
Genero BDL Tutorial

Contents | 2

Contents

Genero BDL Tutorial Summary..7
Testing the Example Programs...7
Tutorial Chapters... 9

Tutorial Chapter 1: Overview... 12
Overview.. 12
The BDL Language... 12
The BDL Tutorial... 13
The Example Database (custdemo)..13
The Sample Data.. 14

Tutorial Chapter 2: Using BDL...17
A simple BDL program..17
Compiling and Executing the Program... 18
Debugging a BDL Program...20
The "Connect to database" Program.. 20

Example: connectdb.4gl..22

Tutorial Chapter 3: Displaying Data (Windows/Forms)..........................24
Application Overview... 24
The .4gl File - Opening Windows and Forms...25
The .4gl File - Interacting with the User... 26
The .4gl File - Retrieving and Displaying Data...28
Example: dispcust.4gl (function query_cust)...29
The Form Specification File.. 30
Example: Form Specification File custform.per.. 33
Compiling the Program and Form...34

Tutorial Chapter 4: Query by Example..35
Implementing Query-by-Example.. 35

Steps for implementing Query-by-Example..35
Using CONSTRUCT and STRING variables... 36
Preparing the SQL Statement.. 37

Allowing the User to Cancel the Query Operation..38
Predefined Actions (accept/cancel).. 38
DEFER INTERRUPT and the INT_FLAG.. 39
Conditional Logic.. 39
The Query program.. 40

Retrieving data from the Database... 44
Using Cursors... 44
The SQLCA.SQLCODE..45
Example custquery.4gl (function cust_select).. 45
Example: custquery.4gl (function fetch_cust)...46
Example: custquery.4gl (function fetch_rel_cust)...47
Example: custquery.4gl (function display_cust)... 48

Contents | 3

Compiling and Linking the Program..48
Modifying the Program to Handle Errors.. 48

The WHENEVER ERROR statement...48
Negative SQLCA.SQLCODE..49
SQLERRMESSAGE..49
Close and Free the Cursor.. 50
Error if Cursor is not Open.. 50

Tutorial Chapter 5: Enhancing the Form.. 52
Adding a Toolbar...53

Example: (in custform.per)... 53
Adding a Topmenu..54

Example (in custform.per)... 54
Adding a COMBOBOX form item... 55
Changing the Window Appearance.. 56
Example: (in custform.per).. 57
Example: (in custmain.4gl)..57
Managing Actions.. 58

Disable/Enable Actions...58
The Close Action.. 58

Example: (custmain.4gl).. 59
Action Defaults.. 60
MENU/Action Defaults Interaction...60
Images... 61

Tutorial Chapter 6: Add, Update and Delete...62
Entering data on a form: INPUT statement.. 62

UNBUFFERED attribute... 62
WITHOUT DEFAULTS attribute... 63

Updating Database Tables..63
SQL transactions.. 63
Concurrency and Consistency..63

Adding a new row... 64
INPUT Statement Control blocks... 64
Example: add a new row to the customer table.. 64
Module custmain.4gl...64
Module custquery.4gl (function inpupd_cust)...65
Module custquery.4gl (function insert_cust)...67

Updating an existing Row... 68
Using a work record... 68
SELECT ... FOR UPDATE... 68
SCROLL CURSOR WITH HOLD... 68
Example: Updating a Row in the customer table...69
Module custquery.4gl..69

Deleting a Row..72
Using a dialog Menu to prompt for validation.. 72
Example: Deleting a Row...72

Tutorial Chapter 7: Array Display.. 74
Defining the Form..74

Screen Arrays... 74
TABLE Containers.. 75
The INSTRUCTIONS section... 75

Contents | 4

Form example: manycust.per... 75
Creating the Function..76

Program Arrays...76
Loading the Array: the FOREACH Statement..77

The DISPLAY ARRAY Statement...77
The COUNT attribute... 77
The ARR_CURR function...78
Example Library module: cust_lib.4gl...78

Paged Mode of DISPLAY ARRAY..79
What is the Paged mode?... 80
AFTER DISPLAY block.. 80
Example of paged mode.. 80

Compiling and using a Library.. 83
Example: cust_stub.4gl...83

Tutorial Chapter 8: Array Input..85
The INPUT ARRAY statement..85
WITHOUT DEFAULTS clause.. 86
The UNBUFFERED attribute...86
COUNT and MAXCOUNT attributes...86
Control Blocks... 86
Built-in Functions - ARR_CURR... 87
Predefined actions...87
Example: Using a Screen Array to modify Data...87

The Form Specification File... 87
The Main block... 88
Function load_custall.. 89
Function inparr_custall..90
Function store_num_ok.. 92
Function insert_cust..93
Function update_cust... 94
Function delete_cust...94

Tutorial Chapter 9: Reports..96
BDL Reports.. 96
The Report Driver..97
The Report Definition.. 97

The DEFINE section...97
The OUTPUT section (optional)...97
The ORDER BY section (optional)...97
The FORMAT section...97

Two-pass reports...98
Example: Customer Report...98

The Report Driver...98
The Report Definition... 99

Interrupting a Report... 101
The interrupt action view.. 102
Refreshing the Display... 102
Using a ProgressBar.. 102

Example: Interruption Handling... 102
The Form Specification File... 102
Modifications to custreports.4gl.. 103
The cust_report function...103

Contents | 5

Tutorial Chapter 10: Localization...106
Localization Support.. 106
Localized Strings... 106
Programming Steps...107
Strings in Sources... 108
Extracting Strings.. 109
Compiling String Source Files (fglmkstr)...109
Deploying String Files... 109
Example: Localization..110

form.per - the form specification file... 110
prog.4gl - the program module...111
Compiling the program... 112

Tutorial Chapter 11: Master/Detail... 115
The Master-Detail sample... 115
The Makefile.. 116
The Customer List Module..117
The Stock List Module.. 117
The Master-Detail Form Specification File..118
The Orders Program orders.4gl.. 120

The MAIN program block... 120
Function setup_actions...122
Function order_new.. 122
Function order_insert..124
Function order_query..124
Function order_fetch...125
Function order_select... 126
Function order_fetch_rel...127
Function order_total..127
Function order_close.. 128
Function items_fetch...128
Function items_show.. 129
Function items_inpupd..129
Function items_line_total.. 131
Function item_insert... 131
Function item_update... 132
Function item_delete.. 132
Function get_stock_info..133

Tutorial Chapter 12: Changing the User Interface Dynamically.......... 135
Built-in Classes..135
Working with Forms.. 137
Hiding Form Items...139
Adding toolbars, topmenus, and action defaults...141
Specifying a Function to Initialize all Forms... 142
Loading a ComboBox List...143
Using the Dialog class in Interactive Statements... 145
Hiding Default Action Views..146
Enabling and Disabling Fields...146
Using the Interface Class..146

Contents | 6

Tutorial Chapter 13: Master/Detail using Multiple Dialogs.................. 149
The Master-Detail sample... 149
The Customer List Form... 150
The Customer List Module..151
The Orders Form...153
The Orders Program orders.4gl.. 155

Module variables of orders.4gl... 156
Function orditems_dialog..157
Function order_update..161
Function order_new.. 162
Function order_validate.. 163
Function order_query..164

Genero BDL Tutorial Summary | 7

Genero BDL Tutorial Summary

If you are a developer new to Genero and the Genero Business Development Language (BDL), this tutorial
is designed for you.

This tutorial explains concepts and provides code examples for common business-related tasks. The only
prerequisite knowledge is familiarity with relational databases and SQL.

The chapters contain a series of programs that range in complexity from displaying a database row to
more advanced topics, such as handling arrays and master/detail relationships. Each chapter has a
general discussion of the features and programming techniques used in the example programs, with
annotated code samples. The examples in later chapters build on concepts and functions explained in
earlier chapters.

These programs have the BDL keywords in uppercase letters; this is a convention only. The line numbers
in the programs are for reference only; they are not a part of the BDL code.

To run the example programs or try out the programming techniques described in this tutorial, see Testing
the Example Programs.

For an overview of Genero BDL, refer to the section Overview of Genero BDL in the Genero Business
Development Language User Guide.

• Testing the Example Programs on page 7
• Tutorial Chapters on page 9

Testing the Example Programs
The program examples used in this tutorial are packaged with Genero Studio. To run the programs you will
need a complete install of the Genero product suite.

The Genero product suite includes:

• Genero: The Genero Business Development Language with its compiler and virtual machine
• Genero Studio: The integrated Development environment for the Genero product suite
• Genero Report Writer: The enterprise graphical reporting tool

A Genero Project (4pw) manages the source files and properties for building and executing the program
examples in the tutorial. You can follow the steps below to work with the examples in the BDLTutorial
project in a convenient and visual way using Genero Studio.

Genero installs with a preconfigured SQLite database that you can use for tutorial examples that require
database access. An fglprofile configuration file with the entries needed to connect to the SQLite
database is also provided.

Perform these steps to open the BDLTutorial project in Genero Studio and explore the project structure.

1. Launch Genero Studio from the taskbar or Start Menu.
2. From the Welcome Page, Tutorials & Samples tab, select the BDLTutorial project. This opens the

BDLTutorial project file in the Projects view.

Genero BDL Tutorial Summary | 8

Figure 1: Selecting the BDLTutorial project in Genero Studio
3. In the Project view, expand the nodes of the project tree to view group nodes associated with each

chapter of the tutorial.
4. Expand the chap02 group node and you will find application nodes for three programs: connectdb,

debugit, and simple. Application nodes contain the application source files (modules).
5. Expand the simple application node to see the single BDL source module for the application:

simple.4gl.
6. Double-click simple.4gl to view the source code in Code Editor, a programming-oriented editor

included with Genero Studio. simple.4gl will be the first example analyzed in chapter two, where
you will find instructions on compiling and executing an application in Genero Studio as well as from the
Command line.

Genero BDL Tutorial Summary | 9

Figure 2: Viewing the BDLTutorial project structure in the Project view.
7. Close the simple.4gl program by selecting the close symbol

or leave the file open in Code Editor in preparation for Chapter 2.

You can learn more about projects and the Project view in the Project Manager section of the Genero
Studio User Guide.

For more information about Code Editor, see the Code Editor section of the Genero Studio User Guide.

Tutorial Chapters
Each chapter illustrates Genero Business Development Language (BDL) concepts with program examples.

Table 1: Tutorial chapters

Chapter Description

Tutorial Chapter 1: Overview on page 12 This chapter provides an overview of the Tutorial
and a description of the database schema and
sample data used for the example programs.

Tutorial Chapter 2: Using BDL on page 17 The topics in this chapter illustrate the structure of
a BDL program and some of the BDL statements
that perform some common tasks - display a text
message to the screen, connect to a database and
retrieve data, define variables, and pass variables
between functions.

Genero BDL Tutorial Summary | 10

Chapter Description

Tutorial Chapter 3: Displaying Data (Windows/
Forms) on page 24

This chapter illustrates opening a window that
contains a form to display information to the user.
An SQL statement is used to retrieve the data from
a database table. A form specification file is defined
to display the values retrieved. The actions that are
available to the user are defined in the source code,
tied to buttons that display on the form.

Tutorial Chapter 4: Query by Example on page
35

The program in this chapter allows the user to
search a database by entering criteria in a form.
The search criteria is used to build an SQL SELECT
statement to retrieve the desired database rows.
A cursor is defined in the program, to allow the
user to scroll back and forth between the rows
of the result set. Testing the success of the SQL
statements and handling errors is illustrated.

Tutorial Chapter 5: Enhancing the Form on page
52

Program forms can be displayed in a variety of
ways. This chapter illustrates adding a toolbar or
a topmenu (pull-down menu) by modifying the
form specification file, changing the window's
appearance, and disabling/enabling actions. The
example programs in this chapter use some of
the action defaults defined by Genero BDL to
standardize the presentation of common actions to
the user.

Tutorial Chapter 6: Add, Update and Delete on
page 62

This program allows the user to insert/
update/delete rows in the customer
database table. Embedded SQL statements
(UPDATE/INSERT/DELETE) are used to update the
table, based on the values stored in the program
record. SQL transactions, concurrency, and
consistency are discussed. A dialog window is
displayed to prompt the user to verify the deletion of
a row.

Tutorial Chapter 7: Array Display on page 74 The example in this chapter displays multiple
customer records at once. The disparray
program defines a program array to hold the
records, and displays the records in a form
containing a table and a screen array. The example
program is then modified to dynamically fill the
array as needed. This program illustrates a library
function - the example is written so it can be used in
multiple programs, maximizing code reuse.

Tutorial Chapter 8: Array Input on page 85 The program in this chapter allows the user to
view and change a list of records displayed on
a form. As each record in the program array is
added, updated, or deleted, the program logic
makes corresponding changes in the rows of the
corresponding database table.

Tutorial Chapter 9: Reports on page 96 This program generates a simple report of the data
in the customer database table. The two parts
of a report, the report driver logic and the report

Genero BDL Tutorial Summary | 11

Chapter Description

definition are illustrated. A technique to allow a user
to interrupt a long-running report is shown.

Tutorial Chapter 10: Localization on page 106 Localization support and localized strings allow
you to internationalize your application using
different languages, and to customize it for specific
industry markets in your user population. This
chapter illustrates the use of localized strings in
your programs.

Tutorial Chapter 11: Master/Detail on page 115 The form used by the program in this chapter
contains fields from both the orders and items
tables in the custdemo database, illustrating a
master-detail relationship. Since there are multiple
items associated with a single order, the rows from
the items table are displayed in a table on the
form. This chapter focuses on the master/detail
form and the unique features of the corresponding
program.

Tutorial Chapter 12: Changing the User Interface
Dynamically on page 135

This chapter focuses on using the classes and
methods in the ui package of built-in classes to
modify the user interface at runtime. Among the
techniques illustrated are hiding or disabling form
items; changing the text, style or image associated
with a form item; loading a combobox from a
database table; and adding toolbars and topmenus
dynamically.

Tutorial Chapter 13: Master/Detail using Multiple
Dialogs on page 149

This chapter shows how to implement order and
items input in a unique DIALOG statement. In
chapter 11 the order input is detached from the
items input. The code example in chapter 13 makes
both order and item input fields active at the same
time, which is more natural in GUI applications.

Tutorial Chapter 1: Overview | 12

Tutorial Chapter 1: Overview

This chapter provides an overview of the Tutorial and a description of the database schema and sample
data used for the example programs.

• Overview on page 12
• The BDL Language on page 12
• The BDL Tutorial on page 13
• The Example Database (custdemo) on page 13
• The Sample Data on page 14

This chapter covers concepts from the section Genero BDL concepts in the Genero Business Development
Language User Guide.

Overview
Especially well-suited for large-scale, database-intensive business applications, Genero Business
Development Language (BDL) is a reliable, easy-to-learn high-level programming language.

BDL allows application developers to:

• express business logic in a clear yet powerful syntax
• use SQL statements for database access to any of the supported databases
• localize your application to follow a specific language or cultural rules
• define user interfaces in an abstract, platform-independent manner
• define Presentation Styles to customize and standardize the appearance of the interface
• manipulate the user interface at runtime, as a tree of objects

The separation of business logic, user interface, and deployment provides maximum flexibility.

• The business logic is written in text files (.4gl source code modules) that interact with separate form
files defining the user interface.

• Actions defined in the business logic are tied to action views (buttons, menu items, toolbar icons) in the
form definition files, and respond to user interaction statements in the source code.

• Compiling a form definition file translates it into XML, which is used to display the user interface to
various Genero clients running on different platforms.

You can write once, deploy anywhere - one production release supports all major versions of UNIX™,
Linux™, Windows™, and Mac OS X.

The BDL Language
Genero Business Development Language (BDL) is a program language designed to write an interactive
database application, as a set of programs that handle the interaction between a user and a database.

The Genero Business Development Language includes:

• Program flow control
• Conditional logic
• SQL statement support
• Connection management
• Error handling
• Localized strings

Tutorial Chapter 1: Overview | 13

Dynamic SQL management allows you to execute any SQL statement that is valid for your database
version, in addition to those that are included as part of the language. The statement can be hard coded or
created at runtime, with or without SQL parameters, returning or not returning a result set.

High-level BDL user interaction statements substitute for the many lines of code necessary to implement
common business tasks, mediating between the user and the user interface in order to:

• Provide a selection of actions to the user (MENU)
• Allow the user to enter database search criteria on a form (CONSTRUCT)
• Display information from database tables (DISPLAY, DISPLAY ARRAY)
• Allow the user to modify the contents of database tables (INPUT, INPUT ARRAY)

Multiple dialogs allow a Genero program to handle interactive statements in parallel.

In addition, built-in classes and methods, and built-in functions are provided to assist you in your program
development.

The BDL Tutorial
The chapters in this tutorial describe the basic functionality of Genero BDL.

Annotated code examples in each chapter guide you through the steps to implement the features
discussed. In addition, complete source code programs of the examples are available for download,
contact your support channel to get the links. See Tutorial Chapters on page 9 for a description of each
chapter.

The example programs interact with a demo database, the custdemo database, containing store and
order information for a fictional retail chain.

If you wish to test the example programs on your own system, see Testing the Programs for information
about the software and sample data that must be installed and configured.

The Example Database (custdemo)
The following SQL statements create the tables for the custdemo database.

These statements are in the file custdemo.sql in the Tutorial subdirectory of the documentation.

create table customer(
 store_num integer not null,
 store_name char(20) not null,
 addr char(20),
 addr2 char(20),
 city char(15),
 state char(2),
 zip-code char(5),
 contact_name char(30),
 phone char(18),
 primary key (store_num)
);
create table orders(
 order_num integer not null,
 order_date date not null,
 store_num integer not null,
 fac_code char(3),
 ship_instr char(10),
 promo char(1) not null,
 primary key (order_num)
);
create table factory(
 fac_code char(3) not null,

Tutorial Chapter 1: Overview | 14

 fac_name char(15) not null,
 primary key (fac_code)
);
create table stock(
 stock_num integer not null,
 fac_code char(3) not null,
 description char(15) not null,
 reg_price decimal(8,2) not null,
 promo_price decimal(8,2),
 price_updated date,
 unit char(4) not null,
 primary key (stock_num)
);
create table items(
 order_num integer not null,
 stock_num integer not null,
 quantity smallint not null,
 price decimal(8,2) not null,
 primary key (order_num, stock_num)
);
create table state(
 state_code char(2) not null,
 state_name char(15) not null,
 primary key (state_code)
);

The Sample Data
The custdemo database contains the following sample data.

Customer table

101|Bandy's Hardware|110 Main| |Chicago|IL|60068|Bob Bandy|
630-221-9055|
102|The FIX-IT Shop|65W Elm Street Sqr.| |Madison|WI|65454| |
630-34343434|
103|Hill's Hobby Shop|553 Central Parkway| |Eau Claire|WI|54354|Janice
 Hilstrom|
666-4564564|
104|Illinois Hardware|123 Main Street| |Peoria|IL|63434|Ramon Aguirra|
630-3434334|
105|Tools and Stuff|645W Center Street| |Dubuque|IA|54654|Lavonne Robinson|
630-4533456|
106|TrueTest Hardware|6123 N. Michigan Ave| |Chicago|IL|60104|Michael
 Mazukelli|
640-3453456|
202|Fourth Ill Hardware|6123 N. Michigan Ave| |Chicago|IL|60104|Michael
 Mazukelli|
640-3453456|
203|2nd Hobby Shop|553 Central Parkway| |Eau Claire|WI|54354|Janice
 Hilstrom|
666-4564564|
204|2nd Hardware|123 Main Street| |Peoria|IL|63434|Ramon Aguirra|
630-3434334|
205|2nd Stuff|645W Center Street| |Dubuque|IA|54654|Lavonne Robinson|
630-4533456|
206|2ndTest Hardware|6123 N. Michigan Ave| |Chicago|IL|60104|Michael
 Mazukelli|
640-3453456|
302|Third FIX-IT Shop|65W Elm Street Sqr.| |Madison|WI|65454| |
630-34343434|

Tutorial Chapter 1: Overview | 15

303|Third Hobby Shop|553 Central Parkway| |Eau Claire|WI|54354|Janice
 Hilstrom|
666-4564564|
304|Third IL Hardware|123 Main Street| |Peoria|IL|63434|Ramon Aguirra|
630-3434334|
305|Third and Stuff|645W Center Street| |Dubuque|IA|54654|Lavonne Robinson|
630-4533456|
306|Third Hardware|6123 N. Michigan Ave| |Chicago|IL|60104|Michael
 Mazukelli|
640-3453456|

Orders table

1|04/04/2003|101|ASC|FEDEX|N|
2|06/06/2006|102|ASC|FEDEX|Y|
3|06/10/2006|103|PHL|FEDEX|Y|
4|06/10/2006|104|ASC|FEDEX|Y|
5|07/06/2006|101|ASC|FEDEX|Y|
6|07/16/2006|105|ASC|FEDEX|Y|
7|08/04/2006|104|PHL|FEDEX|Y|
8|08/16/2006|101|ASC|FEDEX|Y|
9|08/23/2006|101|ASC|FEDEX|Y|
10|09/06/2006|106|PHL|FEDEX|Y|

Items table

1|456|10|5.55|
1|310|5|12.85|
1|744|60|250.95|
2|456|15|5.55|
2|310|2|12.85|
3|323|2|0.95|
4|744|60|250.95|
4|456|15|5.55|
5|456|12|5.55|
5|310|15|12.85|
5|744|6|250.95|
6|456|15|5.55|
6|310|2|12.85|
7|323|10|0.95|
8|456|10|5.55|
8|310|15|12.85|
9|744|20|250.95|
10|323|200|0.95|

Stock table

456|ASC|lightbulbs|5.55|5.0|01/16/2006|ctn|
310|ASC|sink stoppers|12.85|11.57|06/16/2006|grss|
323|PHL|bolts|0.95|0.86|01/16/2006|20/b|
744|ASC|faucets|250.95|225.86|01/16/2006|6/bx|

Factory table

ASC|Assoc. Std. Co.|
PHL|Phelps Lighting|

Tutorial Chapter 1: Overview | 16

State table

IL|Illinois|
IA|Iowa|
WI|Wisconsin|

Tutorial Chapter 2: Using BDL | 17

Tutorial Chapter 2: Using BDL

The topics in this chapter illustrate the structure of a BDL program and some of the BDL statements that
perform some common tasks - display a text message to the screen, connect to a database and retrieve
data, define variables, and pass variables between functions.

• A simple BDL program on page 17
• Compiling and Executing the Program on page 18
• Debugging a BDL Program on page 20
• The "Connect to database" Program on page 20

• Example: connectdb.4gl on page 22

A simple BDL program
This simple example displays a text message to the screen, illustrating the structure of a BDL program.

Genero BDL source code is written as text in a source module (a file with an extension of .4gl). Because
Genero BDL is a structured programming language as well as a 4th generation language, executable
statements can appear only within logical sections of the source code called program blocks. This can be
the MAIN statement, a FUNCTION statement, or a REPORT statement. (Reports are discussed in Chapter
9.)

Execution of any program begins with the special, required program block MAIN, delimited by the keywords
MAIN and END MAIN. The source module that contains MAIN is called the main module.

The FUNCTION statement is a unit of executable code, delimited by FUNCTION and END FUNCTION, that
can be called by name. In a small program, you can write all the functions used in the program in a single
file. As programs grow larger, you will usually want to group related functions into separate files, or source
modules. Functions are available on a global basis. In other words, you can reference any function in any
source module of your program.

Although the language keywords in this example and throughout the tutorial are in all-capitals, this is
just a convention used in these documents. You may write keywords in any combination of capitals and
lowercase you prefer.

You can begin a comment that terminates at the end of the current line with a pair of minus signs (--) or #.
Curly braces {} can be used to delimit comments that occupy multiple lines.

The following example is a small but complete Genero BDL program named simple.4gl.

01 -- simple.4gl
02
03 MAIN
04 CALL sayIt()
05 END MAIN
06
07 FUNCTION sayIt()
08 DISPLAY "Hello, world!"
09 END FUNCTION

Note:

• Line 01 simply lists the filename as a comment , which will be ignored by BDL.
• Line 03 indicates the start of the MAIN program block.
• Line 04 Within the MAIN program block, the CALL statement is used to invoke the function

named sayIt. Although no arguments are passed to the function sayIt, the empty
parentheses are required. Nothing is returned by the function.

Tutorial Chapter 2: Using BDL | 18

• Line 05 defines the end of the MAIN program block. When all the statements within the program
block have been executed the program will terminate automatically.

• Line 07 indicates the start of the function sayIt .
• Line 08 uses the DISPLAY statement to display a text message, enclosed within double quotes,

to the user. Because the program has not opened a window or form, the message is displayed
on the command line.

• Line 09 indicates the end of the function. After the message is displayed, control in the program
is returned to the MAIN function, to line 05, the line immediately following the statement invoking
the function. As there are no additional statements to be executed (END MAIN has been
reached), the program terminates.

Compiling and Executing the Program
BDL programs are made up of a single module, or modules, containing the program functions. You can
compile and execute programs in Genero Studio or use command line tools if you prefer.

From Genero Studio

The Execute option in the Genero Studio Project view will compile and link files in the specified application
node if necessary before executing the application. You can also compile individual modules or build an
application (compile and link files) as independent steps.

To compile and execute the simple program in Genero Studio:

1. In the Project view, expand the BDLTutorial project and find the chap02 group.
2. Expand the chap02 group, right-click on the simple application node and select Execute.

Tutorial Chapter 2: Using BDL | 19

Figure 3: Using the Execute option to compile and execute the simple program

From the command line

The following tools can be used to compile and execute the simple program from the command line.

1. Compile the single module program:

fglcomp simple.4gl

2. Execute the program:

fglrun simple.42m

Tip:

1. You can compile and run a program without specifying the file extensions:

fglcomp simple
fglrun simple

You can do this in one command line, adding the -M option for errors:

fglcomp -M simple && fglrun simple

Tutorial Chapter 2: Using BDL | 20

Debugging a BDL Program
You can use the Genero graphical debugger or the command line debugger to search for programming
errors.

The command line debugger is integrated in the runtime system. You typically start a program in debug
mode by passing the -d option to fglrun .

The following lines illustrate a debug session with the simple program:

fglrun -d simple
(fgldb) break main
Breakpoint 1 at 0x00000000: file simple.4gl, line 2.
(fgldb) run
Breakpoint 1, main() at simple.4gl:2
2 CALL sayIt()
(fgldb) step
sayit() at simple.4gl:6
6 DISPLAY "Hello, world!"
(fgldb) next
Hello, world!
7 END FUNCTION -- sayIt (fgldb) continue
Program existed normally.
(fgldb) quit

This chapter covers concepts from the section The debugger in the Genero Business Development
Language User Guide.

The "Connect to database" Program
This program illustrates connecting to a database and retrieving data, defining variables, and passing
variables between functions.

A row from the customer table of the custdemo example database is retrieved by an SQL statement and
displayed to the user.

Connecting to the database

To connect to a database server, most database engines require a name to identify the server, a name to
identify the database entity, a user name and a password.

Connecting through the Open Database Interface, the database can be specified directly, and the
specification will be used as the data source. Or, you can define the database connection parameters
indirectly in the fglprofile configuration file, and the database specification will be used as a key to
read the connection information from the file. This technique is flexible; for example, you can develop
your application with the database name "custdemo" and connect to the real database "custdemo1" in a
production environment.

The CONNECT instruction opens a session in multi-session mode, allowing you to open other connections
with subsequent CONNECT instructions (to other databases, for example). The DISCONNECT instruction can
be used to disconnect from specific sessions, or from all sessions. The end of a program disconnects all
sessions automatically.

The username and password can be specified in the CONNECT instruction, or defaults can be defined in
the fglprofile file. Otherwise, the user name and password provided to your operating system will
generally be used for authentication.

CONNECT TO "custdemo"

Tutorial Chapter 2: Using BDL | 21

Variable definition

A Variable contains volatile information of a specific BDL data type. Variables must be declared before
you use them in your program, using the DEFINE statement. After definition, variables have default values
based on the data type.

DEFINE cont_ok INTEGER

You can use the LIKE keyword to declare a variable that has the same data type as a specified column
in a database schema. A SCHEMA statement must define the database name, identifying the database
schema files to be used. The column data types are read from the schema file during compilation, not at
runtime. Make sure that your schema files correspond exactly to the production database.

DEFINE store_name LIKE customer.store_name

Genero BDL allows you to define structured variables as records or arrays. Examples of this are included
in later chapters.

Variable scope

Variables defined in a FUNCTION , REPORT or MAIN program block have local scope (are known only
within the program block). DEFINE must precede any executable statements within the same program
block. A variable with local scope can have its value set and can be used only within the function in which it
is defined.

A Variable defined with module scope can have its value set and can be used in any function within a
single source-code module. The DEFINE statement must appear at the top of the module, before any
program blocks.

A Variable defined with global scope can have its value set and can be used in any function within any
modules of the same program.

For a well-structured program and ease of maintenance, we recommend that you use module variables
instead of global when you need persistent data storage. You can include get/set functions in the module
to make the value of the variable accessible to functions in other modules.

A compile-time error occurs if you declare the same name for two variables that have the same scope.

Passing variables

Functions can be invoked explicitly using the CALL statement. Variables can be passed as arguments to a
function when it is invoked. The parameters can be variables, literals, constants, or any valid expressions.
Arguments are separated by a comma. If the function returns any values, the RETURNING clause of the
CALL statement assigns the returned values to variables in the calling routine. The number of input and
output parameters is static.

The function that is invoked must have a RETURN instruction to transfer the control back to the calling
function and pass the return values. The number of returned values must correspond to the number of
variables listed in the RETURNING clause of the CALL statement invoking this function. If the function
returns only one unique value, it can be used as a scalar function in an expression.

CALL myfunc()
CALL newfunc(var1) RETURNING var2, var3
LET var2 = anotherfunc(var1)
IF testfunc1(var1) == testfunc2(var1) THEN ...

Retrieving data from a database
Using Static SQL, an embedded SQL SELECT statement can be used to retrieve data from a database
table into program variables. If the SELECT statement returns only one row of data, you can write it directly
as a procedural instruction, using the INTO clause to provide the list of variables where the column values

Tutorial Chapter 2: Using BDL | 22

will be fetched. If the SELECT statement returns more than one row of data, you must declare a database
cursor to process the result set.

Example: connectdb.4gl
This program connects to the custdemo database, selects the store name from the customer table and
displays it to the user.

Note: The line numbers shown in the examples in this tutorial are not part of the BDL code;
they are used here so specific lines can be easily referenced. The BDL keywords are shown in
uppercase, as a convention only.

Program connectdb.4gl:

01 -- connectdb.4gl
02 SCHEMA custdemo
03
04 MAIN
05 DEFINE
06 m_store_name LIKE customer.store_name
07
08 CONNECT TO "custdemo"
09
10 CALL select_name(101)
11 RETURNING m_store_name
12 DISPLAY m_store_name
13
14 DISCONNECT CURRENT
15
16 END MAIN
17
18 FUNCTION select_name(f_store_num)
19 DEFINE
20 f_store_num LIKE customer.store_num,
21 f_store_name LIKE customer.store_name
22
23 SELECT store_name INTO f_store_name
24 FROM customer
25 WHERE store_num = f_store_num
26
27 RETURN f_store_name
28
29 END FUNCTION -- select_name

Note:

• Line 02 The SCHEMA statement is used to define the database schema files to be used as
custdemo. The LIKE syntax has been used to define variables in the module.

• Lines 05 and 06 Using DEFINE the local variable m_store_name is declared as being LIKE
the store_name column; that is, it has the same data type definition as the column in the
customer table of the custdemo database.

• Line 08 A connection in multi-session mode is opened to the custdemo database, with
connection parameters defined in the fglprofile configuration file. Once connected to the
database server, a current database session is started. Any subsequent SQL statement is
executed in the context of the current database session.

• Line10 The select_name function is called, passing the literal value 101 as an argument. The
function returns a value to be stored in the local variable m_store_name.

• Line 12 The value of m_store_name is displayed to the user on the standard output.
• Line 14 The DISCONNECT instruction disconnects you from the current session. As there are no

additional lines in the program block, the program terminates.

Tutorial Chapter 2: Using BDL | 23

• Line 18 Beginning of the definition of the function select_name. The value "101" that is passed
to the function will be stored in the local variable f_store_num.

• Lines 19 thru 21 Defines multiple local variables used in the function, separating the variables
listed with a comma. Notice that a variable must be declared with the same name and data type
as the parameter listed within the parenthesis in the function statement, to accept the passed
value.

• Lines 23 thru 25Contains the embedded SELECT ... INTO SQL statement to retrieve
the store name for store number 101. The store name that is retrieved will be stored in the
f_store_name local variable. Since the store number is unique, the WHERE clause ensures that
only a single row will be returned.

• Line 27 The RETURN statement causes the function to terminate, returning the value of the local
variable f_store_name. The number of variables returned matches the number declared in
the RETURNING clause of the CALL statement invoking the function. Execution of the program
continues with line 12.

The database schema file

This program requires a database schema file because of the use of the LIKE keyword when defining
the variable m_store_name. The database schema contains the definition of the database tables and
columns and is used to centralize column data types to define program variables. The schema file for the
BDLTutorial has already been extracted from the custdemo database and is used at compile time.

To learn more about database schema files see Database schema in the Genero Business Development
Language User Guide.

Compiling and executing the program

You can compile and execute the connectdb application using the Execute option in the Project view of
Genero Studio or use the command line options.

1. Compile the single module program:

fglcomp connectdb.4gl

2. Execute the program:

fglrun connectdb.42m

Tutorial Chapter 3: Displaying Data (Windows/Forms) | 24

Tutorial Chapter 3: Displaying Data (Windows/Forms)

This chapter illustrates opening a window that contains a form to display information to the user. An SQL
statement is used to retrieve the data from a database table. A form specification file is defined to display
the values retrieved. The actions that are available to the user are defined in the source code, tied to
buttons that display on the form.

• Application Overview on page 24
• The .4gl File - Opening Windows and Forms on page 25
• The .4gl File - Interacting with the User on page 26
• The .4gl File - Retrieving and Displaying Data on page 28
• Example: dispcust.4gl (function query_cust) on page 29
• The Form Specification File on page 30
• Example: Form Specification File custform.per on page 33
• Compiling the Program and Form on page 34

Application Overview
This example program opens a window containing a form to display information to the user.

The appearance of the form is defined in a separate form definition file. The program logic to display
information on the form is written in the .4gl program module. The same form file can be used with
different applications.

The options to retrieve data or exit are defined as actions in a MENU statement in the .4gl file. By default,
push buttons are displayed on the form corresponding to the actions listed in the MENU statement. When
the user presses the query button, the code listed for the action statement is executed - in this case, an
SQL SELECT statement retrieves a single row from the customer table and displays it on the form.

A FORM can contain form fields for entering and displaying data; explanatory text (labels); and other form
objects such as buttons, topmenus (dropdown menus), toolbar icons, folders, tables, and checkboxes.
Form objects that are associated with an action are called action views. Messages providing information to
the user can be displayed on the form.

Tutorial Chapter 3: Displaying Data (Windows/Forms) | 25

Figure 4: Interface as displayed on Windows™ platforms

The .4gl File - Opening Windows and Forms
A program creates a window with the OPEN WINDOW instruction, and destroys a window with the CLOSE
WINDOW instruction.

The OPEN WINDOW ... WITH FORM instruction can be used to automatically open a window containing
a specified form:

OPEN WINDOW custwin WITH FORM "custform"

When you are using a graphical front end, windows are created as independent resizable windows.
By default windows are displayed as normal application windows, but you can specify a Presentation
Style. The standard window styles are defined in the default Presentation Style file (FGLDIR/lib/
default.4st):

If the WITH FORM option is used in opening a window, the CLOSE WINDOW statement closes both the
window and the form.

CLOSE WINDOW custwin

When the runtime system starts a program, it creates a default window named SCREEN. This default
window can be used as another window, but it can be closed if not needed.

CLOSE WINDOW SCREEN

Note: The appropriate Genero Front-end Client must be running for the program to display the
window and form.

Tutorial Chapter 3: Displaying Data (Windows/Forms) | 26

The .4gl File - Interacting with the User
Your form can display options to the user using action views - buttons, dropdown menus (topmenus),
toolbars, and other items on the window.

Defining Actions - the MENU statement

An action defined in the .4gl module, which identifies the program routine to be executed, can be
associated with each action view shown on the form. You define the program logic to be executed for each
action in the .4gl module.

• In this BDL program, the MENU statement supplies the list of actions and the statements to be executed
for each action. The actions are specified with ON ACTION clauses:

ON ACTION query
 CALL query_cust()

• The ON ACTION clause defines the action name and the statements to be executed for the action. The
presentation attributes - title, font, comment, etc. - for the graphical object that serves as the action
view are defined in a separate action defaults file, or in the ACTION DEFAULTS section of the form file.
This allows you to standardize the appearance of the views for common actions. Action Defaults are
illustrated in Tutorial Chapter 5: Enhancing the Form on page 52.

You can also use ON ACTION clauses with some other interactive BDL statements, such as INPUT,
INPUT ARRAY, DIALOG, and DISPLAY ARRAY.

• When the MENU statement in your program is executed, the action views for the actions (query, in the
example) that are listed in the interactive MENU statement are enabled. Only the action views for the
actions in the specific MENU statement are enabled, so you must be sure to include a means of exiting
the MENU statement. If there is no action view defined in your form specification file for a listed action,
a simple push button action view is automatically displayed in the window. Control is turned over to the
user, and the program waits until the user responds by selecting one of enabled action views or exiting
the form. Once an action view is selected, the corresponding program routine (action) is executed.

See Ring menus (MENU) in the Genero Business Development Language User Guide for a complete
discussion of the statement and all its options.

Displaying Messages and Errors

The MESSAGE and ERROR statements are used to display text containing a message to the user. The text
is displayed in a specific area, depending on the front end configuration and window style. The MESSAGE
text is displayed until it is replaced by another MESSAGE statement or field comment. You can specify any
combination of variables and strings for the text. BDL generates the message to display by replacing any
variables with their values and concatenating the strings:

MESSAGE "Customer " || l_custrec.store_num , || " retrieved."

The Localized Strings feature can be used to customize the messages for specific user communities. This
is discussed in Tutorial Chapter 10: Localization on page 106.

Example: dispcust.4gl

This portion of the dispcust.4gl program connects to a database, opens a window and displays a form
and a menu.

Program dispcust.4gl:

01 -- dispcust.4gl
02 SCHEMA custdemo
03

Tutorial Chapter 3: Displaying Data (Windows/Forms) | 27

04 MAIN
05
06 CONNECT TO "custdemo"
07
08 CLOSE WINDOW SCREEN
09 OPEN WINDOW custwin WITH FORM "custform"
10 MESSAGE "Program retrieves customer 101"
11
12 MENU "Customer"
13 ON ACTION query
14 CALL query_cust()
15 ON ACTION exit
16 EXIT MENU
17 END MENU
18
19 CLOSE WINDOW custwin
20
21 DISCONNECT CURRENT
22
23 END MAIN

Note:

• Line 02 The SCHEMA statement is required since variables are defined as LIKE a database table
in the function query_cust.

• Line 06opens the connection to the custdemo database.
• Line 08 closes the default window named SCREEN, which is opened each time the runtime

system starts a program containing interactive statements
• Line 09 uses the WITH FORM syntax to open a window having the identifier custwin containing

the form identified as custform. The window name must be unique among all windows defined
in the program. Its scope is the entire program. You can use the window's name to reference
any open window in other modules with other statements. Although there can be multiple open
windows, only one window may be current at a given time. By default, the window that opens
will be a normal application window. The form identifier is the name of the compiled .42f file
(custform.42f). The form identifier must be unique among form names in the program. Its
scope of reference is the entire program.

• Line 10 displays a string as a MESSAGE to the user. The message will be displayed until it is
replaced by a different string.

• Lines 12 through 17 contain the interactive MENU statement. By default, the menu options
query and exit are displayed as buttons in the window, with Customer as the menu title.
When the MENU statement is executed, the buttons are enabled, and control is turned over
to the user. If the user selects the query button, the function query_cust will be executed.
Following execution of the function, the action views (buttons in this case) are re-enabled and
the program waits for the user to select an action again. If the user selects the exit button, the
MENU statement is terminated, and the program continues with line 19.

• Line 19 The window custwin is closed which automatically closes the form, removing both
objects from the application's memory.

• Line 21 The program disconnects from the database; as there are no more statements in MAIN,
the program terminates.

Tutorial Chapter 3: Displaying Data (Windows/Forms) | 28

The .4gl File - Retrieving and Displaying Data
The example demonstrates how to define a record so you can treat variables as a group. Static SQL
instructions retrieve rows from the database which are displayed to the form using the DISPLAY BY NAME
statement.

Defining a Record

In addition to defining individual variables, the DEFINE statement can define a record, a collection of
variables each having its own data type and name. You put the variables in a record so you can treat them
as a group. Then, you can access any member of a record by writing the name of the record, a dot (known
as dot notation), and the name of the member.

DEFINE custrec RECORD
 store_num LIKE customer.store_num
 store_name LIKE customer.store_name
 END RECORD
DISPLAY custrec.store_num

Your record can contain variables for the columns of a database table. At its simplest, you write RECORD
LIKE tablename.* to define a record that includes members that match in data type all the columns
in a database table. However, if your database schema changes often, it's best to list each member
individually, so that a change in the structure of the database table won't break your code. Your record can
also contain members that are not defined in terms of a database table.

Using SQL to Retrieve the Data

A subset of SQL, known as Static SQL, is provided as part of the BDL language and can be embedded in
the program. At runtime, these SQL statements are automatically prepared and executed by the runtime
System.

SELECT store_num, store_name INTO custrec.* FROM customer

Only a limited number of SQL instructions are supported this way. However, Dynamic SQL Management
allows you to execute any kind of SQL statement.

Displaying a Record: DISPLAY BY NAME

A common technique is to use the names of database columns as the names of both the members of a
program record and the fields in a form. Then, the DISPLAY BY NAME statement can be used to display
the program variables. By default, a screen record consisting of the form fields associated with each
database table column is automatically created. BDL will match the name to the name of the form field,
ignoring any record name prefix:

DISPLAY BY NAME custrec.*

The program variables serve as the intermediary between the database and the form that is displayed
to the user. Values from a row in the database table are retrieved into the program variables by an SQL
SELECT statement, and are then displayed on the form. In Tutorial Chapter 6: Add, Update and Delete
on page 62 you will see how the user can change the values in the form, resulting in changes to the
program variables, which could then be used in SQL statements to modify the data in the database.

Tutorial Chapter 3: Displaying Data (Windows/Forms) | 29

Figure 5: Flow between the database, program, and form

Example: dispcust.4gl (function query_cust)
This function retrieves a row from the customer table and displays it in a form.

Function query_cust:

01 FUNCTION query_cust() -- displays one row
02 DEFINE l_custrec RECORD
03 store_num LIKE customer.store_num,
04 store_name LIKE customer.store_name,
05 addr LIKE customer.addr,
06 addr2 LIKE customer.addr2,
07 city LIKE customer.city,
08 state LIKE customer.state,
09 zip-code LIKE customer.zip-code,
10 contact_name LIKE customer.contact_name,
11 phone LIKE customer.phone
12 END RECORD
13
14 SELECT store_num,
15 store_name,
16 addr,
17 addr2,
18 city,
19 state,
20 zip-code,
21 contact_name,
22 phone
23 INTO l_custrec.*
24 FROM customer
25 WHERE store_num = 101
26
27 DISPLAY BY NAME l_custrec.*
28 MESSAGE "Customer " || l_custrec.store_num ||
29 " displayed."
30 END FUNCTION

Note:

• Line 01 is the beginning of the function query_cust. No variables are passed to the function.

Tutorial Chapter 3: Displaying Data (Windows/Forms) | 30

• Lines 02 thru 12 DEFINE a record l_custrec as LIKE columns in the customer database
table, listing each variable separately.

• Line 14 thru 25 SELECT ... INTO can be used, since the statement will retrieve only one
row from the database. The SELECT statement lists each column name to be retrieved, rather
than using SELECT *. This allows for the possibility that additional columns might be added to a
table at a future date. Since the SELECT list retrieves values for all the variables in the program
record, in the order listed in the DEFINE statement, the shorthand INTO l_custrec.* can be
used.

• Line 27 The names in the program record l_custrec match the names of screen fields on the
form, so DISPLAY BY NAME can be used. l_custrec.* indicates that all of the members of
the program record are to be displayed.

• Lines 28 and 29 A string for the MESSAGE statement is concatenated together using the double
pipe (||) operator and displayed. The message consists of the string "Customer", the value of
l_custrec.store_num, and the string "displayed".

There are no additional statements in the function, so the program returns to the MENU statement, awaiting
the user's next action.

The Form Specification File
You can specify the layout of a form in a form specification file, which is compiled separately from your
program. The form specification file defines the initial settings for the form, which can be changed
programmatically at runtime.

Overview

Form specification files created in Genero Studio's Form Designer have a file extension of .4fd. Text-
based form specification files have a file extension of .per. The structure of the form is independent of the
use of the form. For example, one function can use a form to display a database row, another can let the
user enter a new database row, and still another can let the user enter criteria for selecting database rows.

A Form can contain the following types of items:

• Container - groups other form items. Every form item must be in a container. GRID is the basic
container, frequently used to display a single row of database data. TABLE containers can provide
record-list presentation in columns and rows. Other containers, such as a FOLDER or GROUP, provide
additional options for organizing the data that is displayed.

• FormField - defines an area where the user can view and edit data. The data is stored in variables
defined in the .4gl source code file. The EDIT formfield provides a simple line-edit field. Other form
items, such as a COMBOBOX or RADIOGROUP, provide a user-friendly interface to the data stored in the
underlying formfield. The data type of a formfield can be defined by a database table column, or it can
be FORMONLY - defined specifically in the form.

• Action view - allows the user to trigger actions specified in the .4gl file. An Action view can be a
BUTTON, toolbar icon, or topmenu option, for example.

• Other - items that enhance the display or provide read-only information (an IMAGE or LABEL, for
example).

Each form and form item has attributes that control its appearance and behavior. See the documentation
for Form specification files, and Form item attributes in the Genero Business Development Language User
Guide for additional information about form items.

Styles from a Presentation Styles file can be applied to the form and form items.

A basic form specification consists of the following sections:

Tutorial Chapter 3: Displaying Data (Windows/Forms) | 31

The SCHEMA section (optional)

This specifies the database schema file to be used when the form is compiled. It is required if any form
items are defined as data types based on a column of a database table.

SCHEMA custdemo

The ACTION DEFAULTS, TOPMENU, and TOOLBAR sections (optional)

These sections are provided to allow you to define the decoration for action views (action defaults), as well
as to define topmenus and toolbars for the form. In this case, the definitions are specific to the form. If your
definitions are in external XML files instead, they can be applied to any form.

This is discussed in chapter 5.

The LAYOUT section

This section defines the appearance of a form using a layout tree.

Of containers, which can hold other containers or can define a screen area. Some of the available
containers are GRID, VBOX, HBOX, GROUP, FOLDER, and PAGE.

The simplest layout tree could have only a GRID container defining the dimensions and the position of the
logical elements of a screen:

LAYOUT
 GRID
 grid-area
 END
END

The END keyword is mandatory to define the end of a container block.

The grid-area is delimited by curly braces. Within this area, you can specify the position of form items or
interactive objects such as BUTTON, COMBOBOX, CHECKBOX, RADIOGROUP, PROGRESSBAR, and so on.

Simple form fields, delimited by square brackets ([]), are form items used to display data and take input.
Generally, the number of characters in the space between the brackets defines the width of the region to
be used by the item. For example, in the grid-area, the following field could be defined:

[f01]

This form field has an item tag of f01, which will be used to link the field to its definition in the
ATTRIBUTES section of the form specification.

Interactive form items, such as COMBOBOX, CHECKBOX, and RADIOGROUP, can be used instead of simple
form fields to represent the values in the underlying formfield. Special width calculations are done for some
of these form items, such as COMBOBOX, BUTTONEDIT, and DATEEDIT. If the default width generated by
the form compiler does not fit, the - dash symbol can be used to define the real width of the item.

Text in the grid-area that is outside brackets is display-only text, as in the word Company:

Company [f01]

The TABLES section (optional)

If a database table or database view is referenced elsewhere in the form specification file, in the
ATTRIBUTES

Tutorial Chapter 3: Displaying Data (Windows/Forms) | 32

Section for example, the table or view must be listed in the TABLES section:

TABLES
 customer
END

A default screen record is automatically created for the form fields associated with each table listed in this
section.

The ATTRIBUTES section

The ATTRIBUTES section defines properties of the items used in the form.

Form Fields

For form fields (items that can be used to display data or take input) the definition is:

<item-type> <item-tag> = <item-name>, <attribute-list> ;

• The item-type defines the kind of graphical object which must be used to display the form element.
• The item-tag identifies the form item in the display area.
• The item-name provides the name of the form item.
• The optional attribute-list defines the aspect and behavior of the form item.

Examples

EDIT f01 = customer.cust_num,REQUIRED;
COMBOBOX f03 = customer.state;
CHECKBOX f04 = formonly.propcheck;

The most commonly used item-type, EDIT, defines a simple line edit box for data input or display. This
example uses an EDIT item-type for the form field f01. The COMBOBOX and CHECKBOX item types present
the data contained in the form fields f03 and f04 in a user-friendly way.

The item-name must specify a database column as the name of the display field, or must be FORMONLY
(fields defined as FORMONLY are discussed in chapter 11) Fields are associated with database columns
only during the compilation of the form specification file, to identify the data type for the form field based on
the database schema. After the form compiler identifies the data types, the association between fields and
database columns is broken, and the item-name is associated with the screen record.

Form field and form item definitions can optionally include an attribute-list to specify the appearance and
behavior of the item. For example, you can define acceptable input values, on-screen comments, and
default values for fields; you can insure that a value is entered in the field during the input of a new row
(REQUIRED); columns in a table can be specified as sortable or non-sortable; numbers and dates can be
formatted for display; data entry patterns can be defined and input data can be upshifted or downshifted.

A form field can be an EDIT, BUTTONEDIT, CHECKBOX, COMBOBOX, DATEEDIT, IMAGE, LABEL,
PROGRESSBAR, RADIOGROUP, or TEXTEDIT.

Other form items

For form items that are not form fields (BUTTON, CANVAS, GROUP, static IMAGE, static LABEL,
SCROLLGRID, and TABLE) the definition is:

<item-type> <item-tag>: <item-name> , <attribute-list> ;

Examples:

BUTTON btn1: print, TEXT = "Print Report";

Tutorial Chapter 3: Displaying Data (Windows/Forms) | 33

LABEL lab1: label1, TEXT ="Customer";

The INSTRUCTIONS section (optional)

The INSTRUCTIONS section is used to define explicit screen records or screen arrays. This is discussed in
Chapter 7

Example: Form Specification File custform.per
This form specification file is used with the dispcust.4gl program to display program variables to the
user. This form uses a layout with a simple GRID to define the display area.

File custform.per:

01 SCHEMA custdemo
02
03 LAYOUT
04 GRID
05 {
06 Store #:[f01] Name:[f02]
07 Address:[f03]
08 [f04]
09 City:[f05]State:[f6]Zip:[f07]
10 Contact:[f08]
11 Phone:[f09]
12
13 }
14 END --grid
15 END -- layout
16
17 TABLES
18 customer
19 END
20
21 ATTRIBUTES
22 EDIT f01 = customer.store_num, REQUIRED;
23 EDIT f02 = customer.store_name, COMMENT="Customer name";
24 EDIT f03 = customer.addr;
25 EDIT f04 = customer.addr2;
26 EDIT f05 = customer.city;
27 EDIT f6 = customer.state;
28 EDIT f07 = customer.zip-code;
29 EDIT f08 = customer.contact_name;
30 EDIT f09 = customer.phone;
31 END

Note:

• Line 01 lists the database schema file from which the form field data types will be obtained.
• Lines 03 through 15 delimit the LAYOUT section of the form.
• Lines 04 thru 14 delimit the GRID area, indicating what will be displayed to the user between the

curly brackets on lines 05 and 13.
• Line 17 The TABLES statement is required since the field descriptions reference the columns of

the database table customer.
• Within the grid area, the form fields have item tags linking them to descriptions in the

ATTRIBUTES section, in lines 20 thru 28. As an example, f01 is the display area for a program
variable having the same data type definition as the store_num column in the customer table
of the custdemo database.

Tutorial Chapter 3: Displaying Data (Windows/Forms) | 34

• Line 22 All of the item-tags in the form layout section are listed in the ATTRIBUTES section.
For example, the item-tag f01 is listed as having an item-type of EDIT. This field will be used
for display only in this program, but the same form will be used for input in a later program.
An additional attribute, REQUIRED, indicates that when this form is used for input, an entry
in the field f01 must be made. This prevents the user from trying to add a row with a NULL
store_num to the customer table, which would result in an error message from the database.

• Line 23 The second field is defined with the attribute COMMENT, which specifies text to be
displayed when this field gets the focus, or as a tooltip when the mouse goes over the field.

Compiling the Program and Form
When this form is compiled (translated) using the Compile menu option in the Project view or the
fglform tool, an XML file is generated that has a file extension of .42f. The runtime system uses this file
along with your programs to define the Abstract User Interface.

To compile the form with fglform:

fglform custform.per

Compile the single module program:

fglcomp dispcust.4gl

Execute the program:

fglrun dispcust.42m

Tutorial Chapter 4: Query by Example | 35

Tutorial Chapter 4: Query by Example

The program in this chapter allows the user to search a database by entering criteria in a form. The search
criteria is used to build an SQL SELECT statement to retrieve the desired database rows. A cursor is
defined in the program, to allow the user to scroll back and forth between the rows of the result set. Testing
the success of the SQL statements and handling errors is illustrated.

• Implementing Query-by-Example on page 35
• Allowing the User to Cancel the Query Operation on page 38
• Retrieving data from the Database on page 44
• Compiling and Linking the Program on page 48
• Modifying the Program to Handle Errors on page 48

Implementing Query-by-Example
This program implements query-by-example, using the CONSTRUCT statement to allow the user to enter
search criteria in a form. The criteria is used to build an SQL SELECT statement which will retrieve rows
from the customer database table.

A SCROLL CURSOR is defined in the program, to allow the user to scroll back and forth between the rows
of the result set. The SQLCA.SQLCODE is used to test the success of the SQL statements. Handling errors,
and allowing the user to cancel the query, is illustrated.

Figure 6: Display of the custform form used for query-by-example in Chapter 4.

Steps for implementing Query-by-Example
This topic describes the steps involved to implement query-by-example using the CONSTRUCT statement.

1. Define fields linked to database columns in a form specification file.

2. Define a STRING variable in your program to hold the query criteria.

3. Open a window and display the form.

4. Activate the form with the interactive dialog statement CONSTRUCT, for entry of the query criteria.

Control is turned over to the user to enter his criteria.

5. The user enters his criteria in the fields specified in the CONSTRUCT statement.

Tutorial Chapter 4: Query by Example | 36

The CONSTRUCT statement accepts logical operators in any of the fields to indicate ranges,
comparisons, sets, and partial matches. Using the form in this program, for example, the user can enter
a specific value, such as "IL" in the state field, to retrieve all the rows from the customer table where the
state column = IL. Or he can enter relational tests, such as "> 103", in the Store # field, to retrieve only
those rows where the store_num column is greater than 103.

6. After entering his criteria, the user selects OK, to instruct your program to continue with the query, or
Cancel to terminate the dialog.

In this program, the action views for accept (OK) and cancel are displayed as buttons on the screen.

7. If the user accepts the dialog, the CONSTRUCT statement creates a Boolean expression by generating
a logical expression for each field with a value and then applying unions (and relations) to the field
statements.

This expression is stored in the character string that you specified in the CONSTRUCT statement.

8. You can then use the Boolean expression to create a STRING variable containing a complete SELECT
statement.

You must supply the WHERE keyword to convert the Boolean expression into a WHERE clause. Make
sure that you supply the spaces required to separate the constructed Boolean expression from the
other parts of the SELECT statement.

9. Execute the statement to retrieve the row(s) from the database table, after preparing it or declaring a
cursor for SELECT statements that might retrieve more than one row.

Using CONSTRUCT and STRING variables
The CONSTRUCT statement temporarily binds the specified form fields to database columns. It allows you
to identify database columns for which the user can enter search criteria.

A basic CONSTRUCT statement has the following format:

CONSTRUCT <variable-name> ON <column-list> FROM <field-list

Each field and CONSTRUCT corresponding column must be the same or compatible data types. You can
use the BY NAME clause when the fields on the screen form have the same names as the corresponding
columns in the ON clause. The user can query only the screen fields implied in the BY NAME clause.

CONSTRUCT BY NAME <variable-name> ON <column-list>

The runtime system converts the entered criteria into a Boolean SQL condition that can appear in the
WHERE clause of a SELECT statement. The variable to hold the query condition can be defined as a
STRING data type. Strings are a variable length, dynamically allocated character string data type, without a
size limitation. The STRING variable can be concatenated, using the double pipe operator (||), with the text
required to form a complete SQL SELECT statement. The LET statement can be used to assign a value to
the variable. For example:

DEFINE where_clause, sqltext STRING
CONSTRUCT BY NAME where_clause ON customer.*
LET sql_text = "SELECT COUNT(*) FROM customer WHERE " || where_clause

Tutorial Chapter 4: Query by Example | 37

Figure 7: Display of user select criteria on Windows™ Platform

In this example the user has entered the criteria "> 101" in the store_num field. The where_clause
value would be generated as

"store_num > 101"

And the complete sql text would be

"SELECT COUNT(*) FROM customer WHERE store_num > 101"

Preparing the SQL Statement
The STRING created in the query-by-example is not valid for execution. The PREPARE instruction sends
the text of the string to the database server for parsing, validation, and to generate the execution plan.

The scope of a prepared SQL statement is the module in which it is declared.

PREPARE cust_cnt_stmt FROM sql_text

A prepared SQL statement can be executed with the EXECUTE instruction.

EXECUTE cust_cnt_stmt INTO cust_cnt

Since the SQL statement will only return one row (containing the count) the INTO syntax of the EXECUTE
instruction can be used to store the count in the local variable cust_cnt. (The function cust_select
illustrates the use of database cursors with SQL SELECT statements.)

When a prepared statement is no longer needed, the FREE instruction will release the resources
associated with the statement.

FREE cust_cnt_stmt

Tutorial Chapter 4: Query by Example | 38

Allowing the User to Cancel the Query Operation
The query-by-example application demonstrates methods used to allow users to cancel an interactive
dialog statement using predefined actions and conditional logic.

You can handle user Cancel actions or interrupts gracefully during interactive dialog instructions such as
CONSTRUCT, using the built-in global integer variable INT_FLAG and the DEFER INTERRUPT statement.
Use conditional logic statements to test for user cancel or interrupt actions and specify statement blocks to
execute conditionally based on the results.

Figure 8: User Cancels query and exits back to the main menu

Predefined Actions (accept/cancel)
The language predefines some actions and associated names for common operations, such as accept or
cancel, used during interactive dialogs such as CONSTRUCT.

You do not have to define predefined actions in the interactive instruction block, the runtime system
interprets predefined actions. For example, when the accept action is caught, the dialog is validated.

You can define action views (such as buttons, toolbar icons, menu items) in your form using these
predefined names; the corresponding action will automatically be attached to the view. If you do not
define any action views for the actions, default buttons for these actions will be displayed on the form as
appropriate when interactive dialog statements are executed.

When the CONSTRUCT statement executes, buttons representing accept and cancel actions (OK/Cancel)
will be displayed by default, allowing the user to validate or cancel the interactive dialog statement.

Tutorial Chapter 4: Query by Example | 39

Figure 9: Default buttons for predefined actions accept and cancel.

DEFER INTERRUPT and the INT_FLAG
If the user selects Cancel during the CONSTRUCT, the built-in global integer variable INT_FLAG is
automatically set to TRUE.

Once INT_FLAG is set to TRUE, your program must reset it to FALSE to detect a new cancellation. You
typically set INT_FLAG to FALSE before you start a dialog instruction, and you test it just after (or in the
AFTER CONSTRUCT / AFTER INPUT block) to detect if the dialog was canceled:

LET INT_FLAG = FALSE
CONSTRUCT BY NAME where_part
 ...
END CONSTRUCT
IF INT_FLAG = TRUE THEN
 ...
END IF

The statement DEFER INTERRUPT in your MAIN program block will prevent your program from terminating
abruptly if a SIGINT signal is received. When using a GUI interface, the user can generate an interrupt
signal if you have an action view named 'interrupt' (the predefined interrupt action). If an interrupt event is
received, TRUE is assigned to INT_FLAG.

It is up to the programmer to manage the interruption event (stop or continue with the program), by testing
the value of INT_FLAG variable.

Interruption handling is discussed in the report example, in Tutorial Chapter 9: Reports on page 96.

Conditional Logic
Once the CONSTRUCT statement is completed, you must test whether the INT_FLAG was set to TRUE
(whether the user canceled the dialog). Genero BDL provides the conditional logic statements IF or CASE
to test a set of conditions.

The IF statement
The IF instruction executes a group of statements conditionally.

IF <condition> THEN
 ...
ELSE
 ...
END IF

IF statements can be nested. The ELSE clause may be omitted.

Tutorial Chapter 4: Query by Example | 40

If condition is TRUE, the runtime system executes the block of statements following THEN, until it reaches
either the ELSE keyword or the END IF keywords. Your program resumes execution after END IF. If
condition is FALSE, the runtime system executes the block of statements between ELSE and END IF.

IF (INT_FLAG = TRUE) THEN
 LET INT_FLAG = FALSE
 LET cont_ok = FALSE
ELSE
 LET cont_ok = TRUE
END IF

The CASE statement
The CASE statement specifies statement blocks to be executed conditionally, depending on the value of an
expression.

Unlike IF statements, CASE does not restrict the logical flow of control to only two branches. Particularly
if you have a series of nested IF statements, the CASE statement may be more readable. In the previous
example, the CASE statement could have been substituted for the IF statement:

CASE
WHEN (INT_FLAG = TRUE)
 LET INT_FLAG = FALSE
 LET cont_ok = FALSE
OTHERWISE
 LET cont_ok = TRUE
END CASE

Usually, there would be several conditions to check. The following statement uses an alternative syntax,
since all the conditions check the value of var1:

CASE var1
WHEN 100
 CALL routine_100()
WHEN 200
 CALL routine_200()
OTHERWISE
 CALL error_routine()
END CASE

The first WHEN condition in the CASE statement will be evaluated. If the condition is true (var1=100), the
statement block is executed and the CASE statement is exited. If the condition is not true, the next WHEN
condition will be evaluated, and so on through subsequent WHEN statements until a condition is found to be
true, or OTHERWISE or END CASE is encountered. The OTHERWISE clause of the CASE statement can be
used as a catchall for unanticipated cases.

See Flow Control for other examples of IF and CASE syntax and the additional conditional statement
WHILE.

The Query program
The Query program consists of two modules. The custmain.4gl module must be linked with the
custquery.4gl module in order for the program to be run.

The line numbers shown in the code are for reference only, and are not a part of the code.

Tutorial Chapter 4: Query by Example | 41

Example: Module custmain.4gl
This module contains the MAIN program block for the query program, and the MENU that drives the query
actions.

Module custmain.4gl:

01 MAIN
02
03 DEFER INTERRUPT
04
05 CONNECT TO "custdemo"
06 CLOSE WINDOW SCREEN
07 OPEN WINDOW w1 WITH FORM "custform"
08
09 MENU "Customer"
10 ON ACTION query
11 CALL query_cust()
12 ON ACTION next
13 CALL fetch_rel_cust(1)
14 ON ACTION previous
15 CALL fetch_rel_cust(-1)
16 ON ACTION exit
17 EXIT MENU
18 END MENU
19
20 CLOSE WINDOW w1
21
22 DISCONNECT CURRENT
23
24 END MAIN

Note:

• Line 01 Beginning of the MAIN block. The SCHEMA statement is not needed since this module
does not define any program variables in terms of a database table.

• Line 03 uses the DEFER INTERRUPT statement to prevent the user from terminating the
program prematurely by pressing the INTERRUPT key.

• Line 07 opens a window with the same form that was used in the Chapter 3 example.
• Lines 09 thru 18 contains the MENU for the query program. Four actions - query, next,

previous, and quit - will be displayed as buttons on the form. The predefined actions accept
(OK button) and cancel will automatically be displayed as buttons when the CONSTRUCT
statement is executed.

• Line 11 calls the function query_cust in the cust_query.4gl module.
• Line 13 calls the function fetch_rel_cust in the cust.query.4gl module. The literal value

1 is passed to the function, indicating that the cursor should move forward to the next row.
• Line 15 calls the function fetch_rel_cust also, but passes the literal value -1, indicating that

the cursor should move backwards to retrieve the previous row in the results set.
• Line 17 exits the MENUstatement.
• Line 20 closes the window that was opened.
• Line 22 disconnects from the database.

There are no further statements so the Query program terminates.

Example: Module custquery.4gl
This module of the Query program contains the logic for querying the database and displaying the data
retrieved.

The function query_cust is called by the "query" option of the MENU in custmain.4gl.

Tutorial Chapter 4: Query by Example | 42

Module custquery.4gl (and function query_cust):

01 -- custquery.4gl
02
03 SCHEMA custdemo
04
05 DEFINE mr_custrec RECORD
06 store_num LIKE customer.store_num,
07 store_name LIKE customer.store_name,
08 addr LIKE customer.addr,
09 addr2 LIKE customer.addr2,
10 city LIKE customer.city,
11 state LIKE customer.state,
12 zip-code LIKE customer.zip-code,
13 contact_name LIKE customer.contact_name,
14 phone LIKE customer.phone
15 END RECORD
16
17 FUNCTION query_cust()
18 DEFINE cont_ok SMALLINT,
19 cust_cnt SMALLINT,
20 where_clause STRING
21 MESSAGE "Enter search criteria"
22 LET cont_ok = FALSE
23
24 LET INT_FLAG = FALSE
25 CONSTRUCT BY NAME where_clause
26 ON customer.store_num,
27 customer.store_name,
28 customer.city,
29 customer.state,
30 customer.zip-code,
31 customer.contact_name,
32 customer.phone
33
34 IF (INT_FLAG = TRUE) THEN
35 LET INT_FLAG = FALSE
36 CLEAR FORM
37 LET cont_ok = FALSE
38 MESSAGE "Canceled by user."
39 ELSE
40 CALL get_cust_cnt(where_clause)
41 RETURNING cust_cnt
42 IF (cust_cnt > 0) THEN
43 MESSAGE cust_cnt USING "<<<<",
44 " rows found."
45 CALL cust_select(where_clause)
46 RETURNING cont_ok
47 ELSE
48 MESSAGE "No rows found."
49 LET cont_ok = FALSE
50 END IF
51 END IF
52
53 IF (cont_ok = TRUE) THEN
54 CALL display_cust()
55 END IF
56
57 END FUNCTION

Note:

• Line 03 is required to identify the database schema file to be used when compiling the module.

Tutorial Chapter 4: Query by Example | 43

• Lines 05 thru 15 define a RECORD, mr_custrec, that is modular in scope, since it is at the top
of the module and outside any function. The values of this record will be available to, and can be
set by, any function in this module.

• Line 17: Function query_cust. This is the beginning of the function query_cust.
• Line 18 defines cont_ok, a local variable of data type SMALLINT, to be used as a flag to

indicate whether the query should be continued. The keywords TRUE and FALSE are used to set
the value of the variable (0=FALSE, <> 0=TRUE).

• Line 19 defines another local SMALLINT variable, cust_cnt, to hold the number of rows
returned by the SELECT statement.

• Line 20 defines where_clause as a local STRING variable to hold the boolean condition
resulting from the CONSTRUCT statement.

• Line 21 displays a message to the user that will remain until it is replaced by another MESSAGE
statement.

• Line 22 sets cont_ok to FALSE, prior to executing the statements of the function.
• Line 24 sets INT_FLAG to FALSE. It is common to set this global flag to FALSE immediately

prior to the execution of an interactive dialog, so your program can test whether the user
attempted to cancel the dialog.

• Lines 25 thru 32: The CONSTRUCT statement lists the database columns for which the user
may enter search criteria. The program does not permit the user to enter search criteria for the
address columns. The BY NAME syntax matches the database columns to form fields having the
same name.

• Line 34 is the beginning of an IF statement testing the value of INT_FLAG. This test appears
immediately after the CONSTRUCT statement, to test whether the user terminated the
CONSTRUCT statement (INT_FLAG would be set by the runtime system to TRUE).

• Lines 35 thru 38 are executed only if the value of INT_FLAG is TRUE. The INT_FLAG is
immediately reset to FALSE, since it is a global variable which other parts of your program will
test. The form is cleared of any criteria that the user has entered, the cont_ok flag is set to
FALSE, and a message is displayed to the user. The program will continue with the statements
after the END IF on line 49.

• Lines 40 thru 50: contain the logic to be executed if INT_FLAG was not set to TRUE (the user
did not cancel the query).

• In lines 40 and 41, the get_cust_cnt function is called, to retrieve the number of rows
that would be returned by the query criteria. The where_clause variable is passed to the
function, and the value returned will be stored in the cust_cnt variable.

• Lines 42 is the beginning of a nested IF statement, testing the value of cust_cnt.
• Lines 43 thru 46 are executed if the value of cust_cnt is greater than zero; a message

with the number of rows returned is displayed to the user, and the function cust_select
is called. The where_clause is passed to this function, and the returned value is stored in
cont_ok. Execution continues with the statement after the END IF on line 51.

• Lines 48 and 49 are executed if the value is zero (no rows found); a message is displayed to
the user, and cont_ok is set to FALSE. Execution continues after the END IF on line 51.

• Line 49 is the end of the IF statement beginning on line 33.
• Lines 53 thru 55 test the value of cont_ok, which will have been set during the preceding IF

statements and in the function cust_select. If cont_ok is TRUE, the function display_cust
is called.

• Line 57 is the end of the query_cust function.

Tutorial Chapter 4: Query by Example | 44

Example: custquery.4gl (Function get_cust_cnt)
This function is called by the function query_cust to return the count of rows that would be retrieved
by the SELECT statement. The criteria previously entered by the user and stored in the variable
where_clause is used.

Function get_cust_cnt:

01 FUNCTION get_cust_cnt(p_where_clause)
02 DEFINE p_where_clause STRING,
03 sql_text STRING,
04 cust_cnt SMALLINT
05
06 LET sql_text =
07 "SELECT COUNT(*) FROM customer" ||
08 " WHERE " || p_where_clause
09
10 PREPARE cust_cnt_stmt FROM sql_text
11 EXECUTE cust_cnt_stmt INTO cust_cnt
12 FREE cust_cnt_stmt
13
14 RETURN cust_cnt
15
16 END FUNCTION

Note:

• Line 01 The function accepts as a parameter the value of where_clause, stored in the local
variable p_where_clause defined on Line 60.

• Line 02 defines a local string variable, sql_txt, to hold the complete text of the SQL SELECT
statement.

• Line 04 defines a local variable cust_cnt to hold the count returned by the SELECT statement.
• Lines 06 thru 08 create the string containing the complete SQL SELECT statement,

concatenating p_where_clause at the end using the || operator. Notice that the word WHERE
must be provided in the string.

• Line 10 uses the PREPARE statement to convert the string into an executable SQL statement,
parsing the statement and storing it in memory. The prepared statement is modular in scope.
The prepared statement has the identifier cust_cnt_stmt, which does not have to be defined.

• Line 11 executes the SQL SELECT statement contained in cust_cnt_stmt, using the
EXECUTE ... INTO syntax to store the value returned by the statement in the variable
cust_cnt. This syntax can be used if the SQL statement returns a single row of values.

• Line 12 The FREE statement releases the memory associated with the PREPAREd statement,
since this statement is no longer needed.

• Line 14 returns the value of cust_cnt to the calling function, query_cust.
• Line 16 is the end of the get_cust_cnt function.

Retrieving data from the Database
When an SQL SELECT statement in your application will retrieve more than one row, a cursor must be
used to pass the selected data to the program one row at a time.

Using Cursors
The cursor is a data structure that represents a specific location within the active set of rows that the
SELECT statement retrieved.

• Sequential cursor - reads through the active set only once each time it is opened, by moving the cursor
forward one row each time a row is requested.

Tutorial Chapter 4: Query by Example | 45

• Scroll cursor - fetches the rows of the active set in any sequence. To implement a scroll cursor, the
database server creates a temporary table to hold the active set.

The scope of a cursor is the module in which it is declared. Cursor names must be unique within a module.

The general sequence of program statements when using a SELECT cursor for Query-by-Example is:

• DECLARE - the program declares a cursor for the STRING that contains the SQL SELECT statement.
This allocates storage to hold the cursor. The string does not have to be prepared using the PREPARE
statement.

• OPEN - the program opens the cursor. The active set associated with the cursor is identified, and the
cursor is positioned before the first row of the set.

• FETCH - the program fetches a row of data into host variables and processes it. The syntax FETCH
NEXT <cursor-identifier> INTO <variable-names> can be used with a SCROLL CURSOR to fetch the
next row relative to the current position of the cursor in the SQL result set. Using FETCH PREVIOUS ...
moves the cursor back one row in the SQL result set.

• CLOSE - the program closes the cursor after the last row desired is fetched. This releases the active
result set associated with the cursor. The cursor can be reopened.

• FREE - when the cursor is no longer needed, the program frees the cursor to release the storage area
holding the cursor. Once a cursor has been freed, it must be declared again before it can be reopened.

The cursor program statements must appear physically within the module in the order listed.

The SQLCA.SQLCODE
The SQLCA name stands for "SQL Communication Area". The SQLCA variable is a predefined record
containing information on the execution of an SQL statement.

The SQLCA record is filled after any SQL statement execution. The SQLCODE member of this record
contains the SQL execution code:

Table 2: SQL execution codes

Execution Code Description

0 SQL statement executed successfully.

100 No rows were found.

<0 An SQL error occurred.

The NOTFOUND constant is a predefined integer value that evaluates to "100". This constant is typically
used to test the execution status of an SQL statement returning a result set, to check if rows have been
found.

Example custquery.4gl (function cust_select)
This function is called by the function query_cust, if the row count returned by the function
get_cust_cnt indicates that the criteria previously entered by the user and stored in the variable
where_clause would produce an SQL SELECT result set.

Function cust_select:

01 FUNCTION cust_select(p_where_clause)
02 DEFINE p_where_clause STRING,
03 sql_text STRING,
04 fetch_ok SMALLINT
05
06 LET sql_text = "SELECT store_num, " ||
07 " store_name, addr, addr2, city, " ||
08 " state, zip-code, contact_name, phone " ||
09 " FROM customer WHERE " || p_where_clause ||

Tutorial Chapter 4: Query by Example | 46

10 " ORDER BY store_num"
11
12 DECLARE cust_curs SCROLL CURSOR FROM sql_text
13 OPEN cust_curs
14 CALL fetch_cust(1) -- fetch the first row
15 RETURNING fetch_ok
16 IF NOT (fetch_ok) THEN
17 MESSAGE "no rows in table."
18 END IF
19
20 RETURN fetch_ok
21
22 END FUNCTION

Note:

• Line 01 The function cust_select accepts as a parameter the where_clause, storing it in
the local variable p_where_clause.

• Lines 06 thru 10 concatenate the entire text of the SQL statement into the local STRING variable
sql_txt.

• Line 12 declares a SCROLL CURSOR with the identifier cust_curs, for the STRING variable
sql_text.

• Line 13 opens the cursor, positioning before the first row of the result set. These statements are
physically in the correct order within the module.

• Lines 14 and 15 call the function fetch_cust, passing as a parameter the literal value
1, and returning a value stored in the local variable fetch_ok. Passing the value 1 to
fetch_cust will result in the NEXT row of the result set being fetched (see the logic in the
function fetch_cust), which is this case would be the first row.

• Line 16 Since fetch_ok is defined as a SMALLINT, it can be used as a flag containing the
values TRUE or FALSE. The value returned from the function fetch_cust indicates whether the
fetch was successful.

• Line 17 displays a message to the user if the FETCH was not successful. Since this is the fetch
of the first row in the result set, another user must have deleted the rows after the program
selected the count.

• Line 20 returns the value of fetch_ok to the calling function. This determines whether the
function display_cust is called.

• Line 22 is the end of the function cust_select.

Example: custquery.4gl (function fetch_cust)
This function is designed so that it can be reused each time a row is to be fetched from the customer
database table; a variable is passed to indicate whether the cursor should move forward one row or
backward one row.

Function fetch_cust:

01 FUNCTION fetch_cust(p_fetch_flag)
02 DEFINE p_fetch_flag SMALLINT,
03 fetch_ok SMALLINT
04
05 LET fetch_ok = FALSE
06 IF (p_fetch_flag = 1) THEN
07 FETCH NEXT cust_curs
08 INTO mr_custrec.*
09 ELSE
10 FETCH PREVIOUS cust_curs
11 INTO mr_custrec.*
12 END IF
13
14 IF (SQLCA.SQLCODE = NOTFOUND) THEN

Tutorial Chapter 4: Query by Example | 47

15 LET fetch_ok = FALSE
16 ELSE
17 LET fetch_ok = TRUE
18 END IF
19
20 RETURN fetch_ok
21
22 END FUNCTION

Note:

• Line 01 The function fetch_cust accepts a parameter and stores it in the local variable
p_fetch_flag.

• Line 03 defines a variable, fetch_ok, to serve as an indicator whether the FETCH was
successful.

• Lines 06 thru 12 tests the value of p_fetch_flag, moving the cursor forward with FETCH
NEXT if the value is 1, and backward with FETCH PREVIOUS if the value is -1. The values of the
row in the customer database table are fetched into the program variables of the mr_custrec
record. The INTO mr_custrec.* syntax requires that the program variables in the record
mr_custrec are in the same order as the columns are listed in the SELECT statement.

• Lines 14 thru 15 tests SQLCA.SQLCODE and sets the value of fetch_ok to FALSE if the fetch
did not return a row. If the FETCH was successful, fetch_ok is set to TRUE.

• Line 20 returns the value of fetch_ok to the calling function.
• Line 22 is the end of the function fetch_cust.

Example: custquery.4gl (function fetch_rel_cust)
This function is called by the MENU options next and previous in the custmain.4gl module.

Function fetch_rel_cust:

01 FUNCTION fetch_rel_cust(p_fetch_flag)
02 DEFINE p_fetch_flag SMALLINT,
03 fetch_ok SMALLINT
04
05 MESSAGE " "
06 CALL fetch_cust(p_fetch_flag)
07 RETURNING fetch_ok
08
09 IF (fetch_ok) THEN
10 CALL display_cust()
11 ELSE
12 IF (p_fetch_flag = 1) THEN
13 MESSAGE "End of list"
14 ELSE
15 MESSAGE "Beginning of list"
16 END IF
17 END IF
18
19 END FUNCTION

Note:

• Line 01 The parameter passed to p_fetch_flag will be 1 or -1, depending on the direction in
which the SCROLL CURSOR is to move.

• Line 05 resets the MESSAGE display to blanks.
• Line 06 calls the function fetch_cust, passing it the value of p_fetch_flag. The function

fetch_cust uses the SCROLL CURSOR to retrieve the next row in the direction indicated,
returning FALSE if there was no row found.

Tutorial Chapter 4: Query by Example | 48

• Lines09 and 10 If a row was found (the fetch_cust function returned TRUE) the
display_cust function is called to display the row in the form.

• Line 13 If no rows were found and the direction is forward, indicated by p_fetch_flag of 1,
the cursor is past the end of the result set.

• Line 15 If no rows were found and the direction is backward, indicated by p_fetch_flag of -1,
the cursor is prior to the beginning of the result set.

• Line 19 is the end of the function fetch_rel_cust.

Example: custquery.4gl (function display_cust)
This function displays the contents of the mr_custrec record in the form. It is called by the functions
query_cust and fetch_rel_cust.

Function display_cust:

01 FUNCTION display_cust()
02 DISPLAY BY NAME mr_custrec.*
03 END FUNCTION

Note:

• Line 02 uses the DISPLAY BY NAME syntax to display the contents of the program record
mr_custrec to the form fields having the same name.

Compiling and Linking the Program
The two example modules must be compiled and then linked into a single program. You can select the
Build option in the Genero Studio Project view to perform these tasks or use command line tools.

From the command line:

fglcomp custmain.4gl
fglcomp custquery.4gl

This produces the object modules custmain.42m and custquery.42m, which must be linked to produce
the program cust.42r:

fgllink -o cust.42r custmain.42m custquery.42m

Or, compile both modules and link at the same time:

fgl2p -o cust.42r custmain.4gl custquery.4gl

Modifying the Program to Handle Errors
Topics in this section describe methods to detect and handle errors encountered during program
execution.

The WHENEVER ERROR statement
Since program statements that access the database may be expected to fail occasionally (the row is
locked, etc.) the WHENEVER ERROR statement can be used to handle this type of error.

By default, when a runtime error occurs the program will stop. To prevent this happening when SQL
statements that access the database fail, surround the SQL statement with WHENEVER ERROR statements,
as in this example based on the fetch_cust function in the custquery.4gl program module:

01 IF (p_fetch_flag = 1) THEN

Tutorial Chapter 4: Query by Example | 49

02 WHENEVER ERROR CONTINUE
03 FETCH NEXT cust_curs
04 INTO mr_custrec.*
05 WHENEVER ERROR STOP
06 ...

WHENEVER ERROR statements are modular in scope, and generate additional code for exception handling
when the module is compiled. This exception handling is valid until the end of the module or until a new
WHENEVER ERROR instruction is encountered by the compiler.

When the example code is compiled, WHENEVER ERROR CONTINUE will generate code to prevent
the program from stopping if the FETCH statement fails. Immediately after the FETCH statement, the
WHENEVER ERROR STOP instruction will generate the code to reset the default behavior for the rest of the
module.

You can write your own error function to handle SQL errors, and use the WHENEVER ERROR CALL
<function-name> syntax to activate it. Runtime errors may be logged to an error log.

Negative SQLCA.SQLCODE
The database server returns an execution code whenever an SQL statement is executed, available in
SQLCA.SQLCODE. If the code is a negative number, an SQL error has occurred.

Just as we checked the SQLCA.SQLCODE for the NOTFOUND condition, we can also check the code for
database errors (negative SQLCODE). The SQLCA.SQLCODE should be checked immediately after each
SQL statement that may fail, including DECLARE, OPEN, FETCH, etc. For simplicity of the examples, the
error handling in these programs is minimal.

SQLERRMESSAGE
If an SQL error occurs, the SQLERRMESSAGE operator returns the error message associated with the error
code. This is a character string that can be displayed to the user with the ERROR instruction.

ERROR SQLERRMESSAGE

Changes to function fetch_cust (custquery.4gl)

01 FUNCTION fetch_cust (p_fetch_flag)
02 DEFINE p_fetch_flag SMALLINT,
03 fetch_ok SMALLINT
04
05 LET fetch_ok = FALSE
06 IF (p_fetch_flag = 1) THEN
07 WHENEVER ERROR CONTINUE
08 FETCH NEXT cust_curs
09 INTO mr_custrec.*
10 WHENEVER ERROR STOP
11 ELSE
12 WHENEVER ERROR CONTINUE
13 FETCH PREVIOUS cust_curs
14 INTO mr_custrec.*
15 WHENEVER ERROR STOP
16 END IF
17
18 CASE
19 WHEN (SQLCA.SQLCODE = 0)
20 LET fetch_ok = TRUE
21 WHEN (SQLCA.SQLCODE = NOTFOUND)
22 LET fetch_ok = FALSE
23 WHEN (SQLCA.SQLCODE < 0)
24 LET fetch_ok = FALSE
25 ERROR SQLERRMESSAGE
26 END CASE

Tutorial Chapter 4: Query by Example | 50

27
28 RETURN fetch_ok
29
30 END FUNCTION

Note:

• Lines 08, 09, 13,14 The SQL statements are surrounded by WHENEVER ERROR statements.
If an error occurs during the SQL statements, the program will continue. The error handling
is reset to the default (STOP) immediately after each SQL statement so that failures of other
program statements will not be ignored.

• Lines 18 to 26 Immediately after the WHENEVER ERROR STOP statement, the SQLCA.SQLCODE
is checked, to see whether the SQL statement succeeded. A CASE statement is used, since
there are more than two conditions to be checked.

Close and Free the Cursor
Closing and freeing the cursor when you no longer need it is good practice, especially if the modules are
part of a larger program.

This function must be placed in the same module as the DECLARE/OPEN/FETCH statements and in
sequence, so this is the last function in the query_cust module. However, the function can be called from
cust_main, as a final "cleanup" routine.

Function cleanup (custquery.4gl)

01 FUNCTION cleanup()
02 WHENEVER ERROR CONTINUE
03 CLOSE cust_curs
04 FREE cust_curs
05 WHENEVER ERROR STOP
06 END FUNCTION

Note:

• Line 03 Closes the cursor used to retrieve the database rows.
• Line 04 Frees the memory associated with the cursor.
• Lines 02 and 05 The WHENEVER ERROR statements prevent a program error if the user exited

the program without querying, and the cursor was never created.

Error if Cursor is not Open
In the example program in this chapter, if the user selects the Next or Previous action from the MENU
before he has queried, the program returns an error ("Program stopped at line Fetch attempted on
unopened cursor").

One way to prevent this error would be to add a variable to the program to indicate whether the user has
queried for a result set, and to prevent him from executing the actions associated with Next or Previous
until he has done so.

Changes to function query_cust (custquery.4gl):

01 FUNCTION query_cust()
02 DEFINE cont_ok SMALLINT,
03 cust_cnt SMALLINT,
04 where_clause STRING
05 MESSAGE "Enter search criteria"
06 LET cont_ok = FALSE
07
...
08
09 IF (cont_ok = TRUE) THEN

Tutorial Chapter 4: Query by Example | 51

10 CALL display_cust()
11 END IF
12
13 RETURN cont_ok
14
15 END FUNCTION

Note:

• Line 13 A single line is added to the query_cust function to return the value of cont_ok,
which indicates whether the query was successful, to the calling function in custmain.4gl.

Changes to module custmain.4gl:

01 MAIN
02 DEFINE query_ok SMALLINT
03
04 DEFER INTERRUPT
05
06 CONNECT TO "custdemo"
07 CLOSE WINDOW SCREEN
08 OPEN WINDOW w1 WITH FORM "custform"
09 LET query_ok = FALSE
10
11 MENU "Customer"
12 ON ACTION query
13 CALL query_cust() RETURNING query_ok
14 ON ACTION next
15 IF (query_ok) THEN
16 CALL fetch_rel_cust(1)
17 ELSE
18 MESSAGE "You must query first."
19 END IF
20 ON ACTION previous
21 IF (query_ok) THEN
22 CALL fetch_rel_cust(-1)
23 ELSE
24 MESSAGE "You must query first."
25 END IF
26 ON ACTION quit
27 EXIT MENU
28 END MENU
29
30 CLOSE WINDOW w1
31 CALL cleanup()
32 DISCONNECT CURRENT
33
34 END MAIN

Note:

• Line 03 defines the variable query_ok, which will be used to indicate whether the user has
queried.

• Line 09 sets the initial value of query_ok to FALSE.
• Line 13 the function query_cust now returns a value for query_ok.
• Lines 15 thru 19 and Lines 21 thru 25: these sections test the value of query_ok when Next

or Previous has been selected. If query_ok is TRUE, the function fetch_rel_cust is called;
otherwise, a message is displayed to the user.

• Line 31 calls the cleanup function to close the cursor used to fetch the database rows.

Tutorial Chapter 5: Enhancing the Form | 52

Tutorial Chapter 5: Enhancing the Form

Program forms can be displayed in a variety of ways. This chapter illustrates adding a toolbar or a topmenu
(pull-down menu) by modifying the form specification file, changing the window's appearance, and
disabling/enabling actions. The example programs in this chapter use some of the action defaults defined
by Genero BDL to standardize the presentation of common actions to the user.

• Adding a Toolbar on page 53
• Adding a Topmenu on page 54
• Adding a COMBOBOX form item on page 55
• Changing the Window Appearance on page 56
• Example: (in custform.per) on page 57
• Example: (in custmain.4gl) on page 57
• Managing Actions on page 58
• Example: (custmain.4gl) on page 59
• Action Defaults on page 60
• MENU/Action Defaults Interaction on page 60
• Images on page 61

You can change the way that program options are displayed in a form in a variety of ways. This example
program illustrates some of the simple changes that can be made:

• By changing the form specification file, you can provide the user with a valid list of abbreviations for
the state field and add a toolbar or pull-down menu (topmenu). The program business logic in the BDL
program need not change. Once you recompile the form file, it can be used by the program with no
additional changes required.

• You can change the appearance of the application window, adding a custom title and icon.
• You can disable and enable actions dynamically to control the options available to the user.

The program also illustrates some of the Genero BDL action defaults that standardize the presentation of
common actions.

Tutorial Chapter 5: Enhancing the Form | 53

Adding a Toolbar
A toolbar presents buttons on the form associated with actions defined by the current interactive BDL
instruction in your program.

Figure 10: A form with a toolbar displayed on Windows™ platforms

The TOOLBAR section of a form specification file defines a toolbar with buttons that are bound to actions. A
toolbar definition can contain the following elements:

• an ITEM - specifies the action that is bound to the toolbar button
• a SEPARATOR - a vertical line

Values can be assigned to TEXT, COMMENT, and IMAGE attributes for each item in the toolbar.

The toolbar commands are enabled by actions defined by the current interactive BDL instruction, which in
our example is the MENU statement in the custquery.4gl module. When a toolbar button is selected by
the user, the program triggers the action to which the toolbar button is bound.

Example: (in custform.per)
The toolbar in this example will display buttons for find, next, previous, and quit actions.

Form custform.per:

01 SCHEMA custdemo
02
03 TOOLBAR
04 ITEM find
05 ITEM previous
06 ITEM next
07 SEPARATOR
08 ITEM quit (TEXT="Quit", COMMENT="Exit the program", IMAGE="exit")
09 END
10
...

Note:

• Line 04 The ITEM command-identifier find will be bound to the MENU statement action find
on line 14 in the custmain.4gl file. The word find must be identical in both the TOOLBAR
ITEM and the MENU statement action, and must always be in lowercase. The other command-
identifiers are similarly bound.

Tutorial Chapter 5: Enhancing the Form | 54

• Line 08 Although attributes such as TEXT or COMMENT are defined for the ITEM quit, the items
find, previous, and next do not have any attributes defined in the form specification file.
These actions are common actions that have default attributes defined in the action defaults file.

Adding a Topmenu
A topmenu presents a pull-down menu on a form, composed of actions defined by the current interactive
BDL instruction in your program.

The same options that were displayed to the user as a toolbar can also be defined as buttons on a pull-
down menu (a topmenu). To change the presentation of the menu options to the user, simply modify and
recompile the form specification file.

Figure 11: A form with a topmenu displayed on a Windows™ platform

The TOPMENU section of the form specification allows you to design the pull-down menu. The TOPMENU
section must appear after SCHEMA, and must contain a tree of GROUP elements that define the pull-down
menu. The GROUP TEXT value is the title for the pull-down menu group.

A GROUP can contain the following elements:

• a COMMAND - specifies the action the menu option must be bound to
• a SEPARATOR - a horizontal line
• GROUP children - a subgroup within a group.

Values can be assigned to attributes such as TEXT, COMMENT, and IMAGE for each item in the TOPMENU.

As in a toolbar, the TOPMENU commands are enabled by actions defined by the current interactive BDL
instruction (dialog), which in our example is the MENU statement in the custquery.4gl module. When a
TOPMENU option is selected by the user, the program triggers the action to which the TOPMENU command
is bound.

Example (in custform.per)
The example shows a TOPMENU section in the form specification file (custform.per) for Chapter 5.

Form custform.per:

01 SCHEMA custdemo
02
03 TOPMENU
04 GROUP form (TEXT="Form")
05 COMMAND quit (TEXT="Quit", COMMENT="Exit the program", IMAGE="exit")
06 END

Tutorial Chapter 5: Enhancing the Form | 55

07 GROUP stores (TEXT="Stores")
08 COMMAND find
09 SEPARATOR
13 COMMAND next
14 COMMAND previous
15 END
16END
17
...

Note:

• Lines 04 and 07 This example TOPMENU will consist of two groups on the menu bar of the form.
The TEXT displayed on the menu bar for the first group will be Form, and the second group will
be Stores.

• Line 08 to 14 Under the menu bar item Stores, the command-identifier find on line05 will be
bound to the MENU statement action find on line 14 in the custmain.4gl file. The word find
must be identical (including case) in both the TOPMENU command and the MENU statement
action. The other command-identifiers are similarly bound.

The revised form specification file must be recompiled before it can be used in the program.

Adding a COMBOBOX form item
A combobox defines a dropdown box of values, allowing the user to select a value for the underlying
formfield.

In this example application the only valid values for the state column of the database table customer are
IL, IA, and WI. The form item used to display the state field can be changed to a COMBOBOX displaying
a dropdown list of valid state values. The combobox is active during an INPUT, INPUT ARRAY, or
CONSTRUCT statement, allowing the user to select a value for the state field.

Figure 12: A form with a combobox

The values of the list are defined by the ITEMS attribute:

COMBOBOX f6=customer.state, ITEMS = ("IL", "IA", "WI");

In this example, the value displayed on the form and the real value (the value to be stored in the program
variable corresponding to the form field) are the same. You can choose to define different display and real

Tutorial Chapter 5: Enhancing the Form | 56

values; in this example, the values Paris, Madrid, and London would be displayed to the user, but the
value stored in the corresponding program variable would be 1, 2, or 3:

COMBOBOX f9=formonly.cities, ITEMS=((1,"Paris"),(2,"Madrid"),(3,"London"));

Although the list of values for the combobox is contained in the form specification file in this example
program, you could also set the INITIALIZER attribute to define a function that will provide the values.
The initialization function would be invoked at runtime when the form is loaded, to fill the combobox item
list dynamically with database records, for example.

Changing the Window Appearance
Genero provides attributes that can be used to customize the appearance of windows, forms, and form
objects in your application. In addition, you can create Presentation Styles to standardize the appearance
of window and form objects across applications.

Some of the simple changes that you can make are:

Title

The default title for a window is the name of the object in the OPEN WINDOW statement. For example, in the
programs we've seen so far, the title of the window is w1:

OPEN WINDOW w1 WITH FORM "custform"

In the form specification file, the attribute TEXT of the LAYOUT section can be used to change the title of
the parent window:

LAYOUT (TEXT="Customer")

Icon

The Genero runtime system provides built-in classes, or object templates, which contain methods, or
functions, that you can call from your programs. The classes are grouped together into packages. One
package, ui, contains the Interface class, allowing you to manipulate the user interface. For example,
the setImage method can be used to set the default icon for the windows of your program. You may
simply call the method, prefixing it with the package name and class name; you do not need to create an
Interface object.

CALL ui.Interface.setImage("imagename")

Window Style

By default windows are displayed as normal application windows, but you can choose a specific style using
the WINDOWSTYLE attribute of the LAYOUT section of the form file. The default window styles are defined
as a set of attributes in an external file (default.4st).

LAYOUT (WINDOWSTYLE="dialog")

Tutorial Chapter 5: Enhancing the Form | 57

Example: (in custform.per)
This example shows how to define a combobox in a text-based form specification file (custform.per).

Form custform.per:

...
18 LAYOUT (TEXT="Customer")
19 GRID
20 {
21 Store #:[f01] Name:[f02]
22 Address:[f03]
23 [f04]
24 City:[f05]State:[f6]Zip:[f07]
25 Contact:[f08]
26 Phone:[f09]
27 }
28 END
29 END
30 TABLES
31 customer
32 END
33 ATTRIBUTES
34 EDIT f01=customer.store_num,
35 REQUIRED, COMMENT="This is the co-op store number";
36 EDIT f02=customer.store_name;
37 EDIT f03=customer.addr;
38 EDIT f04=customer.addr2;
39 EDIT f05=customer.city;
40 COMBOBOX f6=customer.state,
41 REQUIRED, ITEMS = ("IL", "IA", "WI");
41 EDIT f07=customer.zip-code;
42 EDIT f08=customer.contact_name;
43 EDIT f09=customer.phone;
43 END

Note:

• Line 18, the title of the window is set to Customer. Since this is a normal application window,
the default window style is used.

• Line 40, a COMBOBOX is substituted for a simple EDIT form field.
• Line 35 and 41 The REQUIRED attribute forces the user to enter or select a value for this field

when a new record is being added. See the attributes list for a complete list of the attributes that
can be defined for a form field.

Example: (in custmain.4gl)
This example shows how to use the built-in class method ui.Interface.setImage to change the icon
for the application windows.

Module custmain.4gl:

...
04 MAIN
05 DEFINE query_ok SMALLINT
06
07 DEFER INTERRUPT
08
09 CONNECT TO "custdemo"
10 CLOSE WINDOW SCREEN

Tutorial Chapter 5: Enhancing the Form | 58

11 CALL ui.Interface.setImage("smiley")
12 OPEN WINDOW w1 WITH FORM "custform"
13
...

Note:

• Line 11 For convenience, the image used is the smiley image from the pics directory, which is
the default image directory of the Genero Desktop Client.

Managing Actions

Disable/Enable Actions
In the example in the previous lesson, if the user clicks the Next or Previous buttons on the application
form without first querying successfully, a message displays and no action is taken. You can disable and
enable the actions instead, providing visual cues to the user when the actions are not available.

The ui.Dialog built-in class provides an interface to the BDL interactive dialog statements, such as
CONSTRUCT and MENU. The method setActionActive enables and disables actions. To call a method
of this class, use the predefined DIALOG object within the interactive instruction block.

For example:

MENU
 ...
 BEFORE MENU
 CALL DIALOG.setActionActive("actionname" , state)
 ...

END MENU

where actionname is the name of the action, state is an integer, 0 (disable) or 1 (enable).

You must be within an interactive instruction in order to use the DIALOG object in your program, but you
can pass the object to a function. Using this technique, you could create a function that enables/disables
an action, and call the function from the MENU statement, for example. See The Dialog class in the Genero
Business Development Language User Guide for further information.

The Close Action
In Genero applications, when the user clicks the

button in the upper-right corner of the application window, a predefined close action is sent to the
program. What happens next depends on the interactive dialog statement.

• When the program is in a MENU dialog statement, the close action is converted to an INTERRUPT
key press. If there is a COMMAND KEY INTERRUPT block in the MENU statement, the statements in that
control block are executed. Otherwise, no action is taken.

• When the program is in an INPUT, INPUT ARRAY, CONSTRUCT or DISPLAY ARRAY statement, the
close action cancels the dialog, and the INT_FLAG is set to TRUE. Your program can check the value
of INT_FLAG and take appropriate action.

You can change this default behavior by overwriting the close action within the interactive statement. For
example, to exit the MENU statement when the user clicks this button:

MENU
 ...
 ON ACTION close
 EXIT MENU

Tutorial Chapter 5: Enhancing the Form | 59

END MENU

By default the action view for the close action is hidden and does not display on the form.

Example: (custmain.4gl)
Calls to the setActionActive method from the ui.Dialog class have been added
to custmain.4gl to disable and enable menu actions appropriately to give the user
visual cues. An additional ON ACTION statement exits the menu if the user selects

.

Module custmain.4gl:

01
02 MAIN
03 DEFINE query_ok SMALLINT
04
05 DEFER INTERRUPT
06 CONNECT TO "custdemo"
07 CLOSE WINDOW SCREEN
08 CALL ui.Interface.setImage("smiley")
09 OPEN WINDOW w1 WITH FORM "custform"
10
11 LET query_ok = FALSE
12
13 MENU
14 BEFORE MENU
15 CALL DIALOG.setActionActive("next",0)
16 CALL DIALOG.setActionActive("previous",0)
17 ON ACTION find
18 CALL DIALOG.setActionActive("next",0)
19 CALL DIALOG.setActionActive("previous",0)
20 CALL query_cust() RETURNING query_ok
21 IF (query_ok) THEN
22 CALL DIALOG.setActionActive("next",1)
23 CALL DIALOG.setActionActive("previous",1)
24 END IF
25 ON ACTION next
26 CALL fetch_rel_cust(1)
27 ON ACTION previous
28 CALL fetch_rel_cust(-1)
29 ON ACTION quit
30 EXIT MENU
31 ON ACTION close
32 EXIT MENU
33 END MENU
34
35 CLOSE WINDOW w1
36
37 DISCONNECT CURRENT
38
39 END MAIN

Note:

• Line 08 The icon for the application windows is set to the "exit" image.
• Lines 15, 16 Before the menu is first displayed, the next and previous actions are disabled.
• Lines 18, 19 Before the query_cust function is executed the next and previous actions are

disabled

Tutorial Chapter 5: Enhancing the Form | 60

• Lines 21 thru 24 If the query was successful the next and previous actions are enabled.
• Line 31 The close action is included in the menu, although

an action view won't display on the form. If the user clicks the

in the top right of the window, the action on line 32, EXIT MENU, will be taken.

Action Defaults
The Genero BDL runtime system includes an XML file, default.4ad, in the lib subdirectory of the
installation directory FGLDIR, that defines presentation attributes for some commonly used actions.

If you match the action names used in this file exactly when you define your action views (toolbar or
topmenu items, buttons, etc.) in the form specification file, the presentation attributes defined for this action
will be used. All action names must be in lowercase.

For example, the following line in the default.4ad file:

<ActionDefault name="find" text="Find"
 image="find" comment="Search" />

defines presentation attributes for a find action - the text to be displayed on the action view find defined
in the form, the image file to be used as the icon for the action view, and the comment to be associated
with the action view. The attribute values are case-sensitive, so the action name in the form specification
file must be "find", not "Find".

The following line in the default.4ad file defines presentation attributes for the predefined action
cancel. An accelerator key is assigned as an alternate means of invoking the action:

<ActionDefault name="cancel" text="Cancel"
 acceleratorName="Escape" />

You can override a default presentation attribute in your program. For example, by specifying a TEXT
attribute for the action find in the form specification file, the default TEXT value of "Find" will be replaced
with the value "Looking".

03 TOPMENU
04
...
07 GROUP stores (TEXT="Stores")
08 COMMAND find (TEXT="Looking")

You can create your own .4ad file to standardize the presentation attributes for all the common actions
used by your application. See Action defaults files in the Genero Business Development Language User
Guide for additional details.

MENU/Action Defaults Interaction
Attributes defined in the form specification file override attributes defined in the .4ad file.

The attributes of the action views for the MENU actions in the custmain.4gl example will be determined
as shown in Table 3: custmain.4gl example actions on page 61.

Tutorial Chapter 5: Enhancing the Form | 61

Table 3: custmain.4gl example actions

Action
From the form specification
file

From the default.4ad file
From the MENU statement
in the .4gl file

find No attributes listed TEXT="Find"

IMAGE="find"

COMMENT="Search"

Overridden by default.4ad

next No attributes listed TEXT="Next"

IMAGE="goforw"

COMMENT="Next record"

Overridden by default.4ad

previous No attributes listed TEXT="Previous"

IMAGE="gorev"

COMMENT="Previous record"

Overridden by default.4ad

close Not listed in the form file attributes are listed in
default.4ad but the action view
is not displayed on form by
default

Overridden by default.4ad
(predefined action)

quit For both TOPMENU and
TOOLBAR, the action
view has the attributes
TEXT="Quit",

COMMENT="Exit the
program",

IMAGE="exit".

Action is not listed in the file Overridden by the form
specification file.

accept Not listed in the form file. TEXT="OK"

AcceleratorName="Return"

AcceleratorName2="Enter"

This action is not defined in a
MENU instruction (predefined
action.)

cancel Not listed in the form file. TEXT="Cancel"

AcceleratorName="Escape"

This action is not defined in a
MENU instruction (predefined
action.)

Note: The predefined actions accept and cancel do not have action views defined in the form
specification file; by default, they appear on this form as buttons in the right-hand section of the
form when the CONSTRUCT statement is active. Their attributes are taken from the default.4ad
file.

Images
The image files specified in these definitions are among the files provided with the Genero Desktop Client,
in the pics subdirectory.

Tutorial Chapter 6: Add, Update and Delete | 62

Tutorial Chapter 6: Add, Update and Delete

This program allows the user to insert/update/delete rows in the customer database table. Embedded
SQL statements (UPDATE/INSERT/DELETE) are used to update the table, based on the values stored in
the program record. SQL transactions, concurrency, and consistency are discussed. A dialog window is
displayed to prompt the user to verify the deletion of a row.

• Entering data on a form: INPUT statement on page 62
• Updating Database Tables on page 63
• Adding a new row on page 64
• Updating an existing Row on page 68
• Deleting a Row on page 72

Entering data on a form: INPUT statement
The INPUT statement allows the user to enter or change the values in a program record, which can then
be used as the data for new rows in a database table, or to update existing rows.

In the INPUT statement you list:

• The program variables that are to receive data from the form
• The corresponding form fields that the user will use to supply the data

INPUT <program-variables> FROM <form-fields>

The FROM clause explicitly binds the fields in the screen record to the program variables, so the INPUT
instruction can manipulate values that the user enters in the screen record. The number of record
members must equal the number of fields listed in the FROM clause. Each variable must be of the same (or
a compatible) data type as the corresponding screen field. When the user enters data, the runtime system
checks the entered value against the data type of the variable, not the data type of the screen field.

When invoked, the INPUT statement enables the specified fields of the form in the current BDL window,
and waits for the user to supply data for the fields. The user moves the cursor from field to field and
types new values. Each time the cursor leaves a field, the value typed into that field is deposited into the
corresponding program variable. You can write blocks of code as clauses in the INPUT statement that will
be called automatically during input, so that you can monitor and control the actions of your user within this
statement.

The INPUT statement ends when the user selects the accept or cancel actions.

INPUT supports the same shortcuts for naming records as the DISPLAY statement. You can ask for input
to all members of a record, from all fields of a screen record, and you can ask for input BY NAME from
fields that have the same names as the program variables.

INPUT BY NAME <program record>.*

UNBUFFERED attribute
By default, field values are buffered. The UNBUFFERED attribute makes the INPUT dialog "sensitive",
allowing you to easily change some form field values programmatically during INPUT execution.

When you assign a value to a program variable, the runtime system will automatically display that value in
the form; when you input values in a form field, the runtime system will automatically store that value in the
corresponding program variable. Using the UNBUFFERED attribute is strongly recommended.

Tutorial Chapter 6: Add, Update and Delete | 63

WITHOUT DEFAULTS attribute
An INPUT with the WITHOUT DEFAULTS attribute can be used to allow the user to make changes to an
existing program record representing a row in the database.

The same INPUT statement can be used, with the WITHOUT DEFAULTS attribute, to allow the user to
make changes to an existing program record representing a row in the database. This attribute prevents
BDL from automatically displaying any default values that have been defined for the form fields when
INPUT is invoked, allowing you to display the existing database values on the screen before the user
begins editing the data. In this case, when the INPUT statement is used to allow the user to add a new
row, any existing values in the program record must first be nulled out. Note however that the REQUIRED
attribute is ignored when WITHOUT DEFAULTS is TRUE. If you want to use REQUIRED, for example to force
the end user to visit all required fields and fire the AFTER FIELD trigger to validate the entered data, you
can turn off or on the WITHOUT DEFAULTS attribute according to the need, by using a Boolean expression.

Updating Database Tables
The values of the program variables that have been input through the form can be used in SQL statements
that update tables in a database.

SQL transactions
The embedded SQL statements INSERT, UPDATE, and DELETE can be used to make changes to the
contents of a database table.

If your database has transaction logging, you can use the BEGIN WORK and COMMIT WORK commands
to delimit a transaction block, usually consisting of multiple SQL statements. If you do not issue a BEGIN
WORK statement to start a transaction, each statement executes within its own transaction. These single-
statement transactions do not require either a BEGIN WORK statement or a COMMIT WORK statement. At
runtime, the Genero database driver generates the appropriate SQL commands to be used with the target
database server.

To eliminate concurrency problems, keep transactions as short as possible.

Concurrency and Consistency
While your program is modifying data, another program may also be reading or modifying the same data.
To prevent errors, database servers use a system of locks.

When another program requests the data, the database server either makes the program wait or turns it
back with an error. BDL provides a combination of statements to control the effect that locks have on your
data access:

SET LOCK MODE TO {WAIT [n]| NOT WAIT }

This defines the timeout for lock acquisition for the current connection. The timeout period can be specified
in seconds (n). If no period is specified, the timeout is infinite. If the LOCK MODE is set to NOT WAIT, an
exception is returned immediately if a lock cannot be acquired.

Important: This feature is not supported by all databases. When possible, the database driver
sets the corresponding connection parameter to define the timeout. If the database server does not
support setting the lock timeout parameter, the runtime system generates an exception.

SET ISOLATION LEVEL TO { DIRTY READ
 | COMMITTED READ
 | CURSOR STABILITY
 | REPEATABLE READ }

This defines the ISOLATION LEVEL for the current connection. When possible, the database driver
executes the native SQL statement that corresponds to the specified isolation level.

Tutorial Chapter 6: Add, Update and Delete | 64

For portable database programming, the following is recommended:

• Transactions must be enabled in your database.
• The ISOLATION LEVEL must be at least COMMITTED READ. On most database servers, this is usually

the default isolation level and need not be changed.
• The LOCK MODE must be set to WAIT or WAIT time period, if this is supported by your database

server.

See Database transactions in the Genero Business Development Language User Guide for a more
complete discussion.

The SQL adaptation guides provide detailed information about the behavior of specific database servers.

Adding a new row
The INPUT statement provides control blocks to allow your program to initialize field contents and validate
user input when adding a new row.

INPUT Statement Control blocks
Control blocks BEFORE FIELD and ON CHANGE are called automatically during an INPUT as the user
moves the cursor through the fields of a form.

For example:

• BEFORE FIELD control blocks are executed immediately prior to the focus moving to the specified
field. The example program uses this control block to prevent the user from changing the store
number during an Update, by immediately moving the focus to the store name field (the NEXT FIELD
instruction).

• An ON CHANGE is used to verify the uniqueness of the store number that was entered, and to make
sure that the store name is not left blank. The user receives notification of a problem with the value of a
field as soon as the field is exited. Validating these values as they are completed is less disruptive than
notifying the user of several problems after the entire record has been entered.

See INPUT control blocks in the Genero Business Development Language User Guide for a complete list
of INPUT control blocks.

Example: add a new row to the customer table
New functions are added to the custmain.4gl and custquery.4gl modules to allow users to add rows
to the customer table.

Module custmain.4gl
The MENU statement in the module custmain.4gl is modified to call functions for adding, updating, and
deleting the rows in the customer table.

The MAIN block (custmain.4gl)

01 -- custmain.4gl
02
03 MAIN
04 DEFINE query_ok INTEGER
05
06 DEFER INTERRUPT
07 CONNECT TO "custdemo"
08 SET LOCK MODE TO WAIT 6
09 CLOSE WINDOW SCREEN
10 OPEN WINDOW w1 WITH FORM "custform"
11
12 MENU
13 ON ACTION find

Tutorial Chapter 6: Add, Update and Delete | 65

14 LET query_ok = query_cust()
15 ON ACTION next
16 IF query_ok THEN
17 CALL fetch_rel_cust(1)
18 ELSE
19 MESSAGE"You must query first."
20 END IF
21 ON ACTION previous
22 IF query_ok THEN
23 CALL fetch_rel_cust(-1)
24 ELSE
25 MESSAGE "You must query first."
26 END IF
27 COMMAND "Add"
28 IF inpupd_cust("A") THEN
29 CALL insert_cust()
30 END IF
31 COMMAND "Delete"
32 IF delete_check() THEN
33 CALL delete_cust()
34 END IF
35 COMMAND "Modify"
36 IF inpupd_cust("U") THEN
37 CALL update_cust()
38 END IF
39 ON ACTION quit
40 EXIT MENU
41 END MENU
42
43 CLOSE WINDOW w1
44
45 DISCONNECT CURRENT
46
47 END MAIN

Note:

• Line 08 sets the lock timeout period to 6 seconds.
• Lines 12 thru 41 define the main menu of the program.
• Lines 27 thru 30 The MENU option Add now calls an inpupd_cust function. Since this same

function will also be used for updates, the value "A", indicating an Add of a new row, is passed. If
inpupd_cust returns TRUE, the insert_cust function is called.

• Lines 31 thru 34 The MENU option Delete now calls a delete_check function. If
delete_check returns TRUE, the delete_cust function is called.

• Lines 35 thru 38 are added to the MENU statement for the Modify option, calling the
inpud_cust function. The value "U", for an Update of a new row, is passed as a parameter. If
inpupd_cust returns TRUE, the update_cust function is called.

Module custquery.4gl (function inpupd_cust)
A new function, inpupd_cust, is added to the custquery.4gl module, allowing the user to insert
values for a new customer row into the form.

Function inpupd_cust (custquery.4gl):

01 FUNCTION inpupd_cust(au_flag)
02 DEFINE au_flag CHAR(1),
03 cont_ok SMALLINT
04
05 LET cont_ok = TRUE
06
07

Tutorial Chapter 6: Add, Update and Delete | 66

08 IF (au_flag = "A") THEN
09 MESSAGE "Add a new customer"
10 INITIALIZE mr_custrec.* TO NULL
12 END IF
13
14 LET INT_FLAG = FALSE
15
16 INPUT BY NAME mr_custrec.*
17 WITHOUT DEFAULTS ATTRIBUTES(UNBUFFERED)
18
19 ON CHANGE store_num
20 IF (au_flag = "A") THEN
21 SELECT store_name,
22 addr,
23 addr2,
24 city,
25 state,
26 zip-code,
27 contact_name,
28 phone
29 INTO mr_custrec.*
30 FROM customer
31 WHERE store_num = mr_custrec.store_num
32 IF (SQLCA.SQLCODE = 0)THEN
33 ERROR "Store number already exists."
34 LET cont_ok = FALSE
35 CALL display_cust()
36 EXIT INPUT
37 END IF
38 END IF
39
40 AFTER FIELD store_name
41 IF (mr_custrec.store_name IS NULL) THEN
42 ERROR "You must enter a company name."
43 NEXT FIELD store_name
44 END IF
45
46 END INPUT
47
48 IF (INT_FLAG) THEN
49 LET INT_FLAG = FALSE
50 LET cont_ok = FALSE
51 MESSAGE "Operation cancelled by user"
52 INITIALIZE mr_custrec.* TO NULL
53 END IF
54
55 RETURN cont_ok
56
57 END FUNCTION

• Line 01 The function accepts a parameter defined as CHAR(1). In order to use the same function for
both the input of a new record and the update of an existing one, the CALL to this function in the MENU
statement in main.4gl will pass a value "A" for add, and "U" for update.

• Line 06 The variable cont_ok is a flag to indicate whether the update operation should continue; set
initially to TRUE.

• Lines 08 thru 12 test the value of the parameter au_flag. If the value of au_flag is "A" the operation
is an Add of a new record, and a MESSAGE is displayed. Since this is an Add, the modular program
record values are initialized to NULL prior to calling the INPUT statement, so the user will have empty
form fields in which to enter data.

• Line 14 sets the INT_FLAG global variable to FALSE prior to the INPUT statement, so the program can
determine if the user cancels the dialog.

Tutorial Chapter 6: Add, Update and Delete | 67

• Line 17 The UNBUFFERED and WITHOUT DEFAULTS clauses of the INPUT statement are used. The
UNBUFFERED attribute insures that the program array the screen array of the form are automatically
synchronized for input and output. The WITHOUT DEFAULTS clause is used since this statement will
also implement record updates, to prevent the existing values displayed on the form from being erased
or replaced with default values.

• Lines 19 thru 38 Each time the value in store_num changes, the customer table is searched to see
if that store_num already exists. If so, the values in the mr_custrec record are displayed in the form,
the variable cont_ok is set to FALSE, and the INPUT statement is immediately terminated.

• Lines 40 thru 44 The AFTER FIELD control block verifies that store_name was not left blank. If so,
the NEXT FIELD statement returns the focus to the store_name field so the user may enter a value.

• Line 46 END INPUT is required when any of the optional control blocks of the INPUT statement are
used.

• Lines 48 thru 53 The INT_FLAG is checked to see if the user has canceled the input. If so, the variable
cont_ok is set to FALSE, and the program record mr_custrec is set to NULL . The UNBUFFERED
attribute of the INPUT statement assures that the NULL values in the program record are automatically
displayed on the form.

• Line 55 returns the value of cont_ok, indicating whether the input was successful.

Module custquery.4gl (function insert_cust)
A new function, insert_cust, in the custquery.4gl module, contains the logic to add the new row to
the customer table.

Function insert_cust:

01 FUNCTION insert_cust()
02
03 WHENEVER ERROR CONTINUE
04 INSERT INTO customer (
05 store_num,
06 store_name,
07 addr,
08 addr2,
09 city,
10 state,
11 zip-code,
12 contact_name,
13 phone
14)VALUES (mr_custrec.*)
15 WHENEVER ERROR STOP
16
17 IF (SQLCA.SQLCODE = 0) THEN
18 MESSAGE "Row added"
19 ELSE
20 ERROR SQLERRMESSAGE
21 END IF
22
23 END FUNCTION

Note:

• Lines 04 thru 14 contain an embedded SQL statement to insert the values in the program record
mr_custrec into the customer table. This syntax can be used when the order in which the
members of the program record were defined matches the order of the columns listed in the
SELECT statement. Otherwise, the individual members of the program record must be listed
separately. Since there is no BEGIN WORK / COMMIT WORK syntax used here, this statement
will be treated as a singleton transaction and the database driver will automatically send the
appropriate COMMIT statement. The INSERT statement is surrounded by WHENEVER ERROR
statements.

Tutorial Chapter 6: Add, Update and Delete | 68

• Lines 17 thru 21 test the SQLCA.SQLCODE that was returned from the INSERT statement. If the
INSERT was not successful, the corresponding error message is displayed to the user.

Updating an existing Row
Updating an existing row in a database table provides more opportunity for concurrency and consistency
errors than inserting a new row. Use techniques shown in this section to help minimize the errors.

Using a work record
A work record and a local record, both identical to the program record, are defined to allow the program to
compare the values.

1. A SCROLL CURSOR is used to allow the user to scroll through a result set generated by a query. The
scroll cursor is declared WITH HOLD so it will not be closed when a COMMIT WORK or ROLLBACK WORK
is executed.

2. When the user chooses Update, the values in the current program record are copied to the work
record.

3. The INPUT statement accepts the user's input and stores it in the program record. The WITHOUT
DEFAULTS keywords are used to insure that the original values retrieved from the database were not
replaced with default values.

4. If the user accepts the input, a transaction is started with BEGIN WORK.
5. The primary key stored in the program record is used to SELECT the same row into the local record.

FOR UPDATE locks the row.
6. The SQLCA.SQLCODE is checked, in case the database row was deleted after the initial query.
7. The work record and the local record are compared, in case the database row was changed after the

initial query.
8. If the work and local records are identical, the database row is updated using the new program record

values input by the user.
9. If the UPDATE is successful, a COMMIT WORK is issued. Otherwise, a ROLLBACK WORK is issued.
10.The SCROLL CURSOR has remained open, allowing the user to continue to scroll through the query

result set.

SELECT ... FOR UPDATE
To explicitly lock a database row prior to updating, a SELECT...FOR UPDATE statement may be used to
instruct the database server to lock the row that was selected. SELECT ... FOR UPDATE cannot be used
outside of an explicit transaction. The locks are held until the end of the transaction.

SCROLL CURSOR WITH HOLD
Like many programs that perform database maintenance, the Query program uses a SCROLL CURSOR to
move through an SQL result set, updating or deleting the rows as needed. BDL cursors are automatically
closed by the database interface when a COMMIT WORK or ROLLBACK WORK statement is performed.
To allow the user to continue to scroll through the result set, the SCROLL CURSOR can be declared WITH
HOLD, keeping it open across multiple transactions.

Tutorial Chapter 6: Add, Update and Delete | 69

Example: Updating a Row in the customer table
Functions are modified in the custquery.4gl module to allow users to update existing rows in the
customer table.

Module custquery.4gl
The module has been modified to define a work_custrec record that can be used as working storage
when a row is being updated.

Module custquery.4gl:

01
02 SCHEMA custdemo
03
04 DEFINE mr_custrec, work_custrec RECORD
05 store_num LIKE customer.store_num,
06 store_name LIKE customer.store_name,
07 addr LIKE customer.addr,
08 addr2 LIKE customer.addr2,
09 city LIKE customer.city,
10 state LIKE customer.state,
11 zip-code LIKE customer.zip-code,
12 contact_name LIKE customer.contact_name,
13 phone LIKE customer.phone
14 END RECORD
...

Note:

• Lines 04 thru 15 define a work_custrec record that is modular in scope and contains the
identical structure as the mr_custrec program record.

The function inpupd_cust in the custquery.4gl module has been modified so it can also be used to
obtain values for the Update of existing rows in the customer table.

Function inpupd_cust (custquery.4gl)

01 FUNCTION inpupd_cust(au_flag)
02 DEFINE au_flag CHAR(1),
03 cont_ok SMALLINT
04
05 INITIALIZE work_custrec.* TO NULL
06 LET cont_ok = TRUE
07
08 IF (au_flag = "A") THEN
09 MESSAGE "Add a new customer"
10 LET mr_custrec.* = work_custrec.*
11 ELSE
12 MESSAGE "Update customer"
13 LET work_custrec.* = mr_custrec.*
14 END IF
15
16 LET INT_FLAG = FALSE
17
18 INPUT BY NAME mr_custrec.*
19 WITHOUT DEFAULTS ATTRIBUTES(UNBUFFERED)
20
21 BEFORE FIELD store_num
22 IF (au_flag = "U") THEN
23 NEXT FIELD store_name
24 END IF
25
26 ON CHANGE store_num

Tutorial Chapter 6: Add, Update and Delete | 70

27 IF (au_flag = "A") THEN
...
28 AFTER FIELD store_name
29 IF (mr_custrec.store_name IS NULL) THEN
...
30
31 END INPUT

Note:

• Line 05 sets the work_custrec program record to NULL.
• Line 10 For an Add, the mr_custrec program record is set equal to the work_custrec

record, in effect setting mr_custrec to NULL. The LET statement uses less resources than
INITIALIZE.

• Line 13 For an Update, the values in the mr_custrec program record are copied into
work_custrec, saving them for comparison later.

• Lines 21 thru 24 A BEFORE FIELD store_num clause has been added to the INPUT statement.
If this is an Update, the user should not be allowed to change store_num, and the NEXT
FIELD instruction moves the focus to the store_name field.

• Line 26 The ON CHANGE store_num control block, which will only execute if the au_flag is
set to "A" (the operation is an Add) remains the same.

• Line 28 The AFTER FIELD store_name control block remains the same, and will execute if
the operation is an Add or an Update.

A new function update_cust in the custquery.4gl module updates the row in the customer table.

Function update_cust (custquery.4gl)

01 FUNCTION update_cust()
02 DEFINE l_custrec RECORD
03 store_num LIKE customer.store_num,
04 store_name LIKE customer.store_name,
05 addr LIKE customer.addr,
06 addr2 LIKE customer.addr2,
07 city LIKE customer.city,
08 state LIKE customer.state,
09 zip-code LIKE customer.zip-code,
10 contact_name LIKE customer.contact_name,
11 phone LIKE customer.phone
12 END RECORD,
13 cont_ok INTEGER
14
15 LET cont_ok = FALSE
16
17 BEGIN WORK
18
19 SELECT store_num,
20 store_name,
21 addr,
22 addr2,
23 city,
24 state,
25 zip-code,
26 contact_name,
27 phone
28 INTO l_custrec.* FROM customer
29 WHERE store_num = mr_custrec.store_num
30 FOR UPDATE
31
32 IF (SQLCA.SQLCODE = NOTFOUND) THEN
33 ERROR "Store has been deleted"
34 LET cont_ok = FALSE

Tutorial Chapter 6: Add, Update and Delete | 71

35 ELSE
36 IF (l_custrec.* = work_custrec.*) THEN
37 WHENEVER ERROR CONTINUE
38 UPDATE customer SET
39 store_name = mr_custrec.store_name,
40 addr = mr_custrec.addr,
41 addr2 = mr_custrec.addr2,
42 city = mr_custrec.city,
43 state = mr_custrec.state,
44 zip-code = mr_custrec.zip-code,
45 contact_name = mr_custrec.contact_name,
46 phone = mr_custrec.phone
47 WHERE store_num = mr_custrec.store_num
48 WHENEVER ERROR STOP
49 IF (SQLCA.SQLCODE = 0) THEN
50 LET cont_ok = TRUE
51 MESSAGE "Row updated"
52 ELSE
53 LET cont_ok = FALSE
54 ERROR SQLERRMESSAGE
55 END IF
56 ELSE
57 LET cont_ok = FALSE
58 LET mr_custrec.* = l_custrec.*
59 MESSAGE "Row updated by another user."
60 END IF
61 END IF
62
63 IF (cont_ok = TRUE) THEN
64 COMMIT WORK
65 ELSE
66 ROLLBACK WORK
67 END IF
68
69 END FUNCTION

• Lines 02 thru 12 define a local record, l_custrec with the same structure as the modular program
records mr_custrec and work_custrec.

• Line 15 The cont_ok variable will be used as a flag to determine whether the update should be
committed or rolled back.

• Line 17 Since this will be a multiple-statement transaction, the BEGIN WORK statement is used to start
the transaction.

• Lines 19 thru 30 use the store_num value in the program record to re-select the row. FOR UPDATE
locks the database row until the transaction ends.

• Lines 32 thru 34 check SQLCA.SQLCODE to make sure the record has not been deleted by another
user. If so, an error message is displayed, and the variable cont_ok is set to FALSE.

• Lines 36 thru 60 are to be executed if the database row was found.
• Line 36 compares the values in the l_custrec local record with the work_custrec record that

contains the original values of the database row. All the values must match for the condition to be TRUE.
• Lines 37 thru 55 are executed if the values matched. An embedded SQL statement is used to

UPDATE the row in the customer table using the values which the user has previously entered in
the mr_custrec program record. The SQL UPDATE statement is surrounded by WHENEVER ERROR
statements. The SQLCA.SQLCODE is checked after the UPDATE, and if it indicates the update was not
successful the variable cont_ok is set to FALSE and an error message is displayed.

• Lines 57 through 59 are executed if the values in l_custrec and work_custrec did not match. The
variable cont_ok is set to FALSE. The values in the mr_custrec program record are set to the values
in the l_custrec record (the current values in the database row, retrieved by the SELECT ... FOR
UPDATE statement.) The UNBUFFERED attribute of the INPUT statement assures that the values will be

Tutorial Chapter 6: Add, Update and Delete | 72

automatically displayed in the form. A message is displayed indicating the row had been changed by
another user.

• Lines 63 thru 67 If the variable cont_ok is TRUE (the update was successful) the program issues a
COMMIT WORK to end the transaction begun on Line 17. If not, a ROLLBACK WORK is issued. All locks
placed on the database row are automatically released.

Deleting a Row
The SQL DELETE statement can be used to delete rows from the database table. The primary key of the
row to be deleted can be obtained from the values in the program record.

Using a dialog Menu to prompt for validation
The MENU statement has an optional STYLE attribute that can be set to 'dialog', automatically opening
a temporary modal window. You can also define a message and icon with the COMMENT and IMAGE
attributes. This provides a simple way to prompt the user to confirm some action or operation that has been
selected.

The menu options appear as buttons at the bottom of the window. Unlike standard menus, the dialog menu
is automatically exited after any action clause such as ON ACTION, COMMAND or ON IDLE. You do not
need an EXIT MENU statement.

Figure 13: Using a dialog Menu

Example: Deleting a Row
Function delete_check is added to the custquery.4gl module to check whether a store has any
orders in the database before allowing the user to delete the store from the customer table. If there are
no existing orders, a dialog MENU is used to prompt the user for confirmation.

Function delete_check (custquery.4gl)

01 FUNCTION delete_check()
02 DEFINE del_ok SMALLINT,
03 ord_count SMALLINT
04
05 LET del_ok = FALSE
06
07 SELECT COUNT(*) INTO ord_count
08 FROM orders
09 WHERE orders.store_num =
10 mr_custrec.store_num
11
12 IF ord_count > 0 THEN
13 MESSAGE "Store has existing orders"
14 ELSE
15 MENU "Delete" ATTRIBUTES (STYLE="dialog",
16 COMMENT="Delete the row?")
17 COMMAND "Yes"
18 LET del_ok = TRUE
19 COMMAND "No"

Tutorial Chapter 6: Add, Update and Delete | 73

20 MESSAGE "Delete canceled"
21 END MENU
22 END IF
23
24 RETURN del_ok
25
26 END FUNCTION

• Line 02 defines a variable del_ok to be used as a flag to determine if the delete operation should
continue.

• Line 05 sets del_ok to FALSE.
• Lines 07 thru 10 use the store_num value in the mr_custrec program record in an SQL statement

to determine whether there are orders in the database for that store_num. The variable ord_count is
used to store the value returned by the SELECT statement.

• Lines 12 thru 13 If the count is greater than zero, there are existing rows in the orders table for the
store_num. A message is displayed to the user. del_ok remains set to FALSE.

• Lines 15thru 21 If the count is zero, the delete operation can continue. A MENU statement is used to
prompt the user to confirm the Delete action. The STYLE attribute is set to "dialog" to automatically
display the MENU in a modal dialog window. If the user selects Yes, the variable del_ok is set to TRUE.
Otherwise a message is displayed to the user indicating the delete will be canceled.

• Line 24 returns the value of del_ok to the delete_cust function.

The function delete_cust is added to the custquery.4gl module to delete the row from the
customer table.

Function delete_cust (custquery.4gl)

01 FUNCTION delete_cust()
02
03 WHENEVER ERROR CONTINUE
04 DELETE FROM customer
05 WHERE store_num = mr_custrec.store_num
06 WHENEVER ERROR STOP
07 IF SQLCA.SQLCODE = 0 THEN
08 MESSAGE "Row deleted"
09 INITIALIZE mr_custrec.* TO NULL
10 ELSE
11 ERROR SQLERRMESSAGE
12 END IF
13
14 END FUNCTION

Note:

• Lines 04 and 05 contains an embedded SQL DELETE statement that uses the store_num
value in the program record mr_custrec to delete the database row. The SQL statement
is surrounded by WHENEVER ERROR statements. This is a singleton transaction that will be
automatically committed if it is successful.

• Lines 07 thru 12 check the SQLCA.SQLCODE returned for the SQL DELETE statement. If the
DELETE was successful, a message is displayed and the mr_custrec program record values
are set to NULL and automatically displayed on the form. Otherwise, an error message is
displayed.

Tutorial Chapter 7: Array Display | 74

Tutorial Chapter 7: Array Display

The example in this chapter displays multiple customer records at once. The disparray program
defines a program array to hold the records, and displays the records in a form containing a table and a
screen array. The example program is then modified to dynamically fill the array as needed. This program
illustrates a library function - the example is written so it can be used in multiple programs, maximizing
code reuse.

• Defining the Form on page 74
• Creating the Function on page 76
• The DISPLAY ARRAY Statement on page 77
• Compiling and using a Library on page 83

Figure 14: Array Display

In the illustration, the table is sorted by City. A right mouse click has displayed a dropdown list of the
columns, with checkboxes allowing the user to hide or show a specific column. After the user validates the
row selected, the store number and store name are returned to the calling function.

Defining the Form
The scrolling list of customer records demonstrated in this chapter requires a form specification file
containing a screen array of screen records.

Screen Arrays
In a text-based form specification file (.per), a screen array is usually a repetitive array of fields in the
LAYOUT section, each containing identical groups of screen fields.

Each "row" of a screen array is a screen record. Each "column" of a screen array consists of fields with the
same item tag in the LAYOUT section of the form specification file. You must declare screen arrays in the
INSTRUCTIONS section.

Tutorial Chapter 7: Array Display | 75

TABLE Containers
The TABLE container in a form defines the presentation of a list of records, bound to a screen array.

When this layout container is used with curly braces defining the container area, the position of the static
labels and item tags is automatically detected by the form compiler to build a graphical object displaying a
list of records.

The first line of the TABLE area contains text entries defining the column titles. The second line contains
field item tags that define the columns of the table receiving the data. This line is repeated to allow the
display of multiple records at once.

The user can sort the rows displayed in the form table by a mouse-click on the title of the column that is
to be used for the sort. This sort is performed on the client side only. The columns and the entire form can
be stretched and re-sized. A right-mouse-click on a column title displays a dropdown list-box of column
names, with radio buttons allowing the user to indicate whether a specific column is to be hidden or shown.

The INSTRUCTIONS section
You must declare a screen array in the INSTRUCTIONS section of a text-based form specification file
(.per) with the SCREEN RECORD keyword. You can reference the names of the screen array in the
DISPLAY ARRAY statement of the program.

Form example: manycust.per
The manycust.per form specification file contains a TABLE Container and screen array used to display a
list of customer rows

Form manycust.per:

01 SCHEMA custdemo
02
03 LAYOUT
04 TABLE
05 {
06 Id Name ... Zip-code Contact Phone
07 [f01][f02] [f05][f06][f07]
08 [f01][f02] [f05][f06][f07]
09 [f01][f02] [f05][f06][f07]
10 [f01][f02] [f05][f06][f07]
11 [f01][f02] [f05][f06][f07]
12 [f01][f02] [f05][f06][f07]
13 }
14 END
15 END
16
17 TABLES
18 customer
19 END
20
21 ATTRIBUTES
22 EDIT f01=customer.store_num;
23 EDIT f02=customer.store_name;
24 EDIT f03=customer.city;
25 EDIT f04=customer.state;
26 EDIT f05=customer.zip-code;
27 EDIT f06=customer.contact_name;
28 EDIT f07=customer.phone;
29 END
30
31 INSTRUCTIONS
32 SCREEN RECORD sa_cust (customer.*);
33 END

Tutorial Chapter 7: Array Display | 76

Note:

In order to fit on the page, the layout section of the form is truncated, not displaying the city and
state columns.

• Line 01 The custdemo schema will be used by the compiler to determine the data types of the
form fields.

• Line 06 contains the titles for the columns in the TABLE.
• Lines 07 thru 12 define the display area for the screen records. These rows must be identical in

a TABLE. (The fields for city and state are indicated by so the layout will fit on this page.)
• Line 21 thru 29 In the ATTRIBUTES section the field item tags are linked to the field description.

Although there are multiple occurrences of each item tags in the form, the description is listed
only once for each unique field item tag.

• Line 32 defines the screen array in the INSTRUCTIONS section. The screen record must contain
the same number of elements as the records in the TABLE container. This example defines the
screen record with all fields defined with the customer prefix, but you can list each field name
individually.

Creating the Function
The main module, cust_stub.4gl calls the library function display_custarr, which uses a cursor
with a FOREACH statement to load rows from the customer table into a program array. The DISPLAY
ARRAY statement displays the records in the program array to the screen array defined in the form
specification file.

Program Arrays
A program array is an ordered set of elements all of the same data type. You can create one-, two-, or
three-dimensional arrays. The elements of the array can be simple types or they can be records.

Arrays can be:

• static - defined with an explicit size for all dimensions.
• dynamic - has a variable size. Dynamic arrays have no theoretical size limit.

All elements of static arrays are initialized even if the array is not used. Therefore, defining huge static
arrays may use a lot of memory. The elements of dynamic arrays are allocated automatically by the
runtime system, as needed.

Example of a dynamic array of records definition:

01 DEFINE cust_arr DYNAMIC ARRAY OF RECORD
02 store_num LIKE customer.store_num,
03 city LIKE customer.city
04 END RECORD

This array variable is named cust_arr; each element of the array contains the members store_num
and city. The size of the array will be determined by the runtime system, based on the program logic that
is written to fill the array. The first element of any array is indexed with subscript 1. You would access the
store_num member of the 10th element of the array by writing cust_arr[10].store_num.

Tutorial Chapter 7: Array Display | 77

Loading the Array: the FOREACH Statement
The FOREACH statement is equivalent to using the OPEN, FETCH and CLOSE statements to retrieve and
process all the rows selected by a query, and is especially useful when loading arrays.

To load the program array in the example, you must retrieve the values from the result set of a query and
load them into the elements of the array. You must DECLARE the cursor before the FOREACH statement
can retrieve the rows.

01 DECLARE custlist_curs CURSOR FOR
02 SELECT store_num, city FROM customer
03 CALL cust_arr.clear()
04 FOREACH custlist_curs INTO cust_rec.*
05 CALL cust_arr.appendElement()
06 LET cust_arr[cust_arr.getLength()].* = cust_rec.*
07 END FOREACH

The FOREACH statement shown:

1. Opens the custlist_curs cursor.
2. Clears the cust_arr array.
3. Fetches a row into the record cust_rec. This record must be defined as having the same structure as

a single element of the cust_arr array (store_num, city).
4. Appends an empty element to the cust_arr array.
5. Copies the cust_rec record into the array cust_arr using the getLength method to determine the

index of the element that was newly appended to the array.
6. Repeats steps 3, 4 and 5 until no more rows are retrieved from the database table (automatically

checks for the NOTFOUND condition).
7. Closes the cursor and exits from the FOREACH loop.

The DISPLAY ARRAY Statement
The DISPLAY ARRAY statement lets the user view the contents of an array of records, scrolling through
the display.

The example defines a program array of records, each record having members that correspond to the
fields of the screen records defined in the form specification file. The DISPLAY ARRAY statement displays
all the records in the program array into the rows of the screen array. Typically the program array has
many more rows of data than will fit on the screen.

The COUNT attribute
When using a static array, the number of rows to be displayed is defined by the COUNT attribute. If you do
not use the COUNT attribute, the runtime system cannot determine how much data to display, and so the
screen array remains empty.

When using a dynamic array, the number of rows to be displayed is defined by the number of elements in
the dynamic array; the COUNT attribute is ignored.

Example:

01 DISPLAY ARRAY cust_arr TO sa_cust.*

This statement will display the program array cust_arr to the form fields defined in the sa_cust screen
array of the form.

By default, the DISPLAY ARRAY statement does not terminate until the user accepts or cancels the dialog;
the Accept and Cancel actions are predefined and display on the form. Your program can accept the
dialog instead, using the ACCEPT DISPLAY instruction.

Tutorial Chapter 7: Array Display | 78

The ARR_CURR function
When the user accepts or cancels a dialog, the ARR_CURR built-in function returns the index (subscript
number) of the row in the program array that was selected (current).

Example Library module: cust_lib.4gl
The cust_lib.4gl module contains the library function display_custarr, that can be reused by other
programs that reference the customer table.

Module cust_lib.4gl:

01 SCHEMA custdemo
02
03 FUNCTION display_custarr()
04
05 DEFINE cust_arr DYNAMIC ARRAY OF RECORD
06 store_num LIKE customer.store_num,
07 store_name LIKE customer.store_name,
08 city LIKE customer.city,
09 state LIKE customer.state,
10 zip-code LIKE customer.zip-code,
11 contact_name LIKE customer.contact_name,
12 phone LIKE customer.phone
13 END RECORD,
14 cust_rec RECORD
15 store_num LIKE customer.store_num,
16 store_name LIKE customer.store_name,
17 city LIKE customer.city,
18 state LIKE customer.state,
19 zip-code LIKE customer.zip-code,
20 contact_name LIKE customer.contact_name,
21 phone LIKE customer.phone
22 END RECORD,
23 ret_num LIKE customer.store_num,
24 ret_name LIKE customer.store_name,
25 curr_pa SMALLINT
26
27 OPEN WINDOW wcust WITH FORM "manycust"
28
29 DECLARE custlist_curs CURSOR FOR
30 SELECT store_num,
31 store_name,
32 city,
33 state,
34 zip-code,
35 contact_name,
36 phone
37 FROM customer
38 ORDER BY store_num
39
40
41 CALL cust_arr.clear()
42 FOREACH custlist_curs INTO cust_rec.*
43 CALL cust_arr.appendElement()
44 LET cust_arr[cust_arr.getLength()].* = cust_rec.*
45 END FOREACH
46
47 LET ret_num = 0
48 LET ret_name = NULL
49
50 IF (cust_arr.getLength() > 0) THEN
51 DISPLAY ARRAY cust_arr TO sa_cust.*
52 IF NOT INT_FLAG THEN

Tutorial Chapter 7: Array Display | 79

53 LET curr_pa = arr_curr()
54 LET ret_num = cust_arr[curr_pa].store_num
55 LET ret_name = cust_arr[curr_pa].store_name
56 END IF
57 END IF
58
59 CLOSE WINDOW wcust
60 RETURN ret_num, ret_name
61
62 END FUNCTION

Note:

• Lines 05 thru 13 define a local program array, cust_arr.
• Lines 14 thru 22 define a local program record, cust_rec. This record is used as temporary

storage for the row data retrieved by the FOREACH loop in line 42.
• Lines 23 and 24define local variables to hold the store number and name values to be returned

to the calling function.
• Line 25 defines a variable to store the value of the program array index.
• Line 27 opens a window with the form containing the array.
• Lines 29 thru 38 DECLARE the cursor custlist_curs to retrieve the rows from the customer

table.
• Line 40 sets the variable idx to 0, this variable will be incremented in the FOREACH loop.
• Line 41 clear the dynamic array.
• Line 42 uses FOREACH to retrieve each row from the result set into the program record,

cust_rec.
• Lines 43 thru 44 are executed for each row that is retrieved by the FOREACH. They append a

new element to the array cust_arr, and transfer the data from the program record into the new
element, using the method getLength to identify the index of the element. When the FOREACH
statement has retrieved all the rows the cursor is closed and the FOREACH is exited.

• Lines 47 and 48 Initialize the variables used to return the customer number and customer name.
• Lines 50 thru 57 If the length of the cust_arr array is greater than 0, the FOREACH statement

did retrieve some rows.
• Line 52 DISPLAY ARRAY turns control over to the user, and waits for the user to accept or

cancel the dialog.
• Line 52 The INT_FLAG variable is tested to check if the user validated the dialog.
• Line 53 If the user has validated the dialog, the built-in function ARR_CURR is used to store the

index for the program array element the user had selected (corresponding to the highlighted row
in the screen array) in the variable curr_pa.

• Lines 54 and 55 The variable curr_pa is used to retrieve the current values of store_num
and store_name from the program array and store them in the variables ret_num and
ret_name.

• Line 59 closes the window.
• Line 60 returns ret_num and ret_name to the calling function.

Paged Mode of DISPLAY ARRAY
The previous example retrieves all the rows from the customer table into the program array prior to the
data being displayed by the DISPLAY ARRAY statement. Using this full list mode, you must copy into the
array all the data you want to display. Using the DISPLAY ARRAY statement in paged mode allows you to
provide data rows dynamically during the dialog, using a dynamic array to hold one page of data.

The following example modifies the program to use a SCROLL CURSOR to retrieve only the store_num
values from the customer table. As the user scrolls thru the result set, statements in the ON FILL BUFFER
clause of the DISPLAY ARRAY statement are used to retrieve and display the remainder of each row, a

Tutorial Chapter 7: Array Display | 80

page of data at a time. This helps to minimize the possibility that the rows have been changed, since the
rows are re-selected immediately prior to the page being displayed.

What is the Paged mode?
The paged mode allows a program to display a very large number of rows without copying all the rows into
the program array at once. The program array holds only the current visible page.

A "page" of data is the total number of rows of data that can be displayed in the form at one time. The
length of a page can change dynamically, since the user has the option of resizing the window containing
the form. The runtime system automatically keeps track of the current length of a page.

The ON FILL BUFFER clause feeds the DISPLAY ARRAY instruction with pages of data. The following
built-in functions are used in the ON FILL BUFFER clause to provide the rows of data for the page:

• FGL_DIALOG_GETBUFFER START() - retrieves the offset in the SCROLL CURSOR result set, and is
used to determine the starting point for retrieving and displaying the complete rows.

• FGL_DIALOG_GETBUFFERLENGTH() - retrieves the current length of the page, and is used to
determine the number of rows that must be provided.

The statements in the ON FILL BUFFER clause of DISPLAY ARRAY are executed automatically by the
runtime system each time a new page of data is needed. For example, if the current size of the window
indicates that ten rows can be displayed at one time, the statements in the ON FILL BUFFER clause
will automatically maintain the dynamic array so that the relevant ten rows are retrieved and/or displayed
as the user scrolls up and down through the table on the form. If the window is re-sized by the user, the
statements in the ON FILL BUFFER clause will automatically retrieve and display the new number of
rows.

AFTER DISPLAY block
The AFTER DISPLAY block is executed one time, after the user has accepted or canceled the dialog, but
before executing the next statement in the program.

In this program, the statements in this block determine the current position of the cursor when the user
presses OK or Cancel, so the correct store number and name can be returned to the calling function.

Example of paged mode
In the first example, the records in the customer table are loaded into the program array and the user
uses the form to scroll through the program array. In this example, the user is actually scrolling through
the result set created by a SCROLL CURSOR. This SCROLL CURSOR retrieves only the store number, and
another SQL SELECT statement is used to retrieve the remainder of the row as needed.

Module cust_lib2.4gl:

01 SCHEMA custdemo
02
03 FUNCTION display_custarr()
04
05 DEFINE cust_arr DYNAMIC ARRAY OF RECORD
06 store_num LIKE customer.store_num,
07 store_name LIKE customer.store_name,
08 city LIKE customer.city,
09 state LIKE customer.state,
10 zip-code LIKE customer.zip-code,
11 contact_name LIKE customer.contact_name,
12 phone LIKE customer.phone
13 END RECORD,
14 ret_num LIKE customer.store_num,
15 ret_name LIKE customer.store_name,
16 ofs, len, i SMALLINT,
17 sql_text STRING,
18 rec_count SMALLINT,

Tutorial Chapter 7: Array Display | 81

19 curr_pa SMALLINT
20
21 OPEN WINDOW wcust WITH FORM "manycust"
22
23 LET rec_count = 0
24 SELECT COUNT(*) INTO rec_count FROM customer
25 IF (rec_count == 0) THEN
26 RETURN 0, NULL
27 END IF
28
29 LET sql_text =
30 "SLECT tore_num, store_name, city,"
31 || " state, zip-code, contact_name,"
32 || " phone"
33 || " FROM customer WHERE store_num = ?"
34 PREPARE rec_all FROM sql_text
35
36 DECLARE num_curs SCROLL CURSOR FOR
37 SELECT store_num FROM customer
38 OPEN num_curs
39
40 DISPLAY ARRAY cust_arr TO sa_cust.*
41 ATTRIBUTES(UNBUFFERED, COUNT=rec_count)
42
43 ON FILL BUFFER
44 LET ofs = FGL_DIALOG_GETBUFFERSTART()
45 LET len = FGL_DIALOG_GETBUFFERLENGTH()
46 FOR i = 1 TO len
47 WHENEVER ERROR CONTINUE
48 FETCH ABSOLUTE ofs+i-1 num_curs
49 INTO cust_arr[i].store_num
50 EXECUTE rec_all INTO cust_arr[i].*
51 USING cust_arr[i].store_num
52 WHENEVER ERROR STOP
53 IF (SQLCA.SQLCODE = NOTFOUND) THEN
54 MESSAGE "Row deleted by another user."
55 CONTINUE FOR
56 ELSE
57 IF (SQLCA.SQLCODE < 0) THEN
58 ERROR SQLERRMESSAGE
59 CONTINUE FOR
60 END IF
61 END IF
62 END FOR
62
64 AFTER DISPLAY
65 IF (INT_FLAG) THEN
66 LET ret_num = 0
67 LET ret_name = NULL
68 ELSE
69 LET curr_pa = ARR_CURR()- ofs + 1
70 LET ret_num = cust_arr[curr_pa].store_num
71 LET ret_name = cust_arr[curr_pa].store_name
72 END IF
73
74 END DISPLAY
75
76 CLOSE num_curs
77 FREE num_curs
78 FREE rec_all
79
80 CLOSE WINDOW wcust
81 RETURN ret_num, ret_name
82

Tutorial Chapter 7: Array Display | 82

83 END FUNCTION

Note:

• Lines 16 thru 19 define some new variables to be used, including cont_disp to indicate
whether the function should continue.

• Line 24 uses an embedded SQL statement to store the total number of rows in the customer
table in the variable rec_count.

• Lines 25 thru 27 If the total number of rows is zero, function returns immediately 0 and NULL.
• Lines 29 thru 33 contain the text of an SQL SELECT statement to retrieve values from a single

row in the customer table. The ? placeholder will be replaced with the store number when
the statement is executed. This text is assigned to a string variable, sql_text.

• Line 34 uses the SQL PREPARE statement to convert the string into an executable statement,
rec_all. This statement will be executed when needed, to populate the rest of the values in
the row of the program array.

• Lines 36 thru 37 DECLARE a SCROLL CURSOR num_curs to retrieve only the store number
from the customer table.

• Line 38 opens the SCROLL CURSOR num_curs.
• Lines 40 and 41 call the DISPLAY ARRAY statement, providing the COUNT to let the statement

know the total number of rows in the SQL result set.
• Lines 43 thru 62 contain the logic for the ON FILL BUFFER clause of the DISPLAY ARRAY

statement. This control block will be executed automatically whenever a new page of data is
required.

• Line 44 uses the built-in function to get the offset for the page, the starting point for the retrieval
of rows, and stores it in the variable ofs.

• Line 45 uses the built-in function to get the page length, and stores it in the variable len.
• Lines 46 thru 62 contain a FOR loop to populate each row in the page with values from the

customer table. The variable i is incremented to populate successive rows. The first value of
i is 1.

• Lines 48 and 49 use the SCROLL CURSOR num_curs with the syntax FETCH ABSOLUTE
<row_number> to retrieve the store number from a specified row in the result set, and to store
it in row i of the program array. Since i was started at 1, the following calculation is used to
determine the row number of the row to be retrieved:

(Offset for the page) PLUS iMINUS 1

Notice that rows 1 thru (page_length) of the program array are filled each time a new page is
required.

• Lines 50 and 51 execute the prepared statement rec_all to retrieve the rest of the values
for row i in the program array, using the store number retrieved by the SCROLL CURSOR.
Although this statement is within the FOR loop, it was prepared earlier in the program, outside of
the loop, to avoid unnecessary reprocessing each time the loop is executed.

• Lines 53 thru 61 test whether fetching the entire row was successful. If not, a message is
displayed to the user, and the CONTINUE FOR instruction continues the FOR loop with the next
iteration.

• Lines 64 thru 72 use an AFTER DISPLAY statement to get the row number of the row in the
array that the user had selected. If the dialog was canceled, ret_num is set to 0 and ret_name
is set to blanks. Otherwise the values of ret_num and ret_name are set based on the row
number. The row number in the SCROLL CURSOR result set does not correlate directly to the
program array number, because the program array was filled starting at row 1 each time. So the
following calculation is used to return the correct row number of the program array:

(Row number returned by ARR_CURR) MINUS
(Offset for the page) PLUS 1

• Line 74 is the end of the DISPLAY ARRAY statement.

Tutorial Chapter 7: Array Display | 83

• Lines 76 and 77 CLOSE and FREE the cursor.
• Line 78 frees the prepared statement.
• Line 81 closes the window.
• Line 82 returns the values of the variables ret_num and ret_name to the calling function.

Compiling and using a Library
Since this is a function that could be used by other programs that reference the customer table, the
function will be compiled into a library. The library can then be linked into any program, and the function
called.

The function will always return store_num and store_name. If the FOREACH fails, or returns no rows, the
calling program will have a store_num of zero and a NULL store_name returned.

The function is contained in a file named cust_lib.4gl. This file would usually contain additional library
functions. To compile (and link, if there were additional .4gl files to be included in the library):

fgl2p -o cust_lib.42x cust_lib.4gl

Since a library has no MAIN function, we will need to create a small stub program if we want to test the
library function independently. This program contains the minimal functionality to test the function.

Example: cust_stub.4gl
The module cust_stub.4gl calls the library function display_custarr in cust_lib.4gl.

Module cust_stub.4gl:

01 SCHEMA custdemo
02
03 MAIN
04 DEFINE store_num LIKE customer.store_num,
05 store_name LIKE customer.store_name
06
07 DEFER INTERRUPT
08 CONNECT TO "custdemo"
09 CLOSE WINDOW SCREEN
10
11 CALL display_custarr()
12 RETURNING store_num, store_name
13 DISPLAY store_num, store_name
14
15 DISCONNECT CURRENT
16
17 END MAIN

Note:

• Lines 04 and 05 define variables to hold the values returned by the display_custarr
function.

• Lines 07 thru 09 are required simply for the test program, to set the program up and connect to
the database.

• Line 11 calls the library function display_custarr.
• Line 13 displays the returned values to standard output for the purposes of the test.

Now we can compile the form file and the test program, and link the library, and then test to see if it works
properly.

fglform manycust.per
fgl2p -o test.42r cust_stub.4gl cust_lib.42x

Tutorial Chapter 7: Array Display | 84

fglrun test.42r

Tutorial Chapter 8: Array Input | 85

Tutorial Chapter 8: Array Input

The program in this chapter allows the user to view and change a list of records displayed on a form. As
each record in the program array is added, updated, or deleted, the program logic makes corresponding
changes in the rows of the corresponding database table.

• The INPUT ARRAY statement on page 85
• WITHOUT DEFAULTS clause on page 86
• The UNBUFFERED attribute on page 86
• COUNT and MAXCOUNT attributes on page 86
• Control Blocks on page 86
• Built-in Functions - ARR_CURR on page 87
• Predefined actions on page 87
• Example: Using a Screen Array to modify Data on page 87

This program uses a form and a screen array to allow the user to view and change multiple records of
a program array at once. The INPUT ARRAY statement and its control blocks are used by the program
to control and monitor the changes made by the user to the records. As each record in the program
array is Added, Updated, or Deleted, the program logic makes corresponding changes in the rows of the
customer database table.

Figure 15: INPUT ARRAY example on a Windows™ platform

The INPUT ARRAY statement
The INPUT ARRAY statement supports data entry by users into a screen array, and stores the entered
data in a program array of records. During the INPUT ARRAY execution, the user can edit or delete
existing records, insert new records, and move inside the list of records. The program can then use the
INSERT, DELETE or UPDATE SQL statements to modify the appropriate database tables. The INPUT
ARRAY statement does not terminate until the user validates or cancels the dialog.

INPUT ARRAY cust_arr WITHOUT DEFAULTS FROM sa_cust.*
 ATTRIBUTES (UNBUFFERED)

The example INPUT ARRAY statement binds the screen array fields in sa_cust to the member records
of the program array cust_arr. The number of variables in each record of the program array must be
the same as the number of fields in each screen record (that is, in a single row of the screen array). Each
mapped variable must have the same data type or a compatible data type as the corresponding field.

Tutorial Chapter 8: Array Input | 86

WITHOUT DEFAULTS clause
The WITHOUT DEFAULTS clause instructs the INPUT ARRAY statement to use and display the rows
currently stored in the program array. Without this clause, the INPUT ARRAY would start with an empty
list.

When creating a new row with the insert or append action, the REQUIRED attribute is always taken into
account by INPUT ARRAY, even if the WITHOUT DEFAULTS clause is used.

The WITHOUT DEFAULTS clause prevents BDL from displaying any default values that have been defined
for form fields. You must use this clause if you want to see the values of the program array.

The UNBUFFERED attribute
As in the INPUT statement, when the UNBUFFERED attribute is used, the INPUT ARRAY statement is
sensitive to program variable changes.

If you need to display new data during the execution, use the UNBUFFERED attribute and assign the values
to the program array row; the runtime system will automatically display the values to the screen. This
sensitivity applies to ON ACTION control blocks, as well: Before executing the code corresponding to the
invoked action, the content of the field is converted and assigned to the corresponding program variable.

COUNT and MAXCOUNT attributes
INPUT ARRAY supports the COUNT and MAXCOUNT attributes to manage program arrays.

• The COUNT attribute of INPUT ARRAY defines the number of valid rows in the program array to be
displayed as default rows.

• When using a static array, if you do not use the COUNT attribute, the runtime system cannot
determine how much data to display, so the screen array remains empty.

• When using a dynamic array, the COUNT attribute is ignored: The number of elements in the dynamic
array is used.

• The MAXCOUNT attribute defines the maximum number of data rows that can be entered in the program
array. In a dynamic array, the user can enter an infinite number of rows if the MAXCOUNT attribute is not
set.

Control Blocks
Your program can control and monitor the changes made by the user by using control blocks with the
INPUT ARRAY statement.

The control blocks that are used in the example program are:

• The BEFORE INPUT block - executed one time, before the runtime system gives control to the user.
You can implement initialization in this block.

• The BEFORE ROW block - executed each time the user moves to another row, after the destination row
is made the current one.

• The ON ROW CHANGE block - executed when the user moves to another row after modifications have
been made to the current row.

• The ON CHANGE <fieldname> block - executed when the cursor leaves a specified field and the value
was changed by the user after the field got the focus.

• The BEFORE INSERT block - executed each time the user inserts a new row in the array, before the
new row is created and made the current one.

Tutorial Chapter 8: Array Input | 87

• The AFTER INSERT block - executed each time the user inserts a new row in the array, after the new
row is created. You can cancel the insert operation with the CANCEL INSERT keywords.

• The BEFORE DELETE block - executed each time the user deletes a row from the array, before the row
is removed from the list. You can cancel the delete operation with the CANCEL DELETE keywords.

• The AFTER ROW block - executed each time the user moves to another row, before the current row is
left. This trigger can also be executed in other situations, such as when you delete a row, or when the
user inserts a new row.

For a more detailed explanation of the priority of control blocks see INPUT control blocks in the Genero
Business Development Language User Guide.

Built-in Functions - ARR_CURR
The language provides several built-in functions to use in an INPUT ARRAY statement. The example
program uses the ARR_CURR function to tell which array element is being changed. This function returns
the row number within the program array that is displayed in the current line of a screen array.

Predefined actions
There are some predefined actions that are specific to the INPUT ARRAY statement, to handle the
insertion and deletion of rows in the screen array automatically.

• The insert action inserts a new row before current row. When the user has filled this record, BDL
inserts the data into the program array.

• The delete action deletes the current record from the display of the screen array and from the
program array, and redraws the screen array so that the deleted record is no longer shown.

• The append action adds a new row at the end of the list. When the user has filled this record, BDL
inserts the data into the program array.

As with the predefined actions accept and cancel actions discussed in Chapter 4, if your form
specification does not contain action views for these actions, default action views (buttons on the form) are
automatically created. Control attributes of the INPUT ARRAY statement allow you to prevent the creation
of these actions and their accompanying buttons.

Example: Using a Screen Array to modify Data
The arrayinput program in chapter 8 uses the INPUT ARRAY statement with a Screen Array to allow
the user to modify data in the customer table.

The Form Specification File
The custallform.per form specification file displays multiple records at once, and is similar to the form
used in chapter 7. The item type of field f6, containing the state values, has been changed to COMBOBOX
to provide the user with a dropdown list when data is being entered.

Form custallform.per:

01 SCHEMA custdemo
02
03 LAYOUT
04 TABLE
05 {
06 Id Name .. Zip-code Contact Phone
07 [f01][f02] [f07][f08][f09]
08 [f01][f02] [f07][f08][f09]
09 [f01][f02] [f07][f08][f09]
10 [f01][f02] [f07][f08][f09]

Tutorial Chapter 8: Array Input | 88

11 [f01][f02] [f07][f08][f09]
12 [f01][f02] [f07][f08][f09]
13 }
14 END
15 END
16
17 TABLES
18 customer
19 END
20
21 ATTRIBUTES
22 EDIT f01 = customer.store_num, REQUIRED;
23 EDIT f02 = customer.store_name, REQUIRED;
24 EDIT f03 = customer.addr;
25 EDIT f04 = customer.addr2;
26 EDIT f05 = customer.city;
27 COMBOBOX f6 = customer.state, ITEMS = ("IA", "IL", "WI");
28 EDIT f07 = customer.zip-code;
29 EDIT f08 = customer.contact_name;
30 EDIT f09 = customer.phone;
31 END
32
33 INSTRUCTIONS
34 SCREEN RECORD sa_cust (customer.*);
35 END

The Main block
The single module program custall.4gl allows the user to update the customer table using a form
that displays multiple records at once.

Main block (custall.4gl):

01 SCHEMA custdemo
02
03 DEFINE cust_arr DYNAMIC ARRAY OF RECORD
04 store_num LIKE customer.store_num,
05 store_name LIKE customer.store_name,
06 addr LIKE customer.addr,
07 addr2 LIKE customer.addr2,
08 city LIKE customer.city,
09 state LIKE customer.state,
10 zip-code LIKE customer.zip-code,
11 contact_name LIKE customer.contact_name,
12 phone LIKE customer.phone
13 END RECORD
14
15
16MAIN
17 DEFINE idx SMALLINT
18
19 DEFER INTERRUPT
20 CONNECT TO "custdemo"
21 CLOSE WINDOW SCREEN
22 OPEN WINDOW w3 WITH FORM "custallform"
23
24 CALL load_custall() RETURNING idx
25 IF idx > 0 THEN
26 CALL inparr_custall()
27 END IF
28
29 CLOSE WINDOW w3
30 DISCONNECT CURRENT

Tutorial Chapter 8: Array Input | 89

31
32 END MAIN

Note:

• Lines 03 thru 13 define a dynamic array cust_arr having the same structure as the
customer table. The array is modular is scope.

• Line 17 defines a local variable idx, to hold the returned value from the load_custall
function.

• Line 20 connects to the custdemo database.
• Line 22 opens a window with the form manycust. This form contains a screen array sa_cust

which is referenced in the program.
• Line 24 thru 27call the function load_custall to load the array, which returns the index

of the array. If the load was successful (the returned index is greater than 0) the function
inparr_custall is called. This function contains the logic for the Input/Update/Delete of rows.

• Line 29 closes the window.
• Line 30 disconnects from the database.

Function load_custall
This function loads the program array with rows from the customer database table.

The logic to load the rows is identical to that in Chapter 7. Although this program loads all the rows from
the customer table, the program could be written to allow the user to query first, for a subset of the rows.
A query-by-example, as illustrated in chapter 4, can also be implemented using a form containing a screen
array such as manycust.

Function load_custall (custall.4gl):

01 FUNCTION load_custall()
02 DEFINE cust_rec RECORD LIKE customer.*
03
04
05 DECLARE custlist_curs CURSOR FOR
06 SELECT store_num,
07 store_name,
08 addr,
09 addr2,
10 city,
11 state,
12 zip-code,
13 contact_name,
14 phone
15 FROM customer
16 ORDER BY store_num
17
18
19 CALL cust_arr.clear()
20 FOREACH custlist_curs INTO cust_rec.*
21 CALL cust_arr.appendElement()
22 LET cust_arr[cust_arr.getLength()].* = cust_rec.*
23 END FOREACH
24
25 IF (cust_arr.getLength() == 0) THEN
26 DISPLAY "No rows loaded."
27 END IF
28
29 RETURN cust_arr.getLength()
30
31END FUNCTION

Tutorial Chapter 8: Array Input | 90

Note:

• Line 02 defines a local record variable, cust_rec, to hold the rows fetched in FOREACH.
• Lines 05 thru 16 declare the cursor custlist_curs to retrieve the rows from the customer

table.
• Lines 20 thru 23 retrieve the rows from the result set into the program array.
• Lines 25 thru 27 If the array is empty, we display a warning message.
• Line 29 returns the number of rows to the MAIN function.

Function inparr_custall
This is the primary function of the program, driving the logic for inserting, deleting, and changing rows in
the customer database table.

Each time a row in the array on the form is added, deleted, or changed, the values from the corresponding
row in the program array are used to update the customer database table. The variable opflag is used
by the program to indicate the status of the current operation.

• N - no action; set in the BEFORE ROW control block; this will subsequently be changed if an insert or
update of a row in the array is performed.

• T - temporary; set in the BEFORE INSERT control block; indicates that an insert of a new row has been
started.

• I - insert; set in the AFTER INSERT control block; indicates that the insert of the new row was
completed.

• U - update; set in the ON ROW CHANGE control block; indicates that a change has been made to an
existing row.

The value of opflag is tested in an AFTER ROW control block to determine whether an SQL INSERT or
SQL UPDATE of the database table is performed.

This example illustrates how the order of execution of the control blocks is used by the program to set the
opflag variable appropriately:

Function inparr_custall (custall.4gl):

01 FUNCTION inparr_custall(idx)
02
03 DEFINE curr_pa SMALLINT,
04 opflag CHAR(1)
05
06 INPUT ARRAY cust_arr WITHOUT DEFAULTS
07 FROM sa_cust.*
08 ATTRIBUTES (UNBUFFERED)
09
10 BEFORE INPUT
11 MESSAGE "OK exits/" ||
12 "Cancel exits & cancels current operation"
13
14 BEFORE ROW
15 LET curr_pa = ARR_CURR()
16 LET opflag = "N"
17
18 BEFORE INSERT
19 LET opflag = "T"
20
21 AFTER INSERT
22 LET opflag = "I"
23
24 BEFORE DELETE
25 IF NOT (delete_cust(curr_pa)) THEN
26 CANCEL DELETE
27 END IF

Tutorial Chapter 8: Array Input | 91

28
29 ON ROW CHANGE
30 IF (opflag <> "I") THEN
31 LET opflag = "U"
32 END IF
33
34 BEFORE FIELD store_num
35 IF (opflag <> "T") THEN
36 NEXT FIELD store_name
37 END IF
38
39 ON CHANGE store_num
40 IF (opflag = "T") THEN
41 IF NOT store_num_ok(curr_pa) THEN
42 MESSAGE "Store already exists"
43 LET cust_arr[curr_pa].store_num = NULL
44 NEXT FIELD store_num
45 END IF
46 END IF
47
48 AFTER ROW
49 IF (INT_FLAG) THEN EXIT INPUT END IF
50 CASE
51 WHEN opflag = "I"
52 CALL insert_cust(curr_pa)
53 WHEN opflag = "U"
54 CALL update_cust(curr_pa)
55 END CASE
56
57 END INPUT
58
59 IF (INT_FLAG) THEN
60 LET INT_FLAG = FALSE
61 END IF
62
63 END FUNCTION -- inparr_custall

Note:

• Line 03 defines the variable curr_pa, to hold the index number of the current record in the
program array.

• Line 04 defines the variable opflag, to indicate whether the operation being performed on a
record is an Insert ("I") or an Update ("U").

• Lines 06 thru57 contain the INPUT ARRAY statement, associating the program array cust_arr
with the sa_cust screen array on the form. The attribute WITHOUT DEFAULTS is used to use
and display existing records of the program array. The UNBUFFERED attribute insures that the
program array the screen array of the form are automatically synchronized for input and output.

• Lines 10 thru 12 BEFORE INPUT control block: before the INPUT ARRAY statement is executed
a MESSAGE is displayed to the user.

• Lines 14 thru 16 BEFORE ROW control block: when called in this block, the ARR_CURR function
returns the index of the record that the user is moving into (which will become the current
record). This is stored in a variable curr_pa, so the index can be passed to other control
blocks. We also initialize the opflag to "N": This will be its value unless an update or insert is
performed.

• Lines 18 and 19 BEFORE INSERT control block: just before the user is allowed to enter the
values for a new record, the variable opflag is set to "T", indicating an Insert operation is in
progress.

• Lines 21 and 22 AFTER INSERT control block sets the opflag to "I" after the insert operation
has been completed.

Tutorial Chapter 8: Array Input | 92

• Lines 24 thru 27 BEFORE DELETE control block: Before the record is removed from the program
array, the function delete_cust is called, which verifies that the user wants to delete the
current record. In this function, when the user verifies the delete, the index of the record is used
to remove the corresponding row from the database. Unless the delete_cust function returns
TRUE, the record is not removed from the program array.

• Lines 29 thru32 ON ROW CHANGE control block: After row modification, the program checks
whether the modification was an insert of a new row. If not, the opflag is set to "U" indicating
an update of an existing row.

• Lines 34 thru 37 BEFORE FIELD store_num control block: the store_num field should not be
entered by the user unless the operation is an Insert of a new row, indicated by the "T" value of
opflag. The store_num column in the customer database table is a primary key and cannot
be updated. If the operation is not an insert, the NEXT FIELD statement is used to move the
cursor to the next field in the program array, store_name, allowing the user to change all the
fields in the record of the program array except store_num.

• Lines 39 thru 46 ON CHANGE store_num control block: if the operation is an Insert, the
store_num_ok function is called to verify that the value that the user has just entered into the
field store_num of the current program array does not already exist in the customer database
table. If the store number does exist, the value entered by the user is nulled out, and the
cursor is returned to the store_num field.

• Lines 48 thru 55 AFTER ROW control block: First, the program checks INT_FLAG to see whether
the user wants to interrupt the INPUT operation. If not, the opflag is checked in a CASE
statement, and the insert_cust or update_cust function is called based on the opflag
value. The index of the current record is passed to the function so the database table can be
modified.

• Line 57 indicates the end of the INPUT statement.
• Lines 59 thru 61 check the value of the interrupt flag INT_FLAG and reset it to FALSE if

necessary.

Function store_num_ok
When a new record is being inserted into the program array, this function verifies that the store number
does not already exist in the customer database table. The logic in this function is virtually identical to that
used in Chapter 5.

Function store_num_ok (custall.4gl):

01 FUNCTION store_num_ok(idx)
02 DEFINE idx SMALLINT,
03 checknum LIKE customer.store_num,
04 cont_ok SMALLINT
05
06 LET cont_ok= FALSE
07 WHENEVER ERROR CONTINUE
08 SELECT store_num INTO checknum
09 FROM customer
10 WHERE store_num =
11 cust_arr[idx].store_num
12 WHENEVER ERROR STOP
13 IF (SQLCA.SQLCODE = NOTFOUND) THEN
14 LET cont_ok = TRUE
15 ELSE
16 LET cont_ok = FALSE
17 IF (SQLCA.SQLCODE = 0) THEN
18 MESSAGE "Store Number already exists."
19 ELSE
20 ERROR SQLERRMESSAGE
21 END IF
22 END IF
23

Tutorial Chapter 8: Array Input | 93

24 RETURN cont_ok
25
26 END FUNCTION

Note:

• Line 02 The index of the current record in the program array is stored in the variable idx,
passed to this function from the INPUT ARRAY control block ON CHANGE store_num.

• Line 03 The variable checknum is defined to hold the store_num returned by the SELECT
statement.

• Line 06 sets the variable cont_ok to an initial value of FALSE. This variable is used to indicate
whether the store number is unique.

• Lines 07 thru 12 use an embedded SQL SELECT statement to check whether the store_num
already exists in the customer table. The index passed to this function is used to obtain
the value that was entered into the store_num field on the form. The entire database row is
not retrieved by the SELECT statement since the only information required by this program
is whether the store number already exists in the table. The SELECT is surrounded by
WHENEVER ERROR statements.

• Lines 13 thru 22 test SQLCA.SQLCODE to determine the success of the SELECT statement. The
variable cont_ok is set to indicate whether the store number entered by the user is unique.

• Line 24 returns the value of cont_ok to the calling function.

Function insert_cust
This function inserts a new row into the customer database table.

Function insert_cust (custall.4gl):

01 FUNCTION insert_cust(idx)
02 DEFINE idx SMALLINT
03
04 WHENEVER ERROR CONTINUE
05 INSERT INTO customer
06 (store_num,
07 store_name,
08 addr,
09 addr2,
10 city,
11 state,
12 zip-code,
13 contact_name,
14 phone)
15 VALUES (cust_arr[idx].*)
16 WHENEVER ERROR STOP
17
18 IF (SQLCA.SQLCODE = 0) THEN
19 MESSAGE "Store added"
20 ELSE
21 ERROR SQLERRMESSAGE
22 END IF
23
24 END FUNCTION

Note:

• Line 02 This function is called from the AFTER INSERT control block of the INPUT ARRAY
statement. The index of the record that was inserted into the cust_arr program array is
passed to the function and stored in the variable idx.

• Lines 04 thru 16 uses an embedded SQL INSERT statement to insert a row into the customer
database table. The values to be inserted into the customer table are obtained from the

Tutorial Chapter 8: Array Input | 94

record just inserted into the program array. The INSERT is surrounded by WHENEVER ERROR
statements.

• Lines 18 thru 22 test the SQLCA.SQLCODE to see if the insert into the database was successful,
and return an appropriate message to the user.

Function update_cust
This function updates a row in the customer database table. The functionality is very simple for illustration
purposes, but it could be enhanced with additional error checking routines similar to the example in chapter
6.

Function update_cust (custall.4gl):

01 FUNCTION update_cust(idx)
02 DEFINE idx SMALLINT
03
04 WHENEVER ERROR CONTINUE
05 UPDATE customer
06 SET
07 store_name = cust_arr[idx].store_name,
08 addr = cust_arr[idx].addr,
09 addr2 = cust_arr[idx].addr2,
10 city = cust_arr[idx].city,
11 state = cust_arr[idx].state,
12 zip-code = cust_arr[idx].zip-code,
13 contact_name = cust_arr[idx].contact_name,
14 phone = cust_arr[idx].phone
15 WHERE store_num = cust_arr[idx].store_num
16 WHENEVER ERROR STOP
17
18 IF (SQLCA.SQLCODE = 0) THEN
19 MESSAGE "Dealer updated."
20 ELSE
21 ERROR SQLERRMESSAGE
22 END IF
23
24 END FUNCTION

Note:

• Line 02 The index of the current record in the cust_arr program array is passed as idx from
the ON ROW CHANGE control block.

• Lines 04 thru 16 use an embedded SQL UPDATE statement to update a row in the customer
database table. The index of the current record in the program array is used to obtain the value
of store_num that is to be matched in the customer table. The customer row is updated
with the values stored in the current record of the program array. The UPDATE is surrounded by
WHENEVER ERROR statements.

• Lines 18 thru 22 test the SQLCA.SQLCODE to see if the update of the row in the database was
successful, and return an appropriate message to the user.

Function delete_cust
This function deletes a row from the customer database table. A modal Menu similar to that illustrated in
Chapter 6 is used to verify that the user wants to delete the row.

Function delete_cust (custall.4gl):

01 FUNCTION delete_cust(idx)
02 DEFINE idx SMALLINT,
03 del_ok SMALLINT
04
05 LET del_ok = FALSE

Tutorial Chapter 8: Array Input | 95

06
07 MENU "Delete" ATTRIBUTES (STYLE="dialog",
08 COMMENT="Delete this row?")
09 COMMAND "OK"
10 LET del_ok = TRUE
11 EXIT MENU
12 COMMAND "Cancel"
13 LET del_ok = FALSE
14 EXIT MENU
15 END MENU
16
17 IF del_ok = TRUE THEN
18 WHENEVER ERROR CONTINUE
20 DELETE FROM customer
21 WHERE store_num = cust_arr[idx].store_num
22 WHENEVER ERROR STOP
23
24 IF (SQLCA.SQLCODE = 0) THEN
25 LET del_ok = TRUE
26 MESSAGE "Dealer deleted."
27 ELSE
28 LET del_ok = FALSE
29 ERROR SQLERRMESSAGE
30 END IF
31 END IF
32
33 RETURN del_ok
34
35 END FUNCTION

Note:

• Line 02 The index of the current record in the cust_arr program array is passed from the
BEFORE DELETE control block of INPUT ARRAY, and stored in the variable idx. The BEFORE
DELETE control block is executed immediately before the record is deleted from the program
array, allowing the logic in this function to be executed before the record is removed from the
program array.

• Line 05 sets the initial value of del_ok to FALSE.
• Lines 07 thru 15display the modal Menu to the user for confirmation of the Delete.
• Lines 18 thru 22use an embedded SQL DELETE statement to delete the row from the

customer database table. The variable idx is used to determine the value of store_num in
the program array record that is to be used as criteria in the DELETE statement. This record in
the program array has not yet been removed, since this delete_cust function was called in a
BEFORE DELETE control block. The DELETE is surrounded by WHENEVER ERROR statements.

• Lines 24 thru 30 test the SQLCA.SQLCODE to see if the update of the row in the database was
successful, and return an appropriate message to the user. The value del_ok is set based on
the success of the SQL DELETE statement.

• Line 33 returns the variable del_ok to the BEFORE DELETE control block, indicating whether
the Delete of the customer row was successful.

Tutorial Chapter 9: Reports | 96

Tutorial Chapter 9: Reports

This program generates a simple report of the data in the customer database table. The two parts of a
report, the report driver logic and the report definition are illustrated. A technique to allow a user to interrupt
a long-running report is shown.

• BDL Reports on page 96
• The Report Driver on page 97
• The Report Definition on page 97
• Two-pass reports on page 98
• Example: Customer Report on page 98
• Interrupting a Report on page 101
• Example: Interruption Handling on page 102

This program generates a simple report of the data in the customer database table. The two parts of a
report, the report driver logic and the REPORT program block (report definition) are illustrated. Then the
program is modified to display a window containing a ProgressBar, and allowing the user to interrupt the
report before it is finished.

Figure 16: Report flow

BDL Reports
Genero BDL reports are easy to design and generate. The output from a report can be formatted so that
the eye of the reader can easily pick out the important data.

The program logic that specifies what data to report (the report driver) is separate from the program logic
that formats the output of the report (the report definition). This allows the report driver to supply data for
multiple reports simultaneously, if desired. And, you can design template report definitions that might be
used with report drivers that access different database tables.

Tutorial Chapter 9: Reports | 97

The Report Driver
The part of a program that generates the rows of report data (also known as input records) is called the
report driver. The primary concern of the row-producing logic is the selection of rows of data.

The actions of a report driver are:

1. Use the START REPORT statement to initialize each report to be produced. We recommend that
clauses regarding page setup and report destination be included in this statement.

2. Use a forward-only database cursor to read rows from a database, if that is the source of the report
data.

3. Whenever a row of report data is available, use OUTPUT TO REPORT to send it to the report definition.
4. If an error is detected, use TERMINATE REPORT to stop the report process.
5. When the last row has been sent, use FINISH REPORT to end the report.

From the standpoint of the row-producing side, these are the only statements required to create a report.

The Report Definition
The report definition uses a REPORT program block to format the input records.

REPORT is global in scope. It is not, however, a function; it is not reentrant, and CALL cannot invoke it.

The code within a REPORT program block consists of several sections, which must appear in the order
shown.

The DEFINE section
Here you define the variables passed as parameter to the report, and the local variables. A report can have
its own local variables for subtotals, calculated results, and other uses.

The OUTPUT section (optional)
Although you can define page setup and destination information in this section, the format of the report will
be static. Providing this same information in the START REPORT statement provides more flexibility.

The ORDER BY section (optional)
Here you specify the required order for the data rows, when using grouping.

Include this ORDER BY section if values that the report definition receives from the report driver are
significant in determining how BEFORE GROUP OF or AFTER GROUP OF control blocks will process the
data in the formatted report output. To avoid the creation of additional resources to sort the data, use the
ORDER EXTERNAL statement in this section if the data to be used in the report has already been sorted by
an ORDER BY clause in the SQL statement.

The FORMAT section
Here you describe what is to be done at a particular stage of report generation. The code blocks you
write in the FORMAT section are the heart of the report program block and contain all its intelligence. You
can use most BDL statements in the FORMAT section of a report; you cannot, however, include any SQL
statements.

BDL invokes the sections and blocks within a report program block nonprocedurally, at the proper time, as
determined by the report data. You do not have to write code to calculate when a new page should start,
nor do you have to write comparisons to detect when a group of rows has started or ended. All you have
to write are the statements that are appropriate to the situation, and BDL supplies the "glue" to make them
work.

You can write control blocks in the FORMAT section to be executed for the following events:

Tutorial Chapter 9: Reports | 98

• Top (header) of the first page of the report (FIRST PAGE HEADER)
• Top (header) of every page after the first (PAGE HEADER)
• Bottom (footer) of every page (PAGE TRAILER)
• Each new row as it arrives (ON EVERY ROW)
• The start end of a group of rows (BEFORE GROUP OF) - a group is one or more rows having equal

values in a particular column.
• The end of a group of rows (AFTER GROUP OF) - in this block, you typically print subtotals and other

aggregate data for the group that is ending. You can use aggregate functions to calculate and display
frequencies, percentages, sums, averages, minimum, and maximum for this information.

• After the last row has been processed (ON LAST ROW) - aggregate functions calculated over all the
rows of the report are typically printed here.

Two-pass reports
A two-pass report is one that creates temporary tables, therefore there must be an active connection to the
database.

The two-pass report handles sorts internally. During the first pass, the report engine sorts the data and
stores the sorted values in a temporary file in the database. During the second pass, it calculates any
aggregate values and produces output from data in the temporary files.

If your report definition includes any of the following, a two-pass report is required:

• An ORDER BY section without the EXTERNAL keyword.
• The GROUP PERCENT(*) aggregate function anywhere in the report.
• Any aggregate function outside the AFTER GROUP OF control block.

Note: Some databases do not support temporary tables. Avoid a two-pass report for performance
reasons and for portability.

Example: Customer Report
This example demonstrates a simple report driver and definition. The report driver extracts rows from the
customer database table and passes them to the report definition to be formatted.

The Report Driver
The Report Driver for this example, custreports.4gl defines a cursor to retrieve customer table rows
sorted by state, then city. The START REPORT statement initializes the report and provides destination
and page setup information to the Report Definition.

Report Driver custreports.4gl:

01 SCHEMA custdemo
02
03 MAIN
04 DEFINE pr_custrec RECORD
05 store_num LIKE customer.store_num,
06 store_name LIKE customer.store_name,
07 addr LIKE customer.addr,
08 addr2 LIKE customer.addr2,
09 city LIKE customer.city,
10 state LIKE customer.state,
11 zip-code LIKE customer.zip-code
12 END RECORD
13
14 CONNECT TO "custdemo"
15

Tutorial Chapter 9: Reports | 99

16 DECLARE custlist CURSOR FOR
17 SELECT store_num,
18 store_name,
19 addr,
20 addr2,
21 city,
22 state,
23 zip-code
24 FROM customer
25 ORDER BY state, city
26
27 START REPORT cust_list TO FILE "customers.txt"
28 WITH LEFT MARGIN = 5, TOP MARGIN = 2,
29 BOTTOM MARGIN = 2
30
31 FOREACH custlist INTO pr_custrec.*
32 OUTPUT TO REPORT cust_list(pr_custrec.*)
33 END FOREACH
34
35 FINISH REPORTcust_list
36
37 DISCONNECT CURRENT
38
39 END MAIN

Note:

• Lines 04 thru 12 define a local program record pr_custrec, with a structure like the
customer database table.

• Line14 connects to the custdemo database.
• Lines 16 thru 25 define a custlist cursor to retrieve the customer table data rows, sorted by

state, then city.
• Lines 27 thru29 starts the REPORT program block named cust_list, and includes a report

destination and page formatting information.
• Lines 31 thru 33 retrieve the data rows one by one into the program record pr_custrec and

pass the record to the REPORT program block.
• Line 35 closes the report driver and executes any final REPORT control blocks to finish the

report.
• Line37 disconnects from the custdemo database.

The Report Definition
The Report Definition uses the REPORT program block to format the input records from the Report Driver.

Report definition custreport.4gl:

01 REPORT cust_list(r_custrec)
02 DEFINE r_custrec RECORD
03 store_num LIKE customer.store_num,
04 store_name LIKE customer.store_name,
05 addr LIKE customer.addr,
06 addr2 LIKE customer.addr2,
07 city LIKE customer.city,
08 state LIKE customer.state,
09 zip-code LIKE customer.zip-code
10 END RECORD
11
12 ORDER EXTERNAL BY r_custrec.state, r_custrec.city
13
14 FORMAT
15
16 PAGE HEADER

Tutorial Chapter 9: Reports | 100

17 SKIP 2 LINES
18 PRINT COLUMN 30, "Customer Listing"
19 PRINT COLUMN 30, "As of ", TODAY USING "mm/dd/yy"
20 SKIP 2 LINES
21
22 PRINT COLUMN 2, "Store #",
23 COLUMN 12, "Store Name",
24 COLUMN 40, "Address"
25
26 SKIP 2 LINES
27
28 ON EVERY ROW
29 PRINT COLUMN 5, r_custrec.store_num USING "####",
30 COLUMN 12, r_custrec.store_name CLIPPED,
31 COLUMN 40, r_custrec.addr CLIPPED;
32
33 IF r_custrec.addr2 IS NOT NULL THEN
34 PRINT 1SPACE, r_custrec.addr2 CLIPPED, 1 space;
35 ELSE
36 PRINT 1 SPACE;
37 END IF
38
39 PRINT r_custrec.city CLIPPED, 1 SPACE,
40 r_custrec.state, 1 SPACE,
41 r_custrec.zip-code CLIPPED
42
43 BEFORE GROUP OF r_custrec.city
44 SKIP TO TOP OF PAGE
45
46 ON LAST ROW
47 SKIP 1 LINE
48 PRINT "TOTAL number of customers: ",
49 COUNT(*) USING "#,###"
50
51 PAGE TRAILER
52 SKIP 2 LINES
53 PRINT COLUMN 30, "-", PAGENO USING "<<", " -"
54
55 END REPORT

Note:

• Line 01 The REPORT control block has the pr_custrec record passed as an argument.
• Lines 02 thru 10 define a local program record r_custrec to store the values that the calling

routine passes to the report.
• Line 12 tells the REPORT control block that the records will be passed sorted in order by state,

then city. The ORDER EXTERNAL syntax is used to prevent a second sorting of the program
records, since they have already been sorted by the SQL statement in the report driver.

• Line 14 is the beginning of the FORMAT section.
• Lines16 thru 20 The PAGE HEADER block specifies the layout generated at the top of each

page. Each PRINT statement starts a new line containing text or a value. The PRINT statement
can have multiple COLUMN clauses, which all print on the same line. The COLUMN clause
specifies the offset of the first character from the first position after the left margin. The values to
be printed can be program variables, static text, or built-in functions. The built-in TODAY operator
generates the current date; the USING clauses formats this. The SKIP statement inserts empty
lines. The PAGE HEADER for this report will appear as follows:

 <skipped line>
 <skipped line>
 Customer Listing As of <date>
 <skipped line>

Tutorial Chapter 9: Reports | 101

 <skipped line>
 Store # Store Name Address <skipped line>
 <skipped line>

• Lines 28 thru 41 specifies the layout generated for each row. The data can be read more easily
if each program record passed to the report is printed on a single row. Although there are four
PRINT statements in this control block, the first three PRINT statements are terminated by
semicolons. This suppresses the new line signal, resulting in just a single row of printing. The
CLIPPED keyword eliminates any trailing blanks after the name, addresses, and city values. Any
IF statement that is included in the FORMAT section must contain the same number of PRINT
/ SKIP statements regardless of which condition is met. Therefore, if r_custrec.addr2 is
not NULL, a PRINT statement prints the value followed by a single space; if it is NULL, a PRINT
statement prints a single space. As mentioned earlier, each PRINT statement is followed by a
semicolon to suppress the newline. The output for each row will be as follows:

 106 TrueTest Hardware 6123 N. Michigan Ave Chicago IL 60104
 101 Bandy's Hardware 110 Main Chicago IL 60068

• Lines 43 and 44 start a new page for each group containing the same value for
r_custrec.city.

• Lines 46 thru 49 specify a control block to be executed after the statements in ON EVERY ROW
and AFTER GROUP OF control block. This prints at the end of the report. The aggregate function
COUNT(*) is used to print the total number of records passed to the report. The USING keyword
formats the number. This appears as follows:

 <skipped line>
 Total number of customers: <count>

• Lines 51 thru 53 specifies the layout generated at the bottom of each page. The built-in function
PAGENO is used to print the page number. The USING keyword formats the number, left-justified.
This appears as follows:

 <skipped line>
 <skipped line>
 - <pageno> -

Interrupting a Report
When a program performs a long process like a loop, a report, or a database query, the lack of user
interaction statements within the process can prevent the user from interrupting it. In this program, the
preceding example is modified to display a form containing start, exit, and interrupt buttons, as well as a
progress bar showing how close the report is to completion.

Figure 17: Interrupting a report

Tutorial Chapter 9: Reports | 102

The interrupt action view
In order to allow a user to stop a long-running report, for example, you can define an action view with the
name "interrupt". When the runtime system takes control of the program, the client automatically enables a
local interrupt action to let the user send an asynchronous request to the program.

This interruption request is interpreted by the runtime system as a traditional interruption signal, as if it was
generated on the server side, and the INT_FLAG variable is set to TRUE.

Refreshing the Display
The Abstract User Interface tree on the front end is synchronized with the runtime system AUI tree
when a user interaction instruction takes the control. This means that the user will not see any display
as long as the program is doing batch processing, until an interactive statement is reached. If you want
to show something on the screen while the program is running in a batch procedure, you must force
synchronization with the front end.

The Interface class is a built-in class provided to manipulate the user interface. The refresh()
method of this class synchronizes the front end with the current AUI tree. You do not need to instantiate
this class before calling any of its methods:

CALL ui.Interface.refresh()

Using a ProgressBar
One of the form item types is a PROGRESSBAR, a horizontal line with a progress indicator. The position of
the PROGRESSBAR is defined by the value of the corresponding form field. The value can be changed from
within a BDL program by using the DISPLAY instruction to set the value of the field.

This type of form item does not allow data entry; it is only used to display integer values. The VALUEMIN
and VALUEMAX attributes of the PROGRESSBAR define the lower and upper integer limit of the progress
information. Any value outside this range will not be displayed.

Example: Interruption Handling
The progressbar application in chapter 9 show the changes needed to facilitate interruption handling. A
form specification file, reportprog.per contains form fields for a PROGRESSBAR and interrupt action
view. The Report Driver, custreports.4gl, has been modified to handle interrupts.

The Form Specification File
A form containing a progress bar is defined in the form specification file reportprog.per.

Form reportprog.per:

01 LAYOUT (TEXT="Report")
02 GRID
03 {
04
05 [f001]
06
07 [ib]
08
09
10 }
11 END
12 END
13
14 ATTRIBUTES
15 PROGRESSBAR f001 = formonly.rptbar, VALUEMIN=1,VALUEMAX=10;
16 BUTTON ib: interrupt, TEXT="Stop";

Tutorial Chapter 9: Reports | 103

17 END

Note:

• Line 05 contains the form field for the PROGRESSBAR.
• Line 07 contains the form field for the interrupt action view.
• Line 15 defines the PROGRESSBAR as FORMONLY since its type is not derived from a database

column. The values range from 1 to 10. The maximum value for the PROGRESSBAR was chosen
arbitrarily, and was set rather low since there are not many rows in the customer database table.

• Line 16 defines the button ib as an interrupt action view with TEXT of "Stop".

Modifications to custreports.4gl
The MAIN program block has been modified to open a window containing the form with a PROGRESSBAR
and a MENU, to allow the user to start the report and to exit. A new function, cust_report, is added for
interruption handling. The report definition, the cust_list REPORT block, remains the same as in the
previous example.

Changes to the MAIN program block (custreport2.4gl):

01 MAIN
02
03 DEFER INTERRUPT
04 CONNECT TO "custdemo"
05 CLOSE WINDOW SCREEN
06 OPEN WINDOW w3 WITH FORM "reportprog"
07
08 MENU "Reports"
09 ON ACTION start
10 MESSAGE "Report starting"
11 CALL cust_report()
12 ON ACTION exit
13 EXIT MENU
14 END MENU
15
16 CLOSE WINDOW w3
17 DISCONNECT CURRENT
18
19 END MAIN

Note:

• Line 03 prevents the user from interrupting the program except by using the interrupt action
view.

• Line 06 Opens the window and form containing the PROGRESSBAR.
• Lines 08 thru 14 define a MENU with two actions:

• start- displays a MESSAGE and calls the function cust_report
• exit - quits the MENU

The cust_report function
This new function contains the report driver, together with the logic to determine whether the user has
attempted to interrupt the report.

Function cust_report (custreport2.4gl):

21 FUNCTION cust_report()
22
23 DEFINE pr_custrec RECORD
24 store_num LIKE customer.store_num,
25 store_name LIKE customer.store_name,

Tutorial Chapter 9: Reports | 104

26 addr LIKE customer.addr,
27 addr2 LIKE customer.addr2,
28 city LIKE customer.city,
29 state LIKE customer.state,
30 zip-code LIKE customer.zip-code
31 END RECORD,
32 rec_count, rec_total,
33 pbar, break_num INTEGER
34
35 LET rec_count = 0
36 LET rec_total = 0
37 LET pbar = 0
38 LET break_num = 0
39 LET INT_FLAG = FALSE
40
41 SELECT COUNT(*) INTO rec_total FROM customer
42
43 LET break_num = (rec_total/10)
44
45 DECLARE custlist CURSOR FOR
46 SELECT store_num,
47 store_name,
48 addr,
49 addr2,
50 city,
51 state,
52 zip-code 53 FROM CUSTOMER
54 ORDER BY state, city
55
56 START REPORT cust_list TO FILE "customers.txt"
57 FOREACH custlist INTO pr_custrec.*
58 OUTPUT TO REPORT cust_list(lr_custrec.*)
59 LET rec_count = rec_count+1
60 IF (rec_count MOD break_num)= 0 THEN
61 LET pbar = pbar+1
62 DISPLAY pbar TO rptbar
63 CALL ui.Interface.refresh()
64 IF (INT_FLAG) THEN
65 EXIT FOREACH
66 END IF
67 END IF
68 END FOREACH
69
70 IF (INT_FLAG) THEN
71 LET INT_FLAG = FALSE
72 MESSAGE "Report cancelled"
73 ELSE
74 FINISH REPORT cust_list
75 MESSAGE "Report finished"
76 END IF
77
78 END FUNCTION

Note:

• Lines 23 thru 31 now define the pr_custrec record in this function.
• Lines 32 thru 33 define some additional variables.
• Lines 35 thru 39 initialize the local variables.
• Line 38 sets INT_FLAG to FALSE.
• Line 41 uses an embedded SQL statement to retrieve the count of the rows in the customer

table and stores it in the variable rec_total.

Tutorial Chapter 9: Reports | 105

• Line 43 calculates the value of break_num based on the maximum value of the PROGRESSBAR,
which is set at 10. After break_num rows have been processed, the program will increment
the PROGRESSBAR. The front end cannot handle interruption requests properly if the display
generates a lot of network traffic, so we do not recommend refreshing the AUI and checking
INT_FLAG after every row.

• Lines 45 thru 54 declare the custlist cursor for the customer table.
• Line 56 starts the report, sending the output to the file custout.
• Lines 58 thru 68 contain the FOREACH statement to output each record to the same report

cust_list used in the previous example.
• Line 59 increments rec_count to keep track of how many records have been output to the

report.
• Line 60 tests whether a break point has been reached, using the MOD (Modulus) function.
• Line 61 If a break point has been reached, the value of pbar is incremented.
• Line 62 The pbar value is displayed to the rptbar PROGRESSBAR form field.
• Line 63 The front end is synced with the current AUI tree.
• Line 64 thru 66 The value of INT_FLAG is checked to see whether the user has interrupted the

program. If so, the FOREACH loop is exited prematurely.
• Lines 70 thru 76 test INT_FLAG again and display a message indicating whether the report

finished or was interrupted. If the user did not interrupt the report, the FINISH REPORT
statement is executed.

Tutorial Chapter 10: Localization | 106

Tutorial Chapter 10: Localization

Localization support and localized strings allow you to internationalize your application using different
languages, and to customize it for specific industry markets in your user population. This chapter illustrates
the use of localized strings in your programs.

• Localization Support on page 106
• Localized Strings on page 106
• Programming Steps on page 107
• Strings in Sources on page 108
• Extracting Strings on page 109
• Compiling String Source Files (fglmkstr) on page 109
• Deploying String Files on page 109
• Example: Localization on page 110

Localization Support
Localization Support is a feature of the language that allows you to write application supporting multibyte
character sets as well as date, numeric and currency formatting in accordance with a locale.

Localization Support is based on the system libraries handling the locale, a set of language and cultural
rules.

See Localization in the Genero Business Development Language User Guide for more details.

Localized Strings
Localized Strings allow you to internationalize your application using different languages, and to customize
it for specific industry markets in your user population. Any string that is used in your Genero BDL program,
such as messages to be displayed or the text on a form, can be defined as a Localized String. At runtime,
the Localized String is replaced with text stored in a String File.

String Files must be compiled, and then deployed at the user site.

Tutorial Chapter 10: Localization | 107

Figure 18: Localized strings

Programming Steps
These steps describe how to use Localized Strings in your sources.

1. Modify your form specification files and program module files to contain Localized Strings by inserting
the % sign in front of the strings that you wish to be replaced.

2. Use the -m option of fglform to extract the Localized Strings from each form specification file into a
separate Source String File(extension .str).

3. Use the -m option of fglcomp to extract the Localized Strings from each program module into a
separate Source String File (extension .str).

4. Concatenate the Source String Files together logically; for example, you may have a common.str file
containing the strings common to all applications, a utility.str file containing the strings common
to utilities, and an application.str file with the strings specific to the particular application.

Tutorial Chapter 10: Localization | 108

Figure 19: Example concatenation of source string files

5. At this point the names of the Localized Strings may be unwieldy, since they were derived from the
actual strings in the program files. You can modify the string names in your Source String Files and the
corresponding program files so they form keys that are logical. For example: $"common.accept" =
"OK" $"common.cancel"= "Cancel" $"common.quit" = "Quit"

6. Make the Source String Files available to the programming teams for use as a reference when creating
or modifying programs.

7. Copy the Source String Files, and modify the replacement text for each of your market segments or
user languages.

8. Compile the Source String Files (.42s).

9. Create the entries in the fglprofile file to specify what string files must be used at runtime.

10.Deploy .42s compiled string files to user sites.

Strings in Sources
A Localized String begins with a percent sign (%), followed by the name of the string identifying the
replacement text to be loaded from the compiled String File. Since the name is a STRING, you can use any
characters in the name, including blanks.

LET s1 = %"Greetings"

The STRING "Greetings" is both the name of the string and the default text which would be used if no string
resource files are provided at runtime.

Localized Strings can be used any place where a STRING literal can be used, including form specification
files.

The SFMT() and LSTR() operators can be used to manipulate the contents of Localized Strings. For
example, the program line:

DISPLAY SFMT(%"cust.valid", custnum)

reads from the associated Compiled String File:

"cust.valid"="customer %1 is valid"

Tutorial Chapter 10: Localization | 109

resulting in the following display when the value of custnum is 200:

"customer 200 is valid"

Extracting Strings
You can generate a Source String File by extracting all of the Localized Strings from your program module
or form specification file, using the -m option of fglcomp or fglform:

fglcomp -m mystring.4gl > mystring.str

The generated file would have the format:

"Greetings" = "Greetings"

You could then change the replacement text in the file:

"Greetings" = "Hello"

The source string file must have the extension .str.

Compiling String Source Files (fglmkstr)
String Source Files must be compiled to binary files in order to be used at runtime.

You can compile the String files using the Compile File or application-level Build option in Genero Studio,
or use the command line tool fglmkstr.

fglmkstr mystring.str

The resulting Compiled String File has the extension .42s (mystring.42s).

Deploying String Files
The Compiled String Files must be deployed on the production sites. The file extension is .42s. By
default, the runtime system searches for a .42s file with the same name prefix as the current .42r
program. You can specify a list of string files with entries in the fglprofile configuration file.

fglrun.localization.file.count = 2
fglrun.localization.file.1.name = "firstfile"
fglrun.localization.file.2.name = "secondfile"

The current directory and the path defined in the DBPATH/ FGLRESOURCEPATH environment variable, are
searched for the .42s Compiled String File.

Tip: Create several string files with the same names, but locate them in different directories.
You can then easily switch from one set of string files to another, just by changing the DBPATH
/ FGLRESOURCEPATH environment variable. You typically create one string file directory per
language, and if needed, you can create subdirectories for each codeset (strings/english/iso8859-1,
strings/french/windows1252).

Tutorial Chapter 10: Localization | 110

Example: Localization
The progstrings program demonstrates localized strings in a form and program module.

form.per - the form specification file
The form specification file uses the LABEL form item type to display the text associated with the form fields
containing data from the customer database table. LABEL item types contain read-only values. The
TEXT of the LABEL form items contain Localized Strings. The COMMENT attribute of an EDIT item is also a
Localized String.

Form form.per:

01 SCHEMA custdemo
02
03 LAYOUT
04 GRID
05 {
06 [lab1] [f01]
07
08 [lab2] [f02]
09
10 [lab3] [f03]
11 }
12 END --grid
13 END -- layout
14
15 TABLES customer
16
17 ATTRIBUTES
18 LABEL lab1: TEXT=%"customer.store_num";
19 EDIT f01 = customer.store_num,
20 COMMENT=%"customer.dealermsg";
21 LABEL lab2: TEXT=%"customer.store_name";
22 EDIT f02 = customer.store_name;
23 LABEL lab3: TEXT=%"customer.city";
24 EDIT f03 = customer.city;
25 END -- attributes

Note:

• Lines 06 and 18: The form contains a LABEL, lab1; the TEXT of the LABEL is a Localized String,
customer.store_num.

• Line 20: The COMMENT of the EDIT f01 is a Localized String, customer.dealermsg.
• Lines 08 and 21: The TEXT of the LABEL lab2 is a Localized String, customer.store_name.
• Lines 10 and 23: The TEXT of the LABEL lab3 is a Localized String, customer.city.

These strings will be replaced at runtime.

The string file entries associated with this form

You can view the translations for the Localized Strings in the form in the progstrings.str string source
file.

01 "customer.store_num"="Store No"
02 "customer.dealernummsg"="This is the dealer number"
03 "customer.store_name"="Store Name"
04 "customer.city"="City"

Tutorial Chapter 10: Localization | 111

prog.4gl - the program module
The program module opens the form containing Localized Strings. The program module also contains
Localized Strings for messages to be displayed.

Module prog.4gl:

01 SCHEMA custdemo
02
03 MAIN
04 CONNECT TO "custdemo"
05 CLOSE WINDOW SCREEN
06 OPEN WINDOW w1 WITH FORM "stringform"
07 MESSAGE %"customer.msg"
08 MENU %"customer.menu"
09 ON ACTION query
10 CALL query_cust()
11 ON ACTION exit
12 EXIT MENU
13 END MENU
14 CLOSE WINDOW w1
15 DISCONNECT CURRENT
16 END MAIN
17
18 FUNCTION query_cust() -- displays one row
19 DEFINE l_custrec RECORD
20 store_num LIKE customer.store_num,
21 store_name LIKE customer.store_name,
22 city LIKE customer.city
23 END RECORD,
24 msg STRING
25
26 WHENEVER ERROR CONTINUE
27 SELECT store_num, store_name, city
28 INTO l_custrec.*
29 FROM customer
30 WHERE store_num = 101
31 WHENEVER ERROR STOP
32
33 IF SQLCA.SQLCODE = 0 THEN
34 LET msg = SFMT(%"customer.valid",
35 l_custrec.store_num)
36 MESSAGE msg
37 DISPAY BY NAME l_custrec.*
38 ELSE
39 MESSAGE %"customer.notfound"
40 END IF
41
42 END FUNCTION

Note:

• Lines 07, 08, 34 and 39 contain Localized Strings for the messages that the program displays.

These strings will be replaced at runtime.

The string file associated with this program module

You can view the translations for the Localized Strings in the program module in the progstrings.str
string source file.

01 "customer.msg"="Program retrieves dealer #101"
02 "customer.menu"="Dealer"
03 "customer.valid"="Customer %1 is valid"

Tutorial Chapter 10: Localization | 112

04 "customer.notfound"="Customer was not found"

Compiling the program
Compile the program and string file using Genero Studio or command line tools.

From Genero Studio

As you learned earlier in the Tutorial, the Execute option in the Genero Studio Project view will compile
and link files in the specified application node if necessary before executing the application. This behavior
also applies to String Source files (.str). String Source files can also be compiled independently with the
Compile File option.

Figure 20: Using the Execute option to compile and execute the progstrings program

To Compile and execute from the command line

The program is compiled into progstrings.42r.

fgl2p -o progstrings.42r prog.4gl

The progstring.str string file must be compiled:

fglmkstr progstring.str

The resulting Compiled String File is progstring.42s.

Tutorial Chapter 10: Localization | 113

Setting the list of compiled string files in the fglprofile file.

The list of Compiled String Files is specified in the fglprofile configuration file. The runtime system
searches for a file with the "42s" extension in the current directory and in the path list defined in the
DBPATH / FGLRESOURCEPATH environment variable. Specify the total number of files, and list each file with
an index number.

Example fglprofile file

01 fglrun.localization.file.count = 2
02 fglrun.localization.file.1.name = "form"
03 fglrun.localization.file.2.name = "prog"

Setting the environment

Set the FGLPROFILE environment variable:

export FGLPROFILE=./fglprofile

Running the program

Run the program:

fglrun cust

The Resulting Form Display

Display of the form using the default values for the strings.

Figure 21: Form with default values for strings

Display of the form when the Compiled String File is deployed.

Tutorial Chapter 10: Localization | 114

Figure 22: Form using compiled string file

Tutorial Chapter 11: Master/Detail | 115

Tutorial Chapter 11: Master/Detail

The form used by the program in this chapter contains fields from both the orders and items tables in
the custdemo database, illustrating a master-detail relationship. Since there are multiple items associated
with a single order, the rows from the items table are displayed in a table on the form. This chapter
focuses on the master/detail form and the unique features of the corresponding program.

• The Master-Detail sample on page 115
• The Makefile on page 116
• The Customer List Module on page 117
• The Stock List Module on page 117
• The Master-Detail Form Specification File on page 118
• The Orders Program orders.4gl on page 120

The Master-Detail sample
The example discussed in this chapter is designed for the input of order information (headers and order
lines), illustrating a typical master-detail relationship. The form used by the example contains fields from
both the orders and items tables in the custdemo database.

Since there are multiple items associated with a single order, the rows from the items table are stored in a
program array and displayed in a table container on the form. Most of the functionality to query/add/update/
delete has been covered in previous chapters; this chapter will focus on the master/detail form and the
unique features of the corresponding program.This type of relationship can also be handled with multiple
dialogs, as shown in Chapter 13.

Figure 23: Master-Detail Form

Tutorial Chapter 11: Master/Detail | 116

The Makefile
The BDL modules and forms used by the application in this chapter can be compiled and linked in Genero
Studio using the Application-level Execute or Build options. If you prefer command line tools you can
compile and link using a Makefile. This file is interpreted by the make utility, which is a well-known tool to
build large programs based on multiple sources and forms.

The make utility reads the dependency rules defined in the Makefile for each program component, and
executes the commands associated with the rules.

This section only describes the Makefile used in this example. For more details about Makefiles, see
Using makefiles in the Genero Business Development Language User Guide.

The Makefile:

01 all:: orders
02
03 orders.42m: orders.4gl
04 fglcomp -M orders.4gl
05
06 orderform.42f: orderform.per
07 fglform -M orderform.per
08
09 custlist.42m: custlist.4gl
10 fglcomp -M custlist.4gl
11
12 custlist.42f: custlist.per
13 fglform -M custlist.per
14
15 stocklist.42m: stocklist.4gl
16 fglcomp -M stocklist.4gl
17
18 stocklist.42f: stocklist.per
19 fglform -M stocklist.per
20
21 MODULES=\
22 orders.42m\
23 custlist.42m\
24 stocklist.42m
25
26 FORMS=\
27 orderform.42f\
28 custlist.42f\
29 stocklist.42f
30
31 orders:: $(MODULES) $(FORMS)
32 fgllink -o orders.42r $(MODULES)
33
34 run::
35 fglrun orders
36
37 clean::
38 rm -f *.42?

Note:

• Line 01 defines the all dependency rule that will be executed by default, and depends from the
rule orders described on line 31. You execute this rule with make all , or make since this is
the first rule in the Makefile.

Tutorial Chapter 11: Master/Detail | 117

• Lines 03 and 04 define a dependency to compile the orders.4gl module into orders.42m.
The file on the left (orders.42m) depends from the file on the right (orders.4gl), and the
command to be executed is fglcomp -M orders.4gl .

• Lines 06 and 07 define a dependency to compile the orderform.per form.
• Lines 09 and 10 define a dependency to compile the custlist.4gl module.
• Lines 12 and 13 define a dependency to compile the custlist.per form.
• Lines 15 and 16 define a dependency to compile the stocklist.4gl module.
• Lines 18 and 19 define a dependency to compile the stocklist.per form.
• Lines 21 thru 24 define the list of compiled modules, used in the global orders dependency

rule.
• Lines 26 thru 29 define the list of compiled form files, used in the global orders dependency

rule.
• Lines 31 and 32 is the global 'orders' dependency rule, defining modules or form files to be

created.
• Lines 34 and 35 define a rule and command to execute the program. You execute this rule with

make run.
• Lines 37 and 38 define a rule and command to clean the directory. You execute this rule with

make clean.

The Customer List Module
The custlist.4gl module defines a 'zoom' module, to let the user select a customer from a list. The
module could be reused for any application that requires the user to select a customer from a list.

This module uses the custlist.per form and is typical list handling using the DISPLAY ARRAY
statement, as discussed in Chapter 07. The display_custlist() function in this module returns the
customer id and the name. See the custlist.4gl source module for more details.

In the application illustrated in this chapter, the main module orders.4gl will call the
display_custlist() function to retrieve a customer selected by the user.

01 ON ACTION zoom1
02 CALL display_custlist() RETURNING id, name
03 IF (id > 0) THEN
04 ...

The Stock List Module
The stocklist.4gl module defines a 'zoom' module, to let the user select a stock item from a list. This
module uses the stocklist.per form and is typical list handling using the DISPLAY ARRAY statement,
as discussed in Chapter 07.

See the stocklist.4gl source module for more details.

The main module orders.4gl will call the display_stocklist() function of the stocklist.4gl
module to retrieve a stock item selected by the user.

The function returns the stock item id only:

01 ON ACTION zoom2
02 LET id = display_stocklist()
03 IF (id > 0) THEN
04 ...

Tutorial Chapter 11: Master/Detail | 118

The Master-Detail Form Specification File
The form specification file orderform.per defines a form for the orders program, and displays fields
containing the values of a single order from the orders table. The name of the store is retrieved from the
customer table, using the column store_num, and displayed. A screen array displays the associated
rows from the items table.

Although order_num is also one of the fields in the items table, it does not have to be included in the
screen array or in the screen record , since the order number will be the same for all the items displayed
for a given order. For each item displayed in the screen array, the values in the description and unit
columns from the stock table are also displayed.

The values in FORMONLY fields are not retrieved from a database; they are calculated by the BDL program
based on the entries in other fields. In this form FORMONLY fields are used to display the calculations made
by the BDL program for item line totals and the order total.

This form uses some of the attributes that can be assigned to fields in a form. See Form item attributes in
the Genero Business Development Language User Guide for a complete list of the available attributes.

Form orderform.per:

01 SCHEMA custdemo
02
03 TOOLBAR
04 ITEM new (TEXT="Order", IMAGE="new", COMMENT="New order")
05 ITEM find (TEXT="Find", IMAGE="find")
06 SEPARATOR
07 ITEM append (TEXT="Line", IMAGE="new", COMMENT="New order line")
08 ITEM delete (TEXT="Del", IMAGE="eraser")
09 SEPARATOR
10 ITEM previous (TEXT="Prev")
11 ITEM next (TEXT="Next")
12 SEPARATOR
13 ITEM getitems (TEXT="Items", IMAGE="prop")
14 SEPARATOR
15 ITEM quit (TEXT="Quit", COMMENT="Exit the program", IMAGE="quit")
16 END
17
18 LAYOUT
19 VBOX
20 GROUP
21 GRID
22 {
23 Store #:[f01] [f02]
24 Order #:[f03] Order Date:[f04] Ship By:[f06]
25 Factory:[f05] [f07]
26 Order Total:[f14]
27 }
28 END
29 END -- GROUP
30 TABLE
31 {
32 Stock# Description Qty Unit Price Total
33 [f08 |f09 |f10 |f11 |f12 |f13]
34 [f08 |f09 |f10 |f11 |f12 |f13]
35 [f08 |f09 |f10 |f11 |f12 |f13]
36 [f08 |f09 |f10 |f11 |f12 |f13]
37 }
38 END
39 END
40 END
41

Tutorial Chapter 11: Master/Detail | 119

42 TABLES
43 customer, orders, items, stock
44 END
45
46 ATTRIBUTES
47 BUTTONEDIT f01 = orders.store_num, REQUIRED, ACTION=zoom1;
48 EDIT f02 = customer.store_name, NOENTRY;
49 EDIT f03 = orders.order_num, NOENTRY;
50 DATEEDIT f04 = orders.order_date;
51 EDIT f05 = orders.fac_code, UPSHIFT;
52 EDIT f06 = orders.ship_instr;
53 CHECKBOX f07 = orders.promo, TEXT="Promotional",
54 VALUEUNCHECKED="N", VALUECHECKED="Y";
55 BUTTONEDIT f08 = items.stock_num, REQUIRED, ACTION=zoom2;
56 LABEL f09 = stock.description;
57 EDIT f10 = items.quantity, REQUIRED;
58 LABEL f11 = stock.unit;
59 LABEL f12 = items.price;
60 LABEL f13 = formonly.line_total TYPE DECIMAL(9,2);
61 EDIT f14 = formonly.order_total TYPE DECIMAL(9,2), NOENTRY;
62 END
63
64 INSTRUCTIONS
65 SCREEN RECORD sa_items(
66 items.stock_num,
67 stock.description,
68 items.quantity,
69 stock.unit,
70 items.price,
71 line_total
72)
73 END

Note:

• Lines 03 thru 16 define a TOOLBAR section with typical actions.
• Lines 23 and 48 The field f02 is a LABEL , allowing no editing. It displays the customer name

associated with the orders store number
• Lines 19 and 49 Field f03 is the order number from the orders table.
• Lines 25 and 53 The field f07 is a CHECKBOX displaying the values of the column promo in the

orders table. The box will appear checked if the value in the column is "Y", and unchecked if
the value is "N".

• Lines 26 and 61 The field f14 is a FORMONLY field This field displays the order total calculated
by the BDL program logic.

• Lines 30 thru 38 describe the TABLE container for the screen array.
• Lines 33, 56 and 58 The fields f09 and f11 are LABELS, and display the description and unit of

measure for the items stock number.
• Lines 33 and 60 the field f13 is a LABEL and FORMONLY. This field displays the line total

calculated for each line in the screen array.
• Lines 42 thru 44 The TABLES statement includes all the database tables that are listed for fields

in the ATTRIBUTES section of the form.
• Line 47 The attribute REQUIRED forces the user to enter data in the field during an INPUT

statement.
• Line 51 The attribute UPSHIFT makes the runtime system convert lowercase letters to

uppercase letters, both on the screen display and in the program variable that stores the
contents of this field.

• Line 65 The screen record includes the names of all the fields shown in the screen array.

Tutorial Chapter 11: Master/Detail | 120

The Orders Program orders.4gl
Much of the functionality is identical to that in earlier Tutorial examples. The query/add/delete/update of the
orders table would be the same as the examples in Chapter 4 and Chapter 6. Only append and query
are included in this program, for simplicity. The add/delete/update of the items table is similar to that in
Chapter 8. The complete orders program is outlined, with examples of any new functionality.

• The MAIN program block on page 120
• Function setup_actions on page 122
• Function order_new on page 122
• Function order_insert on page 124
• Function order_query on page 124
• Function order_fetch on page 125
• Function order_select on page 126
• Function order_fetch_rel on page 127
• Function order_total on page 127
• Function order_close on page 128
• Function items_fetch on page 128
• Function items_show on page 129
• Function items_inpupd on page 129
• Function items_line_total on page 131
• Function item_insert on page 131
• Function item_update on page 132
• Function item_delete on page 132
• Function get_stock_info on page 133

The MAIN program block
The MAIN program block contains the menu for the orders program.

MAIN program block (orders.4gl):

01 SCHEMA custdemo
02
03 DEFINE order_rec RECORD
04 store_num LIKE orders.store_num,
05 store_name LIKE customer.store_name,
06 order_num LIKE orders.order_num,
07 order_date LIKE orders.order_date,
08 fac_code LIKE orders.fac_code,
09 ship_instr LIKE orders.ship_instr,
10 promo LIKE orders.promo
11 END RECORD,
12 arr_items DYNAMIC ARRAY OF RECORD
13 stock_num LIKE items.stock_num,
14 description LIKE stock.description,
15 quantity LIKE items.quantity,
16 unit LIKE stock.unit,
17 price LIKE items.price,
18 line_total DECIMAL(9,2)
19 END RECORD
20
21 CONSTANT msg01 = "You must query first"
22 CONSTANT msg02 = "Enter search criteria"
23 CONSTANT msg03 = "Canceled by user"
24 CONSTANT msg04 = "No rows in table"
25 CONSTANT msg05 = "End of list"
26 CONSTANT msg06 = "Beginning of list"

Tutorial Chapter 11: Master/Detail | 121

27 CONSTANT msg07 = "Invalid stock number"
28 CONSTANT msg08 = "Row added"
29 CONSTANT msg09 = "Row updated"
30 CONSTANT msg10 = "Row deleted"
31 CONSTANT msg11 = "Enter order"
32 CONSTANT msg12 = "This customer does not exist"
33 CONSTANT msg13 = "Quantity must be greater than zero"
34
35 MAIN
36 DEFINE has_order, query_ok SMALLINT
37 DEFER INTERRUPT
38
39 CONNECT TO "custdemo"
40 CLOSE WINDOW SCREEN
41
42 OPEN WINDOW w1 WITH FORM "orderform"
43
44 MENU
45 BEFORE MENU
46 CALL setup_actions(DIALOG,FALSE,FALSE)
47 ON ACTION new
48 CLEAR FORM
49 LET query_ok = FALSE
50 CALL close_order()
51 LET has_order = order_new()
52 IF has_order THEN
53 CALL arr_items.clear()
54 CALL items_inpupd()
55 END IF
56 CALL setup_actions(DIALOG,has_order,query_ok)
57 ON ACTION find
58 CLEAR FORM
59 LET query_ok = order_query()
60 LET has_order = query_ok
61 CALL setup_actions(DIALOG,has_order,query_ok)
62 ON ACTION next
63 CALL order_fetch_rel(1)
64 ON ACTION previous
65 CALL order_fetch_rel(-1)
66 ON ACTION getitems
67 CALL items_inpupd()
68 ON ACTION quit
69 EXIT MENU
70 END MENU
71
72 CLOSE WINDOW w1
73
74 END MAIN

Note:

• Lines 03 thru 11 define a record with fields for all the columns in the orders table, as well as
store_name from the customer table.

• Lines 12 through 19 define a dynamic array with fields for all the columns in the items table, as
well as quantity and unit from the stock table, and a calculated field line_total.

• Lines 21 thru 33 define constants to hold the program messages. This centralizes the definition
of the messages, which can be used in any function in the module.

• Lines 44 thru 65 define the main menu of the application.
• Line 46 is executed before the menu is displayed; it calls the setup_actions function to

disable navigation and item management actions by default. The DIALOG predefined object is
passed as the first parameter to the function.

Tutorial Chapter 11: Master/Detail | 122

• Lines 47 thru 56 perform the add action to create a new order. The order_new function is
called, and if it returns TRUE, the items_inpupd function is called to allow the user to enter
items for the new order. Menu actions are enabled/disabled depending on the result of the
operation, using the setup_actions function.

• Lines 57 thru 61 perform the find action to search for orders in the database. The
order_query function is called and menu actions are enabled/disabled depending on the result
of the operation, using the setup_actions function.

• Lines 62 thru 65 handle navigation in the order list after a search. Function order_fetch_rel
is used to fetch the previous or next record.

• Line 67 calls the function items_inpupd to allow the user to edit the items associated with
the displayed order .

• Line 72 closes the window before leaving the program.

Function setup_actions
This function is used by the main menu to enable or disable actions based on the context.

Function setup_actions (orders.4gl):

01 FUNCTION setup_actions(d, has_order, query_ok)
02 DEFINE d ui.Dialog,
03 has_order, query_ok SMALLINT
04 CALL d.setActionActive("next",query_ok)
05 CALL d.setActionActive("previous",query_ok)
06 CALL d.setActionActive("getitems",has_order)
07 END FUNCTION

Note:

• Line 01 Three parameters are passed to the function:

• d - the predefined Dialog object
• has_order - if the value is TRUE, indicates that there is a new or existing order selected.
• query_ok - if the value is TRUE, indicates that the search for orders was successful.

• Lines 04 and 05 use the ui.Dialog.setActionActive method to enable or disable next
and previous actions based on the value of query_ok, which indicates whether the search
for orders was successful.

• Line 06 uses the same method to enable the getitems action based on the value of
has_order, which indicates whether there is an order currently selected.

Function order_new
This function handles the input of an order record.

Function order_new (orders.4gl):

01 FUNCTION order_new()
02 DEFINE id INTEGER, name STRING
03
04 MESSAGE msg11
05 INITIALIZE order_rec.* TO NULL
06 SELECT MAX(order_num)+1 INTO order_rec.order_num
07 FROM orders
08 IF order_rec.order_num IS NULL
09 OR order_rec.order_num == 0 THEN
10 LET order_rec.order_num = 1
11 END IF
12
13 LET int_flag = FALSE
14 INPUT BY NAME
15 order_rec.store_num,

Tutorial Chapter 11: Master/Detail | 123

16 order_rec.store_name,
17 order_rec.order_num,
18 order_rec.order_date,
19 order_rec.fac_code,
20 order_rec.ship_instr,
21 order_rec.promo
22 WITHOUT DEFAULTS
23 ATTRIBUTES(UNBUFFERED)
24
25 BEFORE INPUT
26 LET order_rec.order_date = TODAY
27 LET order_rec.fac_code = "ASC"
28 LET order_rec.ship_instr = "FEDEX"
29 LET order_rec.promo = "N"
30
31 ON CHANGE store_num
32 SELECT store_name INTO order_rec.store_name
33 FROM customer
34 WHERE store_num = order_rec.store_num
35 IF (SQLCA.SQLCODE == NOTFOUND) THEN
36 ERROR msg12
37 NEXT FIELD store_num
38 END IF
39
40 ON ACTION zoom1
41 CALL display_custlist() RETURNING id, name
42 IF (id > 0) THEN
43 LET order_rec.store_num = id
44 LET order_rec.store_name = name
45 END IF
46
47 END INPUT
48
49 IF (int_flag) THEN
50 LET int_flag=FALSE
51 CLEAR FORM
52 MESSAGE msg03
53 RETURN FALSE
54 END IF
55
56 RETURN order_insert()
57
58 END FUNCTION

Note:

• Lines 06 and 11 execute a SELECT to get a new order number from the database; if no rows are
found, the order number is initialized to 1.

• Lines 14 thru 47 use the INPUT interactive dialog statement to let the user input the order data.
• Lines 25 thru 29 the BEFORE INPUT block initializes some members of the order_rec record,

as default values for input.
• Lines 31 thru 38 the ON CHANGE block on the store_num field retrieves the customer name for

the changed store_num from the customer table, and stores it in the store_name field. If the
customer doesn't exist in the customer table, an error message displays.

• Lines 40 thru 45 implement the code to open the zoom window of the store_num BUTTONEDIT
field, when the action zoom1 is triggered. The function display_custlist in the
custlist.4gl module allows the user to select a customer from a list. The action zoom1 is
enabled during the INPUT statement only.

• Line 56 calls the order_insert function to perform the INSERT SQL statement.

Tutorial Chapter 11: Master/Detail | 124

Function order_insert
This function inserts a new record in the orders database table.

Function order_insert (orders.4gl):

01 FUNCTION order_insert()
02
03 WHENEVER ERROR CONTINUE
04 INSERT INTO orders (
05 store_num,
06 order_num,
07 order_date,
08 fac_code,
09 ship_instr,
10 promo
11) VALUES (
12 order_rec.store_num,
13 order_rec.order_num,
14 order_rec.order_date,
15 order_rec.fac_code,
16 order_rec.ship_instr,
17 order_rec.promo
18)
19 WHENEVER ERROR STOP
20
21 IF (SQLCA.SQLCODE <> 0) THEN
22 CLEAR FORM
23 ERROR SQLERRMESSAGE
24 RETURN FALSE
25 END IF
27
28 MESSAGE "Order added"
29 RETURN TRUE
30
31 END FUNCTION

Note:

• Lines 03 thru 19 implement the INSERT SQL statement to create a new row in the orders
table.

• Lines 21 thru 25 handle potential SQL errors, and display a message and return FALSE if the
insert was not successful.

• Lines 28 and 29 display a message and return TRUE in case of success.

Function order_query
This function allows the user to enter query criteria for the orders table. It calls the function
order_select to retrieve the rows from the database table.

Function order_query (orders.4gl):

01 FUNCTION order_query()
02 DEFINE where_clause STRING,
03 id INTEGER, name STRING
04
05 MESSAGE msg02
06
07 LET int_flag = FALSE
08 CONSTRUCT BY NAME where_clause ON
09 orders.store_num,
10 customer.store_name,
11 orders.order_num,

Tutorial Chapter 11: Master/Detail | 125

12 orders.order_date,
13 orders.fac_code
14
15 ON ACTION zoom1
16 CALL display_custlist() RETURNING id, name
17 IF id > 0 THEN
18 DISPLAY id TO orders.store_num
19 DISPLAY name TO customer.store_name
20 END IF
21
22 END CONSTRUCT
23
24 IF (int_flag) THEN
25 LET int_flag=FALSE
26 CLEAR FORM
27 MESSAGE msg03
28 RETURN FALSE
29 END IF
30
31 RETURN order_select(where_clause)
32
33 END FUNCTION

Note:

• Lines 08 thru 22 The CONSTRUCT statement allows the user to query on specific fields,
restricting the columns in the orders table that can be used for query criteria.

• Lines 15 thru 20 handle the zoom1 action to let the user pick a customer from a list. The
function display_custlist is called, it returns the customer number and name.

• Lines 24 through 29 check the value of the interrupt flag, and return FALSE if the user has
interrupted the query.

• Line 31 the query criteria stored in the variable where_clause is passed to the function
order_select. TRUE or FALSE is returned from the order_select function.

Function order_fetch
This function retrieves the row from the orders table, and is designed to be reused each time a row is
needed. If the retrieval of the row from the orders table is successful, the function items_fetch is called
to retrieve the corresponding rows from the items table.

Function order_fetch (orders.4gl):

01 FUNCTION order_fetch(p_fetch_flag)
02 DEFINE p_fetch_flag SMALLINT
03
04 IF p_fetch_flag = 1 THEN
05 FETCH NEXT order_curs INTO order_rec.*
06 ELSE
07 FETCH PREVIOUS order_curs INTO order_rec.*
08 END IF
09
10 IF (SQLCA.SQLCODE == NOTFOUND) THEN
11 RETURN FALSE
12 END IF
13
14 DISPLAY BY NAME order_rec.*
15 CALL items_fetch()
16 RETURN TRUE
17
18 END FUNCTION

Tutorial Chapter 11: Master/Detail | 126

Note:

• Line 05 When the parameter passed to this function and stored in the variable p_fetch_flag
is 1, the FETCH statement retrieves the next row from the orders table.

• Line 07 When the parameter passed to this function and stored in p_fetch_flag is not 1, the
FETCH statement retrieves the previous row from the orders table.

• Lines 10 thru 12 return FALSE if no row was found.
• Line 14 uses DISPLAY BY NAME to display the record order_rec.
• Line 15 calls the function items_fetch, to fetch all order lines.
• Line 16 returns TRUE indicating the fetch of the order was successful.

Function order_select
This function creates the SQL statement for the query and the corresponding cursor to retrieve the rows
from the orders table. It calls the function fetch_order.

Function order_select (orders.4gl):

01 FUNCTION order_select(where_clause)
02 DEFINE where_clause STRING,
03 sql_text STRING
04
05 LET sql_text = "SELECT "
05 || "orders.store_num, "
06 || "customer.store_name, "
07 || "orders.order_num, "
08 || "orders.order_date, "
09 || "orders.fac_code, "
10 || "orders.ship_instr, "
11 || "orders.promo "
12 || "FROM orders, customer "
13 || "WHERE orders.store_num = customer.store_num "
14 || "AND " || where_clause
15
16 DECLARE order_curs SCROLL CURSOR FROM sql_text
17 OPEN order_curs
18 IF (NOT order_fetch(1)) THEN
19 CLEAR FORM
20 MESSAGE msg04
21 RETURN FALSE
22 END IF
23
24 RETURN TRUE
25
26 END FUNCTION

Note:

• Lines 05 thru 14 contain the text of the SELECT statement with the query criteria contained in
the variable where_clause.

• Line 16 declares a SCROLL CURSOR for the SELECT statement stored in the variable
sql_text.

• Line 17 opens the SCROLL CURSOR.
• Line 18 thru 22 call the function order_fetch, passing a parameter of 1 to fetch the next row,

which in this case will be the first one. If the fetch is not successful, FALSE is returned.
• Line 24 returns TRUE, indicating the fetch was successful.

Tutorial Chapter 11: Master/Detail | 127

Function order_fetch_rel
This function calls the function order_fetch to retrieve the rows in the database; the parameter
p_fetch_flag indicates the direction for the cursor movement. If there are no more records to be
retrieved, a message is displayed to the user.

Function order_fetch_rel:

01 FUNCTION order_fetch_rel(p_fetch_flag)
02 DEFINE p_fetch_flag SMALLINT
03
04 MESSAGE " "
05 IF (NOT order_fetch(p_fetch_flag)) THEN
06 IF (p_fetch_flag = 1) THEN
07 MESSAGE msg05
08 ELSE
09 MESSAGE msg06
10 END IF
11 END IF
12
13 END FUNCTION

Note:

• Line 05 calls the function order_fetch, passing the variable p_fletch_flag to indicate the
direction of the cursor.

• Line 07 displays a message to indicate that the cursor is at the bottom of the result set.
• Line 09 displays a message to indicate that the cursor is at the top of the result set.

Function order_total
This function calculates the total price for all of the items contained on a single order.

Function order_total (orders.4gl):

01 FUNCTION order_total(arr_length)
02 DEFINE order_total DECIMAL(9,2),
03 i, arr_length SMALLINT
04
05 LET order_total = 0
06 IF arr_length > 0 THEN
07 FOR i = 1 TO arr_length
08 IF arr_items[i].line_total IS NOT NULL THEN
09 LET order_total = order_total + arr_items[i].line_total
10 END IF
11 END FOR
12 END IF
13
14 DISPLAY BY NAME order_total
15
16 END FUNCTION

Note:

• Line 07 thru 11 contain a FOR loop adding the values of line_total from each item in the
program array arr_items, to calculate the total price of the order and store it in the variable
order_total.

• Line 14 displays the value of order_total on the form.

Tutorial Chapter 11: Master/Detail | 128

Function order_close
This function closes the cursor used to select orders from the database.

Function order_close (orders.4gl):

01 FUNCTION close_order()
02 WHENEVER ERROR CONTINUE
03 CLOSE order_curs
04 WHENEVER ERROR STOP
05 END FUNCTION

Note:

• Line 03 closes the order_curs cursor. The statement is surrounded by WHENEVER ERROR, to
trap errors if the cursor is not open.

Function items_fetch
This function retrieves the rows from the items table that match the value of order_num in the order
currently displayed on the form. The description and unit values are retrieved from the stock table,
using the column stock_num. The value for line_total is calculated and retrieved. After displaying the
items on the form, the function order_total is called to calculate the total price of all the items for the
current order.

Function items_fetch (orders.4gl):

01 FUNCTION items_fetch()
02 DEFINE item_cnt INTEGER,
03 item_rec RECORD
04 stock_num LIKE items.stock_num,
05 description LIKE stock.description,
06 quantity LIKE items.quantity,
07 unit LIKE stock.unit,
08 price LIKE items.price,
09 line_total DECIMAL(9,2)
10 END RECORD
11
12 IF order_rec.order_num IS NULL THEN
13 RETURN
14 END IF
15
16 DECLARE items_curs CURSOR FOR
17 SELECT items.stock_num,
18 stock.description,
19 items.quantity,
20 stock.unit,
21 items.price,
22 items.price * items.quantity line_total
23 FROM items, stock
24 WHERE items.order_num = order_rec.order_num
25 AND items.stock_num = stock.stock_num
26
27 LET item_cnt = 0
28 CALL arr_items.clear()
29 FOREACH items_curs INTO item_rec.*
30 LET item_cnt = item_cnt + 1
31 LET arr_items[item_cnt].* = item_rec.*
32 END FOREACH
33 FREE items_curs
34
35 CALL items_show()
36 CALL order_total(item_cnt)
37

Tutorial Chapter 11: Master/Detail | 129

38 END FUNCTION

Note:

• Line 02 defines a variable item_cnt to hold the array count.
• Line 12 returns from the function if the order number in the program record order_rec is NULL.
• Lines 16 thru 25 declare a cursor for the SELECT statement to retrieve the rows from the items

table that have the same order number as the value in the order_num field of the program
record order_rec. The description and unit values are retrieved from the stock table,
using the column stock_num. The value for line_total is calculated.

• Lines 29 thru32 the FOREACH statement loads the dynamic array arr_items.
• Line 33 releases the memory associated with the cursor items_curs, which is no longer

needed.
• Lines 35 calls the items_show function to display the order lines to the form.
• Line 36 calls the function order_total to calculate the total price of the items on the order.

Function items_show
This function displays the line items for the order in the screen array and returns immediately.

Function items_show (orders.4gl):

01 FUNCTION items_show()
02 DISPLAY ARRAY arr_items TO sa_items.*
03 BEFORE DISPLAY
04 EXIT DISPLAY
05 END DISPLAY
06 END FUNCTION

Note:

• Line 02 executes a DISPLAY ARRAY statement with the program array containing the line
items.

• Line 03 and 04 exit the instruction before control is turned over to the user.

Function items_inpupd
This function contains the program logic to allow the user to input a new row in the arr_items array, or to
change or delete an existing row.

Function items_inpupd:

01 FUNCTION items_inpupd()
02 DEFINE opflag CHAR(1),
03 item_cnt, curr_pa SMALLINT,
04 id INTEGER
05
06 LET opflag = "U"
07
08 LET item_cnt = arr_items.getLength()
09 INPUT ARRAY arr_items WITHOUT DEFAULTS FROM sa_items.*
10 ATTRIBUTES (UNBUFFERED, INSERT ROW = FALSE)
11
12 BEFORE ROW
13 LET curr_pa = ARR_CURR()
14 LET opflag = "U"
15
16 BEFORE INSERT
17 LET opflag = "I"
18 LET arr_items[curr_pa].quantity = 1
19
20 AFTER INSERT

Tutorial Chapter 11: Master/Detail | 130

21 CALL item_insert(curr_pa)
22 CALL items_line_total(curr_pa)
23
24 BEFORE DELETE
25 CALL item_delete(curr_pa)
26
27 ON ROW CHANGE
28 CALL item_update(curr_pa)
29 CALL items_line_total(curr_pa)
30
31 BEFORE FIELD stock_num
32 IF opflag = "U" THEN
33 NEXT FIELD quantity
34 END IF
35
36 ON ACTION zoom2
37 LET id = display_stocklist()
38 IF id > 0 THEN
39 IF (NOT get_stock_info(curr_pa,id)) THEN
40 LET arr_items[curr_pa].stock_num = NULL
41 ELSE
42 LET arr_items[curr_pa].stock_num = id
43 END IF
44 END IF
45
46 ON CHANGE stock_num
47 IF (NOT get_stock_info(curr_pa,
48 arr_items[curr_pa].stock_num)) THEN
49 LET arr_items[curr_pa].stock_num = NULL
50 ERROR msg07
51 NEXT FIELD stock_num
52 END IF
53
54 ON CHANGE quantity
55 IF (arr_items[curr_pa].quantity <= 0) THEN
56 ERROR msg13
57 NEXT FIELD quantity
58 END IF
59
60 END INPUT
61
62 LET item_cnt = arr_items.getLength()
63 CALL ord_total(item_cnt)
64
65 IF (int_flag) THEN
66 LET int_flag = FALSE
67 END IF
68
69 END FUNCTION

Note:

• Line 08 uses the getLength built-in function to determine the number of rows in the array
arr_items.

• Lines 9 thru 60 contain the INPUT ARRAY statement.
• Lines 12 and 14 use a BEFORE ROW clause to store the index of the current row of the array in

the variable curr_pa. We also set the opflag flag to "U", in order to indicate we are in update
mode.

• Lines 16 thru 18 use a BEFORE INSERT clause to set the value of opflag to "I" if the current
operation is an Insert of a new row in the array. Line 18 sets a default value for the quantity.

Tutorial Chapter 11: Master/Detail | 131

• Lines 20 thru 22 An AFTER INSERT clause calls the item_insert function to add the row
to the database table, passing the index of the current row and calls the items_line_total
function, passing the index of the current row.

• Lines 24 thru 25 use a BEFORE DELETE clause, to call the function item_delete, passing the
index of the current row.

• Lines 27 thru 29 contain an ON ROW CHANGE clause to detect row modification. The
item_update function and the items_line_total function are called, passing the index of
the current row.

• Lines 31 thru 34 use a BEFORE FIELD clause to prevent entry in the stock_num field if the
current operation is an update of an existing row.

• Lines 36 thru 44 implement the code for the zoom2 action, opening a list from the stock table
for selection.

• Lines 46 thru 52 use an ON CHANGE clause to check whether the stock number for a new
record that was entered in the field stock_num exists in the stock table.

• Line 62 uses the getLength built-in function to determine the number of rows in the array after
the INPUT ARRAY statement has terminated.

• Line 63 calls the function order_total, passing the number of rows in the array.
• Lines 65 thru 67 reset the INT_FLAG to TRUE if the user has interrupted the INPUT statement.

Function items_line_total
This function calculates the value of line_total for any new rows that are inserted into the arr_items
array.

Function items_line_total:

01 FUNCTION items_line_total(curr_pa)
02 DEFINE curr_pa SMALLINT
03 LET arr_items[curr_pa].line_total =
04 arr_items[curr_pa].quantity * arr_items[curr_pa].price
05 END FUNCTION

Note:

• Line 02 The index of the current row in the array is passed to this function and stored in the
variable curr_pa.

• Lines 03 and 04 calculate the line_total for the current row in the array.

Function item_insert
This function inserts a new row into the items database table using the values input in the current array
record on the form.

Function item_insert:

01 FUNCTION item_insert(curr_pa)
02 DEFINE curr_pa SMALLINT
03
04 WHENEVER ERROR CONTINUE
05 INSERT INTO items (
06 order_num,
07 stock_num,
08 quantity,
09 price
10) VALUES (
11 order_rec.order_num,
12 arr_items[curr_pa].stock_num,
13 arr_items[curr_pa].quantity,
14 arr_items[curr_pa].price
15)

Tutorial Chapter 11: Master/Detail | 132

16 WHENEVER ERROR STOP
17
18 IF (SQLCA.SQLCODE == 0) THEN
19 MESSAGE msg08
20 ELSE
21 ERROR SQLERRMESSAGE
22 END IF
23
24 END FUNCTION

Note:

• Line 02 the index of the current row in the array is passed to this function and stored in the
variable curr_pa.

• Lines 05 thru 15 The embedded SQL INSERT statement uses the value of order_num from the
current order record displayed on the form, together with the values from the current row of the
arr_items array, to insert a new row in the items table.

Function item_update
This function updates a row in the items database table using the changes made to the current array
record in the form.

Function item_update:

01 FUNCTION item_update(curr_pa)
02 DEFINE curr_pa SMALLINT
03
04 WHENEVER ERROR CONTINUE
05 UPDATE items SET
06 items.stock_num = arr_items[curr_pa].stock_num,
07 items.quantity = arr_items[curr_pa].quantity
08 WHERE items.stock_num = arr_items[curr_pa].stock_num
09 AND items.order_num = order_rec.order_num
10 WHENEVER ERROR STOP
11
12 IF (SQLCA.SQLCODE == 0) THEN
13 MESSAGE msg09
14 ELSE
15 ERROR SQLERRMESSAGE
16 END IF
17
18 END FUNCTION

Note:

• Line 02 the index of the current row in the array is passed to this function and stored in the
variable curr_pa.

• Lines 05 thru 09 The embedded SQL UPDATE statement uses the value of order_num in the
current order_rec record, and the value of stock_num in the current row in the arr_items
array, to locate the row in the items database table to be updated.

Function item_delete
This function deletes a row from the items database table, based on the values in the current record of
the items array.

Function item_delete:

01 FUNCTION item_delete(curr_pa)
02 DEFINE curr_pa SMALLINT
03
04 WHENEVER ERROR CONTINUE

Tutorial Chapter 11: Master/Detail | 133

05 DELETE FROM items
06 WHERE items.stock_num = arr_items[curr_pa].stock_num
07 AND items.order_num = order_rec.order_num
08 WHENEVER ERROR STOP
09
10 IF (SQLCA.SQLCODE == 0) THEN
11 MESSAGE msg10
12 ELSE
13 ERROR SQLERRMESSAGE
14 END IF
15
16 END FUNCTION

Note:

• Line 02 the index of the current row in the array is passed to this function and stored in the
variable curr_pa.

• Lines 05 thru 07 The embedded SQL DELETE statement uses the value of order_num in the
current order_rec record, and the value of stock_num in the current row in the arr_items
array, to locate the row in the items database table to be deleted.

Function get_stock_info
This function verifies that the stock number entered for a new row in the arr_items array exists in
the stock table. It retrieves the description, unit of measure, and the correct price based on whether
promotional pricing is in effect for the order.

Function get_stock_info:

01 FUNCTION get_stock_info(curr_pa, id)
02 DEFINE curr_pa SMALLINT,
03 id INTEGER,
04 sqltext STRING
05
06 IF id IS NULL THEN
07 RETURN FALSE
08 END IF
09
10 LET sqltext="SELECT description, unit,"
11 IF order_rec.promo = "N" THEN
12 LET sqltext=sqltext || "reg_price"
13 ELSE
14 LET sqltext=sqltext || "promo_price"
15 END IF
16 LET sqltext=sqltext ||
17 " FROM stock WHERE stock_num = ? AND fac_code = ?"
18
19 WHENEVER ERROR CONTINUE
20 PREPARE get_stock_cursor FROM sqltext
21 EXECUTE get_stock_cursor
22 INTO arr_items[curr_pa].description,
23 arr_items[curr_pa].unit,
24 arr_items[curr_pa].price
25 USING id, order_rec.fac_code
26 WHENEVER ERROR STOP
27
28 RETURN (SQLCA.SQLCODE == 0)
29
30 END FUNCTION

Note:

Tutorial Chapter 11: Master/Detail | 134

• Line 02 the index of the current row in the array is passed to this function and stored in the
variable curr_pa.

• Lines 10 thru 17 check whether the promotional pricing is in effect for the current order, and
build a SELECT statement to retrieve the description, unit, and regular or promotional price from
the stock table for a new item that is being added to the items table.

• Lines 20 thru 25 prepare and execute the SQL statement created before.
• Line 28 checks SQLCA.SQLCODE and returns TRUE if the database could be updated without

error.

Tutorial Chapter 12: Changing the User Interface Dynamically | 135

Tutorial Chapter 12: Changing the User Interface
Dynamically

This chapter focuses on using the classes and methods in the ui package of built-in classes to modify the
user interface at runtime. Among the techniques illustrated are hiding or disabling form items; changing the
text, style or image associated with a form item; loading a combobox from a database table; and adding
toolbars and topmenus dynamically.

• Built-in Classes on page 135
• Working with Forms on page 137
• Hiding Form Items on page 139
• Adding toolbars, topmenus, and action defaults on page 141
• Specifying a Function to Initialize all Forms on page 142
• Loading a ComboBox List on page 143
• Using the Dialog class in Interactive Statements on page 145
• Hiding Default Action Views on page 146
• Enabling and Disabling Fields on page 146
• Using the Interface Class on page 146

Built-in Classes
Included in the predefined functions that are built into Genero are special groups (classes) of functions
(methods) that act upon the objects that are created when your program is running. Each class of methods
interacts with a specific program object, allowing you to change the appearance or behavior of the objects.
Because these methods act upon program objects, the syntax is somewhat different from that of functions.

The classes are gathered together into packages:

• ui - classes related to the objects in the graphical user interface (GUI)
• base - classes related to non-GUI program objects
• om - classes that provide DOM and SAX document handling utilities

This tutorial focuses on using the classes and methods in the ui package to modify the user interface at
runtime.

Note: Variable names, class identifiers, and method names are not case-sensitive; the
capitalization used in the examples is for ease in reading.

Using the Classes

This example for the Window class also presents the general process that you should use.

The methods in the Window class interact with the Window objects in your program.

Getting a reference to the object

Before you can call any of the methods associated with Window objects, you must identify the specific
Window object that you wish to affect, and obtain a reference to it:

• Define a variable to hold the reference to the Window object. The data type of the variable is the class
identifier (ui.Window):

 DEFINE mywin ui.Window

Tutorial Chapter 12: Changing the User Interface Dynamically | 136

• Open a window in your program using the OPEN WINDOW or OPEN WINDOW ... WITH FORM
instruction:

 OPEN WINDOW w1 WITH FORM "testform"

• Get a reference to the specific Window object by using one of two class methods provided by the
Window class. class methods are called using the class identifier (ui.Window). You can specify the
Window object by name from among the open windows in your program, or choose the current window.

LET mywin = ui.Window.getCurrent() -- returns a reference to
 -- the current window object
LET mywin = ui.Window.forName("w1")-- returns a reference to
 -- the open window named "w1"

Calling a method

Now that you have a reference to the object, you can use that reference to call any of the methods listed
as object methods in the Window class documentation. For example, to change the window title for the
window referenced by mywin:

CALL mywin.setText("test")

See The Window class in the Genero Business Development Language User Guide for a complete list of
the methods in this class.

Example 1

01 MAIN
02 DEFINE mywin ui.Window
03
04 OPEN WINDOW w1 WITH FORM "testform"
05 LET mywin = ui.Window.getCurrent()
06 CALL mywin.setText("test")
07 MENU
08 ON ACTION quit
09 EXIT MENU
10 END MENU
11
12 END MAIN

Figure 24: Form with window title changed by the ui.Window.setText method

Tutorial Chapter 12: Changing the User Interface Dynamically | 137

Working with Forms
The Form class provides some methods that allow you to change the appearance or behavior of items on
a form.

Getting a reference to the Form object

In order to use the methods, you must get a reference to the form object. The Window class has a method
to get the reference to its associated form:

• Define variables for the references to the window object and to its form object. The data type for the
variables is the class identifier (ui.Window, ui.Form):

DEFINE f1 ui.Form, mywin ui.Window

• Open a form in your program using the OPEN WINDOW ... WITH FORM instruction:

OPEN WINDOW w1 WITH FORM ("testform")

• Next, get a reference to the window object. Then, use the getForm() class method of the Window
class to get a reference to the form object opened in that window:

LET mywin = ui.Window.getCurrent()
LET f1 = mywin.getForm() -- returns reference to form

Once you have the reference to the form object, you can call any of the object methods for the Form class

LET mywin = ui.Window.getCurrent()
LET f1 = mywin.getForm() -- get reference to form
-- call a Form class method
CALL f1.loadActionDefaults("mydefaults")

See The Form class section of the Genero Business Development Language User Guide for a complete
list of methods.

Specifying the name of a form item

Some of the methods in the Form class require you to provide the name of the form item. The name of the
form item in the ATTRIBUTES section of the form specification file corresponds to the name attribute of an
element in the runtime form file. For example:

• In the ATTRIBUTES section of the .per file

LABEL a1: lb1, TEXT = "State";
EDIT a2 = state.state_name;
BUTTON a3: quit, TEXT = "exit";
EDIT a4 = FORMONLY.pflag TYPE CHAR;

• In the runtime .42f file

<Label name="lb1" width="9" text="State" posY="0" posX="6" gridWidth="9"/>
<FormField name="state.state_name" colName="state_name"
 sqlType="CHAR(15)"
 fieldId="0" sqlTabName="state" tabIndex="1">
<Button name="quit" width="5" text="exit" posY="4" posX="6" gridWidth="5"/
>
<FormField name="formonly.pflag" colName="pflag" sqlType="CHAR"
 fieldId="1"
 sqlTabName="formonly" tabIndex="2">

Tutorial Chapter 12: Changing the User Interface Dynamically | 138

Note: Formfield names specified as FORMONLY (FORMONLY.pflag) are converted to lowercase
(formonly.pflag).

Although Genero BDL is not case-sensitive, XML is. When Genero creates the runtime XML file, the form
item types and attribute names are converted using the CamelCase convention:

• Form item type - the first letter is always capitalized, with subsequent letters in lowercase, unless the
type consists of multiple words joined together. In that case, the first letter of every subsequent word is
capitalized also (Label, FormField, Button).

• Attribute name - the first letter is always lowercase, with subsequent letters in lowercase, unless the
name consists of multiple words joined together. In that case, the first letter of every subsequent word is
capitalized also (text, gridWidth, colName).

If you use classes or methods in your code that require the form item type or attribute name, respect the
naming conventions.

Changing the text, image, and style properties of a form item

Some methods of the Form class allow you to change the value of specific properties of form items.

Call the methods using the reference to the form object. Provide the name of the form item and the value
for the property:

• Text property - the value can be any text string. To set the text of the label named lb1:

CALL f1.setElementText("lb1", "Newtext")

• Image property - the value can be a simple file name, a complete or relative path, or an URL (Uniform
Resource Locator) path to an image server. To set the image for the button named quit:

CALL f1.setElementImage("quit", "exit.jpg" placement="break")

• Style property - the value can be a presentation style defined in the active Presentation Styles file
(.4st file). To set the style for the label named lb1:

CALL f1.setElementStyle("lb1", "mystyle")

The style mystyle is an example of a specific style that was defined in a custom Presentation Styles XML
file, customstyles.4st. This style changes the text color to blue:

<Style name=".mystyle" >
 <StyleAttribute name="textColor" value="blue" />
</Style>

By default, the runtime system searches for the default.4st Presentation Style file. Use the following
method to load a different Presentation Style file:

CALL ui.interface.loadStyles("customstyles")

See Presentation styles in the Genero Business Development Language User Guide for additional
information about styles and the format of a Presentation Styles file.

Example 2

01 MAIN
02 DEFINE mywin ui.Window,
03 f1 ui.Form
04 CALL ui.interface.loadStyles("customstyles")
05 OPEN WINDOW w1 WITH FORM "testform"
06 LET mywin = ui.Window.getCurrent()

Tutorial Chapter 12: Changing the User Interface Dynamically | 139

07 CALL mywin.setText("test")
08 LET f1 = mywin.getForm()
09 MENU
10 ON ACTION changes
11 CALL f1.setElementText("lb1", "goodbye")
12 CALL f1.setElementText("quit", "leave")
13 CALL f1.setElementImage("quit", "exit.png")
14 CALL f1.setElementStyle("lb1", "mystyle")
15 ON ACTION quit
16 EXIT MENU
17 END MENU
18 END MAIN

Figure 25: Display on Windows™ platform after the changes button has been clicked.

Hiding Form Items
You can use Form class methods to change the value of the hidden property of form items, hiding parts
of the form from the user.

Interactive instructions such as INPUT or CONSTRUCT will automatically ignore a formfield that is hidden.
The value can be:

• 0 - the form item is not hidden; it is visible
• 1 - the form item is hidden and cannot be made visible by the user
• 2 - the form item is hidden, but the user can make it visible, using the context menu for a table, for

example

By default, all form items are visible.

Call the methods using the reference to the form object. Provide the name of the form item to the method
and set the value for hidden.

• setFieldHidden() - this method can be used to hide formfields only. The prefix in the name of the
formfield (tablename. or formonly.) is optional:

CALL f1.setFieldHidden("state_name",1)

• setElementHidden() - this method hides any form item, including formfields. If the item is a
formfield, the name must include the prefix:

CALL f1.setElementHidden("lb1", 1)
CALL f1.setElementHidden("state.state_name",1)
CALL f1.setElementHidden("formonly.pflag",1)

Genero adjusts the display of the form to eliminate blank spaces caused by hiding items, where possible.

Tutorial Chapter 12: Changing the User Interface Dynamically | 140

Example 3

01 SCHEMA custdemo
02 MAIN
03 DEFINE win ui.Window,
04 fm ui.Form,
05 mycust record like customer.*
06 CONNECT TO "custdemo"
07 OPEN WINDOW w1 WITH FORM "hidecust"
08 SELECT * INTO mycust.* FROM customer
09 WHERE store_num = 101
10 DISPLAY BY NAME mycust.*
11 LET win = ui.Window.getCurrent()
12 LET fm = win.getForm()
13 MENU
14 ON ACTION hide
15 CALL fm.setFieldHidden("contact_name",1)
16 CALL fm.setFieldHidden("addr2", 1)
17 -- hide the label for contact name
18 CALL fm.setElementHidden("lbl", 1)
19 ON ACTION quit
20 EXIT MENU
21 END MENU
22 END MAIN

Figure 26: Form before hiding element

Tutorial Chapter 12: Changing the User Interface Dynamically | 141

Figure 27: Form after hiding element

Adding toolbars, topmenus, and action defaults
The Form class provides methods that apply topmenus, toolbars, and action defaults to a form, to assist
you in standardizing forms.

The topmenus, toolbars, or action defaults are defined in external XML resource files having the following
extensions:

• Action Defaults - .4ad
• Toolbar - .4tb
• Topmenu - .4tm

Call the methods using the reference to the form object and specify the resource file name. Do not specify
a path or file extension in the file name. If the file is not in the current directory and the path is not specified,
Genero will search the directories indicated by the DBPATH / FGLRESOURCEPATH environment variable.

• Action defaults file - default attributes for form items associated with actions; these action defaults are
local to the form. See Action defaults files in the Genero Business Development Language User Guide
for information about the format and contents of the file.

CALL f1.loadActionDefaults("mydefaults")

• Toolbar file - contains a toolbar definition to be used with the referenced form object. See Toolbars in
the Genero Business Development Language User Guide for information about the format and contents
of the file.

CALL f1.loadToolBar("mytoolbar")

• Topmenu file - contains a topmenu definition to be used with the referenced form object. See
Topmenus in the Genero Business Development Language User Guide for information about the format
and contents of the file.

CALL f1.loadTopMenu("mytopmenu")

Example 4

01 MAIN
02 DEFINE mywin ui.Window,
03 f1 ui.Form

Tutorial Chapter 12: Changing the User Interface Dynamically | 142

04 OPEN WINDOW w1 WITH FORM "testform"
05 LET mywin = ui.Window.forName("w1")
06 CALL mywin.setText("test")
07 LET f1 = mywin.getForm()
08 CALL f1.loadTopMenu("mytopmenu")
09 MENU
10 ON ACTION quit
11 EXIT MENU
12 END MENU
13
14 END MAIN

Figure 28: Display of a topmenu on Windows™ platform

Specifying a Function to Initialize all Forms
To assist in standardizing forms, you can create an initializer function in your program that will be called
automatically whenever any form is opened. A reference to the form object is passed by the runtime
system to the function.

Example initializer function:

01 FUNCTION myforminit(f1)
02 DEFINE f1 ui.Form
03
04 CALL f1.loadTopMenu("mytopmenu")
05 ...
06
07 END FUNCTION

The setDefaultInitializer() method applies to all forms, rather than to a specific form object. It is a
class method, and you call it using the class name as a prefix. Specify the name of the initializer function in
lowercase letters:

CALL ui.Form.setDefaultInitializer("myforminit")

You can call the myforminit function in your program as part of a setup routine. The myforminit
function can be in any module in the program.

Example 5

01 MAIN
02 CALL ui.Form.setDefaultInitializer("myforminit")
03 OPEN WINDOW w1 WITH FORM "testform"
04 MENU
05 ON ACTION quit

Tutorial Chapter 12: Changing the User Interface Dynamically | 143

06 EXIT MENU
07 END MENU
08 OPEN WINDOW w2 WITH FORM "testform2"
09 MENU
10 ON ACTION quit
11 EXIT MENU
12 END MENU
13 END MAIN

Figure 29: Form testform with initializer function

Figure 30: Form testform2 using the same initializer function.

Loading a ComboBox List
A ComboBox presents a list of values in a dropdown box on a form. The values are for the underlying
formfield. For example, the following form specification file contains a ComboBox that represents the
formfield customer.state:

01 SCHEMA custdemo
02 LAYOUT
03 GRID
04 {
05 Store #:[a0]
06 Name:[a1]
07 State:[a5]
08 }
09 END -- GRID
10 END
11 TABLES customer
12 ATTRIBUTES
13 EDIT a0=customer.store_num;
14 EDIT a1=customer.store_name;
15 COMBOBOX a5=customer.state;

Tutorial Chapter 12: Changing the User Interface Dynamically | 144

16 END

During an INPUT, INPUT ARRAY or CONSTRUCT statement the ComboBox is active, and the user
can select a value from the dropdown list. The value selected will be stored in the formfield named
customer.state.

Getting a reference to the object

The ComboBox class contains methods that manage the values for a ComboBox. In order to use these
methods you must first obtain a reference to the ComboBox object:

• Define a variable for the reference to the ComboBox object. The data type for the variables is the class
identifier (ui.ComboBox):

 DEFINE cb ui.ComboBox

• Open a form that contains a ComboBox using OPEN WINDOW ... WITH FORM:

 OPEN WINDOW w1 WITH FORM ("testcb")

• Next, get a reference to the ComboBox object using the method provided. As a class method, this
method is called using the class identifier. Provide the name of the formfield to the method:

 LET cb = ui.ComboBox.forName("customer.state")

Once you have a reference to the ComboBox object, you can call any of the methods defined in the class
as object methods:

• To add an item to a ComboBox list

You can instruct the ComboBox to store a code (the name) in the formfield that the ComboBox
represents, but to display the description (the text) in the list to help the user make his selection. For
example, to store the value "IL" (name) in the formfield, but to display "Illinois" (text) to the user:

CALL cb.additem("IL", "Illinois")

If text is NULL, name will be displayed.
• To clear the list of all values

CALL cb.clear()

• To remove an item from the list; provide the name

CALL cb.removeitem("IL")

See the The ComboBox class documentation in the Genero Business Development Language User Guide
for a complete list of the methods.

Adding values to the ComboBox from a Database Table

An example in Tutorial Chapter 5 GUI Options loads a ComboBox with static values. The following
example retrieves the valid list of values from a database table (state) instead:

Example 6

01 SCHEMA custdemo
02 MAIN
03 DEFINE cb ui.ComboBox
04 CONNECT TO "custdemo"
05 OPEN WINDOW w1 WITH FORM "testcb"

Tutorial Chapter 12: Changing the User Interface Dynamically | 145

06 LET cb = ui.ComboBox.forName("customer.state")
07 IF cb IS NOT NULL THEN
08 CALL loadcb(cb)
09 END IF
10 ...
11 END MAIN
12
13 FUNCTION loadcb(cb)
12 DEFINE cb ui.ComboBox,
13 l_state_code LIKE state.state_code,
14 l_state_name LIKE state.state_name
15
18 DECLARE mycurs CURSOR FOR
19 SELECT state_code, state_name FROM state
20 CALL cb.clear()
21 FOREACH mycurs INTO l_state_code, l_state_name
22 -- provide name and text for the ComboBox item
23 CALL cb.addItem(l_state_code,l_state_name)
24 END FOREACH
26 END FUNCTION

Figure 31: Loaded combobox

As an alternative to calling the loadcb function in your BDL program, this function can be specified as the
initializer function for the ComboBox in the form specification file. When the form is opened, The initializer
function is called automatically and a reference to the ComboBox object is passed to it. Provide the name
of the initializer function in lowercase:

ATTRIBUTES
COMBOBOX a5=customer.state, INITIALIZER = loadcb;

Using the Dialog class in Interactive Statements
The Dialog class provides methods that can only be called from within an interactive instruction (dialog)
such as MENU, INPUT, INPUT ARRAY, DISPLAY ARRAY and CONSTRUCT.

The methods are called through the predefined variable DIALOG, which automatically provides a reference
to the Dialog object.

Tutorial Chapter 5 Enhancing the Form illustrates the use of Dialog class methods to disable/enable
actions during a MENU interactive statement.

Tutorial Chapter 12: Changing the User Interface Dynamically | 146

Hiding Default Action Views
To hide default action views (the buttons that appear on the form when there is no specific action view for
an action), use the following Dialog class method.

Values for the hidden state of the action view can be:

• 0 - FALSE, the action is visible
• 1 - TRUE, the action is hidden

MENU
 BEFORE MENU
 CALL DIALOG.setActionHidden("next",1)
 ...
END MENU

This example hides the action that has the name next. The reference to the DIALOG object was provided
by the runtime system.

Enabling and Disabling Fields
This method in the Dialog class allows you to disable fields on a form during the interactive statement;
the field is still visible, but the user cannot edit the value.

Values for the active state of the field can be:

• 0 - FALSE, the field is disabled
• 1 - TRUE, the field is enabled

The reference to the DIALOG object is provided by the runtime system. Provide the name of the field and
its state to the method.

The following example disables the store_name field during an INPUT statement:

 INPUT BY NAME customer.*
 BEFORE INPUT
 CALL DIALOG.setFieldActive("customer.store_name",0)
 ...
 END INPUT

See the The Dialog class section in the Genero Business Development Language User Guide for a
complete list of its methods.

Using the Interface Class
Methods in the Interface class allow you interact with the user interface, as shown in the examples.

You do not need to get an object reference to the Interface; call the methods in the Interface class
using the class identifier, ui.Interface.

Refresh the interface

The User Interface on the Client is synchronized with the DOM tree of the runtime system when an
interactive statement is active. If you want to show something on the screen while the program is running in
a batch procedure, you must force synchronization with the front end.

As shown in the Tutorial Chapter 9 Reports, the changes made in the program to the value of the progress
bar are not displayed on the user's window, since the report is a batch process and no user interaction is

Tutorial Chapter 12: Changing the User Interface Dynamically | 147

required. To force the changes in the progress bar to be reflected on the screen, the following method from
the Interface Class is used:

CALL ui.Interface.refresh()

Load custom XML files

• Start Menus, Toolbar icons, and Topmenus can each be defined in a unique XML file.

Use the appropriate extension:

• Start Menu - .4sm
• Toolbar - .4tb
• Topmenu - .4tm

Use the corresponding method to load the file:

CALL ui.Interface.loadStartMenu("mystartmenu")
CALL ui.Interface.loadTopMenu("tmstandard")
CALL ui.Interface.loadToolbar("tbstandard")

Do not specify a path or file extension in the file name. The runtime system automatically searches
for a file with the correct extension in the current directory and in the path list defined in the DBPATH /
FGLRESOURCEPATH environment variable.

See the Loading a start menu from an XML file, ui.Interface.loadTopMenu, or ui.Interface.loadToolBar
documentation in the Genero Business Development Language User Guide for details on the format and
contents of the files.

• Custom Presentation Styles and global Action Defaults must each be defined in a unique file.

Use the appropriate extension:

• Presentation Styles - .4st
• Action Defaults - .4ad

Use the corresponding method to load the file:

CALL ui.Interface.loadStyles("mystyles")
CALL ui.Interface.loadActionDefaults("mydefaults")

You can provide an absolute path with the corresponding extension, or a simple file name without
the extension. If you give the simple file name, the runtime system searches for the file in the current
directory. If the file does not exist, it searches in the directories defined in the DBPATH/ FGLRESOURCEPATH
environment variable.

The action defaults are applied only once, to newly created elements. For example, if you first load a
toolbar, then you load a global Action defaults file, the attribute of the toolbar items will not be updated with
the last loaded Action defaults.

See Presentation styles and Action defaults files in the Genero Business Development Language User
Guide for details on the format and contents of the file.

Identify the Genero client

You can use methods in the Interface Class to identify the type and version of the Genero client
currently being used by the program:

CALL ui.Interface.getFrontEndName() RETURNING typestring
CALL ui.Interface.getFrontEndVersion() RETURNING versionstring

Each method returns a string. The type will be "Gdc" or "Console".

Tutorial Chapter 12: Changing the User Interface Dynamically | 148

Some of the other methods in the ui.Interface class allow you to:

• Set and retrieve program names and titles
• Call Front End functions that reside on the Genero client
• Work with MDI windows

See the The Interface class documentation in the Genero Business Development Language User Guide for
a complete list of the methods.

Tutorial Chapter 13: Master/Detail using Multiple Dialogs | 149

Tutorial Chapter 13: Master/Detail using Multiple Dialogs

This chapter shows how to implement order and items input in a unique DIALOG statement. In chapter 11
the order input is detached from the items input. The code example in chapter 13 makes both order and
item input fields active at the same time, which is more natural in GUI applications.

• The Master-Detail sample on page 149
• The Customer List Form on page 150
• The Customer List Module on page 151
• The Orders Form on page 153
• The Orders Program orders.4gl on page 155

The Master-Detail sample

The example discussed in this chapter is designed for the input of order information (headers and order
lines), illustrating a typical master-detail relationship. The form used by the example contains fields from
both the orders and items tables in the custdemo database. The result is very similar to the example of
chapter 11. However, in this program the end user can input order and items data simultaneously, because
the form is driven by a DIALOG instruction.

When the program starts, the existing rows from the orders and items tables have already been
retrieved and are displayed on the form. The user can browse through the orders and items to update or
delete them, add new orders or items, and search for specific orders by entering criteria in the form.

Figure 32: Master-Detail form

There are different ways to implement a Master/Detail form with multiple dialogs. This chapter shows one
of them. Genero provides the basics bricks, then it's up to you to adapt the programming pattern, according
to the ergonomics you want to expose to the end user.

Tutorial Chapter 13: Master/Detail using Multiple Dialogs | 150

The Customer List Form
The Customer List form displays when the user clicks the button next to the store number field (the
buttonEdit widget). The custlist.per form defines a typical 'zoom' form with a filter field and record list
where the user can pick an element to be used in a field of the main form. Using this form, the user can
scroll through the list to pick a store, or can enter query criteria to filter the list prior to picking. The fields
that make up the columns of the table that display the list are defined as FORMONLY fields. When TYPE is
not defined, the default data type for FORMONLY fields is CHAR.

Form custlist.per:

001 SCHEMA custdemo
002
003 LAYOUT
004 GRID
005 {
006 <g g1 >
007 Store name: [fc :fe]
008 < >
009 <t t1 >
010 Id Name City
011 [f01 |f02 |f03]
012 [f01 |f02 |f03]
013 [f01 |f02 |f03]
014 [f01 |f02 |f03]
015 < >
016 }
017 END
018 END
019
020 TABLES
021 customer
022 END
023
024 ATTRIBUTES
025 GROUP g1: TEXT="Filter";
026 EDIT fc = customer.store_name;
027 BUTTON fe: fetch, IMAGE="filter";
028 EDIT f01=FORMONLY.s_num;
029 EDIT f02=FORMONLY.s_name;
030 EDIT f03=FORMONLY.s_city;
031 END
032
033 INSTRUCTIONS
034 SCREEN RECORD sa_cust (FORMONLY.*);
035 END

Note:

• Line 001 defines the database schema to be used by this form.
• Lines 003 thru 018 define a LAYOUT section that describes the layout of the form.

• Lines 006 thru 008 define a GROUPBOX with the fc field where the user can enter a search
criteria, and the fe button to trigger the query.

• Lines 009 thru 015 define a TABLE that will be used to display the result set of the query.
• Lines 020 thru 022 define a TABLES section to reference database schema tables.
• Lines 024 thru 031 define an ATTRIBUTES section with the details of form fields.

• Line 026 defines the query field with a reference to the customer.store_name database
column. This will implicitly define the data type of the field and the Query by Example input
rules.

Tutorial Chapter 13: Master/Detail using Multiple Dialogs | 151

• Line 027 defines the BUTTON that will invoke the database query.
• Lines 028 thru 030 define the columns of the table with the FORMONLY prefix.

• Lines 033 thru 035 define an INSTRUCTIONS section to group item fields in a screen array.

The Customer List Module
The custlist.4gl module defines a 'zoom' module, to let the user select a customer from a list. The
module could be reused for any application that requires the user to select a customer from a list.

This module uses the custlist.per form and is implemented with a DIALOG instruction defining a
CONSTRUCT sub-dialog and a DISPLAY ARRAY sub-dialog. The display_custlist() function in this
module returns the customer id and the name.

In the application illustrated in this chapter, the main module orders.4gl will call the
display_custlist() function to retrieve a customer selected by the user.

01 ON ACTION zoom1
02 CALL display_custlist() RETURNING id, name
03 IF (id > 0) THEN
04 ...

Here is the complete source code.

Module custlist.4gl:

001 SCHEMA custdemo
002
003 TYPE cust_t RECORD
004 store_num LIKE customer.store_num,
005 store_name LIKE customer.store_name,
006 city LIKE customer.city
007 END RECORD
008
009 DEFINE cust_arr DYNAMIC ARRAY OF cust_t
010
011 FUNCTION custlist_fill(where_clause)
012 DEFINE where_clause STRING
013 DEFINE idx SMALLINT
014 DEFINE cust_rec cust_t
015
016 DECLARE custlist_curs CURSOR FROM
017 "SELECT store_num, store_name, city "||
018 " FROM customer"||
019 " WHERE "||where_clause||
020 " ORDER BY store_num"
021
022 LET idx = 0
023 CALL cust_arr.clear()
024 FOREACH custlist_curs INTO cust_rec.*
025 LET idx = idx + 1
026 LET cust_arr[idx].* = cust_rec.*
027 END FOREACH
028
029 END FUNCTION
030
031 FUNCTION display_custlist()
033 DEFINE ret_num LIKE customer.store_num
034 DEFINE ret_name LIKE customer.store_name
035 DEFINE where_clause STRING
036 DEFINE idx SMALLINT
037

Tutorial Chapter 13: Master/Detail using Multiple Dialogs | 152

038 OPEN WINDOW wcust WITH FORM "custlist"
039
040 LET ret_num = 0
041 LET ret_name = NULL
042
043 DIALOG ATTRIBUTES(UNBUFFERED)
044
045 CONSTRUCT BY NAME where_clause ON customer.store_name
046 END CONSTRUCT
047
048 DISPLAY ARRAY cust_arr TO sa_cust.*
049 END DISPLAY
050
051 BEFORE DIALOG
052 CALL custlist_fill("1 = 1")
053
054 ON ACTION fetch
055 CALL custlist_fill(where_clause)
056
057 ON ACTION accept
058 LET idx = DIALOG.getCurrentRow("sa_cust")
059 IF idx > 0 THEN
060 LET ret_num = cust_arr[idx].store_num
061 LET ret_name = cust_arr[idx].store_name
062 EXIT DIALOG
063 END IF
064
065 ON ACTION cancel
066 EXIT DIALOG
067
068 END DIALOG
069
070 CLOSE WINDOW wcust
071
072 RETURN ret_num, ret_name
073
074 END FUNCTION

Note:

• Line 001 defines the database schema to be used by this module.
• Lines 003 thru 007 define the cust_t TYPE as a RECORD with three members declared with

a LIKE reference to the database column.
• Line 009 defines the cust_arr program array with the type defined in previous lines.
• Lines 011 thru 029 define the custlist_fill() function which fills cust_arr with the

values of database rows.

• Lines 016 thru 020 declare the custlist_curs SQL cursor by using the where_clause
condition passed as the parameter.

• Lines 022 thru 027 fetch the database rows into cust_arr.
• Lines 031 thru 074 implement the display_custlist() function to be called by the main

module.

• Lines 040 and 041 initialize the ret_num and ret_name variables. If the user cancels the
dialog, the function will return these values to let the caller decide what to do.

• Lines 043 thru 068 define a DIALOG instruction implementing the controller of the form.

• Lines 045 thru 046 define the CONSTRUCT sub-dialog controlling the
customer.store_name query field.

• Lines 048 thru 049 define the DISPLAY ARRAY sub-dialog controlling the sa_cust
screen array.

Tutorial Chapter 13: Master/Detail using Multiple Dialogs | 153

• Lines 051 thru 052 implement the BEFORE DIALOG trigger, to fill the list with an initial
result set by passing the query criteria as "1 =1" to the cust_list_fill() function.

• Lines 054 thru 055 implement the fetch ON ACTION trigger, executed when the user
presses the fe button in the form, to fill the list with a result set by passing the query
criteria in where_clause to the cust_list_fill function.

• Lines 057 thru 063 implement the accept ON ACTION trigger, executed when the user
validates the dialog with the OK button or with a double-click in a row of the list. The code
initializes the return values ret_num and ret_name with the current row.

• Lines 065 thru 066 implement the cancel ON ACTION trigger, to leave the dialog when
the user hits the Cancel button.

• Line 072 returns the values of the ret_num and ret_name variables.

The Orders Form
The form specification file orderform.per defines a form for the orders program, and displays fields
containing the values of a single order from the orders table. The name of the store is retrieved from the
customer table, using the column store_num, and displayed.

A screen array displays the associated rows from the items table. Although order_num is also one of the
fields in the items table, it does not have to be included in the screen array or in the screen record, since
the order number will be the same for all the items displayed for a given order. For each item displayed
in the screen array, the values in the description and unit columns from the stock table are also
displayed.

The values in FORMONLY fields are not retrieved from a database; they are calculated by the BDL program
based on the entries in other fields. In this form FORMONLY fields are used to display the calculations made
by the BDL program for item line totals and the order total. Their data type is defined as DECIMAL.

This form uses some of the attributes that can be assigned to fields in a form. See the ATTRIBUTES
section in the Genero Business Development Language User Guide for a complete list of the available
attributes.

The form defines a toolbar and a topmenu. The decoration of toolbar or topmenu action views is
centralized in an ACTION DEFAULTS section.

Form orderform.per:

001 SCHEMA custdemo
002
003 ACTION DEFAULTS
004 ACTION find (TEXT="Find", IMAGE="find",
 COMMENT="Query database")
005 ACTION new (TEXT="New", IMAGE="new",
 COMMENT="New order")
006 ACTION save (TEXT="Save", IMAGE="disk",
 COMMENT="Check and save order info")
007 ACTION append (TEXT="Line", IMAGE="new",
 COMMENT="New order line")
008 ACTION delete (TEXT="Del", IMAGE="eraser",
 COMMENT="Delete current order line")
009 ACTION first (TEXT="First",
 COMMENT="Move to first order in list")
010 ACTION previous (TEXT="Prev",
 COMMENT="Move to previous order in list")
011 ACTION next (TEXT="Next",
 COMMENT="Move to next order in list")
012 ACTION last (TEXT="Last",
 COMMENT="Move to last order in list")
013 ACTION quit (TEXT="Quit",
 COMMENT="Exit the program", IMAGE="quit")

Tutorial Chapter 13: Master/Detail using Multiple Dialogs | 154

014 END
015
016 TOPMENU
017 GROUP ord (TEXT="Orders")
018 COMMAND find
019 COMMAND new
020 COMMAND save
021 SEPARATOR
022 COMMAND quit
023 END
024 GROUP ord (TEXT="Items")
025 COMMAND append
026 COMMAND delete
027 END
028 GROUP navi (TEXT="Navigation")
029 COMMAND first
030 COMMAND previous
031 COMMAND next
032 COMMAND last
033 END
034 GROUP help (TEXT="Help")
035 COMMAND about (TEXT="About")
036 END
037 END
038
039 TOOLBAR
040 ITEM find
041 ITEM new
042 ITEM save
043 SEPARATOR
044 ITEM append
045 ITEM delete
046 SEPARATOR
047 ITEM first
048 ITEM previous
049 ITEM next
050 ITEM last
051 SEPARATOR
052 ITEM quit
053 END
054
055 LAYOUT
056 VBOX
057 GROUP
058 GRID
059 {
060 Store #:[f01] [f02]
061 Order #:[f03] Order Date:[f04] Ship By:[f06]
062 Factory:[f05] [f07]
063 Order Total:[f14]
064 }
065 END
066 END -- GROUP
067 TABLE
068 {
069 Stock# Description Qty Unit Price Total
070 [f08 |f09 |f10 |f11 |f12 |f13]
071 [f08 |f09 |f10 |f11 |f12 |f13]
072 [f08 |f09 |f10 |f11 |f12 |f13]
073 [f08 |f09 |f10 |f11 |f12 |f13]
074 }
075 END
076 END
077 END

Tutorial Chapter 13: Master/Detail using Multiple Dialogs | 155

078
079 TABLES
080 customer, orders, items, stock
081 END
082
083 ATTRIBUTES
084 BUTTONEDIT f01 = orders.store_num, REQUIRED, ACTION=zoom1;
085 EDIT f02 = customer.store_name, NOENTRY;
086 EDIT f03 = orders.order_num, NOENTRY;
087 DATEEDIT f04 = orders.order_date;
088 EDIT f05 = orders.fac_code, UPSHIFT;
089 EDIT f06 = orders.ship_instr;
090 CHECKBOX f07 = orders.promo, TEXT="Promotional",
091 VALUEUNCHECKED="N", VALUECHECKED="Y";
092 BUTTONEDIT f08 = items.stock_num, REQUIRED, ACTION=zoom2;
093 LABEL f09 = stock.description;
094 EDIT f10 = items.quantity, REQUIRED;
095 LABEL f11 = stock.unit;
096 LABEL f12 = items.price;
097 LABEL f13 = formonly.line_total TYPE DECIMAL(9,2);
098 EDIT f14 = formonly.order_total TYPE DECIMAL(9,2), NOENTRY;
099 END
100
101 INSTRUCTIONS
102 SCREEN RECORD sa_items(
103 items.stock_num,
104 stock.description,
105 items.quantity,
106 stock.unit,
107 items.price,
108 line_total
109)
110 END

Note:

• Line 001 defines the database schema to be used by this form.
• Lines 003 thru 014 define a ACTION DEFAULTS section with view defaults such as text and

comments.
• Lines 016 thru 037 define a TOPMENU section for a pull-down menu.
• Lines 039 thru 053 define a TOOLBAR section for a typical toolbar.
• Lines 055 thru 077 define a LAYOUT section that describes the layout of the form.
• Lines 079 thru 081 define a TABLES section to list all the database schema tables that are

referenced for fields in the ATTRIBUTES section of the form.
• Lines 083 thru 099 define an ATTRIBUTES section with the details of form fields.

• Lines 084 and 092 define BUTTONEDIT fields, with buttons that allow the user to trigger
actions defined in the .4gl module.

• Lines 101 thru 110 define an INSTRUCTIONS section to group item fields in a screen array.

The Orders Program orders.4gl
The orders.4gl module implements the main form controller. Most of the functionality has been
described in previous chapters. In this section we will only focus on the DIALOG instruction programming.
The program implements a DIALOG instruction, including an INPUT BY NAME sub-dialog for the order
fields input, and an INPUT ARRAY sub-dialog for the items input. Unlike traditional 4GL programs using
singular dialogs, you typically start the program in the multiple dialog instruction, eliminating the global
MENU instruction.

• Module variables of orders.4gl on page 156

Tutorial Chapter 13: Master/Detail using Multiple Dialogs | 156

• Function orditems_dialog on page 157
• Function order_update on page 161
• Function order_new on page 162
• Function order_validate on page 163
• Function order_query on page 164

Module variables of orders.4gl
The module variables are used by the orders.4gl module.

Module variables of orders.4gl

001 SCHEMA custdemo
002
003 TYPE order_t RECORD
004 store_name LIKE customer.store_name,
005 order_num LIKE orders.order_num,
006 order_date LIKE orders.order_date,
007 fac_code LIKE orders.fac_code,
008 ship_instr LIKE orders.ship_instr,
009 promo LIKE orders.promo
010 END RECORD,
011 item_t RECORD
012 stock_num LIKE items.stock_num,
013 description LIKE stock.description,
014 quantity LIKE items.quantity,
015 unit LIKE stock.unit,
016 price LIKE items.price,
017 line_total DECIMAL(9,2)
018 END RECORD
019
020 DEFINE order_rec order_t,
021 arr_ordnums DYNAMIC ARRAY OF INTEGER,
022 orders_index INTEGER,
023 arr_items DYNAMIC ARRAY OF item_t,
024 order_total DECIMAL(9,2)
025
026 CONSTANT title1 = "Orders"
027 CONSTANT title2 = "Items"
028
029 CONSTANT msg01 = "You must query first"
030 CONSTANT msg02 = "Enter search criteria"
031 CONSTANT msg03 = "Canceled by user"
032 CONSTANT msg04 = "No rows found, enter new search criteria"
033 CONSTANT msg05 = "End of list"
034 CONSTANT msg06 = "Beginning of list"
035 CONSTANT msg07 = "Invalid stock number"
036 CONSTANT msg08 = "Row added to the database"
037 CONSTANT msg09 = "Row updated in the database"
038 CONSTANT msg10 = "Row deleted from the database"
039 CONSTANT msg11 = "New order record created"
040 CONSTANT msg12 = "This customer does not exist"
041 CONSTANT msg13 = "Quantity must be greater than zero"
042 CONSTANT msg14 = "%1 orders found in the database"
043 CONSTANT msg15 = "There are no orders selected, exit program?"
044 CONSTANT msg16 = "Item is not available in current factory %1"
045 CONSTANT msg17 = "Order %1 saved in database"
046 CONSTANT msg18 = "Order input program, version 1.01"
047 CONSTANT msg19 = "To save changes, move focus to another row
 or to the order header"
048
049 CONSTANT move_first = -2
050 CONSTANT move_prev = -1

Tutorial Chapter 13: Master/Detail using Multiple Dialogs | 157

051 CONSTANT move_next = 1
052 CONSTANT move_last = 2

Note:

• Line 001 defines the database schema to be used by this module.
• Lines 003 thru 010 define the order_t TYPE as a RECORD with six members declared with a

LIKE reference to the database column. This type will be used for the orders records.
• Lines 011 thru 018 define the item_t TYPE as a RECORD to be used for the items records.
• Line 020 defines the order_rec variable, to hold the data of the current order header.
• Line 021 defines the arr_ordnums array, to hold the list of order numbers fetched from the last

query. This array will be used to navigate in the current list of orders.
• Line 022 defines the orders_index variable, defining the current order in the arr_ordnums

array.
• Line 023 defines the arr_items array with the item_t type, to hold the lines of the current

order.
• Line 024 defines the order_total variable, containing the order amount.
• Lines 026 thru 047 define string constants with text messages used by the orders.4gl

module.
• Lines 049 thru 052 define numeric constants used for the order_move() navigation function.

Function orditems_dialog
This is the most important function of the program. It implements the multiple dialog instruction to control
order and items input simultaneously.

The function uses the opflag variable to determine the state of the operations for items:

• N - no current operation
• T - temporary row was created
• I - row insertion was done in the list
• M - row in the list was modified

Function orditems_dialog (orders.4gl)

001 FUNCTION orditems_dialog()
002 DEFINE query_ok SMALLINT,
003 id INTEGER,
004 name LIKE customer.store_name,
005 opflag CHAR(1),
006 curr_pa INTEGER
007
008 DIALOG ATTRIBUTES(UNBUFFERED)
009
010 INPUT BY NAME order_rec.*, order_total
011 ATTRIBUTES(WITHOUT DEFAULTS, NAME="order")
012
013 ON ACTION find
014 IF NOT order_update(DIALOG) THEN NEXT FIELD CURRENT END IF
015 CALL order_query()
016
017 ON ACTION new
018 IF NOT order_update(DIALOG) THEN NEXT FIELD CURRENT END IF
019 IF NOT order_new() THEN
020 EXIT PROGRAM
021 END IF
022
023 ON ACTION save
024 IF NOT order_update(DIALOG) THEN NEXT FIELD CURRENT END IF
025

Tutorial Chapter 13: Master/Detail using Multiple Dialogs | 158

026 ON CHANGE store_num
027 IF NOT order_check_store_num() THEN NEXT FIELD CURRENT END IF
028
029 ON ACTION zoom1
030 CALL display_custlist() RETURNING id, name
031 IF id > 0 THEN
032 LET order_rec.store_num = id
033 LET order_rec.store_name = name
034 CALL DIALOG.setFieldTouched("store_num", TRUE)
035 END IF
036
037 AFTER INPUT
038 IF NOT order_update(DIALOG) THEN NEXT FIELD CURRENT END IF
039
040 ON ACTION first
041 IF NOT order_update(DIALOG) THEN NEXT FIELD CURRENT END IF
042 CALL order_move(move_first)
043 ON ACTION previous
044 IF NOT order_update(DIALOG) THEN NEXT FIELD CURRENT END IF
045 CALL order_move(move_prev)
046 ON ACTION next
047 IF NOT order_update(DIALOG) THEN NEXT FIELD CURRENT END IF
048 CALL order_move(move_next)
049 ON ACTION last
050 IF NOT order_update(DIALOG) THEN NEXT FIELD CURRENT END IF
051 CALL order_move(move_last)
052
053 END INPUT
054
055 INPUT ARRAY arr_items FROM sa_items.*
056 ATTRIBUTES (WITHOUT DEFAULTS, INSERT ROW =FALSE)
057
058 BEFORE INPUT
059 MESSAGE msg19
060
061 BEFORE ROW
062 LET opflag = "N"
063 LET curr_pa = DIALOG.getCurrentRow("sa_items")
064 CALL DIALOG.setFieldActive("stock_num", FALSE)
065
066 BEFORE INSERT
067 LET opflag = "T"
068 LET arr_items[curr_pa].quantity = 1
069 CALL DIALOG.setFieldActive("stock_num", TRUE)
070
071 AFTER INSERT
072 LET opflag = "I"
073
074 BEFORE DELETE
075 IF opflag="N" THEN
076 IF NOT item_delete(curr_pa) THEN
077 CANCEL DELETE
078 END IF
079 END IF
080
081 AFTER DELETE
082 LET opflag="N"
083
084 ON ROW CHANGE
085 IF opflag != "I" THEN LET opflag = "M" END IF
086
087 AFTER ROW
088 IF opflag == "I" THEN
089 IF NOT item_insert(curr_pa) THEN

Tutorial Chapter 13: Master/Detail using Multiple Dialogs | 159

090 NEXT FIELD CURRENT
091 END IF
092 CALL items_line_total(curr_pa)
093 END IF
094 IF opflag == "M" THEN
095 IF NOT item_update(curr_pa) THEN
096 NEXT FIELD CURRENT
097 END IF
098 CALL items_line_total(curr_pa)
099 END IF
100
101 ON ACTION zoom2
102 LET id = display_stocklist()
103 IF id > 0 THEN
104 IF NOT get_stock_info(curr_pa,id) THEN
105 LET arr_items[curr_pa].stock_num = NULL
106 ELSE
107 LET arr_items[curr_pa].stock_num = id
108 END IF
109 CALL DIALOG.setFieldTouched("stock_num", TRUE)
110 END IF
111
112 ON CHANGE stock_num
113 IF NOT get_stock_info(curr_pa,
114 arr_items[curr_pa].stock_num) THEN
115 LET arr_items[curr_pa].stock_num = NULL
116 CALL __mbox_ok(title2,msg07,"stop")
117 NEXT FIELD stock_num
118 ELSE
119 CALL items_line_total(curr_pa)
120 END IF
121
122 ON CHANGE quantity
123 IF arr_items[curr_pa].quantity <= 0 THEN
124 CALL __mbox_ok(title2,msg13,"stop")
125 NEXT FIELD quantity
126 ELSE
127 CALL items_line_total(curr_pa)
128 END IF
129
130 END INPUT
131
132 BEFORE DIALOG
133 IF NOT order_select("1=1") THEN
134 CALL order_query()
135 END IF
136
137 ON ACTION about
138 CALL __mbox_ok(title1,msg18,"information")
139
140 ON ACTION quit
141 EXIT DIALOG
142
143 END DIALOG
144
145 END FUNCTION

Note:

• Lines 002 thru 006 define the variables used by this function.
• Lines 008 thru 143 define a DIALOG instruction implementing the controller of the form.

Tutorial Chapter 13: Master/Detail using Multiple Dialogs | 160

• Lines 010 thru 053 implement the INPUT BY NAME sub-dialog, controlling the order_rec
record input. All actions triggers declared inside the INPUT BY NAME sub-dialog will only be
activated if the focus is in this sub-dialog. Data validation will occur when focus is lost by this
sub-dialog, or when the user presses the Save button.

• Lines 013 thru 015 implement the find ON ACTION trigger, to execute a Query By
Example with the order_query() function. Before calling the query function, we must
validate and save current modifications in the order record with the order_update()
function. If the validation/save fails, the cursor remains in the current field (when the user
clicks an action view, such as a Toolbar icon, the focus does not change.)

• Lines 017 thru 021 implement the new ON ACTION trigger, to create a new order record.
Before calling the new function, we must validate and save current modifications in the
order record with the order_update() function.

• Lines 023 thru 024 implement the save ON ACTION trigger, to validate and save current
modifications in the order record with the order_update() function.

• Lines 026 thru 027 declare the ON CHANGE trigger for the store_num field, to check if
the number is a valid store identifier with the order_check_store_num() function. If
the function returns FALSE, we execute a NEXT FIELD to stay in the field.

• Lines 029 thru 035 implement the zoom1 ON ACTION trigger for the f01 field,
to open a typical "zoom" window with the display_custlist() function. If
the user selects a customer from the list, we mark the field as touched with the
DIALOG.setFieldTouched() method. This simulates a real user input.

• Lines 037 thru 038 implement the AFTER INPUT trigger, to validate and save current
modifications with the order_update() function when the focus is lost by the order
header sub-dialog.

• Lines 040 thru 051 implement the ON ACTION triggers for the four navigation actions to
move in the order list with the order_move() function. Before calling the query function,
we must validate and save current modifications with the order_update() function.

• Lines 055 thru 130 implement the INPUT ARRAY sub-dialog, controlling the arr_items
array input. All actions triggers declared inside the INPUT ARRAY sub-dialog will only be
activated if the focus is in this sub-dialog. The sub-dialog uses the opflag technique to
implement SQL instructions inside the dialog code and update the database on the fly.

• Lines 058 thru 059 implement the BEFORE INPUT trigger, to display information
message to the user, indicating that item row data will be validated and saved in the
database when the user moves to another row or when the focus is lost by the item list.

• Lines 061 thru 064 implement the BEFORE ROW trigger, initialize the opflag operation
flag to "N" (no current operation), save the current row index in curr_pa variable and
disable the stock_num field (only editable when creating a new line).

• Lines 066 thru 069 implement the BEFORE INSERT trigger, to set the opflag to
"T" (meaning a temporary row was created). A row will be fully validated and ready for
SQL INSERT when we reach the AFTER INSERT trigger, there we will set opflag to "I".
The code initializes the quantity to 1 and enables the stock_num field for user input.

• Lines 071 thru 072 implement the AFTER INSERT trigger, to set the opflag to "I" (row
insertion done in list). Data is now ready to be inserted in the database. This is done in the
AFTER ROW trigger, according to opflag.

• Lines 074 thru 079 implement the BEFORE DELETE trigger. We execute the SQL
DELETE only if opflag equals "N", indicating that we are in a normal browse mode
(and not inserting a new temporary row, which can be deleted from the list without any
associated SQL instruction).

• Lines 081 thru 082 implement the AFTER DELETE trigger, to reset the opflag to "N" (no
current operation). This is done to clean the flag after deleting a new inserted row, when
data validation or SQL insert failed in AFTER ROW. In that case, opflag equals "I" in
the next AFTER DELETE / AFTER ROW sequence and would invoke validation rules again.

Tutorial Chapter 13: Master/Detail using Multiple Dialogs | 161

• Lines 084 thru 085 implement the ON ROW CHANGE trigger, to set the opflag to
"M" (row was modified), but only if we are not currently doing a row insertion: Row
insertion can have failed in AFTER ROW and AFTER INSERT would not be executed
again, but ON ROW CHANGE would. The real SQL UPDATE will be done later in AFTER
ROW.

• Lines 087 thru 099 implement the AFTER ROW trigger, executing INSERT or UPDATE
SQL instructions according to the opflag flag. If the SQL statement fails (for example,
because a constraint is violated), we set the focus back to the current field with NEXT
FIELD CURRENT and keep the opflag value as is. If the SQL instruction succeeds,
opflag will be reset to "N" in the next BEFORE ROW.

• Lines 101 thru 103 implement the zoom2 ON ACTION trigger for the f08 field, to open
a typical "zoom" window with the display_stocklist() function. If the user selects a
stock from the list, we mark the field as touched with the DIALOG.setFieldTouched()
method. This simulates a real user input.

• Lines 112 thru 120 declare the ON CHANGE trigger for the stock_num field, to check
if the number is a valid stock identifier with the get_stock_info() lookup function. If
the function returns FALSE, we execute a NEXT FIELD to stay in the field, otherwise we
recalculate the line total with items_line_total().

• Lines 122 thru 128 declare the ON CHANGE trigger for the quantity field, to check if the
value is greater than zero. If the value is invalid, we execute a NEXT FIELD to stay in the
field, otherwise we recalculate the line total with items_line_total().

• Lines 132 thru 134 implement the BEFORE DIALOG trigger, to fill the list of orders with an
initial result set.

• Lines 137 thru 138 implement the about ON ACTION trigger, to display a message box with
the version of the program.

• Lines 140 thru 141 implement the quit ON ACTION trigger, to leave the dialog (and quit the
program).

Function order_update
This function validates that the values in the order_rec program record are correct, and then executes
an SQL statement to update the row in the orders database table.

Function order_update (orders.4gl):

01 FUNCTION order_update(d)
02 DEFINE d ui.Dialog
03
04 IF NOT order_validate(d) THEN RETURN FALSE END IF
05
06 WHENEVER ERROR CONTINUE
07 UPDATE orders SET
08 store_num = order_rec.store_num,
09 order_date = order_rec.order_date,
10 fac_code = order_rec.fac_code,
11 ship_instr = order_rec.ship_instr,
12 promo = order_rec.promo
13 WHERE orders.order_num = order_rec.order_num
14 WHENEVER ERROR STOP
15
16 IF SQLCA.SQLCODE <> 0 THEN
17 CALL __mbox_ok(title1,SQLERRMESSAGE,"stop")
18 RETURN FALSE
19 END IF
20
21 CALL d.setFieldTouched("orders.*", FALSE)
22 MESSAGE SFMT(msg17, order_rec.order_num)
23
24 RETURN TRUE

Tutorial Chapter 13: Master/Detail using Multiple Dialogs | 162

25
26 END FUNCTION

Note:

• Line 01 Since you cannot use the DIALOG keyword outside the DIALOG statement, a dialog
object is passed to this function in order to use the methods of the DIALOG class.

• Line 04 calls the order_validate function, passing the dialog object. If the fields in the dialog
are not validated, the function returns without updating the database row.

• Lines 06 thru 14 execute the SQL statement to update a row in the orders database table
using values from the order_rec program record.

• Lines 16 thru18 return an error and exits the function if the SQLCA.SQLCODE indicates the
database update was not successful.

• Lines 21 resets the touched flags of the fields in the orders screen record, after the database
is successfully updated, to get back to the initial state of the dialog.

• Line 22 displays a message to the user indicating the database update was successful.
• Line 24 returns TRUE to the calling function if the database update was successful.

Function order_new
This function inserts a new row in the database table orders, using the values from the order_rec
program record.

Function order_new (orders.4gl)

01 FUNCTION order_new()
02 SELECT MAX(order_num)+1 INTO order_rec.order_num
03 FROM orders
04 IF order_rec.order_num IS NULL
05 OR order_rec.order_num == 0 THEN
06 LET order_rec.order_num = 1
07 END IF
08 LET order_total = 0
09 -- We keep the same store...
10 LET order_rec.order_date = TODAY
11 LET order_rec.fac_code = "ASC"
12 LET order_rec.ship_instr = "FEDEX"
13 LET order_rec.promo = "N"
14
15 WHENEVER ERROR CONTINUE
16 INSERT INTO orders (
17 store_num,
18 order_num,
19 order_date,
20 fac_code,
21 ship_instr,
22 promo
23) VALUES (
24 order_rec.store_num,
25 order_rec.order_num,
26 order_rec.order_date,
27 order_rec.fac_code,
28 order_rec.ship_instr,
29 order_rec.promo
30)
31 WHENEVER ERROR STOP
32 IF SQLCA.SQLCODE <> 0 THEN
33 CLEAR FORM
34 CALL __mbox_ok(title1,SQLERRMESSAGE,"stop")
35 RETURN FALSE
36 END IF

Tutorial Chapter 13: Master/Detail using Multiple Dialogs | 163

37 CALL arr_ordnums.insertElement(1)
38 LET arr_ordnums[1] = order_rec.order_num
39 CALL arr_items.clear()
40 MESSAGE msg11
41 RETURN TRUE
42 END FUNCTION

Note:

• Lines 02 thru 07 add the next unused order number to the order_num field of the order_rec
program record, based on the existing order numbers in the orders database table.

• Lines 08 thru 13 set the order total to zero, and add default values to some order_rec fields.
• Lines 15 thru 31 execute the SQL statement to insert a new row in the orders database table

using values from the order_rec program record.
• Lines 32 thru 36 clear the form and display an error message if the insert into the database

table failed, and return FALSE to the calling function.
• Line 37 inserts a new empty element into the arr_ordnums array at the first position, after the

successful insert into the orders table.
• Line 38 sets the value of the new element to the order number of the order_rec program

record. The arr_ordnums array keeps track of the order numbers of the orders that were
retrieved from the database or newly inserted.

• Line 39 clears the program array for items, preparing for the addition of items for the new
order.

• Line 40 displays a message indicating the insert of a new row in the orders database table
was successful.

• Line 42 returns TRUE to the calling function, indicating the insert into the orders database
table was successful.

Function order_validate
This function validates the entries in the fields of the orders screen record.

Function order_validate (orders.4gl):

01 FUNCTION order_validate(d)
02 DEFINE d ui.Dialog
03 IF NOT d.getFieldTouched("orders.*") THEN
04 RETURN TRUE
05 END IF
06 IF d.validate("orders.*") < 0 THEN
07 RETURN FALSE
08 END IF
09 IF NOT order_check_store_num() THEN
10 RETURN FALSE
11 END IF
12 RETURN TRUE
13 END FUNCTION

Note:

• Line 01 The dialog object is passed to this function, allowing the use of methods of the DIALOG
class.

• Lines 03 thru 05 return TRUE to the calling function if the fields in the orders record have not
been touched.

• Lines 06 thru 08 call the validate() method of the dialog object to execute any NOT NULL,
REQUIRED, and INCLUDE validation rules defined in the form specification file for the fields in
the orders screen record. If this validation fails, FALSE is returned to the calling function.

Tutorial Chapter 13: Master/Detail using Multiple Dialogs | 164

• Lines 09 thru11 call the order_check_store_num function to verify that the store_num
value exists in the customer database table. If this validation fails, FALSE is returned to the
calling function.

• Line 12 returns TRUE to the calling function when the validation is successful.

Function order_query
This function allows the user to search for a specific order by entering criteria into the form (Query by
Example). This CONSTRUCT statement is not a sub-dialog of a DIALOG statement. It is a stand-alone
statement called by the action find, triggered when the user selects the corresponding menu item or
toolbar icon on the form orderform.

Function order_query (orders.4gl):

01 FUNCTION order_query()
02 DEFINE where_clause STRING,
03 id INTEGER, name STRING
04
05 MESSAGE msg02
06 CLEAR FORM
07
08 WHILE TRUE
09 LET int_flag = FALSE
10 CONSTRUCT BY NAME where_clause ON
11 orders.store_num,
12 customer.store_name,
13 orders.order_num,
14 orders.order_date,
15 orders.fac_code
16
17 ON ACTION zoom1
18 CALL display_custlist() RETURNING id, name
19 IF id > 0 THEN
20 DISPLAY id TO orders.store_num
21 DISPLAY name TO customer.store_name
22 END IF
23
24 ON ACTION about
25 CALL __mbox_ok(title1,msg18,"information")
26
27 END CONSTRUCT
28
29 IF int_flag THEN
30 MESSAGE msg03
31 IF arr_ordnums.getLength()==0 THEN
32 IF __mbox_yn(title1,msg15,"stop") THEN
33 EXIT PROGRAM
34 END IF
35 CONTINUE WHILE
36 END IF
37 RETURN
38 ELSE
39 IF order_select(where_clause) THEN
40 EXIT WHILE
41 END IF
42 END IF
43 END WHILE
44
45 END FUNCTION

Note:

Tutorial Chapter 13: Master/Detail using Multiple Dialogs | 165

• Line 02 defines a STRING variable, where_clause, to hold the WHERE clause created from the
criteria entered in the form fields by the user.

• Line03 defines an integer variable, id, to hold the store number selected by the user after
triggering the display_custlist function of the custlist.4gl module.

• Line 05 displays a message instructing the user to enter search criteria.
• Lines 08 thru 43 contain the WHILE statement that is executed until an order is successfully

selected or the user cancels the operation.
• Lines 10 thru 15 specify the form fields that will contain the search criteria for the CONSTRUCT

statement.
• Lines 11 thru 22 define an ON ACTION clause for the zoom1 button in the orderform

form specification file. After the user selects the desired customer from the customer list
that is displayed, the customer number and name are stored in the corresponding fields of
orderform.

• Lines 24 thru25 display the message when the user selects the about menu item on the
orderform form.

• Lines 29 thru 42 test whether the user wants to interrupt the dialog and responds accordingly.
• Lines 31 thru 37 When the user interrupts, a message box is displayed if the arr_ordnums

array is empty, allowing the user to exit the program, or to continue. If the array is not empty, the
function simply returns.

• Lines 39 thru 42 when the user has not interrupted, the order_select function is called to
retrieve the order information; then the WHILE loop is exited.

	Contents
	Genero BDL Tutorial Summary
	Testing the Example Programs
	Tutorial Chapters

	Tutorial Chapter 1: Overview
	Overview
	The BDL Language
	The BDL Tutorial
	The Example Database (custdemo)
	The Sample Data

	Tutorial Chapter 2: Using BDL
	A simple BDL program
	Compiling and Executing the Program
	Debugging a BDL Program
	The "Connect to database" Program
	Example: connectdb.4gl

	Tutorial Chapter 3: Displaying Data (Windows/Forms)
	Application Overview
	The .4gl File - Opening Windows and Forms
	The .4gl File - Interacting with the User
	The .4gl File - Retrieving and Displaying Data
	Example: dispcust.4gl (function query_cust)
	The Form Specification File
	Example: Form Specification File custform.per
	Compiling the Program and Form

	Tutorial Chapter 4: Query by Example
	Implementing Query-by-Example
	Steps for implementing Query-by-Example
	Using CONSTRUCT and STRING variables
	Preparing the SQL Statement

	Allowing the User to Cancel the Query Operation
	Predefined Actions (accept/cancel)
	DEFER INTERRUPT and the INT_FLAG
	Conditional Logic
	The IF statement
	The CASE statement

	The Query program
	Example: Module custmain.4gl
	Example: Module custquery.4gl
	Example: custquery.4gl (Function get_cust_cnt)

	Retrieving data from the Database
	Using Cursors
	The SQLCA.SQLCODE
	Example custquery.4gl (function cust_select)
	Example: custquery.4gl (function fetch_cust)
	Example: custquery.4gl (function fetch_rel_cust)
	Example: custquery.4gl (function display_cust)

	Compiling and Linking the Program
	Modifying the Program to Handle Errors
	The WHENEVER ERROR statement
	Negative SQLCA.SQLCODE
	SQLERRMESSAGE
	Close and Free the Cursor
	Error if Cursor is not Open

	Tutorial Chapter 5: Enhancing the Form
	Adding a Toolbar
	Example: (in custform.per)

	Adding a Topmenu
	Example (in custform.per)

	Adding a COMBOBOX form item
	Changing the Window Appearance
	Example: (in custform.per)
	Example: (in custmain.4gl)
	Managing Actions
	Disable/Enable Actions
	The Close Action

	Example: (custmain.4gl)
	Action Defaults
	MENU/Action Defaults Interaction
	Images

	Tutorial Chapter 6: Add, Update and Delete
	Entering data on a form: INPUT statement
	UNBUFFERED attribute
	WITHOUT DEFAULTS attribute

	Updating Database Tables
	SQL transactions
	Concurrency and Consistency

	Adding a new row
	INPUT Statement Control blocks
	Example: add a new row to the customer table
	Module custmain.4gl
	Module custquery.4gl (function inpupd_cust)
	Module custquery.4gl (function insert_cust)

	Updating an existing Row
	Using a work record
	SELECT ... FOR UPDATE
	SCROLL CURSOR WITH HOLD
	Example: Updating a Row in the customer table
	Module custquery.4gl

	Deleting a Row
	Using a dialog Menu to prompt for validation
	Example: Deleting a Row

	Tutorial Chapter 7: Array Display
	Defining the Form
	Screen Arrays
	TABLE Containers
	The INSTRUCTIONS section
	Form example: manycust.per

	Creating the Function
	Program Arrays
	Loading the Array: the FOREACH Statement

	The DISPLAY ARRAY Statement
	The COUNT attribute
	The ARR_CURR function
	Example Library module: cust_lib.4gl

	Paged Mode of DISPLAY ARRAY
	What is the Paged mode?
	AFTER DISPLAY block
	Example of paged mode

	Compiling and using a Library
	Example: cust_stub.4gl

	Tutorial Chapter 8: Array Input
	The INPUT ARRAY statement
	WITHOUT DEFAULTS clause
	The UNBUFFERED attribute
	COUNT and MAXCOUNT attributes
	Control Blocks
	Built-in Functions - ARR_CURR
	Predefined actions
	Example: Using a Screen Array to modify Data
	The Form Specification File
	The Main block
	Function load_custall
	Function inparr_custall
	Function store_num_ok
	Function insert_cust
	Function update_cust
	Function delete_cust

	Tutorial Chapter 9: Reports
	BDL Reports
	The Report Driver
	The Report Definition
	The DEFINE section
	The OUTPUT section (optional)
	The ORDER BY section (optional)
	The FORMAT section

	Two-pass reports
	Example: Customer Report
	The Report Driver
	The Report Definition

	Interrupting a Report
	The interrupt action view
	Refreshing the Display
	Using a ProgressBar

	Example: Interruption Handling
	The Form Specification File
	Modifications to custreports.4gl
	The cust_report function

	Tutorial Chapter 10: Localization
	Localization Support
	Localized Strings
	Programming Steps
	Strings in Sources
	Extracting Strings
	Compiling String Source Files (fglmkstr)
	Deploying String Files
	Example: Localization
	form.per - the form specification file
	prog.4gl - the program module
	Compiling the program

	Tutorial Chapter 11: Master/Detail
	The Master-Detail sample
	The Makefile
	The Customer List Module
	The Stock List Module
	The Master-Detail Form Specification File
	The Orders Program orders.4gl
	The MAIN program block
	Function setup_actions
	Function order_new
	Function order_insert
	Function order_query
	Function order_fetch
	Function order_select
	Function order_fetch_rel
	Function order_total
	Function order_close
	Function items_fetch
	Function items_show
	Function items_inpupd
	Function items_line_total
	Function item_insert
	Function item_update
	Function item_delete
	Function get_stock_info

	Tutorial Chapter 12: Changing the User Interface Dynamically
	Built-in Classes
	Working with Forms
	Hiding Form Items
	Adding toolbars, topmenus, and action defaults
	Specifying a Function to Initialize all Forms
	Loading a ComboBox List
	Using the Dialog class in Interactive Statements
	Hiding Default Action Views
	Enabling and Disabling Fields
	Using the Interface Class

	Tutorial Chapter 13: Master/Detail using Multiple Dialogs
	The Master-Detail sample
	The Customer List Form
	The Customer List Module
	The Orders Form
	The Orders Program orders.4gl
	Module variables of orders.4gl
	Function orditems_dialog
	Function order_update
	Function order_new
	Function order_validate
	Function order_query

