for all Genero Application Server configuration elements.

The APPLICATION_SERVER element does not support any attributes.

Syntax

<APPLICATION_SERVER>
 <RESOURCE_LIST>...</RESOURCE_LIST>
 <COMPONENT_LIST>...</COMPONENT_LIST>
 <INTERFACE_TO_CONNECTOR>...</INTERFACE_TO_CONNECTOR>
 <INTERFACE_TO_DVM>...</INTERFACE_TO_DVM>
 <LOG>...</LOG>
 <MONITOR>...</MONITOR>
 <FILE_TRANSFER>...</FILE_TRANSFER>
 <APPLICATION_LIST>...</APPLICATION_LIST>
 <SERVICE_LIST>...</SERVICE_LIST>
</APPLICATION_SERVER>

Child elements

The APPLICATION_SERVER element contains the following child elements:

• One RESOURCE_LIST element, containing a list of resources.
• One COMPONENT_LIST element, containing a list of components.
• One INTERFACE_TO_CONNECTOR element, specifying the interface between the Genero Application

Server (GAS) and the GAS Connector. The connector is either the ISAPI, FastCGI, or J2EE extension,
or the user agent through direct connection.

• One INTERFACE_TO_DVM element, specifying the interface to the Dynamic Virtual Machine.
• Zero or more LOG elements, specifying the type of information that is logged and where it is logged to.
• Zero or one MONITOR element, specifies from which machines the monitor URL is accessible.
• Zero or more FILE_TRANSFER elements, specifying the directory where files are stored while being

transferred between the front-end machine and the DVM.
• Zero or one APPLICATION_LIST element, containing a list of applications.
• Zero or one SERVICE_LIST element, containing a list of Web Services.

Example

<CONFIGURATION

Reference | 304

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="http://www.4js.com/ns/gas/2.50/cfas.xsd">
 <APPLICATION_SERVER>
 ...
 </APPLICATION_SERVER>
</CONFIGURATION>

Parent elements
This element is a child of one of the following elements: CONFIGURATION on page 310

AUTO_LOGOUT

Selects the AUTO_LOGOUT mechanism to be used for an application. It takes the attribute Using, where
you can reference a predefined AUTO_LOGOUT_COMPONENT on page 305 (to inherit the auto logout
parameters of that component).

If the AUTO_LOGOUT is set, the application will get a log out message after the time in seconds specified by
the TIMEOUT (for auto logout) on page 353 element has elapsed.

• For GWC-JS applications, you will get a log out page.
• For GDC applications, you will get a pop-up window.

By default the ending page or pop-up window shows the following message when auto logout occurs : You
have been logged out.

Note: The auto logout feature is not supported on the legacy Genero Web Client applications using
the HTML5 theme.

Syntax

<AUTO_LOGOUT Using="auto_logout_component_Id"></AUTO_LOGOUT>

Usage example - using an auto logout component

When your applications reference the default application defaultwa, they inherit its AUTO_LOGOUT
settings, which use the default AUTO_LOGOUT_COMPONENT identified by the Id value
"cpn.wa.autologout", as shown in the examples from the GAS configuration file.

<APPLICATION Id="defaultwa" Abstract="TRUE">
 <!-- This is the "default" application.
 It is not used directly: it is used for defining a "root" application.
 -->
 <EXECUTION Using="cpn.wa.execution.local"/>
 <AUTO_LOGOUT Using="cpn.wa.autologout"/>
 ...
</APPLICATION>

<COMPONENT_LIST>
 ...
 <AUTO_LOGOUT_COMPONENT Id="cpn.wa.autologout">
 <TIMEOUT>0</TIMEOUT>
 <!--COMMAND Timeout="20">auto-logout-allowed.sh</COMMAND-->
 </AUTO_LOGOUT_COMPONENT>
 ...
</COMPONENT_LIST>

Note: The default timeout duration set to 0 seconds means the auto logout is ignored and
applications keep running.

Reference | 305

Usage example - defining the auto logout directly
If you want to set auto logout directly in your application configuration file (xcf), you can add an
AUTO_LOGOUT element.

<APPLICATION Parent="defaultwa">
 <EXECUTION>
 <PATH>my_app_dir</PATH>
 <MODULE>my_module</MODULE>
 </EXECUTION/>
 <AUTO_LOGOUT>
 <TIMEOUT>30</TIMEOUT>
 <!--COMMAND Timeout="20">auto-logout-allowed.sh</COMMAND-->
 </AUTO_LOGOUT>
 ...
 </APPLICATION>

Child elements

There are no child elements.

Parent elements

This element is a child of the following element: APPLICATION (for an application) on page
301

Auto logout and child applications
As long as the parent application or any of its child applications have user activity, the auto logout is not
triggered.

Important: If an application has child applications running when the AUTO_LOGOUT is triggered,
the following describes the logout process:

• An auto logout ending page or pop-up window will be generated and returned for all child
applications.

• The proxy will stay alive until the last child application has shown its ending page before closing
the fglrun application.

Note: The order that applications close can not be determined by the AUTO_LOGOUT process
as it depends mainly on when the auto logout is initiated in the front-end client. If the order your
applications close at auto logout is important, you will need to handle this in your application's code.

AUTO_LOGOUT_COMPONENT

The AUTO_LOGOUT_COMPONENT element creates an application auto logout component, which defines
a mechanism for triggering and handling auto-logout events. It takes an attribute Id, which specifies the
unique identifier for a set of auto-logout definitions. It is this unique identifier that is referenced by an
application, providing it with a base set of auto-logout values.

Syntax

<AUTO_LOGOUT_COMPONENT Id="component_unique_identifier">
 <TIMEOUT>timeoutSeconds</TIMEOUT>
 <!--COMMAND is an optional configuration element -->
 <COMMAND Timeout="timeoutSeconds"> commandScript </COMMAND>
</AUTO_LOGOUT_COMPONENT>

Child elements

The AUTO_LOGOUT element may contain the following child elements:

Reference | 306

1. Zero or one TIMEOUT (for auto logout) on page 353 element.
2. Zero or one COMMAND (for auto logout) on page 309 element (Optional).

Usage example default AUTO_LOGOUT_COMPONENT in the GAS configuration file

<AUTO_LOGOUT_COMPONENT Id="cpn.wa.autologout">
 <TIMEOUT>0</TIMEOUT>
</AUTO_LOGOUT_COMPONENT>

In this example, the Id value - cpn.wa.autologout - defines the default AUTO_LOGOUT_COMPONENT in the
GAS configuration file. When your applications reference the default application, defaultwa, they inherit
the settings defined by its AUTO_LOGOUT on page 304 element as shown in the example:

<AUTO_LOGOUT Using="cpn.wa.autologout"/>

Usage example 2

<AUTO_LOGOUT_COMPONENT Id="cpn.wa.autologout">
 <TIMEOUT>30</TIMEOUT>
 <COMMAND Timeout="20">auto-logout-allowed.sh</COMMAND>
</AUTO_LOGOUT_COMPONENT>

In this example:

• The TIMEOUT element is set for 30 seconds. When no user activity is detected, the DVM waits for this
timeout period to elapse before the auto logout task is performed.

• The COMMAND element's Timeout attribute is set to 20 seconds to allow a command to be run that
checks if the auto logout is allowed, see COMMAND (for auto logout) on page 309

Parent elements
This element is a child of one of the following elements: COMPONENT_LIST on page 308.

BOOTSTRAP (GWC-HTML5)

Selects the bootstrap template to be used in this theme.

Attention: As of Genero version 3.00, the Snippet-Based Rendering Engine (SBRE) and all
themes using template paths are deprecated. Output maps (e.g. DUA_HTML5) are no longer used
to specify output theme, as the wa protocol did previously. For information on how templates and
snippets were used by the Front End clients, please refer to the Genero Application Server 2.50
User Guide.

For new development, use GWC for JavaScript, see Genero Web Client for JavaScript (GWC-JS)
on page 173.

Syntax

<BOOTSTRAP Id="bootstrapId"> bootstrapPath </BOOTSTRAP>

Syntax notes

1. bootstrapId is the unique identifier for this element.
2. bootstrapPath is the path to the bootstrap template to be used in this theme.

Usage example

<WEB_APPLICATION_THEME_COMPONENT Id="cpn.theme.html5.gwc">

Reference | 307

 <BOOTSTRAP Id="_default">$(res.path.tpl.html5)/bootstrap.xhtml</BOOTSTRAP>
 <TEMPLATE Id="_default">$(res.path.tpl.html5)/main.xhtml</TEMPLATE>
 <SNIPPET Id="UIFrame">$(res.path.tpl.html5)/UIFrame.xhtml</SNIPPET>
 ...
</WEB_APPLICATION_THEME_COMPONENT>

Parent elements
This element is a child of one of the following elements: THEME on page 351,
WEB_APPLICATION_THEME_COMPONENT on page 359

CATEGORIES_FILTER

The CATEGORIES_FILTER element specifies the type of log messages to be captured. Specify multiple
values by listing multiple filter names, separated by spaces.

This element is optional. If the CATEGORIES_FILTER element is omitted, no categorized messages are
logged.

Table 61: Category filters

Filter Names Description

DEBUG Log internal information for debugging.

Important: Do not set unless requested by your support
center.

WARNING Log warning messages.

ERROR Log error information.

MUTEX Log multithreading information.

SESSION Log session management information.

GAS Log information about the Genero Application Server version, build
and package.

LOG Display log parameters.

CONFIGURATION Log configuration management information.

DEPRECATED Log warnings if a deprecated function is used in a template.

PROCESS Log Dynamic Virtual Machine data, error, any process handled by the
Genero Application Server.

VM Log communications with the Dynamic Virtual Machine.

FT Log information about file transfer.

ACCESS Log summary information about the requests handled by the server.

HTTP Log http requests (interaction with the User Agent).

SOCKET Log information concerning sockets (creation, connection,
communication, and so on).

TASK Extracts the time of all the things done by the GAS (a technical
attribute).

TEMPLATE Information about TEMPLATE template processing.

TIMER Information about timers creation, destruction and expiration.

Reference | 308

Filter Names Description

WA Context of the Web applications.

ALL Activate all categories excepted DEBUG.

Usage example

This example would be valid for the CATEGORIES_FILTER element:

 <CATEGORIES_FILTER>ERROR WARNING</CATEGORIES_FILTER>

Generate a detailed daily log file

If you encounter an issue, you can send a detailed log file to your support center.

To create the detailed daily log file, use the ALL pseudo category as the category filter.

Important: Only use the default categories (GAS ACCESS PROCESS DEPRECATED ERROR
WARNING) when in production. Categories such as VM or ALL are for debugging and should
only be set for a short period of time, as they generate many log entries. Non-standard categories
should be used with care. The support center will tell you when you should set ALL for your
categories filter.

Example

<LOG>
 <OUTPUT Type="DAILYFILE">/work/tmp/gas</OUTPUT>
 <FORMAT>date time relative-time process-id thread-id contexts
 event-type event-params<FORMAT>
 <CATEGORIES_FILTER>ALL</CATEGORIES_FILTER>
</LOG>

This example generates various log files in the /work/tmp/gas directory, depending on the dispatcher
and the application or service run.

Parent elements
This element is a child of one of the following elements: LOG on page 326

COMPONENT_LIST

Within the Genero Application Server configuration file, you can define various application components.
Components are sets of preset variables, and are used by applications that share common configurations.
Within the COMPONENT_LIST element, you specify components to be available for use by applications.
When defining an application, you can then reference the component by its unique Id.

Syntax

<CONFIGURATION>
 <APPLICATION_SERVER>
 ...
 <COMPONENT_LIST>
 EXECUTION (for an application) on
 page 315 [...]
 TIMEOUT (for an application) on
 page 352 [...]

 autoLogoutComponent [...]

Reference | 309

 serviceTimeoutComponent [...]

 pictureComponent [...]

 renderingComponent [...]

 httpCookiesComponent [...]
 themeComponent [...]
 </COMPONENT_LIST>
 ...
 </APPLICATION_SERVER>
</CONFIGURATION>

Syntax notes

1. The COMPONENT_LIST element does not support any attributes.
2. Components are grouped by type. Each component type is discussed in its own section of this manual.

Child elements

A COMPONENT_LIST element may contain the following child elements:

• Zero to many WEB_APPLICATION_EXECUTION_COMPONENT elements.
• Zero to many SERVICE_APPLICATION_EXECUTION_COMPONENT elements.
• Zero to many WEB_APPLICATION_TIMEOUT_COMPONENT elements.
• Zero to many AUTO_LOGOUT_COMPONENT on page 305elements.
• Zero to many SERVICE_APPLICATION_TIMEOUT_COMPONENT elements.
• Zero to many WEB_APPLICATION_PICTURE_COMPONENT elements.
• Zero to many WEB_APPLICATION_RENDERING_COMPONENT elements.
• Zero to many WEB_APPLICATION_HTTP_COOKIES_COMPONENT elements.
• Zero to many WEB_APPLICATION_THEME_COMPONENT elements.

Parent elements
This element is a child of one of the following elements: APPLICATION_SERVER on page 303

COMMAND (for auto logout)

The COMMAND is an optional configuration element of AUTO_LOGOUT_COMPONENT on page 305 that
provides a mechanism for the Genero Application Server to override an application's auto logout.

Syntax

<COMMAND Timeout="timeoutSeconds"> commandScript </COMMAND>

Syntax notes

1. timeoutSeconds is the number of seconds as the allowed time for a command to run.
2. commandScript is the name of the script or command to be run.

Usage example

<COMMAND Timeout="20">auto-logout-allowed.sh</COMMAND>

The command determines whether the auto logout takes place based on the value of an exit code it
returns, or whether it times out:

1. If the command's exit code is zero, the auto logout is ignored and the application keeps running.

Reference | 310

2. If the command's exit code is not zero, the auto logout is performed.

Note: If the command times out, the auto logout process is also performed the same as if the
exit code was not zero.

Usage Scenario

A typical use of the COMMAND option might be to check when the auto logout process is allowed. The
external command could be used, for example, to only allow auto logout between the hours of 21.00 pm
and 08.00 am, i.e. there would be no auto logout during work hours.

Parent elements
This element is a child of the following element: AUTO_LOGOUT_COMPONENT on page 305

CONFIGURATION
This element is the starting point for the Genero Application Server configuration.

The CONFIGURATION element does not support any attributes.

Syntax

<CONFIGURATION>
 <APPLICATION_SERVER>...</APPLICATION_SERVER>
</CONFIGURATION>

Child elements

The CONFIGURATION element contains a single child element:

• One APPLICATION_SERVER element.

Example

<CONFIGURATION
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="http://www.4js.com/ns/gas/2.50/cfas.xsd">
 <APPLICATION_SERVER>...</APPLICATION_SERVER>
</CONFIGURATION>

Parent elements
The CONFIGURATION element is the top-most element of the GAS configuration file. It has no parent
element.

CONSTANT

Zero or one CONSTANT. Define a constant and optionally its value.

Syntax

<CONSTANT Id="cstId"> cst </CONSTANT>

Syntax notes

1. cstId is the constant name
2. cst is the constant value.

Reference | 311

Example

<CONSTANT Id="constant1">A value</CONSTANT>

Parent elements
This element is a child of one of the following elements: HTTP_COOKIE on page 321

DELEGATE
The DELEGATE element specifies the Genero REST service in charge of all starting requests of the form /
wa/r, /ja/r and /ws/r. It takes an attribute called service where you define the group and name of the
Genero REST service.

Syntax

<DELEGATE service="serName">
 [<AnyTag1> anyValue </AnyTag1>]
 [<AnyTag2> anyValue </AnyTag2>]
</DELEGATE>

All child elements are optional and are passed as parameters to the REST service if present. See How to
implement delegation on page 105.

When working with a single sign-on solution, child elements of the DELEGATE element will be specific
to the identity provider (IdP). You will need to add the appropriate tags to work with your IdP. These tags
should be documented by your IdP.

Parent elements
This element is a child of one of the following elements: WEB_APPLICATION_EXECUTION_COMPONENT
on page 356, SERVICE_APPLICATION_EXECUTION_COMPONENT on page 344, EXECUTION (for
an application) on page 315, EXECUTION (for a service) on page 316

DESCRIPTION

The DESCRIPTION element allows a short and a long description to be associated with an application
definition.

Syntax

<DESCRIPTION>
[<SHORT> shortDescription </
SHORT>]
[<LONG> longDescription </LONG>]
</DESCRIPTION>

Child elements

The DESCRIPTION element may contain the following child elements:

1. Zero or one SHORT element.
2. Zero or one LONG element.

Example

<DESCRIPTION>
 <SHORT>A short description</SHORT>
 <LONG>A long description</LONG>
</DESCRIPTION>

Reference | 312

Parent elements
This element is a child of one of the following elements: APPLICATION (for an application) on
page 301, APPLICATION (for a service) on page 301

DOC_TYPE

The DOC_TYPE element can be be used to override the document type declaration (DTD) in the main
template.

Syntax

<DOC_TYPE>
 [<NAME> name </NAME>]
 [<EXTERNAL_ID> externalId </EXTERNAL_ID>]
 [<SYSTEM_ID> systemId </SYSTEM_ID>]
</DOC_TYPE>

Child elements

The DOC_TYPE element may contain the following child elements:

• One NAME element.
• Zero or one EXTERNAL_ID element.
• Zero or one SYSTEM_ID element.

Usage example

<DOC_TYPE>
 <NAME>HTML</NAME>
 <EXTERNAL_ID>-//W3C//DTD HTML 4.01//EN</EXTERNAL_ID>
 <SYSTEM_ID>http://www.w3.org/TR/html4/strict.dtd</SYSTEM_ID>
</DOC_TYPE>

In this example, the DTD in the main template would be overwritten with:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
 "http://www.w3.org/TR/html4/strict.dtd">

Parent elements
This element is a child of one of the following elements: WEB_APPLICATION_RENDERING_COMPONENT
on page 358, RENDERING on page 339

DOCUMENT_ROOT

The DOCUMENT_ROOT element specifies root directories that determine filesystem paths to serve files. The
default document root directory (res.path.docroot) is $FGLASDIR/web. This directory is the default GWC-
JS bootstrap template path which is searched for CSS, JavaScript™, demos.html, and other files that are
specifically served by the Application Server, see GWC-JS on page 319.

Note: When a Web server is included in the solution architecture, the GAS's document root
directory is separate to the Web server's, which has its own document root - often called htdocs
for the Apache Web server or C:\Inetpub\wwwroot for IIS. Files located in the Web server
document root are served by the Web server, while files located in the GAS DOCUMENT_ROOT are
served by the GAS, i.e. the dispatcher.

For the GAS, other root directories can be specified as required. For example, the resource path
res.path.docroot.user, which is not defined in the GAS configuration file by default, can be set as required
for files generated at runtime, such as reports generated by the Genero Report Engine (GRE).

Reference | 313

Syntax

<DOCUMENT_ROOT> docroot; docrootuser </DOCUMENT_ROOT>

It allows for multiple document root paths to be specified, the separator used between resource paths is a
semi-colon, ';'.

The DOCUMENT_ROOT element does not support any attributes or have any child elements.

Usage example

<DOCUMENT_ROOT>/usr/fgl2c/as/web</DOCUMENT_ROOT>

In this usage example, if you have the demos.html file in this directory and wish to access the file, use
the URL: http://<app_server>:<port>/demos.html (where the file is on the host where the GAS
resides) or http://<web_server>/gas/demos.html (where the file is on the Web server host), see
File serving URIs on page 53.

Parent elements
This element is a child of one of the following elements: INTERFACE_TO_CONNECTOR on page 324

DVM_AVAILABLE
The DVM_AVAILABLE timeout specifies how long (in seconds) the Genero Application Server allows for
the DVM to start. This parameter provides a delay for the DVM to start and be available.

The DVM_AVAILABLE timeout provides a mechanism for the Genero Application Server to handle the
failure of the DVM to start. If the DVM has not started by the time the DVM_AVAILABLE timeout expires,
the Genero Application Server sends an error message to the front end client and logs the message:
"DVM_AVAILABLE timeout expired."

This element is optional. If the element is not specified, the default time out is 100 seconds.

Web applications

When used as a child of the WEB_APPLICATION_TIMEOUT_COMPONENT element, the DVM_AVAILABLE
timeout is only applicable when you start an application or you launch sub process in interactive mode (IN
LINE MODE). If you run the sub process in background (IN FORM MODE), the DVM_AVAILABLE timeout
is not applicable.

Web services

For a Web service, there is no notion of a front-end client. An error message is therefore not sent. In
addition, a Web service is not expected to perform RUNs commands with new DVMs connecting by
themselves.

Usage example

<DVM_AVAILABLE>10</DVM_AVAILABLE>

In this usage example, the DVM Available timeout is set to 10 seconds.

Parent elements
This element is a child of one of the following elements: WEB_APPLICATION_TIMEOUT_COMPONENT on
page 360, SERVICE_APPLICATION_EXECUTION_COMPONENT on page 344, TIMEOUT (for a
service) on page 353, TIMEOUT (for an application) on page 352

Reference | 314

DVM_PINGTIMEOUT
Time out (in seconds) before the Genero Application Server sends a PING (keep-alive) message to a
running DVM.

The DVM Ping timeout specifies how long (in seconds) the GAS waits before send a PING (keep-alive)
message to a running DVM.

A running DVM waits at a maximum gui.protocol.pingTimeout seconds for a front-end PING
message when there is no user activity. After this timeout period elapses, the program stops with an error.

A correct configuration requires that the DVM_PINGTIMEOUT be set lower than the DVM
gui.protocol.pingTimeout setting. By default, the DVM gui.protocol.pingTimeout is defined
as 600 seconds and the GAS DVM_PINGTIMEOUT is defined as 300 seconds.

Usage example

<DVM_PINGTIMEOUT>300</DVM_PINGTIMEOUT>

In this example, the DVM PING timeout is set to 300 seconds.

Parent elements
This element is a child of one of the following elements: WEB_APPLICATION_TIMEOUT_COMPONENT on
page 360, TIMEOUT (for an application) on page 352

DVM

The DVM element specifies the name of the Dynamic Virtual Machine you want to use to start and run
the application. This value is typically fglrun for UNIX™ Systems (UNX) and fglrun.exe for Windows™

Systems (WNT).

Usage example

<DVM>$(res.dvm.wa)</DVM>

Parent elements
This element is a child of one of the following elements: WEB_APPLICATION_EXECUTION_COMPONENT
on page 356, SERVICE_APPLICATION_EXECUTION_COMPONENT on page 344, EXECUTION (for
an application) on page 315, EXECUTION (for a service) on page 316

ENVIRONMENT_VARIABLE

The ENVIRONMENT_VARIABLE element provides the value to be set for an environment variable. It takes
an attribute Id, which specifies the name of the environment variable. Prior to starting the application, the
environment variable is set using this information.

Usage example

<ENVIRONMENT_VARIABLE Id="FGLGUI">1</ENVIRONMENT_VARIABLE>

In this example, the environment variable FGLGUI is set to 1.

See also:

• Application environment on page 42

Reference | 315

Parent elements
This element is a child of one of the following elements: WEB_APPLICATION_EXECUTION_COMPONENT
on page 356, SERVICE_APPLICATION_EXECUTION_COMPONENT on page 344, EXECUTION (for
an application) on page 315, EXECUTION (for a service) on page 316

ERROR_DOCUMENT

Important: As of version 2.2x, this feature is no longer available. This should now be configured
and handled by the web server.

The ERROR_DOCUMENT element contains the action to do in case of error. It takes an attribute Code, which
specifies the HTTP status code. The element contains the action to perform in case of error. It can specify
this action in one of three ways:

• Free text.
• An URL that is relative to DOCUMENT_ROOT and that begins with a backslash (/).
• An absolute URL that begins with "http".

Usage example

<ERROR_DOCUMENT Code="404">/demos.html</ERROR_DOCUMENT>

Parent elements
This element is a child of one of the following elements: INTERFACE_TO_CONNECTOR on page 324

EXECUTION (for an application)

The EXECUTION element sets the runtime environment for the application by specifying
the parameters for executing a Web application. You can reference a predefined
WEB_APPLICATION_EXECUTION_COMPONENT on page 356 to inherit the runtime environment
settings of that component by including the Using attribute, specifying the unique identifier for that
execution component, and/or you can set individual execution elements specific to the application.

The attribute AllowUrlParameters defines whether parameters provided on the command line should
be ignored ("FALSE", default value) or provided to the DVM ("TRUE").

The attribute AllowUnsafeSession defines whether safe session management is active ("FALSE",
default value) or deactivated ("TRUE"). Safe session management is a transparent session check based
on session cookies, introduced to secure the application session tracking. You should deactivate (set to
"TRUE") only if you encounter issues when migrating to version 2.50.20 or greater.

Settings defined locally within the EXECUTION element override settings defined in included execution
components.

Child elements

The EXECUTION element may contain the following child elements:

Important: Element order. If child elements are present, they must be set in the order listed below.

1. Zero to many ENVIRONMENT_VARIABLE elements.
2. Zero or one PATH element.
3. Zero or one DVM element.
4. Zero or one MODULE element.
5. Zero or one PARAMETERS element.
6. Zero or one ACCESS_CONTROL element.
7. Zero or one DELEGATE element.
8. Zero or one WEB_COMPONENT_DIRECTORY on page 361 element.

Reference | 316

For more information on defining execution elements, see Web Application Execution Component and
Service Application Execution Component.

Usage examples

<EXECUTION Using="cpn.wa.execution.local" />

<EXECUTION Using="cpn.wa.execution.local">
 <ENVIRONMENT_VARIABLE Id="FGLGUI">1</ENVIRONMENT_VARIABLE>
</EXECUTION>

<EXECUTION AllowUrlParameters="TRUE">
 <PATH>/home/examples/BuiltIn/Arguments</PATH>
</EXECUTION>

Parent elements
This element is a child of one of the following elements: APPLICATION (for an application) on
page 301

EXECUTION (for a service)

The EXECUTION element sets the runtime environment for the application by specifying
the parameters for executing a Web application. You can reference a predefined
SERVICE_APPLICATION_EXECUTION_COMPONENT to inherit the runtime environment settings of that
component by including the Using attribute, specifying the unique identifier for that execution component,
and/or you can set individual execution elements specific to the application.

Settings defined locally within the EXECUTION element override settings defined in included execution
components.

Child elements

Possible execution elements include:

1. Zero or more ENVIRONMENT_VARIABLE elements.
2. Zero or one PATH element.
3. Zero or one DVM element.
4. Zero or one MODULE element.
5. Zero or one PARAMETERS element.
6. Zero or one ACCESS_CONTROL element.
7. Zero or one DELEGATE element.
8. Zero or one WEB_COMPONENT_DIRECTORY on page 361 element.
9. Zero or one POOL on page 337/xref> element.

Usage examples

<EXECUTION Using="cpn.ws.execution.local" />

<EXECUTION Using="cpn.ws.execution.local">
 <ENVIRONMENT_VARIABLE Id="FGLGUI>1</ENVIRONMENT_VARIABLE>
</EXECUTION>

Reference | 317

Parent elements
This element is a child of one of the following elements: APPLICATION (for a service) on page
301

EXTERNAL_ID

The EXTERNAL_ID element is the public identifier of the DTD.

Usage example

<EXTERNAL_ID>-//W3C//DTD HTML 4.01//EN</EXTERNAL_ID>

Parent elements
This element is a child of one of the following elements: DOC_TYPE on page 312

FILE_TRANSFER

The FILE_TRANSFER element sets up parameters relevant for applications involved in transferring files
between the front end and the application server host. The FILE_TRANSFER element specifies when
the transferred files should be deleted after application end. The files are removed from the temporary
directory at the dispatcher shut down and after application end, when the timeout specified between the
TIMEOUT tags expires.

Syntax

<FILE_TRANSFER>
 <TIMEOUT>duration</TIMEOUT>
</FILE_TRANSFER>

Child elements

The FILE_TRANSFER element must contain the following child element:

1. One TIMEOUT element.

Example

<FILE_TRANSFER>
 <TIMEOUT>600</TIMEOUT>
</FILE_TRANSFER>

Parent elements
This element is a child of one of the following elements: APPLICATION_SERVER on page 303

FORMAT
The FORMAT element specifies the format of each log message.

The FORMAT element takes an optional attribute Type (whose value can only be TEXT) and a list of field
identifiers.

The field identifiers indicate the line format. The fields are separated by spaces. The order of the fields
determines the order of the log output.

Table 62: Log message field identifiers

Type Description

category Name of the category filter of the event.

Reference | 318

Type Description

component Name of the component that generate the event.

date Date of the event.

time Time of the event.

relative-time Time elapsed since the dispatcher has started.

process-id Process identifier.

thread-id Thread identifier.

location The file name and line number where the event occurred. Replaces
line and file Type attributes from earlier versions.

contexts Internal data representing the successive context the process went
through to reach the logged event. These data is formatted as
type=value pairs separated by semicolons.

event-type Event name.

event-params Event details. XML fragment representing the structured information
attached to the event. This XML fragment will be on a single line.
If used this field should be the last one as it can contain data with
spaces.

When parsing the content of log files:

• A log message ends with a LF/CR character.
• event-type values are enclosed in double quotes (").
• event-params values may contain any characters. This field should be put at the end of the log format

string.
• All other field values do not contain spaces.
• A missing value is replaced by a hyphen (-).
• Within event-params values, well-known non-printable characters are replaced by standard C escape

sequences; other non-printable characters use a hexadecimal encoding.
• Single event-params values, such as raw text, have the following structure: Data Size=size

Content=value, where size is the size of the value.
• event-params contains the escaped log message.

Example

<FORMAT Type="TEXT">time event-type event-params</FORMAT>
<FORMAT>date time relative-time process-id thread-id contexts
 event-type event-params</FORMAT>

Parent elements
This element is a child of one of the following elements: LOG on page 326

GROUP (for an application)

The GROUP element allows you to specify a directory where external application configuration files are
located. Once a GROUP has been declared, an administrator can add an external application configuration
file into the specified directory, and the Genero Application Server will be able to locate and use that file
without having to be restarted.

It takes an attribute Id, which specifies the unique identifier for this group. When calling an application
defined by an external application configuration file, you must provide the group Id and the name of the

Reference | 319

external application configuration file name (without the extension), which is typically the name of the
application.

Syntax

<GROUP Id="groupName"> path </GROUP>

Note:

1. groupName is a string that uniquely identifies the group.
2. path is the directory path where the external application configuration files are to be placed.

Usage examples

<GROUP id="tut-demo">$(res.path.as.demo)/tut/app</GROUP>
<GROUP id="mygroup">/home/myuser/config</GROUP>

Parent elements
This element is a child of one of the following elements: APPLICATION_LIST on page 302

GROUP (for a service)

The GROUP element allows you to specify a directory where external Web service application configuration
files are located. Once a GROUP has been declared, an administrator can add an external Web service
application configuration file into the specified directory, and the Genero Application Server will be able to
locate and use that file without having to be restarted.

It takes an attribute Id, which specifies the unique identifier for this group. When calling an application
defined by an external application configuration file, you must provide the group Id and the name of the
external Web service application configuration file name (without the extension), which is typically the
name of the Web service application.

Syntax

<GROUP Id="groupName"> path </GROUP>

Syntax notes

1. groupName is a string that uniquely identifies the group.
2. path is the directory path where the external Web service application configuration files are to be

placed.

Usage example

<GROUP id="mygroup">/home/myuser/config</GROUP>

Parent elements
This element is a child of one of the following elements: SERVICE_LIST on page 346

GWC-JS
The GWC-JS element references the GWC-JS bootstrap directory specified by a path in the
GWC_JS_LOOKUP_PATH element.

The bootstrap template path refers to the directory that contains a collection of files known as the
Bootstrap. Bootstrap is an HTML, CSS, and JavaScript framework for developing responsive, mobile-first
projects on the web.

Reference | 320

By default, a single bootstrap directory is provided at installation, and it is referenced in the defaultwa
abstract application configuration in the Genero Application Server configuration file:

...
<RESOURCE Id="res.path.docroot" Source="INTERNAL">$(res.path.as)/web</
RESOURCE>
...
<APPLICATION Id="defaultwa" Abstract="TRUE">
<!-- This is the "default" application.
 It is not used directly: it is used for defining a "root" application. -->
 <EXECUTION Using="cpn.wa.execution.local"/>

 <UA_OUTPUT>
 <PROXY>$(res.uaproxy.cmd)</PROXY>
 <PUBLIC_IMAGEPATH>.</PUBLIC_IMAGEPATH>
 <TIMEOUT Using="cpn.wa.timeout"/>
 <GWC-JS>gwc-js</GWC-JS>
 </UA_OUTPUT>
...

Given these details, we can state that the bootstrap template for an application using the UA_OUTPUT
element will, by default, use the files located in $(res.path.docroot)/gwc-js. When we replace
the resource with its value, it becomes $(res.path.as)/web/gwc-js, where $(res.path.as) refers
to the Genero Application Server installation directory. You can continue to replace each resource with
the resource value provided by the configuration file, until we have the absolute path shown without any
resources.

Usage example: Project Directory

<GWC-JS>gwc-js-custom</GWC-JS>

In this example, you create a new set of bootstrap files to customize the look and feel of a Web application
in a separate directory to the default bootstrap, for example, $FGLASDIR/web/gwc-js-custom. The
GAS searches for the GWC-JS directory at the path defined by the GWC_JS_LOOKUP_PATH on page
320.

Child elements

There are no child elements.

Parent elements

This element is a child of one of the following elements: UA_OUTPUT on page 354

GWC_JS_LOOKUP_PATH
The GWC_JS_LOOKUP_PATH element specifies paths to look for the GWC-JS directory.

By configuring the GWC_JS_LOOKUP_PATH element, you can specify the location of your custom Genero
Web Client for JavaScript (GWC-JS) front end.

The GAS provides a dedicated URL as the document root where your customized GWC-JS directory is
located (see ua/w/ in Application URIs on page 49). The dispatcher searches the paths specified in
GWC_JS_LOOKUP_PATH to locate the directory specified by the GWC-JS on page 319 element. When
the directory is found, the requested file is sent if it exists. If the file does not exist, no additional look up
is performed. This is to avoid the risk of mixing up files in other GWC-JS versions that may be located in
various directories in these paths.

Reference | 321

Syntax

<GWC_JS_LOOKUP_PATH>docroot;gwc_js_userdir</GWC_JS_LOOKUP_PATH>

It allows for multiple GWC-JS paths to be specified, the separator used between resource paths is a semi-
colon, ';'.

Usage example

<GWC-JS-LOOKUP-PATH>$(res.path.docroot);$(res.path.gwcjs.user)</GWC-JS-
LOOKUP-PATH>

In this example, the GAS first searches for the GWC-JS directory at the default location defined by the
resource res.path.docroot , which is $FGLASDIR/web. The second resource, res.path.gwcjs.user, which is
not defined in the GAS configuration file by default, can be set as required at runtime.

Usage example setting GWC_JS_LOOKUP_PATH at runtime

httpdispatch -E res.path.gwcjs.user=<directory-of-your-choice>

In this example, you set the location of your customized GWC-JS files with the dispatcher switch (-E)
by creating or overwriting the res.path.gwcjs.user resource with the path to your customized directory at
runtime.

Child elements

There are no child elements.

Parent elements

This element is a child of the following element: INTERFACE_TO_CONNECTOR on page 324

HTTP_COOKIE
The HTTP_COOKIE element contains any HTTP cookie definitions for an application.

The main goal of cookies is to keep a state, through session variables, between two runs of an application
by the same user. The number of cookies associated with an application should be constant.

Syntax

 <HTTP_COOKIE Id="cid" [Expires="endTime" | Domain="mydomain" |
 Secure="TRUE|FALSE" | HttpOnly=""]>
 <VARIABLE Id="varId">val</VARIABLE> [...]
 <CONSTANT Id="cstId">cst</CONSTANT> [...]
 <HTTP_COOKIE> [...]

Syntax notes

The HTTP_COOKIE element takes a mandatory Id attribute and four optional attributes: Expires,
Domain, Secure and HttpOnly.

1. cid is the cookie name.
2. The Expires attribute specifies the cookie expiration date. endTime is cookie expiration in "Wdy, DD-

Mon-YYYY HH:MM:SS GMT" format. You can set a relative date with "+X" or "X", where X represent a
number of seconds. "X" will fix the cookie date only at the creation time and "+X" will regenerate a new
date for the cookie on each HTTP request. The Expires attribute is optional.

3. The Domain attribute restricts the cookie to a specified domain. mydomain is the domain name the
cookie is restricted to. The Domain attribute is optional.

Reference | 322

4. When set to TRUE, the Secure attribute restricts the cookie to secured connections (HTTPS) only.
Valid values are TRUE or FALSE. The Secure attribute is optional.

5. When set to TRUE, HttpOnly attribute disables the cookie access from client-side scripting
languages, such as JavaScript™, running in a browser. Valid values are TRUE or FALSE. The
HttpOnly attribute is optional.

6. varId is the variable name and val its value.
7. cstId is the constant name and cst its value.

Child elements

The HTTP_COOKIE element may contain the following child elements, defined by a mandatory identifier
and an optional value.:

1. Zero to many CONSTANT on page 310 elements
2. Zero to many VARIABLE on page 355 elements

Example

<!-- secure persistent cookie with default variable value and constant value
 -->
<HTTP_COOKIES>
 <HTTP_COOKIE Id="cookie3" Expires="Wdy, DD-Mon-YYYY HH:MM:SS GMT"
 Domain="www.domain.com" Secure="TRUE" HttpOnly="TRUE">
 <VARIABLE Id="var7" />
 <VARIABLE Id="var8">Initial value</VARIABLE>
 <CONSTANT Id="constant1">A value</CONSTANT>
 </HTTP_COOKIE>
</HTTP_COOKIES>

For more information on HTTP cookies, refer to Session Variables and Cookies.

Parent elements
This element is a child of one of the following elements: HTTP_COOKIES on page 322,
WEB_APPLICATION_HTTP_COOKIES_COMPONENT on page 357

HTTP_COOKIES
The HTTP_COOKIES element contains child elements that define persistent session variables or constants.

Child elements

The HTTP_COOKIES element may contain the following child elements:

1. Zero or more HTTP_COOKIE on page 321 elements.

Syntax

<HTTP_COOKIES>
 <HTTP_COOKIE ...>...</HTTP_COOKIE>
 [...]
</HTTP_COOKIES>

Example

<!-- secure persistent cookie with default variable value and constant value
 -->
<HTTP_COOKIES>
 <HTTP_COOKIE Id="cookie3" Expires="Wdy, DD-Mon-YYYY HH:MM:SS GMT"
 Domain="www.domain.com" Secure="TRUE" HttpOnly="TRUE">

Reference | 323

 <VARIABLE Id="var7" />
 <VARIABLE Id="var8">Initial value</VARIABLE>
 <CONSTANT Id="constant1">A value</CONSTANT>
 </HTTP_COOKIE>
</HTTP_COOKIES>

For more information on HTTP cookies, refer to Session Variables and Cookies.

Parent elements
This element is a child of one of the following elements: OUTPUT (under APPLICATION) on page
331

HTTP_HEADER

The HTTP_HEADER element specifies the request HTTP header for request response.

Usage example

<HTTP_HEADER Id="Cache-Control">no-cache</HTTP_HEADER>

Parent elements
This element is a child of one of the following elements: OUTPUT (under APPLICATION) on page
331

HTTP_REQUEST_ENCODING

• When "Source" attribute is "INLINE": use content of HTTP_REQUEST_ENCODING to determine encoding
used in http request.

• When "Source" attribute is "REQUEST": use "_charset_" form field or Content-Type http request header
sent by User-Agent to determine encoding used in http request. Use UTF-8 if "_charset_" form field or
Content-Type http request are missing.

Usage example

<HTTP_REQUEST_ENCODING Source="INLINE">ISO-8859-1</HTTP_REQUEST_ENCODING>

or

<HTTP_REQUEST_ENCODING Source="REQUEST"/>

Parent elements
This element is a child of one of the following elements: WEB_APPLICATION_RENDERING_COMPONENT
on page 358, RENDERING on page 339

HTTP_RESPONSE_ENCODING

• When "Source" attribute is "INLINE": use content of HTTP_RESPONSE_ENCODING and force HTTP
response encoding to this value.

• When "Source" attribute is "REQUEST": use Accept-Charset HTTP request header sent by User-Agent
to determine HTTP response encoding. Use UTF-8 if Accept-Charset is missing.

Usage example

<HTTP_RESPONSE_ENCODING Source="INLINE">ISO-8859-1</HTTP_RESPONSE_ENCODING>

Reference | 324

or

<HTTP_RESPONSE_ENCODING Source="REQUEST"/>

Parent elements
This element is a child of one of the following elements: WEB_APPLICATION_RENDERING_COMPONENT
on page 358, RENDERING on page 339

INTERFACE_TO_CONNECTOR
The INTERFACE_TO_CONNECTOR element specifies the interface to the Genero Application Server (GAS)
Connector. It specifies the connection between the GAS and the GAS Connector (located with the Web
Server).

The GAS Connector is either:

• The FastCGI extension
• The ISAPI extension
• The Java Servlet extension

The INTERFACE_TO_CONNECTOR element defines the port on which the Genero Application Server
listens for incoming requests. This applies for the httpdispatcher, (the stand-alone GAS, see Dispatcher:
httpdispatch on page 263) as well as the GAS Connectors.

Syntax

<INTERFACE_TO_CONNECTOR>
 <ROOT_URL_PREFIX>URL_Web_Server_behind_proxy</ROOT_URL_PREFIX>
 <TCP_BASE_PORT> base </TCP_BASE_PORT>
 <TCP_PORT_OFFSET> offset </TCP_PORT_OFFSET>
 <DOCUMENT_ROOT> root </DOCUMENT_ROOT>
 <GWC_JS_LOOKUP_PATH> path;path </GWC_JS_LOOKUP_PATH>
 <TEMPORARY_DIRECTORY> dir </TEMPORARY_DIRECTORY>
 <SESSION_DIRECTORY> dir </SESSION_DIRECTORY>
 <REPORT_VIEWER_DIRECTORY>dir</REPORT_VIEWER_DIRECTORY>
 <SOCKET_FAMILY> dir </SOCKET_FAMILY>
 <SOCKET_PATH> dir </SOCKET_PATH>
 [<ERROR_DOCUMENT Code="code"> path </ERROR_DOCUMENT>]
</INTERFACE_TO_CONNECTOR>

Child elements

The INTERFACE_TO_CONNECTOR element may contain the following child elements.

1. Zero or more ROOT_URL_PREFIX on page 344 element.
2. One TCP_BASE_PORT on page 350 element.
3. One TCP_PORT_OFFSET on page 350 element.
4. One DOCUMENT_ROOT on page 312 element.
5. One GWC_JS_LOOKUP_PATH on page 320 element.
6. One TEMPORARY_DIRECTORY on page 351.
7. One SESSION_DIRECTORY on page 346 element.
8. One REPORT_VIEWER_DIRECTORY on page 340 element.
9. One SOCKET_FAMILY on page 348 element.
10.One SOCKET_PATH on page 349 element.
11.Zero or more ERROR_DOCUMENT on page 315 element.

Reference | 325

Example

<INTERFACE_TO_CONNECTOR>
 <ROOT_URL_PREFIX></ROOT_URL_PREFIX>
 <TCP_BASE_PORT>6300</TCP_BASE_PORT>
 <TCP_PORT_OFFSET>94</TCP_PORT_OFFSET>
 <DOCUMENT_ROOT>$(res.path.docroot)</DOCUMENT_ROOT>
 <GWC_JS_LOOKUP_PATH>$(res.path.gwcjs.user);$(res.path.docroot)</
GWC_JS_LOOKUP_PATH>
 <TEMPORARY_DIRECTORY>$(res.path.tmp)</TEMPORARY_DIRECTORY>
 <SESSION_DIRECTORY>$(res.appdata.path)/session</SESSION_DIRECTORY>
 <REPORT_VIEWER_DIRECTORY>$(res.gredir)/viewer</REPORT_VIEWER_DIRECTORY>
 <SOCKET_FAMILY>$(res.dispatcher.socket.family)</SOCKET_FAMILY>
 <SOCKET_PATH>$(res.dispatcher.socket.path)</SOCKET_PATH>
 <SESSION_DIRECTORY>/var/tmp</SESSION_DIRECTORY>
</INTERFACE_TO_CONNECTOR>

In this example, the application server is listening on port 6394 (TCP_BASE_PORT + TCP_PORT_OFFSET),
the application server web site root is specified as the resource $(res.path.docroot).

To have several instances of the Genero Application Server run concurrently on the same host, you create
several application server configuration files with different offsets. Once started, each application server
listens at the offset specified.

Important: If you create multiple application configuration files (one for each instance of the
application server), take care to ensure that the port values are unique for each application server
started. If two application server configuration files both specify the same TCP_BASE_PORT and
TCP_BASE_OFFSET, a port conflict exists. The second application server will not start, an error
message displays (Application Server startup........[fail]) and the message
"Address already in use" is written to the log file.

Parent elements
This element is a child of one of the following elements: APPLICATION_SERVER on page 303

INTERFACE_TO_DVM
The INTERFACE_TO_DVM element in the Genero Application Server (GAS) configuration file specifies the
connection between the GAS and the Dynamic Virtual Machine (DVM). This element specifies the address
of the host where the GAS dispatcher runs.

There can only be one INTERFACE_TO_DVM element specified in a given Genero Application Server
configuration file.

Syntax

<INTERFACE_TO_DVM>
 <ADDRESS> address </ADDRESS>
</INTERFACE_TO_DVM>

Child elements

The INTERFACE_TO_DVM element contains a child element:

1. One ADDRESS element.

Example

<INTERFACE_TO_DVM>
 <ADDRESS>app_server</ADDRESS>
</INTERFACE_TO_DVM>

Reference | 326

Parent elements
This element is a child of one of the following elements: APPLICATION_SERVER on page 303

KEEP_ALIVE
Time out (in seconds) before shutting down a proxy that is no longer serving requests.

The proxy KEEP_ALIVE timeout is used to shut down the proxy that hasn't served any requests during the
specified time. The KEEP_ALIVE element specifies how long (in seconds) the proxy waits with no request
to process before determining whether to shut down.

If the KEEP_ALIVE entry is missing, the proxy will never shutdown. It also prevents the DVMs from running
indefinitely in the unlikely event that the GAS dispatcher or the web server crashes.

Usage example

<KEEP_ALIVE>10</KEEP_ALIVE>

In this usage example, the proxy timeout is set to 10 seconds.

Parent elements
This element is a child of one of the following elements: SERVICE_APPLICATION_TIMEOUT_COMPONENT
on page 345, TIMEOUT (for a service) on page 353

LONG

The LONG element contains the long description.

Usage example

<LONG>A long description</LONG>

Parent elements
This element is a child of one of the following elements: DESCRIPTION on page 311

LOG
The Genero Application Server creates log files for each of its dispatchers, proxies, and DVMs started. The
LOG element and its child elements specify where the log files are created, the format of the log messages,
the type of information logged, and the maximum size of a single log message.

It is possible to specify multiple LOG elements. For example, you may need to have separate log files
capturing different categories of messages.

Syntax

<LOG>
 <OUTPUT Type="DAILYFILE|CONSOLE|CONSOLE,DAILYFILE">path/filename</OUTPUT>
 <FORMAT [Type="TEXT"]>fields-id</FORMAT>
 <CATEGORIES_FILTER>FILTERNAME [...]</CATEGORIES_FILTER>
 [<RAW_DATA MaxLength="length" />]
</LOG>

Child elements

The LOG element may contain the following child elements:

1. One OUTPUT element.
2. One FORMAT element.
3. One CATEGORIES_FILTER element.

Reference | 327

4. Zero or one RAW_DATA element.

Example

<LOG>
 <OUTPUT Type="DAILYFILE">$(res.log.output.path)</OUTPUT>
 <FORMAT Type="TEXT">time event-type event-params</FORMAT>
 <CATEGORIES_FILTER>GAS ACCESS PROCESS DEPRECATED ERROR WARNING</
CATEGORIES_FILTER>
 <RAW_DATA MaxLength="-1" />
</LOG>

To support more than one GAS process using the same log configuration, if a required log file cannot be
opened, the GAS process ID will be added to the log file name.

Parent elements
This element is a child of one of the following elements: APPLICATION_SERVER on page 303

MAP

The MAP element is a combination of a rendering mechanism and a theme.

The MAP element takes a required attribute Id, which specifies the unique identifier for this component. The
Id can be any value, but it is based on the result the user gets from adua.xrd. The default values include
DUA_GDC, DUA_UA, (and DUA_HTML5, which is deprecated). The list can be extended by custom
choices.

The MAP element may also specify optional attributes:

• Allowed, which specifies whether this map will be used in this context or not. Possible values are
TRUE (allowed) or FALSE (not allowed). Default value is FALSE or the parent definition when inherited.
For example, this can be used to forbid some applications to use PDA if they were not designed to.

• ForwardDVMStderr, which specifies whether the DVM standard error will be forwarded to the Genero
Desktop Client. This attribute is ignored for GWC applications. Default value is FALSE or the parent
definition when inherited.

Child elements

The MAP element may contain the following child elements:

1. Zero or one PROXY element.
2. Zero or one TIMEOUT element.
3. Zero or one PICTURE element.
4. Zero or one RENDERING element.
5. Zero or one THEME elements.

Parent elements
This element is a child of one of the following elements: OUTPUT (under APPLICATION) on page
331

MAX_AVAILABLE

The MAX_AVAILABLE element specifies the maximum number of available DVMs to be attached to a Web
Service.

Constraints

START <= MAX_AVAILABLE
MIN_AVAILABLE <= MAX_AVAILABLE

Reference | 328

To control the number of DVMs - and in effect the number of licenses - used by each application, you can
split your licenses using MAX_AVAILABLE. By using a different fglprofile for each application, you can
specify X licenses for application 1, Y licenses for application 2.

Parent elements
This element is a child of one of the following elements: POOL on page 337

MAX_REQUESTS_PER_DVM

The MAX_REQUESTS_PER_DVM element specifies the maximum number of requests a DVM can handle
before being stopped by the pool manager.

The value must be equal or greater than 1.

Parent elements
This element is a child of one of the following elements: POOL on page 337

MONITOR

The MONITOR element in the Genero Application Server configuration file specifies from which machines
the monitor URL is accessible. By default, the monitor page is not accessible and needs to be configured.

Important: Depending on the network configuration, the monitor is not always able to get the
actual client IP address. If there is a proxy server between the client and the server, for example,
the client IP address seen by the GAS may be the address from the proxy server.

Syntax

<MONITOR>
 <ALLOW_FROM>ip_address</ALLOW_FROM>[...]
</MONITOR>

where ip_address is a valid IPv4 or IPv6 address. For IPv4 it can be a complete IP address or a network
address (ending with a dot)..

Child elements

• Zero or more ALLOW_FROM on page 300 elements.

Example configuring monitor access

In the default deployment monitoring is specified by the resource res.access.control, which is defined with
the value NOBODY by default.

Note: MONITOR control rules will be ignored by the standalone dispatcher (httpdispatch).

Important: The standalone GAS is for development only, provided to simplify your development
setup and configuration. For deployment and production systems, you must include a Web server.

To allow monitoring from hosts, in the GAS configuration file (default %FGLASDIR%/etc/as.xcf) you
need to change the application element for MONITOR from:

<MONITOR>
 <ALLOW_FROM>$(res.access.control)</ALLOW_FROM>
 <!--
 <ALLOW_FROM>192.168.</ALLOW_FROM>
 <ALLOW_FROM>10.</ALLOW_FROM>
 <ALLOW_FROM>193.111.222.123</ALLOW_FROM>
 -->
</MONITOR>

Reference | 329

To (for example):

<MONITOR>
 <ALLOW_FROM>127.0.0.1</ALLOW_FROM>
 <ALLOW_FROM>192.168.</ALLOW_FROM>
 <ALLOW_FROM>10.</ALLOW_FROM>
 <ALLOW_FROM>193.111.222.123</ALLOW_FROM>
</MONITOR>

In this example, the GAS monitor is reachable from localhost (127.0.0.1), 193.111.222.123 and all IP that
begin with "192.168." or "10.". For more details on the monitor usage, see Monitoring Genero Application
Server

Parent elements
This element is a child of one of the following elements: APPLICATION_SERVER on page 303

MIME_TYPE

The MIME_TYPE element sets the MIME type in HTTP Content-Type response header. If not specified, the
default MIME_TYPE of "text/html" is used by the output driver.

Usage example

<MIME_TYPE>text/html</MIME_TYPE>
<MIME_TYPE>text/xml</MIME_TYPE>

Parent elements
This element is a child of one of the following elements: WEB_APPLICATION_RENDERING_COMPONENT
on page 358, RENDERING on page 339

MIN_AVAILABLE

The MIN_AVAILABLE element specifies the minimum number of available DVMs to be attached to
a Web Service. It can be either less than or greater than the value specified by START. If START >
MIN_AVAILABLE, the number of DVMs can decrease to reach MIN_AVAILABLE.

Constraint

0 <= MIN_AVAILABLE <= MAX_AVAILABLE

Parent elements
This element is a child of one of the following elements: POOL on page 337

MODULE

The MODULE element specifies the application module name (the name of the .42r module you want to
run). If omitted, the GAS uses the name of the requested application.

While this element can be specified as part of an execution component, it is typically defined at the
application level.

Usage example

<MODULE>Edit</MODULE>

Reference | 330

Parent elements
This element is a child of one of the following elements: WEB_APPLICATION_EXECUTION_COMPONENT
on page 356, SERVICE_APPLICATION_EXECUTION_COMPONENT on page 344, EXECUTION (for
an application) on page 315, EXECUTION (for a service) on page 316

NAME

The NAME element is the name of the DTD.

Usage example

<NAME>HTML</NAME>

Parent elements
This element is a child of one of the following elements: DOC_TYPE on page 312

OUTPUT (under LOG)
The OUTPUT element specifies where the log messages are sent or written.

The OUTPUT element takes an attribute of Type and an optional path value. If the path value is not
specified, the default of $FGLASDIR/log is used.

Note: The default Genero Application Server configuration file provides a value for the OUTPUT
element, specifying a directory other than $FGLASDIR/log. This directory can vary depending
on the operating system. Check the configuration file to identify the directory specified for your
installation.

Table 63: Valid values for the Type attribute of the OUTPUT element

Type Description

DAILYFILE Log files are written to disk. New log files are
created each day.

A directory is created each day with the naming
convention naming YYYYMMDD. All log files
created by the GAS during the day are stored in
this directory.

If a path is specified, the daily directory is created
and stored under the log directory in the specified
directory.

If a path is not specified, the log files are created in
the default log directory.

DVM logs are redirected to files when DAILYFILE is
set for the log output type.

CONSOLE Log messages are sent to standard output.

Examples

<OUTPUT Type="DAILYFILE"/>
<OUTPUT Type="DAILYFILE">$(res.as.dir)/logdirs</OUTPUT>
<OUTPUT Type="CONSOLE"/>
<OUTPUT Type="CONSOLE,DAILYFILE"/>

In the first example, the daily log file is written to the default logging directory.

Reference | 331

In the second example, the daily directory would be created in $(res.as.dir)/logdirs/log.

In the third example, log messages are sent to standard output.

In the fourth example, log messages are both written to a log file in the default logging directory and sent to
standard output.

Parent elements
This element is a child of one of the following elements: LOG on page 326

OUTPUT (under APPLICATION)
Starting with Genero 3.00, the OUTPUT element is deprecated and used by GWC for HTML5 applications
only.

Note:

As GWC for HTML5 is deprecated, the OUTPUT element is also deprecated. UI applications that are
not using GWC for HTML5 use the UA_OUTPUT on page 354 element instead.

The OUTPUT element specifies the output parameters for a Web application, listing all maps required to
make the defined Web application usable with different browsers/Front Ends.

It takes an optional attribute Rule, to assist with automatic discovery of the User Agent. For more
information, see Automatic Discovery of User Agent.

Child elements

The OUTPUT element may contain the following child elements:

1. Zero or more HTTP_HEADER elements.
2. Zero or one HTTP_COOKIES elements.
3. Zero or more MAP elements.

Parent elements
This element is a child of one of the following elements: APPLICATION (for an application) on
page 301

OUTPUT_DRIVER

The OUTPUT_DRIVER element specifies the output driver to be used. Valid values include:

• GWC2 - The GWC2 output driver specifies that the snippet-based rendering engine be used to render
the application for GWC front-end clients.

• JFE36 - This value is for use with GDC Front End clients.

Usage example

<OUTPUT_DRIVER>GWC2</OUTPUT_DRIVER>
<OUTPUT_DRIVER>JFE36</OUTPUT_DRIVER>

Parent elements
This element is a child of one of the following elements: WEB_APPLICATION_RENDERING_COMPONENT
on page 358, RENDERING on page 339

PARAMETERS

The PARAMETERS element specifies the parameters to provide on the DVM command line. Each
parameter is contained in its own PARAMETER element.

If allowed, parameters can also be set in the application URL. For example, /ua/r/myapp?
Arg=val1&Arg=Val2 provides two parameters. To enable URL parameters for Web applications, set the

Reference | 332

AllowUrlParameters attribute in the EXECUTION (for an application) on page 315 tag to TRUE. The
default is FALSE. If the DVM already has parameters set by the command line, the parameters in the URL
are added to the end of the command line.

Important: This attribute is not supported and should be removed for Web services applications.

Syntax

<PARAMETERS>
[<PARAMETER> parameterValue </PARAMETER> [...]]
</PARAMETERS>

Child elements

• Zero or more PARAMETER elements.

Usage examples

The following example provides two parameters:

• Hello world!
• Again

<PARAMETERS>
 <PARAMETER>Hello world!</PARAMETER>
 <PARAMETER>Again</PARAMETER>
</PARAMETERS>

If URL parameters are allowed, these parameters are listed after the ones defined in the PARAMETERS
element of the configuration file.

Parent elements
This element is a child of one of the following elements: WEB_APPLICATION_EXECUTION_COMPONENT
on page 356, SERVICE_APPLICATION_EXECUTION_COMPONENT on page 344, EXECUTION (for
an application) on page 315, EXECUTION (for a service) on page 316

PATH (under EXECUTION)

The PATH element specifies the current working directory for the application module.

Usage example

<PATH>/home/appdir/sales/</PATH>

Parent elements
This element is a child of one of the following elements: WEB_APPLICATION_EXECUTION_COMPONENT
on page 356, SERVICE_APPLICATION_EXECUTION_COMPONENT on page 344, EXECUTION (for
an application) on page 315, EXECUTION (for a service) on page 316

PATH (under PICTURE)
Starting with Genero 3.00, the PATH (under PICTURE) element is deprecated and used by GWC for
HTML5 applications only.

Note:

UI applications that are using GWC-JS, see the PUBLIC_IMAGEPATH on page 338 under the
UA_OUTPUT on page 354 element instead.

Reference | 333

The PATH element specifies where to look for an image or resource. The exact contents of the PATH
element depends on whether the Type attribute is set to WEBSERVER or APPSERVER.

Parent elements
This element is a child of one of the following elements: WEB_APPLICATION_PICTURE_COMPONENT on
page 357, PICTURE on page 335
PATH with Type WEBSERVER
Starting with Genero 3.00, the PATH with Type WEBSERVER attribute is deprecated and used by GWC
for HTML5 applications only.

Note:

UI applications that are using GWC-JS, see the PUBLIC_IMAGEPATH on page 338 under the
UA_OUTPUT on page 354 element instead.

When you specify the Type as WEBSERVER, the PATH value provides the URL for the directory where
the resources reside on the Web server side. This URL typically consists of the Web server directory
resource combined with a directory alias.

Syntax

<WEB_APPLICATION_PICTURE_COMPONENT Id="resID">
 <PATH Id="pathID" Type="WEBSERVER">$(connector.uri)/path</PATH>
</WEB_APPLICATION_PICTURE_COMPONENT>

1. resID is the unique identifier for this picture component.
2. pathID defines what is located in the specified path, such as "Image" or "Resource". The Id attribute for

the PICTURE element is optional; if not specified, it defaults to "Image".
3. The TYPE attribute is optional; if not specified, it defaults to WEBSERVER.
4. $(connector.uri) is the resource for the Web server directory. If you are using a direct connection

to the GAS, the resource $(connector.uri) is empty. If you connect through an Apache web server,
$(connector.uri) is replaced by /gas/, assuming your URL is

http://WebServer/gas/ua/r/AppID

If $(connector.uri) is not specified in the picture path, the web server is searched for the images.
5. path is relative to the DOCUMENT_ROOT on page 312 path set in the configuration to map to the

physical directory that stores the image files. You need to specify a valid path according to the
DOCUMENT_ROOT path in your configuration.

Example

<!-- A Legacy Picture Component -->
<WEB_APPLICATION_PICTURE_COMPONENT Id="cpn.gwc.picture.appserver">
<PATH Id="Image" Type="WEBSERVER" >$(connector.uri)/pic</PATH>
<PATH Id="Resource" Type="WEBSERVER" >$(connector.uri)/fjs</PATH>
</WEB_APPLICATION_PICTURE_COMPONENT>

Note: If DOCUMENT_ROOT is set to /usr/local/genero/web, our example maps the Image path to /
usr/local/genero/web/pic and the Resource path to /usr/local/genero/web/fjs.

Note: The front-end clients use $(pictures.uri) in their templates to access the pictures. This
corresponds to the picture component path: $(connector.uri)/pic.

Tip: When creating your HTML pages, use the absolute path to HTML objects like images or
JavaScript files; for example, use /fjs/pic/accept.png rather than ../pic/accept.png,
because URLs containing .. will be rejected by the GAS for security reasons.

Reference | 334

PATH with Type APPSERVER
Starting with Genero 3.00, the PATH with Type APPSERVER attribute is deprecated and used by GWC
for HTML5 applications only.

Note:

UI applications that are using GWC-JS, see the PUBLIC_IMAGEPATH on page 338 under the
UA_OUTPUT on page 354 element instead.

When you specify the Type of APPSERVER, the PATH value is then an enumeration of disk locations
where the resource is potentially located. The server will then build specific URL for each resources and
then catch these URL to search through the given paths for the resource on disk and deliver it.

Syntax

<WEB_APPLICATION_PICTURE_COMPONENT Id="resID">
 <PATH Id="pathID" Type="APPSERVER" [ExtensionFilter="ext"]
 [DVMFallbackAllowed="TRUE|FALSE"]>pathlist</PATH>
</WEB_APPLICATION_PICTURE_COMPONENT>

Syntax notes

1. resID is the unique identifier for this picture component definition.
2. pathID defines what is located in the specified path, such as "Image" or "Resource". The Id attribute for

the PICTURE element is optional; if not specified, it defaults to "Image".
3. ExtensionFilter is an optional attribute that filters access to application resources like images. Its value

is a list of extensions, separated by semi-colons. For example: .png;.gif;.jpeg;.jpg;.bmp;.ico;.js;.css.
The extensions are case sensitive. You might want to allow .png and not .PNG. If ExtensionFilter is
not defined, access to any resources of the application is granted. ExtensionFilter is also used to filter
image extensions that are asked to the DVM.By default, any applications which inherits defaultgwc
configuration have restricted access to resources (see defaultgwc image component references in
as.xcf)

4. DVMFallbackAllowed is an optional attribute that allows images and resources to be asked to the
DVM if they are not found at the locations pointed by pathlist. By default, asking images to the DVM is
allowed.

5. pathlist is a list of directory paths separated by semi-colons.

Example

<!-- A GAS multi-location Picture Component -->
<WEB_APPLICATION_PICTURE_COMPONENT Id="cpn.gwc.html5.picture">
 <PATH Id="Resource" Type="WEBSERVER">$(connector.uri)/fjs</PATH>
 <PATH Id="Image" Type="APPSERVER"
 ExtensionFilter="$(res.image.extensions)">
 $(res.path.tpl.html5)/img;$(res.path.pic);$(application.path)</PATH>
 <PATH Id="SetHtml5" Type="APPSERVER"
 ExtensionFilter="$(res.web.extensions);.less;.svg"
 DVMFallbackAllowed="FALSE">
 $(res.path.tpl.html5);$(res.path.tpl.common)</PATH>
 <PATH Id="WebComponents" Type="APPSERVER"
 ExtensionFilter="$(res.web.components.extensions)"
 DVMFallbackAllowed="FALSE">
 $(res.path.docroot)</PATH>
</WEB_APPLICATION_PICTURE_COMPONENT>

Reference | 335

PICTURE
Starting with Genero 3.00, the PICTURE element is deprecated and used by GWC for HTML5 applications
only.

Note:

UI applications that are using GWC-JS, see the PUBLIC_IMAGEPATH on page 338 under the
UA_OUTPUT on page 354 element instead.

The PICTURE element specifies the picture parameters required by this Web application. It takes an
attribute Using, where you can reference a predefined WEB_APPLICATION_PICTURE_COMPONENT (to
inherit the picture parameters of that component), or you can specify the path to the image directory by
including a PATH element.

Usage example

<PICTURE Using="cpn.gwc.html5.picture" />

<PICTURE>
 <PATH>$(connector.uri)/iiug/images</PATH>
</PICTURE>

Each application output map can define a PICTURE element. This element will be used to look for images
and resources handled by URLs generated by the resourceURI() SBRE function or the legacy imageURI()
SBRE function.

There are several ways to define a PICTURE element:

1. The PICTURE element can simply refer to a previously defined picture component:

<?xml version="1.0"?>
<APPLICATION Parent="defaultgwc"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="http://www.4js.com/ns/gas/2.21/
cfextwa.xsd">
 <EXECUTION>
 <PATH>$(res.path.demo.app)/card/src</PATH>
 <MODULE>card.42r</MODULE>
 </EXECUTION>
 <OUTPUT>
 <MAP Id="DUA_HTML5">
 <PICTURE Using="cpn.gwc.picture.appserver"/>
 </MAP>
 </OUTPUT>
</APPLICATION>

<?xml version="1.0"?>
<APPLICATION Parent="defaultgwc"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="http://www.4js.com/ns/gas/2.21/
cfextwa.xsd">
 <EXECUTION>
 <PATH>$(res.path.demo.app)/card/src</PATH>
 <MODULE>card.42r</MODULE>
 </EXECUTION>
 <OUTPUT>
 <MAP Id="DUA_HTML5">
 <PICTURE Using="cpn.gwc.picture.webserver"/>
 </MAP>
 </OUTPUT>
</APPLICATION>

Reference | 336

2. The PICTURE element can define its own Picture component based on the Web Server behavior:

<?xml version="1.0"?>
<APPLICATION Parent="defaultgwc"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="http://www.4js.com/ns/gas/2.21/
cfextwa.xsd">
 <EXECUTION>
 <PATH>$(res.path.demo.app)/card/src</PATH>
 <MODULE>card.42r</MODULE>
 </EXECUTION>
 <OUTPUT>
 <MAP Id="DUA_HMTL5">
 <PICTURE>
 <PATH Id="Image" Type="WEBSERVER">$(connector.uri)/card/img</PATH>
 </PICTURE>
 </MAP>
 </OUTPUT>
</APPLICATION>

3. The PICTURE element can define its own Picture component based on the AppServer behavior:

<?xml version="1.0"?>
<APPLICATION Parent="defaultgwc"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="http://www.4js.com/ns/gas/2.21/
cfextwa.xsd">
 <EXECUTION>
 <PATH>$(res.path.demo.app)/card/src</PATH>
 <MODULE>card.42r</MODULE>
 </EXECUTION>
 <OUTPUT>
 <MAP Id="DUA_HTML5">
 <PICTURE>
 <PATH Id="Image" Type="APPSERVER">
 $(res.path.demo.app)/card/img;$(defaultPicturePath)
 </PATH>
 </PICTURE>
 </MAP>
 </OUTPUT>
</APPLICATION>

4. For each application output map, you can define several PATH element using different IDs inside a
PICTURE element. This allows the use of a mixed mechanism of resources referencing:

<?xml version="1.0"?>
<APPLICATION Parent="defaultgwc"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="http://www.4js.com/ns/gas/2.21/
cfextwa.xsd">
 <EXECUTION>
 <PATH>$(res.path.demo.app)/card/src</PATH>
 <MODULE>card.42r</MODULE>
 </EXECUTION>
 <OUTPUT>
 <MAP Id="DUA_HTML5">
 <PICTURE Using="cpn.gwc.picture.webserver">
 <PATH Id="AppServerImage" Type="APPSERVER">
 $(res.path.demo.app)/card/img;$(defaultPicturePath)</PATH>
 <PATH Id="WebServerImage" Type="WEBSERVER">
 $(connector.uri)/mypics</PATH>
 </PICTURE>
 </MAP>

Reference | 337

 </OUTPUT>
</APPLICATION>

Parent elements
This element is a child of one of the following elements: MAP on page 327

PLATFORM_INDEPENDENT
This element contains a collection of platform-independent RESOURCE elements.

The PLATFORM_INDEPENDENT element contains a list of platform-independent resources, available for
both UNIX™ and Windows™ platforms.

Child elements

A PLATFORM_INDEPENDENT element main contain the following child elements:

• Zero to many RESOURCE elements.

Parent elements
This element is a child of one of the following elements: RESOURCE_LIST on page 343

POOL

The POOL element sets the limitations regarding the number of Virtual Machines (DVMs) that are attached
to a Web Service. You specify four values within a POOL element:

• The number of DVMs to start when the GAS starts
• The minimum number of DVMs to have alive while the GAS is running
• The maximum number of DVMs to have alive while the GAS is running.
• The maximum number of requests a DVM can handle before being stopped by the pool.

Note: The POOL element is only available for Web Services.

Syntax

<POOL>
 <START> startValue </START>
 <MIN_AVAILABLE> minValue </MIN_AVAILABLE>
 <MAX_AVAILABLE> maxValue </MAX_AVAILABLE>
 <MAX_REQUESTS_PER_DVM> maxRequests </MAX_REQUESTS_PER_DVM>
</POOL>

Child elements

The POOL element may contain the following child elements:

1. Zero or one START elements.
2. Zero or one MIN_AVAILABLE element.
3. Zero or one MAX_AVAILABLE element.
4. Zero or one MAX_REQUESTS_PER_DVM element.

Example

<POOL>
 <START>5</START>
 <MIN_AVAILABLE>3</MIN_AVAILABLE>
 <MAX_AVAILABLE>10</MAX_AVAILABLE>
 <MAX_REQUESTS_PER_DVM>1</MAX_REQUESTS_PER_DVM>

Reference | 338

</POOL>

In this example, 5 DVMs are started to service the Web service when the GAS starts; the number can fall
as low as 3 DVMs or rise as high as 10 DVMs. For more information on setting service pool elements, see
the Service Pool section of the GAS Architecture topic.

Parent elements
This element is a child of one of the following elements:
SERVICE_APPLICATION_EXECUTION_COMPONENT on page 344, EXECUTION (for a service)
on page 316,

PROXY (for an application)

Specifies the executable you want to use for this (set of) application(s). Usually, the value is fglrun for
UNIX™ Systems (UNX) and fglrun.exe for Windows NT™ / 2000 / XP (WNT).

Usage examples

<PROXY>fglrun</PROXY>
<PROXY>fglrun.exe</PROXY>

Parent elements
This element is a child of one of the following elements: UA_OUTPUT on page 354, MAP on page 327

PROXY (for a service)

Specifies the executable you want to use for this (set of) application(s). Usually, the value is fglrun for
UNIX™ Systems (UNX) and fglrun.exe for Windows NT™ / 2000 / XP (WNT).

Usage examples

<PROXY>fglrun</PROXY>
<PROXY>fglrun.exe</PROXY>

Parent elements
This element is a child of one of the following elements: APPLICATION (for a service) on page
301

PUBLIC_IMAGEPATH

The PUBLIC_IMAGEPATH element defines a path relative to the root path appdata/public, where
fglrun looks for resources for common images used by applications. The "appdata" resource, as it
is commonly known, is set by the resource $(res.appdata.path) in the GAS configuration file, see GAS
directories on page 38.

Note: UI applications that are using GWC for HTML5, see the PATH (under PICTURE) on page
332 element instead.

Syntax

<PUBLIC_IMAGEPATH>path</PUBLIC_IMAGEPATH>

Where path is a path relative to the root path appdata/public.

Usage example 1

 ...

Reference | 339

 <UA_OUTPUT>
 <PROXY></PROXY>
 <PUBLIC_IMAGEPATH>$(res.public.resources)</PUBLIC_IMAGEPATH>
 <GWC-JS>gwc-js</GWC-JS>
 <TIMEOUT Using="cpn.wa.timeout"/>
 </UA_OUTPUT>
 ...

If the value of the resource $(res.public.resources) is set by default as in the as.xcf file to "common",
images are therefore sought in the appdata/public/common directory.

<RESOURCE Id="res.public.resources" Source="INTERNAL">common</RESOURCE>

Usage example 2

 ...
 <UA_OUTPUT>
 <PROXY></PROXY>
 <PUBLIC_IMAGEPATH>myapp/newpictures</PUBLIC_IMAGEPATH>
 <GWC-JS>gwc-js</GWC-JS>
 <TIMEOUT Using="cpn.wa.timeout"/>
 </UA_OUTPUT>
 ...

In this example, the value of the PUBLIC_IMAGEPATH is set to "myapp/newpictures", so images are
therefore sought in the appdata/public/myapp/newpictures directory.

Child elements

There are no child elements.

Parent elements
This element is a child of one of the following elements: UA_OUTPUT on page 354

RAW_DATA
The RAW_DATA element limits the size of a single log message.

Log messages can include the complete html response, and can therefore be very large (an entire html
page). The optional RAW_DATA element specifies the maximum number of characters in any single log
message. It takes an attribute MaxLength, the number of characters after which the log message is
truncated. The value provided for MaxLength must be a non-negative integer.

If the RAW_DATA element is omitted, data is logged in its entirety.

Example

<RAW_DATA MaxLength="100" />

Parent elements
This element is a child of one of the following elements: LOG on page 326

RENDERING

Attention: As of Genero version 3.00, the Snippet-Based Rendering Engine (SBRE) and all
themes using template paths are deprecated. Output maps (e.g. DUA_HTML5) are no longer used
to specify output theme, as the wa protocol did previously. For information on how templates and
snippets were used by the Front End clients, please refer to the Genero Application Server 2.50
User Guide.

Reference | 340

For new development, use GWC for JavaScript, see Genero Web Client for JavaScript (GWC-JS)
on page 173.

The RENDERING element defines the rendering to be applied to this Web application.
It takes an optional attribute Using, in which the unique identifier of a predefined
WEB_APPLICATION_RENDERING_COMPONENT element can be specified.

The RENDERING element may contain an OUTPUT_DRIVER on page 331 child element, specifying the
output driver to be used. If an output driver is defined here, it overrides any output driver settings inherited
via the Usage attribute and its specified rendering component.

Child elements

The RENDERING element may contain the following child elements:

1. Zero or one OUTPUT_DRIVER element.
2. Zero or one XML_DECLARATION element.
3. Zero or one HTTP_RESPONSE_ENCODING element.
4. Zero or one HTTP_REQUEST_ENCODING element.
5. Zero or one MIME_TYPE element.
6. Zero or one DOC_TYPE element.

Usage examples

<RENDERING Using="cpn.rendering.wa" />

<RENDERING>
 <OUTPUT_DRIVER>JFE36</OUTPUT_DRIVER>
</RENDERING>

Parent elements
This element is a child of one of the following elements: MAP on page 327

REPORT_VIEWER_DIRECTORY
The REPORT_VIEWER_DIRECTORY element specifies the report viewer directory used by the Genero Web
Report Viewer.

Starting with Genero 3.00, the REPORT_VIEWER_DIRECTORY allows you to configure the location of the
Genero Web Report Viewer, where report viewer files may be accessed. A corresponding report viewer
URL prefix, /ua/report/viewer , is provided to the GRE to load the report viewer implementation, see
Application URIs on page 49.

Syntax

<REPORT_VIEWER_DIRECTORY>path</REPORT_VIEWER_DIRECTORY>

The REPORT_VIEWER_DIRECTORY element does not support any attributes or have any child elements.

Usage example

 <REPORT_VIEWER_DIRECTORY>$(res.gredir)/viewer</REPORT_VIEWER_DIRECTORY>
 ...

Reference | 341

Parent elements
This element is a child of the following element: INTERFACE_TO_CONNECTOR on page 324

REQUEST_RESULT (for an application)
Time out (in seconds) for pending transactions.

The Request Result timeout is used to inform the user when a transaction is taking longer than expected.
The REQUEST_RESULT element specifies the number of seconds to wait for the DVM to give an answer to
the Application Server, after which the Application Server sends a "transaction pending" page to the Front
End client to inform the user that this transaction is taking longer than expected. This is also known as
sending a keepalive response. The default transaction pending page automatically submits a new request
to wait for the DVM to complete its processing.

Under normal operations, the Front End client sends a GET request to the Genero Application Server
immediately after receiving a response. Meanwhile, the Genero Application Server stores data sent by the
DVM for the application in its buffer, waiting for a GET request from the client. When the GET request is
received by the Genero Application Server, if the server has data sent by the DVM in its buffer, the stored
data is sent back to the Front End client. If the DVM does not have data to send, the Genero Application
Server waits and, if the DVM is still processing the request after the specified REQUEST_RESULT timeout
expires, it sends the keepalive response to the Front End client and resets the REQUEST_RESULT timer.

Tip: The number of seconds specified for the REQUEST_RESULT timeout should be less that
the cgi timeout. By default, the Apache Web server has the cgi timeout default to 300 seconds.
Therefore, the REQUEST_RESULT timeout has an initial default setting of 60 seconds.

Usage example

<REQUEST_RESULT>60</REQUEST_RESULT>

In this usage example, the Request Result timeout is set to 60 seconds.

Parent elements
This element is a child of one of the following elements:

• WEB_APPLICATION_TIMEOUT_COMPONENT on page 360

• TIMEOUT

REQUEST_RESULT (for a service)
Time out (in seconds) for pending transactions.

The Request Result timeout is used to inform the user when a Web service transaction is taking longer
than expected. The REQUEST_RESULT element specifies the number of seconds to wait for the DVM to
give an answer to the Application Server, after which the Application Server sends a HTTP 400 error page
to the Front End client to inform the user that the request has taken too long to fulfill.

The Front End client cannot recover from a HTTP 400 error page, and any Web service client application
must send a new request.

Tip: The number of seconds specified for the REQUEST_RESULT timeout should be less that
the cgi timeout. By default, the Apache Web server has the cgi timeout default of 300 seconds.
If setting the REQUEST_RESULT timeout, it should be set to less than that, for example, at 60
seconds.

Usage example

<REQUEST_RESULT>60</REQUEST_RESULT>

In this usage example, the Request Result timeout is set to 60 seconds. It tells the GWS proxy to release
DVM in charge of a service that has not responded in the given time frame.

Reference | 342

Note: If Request Result timeout is not set (the default), the GWS proxy never releases the DVM
and will wait until DVM responds to the request.

Parent elements
This element is a child of one of the following elements:

• SERVICE_APPLICATION_TIMEOUT_COMPONENT on page 345

• TIMEOUT

RESOURCE
This element defines a variable you can define once and use elsewhere in your Genero Application Server
and external application configuration files.

Resources allow you to create resources, or variables, for use within the configuration files and templates.
Resources can be defined in the general RESOURCE_LIST element or within individual application or
Web service configurations.

A RESOURCE element defines a resource, or variable, that can be used in configuration files and template
files. It takes two attributes, an Id attribute and a Source attribute. The Id attribute is the identifier of
the resource itself, while the Source attribute tells the Application Server where to find the value of the
resource.

Syntax

<RESOURCE Id="resId" Source="{ INTERNAL | ENVIRON } " > resData </RESOURCE>

Syntax notes

1. resId is the resource identifier
2. resData is the resource data. Its use depends on the value of the Source attribute.

• If Source is INTERNAL, resData is the value of the resource.
• If Source is ENVIRON, resData is the name of an environment variable.

3. Resources are used in the configuration files or in the template files using the syntax:

 $(resId)

Usage examples

A resource defined inline.

<RESOURCE Id="res.dvm.wa" Source="INTERNAL">$(res.fgldir)/bin/fglrun.exe</
RESOURCE>

A resource defined as the value of an environment variable. In this example, the resource res.os contains
the value of the environment variable OS. For example, on a Windows™ system, the environment variable
OS could have the value Windows_NT.

<RESOURCE Id="res.os" Source="ENVIRON">OS</RESOURCE>

Parent elements
This element is a child of one of the following elements: PLATFORM_INDEPENDENT on page 337, UNX
on page 355, WNT on page 361

Reference | 343

RESOURCE (for a service)

The RESOURCE element defines a resource available for this application. For more information, see
Resources.

Parent elements
This element is a child of one of the following elements: APPLICATION (for a service) on page
301

RESOURCE (for an application)

The RESOURCE element defines a resource available for this application. For more information on defining
resources, see RESOURCE on page 342.

Parent elements
This element is a child of one of the following elements: APPLICATION (for an application) on
page 301

RESOURCE_LIST
This element contains all RESOURCE elements, organized by operating system.

The RESOURCE_LIST element of the Genero Application Server configuration file allows you to define
RESOURCE elements, which can then be referenced in your configuration files and template files. A
resource is a type of variable. By defining and using resources, when the value of the resource needs
updating, it becomes possible to modify the resource in one location, and the new value is carried through
the various configuration and template files that reference the resource.

A resource is defined as platform-independent or platform-dependent, based on the section (parent
element) in which the resource is defined.

Syntax

<RESOURCE_LIST>
 <PLATFORM_INDEPENDENT> [resource] [...] </PLATFORM_INDEPENDENT>
 <WNT> resource [...] </WNT>
 <UNX> resource [...] </UNX>
</RESOURCE_LIST>

Child elements

A RESOURCE_LIST element contains the following child elements:

• One PLATFORM_INDEPENDENT element, containing a list of platform-independent resources.
• One WNT element, containing a list of WNT-specific resources.
• One UNX element, containing a list of UNIX-specific resources.

Example

<RESOURCE_LIST>
 <PLATFORM_INDEPENDENT>
 <RESOURCE Id="res.fglgui" Source="INTERNAL">1</RESOURCE>
 ...
 </PLATFORM_INDEPENDENT>
 <WNT>
 <RESOURCE Id="res.dvm.wa" Source="INTERNAL">
 $(res.fgldir)\bin\fglrun.exe</RESOURCE>
 ...
 </WNT>
 <UNX>

Reference | 344

 <RESOURCE Id="res.dvm.wa" Source="INTERNAL">
 $(res.fgldir)/bin/fglrun.exe</RESOURCE>
 ...
 </UNX>
</RESOURCE_LIST>

For more information on defining a resource, see RESOURCE on page 342.

Parent elements
This element is a child of one of the following elements: APPLICATION_SERVER on page 303

ROOT_URL_PREFIX

The ROOT_URL_PREFIX element specifies the URL to access the Web server when a reverse proxy
server is used between the client and the GAS. The ROOT_URL_PREFIX will override the URLs generated
by the Web server and will construct them using this prefix value instead.

Note: The reverse proxy server works on behalf of the Application server. The Web client is not
aware of the proxy and does not know or see what server it is being forwarded to behind the proxy.
In this case, the Web server uses the ROOT_URL_PREFIX, which provides the correct interface to
the client.

Usage example

<ROOT_URL_PREFIX>http://serverB:8080/java-j2eedispatch</ROOT_URL_PREFIX>

• Where a reverse proxy server (e.g. server A) is forwarding requests to the GAS on serverB.
• Where "java-j2eedispatch" specifies the connector.uri part of the URI; typically this is the same as

connector.uri acknowledged by the GAS for the dispatcher specific to that Web server.

Note: If ROOT_URL_PREFIX is defined and is empty, it behaves as if not defined.

Parent elements
This element is a child of the following element: INTERFACE_TO_CONNECTOR on page 324

SERVICE_APPLICATION_EXECUTION_COMPONENT

The SERVICE_APPLICATION_EXECUTION_COMPONENT creates a Web service execution component,
which defines a set of execution parameters that are used when starting the Web service. It takes an
attribute Id, which specifies the unique identifier for this set of execution definitions. It is this unique
identifier that is referenced by a Web service, providing that Web service with a base set of execution
parameters.

Syntax

<SERVICE_APPLICATION_EXECUTION_COMPONENT Id="compId">
 <ENVIRONMENT_VARIABLE Id="envId" > env </ENVIRONMENT_VARIABLE> [...]
 [<PATH> path </PATH>]
 [<DVM> dvm </DVM>]
 [<MODULE> module </MODULE>]
 [<PARAMETERS> parameterSettings </PARAMETERS>]
 [<ACCESS_CONTROL> accessSettings </ACCESS_CONTROL>]
 [<DELEGATE> delegateSettings </DELEGATE>]
 [<WEB_COMPONENT_DIRECTORY>webcomponentsSettings</WEB_COMPONENT_DIRECTORY>
 [<POOL> poolSettings </POOL>]
</SERVICE_APPLICATION_EXECUTION_COMPONENT>

Reference | 345

Child elements

The SERVICE_APPLICATION_EXECUTION_COMPONENT element may contain the following child
elements:

1. Zero or more ENVIRONMENT_VARIABLE elements.
2. Zero or one PATH element.
3. Zero or one DVM element.
4. Zero or one MODULE element.
5. Zero or one PARAMETERS element.
6. Zero or one ACCESS_CONTROL element.
7. Zero or one DELEGATE element.
8. Zero or one WEB_COMPONENT_DIRECTORY on page 361 element.
9. Zero or one POOL element.

Example

<SERVICE_APPLICATION_EXECUTION_COMPONENT Id="cpn.wa.execution.local">
 <ENVIRONMENT_VARIABLE Id="FGLDIR">$(res.fgldir)</ENVIRONMENT_VARIABLE>
 <ENVIRONMENT_VARIABLE Id="PATH">$(res.path)</ENVIRONMENT_VARIABLE>
 <ENVIRONMENT_VARIABLE Id="INFORMIXDIR">$(res.informixdir)</
ENVIRONMENT_VARIABLE>
 <ENVIRONMENT_VARIABLE Id="INFORMIXSERVER">$(res.informixserver)
 </ENVIRONMENT_VARIABLE>
 ...
 <DVM>$(res.dvm.wa)</DVM>
</SERVICE_APPLICATION_EXECUTION_COMPONENT>

Parent elements
This element is a child of one of the following elements: COMPONENT_LIST on page 308

SERVICE_APPLICATION_TIMEOUT_COMPONENT

The SERVICE_APPLICATION_TIMEOUT_COMPONENT element creates a Web service application timeout
component, which define a set of timeout values to be used when configuring a Web service. It takes an
attribute Id, which specifies the unique identifier for this set of timeout definitions. It is this unique identifier
that is referenced by a Web service, providing that Web service with a base set of timeout values.

The GAS handles the Web Services Server side. It takes care of the DVM requested by a Web Services
client.

Syntax

<SERVICE_APPLICATION_TIMEOUT_COMPONENT Id="sTimeOutID">
 <DVM_AVAILABLE>dvmTimeOut</DVM_AVAILABLE>
 <KEEP_ALIVE>dvmKeepAliveTimeOut</KEEP_ALIVE>
 <REQUEST_RESULT>requestTimeOut</REQUEST_RESULT>
</SERVICE_APPLICATION_TIMEOUT_COMPONENT>

Child elements

The SERVICE_APPLICATION_TIMEOUT_COMPONENT element may contain the following child elements.

1. Zero or one DVM_AVAILABLE element.
2. Zero or one KEEP_ALIVE element.
3. Zero or one REQUEST_RESULT (for a service) on page 341 element.

Reference | 346

Usage example

<SERVICE_APPLICATION_TIMEOUT_COMPONENT Id="cpn.ws.timeout.set1">
 <DVM_AVAILABLE>10</DVM_AVAILABLE>
 <KEEP_ALIVE>360</KEEP_ALIVE>
 <REQUEST_RESULT>60</REQUEST_RESULT>
</SERVICE_TIMEOUT_COMPONENT>

In this example, the Id value - cpn.ws.timeout.set1 - can be referenced when defining a Web service.
When a Web service references a component by its Id value, it inherits the settings defined by that
component.

Parent elements
This element is a child of one of the following elements: COMPONENT_LIST on page 308

SERVICE_LIST

The SERVICE_LIST element provides a list of groups and Web services applications (for those Web
services applications defined within the Genero Application Server configuration file).

Syntax

<SERVICE_LIST>
 [<GROUP ...> [...]]
 [<APPLICATION ...> [...]]
</SERVICE_LIST>

Child elements

The SERVICE_LIST element may contain the following child elements:

1. Zero or more GROUP elements.
2. Zero or more APPLICATION elements.

Example

<CONFIGURATION>
 <APPLICATION SERVER>
 ...
 <SERVICE_LIST>
 ...
 </SERVICE_LIST>
 </APPLICATION_SERVER>
</CONFIGURATION>

Important: You must include the SERVICE_LIST element, even if the Genero Application
Server does not have any Web Services to define. In this situation, you simply specify an empty
SERVICE_LIST element.

Parent elements
This element is a child of one of the following elements: APPLICATION_SERVER on page 303

SESSION_DIRECTORY

The SESSION_DIRECTORY element specifies where to store the session files of all applications and
services started by the GAS. This element is optional.

Reference | 347

Usage example

<SESSION_DIRECTORY>/var/tmp</SESSION_DIRECTORY>

In this example, the session files are stored in sub directories of /var/tmp/session.

By default, the SESSION_DIRECTORY entry is not set and the session files are stored in $FGLASDIR.

Parent elements
This element is a child of one of the following elements: INTERFACE_TO_CONNECTOR on page 324

SHORT

The SHORT element contains the short description.

Usage example

<SHORT>A short description</SHORT>

Parent elements
This element is a child of one of the following elements: DESCRIPTION on page 311.

SHORTCUT

Selects the template to be used to generate the GDC shortcut for this application.

Attention: As of Genero version 3.00, the Snippet-Based Rendering Engine (SBRE) and all
themes using template paths are deprecated. Output maps (e.g. DUA_HTML5) are no longer used
to specify output theme, as the wa protocol did previously. For information on how templates and
snippets were used by the Front End clients, please refer to the Genero Application Server 2.50
User Guide.

For new development, use GWC for JavaScript, see Genero Web Client for JavaScript (GWC-JS)
on page 173.

Syntax

<SHORTCUT Id="shortcutId"> shortcutPath </SHORTCUT>

Syntax notes

1. shortcutId is the unique identifier for this element.
2. shortcutPath is the path to the shortcut template to be used in this theme.

Usage example

<WEB_APPLICATION_THEME_COMPONENT Id="cpn.theme.default.gdc">
 <TEMPLATE Id="_default">$(res.theme.default.gdc.template)</TEMPLATE>
 <SHORTCUT Id="_default">$(res.theme.default.gdc.shortcut.path)/gdc-
http.gdc
 </SHORTCUT>
</WEB_APPLICATION_THEME_COMPONENT>

Parent elements
This element is a child of one of the following elements: THEME on page 351,
WEB_APPLICATION_THEME_COMPONENT on page 359

Reference | 348

SNIPPET

The SNIPPET element associates a snippet object identifier with a template to be used by the Genero Web
Client snippet-based rendering engine when rendering forms that include the specified object.

Attention: As of Genero version 3.00, the Snippet-Based Rendering Engine (SBRE) and all
themes using template paths are deprecated. Output maps (e.g. DUA_HTML5) are no longer used
to specify output theme, as the wa protocol did previously. For information on how templates and
snippets were used by the Front End clients, please refer to the Genero Application Server 2.50
User Guide.

For new development, use GWC for JavaScript, see Genero Web Client for JavaScript (GWC-JS)
on page 173.

Syntax

<SNIPPET Id="snipId" Style="mystyle"> snippath </SNIPPET>

Syntax notes

1. snipId is the object identifier
2. mystyle is the value of the STYLE attribute
3. snippath is the path to the template snippet file

Usage Example

<SNIPPET Id="Edit" Style="FileUpload">
 $(res.path.tpl.html5)/FileUpload.xhtml</SNIPPET>

Code Example

EDIT f01 = formonly.f01, STYLE="FileUpload";

For more information, refer to the Genero Web Client User Guide.

Parent elements
This element is a child of one of the following elements: THEME on page 351,
WEB_APPLICATION_THEME_COMPONENT on page 359

SOCKET_FAMILY

By default, the Genero Application Server uses UNIX™ domain sockets to communicate between the
dispatcher and the proxies on UNIX™ systems. The Genero Application Server uses TCP sockets to
communicate between the dispatcher and proxies on Windows™ and with the J2EE dispatcher.

The SOCKET_FAMILY element specified whether UNIX™ domain sockets or TCP sockets are to be used
on UNIX™ systems. The configured default is UNIX™. To use TCP sockets, change the value to TCP.

Caution: Forcing TCP sockets on UNIX™ should only be done for debugging purposes, at the
request of support.

On Windows™, it is configured to TCP, but it is not used. It must exist, however, as it is required by the
schema validating the file.

Usage example

<RESOURCE_LIST>
 <WNT>

Reference | 349

 <RESOURCE Id="res.dispatcher.socket.family" Source="INTERNAL">TCP</
RESOURCE>
 <RESOURCE Id="res.dispatcher.socket.path" Source="INTERNAL">C:\temp</
RESOURCE>
 </WNT>
 <UNX>
 <RESOURCE Id="res.dispatcher.socket.family" Source="INTERNAL">UNIX</
RESOURCE>
 <RESOURCE Id="res.dispatcher.socket.path" Source="INTERNAL">/tmp</
RESOURCE>
 </UNX>
...
<INTERFACE_TO_CONNECTOR>
 <TCP_BASE_PORT>$(res.ic.base.port)</TCP_BASE_PORT>
 <TCP_PORT_OFFSET>$(res.ic.port.offset)</TCP_PORT_OFFSET>
 <DOCUMENT_ROOT>$(res.path.docroot)</DOCUMENT_ROOT>
 <TEMPORARY_DIRECTORY>$(res.path.tmp)</TEMPORARY_DIRECTORY>
 <SOCKET_FAMILY>$(res.dispatcher.socket.family)</SOCKET_FAMILY>
 <SOCKET_PATH>$(res.dispatcher.socket.path)</SOCKET_PATH>
</INTERFACE_TO_CONNECTOR>

Parent elements
This element is a child of one of the following elements: INTERFACE_TO_CONNECTOR on page 324

SOCKET_PATH

The SOCKET_PATH element defines the directory where UNIX™ domain sockets will be created and stored.
By default, it is configured as /tmp for UNIX™ systems, C:\temp for Windows™)

Usage example

<RESOURCE_LIST>
 <WNT>
 <RESOURCE Id="res.dispatcher.socket.family" Source="INTERNAL">TCP</
RESOURCE>
 <RESOURCE Id="res.dispatcher.socket.path" Source="INTERNAL">C:\temp</
RESOURCE>
 </WNT>
 <UNX>
 <RESOURCE Id="res.dispatcher.socket.family" Source="INTERNAL">UNIX</
RESOURCE>
 <RESOURCE Id="res.dispatcher.socket.path" Source="INTERNAL">/tmp</
RESOURCE>
 </UNX>
...
<INTERFACE_TO_CONNECTOR>
 <TCP_BASE_PORT>$(res.ic.base.port)</TCP_BASE_PORT>
 <TCP_PORT_OFFSET>$(res.ic.port.offset)</TCP_PORT_OFFSET>
 <DOCUMENT_ROOT>$(res.path.docroot)</DOCUMENT_ROOT>
 <TEMPORARY_DIRECTORY>$(res.path.tmp)</TEMPORARY_DIRECTORY>
 <SOCKET_FAMILY>$(res.dispatcher.socket.family)</SOCKET_FAMILY>
 <SOCKET_PATH>$(res.dispatcher.socket.path)</SOCKET_PATH>
</INTERFACE_TO_CONNECTOR>

Parent elements
This element is a child of one of the following elements: INTERFACE_TO_CONNECTOR on page 324

START

The START element specifies the number of DVMs to start for this Web Service when the GAS starts.

Reference | 350

Constraint

START <= MAX_AVAILABLE

Parent elements
This element is a child of one of the following elements: POOL on page 337

SYSTEM_ID

The SYSTEM_ID element is the system identifier of the DTD.

Usage example

<SYSTEM_ID>http://www.w3.org/TR/html4/strict.dtd</SYSTEM_ID>

Parent elements
This element is a child of one of the following elements: DOC_TYPE on page 312

TCP_BASE_PORT

The TCP_BASE_PORT element specifies the base value of the port the Genero Application Server is
listening to.

The true port that the Genero Application Server is listening to is the port specified by TCP_BASE_PORT +
TCP_PORT_OFFSET.

Usage example

<TCP_BASE_PORT>6420</TCP_BASE_PORT>

Parent elements
This element is a child of one of the following elements: INTERFACE_TO_CONNECTOR on page 324

TCP_PORT_OFFSET

The TCP_PORT_OFFSET element specifies the offset value of the port the GWC is listening to.

The true port that the Genero Application Server is listening to is the port specified by TCP_BASE_PORT +
TCP_PORT_OFFSET.

Usage example

<TCP_PORT_OFFSET>75</TCP_PORT_OFFSET>

Parent elements
This element is a child of one of the following elements: INTERFACE_TO_CONNECTOR on page 324

TEMPLATE

TEMPLATE element identifies the main template associated with the application. Its identifier is "_default".

Attention: As of Genero version 3.00, the Snippet-Based Rendering Engine (SBRE) and all
themes using template paths are deprecated. Output maps (e.g. DUA_HTML5) are no longer used
to specify output theme, as the wa protocol did previously. For information on how templates and
snippets were used by the Front End clients, please refer to the Genero Application Server 2.50
User Guide.

Reference | 351

For new development, use GWC for JavaScript, see Genero Web Client for JavaScript (GWC-JS)
on page 173.

Syntax

<TEMPLATE Id="_default"> templatePath </TEMPLATE>

Syntax notes

1. templatePath is the path to the template file

Usage example

<TEMPLATE Id="_default">$(res.path.tpl.html5)/main.xhtml</TEMPLATE>

Parent elements
This element is a child of one of the following elements: THEME on page 351,
WEB_APPLICATION_THEME_COMPONENT on page 359

TEMPORARY_DIRECTORY

The TEMPORARY_DIRECTORY element specifies where to store the transferred files.

Usage example

<TEMPORARY_DIRECTORY>/var/tmp</TEMPORARY_DIRECTORY>

In this example, the transferred files are stored in /var/tmp.

Parent elements
This element is a child of one of the following elements: INTERFACE_TO_CONNECTOR on page 324

THEME

Attention: As of Genero version 3.00, the Snippet-Based Rendering Engine (SBRE) and all
themes using template paths are deprecated. Output maps (e.g. DUA_HTML5) are no longer used
to specify output theme, as the wa protocol did previously. For information on how templates and
snippets were used by the Front End clients, please refer to the Genero Application Server 2.50
User Guide.

For new development, use GWC for JavaScript, see Genero Web Client for JavaScript (GWC-JS)
on page 173.

The THEME element defines the theme to be applied to the application. It takes an optional attribute Using,
in which the unique identifier of a predefined WEB_APPLICATION_THEME_COMPONENT element can be
specified.

The THEME element may contain BOOTSTRAP (GWC-HTML5) on page 306, TEMPLATE on
page 350, SHORTCUT on page 347, and SNIPPET on page 348 child elements, specifying
the various templates and snippets to be used. You can specify multiple theme elements within
an application, as different themes can be called by different windows and/or forms. If a template
defined in this THEME element has the same unique identifier as a template inherited via a
WEB_APPLICATION_THEME_COMPONENT setting, the local THEME element is used. In other
words, templates defined explicitly for the application override any templates defined in the
WEB_APPLICATION_THEME_COMPONENT that have the same template identifier.

Reference | 352

Child elements

The THEME may contain the following elements:

1. Zero or one BOOTSTRAP element.
2. Zero or one TEMPLATE element.
3. Zero or one SHORTCUT element.
4. Zero or more SNIPPET elements.

Usage examples

<THEME Using="cpn.theme.default.gwc" />

<THEME Using="cpn.theme.default.gwc">
 <TEMPLATE Id="_default">/templatedir/deftemp.html</TEMPLATE>
</THEME>

For more information, see Defining a Theme Component.

Parent elements
This element is a child of one of the following elements: MAP on page 327

TIMEOUT (for a file transfer)

The TIMEOUT element specifies the number of seconds that transferred files are available after application
end and before they are deleted. The duration is always specified in seconds.

Usage example

<TIMEOUT>600</TIMEOUT>

By default, the timeout duration is set to 600 seconds.

Parent elements
This element is a child of one of the following elements: FILE_TRANSFER on page 317

TIMEOUT (for an application)

The TIMEOUT element sets the timeouts for the application. You can reference a predefined
WEB_APPLICATION_TIMEOUT_COMPONENT to inherit the timeout settings of that component by including
the Using attribute, specifying the unique identifier for that timeout component, and/or you can set
individual timeout elements specific to the application.

Settings defined locally within the TIMEOUT element override settings defined in included timeout
components.

Child elements

The TIMEOUT element may contain the following child elements:

1. Zero or one USER_AGENT element.
2. Zero or one REQUEST_RESULT (for an application) on page 341 element.
3. Zero or one DVM_AVAILABLE element.
4. Zero or one DVM_PINGTIMEOUT element.

For more information, see WEB_APPLICATION_TIMEOUT_COMPONENT.

Reference | 353

Usage examples

<TIMEOUT Using="cpn.wa.timeout.set1" />

<TIMEOUT>

 <USER_AGENT>300</USER_AGENT>
 <REQUEST_RESULT>240</REQUEST_RESULT>
 <DVM_AVAILABLE>10</DVM_AVAILABLE>
</TIMEOUT>

Parent elements

This element is a child of one of the following elements: UA_OUTPUT on page 354, MAP on page 327

TIMEOUT (for a service)

The TIMEOUT element sets the timeouts for the Web services application. You can reference a predefined
SERVICE_APPLICATION_TIMEOUT_COMPONENT to inherit the timeout settings of that component by
including the Using attribute, specifying the unique identifier for that timeout component, and/or you can
set individual timeout elements specific to the application.

Settings defined locally within the TIMEOUT element override those settings defined in a referenced
SERVICE_APPLICATION_TIMEOUT_COMPONENT.

Child elements

Possible timeout elements include:

1. Zero or one DVM_AVAILABLE element.
2. Zero or one KEEP_ALIVE element.
3. Zero or one REQUEST_RESULT (for a service) on page 341 element.

For more information on setting timeout parameters, refer to TIMEOUT (for an application) on page 352.

Usage examples

<TIMEOUT Using="cpn.ws.timeout.set1" />

<TIMEOUT>
 <DVM_AVAILABLE>10</DVM_AVAILABLE>
 <KEEP_ALIVE>240</KEEP_ALIVE>
 <REQUEST_RESULT>60</REQUEST_RESULT>
</TIMEOUT>

Parent elements
This element is a child of one of the following elements: APPLICATION (for a service) on page
301

TIMEOUT (for auto logout)

The TIMEOUT element specifies how long (in seconds) the DVM waits from when it detects an application
has no user activity before it triggers an auto logout event.

After this timeout period elapses, the front end client program gets a log out message, see AUTO_LOGOUT
on page 304.

Reference | 354

Syntax

<TIMEOUT>timeoutSeconds</TIMEOUT>

Usage example

<TIMEOUT>0</TIMEOUT>

A timeout duration set to 0 seconds means the auto logout is ignored and the application keeps running. A
correct configuration requires that the TIMEOUT be set as required to enable auto logout when there is no
user activity.

Parent elements
This element is a child of the following element: AUTO_LOGOUT_COMPONENT on page 305

UA_OUTPUT
The UA_OUTPUT element specifies the configuration parameters for a UA proxy rendered application.

Starting with Genero 3.00, all UI applications delivered by the Genero Application Server are rendered
by the UA proxy, to include the Genero Desktop Client (GDC), Genero Web Client (GWC) for JavaScript,
Genero Mobile for Android and Genero Mobile for iOS. These applications are configured in part by the
UA_OUTPUT element.

Note: Applications delivered by GWC for HTML5 continue to use the OUTPUT element instead.

Syntax

<UA_OUTPUT>
 <PROXY>executable-name</PROXY>
 <PUBLIC_IMAGEPATH>image-path</PUBLIC_IMAGEPATH>
 <GWC-JS>gwc-js-directory</GWC-JS>
 <TIMEOUT>...</TIMEOUT>
</UA_OUTPUT>

Child elements

The UA_OUTPUT element may contain the following child elements:

1. One PROXY (for an application) on page 338 element.
2. One PUBLIC_IMAGEPATH on page 338 element.
3. Zero or one GWC-JS on page 319 element.
4. Zero or one TIMEOUT (for an application) on page 352 element.

Usage example

<UA_OUTPUT>
 <PROXY>$(res.uaproxy.cmd)</PROXY>
 <PUBLIC_IMAGEPATH>$(res.public.resources)</PUBLIC_IMAGEPATH>
 <GWC-JS>gwc-js</GWC-JS>
 <TIMEOUT Using="cpn.wa.timeout"/>
</UA_OUTPUT>

Parent elements

This element is a child of one of the following elements: APPLICATION (for an application) on
page 301

Reference | 355

UNX
This element contains a collection of UNIX™-specific RESOURCE elements.

The UNX element contains a list of those resources that are only available on UNIX™ operating systems.
There is no difference between UNIX™ systems like Linux®, AIX®, HP-UX, Solaris, and so on.

Child elements

A UNX element may contain the following child elements:

• Zero to many RESOURCE elements.

Parent elements
This element is a child of one of the following elements: RESOURCE_LIST on page 343

USER_AGENT
The USER_AGENT configuration parameter specifies the number of seconds the Genero Application Server
is to wait for a client request before assuming that the Front End client has died or that there has been a
network failure.

Under normal operation, the Front End client sends a GET request to the Genero Application Server
immediately after receiving a response. The client-side front end (CSF) will also send keep-alive requests
(/wa/ka) to keep the application alive in the case of user inactivity. If the client has not sent a request to
the Genero Application Server before the USER_AGENT timeout expires, the Genero Application Server
assumes that the front end client has died and asks the application's DVM to shut down.

With the Genero Desktop Client Active X, the USER_AGENT timeout usually does not expire. When the user
closes the application, the DVM handling that application is properly shut down.

The USER_AGENT timeout proves to be particularly useful with the Genero Web Client. As with the other
front end clients, when a user properly exits an application, the DVM handling that application is properly
shut down. When the user does not properly exit the application, the DVM remains alive even though the
Front End client has died. This can occur with the Genero Web Client when a user closes the browser
instead of properly exiting the application; the Front End client has no mechanism to tell the Genero
Application Server that the user has closed his browser. With the USER_AGENT timeout, the Genero
Application Server closes the socket to the DVM, which causes the DVM to shut down.

Usage example

<USER_AGENT>300</USER_AGENT>

In this example, the User Agent timeout is set to 300 seconds.

Parent elements
This element is a child of one of the following elements: WEB_APPLICATION_TIMEOUT_COMPONENT on
page 360, TIMEOUT (for an application) on page 352

VARIABLE

Zero or one VARIABLE. Define a session variable and optionally the initial value.

Syntax

<VARIABLE Id="varId"> val </VARIABLE>

Syntax notes

1. varId is the variable name.

Reference | 356

2. val is the variable value.

Example

 <VARIABLE Id="var7" />
 <VARIABLE Id="var8">Initial value</VARIABLE>

Parent elements
This element is a child of one of the following elements: HTTP_COOKIE on page 321

WEB_APPLICATION_EXECUTION_COMPONENT

The WEB_APPLICATION_EXECUTION_COMPONENT defines a set of execution parameters that are used
when starting the Web application. It takes an attribute Id, which specifies the unique identifier for this
set of execution definitions. It is this unique identifier that is referenced by an application, providing that
application with its set of execution parameters. The attribute AllowUrlParameters defines whether the
parameters provided in the request query string should be ignored ("FALSE", default value) or provided to
the DVM ("TRUE").

Syntax

<WEB_APPLICATION_EXECUTION_COMPONENT Id="compId"
 [AllowUrlParameters="allowParam"] >
 [<ENVIRONMENT_VARIABLE Id="envId" > env </ENVIRONMENT_VARIABLE> [...]]
 [<PATH> path </PATH>]
 [<DVM> dvm </DVM>]
 [<MODULE> module </MODULE>]
 [<PARAMETERS> parameterSettings </PARAMETERS>]
 [<ACCESS_CONTROL> accessSettings </ACCESS_CONTROL>]
 [<DELEGATE> delegateSettings </DELEGATE>]
 [<WEB_COMPONENT_DIRECTORY> webComponent </WEB_COMPONENT_DIRECTORY>]
</WEB_APPLICATION_EXECUTION_COMPONENT>

Child elements

The WEB_APPLICATION_EXECUTION_COMPONENT element may contain the following child elements:

1. Zero or more ENVIRONMENT_VARIABLE elements.
2. Zero or one PATH element.
3. Zero or one DVM element.
4. Zero or one MODULE element.
5. Zero or one PARAMETERS element.
6. Zero or one ACCESS_CONTROL element.
7. Zero or one DELEGATE element.
8. Zero or one WEB_COMPONENT_DIRECTORY on page 361 element.

Example

<WEB_APPLICATION_EXECUTION_COMPONENT Id="cpn.wa.execution.local">
 <ENVIRONMENT_VARIABLE Id="FGLDIR">$(res.fgldir)</ENVIRONMENT_VARIABLE>
 <ENVIRONMENT_VARIABLE Id="PATH">$(res.path)</ENVIRONMENT_VARIABLE>
 <ENVIRONMENT_VARIABLE Id="INFORMIXDIR">$(res.informixdir)</
ENVIRONMENT_VARIABLE>
 <ENVIRONMENT_VARIABLE Id="INFORMIXSERVER">$(res.informixserver)</
ENVIRONMENT_VARIABLE>
 ...
 <DVM>$(res.dvm.wa)</DVM>

Reference | 357

 ...
 <WEB_COMPONENT_DIRECTORY>$(connector.uri)/ua/i/$(application.path)/
webcomponents</WEB_COMPONENT_DIRECTORY>
</WEB_APPLICATION_EXECUTION_COMPONENT>

Parent elements
This element is a child of one of the following elements: COMPONENT_LIST on page 308

WEB_APPLICATION_HTTP_COOKIES_COMPONENT
This element defines persistent session variables or constants.

The WEB_APPLICATION_HTTP_COOKIES_COMPONENT element defines persistent session variables or
constants. It takes an Id attribute, which specifies the unique identifier for this component. It is this unique
identifier that is referenced by an application configuration.

Syntax

<WEB_APPLICATION_HTTP_COOKIES_COMPONENT Id="compId">
 <HTTP_COOKIE Id="cid" [Expires="endTime" | Domain="mydomain" |
 Secure="TRUE|FALSE" | HttpOnly=""]>
 <VARIABLE Id="varId">val</VARIABLE> [...]
 <CONSTANT Id="cstId">cst</CONSTANT> [...]
 <HTTP_COOKIE> [...]
</WEB_APPLICATION_PICTURE_COMPONENT>

Syntax notes

1. compId is the unique identifier for this component (required).

Child elements

The WEB_APPLICATION_HTTP_COOKIES_COMPONENT element may contain the following child elements:

1. Zero or one HTTP_COOKIE elements.

Parent elements
This element is a child of one of the following elements: COMPONENT_LIST on page 308

WEB_APPLICATION_PICTURE_COMPONENT
This element defines how images are served by the GAS.

The WEB_APPLICATION_PICTURE_COMPONENT element specifies the directory from which images
are served. It takes an Id attribute, which specifies the unique identifier for this Picture component. It is
this unique identifier that is referenced by an application configuration, providing that application with the
location of its image directory or directories.

Syntax

<WEB_APPLICATION_PICTURE_COMPONENT Id="resID">
 <PATH Id="pathID" Type="pathType">Path</PATH>
</WEB_APPLICATION_PICTURE_COMPONENT>

Syntax notes

1. resID is the unique identifier for this picture component.

Reference | 358

Child elements

The WEB_APPLICATION_PICTURE_COMPONENT may contain the following child elements:

1. Zero to many PATH elements.

Parent elements
This element is a child of one of the following elements: COMPONENT_LIST on page 308

WEB_APPLICATION_RENDERING_COMPONENT
A rendering component defines how an application is rendered for delivery via the Web to the front-end
client.

Attention: As of Genero version 3.00, the Snippet-Based Rendering Engine (SBRE) and all
themes using template paths are deprecated. Output maps (e.g. DUA_HTML5) are no longer used
to specify output theme, as the wa protocol did previously. For information on how templates and
snippets were used by the Front End clients, please refer to the Genero Application Server 2.50
User Guide.

For new development, use GWC for JavaScript, see Genero Web Client for JavaScript (GWC-JS)
on page 173.

The WEB_APPLICATION_RENDERING_COMPONENT element specifies the output driver and other elements
that determine how an application is to be rendered for a Web application (GWC-HTML5). It takes an
attribute Id, which specifies the unique identifier for this Rendering component. It is this unique identifier
that is referenced by an application, specifying the output driver that the application should use.

Syntax

<WEB_APPLICATION_RENDERING_COMPONENT Id="compId">
 [<OUTPUT_DRIVER> outputDriver </OUTPUT_DRIVER>]
 [<XML_DECLARATION> xmlDec </XML_DECLARATION>]
 [<HTTP_RESPONSE_ENCODING Source="REQUEST|INLINE">
 httpResponseEnc
 </HTTP_RESPONSE_ENCODING>]
 [<HTTP_REQUEST_ENCODING Source="REQUEST|INLINE">
 httpRequestEnc
 </HTTP_REQUEST_ENCODING>]
 [<MIME_TYPE> mimetype </MIME_TYPE>]
 [<DOC_TYPE> doctype </DOC_TYPE>]
</WEB_APPLICATION_RENDERING_COMPONENT>

Child elements

The WEB_APPLICATION_RENDERING_COMPONENT may contain the following child elements:

1. Zero or one OUTPUT_DRIVER element.
2. Zero or one XML_DECLARATION element.
3. Zero or one HTTP_RESPONSE_ENCODING element.
4. Zero or one HTTP_REQUEST_ENCODING element.
5. Zero or one MIME_TYPE element.
6. Zero or one DOC_TYPE element.

Example

<WEB_APPLICATION_RENDERING_COMPONENT Id="cpn.rendering.gwc">
 <OUTPUT_DRIVER>GWC</OUTPUT_DRIVER>
 <HTTP_RESPONSE_ENCODING Source="INLINE">ISO-8859-1</
HTTP_RESPONSE_ENCODING>
 <HTTP_REQUEST_ENCODING Source="INLINE">ISO-8859-1</HTTP_REQUEST_ENCODING>

Reference | 359

 <MIME_TYPE>text/html</MIME_TYPE>
</WEB_APPLICATION_RENDERING_COMPONENT>

<WEB_APPLICATION_RENDERING_COMPONENT Id="cpn.rendering.gwc2">
 <OUTPUT_DRIVER>GWC2</OUTPUT_DRIVER>
 <HTTP_RESPONSE_ENCODING Source="REQUEST"/>
 <HTTP_REQUEST_ENCODING Source="REQUEST"/>
 <MIME_TYPE>application/xml</MIME_TYPE>
</WEB_APPLICATION_RENDERING_COMPONENT>

Parent elements
This element is a child of one of the following elements: COMPONENT_LIST on page 308

WEB_APPLICATION_THEME_COMPONENT
This element specifies the theme (set of templates) that the application or set of applications can use.

Attention: As of Genero version 3.00, the Snippet-Based Rendering Engine (SBRE) and all
themes using template paths are deprecated. Output maps (e.g. DUA_HTML5) are no longer used
to specify output theme, as the wa protocol did previously. For information on how templates and
snippets were used by the Front End clients, please refer to the Genero Application Server 2.50
User Guide.

For new development, use GWC for JavaScript, see Genero Web Client for JavaScript (GWC-JS)
on page 173.

A theme component defines the theme that an application or set of applications can use. A theme is
made up of one main template and multiple template snippets that will drive the rendering of snippet-
based rendering engine (SBRE) components. The same snippet identifier can appear more than one time,
but each one must be associated with an unique style name, so that each template snippet is uniquely
identified by the identifier/style couple. If no template snippet exists for the specified style, the default one
is used.

The WEB_APPLICATION_THEME_COMPONENT element specifies the theme (set of templates) that the
application or set of applications can use. It takes an attribute Id, which specifies the unique identifier
for this Template component. It is this unique identifier that is referenced by a Web application to make
accessible the list of templates defined therein.

Syntax

<WEB_APPLICATION_THEME_COMPONENT Id="compId" >
 [<BOOTSTRAP Id="_default" > bootstrapPath </BOOTSTRAP >]
 [<TEMPLATE Id="_default" > templatePath </TEMPLATE >]
 [<SHORTCUT Id="_default" > shortcutPath </SHORTCUT >]
 [<SNIPPET Id="snipId" [Style="stylename"] > snippath </SNIPPET>]
 [...]
</WEB_APPLICATION_THEME_COMPONENT>

Child elements

The WEB_APPLICATION_THEME_COMPONENT may contain the following elements:

1. Zero or one BOOTSTRAP element.
2. Zero or one TEMPLATE element.
3. Zero or one SHORTCUT element.
4. Zero or more SNIPPET elements.

Reference | 360

Example

<WEB_APPLICATION_THEME_COMPONENT Id="cpn.theme.html5.gwc">
 <BOOTSTRAP Id="_default">$(res.path.tpl.html5)/bootstrap.xhtml</BOOTSTRAP>
 <TEMPLATE Id="_default">$(res.path.tpl.html5)/main.xhtml</TEMPLATE>
 <SNIPPET Id="UIFrame">$(res.path.tpl.html5)/UIFrame.xhtml</SNIPPET>
 ...
</WEB_APPLICATION_THEME_COMPONENT>

Parent elements
This element is a child of one of the following elements: COMPONENT_LIST on page 308

WEB_APPLICATION_TIMEOUT_COMPONENT

The WEB_APPLICATION_TIMEOUT_COMPONENT element creates a Web application timeout component,
which define a set of timeout values to be used when configuring a Web application. It takes an attribute
Id, which specifies the unique identifier for this set of timeout definitions. It is this unique identifier that is
referenced with an application's configuration, providing that application with a set of timeout values.

Why are Web application timeouts necessary? When a Front End client connects to a DVM via the
Genero Application Server (GAS), the connection between the Front End client and the GAS is not
persistent (although the connection between the GAS and the DVM is persistent). The Genero Application
Server needs the timeout settings to determine whether these components have remained alive and that
communication can continue between the two.

The Front End client can send two types of requests to the DVM: a POST request when sending data to
the DVM and a GET request when asking whether there is data to retrieve. The Genero Application Server,
however, cannot send a request to the Front End client because the Front End client does not have a
public address.

As a result, a request is always initiated by the Front End client and the server response is done with the
same connection. Between requests, the Genero Application Server stores data sent from the DVM in its
buffer and keeps it for the next GET request from the Front End client.

Syntax

<WEB_APPLICATION_TIMEOUT_COMPONENT Id="appTimeOutID">
 [<USER_AGENT> uaTimeOut </USER_AGENT>]
 [<REQUEST_RESULT> requestTimeOut </REQUEST_RESULT>]
 [<DVM_AVAILABLE> dvmTimeOut </DVM_AVAILABLE>]
 [<DVM_PINGTIMEOUT> dvmPingTimeOut </DVM_PINGTIMEOUT>]
</WEB_APPLICATION_TIMEOUT_COMPONENT>

Child elements

The WEB_APPLICATION_TIMEOUT_COMPONENT element may contain the following child elements:

1. Zero or one USER_AGENT element.
2. Zero or one REQUEST_RESULT element.
3. Zero or one DVM_AVAILABLE element.
4. Zero or one DVM_PINGTIMEOUT element.

Example

<WEB_APPLICATION_TIMEOUT_COMPONENT Id="cpn.wa.timeout.set1">
 <USER_AGENT>300</USER_AGENT>
 <REQUEST_RESULT>60</REQUEST_RESULT>
 <DVM_AVAILABLE>10</DVM_AVAILABLE>
 <DVM_PINGTIMEOUT>300</DVM_PINGTIMEOUT>

Reference | 361

</WEB_APPLICATION_TIMEOUT_COMPONENT>

In this example, the Id value - cpn.wa.timeout.set1 - can be referenced when defining an application.
When an application references a component by its Id value, it inherits the settings defined by that
component.

Parent elements
This element is a child of one of the following elements: COMPONENT_LIST on page 308

WEB_COMPONENT_DIRECTORY
The WEB_COMPONENT_DIRECTORY element specifies the path where Web components for an application
are located.

Starting with Genero 3.00, this element added to the URL, builds the path used to find a Web component.
It defines paths from where Web components are served via the GAS. The WEB_COMPONENT_DIRECTORY
configuration only applies to Genero Desktop Client (GDC) applications delivered via GAS, and Genero
Web Client for JavaScript (GWC-JS).

Note: For your legacy GWC-HTML5 applications, the WEB_COMPONENT_DIRECTORY configuration
entry is ignored. Web components in this case are still required to be located in $(FGLASDIR)/
web/components as before. For more details on web component usage, see the Genero Business
Development Language User Guide.

Syntax

<WEB_COMPONENT_DIRECTORY>path;path</WEB_COMPONENT_DIRECTORY>

It allows for multiple paths to be specified, the separator used between resource paths is a semi-colon, ';'.

Usage example

 <WEB_APPLICATION_EXECUTION_COMPONENT Id="cpn.wa.execution.local">
 ...
 <DELEGATE service="MyGroup/MyDelegateService"> ... </DELEGATE>
 <WEB_COMPONENT_DIRECTORY>$(application.path)/webcomponents;
$(my.web.components)/static-files/webcomponents</WEB_COMPONENT_DIRECTORY>
 </WEB_APPLICATION_EXECUTION_COMPONENT>

Important: Element order. If the WEB_COMPONENT_DIRECTORY element is present, it
must be set in the correct order within the parent element, see EXECUTION (for an
application) on page 315, EXECUTION (for a service) on page 316, or
WEB_APPLICATION_EXECUTION_COMPONENT on page 356.

Child elements

There are no child elements.

Parent elements
This element is a child of one of the following elements: EXECUTION (for an
application) on page 315, EXECUTION (for a service) on page 316,
WEB_APPLICATION_EXECUTION_COMPONENT on page 356

WNT
This element contains a collection of Windows™-specific RESOURCE elements.

The WNT element contains a list of Windows NT™ resources: those resources are only available on the
Windows™ operating systems.

Reference | 362

Child elements

A WNT element main contain the following child elements:

• Zero to many RESOURCE elements.

Parent elements
This element is a child of one of the following elements: RESOURCE_LIST on page 343

XML_DECLARATION

The XML_DECLARATION element specifies if the xml declaration is present or not in the document
response. This element only works with OUTPUT_DRIVER=GWC2.

Usage example

<XML_DECLARATION>TRUE</XML_DECLARATION>

Parent elements
This element is a child of one of the following elements: WEB_APPLICATION_RENDERING_COMPONENT
on page 358, RENDERING on page 339

Glossary and Acronyms | 363

Glossary and Acronyms

In this section, many terms and acronyms used throughout this document are briefly defined.

For more details on the various web technology terms and acronyms found on this page, visit www.w3.org.

Table 64: Terminology

Term Description

CSS Cascading style sheets. CSS is a simple mechanism for adding style (e.g. fonts,
colors, spacing) to Web documents.

DTD Document Type Definition. The purpose of a DTD is to define the legal building
blocks of an XML document. It defines the document structure with a list of legal
elements and attributes.

DUA Driver User Agent.

DVM The Dynamic Virtual Machine or Runtime System that is installed on the Application
Server and executes the application program.

GAD Genero ADministration Application. This application is accessed by clicking on the
Administration tab on the Genero Application Server Welcome Page (demos.html).

GAS Genero Application Server. Defined by the computer system that houses the
Dynamic Virtual Machine (DVM).

GDC Genero Desktop Client.

GDCAX Genero Desktop Client / Active X.

GWC Genero Web Client. A client technology that renders the application in an HTML
Graphical User Interface (browser).

GWS Genero Web Services. A web service is any piece of software that makes itself
available over the internet and uses a standardized XML messaging system. XML is
used to encode all communications to a web service. For example, a client invokes
a web service by sending an XML message, then waits for a corresponding XML
response. Because all communication is in XML, web services are not tied to any
one operating system or programming language--Java can talk with Perl; Windows™

applications can talk with UNIX™ applications. See also SOA.

HTML Hyper Text Markup Language. An HTML file is a text file containing markup tags.
The markup tags tell the Web browser how to display the page.

JavaScript™ JavaScript™ is a scripting language designed to add interactivity to HTML pages. A
JavaScript™ consists of lines of executable computer code that can be embedded
directly into HTML pages. It is an interpreted language, meaning that the scripts
execute without preliminary compilation. Most browsers support JavaScript™, and
anyone can use JavaScript™ without purchasing a license.

SOA Service-Oriented Architecture. In SOA, autonomous, loosely-coupled and coarse-
grained services with well-defined interfaces provide business functionality and
can be discovered and accessed through a supportive infrastructure. This allows
internal and external system integration as well as the flexible reuse of application
logic through the composition of services to support an end-to-end business
process.

SUA Sending User Agent.

http://www.w3.org

Glossary and Acronyms | 364

Term Description

User Agent A User Agent is a client agent. It can be a browser or the Genero Desktop Client.

Web Server A computer that delivers (serves up) Web pages. Every web server has an IP
address and possibly a domain name. For example, if you enter the URL http://
www.mycompany.com in your browser, this sends a request to the server whose
domain name is mycompany.com. The server then fetches the home page and
sends it to your browser. Any computer can be turned into a web server by installing
server software and connecting the machine to the Internet.

WSDL Web Services Description Language. WSDL is an XML-based language for
describing Web services and how to access them.

XML Short for Extensible Markup Language, a specification developed by the W3C.
XML is a pared-down version of SGML, designed especially for Web documents.
It allows designers to create their own customized tags, enabling the definition,
transmission, validation, and interpretation of data between applications and
between organizations. For more information, please refer to the W3C web site at
www.w3.org.

XML Schema XML Schema is an XML-based alternative to a DTD . An XML Schema describes
the structure of an XML document. The XML Schema language is also referred to
as XML Schema Definition (XSD).

XHTML EXtensible HyperText Markup Language. XHTML is aimed to replace HTML.
XHTML is almost identical to HTML 4.01. XHTML is a stricter and cleaner version of
HTML. XHTML is HTML defined as an XML application.

XPath XPath is a language for navigating in XML documents.

XSD See XML Schema.

XSL XML Style Sheets. XML does not use predefined tags (you can use any tag names
you wish), and the meaning of these tags are not well understood. For example,
a <table> element could mean an HTML table, a piece of furniture, or something
else - and a browser does not know how to display it. XSL describes how the XML
document should be displayed.

XSLT XSLT is a language for transforming XML documents into XHTML documents or to
other XML documents.

http://www.w3.org

Legal Notices | 365

Legal Notices

This product includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit (http://
www.openssl.org/).

This product includes cryptographic software written by Eric Young (eay@cryptsoft.com).

This product includes software developed by CollabNet (http://www.Collab.Net/).

This product includes software developed by the University of California, Berkeley and its contributors.

This product includes software developed or owned by Caldera International, Inc

http://www.openssl.org/
http://www.openssl.org/

	Contents
	Genero Application Server User Guide
	What's new in Genero Application Server (GAS), v 3.00 (Maintenance Releases)
	Genero Application Server overview
	What is the Genero Application Server?
	Standalone Genero Application Server
	Front Ends and Extensions

	GAS Quick Start Guide
	Quick start guide to exploring resources
	Quick start guide for applications with UI
	Quick start guide to launching first application
	Quick start guide to configuring an application
	Quick start guide to running an application
	Quick start guide to deploying an application
	Deploy your application on your machine
	Run the deployed application

	Quick start guide for web services applications
	What is Web Service?
	Quick start guide to exploring Genero Web service (server side)
	Quick start guide to configuring a Web service
	Running a client application on Web service using GWC
	Quick start guide to deploying a Web service

	Genero demo applications
	Find the demo applications
	Display demo applications with the Genero Web Client

	GAS Basics
	Architecture of the Genero Application Server
	Architecture overview
	Reliability inherent in the architecture
	Development architecture (standalone GAS)
	Deployment (production) architecture
	Services Pool (GWS Only)

	Components of the Genero Application Server
	What is a dispatcher?
	What is a proxy?
	What is a DVM?

	What is auto logout?
	What is delegation?
	What is Single sign-on (SSO)?
	GAS directories
	Application environment
	Internationalization
	Encoding Architecture
	Charsets Configuration
	DVM Locale
	HTML charset
	XML Encoding
	GAS System Encoding
	Default Encoding

	Translations for GWC-JS

	Application Web Address
	URIs acknowledged by the GAS
	Application URIs
	File serving URIs

	URI Examples

	Configuring the Genero Application Server
	System Requirements
	Operating systems
	Web servers
	User agents
	Databases

	GAS Configuration Check
	Managing Access Rights
	Validating the Installation with the Genero Web Client
	Validate the installation for GWC without a Web server
	Validate the integration for GWC with a Web server

	Validating the Installation with the GDC
	Validate the installation for GDC without a Web server

	Troubleshooting Configuration Issues
	Proxy errors on Windows™ platform
	Cannot find 127.0.0.1 or localhost on Windows™
	Application does not start

	Licensing
	Licensing - Base Example
	Licensing - Using the RUN command
	Licensing - Multiple User Agents
	Licensing - Summary Case
	Genero Front Ends and License Counting
	Licensing Tips and Tricks / Troubleshooting
	The ADDRESS element
	The USER_AGENT timeout element
	The MAX_AVAILABLE element for a Web Service
	Evaluate licensing when migrating from GDC

	ISAPI Extension Installation and Web Server Configuration
	The Genero Application Server and IIS
	Install the ISAPI dispatcher
	Installing with the Microsoft™ Installer
	Manual configuration for IIS 6.0
	Manual configuration for IIS 7.x
	Manual configuration for IIS 8.x and IIS 10.x
	Finishing the installation

	GAS ISAPI Extension configuration file
	Troubleshooting installation
	Restarting the ISAPI dispatcher

	FastCGI Installation and Web Server Configuration
	Using the FastCGI dispatcher
	FastCGI GAS configuration on various Web Server
	Apache: mod_fastcgi
	Apache 2.4: mod_proxy_fcgi
	Fastcgi for nginx
	Lighttpd
	Sun Java™ System Web Server 7.0

	Troubleshooting
	Why does my application timeout on Apache?
	Why does my application not work with fastcgi?
	Invalid installation directory
	Applications all down at the same time

	Restarting the FastCGI dispatcher

	Java™ Servlet Installation and Web Server Configuration
	Using the GAS Java™ dispatcher
	Building the Java™ Web Archive (WAR)
	Deploying on a Java™ Web Server
	Restarting the J2EE dispatcher

	Validating configuration files
	What is an XML Schema Definition file?
	Why specify the XML Schema Definition file?
	Validating with the gasadmin tool
	Selecting an XML editor

	Configuring applications on GAS
	Application Configuration Overview
	Creating Abstract Applications
	Creating an application Group
	Create an application configuration file
	Using External Application Configuration Files
	Configuring Web client applications
	Configuring applications for Web service
	Configuring GDC applications

	Configure DVM environment variables
	Use a script to set the environment
	What if the application doesn't start?
	Next steps

	How to implement delegation
	How delegation works
	Configure delegation for application or service
	From the user agent to the REST service
	From the REST service to the proxy
	REST service example
	Delegation use cases

	How to implement Single sign-on (SSO)
	OpenID Connect SSO
	Quick start: Set up OpenID Connect in the GAS
	Configure GAS for OpenID Connect SSO
	Configure OpenID Connect identity on Google
	Add OpenID Connect SSO to Genero Web application
	Retrieve the OpenID Connect user identifier
	Authorization and OpenID Connect SSO
	Genero OpenID Connect FGLPROFILE
	Genero OpenID Connect log file

	OpenID SSO
	Quick start: Set up OpenID in the GAS
	Configure GAS for OpenID SSO
	Add OpenID SSO to a Genero Web application
	Retrieve the OpenID user identifier
	Retrieve identity attributes with OpenID SSO
	Authorization and OpenID SSO
	Execute an application with OpenID SSO
	Distinct user authentication per application
	Genero OpenID configuration file
	Specify a database to store OpenID data
	Genero OpenID FGLPROFILE
	Genero OpenID log file

	SAML SSO
	Quick start: Set up SAML in the GAS
	Configure GAS to support SAML SSO
	The ImportIdP program
	Add SAML SSO to a Genero Web application
	Select the SAML server (Identity Provider)
	Define the SAML ID format
	Retrieve the SAML user identifier
	Set the authentication context
	Retrieve identity attributes with SAML
	Authorization and SAML SSO
	Execute an application with SAML SSO
	Genero SAML configuration
	Specify a database to store SAML data
	Genero SAML FGLPROFILE
	Genero SAML log file

	How to implement custom single sign-on
	GAS configuration for delegation
	Handle login and password input
	Cookie handling
	Disconnect (log off)
	Production recommendations

	Connect to the application database with SSO

	Compression in Genero Application Server
	Configuring development environment
	Configuring Multiple Dispatchers

	Administering the Genero Application Server
	Monitoring
	Usage
	Statistics

	Logging
	Using the debugger
	Using the Debugger for the GAS on the Windows™ platform
	Using the Debugger for the GAS on UNIX™

	Performance tuning
	Web server configuration: Keep Alive
	SPDY

	Load balancing
	GAS requests
	Sessionless request processing
	Session-bound request processing
	Load Balancing Configuration Examples
	Internet Information Services 5.x and 6.0
	Internet Information Services 7.x
	Apache 1.3.x and 2.0.x
	Apache 2.2.x

	Developing Web applications
	Genero Web Client for JavaScript (GWC-JS)
	What is GWC-JS?
	Key Players
	How GWC-JS works
	Features and limitations
	Non-supported hot keys

	GWC-JS Web Client interface: Overview
	User interface: home page
	User interface: navigation

	User interface: menus
	Debug interface

	Quick Start: Tour of GWC-JS interface
	Quick start: stacked windows
	Quick start: run without waiting

	Starting GWC-JS applications
	GWC-JS applications and use of cookies
	Customization for GWC-JS applications
	Customization framework
	Project directory
	Understanding GWC-JS widgets
	Widget template file
	Widget JavaScript file
	Widget scss file

	Configuring your Environment
	Troubleshooting

	Customizing the theme
	Adding Header and Footer text
	Creating your own widgets
	Adding Localized Texts
	Activating Customization with custom.json
	Configuring Applications for Custom GWC-JS
	Configuring demo application for custom GWC-JS
	Troubleshooting

	Migrating from GDC to GWC-JS
	Evaluate your GWC-JS application needs
	Migration tips

	Migrating from GWC-HTML5 to GWC-JS

	Genero Web Client for HTML5 (GWC-HTML5)
	Genero Web Services
	Accessing the Web Service (Web Services URI information)
	Service invalidation
	Sticky Web services

	Deploying with Genero Archive
	What is a Genero Archive?
	Quick start: deploying applications
	Application deployment overview
	Paths to application resources
	Quick start: Genero Archive
	Building an archive with public resources
	Building an archive with deployment triggers
	Deploy your application on your machine
	Run the deployed application

	Deploying application resources for GWC for HTML5
	Deploying application resources for GWC-JS

	Genero Archive lifecycle
	The MANIFEST file
	TRIGGERS (for manifest)

	File system layout of a deployed archive
	Genero Archive procedures
	Create a Genero Archive
	Deploy an archive
	List all deployed archives
	Activate (enable) a deployed archive
	Deactivate (disable) a deployed archive
	Undeploy a deployed archive
	Clean up undeployed archives
	Upgrade an archive

	Genero Archive deployment service

	Upgrading
	New Features
	Version 3.00 (MRs)
	Version 3.00
	Version 2.50
	Version 2.41
	Version 2.40
	Version 2.32
	Version 2.30
	Version 2.22
	Version 2.21
	Version 2.20

	Upgrade Guides
	3.00 upgrade guide
	2.50 upgrade guide
	2.41 upgrade guide
	2.40 upgrade guide
	Template and snippets
	Template paths

	2.30 upgrade guide
	Starting the GAS
	Configuration
	Support
	Template functions
	XPathConfig migration
	Legacy connectors
	Mod_fcgid

	2.22 upgrade guide
	2.21 upgrade guide
	2.20 upgrade guide
	Configuration
	Snippets sets
	Legacy connectors installation
	Templates and snippets

	Upgrading from GAS 2.10.x or GWC 2.10.x
	Application configuration
	Template and snippets
	Deprecated functions and paths

	2.10 upgrade guide
	Migrating to the snippet-based rendering engine

	2.00 upgrade guide
	fglxslp migration tool
	fglxmlp XML preprocessor

	Migrating Templates and Snippets Customizations

	Reference
	Tools and Commands
	Dispatcher: httpdispatch
	Dispatcher: fastcgidispatch
	Dispatcher: java-j2eedispatch
	Proxy: uaproxy
	Proxy: gwsproxy
	Proxy: html5proxy
	The fglxslp command
	The fglgar command
	The gasadmin command
	Ghost Client and Testing Tools
	Installing Ghost Client
	Configuring your environment for Ghost Client
	How Ghost Client works
	Unit testing with Ghost Client
	Load testing with Ghost Client
	Exploring Ghost Client Java demos
	Exploring Ghost Client BDL demos
	How to compile and run tests
	Generating test scenarios from log file
	Running the generated SessionManager

	Automatic discovery of User Agent (adua.xrd)
	What is an Output Map?
	How an Output Map is chosen
	Modify the adua.xrd file to specify custom Output Maps
	Specify the Output Map in the application URI
	ADUA Syntax Diagrams
	RULE_LIST
	RULE
	TABLE
	ROW

	adua.xrd usage example

	GAS Predefined resources
	GAS predefined resources overview
	Common GAS predefined resources

	GAS Configuration Reference
	GAS configuration file
	Application configuration files
	Configuration file hierarchies
	GAS configuration file hierarchy
	GWC configuration file hierarchy
	GWS configuration file hierarchy

	Configuration file elements
	ACCESS_CONTROL
	ADDRESS
	ALLOW_FROM
	APPLICATION (for an application)
	APPLICATION (for a service)
	APPLICATION_LIST
	APPLICATION_SERVER
	AUTO_LOGOUT
	AUTO_LOGOUT_COMPONENT
	BOOTSTRAP (GWC-HTML5)
	CATEGORIES_FILTER
	COMPONENT_LIST
	COMMAND (for auto logout)
	CONFIGURATION
	CONSTANT
	DELEGATE
	DESCRIPTION
	DOC_TYPE
	DOCUMENT_ROOT
	DVM_AVAILABLE
	DVM_PINGTIMEOUT
	DVM
	ENVIRONMENT_VARIABLE
	ERROR_DOCUMENT
	EXECUTION (for an application)
	EXECUTION (for a service)
	EXTERNAL_ID
	FILE_TRANSFER
	FORMAT
	GROUP (for an application)
	GROUP (for a service)
	GWC-JS
	GWC_JS_LOOKUP_PATH
	HTTP_COOKIE
	HTTP_COOKIES
	HTTP_HEADER
	HTTP_REQUEST_ENCODING
	HTTP_RESPONSE_ENCODING
	INTERFACE_TO_CONNECTOR
	INTERFACE_TO_DVM
	KEEP_ALIVE
	LONG
	LOG
	MAP
	MAX_AVAILABLE
	MAX_REQUESTS_PER_DVM
	MONITOR
	MIME_TYPE
	MIN_AVAILABLE
	MODULE
	NAME
	OUTPUT (under LOG)
	OUTPUT (under APPLICATION)
	OUTPUT_DRIVER
	PARAMETERS
	PATH (under EXECUTION)
	PATH (under PICTURE)
	PATH with Type WEBSERVER
	PATH with Type APPSERVER

	PICTURE
	PLATFORM_INDEPENDENT
	POOL
	PROXY (for an application)
	PROXY (for a service)
	PUBLIC_IMAGEPATH
	RAW_DATA
	RENDERING
	REPORT_VIEWER_DIRECTORY
	REQUEST_RESULT (for an application)
	REQUEST_RESULT (for a service)
	RESOURCE
	RESOURCE (for a service)
	RESOURCE (for an application)
	RESOURCE_LIST
	ROOT_URL_PREFIX
	SERVICE_APPLICATION_EXECUTION_COMPONENT
	SERVICE_APPLICATION_TIMEOUT_COMPONENT
	SERVICE_LIST
	SESSION_DIRECTORY
	SHORT
	SHORTCUT
	SNIPPET
	SOCKET_FAMILY
	SOCKET_PATH
	START
	SYSTEM_ID
	TCP_BASE_PORT
	TCP_PORT_OFFSET
	TEMPLATE
	TEMPORARY_DIRECTORY
	THEME
	TIMEOUT (for a file transfer)
	TIMEOUT (for an application)
	TIMEOUT (for a service)
	TIMEOUT (for auto logout)
	UA_OUTPUT
	UNX
	USER_AGENT
	VARIABLE
	WEB_APPLICATION_EXECUTION_COMPONENT
	WEB_APPLICATION_HTTP_COOKIES_COMPONENT
	WEB_APPLICATION_PICTURE_COMPONENT
	WEB_APPLICATION_RENDERING_COMPONENT
	WEB_APPLICATION_THEME_COMPONENT
	WEB_APPLICATION_TIMEOUT_COMPONENT
	WEB_COMPONENT_DIRECTORY
	WNT
	XML_DECLARATION

	Glossary and Acronyms
	Legal Notices
	Index

