
Four Js Genero Studio User Guide

Contents | 2

Contents

What's new in Genero Studio, v 3.00.. 11

Welcome to Genero Enterprise..15
What is Genero Enterprise..15
Tour Genero Studio...20
Running the Demos.. 32
Switching Genero Clients..36
Creating with Quick Starts.. 38
Finding more information...39

Welcome to Genero Studio.. 40

Getting Started with Genero Studio.. 41
Quick Start: Tour of Genero Studio.. 41

Run the OfficeStore demo..41
Explore the Debugger.. 44
vi emulator and diff tools in Code Editor... 51
Explore Source Code Management... 52
Explore database meta-schemas... 59
Explore forms..60
Analyze code.. 65
Generate code.. 69

The Genero Studio framework..69
The Welcome Page..70
Modules...71
Toolbars and Menus...82
Views...96
Dialogs.. 100

Learning to use Genero Studio...103
Command line options..103
Samples directory... 103
Integrating existing applications... 105
Setting Preferences.. 106
Access Help..113

Creating with Quick Starts... 114

Configuring Genero Studio.. 115
Software configuration scenarios.. 115
Default configuration..117
Change the active configuration... 117
Configuring for BAM..118
Configure for Genero Mobile...118

Configure Genero Mobile for Android.. 118

Contents | 3

Configure Genero Mobile for iOS...127
Display to the Genero Mobile Development Client.. 138

Setting up a local environment... 139
Local environment software requirements... 140
Define local Genero installations, GAS configurations, and environment sets.....................140

Environment sets...140
GST-specific environment variables...143
Add or edit environment variables... 144

Display clients..146
Desktop: GDC configurations... 146
Web: GAS/GWC configurations... 147
Mobile clients: GMI and GMA configurations...153

Setting up a remote environment..154
Remote environment software requirements..154
Add a remote host..155
Define mount points to shared drives.. 161
Define remote Genero installations, GAS configurations, and environment sets................. 162

Share projects / source code management..162
Access a database..163
Language support (text encoding).. 163

Configure Genero Studio to use a different character set... 164
Add a text encoding plugin.. 165
Character mapping table (encodingMap.xml)...167
Configure keyboard and language on a Windows

™
 client..168

Configure LANG on a Genero Studio Server...168
Test text encoding configuration.. 170

Configuration reference... 170
Genero Configuration Management dialog.. 171
Compiler / Runtime configuration (Genero Installations)..172
Import Configuration dialog.. 173
Import Preferences dialog.. 173
GAS standalone dispatcher: httpdispatch.. 174

Business Application Modeling (BAM)..176
Quick Start: Generate an application..176

Create a managed project..176
Add a meta-schema to the project (4dbx)... 177
Create the Business Application diagram (4ba)...177
Implement the program and form...178
Generate and run the application...179
Add a detail list to the form..180

Quick Start: Generating a mobile app.. 182
Create a BAM mobile project...182
Create a database..184
Create form from database.. 187
Generate and run the app..187
Add phone functionality to the app.. 188
Customize the app... 190
Package and Deploy.. 191

BAM Concepts...192
What is Business Application Modeling (BAM)?.. 192
How code is generated.. 194
The modeling diagrams..196
Mobile apps vs Desktop applications...198
The default template features.. 199

Contents | 4

Configuring for BAM..200
BAM Projects...200

Managed projects... 201
Mobile projects..201

Modeling the application..202
The Business Application (BA) diagram...202
Create a BA diagram..204
Add and implement a program...204
Add Forms.. 205
Add Reports..210
Add Web services (Server, Services, Forms with services)...215
Add Relations... 220
Add mobile device features (Photo, Gallery, Phone, Mail, SMS, Contact, Maps, Barcode).. 223
Import files into the diagram from the project.. 225

Modeling the database..226
Database meta-schema (4dbx).. 226
Create a meta-schema...227
Extract meta-schema information from database...228
Add a meta-schema to a project..231
Managing SERIALs in a generated application... 231
Managing concurrency..231
Cascade delete...232

Working with forms..232
Mobile forms... 233
Enable and disable CRUD logic...239
Form behavior in CRUD states.. 241
Data refresh.. 243
Control the row position in form...244
Opening a form with a subset of data... 244
Field activation..244
Define queries and data order... 245
Define a dynamically populated ComboBox.. 245
Lookup fields...247
Add buttons to form..249
Add formonly (nondatabase) fields to a form...250
Master-detail forms... 250

Adding custom code..250
 Understanding what gets generated... 250
Finding the right place to customize.. 259
Using POINTs and BLOCKs.. 262

Modifying the look and feel...264
Default actions.. 264
Modify action defaults (dbapp.4ad).. 266
Default Topmenu and Toolbar... 267
Modify the Topmenu (dbapp.4tm).. 267
Modify the Toolbar (dbapp.4tb).. 267
Modify styles (dbapp.4st)..267

BAM Reference... 268
BAM-specific environment variables...268
$(generate)..268
tclsh...269
$(tcl) - deprecated.. 270
$(blockpoint)..270
Business Application Modeling error messages...271
Business Records error messages.. 280
Business Application Diagram error messages..285

Contents | 5

Meta-schema Manager.. 288
What is a database meta-schema? (4db)...288
Creating a meta-schema...289

Create a meta-schema...289
Extract meta-schema information from database...289
BDL schema file (sch)..293
Add a meta-schema to a project..293

Adding more information to a meta-schema...293
Add new tables and columns...294
Add constraints or indexes...294
Add foreign keys...295
Add a many-to-many relationship...298
Manage SERIALs... 300
Centralize field information (label, widget, default value)...300

Viewing a meta-schema..300
Comparing two meta-schemas..302
Update a meta-schema from database.. 302
Generate a database script from meta-schema... 303
Generate meta-schema documentation.. 305
Meta-schema Manager Reference..305

Meta-schema properties... 305
Data types...306
Database server/user information.. 308
Dialogs.. 309
Views...315
Meta-Schema Manager preferences.. 317
Meta-schema diagram context menu... 318
Meta-schema Manager error messages.. 318

DB Explorer.. 332
Open DB Explorer... 333

Using the Views menu... 333
From the meta-schema or Data Model.. 333

Change connection details..333
Show data..334

Show table data (start with meta-schema diagram)...335
Show table data (start with DB Explorer)...335
Show data for select columns..335
Show data for a business record... 335

Change the data..336
Show data from a table in edit mode...336
Show data from a different table in edit mode...336
Update data.. 336
Insert a row...336
Duplicate a row...337
Delete a row... 337

Limit rows.. 337
Write a SQL query by hand..338
Execute a query.. 339

Project Manager...340
Genero project file (4pw)...340

Contents | 6

Quick Start: Create a project.. 340
Creating new projects... 341

Create a new project..341
Import existing files as a new project...341
mkproject - Convert a Makefile to a project...342
Connect to existing build systems..342

Organizing projects..342
Groups, Applications, and Libraries... 342
Using external libraries...343
Setting external dependencies... 343

Building and linking programs...343
Languages.. 344
What are build rules... 344
Add/Edit a build rule...345
Example: How build rules work..346
Link rules.. 347
Execution rules... 347
Command line options for build, link, execution rules..347
Environment variables.. 348
Pre/Post compile...351
Pre/Post link..351
gsmake - Command line option to build projects...352

Packaging.. 353
Locate a file (starting at Project Manager)... 353
Project Manager Reference.. 354

Project Manager context menu.. 354
Dialogs.. 355
Project Manager node properties...364
Predefined node variables..366

Project Manager error messages..369

Code Editor.. 374
Editing code files... 374

Code Editor basics... 374
Smart editing - indenting, tabs, and backspace...375
Fold text.. 375
Bookmarks.. 376
Auto completion (Ctrl+Space)...376
Code templates (Ctrl+T)... 376
Split a document...377
Square selection... 377
XML editing...377
Search and replace.. 377

Using the Diff tool... 380
Printing files... 382
Using XML catalog files.. 383

XML catalog files.. 383
The XML catalog file.. 383
Manage XML catalog entries... 384

Code Editor Reference..384
Code Editor preferences...384
Customize Diff tool: preferences.. 390
Views...390
Keyboard Shortcuts.. 394
vi Commands List...398

Contents | 7

Code Analyzer..402
Sequence Diagrams.. 402
Dependency Diagrams.. 403

Dependency diagram context menu...405

Form Designer... 406
Forms in Genero applications... 406
Quick Start: Creating a first form.. 407
Creating the user interface..407

Forms.. 408
Business records (data sets)..411
Containers...413
Widgets... 420
Web components..432
Action management (Toolbars, Topmenus)... 434
Styles.. 438

Form Designer usage..440
Drawing... 440
Selecting, moving, resizing...440
Aligning... 441
Transforming... 441
Command-line syntax: gsform..442
Localizing your form... 443
Form Designer Reference.. 443
Customize Form Designer: preferences...444
Form tab... 445
Business Record diagram.. 446
Menus... 446
Views...447
Dialogs.. 449
Properties list.. 459
Form Designer error messages..484
Business Records error messages.. 493
XML validation error messages..497

File Browser... 500
Navigating files in File Browser...500
Selecting files in File Browser...500
Managing files in File Browser..500
Locate a file (starting at File Browser)..501

Graphical Debugger.. 502
Controlling program execution.. 502

Start the Debugger... 502
Start the Debugger on a running program...502
Debug a Web services server application..504
Debug a mobile application..504
Stop the Debugger... 505
Step through the program.. 506
Breakpoints... 506
Watchpoints.. 507

Contents | 8

Debugger (fgldb) command prompt... 508
Debugger output..509
Examining data..509
Examining execution flow..509
Record/replay a macro..510
Profiler..510
Local vs. remote debug...511
Reference.. 511

Debug context menu.. 511
Views...512
Supported debug commands... 516

Source Code Management - SVN.. 529
What is Genero Source Code Management?...529
SCM Usage... 530

Checkout files... 530
Add files.. 531
Commit / Review changes... 531
Locking..532
Revert changes / Un-add files..534
Delete files.. 534
Update / Update All..534
Cleanup...535
Copy working files and directories... 535
Revert from a single revision... 535
Merge and revert.. 535
Move a working copy (Switch)... 536
Create patch... 536
Apply patch... 536
Browse repository... 537
View log information... 537
Specify the revision range for logs...537
Blame.. 537
Diff with revised file.. 539
Integrate bug tracking...539

SCM Reference... 540
Views...540
Dialogs.. 544
Specify a Subversion client.. 549
SVN error messages.. 549

Report Writer..551
Get Started with Reports...551

Introduction to Reports... 551
Steps to a Report... 553
The Reports demo..555
Configure fonts and printers...559

Create a report program... 561
Genero BDL and the Report Writer... 562

Create the data schema..655
Generate a data schema from a Genero BDL report program.. 656

Create a report design document... 656
What's new in Genero Report Designer, v 3.00.. 656
The Report Design Document..657

Contents | 9

Report Designer Reference..722
RTL Class Reference... 806
Upgrading Genero Report Designer...837

Report templates... 840
Create a report from an existing template... 840
Create a new report template.. 847
Create a report template from an existing report...853
Modify an existing report template... 854
Set the report template directory..854
GenerateReport command options.. 855

Report Writer Deployment and Customization..858
GRE environment variables..858
Genero Report Viewer for HTML5 customization.. 859
Distributed Mode...859

Genero Report Engine error messages..861

Web Services... 910
Create a Web Services program.. 910
Add Web Service.. 910
The Web Services wizard... 911
Build the application.. 913
Update the WSDL... 914
Add Web services (Server, Services, Forms with services)... 914

Mobile applications... 915
Mobile development environment... 915
Genero mobile app demos..917
Debugging a mobile app...918

Debug version of a deployed app..919
Debug tools for apps in developer mode...920
Viewing the AUI tree.. 921
Viewing the program logs...923
Viewing the device logs..924
Debugging a Web Component...925

Localize a mobile app... 926
Genero Mobile error messages.. 927

BAM Template Developer Guide..930
Quick Start: Customizing templates..930

Example 1: Adding a new property..931
Example 2: Adding a File >> New item... 934
Example 3: Adding an entity to the BA Diagram... 936

How code is generated... 940
The code generation template set.. 942

Interpreting settings.agconf...943
Interpreting creatables.conf.. 947

Tcl basics and samples...948
Add POINT and BLOCK sections to template... 949
Example: Using XSLT instead of Tcl... 949

Image directory structure...952
Template Reference.. 953

XML reference.. 953
POINT and BLOCK reference..991

Contents | 10

Packaging, deploying, and distributing apps....................................... 993
Genero Archive (GAR) packaging...993
Packaging for a mobile device..993

What is packaging?.. 994
Packaging process overview for a mobile device.. 996
Package a mobile app..996
Deploy a mobile app for testing... 998
Package and Directory nodes and properties..999
Platform: Package and deploy rules.. 1003
Distribute your app... 1005
Manage App updates... 1008

Upgrading... 1010
New Features of Genero Studio... 1010

What's new in Genero Studio, v 3.00.. 1010
What's new in Genero Studio, v 2.51.. 1014
What's new in Genero Studio, v 2.50.. 1014
What's new in Genero Studio, v 2.41.. 1021
What's new in Genero Studio, v 2.40.. 1021

Upgrade Guides.. 1022
3.00 upgrade guide.. 1023
2.50 upgrade guide.. 1023
2.41 upgrade guide.. 1025
2.40 upgrade guide.. 1026
2.30 upgrade guide.. 1026
2.20 upgrade guide.. 1026

Migrating to a new BAM template set.. 1027
Migrate from dbapp3.2 to dbapp4.0...1027
Migrate from dbapp3.1 to dbapp3.2...1027
Migrate from dbapp3.0 to dbapp3.1...1028
Migrate from dbapp2.0 to dbapp3.0...1028
Migrate from dbapp1.0 to dbapp2.0...1028
Migrate from 2.3x to dbapp1.0... 1029
Migrate customized template sets..1029

Legal Notices... 1031

What's new in Genero Studio, v 3.00 | 11

What's new in Genero Studio, v 3.00

This publication includes information about new features and changes in existing functionality.

Important: Please read What's new in Genero Studio, v 2.51 on page 1014, for a list of features
that were introduced with the Genero Mobile 1.0 release.

These changes and enhancements are relevant to this publication.

Table 1: General, Version 3.00

Overview Reference

Genero Studio now supports Genero, Genero Report Writer for BDL, and
Genero Mobile from a single installation.

N/A

Genero Studio now supports the Genero Web Client for Javascript
(GWC-JS).

See Web: GAS/GWC configurations
on page 147.

Genero Studio now supports connecting to the application server using
HTTPS.

See Web: GAS/GWC configurations
on page 147.

Generate a Genero archive (GAR) from Studio, for deployment to the
GAS.

See Genero Archive (GAR)
packaging on page 993

Genero Studio gives the ability to locate a document in the File Browser,
in a BA diagram, or in the System File Browser (the file browser of the
operating system). The new System File Browser feature facilitates
the use of system file explorer integrated tools, such as SVN or Git
integration.

See Locate a file (starting at Project
Manager) on page 353 or Locate
a file (starting at File Browser) on
page 501.

New configuration option for GAS, allowing the ability to run and debug
Web services from Genero Studio.

See Web: GAS/GWC configurations
on page 147.

Table 2: Project Manager, Version 3.00

Overview Reference

The properties Web Service and Web Service URL suffix have been
added for the Application node, allowing the ability to run and debug Web
services from Genero Studio.

See Project Manager node
properties on page 364.

Table 3: DB Explorer, Version 3.00

Overview Reference

DB Explorer module introduced to view and modify data in database
tables and to test SQL query results. With this tool, you can right-click on
forms, reports and Web services to view the data.

See DB Explorer on page 332.

DB Explorer expands support of SQL commands, in addition to SELECT,
INSERT, UPDATE, and DELETE.

See DB Explorer on page 332
and Write a SQL query by hand on
page 338.

What's new in Genero Studio, v 3.00 | 12

Table 4: Meta-Schema Manager, Version 3.00

Overview Reference

Enhanced schema view displays database schema modifications at a
glance.

See Viewing a meta-schema on
page 300.

Mouse over items in the schema for more detail, to include a summary of
schema changes, primary key column details, and more.

See Viewing and manipulating a
meta-schema.

Reorder columns using drag-and-drop. See Viewing and manipulating a
meta-schema.

Move columns to another table using drag-and-drop. See Viewing and manipulating a
meta-schema.

HTML meta-schema documentation provides details of all database
objects and facilitates global schema review.

See Generate meta-schema
documentation on page 305.

Toggle label display shows or hides foreign key names in the diagram. See Viewing and manipulating a
meta-schema.

Table 5: Genero Mobile, Version 3.00

Overview Reference

You can debug an application deployed to a mobile device. With this new
feature, the application is running on the mobile device and the Graphical
Debugger is able to attach to the process.

See Debug a mobile application on
page 504

The DBAPP_MOBILE environment variable provides warning messages
regarding features not supported by mobile devices during the
compilation of applications generated by the Business Application
Modeler.

See DBAPP_MOBILE on page
268.

Table 6: Business Application Modeler, Version 3.00

Overview Reference

Publish JSON Web services via the Business Application Modeler. See JSON Web services on page
220.

SOAP Web services enhanced with XML and XSD Schema Serialization
attributes.

See Webservice entity on page
217.

Table 7: Code Editor, Version 3.00

Overview Reference

Code Editor supports a horizontal view in the Diff tool, in addition to the
vertical view of previous versions.

See Using the Diff tool on page
380.

Table 8: Form Designer, Version 3.00

Overview Reference

Support for new Form properties: keyboardHint, completer,
wantFixedPageSize, action, Disclosure Indicator

See Properties list on page 459.

Support for new DateTimeEdit widget. See DateTimeEdit on page 425.

What's new in Genero Studio, v 3.00 | 13

Table 9: Search, Version 3.00

Overview Reference

Search Results pane displays an improved search view, to include
previous and current search results organized as a collapsible tree.

See The Search Results view on
page 393.

Table 10: Genero Report Writer, Version 3.00

Overview Reference

Genero Report Viewer for HTML5 provides a browser equivalent of the
Genero Report Viewer.

See fgl_report_selectDevice on
page 626.

A command-line utility checks and upgrades report design documents
(.4rp) files in batch.

See Upgrading reports from prior
versions on page 837.

Report templates provide a wizard-based method for creating report
design documents (.4rp) from a generic report design. The wizard
allows you to bind repeating sections, add fields, and bind placeholders
and parameters from a data schema, in order to create a stand-alone
report design document. A library of report templates have been
provided, and you can create your own templates. A template expansion
mechanism is available as a command line tool, usable from applications
for generic reports.

See Report templates on page
840.

The report engine now limits the number worker threads in distributed
mode, to prevent memory exhaustion in times of critical load.
Change the default value (25 threads) with the environment variable
GRE_MAX_CONCURRENT_JOBS.

See
GRE_MAX_CONCURRENT_JOBS
on page 858.

You can now configure the default output directory for the Genero Report
Engine with the GREOUTPUTDIR environment variable.

See GREOUTPUTDIR on page
858.

There is an improved architecture using HTTP for previewing documents
in a distributed setup. Besides improvements in performance, the solution
no longer requires the installation of a DVM on the remote machine.

See Distributed Mode on page
859.

Table 11: Genero BDL Reporting APIs

Overview

APIs support the Genero Report Viewer for HTML5: See
fgl_report_setBrowserDocumentDirectory
on page 629,
fgl_report_setBrowserDocumentDirectoryURL
on page 629,
fgl_report_setBrowserFontDirectory
on page 630,
fgl_report_setBrowserFontDirectoryURL
on page 630

A new API supports distributed mode. See
fgl_report_configureDistributedURLPrefix
on page 614.

APIs have been introduced to get error details. See Functions to get error details
on page 653.

What's new in Genero Studio, v 3.00 | 14

Overview

A new API can programatically set the value of environment or user-
defined variables.

See fgl_report_setEnvironment on
page 627.

Table 12: Genero Report Designer, Version 3.00

Overview Reference

Genero Report Designer provides a LastPageFooter section property. See section (Section) on page
754.

Support of Intelligent Mail bar code type. See intelligent-mail on page 795.

New smartParse bar code property for bar code Code-128.
When enabled, this allows you to enter the bar code value, and the
internal code will be computed for you resulting in the shortest visual
representation.

See smartParse (Smart Parse) on
page 755 and code-128 on page
769.

New gs1* bar code aliases. See Bar Code type listing on page
765.

Table 13: Graphical Debugger, Version 3.00

Overview Reference

You can debug an already running process by attaching to the process.
The process can be running locally or on a remote computer. Attaching to
a remote process allows you to debug an application at a production site
where Genero Studio is not installed.

See Start the Debugger on a
running program on page 502.

You can debug an application deployed to a mobile device. With this new
feature, the application is running on the mobile device and the Graphical
Debugger is able to attach to the process.

See Debug a mobile application on
page 504

You can debug Web services: server, client or both. See Debug a Web services server
application on page 504.

Welcome to Genero Enterprise | 15

Welcome to Genero Enterprise

Welcome to Genero, the software infrastructure for enterprise business application development and
deployment.

When you first install Genero Enterprise and open Genero Studio, you see the Welcome page, which
provides access to the projects, tutorials and samples. You can start by running the demos or by creating
applications using the Quick Starts.

What is Genero Enterprise
Genero Enterprise provides an integrated development environment that you can use for the creation of
applications to deploy to desktop, web, cloud, and mobile clients.

Genero Enterprise Components

Genero Enterprise is made up of visual tools, business and program logic components that effectively work
together to quickly create applications and reports.

Genero Business Development Language (BDL) Genero BDL is a simple, easy-to-learn
programming language for data-intensive business
applications. See Genero Business Development
Language.

Genero Studio Genero Studio is an intuitive suite of visual tools
(or modules) for creating application interfaces and
developing and debugging the underlying program
logic. See Genero Studio.

Genero Report Writer Genero Report Writer is a set of programming
APIs and a graphical user interface (GUI) that
provide a drag-and-drop interface for the design of
business reports, such as corporate or accounting
documents, pre-printed forms, labels, and business
graphs. See Genero Report Writer.

XML-based Abstract Presentation Layer Genero provides an abstract definition of the user
interface as an XML tree of objects that can be
manipulated at runtime by the front end client
to enable GUI independence for your Genero
application. See XML-based Abstract Presentation
Layer.

Dynamic Virtual Machine (DVM) The DVM executes your application and manages
database interaction and communications with
client platforms. See DVM.

Open Database Interface (ODI) The ODI refers to the component of the Genero
DVM that maps database-vendor-independent high-
level code to provide native access for a variety of
vendor databases. See ODI.

Genero Web Services (GWS) Web services enables applications built with
different technologies to integrate and exchange
data across varied systems and enterprises using
web-based protocols. See GWS.

Welcome to Genero Enterprise | 16

Genero Desktop Client (GDC) The GDC provides a graphical front end that
displays your Genero application on Windows™,
Linux™, or Apple™desktops. See GDC

Genero Application Server (GAS) The GAS provides remote access to Genero
applications deployed for the GDC. The GAS
includes a Web client component - the Genero
Web Client (GWC) - to support the development of
database-oriented web applications. The GAS also
manages Genero Web Services. See GAS.

Note: This installation of the GAS does not
include the web server component of the
software, however the products are fully
functional standalone and can be used for
developing applications. For production
systems, you can install the web server
component later using the installation
packages of the full GAS products.

These components are discussed in more detail below.

Genero Business Development Language (BDL)

Genero BDL is a simple, easy-to-learn programming language for data-intensive business applications.
Use Genero BDL to build an interactive database application, a program that handles the interaction
between a user and a database.

The programming language is English-like and easy-to-learn. Executable statements enable:

• Program flow control
• Conditional logic
• Error handling
• Structured Query Language (SQL) statement support

High-level program instructions substitute for the many lines of code usually needed to handle user
interaction and database manipulation. For example, the INPUT BY NAME instruction turns program
control over to the user, and allows the user to move around the application form, entering or modifying
data.

SQL statements to communicate with database servers are a part of BDL. Dynamic SQL management
allows you to execute any SQL statement that is valid for your database version, in addition to those
included as part of the BDL.

Built-in classes and predefined functions support BDL features and enhance rapid application
development. Using the Genero classes and functions, you can manipulate your application's user
interface at runtime and perform other common application tasks.

Data types supported by the language include user types, which you can be defined as synonyms of
existing data types, or as shortcuts for records and array structures.

XML-based Abstract Presentation Layer

A Genero application presents its user interface as windows and forms. Interactive elements on the forms
(such as buttons, toolbars, and menus) allow the user to trigger actions within the application.

Forms can be designed using the graphical Genero Studio Form Designer, directly in text files, or built
dynamically by the application.

Welcome to Genero Enterprise | 17

The XML-based Abstract Presentation Layer allows a single Genero source code stream to support
different user interfaces. Genero client software, such as the Genero Desktop Client or the Genero Web
Client, display an application's interface on the client machines.

Figure 1: How the AUI tree functions on page 17 shows how the abstract user interface (AUI) tree
is shared by the runtime system and the front end client. Their interaction during the running of the
application is explained here.

Figure 1: How the AUI tree functions

• The form definition files are translated into XML documents when they are compiled into runtime form
files.

• The Genero runtime system creates the AUI tree from the XML documents, and sends this
information to the Genero client software.

• The Genero client software uses the AUI tree to display the application's interface on the client
machine.

• When a user triggers an action, the event is transmitted to the runtime system for interpretation.
• Any changes to the user interface resulting from this action are applied to the AUI tree.
• The runtime system automatically synchronizes the copies of the AUI trees on the application server

and the client machine.

Important: Genero BDL contains built-in classes that allow an application to modify the
application's interface at runtime, dynamically changing the appearance of the application.

Dynamic Virtual Machine

The Dynamic Virtual Machine is the software or runtime system (fglrun) where an application's business
logic is processed. It serves as a highly efficient application server that:

• Manages communications with clients.
• Supports a wide variety of architectures, including the Web and Web services.
• Optimizes performance across multiple platforms and databases.

The DVM's n-tier architecture enables the distribution of applications and databases through firewalls and
across distributed networks.

Ported to multiple UNIX, Windows, and Linux platforms, the Dynamic Virtual Machine executes the
portable byte code (P-code) of Genero applications.

Welcome to Genero Enterprise | 18

Figure 2: Dynamic Virtual Machine executes p-code

Open Database Interface

Using the Genero Open Database Interface architecture a Genero application can connect to database
servers from different database vendors, including Oracle™, IBM™ DB2™, PostgreSQL™, SQL Server™,
MySQL™, IBM Informix™, SQLite™, and Sybase™.

Compatibility guides for writing portable SQL are provided in the Genero Business Development Language
User Guide.

• Database drivers specific to each supported database vendor are provided as pre-linked shared
libraries.

• At runtime, the DVM generates the appropriate SQL commands to be used with the target database
server.

A Genero application can connect to different database servers simultaneously by issuing simple CONNECT
TO and SET CONNECT instructions.

Genero Web Services

Genero support for Web Services is built in to Genero BDL.

Genero developers do not need to learn intricate programming to use Web Services; they can use simple
embedded commands in BDL to create and use Web services.

Web Services work by answering requests for information and returning data in structured XML
documents. As XML is simple text and Web Services can be invoked via the hypertext transfer protocol
(HTTP), it does not matter what platform runs the Web Service.

Typically, web services use the Simple Object Access Protocol (SOAP) or Representational State Transfer
(REST) protocols to define the communication and structure of messages.

Genero Desktop Client

The Genero Desktop Client is a front end client that displays application screens natively on your Windows,
Linux, or MAC OS. The GDC also allows you to run your application through the GAS, yet deliver it locally
using the GDC. Shortcuts can store the information necessary to start an application.

Welcome to Genero Enterprise | 19

Figure 3: Genero Desktop Client

Genero Application Server

The Genero Application Server (GAS) is an engine that allows you to develop Genero applications
for delivery to Genero front-end clients for both the desktop and the web. No changes to your Genero
application source code and form program files are required; the same Genero application can be
displayed in a browser or as a desktop application.

The GAS is embedded with a Web Server; it includes dispatcher and proxy processes to enable the GAS
to be interfaced with a Web Server to handle requests from the Internet. For development cycle you can
install the GAS locally and use the GAS's Standalone HTTP capabilities to serve the web page. But a Web
server (e.g. Apache™ httpd, lighttpd, nginx, or Microsoft™ ISAPI) must be included for deployment.

Welcome to Genero Enterprise | 20

The Genero Web Client component of the GAS supports development of both highly scalable database-
oriented web applications, and enterprise applications that provide web and desktop interfaces to their
functionality. You can customize and control how the Web Client renders the application to provide a
more web-like interface when the application is displayed in a browser. This is done by the front end client
software rendering the Genero applications for display in standard HTML browsers.

The GAS establishes and manages the communication between Genero front end client software (GDC
or GWC) and the DVM. Communication between the front-end client and the GAS is handled by the
Genero dispatcher, which routes requests from the Web Server to the correct GAS daemon. Several GAS
daemons can be configured to load balance the requests.

The GAS also manages a pool of DVMs for Web Services applications.

Tour Genero Studio
Genero Studio accelerates the development and management of Genero business applications by
providing tools for designing interfaces, writing and debugging programs, and teaching new developers the
basics of Genero Business Development Language (BDL). Take a short tour to discover what it can do.

Launch Genero Enterprise to discover the following features and tools Genero Studio provides:

Figure 4: Genero Studio Components

Welcome to Genero Enterprise | 21

• Project Manager
• Code Editor
• Graphical Debugger
• Form Designer
• Meta-schema Manager
• Report Writer
• Business Application Modeling
• Code Analyzer
• Integrated Help

Launch Genero Enterprise

Windows users: Select Start > Four Js Genero Evaluation Program 3.00.xx > Genero Enterprise

Linux users: Select Desktop Menu > Four Js Genero Evaluation Program 3.00.xx > Genero
Enterprise

When Genero Enterprise is launched, the Welcome Page displays a list of the
available Genero projects. In this tour, you will explore Genero Enterprise by working
with the Reports project. Additional demo programs are also available for you to try,
see Running the Demos on page 32. At any time you can select the help icon

in the Genero Enterprise toolbar to get additional help from the documentation.

Project Manager

The Project Manager helps you manage projects and their associated files. Genero Studio supports
Source Code Management (SVN).

Reports is a pre-defined project that contains multiple applications and the corresponding source code
files.

1. Choose the project Reports from the listing in the Welcome Page. A project (Reports.4pw) maps the
relationships between the nodes in the Reports project. The structure of the project is displayed in the
Projects view.

2. Expand the Reports structure tree in Projects view by clicking the + sign. The Reports project consists
of application and library nodes that contain the files associated with the various applications in the
project.

Welcome to Genero Enterprise | 22

Figure 5: Genero Studio Project View
3. Expand the application OrderReport. Within this project, expand the listings. The project contains two

virtual folders:

• Designs - contains the report design documents associated with the application
• src - contains the Genero BDL files and other files associated with the application

Code Editor

Code Editor is a structured, graphical editor with real time Genero syntax checking, code completion, code
template management, and more. It is a programming-oriented editor designed primarily for editing Genero
BDL source code, but it can handle any kind of text or languages.

1. From your expanded Reports project, double-click the file OrderReport.4gl. The Code Editor displays
the file for editing, and the toolbar now has additional icons specific to Code Editor. If you wish, you
can choose Window > Workspaces > Document to switch your view to one designed for document
editing.

The Code Structure view on the right displays the structure of the file, listing the functions and other
components. Syntax errors are marked in the editing window and listed in the Output panel (Document
Errors). Select a function in the Structure panel to display the corresponding code in the editing
window.

Welcome to Genero Enterprise | 23

Figure 6: Genero Studio Code Editor
2. Select File > Close OrderReport.4gl to close the Code Editor.

Tip: If you changed your Workspace view, use the Studio main menu option Window >
Workspaces > Normal to change it back.

Graphical Debugger

The Graphical Debugger is used to monitor the execution of an application, stopping at chosen points to
examine the application's behavior, or to test different scenarios.

Breakpoints are set on program lines in the .4gl program file in Studio Code Editor, using the right-click
menu:

Welcome to Genero Enterprise | 24

Figure 7: Genero Studio Graphical Debugger

The Debug menu has commands to control the execution of the program during debugging. The program
variables and their current values are displayed in the Data tab of the Output view. Additional tabs allow
you to manually enter commands and use watchpoints, for example.

Form Designer

Form Designer is a drag-and-drop visual editor that supports the creation, editing, and layout of Genero
user interfaces. The Form Designer is integrated with a Meta-schema Manager to simplify the creation
and modification of interfaces that are database-aware.

1. Double-click Configuration.4fd in the OrderReport src folder to open the form definition file in
Form Designer.

The form definition consists of containers and widgets that are displayed in the form and listed in the
Form Structure view. The application displays the form to the user. High-level BDL statements in
the Genero BDL file OrderReport.4gl handle the user's input on the form. This form allows the
OrderReport application user to select a report and its output format.

2. Select Build > Preview from the Studio menu to see how the form will display to the user. Select Yes
to All if the New connection window is displayed. Close your previewed form.

3. The properties of a selected form object is listed in the Properties view. Select the RadioGroup (as
shown) to see its properties in the Properties view.

Welcome to Genero Enterprise | 25

Figure 8: The Form Designer
4. Form Designer is a drag-and-drop visual editor. Select the grid around the form items and drag the

bottom to make it larger. Then, re-arrange the form objects as you wish.
5. Select Build > Preview to see how your changes appear to the user.
6. Select File > Close from the Studio menu to close the form and exit Form Designer. Do not save the

changed form.

Note: To examine a more complex form, select the OfficeStore project from the
Welcome Page. Expand the project nodes Office Store Demo, Entities and double-click
OrderForm.4fdm. Close the Form Designer before continuing with the next exercise.

Meta-schema Manager
A meta-schema is an XML file that is a central repository of the Database Metadata; the information about
the tables, columns, and relations of a relational database. It also provides the appropriate default values
when using the tables, columns, or relations in Genero Studio Forms or Studio-generated applications. The
officestore.4db schema is used in the Reports project. Double-click on officestore.4db to explore it
in the Meta-schema Manager.

Welcome to Genero Enterprise | 26

Figure 9: The Meta-schema Manager

Report Writer
The Genero Report Writer is a powerful tool for the creation of business reports for mission-critical
applications. The Report Writer includes:

• Genero Report Designer (GRD) for graphical report layouts.
• Genero Report Engine (GRE) to process the raw data.
• Genero Report Viewer (GRV) to render the report.

1. Double-click the OrderReport.4rp in the Designs folder in the Projects view to open one of the report
designs used by the Order Report application.

Welcome to Genero Enterprise | 27

Figure 10: Genero Report Designer
2. The Toolbox tab allows you to drag containers and other objects onto the report design, and the Data

View tab allows you to add the report data. The Properties view lists the property values for a selected
report object. The report's tree structure is listed in the Report Structure view.

3. Close the OrderReport.4rp document.

Welcome to Genero Enterprise | 28

4. Compile and link the OrderReport application - right-click the node in the Projects view and select
Build from the context menu. The output from the Build operation displays in the Output tab in the
bottom panel.

Figure 11: Building Order Report

5. Run the program - right-click the Order Report application node and select Execute from the context
menu.

6. The Genero Desktop Client is called automatically to display the Configuration form, the application's
user interface:

• Select Order Report from the Report File dropdown box
• Select SVG as the Output
• Select Preview

The Order Report is displayed in the Genero Report Viewer.

Business Application Modeling

Business Application Modeling is the process of modeling applications. The Business Application Modeler
(BAM) is the set of modeling tools that allow you to graphically model your application. The BAM works
with Studio components, such as Meta Schema Manager, Business Application Diagram, Form Designer,
Report Designer, Report Data designer and Web Services data designer to:

Welcome to Genero Enterprise | 29

• Create a design model (.4ba) of your application.
• Generate forms (application screens) based on the database meta-schema.
• Generate the source code for a Genero application, using the design model and generated forms as

input.

Figure 12: The Business Application Modeler (BAM)

The Business Application Modeler permits you to outline the behavior of your application in diagrams. It
manages the Genero BDL language code for you. The code is updated as you declare new behavior in the
diagrams.

The generated program:

• Allows the user to search a database table, add a new database row, update a database row, or delete
a database row.

• Allows the user to retrieve a value for a form field from a list displayed in a pop-up window.
• Populates the items for a ComboBox using values from a database table.
• Handles the master-detail relationships between tables, such as between orders and order items as

shown in the example.

Welcome to Genero Enterprise | 30

Figure 13: Example Order Detail Application Screen

Code Analyzer
The Code Analyzer reverse engineers your existing applications for component relationships and function
call sequence. It generates diagrams, providing you with an overview of your application. Select the link
between components to display a list of function calls.

Dependency Diagram - displays the complex relationships between application and its components, the
dependencies between the various objects. To display the diagram, right-click the Application node or the
Project node, and select Open Dependency Diagram from the menu of options:

Welcome to Genero Enterprise | 31

Figure 14: Example Dependency Diagram of Officestore Application

Sequence Diagram - displays the application's BDL functions and how they interact with each other,
which functions call and/or are called by other functions. To display the diagram for a function from an
open Genero .4gl source code file - right-click the function name and select Open Sequence Diagram
from the context menu:

Figure 15: Example Sequence Diagram of Officestore Application

Integrated Help

Online help is available from within the Genero Enterprise Program > Help menu.

Tip: You can also get context help for a feature or tool you are
working with by pressing the F1 key, or selecting the help icon

Welcome to Genero Enterprise | 32

in the Genero Enterprise toolbar.

You can also access Genero Studio Help from the Four Js Genero Evaluation program list:

• Windows users: Select Start > Four Js Genero Evaluation Program 3.00.xx > Genero Studio Help
• Linux users: Select Desktop Menu > Four Js Genero Evaluation Program 3.00.xx > Genero

Studio Help

The complete Genero documentation sets is displayed in the Contents tree in the left panel of the help
window as shown, which you can browse or search using the Index or Search tools.

Figure 16: Genero Studio Help

Running the Demos
Genero Studio includes demo programs that illustrate some typical business applications.

To run a demo:

1. Launch Genero Studio.
2. From the Welcome Page, select the Tutorials & Samples tab and the demo that you want to run.
3. Right-click the application node, and select Execute.

Continue reading for a brief explanation of two of the demos.

Office Store demo

The Office Store demo displays orders and accounts from the included Office Store database.

Click on the link to open the OfficeStore demo. Under the Officestore Model group, execute the Orders
application.

Welcome to Genero Enterprise | 33

Figure 17: Execute the Orders application

You can then interact with the Office Store database by using the Orders application.

Welcome to Genero Enterprise | 34

Figure 18: Using the Orders application

Reports demo

The Reports demo provides a sample reporting application with various reports design documents. For
example, you can view the report data in a list or a chart.

Open the Reports demo. Under the Reports > Applications group, execute the OrderReport application.

Welcome to Genero Enterprise | 35

Figure 19: Execute the OrderReport application

From the application, you can select the report file and the type of output. To start, we recommend you use
the default values of OrderReport and Genero Report Viewer. Click Preview to see the report.

Welcome to Genero Enterprise | 36

Figure 20: The OrderReport report

Switching Genero Clients
Genero Studio installs with a set of configurations that launch your application using various Genero front
ends.

Front-end options

Your options include:

Desktop When you select the Desktop configuration, the
application displays in the Genero Desktop Client.
This configuration works out-of-the-box.

Web When you select the Web configuration, the
application displays in the Genero Web Client for
JavaScript. This configuration works out-of-the-box.

Web (deprecated) When you select the Web (deprecated)
configuration, the application displays in the Genero

Welcome to Genero Enterprise | 37

Web Client for HTML5. This configuration works
out-of-the-box.

Tip: The Genero Web Client for HTML5 is
provided for legacy Genero applications,
and is provided for backwards compatibility
only. We recommend you use the Web
configuration - and the Genero Web Client
for JavaScript - for your web applications.

Android (ARM) When you select the Android (ARM) configuration,
the application displays on an Android device.

Important: This configuration will NOT
work out-of-the-box. You must complete
additional configuration steps and provide
an Android device. See Configure Genero
Mobile for Android on page 118.

Android (x86) When you select the Android (x86) configuration,
the application displays on an Android virtual
device.

Important: This configuration will NOT
work out-of-the-box. You must complete
additional configuration steps. See
Configure Genero Mobile for Android on
page 118.

iOS Dev Client When you select the iOS Dev Client configuration,
the application displays on an iOS device.

Important: This configuration will NOT
work out-of-the-box. You must complete
additional configuration steps and install
the Genero Mobile Development Client on
your iOS device. See Display to the Genero
Mobile Development Client on page 138.

Select your configuration

Select a configuration from the combobox located in the lower right corner of Genero Studio, then run your
application.

Welcome to Genero Enterprise | 38

Figure 21: Selecting the configuration for the desired client

Creating with Quick Starts
A quick start provides you with simple step-by-step instructions for completing specific tasks.

Quick starts are located in sections where they have supporting topics. Here is a list of all the quick starts
that can be found in the Genero Studio User Guide.

Getting Started with Genero Studio Quick Start: Tour of Genero Studio on page 41

Business Application Modeling (BAM) Quick Start: Generate an application on page 176

Quick Start: Generating a mobile app on page
182

Project Manager Quick Start: Create a project on page 340

Form Designer Quick Start: Creating a first form on page 407

BAM Template Developer Guide Quick Start: Customizing templates on page 930

Welcome to Genero Enterprise | 39

Finding more information
Genero Studio includes a comprehensive documentation suite to help you understand and use the product.

All Genero documentation is installed with Genero Studio. Documentation is also available on our web site.

The Four Js Training Portal provides access to our instructor-led training calendar and our online training
videos. The training videos are targeted to programmers who are new to Genero, as well as to more
experienced programmers who need to catch up with Genero and its latest features.

http://www.4js.com/documentation
http://www.4js.com/training/

Welcome to Genero Studio | 40

Welcome to Genero Studio

Genero Studio provides a graphical integrated development environment for developing and managing
Genero applications.

Genero Studio is dedicated to Genero users, to help you quickly and easily:

• Work locally or across remote resources, with multiple defined configurations. See Configuring Genero
Studio on page 115.

• Design, create and maintain database meta-schemas. See Meta-schema Manager on page 288.
• Design a user interface that interacts with a database. See Creating the user interface on page 407.
• Create application forms based on database tables. See Form Designer on page 406.
• Create application code that uses the correct syntax. See Code Editor on page 374.
• Create graphical reports. See Report Writer on page 551.
• Organize projects. See Project Manager on page 340.
• Compile, run, profile, and debug Genero applications. See Building and linking programs on page 343

and Graphical Debugger on page 502.
• Use version control to manage files. See Source Code Management - SVN on page 529.
• Automatically generate the logic and source code for a database application. See Business Application

Modeling (BAM) on page 176.
• Analyze the code and generate function diagrams for existing applications. See Code Analyzer on page

402.

Getting Started with Genero Studio | 41

Getting Started with Genero Studio

• gst_section_gst_tour.ditamap
• The Genero Studio framework on page 69
• Learning to use Genero Studio on page 103

Quick Start: Tour of Genero Studio
Use this tour to quickly become familiar with Genero Studio.

This tour assumes that you have recently installed Genero Studio and have not changed the default
configurations. If configurations have been changed, the results of some steps may be different than
documented.

Note: If you are using Genero Mobile, see the Configuring Genero Mobile for development section
in the Genero Mobile Developer Guide first. This will assist you in configuring a display client (iOS
or Android). You can then run the OfficeStoreMobile project instead of OfficeStore to explore
Genero Studio.

To begin, launch Genero Studio. From the Welcome Page, Projects tab, select the OfficeStore project.
This opens the OfficeStore project file in the project view.

Figure 22: OfficeStore sample project

Run the OfficeStore demo
Follow these steps to run the OfficeStore demo using the Genero Desktop Client (GDC).

1. Select the Desktop configuration.

Figure 23: Selecting the Desktop configuration.

Getting Started with Genero Studio | 42

2. Expand the OfficeStore project and find the Orders program node. It is in bold because it is the default
program in this project. Right-click on the Orders node and select Execute.

Figure 24: Executing a program

3. Navigate the Orders program. In these steps, browse records, add a new item to an order and modify
the shipping address.

a) Use the Next and Previous options in the Toolbar to browse the records.
b) Right-click on the Toolbar and deselect Enable Text to see the Toolbar with out the associated text.
c) Add a new item to the order. Select an item in the item list and select Append. In the Number field

enter 100
d) Tab to the Item Id field and press the magnifying glass icon to bring up a list of options. Press the

Product Name column header to sort the rows by product name. Find the product name Basketball
and double-click to add this item to the order.

e) Tab to the Quantity field and enter 5.
f) Click on a different item in the list and you are prompted to save your changes. Select Yes.

Your item has been added to the order.
g) Select the Order Date field and use the calendar to select a new order date.
h) Select the Shipping tab. In the Address field enter 4, Rue Beethoven.

Getting Started with Genero Studio | 43

Figure 25: Program running in GDC

4. Select File >> Exit to exit the Orders program.

Run the same Orders program in GWC for JavaScript.

5. In the lower right corner, change the display configuration to Web.

Figure 26: Change display to Web

6. Right-click on the Orders node and select Execute.

Getting Started with Genero Studio | 44

Figure 27: An application running in a browser with the default configuration for Genero Web
Client

7. Navigate the Orders program in the Genero Web Client.

8. Select File >> Exit to exit the Orders program.

Explore the Debugger
Follow these steps to explore Debugger features.

1. Expand the Intermediate Files folder in the Accounts node and double-click Account.4gl to open
the source in Code Editor.

Getting Started with Genero Studio | 45

Figure 28: The Account application open in Code Editor

2. Right-click on line 33, a function call to AccountForm_ui_uiOpenForm() and select Add/Delete
Breakpoint.

A red dot, the breakpoint icon, appears in the gutter adjacent to line 33.

Figure 29: Adding a breakpoint

3. Right-click the Accounts application node and select Debug to start the application in Debug mode.

When the application runs, it stops at the breakpoint, and waits.

Figure 30: Waiting at a breakpoint

Getting Started with Genero Studio | 46

4. Select Debug >> Step in to execute the function call and open the function module,
AccountForm_ui.4gl, in Code Editor.

Execution stops inside the called function, waiting for the next Debugger instruction.

Figure 31: Stepping into an external function

5. Use the Code Structure view to quickly locate functions in AccountForm_ui.4gl for additional
breakpoints:

a) In the Code Structure view, select the AccountForm_ui_uiDisplay() function to display the
function source in Code Editor.

b) In Code Editor, right-click on the line containing the function header and select Add/Delete
Breakpoint.

c) Repeat Sub-steps a and b to create a breakpoint for the AccountForm_ui_uiInput() function.

Getting Started with Genero Studio | 47

Figure 32: Navigating functions using the Code Structure view

6. In the Data view examine the values of local, module and global variables.

7. In the Data view, expand the Local variables folder, right-click on the variable p_openMode, and select
Add to watch.

Setting a watchpoint on the p_openMode variable will stop program execution each time the variable
value changes.

Getting Started with Genero Studio | 48

Figure 33: Adding a Watchpoint

8. In the command line area of the Command view, type continue to resume program execution until the
p_openMode watchpoint is triggered.

Entering the continue command resumes program execution until a breakpoint is reached, a
watchpoint is triggered, or the program terminates. The continue command is also available in the
Debug menu and Toolbar.

Getting Started with Genero Studio | 49

Figure 34: Command view showing the results of the continue command

9. Select Debug >> Continue.

An application screen displays and program execution stops at the breakpoint on function
AccountForm_ui_uiDisplay().

10.Use the Backtrace view to see which functions in the program have been called.

Getting Started with Genero Studio | 50

Figure 35: The Backtrace view

11.Select Debug >> Continue.

Program execution continues until an interactive Dialog statement (DISPLAY ARRAY) switches control
to the application screen, which appears exactly as if it were running outside the Debugger.

Getting Started with Genero Studio | 51

Figure 36: The application screen

12.Interact with the program:

a) Select Search in the Accounts window
b) Type miller into the User Id field and select Accept.

Control switches back to the Debugger and program execution continues until it reaches the
breakpoint at function AccountForm_ui_uiDisplay().

c) Select Debug >> Next to step through the application one instruction at a time until the record for
userid miller displays and control is switched back to the application screen.

d) Select File >> Exit to close the application screen and return control back to the Debugger.

13.Select Debug >> Continue to terminate the application and complete the tour.

Terminating the application also terminates the Debugger session.

vi emulator and diff tools in Code Editor
Easily switch to the vi code editor while working with text files.

1. From the Officestore project, expand the Orders node and Intermediate Files folder. Double-click on
Order.4gl to open it in Code Editor.

2. Add a new comment anywhere in the file by typing --My comment.

3. Select Edit >> VI Editing Mode . Use vi commands to navigate the file and remove the comment you
added in the prior step.

4. Notice that the file is automatically in diff mode.

Getting Started with Genero Studio | 52

Explore Source Code Management
Maintain and share project files with Genero Source Code Management (SCM)

Before you begin, a Subversion client must be installed on your local machine as described in What is
Genero Source Code Management? on page 529. In addition, you must have access to a Subversion
repository containing the OfficeStore sample to perform the steps below.

The steps in this tour assume that the files for the OfficeStore sample project have been stored in an SVN
Repository.

1. Use the Checkout option from the SCM menu to checkout the OfficeStore project files from the
repository to your checkout directory.

The SCM Checkout wizard steps you through the process of checking out project files and prompts you
to select a project file (4pw) to open in Project Manager.

Figure 37: The SCM Checkout wizard

2. Select File >> New >> Genero Files, Style (.4st), and save the new styles file as account.4st in the
Entities node.

Adding a file to the project automatically performs an SVN add, which uploads and adds the file to the
repository on your next SVN commit. The Entities folder displays a red exclamation mark to indicate
uncommitted changes to the directory.

Getting Started with Genero Studio | 53

Figure 38: Adding a file to a project managed by SCM

3. Select Window >> Views >> SVN Status, navigate to your checkout directory and select Add mode.

Selecting Add mode lists the newly added styles file as well as any other unversioned files present in
the directory.

Getting Started with Genero Studio | 54

Figure 39: The SVN Status view

4. Ensure the Select option is checked and select the Commit... button at the top of the view to invoke the
SVN Commit dialog.

5. Enter New styles file in the Commit Comments area and select the Commit button to commit the
new file to the repository.

6. Enable the SVN needs-lock property on the account.4st file to prevent commit conflicts.

Setting the needs-lock property requires a user to lock the file before modifying it.

a) Right-click on the account.4st file in the Projects view and select SCM >> Properties.
b) Select the + at the top of the Property view to launch the Add SVN Property dialog.
c) Select svn:needs-lock from the selection list, select OK and close the SVN Properties dialog.

Getting Started with Genero Studio | 55

Figure 40: Setting the needs-lock property

7. Lock and edit the account.4st file.

a) In Project Manager, right-click on the account.4st file and select SCM >> lock.
b) Enter testing locks in the Lock files comment area and select Lock.
c) Select the SVN Locks button in the SVN view at the bottom of the screen to view information about

all locked files in the checkout directory.
d) Open the account.4st file in Code Editor, delete lines two through nine and save the changes.

Deleting the lines will create many errors as indicated by the red icons in the Code Editor gutter.

Getting Started with Genero Studio | 56

Figure 41: The SVN Locks view

8. Select the account.4st file in the SVN Status view and commit the changes (use style edits for
the Commit Comment).

Note that committing the file releases the lock. You may be prompted to reload the modified file when
you commit. Respond by selecting Reload.

9. Right-click the account.4st file in the Project view and select SCM >> Show Log to add and open
the SVN Log view at the bottom of the screen.

10.Right-click on the entry for Revision 4 in the SVN Log and select Diff to call the Diff utility to compare
the selected revision with the previous revision.

You can also use ctrl-click to select specific revisions you wish to compare with the Diff utility.

Getting Started with Genero Studio | 57

Figure 42: Performing a Diff

11.Right-click on the entry for Revision 4 in the SVN Log view and select Blame to see inline annotations
for each change, including the author and revision number.

Getting Started with Genero Studio | 58

Figure 43: The Blame view

12.Revert back to an error-free version of the account.4st file.

a) Right-click on the entry for Revision 3 and select Revert to this Revision... to launch the SVN
Merge/Revert dialog.

b) Accept the defaults in the SVN Merge/Revert dialog and select Merge/Revert, then Finish in the
Merge/Revert result window.

The account.4st file reverts back to the selected revision and displays in Code Editor with the
deleted lines from Revision 4 replaced and highlighted.

Getting Started with Genero Studio | 59

Figure 44: Reverting to a previous revision

13.Delete the account.4st file to complete the tour.

a) Close the account.4st file in the Code Editor view.
b) Right-click the account.4st file in Project Manager and select Delete from Disk.
c) Select the account.4st file in the SVN Status view and select Commit... (enter SVN test for the

Commit Comment).

Explore database meta-schemas
Follow these steps to interact with a database meta-schema for developing forms, reports, and services.

1. From the Welcome Page, Projects tab, select the OfficeStore project. This opens the OfficeStore
project file in the project view.

2. Expand the project and find the Databases node.

3. Double-click on the officestore.4dbx file. The file opens in the Meta-schema manager.

4. Note the layout of the tables and columns and the defined join relationships between them. Zoom in
and out of the diagram by holding down the Ctrl key while scrolling with the mouse.

5. Select File >> Print Preview. Note that you can print any diagram in a variety of ways.

6. Find the account table. Select the lastname column and modify its column length from 80 to 120.

Getting Started with Genero Studio | 60

7. Save your changes. Note that the diagram reflects that the schema is different from the database by
flagging the modified column.

8. Generate a script to update the database with your change to the meta-schema. Select Database >>
Generate Database Update Script. Select OK and note that a 4gl file is created for you to use or
expand upon as needed. Note the additional options in the Database menu allow you to also update a
schema from the database as well as compare two schemas.

Explore forms
Follow these steps to explore the visual tools for user interface development.

Explore a form, then create a new form

1. Expand the OfficeStore project and find the Entities node.

2. Expand the Entities node and double-click on the OrderForm.4fdm file.

The OrderForm.4fdm file is a form and opens in the Form Designer.

Figure 45: The OrderForm.4fdm file

3. Customize your working environment to best suit you.

All panels can be re-sized with the mouse or closed and reopened with Window >> Views. Try
pressing Alt-F11 to toggle to Document editing. Select Alt-F11 again to return to normal view.
Double-click on the title of the Form Structure view to undock it. Double-click again to re-dock it into its
last position.

4. Scroll down in the Form Structure view to the Form section and select a form item.

The item is also selected in the form design.

Getting Started with Genero Studio | 61

Figure 46: Selecting a form item in the Form Structure view

5. Use the Form from Database wizard to create a new form:

a) Select File >> New >> Genero Files, Form from Database (.4fd).

Figure 47: Creating a new form
b) Select the officestore database and the account table (use the double arrow to select all columns

in the account table for the form).

Getting Started with Genero Studio | 62

Figure 48: Selecting database and columns for a new form
c) Select Finish.

The form is now ready to use or modify in Form Designer. Additional table columns, container, and
widgets can be added.

Figure 49: Form created from the Form from Database wizard

6. Select the Records tab at the bottom of the window.

Getting Started with Genero Studio | 63

The Records tab represents the data set for your form. Additional records can be added here or in the
design.

7. Right-click on the record and select Add Field.

A field is added to the record with default values.

Figure 50: Adding a new field to a form record

8. Switch to the Form tab.

Note that the new field has been placed on the form in the top left. This field's properties and placement
can be modified.

9. Right-click on the new field and select Convert Widget >> FFLabel to change the field to a form field
label.

Getting Started with Genero Studio | 64

Figure 51: The Convert Widget menu

10.In the properties for the new field, change its color value from Black to Blue.

The color changes on the form design.

Figure 52: The color property

11.Select Build >> Preview to get an idea about how the form will render in the Desktop client.

12.Close the form preview and the untitled form (do not save it) to complete the tour.

Getting Started with Genero Studio | 65

Analyze code
Follow these steps to learn how to reverse engineer an application with Dependency and Sequence
diagrams, resources provided by Genero Code Analyzer.

1. Right-click the OfficeStore Group node and select Open Dependency Diagram.

Dependency diagrams display a graphical view of the complex relationships between components of a
project and can be opened at the group or application level.

Figure 53: Option to open a Dependency Diagram

2. Right-click the Entities node in the Dependency diagram and select Expand from the context menu.

The Entities node expands to display all the sub-components and the relationships between them. Use
Ctrl-mouse wheel to zoom in and out.

Getting Started with Genero Studio | 66

Figure 54: The expanded Entities node

3. Use a Dependency diagram filter to focus on the dependencies between components of the Accounts
application:

a) Right-click anywhere in the Dependency diagram margins and select Filter Items...
b) In the Select items to filter dialog, deselect Orders.
c) Press OK.

Getting Started with Genero Studio | 67

Figure 55: The Filter view

4. Select the link between AccountForm_ui and AccountForm_uidata to display associated function
calls in the Function calls view.

Details about function calls between the selected modules are shown in the Function calls view and the
project structure displays as a tree in the Dependency Diagram Structure view.

Figure 56: The Function Calls view

5. Right-click on the AccountForm_ui_uiInput function in the Function Calls or Dependency Diagram
Structure view and select Open Sequence Diagram.

Getting Started with Genero Studio | 68

The diagram shows the logic flow of AccountForm_ui_uiInput, with the starting point indicated by
the stick-figure representing the user who interacts with the application. The boxes represent functions
in the AccountForm_ui.4gl module, and the sequence is indicated by the order in which the boxes
are listed. Plus/minus signs on each box allow you to display or hide sub calls.

Figure 57: A Sequence diagram

6. Right-click the box for the AccountForm_ui_recAccount_setDefaultValues function and select
Show Sub Calls.

The box is expanded to show the AccountForm_ui_recAccount_clearCascade() subcall.

Getting Started with Genero Studio | 69

Figure 58: Sequence diagram with expanded function box

7. Close the AccountForm_ui_uiInput Sequence diagram tab and OfficeStore.4pw Dependence
diagram tab in the Code Editor view to complete the tour.

Generate code
Genero Studio includes the Business Application Modeler (BAM) for generating business applications.

See Quick Start: Generate an application on page 176 or Quick Start: Generating a mobile app on page
182.

The Genero Studio framework
When a Genero Studio module is launched, the framework is displayed and all other windows and views,
menus, Toolbars, and icons are contained within.

• The Welcome Page on page 70
• Modules on page 71
• Toolbars and Menus on page 82
• Views on page 96

Getting Started with Genero Studio | 70

Figure 59: The Genero Studio framework

Tip: In addition to using the Close icon (a red "X"), you can close a tab in the Central Workspace
by clicking the mouse wheel on the tab label.

The Welcome Page
The Welcome Page is displayed when Genero Studio is launched. From the Welcome Page, open a recent
or sample project or configure the environment or database connection.

Open the Welcome Page by selecting Tools >> Welcome Page. The Welcome Page is the first tab in the
document workspace.

Figure 60: Welcome Page tab

Tabs

Tabs organize the Welcome Page into sections.

Getting Started with Genero Studio | 71

Projects Open a recently opened Project (4pw) or document.
See Project Manager on page 340.

Tutorials and Samples Sample files distributed with Genero Studio;
contains links to open the sample projects. See
Samples directory on page 103.

News RSS feed with news about Genero.

Support Access to support and training videos.

Customizing the Welcome Page

Select Tools >> Preferences >> Welcome Page to change what is on the Welcome Page.

Show Welcome Page at start up Uncheck if you do not wish this page to display.

Template Select the template for the Welcome Page.

Clear Clear all stored cookies.

Visible Sections Check the sections that you wish to be displayed.
Enable RSS feeds with the RSS Section checkbox.

Parameters Use the edit button to edit the feeds used on the
page and to add or edit RSS locations.

Modules
Genero Studio is made up of modules managing the design, development, and execution of Genero
applications.

A module is also commonly referred to as a plug-in.

• BAM - Application Modeling and Code Generation on page 71
• Code Analyzer on page 72
• Code Editor on page 75
• Debugger on page 75
• Diff on page 76
• File Browser on page 77
• Form Designer on page 78
• Meta-schema Manager on page 79
• Project Manager on page 80
• Report Writer on page 81
• Source Code Management - SVN on page 81

BAM - Application Modeling and Code Generation
Genero Studio Business Application Modeling (BAM) develops business applications from design diagrams
rather than from writing code. It automatically generates the logic and source code for a database

Getting Started with Genero Studio | 72

application to query, add, update and delete rows in database tables. BAM can generate desktop, web,
and mobile applications.

Figure 61: Business Application Modeling (BAM)

Launch by creating or opening a Managed Project from the File menu or by opening a new or existing
Business Application Model diagram from the File menu or Project view.

See Business Application Modeling (BAM) on page 176 for more details.

Code Analyzer
The Code Analyzer reverse engineers existing applications and can generate diagrams to provide an
overview of the application.

The Sequence Diagram visually displays the flow of your application logic. It shows how the functions of
the application call and/or are called by other functions.

Getting Started with Genero Studio | 73

Figure 62: Sequence Diagram

The Dependency Diagram displays a graphical view of the complex relationships between the various
pieces of a project. It shows the components that depend on other components, and/or have components
that depend on them.

Getting Started with Genero Studio | 74

Figure 63: Dependency Diagram

See Code Analyzer on page 402 for more details.

Getting Started with Genero Studio | 75

Code Editor
Code Editor is a programming-oriented editor. In addition to editing source code, it can handle any kind of
text or languages such as 4GL and XML. Smart editing features like auto-completion, code templates, text
folding, bookmarking, and robust search and replace make coding easier and more efficient.

Figure 64: Code Editor

Use File >> New or File >> Open to open a text file.

See Code Editor on page 374 for more details.

Debugger
The Graphical Debugger provides a graphical interface to test and control the behavior of a Genero
application. Navigate through the functions and create and manage breakpoints on functions and code
lines. Choose and group together any variables to watch. Follow a number of variables easily, and even
alter their values while the application is running, for testing purposes.

Getting Started with Genero Studio | 76

Figure 65: Debugger

Launch with the Debug menu options.

See Graphical Debugger on page 502 for more details.

Diff
The Diff tool compares two files: a read-only base copy of the file and a working copy. It is integrated into
Code Editor.

Figure 66: Vertical Dual Diff View display mode

Launch with Tools >> Diff.

Getting Started with Genero Studio | 77

See Using the Diff tool on page 380 for more details.

File Browser
File Browser is a tool to navigate, open, delete or rename files, and to create new folders or files on a file
system.

Figure 67: The Files view

Launch with Tools >> File Browser or from the Project Manager Files tab.

See File Browser on page 500 for more details.

Getting Started with Genero Studio | 78

Form Designer
Form Designer is a visual editor that supports the creation, editing, and layout of Genero forms in Genero
Studio.

Figure 68: Form Designer

Use File >> New or File >> Open to create or open a Genero form file.

See Form Designer on page 406 for more details.

Getting Started with Genero Studio | 79

Meta-schema Manager
The Meta-schema Manager is a visual tool used to design, create and maintain database meta-schema
files.

Figure 69: Meta-schema Manager

Use Database >> New Schema or File >> Open to open an existing schema.

See Meta-schema Manager on page 288 for more details.

Getting Started with Genero Studio | 80

Project Manager
Project Manager is a tool to manage the organization and build of executables from the program's source
files.

Figure 70: The Projects view

Use File >> New or File >> Open to open project file.

See Project Manager on page 340 for more details.

Getting Started with Genero Studio | 81

Report Writer
The Genero Report Writer includes a graphical report designer, report engine, and report viewer. Report
applications are written using the Genero Business Development Language.

Figure 71: Genero Report Designer

Launch by opening a new or existing Genero Report Design document from the File menu or by opening a
Genero Report Design document in the Project view.

See Report Writer on page 551 for more details.

Source Code Management - SVN
Genero Source Code Management (SCM) enables collaborative sharing and maintaining of the files in
Genero projects.

Figure 72: Project view with status icons

See Source Code Management - SVN on page 529.

Getting Started with Genero Studio | 82

Web Services
Web services can be called from a Genero application. The Web Service Wizard guides you through the
process of adding a Web service. Web services can also be generated from the Business Application
Modeling tools.

See Web Services on page 910 and Add Web services (Server, Services, Forms with services) on page
215 for more details.

Toolbars and Menus
Menus and Toolbars are constructed dynamically depending on the context and the currently active
module.

• File >> New on page 94
• Save / Save As / Save All on page 95
• Opening a file from a prior version on page 96

Customize

Toolbars and menus are fully customizable; you can add, modify, and delete Toolbars, menus and
corresponding accelerators using Tools >> Preferences, User Interface. Reorganize the layout of the
Toolbar by dragging and dropping a Toolbar to a new location within the Toolbar region or to float on the
Genero Studio framework. Right-click to display a context menu for a selected item.

Table 14: Toolbars and Menus on page 82 lists the icon, menu option, shortcut key, and description of
each option in each Genero Studio menu.

Table 14: Toolbars and Menus

File File Menu Accelerator (Shortcut) Description

File >> New Ctrl+N Create a new file. See File
>> New on page 94.

File >> Open Ctrl+O Open a file. See also
Opening a file from a prior
version on page 96.

File >> Close file | Close
Welcome Page

Ctrl+F4 Close open file | Welcome
Page

File >> Close project Close project.

File >> Checkout... Checkout from SVN
repository. See Checkout
files on page 530.

File >> Save Ctrl+S Save current file. See Save /
Save As / Save All on page
95.

File >> Save as... Ctrl+Alt+S See Save / Save As / Save
All on page 95.

File >> Save all Ctrl+Shift+S Save all unsaved files. See
Save / Save As / Save All on
page 95.

File >> Import text form
(.per)

Ctrl+I Import a text form to Form
Designer format. See
Migrate per file to 4fd on
page 411.

Getting Started with Genero Studio | 83

File File Menu Accelerator (Shortcut) Description

File >> Import Project Files See Import files into the
diagram from the project on
page 225.

File >> Export as Image Exports a diagram to an
image file. This option opens
a dialog for configuring the
image file path, format (such
as png and jpg), and size.

File >> Print ... Ctrl+P Print a file. Opens the Print
dialog, to print the file using
the options available to your
operating system printers.

File >> Print Preview Preview file. Opens the Print
preview dialog. Displays
a preview of the printed
file in a preview window.
For diagrams, scaling and
number of pages to use to
print can be configured. See
Print preview dialog on page
102.

File >> Poster Printing
Setup...

Used to print diagrams,
it opens a dialog for
configuring the scaling and
number of pages to use to
print. This action is available
from Code Analyzer, Report
Writer, Business Application
Modeling, and Meta-schema
Manager.

File >> Recent documents List of recent opened
documents.

File >> Recent projects List of recently opened
projects

File >> Quit Quit Genero Studio

Edit Edit Menu Accelerator (Shortcut) Description

Edit >> Undo Ctrl+Z Undo the last action(s).

Edit >> Redo Ctrl+Y Redo the last action(s).

Edit >> Cut Ctrl+X Cut to clipboard.

Edit >> Copy Ctrl+C Copy to clipboard.

Edit >> Paste Ctrl+V Paste from clipboard.

Edit >> Delete Del Delete item.

Edit >> Select All Ctrl+A Select all on area with focus.

Getting Started with Genero Studio | 84

Edit Edit Menu Accelerator (Shortcut) Description

Edit >> Search/Replace See Search and replace on
page 377.

Edit >> Search/Replace >>
Find

CTRL+F Find in current file.

Edit >> Search/Replace >>
Find in Files

CTRL+SHIFT+F Find in selected files.

Edit >> Search/Replace >>
Find Previous

SHIFT+F3 Find previous occurrence.

Edit >> Search/Replace >>
Find Next

F3 Find next occurrence.

Edit >> Search/Replace >>
Replace previous

Replace previous
occurrence.

Edit >> Search/Replace >>
Replace next

Replace next occurrence.

Edit >> Search/Replace >>
Replace all

Replace all occurrences.

Edit >> Search/Replace >>
Stop search

Stop current search

Edit >> Search/Replace >>
Clear all Search Results

Clear all search results.

Edit >> Bookmarks >>
Toggle Bookmark

CTRL+B, CTRL+B Toggle bookmark at location.
See Bookmarks on page
376.

Edit >> Bookmarks >>
Previous Bookmark

CTRL+B, CTRL+P Go to previous bookmark.

Edit >> Bookmarks >> Next
Bookmark

CTRL+B, CTRL+N Go to next bookmark.

Edit >> Bookmarks >>
Delete all Bookmarks

CTRL+B, CTRL+L Go to next bookmark.

Edit >> Open Line Ctrl+Shift+L Open a new line.

Edit >> Delete Line/Word Delete current word or line.

Edit >> Selection Select current word or line.
See Selection keymap on
page 395.

Edit >> Go To Ctrl+G Go to location in file.

Edit >> Comment >> Toggle
Line Comment

Ctrl+K, Ctrl+K Toggle line comment.

Edit >> Comment >> Block
Comment

Ctrl+K, Ctrl+C Comment section of code.

Edit >> Comment >> Block
Uncomment

Ctrl+K, Ctrl+U Uncomment section of code.

Edit >> Completion >> Auto
Complete

Ctrl+Space Completes a line of code or
prompts for a valid keyword
in the syntax. See Auto

Getting Started with Genero Studio | 85

Edit Edit Menu Accelerator (Shortcut) Description

completion (Ctrl+Space) on
page 376.

Edit >> Completion >> Use
Template

Ctrl+T Select template from list.
Code templates (Ctrl+T) on
page 376.

Edit >> Case >> Upper Case Alt+Shift+U Change selection to upper
case.

Edit >> Case >> Lower Case Alt+Shift+L Change selection to lower
case.

Edit >> Case >> Uppercase
Word

Ctrl+Alt+Shift+W Change word to upper case.

Edit >> Case >> Lowercase
Word

Ctrl+Alt+W Change word to lower case.

Edit >> Case >> Toggle
Case

Ctrl+U Toggle case.

Edit >> Case >> Convert
Keywords to Uppercase

Convert keywords to upper
case.

Edit >> Strip Trailing Spaces Ctrl+Shift+T Delete all spaces at the end
of lines.

Edit >> Format and Indent Ctrl+Shift+I Format the document by
indenting XML elements and
removing extra spaces. This
option is enabled only for
XML documents.

Edit >> Convert to Convert text to Windows,
UNIX, or Mac format.

Edit >>VI Editing Mode Ctrl+Shift+E Use VI commands to edit the
file. Seevi emulator and diff
tools in Code Editor on page
51 .

View View Menu Accelerator (Shortcut) Description

View >> Show characters >>
Show all Characters

Show all characters in
document.

View >> Show characters
>> Show Line Ending
Characters

Show line ending characters
in document.

View >> Show characters >>
Show White Spaces

Show white spaces in
document.

View >> Zoom out Zoom out.

View >> Zoom in Zoom in.

View >> Actual size Restore default zoom.

Getting Started with Genero Studio | 86

View View Menu Accelerator (Shortcut) Description

View >> Split Horizontal Ctrl+Alt+H Split document horizontally.
See Split a document on
page 377

View >> Split Vertical Ctrl+Alt+V Split document vertically.
See Split a document on
page 377

View >> Unsplit Ctrl+Alt+Shift+N Unsplit.

View >> Unsplit all Ctrl+Alt+Shift+A Unsplit all.

View >> Fold Ctrl+- Fold section of text. See
Fold text on page 375.

View >> Unfold Ctrl++ Unfold section of text.

View >> Fold all Ctrl+Shift+- Fold all text. See Fold text
on page 375.

View >> Unfold all Ctrl+Shift++ Unfold all text.

View >> Languages Specify the language
that Code Editor uses
for formatting and error
marking.

Diff Diff Menu Accelerator (Shortcut) Description

Diff >> Normal View Normal view editing mode.

Diff >> Diff View View diff in single pane. See
Using the Diff tool on page
380.

Diff >> Diff View with
Deleted Blocks

Diff view with deleted blocks.

Diff >> Vertical Dual Diff
View

View diff in dual vertical
panes.

Diff >> Horizontal Dual Diff
View

View diff in dual horizontal
panes.

Diff >> Base File Select base file to use for
diff.

Diff >> Flip Sides Flip sides.

Diff >> First Difference Alt+Home Go to first difference.

Diff >> Previous Difference Alt+Up Go to previous difference.

Diff >> Next Difference Alt+Down Go to next difference.

Diff >> Last Difference Alt+End Go to last difference.

Diff >> Copy to Right Alt+Right Copy change to right.

Getting Started with Genero Studio | 87

Diff Diff Menu Accelerator (Shortcut) Description

Diff >> Copy to Left Alt+Left Copy change to left.

Diff >> Copy All to Right Copy all changes to right.

Diff >> Copy All to Left Copy all changes to left.

Diff >> Create Patch Create patch.

Build Build Menu Accelerator (Shortcut) Description

Build >> Compile File F6 Compile selected file.

Build >> Preview Ctrl+Shift+P Preview the selected form.

Build >> Build all F8 Build all of project.

Build >> Rebuild all Shift+F8 Rebuild all of project. Clean
and then build files that are
not up-to-date.

Build >> Clean all Clean all of selected. Erase
all output files defined in the
Build and Link rules.

Build >> Build F7 Build default application.
Compile and link files in the
default application.

Build >> Rebuild Shift+F7 Rebuild selected or default
application.

Build >> Clean Clean selected or default
application.

Build >> Abort Last Task Ctrl+Shift+F5 Abort last started task.

Debug Debug Menu Accelerator (Shortcut) Description

Debug >> Execute Ctrl+F5 Execute selected or default
application.

Debug >> Execute with
Profiler

Execute selected or default
application with Profiler. See
Profiler on page 510.

Debug >> Debug F5 Debug selected or default
application. See Graphical
Debugger on page 502.

Debug >>Attach to Process Debug a running application.
See Start the Debugger on
a running program on page
502.

Debug>>Attach to Mobile
Process

Debug a mobile application.
SeeDebug a mobile
application on page 504 .

Getting Started with Genero Studio | 88

Debug Debug Menu Accelerator (Shortcut) Description

Debug >> Add/Delete
Breakpoint

F9 Add or delete a breakpoint at
current location.

Debug >> Enable/Disable
Breakpoint

Ctrl+F9 Enable or disable breakpoint
at currrent location.

Debug >> Abort Last Task Abort last started task.

Database Database Menu Accelerator (Shortcut) Description

Database >> Extract
Schema...

Ctrl+M Extract schema from
database.

Database >> Import SCH
File...

Import schema from sch file.

Database >> Update
Schema

Update database meta-
schema file from database.
See Update a meta-schema
from database on page
302.

Database >> Generate SCH
File

Generate a BDL schema file
(sch) from the meta-schema
file. This file is automatically
created by Genero Studio
when a meta-schema is
compiled. See BDL schema
file (sch) on page 293.

Database >> Generate
Database Creation Script

Used to generate a source
4gl file that can be used
to create a new database
and tables according to
the meta-schema file See
Generate a database script
from meta-schema on page
303.

Database >> Generate
Database Update Script

Used to generate a source
4gl file that can be used
to update an existing
database based on the
meta-schema file. See
Generate a database script
from meta-schema on page
303.

Database >> Generate
Schema Documentation

Generates an HTML
page with details on
the meta-schema. See
Generate meta-schema
documentation on page
305.

Database >> Diff Schema... See Comparing two meta-
schemas on page 302.

Getting Started with Genero Studio | 89

Database Database Menu Accelerator (Shortcut) Description

Database >> Add Table See Add new tables and
columns on page 294.

Database >> Add Column See Add new tables and
columns on page 294.

Database >> Add Constraint
or Index

See Add constraints or
indexes on page 294.

Database >> Add Foreign
Key

See Add foreign keys on
page 295.

Database >> Select Esc Selection tool.

Database >> Edit F2 Edit properties of the item
selected.

Database >> Insert Column
Before

Ctrl+Shift+Ins See Add new tables and
columns on page 294.

Database >> Insert Column
After

Ins See Add new tables and
columns on page 294.

Database >> Revert See Revert schema changes
dialog on page 315.

Database >> Layout Rearrange the items in the
diagram.

Database >> Filter Items The Filter View dialog allows
you to hide and show items
on a diagram.

Database >> Locate in
Diagram

This action brings focus in
the diagram to the selected
item. If the selected object
is not visible in the current
view, the Meta-schema
Manager will try to find
another view where the
object is visible. If no view is
found, you are prompted to
make the object visible in the
current view or to create a
new view.

Database >> Advanced
Properties

Specify the extraction and/
or generation options.
See Extract meta-schema
information from database
on page 228 and Generate
a database script from meta-
schema on page 303.

SCM SCM Menu Accelerator (Shortcut) Description

SCM >> Checkout... Checkout files from a
repository. See Checkout
files on page 530.

Getting Started with Genero Studio | 90

SCM SCM Menu Accelerator (Shortcut) Description

SCM >> Show Log Display the SVN Log view.
See SVN Log view on page
541.

SCM >> Review Changes Display the SVN Status
view. See Commit / Review
changes on page 531.

SCM >> Show locks Display SVN Locks view.
See SVN Locks view on
page 541.

SCM >> Merge/Revert... Display the SVN Merge/
Revert dialog. See Merge
and revert on page 535.

SCM >> Copy... Display the SVN Copy
dialog. See Copy working
files and directories on page
535.

SCM >> Switch... Display the SVN Switch
dialog. See Move a working
copy (Switch) on page
536.

SCM >> Apply patch... The Apply patch command
applies a patch file to files
in the repository. See Apply
patch on page 536.

SCM >> Browse Repository Display the SVN Repository
Browser. See Browse
repository on page 537.

SCM >> Update Display the SVN Update
dialog. See Update / Update
All on page 534.

SCM >> Lock Locking a file provides
exclusive rights to a user
for changing that file in the
repository. See Locking on
page 532.

SCM >> Cleanup The Cleanup command
cleans up the working copy,
removing stale locks.

SCM >> Blame The Blame command
shows author and revision
information inline for
specified files or URLs.

SCM >> Blame... Display the SVN Blame
dialog.

SCM >> Properties Display the SVN Properties
dialog. See SVN Properties
dialog on page 548.

Getting Started with Genero Studio | 91

Tools Tools Menu Accelerator (Shortcut) Description

Tools >> Welcome Page Open Welcome Page. See
The Welcome Page on page
70.

Tools >> File Browser Open File Browser. See File
Browser on page 500.

Tools >> Diff Open Diff tool. See Using
the Diff tool on page 380.

Tools >> Dependency
Diagram

Open Dependency Diagram.
See Dependency Diagrams
on page 403.

Tools >> Genero Tools Access to Genero tools such
as the BDL Licenser and the
Genero Workplace Window.

Tools >> Android Tools >>
Auto-configure Android SDK

Run the scripts to auto-
configure the Android SDK
for use in Genero mobile
development. See Genero
Mobile Developer Guide.

Tools >> Android Tools
>> Create Android Virtual
Device (x86)

Create the default Android
emulator. See Genero
Mobile Developer Guide.

Tools >> Android Tools >>
Launch Android Emulator
(x86)

Launch the default Android
emulator. See Genero
Mobile Developer Guide.

Tools >> Android Tools >>
Deploy Genero Mobile for
Android

Deploy the GMA client
to the connected device
or emulator. See Genero
Mobile Developer Guide.

Tools >> Android Tools >>
Open Android SDK Manager

Launch the installed Android
SDK Manager.

Tools >> Android Tools
>> Open Android Debug
Monitor

Launch Android Debug
Monitor tool which is part of
the Android SDK.

Tools >> Android Tools
>> Open Android Virtual
Devices Manager

Launch the Android Virtual
Devices Manager which is a
part of the Andriod SDK.

Tools >> Android Tools >>
List Devices

Lists each attached device
and its unique id.

Tools >> Android Tools >>
Show Android Device Logs

Displays the Android Device
Logs to the Output view.
See Viewing the device
logs in the Genero Mobile
Developer Guide.

Tools >> Android Tools >>
Display Standard output and
error

Display or stop display of
the Standard output and
errors to the Output view.
See Viewing the program

Getting Started with Genero Studio | 92

Tools Tools Menu Accelerator (Shortcut) Description

Tools >> Android Tools >>
Stop display Standard output
and error

logs in the Genero Mobile
Developer Guide.

Tools >> Android Tools >>
Show AUI Tree

Display AUI tree in browser.
See Viewing the AUI Tree
in the Genero Mobile
Developer Guide.

Tools >> iOS Tools >>
Launch iOS Simulator

Launch the default iOS
Simulator. See Genero
Mobile Developer Guide.)

Tools >> iOS Tools >>
Deploy Genero Mobile for
iOS

Deploy the GMI client to
the connected device or
simulator. See Genero
Mobile Developer Guide.

Tools >> iOS Tools >> iOS
App Store deployment >>
Open iTunesConnect

Open the https://
itunesconnect.apple.com
webpage.

Tools >> iOS Tools >> iOS
App Store deployment >>
Launch Application Loader

Opens Xcode's "Application
Loader" application.

Tools >> iOS Tools >> List
Devices

Lists each attached device
and its unique id.

Tools >> iOS Tools >> Show
AUI Tree

Display AUI tree in browser.
See Viewing the AUI Tree
in the Genero Mobile
Developer Guide.

Tools >> Current Config >>
Launch GDC

Ctrl+Shift+G Launch the Genero Desktop
Client (GDC).

Tools >> Current Config >>
Launch GDC...

Prompt for GDC options
before launching GDC.

Tools >> Current Config >>
Open Application Server
Monitor

Open Application Server
Monitor.

Tools >> Current Config >>
Genero BDL Licenser

Open Genero BDL Licenser
program.

Tools >> Current Config
>> Genero Report Engine
Licenser

Open Genero Report Engine
Licenser program.

Tools >> Current Config >>
Genero Workplace Window

Open Genero Workplace
Window.

Tools >> Global Setup >>
Edit File Associations

See File associations
configuration on page 106.

Tools >> Global Setup >>
Edit Build Rules

Edit global build rules. See
What are build rules on page
344.

Getting Started with Genero Studio | 93

Tools Tools Menu Accelerator (Shortcut) Description

Tools >> Global Setup >>
Edit Package Rules

Edit global package rules.
See Platform: Package and
deploy rules on page 1003.

Tools >> Specific Setup >>
Edit File Associations

See File associations
configuration on page 106.

Tools >> Specific Setup >>
Edit Build Rules

See What are build rules on
page 344.

Tools >> Specific Setup >>
Reload

Ctrl+Shift+R Reload Application
Generator settings.

Tools >> Specific Setup >>
Clean orphan properties

Opening a file generated
with a template version
different than the one set
in Application Generator
preferences may produce
a warning indicating that
some properties are not
found in the current template
definition.

Tools >> Server
Connections

Connect to a remote server.
See Setting up a remote
environment on page 154

Tools >> Genero
Configurations

Ctrl+Shift+C Open Configuration
Management to modify
configurations. See Genero
Configuration Management
dialog on page 171.

Tools >> Preferences Alt+Shift+F12 Open Preferences. See
Setting Preferences on page
106.

Tools >> Preferences, Code
Editor, XML Schema/DTD

Assign external schema file.

Tools>>Translation Change the language of the
labels in Genero Studio.

Window Window Menu Accelerator (Shortcut) Description

Window >> Close all other
Documents

Close all documents except
the current document.

Window >> Close all
Documents

Ctrl+Shift+F4 Close all open documents.

Window >> Views Select a view to show in the
framework.

Window >> Workspaces Select a workspace
type. See Workspaces
configuration on page 108

Window >> Toggle
Document Editing

Alt+F11 Toggle to/from Document
Editing workspace.

Getting Started with Genero Studio | 94

Window Window Menu Accelerator (Shortcut) Description

Window >> Toggle Full
Screen

Alt+Shift+F11 Toggle to/from full screen
display.

Help Help Menu Accelerator (Shortcut) Description

Help >> Help F1 Open Help.

File >> New
File >> New creates a new file. When created, the corresponding Genero Studio component is opened.
For example, Code Editor is launched for new 4gl files.

Table 15: File >> New options

Category Section Item Type

Design (Model Driven Architecture) Project • Managed Project (4pw) - project for a
generated application

Application Modeling • Business Application diagram (4ba)
- application design diagram, used in
application generation

Database • Schema (4dbx) - database schema
• Schema from Database (4dbx) - extracts

schema from database

Managed Code • CRUD Form (4fdm) - create an empty
CRUD (Create, Read, Update, Delete)
form

• CRUD Form from Database (4fdm) -
create a CRUD form generated from
database tables

• Report data (4rd) - create empty business
record for generated report

• Report data from database (4rd) - create
business record for generated report from
database tables

• Zoom Form (4fdz) - create an empty
zoom form

• Zoom Form from Database (4fdz) - zoom
form generated from a database tables

Resources • Action defaults (4fd) - a Genero action
defaults file

• Toolbar (4tb) - a Genero Toolbar definition
file

• Topmenu (4tm) - a Genero Topmenu
definition file

• Style (4st) - a Genero Style definition file

Genero Files Project • Simple project (4pw)
• Deploy project

Getting Started with Genero Studio | 95

Category Section Item Type

Database • Schema (4db) - database schema
• Schema from Database (4db) - extracts

schema from database

Sources • Source (4gl) - a Genero BDL source code
module

• Form (4fd) - a Genero Studio form
definition file

• Form as text (per) - a Genero BDL form
definition file in text format

• Form from database (4fd) - calls the Form
from Table wizard

Resources • Action defaults (4fd) - a Genero action
defaults file

• Toolbar (4tb) - a Genero Toolbar definition
file

• Topmenu (4tm) - a Genero Topmenu
definition file

• Style (4st) - a Genero Style definition file
• Startmenu (4sm) - A Genero Start Menu

definition file
• Localized String (str) - Genero Localized

String file

Other files New Files • With no extension
• Text (txt)
• XML (xml)

Reports Report Data • Report from database (4gl) - to generate
BDL code to extract data from database

Report Designs • Empty report (4rp) - a blank report design
document

• List report (4rp) - template of a report
design document formatted for a list

Web / AS Sources • HTML (html)
• CSS (css)
• XHTML (xhtml)
• JavaScript™ (js)

Configuration • Application Configuration (xcf)

SOA Services • Soap Server (4gl) - create a 4gl
application and server stub from wsdl file

Save / Save As / Save All
When you save a file for the first time, or select File >> Save As, the Save as dialog opens.

If a project is open, you can also choose to create a link to the file in a group node or virtual folder.

Getting Started with Genero Studio | 96

Path Specify where the file should be saved in the file
system. Click the magnifying glass icon to browse
for the path and enter the file name.

Insert the file in the project If checked, you can choose the application or
library node, or a virtual folder, from the list that
is displayed in the dialog. Use the plus icons to
expand the list.

If a project is not open, the file can be saved in the file system only. No link can be created in a group
node.

Save in Select the path where the file should be saved in
the file system.

Filename Enter the name of the file.

Save as type Change the type of the file, if desired.

If you have previously saved the file, choosing File >> Save saves it again with the same parameters. No
dialog opens.

The Save All option saves the project and its contents.

Opening a file from a prior version
If you open a file that had been saved with a prior version, you have the option to convert and open the file
in the current version or to open in a different version of Genero Studio.

Open in new instance Displays a selector to find the version of Genero
Studio associated with the file version.

Open Converts the file in memory and opens it. If saved, it
will be saved to the latest file format.

Cancel Cancels opening the file.

Views
Views are the panels in the Genero Studio framework that display information about the current document
or project.

To view a list of views, select Window >> Views.

• Show, dock, or move a view on page 96
• Views Listing on page 97

Show, dock, or move a view
Views (panels) can be hidden and shown, docked or undocked, and moved within the framework.

Show or hide a view

Show or hide views by right-clicking in the Genero Studio window title, or use Window >> Views.

Note: The Data View and Tool Box views are only listed when you have a report design document
open in the Document view.

For a list of hot keys to show and hide the views, look at Window >> Views. Where available, the hot key
is listed next to the view name.

Select visible views

To open the Manage Views dialog, select Window >> Views >> Manage Views A dialog opens listing
all views. Use the checkbox to set each view as visible or hidden.

Getting Started with Genero Studio | 97

• If the view has a check in its checkbox, then the view is shown in Genero Studio.
• If the view does not have a check in its checkbox, then the view is hidden.

To make all views visible, select the Select all checkbox located at the bottom of the dialog.

Dock or undock a view

Undock a view by double-clicking on its title bar. Re-dock a view to its last position by double-clicking on its
title bar.

Move views

Move a view to by selecting its title bar and dragging it to float or to a new position in the framework. As
you move the view, shaded areas appear showing you valid locations to place the view.

Views Listing
This is a list of views available in Genero Studio.

• Bookmarks - See Bookmarks view on page 97.
• Data View - See Adding report data (Data view) on page 666. This view is only available when using

Genero Report Designer.
• DB Explorer - See DB Explorer on page 332.
• DB Schemas - See DB Schemas tab on page 316.
• Document - The Document view is the default view, also known as the central work area. You cannot

hide the Document view.
• Document Errors - See Document Errors view on page 98.
• Files - See File Browser on page 500
• Function Search - see Function search on page 379.
• Output - See Output view on page 98.
• Projects - See Projects view on page 99.
• Properties - See Properties view on page 99
• SVN Locks - See SVN Locks view on page 541.
• SVN Log - See SVN Log view on page 541.
• SVN Repository - See Browse repository on page 537.
• SVN Status - See SVN Status view on page 543.
• Search Results - See The Search Results view on page 393.
• Search/Replace - See The Search/Replace view on page 391.
• Structure - See Structure view on page 100.
• Tasks - See Tasks view on page 100.
• Tool Box - See The Tool Box view on page 661. This view is only available when using Genero

Report Designer.

Bookmarks view
The Bookmarks view lists all the bookmarks that have been added to documents in Genero Studio.

You can navigate, add, or remove bookmarks from the Bookmarks view.

The integrated Toolbar and right-click context menu include these options:

Toggle bookmark Adds or removes a bookmark in the current
document, provided the current module supports
bookmarks.

Previous / Next bookmark Activates the previous / next bookmark in the view.

Remove bookmark / Remove all bookmarks Removes current or all defined bookmarks.

Getting Started with Genero Studio | 98

Document view
The Document view is the area designated for working on the document of a Genero Studio module, a
form in Form Designer, for example. It is commonly called the central work area.

Each document has its own tabbed page. The Document view may contain as many tabbed documents as
needed.

• Click a tab to bring a document to the front.
• Click the Select a desired document icon

at the top right corner to select a desired document from the drop-down list.
• Click the close icon

to close the current document.
• Right-click a tab to display this menu:

• Close the current document
• Close all other documents
• Close all documents

The Window menu allows you to display various views, providing additional information.

Document Errors view
The Document Errors view displays errors related to a document.

• Select the error number and press the F1 key to display additional information about the error.
• Use Tools>>Preferences, Genero Studio Preferences, Messages to hide a specific information or

warning message.
• View BUG or TODO notations found in your code. Enter the notation into your code files with --KEYWORD

<message> where KEYWORD is BUG or TODO. After compiling, put focus in the Project Manager view
to see these messages in the Document Errors tab.

Output view
The Output view displays messages related to the output and errors specific to the process being
performed.

The Filter Messages checkbox shows error messages, warning messages, and/or information messages.

Getting Started with Genero Studio | 99

Properties view
Select an item in the structure view or central work area to display its properties in the Properties view; the
property values can be viewed and/or changed.
Projects view
The Projects view displays a project and its components.

Figure 73: Projects View

Right-click on a node to display a context menu of available actions.

Select a node to set its properties in the Project Manager node properties on page 364.

Table 16: Projects View Nodes

Node Description

projectName.4pw The active project (4pw) is the root node.

Group Contains the Application and Library nodes that make up the project.
Properties defined for the Group node can be inherited by the Application and
Library nodes.

Application Generates an executable program (42r). It can contain both files and virtual
folders. Only one of the files may have a MAIN statement: One application
node = one executable. The name of the application node is used as the
name of the 42r file, so it must be unique and can only contain characters
allowed by the file system. The default application is shown in boldface. Use
the Toolbar icon to set a different application as the default. The options on the
Build menu execute for the default application.

Library Used to group binary files into a single library and generate a library file (42x).
It can contain both files and virtual folders. The name of the library node is
used as the name of the 42x file, so it must be unique and can only contain
characters allowed by the file system. Libraries should be used when creating

Getting Started with Genero Studio | 100

Node Description

a set of features having a common goal, like the logic of an application, a
library of mathematical functions, etc. A library can also be used to group
other project files together (images, styles or other resources). If a library node
contains no 4gl file, no 42x is built.

A library from a different project can be added to a project using the right-click
menu option Add external dependencies.

Important: A library must be linked to any application in which it will
be used by right-clicking the application node and selecting Advanced
Properties, dependencies. The checkbox for any required library must
be checked.

Folder Folders are virtual folders only, providing a way to group the source files within
an application or library node. Folders can contain both files and other folders.

File A link to the file in the file system that has the same name as the node.
Renaming a File node also renames the file that is stored on the disk. Project
Manager will accept any type of file. Opening a file opens the corresponding
Genero Studio module, such as Code Editor. If there is no corresponding
Genero Studio module, it asks the operating system to open it.

Structure view
The Structure View displays a tree showing the structure of the current document, a form or source code
file, for example.
Tasks view
The Tasks view displays the completion status of current tasks and includes action to abort tasks if
needed.

Dialogs
Dialogs display as the result of a selected action. In most cases, you must complete the dialog to continue.

• Filter View dialog on page 100
• Print preview dialog on page 102

Filter View dialog
The Filter View dialog allows you to hide and show items on a diagram. Right-click the diagram or an item
on the diagram and select the Filter Items option. Check boxes on the Filter View dialog allow you to
specify which items to display.

To access the Filter view, right-click on a diagram in:

• Meta-schema Manager
• Dependency Diagram
• Business Application Modeling

Getting Started with Genero Studio | 101

Figure 74: Filter View

Getting Started with Genero Studio | 102

Print preview dialog
The Print preview dialog allows you to preview a document or diagram, before sending it to the printer.
Various toolbar icons allow you to change how the document or diagram prints.

The Print preview dialog appears when you select File >> Print Preview....

Figure 75: Print preview

dialog

Actions available from the Print preview dialog are presented as icons in the toolbar.

Table 17: Print preview toolbar icons

Icon Name Description

Print Opens the print dialog.

Portrait printing Formats layout to be a portrait page.

Landscape printing Formats layout to be a landscape page.

Page setup Opens the page setup dialog.

Fit to width Fits the content to the width of the page.

Fit to page Fits the content to the size of the page.

Percentage combobox Sets the display size in proportion of the final print size.

Zoom in Enlarges the display percentage.

Zoom out Reduces the display percentage.

Single page View a single page at a time.

Facing pages View pages in book style, with even and odd pages facing each other.

Getting Started with Genero Studio | 103

Icon Name Description

Overview of pages View all pages in two columns.

Page navigator Navigate to the front of the print document, to the previous page, to a specific
page, to the next page, or to the last page of the print document.

Help Access the help documentation.

Page navigator Close the dialog.

Learning to use Genero Studio
Reference topics for the samples directory, setting preferences, accessing help and more.

• Samples directory on page 103
• Integrating existing applications on page 105
• Setting Preferences on page 106
• Access Help on page 113

Command line options
Genero Studio can be launched at the command line with the command generostudio at a console,
terminal, or using the Genero Workplace Window.

Syntax

generostudio [options]

Table 18: Genero Studio command line options

Option Description

-h Display help instead of the standard behavior.

-V Display program name and version information.

-height HEIGHT Set window height in pixels.

-width WIDTH Set window width in pixels

-translate LOCALE Set translation file where LOCALE is zh_TW, the
locale for Taiwanese (using traditional Chinese
characters) or zh_CN, the locale for Chinese (using
simplified Chinese characters).

-log [all, req, <id>] Set the log level. Use all to turn on all logs, req to
turn on server request logs, and <id> to turn on logs
for a given module.

-diff FILE1 FILE2 Open the given files in diff mode. See Using the Diff
tool on page 380.

Samples directory
The samples directory contains demo files, programs, and databases.

The default location for the sample files is My Documents/My Genero Files/samples.

Getting Started with Genero Studio | 104

Genero Mobile samples are located in My Documents/My Genero Mobile Files/samples. See
Genero Mobile demos in the Genero Mobile User Guide for more information.

HelloWorld Contains the HelloWorld.4pw project, which has
the source code for the very simple Hello World
application.

OfficeStore Contains the OfficeStore.4pw project which
is an application generated using Business
Application Modeling (BAM). It uses the officestore
sample database.

WebComponentChart Contains the WebComponentChart.4pw project,
which has the source code for including a charting
Web Component within a Genero application.

HTML5ClientTutorial Contains the HTML5ClientTutorial project
files, which demonstrate customization of a web
application.

Reports Contains the Reports.4pw project, which has a
set of example programs that create reports using
Genero Report Writer.

DSConfig Contains the DSConfig.4pw project, which has the
program source code to complete an FGLPROFILE
configuration file with the necessary information for
a database selected by the user. An FGLPROFILE
file already exists for the sample databases, but
you must create one if you choose to use your own
database.

databases Contains directories for the sample SQLlite
databases custdemo and officestore. The
directories also contain schema filesand a
program file with the necessary SQL commands
to recreate the databases for your own database
software, if desired. These files are grouped in
project files, OfficeStoreSetup.4pw and
CustDemoSetup.4pw.

BDL tutorial Contains the BDLTutorial.4pw project, which
has a set of tutorial programs that illustrate the use
of the Genero Business Development Language
(BDL), to be used in conjunction with the BDL
Tutorial.

The necessary data for the sample programs is stored in the provided SQLite databases.

Open the project for one of the samples to examine and execute the sample programs. From the Genero
Studio Welcome Page, select the Tutorials and Samples tab. Links to open the sample projects are
displayed under Samples and Demos.

Getting Started with Genero Studio | 105

Integrating existing applications
Considerations for integrating existing applications into Genero Studio.

Table 19: Considerations for integrating existing applications

Consideration Information

Determine whether you will use a local or remote
configuration of Genero Studio.

See Software configuration scenarios on page
115.

Incorporate a schema. See Create a meta-schema on page 227.

Import your files. See Import existing files as a new project on page
341.

Reorganize your project nodes and check
dependencies

See Default organization of imported files.

Start correcting errors - syntax, link errors,
language errors.

See Code Editor basics on page 374.

Recompile and link. Adapt makefiles. Adapt makefiles or create build rule that calls a
makefile. See Building and linking programs on
page 343.

Run your application in traditional mode. You can use the traditional GUI mode to ease
migration from TUI based applications to GUI
mode.

With the traditional mode, application windows
bound to forms using a SCREEN section will be
displayed as simple boxes in a main front end
window. Other windows bound to forms defined
with the LAYOUT section will be displayed a new
GUI windows.

The traditional GUI mode can be enabled with an
FGLPROFILE entry:

gui.uiMode = "traditional"

By default, the traditional GUI mode is off.

Consider form migration from per to 4fd and begin
using Form Designer.

See Migrate per file to 4fd on page 411, Creating
the user interface on page 407, Form Designer
usage on page 440.

Modernize forms. See Creating the user interface on page 407.

Analyze code. See Code Analyzer on page 402.

Debug. See Graphical Debugger on page 502.

Switch client configurations from desktop to web. See Change the active configuration on page
117.

Improve the meta-schema. See Adding more information to a meta-schema on
page 293

Consider modernizing code. See www.4js.com

Consider report strategy. See Report Writer on page 551.

http://www.4js.com/en/company/ibm-i4gl-to-genero/modernization

Getting Started with Genero Studio | 106

Consideration Information

Customize studio environment. See Integrate your tools into Genero Studio on
page 113, General Preferences on page 106.

Setting Preferences
Customize Genero Studio to meet your needs.

• General Preferences on page 106
• User interface preferences on page 110
• Compiler and Runtime preferences on page 112
• Integrate your tools into Genero Studio on page 113

Select Tools >> Preferences to modify the behavior of Genero Studio modules.

Save, test, or cancel changes you have made.

Load from default Reloads the initial default configuration.

OK Save and apply all modifications, then exit
Preferences window.

Cancel Undo all modifications and exit the Preferences
window. The last saved values are restored.

Apply Confirms your updates, allowing you to test the new
configuration. (No save is performed.) If you want
this configuration to become permanent, save it by
pressing the OK button.

General Preferences

Select Tools >> Preferences, General to access these preferences.

Table 20: General preferences

Preference Description

Text File Encoding See Language support (text encoding) on page 163.

Proxy Setting If you need to access a web service using a proxy, enter:

• Host - the hostname or host IP address
• Port - The port number on which the service is listening

Browser Setting You can specify the browser to be used with the Genero Web Client:

• Use default web browser
• Use specific web browser - enter the filename of the executable,

including path, of the browser that you wish to use, or select the file in
your file system using the Browse icon.

Slow Networks Select to optimize for slow networks.

Users and Passwords Press the Clear button to clear the passwords stored in Genero Studio.

File associations configuration

Select Tools >> Global setup >> Edit File Associations or Tools >> Specific setup >> Edit File
Associations to edit the standard or specific file associations, such as for a template.

Getting Started with Genero Studio | 107

The template file associations are available if the GSTSETUPDIR environment variable is set and refers
to an BAM template directory. The dialog lists the file associations set in the file-types.xml file found in the
template directory.

You can associate file types handled by Genero Studio modules with Genero Studio predefined actions, or
with User Actions that you have defined.

Figure 76: File Associations

Use the integrated Toolbar to add, modify or delete a new file type.

File Types

Search Search for the file type you wish to view or edit.

Getting Started with Genero Studio | 108

Mime Predefined file type/identifier

Description Optional description.

Editor Content Type Type of editor used with this file type.

Extensions File extensions matching the file type.

Filenames Optional file names matching the file type.

Associated Actions

When you select Add from the icons at the top of the Actions list, the available actions are displayed in
a list for your selection. User Actions must be defined using Preferences, User Actions before they will
appear in the list.

Action Predefined action names.

Default Indicates the action is the default; use the icon to
change the default.

Open Indicates the action is used to open the file; use the
icon to change.

Command Predefined command to be executed; may be
[Internal].

Appearance

Icon Search for the icon on your file system. The path
is specified for icons that are not in the default
Genero Studio icons directory. See Image directory
structure on page 952.

Preview Sample is displayed.

Workspaces configuration

Open last session documents on startup If checked, the last documents that you had open
will be restored when you start the next session.

Workspaces

Normal Displays the usual views - Project, Output,
Structure, Properties.

Debug Removes some of the normal views to focus on the
Debugger; automatically switches the workspace
when starting and stopping a debug session. Keeps
track of the current workspace and the one used
while debugging, and switches between them when
a debug session is started or stopped.

Document Displays the current document and the Project
Manager to focus on document editing.

User Contains the user workspaces; those that have
been duplicated. Only User workspaces may be
renamed or deleted.

Getting Started with Genero Studio | 109

User actions configuration
User actions allow you to define commands that can be invoked within Genero Studio.

Once a user action is defined, you can add it to the Toolbar configuration on page 111 and Menus
configuration on page 111

Existing User Actions, if any, are displayed in a list:

Action Names of existing user actions

Command Line Command line for the corresponding action

Use the Search box to find a user action in the list.

Use the integrated Toolbar to add, edit, or delete a user action.

Figure 77: User Action dialog

Name Name of user action.

Label Label for user action as it will be displayed in
Genero Studio action listing, menus, or Toolbar.

Description Optional description.

Icon Optional icon.

Command line Command to be executed, in quotes if command
includes spaces. Arguments can be included on the
command line, as needed. Use the Insert Variable
button to select from a list of predefined variables
that can be used in the command, or you can create
a variable to prompt the user to input an argument:

• This example would execute the program stest
using the selected file.

C:\myprograms\stest $(FileName)

• This example would execute the program stest
prompting the user to input the file name as
value for the user defined variable ($p1)

C:\myprograms\stest $(p1)

Once you have created a new user action, you can:

• Associate it with files of a specific mime type.

Getting Started with Genero Studio | 110

• Add it to a Toolbar.
• Add it to a menu.

Messages configuration

Message dialogs

A list of messages is displayed as a tree, grouped by Genero Studio module. Expand a module listing to
display its messages.

You can prevent a message from displaying while you are using Genero Studio by unchecking the Show
checkbox for the message.

Use the Search box to locate a specific message.

Document Error Filters

This list specifies the message id of information or warning messages that you wish to be hidden in the
Document Errors tab of the Output View. Use the icons to add and remove message ids from the list.

History configuration

In the work area of many of the Genero Studio modules, the names of previously used items are stored
and displayed as history. Genero Studio allows you to manage these History lists.

History list

The name of each list that you can manage is displayed. These are the only lists that you can alter.

History Details

Table 21: History Details

Property Description

History Size Specify the maximum number of items displayed in a list.

Allow Duplicates If this box is checked, duplicate names can be added to the list of items.
If the list contains duplicate items, unchecking the box will cause a dialog
box to be displayed, asking you to confirm the removal of the duplicate
items from the list.

History items

Icons allow you to:

• Add - add a new item
• Delete - remove the selected item
• Edit - change the name of the selected item
• Up/Down arrow - Rearranges the items in the list by moving a selected item up and down.
• Default - specifies the default item for the selected list.

User interface preferences
Set preferences for toolbars, menu bars, and accelerators.

• Toolbars configuration
• Menubars configuration
• Accelerators configuration

Getting Started with Genero Studio | 111

Toolbar configuration
Set preferences for toolbar configuration.

Expand a Toolbar listed in the tree to display its actions.

Select a Toolbar or action, and use the icons or right-click to display the menu options:

• Add a new Toolbar
• Add an action to a Toolbar
• Remove or rename a Toolbar
• Remove or rename an action
• Add or remove a separator

Item order within a Toolbar may be changed using "drag and drop".

Menus configuration
Set preferences for menu configuration.

Expand a menu listed in the tree to display its actions.

Select a menu or action, and use the icons or right-click to display the menu options to:

• Add a new menu at the same level, or a submenu
• Add an action to a menu
• Remove or rename a menu
• Remove or rename an action
• Add or remove a separator

Item order may be changed using "drag and drop". This applies to menu order within the tool bar tree, and
to icon order within one menu.

Accelerators (Shortcuts) configuration
Accelerators and their associated Genero Studio actions are defined in a default set called a profile.

Profile

Profiles correspond to a set of accelerators for each action. They are saved in Accelerator Profile
files having an extension of apr. A default profile file is preinstalled in the Genero Studio installation
directory. Initially, this is the only profile available, and it cannot be modified. You can create your own
profile by duplicating the default profile and modifying the accelerators associated with an action. All the
accelerators (except menu accelerators) are disabled during editing, and are re-enabled when editing is
completed or you leave the Accelerators configuration window.

• current - This combobox displays the currently active profile, with the names of other available profiles
displayed in a dropdown list. The default profile, which cannot be modified, has a lock icon. To change
profiles, select a profile from the dropdown list, and click OK.

• Duplicate - Creates a new profile. The Duplicate Profile dialog allows you to enter the name of a new
profile, which will be a copy of the currently active profile. The file is saved in this user directory:

Documents and Settings\<username>\Application Data\<companyname>\Genero
Studio<version>.

Modifications in the accelerators can be made in your new user profile. All the user profiles that you
create will have a user icon associated with their name in the list in the current combobox.

• Remove - Removes the currently active profile. This removes the associated apr file. The default
profile provided by Genero Studio cannot be removed.

Accelerator profiles can be shared with other users:

• Import - Imports an .apr file. An Open dialog allows you to browse for the profile file. When you click
OK, the selected file is copied into the user directory and appears in the current combobox.

• Export - Exports an .apr file. A Save As dialog allows you to save your profile file.

Getting Started with Genero Studio | 112

Actions

The actions and the associated accelerators for a particular profile are displayed in a table, grouped by
application by default. Expand the application group to display all its actions. The Search box allows you to
locate a specific action in the tree.

You can sort the table to make the resolution of conflicts easier. Use the icons to switch between viewing
the tree grouped by application, or in alphabetical order by action. To sort the tree by the accelerator
column, click the column title.

Accelerators

The accelerators that are defined for an action display in a list. Use the icons or right-click for a menu of
options to:

• Add a new, or additional, accelerator to an action using the Add New Accelerator dialog
• Edit the accelerator for an action using the Edit Accelerator dialog
• Remove the selected accelerator from an action
• Set the selected accelerator as the default for an action

Add New Accelerator/Edit Accelerator dialog

Enter your own key combination for the accelerator by hitting the keys in order; use the Tab button to enter
a Tab key.

Use the Backspace key to erase the latest keypress, or the Clear button to erase the entire key
combination.

Compiler and Runtime preferences
Set preferences for the compiler and runtime.

• Run/debug configuration
• Compilation configuration

Run/debug configuration
Set preferences for runtime and debug configuration.

Console

Clear output before each launch Specify whether to clear the output after each
launch.

Logging

Enable proxy logging Enable proxy logging.

Compilation configuration
Set preferences for compilation configuration

General

Maximum number of parallel compilation tasks Specify the maximum number of parallel
compilations that you want to allow. although only
one link at a time can be done, multiple file nodes
can be compiled simultaneously. This speeds
up the build process if the machine has multiple
processors.

Getting Started with Genero Studio | 113

If you specify 0 maximum, Project Manager uses
the number of processors available on the local
machine (i.e. 2 for a dual core machine).

Maximum number of erroneous files before stop
compiling

Specify the maximum number of files containing
errors to be permitted before compilation is
automatically stopped.

Compute dependencies between files
(recommended)

This enables the computation of dependencies.
They will be computed when the project is loaded,
and is enabled by default. It can be useful to disable
it for very large projects or projects on network
drives with performance problems. However,
it should ordinarily be enabled, in order for the
build system to take the #include and globals into
account.

Compute additional information about functions Recommended.

Save modified files before compile and build Specify whether to automatically save files before
compile and build process.

Verbose mode for build/link/execution rules Specify to display build, link, and execution rule
commands in output.

Output

Clear output before each compilation When selected, clears the Output view before each
new compilation.

Integrate your tools into Genero Studio
To call your tools and scripts directly from Genero Studio, you can customize global menus and Toolbars
and also the context menus that are used in the Project Manager and File Browser.

You can set up your commands to ask for parameters (using input variables) or use the preset parameters
proposed by the Genero Studio environment (current file, current directory, and so on).

All commands run in the current environment set by the Genero Configuration or the Project. The working
directory is set to the location of the file to which the command applies.

Access Help
Help is available within Genero Studio by selecting the Help >> Help menu option, the

icon, or the F1 key.

Creating with Quick Starts | 114

Creating with Quick Starts

A quick start provides you with simple step-by-step instructions for completing specific tasks.

Quick starts are located in sections where they have supporting topics. Here is a list of all the quick starts
that can be found in the Genero Studio User Guide.

Getting Started with Genero Studio Quick Start: Tour of Genero Studio on page 41

Business Application Modeling (BAM) Quick Start: Generate an application on page 176

Quick Start: Generating a mobile app on page
182

Project Manager Quick Start: Create a project on page 340

Form Designer Quick Start: Creating a first form on page 407

BAM Template Developer Guide Quick Start: Customizing templates on page 930

Configuring Genero Studio | 115

Configuring Genero Studio

Configure Genero Studio to best meet your needs.

• Software configuration scenarios on page 115
• Default configuration on page 117
• Setting up a local environment on page 139
• Setting up a remote environment on page 154
• Share projects / source code management on page 162
• Access a database on page 163
• Language support (text encoding) on page 163
• Compiler / Runtime configuration (Genero Installations) on page 172
• Environment sets on page 140
• Desktop: GDC configurations on page 146
• Web: GAS/GWC configurations on page 147
• Command line options on page 103
• Configuration reference on page 170

Software configuration scenarios
Genero Studio can be installed with all or some Genero components and for a local or remote
environment.

Installations
When you install the Genero Studio software package, you can automatically install these Genero
components:

• Genero Business Development Language (BDL)
• Genero Desktop Client (GDC) - to be used for display
• Genero Web Client (GWC) - to be used for display
• Genero Web Services (GWS)
• Genero Application Server (GAS)

When you install the Genero Mobile software package, you install:

• Genero Studio
• Genero Business Development Language (BDL)
• Genero Mobile for Android (GMA), and/or Genero Mobile for iOS (GMI)

See the Genero Mobile User Guide for setup and configuration of Genero Mobile.

Local Environments
In a local Genero Studio environment, developers work individually, with a complete Genero suite stack
installed for each developer working on his local machine. The database can be on developers local
machines, or accessed from remote servers. Some group development can be enabled through the use of
an external Version Control System.

Configuring Genero Studio | 116

Figure 78: One or Multiple Users local database

In a local environment with multiple developers, the Genero Studio, Genero DVM, and front-end client
software (GDC/GWC) is on the local machines. These machines connect to database servers and source
code on remote machines.

Figure 79: One or Multiple Users remote database

Remote Environments

In a remote environment, installation is done on the remote server and accessed by developers from their
client machines.

• Genero applications are compiled, debugged, and executed on a remote server.
• Genero Studio Server must be installed on the remote server.
• Allows for the preservation of C function calls/libraries and/or system calls.
• Requires SSH access as well as Samba/NFS mounts.

The relational databases that the applications access can be stored on the same remote server as Genero
Studio server, or on separate servers.

Configuring Genero Studio | 117

Figure 80: Remote Genero Studio environment

Default configuration
Configurations allow Genero Studio to locate the installed Genero components necessary to create,
compile, build, and execute Genero applications on local or remote hosts.

Some default configurations are provided, based on the software in the distribution package installed in the
default directories.

If you have installed your own Genero software, or have not installed Genero Studio in the default
directories, you will have to define a Genero Studio configuration.

Even if you use the default configuration, you must set the environment set appropriate for your database
client software, and add any missing variables or values. See Access a database on page 163.

Change the active configuration
When you have multiple configurations defined, only one of the configurations will be active.

The list in the bottom right corner of the main Genero Studio window displays the currently active server
and client configuration.

To change the active configuration, select a server and/or display client configuration from the lists.

Figure 81: Change configuration

Alternatively, set the active configuration in the Genero Configuration Management dialog on page 171.
The currently active configuration is in bold.

To change the active configuration, right-click on a configuration name and select Set Active from the
contextual menu.

Configuring Genero Studio | 118

Configuring for BAM
When using the Business Application Modeler, you can specify both a global setup and a template-specific
setup.

Factory setup Factory setup is the standard installation.

Global setup The global setup overrides the factory setup. It
applies to all configurations for the current user
for the Genero Studio installation on the current
machine or remote machine.

Tools >> Global setup menu option allows you to
customize the global setup.

Specific setup A specific setup is a template-specific setup. It
is for the current user, is for a template set used
by the Business Application Modeler. Use is
option to override the global setup for a specific
set of templates. The GSTSETUPDIR on page
144 environment variable, set in the Genero
configuration, defines the template set. If this
environment variable is not set, or not specified for
the current configuration, the specific setup options
are disabled.

The Tools >> Specific setup menu option allows
you to customize the specific setup.

Configure for Genero Mobile
Follow these instructions to complete the configuration for Genero Mobile for Android or iOS.

• Configure Genero Mobile for Android on page 118
• Configure Genero Mobile for iOS on page 127
• Display to the Genero Mobile Development Client on page 138

Configure Genero Mobile for Android
This configuration allows you to run a program from Genero Studio and display it to your Android physical
or virtual device.

Requirements

• Java SDK. (Installed as part of Install and configure Java SDK and Android SDK on page 119)
• Android SDK. (Installed as part of Install and configure Java SDK and Android SDK on page 119)
• Either

• An Android emulator (Android Virtual Device) (Created as part of Display to an Android virtual device
on page 121)

• An Android mobile device that runs a minimum of Android 4.0 (Ice Cream Sandwich) and is
connected to the development machine via USB.

• Genero Mobile, which includes:

• Genero Mobile for Android (GMA).
• Genero Studio (launched when launching Genero Mobile) configured to communicate with the

device or emulator.

Configuring Genero Studio | 119

Note: Genero Studio included with the Genero Mobile bundle is customized for mobile app
development.

• You need an internet connection for the first time you build an Android package. During this first
build, an automated process will download and install Gradle with all necessary extensions into a
directory in your user directory. Gradle is a project automation tool, find out more about Gradle at http://
www.gradle.org.

Install and configuration topics

• Install and configure Java SDK and Android SDK on page 119
• Display to an Android virtual device on page 121
• Display to an Android physical device on page 125
• Configure multiple Android display devices on page 126

Install and configure Java SDK and Android SDK
Follow this procedure to install and configure the Java SDK and Android SDK. Once configured, the Tools
>> Android Tools menus are enabled in Genero Studio.

Before you begin:

• If a proxy is needed on your network, it must be defined in Tools >> Preferences.

You must configure for the Java and Android SDKs.

1. Install the Java Standard Edition Software Development Kit to a location of your choice: http://
www.oracle.com/technetwork/java/javase/downloads/index.html. Make a note of the installation path.

Note:

• Genero Mobile requires Java SE Development Kit 7 (JDK 7) as a minimum.
• Choose the Java package (32 bit or 64 bit) that matches your Genero installation (32 bit or 64

bit).

2. Launch Genero Studio.

3. Select Tools >> Genero Configurations to open the Genero Configuration Management window.

4. Set the JDK_HOME variable to the location of the Java SDK you installed, for example C:\Program
Files\Java\jdk1.7.0. To edit the JDK_HOME environment variable, highlight the Java SDK
environment set and double-click on the JDK_HOME environment variable listed.

http://www.gradle.org/
http://www.gradle.org/
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html

Configuring Genero Studio | 120

Figure 82: Set Java environment

5. Download the Android Software Development Kit to a location of your choice. Go to this website, http://
developer.android.com/sdk/index.html. For Windows or Linux install, select the Download for Other
Platforms link. In the SDK Tools Only section, select the installer for your operating system. For Mac
install, select Use and Existing IDE, and then Download the SDK Tools for Mac.

6. Install the Android SDK to a location of your choice, but do not install in the Program Files directory. (If
Android SDK has been installed in Program Files directory, Genero Mobile must be run as administrator
to auto-configure Android SDK.)

Make a note of your installation path. If the Android SDK Manager launches, you may close it.

7. Set the ANDROID_HOME variable to the location of the Android SDK you installed, for example C:
\Android\android-sdk. To edit the ANDROID_HOME environment variable, highlight the Android
environment set and double-click on the ANDROID_HOME environment variable in the list.

Figure 83: Set ANDROID_HOME in Android environment

8. Right-click on your preferred Android configuration in the Configuration Name list and select Set
Genero Configuration Active.

9. Select OK to save the changes.

http://developer.android.com/sdk/index.html
http://developer.android.com/sdk/index.html

Configuring Genero Studio | 121

10.Select Tools >> Android Tools >> Auto-configure Android SDK. The updates will occur in a
separate console window. Accept the license agreements as prompted.

Note: This step can take several minutes.

11.You are now ready to setup your Android physical or virtual device. See Display to an Android physical
device on page 125 or Display to an Android virtual device on page 121.

You need an internet connection for the first time you build an Android package. During this first build, an
automated process will download and install Gradle with all necessary extensions into a directory in your
user directory. Gradle is a project automation tool, find out more about Gradle at http://www.gradle.org.

Configuration for extending Genero Mobile for Android
Follow this procedure if you plan to extend Genero Mobile for Android.

This procedure is only necessary if you plan to extend Genero Mobile for Android using Java. See
Extending the Language in the Genero Business Development Language User Guide.

1. Create a copy of the GMADIR directory.

Find the default GMADIR at GM_INSTALL_DIR/gma. You should never update the default GMADIR, as it
can be overwritten during an upgrade.

2. Update the GMADIR environment variable to point to your new copy.

a) Select Tools >> Genero Configurations to open the Genero Configuration Management window.
b) Set the GMADIR environment variable to the location of the copy of the GMA directory. To set the

GMADIR environment variable, highlight the Android environment set and double-click on the
GMADIR environment variable in the list.

Figure 84: Setting the

GMADIR

3. Follow the instructions in the Genero Business Development Language User Guide to extend Genero
Mobile for Android.

Display to an Android virtual device
This configuration allows you to run a program from Genero Studio and display it to your Android virtual
device (AVD).

Before you begin:

• Meet the requirements for Android emulator hardware acceleration. The Android emulator requires a
processor with virtualization technology and a dedicated driver. Most recent Intel® processors support
virtualization (VT-x, EM64T). See Speeding Up the Android* Emulator on Intel Architecture.

1. Install and configure Java SDK and Android SDK on page 119.

2. Unplug any Android hardware devices connected via USB or Configure multiple Android display
devices on page 126.

3. Select the Genero Configuration for Android (x86).

http://www.gradle.org/
https://software.intel.com/en-us/android/articles/speeding-up-the-android-emulator-on-intel-architecture

Configuring Genero Studio | 122

Figure 85: Genero Configurations list

You are now ready to create a virtual device and install Genero Mobile for Android (GMA) onto the
virtual device.

Tip: Genero Mobile provides an Android Virtual Device (AVD), however you can elect to use
another AVD, such as Genymotion.

Tip: If you create your own emulator, you must specify an external storage > 100 MB.

Figure 86: Android Virtual Device for Nexus5 with SD Card amount specified

4. Select Tools >> Android Tools >> Create Android Virtual Device (x86). When the console appears,
you will be asked if you wish to create a custom hardware profile. Press Enter to accept the default
answer, no.

5. The Intel(R) Hardware Accelerated Execution Manager (HAXM) must be installed on the system. Go to
your ANDROID_HOME/extras/intel/Hardware_Accelerated_Execution_Manager directory
and double-click on the application to install it.

HAXM will improve x86 virtual device performance on Windows and MacOS X.

Configuring Genero Studio | 123

Warning: On MacOS 10.9, a Hotfix is needed (http://software.intel.com/en-us/articles/intel-
hardware-accelerated-execution-manager).

6. Select Tools >> Android Tools >> Launch Android Emulator (x86) and wait for the emulator to finish
loading. This can take a few minutes if you did not install HAXM. You will know it is finished loading
when the emulator looks like a device screen.

Figure 87: Running Android emulator

7. On the AVD, confirm that the AVD allows installation from unknown sources. Select Settings >>
Security and confirm that Unknown sources is selected. Return to the Home screen and then go to
the Apps screen.

8. From Genero Studio, select Tools >> Android Tools >> Deploy Genero Mobile for Android.

In the Genero Studio output panel you will see that the deploy started and finished. On the AVD you will
see a new icon on the Apps screen labeled Genero Mobile.

9. Test your configuration. From Genero Studio, find the OfficeStoreMobile project and open it. Execute
the OrdersApp. You should now see the Orders program running on the virtual device.
You can now run your own apps from Genero Studio to your virtual device. Your app will display to the
virtual device currently running or you can Configure multiple Android display devices on page 126.

Troubleshoot Android SDK issues
Here are troubleshooting tips for issues you may encounter when using the Android SDK during the setup
of your Genero Mobile development environment.

You follow the instructions to Install and configure Java SDK and Android SDK on page 119 and Display
to an Android virtual device on page 121 and you get an error. What steps should you take?

1. Ensure that you have set the ANDROID_HOME environment variable correctly.
2. Run the auto-configure script for Android SDK (Tools >> Android Tools >> Auto configure Android

SDK).

http://software.intel.com/en-us/articles/intel-hardware-accelerated-execution-manager
http://software.intel.com/en-us/articles/intel-hardware-accelerated-execution-manager

Configuring Genero Studio | 124

Troubleshoot Android emulator issues
Here are troubleshooting tips for issues you may encounter when using an Android Emulator during the
development of your Genero Mobile app.

If you are having emulator issues, we recommend you read Using the Emulator on the Android Developers
site.

My Android Emulator crashes intermittently

You followed the instructions to display to an Android virtual device, and you are getting intermittent
crashes of the Android emulator when starting up. What is the issue?

It has been discovered that if you have an external monitor attached, or if you are moving your emulator
between monitors in a dual monitor environment, it would save the location, which it would then use to
restore when starting up. The location would then be read as an unexpected value, and would cause a
core dump. To solve when this is the issue:

1. Navigate to the Android virtual device folder (.android/avd on a Mac, userdir\.android\avd on
Windows).

2. Navigate to your Virtual Device (e.g., Nexus7.avd).
3. Edit emulator-user.ini and set:

• window.x = 0

• window.y = 0

If this is not the problem, then you may wish to try a different Android emulator, such as Genymotion.
Please check the system requirements before making the change!

To view the Android bug number for this issue: https://code.google.com/p/android/issues/detail?id=40556

My Android Emulator is too slow

Mobile emulators are virtual machines. As such, we highly recommend a desktop or laptop with CPU
virtualization support and sufficient memory. If you do not have this, you will find the mobile emulators will
run very slowly.

Important: The following system requirements are recommendations based on user experiences.

For Mac users:

• Mac or Macbook Pro (Intel based)
• OS X 10.7 or higher
• 8+ Gb RAM
• VT-x enabled (may require firmware upgrade, see http://support.apple.com/kb/TS2744

For Windows users:

• Windows 7 or higher
• 8+ Gb RAM
• Intel CPU with VT-x or AMD-v CPU
• VT-x or AMD-v enabled (may require BIOS configuration)
• You can check if your CPU has VT-x with this Intel CPU identification tool: http://www.intel.com/support/

processors/tools/piu/sb/CS-014921.htm

At this time, we have no statistics regarding system requirements for Linux users.

http://developer.android.com/tools/devices/emulator.html
http://www.genymotion.com
https://code.google.com/p/android/issues/detail?id=40556
http://support.apple.com/kb/TS2744
http://www.intel.com/support/processors/tools/piu/sb/CS-014921.htm
http://www.intel.com/support/processors/tools/piu/sb/CS-014921.htm

Configuring Genero Studio | 125

Display to an Android physical device
This configuration allows you to run a program from Genero Studio and display it to your Android device.

Note: These configuration instructions are for a Google Nexus 7, the default platform used,
and are provided as an example. Check the device manufacturer documentation or web site for
information related to your specific device.

1. Install and configure Java SDK and Android SDK on page 119.

2. Close the Android emulator if it is currently open or Configure multiple Android display devices on page
126.

3. Select the Genero Configuration for Android Device (ARM).

Figure 88:

You are now ready to install Genero Mobile for Android (GMA) onto your device.

4. Connect your Android device to your computer's USB port.

5. To deploy and validate your app to a device, you must configure the device for development. Enable
USB debugging on your device by checking the Allow USB debugging option. Select Always allow
from this computer so that you do not have to repeat this step.

On Android 4.0 and newer, it's in Settings >> Developer options. On Android 4.2 and newer,
Developer options is hidden by default. To make it available, go to Settings >> About phone (or
About tablet) and tap Build number seven times. Return to the previous screen to find Developer
options and to allow USB Debugging.

Figure 89:

6. Go to Settings >> Storage >> USB computer connection. (This option is in the top right menu.) To
see the internal storage, set the USB computer connection mode to “Media device (MTP)”.

7. A USB driver update will be required (Windows). Follow these instructions to find and install
the appropriate USB driver for your device: http://developer.android.com/tools/extras/oem-
usb.html#InstallingDriver.

8. Set your device to allow installation from unknown sources. Select Settings >> Security and tap
Unknown sources to select it. Return to the Home screen and then go to the Apps screen.

http://developer.android.com/tools/extras/oem-usb.html#InstallingDriver
http://developer.android.com/tools/extras/oem-usb.html#InstallingDriver

Configuring Genero Studio | 126

Figure 90: Install from unknown sources

9. Check the communication from the computer to your device. From Genero Studio, select Tools >>
Android Tools >> List Devices. In the output panel you should see a list of devices attached. If
several devices are connected, you will need to define device ID in the display client configuration. If a
device is offline, restart the state Allow USB debugging.

10.From Genero Studio, select Tools >> Android Tools >> Deploy Genero Mobile for Android.

In the output panel you will see that the deploy started and finished. On the device you will see a new
icon on the Apps screen labeled Genero Mobile. This is the development client.

11.Disable installation from unknown sources on your device. Select Settings >> Security and tap
Unknown Sources to deselect it.

12.Test your configuration. From Genero Studio, find the OfficeStoreMobile project and open it. Execute
the OrdersApp. You should now see the Orders program running on your device.
You can now run your own apps from Genero Studio to your device. You can also deploy an app to the
device. See Deploy a mobile app for testing on page 998 for details.

Configure multiple Android display devices
Use this procedure to configure multiple Android display devices, for example a phone and a tablet and an
emulator.

By default, the device ID is not set in the Display client configuration and Genero Studio uses the first
connected device it finds. If you want to connect multiple devices at the same time, you can create multiple
configurations, each one specific to a device ID.

1. Select Tools >> Android Tools >> List Devices. The list of connected devices appears in the output
along with their respective device IDs.

List of devices attached
06dd7df1 device
emulator-5554 device

Configuring Genero Studio | 127

2. Copy the device ID of your device. Android virtual devices are considered a device by this utility and will
appear in the list as well. If you have multiple devices listed and you are not sure which one is the right
one, disconnect all of them except the one you wish to configure.

3. In the Display Client management dialog, enter the ID into the Device ID field. You may edit the default
configuration or add new Display Client configurations.

We recommend having a different port for each client available on the client machine. For example:

• 6500 for an Android Nexus 7 device
• 6501 for an Android Nexus 5 device
• 6502 for an Android Emulator
• 6503 for an iOS simulator

and so on.

4. If you have more than one USB device connected, create a separate Genero configuration for each
Android device you have connected.
You can now start the emulator and connect all the devices you configured via USB. Selecting a
Genero Configuration will select the device (or emulator) to use.

Configure Genero Mobile for iOS
Requirements for configuring Genero Mobile to develop apps for iOS.

Requirements

This configuration allows you to run a program and display it to your iOS physical or virtual device.

• Genero Mobile, which includes Genero Studio customized for mobile app development
• A Mac running a minimum of Mac OS 10.8. See Install and configure Xcode on page 128 for version

details.
• Xcode. See Install and configure Xcode on page 128.
• Either the iOS Simulator or an iOS physical device connected to machine via USB
• A standard, free Apple ID account or a purchased developer account

Configuring Genero Studio | 128

Note: A developer account is not required for creating apps that run on the simulator. You will
need an account once you want to:

• Install an app on an iOS device (even your own one for debugging)
• Distribute an app on the iOS app store
• Distribute in-house iOS apps to your employees

• Genero Studio (launched when launching Genero Mobile) configured to communicate with the device or
simulator

Install and configuration topics

• Install and configure Xcode on page 128
• Display to an iOS simulator on page 128
• Display to an iOS physical device on page 129
• Configure multiple iOS display devices on page 137
• Display to the Genero Mobile Development Client on page 138

Install and configure Xcode
Follow this procedure to configure for iOS. Once configured, the Tools >> iOS Tools menus are enabled
in Genero Studio.

1. Download and install Xcode from the Mac app store.

2. Install the Xcode command-line tools. They can be installed from Xcode by selecting Xcode >> Open
Developer Tool >> More Developer Tools.

3. Launch Genero Studio.

4. Select Tools >> Genero Configurations to open the Genero Configuration Management window.

5. You are now ready to Display to an iOS simulator on page 128 or Display to an iOS physical device
on page 129.

Configuration for extending Genero Mobile for iOS
Follow this procedure if you plan to extend Genero Mobile for iOS (GMI).

This procedure is only necessary if you plan to extend Genero Mobile for iOS using Objective-C.

1. Create a copy of the GMIDIR directory.

Find the default GMIDIR at GM_INSTALL_DIR/gmi. You should never update the default GMIDIR, as it
can be overwritten during an upgrade.

2. Update the GMIDIR environment variable to point to your new copy.

a) Select Tools >> Genero Configurations to open the Genero Configuration Management window.
b) Set the GMIDIR environment variable to the location of the copy of the GMI directory. To set the

GMIDIR environment variable, highlight the iOS environment set and double-click on the GMIDIR
environment variable in the list.

3. Follow the instructions in the Genero Business Development Language User Guide to extend Genero
Mobile for iOS.

Display to an iOS simulator
This configuration allows you to run a program from Genero Studio and display it to your iOS Simulator.
This configuration does not require an Apple iOS developer account.

Before you begin:

• Install and configure Xcode on page 128.

1. Launch Genero Studio.

2. Confirm that the Genero Configuration for iOS Simulator is selected.

Configuring Genero Studio | 129

Note: The Device ID field in iOS Simulator is used to specify which simulator to use when
deploying application or Genero Mobile Client, or launching Genero Mobile Client when
executing or debugging an application.

Figure 91: Display Client Management dialog with Device ID field

You can see the list of simulator identifier by calling Tools >> iOS Tools >> List Devices
action. You access the Device ID field by opening Genero Configuration Management dialog
then opening the list of display clients and selecting an iOS Simulator display client. The value
you can put in this field should be a substring of a simulator as displayed by List Devices action.

It can the internal identifier or the label or a part of it. If the field is not filled, then "iPhone 4S"
simulator will be used, as it is the less resource-intensive one.

3. Select Tools >> iOS Tools >> Launch iOS Simulator. The simulator should appear. Change the
simulator hardware to match the device you want to simulate, such as an iPhone.

4. Select Tools >> iOS Tools >> Deploy Genero Mobile for iOS.

In the Genero Studio output panel you will see that the deploy started and finished. On the Simulator
you will see a demo app running.

5. Test your configuration. From Genero Studio, find the OfficeStoreMobile project and open it. Execute
the OrdersApp. You should now see the Orders program running on the simulator.

6. You can now run your own apps from Genero Studio to the simulator.

Display to an iOS physical device
This configuration allows you to run a program from Genero Studio and display it to your iOS device. This
configuration does require an Apple iOS developer account.

Before you begin:

• Install and configure Xcode on page 128.

1. Log into the iOS Developer Center. If you are a member of the iOS Developer Center then just log in.
If not, follow these steps to enroll in an iOS developer program. Please note, it can take Apple a day or
two to approve memberships.

Configuring Genero Studio | 130

a) Go to http://developer.apple.com and select the iOS Developer Program option.
b) Select the Enroll Now option and follow the instructions. You will need to enroll in either a

Developer or Enterprise program. When you are finished you will have an Apple ID with which to log
in. If you are a member of the IOS Developer Program select Member Center to log in.

2. Generate and import a development certificate. The Development Certificate will be used to allow you
to view your program on your iOS device which can be an iPhone, iPod, or iPad.

a) Select Certificates, Identifiers & Profiles.

b) Select Certificates under the iOS Apps section.

http://developer.apple.com

Configuring Genero Studio | 131

c) Under Certificates, select Development followed by the + symbol.

d) Follow the instructions, on the Select Type page and select the iOS App Development option for
an iOS App Development certificate then click Continue.

e) Follow the instructions on the page to create a CSR file then click Continue.

Configuring Genero Studio | 132

f) Your certificate request is now available. Now you can go back to the Development Certificate
section still active in your browser and click Choose file....

g) Navigate to the file you just saved and choose that file.
h) Click Generate.
i) Once the certificate is generated, click Download. The certificate will download into your Downloads

folder.
j) Double-click this file to install it into Keychain.
k) When done, your new certificate should be listed in the Certificates list.

3. Provision your device for development. If you have only an iOS developer account, you need to register
each device you will use to test your IOS app. These steps are not necessary if you have an iOS
enterprise account. Follow Apple's instructions for provisioning your device.

4. For iOS 8 and above, enable UI automation.

a) Open the Settings app.
b) Select Developer.
c) Turn on Enable UI automation.

https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/MaintainingProfiles/MaintainingProfiles.html#//apple_ref/doc/uid/TP40012582-CH30-SW24

Configuring Genero Studio | 133

5. Go back to the Member Center and you should have a provisioning profile granted. Please note, it can
take some time before Apple changes the status from Pending to Active.

Configuring Genero Studio | 134

6. Select the Provisioning Profile and click Download.

7. From the Xcode Organizer (Xcode >> Window >> Organizer), select Devices.

8. Drag the provisioning profile you downloaded into the Xcode Organizer window. You should see a valid
provisioning profile installed with a green check mark.

Configuring Genero Studio | 135

9. Launch Genero Studio.

10.Select Tools >> Genero Configurations.

11.Select the iOS environment set.

12.Set the IDENTITY environment variable in the iOS environment set, to identify which certificate to use
from those defined in Keychain Access.

The certificate name generally contain the first and last name of the developer as defined in your Apple
ID account. You can find it at http://appleid.apple.com/.

To view the list of certificates in the Keychain Access, leave Genero Studio and complete these steps:

a) Open Applications >> Utilities >> Keychain Access.
b) Select login in the Keychain section.
c) Select My certificates in the Categories section.

The list of certificates displays. Use this list to find the sub string to enter for the IDENTITY
environment variable. At a minimum, the IDENTITY environment variable must contain just enough
characters to identify the certificate (amongst those listed in Keychain Access) used to sign the
package. In theory, it can be as small as two letters, if those two letters are sufficient enough to
identify the certificate.

13.Set the PROVISIONING_PROFILE environment variable to the provisioning profile file you downloaded.

14.Select Tools >> iOS Tools >> Deploy Genero Mobile for iOS. A USB connection is required to
deploy to the device.

In the Genero Studio output panel you will see that the deploy started and finished. On the device you
will see a new icon labeled GMI.

http://appleid.apple.com/

Configuring Genero Studio | 136

15.Set up your device as a display client. Wi-Fi is used to display the app to the device in developer mode.

a) Confirm that your computer and your mobile device are on the same Wi-Fi network.
b) Get the IP address of your device. (From your device, select Settings >> Wi-Fi and select the Wi-Fi

network to see the network details and IP Address.)
c) Edit the iOS Display client setting for the iOS Genero configuration. In the Host field, enter your

device's IP address.
d) Select OK to save the changes.

Configuring Genero Studio | 137

16.On the device, tap the GMI app to launch it.

17.Test your configuration. From Genero Studio, find the OfficeStoreMobile project and open it. Execute
the OrdersApp. You should now see the Orders program running on the device.

18.You can now run your own apps from Genero Studio to the device.

Configure multiple iOS display devices
Use this procedure to configure multiple iOS display devices, for example a phone and a tablet.

By default, the device ID is not set in the Display client configuration and Genero Studio uses the first
connected device it finds. If you want to connect multiple devices at the same time, you can create multiple
configurations, each one specific to a device ID.

1. Select Tools >> iOS Tools >> List Devices. The list of connected devices appears in the output along
with their respective device IDs.

List of iOS devices
iPad: 93f794ca3b3faae092980aba8410102fffffffffff
iPhone: 62d5ce684b97317379072f81b796eeceeeeeeeee

2. Copy the device ID of a device.

3. In the Display Client management dialog, enter the ID into the Device ID field. You may edit the default
configuration or add new Display Client configurations.

Configuring Genero Studio | 138

4. If you have more than one USB device connected, create a separate Genero configuration for each
device.
Selecting a Genero Configuration will select the device to use.

Display to the Genero Mobile Development Client
Available from Apple's App Store, the Genero Mobile Development Client serves two purposes: It allows
you to view your app on an iOS device regardless of your development machine operating system, and it
allows you to run a demo app.

Before you begin:

• The mobile device and the development machine must be connected to the same wireless network.
• The Genero Mobile Development Client app (available from the App Store) must be installed on the

mobile device. To locate the Genero Mobile Development Client in the App Store, simply search on
the full name of the app. After installation, the app appears with the name Dev Client and the standard
Genero icon.

1. Launch Genero Studio.

2. Select the iOS Dev Client configuration.

The iOS Dev Client is configured for the DVM (fglrun) to listen on port 6400. To listen on a different port,
modify the Genero Installation FGL options setting to a different port.

Configuring Genero Studio | 139

3. Run your app.

• Execute your app from Genero Studio. If you have a firewall, you must allow the client to
communicate on your network.

• Alternatively, start the app on the server from the command line using the --gui-listen option.
For example:

% fglrun --gui-listen=6400 helloworld.42m

The app starts and waits for the Genero Mobile Development Client to connect.

4. From your device, start the Dev Client app.

5. In the URL field, enter the following URL.

fgl://yourdesktop-ip:port-number

Replace yourdesktop-ip with the IP address of your development machine. Replace port-number with
the port number specified in the iOS Dev Client configuration. The default is 6400. The firewall on your
desktop needs to be open for the port used. For example:

fgl://192.168.0.101:6400

6. Set the Timeout and Permanent retry options as needed. For the Timeout option, use the spinner to
set the number of seconds for the timeout. Setting the timeout to zero indicates that you are not setting
a time limit. If you have no service waiting, it will immediately fail. Turn Permanent retry on or off. If you
switch on, and kill the app, then it tries for some seconds to connect, then retries and keeps retrying.

7. Tap Connect.
Either the app will display, or you will get an error message in the RESULTS area of the interface.
When you exit the app, you are returned to the developer interface.

Setting up a local environment
These topics assist you in setting up a local Genero Studio environment.

• Local environment software requirements on page 140
• Define local Genero installations, GAS configurations, and environment sets on page 140

Configuring Genero Studio | 140

Local environment software requirements
Install the complete Genero stack on the local machine when a developer will work independently and
compile files locally.

A local environment requires the following components:

• Genero Studio
• Installed Genero Business Development Language (BDL) compiler and runner (DVM). See Compiler /

Runtime configuration (Genero Installations) on page 172.
• Installed display client such as GDC, GWC, GMI, GMA depending on your application development

(desktop, web, mobile). See Display clients on page 146.

If the project requires a database, the database (Informix®, Oracle, etc.) and its accompanying database
client (CSDK, Oracle client, etc.) can be installed on the local machine or configured for remote access:

• The database server installed on a remote host
• The database client installed on the local machine

Project and source files must be local, but can be shared using a version control system if a networked
drive (or samba) is configured.

Each database environment has its own client character set configuration. You must configure the
database client locale properly in order to send/receive data to the database server. The settings for
database client locale and application locale must match. See Localization: Database Client Settings in the
Genero Business Development Language User Guide.

See the installation documentation and release notes for additional information.

Define local Genero installations, GAS configurations, and environment sets
Local default configurations based on your installation are set up for you. Modify the configurations if the
defaults are not set up for your needs.

1. Select the local host from the list in the lower right corner.

2. Select Tools >> Genero Configurations to display the Genero Configuration Management dialog for
the local host.

3. Add new configurations as needed to add Compiler / Runtime configuration (Genero Installations) on
page 172, Environment sets on page 140, and Web: GAS/GWC configurations on page 147.

4. Save the changes.

Environment sets
Define sets of environment variables to add to or overwrite the default environment. These environment
settings are also usable by each Genero Studio client that adds a remote Genero Studio Server to its list.

Select Tools >> Genero Configurations to display the configurations for the currently selected server.
Add and modify environment sets as needed.

When you launch any Genero Studio sub-process (run, GDC, compilation, debug, and so on), Genero
Studio sets all redefined environment variables according to the current context (the Projects context may
differ from the File Browser context).

Select the name of an environment set to view/modify the Environment Set variables. Right-click in the
Environment Set area and select Add Environment Set... to add a new set of environment variables.

Configuring Genero Studio | 141

Figure 92: Environment sets

See Add or edit environment variables on page 144 for more details on using the Environment Variable
dialog.

Default environment sets

Some default environment sets are included.

Debug Contains variables that set the debug level
(FGLSQLDEBUG for FGL/SQL, FGLWSDEBUG for
Web Services, and GREDEBUG for Report Engine.)
The values are already set to 9, the highest debug
level, but can be changed to any number between
1 and 9. Debug files will be generated in the current
directory.

DB - xxxx Contains some variables required by database
clients from the various vendors. The values for
the variables must be entered before using these
environment sets. See Database server/user
information on page 308 for information about the
specific variables for each database.

Important: This feature is not supported on
mobile platforms.

Global Database Schemas Defines the schema files (4db, 4dbx, sch) to be
loaded by default into the Meta-schema Manager
when Genero Studio is launched. Includes setting
for GSTSCHEMANAMES and FGLDBPATH.

Java SDK Environment settings for the installed Java SDK.
Adds the Java executables path to the PATH
environment variable. See the Genero Mobile User
Guide for more information.

Profile Contains the environment variable FGLPROFILE;
for the value, enter the path of the current

Configuring Genero Studio | 142

configuration (FGLPROFILE) file to be used by the
system before enabling this environment set; the
default location is FGLDIR/etc/fglprofile.
If you are using a remote environment, the value
should be set to the location on the remote host.
See Access a database on page 163.

Report Writer Contains the environment variables set by default
to the installation directory of Genero Report
Engine. This set is automatically enabled, as the
environment variables are required when working
with reports.

Important: This feature is not supported on
mobile platforms.

Templates Contains environment variables set by default to
the template directory being used for Business
Application Modeling. Includes setting for
GSTSETUPDIR. See The code generation template
set on page 942.

Web Components Defines GSTWCDIR, the directory in which the
WebComponent XML files and optional icon files
are stored.

Android For Genero Mobile, environment settings for the
installed Android SDK. See the Genero Mobile User
Guide for more information.

iOS For Genero Mobile, environment settings for iOS.
See the Genero Mobile Developer Guide for more
information.

Mobile Debug Packages For Genero Mobile, sets the DEBUG_PACKAGE
environment variable to TRUE so that packages
built will include options for debugging. See
Debugging a mobile app in the Genero Mobile
Developer Guide.

Locale Sets the LANG environment variable. See Language
support (text encoding) on page 163 and
Language and character set settings in the Genero
Business Development Language User Guide for
more information.

Studio Libraries Contains the GSTLIBRARYDIR environment
variable which specifies the location of the libraries
used with the database generation script.

Term Contains the GSTTERM (Linux, Windows)
environment variable which specifies how to open a
terminal on the client machine (Genero Workspace
Window, for example). For some Linux operating
systems which do not have xterm, use this to
specify the terminal name and the arguments to
launch it. The default is xterm -e (cmd /K).

Configuring Genero Studio | 143

GST-specific environment variables
This section lists and describes all Genero Studio specific environment variables.

See the topic, Genero environment variables, in the Genero Business Development Language User
Guide for a listing and definition of Genero specific environment variables such as FGLDIR, FGLGUI, and
FGLPROFILE.

GREDEBUG
Defines the debug level for the Genero Report Engine.

Valid values include:

• 0: nothing
• 1: fatal only
• 2: fatal and error
• 3: fatal, error, and warning
• 4: fatal, error, warning, and info
• 5: fatal, error, warning, info, and debug
• 6: fatal, error, warning, info, debug, and trace
• 6+: all debug information

GRE_DEFAULT_IMAGE_URL
Defines the URL of the fallback image for an Image Box in a report design document.

The fallback image is the image to display if the requested image for an Image Box is not found.

The URL can be an absolute or relative URL. If it is a relative URL, the URL is resolved relative to the
location of the form design (4rp) document.

This environment variable is specific to Genero Report Writer.

GREDIR
Defines the installation directory of the Genero Report Engine.

GSTDIR
Defines the installation directory of Genero Studio.

GSTLIBRARYDIR
Defines the location of the libraries used with the database generation script. By default this environment
variable is set in the Studio Libraries environment set.

GSTSCHEMANAMES
Defines the schema files (4db, 4dbx, sch) to be loaded by default into the Meta-schema Manager when
Genero Studio is launched. Available meta-schemas are displayed in the DB Schemas tab, and available
to Genero Studio components such as Form Designer.

Use the GSTSCHEMANAMES environment variable to specify global schemas.

Note: Although you can specify global schemas, it is recommended that you add schemas to
projects instead. Schemas added to projects are loaded when the project is opened, not at Genero
Studio launch. Project can also be available to all developers without any additional configuration
needed.

Select the default environment set (Global Database Schemas) or create a new one that includes the
GSTSCHEMANAMES environment variable. Set the GSTSCHEMANAMES environment variable to
specify the file names of the schemas to make available. Use the Value List environment variable type to
list multiple schemas, separated by semi-colons. Do not include the file extension.

Use FGLDBPATH to define the directories in which to find the schema files listed in the
GSTSCHEMANAMES variable.

Configuring Genero Studio | 144

GSTSETUPDIR
Defines the BAM application generator template directory. Changing this variable launches synchronization
from the server and reloads the templates.

Select the default environment set or create a new one that includes the GSTSETUPDIR specifying the
location of the template directory to be used.

GSTUSERSAMPLESDIR
Defines the Genero Studio samples directory for the user.

The GSTUSERSAMPLESDIR environment variable indicates the installation directory of the Genero Studio
demo samples.

It is typically used when setting other environment variables.

By default, the GSTUSERSAMPLESDIR is not used in Genero Enterprise v3.0.

GSTWCDIR
Defines the directory in which the WebComponent XML files (.wcsettings) and optional image files are
stored. By default this environment variable is set in the Web Components environment set.

Set GSTWCDIR to your web component directory where the .wcsettings and the optional image files
reside. The Web Components files themselves may reside in a separate directory for deployment.

Each of the .wcsettings XML files describes a single WebComponent object.

Once you have set this directory, you may add a WebComponent widget to your form design document.
The components described in the .wcsettings files will be available in the combobox list of the
componentType property in the Properties view, allowing you to specify the particular WebComponent you
wish to add to the form.

Add or edit environment variables
The Environment Variable dialog is used to add and edit environment variables.

When the Environment Variable dialog appears, enter:

Type The type of environment variable. Options are
Value, Value List, Directory, Directory List, File, or
File List.

Name The name of the environment variable.

Value The value of the environment variable. When
entering the value, if the type is Value List,
Directory, Directory List, File, or File List, select the
ellipses (...) to browse for the correct value.

If the value contains a variable name, that
name must be prefaced with $ and enclosed in
parenthesis; for example $(FGLLDPATH).

The list separator is always a semicolon (;) on all
systems (Windows™ and UNIX™). The directory
separator in a path is always a slash (/) on all
systems.

Tip: Use the semicolon to separate
directories in a list, and the slash (/) as the
separator in a path, for portability of projects
across operating systems.

Configuring Genero Studio | 145

Figure 93: Setting FGLLDPATH

Figure 94: Setting FGLPROFILE

Reusing existing environment variables

A variable defined for a parent or ancestor node can also be reused in definitions for a child node:

For example:

• The parent node defines: MY_VALUE=hello
• The child node can reuse the parent node variable: MY_COMPLETE_VALUE=$(MY_VALUE) world
• The final value of MY_COMPLETE_VALUE is "hello world".

For example:

• The parent node defines: MY_VALUE=foo
• The child node can reuse the parent node value and redefine the variable: MY_VALUE=$(MY_VALUE)

bar

• The final value of MY_VALUE will be "foo bar".

As a result, the System environment variables or Genero Studio Configuration variables can be reused in
User Variable definitions within Project Manager.

Configuring Genero Studio | 146

Display clients
You can configure a variety of display clients in Genero Studio.

Desktop: GDC configurations
GDC configurations contain information about the available Genero Desktop Clients (GDC).

You can create multiple GDC Configurations, each with a different name.

Note: For information on installing the Genero Desktop Client outside of Genero Studio, see the
Genero Installation Guide.

Configure for the Genero Desktop Client - Select Display Client

In the Display section of the Genero Configuration Management dialog, select the Use Display Client
radio button.

Figure 95: Use Display Client (Genero Desktop Client) for the display

Display Client configuration combobox Select the display client configuration to use.

To add a new GDC configuration, click the Edit icon next to the Display Client configuration combobox. The
Display Client management dialog opens.

Configure for the Genero Desktop Client - Display Client management

To set a GDC configuration, select GDC from the Client type combobox.

Configuring Genero Studio | 147

Figure 96: Display Client Management dialog

Select a configuration from the list to modify its settings. Use the integrated Toolbar to add, duplicate,
remove, or edit a configuration. Once a name is added, enter its settings.

The following fields apply to a GDC configuration:

Host Hostname or IP address where the GDC client
executes. In local host mode, when the host
field is empty, the client IP address will be
automatically detected in order that GDC will always
be accessible from fglrun. You can change this
manually.

Port Port from which GDC client is to be launched.

Use autostart script Check this option to have Genero Studio
automatically start the GDC.

Uncheck this option if you want to manually start the
GDC.

Script path Path to where GDC client is installed.

Script options Command line options for the execution of Genero
Desktop Client (GDC). For a full list of valid
command line options, see the Genero Desktop
Client User Guide.

Web: GAS/GWC configurations
To display web applications or to run web services, you must configure both for the application and for the
Genero Application Server.

You can create multiple GAS Configurations, each with a different name.

Configuring Genero Studio | 148

Note: If you did not install the entire Genero Studio package initially, you must install and set up
the Genero Application Server (GAS), which includes the GWC rendering engine. For information
on installing the Genero Desktop Client outside of Genero Studio, see the Genero Installation
Guide.

When you select a GAS configuration, Genero Studio will dynamically generate an external application to
enable you to run, debug, or preview an application or file.

For development, the GAS standalone dispatcher: httpdispatch on page 174 can be used instead of a
web server.

You can specify the browser to use with GWC in General Preferences on page 106 or in the Configuration
Management dialog.

Configure for the Genero Web Client

In the Display section, select the Use GWC radio button.

Figure 97: Use GWC for the display

GAS configuration combobox Select which GAS configuration to use. To add a
new GAS configuration, click the Edit icon. The
Genero Application Server Management window
opens.

Application type Select Universal Agent to use GAS 3.00 GWC-
JS.

Select Web Application to use GAS 2.50 GWC-
HTML5 (deprecated).

Theme Select a theme to use.

Browser Specify a specific browser to use. When left blank,
the default browser is used.

Configure the Genero Application Server

In the Genero Application Server Management window, existing GAS configurations are listed in the left-
hand panel. Select a configuration from the list to modify its settings. Use the integrated Toolbar to add,
duplicate, remove, or edit a configuration. Once a name is added, enter its settings.

Configuring Genero Studio | 149

Figure 98: GAS Configuration

GAS Connection Details section

Host Specify the IP address or the network name of
the server you are connecting to when running
an application with the GAS. If you are in a “direct
connection” using GAS Standalone, specify the
IP address or the network name of the Application
Server (the one where the compiler resides). If you
are connecting through a web server, specify the IP
address or the network name of the web server.

Port Specify either the port of the GAS (if you are in a
 “direct connection”, GAS Standalone) or of the web
server.

Connector Leave blank if you are using a “direct connection”
using GAS Standalone for development purposes.
Enter the alias configured for your dispatcher in
your GAS installation (often, gas). See the section,
"Configuring the Genero Application Server" in the

Configuring Genero Studio | 150

Genero Application Server User Guide for more
information on configuring your dispatcher.

Secure protocol The URL used when launching an application is
impacted by this selection.

• When selected, the protocol is "https".
• When not selected, the protocol is "http".

GAS Configuration Details section

Installation directory Directory where the GAS is installed locally.

Use start script The check box specifies whether to use the startup
script to launch the GAS. When checked, the field
specifies which start script to be launched when
this configuration is used. The GAS standalone
dispatcher: httpdispatch on page 174 can
be specified here to launch httpdispatch.
httpdispatch can be used as the GAS script.
In versions prior to 2.50, set the environment
by specifying -p <GASDIR> in the Start script
options field. Alternatively, call a script that calls
. ./envas before calling httpdispatch, such
as:

. ./envas
httpdispatch

For GAS versions prior to 2.30, set the path for
gasd instead of for httpdispatch.

Note: The start script is only used when
no GAS is found on the host at the port
specified. The start script is not called even
if the GAS to be launched from start script is
different from the one already launched.

Start script options Specify any options to be used with the start script.
See GAS standalone dispatcher: httpdispatch on
page 174 for httpdispatch options. For more
information on script parameters, see the Genero
Application Server User Guide.

Application Details section

Application group The name of the Application Group defined in the
GAS as.xcf file. Enter the value _default for the
group to use the default configuration file, unless
you have an explicit group to specify.

Application directory The directory of the Application Group, the same
path as the one referred to in the as.xcf file. If
using the default application, the corresponding
directory (usually GAS installation
directory/app) has to be entered in the Group
Directory field.

Configuring Genero Studio | 151

Parent application The identifier of the parent GWC application; if no
identifier is given, the default GWC application will
be used.

Services group The name of the Web Services Group defined in the
GAS as.xcf file. Enter the value _default for the
group to use the default configuration file, unless
you have an explicit group to specify.

Services directory The directory of the Web Services Group, the same
path as the one referred to in the as.xcf file. If
using the default application, the corresponding
directory (usually GAS installation
directory/app) has to be entered in the Group
Directory field.

Parent service The identifier of the parent Web Services
application; if no identifier is given, the default Web
Service application will be used.

URL example

The URL used when launching application from Project Manager is impacted by the Secure protocol
option and the Application Type selection:

<protocol>://<host>:<port>/<connector>/<application_type>/r/
<application_name>

• protocol is either "http" or "https", depending on the value of the Secure protocol option.
• application_type is either "ua" or "wa", depending on the value of the Application type option.
• application_name depends on the executed application in project manager.
• Other values depend on the GAS configuration parameters.

Example GAS configuration

• Host: <Automatic>
• Port: 6394
• Application group: mygroup
• Group directory: c:\work
• Parent application: defaultgwc

In this configuration, GAS applications will be run using the GAS located on the current computer at port
"6394". The group "mygroup" in the as.xcf file points to the directory "c:\work"; the corresponding fields in
the GWC configuration dialog are filled with the same information.

Note: Users on Windows™ 64-bit machines who are using a network proxy: The browser cannot
open 127.0.0.1 or localhost unless you modify your Advanced Network settings to avoid going
through the proxy for these addresses.

See the Genero Application Server User Guide for information on setting up GWC and GAS and adding
applications.

Create and apply a custom XCF for your Web application
Follow these steps to create and apply a custom configuration for your Web application within the Genero
Studio framework.

When launching a Web application, information needed to launch that application is provided in an external
application configuration (XCF) file. An XCF file is an external XML file that provides the configuration
details for an application being launched by the Genero Application Server (GAS). When Genero Studio

Configuring Genero Studio | 152

launches a GWC application, it generates the XCF file and places it in the default directory for application
configuration files, as specified in the GAS configuration file. If you have explicit changes that need to be
made to the generated XCF file - such as specifying a specific snippet to use or parameters to pass to the
application - you must create a custom XCF file.

Note: Refer to the GAS documentation for information on creating an XCF file and launching Web
applications outside of Genero Studio.

1. Create a custom application configuration XCF file. Use Code Editor to create the file as it provides
syntax highlighting and auto-completion while editing. Validation is done using the corresponding XSD,
and any errors are displayed.

Include only those elements that you need to add for customization purposes.

Example custom XCF file (myHelloWorld.xcf):

<?xml version="1.0" encoding="UTF-8" ?>
<APPLICATION Parent="defaultgwc"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="http://www.4js.com/ns/gas/2.10/
cfextwa.xsd">
 <EXECUTION>
 <PARAMETERS>
 <PARAMETER>--test</PARAMETER>
 <PARAMETER>-o</PARAMETER>
 <PARAMETER>outputFile.txt</PARAMETER>
 </PARAMETERS>
 </EXECUTION>
 <OUTPUT>
 <MAP Id="DUA_SL" Allowed="TRUE">
 <THEME>
 <TEMPLATE Id="_default">c:\mypath\main2.xhtml</TEMPLATE>
 <SNIPPET Id="ComboBox">c:\mypath\SL\combobox.xaml</SNIPPET>
 </THEME>
 </MAP>
 </OUTPUT>
 </APPLICATION>

2. Add the custom XCF file to your application's project structure.

Your file can have any valid file name, and must end with an xcf extension. Add the file to an
application node or dependent library.

Figure 99: Project View with Custom XCF file displayed

3. Launch the application in Genero Studio.

Genero Studio searches for a custom XCF file first in the application node. If there is no custom XCF file
in the application node, Genero Studio will use the first custom XCF file found in the libraries that are
dependencies of the application. If multiple custom XCF files are located, the first found file is used. If no
custom configuration file is found, the default configuration file created by Genero Studio is used.

The information in the found custom XCF file is applied to the generated XCF file. Two XCF files are
automatically generated when the application is run with the GWC client.

application_user.xcf This file is intended to be re-used afterward in a
normal GAS/GWC configuration.

application_user_studio.xcf This file is temporary and only used by Genero
Studio for running the web application for a single

Configuring Genero Studio | 153

session; it is not intended to be (modified and) re-
used afterward.

Mobile clients: GMI and GMA configurations
Android and iOS configurations contain information about the available Genero Mobile clients (GMA and
GMI).

See the Genero Mobile Developer Guide for steps to display your app to an Android or iOS device or
emulator.

In the Display section, select the Use Display Client radio button.

To set a mobile configuration, select the desired mobile option from the Client type combobox.

To open the Display Client Management dialog, click on the Edit icon.

Figure 100: Display Client Management dialog

Select a display client from the list to modify its settings. Use the integrated Toolbar to add, duplicate,
remove, or edit a configuration. Once a name is added, enter its settings.

Display Client Configuration Details

Client type Select the client type for the configuration.

Host Hostname or IP address where the mobile client
executes.

Port Port from which the client is to be launched.

Debug port Port for displaying debug information.

Log fetching delay The delay in milliseconds before a log is fetched.

Use autostart script If checked, autostart script will be executed if client
is not running.

Configuring Genero Studio | 154

Script path Path of script to execute when Use autostart script
is checked. For GMI and GMA clients an implicit
script is used.

Script options The options passed as parameters to the autostart
script. Not used with GMI and GMA.

Device Informations
Settings for identifying display devices so that multiple display devices can be connected at the same time.
See Configure multiple display devices in the Genero Mobile Developer Guide.

Device ID The identifier of device (iOS or Android). Use the
List Devices option in the Tools >> Android Tools
or Tools >> iOS Tools menu to get list of device
IDs.

Tip: If you are using iOS and Xcode,
you can use a substring from the string
displayed by the List Devices option. For
example, you can use the label of the
device as displayed in the General settings.

Hardware Android only, specifies the architecture of the target
CPU, x86 or ARM.

SDK Currently only used for iOS Simulator configuration.
The only possible value is iOS Simulator 7.0.

Setting up a remote environment
These topics assist you in setting up a remote Genero Studio environment.

• Remote environment software requirements on page 154
• Add a remote host on page 155
• Define mount points to shared drives on page 161
• Define remote Genero installations, GAS configurations, and environment sets on page 162

Remote environment software requirements
In a remote environment, installation is done on the remote server and accessed by developers from their
client machines.

On the server(s)

• Installed Genero Studio server side tools. See your installation documentation.
• Installed relational database (Informix®, Oracle, etc.) and its corresponding client (CSDK, Oracle Client,

etc.); or Database Client on this server and the corresponding Database on a different remote server.
• SSH server (if using the recommended SSH connections).

On the client

• Genero Studio
• Installed Genero Desktop Client

Each database software has its own client character set configuration. You must properly configure the
database client locale in order to send/receive data to the database server, according to the locale used

Configuring Genero Studio | 155

by your application. See Localization: Database Client Settings in the Genero Business Development
Language User Guide.

Add a remote host
To connect a Genero Studio client to a remote Genero Studio Server, add the remote server to the Hosts
defined in Genero Studio Configurations and define a remote configuration for that server.

1. Start Genero Studio on the client.

2. Select Tools >> Server connections or select the Server Connections button in the lower right
corner.

3. Select the button in the integrated Toolbar to Add a Genero Studio server.

Figure 101: Add a Genero Studio server

4. Enter the Host Information.

Configuring Genero Studio | 156

Figure 102: Host Information

Host Hostname or IP address where Genero Studio
Server is running.

Port Enter the port number you have configured SSH
to listen on. The default SSH port number is 22.
If you are using TCP (deprecated), enter the port
number used when Genero Studio Server was
started. The default port number is 5321.

Client IP address IP address of the client as viewed by the server.
Displays the value of the IP address to be used by
the GDC settings when <Automatic> is set.

Connection type SSH (default) or TCP (deprecated).

Installation directory The Genero Studio installation directory on the
remote machine; enter the complete path, which
will always end with /gst

User name Valid user name. See SSH advanced security on
page 157.

User password Valid password.

5. Select Connect to validate the host configuration.

Configuring Genero Studio | 157

6. Once a valid connection has been made, existing Genero installations, GAS configurations and
Environment sets can be imported from the server. Select the Import button. See Import Configuration
dialog on page 173.

7. Define mount points to shared drives on page 161.

8. Select OK. Your new remote host will now be listed in the host list in the lower right corner of Genero
Studio.

Figure 103: Host list

SSH
Each user with an SSH connection works with their own server process, as one instance of Genero Studio
server is created for each SSH connection. If you choose this connection type, an SSH daemon must be
running on the host. There is no need to launch Genero Studio Server on the host; the SSH connection
will automatically launch it.. On Windows™, a third party SSH server must be installed.

SSH advanced security

• Configuring Public Key Authentication on Windows™

• Configuring Public Key Authentication on Linux™

Configure public key authentication on Windows™

Genero Studio can support public key authentication on Windows™ if you use Pageant. You have to install
PuTTY on your client machine to use it. Pageant is a utility that stores unencrypted private keys in memory
and provides digital signatures when needed.

You configure it by giving the path of the encrypted private key file (See PuTTY documentation for more
information). You enter the passphrase just once when Pageant is launched; then you will not have to
bother with it again, until you launch a new Windows™ session.

Genero Studio uses plink to initiate an ssh connection. If Pageant is launched, plink automatically
uses Pageant to get a signature. When using public key authentication in Genero Studio, don't fill in the
password field in the SSH connection dialog, as it not used.

Pageant

First, you have to generate a pair of private\public keys. If you already have a SSH\OpenSSH key pair, see
the How to use openSSH key with Pageant section.

• Launch PuTTYgen, and verify that the SSH-2 RSA radio button is selected.
• Select the number of bits you want as the size for the key and click the Generate button. During

generation, move cursor into the blank area to randomize the keys.
• Enter a comment to identify the key pair more easily.
• Enter a passphrase. A passphrase is used to decrypt the private key (Private key is encrypted on the

disc for more security). Don't forget it, you will have to enter it each time you begin a new Windows™

session.
• Once you have entered the passphrase, you can save the private and public keys on the disc.

Configuring Genero Studio | 158

Figure 104: PuTTY Key Generator

• Next, go to your home directory (/home/username) on your host machine, and edit the .ssh/
authorized_keys file with your preferred text editor. If the file (or .ssh directory) doesn't exist, create it.

• Copy your generated public key in the authorized_keys file. The key must be in exactly the same
format as displayed in PuTTYgen (ssh-rsa ****...****== keyname) and must occupy only one line. If
several lines were already present, enter a line return before writing the key.

• Now launch Pageant. It will appear in the systray as a desktop computer wearing a hat. Right click on it
and select Add key.

Configuring Genero Studio | 159

Figure 105: Pageant pop-up menu.

• An open file dialog lets you select a ppk (Private key) file. After selecting it, you will be asked to enter
the corresponding passphrase.

• You can verify that the key has been successfully added by selecting "View keys" in the Pageant icon's
context menu. The key signature is displayed instead of the private key, but you can recognize it by its
name.

You should now be able to initiate an ssh connection with Genero Studio without entering a password.

How to use openSSH keys with Pageant

The ssh-keygen generated private key files cannot be directly used by Pageant; you have to convert them
into .ppk files. To do so, open PuTTYgen and select Conversions>>Import key menu item; select your
OpenSSH format private key.

Configure public key authentication on Linux™

Genero Studio uses plink ssh client to initiate an ssh connection; plink is traditionally used with the
Pageant authentication agent. Since Pageant doesn't exist on Linux™, we will use ssh-agent, which is
released with OpenSSH clients.

ssh-agent stores the private key unencrypted in memory, and provides the private key signature when
asked. You configure it by giving it the path of the encrypted private key file (using the ssh-add command).
When ssh-agent is launched, plink will automatically ask ssh-agent to get a signature to send to ssh server.

ssh-agent

First, you have to generate a private\public key pair. If you already have a PuTTY generated key pair, see
the How to use PuTTY keys with ssh-agent section; otherwise, we will generate it with ssh-keygen.

• Type ssh-keygen -t rsa in a terminal to generate a key pair using rsa encoding.
• You will be prompted for the file path where you want to save your private key. If you press enter

without giving a path, the key will be saved as ~/.ssh/id_rsa.

Configuring Genero Studio | 160

• Next, enter the pass phrase (needed to decrypt the private key). Don't forget it as you will have to enter
it again at each logon session. The public key file will be saved with the same path as the private key
file, but with the .pub extension.

• Go to your home directory (/home/username) on your host machine, and edit the .ssh/
authorized_key s file with your preferred text editor. If the file (or .ssh directory) doesn't exist, create it.

• Copy your generated public key in authorized_keys file. The key must be exactly in the same format as
displayed in PuTTYgen (ssh-rsa ****...****== keyname) and must occupy just one line. If several lines
were already present, enter a line return before writing the key.

Next, configure ssh-agent to automatically provide signatures from the private key.

• ssh-agent must be started at each logon session. Execute it if it isn't already running.
• Next, execute ssh-add with the private key file path as the parameter (For example ssh-add ~/.ssh/

id_rsa). This will tell ssh-agent to test your private key each time you start an ssh session.
• Verify that the key has been successfully added by typing ssh-add -l. It should display you your private

key fingerprint.

You can now use public key authentication with Genero Studio. For that, create an SSH connection without
entering a password:

Figure 106: Host Configuration

How to use PuTTY keys with the ssh-agent

If PuTTY is installed on Windows™, start PutTTYgen, load your private key (ppk file), and select the
conversions >> Export OpenSSH key menu item. It will ask you where you want to save the file.

If PuTTY is installed on Linux™, execute puttygen input_key.ppk -O private -o output_key.

SSH troubleshooting
This topic covers common SSH issues and how to resolve them.

Table 22: Errors when trying to connect to a server using SSH

Type Issue Resolution

Trying to connect to a server
using SSH

<installation directory>: No such
file or directory.

The path given in installation
directory field is incorrect.

Configuring Genero Studio | 161

Type Issue Resolution

Trying to connect to a server
using SSH

Access denied. Either the user name or password
is incorrect.

Unable to open a connection Host does not exist. The host either does not exist or
is not reachable.

Unable to open a connection Network error: Connection
refused.

Verify that the port number
corresponds to the SSH server's
one.

Unable to open a connection Network error: Connection reset
by peer.

This happens when the
networked machines lose the
connection between them. Try to
reconnect.

TCP (deprecated): How to launch Genero Studio Server

If you use a TCP connection, Genero Studio Server must be launched before use. (If you use an SSH
connection, Genero Studio Server is launched automatically.)

This program has no user interface; it must be run from a console or terminal. On the server machine, from
within GSTDIR/bin, execute the command for your operating system. The default port value is 5321.

• On Windows™:

gsserver.exe

• On GNU/Linux:

gsserver

If you need it to listen to another port, you have to use the command-line argument --port each time you
start Genero Studio Server.

• On Windows™:

gsserver.exe --port 1234

• On GNU/Linux:

gsserver --port 1234

For further information, start Genero Studio Server with the --help option, and see the installation notes
in the release subdirectory of the Genero Studio software package.

Define mount points to shared drives
Shared drives allow you to compile, run, and debug files that are on the remote server.

This task assumes you have added a remote host.

Export the file system on your server using Samba / NFS / Windows™ Share. You must share the drive
using a standard tool, such as NFS (Network File System) for Linux™ networks. Samba, or a similar tool,
can be used to allow Microsoft™ networks to share files stored on a Linux™ server.

All program files accessed remotely must reside on a shared drive on a server accessible to the client's
local network. Genero Studio uses mapped paths to allow simultaneous access to two machines.

1. Open the Genero Studio Server dialog and select a remote host from the list.

Configuring Genero Studio | 162

2. Select the Add a mount point ... button from the Mount Point Table integrated Toolbar. A dialog lists
the mount points available for this server.

3. Select a mount point and enter the remote path.

Windows™ Genero Studio clients:

Mounted point The mounted drive, the network drive that has
been mapped to a letter drive on your local
machine.

Remote path The related remote path. For example, if your
local computer has a mounted drive G: that is
mapped to /usr1/public on the server zebra ,
the remote path for drive G: is /usr1/public.

Linux™ Genero Studio clients:

Mounted point The location of the file system where the device is
attached.

Remote path The related remote path. For example, if your
local computer has a mount point /mnt/work
that is mapped to /usr2/public on the server
zebra, the remote path for /mnt/work is /
usr2/public.

4. Select Apply to save your changes.

The character set will be specified in the environment of the remote FGL installation (set the LANG
variable in the remote configuration variables). On the client machines, set Language support (text
encoding) on page 163, specifying the same character set.

5. Define remote Genero installations, GAS configurations, and environment sets on page 162.

Define remote Genero installations, GAS configurations, and environment sets
Genero installations, GAS configurations, and environment sets can be defined for the remote host.

This task assumes you have added a remote host.

1. Select the remote host from the list in the lower right corner of Genero Studio.

2. Select the configuration button to display the Genero Configuration Management dialog for the
selected server.

3. Add new configurations as needed to add Compiler / Runtime configuration (Genero Installations) on
page 172, Environment sets on page 140, and Web: GAS/GWC configurations on page 147.

4. Save the changes.

Share projects / source code management
Genero Source Code Management (SCM) enables collaborative sharing and maintaining of the files in
Genero projects.

You can share your Genero projects using a Version Control System (VCS) such as Apache's Subversion:

• A network drive/directory must be set up on the remote server for the storage of the project and source
files.

• All paths in the 4pw files must be relative paths; only the path of the project(s) can be absolute.
• The network drive/directory must be mapped on each client machine.
• You will check out a copy of the project file and source files from the repository to your mapped network

drive. After making changes, commit your files back to the repository.

Configuring Genero Studio | 163

A Subversion client must be installed on your local machine. Genero Studio for Windows™ includes
Apache's Subversion client. Genero Studio for GNU/Linux relies on Subversion 1.6.2 or later, which
must have been installed on the system. For more information about Apache's Subversion, see: http://
subversion.apache.org/

To specify the location of your SVN client, select Tools >> Preferences >> Source Code Management
>> Subversion from the main menu.

Access a database
To execute an application that accesses a relational database, Genero Studio uses the Genero runtime
system and the specific database client software, which must be properly configured.

Entries in a FGLPROFILE configuration file can be used to connect to the database. See the specific page
for the supported database vendor's software in the Open Database Interface section of the Genero BDL
documentation.

Genero Studio database meta-schema files allow you to use the database tables and columns that are
listed in the schema to define variables and form fields in your application code and form definitions.

Default environment sets are provided for each database vendor. Values for the environment variables, as
well as additional variables, can be added in the Genero Configuration Management dialog on page 171
as part of the configuration process.

Language support (text encoding)
Text encoding specifies the character set to be used by Genero Studio. You can change the default
encoding to work in your preferred language.

To support internationalization, characters typed at the keyboard are intercepted and changed
automatically, based on the text encoding method selected.

A default character set is specified in Tools >> Preferences, General Preferences. This default text
encoding method is the one found on your system. To use encodings for a different language, select a
different text encoding choice from the list. In addition, text encoding plugins can be configured, which are
loaded at startup to provide new encoding support.

Since the default encodings are much faster than plug-ins, users are strongly advised to use the provided
encodings unless there are no other solutions.

The selected encoding is used during file operations of text documents (load, save, parsing, highlighting,
and so on), so the encoding must be correctly set before opening documents. Once loaded, Genero Studio
uses Unicode for text management.

• If you change the text encoding in Genero Studio, the corresponding LANG environment variable must
be set.

• If you are using Genero Studio in a remote configuration, your encoding method must match the
encoding on the Genero Studio server.

• If you are using CVS or other version control systems, the encoding method must be the same for all
text stored in the system.

• The database client locale (character set) and application locale (character set) settings must match.
• Genero BDL and Genero clients have settings that must also be changed when you want to use

encodings and character sets for a language that is different from that specified in the default text
encoding for your system. See the topic on Localization in the Genero Business Development
Language User Guide for additional information about the settings for Genero Business Development
Language. See the topic on Localization in the Genero Desktop Client User Guide for additional
information about settings for Genero clients.

• Configure Genero Studio to use a different character set on page 164

http://subversion.apache.org/
http://subversion.apache.org/

Configuring Genero Studio | 164

• Add a text encoding plugin on page 165
• Character mapping table (encodingMap.xml) on page 167
• Configure keyboard and language on a Windows client on page 168
• Configure LANG on a Genero Studio Server on page 168
• Test text encoding configuration on page 170

Configure Genero Studio to use a different character set
This example explains how to set up Genero Studio client and servers to use the Polish language with ISO
8859-2 encoding.

In this example, the Genero Studio client runs on a Windows™ 7 Ultimate 64-bit platform using English with
the CP1252 character set (Western European languages). The Genero Studio server runs on enterprise
Linux™ using English with the UTF-8 character set.

1. Configure the preferred encoding for the Genero Studio client. Select Tools >> Preferences >>
General and locate the preferred encoding (ISO-8859-2 in this example) in the list of Text Encodings.

If the preferred encoding is not available in the list, add a text encoding plugin to incorporate the
preferred character set.

Figure 107: Text File Encoding in General Preferences

2. Check to see if the preferred encoding is supported on the Linux™ server (pl_PL.iso88592 for the
example):

$ locale -a | grep 88592

If the preferred locale isn't present, install it per your system documentation. For example:

$ localedef pl_PL.iso88592 –i pl_PL –f ISO-8859-2

Configuring Genero Studio | 165

Figure 108: Checking available encodings with the locale command

3. Configure the desired keyboard and default input language on the Windows™ client. See Configure
keyboard and language on a Windows client on page 168.

4. Configure the selected language for the Genero Studio Server environment.

5. Test the new configuration.

Add a text encoding plugin
Use this procedure to add support for a new encoding in a Genero Studio client-server configuration.

Before you begin, the preferred encoding must be installed on the Linux™ system.

The example shows how to configure a new encoding, using IBM852 as an example. The Genero
Studio client runs on a Windows™ 7 Ultimate 64-bit platform using English with the CP1252 character set
(Western European languages). The Genero Studio server runs on enterprise Linux™ using English with
the UTF-8 character set.

1. Locate the IBM852 charmap on the internet or Linux™ system.

Figure 109: Unix ls command showing the compressed IBM852 character map

2. Copy the uncompressed charmap to the GSTDIR/conf/charmaps directory on both client and server
. Create the charmaps directory if it does not already exist.

Configuring Genero Studio | 166

Figure 110: Uncompressing and copying the charmap to the Genero Studio charmaps directory

3. Create a new entry for the encoding in GSTDIR/conf/encodingMap.xml on both client and server.

Figure 111: Adding the IBM852 alias to the encodingMap.xml file

4. Open Genero Studio on the client, and select Tools >> Preferences >> General. Check to see if the
new plugin displays in the list of encodings.

If the plugin is not present in the Text Encoding list, check the following:

• Did you copy the charmap to the Genero Studio charmaps directory on both client and server?
• Is the charmap a valid POSIX2 charmap?

Configuring Genero Studio | 167

Figure 112: New text encoding plugin displayed in Text Encoding list.

Character mapping table (encodingMap.xml)
The encodingMap.xml file maps character set aliases, fallback character set names to try if the alias
is unsupported, the name of the character set used by Genero Studio, and the corresponding language
definition for the LANG variable for Genero on Unix.

A default list of text encodings is provided in Genero Studio. The mappings between each character set
alias and its corresponding attributes are defined in the encodingMap.xml file in the GSTDIR/conf
directory.

For some of the encodings there is only a partial match between Unix and Windows™ platforms.

This file contains a table used to map each encoding name (alias) to:

• A list of fallback character set names to try if the alias is not supported.
• The name of the character set used for encoding/decoding.
• An implementation name in Genero Studio (impl attribute)
• a LANG qualified country for Unix/Linux (Country attribute)

<Alias name="IBM852" fallback="852,ibm852" impl="IBM852"
 unixCountry="pl_PL"/>

This means that:

• IBM852 is the name Genero Studio should use for this text encoding.
• 852 and ibm852 are character set names to try if IBM852 is not supported.
• IBM852 is the name of the character set used for encoding/decoding.
• Under Unix or Linux™ the LANG language definition is pl_PL.

The impl attribute is defined within the POSIX2 charmap file after the code_set_name. It appears in the
Genero Studio preferences combobox: <code_set_name> IBM852.

The name attribute is the name Genero Studio should use for this text encoding. By default it is the
character set name (code_set_name); when an alias to an existing encoding is needed, the name attribute
should contain the alias name.

<Alias name="CP852" fallback="IBM852,852" impl="IBM852" unixCountry="pl_PL"/
>

Configuring Genero Studio | 168

Configure keyboard and language on a Windows™ client
Follow this procedure to change the keyboard and default input language on a Windows™ client.

The details provided here are for Windows™ 7 Ultimate. Refer to the documentation for your version of
Windows™ for assistance.

1. Open the Clock, Language, and Region dialog in the Control Panel and select Region and
Language.

2. Select the Keyboards and Languages tab.

3. Select Change keyboards... and in the Text Services and Input Languages dialog, under Default
input language, select the language you prefer as the default.

If the preferred language isn’t listed, select Add... to add the language and preferred keyboard to the
Default input language list.

Figure 113: Text Services and Input Languages Dialog

Configure LANG on a Genero Studio Server
Follow this procedure to configure the locale on a Genero Studio server (Linux™).

This task assumes you have added a remote host. In addition, the locale to be specified for the LANG
environment variable must be installed on the Unix or Linux system.

Text encoding specifies the character set, and when compiling files, the LANG environment variable is used
by Genero internal processes to determine which encoding the files use.

Note: Setting the LANG environment variable in an Environment Set overrides system defaults or
user level (.profile) settings.

1. Launch the Genero Studio server (skip this step if using an ssh connection - it is automatic).

2. On the Genero Studio client, select the remote host from the list in the lower right corner.

3. On the Genero Studio client, navigate to Tools >> Genero Configurations.

4. Select a configuration from the list in the far left pane then select the plus

to add a new environment set.

5. Type in a meaningful name for the new environment set and press OK.

Configuring Genero Studio | 169

Figure 114: Add Remote Environment Set

6. Select the

above the Environment Variables list to add a variable named LANG with the desired locale
(pl_PL.iso88592 in this example).

With the LANG environment variable, you define the language, the territory (country) and the character
set (codeset) to be used. The format is:

<language>_<country>.<codeset>

Configuring Genero Studio | 170

Figure 115: Configuring the LANG environment variable

7. Add the new environment set to other configurations for the remote host as needed.

Test text encoding configuration
Follow this procedure to test language settings in a Genero Studio client/server environment.

You can create a new project and compile it to test a new text encoding configuration or perform a simple
test with the provided HelloWorld sample project as described below.

1. Select Tutorials & Samples in the Genero Studio Welcome Page and open the HelloWorld sample.

2. Double-click the HelloForm.4fd file to open it and scroll through the form properties until you locate
the text property.

3. Use a translation tool such as Google Translate to create a phrase in the test language and replace the
existing form text with the translated phrase.

4. Save the changes to the form, re-build and execute the HelloWorld application.

The language settings are correct if characters from the extended character set display properly.
Question marks displayed in place of extended characters indicate a problem with the configuration.

Configuration reference
Reference topics for configuring Genero Studio.

• Genero Configuration Management dialog on page 171

Configuring Genero Studio | 171

• Import Configuration dialog on page 173
• Import Preferences dialog on page 173
• GAS standalone dispatcher: httpdispatch on page 174

Genero Configuration Management dialog
Genero Studio configurations provide the information needed to run on your local or remote hosts.

A default configuration is provided, based on the software installed in the default directories. You can have
multiple Genero configurations, distinguished by the name that you have assigned.

Figure 116: Genero Studio Configuration

1. Add a Configuration

The names of the available Genero configurations. Select the configuration name to view its settings.
Use the integrated Toolbar to add the name of a new configuration. Once added, you can enter its
settings.

A check mark in the Status column indicates there are no missing settings.

The integrated Toolbar also includes options to duplicate, rename, and delete configurations. Use the
up or down arrow to modify the placement of the selected configuration in the list. The order of the
configurations is organizational only and has no other effect.

2. Import a Configuration

Displays the Import Configuration dialog on page 173 to select an installation from which to import
configurations.

3. Genero Installation

This field identifies which Genero Installation will be used to compile or run the application. A Genero
Installation specifies the FGLDIR and the runner name. The names of the Genero installations that
are available for the selected host are displayed in the list. Select the desired installation for your

Configuring Genero Studio | 172

configuration. To view or edit the settings for the selected Genero Installation name, or to add a new
Genero Installation, select the Edit button (See Genero Installations).

4. Environment Sets

An environment set is a collection of environment variables to be set prior to compiling or running the
application on the specified host. The name of the environment sets available for the selected host
are listed. Use the up/down arrows to set the priority of environment sets. A check mark indicates the
environment set is active. To view or edit the settings for the selected environment set, or to add a new
environment set, select the Edit button. (See Environment Sets). Default environment sets have been
created for the databases supported by Genero. Default variables have been entered for each set, and
values have been provided where possible. Select your environment set, and enter any missing values
or variables.

5. Environment Variables

Add and modify environment variables within an environment set by selecting the Add or Edit button.
6. Use Display Client

Possible front ends include:

• Genero Desktop Client (GDC)
• Android ARM
• Android x86
• iOS Development Client

Desktop: GDC configurations on page 146 and Mobile clients: GMI and GMA configurations on page
153 configurations can be viewed and edited by selecting the Edit button. (Genero Mobile only.)

7. Use GWC

Web: GAS/GWC configurations on page 147 configurations can be viewed and edited by selecting
the Edit button.

When you select Use GWC, you can choose an available Theme to use when running an application.
You can also override the web browser preferences setting and choose the web browser to use when
running an application. If the theme field is left empty, then default theme will be used. If the web
browser field is left empty, then the web browser defined in preferences will be used.

Confirm or cancel changes
Use these button options to confirm or cancel changes.

OK Save and apply all modifications, then exit.

Cancel Undo all modifications and exit. The last saved
values are restored.

Apply Confirms your updates, allowing you to test the new
configuration.

Compiler / Runtime configuration (Genero Installations)
A Genero Installation contains information about the compiler and runtime version of Genero that will be
used by Genero Studio.

Select the name of the Genero Installation in the Host list to view or edit the Genero Installation
settings.

FGLDIR The installation directory of the Genero BDL
software.

FGL runner The name of the Genero executable. (For example,
fglrun, fglrun.exe)

Configuring Genero Studio | 173

FGL options Options given to the FGL runner when an
application is launched.

Select the Check Installation button to test the settings.

Confirm or cancel your changes.

Import Configuration dialog
When you install a new version of Genero Studio you can choose to import previous Configuration settings
from older installations of Genero Studio.

The Import Configuration dialog can be displayed from the Genero Configuration Management dialog on
page 171.

Figure 117: Import Configurations

Import Preferences dialog
When you install a new version of Genero Studio you can choose to import previous Configuration settings
from older installations of Genero Studio.

The Import Preferences dialog appears when you install Genero Studio if prior installations are detected.

Configuring Genero Studio | 174

Figure 118: Import Preferences

Select an installation to import its Preferences settings and update the new installation of Genero Studio.

Show older versions If the version of Genero Studio is too old, it won't be
listed in the dialog unless the Show old versions
(partial import only) checkbox is checked. If an
old version is chosen, only part of the Preferences
will be imported (for example, Preferences such as
menus or Toolbars won't be imported).

Import options Check the boxes for importing the Configurations,
Histories, and/or Preferences from the selected
installation.

GAS standalone dispatcher: httpdispatch
httpdispatch is the standalone dispatcher that starts GAS in command line. No web server is needed. It
is only use in development mode. For deployment, use the dispatcher designed for your web server.

Launch httpdispatch at the command line by opening a Genero Workplace Window or by specifying it
in your GAS configuration in Genero Studio.

See the topic Standalone Genero Application Server in the Genero Application Server User Guide for
more information.

Configuring Genero Studio | 175

Syntax

httpdispatch [options]

Options

Table 23: httpdispatch options

Option Description

-h

--help

Displays help information.

-p directory

--as-directory directory

Specify the Genero Application Server directory.

-f configuration_file

--configuration-file
configuration_file

Specify which configuration file to use when
starting the Genero Application Server dispatcher.
If not specified, the default configuration file,
$FGLASDIR/etc/as.xcf, is used.

-k

--no-keepalive

Disable keep alive for http connections. For debug
purpose only.

-E name=value

--resource-overwrite name=value

Overwrites the resource defined in the configuration
file or creates a new one.

Example:

httpdispatch
 -E res.dvm.wa=$FGLDIR/bin/myrun

If in the configuration file "res.dvm.wa" has another
value it is now set to myrun. The final value is the
one set in the option.

-V

--version

Displays version information.

Business Application Modeling (BAM) | 176

Business Application Modeling (BAM)

Genero Studio Business Application Modeling (BAM) develops business applications from design diagrams
rather than from writing code. It automatically generates the logic and source code for a database
application to query, add, update and delete rows in database tables. BAM can generate desktop, web,
and mobile applications.

• Quick Start: Generate an application on page 176
• Quick Start: Generating a mobile app on page 182
• BAM Concepts on page 192
• BAM Projects on page 200
• Modeling the application on page 202
• Modeling the database on page 226
• Working with forms on page 232
• Adding custom code on page 250
• Modifying the look and feel on page 264
• BAM Reference on page 268

Quick Start: Generate an application
This quick start guides you through generating a basic Genero business application, using the default
template, that can be used to add, update, delete, and query rows in a relational database. BAM allows
you to visually model your app and generates the code from the design models. You focus on the models,
BAM handles the coding.

The application accesses the officestore sample database included in the Genero Studio distribution.

Genero Studio is already configured for the sample projects and databases. An FGLPROFILE file is in the
samples/DSConfig directory, and is used by the sample projects.

You may also create projects and applications using the sample databases and files.

Create a managed project

Before you begin, select Tools >> Genero Configurations and confirm that the Template dbapp 3.0
or the template of your choice is selected in the Environment Sets list. This will be the code generation
template used for the project.

1. Select File >> New, Design, Managed Project (4pw) to create a project for your generated
application. When you create a managed project, nodes for the basic structure of the project are
already defined and automatically contain the additional build rules needed for generated programs.
The project structure has pre-defined nodes to contain the files for your project:

• Application_1 - for the program and form files, and any additional source code files
• Databases - for the Genero database schema files (4dbx)
• Library_1 - for any additional resource files

2. Right-click on the Application node and select Advanced Properties from the menu. Note that the
dependencies for the Databases and Library nodes have already been set, ensuring that any files they
contain will be included in your application.

3. In the Advanced Properties dialog, select Environment Variables and add a User variable
FGLPROFILE by clicking on the green cross. The FGLPROFILE file contains the configuration
information to access the sample databases. This file is located in theMy Genero Files/samples/
DSConfig directory.

Business Application Modeling (BAM) | 177

Figure 119: Edit environment variable dialog

4. Save the project (4pw) to a folder in your file system.

Add a meta-schema to the project (4dbx)

Your application will access the sample officestore database. The schema file for this database,
officestore.4dbx, is located in My Genero Files/samples/OfficeStore/database/.

This 4dbx schema file is used to create items in your Business Application Diagram (4ba). It contains
the information about the tables, columns, and relations of the relational database that is needed by your
application.

1. Right-click the Database node in your project structure, and select Add Files. Locate the
officestore.4dbx file and click the Open button to add the file to your project.

2. Save the changes to your project.

Create the Business Application diagram (4ba)

1. Select File>>New, Design, Application Modeling, Business Application Diagram (4ba) to create a
blank diagram.

2. Right-click on the blank diagram and select New >> Program. This creates a Program entity on the
diagram.

3. Right-click on the blank diagram and select New >> CRUD Form. This creates a Form entity on the
diagram.

4. Right-click the Program entity, and select New Relation. Click and drag from the Program to the Form
entity to create a relation from program to form.

Figure 120: Defining a relationship

Business Application Modeling (BAM) | 178

5. Save and name the BA Diagram (4ba) to your file structure and to the Application node in the project.

Implement the program and form

1. Right-click on the Program entity and select Implement Program. When the Save As dialog appears,
assign a name for the program file, and save it under the Application node. This file will be used to
generate the source code for the main function of the program. The file will have a 4prg extension.

2. Right-click on the Form entity and select Implement CRUD Form from Database to generate a form
for the database table that you wish to access. Select the officestore database, the account table and
the first ten fields of the table from the list. Transfer this selection to the Selected Fields list, which lists
the desired fields for your form.

Figure 121: New Form from Database wizard Column selection

3. Click Finish and save the form (4fdm) to the project structure under the Application node.

Business Application Modeling (BAM) | 179

Figure 122: Projects Structure view

You now have two documents open; the Application Diagram (4ba) and the Form Definition (4fdm).
The Project includes these new files.

4. Select File>>Save All to save the edited project and its contents.

Generate and run the application

1. To build a generated application, right-click the Program entity on the BA diagram (4ba) and select
Build Program from the context menu. Alternatively, right-click the Application node in the project and
select Build. The results of the build are displayed in the Output view.

To better understand what is happening during the build of the program, turn on verbose mode using
Tools >> Preferences, Compiler and Runtime, Compilation Configuration.

The generated and compiled files will be stored in the path specified in the Target Directory property of
the Group node in the project.

2. To execute a generated application, right-click the Program entity in the BA Diagram (4ba) and select
Execute Program. Alternatively, right-click the Application node in the project and select Execute.
Toolbar icons for a program's default actions will be generated, depending on the properties selected
for the module's screen records and the fields on the form. The necessary business logic was created in
the generated BDL files (4gl) to implement the relevant actions. See Working with forms on page 232.

Figure 123: A generated application running on the desktop (GDC)

Business Application Modeling (BAM) | 180

Add a detail list to the form

A Genero application can display a form that contains a master-detail relationship between two tables. The
user can search for a row in the master table, and the corresponding rows in the detail table will also be
displayed. The values in rows from both tables can be added, deleted, or modified.

The form must contain fields from both tables and the table relationships must be set.

1. In the form, enlarge the grid around the master table to make room for the fields from the other table.

2. Select Container >> Data Control and select these columns from the orders table: orderid, userid,
orderdate, totalprice and creditcard. The container for these fields can be a table (to display multiple
rows). Click Next, select a Table container, click Finish and draw the container within the enlarged
grid, under the original.

This form design now contains fields from the master table, account, and a detail table, orders.

Figure 124: Form tab

3. Select the Records tab. Select the master table record and make sure the active property is checked.
Select and identify a column as the unique key, if not already identified, as indicated with the key icon.

Figure 125: Master table record

Business Application Modeling (BAM) | 181

4. Do the same for the detail table record.

Figure 126: Detail table record

5. Set the relationship between the master and detail records. Right-click the foreign key field in the detail
table record (orders.userid, in our example), and select Add Relation To. Drag the arrow to point to
the primary key in the master table record (account.userid).

Figure 127: Master-detail relationship

6. Select File>>Save All to save the project and the modifications to its contents.

7. Build and execute the program.

Business Application Modeling (BAM) | 182

Figure 128: The application executes

Quick Start: Generating a mobile app
This quick start guides you through generating and running a simple, one form mobile app. The Business
Application Modeler (BAM) allows you to visually model your app and generates the code from the design
models. You focus on the models, BAM handles the coding.

Important: This quick start assumes you have configured Genero Mobile to run an app to a mobile
device or emulator. See the appropriate configuration topics.

• Create a BAM mobile project on page 182
• Create a database on page 184
• Create form from database on page 187
• Generate and run the app on page 187
• Add phone functionality to the app on page 188
• Customize the app on page 190
• Package and Deploy on page 191

Create a BAM mobile project
Create a new mobile project. By using the structure imposed by this project type, building, packaging and
deploying your app to a mobile device is simplified.

1. Select File >> New, Design, BAM Mobile Project (4pw) to create a project for your generated app.

2. Identify a project name and directory location for your project files.

Business Application Modeling (BAM) | 183

Figure 129: BAM Mobile Project

3. From your new project, expand the Project group. Right-click on the Application node and select
Advanced Properties. Note that the dependencies have already been set, ensuring that any files
contained in the checked nodes will be included in your app.

4. Launch your connected emulator. This quick start assumes you have configured Genero Mobile to run
an app to a mobile device or emulator. See Configuring Genero Mobile for development in the Genero
Mobile Developer Guide to set up your iOS or Android mobile device or emulator.

Business Application Modeling (BAM) | 184

Mobile projects
BAM Mobile Projects have predefined nodes for the basic structure of the project. These nodes correspond
to the project directories created on disk in the project directory you specified. The project also includes the
build rules needed to generate, package, and deploy the application.

Figure 130: Default Project structure

Table 24: Default Project structure

Node Files to be saved to this node

Application 4prg (implemented program file from 4ba diagram)

Applicationflow 4ba

Config FGLPROFILE

Database 4dbx, db

Entities 4fdm (forms or other entities from 4ba diagram)

Resources XML files such as 4st for styles

Create a database
Create a new database for your project.

There is a 4dbx file already in the project in the Database node. The 4dbx contains the information about
the tables, columns, and relations of the relational database that is needed by your app.

1. In the Project group, expand the Database node, and double-click on the 4dbx to open it. The Meta-
Schema Manager is launched for viewing and modifying the schema.

2. Right-click and select Add Table. Set the table's name property to account. Right-click on the table to
add the columns as shown.

Business Application Modeling (BAM) | 185

Figure 131: Create table

3. Make the id column SERIAL and not null. Make the id column the primary key for the table. With the
table selected, right-click to see the menu option for adding a constraint.

Figure 132: Set primary key

4. Save your file.

5. Right-click on the 4dbx file in your project and select Generate Database Creation Script. Select the
option to populate database with sample data and then Generate.

Business Application Modeling (BAM) | 186

Figure 133: Generate Database Creation Script

6. Save the file to the databaseMaintenance sub directory in your project directory to overwrite the
default file with your file.

a) Uncheck the Insert the file in the project option as the file is already in the project; you are just
saving the file to disk.

Figure 134: Save to databaseMaintenance sub directory

7. In the project, expand the DatabaseMaintenance group. Right-click on the CreateDatabase program
and select Execute. This will compile and run your script, creating and populating the database.

Business Application Modeling (BAM) | 187

Create form from database
Create a form for your project.

1. Expand the Applicationflow node and open the appflow.4ba file. This is your Business Application
Diagram and shows the flow of your program. You will see there is one Program entity (main) and one
Form (form) entity.

2. Right-click on the Form entity and select Implement CRUD Form from Database to generate a
form for the database table that you wish to access. Select all the fields in your table and transfer this
selection to the Selected Fields list, which lists the desired fields for your form. Select Finish to accept
the defaults from the rest of the wizard prompts.
Per the default, this form will be organized in a Grid layout.

3. Save your form to your physical project directory (for example D:\quickstart) and in the Entities
node of the project.

4. Return to the appflow.4ba file. Right-click on the Program entity (main) and select Implement
Program.

5. Save the program to your physical project directory (for example D:\quickstart) and in the
Application program node.

6. Save the changes to your project.

Generate and run the app
Run your app to display to a device or emulator.

1. Right-click on the Application node in the project or on the Program entity in the BA diagram and
select Build.

Note: To better understand what is happening during the build of the program, turn on verbose
mode using Tools >> Preferences, Compiler and Runtime, Compilation Configuration

2. Right-click on the Application node in the project or on the Program entity in the BA diagram and
select Execute.

Business Application Modeling (BAM) | 188

Figure 135: First app running on Android emulator

Add phone functionality to the app
You can generate the code to interact with the mobile device's features. This example shows how to call a
selected phone number from the app.

1. Open the appflow.4ba file.

2. Right-click on the BA diagram and select New >> Phone.

3. Right-click on the Form entity and select New Relation. Click on the Form entity again and drag the
Relation arrow to the Phone entity.

4. Select the Relation between the Form and the Phone entity and set the Action property to
callContact. Set the Phone Number property to the phone column (account.phone in our
example database).

Business Application Modeling (BAM) | 189

5. Save your changes to appflow.4ba.

6. Double-click on the Form entity to open it in Form Designer. Add a button that triggers your
callContact action.

a) Expand the canvas and the grid that is containing the form fields if you need room to add a button.
b) Select Widget >> Button from the menu.
c) Draw a button onto your form. Set the name property of your button to callContact. The name of

the button is also the action to be triggered by the button.
d) Set the text property of the button to Call Contact.

7. To preview your form, select Build >> Preview.

8. Make further changes to your form if you wish.

9. Save your changes to the form.

10.Execute your program, this will rebuild your program and execute it in one step.

11.Test the new button.

Tip: The sample data in the phone field is not a valid phone number. Run the app and select
Modify to update the phone field with a phone number of your choice. On the Android emulator,
the MENU button displays the available program actions.

Business Application Modeling (BAM) | 190

Customize the app
Customize the app by changing a property value in the BA diagram.

At this point, you would continue to build your BA diagram to add and customize forms, zoom forms, and
mobile peripheral entities, relations between the entities, and to customize the generated code as needed.
There are many customization options in BAM.

Table 25: Customization example resources

Example Resource

Creating forms for mobile devices. See Working with Forms section in the Genero
Studio User Guide.

Mobile form patterns. The Mobile Patterns demo
includes a BA diagram with examples of various
forms, relationships between forms, and form
behavior.

See the Genero Mobile demo applications section
in Genero Mobile Guide and the Mobile form
patterns topic in the Genero Studio User Guide.

Add custom code to the BAM generated code. See the Adding custom code topic in the Genero
Studio User Guide.

Change default rendering of the actions in the app. See the Action rendering topic in the Genero Mobile
Developer Guide.

Business Application Modeling (BAM) | 191

For the purposes of this quick start, make a simple customization to your app by changing the form to open
in ADD mode, instead of the default DISPLAY mode.

1. Open appflow.4ba.

2. Select the Form entity. The properties view shows all of the properties set on the form. Find the UI
Settings section. (You can always display a view with the menu Window >> Views).

3. Change the Open Mode property to ADD.

This changes the program so that this form will open ready for the user to enter a new row of data.

Figure 136: Change a form property

4. Save your changes to appflow.4ba.

5. Execute the app again. (Right-click on the program entity (main) and select Execute.) New code is
generated to reflect this property change.

6. Test the program by adding a new row.

Package and Deploy
Package the app and deploy it for testing on your connected device or emulator.

1. Expand the Packages group in your project.

2. Find the package that corresponds to the device or emulator you have configured.

Figure 137: Pre-configured package types

3. Right-click on the package and select Deploy. This will build the package and deploy it.

Business Application Modeling (BAM) | 192

Figure 138: App deployed to Android emulator

4. Tap to launch the app.

BAM Concepts
This section includes overview information about BAM.

• What is Business Application Modeling (BAM)? on page 192
• How code is generated on page 194
• The modeling diagrams on page 196
• Mobile apps vs Desktop applications on page 198
• The default template features on page 199

What is Business Application Modeling (BAM)?
Genero Studio Business Application Modeling (BAM) develops business applications from design diagrams
rather than from writing code. It automatically generates the logic and source code for a database
application to query, add, update and delete rows in database tables. BAM can generate desktop, web,
and mobile applications.

BAM design process

BAM provides a complete framework for design and development, incorporating the entire life cycle of an
application.

Business Application Modeling (BAM) | 193

Figure 139: Application life cycle

With BAM:

• Create a project type pre-configured for a desktop or mobile app.
• Model the entities of your applications and their interconnection in a high level business diagram.
• Model the detailed design of your database, forms, services, and reports in sub-diagrams.
• Select options for the entities for user interface design and code generation.
• Automatically generate an application matching the behavior described in the diagrams without coding.
• Enhance the generated code with your own logic.

Is my application a good candidate for BAM?

All CRUD forms -- to view, add, update, or delete data from the database are perfect candidates for BAM.

BAM does not generate code for:

• Non-database forms, such as login screens or forms displaying only computed fields
• Web components
• Specific process logic, such as database synchronization for mobile apps

Custom code can be added, however, for any functionality that is not generated by BAM.

Business Application Modeling (BAM) | 194

How code is generated
When you build an application from a Business Application diagram, the build rules define the various files
that are input into the Code Generation Engine and the application code files that are output.

Figure 140: Code Generation flow

BAM Consolidates and Generates

Data Consolidation The input from the BA diagram and related
entities is gathered into a single XML file, which
consolidates all the inputs into one package. This
file is used when processing and generating the
application code. This file could also be used to
provide input to create the application models.

Code Generation The XML file and a code template are used to
generate the application code. The default Tcl
template produces Genero 4gl files, but another
tool could be used to generate the code (XSL
translator for example). Custom code is preserved;
if any custom code was created earlier, it is
automatically restored in the newly generated
application code.

Example

The build rules define the series of commands used to build and generate the code. In
general, the Build rule for code generation:

• Saves custom code added by the user to the generated source files
• Generates the new source files without user code
• Restores the user code in the generated files
• Compiles the written and generated source files
• Links the compiled files

View default build rules selecting Projects >> Edit Build Rules. This example shows the
build rules used to generate the code for a Program entity in the Business Application
diagram.

Business Application Modeling (BAM) | 195

Figure 141: Default build rule for a generated program entity

Table 26: Default build rule example

Build rule command Description

$(generate) The $(generate) command creates an
intermediary XML file from modeled entities.

$(blockpoint) -code BLOCK/POINT is extracted from previously
generated and modified code.

tclsh on page 269 The tclsh executable generates the final file by
using both a Tcl template file and the intermediary
XML file crated by the $(generate) command.

$(blockpoint) -storeGenerated Extracted BLOCK/POINT code is put back into the
generated code.

$(fglcomp) The fglcomp tool compiles BDL program sources
files into a p-code version.

$(move) Moves the given file or directory to the given
destination in a platform independent way.

Reviewing the Build

To better understand what is happening during the build of the program, turn on verbose mode using
Tools >> Preferences, Compiler and Runtime, Compilation Configuration. Compile a diagram file,
program, or application and view the results in the output.

Business Application Modeling (BAM) | 196

The modeling diagrams
Business Application Modeling is based on several diagrams. Each diagram has its own purpose for
modeling the application's features and behavior.

Diagrams are used at all stages in the development. They serve as inputs for code generation, and are
considered source code for the application. They are always up to date. Diagrams can be customized with
additional properties using the settings.agconf configuration file.

Figure 142: Business Application diagram

The Business Application diagram models the application flow and provides a high-level overview of the
application.

Business Application Modeling (BAM) | 197

Figure 143: Meta-schema Manager diagram

The Meta-schema Manager diagram models the database tables, columns, and constraints. See Meta-
schema Manager on page 288.

Figure 144: Form Designer diagram

Business Application Modeling (BAM) | 198

The Form Designer diagram models an application's forms and records. See Form Designer on page
406.

Figure 145: Business Record diagram

Business records model the data definition, structure and table relationships of the data used in a form,
report, and/or web service.

See Business records (data sets) on page 411.

Mobile apps vs Desktop applications
Mobile apps and desktop applications can be generated using BAM, though mobile apps require a different
way of thinking about and organizing an application.

Typical desktop applications often require large, complex master-detail forms, whereas mobile apps
require multiple small, simple forms interacting with each other. BAM supports both of these patterns.
When modeling the application, you can determine the number of forms and the way in which the forms will
relate to each other.

Mobile apps do not support typical reporting and web services, so the options for modeling the app are
restricted to program and form entities when working from a mobile project.

Business Application Modeling (BAM) | 199

The default template features
The default template set is designed to generate organized and functional code for a data-driven business
application.

Code architecture

Figure 146: Overview of template features

Table 27: Features

This table lists the general features of the default template set used to generate Genero applications.

Forms Description

CRUD and Zoom forms The user interface of a generated program is based on the forms created
for the program. There are two types of generated forms - CRUD and
Zoom. See Add Forms on page 205.

Form states See Form behavior in CRUD states on page 241

Functionality See Enable and disable CRUD logic on page 239

Lookups See Lookup fields on page 247

Pre-filled comboboxes The values for a ComboBox list can be automatically retrieved from a
database table. Typical usage includes providing a list of state or country
values. Define a dynamically populated ComboBox on page 245

Data management The generated code manages query by example (QBE), default values,
multiple level data sets, all database operations through the database
entity (Database meta-schema (4dbx) on page 226), data set key list
in memory, and up to date checks before editing. See Modeling the
database on page 226.

UI actions management The generated code manages a Toolbar and menu and the action
visibility and enabling, depending on the state of the program. See Default
actions on page 264, Default Topmenu and Toolbar on page 267

Field activation See Field activation on page 244.

Database Management Description

Constraints See Database meta-schema (4dbx) on page 226

Business Application Modeling (BAM) | 200

Database Management Description

Serials See Managing SERIALs in a generated application on page 231

Table operations See Default actions on page 264

Nested transactions See Understanding what gets generated on page 250

Concurrency See Managing concurrency on page 231

Reports Description

Database management See Implement reports on page 212

Designs See Add a Report Design Document (4rp) on page 213

Web services Description

CRUD services A service can be created either from a CRUD form or from a Zoom form.
From a CRUD form the web service can have Create, Read, Update, and/
or Delete operations. From a Zoom form, operations are limited to Read.
See Create service from a form on page 219.

Database level services See Modeling the database on page 226

Configuring for BAM
When using the Business Application Modeler, you can specify both a global setup and a template-specific
setup.

Factory setup Factory setup is the standard installation.

Global setup The global setup overrides the factory setup. It
applies to all configurations for the current user
for the Genero Studio installation on the current
machine or remote machine.

Tools >> Global setup menu option allows you to
customize the global setup.

Specific setup A specific setup is a template-specific setup. It
is for the current user, is for a template set used
by the Business Application Modeler. Use is
option to override the global setup for a specific
set of templates. The GSTSETUPDIR on page
144 environment variable, set in the Genero
configuration, defines the template set. If this
environment variable is not set, or not specified for
the current configuration, the specific setup options
are disabled.

The Tools >> Specific setup menu option allows
you to customize the specific setup.

BAM Projects
Create projects to manage your application development.

• Managed projects on page 201

Business Application Modeling (BAM) | 201

• Mobile projects on page 184

Managed projects
When you create a managed project, nodes for the basic structure of the project are already defined and
automatically contain the additional build rules needed for generated programs.

Select File >> New, Design, Managed Project to create a managed project. As you add entities to the
diagram, you are prompted to save them and add them to a node in the project.

A default managed project contains these nodes.

Group Used to organize project nodes. Contains nodes of
project.

Application Contains entity files and the generated source code
files.

Database Contains database schemas for the database(s) the
application will access.

Library Contains any additional files used by the
application.

Right-click a node in the project to display a menu of options, including adding, renaming, and deleting
nodes and files.

Mobile projects
BAM Mobile Projects have predefined nodes for the basic structure of the project. These nodes correspond
to the project directories created on disk in the project directory you specified. The project also includes the
build rules needed to generate, package, and deploy the application.

Figure 147: Default Project structure

Table 28: Default Project structure

Node Files to be saved to this node

Application 4prg (implemented program file from 4ba diagram)

Applicationflow 4ba

Business Application Modeling (BAM) | 202

Node Files to be saved to this node

Config FGLPROFILE

Database 4dbx, db

Entities 4fdm (forms or other entities from 4ba diagram)

Resources XML files such as 4st for styles

Modeling the application
Model the application by laying out the programs, forms, reports, and relationships between the entities
on a BA diagram. Then, implement the programs and forms and reports to specify the details about each
entity. Last, build the application to generate the code.

• The Business Application (BA) diagram on page 202
• Create a BA diagram on page 204
• Add and implement a program on page 204
• Add Forms on page 205
• Add Reports on page 210
• Add Web services (Server, Services, Forms with services) on page 215
• Add Relations on page 220
• Add mobile device features (Photo, Gallery, Phone, Mail, SMS, Contact, Maps, Barcode) on page 223
• Import files into the diagram from the project on page 225

The Business Application (BA) diagram
The BA diagram is designed to model the application flow and provide a high-level overview of the
application to be generated.

The BA diagram can include various entities to model the application. Relations connect the entities and
specify the relationships between them. Each entity has properties to specify all the information needed
to generate the code. Until implemented, the entities on the diagram are simply icons. Once implemented,
files are created that represent the information and relationships about the entity. These files are used to
generate the application code.

Mobile example

Figure 148: Business Application Diagram (mobile)

Business Application Modeling (BAM) | 203

Table 29: Entities

Entity Description

Programs A Program entity contains the information needed
to generate the main logic to drive the application.

CRUD Form entity on page 206 A CRUD Form entity generates the user interface
for the program. CRUD forms are used to Create,
Read, Update, and Delete data from a database.

Zoom form entity on page 207 A Zoom Form generates a form used to select
a value from a list and return the value to the
program. It is generally related to a CRUD form field
to assist the user with completing the form data
entry.

Report entity on page 211 A Report entity generates the logic to retrieve data
from the database and run a report based on a
defined data definition and report layout.

Important: This feature is not supported
on mobile platforms.

Webservice Server entity on page 216 A Webservice Server entity contains the main logic
to publish services. It listens for incoming requests
and executes the relevant service operation.

Important: This feature is not supported
on mobile platforms.

Webservice entity on page 217 A Webservice entity generates a standalone
Webservice.

Important: This feature is not supported
on mobile platforms.

CRUD form and Webservice, Zoom form and
Webservice on page 219

A CRUD form or Zoom form and Webservice
generates the form and a standalone Webservice.

Important: This feature is not supported
on mobile platforms.

Relations on page 221 A Relation entity is used to define a relationship
between entities on the BA diagram. Multiple
relations can be set to the same form providing
easier maintenance, but also flexibility on what
CRUD operations are available to the form when it
is opened by different actions.

Phone / PhoneRelation A Phone and PhoneRelation entity is used to
define that the form will generate code to launch the
default phone app on the device and initiate dialing
of the specified phone number.

Mail / MailRelation A Mail and MailRelation entity is used to define
that the form will generate code to invoke the user's
default mail application for a new mail to send.

Gallery / GalleryRelation A Gallery and GalleryRelation entity is used to
define that the form will generate code to let the

Business Application Modeling (BAM) | 204

Entity Description

user select a picture from the mobile device's photo
gallery and return a picture identifier.

Photo / PhotoRelation A Photo and PhotoRelation entity is used to define
that the form will generate code to let the user take
a picture with the mobile device and return the
corresponding picture identifier.

SMS / SMSRelation An SMS and SMSRelation entity is used to define
that the form will generate code to send an SMS
text to one or more phone numbers.

Contact / ContactRelation A Contact and ContactRelation entity is used
to define that the form will generate code to let
the user choose a contact from the mobile device
contact list and return the vCard.

Map / MapRelation A Map and MapRelation entity is used to define
that the form will generate code to invoke a maps
app with the current Global Positioning System
(GPS) location of the mobile device.

Barcode / BarcodeRelation A Barcode and BarcodeRelation entity is used
to define that the form will generate code to use a
barcode scanner from the mobile device.

Create a BA diagram
The BA diagram is designed to model the application flow and provide a high-level overview of the
application to be generated.

1. Select File >> New, Design, Application Modeling, Business Application Diagram.

2. Right-click in the background of the diagram to display a context menu of options. Add entities such
as Programs, CRUD forms, Zoom forms, Reports, and Web Services. Repeat this step until you have
added all entities that model your application.

3. Define the relationships between the entities with a relation entity. Right-click on an entity, such as a
Program, and select New Relation. Click and drag the Relation arrow to the entity to which you want to
set the relationship. Repeat this step until all relationships have been defined.

4. Set properties on the entities.

Add and implement a program
Implementing a program entity on the BA diagram creates the 4prg file which is used to generate the
program code.

1. Open the BA diagram to which you want to add a program.

2. Right-click on the diagram and select New, Program to add a new Program entity.

3. From the BA diagram, select a program entity.

4. Right-click and select Implement Program. Save and name the 4prg file and optionally select to insert
it into a location in the project.
The 4prg file is in the project along with placeholders in the Intermediate Files folder for the xml and 4gl
source files that will be generated for the program.

Program entity
A Program entity contains the information needed to generate the main logic to drive the application.

A Program entity is represented as a 4prg file.

Business Application Modeling (BAM) | 205

When a program entity is implemented, a 4gl source file is generated which contains the MAIN function
for the application. This 4gl file is also used to combine the other generated 4gl files into a Genero
application.

Any changes to the diagram are included in the subsequent re-generating of the program code.

The generated code can be customized.

Table 30: Entity Properties

Property Description

Name Name of entity.

Type Type of entity.

File Name Full path to file.

Description Description of the program entity.

Right-click a Program entity in the diagram to display a context menu of options.

Table 31: Context Menu

Menu Option Description

Implement Program Implementing a program entity on the BA diagram creates the 4prg file which is
used to generate the program code.Until you create the Program 4prg file, the
Program entity on the diagram is simply an icon.

New Relation Add a relationship to another entity on the diagram.

Execute Program / Build
Program

Builds and/or executes the source code for the program based on the related
entities in the diagram.

Rename Changes the name property of the entity.

Convert to Converts entity from one type to another.

Locate in Project Locates and highlights the selected item in the project.

Hide / Show all Items Hides the entity from view. Show again by selecting the Show all Items option.

Filter Items The Filter View dialog allows you to hide and show items on a diagram.

Delete Deletes the entity.

Select All Select all entities or all entities of the same type on the diagram.

Add Forms
The user interface of a generated program is based on the forms created for the program. There are two
types of generated forms - CRUD and Zoom.

CRUD CRUD forms are used to Create, Read, Update,
and Delete data from a database. CRUD forms are
typical data input and browsing forms. One CRUD
form can call another CRUD form or a Zoom form.

Zoom A Zoom form generates a form used to select
a value from a list and return the value to the
program. It is generally related to a CRUD form
field to assist the user with completing the form
data entry. For example, a Zoom form could be
created that displays a list of country codes from

Business Application Modeling (BAM) | 206

the country database table. When the user triggers
the zoom action to occur, either by selecting the
zoom icon on the Toolbar or from the zoom field, a
list of country codes displays in a popup window.
When a country code is chosen from the list, the
zoom form closes and the value is populated in the
corresponding field on the main form.

CRUD Form entity
A CRUD Form entity generates the user interface for the program. CRUD forms are used to Create, Read,
Update, and Delete data from a database.

A CRUD form entity is represented as a 4fdm file which can be opened and edited in Form Designer.

When a CRUD form entity is implemented from the diagram, the 4fdm file is created as well as 4gl source
files containing the program logic to access and manipulate the database tables contained in the form.

Any changes to the CRUD form entity properties in the BA diagram or in the 4fdm file are included in the
subsequent re-generating of the program code.

The generated code can be customized.

Properties can be set specify how the form should behave during the various states (DISPLAY, MODIFY,
ADD, SEARCH).

If your form has a valid relation on the BA diagram to a Report entity, additional actions are generated for
the Toolbar and Topmenu to launch the report. The Report Option properties are used to define which
report actions should be generated.

Important: This feature is not supported on mobile platforms.

Table 32: Report Option Properties

Property Description

quickPrint Defines if print action is available.

quickPreview Defines if preview action is available.

quickPDF Defines if export to PDF action is available.

quickHTML Defines if export to HTML action is available.

quickXLS Defines if export to XLS action is available.

quickRTF Defines if export to RTF action is available.

canExport Defines if the PDF, HTML, XLS, and/or RTF print
actions are available. If canExport is checked and
quickPDF, quickHTML, quickXLS, or quickRTF are
also checked, the action will be available.

Right-click the Form entity in the diagram to display a context menu of options.

Table 33: Context Menu Options

Menu Option Description

Implement CRUD Form Creates a new blank managed form definition file (4fdm) to design from
scratch.

Business Application Modeling (BAM) | 207

Menu Option Description

Implement CRUD Form
from Database

Provides a wizard to create a managed form definition file (4fdm), allowing you
to pick the columns and general display of your form. This option is generally
preferred. The form can be modified after it is created.

Open Form Opens form in Form Designer.

Convert to Converts entity from one type to another.

Locate in Project Locates and highlights the selected item in the project.

Add CRUD forms
A generated application can include multiple forms.

This task assumes that you have created a BA diagram with a Program entity.

1. Right-click on the open BA diagram and select New CRUD Form.

2. Right-click the new form and select Implement CRUD Form from Database from the context menu.

3. Select the database table and fields that you want to have on the new form (the products table, in our
example). Finish and save the form definition file (4fdm) to your project.

4. To call one form from another, create a second CRUD form by repeating steps 2 and 3.

5. Right-click the first form icon and select New Relation. Click the Form icon again and drag the relation
arrow to the second form.

6. Select the relation arrow in the BA diagram and set the action property in the Properties view to the
action name that you wish to trigger (products in our example).

7. Save the forms and modified BA diagram.

8. Build and run the program. A button is displayed on the calling form to trigger the action to call the
secondary form. This button is added at runtime and can be removed by adding the action to the
Toolbar and/or Topmenu. To do so, modify the default Toolbar (4tb) and/or Topmenu (4tm) files.
Modify the action's display attributes by modifying the action defaults file (4ad).

Figure 149: BA diagram with two forms

Zoom form entity
A Zoom Form generates a form used to select a value from a list and return the value to the program. It is
generally related to a CRUD form field to assist the user with completing the form data entry.

A Zoom form entity is represented as a 4fdz file which can be opened and edited in Form Designer.

When a Zoom form entity is implemented from the diagram, the 4fdz file is created as well as 4gl source
files that contain the logic to allow a user to pick a value from a list that is displayed in a form in a popup
window.

Business Application Modeling (BAM) | 208

Any changes to the Zoom form entity properties in the BA diagram or in the 4fdz file are included in the
subsequent re-generating of the program code.

The generated code can be customized.

Properties can be set specify how the form should behave during the various states (DISPLAY, SEARCH).

Right-click the Zoom Form entity in the diagram to display a context menu of options.

Table 34: Context Menu Options

Menu Option Description

Open Form Opens form in Form Designer.

Implement Zoom Creates a new blank zoom form definition file (4fdz) to design from scratch.

Implement Zoom from
Database

Provides a wizard to create a zoom form definition file (4fdz), allowing you
to pick the columns and general display of your form. This option is generally
preferred. The form can be modified after it is created.

Convert to Converts entity from one type to another.

Locate in Project Locates and highlights the selected item in the project.

Filter Items... The Filter View dialog allows you to hide and show items on a diagram.

Add Zoom forms
Zoom forms contain logic that allow the user to pick a value from a list that is displayed in a form in a
popup window.

This task assumes that you have created a BA diagram with a Program entity and at least one CRUD form
entity.

1. Right-click on the open BA diagram and select New Zoom Form.

2. Right-click the new form and select Implement Zoom from Database from the context menu.

3. Select the database table (in our example, the country table) that contains the values to be displayed
in the zoom form. Select the column that corresponds to the field on the main form. In our example, this
is the country code. (You can select the country name also, to display it in the zoom form if you wish;
the code field will be identified as the unique key later in this process.)

Figure 150: Example zoom form definition

4. Switch from the form design to the Records tab and select the master table record. Confirm that the
active property is checked.

5. Select the record and confirm that the unique key property is set. If not, set the unique key on one of
the fields in the record.

Business Application Modeling (BAM) | 209

Figure 151: Records tab.

6. Save the Zoom form (4fdz) and add it to the project structure under the Application node.

7. The CRUD form has to be modified to trigger the zoom form when needed. In this example, the
country.code field is changed to a ButtonEdit, which can trigger an action when the user clicks it. When
the user selects the country code from the zoom form, it is automatically inserted into the country.code
field on the main form. From the BA diagram, right-click on the main form and choose Open Form.

8. Select the field containing the foreign key (in this example, the account.country field.) Right-click and
select Convert Widget to change the widget to a ButtonEdit.

Figure 152: Convert Widget

9. Scroll to the bottom of the properties list, and set the value of the action property for the ButtonEdit
field to a unique action name (such as zoom).

10.Save the form.

11.Create a relation between the CRUD form and the Zoom in the BA diagram. On the open BA diagram,
Right-click the CRUD form icon and select New Relation. Click the CRUD form icon again and drag the
relation arrow to the second form.

12.Select the relation arrow to display the relation properties, and enter the action name in the action
property that is the same as the one assigned to your ButtonEdit field (zoom1, in this example.) If there
is more than one zoom form in an application, the action name must be unique.

Option Description

Source Field Set to the value that will be inserted into on the
CRUD form (account.country, in this example).

Destination Field Set to the value the user selects from the table in
the zoom form (country.code, in this example).

Open Mode Set to DISPLAY (default) or SEARCH.

Business Application Modeling (BAM) | 210

Figure 153: Business Application diagram

13.Save all diagrams and forms.

Implement a form
Implementing a form entity on the BA diagram creates the 4fdm or 4fdz file which is used to generate the
form code.

1. From the BA diagram, select a CRUD or Zoom form entity.

2. Right-click and select an option to implement the form.

Option Description

Implement CRUD Form Creates a new blank managed form definition file
(4fdm) to design from scratch.

Implement CRUD Form from Database Provides a wizard to create a managed form
definition file (4fdm), allowing you to pick the
columns and general display of your form. See
Data Control wizard on page 449.

Implement Zoom Form Creates a new blank zoom form definition file
(4fdz) to design from scratch.

Implement Zoom Form from Database Provides a wizard to create a zoom form definition
file (4fdz), allowing you to pick the columns and
general display of your form. See Data Control
wizard on page 449.

3. Save the form to your project.
Placeholder 4gl and xml files are created in the Intermediate Files folder in the project. When the form
or project is compiled, these files are populated with the logic for your form.

Add Reports
You can add a Genero Report Writer report to your generated application.

1. Open the BA diagram to which you want to add a report.
2. Right-click on the diagram and select New Report Data to add a new Report Data entity.
3. Right-click on the Form entity from which you want to access the report and select New Relation. Click

on the Form entity again and drag the relation link from the Form entity to the Report Data entity.
4. Select the relation link between the Form and Report Data entities. In the Properties panel, change the

Type property to ReportRelation.

Business Application Modeling (BAM) | 211

Figure 154: Adding a Report entity to the BA Diagram

Report entity
A Report entity generates the logic to retrieve data from the database and run a report based on a defined
data definition and report layout.

A Report entity is represented as a 4rd file which can be opened and edited.

When a Report entity is implemented from the diagram, the 4rd file is created as well as 4gl source files
containing the report's driver and routing instructions.

Any changes to the Report entity properties in the BA diagram or in the 4rd file are included in the
subsequent re-generating of the program code.

The generated code can be customized.

Right-click the Report Data entity in the diagram to display a context menu of options.

Table 35: Context Menu Options

Menu Option Description

Implement Report Data Creates a new blank Report Data entity (4rd) to build from scratch.

Implement Report Data
from Database

Provides a New Record wizard to select tables and columns to include in the
Report Data entity business record (4rd). This option is generally preferred.
The business record can be modified after it is created.

Open Business Record Opens report business record.

Convert to Converts entity from one type to another.

Locate in Project Locates and highlights the selected item in the project.

Business Application Modeling (BAM) | 212

Implement reports
The report record contains the data definition, structure, and table relationships required to generate a rdd
(Report Data definition file). The rdd file is used in conjunction with a Genero report definition (4rp) file to
automatically generate the reports.

1. Right-click on the Report Data entity and select Implement Report Data from Database. Select the
desired tables and columns.

2. Select the business record to display its properties. Make sure that the active property is checked and
that the masterTable property contains the database table name.

3. If more than one table was added to the record, select the Query property and specify the joins between
the tables in the Query Editor.

4. Confirm that the unique key property is set on the field in the record that represents the primary
(unique) key in the database table.

5. Save the Report Data file (4rd) to your project.

6. Build the application. The needed data definition file (rdd) is generated for you.

7. Run the application. Notice that additional actions have been added to the Toolbar and Topmenu for
reports.

8. Select Preview from the Toolbar to view the report. The report will run using the default layout. You can
add a Report Design Document (4rp) to customize the look and feel of the report.

Business Application Modeling (BAM) | 213

Figure 155: Populated Record

Add a Report Design Document (4rp)
You can customize the look and feel of your report with a Report Design Document (4rp).

1. From the Genero Studio main menu, select File>>New, Reports, Report Designs and select the type
of report you wish to create.

2. Select the Data View tab from the Project View.

3. Select Open Schema File... to associate the generated report data definition file (rdd) with this report
design. You can find the name of the generated rdd file in your project's Intermediary Files listing.

Business Application Modeling (BAM) | 214

4. Design your report by dragging and dropping fields from the Data View tab to your report design.

5. Save and name the Report Design Document (4rp) to your project, such as listreport.4rp.

6. Return to the BA diagram and select the relation link between the Form and Report Data objects.

7. Supply the name of your Report Design Document, such as listreport.4rp, for the Report File
property.

8. Build and run the application and select Preview from the Toolbar to view the report with the new
design.

Report print settings
The Report Print Settings dialog appears when the reportsetup action is triggered from a generated
application.

By default, the reportsetup action is bound to the Print... button in the generated user interface Toolbar.

Options on the dialog are controlled by properties set on the ReportRelations, the relationships between
the current Form object and one or more Report Data entities on the Business Application diagram (4ba).

Business Application Modeling (BAM) | 215

Figure 156: Report Print Settings

Table 36: Report Print Settings Options

Option Description

Report List The Report List shows all Report Label values for
ReportRelations to the current Form.

Select Fields Select Fields is enabled if there is not a Report
Designer (4rp) file specified in the Report File
property for the ReportRelation to the current Form.
Select Fields is then used to select the fields to print
on the report.

Preview Displays the selected report in the Genero Report
Viewer.

Printer Select printer to print report. Options are Default
Local Printer or Choose a Local Printer.

Export Format Export selected report to PDF, HTML, XLS, or RTF.

Add Web services (Server, Services, Forms with services)
Web services are a standard way of communicating between applications over an intranet or Internet.
They define how to communicate between two entities: a server that exposes services and a client that
consumes services. Web services may provide programmable access to the functions of a form or a
standalone service without a form.

• Webservice Server entity on page 216
• Create a Webservice server on page 216
• Webservice entity on page 217
• Create standalone service on page 219
• Create service from a form on page 219

Business Application Modeling (BAM) | 216

• CRUD form and Webservice, Zoom form and Webservice on page 219
• JSON Web services on page 220
• Public fields on page 220

Webservice Server entity
The Webservice Server entity contains the main logic to publish services. It listens for incoming requests
and executes the relevant service operation.

The XML representation of a Webservice Server entity is a 4wsprg file.

When a Webservice Server entity is implemented from the diagram, a 4gl source file is generated which
contains the MAIN function for the application. This 4gl file is also used to combine the other generated
4gl files into a Genero application.

Any changes to the BA diagram are included in the subsequent re-generating of the program code.

The generated code can be customized.

Table 37: Entity Properties

Property Description

Name Name of entity.

Type Type of entity.

File Name Full path to file.

Namespace Common namespace used for the published services.

Right-click a Webservice Server entity in the diagram to display a context menu of options.

Table 38: Context Menu Options

Menu Option Description

Implement Webservice
Server

Creates the Webservice Server file (4wsprg). The 4wsprg generates the logic
for the MAIN function. Until you create the Webservice Server file, the Webservice
Server entity on the diagram is simply an icon.

Execute Program / Build
Program

Builds and/or executes the source code for the Webservice Server based on the
related entities in the diagram.

Convert to Converts entity from one type to another.

Locate in Project Locates and highlights the selected item in the project.

Create a Webservice server
A Web service server is in charge of publishing services. It listens for incoming requests and executes the
relevant service operation.

1. Open the BA Diagram, right-click on the background of the diagram and select New>>Webservice
Server. Optionally, specify a common namespace used for published services.

2. Draw a relation from the Webservice Server to each Web Service or Form with Web Service entity that
are to be connected to the Webservice Server.

Service publication is done by creating the relations between the server entity and the form with service
or service standalone entities.

3. Select the Webservice Server and select Implement Webservice Server. Save and name the server in
your project.

Business Application Modeling (BAM) | 217

Webservice entity
Web services are a standard way of communicating between applications over an intranet or Internet.
They define how to communicate between two entities: a server that exposes services and a client that
consumes services.

A Webservice entity generates a web service with its CRUD operations, but with no accessible form.
CRUD operations are used to Create, Read, Update, and Delete data from a database. It includes one
global read operation that reads all records in once and one global create operation that creates all records
at once.

A standalone Webservice entity is represented as a 4ws file which can be opened and edited in the Form
Designer Records tab. When a Webservice entity is implemented from the diagram, the 4ws file is created
as well as 4gl source files containing the program logic to create and set up a web service and its CRUD
operations. Any changes to the Webservice entity properties in the BA diagram or in the 4ws file are
included in the subsequent re-generating of the program code. The generated code can be customized.

See the topic Introduction to Web Services in the Genero Business Development Language User Guide for
more information on Web Services concepts.

Properties of the Webservice entity

Select the Webservice entity in the Business Application diagram to view and set the entity properties.

Table 39: Webservice entity Properties, Object Category

Group Property Description

Object Name Name of entity.

Type Type of entity:

• WebService (for a SOAP Webservice).
• WebServiceJSON (for a JSON Webservice).

File Name Full path to file.

Description Description of web service.

Web Service Service Name Unique publishable service name.

Comment Service comment that will appear in the wsdl file.

Contextual menu for the Webservice entity

Right-click a Webservice entity in the diagram to display a context menu of options.

Table 40: Webservice entity context menu options (partial listing)

Menu Option Description

Implement Web Service Creates a new blank managed web service definition file (4ws) to design from
scratch.

Note: Once created, this menu option disappears; use Open for any
future modifications.

Implement Web Service
from Database

Provides a wizard to create a managed web service definition file (4ws),
allowing you to pick the columns to use in the CRUD operations. This option is
generally preferred. The web service can be modified after it is created.

Note: Once created, this menu option disappears; use Open for any
future modifications.

Business Application Modeling (BAM) | 218

Menu Option Description

Open Open the Business Record for the selected Webservice entity.

Convert to Converts entity from one type to another.

Locate in Project Locates and highlights the selected item in the project.

Webservice entity Business Record

Once the Web service definition file (.4ws) exists, right-click the Webservice entity and select Open to
view the Business Record diagram.

In the Structure view, select the Root node. All Web services share the same set of properties in the Root
node.

Object group name, databaseName

In the Structure view, select a Record node. All Web services share the same Record node properties for
the following groups:

Object group name

Modeling group active, masterTable, unique key

Query group query

Functionality group canDisplay, canAdd, canModify, canDelete,
canSearch

For the same Record node, however, only SOAP Web services contain the properties that provide for XML
and XSD Schema Serialization attributes:

Web Service group XMLAll, XMLSequence, XMLList,
XMLElementNamespace, XMLAttributeNamespace,
XSTypename, XSTypenamespace

See the section on XML serialization in the Genero Business Development Language User Guide for more
information.

In the Structure view, select a RecordField node. All Web services share the same RecordField node
properties for the following groups:

Object group name

Modeling group lookup

Field group fieldType, sqlTabname, colName, fieldIdRef,
dataType

Web Service group public

Miscellaneous group defaultValue

For the same RecordField node, however, only SOAP Web services contain the properties that provide for
XML and XSD Schema Serialization attributes:

Web Service group XMLOptional, XMLElement, XMLAttribute,
XMLName, XSDType, XSDLength, XSDMinLength,
XSDMaxLength, XSDEnumeration,
XSDWhiteSpace, XSDPattern, XSDMinInclusive,
XSDMaxInclusive, XSDMinExclusive,
XSDMaxExclusive, XSDTotalDigits,
XSDFractionDigits

Business Application Modeling (BAM) | 219

See the section on XML serialization in the Genero Business Development Language User Guide for more
information.

Create standalone service
The standalone service provides CRUD operations on specified business records (data sets).

1. Create a new Web service.

• From an open BA diagram, right-click on the background and select New Webservice.
• Alternatively, select File >> New >> Design, Web Service or Web Service from Database.

2. Right-click on the service to implement it. Create the business records that you want to handle in the
services.

3. Save the file in your project. (This project can now be imported into a BA diagram using the Import
Project Files to BA Diagram menu option.)

4. Functionality properties can be set on each record to specify whether the services operation of add,
update, delete and/or search should be generated.

Create service from a form
A service can be created either from a CRUD form or from a Zoom form. From a CRUD form the web
service can have Create, Read, Update, and/or Delete operations. From a Zoom form, operations are
limited to Read.

1. Open the BA Diagram and select a form.

2. In the properties view, enter the service name into the service name property. Service CRUD
operations apply on the records (data sets) that are already defined in the form. A new data set is not
necessary, but the data set can be customized.

3. Compile the form. The service is created during form compilation.

CRUD form and Webservice, Zoom form and Webservice
Forms with web services allow programmable access to a form's functionality through a published service.

A CRUD form and Webservice entity generates a CRUD form and a standalone Webservice and is
represented as a 4fdmws file.

A Zoom form and Webservice entity generates a Zoom form and a standalone Webservice and is
represented as a 4fdzws file.

These files can be opened and edited in Form Designer. They have all the properties of a CRUD Form
entity on page 206 or Zoom form entity on page 207 plus Service Name and Comment.

Note: Only Read operation is generated for a Zoom form and Webservice entity.

Table 41: Unique Properties

Property Description

Service name Unique publish-able service name.

Comment Service comment that will appear in the wsdl file.

Right-click the entity in the diagram to display a context menu of options.

Table 42: Context Menu Options

Menu Option Description

Implement CRUD/Zoom
Web Service

Creates a new blank managed web service definition file to design from scratch.

Business Application Modeling (BAM) | 220

Menu Option Description

Implement CRUD/
Zoom Web Service from
Database

Provides a wizard to create a managed web service definition file, allowing you to
pick the columns to use in the CRUD operations. This option is generally preferred.
The web service can be modified after it is created.

Convert to Converts entity from one type to another.

Locate in Project Locates and highlights the selected item in the project.

JSON Web services
You can generate a JSON Web service.

JSON Web Services are modeled in a similar way as SOAP Web Services with:

• JSON Server
• JSON Services
• JSON Form + Service
• JSON Zoom Form + Service

The exchange protocol is HTTP/REST with JSON encoded messages.

For JSON Services, both the server implementation and a client (consumer) API are generated from the
model.

In order to write a client application, just link the generated client stub with the service consumer
application and the files libdbappWSCore.42m and libdbappWSClient.42m of the dbapp library.

Public fields
A public field is a field that appears in the service API.

Only public fields are treated in the service CRUD operations. By default all fields in a data set are public.

Add Relations
Define a relationship from one entity to another with a relation entity.

1. Right-click on an entity, such as a Program, and select New Relation.
2. Click and drag the Relation arrow to the entity to which you want to set

the relationship, such as a Form. If you try to set an invalid relation, for
example from a Form entity to a Program, you will see the constraint icon

indicating that this relation is not valid.
3. Repeat this step until all relationships have been defined.

Business Application Modeling (BAM) | 221

Relations
A Relation entity is used to define a relationship between entities on the BA diagram. Relations are
represented with arrows on the BA diagram.

There are specific types of relations:

Relation Relation between Program and Form entities and
between Form entities. A form can have multiple
relations to another form, thus allowing the same
form to behave differently depending on how it is
used in the application. See UI Settings.

ReportRelation Relation between Form and Report entities.

WebServiceRelation Relation between Web Service Server and Web
Service entities.

PhotoRelation Relation to Photo entity in mobile app diagram.

GalleryRelation Relation to Gallery entity in mobile app diagram.

PhoneRelation Relation to Phone entity in mobile app diagram.

SMSRelation Relation to SMS entity in mobile app diagram.

ContactRelation Relation to Contact entity in mobile app diagram.

MapsRelation Relation to Maps entity in mobile app diagram.

BarcodeRelation Relation to Barcode entity in mobile app diagram.

Note: See Mobile device function properties on page 223 for properties specific to mobile app
entity relations.

Table 43: Entity Properties

Property Description

Name Name of relation.

Type Type of relation.

Source Relation source entity name.

Destination Relation destination entity name.

Action Action name to be used in generated code to trigger relationship.
For example, "zoom1" might be an action name between a Form
and a Zoom Form entity.

Business Application Modeling (BAM) | 222

Property Description

Source Record If an action is desired only for a specific subdialog, this action is set
to a specific record in the form. When empty, the action defined on
the relation is global to the DIALOG except if Row Bound property
is checked.

Row Bound Renders a contextual action to the current row. See Rowbound
actions on page 237. If a form has more than one record, Row
Bound must be set to one of the records.

Source Field (Position) Specifies the fields used to locate a specific row when opening a
Form . They usually correspond to database Foreign Keys. They
must match in number and type the Business Record unique key
of the target Form. See Control the row position in form on page
244.

Source Field (Filter) Specifies the fields whose values are used for filtering when
opening a Form. See Opening a form with a subset of data on
page 244.

Destination Field (Filter) Specifies the fields to filter on when opening a Form. See Opening
a form with a subset of data on page 244.

Open Mode Open Mode is the initial state of the form when opened. The
rendered form's default Toolbar allows the user to switch modes.

Default Mode Default Mode is the mode in which you return after leaving another
mode.

Data Refresh If the source form is in DISPLAY mode and opens a destination
form, when the destination form closes, the data displayed in the
source form refreshes. See Data refresh on page 243.

Functionality Change the form's behavior in this relation. See Form behavior in
CRUD states on page 241.

Target Behavior Change the form's behavior in this relation. See Form behavior in
CRUD states on page 241.

Report File ReportRelation type relations only. Names the Report Design
Document (4rp) to be used for the report. If blank, user can use
Select Fields option on Print Report Settings dialog to choose
fields for report output.

Report Label Name of report shown in print list.

Right-click the Program entity in the diagram to display a context menu of options.

Table 44: Context Menu Options

Menu Option Description

Filter Items ... The Filter View dialog allows you to hide and show items on a diagram.

Delete Deletes the entity.

Business Application Modeling (BAM) | 223

Add mobile device features (Photo, Gallery, Phone, Mail, SMS, Contact, Maps, Barcode)
The default template for modeling mobile apps includes features for interacting with a mobile device's
default apps such as phone, email, text, photos, and maps.

The process for adding mobile device features to a BA diagram is the same for each mobile device feature,
but each feature has specific properties to set on the relation to generate the appropriate code.

This task assumes that you have created a BA diagram with a CRUD or Zoom Form entity.

1. Right-click on the BA diagram and select New. Select a mobile device feature to add to your form.

Option Description

Photo Lets the user take a picture with the mobile device
and returns the corresponding picture identifier.

Gallery Lets the user select a picture from the mobile
device's photo gallery and returns a picture
identifier.

Phone Calls the selected telephone number.

Mail Invokes the user's default mail application for a
new mail to send.

SMS Sends an SMS text to one or more phone
numbers.

Contact Lets the user choose a contact from the mobile
device contact list and returns the vCard.

Maps Invokes a maps app with the current Global
Positioning System (GPS) location of the mobile
device.

Barcode Lets the user to scan a barcode with a mobile
device and returns the string representation of the
barcode and its type.

2. Right-click the form icon and select New Relation. Click the Form icon again and drag the relation
arrow to the new mobile device feature icon (such as Photo).

3. Select the relation.

4. Set the action property. The action property on the relation must match the action property on the
form widget used to invoke the feature. Set any other properties specific to the mobile device feature.
See Mobile device function properties on page 223.

5. Build and run your program.

Mobile device function properties
Relation properties specific to mobile device feature entities.

Note: For all mobile feature relations, the Action property value on the relation must match the
Action property value on the form widget used to invoke the feature.

Photo / PhotoRelation

Lets the user take a picture with the mobile device and returns the corresponding picture identifier.

Business Application Modeling (BAM) | 224

Table 45: PhotoRelation properties

Property Usage

Image Path Column to store the picture identifier.

Gallery / GalleryRelation

Lets the user select a picture from the mobile device's photo gallery and returns a picture identifier.

Table 46: GalleryRelation properties

Property Usage

Image Path Column to store the picture identifier.

Phone / PhoneRelation

Calls the selected telephone number.

Table 47: PhoneRelation properties

Property Usage

Phone Number Column corresponding to the telephone number.

Mail / MailRelation

Invokes the user's default mail application for a new mail to send.

Table 48: MailRelation properties

Property Usage

To Columns corresponding to the To line of the email.

CC Columns corresponding to the CC line of the email.

Bcc Columns corresponding to the Bcc line of the email.

Subject Column corresponding to the subject line of the
email.

Content Column corresponding to the body of the email.

Attachment Columns corresponding to email attachments. Limit
2.

SMS / SMSRelation

Sends an SMS text to one or more phone numbers.

Table 49: SMSRelation properties

Property Usage

To Column corresponding to the SMS number.

Content Column corresponding to the body of the text.

Business Application Modeling (BAM) | 225

Contact / ContactRelation

Lets the user choose a contact from the mobile device contact list and returns the vCard.

Table 50: ContactRelation properties

Property Usage

Vcard Column corresponding to returned Vcard value.

Person Columns corresponding to the contact.

Address Work Columns corresponding to the contact's work
address.

Address Home Columns corresponding to the contact's home
address.

Phone Columns corresponding to the contact's phone
numbers.

Email Columns corresponding to the contact's email
addresses.

Barcode / BarcodeRelation

Lets the user to scan a barcode with a mobile device and returns the string representation of the barcode
and its type.

Table 51: BarcodeRelation properties

Property Usage

Barcode Column corresponding to the barcode string value.

Map / MapRelation

Passes latitude and longitude values to the mobile device map utility.

Table 52: MapRelation properties

Property Usage

Query Columns corresponding to the latitude and
longitude values.

Import files into the diagram from the project

If there are files in the project structure that are not in the Business Application diagram, they can be
imported.

Right-click on the background of the diagram, and select Import Project Files to BA Diagram.

Business Application Modeling (BAM) | 226

Figure 157: Import project files to Business Application diagram dialog

Files that can be imported are listed in the dialog. Select a file, and choose an option from the integrated
Toolbar or right-click context menu.

Ignore Do not add selected files to the diagram.

Process later Decide later if the selected files should be added to
the diagram.

Add Add selected files to the diagram.

Resolve conflict Resolve an existing conflict.

Modeling the database
Model the database by creating a meta-schema or extracting one from an existing database.

Warning: A rebuild of a project is not automatically done when the meta-schema file (.4db,
.4dbx) is modified. It is the responsibility of the developer to recompile the appropriate parts of the
project.

• Database meta-schema (4dbx) on page 226
• Create a meta-schema on page 227
• Extract meta-schema information from database on page 228
• Add a meta-schema to a project on page 231
• Managing SERIALs in a generated application on page 231
• Managing concurrency on page 231
• Cascade delete on page 232

Database meta-schema (4dbx)
The 4dbx file is the database schema file for generated applications.

The 4dbx file contains the information about the tables, columns, and relations of the relational database
that is needed by your application. It is used to create items in your Business Application diagram (4ba).

Business Application Modeling (BAM) | 227

The 4dbx file handles CRUD operations for the generated application. For each table with a primary key
in the database schema, the application generator creates its database CRUD operations (respectively
INSERT, SELECT, UPDATE, and DELETE database statements).

You must have access set up for the database that the application will use.

Contraints management

The Application Generator creates functions to manage the database schema constraints. These
constraints are checked during the CRUD operations for each table:

• uniqueness check for its primary key (only if a primary key exists)
• uniqueness check for each unique constraint (only if a primary key exists)
• for one column, the not null constraint is checked
• foreign key existence is checked

SERIAL management

You can define a primary key column as a SERIAL to use sequence numbers for the keys. BAM manages
the SERIAL columns by using a single table named seqreg in the meta-schema (4dbx).

Create a meta-schema
Create a database meta-schema file.

1. Select File >> New.
The New dialog opens.

2. Select a category from the left-side panel.

Option Description

Genero BAM Desktop Select this option if you are creating a database
meta-schema for use in a Business Application
Modeling managed project for a desktop
application. The file created will be a 4dbx.

Genero BAM Mobile Select this option if you are creating a database
meta-schema for use in a Business Application
Modeling managed project for a mobile
application. The file created will be a 4dbx.

Genero Select this option if you are creating a database
meta-schema for use in a standard Genero
program. The file created will be a 4db.

3. Select an option from the Database section from the right-side panel.

Option Description

DB Schema Creates a new meta-schema file.

DB Schema from Database Opens the New Meta-schema dialog to which you
enter your database and connection information.
See Extract meta-schema information from
database on page 228.

The meta-schema file displays in the document view. A new meta-schema file is automatically added to the
list in the DB Schemas Tab if you have saved the file in the current project.

Business Application Modeling (BAM) | 228

Extract meta-schema information from database
The New Meta-schema dialog assists in extracting schema information from a database.

To extract a database meta-schema file from a database, you must have access and permissions for the
database. If you have trouble connecting to a database, make sure the database and the corresponding
database client software are installed and configured properly.

When you extract the meta-schema information from the database, you overwrite the existing schema. Any
user changes that had been made to the schema are lost when using the extract schema option. If you
wish to keep user changes, you must update the schema. See Update a meta-schema from database on
page 302.

1. Select Database>>Extract Schema. The first step is specifying the name and location of the meta-
schema file.

Figure 158: New Schema dialog

Meta-schema file path Browse for a destination directory. Enter the name
and path for the new database meta-schema
file. Select a 4db meta-schema file for standard
projects. Select a 4dbx file if you are working
with a Business Application Modeling managed
project.

Insert the file in the project Check this box to add the meta-schema file in the
project. Select the node where the file should be
added.

2. Click the Next button to continue to Connection information. This connection information is only used
to extract the information for the database meta-schema file from the referenced database.

Business Application Modeling (BAM) | 229

Figure 159: Connection information

a) In the Database Connection Information section, select either Use explicit settings or Use
external settings.

Use explicit settings, previous connection You can use a previous connection that was
created for the same database. The drop down
list provides a list of the existing connections.

Use explicit settings, database type You can enter the Database Type by selecting
the desired type from the drop down list, and
the corresponding information for that type.
The Database driver for the database type is
automatically entered. If other drivers exist, they
are available in the drop down list.

Use external settings Information in the FGLPROFILE configuration file
is used to extract the corresponding connection
information for the specified database. Genero
Studio will use the schema name that you
entered to check for any related entry in the
FGLPROFILE configuration file, and will use
those values to define the connection. See
information on the FGLPROFILE file in the BDL
User Guide.

Business Application Modeling (BAM) | 230

b) In the Database User Information section, provide the necessary database user details. The
required information varies based on the database type selected. See Database server/user
information on page 308.

c) Click Test Connection to verify that the information is correct and that you are able to access the
database.

3. Click the Next button to continue to Extraction Options. Select the options for the meta-schema file.

Figure 160: Extraction options

Case sensitivity Specify how case in database object names
should be handled.Case sensitive: case won't
be changed on database objects, Lower case:
database object names will be converted to lower
case, Upper case : database object names will be
converted to upper case.

Import system tables Check this box to include system tables in the
schema.

Ignore errors Specify that conversion errors should be ignored.
If this option is unchecked, the extraction will stop
as soon as an error occurs (for example, if a table
column has an unsupported type.)

Conversion method Select the type of conversion you wish for the
specific data types; the default choice is Type A.

Business Application Modeling (BAM) | 231

4. Click Finish to begin the extraction process.
If you didn't already do so, save the database meta-schema file in a node in the project; the database
meta-schema will be added to the DB Schemas tab and made available to other modules.

Any application that uses the meta-schema file must have a dependency to the node where the meta-
schema file was added. See Add a meta-schema to a project on page 231.

Add a meta-schema to a project
You may have to add the meta-schema file to a project.

If you used File >> New to create your project, the default structure of your project includes nodes for a
project, application, library, and databases; the dependencies between the default nodes has been
predefined. When you save your Meta-schema file in the Databases node of the project, the dependency
for the application node in the project already exists.

However, if you created your own project structure, you must follow these steps.

1. Open the project.

2. Right-click on the application or library node in the Project view to which you want to add the meta-
schema file and select Add Files. Locate and add the meta-schema file.

3. Add a dependency to the Meta-schema file for any application or library nodes. Right-click the node and
select Advanced Properties, Dependencies. Check the box for the node containing the Meta-schema
file.

Managing SERIALs in a generated application
You can define a primary key column as a SERIAL to use sequence numbers for the keys. BAM manages
the SERIAL columns by using a single table named seqreg in the meta-schema (4dbx).

The seqreg table
For generated applications, BAM automatically adds a seqreg table to a new meta-schema (4dbx) to
facilitate sequence number management for SERIAL columns. The seqreg table contains two columns;
one with the name of the table having a SERIAL column and one with the last SERIAL column value for
that table.

No configuration required
Once you have created a table with a SERIAL defined as the primary key, BAM manages sequence
number generation and generates all code necessary to handle inserting the new sequence number during
an Add operation. No addition configuration or modeling is required.

You may initialize the seqreg table with the appropriate records otherwise SERIAL columns will start at
number 1.

If the database schema does not contain SERIAL columns, the seqreg table is not required in the
schema.

Informix databases
The seqreg table is required in a schema containing SERIAL columns except for Informix® databases
where the native Informix® SERIAL management is used.

For further information on how the seqreg table is used, see the BDL User Guide, "Solution 2: Generate
serial numbers from your own sequence table".

Managing concurrency
The default template manages concurrent access.

Concurrent access occurs when two or more users work on the same data, such as when more than two
users are working with the same application or with different applications using common data.

Business Application Modeling (BAM) | 232

Note: With mobile apps, only one user accessing the app at any given time; data cannot be altered
by another user. Concurrent access management is disabled for generated mobile apps.

The default template checks for concurrent access and notifies the user that the data being updated has
been changed by another user (either deleted or updated). The concurrent access only applies to data of
the current row. The check of the concurrent access is systematically done when the user:

• starts to modify the current row
• saves updates to the current row
• deletes the current row

If the user's data was not updated by another user the application follows its normal course, such as insert,
update or delete of the current row.

If the user's data was updated by another user, a warning is raised and the user is asked to refresh the
data. If the user rejects the request to refresh the data, the application stays in its current state and the
application's process does not continue. If the user accepts the request to refresh the data, the current row
is refreshed.

If the user's data was deleted by another user a warning is raised and the user is asked to refresh the
data. If the user rejects the request to refresh the data, the application stays in its current state and the
application's process does not continue. If the user accepts the request to refresh the data, the current row
is deleted from the current data set.

Concurrent access management uses the optimistic locking strategy. The data that the user wants to
update or delete is compared to what is stored in the database ensuring no change has occurred. A check
is done when starting to modify the current row in the application to detect data modification at the earliest.
See the topic Optimistic Locking in the Genero Business Development Language User Guide for more
information.

Note: In the database layer, the default template uses physical row locking for update and delete
operations. This ensures data cannot be changed during the database transaction. Physical row
locking can only be done with databases that handle locks.

Cascade delete
A foreign key with a cascade delete specifies that if a row in the parent table is deleted, then the
corresponding rows in the child tables are automatically deleted.

Note: An infinite delete cascade cycle can occur when table A references table B, table B
references table C, table C references table A (and so on) and all delete cascade boxes are
checked. While running the delete cascades, if a row is found that was a candidate for deletion
during the cycle, an infinite delete cascade cycle occurs and results in a runtime error.

Working with forms
Special properties are used to specify what logic should be generated for a form and how the form should
behave during the various states (DISPLAY, MODIFY, ADD, SEARCH).

• Mobile forms on page 233
• Enable and disable CRUD logic on page 239
• Form behavior in CRUD states on page 241
• Control the row position in form on page 244
• Opening a form with a subset of data on page 244
• Field activation on page 244
• Define queries and data order on page 245
• Define a dynamically populated ComboBox on page 245
• Lookup fields on page 247
• Add buttons to form on page 249

Business Application Modeling (BAM) | 233

• Add formonly (nondatabase) fields to a form on page 250
• Master-detail forms on page 250

Mobile forms
This section includes topics on working with forms for mobile apps.

• Mobile form patterns on page 233
• Display image with table row in mobile form on page 235
• Reuse a common form on page 237
• Rowbound actions on page 237

Mobile form patterns
Mobile platforms require special form patterns. These patterns can be modeled in BAM.

Note: Examples shown here can be found in the MobilePatterns demo from the Welcome Page.

Example: Table with 2 actions opens a common CRUD form

Figure 161: Model of table to grid form pattern

This common mobile pattern can be modeled in BAM by creating a table container form to display the rows
and setting a relation to a grid container form for CRUD operations on the individual record selected from
the table display.

To see this example model, open the MobilePatterns project from the Welcome Page and open the
MobilePatternsAppFlow.4ba file. To run this example, execute MobilePatternsApp to your emulator
or device. Select Table Usage >> 2 actions on the Table.

On mobile platforms, a table container displays as a list view, not as a grid with columns. As a list view, it
only displays the two first columns' content and any associated row image. There is no way to manipulate
columns (hide, reorder, resize, or sort).

Depending on the alignment property of the two columns, a row is displayed as either

• On two lines for each row.
• On a single line with the first column is left-aligned and the second column is right-aligned. For

example, if the first column is a text column (left-aligned) and the second column is a number (right-
aligned), they will be rendered on a single line for the row.

If a table is the one and only element in a form, a standard table view displays.

Business Application Modeling (BAM) | 234

Figure 162: Running app with table form to grid form pattern

1. The table_2_actions form includes a table that has only the delete action code generated. (The
record for this form specifies only canDelete functionality.) The icon or a swipe on the row triggers the
delete action.

2. This table displays rows with two lines on each row. The first column is displayed above the second
column. In the table container definition, two display only columns have been added to the table
to concatenate the first and last name data in the first position and the address data in the second
position. The logic to concatenate the data for these fields has been added as custom code in a POINT.
See Finding the right place to customize on page 259. For example:

{<POINT Name="fct.record1_computeFields.user" Status="MODIFIED">}
 LET l_rec_BRComputedFields.recordfield1 = SFMT("%1 %2",
 p_br_fields.account_firstname
 CLIPPED,
 p_br_fields.account_lastname
 CLIPPED)
 LET l_rec_BRComputedFields.recordfield2 = SFMT("%1 - %2 - %3",
 p_br_fields.account_addr1
 CLIPPED,
 p_br_fields.account_city
 CLIPPED,
 p_br_fields.country_codedesc
 CLIPPED)
{</POINT>}

3. The user can browse the list, delete a selected row, or tap the row to go to a form populated with the
selected record. The doubleclick property on the table specifies the action triggered when the row
is selected. In this example the value of the doubleclick action is open_common_form. The code is
automatically generated to open the form connected to the table form by a relation in the model.

See the Tables topic in the Genero Mobile Developer Guide for more on table rendering and
ergonomics in mobile apps.

4. The form opens and displays the correct record. This is achieved by setting some properties on the
relation to the grid form on the BA diagram:

• Position, Source Field property is set to account.userid.
• UI Settings, Action is set to the open_common_form action.

Business Application Modeling (BAM) | 235

• UI Settings, Open Mode is set to DISPLAY.
5. All CRUD functionality is generated for the grid_common form (search (QBE), read and delete, create,

and update). Available actions display in the order the ON ACTION statements appear in this dialog in
the code. Only the first few actions appear in the menu bar at the top, depending on mobile device type.

6. All other available actions appear when the full menu is displayed by the user (by pressing a menu
button on a phone, for example).

Example: Single CRUD forms or Common CRUD form

There are two options when modeling CRUD grid forms for mobile. Typically a grid form is used for all
CRUD operations. You can model this by creating one common form and managing which operation(s) are
available through the relation to the common form.

Figure 163: Many vs one common form

1. The table_5_actions_v1 table form calls a different form depending on the action the user triggers.
Each form handles a single operation such as (search (QBE), read and delete, create, and update).

2. The table _5_actions_v2 table form calls just one form, but models four different relations to the
common form. Each relation opens the form for a different operation such as (search (QBE), read
and delete, create, and update). The Open Mode and Action properties are uniquely set on each of
the four relations. For example, one of the four relations has the Action property set to append and
the Open Mode property set to ADD. When the user triggers the append action, the common form is
opened and ready to accept input. Furthermore, the ADD Behavior properties on the relation overwrite
the form defaults and specify to ExitForm when the user accepts or cancels the input. See Overwriting
a Form's behavior with a Relation to the Form on page 242

Display image with table row in mobile form
You can display an image with each table row in a mobile form.

Note: Example shown here is the OrderLines form in the OfficeStoreMobile demo.

Business Application Modeling (BAM) | 236

Example: Table with image

This app displays a form that is made up of a table container. The table container has special features for
mobile apps.

1. An image in the first position.
2. Concatenated data displayed in two fields. See Mobile form patterns on page 233.

In this example, the database table includes a column (prodpic) that contains the name of the image to
display for the selected row. During development, the images are found in the directory specified by the
FGLIMAGEPATH environment variable. For apps that will be deployed, the packaging specifies where to
find the images for inclusion in the app package.

Figure 164: Running app with table form with image

Form structure

To create this table view for your mobile app:

• The table structure for this form includes a picture column set to a Phantom type, and two fields
(masterInfo and detailInfo) to hold the concatenated display data.

• The masterInfo field has the IMAGECOLUMN attribute (seen as the image column property in Genero
Studio) set to the name of the field containing the name of the image.

Business Application Modeling (BAM) | 237

Figure 165: masterInfo column with image column property set

When rendered in a mobile environment, the image defined by the Phantom field displays in the first
position of each row in the table.

See also Tables in the UI Behavior section of the Genero Mobile User Guide.

Reuse a common form
Writing applications often requires creating a lot of small forms, especially for mobile apps. To make app
management easier, consider creating a common form that has all operations generated for it, then limiting
the operations as it is opened in different scenarios in the app.

There are several ways to reuse a form in an application. For an example of setting many relations to a
common form, see Example: Single CRUD forms or Common CRUD form on page 235.

Use it as is In the BA diagram, set a relation to the form as is.

Reuse a subset of functionality Create the form will all CRUD operations generated.
Then, in the BA diagram relation to the form, set
the properties to disable Add, disable Modify,
disable Delete, and/or disable Search. When the
form is opened, only a subset of the operations will
be available to the user.

Display a subset of the data depending on the
parent form

The Filter properties on a relation are used to apply
a SQL filter to show a subset of data when opening
a form. See Opening a form with a subset of data
on page 244

Position the cursor depending on the parent
form

When a form is opened from another form, the
current position is always set to the first row.
With positioning, you can control the row that
is preselected when the form is opened. The
Position, Source Field property on the
relation to the form controls which row will be
displayed when the form is opened. See Control the
row position in form on page 244.

Rowbound actions
Set the Row Bound property on a relation between forms to render a contextual action to the current row.

The Row Bound property specifies whether the action set in the Action property will appear as a
contextual menu option on the row. If your form only has one record, BAM automatically uses that record
as the Source Record for the Row Bound property. If your form has more than one record, you must set
the Row Bound and the Source Record property to specify for which record the Row Bound property is
to be applied.

Business Application Modeling (BAM) | 238

To set an action other than the action being used to open a form to rowbound, customize the action in
the code with ATTRIBUTES(ROWBOUND). For example, this custom code adds a user action print and
makes it rowbound.

 {<POINT Name="dlg.recOrders.uiDisplay.userControlBlocks"
 Status="MODIFIED">}
 ON ACTION print ATTRIBUTES(TEXT = "Print", ROWBOUND)
 DISPLAY "print"
 {</POINT>}

The delete action is always available via swipe left unless you have set the canDelete form
functionality property to unchecked (false). See Enable and disable CRUD logic on page 239.

For more information on rowbound actions, see the Rowbound topics in the BDL User Guide.

Android list view with rowbound actions
On Android, when rowbound actions are defined, each row of a list view shows the three-dot indicator.
Tap this icon to bring up a row context menu with options to execute the corresponding rowbound actions.
Swipe the row from the right to the left to fire the delete action, if defined.

iOS list view with rowbound actions

On iOS devices, when you swipe your finger from right to left, More… and/or Delete icons show up in the
row. Tap More... to bring up a list of rowbound actions to execute. Tap Delete to fire the corresponding
delete action code.

Business Application Modeling (BAM) | 239

Enable and disable CRUD logic
Form functionality properties (canDisplay, canAdd, canModify, canDelete, canSearch, canEmpty)
can be set on each record of a form to specify whether the program logic of display, add, update, delete,
search and/or display empty should be generated. Generated functionality can be disabled on a relation to
the form in the BA diagram.

Functionality properties on the form record

The program and user interface logic is generated when functionality properties are set. The state of the
action (enabled/disabled) or the availability of the action in the Toolbar and/or Topmenu depends on the

Business Application Modeling (BAM) | 240

setting of the Functionality properties. For example, if the canSearch property is checked, the form will
allow for data queries and the Toolbar and Topmenu will include a button and menu option for searching.

canDisplay This form can be used to display data in this record.
Allows the user to browse records with next and
previous.

canAdd The form can be used to add data in this record.

canModify The form can be used to modify data in this record.

canDelete The form can be used to delete data in this record.

canSearch The form can be used to search data in this
record. canSearch is the only functionality property
available to Zoom forms.

canEmpty This form can be used to sit empty waiting for the
user to trigger an action. Useful when a form is
to be presented empty, prior to running a search
query.

Figure 166: Setting the record Functionality properties

Disabling Functionality properties on a relation to a form

You can disable functionality generated for a form in a relation to the form on the BA diagram. For
example you may have a form that generates code for all functionalities, but in some situation when the
form is opened you do not want a functionality to be available. In this example, the form record has all
functionalities selected, thus all CRUD logic will be generated. On a specific relation to this form, however,
the Add and Search functionalities are disabled preventing the user from adding or searching from this
form when opened.

Figure 167: Disabling some of the generated functionality on the relation to the form

Business Application Modeling (BAM) | 241

Form behavior in CRUD states
The UI Settings properties specify the initial and default state of the selected form as well as the behavior
of the form during each state (DISPLAY, MODIFY, ADD, and SEARCH). These settings can be set on the
form entity in the BA diagram, but overwritten by a relation to the form.

Figure 168: UI Setting properties

Initial and default states

Open Mode Open Mode is the initial state of the form when
opened. The rendered form's default Toolbar
allows the user to switch modes.

Default Mode Default Mode is the mode in which you return after
leaving another mode.

Table 53: Form States

Option Description

DISPLAY The default mode. Data is retrieved from the
database and displayed as a record on the form,
one at a time. The default Toolbar allows the user
to scroll through the list of records.

MODIFY The user can modify the currently displayed record.

ADD The user can enter a new record.

SEARCH The user can enter criteria for a search of the
database, displaying the records that match that
criteria.

Business Application Modeling (BAM) | 242

Option Description

EMPTY An empty form is displayed. The user can select the
search or add actions from the Toolbar to change
the mode.

Behavior properties

Figure 169: Form Behavior properties

The Behavior properties control how the form should behave during each state: DISPLAY, MODIFY, ADD,
SEARCH for CRUD forms and DISPLAY, SEARCH only for Zoom forms.

On accept What should happen when the accept action is
triggered.

On cancel What should happen when the cancel action is
triggered.

On close What should happen when close action is
triggered.

On exit What should happen when the exit action is
triggered.

Table 54: Behavior properties

Option Description

ExitForm Close the form and close the application if it is the
last form open.

ExitApp Close the application.

ReturnToDefaultMode Return to the mode specified as the default in the
Default Mode property.

ReturnToCallerMode Return to the previous mode.

StayInMode Stay in the current mode.

Overwriting a Form's behavior with a Relation to the Form

Property values on a relation to a form overwrite the form's default property values. This allows you to set
default property values on the form, but change them on the relation to the form.

Business Application Modeling (BAM) | 243

In the modeling of mobile apps, it is common to have multiple relations to a common form. This allows you
to reuse a common form, opening it in a different state depending on the action triggered. In this example,
there are 2 relations to the Order form. Each relation specifies how the form should behave depending on
the action that opens it. One of those relations, Add an Order, specifies that when the form is opened
with the append action, the form opens in the ADD state. It also changes the default ADD behavior by
exiting the form (ExitForm) when the user either accepts or cancels the ADD operation.

Figure 170: Different Relations to a Common Form

Data refresh
Data refresh behavior is specified with the Data Refresh property on the relation between two forms. If
the source form is in DISPLAY mode and opens a destination form, when the destination form closes, the
data displayed in the source form refreshes.

Table 55: Data Refresh property values

Option Description

All Documents All data are refreshed.

Current Document The current document (current row of the master record) is refreshed. This
is the default value.

All Rows All rows of the current record defined by the Position, Source Field
property values are refreshed.

Current Row The current row defined by the Position, Source Field property
values is refreshed.

None No refresh is done.

The Current Row and the Current Record are defined by the Position, Source Field properties of
the relation. If the Position, Source Field property values are the unique key of the record, then the
Data Refresh uses the row defined by the returned values.

If the Data Refresh is for All or Current Document, then the Data Refresh uses the current
document by following the record relations from the row of the record defined by the Position, Source
Field property values to the master record (from unique key to unique key of the parent).

Business Application Modeling (BAM) | 244

Note: If the canAdd property is enabled in the destination form, set the dataRefresh property
to All Rows or All Documents, otherwise the added rows will not be displayed on return to the
source form.

Control the row position in form
When a form is opened from another form, the current position is always set to the first row. With
positioning, you can control the row that is preselected when the form is opened. The Position,
Source Field property on the relation to the form controls which row will be displayed when the form is
opened.

There are several ways that you may want to control the row position when a form is opened. The Source
Field must match the target form field in number and type for the positioning to work.

Open to the same record as the parent form
record

Set the Source Field property to the primary key
of the parent form record. When the form opens, it
will open to the same record as the parent form.

Open to a position depending on a field value of
the parent record

Set the Source Field to the field of the
parent record you want to use. For example,
an account form and a country form may have
a relation between them that specifies the
account.country_id as the positioning Source
Field. While in the account form, suppose the user
is on a record with a country field value of "USA".
If the user then opens the country form from the
account form (through a Zoom form, for example),
the country_id ("USA") will be preselected in
the form instead of the first record. Often this will
be a field that corresponds to a foreign key. (For
example, the account table has a foreign key to
the country table.)

Opening a form with a subset of data
The Filter properties on a relation are used to apply a SQL filter to show a subset of data when opening a
form.

A form is typically opened with a set of data for the user to browse. This data set is controlled by the data
set relationships and the where clause specified in the form record Query property. In some instances, you
may want to open the same form with a limited set of data. To do so, in the BA diagram, add a filter on the
relation to the form.

The Filter properties consist of the Destination Field to filter on (for example, country.id) and
the Source Field values to use for filtering (for example, the value in account.country_id). When
the form is opened, it will filter the results displayed based on the filter.

Field activation
An active field is one that can be input by the user. Field activation occurs when the application is in an edit
mode (MODIFY or ADD modes).

CRUD operations (create, read, update, delete) apply to fields belonging to the business record master
table thus only the business record master table fields can be edited and saved.

These fields can be edited directly by user input or automatically by ascending lookups.

In edit mode, active fields are:

• fields belonging to the business record master table
• fields running ascending lookups

Business Application Modeling (BAM) | 245

Automatically deactivated fields:

• Formonly fields
• Unique key fields when the form is in MODIFY mode
• Fields defined as a foreignField in a business record master-detail relationship

This default behavior can be bypassed by adding code in the predefined BLOCK/POINTs. Field activation
sections are centralized to ease customization.

Note: When the user is in edit mode (property canModify is true) and no editable field is present,
the program stops with an FGL error. In addition, if all fields of the business record master are
primary keys, they can not be modified even if canModify is true. In the case of a master-detail
relationship, a DISPLAY ARRAY / INPUT ARRAY may be generated instead of an INPUT ARRAY /
INPUT ARRAY.

Define queries and data order
Joins between tables referenced in the form are set up in the query property of the business record.

The Edit query dialog allows you to specify the joins between the tables in a record used for a form,
report, or service.

Define a dynamically populated ComboBox

Figure 171: Combobox with Data

Populated Combobox Example

In this example, when the user is in an input mode and selects the ComboBox field, a list of the valid
country descriptions are displayed. When the user selects a country description (country.codedesc)
and accepts the selection, the account table is updated with the correct country information
(account.country).

Business Application Modeling (BAM) | 246

1. Modify the form. Find the master field that is to be replaced with a ComboBox of populated values and
move it to another location on the form. You can convert this field to a Phantom widget as it will be
needed for the code, but not needed to display to the user (account.country in this example).

2. On the Records tab, add the reference field to the master field in the same record. Right-click on the
record and choose Add Field. (The country.codedesc field, the field representing the list of country
descriptions, is added to the account record in this example.)

3. Right-click on the record and select Edit Query. Establish the join between the master table and
reference table. (account.country is joined to country.code in this example.)

4. Select the reference field in the record and set its lookup property. This name will be used as a
function name in the generated code that is triggered to perform the ascending lookup.

Figure 172: Lookup
5. Return to the Form tab. Notice that the new field (country.codedesc) has been added to the form in

the upper left. Move it to its correct location and convert it to a ComboBox widget.

6. Set the initializer property on the ComboBox field to a unique name. This name will be used
as a function name for the generated code that populates the ComboBox when it is built in the user
interface.

Business Application Modeling (BAM) | 247

Figure 173: Combobox Properties
7. Save the form. Build and Execute the program.

Lookup fields
A lookup field is a field linked to another one inside a record. Lookup fields contain a value that is retrieved
from a reference table instead of being input by a user.

There must be a join relationship between the master and reference tables inside a record. There are two
types of lookup fields: descending and ascending.

descending Descending lookup fields are automatically
managed. A descending lookup field specifies that
when a master field is updated, the related non-
master fields will also be updated. The fields that
are automatically updated are determined from
the joins in the Query Editor. For this reason, the
only type of lookup that is set up in the form is
ascending.

ascending Ascending lookup fields specify that when a field of
a non master table is updated, the related master
table field will be updated. An ascending lookup
is implemented by entering a value in the lookup
property on the field (that has sense only for fields
of a non master table in the record) in the form
record.

Composite fields in a lookup

If the lookup requires more than one field, set the lookup property with the same value on all these fields.
The lookup is resolved with the set of values of these fields.

Business Application Modeling (BAM) | 248

Descending lookup example
In this example, the form is primarily for the account table (master), but when a customer's account record
is displayed or input, it also displays the corresponding country name from the country table (descending
lookup).

Figure 174: Form showing lookup field

Define an ascending lookup field
Ascending lookup fields specify that when a field of a non master table is updated, the related master table
field will be updated.

1. Open the form to be modified. A record of the form must include fields from the master table as well as
the lookup field(s) from the reference (non master) table.

2. Confirm the join between the tables. Right-click on the record and select Edit Query to confirm the join
between the master and reference (non master) table.

3. Select the Record tab and then the lookup field column to see its properties. Set the lookup property
to a unique name (lkp_acct_ctry_desc in this example). To implement a composite lookup, set the
lookup property of both lookup fields to the same value.

Business Application Modeling (BAM) | 249

Figure 175: lookup Property

The generator will use this name in the function call that triggers the ascending lookup when the user
modifies the reference (non master) field data. If the value is found in the reference table, it is used to
update the master field. If it is not found in the reference table, the original values on the form remain
intact.

4. Save the form. Build and Execute the program.

Add buttons to form
If you add a widget to your form that can trigger an action, such as a Button, you can associate an action
from the generated program to the widget.

1. Open the form.
2. Select Widget>>Button from the menu.
3. Draw out a Button in a container on the form.
4. Provide the name of the action in the name property for the Button.

Business Application Modeling (BAM) | 250

Figure 176: Add Button

Add formonly (nondatabase) fields to a form
Formonly fields are added by creating a non database field and making the record inactive. You must
supply the business logic for the formonly field - it is not generated.

Master-detail forms
A Genero application can display a form that contains a master-detail relationship between two tables.

The user can search for a row in the master table, and the corresponding rows in the detail table will also
be displayed. The values in rows from both tables can be added, deleted, or modified.

The form must contain fields from both tables and the table relationships must be set.

Adding custom code
This section includes topics on how to add custom code to the generated code.

• Understanding what gets generated on page 250
• Finding the right place to customize on page 259
• Using POINTs and BLOCKs on page 262

 Understanding what gets generated
4gl files are generated for each diagram entity.

When a generated program is built, the generated 4gl files are compiled and linked with the other program
files to create the executable application. The compiled binary versions are stored in the project's /bin
directory.

Business Application Modeling (BAM) | 251

The generated 4gl and XML files for each diagram entity are shown in the Intermediate Files folders in
the project. This figure shows two generated files for the Program entity, Account.4prg.

Note: The XML file listed in the Intermediate Files folder are temporary files that consolidate all
data from diagrams and are used to generate the 4gl code. They are not places to customize
code, but can be useful to a template developer as these XML files are used as input to the code
that is generated. See How code is generated on page 194.

Figure 177: Intermediate Files

The default template set is designed to generate organized and functional code for a data-driven business
application. See The default template features on page 199.

Each generated 4gl file has many functions. Each function has specific places called POINTs and
BLOCKs where you can add your own code. Code Files and Code Link Properties can be used to directly
access generated files and specific POINTs.

Figure 178: Generated files for the default template

Business Application Modeling (BAM) | 252

Table 56: Generated files for the program (4prg)

File Description

Program.4gl on page 254 This file contains the MAIN function. It defines
global variables, connects to the data source
with the CONNECT TO statement, loads styles
and action defaults files, and performs some
initialization tasks for the application.

Table 57: Generated files for the database (4dbx)

File Description

Schema_dbxdata.4gl on page 258 This file manages the database SELECT,
INSERT, UPDATE, and DELETE statements.

Schema_dbxconstraints.4gl on page 259 This file manages table and column
constraints.

Table 58: Generated files for form entities (4fdm, 4fdz)

File Description

Form_ui.4gl on page 255 This file contains functions called from MAIN.
It opens the form based on the open mode,
loads the Toolbar and Topmenu, launches
functions to manage application states,
calls MENU or DIALOG statements for the
various states and calls functions in the
Form_uidialog.4gl to retrieve and manage
subdialogs.

Form_uidialog.4gl on page 256 This file defines the subdialogs and modular
variables. It manages the states of actions,
fields and subdialog and calls functions in the
Form_uidialogdata.4gl.

Form_uidialogdata.4gl on page 257 This file defines the modular variables,
manages UI data (clear, fetch, set
default values), and calls functions in the
Form_uidata.4gl.

Form_uidata.4gl on page 257 This file includes functions to retrieve and
manage the database data. It defines the
records for the database columns and tables,
creates and fills a dynamic row of data, creates
and fills a dynamic row of record keys,contains
the SQL statements to SELECT, UPDATE, and
DELETE rows in the database, and handles the
SQL transactions.

Important: Reports and Web Services are not supported on mobile platforms.

Business Application Modeling (BAM) | 253

Table 59: Generated files for the reports

File Description

Report_report.4gl This file contains the report driver for the
report.

Report_reportdata.4gl This file contains the SQL and BDL statements
to fetch the report data.

reportdata_report.rdd This file is a data file is generated for use when
the developer creates the report definition file
(4rp).

Table 60: Generated files for the web services

File Description

WebService_service.4gl This file handles business record type
definition (only take public fields), defines the
module variables (input and output variable for
service's CRUD operations), and sets up the
service and publishes the CRUD operations.

WebService_uidata.4gl This file handles business record type
definition, contains operations to insert /
update / delete rows in the database, contains
ascending lookup management.

WebServiceServer_server.4gl This file contains the MAIN function, sets up
the web service engine, contains the CONNECT
TO BDL statement, registers services, and
listens for incoming requests.

WebService.xml The XML file contains the information about the
web service needed to generate the logic in
the 4gl files.

WebServiceServer.xml Contains the information about the Webservice
Server needed to generate the logic in the 4gl
files.

Table 61: Library files used by a generated app

File Description

libdbappCore.4gl This file includes common functions for
managing errors and strings.

libdbappExt.4gl This file includes common functions for
managing the interaction with mobile device
peripherals. See Add mobile device features
(Photo, Gallery, Phone, Mail, SMS, Contact,
Maps, Barcode) on page 223

libdbappFormUI.4gl This file includes common functions related to
form transitions and states.

libdbappSQL.4gl This file includes common functions related
to SQL transactions, errors, and database
statements.

Business Application Modeling (BAM) | 254

File Description

libdbappUI.4gl This file includes common functions related
to the user interface such as Topmenus,
Toolbars, and front end type.

 Program.4gl
This file contains the MAIN function. It defines global variables, connects to the data source with the
CONNECT TO statement, loads styles and action defaults files, and performs some initialization tasks for
the application.

The function(s) in this file include POINT and BLOCK sections where you can add your own code.

Table 62: The Program.4gl file

Generated Functions Description

MAIN
The MAIN function of the program.

Business Application Modeling (BAM) | 255

 Form_ui.4gl
This file contains functions called from MAIN. It opens the form based on the open mode, loads the Toolbar
and Topmenu, launches functions to manage application states, calls MENU or DIALOG statements for the
various states and calls functions in the Form_uidialog.4gl to retrieve and manage subdialogs.

Table 63: The Form_ui.4gl file

Generated Functions Description

uiOpenForm
Opens form according to the open mode.

uiOpenFormByKey
Opens form according to the open mode and position to the key.

uiAutomaton
The automaton function allowing the switch between modes (DISPLAY,
MODIFY, ADD, SEARCH, EMPTY)

uiDisplay
Manages the DIALOG block for the DISPLAY mode.

uiInput
Manages the DIALOG block for the MODIFY and ADD modes.

uiConstruct
Manages the DIALOG block for the CONSTRUCT mode.

uiSearch
Manages the DIALOG block for the SEARCH mode.

uiEmpty
Manages the DIALOG block for the EMPTY mode.

initializeDefaultActions
Initializes the list of default actions.

initializeDefaultUISettings
Initializes the UI settings of the form.

action_
Launch a module.

validateCRUDOperationWrapper
Validate a CRUD operation for a record (INSERT, UPDATE, DELETE).

initialzeReports
Initializes the list of available reports.

processReport
Load, configure and run the current report.

Business Application Modeling (BAM) | 256

 Form_uidialog.4gl
This file defines the subdialogs and modular variables. It manages the states of actions, fields and
subdialog and calls functions in the Form_uidialogdata.4gl.

Table 64: The Form_uidialog.4gl

Generated Functions Description

getDefaultField
Get the default DIALOG field name.

validateCRUDOperation
Validate a CRUD operation (INSERT, UPDATE, DELETE).

processCRUDOperation
Process a CRUD operation (INSERT, UPDATE, DELETE). Check the
concurrent access.

synchronizeUI
Synchronize the UI according an internal action returned by a CRUD
operation.

setAllCurrentRow
Set the current row for each subdialog in the case of master-details to
restore the context when the mode switches.

uiDisplay
DISPLAY ARRAY dialog.

uiInput
INPUT dialog.

uiConstruct
CONSTRUCT dialog.

setActionStates
Sets the state of the dialog actions to active or inactive according to the
mode.

setFieldActive
Initialize fields state according to startup state.

getRecordFieldList
Gets the field list of a subdialog.

navigate
Navigation for current record.

setAllCurrentRow
Set the current row on all subdialogs whose container is a 'table' to
restore the context.

init
Populate the referenced ComboBox.

Business Application Modeling (BAM) | 257

 Form_uidialogdata.4gl
This file defines the modular variables, manages UI data (clear, fetch, set default values), and calls
functions in the Form_uidata.4gl.

Table 65: Form_uidialogdata.4gl

Generated function Function features

seek
Gets the index of an item matching the given criteria.

fetchRowAndDetails
Fetch row and details data for record.

fetchAll
Fetch the data set for a record.

fetchRow
Fetch row data for record.

fetchDetails
Fetch details data for record.

clear
Clear record data.

clearRowAndDetails
Clear row and details data for record.

setDefaultValues
Initialize record with default values.

runUpdates
Run the treatments after the update of the field (like the descending,
ascending lookups, ...). This function is especially called in the control
blocks ON CHANGE, ON ACTION zoom.

runDescLookup
Generate descending lookup functions triggered by fields of the master
table of the record. It calls 'DescLookup' defined in data then update the
fields if lookup successes.

 Form_uidata.4gl
This file includes functions to retrieve and manage the database data. It defines the records for the
database columns and tables, creates and fills a dynamic row of data, creates and fills a dynamic row of

Business Application Modeling (BAM) | 258

record keys,contains the SQL statements to SELECT, UPDATE, and DELETE rows in the database, and
handles the SQL transactions.

Table 66: The Form_uidata.4gl

Generated Functions Description

getKeys
Create and fill a dynamic array of Business Record(BR) Unique Keys
(UK).

getDataByKey
Get data from a given Business Record (BR) Unique Key (UK) (may be a
composite key).

getDataArray
Create and fill a dynamic array of Business Record (BR) fields.

insertRow
Insert a row in the database.

updateRow
Update a row in the database.

deleteRow
Delete a row in the database.

deleteRowwithConcurrentAccess
Delete a row in the database.

checkRow
Check a row in the database.

checkRowConcurrentAccess
Check a row in the database.

DescLookup
Retrieve data according the descending lookup after update of the field.

AscLookup
Retrieve data according the ascending lookup after update of the field(s).

fillArray
Populate an array of key/value pairs.

computeFields
Compute FORMONLY fields of the Business Record (BR).

 Schema_dbxdata.4gl
This file manages the database SELECT, INSERT, UPDATE, and DELETE statements.

Find this file in the Intermediate Files folder listed with your database schema in your project.

Business Application Modeling (BAM) | 259

Table 67: Schema_dbxdata.4gl

Generated function Function features

selectRowByKey
Select a row identified by the primary key in the table.

insertRowByKey
Insert a row in the table and return the table keys.

updateRowByKey
Update a row identified by the primary key in the table.

deleteRowByKey
Delete a row identified by the primary key in the table.

deleteRowByKeyWithConcurrentAccess
Delete a row identified by the primary key in the table if the concurrent
access is successful.

deleteReferencingRowsByKey
Delete rows referencing the primary key of the table.

checkRowByKeyWithConcurrentAccess
Check if a row identified by the primary key in the table has been modified
or deleted.

setDefaultValuesFromDBSchema
Set data with the default values coming from the DB schema.

 Schema_dbxconstraints.4gl
This file manages table and column constraints.

Find this file in the Intermediate Files folder listed with your database schema in your project.

Table 68: Schema_dbxconstraints.4gl

Generated function Function features

checkTableConstraints
Check constraints on the table.

checkUniqueConstraint
Check the primary key uniqueness constraint on the table.

checkColumnConstraints
Check constraints on the column.

checkFKConstraint
Check the foreign key existence constraint on the table.

Finding the right place to customize
To determine where to add code to make your customization, use Code Link or Code File properties or
consider these questions.

Direct access with Code Links

The most common places to customize the generated code are accessible from Code Link properties.
Code Link properties provide direct access to the POINT in the appropriate generated file. For example,

Business Application Modeling (BAM) | 260

the Compute Fields property on a Form record opens the correct generated 4gl file to the POINT
location logically used for computing fields.

{<POINT Name="fct.recExample_computeFields.user">} {</POINT>}

You will find Code Link properties available on:

Meta-schema - Select the background of the Meta-schema diagram.

• table

• Constraints

• Key Uniqueness

• Key Exists

• Select

• Insert (before)

• Insert (after)

• Update

• Delete

• Delete (Concurrent)

• Cascade Delete

• Optimistic Locking

• Defaults

• column

• Constraints (Column)

Form

• Records tab

• ManagedForm - Select the background of the Form Records tab.

• Open Window

• UI Automaton

• Display Mode Events

• Input Mode Events

• Search Mode Events

• Empty Mode Events

• Action State

• Record

• Select rows

• Select row

• Computed fields

• Insert

• Update

• Delete

• Delete (Concurrent)

• Lookups (Descending)

• Combobox initializer (Data)

• Defaults (Dialog)

• DISPLAY attributes

• DISPLAY events

• INPUT events

• CONSTRUCT events

• Action state

Business Application Modeling (BAM) | 261

• Field Activation

• Record field

• Field Activation

• Form tab

• Combobox widget

• Combobox initializer (Data)

• Combobox initializer (UI)

Direct access with Code Files

Code Files properties are available for direct access to the appropriate generated code file.

You will find Code Files properties available on:

Meta-schema - Select the background of the Meta-schema diagram.

• Data opens Schema_dbxdata.4gl on page 258
• Constraints opens Schema_dbxconstraints.4gl on page 259

Form - Select the background of the Form Records tab.

• UI opens Form_ui.4gl on page 255
• Dialogs opens Form_uidialog.4gl on page 256
• Dialog Data opens Form_uidialogdata.4gl on page 257
• Data opens Form_uidata.4gl on page 257

Manually finding the right location

If a Code Link is not available to help guide you to a location for your custom code, these questions can
help you determine where to customize.

Can the modification be done in a model? For example, can you make a change to a property
on an entity in the BA diagram to get the desired
effect? This is the best first choice because the
models drive the code generation. When you
rebuild, the generated code reflects your changes.
See Modeling the application on page 202.

Can the modification be done in an external
resource file?

For example, you can modify the default Toolbar
file that is loaded by the program. Modifying an
external resource file does not affect the code
generation if you use the default naming convention
(dbapp.4tb, for example). When you rebuild,
the modified resource file is loaded instead of the
default one. See Modify action defaults (dbapp.4ad)
on page 266, Modify styles (dbapp.4st) on page
267, Modify the Topmenu (dbapp.4tm) on page
267, Modify the Toolbar (dbapp.4tb) on page
267.

Is the modification database related? Look at the functions in the Schema_dbxdata.4gl
on page 258 and Schema_dbxconstraints.4gl on
page 259 files. Look for a POINT in the function to
place your custom logic. If a POINT is not available,
modify the BLOCK of code. See Using POINTs and
BLOCKs on page 262.

Business Application Modeling (BAM) | 262

Is the modification for when the program begins
or ends?

Look at the MAIN function in the Program.4gl on
page 254 file. Look for a POINT in the function to
place your custom logic. If a POINT is not available,
modify the BLOCK of code. See Using POINTs and
BLOCKs on page 262.

Is the modification related to the interaction with
the user?

Look at the functions in the Form_ui.4gl on
page 255, Form_uidialog.4gl on page 256,
Form_uidialogdata.4gl on page 257, and
Form_uidata.4gl on page 257. Look for a POINT
in the function to place your custom logic. If a
POINT is not available, modify the BLOCK of code.
See Using POINTs and BLOCKs on page 262.

Is the modification related to reporting? Look at the functions in the _report.4gl and
_reportdata.4gl files. Look for a POINT in the
function to place your custom logic. If a POINT is
not available, modify the BLOCK of code. See Using
POINTs and BLOCKs on page 262.

Is the modification related to web services? Look at the functions in the _service.4gl and
_server.4gl, and _uidata.4gl files. Look for
a POINT in the function to place your custom logic.
If a POINT is not available, modify the BLOCK of
code. See Using POINTs and BLOCKs on page
262.

Is the modification repeating many times? Consider modifying the template files. See BAM
Template Developer Guide on page 930.

Using POINTs and BLOCKs
POINT and BLOCK sections are the areas in the generated code where you can add your own code.

Any code added in a POINT or BLOCK is preserved in the application even when the application is rebuilt.

Code added to a POINT or BLOCK section is preserved in a .code file that is used each time the
application is compiled. If you are using Source Code Management, the .code file must be committed
with the project. It is not necessary to commit the generated 4gl files.

Tip: To remove all changes you have made, you can simply remove the .code and all generated
4gl files.

POINT
POINT sections are located within each function BLOCK. The more granular POINT sections are located
in all relevant locations for adding business logic such as in all control blocks (BEFORE ROW, AFTER
INPUT,). Common uses of a POINT include defining your own variables, setting conditions on SELECT
statements, adding or modifying actions in control blocks of interactive dialogs such as CONSTRUCT,
INPUT, MENU, and changing the program flow.

Note: You are responsible for the validity of the code in a POINT.

Table 69: POINT examples

Description POINT name Example

Import an additional module(s). import
{<POINT Name="import"
 Status="MODIFIED">}
IMPORT FGL mylibrary

Business Application Modeling (BAM) | 263

Description POINT name Example
{</POINT>}

Add comments in the code. comment
{<POINT Name="user.comments"
 Status="MODIFIED">}
--Additional information
 about this module.
{</POINT>}

Define modular scope variables. define
{<POINT Name="define"
 Status="MODIFIED">}
DEFINE myvar STRING
{</POINT>}

Define local scope variables. function.define
{<POINT
 Name="fct.uiOpenForm.define"
 Status="MODIFIED">}
DEFINE myvar STRING
{</POINT>}

Add additional function(s) to the module. user.functions
--Add user functions
{<POINT
 Name="user.functions"
 Status="MODIFIED">}
FUNCTION dispmsg()
 MESSAGE "Program ending"
END FUNCTION
{</POINT>}

Add additional actions for each of the
interactive dialog statements (DISPLAY,
DISPLAY ARRAY, CONSTRUCT, INPUT,
INPUT ARRAY and MENU).

userControlBlocks
{<POINT
 Name="fct.uiInput.dlg.userControlBlocks"
 Status="MODIFIED">}
ON ACTION myaction
 CALL dispmsg()
{</POINT>}

BLOCK

Each function in the generated code is nested within a BLOCK section.

Note: You can change the behavior of the generated function, however once new code has been
added to a BLOCK, you take responsibility for the validity of all the code in that BLOCK.

Status attribute

During the first application generation, POINT and BLOCK sections will only contain the Name attribute.

{<POINT Name="fct.uiDisplay.dlg.userControlBlocks">}{</POINT>}

When the code is changed, the POINT and BLOCK will include a Status attribute set to MODIFIED.

{<POINT Name="fct.uiDisplay.dlg.userControlBlocks" Status="MODIFIED">}
 ON ACTION test
 MESSAGE "testing..." {

Business Application Modeling (BAM) | 264

</POINT>}

Revert a change to a POINT or BLOCK
Custom changes made to the source code in a POINT or BLOCK can be reverted.

1. Open your source code in Code Editor.

2. Select the area you want to revert.

3. Right-click on the selected POINT or BLOCK heading and use the Point/Block >> Revert Point/
Block menu option. This will add a new attribute Action="REVERT".

4. Compile the application and the changes made in the source will be removed.

Lost POINT or BLOCK
If a POINT / BLOCK is present in your source code but is no longer defined in the template file, the POINT
/ BLOCK will be considered "LOST". When the application is rebuilt, the Status attribute for the missing
POINT / BLOCK will be set to LOST.

Lost sections, with their complete content intact, are commented out and put at the end of the regenerated
source file. For example:

{<BLOCK Name="myBlockName" Status="LOST">}
-- DEFINE i INT -- DEFINE s STRING
-- {<POINT Name="myPointName" Status="MODIFIED"> } LET s = "Hello World"
{</POINT>} -- LET i = 10 -- {<POINT Name="myPointName2">} {</POINT>}
{</BLOCK>}

Note: The LOST status is not set on the POINT nested within the lost BLOCK, however the entire
lost BLOCK is commented out including all nested POINT / BLOCK sections.

Modifying the look and feel
This section includes topics on how to modify the look and feel of the application.

• Modify action defaults (dbapp.4ad) on page 266
• Modify styles (dbapp.4st) on page 267
• Modify the Topmenu (dbapp.4tm) on page 267
• Modify the Toolbar (dbapp.4tb) on page 267

Default actions
Generated applications have default actions, which are triggered when the user clicks on an action view on
the form (such as a Toolbar icon). The actions are enabled appropriately as the BDL interactive statements
in the generated application are executed.

Default actions
The user interface for your BAM program is based on the form created for the program. When you set the
Functionality properties on form records, you are specifying which default actions should be available to
the user. For example, if the canSearch property is checked, the default actions needed to input criteria
and search the database would be generated.

Actions can be programmatically enabled and disabled, hidden and shown, with methods such as
ui.Dialog.setActionActive() and ui.Dialog.setActionHidden(). The text, image and
other attributes of the action can be controlled with an action default file (4ad). See the Genero Business
Development Language User Guide.

Business Application Modeling (BAM) | 265

Table 70: Default Actions

Action Text Action Name Description

New new Adds a new record in the master,
whether or not the focus is in the
master or a detail.

Insert insert Appends a new record at the end
of the list of the currently selected
table - either master or detail.

Append append Adds a new record at the location
of the current selection - either in
a master or a detail. The append
and new actions are equivalent if
the focus is in the master.

Modify modify Update a record.

Search query Search the database table; enter
criteria in the relevant fields and
click Accept; or click Accept on
an empty form to retrieve all the
records in the database table.

Delete delete Delete a database record.

Zoom zoom Activate the zoom form.

First firstrow Navigate to the first record.

Last lastrow Navigate to the last record.

Next nextrow Navigate to the next record.

Previous prevrow Navigate to the previous record.

About the new, append, and insert actions
The new, append, and insert actions always create a new record. The new action only creates a master
record. The append and insert actions create either a master record or a detail record. The new action
is a global action. The append and insert actions are contextual according to the container. The new
and append actions will always appear in the Toolbar/Topmenu. The insert action will appear in the
Toolbar/Topmenu if there is at least one list on the CRUD form.

See the Action rendering topic in the Genero Mobile Developer Guide for information on the default action
rendering in Android and iOS mobile apps.

Figure 179: Actions displayed in a desktop vs. mobile app

Report actions

Important: This feature is not supported on mobile platforms.

If a Report entity is implemented in the BA diagram, additional actions are enabled for the user. Which
actions appear is controlled by the Report Options properties of the Form entity.

Business Application Modeling (BAM) | 266

Figure 180: Default Toolbar with Report options

Table 71: Additional Actions for Reports

Action Text Action Name Description

Print reportprint Print a defined report.

Preview reportpreview Preview a defined report.

Print... reportsetup Select report and printer or export
settings in Report Print Settings
window. If no report design
template (4rp) is available for the
report, the Select Fields button
is enabled to select fields for the
report.

PDF reportexportpdf Export report to PDF format.

HTML reportextporthtml Export report to HTML format.

XLS reportexportxls Export report to XLS (Excel)
format.

RTF reportexportrtf Export report to RTF (MS-Word)
format.

Modify action defaults (dbapp.4ad)
You can modify the Action Default file used with the generated program.

The text, image and other attributes of the action can be controlled with an action default file (4ad). See
the Genero Business Development Language User Guide.

The recommended procedure to modify the action default file used with the generated program is to create
a new Action Default File (4ad) based on the dbapp.4ad template.

1. Select File >> New >> Design >> Action Defaults (4ad).
2. Modify the 4ad file by adding, modifying, or deleting actions and action attributes.
3. Save the file to your project with the name dbapp.4ad.

Note: If you save the file to your project with the name dbapp.4ad, Genero Studio will use
this file at runtime instead of the template. If you choose a different name, you will need to find
the BLOCK in the generated code that calls the ui.interface.loadActionDefaults()
method. Change the parameter name of the file name to your new file name.

Business Application Modeling (BAM) | 267

Default Topmenu and Toolbar
The form for your generated program contains default action views (in a Topmenu and Toolbar) allowing
the user to trigger the program actions.

Desktop applications

Figure 181: Application generated by the default template

Mobile apps

See the Toolbar and Topmenu topics in the Genero Mobile User Guide for information on the default action
rendering in Android and iOS mobile apps.

Modify the Topmenu (dbapp.4tm)
You can modify the Topmenu used with the generated program.

The recommended procedure is to create a new Topmenu based on the dbapp.4tm template.

1. Select File >> New >> Design >> Top Menu (4tm).

2. Modify the 4tm file by adding, modifying, or deleting actions.

3. Save the file to your project with the name dbapp.4tm.

Note: If you save the file to your project with the name dbapp.4tm, Genero Studio will use this
file at runtime instead of the template. If you choose a different name, you will need to modify the
generated code to load your 4tm file using the ui.interface.loadTopMenu() method.

Modify the Toolbar (dbapp.4tb)
You can modify the Toolbar used with the generated program.

The recommended procedure is to create a new Toolbar based on the dbapp.4tb template.

1. Select File >> New >> Design >> Toolbar (4tb).

2. Modify the 4tb file by adding, modifying, or deleting actions.

3. Save the file to your project with the name dbapp.4tb.

Note: If you save the file to your project with the name dbapp.4tb, Genero Studio will use this
file at runtime instead of the template. If you choose a different name, you will need to modify the
generated code to load your 4tb file using the ui.interface.loadToolBar() method.

Modify styles (dbapp.4st)
You can modify the Style file used with the generated program.

The recommended procedure is to create a new Action Default File (4ad) based on the dbapp.4ad
template.

1. Select File >> New >> Design >> Style (4st).

Business Application Modeling (BAM) | 268

2. Modify the 4st file by adding, modifying, or deleting style and style attributes.

3. Save the file to your project with the name dbapp.4st.

Note: If you save the file to your project with the name dbapp.4st, Genero Studio will use this
file at runtime instead of the template. If you choose a different name, you will need to find the
BLOCK in the generated code that calls the ui.interface.loadStyles() method. Change
the parameter name of the file name to your new file name.

BAM Reference
• GSTSETUPDIR on page 144
• $(generate) on page 268
• tclsh on page 269
• $(tcl) - deprecated on page 270
• $(blockpoint) on page 270
• Business Application Modeling error messages on page 271
• Business Records error messages on page 280
• Business Application Diagram error messages on page 285

BAM-specific environment variables
A subset of environment variables configure your Business Application Modeler (BAM) environment.

DBAPP_MOBILE
Defines whether the generated application is for a mobile device.

Set to 1 (TRUE) if the generated application is for a mobile device.

The DBAPP_MOBILE environment variable is used at the application generation level, to perform checks
for unsupported functionality on mobile devices. The setting of this environment variable does not influence
the generated code. The generated code will be the same regardless of the front end and regardless of the
setting of the DBAPP_MOBILE environment variable.

For example, if the generated code includes an INPUT ARRAY statement, setting DBAPP_MOBILE results
in warning GS-13145; otherwise there is no warning. Likewise, if the generated code includes a TreeView
or ScrollGrid container, warning GS-13149 will be raised when DBAPP_MOBILE is set. The application,
however, is still created, and in both cases the program will fail at runtime as the feature or container is not
supported on mobile devices.

GSTSETUPDIR
Defines the BAM application generator template directory. Changing this variable launches synchronization
from the server and reloads the templates.

Select the default environment set or create a new one that includes the GSTSETUPDIR specifying the
location of the template directory to be used.

$(generate)
The $(generate) command creates an intermediary XML file from modeled entities.

Syntax

$(generate) [options]

1. options are described in Table 72: $(generate) options on page 269.

Business Application Modeling (BAM) | 269

Options

Table 72: $(generate) options

Option Description

-oldModelFormat Generate XML file with prior format.

-depth depthNumber (deprecated)

This feature is deprecated. Use depth attribute on
Item elements in settings.agconf instead.

For example, in a BA diagram specify the number
of relations to traverse while generating the model.
Outgoing relations are traversed. The model always
contains the incoming and outgoing relation for the
current item, but if the depth limit is reached, the
target item definition is not generated. The depth
is an integer starting from 0, or unlimited to
traverse the complete application.

-ba baFilePath
Path to the BA diagram (4ba). The path of the 4ba
file in the current project workspace is stored in the
$(BAFilePath) project manager variable.

-o outputFilePathPath filename
Path of the generated XML file. filename is the
generated XML file name. Uses the filename,
replacing the extension with xml.

Usage

The $(generate) command is used in build rules for generated programs. Predefined node variables on
page 366 can be used in the command.

$(generate) -ba "$(BAFilePath)" "$(InputPath)"

tclsh
The tclsh executable generates the final file by using both a Tcl template file and the intermediary XML
file crated by the $(generate) command.

The executable is GSTDIR/bin/tclsh (for UNIX™) and GSTDIR/bin/tclsh.exe (for Windows™).

Syntax

tclsh script.tcl [arguments]

1. Name of the intermediary XML file created by the $(generate) on page 268 command for the current
item.

Usage

tclsh is used in build rules for generated programs. Predefined node variables on page 366 can be
used in the command.

tclsh "$(TemplateDir)/tpl/genprg.tcl" "$(InputDir)/$(InputBaseName).xml"

Business Application Modeling (BAM) | 270

$(tcl) - deprecated
$(tcl) is deprecated, tclsh is used instead of $(tcl) to generate files. The $(tcl) command
launches the TCL interpreter and generates the final file by using both a Tcl template file and the
intermediary XML file created by the $(generate) command.

Syntax

$tcl [options] xml_filename

1. options are described in Table 73: $(tcl) options on page 270.
2. Name of the intermediary XML file created by the $(generate) on page 268 command for the current

item.

Options

Table 73: $(tcl) options

Option Description

-tpl templatefilename Tcl template file name.

-o Path of the file to which to write output.

Alternative syntax

Syntax similar to the command line Tcl Interpreter is available from version 2.41.

$(tcl) templatename templatearguments

Usage

The $(tcl) is used in build rules for generated programs. Predefined node variables on page 366 can
be used in the command.

$(tcl) "$(TemplateDir)/tpl/main.tcl" "$(InputDir)/$(InputBaseName).xml"

$(blockpoint)
The $(blockpoint) command manages user added code by extracting or injecting code between
BLOCK and POINT tags in a generated 4gl file.

Syntax

$(blockpoint) [options] "filename(s)"

1. options are described in Table 74: $(blockpoint) options on page 270.
2. filename is the generated 4gl file(s) separated by a space.

Options

Table 74: $(blockpoint) options

Option Description

-extract
Extract diff between filename and generated part of
filename.codefile.

Business Application Modeling (BAM) | 271

Option Description

-storeGenerated
Store the generated part of filename.code with the
content of filename.

-inject Inject the diff part of filename.code in the filename.

-commentStart Comment start pattern.

-commentStart2 Line comment pattern.

-commentEnd Comment end pattern.

-code [.code file path]

Specifies the name of the .code file. If there is only
one generated source file (4gl), the .code file uses
(by default) the same name as the source file,
otherwise -code is mandatory.

Usage

The $(blockpoint) command is used in build rules for generated programs. Predefined node variables
on page 366 can be used in the command.

$(blockpoint) -code "$(InputDir)/$(InputBaseName).code"
 -extract "$(InputDir)/$(InputBaseName).4gl"

$(blockpoint) -storeGenerated -code "$(InputDir)/$(InputBaseName).code"
 -inject "$(InputDir)/$(InputBaseName).4gl"

Business Application Modeling error messages
A list of BAM error messages. For messages that are not self-explanatory, additional information is
provided.

Table 75: Business Application Modeling Error Messages

Number Description

GS-13001 Cannot load file.

The file cannot be loaded; depending on the error, the message can change:

• Unknown node: an unknown node is present in the settings file
• Cannot register node: a node cannot be added to the file format (it's invalid or

already present)
• Empty extension: a required file extension is empty.

Check file path, format and permissions.

GS-13002 Cannot save file.

Check file path, format and permissions.

GS-13003 Template not found.

Check template directory path.

GS-13004 Unknown item %1.

The setting.agconf template file format is incorrect. Validate it using the XML
schema (or open it in Code Editor) and fix the errors.

Business Application Modeling (BAM) | 272

Number Description

GS-13006 settings.agconf version %1 is not supported, use version %2.

Modify setting.agconf to match version 2 XML schema.

GS-13007 %1 BLOCK(S) or POINT(S) end tag is(are) missing.

Fix the BLOCK / POINT..

GS-13008 Incorrect end BLOCK or POINT tag type.

Fix the BLOCK / POINT.

GS-13009 End BLOCK or POINT tag does not correspond to an open tag.

Fix the BLOCK / POINT.

GS-13010 %1 with name %2 is already defined.

Rename the BLOCK / POINT.

GS-13011 A BLOCK or POINT cannot be a child of a POINT tag.

Rename the BLOCK / POINT.

GS-13012 Renamed %1: %2 to %3.

Preprocessor message that a BLOCK / POINT has been renamed:

%1 = BLOCK or POINT

%2 = old BLOCK / POINT name

%3 = new BLOCK / POINT name

GS-13013 Lost %1: %2.

%1 = BLOCK or POINT

%2 = BLOCK / POINT name

GS-13014 Adding entries outside BLOCK or POINT not allowed.

Add a BLOCK / POINT in the templates or remove your code.

GS-13015 $(agcomp) is deprecated, please prefer using $(generate),
tclsh and $(blockpoint) commands.

Modify the build rule to use the new commands.

GS-13016 Modified %1: %2.

%1 = BLOCK or POINT

%2 = BLOCK / POINT name

GS-13017 Unknown property.

An unknown property has been set in the settings file. Remove the property or
change its name.

GS-13019 Cannot open file : extraction load failed.

Check the rights on the generated source file.

Business Application Modeling (BAM) | 273

Number Description

GS-13020 Cannot open file : injection save failed.

Check the rights on the generated source file.

GS-13021 Cannot open file : update load failed.

Check the rights on the generated source file.

GS-13022 Cannot open file : update save failed.

Check the rights on the code file.

GS-13023 Code file load failed.

Check the rights on the code file or check that the code file contains valid XML
content.

GS-13024 Unknown argument %1 to Application Generator Block & Point
task.

The command $(blockpoint) contains an unknown argument in the build rule.
Check the argument %1 of $(blockpoint) command in the build rule.

GS-13025 Missing -depth int argument to Application Generator
compilation task.

The Application Generator build rule requires the -depth argument in the
$generate command. Add the -depth argument to the $(generate) command
in Application Generator build rules.

GS-13026 Invalid -depth argument for Application Generator compilation
task, required positive integer or 'unlimited'.The $(generate)
command requires a positive number (or keyword unlimited). Fix the argument in
the build rule command.

GS-13027 Unknown argument %1 to Application Generator compilation
task.

Command or tclsh or $(agcomp) contains an unknown argument in the build
rule. Check the argument %1 of $(generate) or tclsh or $(agcomp) command
in the build rules.

GS-13028 Invalid -endComment string argument, it cannot be used
without -startComment string argument.

The command $(blockpoint) contains an -endComment argument without -
startComment argument in the build rules. Remove the -endComment argument or
add a -startComment argument in the build rule.

GS-13029 Error decoding %1 using codec %2 (encoding=%3)

The file contents cannot be decoded with the codec, the encoding specified in the
environment does not correspond to the file and it cannot be read. Change the
encoding so that it supports all the file characters.

GS-13030 Error encoding %1 using codec %2 (encoding=%3)

The file contents cannot be encoded with the codec, the encoding specified in the
environment does not correspond to the file and it cannot be written to. Change the
encoding so that it supports all the file characters.

Business Application Modeling (BAM) | 274

Number Description

GS-13031 Missing codec for encoding %1

There is no default text codec for the specified encoding. Use another alias for this
encoding, update encodingMap.xml, or add a new POSIX charmap.

GS-13032 Malformed BLOCK/POINT start tag

The BLOCK/POINT start tag has a wrong syntax. Restore the right syntax.

GS-13033 Unexpected characters outside text blocks : %1

Some characters have changed outside the topmost block, which is not supported.
Insert a new toplevel block around the code you want to modify and regenerate the
code.

GS-13034 Missing argument -code in the $(BlockPoint) command

The $(BlockPoint) command is used with multiple generated files, the -code
argument is mandatory. Add the -code argument.

GS-13035 Missing files in the $(BlockPoint) command

The $(BlockPoint) command is used without generated files arguments. Add the
generated files list.

GS-13036 %1 contains code not managed in the $(BlockPoint) command

Some file managed by the .code were not updated by the $(BlockPoint) command,
the .code is not completely up to date. Add the missing files to the command line in
the build rule or remove the old file from the .code if they are no longer useful.

GS-13037 .code file version %1 is not supported

The current version of Genero Studio does not support this version of .code file.

Upgrade Genero Studio.

GS-13038 .code file encoding %1 differs with current one

The .code file encoding is not the same as the build encoding, the resulting files
may be incorrect.

Change the build encoding (the LANG variable for example) to match the .code file
encoding or rewrite the .code file with the current encoding.

GS-13039 Resolve conflict before compiling

The code file id does not match the source file id, thus a resulting conflict file. You
must merge the differences manually. This may occur after updating from the SVN
repository.

Merge the .conflict file and the source file, then delete the .conflict file.

GS-13040 Cannot write conflict file

The code file id does not match the source file id, thus a resulting conflict file which
cannot be written to the disk.

Check the directory permissions.

GS-13042 '-depth' argument of $(generate) command is deprecated, use
'depth' attribute on 'Item' elements in settings.agconf.

Business Application Modeling (BAM) | 275

Number Description

GS-13100 The 'Open Mode' property is not set.

The Open Mode property value is empty. The available values are: DISPLAY,
MODIFY, ADD, SEARCH and EMPTY. Check settings.agconf and ensure that
the initialValue attribute of the <DynamicProperty> node having name =
"openMode" contains one of the available values.

GS-13101 The 'Action' property is mandatory.

The Action property is mandatory when a relation is defined between modules
(4fdm to 4fdm) or between module and zoom (4fdm to 4fdz) and the relation
type=Relation. Check that the Type property of the relation is Relation. Check that
the Action property of the relation is not empty.

GS-13102 No report file is defined. Default layout will be used.

If the Report File property is empty, the default layout (ASCII mode) will be
used when a relation is defined between a module and a report (4fdm to 4rd) and
the relation type=ReportRelation. This is a warning message. Check that the Type
property of the relation is ReportRelation. Check that the Report File property of
the relation is not empty.

GS-13103 The 'Type' property of the relation is invalid.

The type of relation is not valid between entities: module (4fdm), program (4prg),
zoom (4fdz), report (4rd). Check the Type property of the supported relation and
ensure that the relation is supported.

GS-13104 The relation is not supported.

Check the entity relations.

GS-13105 Any relation to a program is not supported.

Check the entity relations.

GS-13106 The 'Report file' property contains an absolute path. Prefer
a relative path.

Absolute paths are not recommended because the project will not be portable. Use
a relative path. Be sure that your Genero environment variables are correctly set to
search for your resource files.

GS-13107 A unique key field can only be defined on the master table.

All fields making up the unique key of a record must be fields of the master table of
the record. Uncheck the Unique Key property of fields which are not of the master
table of the record.

GS-13108 Duplicate table name in the FROM clause.

The joins between a pair of tables must have the same join operator. Check that
there are not multiple join operators for the same pair of tables.

GS-13109 Field updated via ascending lookup is mandatory in the
record.

The field that is updated via an ascending lookup is mandatory in the master table
of the record. Add the field to the master table of the record. Currently, the field is
only defined in the Query clause of the record. If you don't want to see this field

Business Application Modeling (BAM) | 276

Number Description

on your form, use the phantom widget. Or, delete the lookup property of the field
which triggers the ascending lookup.

GS-13110 Multiple master records are not supported. Define a relation
between records.

When there are several records in a managed Form, only one can be the master.
This error occurs when at least one record is not linked by a relation. In the
Records view, check that all records are linked by a relation.

GS-13111 Invalid relation, primaryField and foreignField must have
same number of fields.

A relation must have the same number of primary fields and foreign fields. Modify
the relation fields so that a primary field corresponds to each foreign field.

GS-13112 The 'zoom' action in the Toolbar/Topmenu won't be generated,
an action is already named 'zoom'.

Rename your action to a name other than zoom.

GS-13113 Several relations ($1) use the same action name ($2 - $3).

Several relations use the same combination of Action/Source Record property
values.

$1 - Number of relations having the same combination of Action/Source
Record.

$2 - Action name.

$3 - List of record names.

Rename Action or change the Source Record to have a unique couple.

GS-13114 SQL statement 'FULL OUTER JOIN' is vendor proprietary SQL
syntax.

GS-13115 Invalid filename. A filename must be a BDL identifier.

Filename of 4prg, 4fdm, 4fdz, 4rd contains invalid characters. Identifiers must
confirm to these rules:

• It must include at least one character, without any limitation in size.
• Only ASCII letters, digits, and underscore (_) symbols are valid.
• No blanks, hyphens, and other non-alphanumeric characters.
• The initial character must be a letter or an underscore.
• It is recommended to always write identifiers in lower case.

Rename the file to a valid file name.

GS-13116 Several comboboxes use the same initializer name.

Make all initializer names unique.

GS-13117 A ComboBox is possibly not initialized.

Set the initializer or the items property of the ComboBox.

GS-13118 Table $1 unused in query.

Business Application Modeling (BAM) | 277

Number Description

A database table is used in the record, but there is no join for it in the query. Add a
join for the table in the record query.

GS-13119 Duplicated joins are forbidden in the query.

Remove the duplicated joins.

GS-13120 Building $1 generates an XML file (version=$2) which cannot
be handled by the templates (version=$3).

The build process of the file ($1) has been aborted because the intermediate XML
file has a version ($2) which mismatches the template version ($3).

Use a valid template set defined in Application Generator Preferences. Verify build
rules for the appropriate file type.

GS-13121 The $1 property is not supported.

In the Business Application diagram, the openMode or defaultMode property
defined on a relation between a CRUD Form and a Zoom Form is not supported.
Only DISPLAY and SEARCH values are currently supported on a Zoom. Change
the openMode or defaultMode property to a supported value.

GS-13122 The $1 property is missing in settings.agconf.

The build process has been aborted because the $1 dynamicProperty is missing in
the settings.agconf configuration file.

Check settings.agconf and confirm:

• The <DynamicProperty> node with name=”$1” is defined in the
<BusinessApplication> section.

• The dynamicProperties attribute of the item raising the error contains $1.

GS-13123 No CRUD function will be generated for the $1 table because
no primary key has been defined.

A primary key needs to be defined for the given table in order to have its CRUD
functions generated when compiling the database schema.

GS-13124 Record functionalities are incompatible with the $1 property
value ($2).

On a CRUD Form, if the openMode or defaultMode property is:

• ADD, the master record must have the functionality canAdd activated.
• EMPTY, the master record must have the functionality canEmpty activated.
• DISPLAY, all records must have the functionality canDisplay activated.
• MODIFY, at least one record must have the functionality canModify activated.

On a CRUD Form or Zoom Form, if the openMode or defaultMode property is
SEARCH, at least one record must have the functionality canSearch activated.

On incoming relations of a CRUD Form or Zoom Form, the openMode and
defaultMode property must follow the same rules as those forms.

To fix the error, change the openMode or defaultMode property value or change the
functionality of the record.

GS-13125 $1 doesn't exist or is not unique$2, please have a look in
the XML intermediate file.

Business Application Modeling (BAM) | 278

Number Description

An XPath cannot be resolved. Check the XML intermediate file.

GS-13126 The number of source fields defined on the relation doesn't
match the number of unique key fields defined in the
destination item.

Change the number of source fields defined on the relation.

GS-13127 Destination fields defined on a relation to a zoom are unused
in the code generation.

The destination fields defined on a Zoom relation will not appear in the generated
4gl code.

GS-13128 The table 'seqreg' is missing in your database schema,
therefore SERIAL fields cannot be handled by the templates.

A database schema field of datatype SERIAL can only be handled by using the
seqreg table. This table contains a list of table names and values, a value is the last
SERIAL created for a given table name. In case the couple (table name, last value)
does not exist, a new record will be created and the SERIAL value will start at 1.

Create the table seqreg in your database schema file.

GS-13129 Multiple SERIAL fields for the table $1 cannot be handled by
the templates.

Only one SERIAL field can be managed per database table. This is inherent to the
seqreg table.

Modify the table in you database schema file.

GS-13130 Business Application diagram is missing in the project.

Add a Business Application Diagram to the project.

GS-13131 Unique key must be a database primary or secondary key of the
master table.

All fields making up the unique key of a record must be either a database primary
key or secondary key of the master table (unique constraint).

Change the unique key property of fields which are not a database primary key
or secondary key of the master table or update the 4dbx schema.

GS-13132 Missing master table for $1 record.

Select a table in the master table property.

GS-13133 The field $1 defined on the relation does not exist in
Records view.

In the Business Application diagram, when a relation is defined between items, the
Source Field and the Destination Field must exist in the Records view.

Check the Source Field and/or Destination Field property of the relation or
open the appropriate item and add the missing fields.

GS-13134 Invalid relation, Source and Destination must have same
number of fields.

In the Business Application diagram, a relation between Forms must have the same
number of fields in the Source Field and Destination Field.

Business Application Modeling (BAM) | 279

Number Description

Check the Source Field and/or Destination Field property of the relation.

GS-13136 The Service Name property is mandatory.

The property Service Name of a WebService item must have a value in the
Business Application Diagram.

Set the Service Name property value.

GS-13137 The Namespace property is mandatory. The property Namepace of a
WebService Server item in a Business Application diagram must have a value.

Set the Namespace property value.

GS-13138 Several web services use the same name.

Any web service registered to the same Web Service Server must have an unique
name.

Ensure that the property Name of a web service is unique.

GS-13139 The $1 action is a reserved action name.

In the Business Application Diagram, when a relation is defined between items, the
Action property can not be a reserved action name. The list of reserved action
names is defined in the action defaults file (dbapp.4ad).

Set the value of the Action property to a non-reserved action name.

GS-13141 $1 - Check LANG variable or add entry in file encoding.tcl
where $1 is the value of the unsupported encoding

The LANG environment variable is set, but the encoding part is either invalid
(change the value of the LANG environment variable) or not present in the
supported encoding array (add an entry in encoding.tcl).

GS-13142 All fields must be part of the same record.

Choose fields from the same record.

GS-13143 The record $1 defined on the relation does not exist in
Records view.

In the Business Application diagram, when a relation is defined between items,
the Record Source must exist in the Records view. Check the Source Record
property of the relation or open the source entity and add the missing record.

GS-13144 The 'Source Record' property is missing.

The Source Record property is missing in the Business Application diagram.
When a relation is defined between items, if the Row Bound property is checked
on an outgoing relation, the Record Source must be defined if there is more than
one record in the form. It is implicit if there is only one record.

Check the Source Record property of the relation or uncheck the Row Bound
property.

GS-13145 The $1 functionality is not supported for $2 container on
mobile devices.

Some functionality is not supported by the template. For example canAdd,
canModify, and canSearch are not supported for tables.

Business Application Modeling (BAM) | 280

Number Description

Uncheck the functionality.

GS-13146 Several records $1 are candidate for the 'Source Record'
property.

Remove the ambiguity and choose a record.

GS-13147 The 'Row Bound' property is not supported for GRID container.

Uncheck the Row Bound property or choose the table container in the form.

GS-13148 The 'Source Field' property is missing.

The position Source Field is required when the destination of the relation is a
zoom.

GS-13149 The '$1' container is not supported on mobile devices.

Some containers such Tree and ScrollGrid are not supported on mobile devices.
Change container to a supported container.

GS-13150 'Display, Add, Modify, Search are all disabled for record
'$1'

This message is a warning, not an error. It simply tells you that all functionality is
disabled for the record in question. Verify that having no functionality selected for
the record is intentional.

Business Records error messages
A list of Business Records error messages. For messages that are not self-explanatory, additional
information is provided.

Table 76: Business Records Error Messages

Number Description

GS-24001 Error loading file file.

An error occurred loading the file.

Check the file name and permissions .

GS-24002 Malformed XML.

XML file content is invalid.

Select the correct file or correct the XML.

GS-24003 File file not found in Business Application diagram (<BA file
name>).

A referenced element is not found in the Business Application diagram.

Select the correct file.

GS-24004 Invalid value for %1 property.

Check the property syntax in the documentation and correct any errors.

GS-24005 Conflicted item.

The Business Application diagram and Business Record unique id do not match.

Business Application Modeling (BAM) | 281

Number Description

Open the 4ba file and resolve the conflict.

GS-24201 Missing master Record.

The document must contain at least one record that is master.

Create a record.

GS-24202 Unique query key must be set.

At least one field must be declared the unique key in a record.

Set a unique key.

GS-24203 Record used in relation must be active.

Change the record to active, or remove the relation.

GS-24204 Empty relation.

This relation has no field definition.

Add foreign/primary (or source/destination) fields.

GS-24205 Database table column referenced more than once in the form.

In one form, a database table column can be referred only once. Table aliases
should be used to attach more than one field to a database.

• Select one of the wrong Formfields and change the fieldType attribute from
table_column to table_alias.

• Select one of the wrong Formfields and change fieldType attribute to
non_database.

GS-24206 Missing master table for record record.

Set the master table property.

GS-24207 Table %1 unused in query.

A database table is used in the record, but there is no join for it in the query.

Add a join for the table in the record query.

GS-24208 No schema attached.

A database is required for the business records.

Set the database name property to an existing database.

GS-24209 Invalid relation, primaryField and foreignField must have
same number of fields.

Modify the relation fields so that a primary field corresponds to each foreign field.

GS-24210 Invalid query, left and right join must have same number of
columns.

Check the query fields so that a left field corresponds to each right field.

GS-24211 Relation types don't match exactly.

The type of a foreign key doesn't match the corresponding primary key's type.

Check the relation, change the field types, or fix the primary / foreign key.

Business Application Modeling (BAM) | 282

Number Description

GS-24212 Relation field fieldname not found.

The relation refers a field that is missing in the record.

Modify the relation or add the field to the record.

GS-24213 Non existing schema schema attached to document.

Check the schema being referenced.

GS-24214 Nonexistent table table referenced in document.

The document uses a database table that is not present in the schema.

Update the schema, or change the field using the table.

GS-24215 Nonexistent column table.column referenced in document.

The document uses a database column that is not present in the schema.

Update the schema or change the field using the table.column.

GS-24216 Database table defined in "no database" document.

Set the database property to an existing schema or remove the field.

GS-24217 Table alias referenced more than once in the form.

The same table alias is associated with two columns in the form.

• Change one table alias name.
• Change either the table or column name.

GS-24218 Alias alias referenced for different tables in document.

The same alias is used for different tables.

Rename the alias so that it refers to the same database table.

GS-24219 Alias Lookup field is ignored on %1 as it is the master table
of the record.

A lookup field is dedicated to foreign field update in the master table; do not set it
on a master table column.

Remove the lookup property value or update the field database settings.

GS-24220 Name value %1 is already used.

Duplicate name used in the document.

Rename the element so that the name is unique.

GS-24221 Invalid INTERVAL qualifier.

The qual1 or qual2 set for the INTERVAL sqlType is not valid. It should belong to
the INTERVAL classes (i.e., YEAR-MONTH or DAY-TIME)

Change either qual1 or qual2 to fit the respective class range or change the
sqlType property from INTERVAL to another sqlType.

GS-24222 Startfield of DATETIME or INTERVAL qualifiers must come
earlier in the time-list than its endfield.

Business Application Modeling (BAM) | 283

Number Description

The qual1 value should be greater than the qual2 value, when the sqlType is
either DATETIME or INTERVAL.

Ensure qual1 is greater than qual2 or change the sqlType property from
INTERVAL to another sqlType.

GS-24223 Query properties set without attached database schema.

Some query properties (join, order, additional tables or where) are defined without
a database schema attached.

Clear the query properties or attach a database schema to document.

GS-24224 Table table referenced by property is not present in the record.

A table is referenced in a query property (join or order), but is not referenced in any
record's field or additional tables.

• Remove the join or order that references this table.
• Add a field referencing a column from this table to the record.
• Add the table to the 'additional properties' property.
• In the join or order, change the table to another one that is present in the

record.

GS-24225 Invalid relation, it must have at least one field.

• Remove the relation.
• Add one or more source, destination field pair.

GS-24226 Value not compatible with dataType.

The value is not compatible with dataType set. This error occurs when
defaultValue and include property value is incompatible with dataType property.

Change defaultValue/include, enter a value compatible to dataType format.

GS-24227 Invalid join between %1 and %2.

A join between the two tables is not correct (another one exists with a different
operator).

• Remove the join
• Change the operator
• Change the join table(s)

GS-24228 There is no join between table %1 and master table.

The specified table is joined to another one, but not to the master table, creating a
Cartesian product.

• Add the missing join for the %1 table
• Remove the table %1

GS-24229 Invalid initializer.

The initializer format is incorrect.

Change the initializer to respect the format.

GS-24230 Invalid source %1 for initializer %2.

Business Application Modeling (BAM) | 284

Number Description

The initializer source (left of “:”) is unknown.

Change the initializer to respect the format.

GS-24231 Initializer property %1 is missing.

The property used in the initializer does not exist.

Change the property name in the initializer.

GS-24232 Cannot resolve initializer value.

The initializer cannot be resolved, the database element is not found, or the
property is missing.

Change the initializer to point to a valid element.

GS-24233 Orphan property %1, clean document settings to remove it.

The document contains a dynamic property which is not present in the Application
Generator template directory settings (orphan property). These orphan properties
won’t be taken into account during compilation. The Application Generator settings
dynamic properties should match the document ones, otherwise this error is
generated.

• Add the orphan properties to the settings.agconf file.
• Remove the properties from the document using Tools >> Specific setup >>

Clean orphan properties.

GS-24234 Orphan property group %1.

The document contains a dynamic property group which is not present in
the Application Generator template directory settings (orphan property). The
Application Generator settings dynamic properties should match the document
ones, otherwise this error is generated.

• Add the orphan property groups to the settings.agconf file.
• Remove the properties from the document using Tools >> Specific setup >>

Clean orphan properties.

GS-24235 File type not defined in Application Generator settings.

A file used in Application Generator to generate code ($generate) is of an
undefined file type in settings.agconf.

Add the item type definition to the settings.agconf.

GS-24236 Cannot resolve initializer without a valid database schema.

The property initializer uses the database schema but the file doesn’t have a
schema.

• Set the database.
• Set the property value so that the initializer is not resolved.
• Remove the initializer.

GS-24237 Unique key field %1 is not present in the Record.

The unique key field value contains one field which is not in the record.

• Remove the field from the unique key.

Business Application Modeling (BAM) | 285

Number Description

• Add the field to the record.

GS-24238 Node %1 contains orphan properties, clean document settings
to remove them.

The file settings for the node differ from the Genero Studio ones, either the Genero
Studio settings are not up to date, or the file contains old settings.

• Update the Genero Studio settings.
• Clean the document settings (Tools >> Specific setup >> Clean orphan

properties).

GS-24239 Inactive table %1 in the database schema.

The database table active flag is set to false, the table is inactive and cannot be
used for code generation.

Make the table active or do not use it.

Business Application Diagram error messages
A list of Business Application Diagram error messages. For messages that are not self-explanatory,
additional information is provided.

Table 77: Business Application Diagram Error Messages

Number Description

GS-23001 Updated %1 property from %2 to %3.

GS-23402 Item is conflicted.

There are conflicts between items (they share same ID or file path).

Resolve the conflict. (Right-click and select Resolve Conflict menu option.)

GS-23403 Item not implemented.

Implement the item. (Right-click on item and select Implement.)

GS-23405 File %1 is missing.

Some implemented item file is missing on the disk. Restore the file or recreate the
item and implement it.

GS-23406 Item/Relation type %1 not supported.

Open the template file settings.agconf and fix the errors.

GS-23407 Unsupported property %1 found for %2.

Open the template file settings.agconf and add the property definition.

GS-23408 Duplicate Item name %1 found.

Multiple items share the same name property and it should be unique. Modify
name property value so that it is unique within the file items.

GS-23409 Duplicate Relation name %1 found.

Multiple relations share the same name property, name should be unique. Modify
name property value so that it is unique within the file relations.

Business Application Modeling (BAM) | 286

Number Description

GS-23410 <Constraint> (<description>) constraint failed.

Invalid source <Item>. When a constraint is defined with minSource and
maxSource values as 0, it implies that the source item should not have any
outgoing relations of type given in reference. This error occurs as the item has
non-supported outgoing relations.

Remove all the unsupported outgoing relations from the item.

GS-23411 <Constraint> (<description>) constraint failed.

Invalid destination <Item>. When a constraint is defined with minDestination and
maxDestination values as 0, it implies that the destination item should not have
any incoming relations of type given in reference. This error occur as the item has
non-supported incoming relations.

Remove all the unsupported incoming relations from the item.

GS-23412 <Constraint> (<description>) constraint failed.

Number of outgoing Relations, <Count>, are less than <Expected Count>.

The numbers of outgoing relations from the item are less than the expected
minimum outgoing relations count. Add at least <Expected Relation Count>
number of outgoing relations to fix this problem.

Number of outgoing Relations, <Count>, are greater than <Expected Count>.

The numbers of outgoing relations from the item are greater than the expected
maximum outgoing relation count. User has to remove the extra added relations,
so that the relation count will not across <Expected Relation Count> which
is the maximum number of outgoing relations allowed.

Number of incoming Relations, <Count>, are less than <Expected Count>.

The numbers of incoming relations to the item are less than the expected
minimum incoming relations count. User has to add at least <Expected
Relation Count> number of incoming relations to fix this problem.

Number of incoming Relations, <Count>, are greater than <Expected Count>.

The numbers of incoming relations to the item are greater than the expected
maximum incoming relation count. User has to remove the extra added relations,
so that the relation count will not across <Expected Relation Count> which
is the maximum number of incoming relations allowed.

GS-23413 Item ID can not be blank.

An ID is blank, the file is invalid. Contact your support center or remove the item
containing the ID an create a new one.

GS-23414 Duplicate ID found for %1 and %2.

Multiple items share the same id, creating a conflict. (Right-click and select
Resolve Conflict menu option.)

GS-23415 %1 file not supported by Business Application Diagram %2.

A build rule execution is trying to access data not described in the template
settings.agconf (through the Business Application diagram). Update the template

Business Application Modeling (BAM) | 287

Number Description

settings.agconf file, adding the unsupported item or change the file build rule
to not use the file.

GS-23416 Orphan property %1, clean document settings to remove it.

Some defined property does not belong to the current settings (orphan) and are
ignored by the compilation process. Check the metadata and either update the
current template settings.agconf or clean orphan properties.

GS-23417 Orphan property group %1, clean document settings to remove
it.

Some defined property group does not belong to the current settings (orphan).
Check the metadata and either update the current template settings.agconf or
clean orphan properties

GS-23418 Node %1 contains orphan properties, clean document settings
to remove them.

Some node contains metadata definitions which do not belong to the current
settings (orphan). They are ignored by the compilation process. Check the
metadata and either update the current template settings.agconf or clean orphan
properties.

GS-23419 Obsolete item type %1.

The Item definition does not exist in the current template settings. It is ignore by
the compilation process. Add the Item definition to the template settings.agconf,
convert the item to a corresponding supported Item type (Right-click and select
Convert menu option.), or remove the item.

Meta-schema Manager | 288

Meta-schema Manager

The Meta-schema Manager is a visual tool used to design, create and maintain database meta-schema
files.

• What is a database meta-schema? (4db) on page 288
• Creating a meta-schema on page 289
• Adding more information to a meta-schema on page 293
• Viewing a meta-schema on page 300
• Update a meta-schema from database on page 302
• Generate a database script from meta-schema on page 303
• Meta-schema Manager Reference on page 305

What is a database meta-schema? (4db)
A database meta-schema file is the central repository of a database's meta-data; information about the
tables, columns, and relations, and default values of a relational database. Information from the database
meta-schema file is used by Genero Studio Form Designer, Business Application Modeling, and Code
Editor.

4db and 4dbx files

There are two types of database meta-schema files used by Genero Studio.

4db Used in standard Genero Studio projects.

4dbx Used in code-generated projects in Business
Application Modeling. It includes special features for
application generation such as a table for managing
serial columns.

When is it used?
A database meta-schema file is required when you use Genero Studio to:

• Examine the structure of a tables, columns, and other attributes.
• Create a Genero Studio form definition based on a database table.
• Generate application code.

The database meta-schema is not used by Genero Studio when an application is executed. Genero Studio
uses the Genero runtime system and the specific database client software to access any databases
referenced in a Genero application.

Meta-schema creation and maintenance
Database meta data can be extracted from a relational database into a meta-schema file, or it can be
based on an existing database schema file.

It is important that the database meta-schema file match the current structure of the database itself. If
changes are made in the database structure, any database meta-schema files that describe the database
must also be updated.

Meta-schema Manager includes options to create and update a database based on meta-schema file
changes.

Meta-schema Manager | 289

GSTSCHEMANAMES

Set the GSTSCHEMANAMES on page 143 environment variable to make meta-schemas available to all
projects.

Creating a meta-schema
Information on creating meta-schemas.

• Create a meta-schema on page 227
• Extract meta-schema information from database on page 228
• BDL schema file (sch) on page 293
• Add a meta-schema to a project on page 231

Create a meta-schema
Create a database meta-schema file.

1. Select File >> New.
The New dialog opens.

2. Select a category from the left-side panel.

Option Description

Genero BAM Desktop Select this option if you are creating a database
meta-schema for use in a Business Application
Modeling managed project for a desktop
application. The file created will be a 4dbx.

Genero BAM Mobile Select this option if you are creating a database
meta-schema for use in a Business Application
Modeling managed project for a mobile
application. The file created will be a 4dbx.

Genero Select this option if you are creating a database
meta-schema for use in a standard Genero
program. The file created will be a 4db.

3. Select an option from the Database section from the right-side panel.

Option Description

DB Schema Creates a new meta-schema file.

DB Schema from Database Opens the New Meta-schema dialog to which you
enter your database and connection information.
See Extract meta-schema information from
database on page 228.

The meta-schema file displays in the document view. A new meta-schema file is automatically added to the
list in the DB Schemas Tab if you have saved the file in the current project.

Extract meta-schema information from database
The New Meta-schema dialog assists in extracting schema information from a database.

To extract a database meta-schema file from a database, you must have access and permissions for the
database. If you have trouble connecting to a database, make sure the database and the corresponding
database client software are installed and configured properly.

When you extract the meta-schema information from the database, you overwrite the existing schema. Any
user changes that had been made to the schema are lost when using the extract schema option. If you

Meta-schema Manager | 290

wish to keep user changes, you must update the schema. See Update a meta-schema from database on
page 302.

1. Select Database>>Extract Schema. The first step is specifying the name and location of the meta-
schema file.

Figure 182: New Schema dialog

Meta-schema file path Browse for a destination directory. Enter the name
and path for the new database meta-schema
file. Select a 4db meta-schema file for standard
projects. Select a 4dbx file if you are working
with a Business Application Modeling managed
project.

Insert the file in the project Check this box to add the meta-schema file in the
project. Select the node where the file should be
added.

2. Click the Next button to continue to Connection information. This connection information is only used
to extract the information for the database meta-schema file from the referenced database.

Meta-schema Manager | 291

Figure 183: Connection information

a) In the Database Connection Information section, select either Use explicit settings or Use
external settings.

Use explicit settings, previous connection You can use a previous connection that was
created for the same database. The drop down
list provides a list of the existing connections.

Use explicit settings, database type You can enter the Database Type by selecting
the desired type from the drop down list, and
the corresponding information for that type.
The Database driver for the database type is
automatically entered. If other drivers exist, they
are available in the drop down list.

Use external settings Information in the FGLPROFILE configuration file
is used to extract the corresponding connection
information for the specified database. Genero
Studio will use the schema name that you
entered to check for any related entry in the
FGLPROFILE configuration file, and will use
those values to define the connection. See
information on the FGLPROFILE file in the BDL
User Guide.

Meta-schema Manager | 292

b) In the Database User Information section, provide the necessary database user details. The
required information varies based on the database type selected. See Database server/user
information on page 308.

c) Click Test Connection to verify that the information is correct and that you are able to access the
database.

3. Click the Next button to continue to Extraction Options. Select the options for the meta-schema file.

Figure 184: Extraction options

Case sensitivity Specify how case in database object names
should be handled.Case sensitive: case won't
be changed on database objects, Lower case:
database object names will be converted to lower
case, Upper case : database object names will be
converted to upper case.

Import system tables Check this box to include system tables in the
schema.

Ignore errors Specify that conversion errors should be ignored.
If this option is unchecked, the extraction will stop
as soon as an error occurs (for example, if a table
column has an unsupported type.)

Conversion method Select the type of conversion you wish for the
specific data types; the default choice is Type A.

Meta-schema Manager | 293

4. Click Finish to begin the extraction process.
If you didn't already do so, save the database meta-schema file in a node in the project; the database
meta-schema will be added to the DB Schemas tab and made available to other modules.

Any application that uses the meta-schema file must have a dependency to the node where the meta-
schema file was added. See Add a meta-schema to a project on page 231.

BDL schema file (sch)
Genero BDL sch files contain definitions of the database tables and columns.

This sch file is automatically created when you compile a Genero Studio meta-schema file, or you can
import an existing one using the Database >> Import SCH file menu option.

Importing an existing Genero BDL column definition file (sch), converts the format to a Genero Studio
meta-schema file (4db). You are prompted for the meta-schema name and path.

When the sch file is used
The BDL sch file is used when a Genero BDL module (4gl file) is compiled. If you compile a BDL
module/program from the command line, you must have a copy of the sch file in the same directory or set
FGLDBPATH environment variable specifying the directory in which the sch files can be found.

Add a meta-schema to a project
You may have to add the meta-schema file to a project.

If you used File >> New to create your project, the default structure of your project includes nodes for a
project, application, library, and databases; the dependencies between the default nodes has been
predefined. When you save your Meta-schema file in the Databases node of the project, the dependency
for the application node in the project already exists.

However, if you created your own project structure, you must follow these steps.

1. Open the project.

2. Right-click on the application or library node in the Project view to which you want to add the meta-
schema file and select Add Files. Locate and add the meta-schema file.

3. Add a dependency to the Meta-schema file for any application or library nodes. Right-click the node and
select Advanced Properties, Dependencies. Check the box for the node containing the Meta-schema
file.

Adding more information to a meta-schema
Add more information to meta-schemas, such as tables and columns, constraints, indexes, and foreign
keys.

Warning: A rebuild of a project is not automatically done when the meta-schema file (.4db,
.4dbx) is modified. It is the responsibility of the developer to recompile the appropriate parts of the
project.

• Add new tables and columns on page 294
• Add constraints or indexes on page 294
• Manage SERIALs on page 300
• Add foreign keys on page 295
• Centralize field information (label, widget, default value) on page 300

Meta-schema Manager | 294

Add new tables and columns
You can add tables and columns to a meta-schema.

Right-click in the background of the meta-schema diagram. Select Add Table. A new table with a single
column is added to the diagram.

Right-click on the table and select Add Column to add an additional column. Repeat for as many columns
as needed.

Set properties for the table and each column by selecting the item in the diagram or Structure view and
editing its properties in the Properties view.

Add constraints or indexes
Constraints and indexes that are part of the database structure are displayed as part of the table, but
additional constraints and indexes can be added.

Right-click the table in the meta-schema diagram and select Add Constraint or Index.

Figure 185: Add Constraint or Index dialog

Specify the index type: Primary key, Secondary key, Index, or Unique index.

Primary Key A Primary Key is a column or set of columns that
uniquely identifies a row of data. The Not Null
property must be set on the columns used in a
Primary Key. The Not Null property indicates the
column does not allow NULL values. It is used by
the generation and update scripts when generating
the SQL statements used to manage the database.

Secondary Key Also known as a Unique Constraint. Like Primary
Key, the Secondary Key ensure uniqueness on the
columns it is defined, but also allows NULL values.

Index An index improves the speed of looking up data in
tables. Indexes can be defined on one or more table
columns.

Unique Index Unique Index behaves the same as an Unique
Constraint. It ensures the data in the column
is unique. The difference between a Unique

Meta-schema Manager | 295

Constraint and a Unique Index depends on the
database engine.

The index can be viewed in the Structure view.

Figure 186: Database Structure view

Select the index to display its properties in the Properties view.

Figure 187: Properties view

If an index contains more than one column, the order of the columns is indicated.

Add foreign keys
A foreign key constraint specifies that values in one table must also appear in another table. Foreign keys
that are part of the database structure are displayed, but foreign keys can also be added.

Right-click on the table in the meta-schema diagram to which you want to add a foreign key. Select Add
Foreign Key.

Meta-schema Manager | 296

Figure 188: Add Foreign Key dialog

Name Name of foreign key, a suggested name is
provided. This name will display in the Structure
and Properties views.

Table Select the table that contains the foreign key.

Referenced table Select the table that contains the primary key being
referenced.

Column Select the table column that references the primary
key column in the referenced table.

Referenced Column Select the name of the primary key column in the
referenced table.

Cascade delete Check this box if this is a foreign key with cascade
delete. A foreign key with a cascade delete
specifies that if a row in the parent table is deleted,
then the corresponding rows in the child tables are
automatically deleted. When this box is unchecked,
the deletion of a row in a parent table will be
aborted if a corresponding row exists in child tables.
See Cascade delete on page 232.

Meta-schema Manager | 297

Figure 189: Foreign Key relationship in diagram

The foreign key constraint is added to the table in the Structure view. Select the foreign key constraint to
display or edit its properties.

Meta-schema Manager | 298

Figure 190: Foreign Key in Database Structure view

Add a foreign key by drawing relationship
You can also define the foreign key by drawing the relationship between columns using the mouse. Right-
click on the background of the meta-schema diagram and select Add Foreign Key. Select the foreign key
column in one table, and drag the mouse towards the primary key column in the table to be referenced.
Once you release the mouse button, the relationship is displayed and the foreign key is added. Confirm the
foreign key properties in the properties view.

Add a many-to-many relationship
To design a many-to-many relationship between two tables, create a junction table to link them together.

Create the junction table using the primary key from each table.

Example

Table_A has a primary key column named Column_A.

Meta-schema Manager | 299

Table_B has a primary key column named Column_B.

Figure 191: Initial tables, each with a primary key defined

To create the many-to-many relationship, add a junction table. This table is comprised of
the primary key columns from each of the other tables.

Figure 192: Create and include the junction table

Meta-schema Manager | 300

Manage SERIALs
See "Auto-incremented columns (serials)" in the BDL User Guide.

Centralize field information (label, widget, default value)
Specifying field properties at the meta-schema level allows you to centralize properties such as the label,
widget, and default value used when an application based on the meta-schema is built.

1. Open the meta-schema file (4db or 4dbx).

2. Select a column in the table and set its Default value, label, and/or widget properties.
For example, if you set the state field's label property to State and its widget property to comboBox,
when you build a form that includes this field, it will be built with a label of State and as a comboBox
instead of the default Edit widget type.

Figure 193: Setting properties at the meta-schema level

3. Repeat for all fields to which you want to centralize information.

4. Save the meta-schema file.

Viewing a meta-schema
Once a database meta-schema file has been created, it can be viewed and enriched with information
that is not present in the database. Opening a meta-schema file displays it as a diagram for viewing and
editing.

Each table is described by a table in the diagram. The structure of the database tables is displayed in the
Database Structure view.

Meta-schema Manager | 301

Figure 194: Viewing the schema

Icons on the diagram and in the Database Structure view indicate when a column's status has been
changed: added
(),
modified
(),
or removed

().

A red circle icon with a white exclamation point, found in the upper left corner of the visual representation
of the table, identifies a table that has been modified. To view the specifics of the modification, hover over
the icon with your mouse.

Figure 195: Viewing the modifications for a table

Zoom in and out
Use Ctrl+mouse wheel to zoom in and out on the diagram.

Meta-schema Manager | 302

Reverting a change
Revert any changes made to the schema with Database >> Revert.... See Revert schema changes dialog
on page 315

Multiple views
Right-click the View tab at the bottom of the document to duplicate, rename, or delete a view. You may
display multiple views of the same meta-schema.

Filter shown items
Filter the items shown on the diagram with the right-click context menu Filter Items....

Comparing two meta-schemas
Compare two database meta-schema files.

Select Database >> Diff Schema... to create a merged schema view where:

• An object found in the first schema and not in the second will have a status of removed

.
An object with a status of removed is not included in the schema diagram, but can be seen in the
Database Structure view.

• An object found in the second schema and not in the first will have a status of added
.

• An object with the same name in both schemas but whose properties have changed in the second will
have a status of modified

.

Figure 196: Selecting two meta-schema files to compare with Schema Diff

Update a meta-schema from database
Update a schema file to the current structure of its associated database.

This procedure merges any changes made in the structure of a database into your meta-schema file. This
requires that you have access to the database. Any information that you have added to the meta-schema
will be preserved.

When the changes are merged, the Meta-schema Manager verifies that the database objects in the original
meta-schema still exist. If the object is no longer present in the database, it is removed from the meta-
schema.

1. Right-click on the meta-schema file in the Projects or DB Schemas tab.

Meta-schema Manager | 303

2. Select Update Schema ... or Update from Database.

3. Complete the Update meta-schema dialog as described in Extract meta-schema information from
database on page 228.
The database meta-schema file is updated to match the current structure of the database.

Warning: A rebuild of a project is not automatically done when the meta-schema file (.4db,
.4dbx) is modified. It is the responsibility of the developer to recompile the appropriate parts of
the project.

Generate a database script from meta-schema
Generate a 4gl source file to be used to create or update a database that is described in the meta-
schema file.

1. Right-click on the meta-schema file in the project.

2. Select an option:

• Generate Database Creation Script to generate a source 4gl file that can be used to create a new
database and tables according to the meta-schema file.

• Generate Database Update Script to generate a source 4gl file that can be used to update an
existing database based on the meta-schema file.

Note: The database update script will first drop the existing tables including their data,
and then recreate the structure of the database based on the modified schema. Previous
versions of the tables will be backed up and the data will be migrated to the new tables
when applicable. It is recommended to perform a backup of the database prior to running the
update script.

3. Complete the Generate Database Script dialog.

Meta-schema Manager | 304

Figure 197: Generate Database Script dialog

Database schema Name of selected meta-schema file.

Target database Specify the database to use in the script.

Generate primary keys, secondary keys,
indexes

Specify whether to include primary keys,
secondary keys, and indexes in the script.

Use national char types By default, the database creation / update scripts
will generate column using standard char types. If
this option is set, the scripts will produce columns
using national char types. For example, with an
Oracle database, the column types will be CHAR
or VARCHAR2 when the option is not selected, and
NCHAR, NVARCHAR2 when the option is selected.

Populate database with sample data Add statements in the script to add sample data to
the database.

4. Select Generate.

Meta-schema Manager | 305

Generate meta-schema documentation
You can generate an HTML file that provides documentation on the meta-schema. It lists the tables,
columns, indexes and foreign keys.

Any modifications made to the meta-schema will be considered as if applied to the database. New objects
added to the meta-schema and modification made on existing objects will be seen in the documentation.
Removed objects will not be shown.

1. Open a meta-schema file.

2. Select Database >> Generate Schema Documentation.
The documentation is generated in a temporary file and displayed in a browser.

3. To keep a copy of the documentation, save the page from the browser.

Meta-schema Manager Reference
Reference information for Meta-schema Manager.

• Meta-schema properties on page 305
• Data types on page 306
• Database server/user information on page 308
• Dialogs on page 309
• Views on page 315
• GSTSCHEMANAMES on page 143
• Meta-schema diagram context menu on page 318
• Meta-schema Manager error messages on page 318

Meta-schema properties
Properties can be set for each element in a meta-schema.

Table 78: Common properties

Property Description

Name The name property identifies the name of the item.

Table 79: Table properties

Property Description

Active The active property indicates that the table participates in the
application code generation.

Table 80: Column properties

Property Description

Order Position of the column in the table.

Data Type Specifies the data type of the column. See Data types on page 306.

Length Defines the maximum length of the character string. The upper limit is
65534.

Precision For DECIMAL data types; defines the number of significant digits (limit is
32, default is 16).

Meta-schema Manager | 306

Property Description

Scale For DECIMAL data types; defines the number of digits to the right of the
decimal point.

Qualifier 1, Qualifier 2 Specify the qualifiers for INTERVAL and DATETIME data typed columns,
for example YEAR and MONTH.

Not null Specifies that the column does not accept NULL values.

Default value Assigns a default value to a column.

Label Specifies the default label for a form item using the column.

Widget Widgets are designed for data handling, action triggering, or decoration.
Specify the default widget for a form item using the column.

Table 81: Index properties

Property Description

Columns The table columns that define the index.

Table 82: Foreign key properties

Property Description

Table Table that contains the foreign key.

Columns The table column that references the primary key column in the
referenced table.

Referenced table The table that contains the primary key being referenced.

Referenced columns The name of the primary key column in the referenced table.

Cascade delete A foreign key with a cascade delete specifies that if a row in the parent
table is deleted, then the corresponding rows in the child tables are
automatically deleted.

Data types
Data types in a meta-schema have the same meaning for every supported database type.

If needed, the data type will be converted to the appropriate target database type when generating a
database creation / update script. See the SQL adaptation guides in the Genero Business Development
Language User Guide for more information on the use of data types in your database.

Table 83: Common data types

Type Description

BIGINT The BIGINT data type is used for storing very large
whole numbers.

BIGSERIAL The BIG SERIAL data type produces automatic
integer sequences. BIGSERIAL is based on 64 bit
integer sequences.

BOOLEAN The BOOLEAN data type stores a logical value,
TRUE or FALSE.

BYTE The BYTE data type stores any type of binary data,
such as images or sounds.

Meta-schema Manager | 307

Type Description

CHAR The CHAR data type is a fixed-length character
string data type.

DATE The DATE data type stores calendar dates with a
Year/Month/Day representation.

DATETIME The DATETIME data type stores date and time
data with time units from the year to fractions of a
second.

DECIMAL The DECIMAL data type is provided to handle large
numeric values with exact decimal storage.

FLOAT The FLOAT data type stores values as double-
precision floating-point binary numbers with up to
16 significant digits.

INTEGER The INTEGER data type is used for storing large
whole numbers.

SERIAL The SERIAL data type produces automatic integer
sequences. SERIAL is based on 32 bit integer
sequences.

SMALLFLOAT The SMALLFLOAT data type stores values as
single-precision floating-point binary numbers with
up to 8 significant digits.

SMALLINT The SMALLINT data type is used for storing small
whole numbers.

TEXT The TEXT data type stores large text data.

VARCHAR The VARCHAR data type is a variable-length
character string data type, with a maximum size. It
is converted to the appropriate target database type
when generating database creation / update script.

Table 84: Informix specific data types

Type Description

INTERVAL The INTERVAL data type stores spans of time as
Year/Month or Day/Hour/Minute/Second/Fraction
units.

MONEY The MONEY data type is provided to store currency
amounts with exact decimal storage.

NCHAR / NVARCHAR IBM® Informix® supports the standard NCHAR and
NVARCHAR data types. These types are equivalent
to CHAR and VARCHAR (the same character set
is used), except that the collation order is locale
specific with NCHAR/ NVARCHAR types.

Informix specific types should be avoided when designing databases. A warning is displayed when a
column uses an Informix specific type: INT8, INTERVAL, MONEY, NCHAR, NVARCHAR, NVARCHAR2,
SERIAL8. To correct this warning convert columns to a common data type:

• INT8 to BIGINT
• MONEY to DECIMAL

Meta-schema Manager | 308

• SERIAL8 to BIGSERIAL
• NCHAR / NVARCHAR / NVARCHAR2 to CHAR / VARCHAR and check the Use national char types

option when generating database scripts
• avoid using INTERVAL

Note: The internal data type is used when generating database creation / update scripts or when
working with the Business Application Modeler. However, if you edit a data type in a schema from
the extracted database, the generic data type used in the creation of the schema might change the
internal data type. For example, a column extracted from an Informix® database of type INT8 will
be displayed in the schema as BIGINT. If the you change the type definition in the schema back to
BIGINT, the database creation / update scripts will this time create a column of type BIGINT in the
Informix® database.

Database server/user information
Database server and user information for each supported database type.

• IBM DB2 on page 308
• Informix on page 308
• MySQL on page 308
• Oracle on page 309
• PostgreSQL on page 309
• SQLServer on page 309
• SQLite on page 309

IBM® DB2®

Table 85: IBM® DB2®

ODBC datasource Name of the DataSource that has been previously created in ODBC.

User name User name used for connection, or blank if not required.

User password User password for the connection, or blank if not required.

Informix®

Table 86: Informix®

Informix® server Name of the Informix® database server instance (the Informix®

environment that contains the database to which you wish to connect).
This is the same as the value of the INFORMIXSERVER variable.

User name User name used for connection, or blank if not required.

User password User password for the connection, or blank if not required.

Note: For Informix® SE, the system variable DBPATH must be set.

MySQL

Table 87: MySQL

Host name or IP address Where the database is located.

Database name MySQL database name.

User name User name used for connection, or blank if not required.

Meta-schema Manager | 309

User password User password for the connection, or blank if not required.

Note: If you are using a remote MySQL database and a dynamic runner, these environment
variables must be set in Configurations:

• MYSQLDIR=mysql installation directory
• MYSQL_UNIX_PORT=$MYSQLDIR/mysql.sock
• MYSQLPORT=port used for mysql socket

Oracle

Table 88: Oracle

TNS name Oracle TNS service name.

Schema name Name of Oracle schema.

User name User name used for connection, or blank if not required.

User password User password for the connection, or blank if not required.

PostgreSQL

Table 89: PostgreSQL

Host name or IP address Where the database is located.

Port Port number used to access the database host

Database name PostgreSQL database name.

User name User name used for connection, or blank if not required.

User password User password for the connection, or blank if not required.

SQLServer

Table 90: SQLServer

ODBC datasource Name of the DataSource that has been previously created in ODBC.

User name User name used for connection, or blank if not required.

User password User password for the connection, or blank if not required.

SQLite

Table 91: SQLite

Database file Name of the file that contains the database.

User name User name used for connection, or blank if not required.

User password User password for the connection, or blank if not required.

Dialogs
Information about Meta-schema Manager dialogs.

• Advanced Properties dialog on page 310
• Connection information dialog on page 312
• Database Generation Script dialog on page 314

Meta-schema Manager | 310

• Revert schema changes dialog on page 315

Advanced Properties dialog
The Advanced properties dialog provides options for extracting and generating database schema
information.

The Advanced Properties dialog appears when you open a meta- schema (.4db, .4dbx) file and either:

• Right click on an empty space in the diagram and choose Advanced properties from the contextual
menu

• Choose Database >> Advanced properties.

In addition:

• The form shown on the Extraction tab displays when you complete the process to extract a meta-
schema from a database.

• The form shown on the Generation tab displays when you complete the process to generate a
database script from a meta-schema file.

Extraction

Figure 198: Advanced Properties dialog, Extraction tab

Meta-schema Manager | 311

Case sensitivity Specify how case in database object names should
be handled.Case sensitive: case won't be changed
on database objects, Lower case: database object
names will be converted to lower case, Upper case
: database object names will be converted to upper
case.

Import system tables Check this box to include system tables in the
schema.

Ignore errors Specify that conversion errors should be ignored.
If this option is unchecked, the extraction will stop
as soon as an error occurs (for example, if a table
column has an unsupported type.)

Conversion method Select the type of conversion you wish for the
specific data types; the default choice is Type A.

Generation

Figure 199: Advanced Properties dialog, Generation tab

Database schema Name of selected meta-schema file.

Meta-schema Manager | 312

Target database Specify the database to use in the script.

Generate primary keys, secondary keys,
indexes

Specify whether to include primary keys, secondary
keys, and indexes in the script.

Use national char types By default, the database creation / update scripts
will generate column using standard char types. If
this option is set, the scripts will produce columns
using national char types. For example, with an
Oracle database, the column types will be CHAR
or VARCHAR2 when the option is not selected, and
NCHAR, NVARCHAR2 when the option is selected.

Populate database with sample data Add statements in the script to add sample data to
the database.

Connection information dialog
The Connection information dialog gathers the details needed to connect to a database.

The Connection information dialog appears when you are creating or updating a meta-schema file, or
when you are changing the connection for the DB Explorer plug-in.

Figure 200: Connection information dialog

Meta-schema Manager | 313

The dialog can be seen as having four parts.

Schema details

The schema details section consists of two items. When not applicable, this section does not appear in the
dialog.

Current schema Identifies the current schema, if any. When you
select to edit the database connection for a meta-
schema file, the name of the currently connected
database displays. If no connection has been made,
the field states that no schema is selected.

Note: In some contexts, this read-only field
does not display.

Keep schema connection information
synchronized checkbox

When selected, the schema connection information
will be permanently updated for the current meta-
schema (.4db or .4dbx). This check box appears
as selected and read-only when you edit the
database connection for an existing meta-schema
file. If you edit the connection from DB Explorer,
you can uncheck this option to dissociate the DB
Explorer connection information from the meta-
schema connection information.

Note: In some contexts, this read-only field
does not display.

Database Connection Information

In the Database Connection Information section, select either Use explicit settings or Use external
settings.

Use explicit settings, previous connection You can use a previous connection that was
created for the same database. The drop down list
provides a list of the existing connections.

Use explicit settings, database type You can enter the Database Type by selecting
the desired type from the drop down list, and
the corresponding information for that type.
The Database driver for the database type is
automatically entered. If other drivers exist, they are
available in the drop down list.

Use external settings Information in the FGLPROFILE configuration file
is used to extract the corresponding connection
information for the specified database. Genero
Studio will use the schema name that you entered
to check for any related entry in the FGLPROFILE
configuration file, and will use those values to
define the connection. See information on the
FGLPROFILE file in the BDL User Guide.

Database User Information

In the Database User Information section, provide the necessary database user details. The required
information varies based on the database type selected. See Database server/user information on page
308.

Meta-schema Manager | 314

Test Connection

Click Test Connection to verify that the information is correct and that you are able to access the
database.

Database Generation Script dialog
Generate a 4gl source file to create or update the database that is described in the meta-schema file.

Figure 201: Database Generation Script dialog

Database schema Name of selected meta-schema file.

Target database Specify the database to use in the script.

Generate primary keys, secondary keys,
indexes

Specify whether to include primary keys, secondary
keys, and indexes in the script.

Use national char types By default, the database creation / update scripts
will generate column using standard char types. If
this option is set, the scripts will produce columns
using national char types. For example, with an
Oracle database, the column types will be CHAR
or VARCHAR2 when the option is not selected, and
NCHAR, NVARCHAR2 when the option is selected.

Populate database with sample data Add statements in the script to add sample data to
the database.

Meta-schema Manager | 315

Revert schema changes dialog
Changes made to the meta-schema can be reverted with the Revert schema changes dialog.

Figure 202: Revert changes dialog

Properties to revert Lists all elements in the meta-schema that have
been modified. Check the elements you wish to
restore to its status when the schema was last
extracted.

Resulting actions Lists dependencies affected by the modified
elements.

Views
Information about Meta-schema Manager views.

• Filter view on page 317
• DB Schemas tab on page 316

Meta-schema Manager | 316

DB Schemas tab
The DB Schemas tab displays all database meta-schema files associated with the project.

Figure 203: DB Schemas tab

A database meta-schema is added to the DB Schemas tab when you:

• Save a new database meta-schema file (4db or 4dbx) in the current project; the Meta-schema is
available in the DB Schemas tab when you work on projects in that workspace.

• Set the GSTSCHEMANAMES on page 143 environment variable; the available meta-schemas are
available in the DB Schemas tab for all projects.

Use the integrated Toolbar to:

Open a meta-schema Open the meta-schema in Meta-schema Manager.

Update from database See Update a meta-schema from database on page
302.

Sort column in database order Change the sort order of the columns, from
alphabetical order (the default) to the order in which
the columns are defined in the database.

Meta-schema Manager | 317

Filter view
The Filter View dialog allows you to hide and show items on a diagram.

Figure 204: Filter View

Meta-Schema Manager preferences
Set default preferences for Meta-Schema Manager and DB Explorer.

DB Explorer

Table 92: DB Explorer options

Preference Description

Maximum number of results for
show/edit data field

Limit the number of rows returned by DB Explorer. When set to zero,
unlimited rows can be returned.

Verbose mode check box When checked, information about the executed query displays.

For a successful query execution, a message like the following displays:
Executed query: select userid, password from signon

If an error occurs, information about the SQL error displays. For example,
if you edit the query and provide a wrong column name, an error
message like the following displays:
error (-6372): near "wrong_userid": syntax error Connection id: C:/Users/
name/xxx/officestore.db Executed query: insert wrong_userid, password
from signon

Meta-schema Manager | 318

Meta-schema diagram context menu
Right-click on a meta-schema diagram or item in the Database Structure view for a context menu of
options.

Table 93: Meta-schema diagram context menu

Option Description

Add Table See Add new tables and columns on page 294.

Add Column See Add new tables and columns on page 294.

Add Constraint or Index See Add constraints or indexes on page 294.

Edit Constraint or Index See Add constraints or indexes on page 294.

Add Foreign Key See Add foreign keys on page 295.

Edit Foreign Key See Add foreign keys on page 295.

Edit Edit properties of the item selected.

Insert Column Before/After See Add new tables and columns on page 294.

Revert See Revert schema changes dialog on page 315.

Layout Rearrange the items in the diagram.

Advanced Properties Specify the extraction and/or generation options.
See Advanced Properties dialog on page 310.

Filter Items... The Filter View dialog allows you to hide and show
items on a diagram.

Locate in Diagram This action brings focus in the diagram to the
selected item. If the selected object is not visible in
the current view, the Meta-schema Manager will try
to find another view where the object is visible. If no
view is found, you are prompted to make the object
visible in the current view or to create a new view.

Meta-schema Manager error messages
A list of Meta-schema Manager error messages. For messages that are not self-explanatory, additional
information is provided.

Table 94: Meta-schema Manager Error Messages

Number Description

GS-11000 Unexpected error.

An unexpected error occurred.

GS-11001 Error while reading file schema: description.

An error occurred while reading the file file.

The details about the error can be found in the description part of the message.

GS-11002 Cannot find codec.

The appropriate codec cannot be found to read a file.

Meta-schema Manager | 319

Number Description

GS-11003 Cannot find codec for encoding encoding.

The appropriate codec for encoding encoding cannot be found.

GS-11004 Error while creating new schema document.

The Meta-schema Manager failed to create a new document.

GS-11005 Dynamic property property not found for node node.

A dynamic property used in the meta-schema is not found in the current template.
Check the appropriate template is selected before opening the meta-schema.

Failed to read dynamic property.

An error occurred while reading dynamic properties. The meta-schema file might be
corrupted.

GS-11050 Schema file defined in GSTSCHEMANAMES cannot be found in
FGLDBPATH.

The file cannot be found.

GS-11051 Failed to load file file.

An error occurred while loading the file file .

GS-11052 Failed to open file file for writing.

Check the file permissions and those of its owner directory.

GS-11053 Failed to open file file for reading.

Check the file permissions and those of its owner directory.

GS-11100 Failed to locate node.

The specified database object cannot be found in the schema.

GS-11101 Unexpected schema.

An unexpected schema object has been found in the 4db or 4dbx document. The
schema file is corrupted and cannot be read.

GS-11102 Missing schema name.

The schema name cannot be found. This property is required and the loading of the
schema file cannot continue.

GS-11103 Missing schema property property.

This property is required, but it cannot be found. The loading of the schema file cannot
continue.

GS-11104 Invalid schema property property.

The schema property property has an invalid value. The loading of the schema file
cannot continue.

GS-11105 Schema contains no table or column.

Meta-schema Manager | 320

Number Description

No valid tables have been found in the schema. A valid table is a table in which is not
flagged has been removed and which contains at least one column in which is not
flagged has been removed.

GS-11106 Empty schema file.

The schema document contains no information.

GS-11107 File is saved using a newer version of Genero Studio. Please
upgrade Genero Studio.

The schema document has been saved with a newer version of Genero Studio. You
will need to upgrade Genero Studio to be able to open it.

GS-11108 Schema name is not lowercase, its use in 4GL source will
generate errors.

The schema name contains uppercase characters. Using it in 4GL programs might
generate compilation errors. Use lowercase for the Schema name.

GS-11109 The usage of both CHAR/VARCHAR and NCHAR/NVARCHAR columns is not
supported by all databases.

The schema contains columns with mutually exclusive types. For instance it contains
both CHAR / VARCHAR and NCHAR / NVARCHAR columns.

GS-11110 Schema name is invalid, its use in 4GL source will generate
errors.

The schema name contains characters not supported by the Genero language.

GS-11111 Unexpected table.

An unexpected table object has been found in the 4db or 4dbx document. The schema
file is corrupted and cannot be read.

GS-11112 Missing table name.

The table name cannot be found. This property is required and the loading of the
schema file cannot continue.

GS-11113 Missing table property property.

The table property property is required but it cannot be found. The loading of the
schema file cannot continue.

GS-11114 Invalid table property property.

The table property property has an invalid value. The loading of the schema file cannot
continue.

GS-11115 Schema already contains a table table.

The table has already been found in the 4db or 4dbx document. The document cannot
contain two tables with the same name.

GS-11116 Table table is not found. Creating temporary table.

Meta-schema Manager | 321

Number Description

The table cannot be found, and it is required by another database object. A surrogate
table will be created.

GS-11117 Table contains no columns.

The table does not contain any columns.

GS-11121 Unexpected column.

An unexpected column object has been found in the 4db or 4dbx document. The
schema file is corrupted and cannot be read.

GS-11122 Missing column name.

The column name cannot be found. This property is required and the loading of the
schema file cannot continue.

GS-11123 Missing column property property.

The column property property is required but it cannot be found. The loading of the
schema file cannot continue.

GS-11124 Table table already contains a column column.

The column has already been found in the table. The document cannot contain two
columns with the same name within the same table.

GS-11125 Constraint or index index already contains a column column.

The column has already been found in the index. The document cannot contain two
columns with the same name within the same index.

GS-11126 Foreign key key already contains a column column.

The document cannot contain two columns with the same name within the same
foreign key.

GS-11127 Column column is not found in table table. Creating temporary
column.

The column cannot be found in the table and it is required by another database object.
A surrogate column will be created.

GS-11128 Column column in table table has unsupported type: type.

The type is not supported for column within table. An unsupported type is of form
encoded=(type, length), and can be generated while extracting database schemas.

GS-11129 Column column in table table has invalid type: type.

The type is invalid for column within table. An invalid type is not handled by the 4GL
language.

GS-11131 Unexpected foreign key.

An unexpected foreign key object has been found in the 4db or 4dbx document. The
schema file is corrupted and cannot be read.

GS-11132 Missing foreign key name.

Meta-schema Manager | 322

Number Description

The foreign key name cannot be found. This property is required, and the loading of the
schema file cannot continue.

GS-11133 Missing foreign key property property.

The foreign key property property is required, but it cannot be found. The loading of the
schema file cannot continue.

GS-11134 Schema already contains a foreign key key.

The foreign key has already been found in the 4db or 4dbx document. The document
cannot contain two foreign keys with the same name.

GS-11135 Schema already contains a foreign key key. Renaming user-defined
foreign key to name.

The foreign key has already been found in the 4db or 4dbx document. The document
cannot contain two foreign keys with the same name.

The foreign key will be renamed to name.

GS-11136 Foreign key key is not found. Creating temporary foreign key.

The foreign key key cannot be found, and it is required by another database object. A
surrogate foreign key will be created.

GS-11137 Table table is not found for foreign key key.

The table the foreign key refers to cannot be found. The loading of the schema file
cannot continue.

GS-11138 Column column is not found in table table for foreign key key.

The column the foreign key refers to cannot be found in the table. The loading of the
schema file cannot continue.

GS-11139 Foreign key key does not contain any table column.

The foreign key does not contain any columns.

GS-11140 Foreign key key columns column and reference have different data
types.

The foreign key columns have mismatching data types.

GS-11141 Unexpected constraint or index.

An unexpected index object has been found in the 4db or 4dbx document. The schema
file is corrupted and cannot be read.

GS-11142 Missing constraint or index name.

The index name cannot be found. This property is required and the loading of the
schema file cannot continue.

GS-11143 Missing constraint or index property property.

The index property is required but it cannot be found. The loading of the schema file
cannot continue.

Meta-schema Manager | 323

Number Description

GS-11144 Table table already contains a constraint or index named index.

The index has already been found in the table table. The document cannot contain two
indexes with the same name within the same table.

GS-11145 Table table already contains a constraint or index named index.
Renaming user-defined constraint or index to name.

The index has already been found in the table. The document cannot contain two
indexes with the same name within the same table. The index will be renamed to
name.

GS-11146 Constraint or index index is not found. Creating temporary
constraint or index.

The index cannot be found in the table and it is required by another database object. A
surrogate index will be created.

GS-11147 Column column is not found in table table for constraint or
index index.

The column that the index refers to cannot be found in the table. The loading of the
schema file cannot continue.

GS-11148 Table table contains more than one primary key.

The table contains more than one primary index. Only one primary index can be
defined for a table.

GS-11149 Constraint or index index does not contain any table column.

The index does not contain any columns.

GS-11150 Column column allows null values but is referred by primary key
primary key.

A column referred in a primary key doesn't have its NOT NULL flag set.

GS-11181 Unexpected layout data section.

An unexpected layout section has been found in the 4db or 4dbx document. The
schema file is corrupted and cannot be read.

GS-11182 Missing layout data property property.

The layout property property is required but it cannot be found. The loading of the
schema file cannot continue.

GS-11191 Unexpected database data section.

An unexpected data section has been found in the 4db or 4dbx document. The schema
file is corrupted and cannot be read.

GS-11192 Missing database data property property.

The data property property is required but it cannot be found. The loading of the
schema file cannot continue.

GS-11193 Document already contains database value for identifier.

Meta-schema Manager | 324

Number Description

Database data has already been found in the 4db or 4dbx document. The document
cannot contain twice data for the same identifier.

GS-11194 Document contains invalid identifier identifier for database
value (value: value). Database value will be ignored and
removed.

The database data identifier doesn't match any database object. The associated value
is ignored and will be discarded upon save.

GS-11201 Unexpected dynamic property.

An unexpected dynamic property has been found in the 4db or 4dbx document. The
schema file is corrupted and cannot be read.

GS-11202 Missing dynamic property attribute attribute.

The dynamic property attribute attribute is required but it cannot be found. The loading
of the schema file cannot continue.

GS-11203 Object doesn't support dynamic property property.

A dynamic property has been read for a database object but this property is not defined
for this object. Check the appropriate template is selected before opening the meta-
schema.

GS-11204 Object already contains a dynamic property property.

A dynamic property has been defined twice for a database object.

GS-11210 Invalid model node info version.

Model node info for type type not found.

Failed to add property property to model node info: a dynamic
property with this name already exists

Failed to add property property to model node info: a static
property with this name already exists

Failed to add property property to model node info: a property
with this name was not found

Information about model node is invalid.

GS-11220 Name cannot be empty.

The name of a database object is empty.

GS-11221 Same name cannot be applied to more than one table.

Two tables cannot have the same name in the meta-schema.

GS-11222 Same name cannot be applied to more than one column of same
table.

Two columns of the same table cannot have the same name in the meta-schema.

GS-11223 Same name cannot be applied to more than one foreign key.

Meta-schema Manager | 325

Number Description

Two foreign keys cannot have the same name in the meta-schema.

GS-11224 Same name cannot be applied to more than one constraint or index
of same table.

Two constraints or indexes of the same table cannot have the same name in the meta-
schema.

GS-11225 Table name is invalid.

A table cannot be named with the provided name.

GS-11226 Column name is invalid.

A column cannot be named with the provided name.

GS-11227 Database object name contains invalid character(s).

The name of the database object contains invalid characters.

GS-11228 The name name has been converted to other name as database
object name contains invalid character(s).

The original name of the database object contains invalid characters. The database
object has been renamed to a new name.

GS-11270 Unexpected extraction options.

An unexpected extraction options section has been found in the 4db or 4dbx document.
The schema file is corrupted and cannot be read.

GS-11271 Unexpected extraction settings.

An unexpected extraction settings section has been found in the 4db or 4dbx
document. The schema file is corrupted and cannot be read.

GS-11272 Unexpected generation options.

An unexpected generation options section has been found in the 4db or 4dbx
document. The schema file is corrupted and cannot be read.

GS-11273 Unexpected generation settings.

An unexpected generation settings section has been found in the 4db or 4dbx
document. The schema file is corrupted and cannot be read.

GS-11303 The database object name has been newly added in schema.

The database object has been added to the schema and is not yet found in the
database. Creating a database update script will generate SQL instructions to add this
object to the database.

GS-11304 The database object name has been marked as removed from schema.

The database object has been removed from the schema and can still be found in the
database. Creating a database update script will generate SQL instructions to remove
this object from the database.

GS-11310 Name has been modified from name to other name.

Meta-schema Manager | 326

Number Description

The database object has been renamed in the schema and can still be found in the
database. Creating a database update script will generate SQL instructions to update
this object in the database.

GS-11311 Database object name has an invalid uuid. A new one has be
generated (uuid).

The internal identifier of the database object is invalid and has been replaced with a
new one.

GS-11315 Column type has been changed from type to other type.

The type of the column has been changed in the schema. Creating a database update
script will generate SQL instructions to update the column in the database.

GS-11316 Not null property has been changed from value to other value.

The value of the 'Not null' property of the column has been changed in the schema.
Creating a database update script will generate SQL instructions to update the column
in the database.

GS-11318 Column column in table table uses Informix specific type: type.

The column uses an Informix specific data type.

GS-11320 Constraint or index type has been changed from type to other
type.

The type of the constraint has been changed in the schema. Creating a database
update script will generate SQL instructions to update the constraint in the database.

GS-11322 Constraint or index columns of name has been changed from
columns to other columns.

The columns of the constraint have been changed in the schema. Creating a database
update script will generate SQL instructions to update the constraint in the database.

GS-11323 Constraint or index name column order of name conflicts with
column order of foreign key.

Indicates the order of columns in the foreign key is not the same as the one defined for
the constraint or index.

GS-11325 Foreign key table has been changed from table to other table.

The table associated to the foreign key has been changed in the schema. Creating a
database update script will generate SQL instructions to update the foreign key in the
database.

GS-11326 Foreign key referenced table has been changed from table to
other table.

The reference table associated to the foreign key has been changed in the schema.
Creating a database update script will generate SQL instructions to update the foreign
key in the database.

GS-11327 Foreign key columns of foreign key has been changed from columns
to other columns.

Meta-schema Manager | 327

Number Description

The columns associated to the foreign key have been changed in the schema. Creating
a database update script will generate SQL instructions to update the foreign key in the
database.

GS-11328 Foreign key referenced columns of foreign key has been changed
from columns to other columns.

The reference columns associated to the foreign key have been changed in the
schema. Creating a database update script will generate SQL instructions to update
the foreign key in the database.

GS-11329 Cascade delete property has been changed from value to other
value.

The value of the 'Cascade delete' property of the foreign key has been changed in the
schema. Creating a database update script will generate SQL instructions to update
the foreign key in the database.

GS-11330 Foreign key name column order of column conflicts with column
order of other column.

Several columns are defined in the foreign key with the same order. The order of the
column is automatically updated to solve the issue.

GS-11340 Constraints or indexes constraint and other constraint are
defined on same set of columns.

Both constraints are defined on the same set of columns.

GS-11341 Foreign key foreign key references columns which are not part of
primary key or unique constraint.

No primary key or secondary key is defined on the columns referenced by the foreign
key.

GS-11342 Constraint cannot be placed on a BYTE or TEXT column.

A unique constraint has been defined on column of type BYTE or TEXT.

GS-11343 Non-unique index index conflicts with constraint constraint.

A non-unique index has been defined on the same set of columns has a unique
constraint.

GS-11350 File contains orphan property property, clean document settings
to remove it.

The meta-schema file was created using a set of template containing dynamic
properties which are not defined in the current set of template any more. Use the
appropriate action to clean up the meta-schema and to remove those unused
properties.

GS-11351 File contains orphan property group group, clean document
settings to remove it.

The meta-schema file was created using a set of template containing groups of
dynamic properties which are not defined in the current set of template any more.

Meta-schema Manager | 328

Number Description

Use the appropriate action to clean up the meta-schema and to remove those unused
property groups.

GS-11352 Node node contains orphan properties, clean document settings to
remove them.

The meta-schema file was created using a set of template containing dynamic
properties which not defined in the current set of template any more. Some database
objects are using those obsolete properties. Use the appropriate action to clean up the
meta-schema and to remove those properties.

GS-11360 Foreign key references an inactive table.

The table referenced by the foreign key is flagged as inactive whereas the table
associated to the foreign key is active.

GS-11361 Foreign key table is inactive.

The table associated to the foreign key is flagged as inactive whereas the table
referenced by the foreign key is active.

GS-11400 Unknown tag tag.

The meta-schema document contains unknown data. The schema file is corrupted and
cannot be read.

GS-11550 Wrong line format.

The data contained in the file being imported to a meta-schema has an unsupported
format. The data cannot be imported.

GS-11551 Can't convert type for column column of table table.

The type of the table column defined in the imported table is unsupported. The data
cannot be imported.

GS-11552 Can't convert length for column column of table table.

The length of the table column defined in the imported table is invalid. The data cannot
be imported.

GS-11553 Can't convert order for column column of table table.

The column has an unsupported order value. The import of the sch file cannot
continue.

GS-11600 Compilation generated an empty sch file.

The compilation of the schema document generated an empty sch file. This can
happen when no valid table columns have been found in the document.

GS-11650 The extraction process task can't be generated.

An error occurred while trying to create the database extraction process.

GS-11651 Database name can't be empty.

Meta-schema Manager | 329

Number Description

An empty database name has been found while trying to set up the database
connection.

GS-11652 Schema file name can't be empty.

An empty file name has been found while trying to generate the schema document.

GS-11653 Preparing schema extraction...

This message indicates the schema extraction process is being set up.

GS-11654 Schema extraction started...

This message indicates the schema extraction process has started.

GS-11655 Merging extracted schema with existing one...

This message indicates the schema extraction process tries to merge the existing
schema document with the extracted one.

GS-11656 Generating schema id...

This message indicates a new schema identifier is being generated.

GS-11657 Schema extraction successful.

This message indicates the schema extraction process has successfully completed.

GS-11658 Schema extraction failed.

The schema extraction process has failed at some point. Refer to other messages to
get additional information.

GS-11659 Schema extraction aborted.

The schema extraction process has been aborted by the user.

GS-11660 Failed to move temporary schema file to destination.

An error occurred while trying to move the temporary schema file to its destination.

GS-11661 Failed to create schema backup file.

An error occurred while trying to create a backup of the schema file.

GS-11662 Failed to remove schema backup file.

An error occurred while trying to delete a backup of the schema file.

GS-11700 The connection test process task can't be generated.

An error occurred while trying to create the database connection test process.

GS-11750 Generating documentation for meta-schema...

This message indicates documentation for the schema is being generated.

GS-11751 Documentation generated at location

Meta-schema Manager | 330

Number Description

This message indicates documentation for the schema has been generated and is
saved at the given location.

GS-11850 Failed to extract database meta data.

The extraction of the meta-schema has failed. Refer to the previous messages for
more information.

GS-11851 Failed to connect to database.

The connection to the database has failed. Ensure the appropriate connection
information has been provided.

GS-11852 Cannot instantiate database driver driver.

The database driver cannot be loaded. Check the driver name is correct and
accessible.

GS-11853 Unsupported database database.

This database engine is not supported by the extraction tool.

GS-11860 Table column table.column has not a valid datatype type - table
is ignored.

The data type of the table column is not supported by the extraction tool. The extraction
of the table is cancelled.

GS-11861 type column table.column is ignored.

The data type of the table column has been flagged to be ignored by the extraction
tool. The table definition will not contain this column.

GS-11862 Foreign key foreign key is ignored due to missing table.

The foreign key references a table that was not found during extraction. The meta-
schema will not contain this foreign key.

GS-11870 Unexpected conversion parameter.

The conversion method provided to the extraction tool is invalid.

GS-11871 Missing conversion method.

The conversion method is required by the extraction tool.

GS-11872 Missing auto-increment indicator.

The parameter required for the extraction of the table column is not found.

GS-11873 Missing charlen indicator.

The parameter required for the extraction of the table column is not found.

GS-11874 Missing column type indicator.

The parameter required for the extraction of the table column is not found.

GS-11875 Missing distinct types indicator.

Meta-schema Manager | 331

Number Description

The parameter required for the extraction of the table column is not found.

GS-11876 Missing identity indicator.

The parameter required for the extraction of the table column is not found.

GS-11877 Missing serial indicator.

The parameter required for the extraction of the table column is not found.

GS-11880 No database connection.

The connection to the database is not found.

GS-11881 Table name is required.

The name of the extracted table is required by the extraction tool.

GS-11882 Column name is required.

The name of the extracted table column is required by the extraction tool.

GS-11883 Database schema is required.

The database schema / table owner is required by the extraction tool.

GS-11890 Missing database driver.

The database driver has not been provided to the extraction tool.

GS-11891 Missing output file parameter.

The meta-schema file has not been provided to the extraction tool.

GS-11899 unexpected error

An unexpected error has been encountered. Refer to the error message for more
information.

DB Explorer | 332

DB Explorer

The DB Explorer plug-in is a tool that allows you to view, create and modify data stored in a relational
database.

To design a good report, it is important to know your data. DB Explorer provides the concept of "show
data", where you can see the data stored in the rows of a database table. You can view this data from the
table perspective, or from the business record perspective. By knowing your data, you are better equipped
to write valid expressions and reports that your readers will understand.

When testing your report design, you may need to see how the report handles specific data values. For
example, you may have a sales report where you want to highlight all sales that are above (or below) a
certain value. You may need to modify your table data in order to have a row that meets the criterion. In a
more extreme example, you may simply have the table schema without any data records. You may need to
provide the sample data yourself.

The DB Explorer plug-in exists for these reasons, and more.

Layout of the view

Figure 205: Table data in DB Explorer

At the top of the view, an editable combobox allows you to select a previously written SQL query, edit the
current SQL query, or enter in your own SQL query. Next to this field are three icons:

• The Edit SQL query icon opens the Query Editor.
• The Execute query icon executes the displayed query.
• The Choose connection information icon allows you to change your database connection.

Under the combobox, there are four icons for data modification.

• Save icon - Saves changes to the current row.
• Insert icon - Creates a new, blank row.
• Copy icon - Create a copy of the selected row.
• Delete icon - Delete the selected row.

The data itself displays in the scrollable table container at the bottom of the view.

When to use

Use DB Explorer to quickly view or make changes to your data. It is important to understand that, by using
DB Explorer, you are making actual changes to the data in the tables; these changes are permanent. As
such, DB Explorer is intended as a developer tool, not as a production tool.

DB Explorer | 333

Limitations

The following SQL commands are not supported:

• SQL commands that output information as text (for example, a command that shows a list of tables) will
execute, however the text will not display.

• SQLite-specific commands (known as dot commands, such as .show) are not supported.

When you change or modify data using this tool, the changes are done under-the-covers by SQL
statements. These SQL statements are governed by the rules of the database itself. The change needs to
be valid by the rules of the database, in order for the query to run successfully.

You cannot use DB Explorer to view or edit binary data (BLOB data type). In addition, for some databases
you cannot use DB Explorer to view or edit text-based large objects, such as the CLOB data type in IBM-
Informix database servers.

DB Explorer will always work with the actual database structure. You may have made changes to the
tables and column definitions in the database meta-schema file (.4db), but if those changes are not
made to the actual database, they are ignored by DB Explorer. Conversely, if changes are made to the
underlying database structure (through the use of DDL or another database tool), the meta-schema file
(.4db) must be manually updated using the Database >> Update Schema menu option.

Open DB Explorer
DB Explorer is one of many views available from within Genero Studio

While you can explicitly open DB Explorer, it will open automatically as needed when you follow the steps
to show or edit data.

Using the Views menu

To explicitly open DB Explorer, you use the Views menu.

Select Window >> Views >> DB Explorer.
The DB Explorer view opens.

Figure 206: An empty DB Explorer view

As a next step, you will likely specify the database connection.

From the meta-schema or Data Model

When you ask to show or edit data, the result set opens for you in DB Explorer. See Show data on page
334 and Change the data on page 336.

Change connection details
In order to show or edit data, you must be connected to a relational database.

DB Explorer | 334

1. Open the Connection information dialog.

• From within DB Explorer view, click the Choose Connection Information icon.
• With the meta-schema file (.4db, .4dbx) opened in the central work area, select Database >> Edit

Database Connection.
• With the meta-schema file (.4db, .4dbx) opened in the central work area, click anywhere within the

white space in the meta-schema diagram and select Edit Database Connection from the contextual
menu.

• With the meta-schema file (.4db, .4dbx) opened in the central work area, in the Database
Structure view, right-click on the database node and select Edit Database Connection.

2. On the Connection information page, complete the three areas.

a) Check (or de-select) the Keep schema connection information synchronized check box.

When selected, the schema connection information will be permanently updated for the current
meta-schema (.4db or .4dbx). This check box appears as selected and read-only when you
edit the database connection for an existing meta-schema file. If you edit the connection from DB
Explorer, you can uncheck this option to dissociate the DB Explorer connection information from the
meta-schema connection information.

b) In the Database Connection Information section, select either Use explicit settings or Use
external settings.

Use explicit settings, previous connection You can use a previous connection that was
created for the same database. The drop down
list provides a list of the existing connections.

Use explicit settings, database type You can enter the Database Type by selecting
the desired type from the drop down list, and
the corresponding information for that type.
The Database driver for the database type is
automatically entered. If other drivers exist, they
are available in the drop down list.

Use external settings Information in the FGLPROFILE configuration file
is used to extract the corresponding connection
information for the specified database. Genero
Studio will use the schema name that you
entered to check for any related entry in the
FGLPROFILE configuration file, and will use
those values to define the connection. See
information on the FGLPROFILE file in the BDL
User Guide.

c) In the Database User Information section, provide the necessary database user details. The
required information varies based on the database type selected. See Database server/user
information on page 308.

3. Click Test Connection to verify your configuration.

4. Click OK to close the dialog.

Show data
You can show data for a table, for a set of columns, or for a business record.

You have several choices to make, to include whether you wish to view some or all columns of data, or
whether to start from the meta-schema file or from DB Explorer itself. You can also view, but not edit, the
data for a business record.

DB Explorer | 335

You cannot use DB Explorer to view or edit binary data (BLOB data type). In addition, for some databases
you cannot use DB Explorer to view or edit text-based large objects, such as the CLOB data type in IBM-
Informix database servers.

Show table data (start with meta-schema diagram)

Follow these steps to view data for a specific table, using the meta-schema diagram as the starting point.

1. Open the meta-schema (.4db or .4dbx) diagram.

2. Right-click anywhere within the table object and select Show/Edit Table Data.
DB Explorer opens, with the table data displayed.

Show table data (start with DB Explorer)

Follow these steps to view data for a specific table, using DB Explorer as the starting point.

1. Open DB Explorer.

2. Click the Edit SQL query icon.
The Query Editor opens.

3. Select the Edit table data radio button.

4. From the combobox, select the table.

Tip: If you were to select Execute at this time, the table data would display in edit mode.

The SQL query used to select the rows from the selected table displays.

5. Select the Execute query radio button.

6. Click Execute.
The table data displays.

Show data for select columns

Follow these steps to view data for a subset of table columns.

1. Open the meta-schema (.4db or .4dbx) diagram.

2. Within in the table object (the box containing the table details), press the CTRL key and select one or
more columns.

Tip: As another options, you can do your column selection from within the Database Structure
view.

The column names of the selected columns turn red.

3. Right-click within the table object and select Show Column(s) Data.
DB Explorer opens, with the data displayed for the selected columns.

Show data for a business record

A business record can contain data from multiple tables, depending on how it was defined. Follow these
steps to view the data for a business record.

1. Open the business record (.4rdj) diagram.

2. Right-click in the Business Record object and select Show Data.

Tip: As another options, you can also right-click on the business record node in the Structure
View view.

DB Explorer | 336

Change the data
You may need to change your data, in order to test your report designs.

While you can write SQL statements, DB Explorer is designed to allow you to make data changes directly
within the user interface, to the data shown.

Use DB Explorer to quickly view or make changes to your data. It is important to understand that, by using
DB Explorer, you are making actual changes to the data in the tables; these changes are permanent. As
such, DB Explorer is intended as a developer tool, not as a production tool.

When you change or modify data using this tool, the changes are done under-the-covers by SQL
statements. These SQL statements are governed by the rules of the database itself. The change needs to
be valid by the rules of the database, in order for the query to run successfully.

Show data from a table in edit mode

To edit the data without having to hand-write SQL statements, you must start with the meta-schema file.

1. Open the meta-schema (.4db) file.

2. Right-click on a table object and select Show/Edit Table Data.
The table data shows in DB Explorer, in edit mode.

Show data from a different table in edit mode

When in edit mode, you can switch to a different table for editing.

1. Click the Edit SQL query icon. The Edit SQL query icon consists of a pad and pencil image.
The Query Editor dialog opens.

2. Select the Edit table data radio button.

3. From the combobox, select the table.

4. Click Execute.
The table data shows in DB Explorer, in edit mode.

Update data

Before you begin, you must be viewing the data in edit mode.

This procedure tells you the recommended method for updating one or more values.

1. Double-click a table cell.

2. Change the value in the cell.

3. Repeat for any other fields within the same record.

Note: If you switch to a different row, DB Explorer will save the changes to the current row
automatically.

4. When you have finished updating values for a record, click the Save icon. The Save icon is a picture of
a computer disk.

Insert a row

Before you begin, you must be viewing the data in edit mode.

This procedure tells you the recommended method for inserting a new row.

1. Click the Insert icon. The Insert icon consists of a plus sign and an arrow.
An empty row appears at the end of the row listing, with the cursor in the first column / field.

2. Enter a value in the field, and press TAB to move to the next field. To leave the field blank, simply press
TAB. Repeat until all fields are populated.

DB Explorer | 337

3. Click the Save icon. The Save icon is a picture of a computer disk.

Note: If you tab past the last field, DB Explorer will insert the new row for you automatically.

The row is saved. A success message is written to the status bar.

Note: If there is an error, review the Output view to identify the issue. See Execute a query on
page 339.

Duplicate a row

Before you begin, you must be viewing the data in edit mode.

This procedure tells you the recommended method for creating a copy of a row. It is assumed that you will
then modify one or more of the fields, before saving the copy as a new row.

1. Select a row.

2. Click the Duplicate icon. The Duplicate icon consists of "x2" inside a green circle.

3. A new row opens at the bottom of the list, with the values of the originally selected row duplicated.

4. Make modifications to the fields in the row.

Tip: Be sure to change the value of the primary key field, to avoid returning a SQL constraint
error.

5. Click the Save icon. The Save icon is a picture of a computer disk.
The row is saved. A success message is written to the status bar.

Note: If there is an error, review the Output view to identify the issue. See Execute a query on
page 339.

Delete a row

Before you begin, you must be viewing the data in edit mode.

This procedure tells you the recommended method for deleting a row.

1. Select a row.

2. Click the Delete icon. The Delete icon consists of a red "X".

3. A dialog appears asking you to confirm your delete request. Click Yes to delete the row.
The row is deleted. A success message is written to the status bar.

Limit rows
You can set a limit to the number of rows to display.

Without a limit, you could end up retrieving massive amounts of data. By default, the limit is set to 1000.
You can remove all limits by entering zero (0).

When the row limit is met, a message displays in the status area of DB Explorer stating that the limit has
been met.

DB Explorer | 338

Figure 207: Message displays when limit is met

Regardless of the limit, the data returned always starts with the first row returned by the database server.
There is no mechanism to change the order of the rows fetched, or which rows are returned, without
altering the SQL by hand.

To set the limit on the number of rows returned:

1. Select Tools >> Preferences.

2. Select Meta-Schema manager Preferences.

3. Under DB Explorer options, specify the maximum number of results (or records) to display and
retrieve.

Write a SQL query by hand
DB Explorer is designed to allow users to create or modify data using the graphical interface. You can,
however, use DB Explorer to edit SQL queries you write by hand.

The following SQL commands are not supported:

• SQL commands that output information as text (for example, a command that shows a list of tables) will
execute, however the text will not display.

• SQLite-specific commands (known as dot commands, such as .show) are not supported.

When you change or modify data using this tool, the changes are done under-the-covers by SQL
statements. These SQL statements are governed by the rules of the database itself. The change needs to
be valid by the rules of the database, in order for the query to run successfully.

You cannot use DB Explorer to view or edit binary data (BLOB data type). In addition, for some databases
you cannot use DB Explorer to view or edit text-based large objects, such as the CLOB data type in IBM-
Informix database servers.

Note: The Query Editor does not provide any language syntax assistance.

1. Open DB Explorer.

2. Establish a connection to a database. See Change connection details on page 333.

3. Click the Edit SQL query icon.
The Edit query dialog opens.

4. Enter your query.

You have three options:

Write and execute a new query by hand.

a) Enter your query in the text box.
b) Click Execute.

DB Explorer | 339

Edit a previously executed query.

a) In the Previous queries combobox, select the query to edit.
The query appears in the text box.

b) Edit the query.
c) Click Execute.

Edit a query generated by the Edit table data wizard.

Tip: To use this method, you must have opened DB Explorer from the meta-schema diagram.
See Show data on page 334.

a) Select the Edit table data radio button.
b) From the combobox, select the table.

Tip: If you were to select Execute at this time, the table data would display in Edit mode.

The SQL query to select the rows from the selected table displays.
c) Select the Execute query radio button.
d) Edit the query.
e) Click Execute.

Execute a query
Executing your query is the last step to viewing or modifying the data.

When you execute your query, it will either be successful or it will have a query execution error.

DB Explorer will always work with the actual database structure. You may have made changes to the
tables and column definitions in the database meta-schema file (.4db), but if those changes are not
made to the actual database, they are ignored by DB Explorer. Conversely, if changes are made to the
underlying database structure (through the use of DDL or another database tool), the meta-schema file
(.4db) must be manually updated using the Database >> Update Schema menu option.

Successful execution of the query

If the query is a SELECT statement, and it is successful, the results appear in DB Explorer. The complete
SQL query is written to the Output view.

If the query is an INSERT, UPDATE or DELETE statement, and it is successful, you receive no visual
confirmation. The complete SQL query, however, is written to the Output view.

Query execution error

When you have a SQL error, a message displays in a pop-up window. This message provides you with the
error message being returned by the database, along with a message ID.

The error message, including the complete SQL query, are also written to the Output view.

Project Manager | 340

Project Manager

Project Manager is a tool to manage the organization and build of executables from the program's source
files.

From Project Manager you can easily create or import projects; add and edit source files in Code Editor;
add and edit forms in Form Designer; build, link, and execute programs; execute programs with the
Profiler; and debug with the Graphical Debugger.

• Genero project file (4pw) on page 340
• Quick Start: Create a project on page 340
• Creating new projects on page 341
• Organizing projects on page 342
• Building and linking programs on page 343
• Packaging on page 353
• Locate a file (starting at Project Manager) on page 353
• Project Manager Reference on page 354

Genero project file (4pw)
A Genero Project (4pw) is an XML file that manages the source files and the properties for building and
executing programs. Genero Studio displays a project file in a convenient and visible way as a tree view in
the Projects view.

A project includes:

• the name, type, and location of the source code and executable files
• the database meta-schema, if used
• the name, type and description of each node
• the parent-child relationships between nodes
• properties such as file paths, environment variables, and dependencies
• one or more sub-projects, if used

The project structure has no connection to the structure of the files on the disk. Files can be deleted and
moved from projects without affecting the actual file on the disk.

A default project file contains nodes for an application, a library, and databases.

Quick Start: Create a project
Quickly create and test a new project. This example creates a project using Genero Studio sample source
files.

1. Select File >> New >> Genero Files, Simple Project.

2. Save and name the project.

3. Expand the tree to see all default nodes in the project.

4. Right-click on the Application node and select Add File. Navigate to the My Genero Files/
samples/HelloWorld directory and select and open HelloSource.4gl and HelloSource.4fd.

5. Add a new Library node. Right-click on the Group node and select New Library. Name the library
Forms. Drag the HelloForm.4fd file to the Forms node and drop it on top of the Forms node.

Project Manager | 341

6. To identify that the application is dependent upon the files in the new Forms library, right-click on the
Application node and select Advanced Properties. Notice that the Forms node is not checked. Check
the Forms node to indicate that the application is dependent on the files in this library. Select OK.

7. Right-click the Group or Application node, and select Build to compile and link the files into an
executable program. Check the output of the build in the Output view.

8. If the build is successful, right-click the Application node and select Execute to run the program
through Genero Studio. The compiled and executable files for the program are stored in the Target
Directory specified.

Creating new projects
Information about creating new projects.

• Create a new project on page 341
• Import existing files as a new project on page 341
• mkproject - Convert a Makefile to a project on page 342
• Connect to existing build systems on page 342

Create a new project
Create a new project to manage the project source files, libraries, and database schemas.

1. Select File>>New from the Genero Studio main menu to create a Project (4pw).

Option Description

Genero Files, Simple Project Creates a simple project used for applications that
are not code-generated.

Genero Files, Mobile Project Creates a simple project used for mobile apps that
are not code-generated.

Design, Managed Project Creates a project for use with generated (BAM)
applications. See What is Business Application
Modeling (BAM)? on page 192

Design, BAM Mobile Project Creates a project for use with generated (BAM)
mobile applications.

2. After creating a Project (4pw), use File>>Save to specify the location of the file in the file system.

Import existing files as a new project
Files in a file system can be imported as a new project using the Project >> Import menu option.

Before you begin, Set up a remote environment if your source files are on a remote host.

1. If the source files to be imported contain reference fields from a database table, create or import a
meta-schema file (4db) for the database, if not already completed.

2. Create a new, simple project to manage the files using Project Manager.

3. Use the Import Project from the Projects menu to import the directory as a new project. To make
sure that only source files appear in the project, either clean all binaries and generated files from the
directory before importing or set the import filters in the Import Project dialog to include/exclude files of
various types.

Genero Studio will organize the files into the project. Each 4gl file with a MAIN will reside in an
Application node. All other files will be located in Library nodes. You can organize the files how you
wish.

4. If sources contain files that are preprocessed to generate other files, set up the appropriate build rules.
(For example, if a file with an extension of 5gl generates a 4gl and then builds it: Add a build rule 5gl
42m.)

Project Manager | 342

5. Once the source files are imported into the project, if the Compute dependencies checkbox is
selected, the import process will automatically fill the required information for any libraries that must
be linked in the same project. Right-click the Application node and select Advanced Properties,
Dependencies to check the appropriate dependencies for each application or library.

6. Add the meta-schema file to the Databases node of your project.

7. Set the other properties for the nodes in the project, as needed. For example:

a) To change the default location of the output files when the program is built, set the Target Directory
property for the Group or Application nodes. The default target directory is $ProjectDir/bin.

b) If there are external libraries (outside the Project) that should be linked when the application is built,
add the library to the value of the external dependencies property for the application node.

8. Build the Project to compile and link the files, checking for any dependency errors.

mkproject - Convert a Makefile to a project
mkproject can be used to automatically create 4pw project files from the older build system make.

See GSTDIR/tools/mkproject/readme.txt on how to use mkproject.

Connect to existing build systems
To connect to an existing build system, edit the build rules or link rules to execute the building system
commands.

For example, if the existing build system is make, you can call make in the link rule to create a library.

Organizing projects
Information about organizing projects.

• Groups, Applications, and Libraries on page 342
• Using external libraries on page 343
• Setting external dependencies on page 343

For information about source code management for your project, see Source Code Management - SVN on
page 529.

Groups, Applications, and Libraries
Projects are organized into Group, Application, and Library nodes. The Projects view visually displays a
project file (4pw) for easy management of project source files.

Group

Group nodes organize the Application and Library nodes that make up the project. Rapidly define default
properties by setting them at the group level (TargetDir, Language, Compiler options, etc.) Properties
defined for the Group node are inherited by all child nodes in the group.

Application

The Application node is used to generate an executable program (42r). Application nodes can contain
both files and virtual folders.

Only one of the files in the Application node may have a MAIN statement: One Application node equals one
executable. The name of the Application node is used as the name of the 42r file, so it must be unique
and can only contain characters allowed by the file system.

The default application is shown in boldface. Use the Projects view integrated Toolbar to set a different
application as the default. The options on the Build menu execute for the default application.

Project Manager | 343

Library

A library node is used to group binary files into a single library and generate a library file (42x). It can
contain both files and virtual folders. The name of the library node is used as the name of the 42x file, so it
must be unique and can only contain characters allowed by the file system.

Libraries should be used when creating a set of features having a common goal, like the logic of an
application, a library of mathematical functions, etc.

A library can also be used to group other project files together (images, styles or other resources).

If a library node contains no 4gl file, no 42x is built.

A library from a different project can be added to a project using the right-click menu option Add External
Project.

Important: A library must be linked to any application in which it will be used by right-clicking the
application node and selecting Advanced Properties, dependencies. The checkbox for any required
library must be checked.

Using external libraries
Libraries defined in one project can be used in other projects.

To create a link to external libraries, right-click on a Group node in the projects view and select Add
External Project. A new node is created with the name of the external 4pw file.

When an external project is added, all of its projects, application and libraries are automatically added
as children. The child nodes are in grey because they are in read-only mode; they cannot be moved,
renamed, and so on. Their properties are also read-only.

It is important to set the dependencies for any application or standard library node that requires the use of
this library, using Advanced Properties. The new node, with all its libraries as children, will be shown in
the Dependencies property page; check each library that should be linked with the application or standard
library.

Setting external dependencies
External dependencies are files that are not a part of the project, but should be included in the linking
process.

External libraries are mainly used when a library is used in many projects and is not intended to be
modified, or if third party libraries are used for which the sources are not available.

Select the Application or Library node and in the Project view, set the External dependencies property to
the list of files that should be included in the linking process.

The directories containing these files must be added to the FGLLDPATH environment variable. See
Genero variables.

Building and linking programs
Build rules compile each file in a project. Link rules create the applications and libraries. Execution rules
execute the application. Build rules, link rules, and execution rules together make up a Language in
Genero Studio.

Warning: A rebuild of a project may not automatically be done when files within the project are
updated. It is the responsibility of the developer to recompile the appropriate parts of the project.

• What are build rules on page 344
• Add/Edit a build rule on page 345
• Example: How build rules work on page 346
• Languages on page 344

Project Manager | 344

• Link rules on page 347
• Execution rules on page 347
• Command line options for build, link, execution rules on page 347
• Environment variables on page 348
• Pre/Post compile on page 351
• Pre/Post link on page 351
• gsmake - Command line option to build projects on page 352

Languages
A language is a named set of build rules (to compile files), link rules (to link application or library nodes),
execution rules (to execute/debug/profile an application) and a set of environment variables.

Genero Studio comes preconfigured for some languages. You can add your own languages.

You select which language to use by setting the Language property on an application, group or library
node.

What are build rules
Build rules are used to compile each file in a project.

Global and Project build rules can be modified. New build rules can be created.

Build rules are grouped into the following hierarchy:

• Project - If relevant build rule found under Project, it is used.
• Specific - If no relevant build rule is found under Project, then relevant build rule under Specific is used.
• Global - if no relevant build rule is found under Project or Specific, then relevant build rule under Global

is used.
• Default - if no relevant build rule is found under Project, Specific, or Global, then relevant Default build

rule is used.

Only one build rule can be active for a specific file type.

Access the Build Rules dialog using Tools >> Global setup >> Edit Build Rules, Tools >> Specific
setup >> Edit Build Rules or right-click on the Project view and select Edit Build Rules.

Project Manager | 345

Add/Edit a build rule
From the Build rules dialog you can add or edit a build rule.

Figure 208: Add/Edit Build Rule dialog

Label Enter a label to be assigned to the rule.

File type Defines the MIME-type of the source files that
can be compiled with this Build rule; click the icon
on the right to display the File Type Selection
dialog. Select the file type from a list generated
from the File Associations in Genero Studio
Preferences. Use the Search field to limit the
display of the list; enter the file extension, or the
words Genero or studio, for example, to display
only the corresponding file types. The icons can be
used to display the list by category, and to expand
or contract a category.

Output files Enter the list of files that are generated by the Build
rule. All the predefined file node variables can be
used when specifying the path of the file.

Project Manager | 346

Note: When entering file paths, do not use
quotations surrounding the file path. That is
only necessary in the Command line field.

Intermediate files Indicates which files are generated during
compilation, as intermediate files, before generating
the output file. This displays the Intermediate files in
the Project view.

Note: When entering file paths, do not use
quotations surrounding the file path. That is
only necessary in the Command line field.

Additional dependencies The additional dependencies is a list of files used to
verify that the build is up to date. If one of these files
has a modified date more recent than any of the
output files, the build is considered not up to date
and the build rule will be executed.

Note: When entering file paths, do not use
quotations surrounding the file path. That is
only necessary in the Command line field.

Example

For a preprocessor named mypp for source files (*.my), the Build Rule for the mime type "text/my" would
be:

mypp $(InputPath) -o $(TargetDir)/$(InputBaseName).4gl
$(fglcomp) $(TargetDir)/$(InputBaseName).4gl
$(delete) $(TargetDir)/$(InputBaseName).4gl

Redirect output

When a command is executed in a build, link, execution rule or in a user action, the output (standard or
error) is displayed in the Output view. You can redirect the output to a file. For example, if you write echo
"Hello World" in a build rule, Hello World is displayed in the Output view. To redirect the output to a
file, use standard Linux™ syntax such as: echo "Hello World" > "c:\file.txt". Supported syntax
is >, 1>, >>, 2>, 1>&2, 2>&1.

Example: How build rules work

Example: myfile.4gl

The process used by Project Manager to compile a file called myfile.4gl is:

1. Project Manager first searches the language to be used as defined in the parent application or library
node.

2. Project Manager determines the MIME type of this file; it is "application/genero-4gl".
3. Then, Project Manager looks for a corresponding build rule in the Project build rules. After searching the

Project build rules, if no rule is found that handles the "application/genero-4gl" MIME type, it searches
the Template build rules, and then the Global build rules and then the Default build rules.

4. Finally, Project Manager executes the commands defined in the build rules after having replaced the
variables.

5. If no build rule is found, the file is skipped and the next one is processed.

Project Manager | 347

Link rules
Link rules create the applications and libraries.

A link rule executes when you build an application or library node.

Execution rules
An execution rule is executed when you run, debug, or profile an application node.

Command line options for build, link, execution rules
Special command line options can be used for build, link, and execution rules.

Table 95: Command line operands

Command line / syntax Description

$(move)

$(move) sourceFilePath destinationFilePath

Moves the given file or directory
to the given destination in a
platform independent way.

$(copy)

$(copy) sourceFilePath destinationFilePath

Copies the given file or directory
to the given destination in a
platform independent way.

$(delete)

$(delete) filePath1 filePath2 ...

Removes the given files
or directories in a platform
independent way.

$(4dbcomp)

$(4dbcomp) sourceFile[4db]

Builds the schema file (sch) from
the database file (4db).

$(4fdcomp)

$(4fdcomp) sourceFile[4fd]

Builds the compiled form file
(42f) from the form file (4fd).

$(percomp)

$(percomp) [options] sourceFile[per]

The fglform tool compiles form
specification files into XML
formatted files used by the
programs.

$(fglcomp)

$(fglcomp) [options] sourceFile[4gl]

The fglcomp tool compiles BDL
program sources files into a p-
code version.

$(fglmkmsg)

$(fglmkmsg) [options] sourceFile[.msg]
 [outFile.iem]

The fglmkmsg tool compiles
message files into a binary
version used by the BDL
programs.

$(fglmkstr)

$(fglmkstr) [options] sourceFile[.str]

The fglmkstr tool compiles
localized string files.

Project Manager | 348

Command line / syntax Description

$(fglwsdl)

$(fglwsdl) [options] <filename | url>

Calls the fglwsdl tool for creating
a web services program.

$(generate)

$(generate) [options] filename

The $(generate) command
creates an intermediary XML file
from modeled entities.

tclsh on page 269

tclsh [options] filename.xml

The tclsh executable generates
the final file by using both
a Tcl template file and the
intermediary XML file crated by
the $(generate) command.

$(tcl) - deprecated on page 270

$(fglrun)

$(fglrun) [options] program

Calls fglrun tool, the runtime
system program that executes p-
code programs.

$(blockpoint)

$(blockpoint) [options] filename

The $(blockpoint) command
manages user added code by
extracting or injecting code
between BLOCK and POINT tags
in a generated 4gl file.

$(gstdebug)

$(gstdebug)

Calls internal Genero Studio
debugger.

Execution rules only.

$(gstrun)

$(gstrun)

Calls command to run an
application through Genero
Studio.

Execution rules only.

Environment variables
Information about environment variables.

• Add or edit environment variables on page 144
• What determines the value of an environment variable on page 350

Add or edit environment variables
The Environment Variable dialog is used to add and edit environment variables.

When the Environment Variable dialog appears, enter:

Type The type of environment variable. Options are
Value, Value List, Directory, Directory List, File, or
File List.

Name The name of the environment variable.

Value The value of the environment variable. When
entering the value, if the type is Value List,
Directory, Directory List, File, or File List, select the
ellipses (...) to browse for the correct value.

Project Manager | 349

If the value contains a variable name, that
name must be prefaced with $ and enclosed in
parenthesis; for example $(FGLLDPATH).

The list separator is always a semicolon (;) on all
systems (Windows™ and UNIX™). The directory
separator in a path is always a slash (/) on all
systems.

Tip: Use the semicolon to separate
directories in a list, and the slash (/) as the
separator in a path, for portability of projects
across operating systems.

Figure 209: Setting FGLLDPATH

Figure 210: Setting FGLPROFILE

Reusing existing environment variables

A variable defined for a parent or ancestor node can also be reused in definitions for a child node:

For example:

• The parent node defines: MY_VALUE=hello
• The child node can reuse the parent node variable: MY_COMPLETE_VALUE=$(MY_VALUE) world
• The final value of MY_COMPLETE_VALUE is "hello world".

For example:

• The parent node defines: MY_VALUE=foo

Project Manager | 350

• The child node can reuse the parent node value and redefine the variable: MY_VALUE=$(MY_VALUE)
bar

• The final value of MY_VALUE will be "foo bar".

As a result, the System environment variables or Genero Studio Configuration variables can be reused in
User Variable definitions within Project Manager.

What determines the value of an environment variable
Environment variables define the environment used by the compiler and executables launched from
Project Manager. Where and when the environment variable is important.

Order of precedence

An environment variable can be set in multiple places, inside and outside of Genero Studio. Environment
variables have an order of priority (high to low):

1. The environment defined on the node itself (Genero variables and User variables). This has the highest
priority.

2. The environment of the node's parents (ancestors).
3. The environment of the node's dependencies.
4. Environment variables defined in the current language.
5. Environment variables defined in Environment sets on page 140.
6. System environment variables. This has the lowest priority.

The order of priority allows you to override both system environment variables (6, above) or environment
variables defined in a Genero Studio configuration (5, above) by setting them in Project Manager (1
through 4, above).

Order within an Environment Set

Within an Environment Set, Arrow keys can be used to change the order of the variables
defined. This affects the way the variables are interpreted when the program is executed.
For example:

Table 96: Variable interpretation examples

Project level Variables definition and
order

Result when application is
executed

Project V1="hello"

Application V2="$(V1) world"

V1="goodbye"

V1="goodbye"

V2="hello world"

Application V1="goodbye"

V2="$(V1) world"

V1="goodbye"

V2="goodbye world"

Note: If a foreign language Language support (text encoding) on page
163 is selected in Genero Studio preferences, the LANG variable must
be set appropriately to correspond to the selected encoding. Set the
variable for a specific environment set in Genero Studio configurations
(Tools>>Configurations).

Project Manager | 351

Example: Priority and Environment Variables

In this example, the program node in the project has a library node as a dependency. The
environments have been defined as shown:

Table 97: Environment Set for levels used in the example

Level Environment Set

System environment
PATH=/bin;/usr/bin
VAR1=hello
VAR2=bonjour
VAR3=guten tag

My Library Environment
PATH=$(PATH);$(ProjectDir)/
scripts
VAR1=goodbye

My Program Environment
PATH=$(PATH);$(ProjectDir)/
scripts
VAR1=$(VAR1) world
VAR2=$(VAR2) $(VAR1)

If the project directory $(ProjectDir) is set to "/home/joe/project", the
environment for the program will be:

PATH=/bin;/usr/bin/;/home/joe/project/scripts
VAR1=goodbye world
VAR2=bonjour goodbye world
VAR3=guten tag

Pre/Post compile
Pre-compile commands are executed just before the compilation of a file, while post-compile commands
are executed just after the compilation of a file.

To set pre- or post-compile commands, right-click on a file in the Projects view and select Advanced
Properties. The Pre/Post Compile command dialog opens.

Pre/Post link
Pre-link commands are executed just before the link of the application or library node, while post-link
commands are executed just after the link of the application or library node.

To set pre- or post-link commands, right-click on the application or library node in the Projects view and
select Advanced Properties. The Pre/Post Compile command dialog opens, select the Pre/Post Link
command option in the Pages listing.

Project Manager | 352

gsmake - Command line option to build projects
The groups in a project (4pw files) can also be compiled from the operating system command line, using
the tool gsmake, which is located in the GSTDIR/bin directory.

Syntax

gsmake [options] <file_list>

where file_list is a list of target Project (4pw) files, with or without the extension.

Table 98: gsmake arguments

Argument Description

-h Displays help information.

-V Displays this program name and version.

Table 99: gsmake targets with parameters

Targets Parameter Description

-active Targets the application set as
default in the project.

-all Targets the complete project
(default behavior).

-t TARGET Adds TARGET to the list of
targets to build. This argument
can be used multiple times to
build several targets

Table 100: gsmake operations

Operations Description

-b Builds the target (default behavior). The files that
are not up-to-date are compiled, the others are not
changed.

-r Rebuilds the target. The output files are deleted,
then all files are compiled.

-c Cleans the target. The output files are deleted.

-force-build Forces the build/rebuild of the target. The files are
compiled, whether or not they are up-to-date.

Table 101: gsmake options with parameters

Options Parameter Description

-j NB Sets the number of parallel jobs
to NB (default: 1). Set NB to 0 to
use the local computer's number
of CPUs. When using this option,
gsmake will try to start multiple
compilations in parallel when

Project Manager | 353

Options Parameter Description

possible. This should speed up
the global compilation time.

-encoding ENCODING Sets the encoding to ENCODING.
(default: System encoding)

-disable-dependencies Disables the computation of the
dependencies database. (default:
false)

-ag-GSTSETUPDIR DIRECTORY Sets the Application Generator
template directory to
DIRECTORY. Enter an absolute
path, or a path relative to the
GSTDIR/bin/src/ag/tpl
directory.

The default value, "default"
corresponds to the multiple-dialog
template directory.

-max-errors NB Sets the maximum number of
erroneous files to NB (default: 5)
. Set the value of NB to 0 for an
unlimited number of error files.

-generate-4pwdb Generate the 4pwdb file only
(default is False).

-wcDir WEBCOMPONENTS_DIR Web Components Directory path

Packaging
Package nodes are used to package an app for deployment to a mobile device or for distribution to users.

See Packaging, deploying, and distributing apps on page 993.

Locate a file (starting at Project Manager)
From the Projects view, you can locate the file in the File Browser, in the System File Browser, or in a BA
diagram.

Before you begin, the Projects view is open.

You have a file visible in the Projects view that you wish to locate in an alternate view, diagram, or i the
System File Browser.

1. Right-click on the file.
The contextual menu displays.

2. Select the appropriate menu option:

• To open in File Browser, select Locate in System File Browser.
• To open in the System File Browser, select Locate in System File Browser.
• To open in the BA diagram, select Locate in BA Diagram. This option is only available for files

created using the Business Application Modeler (BAM).

The desired view, diagram, or dialog opens in the selected option, showing the location of the file.

Project Manager | 354

Project Manager Reference
Reference information for Project Manager.

• Project Manager context menu on page 354
• Dialogs on page 355
• Views on page 390
• Predefined node variables on page 366

Project Manager context menu
Select a node in the project and right-click to display a menu of context relevant actions. Select multiple
nodes using Ctrl-click.

Table 102: Project Manager Context Menu

Menu Option Usage

New Group Create a new node in the project .

Import Project Import one or more existing files to project . See Import
existing files as a new project on page 341

Compute Dependencies Remove and recompute all the dependencies between
all applications and libraries.

Build Build default application. Compile and link files in the
default application.

Rebuild Rebuild selected or default application.

Clean Clean all of selected. Erase all output files defined in the
Build and Link rules.

Open Dependency Diagram Opens Dependency Diagram

Cut/Copy/Paste Cut, copy, or paste from clipboard.

Rename Rename node.

Delete Delete selected item.

Delete from Disk Delete file from disk.

SCM If a file is under Version Control, additional options
from the context menu are available to commit, update
and revert. See Source Code Management - SVN on
page 529.

New Group/Application/Library/Virtual Folder/
File

Create a new node in the project .

Add External Project Add a library from a different project to the current
project. See Using external libraries on page 343.

Edit Build Rules See What are build rules on page 344

Display Environment Displays the values of system environment and current
Genero Studio configuration environment variables and
of the local node variables used by Project Manager.

Advanced Properties Set dependencies between applications and libraries,
pre/post-link commands and environment variables.
See Advanced Properties dialog on page 355. The

Project Manager | 355

Menu Option Usage

Dependency property always must be set if the project
consists of both application and library nodes.

Set as Default Application Set the selected application as the default. Only one
application can be the default at one time. By default,
the first application created is the default application.
The default application node is boldfaced in the project
tree. The options on the Build menu execute for the
default application.

New File Create a new file to add to an Application or Library
node. See File >> New on page 94

Add Files Locate in file system and add existing files to an
application or library node. This adds a link to the
given file in the project ; it does not physically move the
files. All the files must be located on the same drive.

Open Dependency Diagram See Dependency Diagrams on page 403

Add Web Service See Add Web Service on page 910

Execute Execute selected application. If multiple applications are
selected, they will be run sequentially.

Execute with Profiler Execute selected application with Profiler. See Profiler
on page 510

Debug Launch the Debugger for selected application. Multiple
selections can not be debugged.

Open Open the selected file in Code Editor or Form Designer,
depending on the file type.

Locate in File Browser Locate file in File Browser.

Compile File Compile the selected file.

Dialogs
Information about Project Manager dialogs.

• Advanced Properties dialog on page 355
• Import Project dialog on page 357
• Build Rules Configuration dialog (Languages) on page 358

Advanced Properties dialog
The Advanced Properties dialog provides access to setting Dependencies, Pre/Post link commands,
and Environment variables for Group, Library, Application, or File nodes in the project.

To access the Advanced Properties dialog right-click on a selected Group, Library, Application, or File
node and select Advanced Properties.

Project Manager | 356

Figure 211: Advanced Properties dialog

Table 103: Advanced Properties Pages

Page Usage

Dependencies (for Application, Library nodes) A list of the available libraries from the current
Project is displayed. Any library that must be
included in the build of the node should be checked.

Pre/Post link command (for Application, Library
nodes)

Shell scripts or other programs to be executed
before/after linking. Enter the command in the
appropriate text box. Enter the complete path of
the script or program, if necessary. For example, if
the script myscript is in /home/user/scripts, and
this directory is included in the PATH environment
variable of the system, enter myscript. Otherwise,
enter /home/user/scripts/myscript.

Pre/post compile command (for File nodes) Shell scripts or other programs to be executed
before/after compiling. Enter the command in the
appropriate text box, providing the complete path
to the script or program if the path is not part of the
PATH environment variable of the system.

Environment variables (for Group, Application,
Library nodes)

Existing variables can be defined or redefined. The
Genero Variables list displays a list of environment
variable settings that are automatically computed
by Genero Studio, and cannot be altered, although

Project Manager | 357

Page Usage

they can be redefined in Project variables. For
example, if there are several applications that
use different FGLPROFILE files, set a specific
FGLPROFILE environment variable for each one.
Predefined node variables can be used in the value.
The User Variables list are variables defined by the
user. Use the integrated Toolbar to add, edit, or
delete a variable.

Import Project dialog
Use the Import Project dialog to specify preferences when importing files from a file system into a project.

Figure 212: Import Project dialog

Project path Enter the path and name of the directory to be
imported, or use the browse button to select it from
the file system.

Include files A complete list of the files that will be imported (for
example, *.4gl indicates all files with the extension
4gl). By default, files having the Genero and
Genero Studio file extensions are listed; modify this
list by adding or removing entries. The entries in the
lists are separated by spaces.

Exclude files Enter the files that are to be excluded from the
project. Use the * symbol to indicate all files; for
example, *.abc would exclude all files having
the extension abc. The entries are separated by
spaces.

Exclude directories A list of excluded directories. By default the CVS
directory is excluded. The entries are separated by
spaces.

Compute dependencies If checked, Project Manager will try to compute the
dependencies between Application/Libraries when
importing the project.

Project Manager | 358

Example

In this example, all files with a 4gl extension in the specified path will be included, except for
testform.4gl . The directories CVS and mydir will also be excluded.

Figure 213: Import Project example

Default organization of imported files

When files are imported into Project Manager, a new Group node is created and listed in the Projects
view. For each folder, the process is:

• A File node is created for each file.
• The file nodes are then added to a Library; the name of the folder is used as the name of the Library

node.
• If a file contains a MAIN program block, an Application node is created and the File node is added.
• A Group node is then created, and all Library and Application nodes, and their nodes, are added to

this Group.

Build Rules Configuration dialog (Languages)
The Build Rules Configuration dialog is used to edit a language (add, modify, delete build/link/execution
rules and variables) and to add a new language or remove an existing language.

Add / edit a language

Figure 214: Build Rules Configuration dialog - Genero Studio

The integrated Toolbar allows for adding, duplicating, and deleting languages.

Add a language Select this icon to add a new, empty language.

Duplicate the current language Select an existing language and click this button to
duplicate it.

Delete a language Select an existing language and click this button
to remove it. This action deletes only the rules and
variables of the current editable level, for instance if
you are editing the language from Project Manager,
it will delete only the project rules and variables. If
the language is empty it will remove the language.

Project Manager | 359

Build tab
The Build tab in the Build Rules Configuration dialog is used to add, edit, and delete build rules.

Figure 215: Build tab

Build Rules List

The Build Rules List includes the build rules Default, Template, Global, and Project build rules for the
selected language. The integrated Toolbar allows for adding, duplicating, deleting and editing build rules.

Add a build rule Select the Global category (Preferences only) or
Project category (Project Manager only) and click

Project Manager | 360

this icon to add a custom rule. See Add/Edit a build
rule on page 345.

Duplicate selected build rule Select an existing rule and click this icon; the Build
rule will be added to the appropriate category.
Select the newly added rule and click the Edit icon
to modify the duplicated rule.

Delete a selected build rule Select an existing rule and click this icon to remove
it.

Edit a selected build rule Select a custom Build rule and click this icon to
modify the Build Rule fields. See Add/Edit a build
rule on page 345.

Link tab
The Link tab in the Build Rules Configuration dialog is used to add, edit, and delete link rules. A link rule
is executed when you build an application or library node.

Figure 216: Link tab

Project Manager | 361

Command lines Commands that will be executed during the linking
of an application / library node. See Command line
options for build, link, execution rules on page 347

Output files List of files generated by the link command. See
Predefined node variables on page 366

Additional dependencies List of files used by the link command to generate
output files. If all of the listed files are less recent
than the output files, the link is up to date. If the
dependencies list is empty, the link rule is executed
every time. If the dependencies contain one or
several variables which are all empty (for example,
$(BuildOutputFilePaths)), the link rule is never
executed.

Overwrite default rules If a link rule is already defined at an upper level
(Default, Global, Template) the link rule is not
editable unless you check the Overwrite default
rules box to define a new link rule for the current
level (Global or Project).

Project Manager | 362

Execution tab
The Execution tab in the Build Rules Configuration dialog is used to set execution rules. An execution
rule is executed when you run, debug, or profile an application node.

Figure 217: Execution tab

Run command Command used when user runs an application.

Debug command Command used when user debugs an application.

Profile command Command used when user profiles an application.

Overwrite default rule If a execution rule is already defined at an upper
level (Default, Global, Template), the execution
rule is not editable unless you check the Overwrite
default rules box to define a new link rule for the
current level (Global or Project).

Project Manager | 363

Variables tab
The Variables tab in the Build Rules Configuration dialog is used to set environment variables.

Figure 218: Variables tab

Environment variables

The Variables tab lists environment variables set for the selected language. The integrated Toolbar allows
for adding, deleting and editing environment variables.

Add a variable Select the Global category (Preferences only) or
Project category (Project Manager only) and click
this button to add a new environment variable. See
Add or edit environment variables on page 144.

Delete a variable Select an existing variable and click the button to
remove it.

Edit a variable Select a variable and click this button to modify
variable settings. See Add or edit environment
variables on page 144.

Project Manager | 364

Variable values

See Predefined node variables on page 366.

Project Manager node properties
Properties can be set for the nodes of a project, to help define the component or specify its behavior.

The Properties view displays the properties for the selected group, application, library node, or file. The
assigned value for the property displays. You can add or update the property value, or use the undo button
to reset the property to its default value.

Note: See Package and Directory nodes and properties on page 999 for Genero Mobile
packaging and directory node properties.

Figure 219: Properties view for an application node

Specific Project Manager node variables can be used in the values.

Table 104: Project Manager properties

Label Description May be
inherited

Read-
only

Group Appli-
cation

Library File

Description A short description of the group,
application or library node.

NO NO YES YES YES NO

Compiler
options

Options to be passed to the
compiler. For example, -S to dump
Static SQL messages found in the
source.

YES NO YES YES YES YES

Target Directory Target directory for output files for
all applicable nodes. Compiled
modules and link results (42m,
42f, 42r, and 42x files) will be
stored in this directory.

YES NO YES YES YES NO

Project Manager | 365

Label Description May be
inherited

Read-
only

Group Appli-
cation

Library File

The default directory is a bin
directory created in the current
Project directory. Use the Browse
button to change the directory.

If the directory value is changed,
Genero Studio tries to maintain
a relative path having the project
directory as its base. A relative
path is not possible, however, if a
different drive under Windows™ is
selected.

Important: For portability,
we recommend that Target
Directory should always be
defined through a relative
path, with the Project
Directory $(ProjectDir) as
the starting point.

Source Directory Directory of source files. YES NO NO NO YES NO

External
dependencies

See Setting external
dependencies on page 343.

NO NO NO YES YES NO

Command line
arguments

Arguments passed to the FGL
application when it is launched
(Run or Debug). This is useful
when the application is written to
behave differently depending on
arguments that are passed on the
command line.

For example, the value 123 could
be entered as the argument. This
value could be retrieved in the
application source code using the
built-in function ARG_VAL, and
the application could be written to
respond accordingly.

NO NO NO YES NO NO

Exclude from
build

Excludes the node from the build
process.

NO NO YES YES YES NO

Exclude from
compilation

Excludes the file from compile
process.

NO NO NO NO NO YES

Exclude from
link

Excludes the file from linking
process.

NO NO NO NO NO YES

Language Language to be used when
building a node. See Languages
on page 344

YES NO YES YES YES NO

Linker options Options to be passed when
linking.

YES NO YES YES YES NO

Project Manager | 366

Label Description May be
inherited

Read-
only

Group Appli-
cation

Library File

File Path The complete path of a file,
including the file name.

NO YES NO NO NO YES

Web Service When checked, indicates the
application is a web service
application.

This property is found under the
Application Server group.

NO NO NO YES NO NO

Web Service
URL suffix

The suffix used to generate the
URL when starting a Web Service
application.

In a Genero Configuration using
the GAS as a front-end, the URL
generated for a Web Service
application is changed to:

http://host:port/connector/ws/
r/application_name/web_service_suffix

where:

• "ws" is used in the URL,
instead of the traditional "ua" or
"wa".

• application_name is the name
of the application node.

• web_service_suffix is the value
of the associated property. It
can be empty. Other values
depends on the current GAS
configuration.

This property is found under the
Application Server group.

NO NO NO YES NO NO

Predefined node variables
Each Project Manager node has a defined set of variables containing values determined at runtime.

These variables can be used in Build rules or Environment variables. The variables available on a node are
the concatenation of the variables defined for the node plus the ones defined for its ancestors.

Table 105: Predefined node variables (X indicates available for the node)

Variable Description Group Application Library File Package

$(BAFilePath) Absolute path of the 4ba file. X X X X

$(BinaryName) Name of the binary node. X X X

$(BuildInputFileDirs) File directories. List of all files
which are input files for a build
rule. For example, main.4gl
form.4fd test.per
toto.4gl.

X X

Project Manager | 367

Variable Description Group Application Library File Package

$(BuildInputFileNames)File names. X X

$(BuildInputFilePaths)Absolute file paths. X X

$(BuildOutputBaseNames)Base names. List of all files
which are output files for a build
rule. For example, main.42m
form.42f test.42f
toto.42m

X X

$(BuildOutputFileNames)File names. X X

$(BuildOutputFilePaths)Absolute file paths. X X

$(CommandLineArgs) Command line arguments. X

$(CompilerOptions) Compilation flags defined in the
user interface.

X X X X

$(Dependencies) List of link output files (link
results) of all dependencies
binary nodes. For example,
your Application depends
on 2 libraries, lib1 and lib2.
The lib1 link rule creates the
$(TargetDir)/lib1.so
output file, and the lib2 link rule
creates the $(TargetDir)/
lib2.so output file. The
Application Dependencies
is a list of these paths:
{$(TargetDir)//lib1.so
$(TargetDir)//lib2.so}

X X

$(DistDir) Value of the Distribution
directory property.

X

$(ExecutableName) Executable name. X

$(ExternalDependencies)Value of the node property
External dependencies.

Note: For Java™, C,
and other languages,
this property will contain
the full path for external
dependencies as
FGLLDPATH is not
used.

X X

$(GSTDIR) Genero Studio installation
directory path.

X X X X X

$(GSTSETUPDIR) Application Generator template
directory path.

X X X X

$(Implicit) FGL argument -implicit=none X

$(InputBaseName) Input file base name, without
extension.

X

Project Manager | 368

Variable Description Group Application Library File Package

$(InputDir) Absolute directory of the input
file.

X

$(InputExtension) Input file extension. X

$(InputMimeType) Input file MIME type. X

$(InputName) Input file name, with extension. X

$(InputPath) Absolute path of the input file. X

$(IntermediateFilePaths)List of intermediate file paths. X X

$(JavaSourceDir) Absolute path of the Java
source directory (packages
root).

X

$(JavaSourcePaths) Java source path
(JavaSourceDir of
dependencies).

X

$(Language) Value of the Language
property.

X X X X

$(LinkerOptions) Value of the node property
LinkerOptions

X X X

$(LinkOutputFileBaseNames)Base file names. List of all
files which are output files
for a link rule. For example,
Application.42r

X X

$(LinkOutputFileNames)File names. List of all files
which are output files for
a link rule. For example,
Application.42r

X X

$(LinkOutputFilePaths)Absolute file paths X X

$(PackageName) Value of the PackageName
property.

X

$(ProjectDir) The directory where the 4pw
file is located, or the operating
system temporary directory
if the project has never been
saved.

X X X X

$(RelativeDir) A list of directory names,
corresponding to the path
difference between the source
directory and the current
directory. For example,
the source directory is
$(ProjectDir)/src, and the
file path is $(ProjectDir)/
src/com/d1/Account.java.
The relative directory would be
the string list {com d1}.

X X

Project Manager | 369

Variable Description Group Application Library File Package

To use, you typically join with a
separator:

• For paths that use the
backslash:

$(RelativeDir|/)

• For a java package using a
period:

$(RelativeDir|.)

$(TargetDir) Target directory of the compiled
files.

X X X X

$(TargetPaths) List of target directories of all
dependencies.

X X X X

$(XCFFilePath) Path of the XCF file found for
the application.

X X

List Expansion

For all variables that contain a list of files, for example $(BuildInputFiles), special syntax is used to expand
the list.

To get a list with a specific file extension, use a colon:

$(variableName:.extension)

For example, $(BuildInputFiles:.4gl) returns all files with a 4gl extension in the $(BuildInputFiles)
list, separated by a space.

To get a list with a specific separator, use the pipe symbol:

$(variableName|separator)

For example, $(BuildInputFiles|#) returns all the files in the $(BuildInputFiles) list, separated by a #.

Project Manager error messages
A list of Project Manager error messages. For messages that are not self-explanatory, additional
information is provided.

Table 106: Project Manager error messages

Number Description

GS-12001 ‘%1’ could not be found on the disk.

The file to open is not present on disk.

Check if the file path is correct.

GS-12002 ‘%1’ is not on the same drive than the project ‘%2’. The project
file will not be portable.

Project Manager | 370

Number Description

The file is not on the same drive as the project, resulting in no relative path between the
file and the project. This causes some limitations, for example using versioning will not
be possible.

GS-12003 Cannot load ‘%1’ language file

Language file loading error.

Transform to a generic loading error message with the file path.

GS-12004 Cannot load ‘%1’ platform file

Platform file loading error.

Transform to a generic loading error message with the file path.

GS-12005 Node ‘%1’ contains orphan properties, clean document settings to
remove them

User settings were used in the project file, but are not in the current template.

Choose the right template (GSTSETUPDIR) or clear the settings (losing the values).

GS-12006 Orphan property %1, clean document settings to remove it

User settings were used in the project file, but are not in the current template.

Choose the right template (GSTSETUPDIR) or clear the settings (losing the values).

GS-12007 Orphan property group ‘%1’, clean document settings to remove it

User settings were used in the project file, but are not in the current template.

Choose the right template (GSTSETUPDIR) or clear the settings (losing the values).

GS-12008 GSTSETUPDIR=’%1’ doesn't exist

GSTSETUPDIR is relative or doesn’t exist.

Check the path in the Genero configuration.

GS-12009 Environment variable '%1' should not be defined in the project
but in the config only

One invalid environment variable has been set in the project. The following list contains
the forbidden variables:

• GREDIR
• GSTSETUPDIR
• GSTWCDIR
• FGLDIR

Move its definition to the Genero Configuration.

GS-12010 Some files are not on the same drive than the project file.
The project has been saved with absolute paths and will not be
portable.

Error message and resolution should be self-explanatory.

GS-12011 Unable to create a node of type ‘%1’.

Internal error: incorrect project file format. A node could not be created.

Project Manager | 371

Number Description

GS-12012 For external project file format version must be equal or greater
than ‘%1’.

Internal error: an external project of an unsupported format has been added.

GS-12013 Unable to write the file '%1'. Check path existence and
permissions

Error message and resolution should be self-explanatory.

GS-12014 Unknown encoding '%1'.

No suitable codec can be found for the specified encoding.

Add a new alias in the encoding map or add a new codec charmap.

GS-12015 Cannot load external project '%1', project already loaded.

Error message and resolution should be self-explanatory.

GS-12251 The file '%1' is already present in the project and has not been
imported

The import action tries to add a file which is already present. The file is ignored
(warning).

GS-12252 Cannot compute dependencies for function '%1' because it is
defined multiple times

Error message and resolution should be self-explanatory.

GS-12253 Circular dependency detected on '%1' node

Error message and resolution should be self-explanatory.

GS-12254 File is already present in the project

This warning signals that one of the saved files is already present in the project and
won’t be added a second time.

GS-12255 A business application diagram file is already present in the
project

Error message and resolution should be self-explanatory.

GS-12401 Added dependency on '%1' node to '%2' library

Information message: the import process created a dependency.

GS-12501 Unable to find the wsdl compiler. Check your web services
installation.

Fglwsdl tool is not found in the fgl install.

Check if the Genero configuration uses an fglgws VM.

GS-12502 Cannot load external dependency ‘%1’

An error occurred loading an external project (4pw).

GS-12503 Cannot load project database for external dependency ‘%1’

An error occurred loading an external project database (4pwdb).

Project Manager | 372

Number Description

GS-12505 Project database: <ERRORMESSAGE>

The content of error message GS 12505 can vary because it is an error that occurs
during the build process of the project manager database, and is dependent on the
external tool that is running. This will likely be a compiler (fglcomp) error.

Error message and resolution should be self-explanatory.

GS-12509 Cannot create package XML file ‘%1’

An error occurred during $(GenerateXMLPackage) command.

GS-12510 Unknown argument '%1' to $(generateXMLPackage) task.

The $(GenerateXMLPackage) command arguments are incorrect.

GS-12511 Unknown property ‘%1’

Some unknown property is defined. This message mostly appears for AG settings.

GS-12512 Load failed

General error: an error occurred during file load.

Error message and resolution should be self-explanatory.

GS-12513 Unsupported version

Error message and resolution should be self-explanatory.

GS-12514 Missing version

An error has occurred with the pm-settings.conf file in the template directory
$(GSTSETUPDIR) because the version attribute is missing. Note : this message may
occur with other files using a version attribute.

GS-12515 Unknown node '%1'

Error message and resolution should be self-explanatory.

GS-12516 Platform '%1' is not defined

Error message and resolution should be self-explanatory.

GS-12517 Language '%1' is not defined

Error message and resolution should be self-explanatory.

GS-12751 Configuration isn't valid. Operation canceled.

Error message and resolution should be self-explanatory.

GS-12753 Cannot create execution task.

This is caused by an internal system error.

Contact your local Four Js support center.

GS-12754 Cannot create profiling task.

This is caused by an internal system error.

Contact your local Four Js support center.

GS-12755 Cannot create debugging task.

Project Manager | 373

Number Description

This is caused by an internal system error.

Contact your local Four Js support center.

GS-12756 The debugger is already running. You have to stop the current
debugger session to start a new one.

Error message and resolution should be self-explanatory.

GS-12757 Operation cannot be performed, no item selected

Error message and resolution should be self-explanatory.

GS-12758 Unable to find the internal FGL installation. Check your %1
installation.

Internal error: Genero Studio install malfunctioned.

Reinstall Genero Studio to solve the problem.

GS-12759 Unable to start an import on the selected node.

Internal error: the import does not work on the currently selected node (only the main
project and group are supported).

GS-12760 Unable to build an unsaved project using a remote server. Unsaved
projects can only be built with local FGL installations

Error message and resolution should be self-explanatory.

GS-12761 Genero installation isn't valid. Operation canceled.

Error message and resolution should be self-explanatory.

GS-12762 Front end isn't valid. Operation canceled.

Error message and resolution should be self-explanatory.

Code Editor | 374

Code Editor

Code Editor is a programming-oriented editor. In addition to editing source code, it can handle any kind of
text or languages such as 4GL and XML. Smart editing features like auto-completion, code templates, text
folding, bookmarking, and robust search and replace make coding easier and more efficient.

• Editing code files on page 374
• Using the Diff tool on page 380
• Printing files on page 382
• Using XML catalog files on page 383
• Code Editor Reference on page 384

Editing code files
Information about editing files in Code Editor.

• Code Editor basics on page 374
• Smart editing - indenting, tabs, and backspace on page 375
• Fold text on page 375
• Bookmarks on page 376
• Auto completion (Ctrl+Space) on page 376
• Code templates (Ctrl+T) on page 376
• Split a document on page 377
• Square selection on page 377
• XML editing on page 377
• Search and replace on page 377

Code Editor basics
The active document is displayed in the Document workspace. Multiple documents can be open, in tabbed
windows, with the filename on the tab.

By default, Line numbers are displayed at the left side of the window.

The status bar at the bottom of the window contains the cursor position (line, column), the format
(Windows™, UNIX™, MAC), and the mode (insert/overstrike).

The Code Structure view displays information about the structure of the active file. Clicking on an element
in the Structure view will display and highlight the corresponding lines in the Editing window.

vi Editor

You can change the editor to use vi commands. Select Edit >> VI Editing Mode to switch the editor.

Syntax highlighting

The elements of the program are visually highlighted. Language key words, strings, variables and
comments are each colored differently, making the program structure easier to understand. Select Tools
>> Preferences, Code Editor to customize the behavior and color.

Syntax errors

An error mark in the gutter flags syntax errors as they occur. Select the error mark to display a message
concerning the error. The error message and line number also display in the Document Errors tab in the
output.

Code Editor | 375

Menu of options

Use the Edit menu or right-click in document to display some options for selecting, searching, and editing.
The available accelerator keys are documented in the Keyboard Shortcuts on page 394 page.

Document Format

You can change the document format (Windows™, UNIX™, MAC) by selecting Edit >> Convert to.

Integrated diff

The Using the Diff tool on page 380 tool is integrated into Code Editor.

Smart editing - indenting, tabs, and backspace
Code Editor has smart editing features for indenting, tabs, and backspace.

Smart Indent

The Smart Indent feature is enabled by default. After you press the Enter key, the new line is indented to
align with the immediately preceding non-blank line.

For example:

01 LET var1 = 55
02 LET var2 = 22

If you do not wish your new line to be aligned with the preceding line, use the Left Arrow key to move the
cursor towards the left margin of the page.

Smart Tabs
The Smart Tabs feature is enabled by default. When the Tab key is pressed at the beginning of a line, the
cursor is aligned with the first character following the next whitespace on the immediately preceding non-
blank line.

For example:

01 DEFINE
02 var1 INTEGER,
03 var2 INTEGER

If the preceding line does not have embedded whitespace, the Tab key moves the cursor the number of
spaces indicated by the Tab size setting in the Behavior and display preferences.

Smart Backspace

The Smart Backspace feature is enabled by default. Pressing the Backspace key will move the cursor back
in the current line to the position of the indent in the previous line.

Disable Smart features
Disable Smart features by selecting Tools >> Preferences >> Code Editor, Behavior & Display from the
menu.

Fold text
Folding condenses portions of text based on the scope of statements.

Click the + or - symbols in the left gutter to fold or unfold all corresponding lines. Use the View menu or
right-click context menu options to Fold, Fold all, or Unfold all.

Code Editor | 376

Bookmarks
Bookmarks are used to mark areas of a document for easy access.

To add a bookmark, place the cursor in the line of text where you want to add the bookmark. Right-
click and select Toggle bookmark from the menu. A bookmark icon will appear in the gutter. A list of
bookmarks is kept in the Bookmarks view.

Auto completion (Ctrl+Space)
The auto complete feature helps complete a line of code or prompts for a valid keyword in the syntax.

Type the first letters of a word and then press Ctrl-space to complete the word or select a word from a list
of options.

Code templates (Ctrl+T)
Code templates are snippets of frequently used code elements available to insert into the code to avoid
repetitive typing and speed up coding.

To use a code template in your code, select one of these methods:

• Type the code template name, such as "case", in your code where you want it to appear; Press Ctrl+T,
or right-click to display the contextual menu and choose Expand Template.

• Position the cursor where you want the code to appear, and press Ctrl+T to display a list of code
templates. Select from the list using the arrow keys, and press Enter. (Press Esc to cancel)

The selected template is inserted in the document using the exact layout (tabs, linefeeds, and so on.) A
corresponding number of lines are shifted.

Templates are user-customizable. Use Tools >> Preferences >> Code Editor, Code Templates to add
or modify a template.

Example: Adding a "case" instruction code template

Use the popup window (Ctrl-T) to select a keyword, or type "case" and press Ctrl-T.

The code template is inserted in your code, ready for you to complete.

Figure 220: Code template pop-up window

Code Editor | 377

Figure 221: CASE code template

Split a document
Splitting the document view allows you to see different parts of a long document at the same time.

Split/unsplit a document using the View menu option. Once a split is requested, the current document
window splits into two separate windows which can be scrolled independently. Each window may be split
again twice.

Highlight rules are applied to the same text in every window pane. For example, placing the cursor on the
IF statement in one window also highlights the same IF statement in other windows in which it is displayed.

Square selection
Press the alt key while selecting text with the mouse to select a rectangle of text, instead of entire lines.

XML editing
Code Editor recognizes XML documents and provides XML validation. Color coding, Smart Editing, and
Code Completion features can be used with an XML file.

Search and replace
Information about using search and replace in Code Editor.

• Using wildcards in search on page 377
• Using regular expressions in search on page 378
• Group capture in regular expressions on page 379

Using wildcards in search
The Use Wildcards option will find the specified combination of characters, including combinations within
a word.

Table 107: Use Wildcards

Wildcard Description Example
expressions

Matches any combination of
characters

* Substitutes for any number of
characters

1. st*e
2. *rec

1. that begins with st, followed by zero
or more characters, followed by e:
custrec, store, steady

2. that begins with zero or more
characters, followed by rec:
gr_custrec, RECORD

? Substitutes for a single character • st?re • that begins with st, followed by a
single character, followed by re:store

Code Editor | 378

Using regular expressions in search
The Search tool will search for an exact match to text in the Find box, unless you specify match conditions
using regular expressions, special meta characters, and predefined regular expressions.

Entering the string FUNCTION, will find FUNCTION or function, but not the string fun. If the Search option
case sensitive is checked, the search will distinguish between uppercase and lowercase letters.

Meta Characters

• The meta character \ matches the character following it, except when followed by a left or right round
bracket, a digit 1 to 9, or a left or right angle bracket.

• The special characters "]" and "-" have no special meaning if they appear as the first characters in the
set.

Table 108: Meta Characters

This table provides the wildcard symbol or syntax, a description, an example expression, and

examples of strings that match the example expression. For some entries, more than one example
expression - string match pair are provided.

Wildcard Description Example expressions Matches any string

• fla. • containing four letters
that begin with fla: flag,
FLAG, flannel

. Substitutes for any single
character

• b.g • containing three letters
in the format bxg: big,
bog, Bog, bag

* Substitutes for zero or
more occurrences of the
preceding expression/
character

• a *b (notice the blank
before the *)

• "a" followed by zero or
more blanks then "b"
"a basic" "abasic"

+ Substitutes for one or
more occurrences of the
preceding expression/
character

• a +b (notice the blank
before the +)

• "a" followed by one or
more blanks then "b"
"a basic" "a basic"

• \+100 • containing +100;
treats + as an ordinary
character

\ Searches for the
character following;
this cancels the special
significance of the meta
characters including itself,
allowing a search for
them. When used in a set,
it is treated as an ordinary
character.

• \\user • containing \user;
treats \ as an ordinary
character

• [bd]og • containing bog, dog

• [Tt]ooltip • containing Tooltip,
tooltip

[set] Defines a set of
characters enclosed in
square brackets ([...]) to
be used for matching;
may define character
ranges, as in [a-z] and
[0-9]. If the first character
in the set is "^", it matches

• b[^o]g • containing three
characters, b, <any

Code Editor | 379

Wildcard Description Example expressions Matches any string

character but o>, g:
bag, big

any character NOT in the
set.

• [A-Da-d]+ • containing one of the
alpha characters a
through d inclusive,
in uppercase or
lowercase: define,
Define, age

x | y Matches either expression
x or expression y
(composite expression)

• bob|bog • containing either string:
bob or bog

xy Strings multiple
expressions together,
finding a single string
containing expression
x and expression y
(composite expression)

• def.* iti.* • containing the string
def, any characters
including none,
and then the string
iti:definition

^ $ Restricts the pattern
matching to strings at the
beginning of the line (^
character) and/or the end
of the line ($ character),

1. ^when
2. test.$

1. with when at the
beginning of the line

2. with test. at the end of
the line.

Group capture in regular expressions
When the Use Regular Expressions option is checked, group capture allows you to isolate groups in the
expression to be matched, so they can be captured and substituted during the replacement.

Given this expression in your document:

4+5*6+88
22+4*555

You can transform this express to these patterns using group capturing: (4+5)*(6+88) and
(22+4)*555.

In the first expression there are four groups. First you must capture the individual groups in the expression
by enclosing them in parenthesis. Specify that the characters are integers using the regular expression
[0-9]+ (one or more integers). Use the escape character \ to indicate that the * and + symbols are literal
and not meta characters.

Find text: ([0-9]+)\+([0-9]+)*([0-9]+)\+([0-9]+)

Replace expression indicating the desired pattern and the positions of the groups (numbered from left to
right): (\1+\2)*(\3+\4)

Result: (4+5)*(6+88)

Function search
Function search allows you to search a file for a function.

Display the Function Search view with Window >> Views >> Function Search.

Enter a part of the function name to return all functions in all files in the project that meet the search
criteria. For example, entering ord returns a list of functions with ord in their name such as order_new() and
close_order().

Code Editor | 380

Double-click on a line in the results to go to the selected function.

Using the Diff tool
The Diff tool compares two files: a read-only base copy of the file and a working copy. It is integrated into
Code Editor.

Comparing files
The Diff tool automatically selects the Diff base file and flags differences between the base file and the
working copy with color-coded markups in the Code Editor gutter. Colors can be changed in preferences.

• Green - added lines
• Orange - modified lines
• Red - deleted lines

The base file is selected in this order:

Use Generated File The default for generated files, this option compares
the document with the file generated by the
application generator. This is the generated file
before POINTs and BLOCKs are injected into the
file. This option is made available only if the file has
been generated.

Use Repository File The default for versioned files, this option compares
the document with the file in the repository for
the current SVN version of the file. This option is
enabled only if the file is versioned.

Use File on Disk Compares the document with the contents of the
file as it was on disk when the file was opened. If
you select this option again after the file has been
opened, the diff data will be refreshed by comparing
the document with the actual content of the file on
disk.

You can change the base file used with Diff >> Base File.

Specify how the tool compares white space and case in preferences.

Display modes
You can select a Diff display mode from the Diff menu.

Normal View This view opens the file in normal editing mode.

Diff View This view displays differences between the base
file and working copy in a single pane document.
This is also called single pane diff mode. New and
modified lines are clearly marked by color. This
view identifies the location of deleted lines, but does
not display them.

Diff View with Deleted Blocks This view displays differences between the base file
and working copy in a single pane document with
deleted blocks highlighted in red.

Vertical Dual Diff View This view displays the two files vertically, with a left
and right pane. It opens the base file (read-only) in

Code Editor | 381

the left pane and the editable working copy in the
right pane. This is also called two pane diff mode.

Horizontal Dual Diff View This view displays the two files horizontally, with a
top and bottom pane. It opens the base file (read-
only) in the top pane and the editable working copy
in the bottom pane. This is also called two pane diff
mode.

Example: Diff View

This figure shows Diff View. Lines 28-32 are marked with green blocks to indicate newly added lines. The
orange block in the gutter of line 24 indicates a modified line (a new comment, highlighted in green, has
been added to the existing line). The red line between line 22 and line 23 flag the location of a deleted line/
lines.

Figure 222: Diff View display mode

Example: Vertical Dual Diff View

This figure shows Vertical Dual Diff View. Side-by-side comparison of the base file in the left pane and
the editable working copy in the right pane give you a before and after record of changes. Red blocks in
the gutter of the base file pane show the contents of lines deleted in the working copy.

Code Editor | 382

Figure 223: Vertical Dual Diff View display mode

Diff navigation

Locate the changes quickly with Diff navigation options.

First Difference Locate the first difference.

Previous Difference Locate the previous difference.

Next Difference Locate the next difference.

Last Difference Locate the last difference.

Reverting a difference

To revert a difference, place the cursor in the line of marked code that you want to revert. Select Diff >>
Copy to Right. The Copy to Right action replaces the difference in the working copy with the original
values from the base copy. Select Diff >>Copy All to Right to revert all changes.

Use an external tool
You can specify an external tool instead of the integrated one to compare files in preferences. The Tools
>> Diff option will launch the external tool.

Command line option
Use generostudio -diff file1 file2 at the command line to open the given files in Diff mode.

Printing files
There are two options for printing files in Code Editor.

File >> Print Prints the file using the options available to your
operating system printers.

File >> Print Preview Displays a preview of the printed file in a preview
window. For diagrams, scaling and number of
pages to use to print can be configured.

Code Editor | 383

Using XML catalog files
Information about XML catalog file usage in Code Editor.

• XML catalog files on page 383
• The XML catalog file on page 383
• Manage XML catalog entries on page 384

XML catalog files
XML Catalog files are used to provide an alternative path when the external entities are not accessible, or
are not where the XML document specifies.

Many XML documents contain external links to stylesheets, schemas, DTDs, and so on, which may be
stored on remote systems. if the links are absolute URLs, they only work when your network can reach
them. However, the entity resolver of the XML SAX parser can be used to determine whether there is a
local equivalent in your system's Catalog application level cache.

When you use an XML Catalog file to map these external references to local equivalents, the task of
locating the reference is shifted from the XML documents to the XML Catalog files, which can be varied
for different audiences. Since local copies of the references are accessed instead of remote network
resources, and the local copy can be a subset of the complete schema or DTD in the external reference,
XML processing may be faster.

The XML catalog files to be used by Genero Studio are specified through the General Preferences on page
106.

The XML catalog file
Genero Studio provides a subset of the OASIS XML catalog specification.

• The catalog element to assign a name to the catalog
• System and public elements to resolve DTDs
• The uri element to resolve schema location for XSDs
• The nextCatalog element to refer to another catalog file

Example File

This example illustrates the features of a Genero Studio XML Catalog file:

Code Editor | 384

Figure 224: Genero Studio XML Catalog file

The catalog element is the root of an XML Catalog. The xmlns attribute assigns a name to the catalog file.

Additional Elements in this file are:

1. public - resolves a Public ID for an external DTD; specifies Public external DTDs intended for broad
use (public distribution of a DTD file for a wider audience).

2. system - resolves a relative system id for an external DTD; used to find the public DTD if it cannot be
located by the public ID.

3. system - resolves a web-based system id for an external DTD.
4. uri - used to locate XSL and other files. It can be used for everything that is not a declared PUBLIC or

SYSTEM identifier for a DTD or system entity file.
5. nextCatalog - resolves entries related to Additional Catalogs.

Manage XML catalog entries
You can add, edit, and delete XML catalog entries.

Use Tools>>Preferences and select XML Schema/DTD from the Code Editorpage in the Pages tree; a
list of the XML catalog files to be used with Genero Studio is displayed,

You can add/edit/delete/edit entries for these catalog files through XML Schema/DTD Configuration.

Code Editor Reference
Reference information for Code Editor.

• Code Editor preferences on page 384
• Views on page 390
• Keyboard Shortcuts on page 394
• vi Commands List on page 398

Code Editor preferences
Set preferences for the Code Editor.

Select Tools >> Preferences, Code Editor to access Code Editor preferences.

Code Editor | 385

Shortcut keys can be customized with Tools >> Preferences, User Interface, Accelerators.

VI Mode Settings

Table 109: VI Mode Settings options

Option Description

Open file with VI mode editing
check box

If checked, the behavior of the editor is modified to behave like a UNIX™

editor.

Diff Mode Settings

Table 110: Diff Mode Settings options

Option Description

Default diff mode combobox Set the default diff mode. This is the mode in which Code Editor will open
files. This mode has no effect when comparing two files on disk; dual
pane will always be opened in this case.

No diff Open in normal editing mode.

Single pane Open in diff mode in a single pane
view.

Single pane with deleted blocks Open in single pane with deleted
blocks highlighted.

Dual pane Open in two panes with the base
file on the left and the file to
compare on the right.

• Encoding (i18n) on page 385
• Behavior & Display preferences on page 385
• Color and font preferences on page 387
• Template preferences on page 387
• XML Schema/DTD preferences on page 388

Encoding (i18n)
Text Editor supports internationalization (i18n), allowing you to enter special characters like Japanese,
Chinese, or Indian scripts, and to enter text from right to left as in Arabic.

The characters typed at the keyboard are intercepted and changed automatically, based on the Encoding
method selected in General Preferences on page 106. The default Text Encoding is Default charset.

Behavior & Display preferences
Set preferences for the behavior and display aspects of the Code Editor.

Language

Select the programming language to which the preferences will apply; the default is All Languages. If you
select a specific language, the changes will apply only to that language.

Use custom settings - this checkbox appears only if Language is not set to All Languages. This box
must be checked to make any changes in the settings for the selected language.

In order to enable the Language-Specific tab, Language must be set to a specific language.

Code Editor | 386

Behavior Preferences

Tabs:

• Tab size - default size is four characters.
• Insert spaces for tab- if checked, tab size whitespaces are inserted into the document instead of the

tab character when the Tab key is pressed.

Indentation:

• Smart tab - if checked, when the Tab key is pressed the cursor is moved to align with the first character
following a whitespace on the previous non-blank line.

• Smart backspace - if checked, backspace intelligently through whitespace.
• Smart indent - if checked, indent code based on the indentation of the previous line. New lines are

indented to the first non-blank character of the line above.
• Strip trailing white spaces - remove trailing whitespace from the file

Automatically Close: If checked, the closing symbol will be added to each of these:

• String
• Single quotes
• Parenthesis
• Curly braces
• Square brackets
• Angle brackets

Smart Key Options:

• Smart home - if checked, the Home key moves the cursor to the left of the first non-blank character on
the line.

• Smart end - if checked, the End key moves the cursor to the right of the last non-blank character on the
line.

New Document Format: Sets the default line ending for new text documents:

• Windows - Use the CRLF end-of-line format, as used by Windows and most other early non-Unix and
non-IBM operating systems.

• UNIX/Mac - Use the LR end-of-line format, as used by UNIX-like systems including Mac OS X.
• Mac 9 - Use the CR end-of-line format, as used by Mac OS up to version 9.

Display Preferences

Editor:

• Show line numbers - Enables or disables line number display
• Show Right Margin - Displays a thin line on the right side to indicate the right margin
• Right margin - Row number where the right margin line is located. Sets the right margin of the editor.

The default is 80 characters
• Show indentation guide - vertical lines that indicate relative indentation of text

Highlighting:

• Current line - highlight line at caret position
• Brace Match - enable brace match highlighting (highlights both braces in a set when the cursor is

immediately to the right of one of the braces).

Wrapping:

• Line wrapping - enabled if checked.

Code Editor | 387

Language Specific Preferences

When Language is not set to All languages, the Language Specific tab is enabled. Click the tab to display
any preferences related to that language.

Color and font preferences
Set preferences for the behavior and display aspects of the Code Editor.

You can specify how specific styles of your Editor code appear.

Global Style - applies to all languages

• Theme - quickly configure the display using predefined color combinations
• Font family - specify the font family; when this is changed it applies to all languages, except those for

which custom settings have been created.
• Font size - specify font size, when this is changed it applies to all languages, except those for which

custom settings have been created.

Style Specific Settings (custom settings) for all Languages

Language - the default selection All Languages in the combobox displays the default styles and
properties applicable to all languages. As a default, specific language pages inherit the settings defined for
All languages.

Style - list of styles. Select a style to display these properties:

• Color - specifies the color for the Foreground and Background of the style, when this is changed it
applies to all languages.

• Font - specifies the font selected from the available screen fonts installed on your system. Use custom
font for the selected style must be checked in order to make changes in:

• Family - font family associated with your selected font; changes will override the global setting.
• Size - font sizes associated with your selected font. changes will override the global setting.

• Bold - specifies whether the selected font is Bold. Inherits the global family and size.
• Italic - specifies whether the selected font is Italic. Inherits the global family and size.

Style Specific Settings (custom settings) for a specific Language

Language - list of languages. Select the language from the dropdown list, to display the language-specific
styles and properties.

Use custom settings - this checkbox displays when you select a specific language in the list. This box
must be checked in order for you to make any changes in the settings for the selected language. When
this box is checked, the settings for the selected language become specific, and it does not inherit the All
languages settings any longer.

• To change the Color (Background, Foreground) or the font properties Bold or Italic for a specific
style, you must first select the Style from the Style list. Use custom settings must be checked.

• To change the Font Family and Size properties for a specific style, you must check Use custom font
for the selected style. This overrides the Global Font family and Font size settings.

Template preferences
Set preferences for the template aspects of the Code Editor.

Language - select the desired language. The default is Genero BDL.

Templates

Displays a list containing the Name and Description of existing templates. When an existing template is
selected, the corresponding template code is displayed in Preview.

Code Editor | 388

Icons allow you to:

• Add - Displays the Add Code Template dialog box, allowing you to enter the new template name and
description

• Delete - Deletes the selected template
• Edit - Displays the Edit Code Template dialog box, allowing you to edit the name and description of

the selected template.

Add/Edit a Template:

• For new templates, enter the template name and description.
• Type directly in the pane to add the code for a new template or to make changes in existing code.
• Use the pipe character '|', to denote the cursor position in the expanded template. For example, when

you insert this template into your code, the cursor appears inside the parenthesis after the CASE
keyword.

CASE (|)
 WHEN ()
 WHEN ()
END CASE

Important: When you modify or create a template, you must type it exactly. For example, you
must use indents.

Preview - Displays the code for the selected template.

Import/Export buttons

• Import - import 4GL template definitions from an XML file
• Export - export 4GL template definitions to an XML file

XML Schema/DTD preferences
Set preferences for the XML schema and DTD aspects of the Code Editor.

Many XML documents contain external links to stylesheets, schemas, DTDs, and so on, which may be
stored at remote locations. Genero Studio XML catalog files may be used by Genero Studio to provide an
alternative path when the external entities aren't accessible.

Use Tools>>Preferences and select XML Schema/DTD from the Code Editor page in the Pages tree. A
list of the XML catalog files provided with Genero Studio is displayed.

Code Editor | 389

XML Schema/DTD Configuration

Figure 225: XML Schema / DTD Configuration

Catalog Entries

This section displays the entries for the XML Catalog files that are provided by Genero Studio.

Use the icons at the top of the Catalog Entries section to add/delete or edit catalog entries. An edit icon
appears next to catalog entries that may be edited.

These values are displayed for each Catalog Entry:

• Key name - can be empty; already existing names can not be used.
• Key type - valid values are:

• Public ID, for the DTD
• System ID, for the DTD
• Schema URI, for the Schema location

Code Editor | 390

• Key value

• For Public/System IDs - the absolute file location for the DTD
• For Schema URI - the XSD file location; a Browse button is provided to locate the grammar file.

Additional Catalog

Entries in this section specify an XML catalog file to be added to the end of the current catalog. This allows
one catalog to refer to another. If a reference cannot be resolved in the current catalog entry file, then
Genero Studio moves to the next catalog specified in the Additional Catalogs section.

Entries defined in a Genero Studio XML Catalog file are given preference over entries that come from
a Next Catalog file. This allows you to override the entries in the Next Catalog file to resolve external
grammar files.

Use the icons at the top of this section to add/edit/delete Additional Catalog entries.

• Next Catalog File - specifies the name of the additional XML catalog fie.

See Using XML catalog files on page 383 for additional information about Catalog files.

Customize Diff tool: preferences
Select Tools >> Preferences, Diff to set preferences for the Diff tool.

Internal tool configuration

Select the checkbox to enable an option:

• Ignore case
• Ignore all white space
• Ignore space change
• Try hard to find a smaller set of changes

External tool configuration

If you have chosen to use an external tool, enter the configuration information:

External tool command line The path of the external tool

External tool arguments Use the shown variables to specify the arguments
for the command line. The names of the files will
replace the variables when the tool is invoked.

Color

Select the color button next to each option to change the color used for deleted, modified, added lines and
placeholders.

Views
Information about Code Editor views.

• Code Editor basics on page 374
• Code structure view on page 391
• Output view
• The Search/Replace view on page 391
• The Search Results view on page 393
• Bookmarks view on page 97

Note: For SVN-related views, see Source Code Management - SVN on page 529.

Code Editor | 391

Code structure view
If the file being edited is a Genero source code file (4gl), its structure is displayed in a tree.

• Module listing - the program blocks and functions, together with their variables
• SQL - cursor names
• Globals - the global variables, including records
• Externals - functions from another 4gl file that are called in the active file

Click an object in the tree to display the corresponding lines in the Document window.

The functions listed in the structure are automatically displayed in the order in which they appear in the file.
Right-click in the Code Structure view to display a menu of options:

• Sort alphabetically/Sort by file order - switch the order in which the functions, and the variables
within the functions, are listed in the view. The default is "file order", the order in which the functions and
variables appear within the file.

• Sort ascending/descending - specify order

The Search/Replace view
The Search/Replace view allows you to search for and replace text in one or multiple documents.

Using the Window >> Views >> Search/Replace menu option opens the Search/Replace View:

Figure 226: Search/Replace View

Fields allow you to set the search / replace criteria:

Find Enter a search string, or click the down arrow next
to the input box to select from a list of previously
entered strings.

Replace Leave this empty, unless you want to replace the
text that is found. You can enter the replacement
string, or click the down arrow next to the input
box to select from a list of previously entered
replacement strings. To replace the text with a
space, type a space in this box.

In Select the scope of the search/replace:

• Current file - Search in the current file only.
• Open files - Search in all open files.
• Folder - Search within a specified folder. You

specify the folder, as well as some additional
options, in the Folder field. Selecting Folder

Code Editor | 392

has the same effect as the Find in Files menu
option.

• Current project allows you to search the file
content of the project for the search string.

File types Limit your search and replace to specific file types,
specified by *.ext where ext is a file extension.

Folder Limit your search results to the contents of a
specified folder. You can use the magnifying glass
icon to specify the folder.Within this folder, you can
use the check boxes to identify whether to include
the subfolders of the selected folder, and whether to
include hidden files.

Note: The Folder combobox is enabled
when Folder is selected for the In field.

Options allow you to further refine your search / replace:

Case Sensitive Differentiates between uppercase and lowercase
when performing a search.

Match whole word only Does not find and/or replace the string if it is
contained within another string.

Use Choose between Regular Expressions or Wildcards
(* and ?).

Note: If Use is checked, the Match whole
word only option can not be used and is
disabled.

Wrap around If the search reaches the end of the file, wrap
around the document to find the next occurrence.

Incremental search Stop at each occurrence of the string

Restrict to selection If a section of a document is selected, restricts the
search to that section.

Text search Search file as text, not as formatted Genero file.

In the view's toolbar, icon buttons allow you to control the direction of the search and the implementation of
the replace. The icons in order (left to right):

• Find previous
• Find next
• Find all
• Replace previous
• Replace next
• Replace all
• Stop

Use Esc to return focus back to the current open file.

The Edit >> Search/Replace provides a menu interface that allows you to perform many of the same
tasks allow you to find/replace text in documents, as well as clearing the Search Results view.

• Edit >> Search/Replace >> Find (CTRL + F) opens the Search/Replace view.
• Edit >> Search/Replace >> Find in Files (CTRL + SHIFT + F) opens the Search/Replace view with

Folders selected for the In field.

Code Editor | 393

The Search Results view
Search results are displayed in the Search Results view.

Figure 227: Search results View

The Locator column displays the Search results using a tree view, with three levels:

• The uppermost node provides a summary of the search criteria, as well as the number of results found.
• The first child node represents a file. Each file included in the search gets its own child node. The

number of results from within that file are displayed.
• The leaves of the tree view are the individual search results. The format of the locator depends on the

searched file. For text files, each result is marked by four numbers: The line where the match starts, the
character position where the match starts, the line where the match ends, and the character position
where the match ends. For other types of files, it depends on the module used to open the file; the
locator is usually an XPath to the model node, or a model node identifier. It will be the same as the
locator in the Document Errors view.

The Match column provides the detail of the result in the context of the line from the file, with the search
term highlighted.

If more than 10,000 results are found, search is stopped and a message is displayed on the summary line.

Double-click the highlighted text to display the string in its corresponding file.

Tasks view
The Tasks view displays the completion status of current tasks and includes action to abort tasks if
needed.

Document Errors view
The Document Errors view displays errors related to a document.

• Select the error number and press the F1 key to display additional information about the error.
• Use Tools>>Preferences, Genero Studio Preferences, Messages to hide a specific information or

warning message.

Code Editor | 394

• View BUG or TODO notations found in your code. Enter the notation into your code files with --KEYWORD
<message> where KEYWORD is BUG or TODO. After compiling, put focus in the Project Manager view
to see these messages in the Document Errors tab.

Output view
The Output view displays messages related to the output and errors specific to the process being
performed.

The Filter Messages checkbox shows error messages, warning messages, and/or information messages.

Bookmarks view
The Bookmarks view lists all the bookmarks that have been added to documents in Genero Studio.

You can navigate, add, or remove bookmarks from the Bookmarks view.

The integrated Toolbar and right-click context menu include these options:

Toggle bookmark Adds or removes a bookmark in the current
document, provided the current module supports
bookmarks.

Previous / Next bookmark Activates the previous / next bookmark in the view.

Remove bookmark / Remove all bookmarks Removes current or all defined bookmarks.

Keyboard Shortcuts
Information about Code Editor keymaps.

• Cursor movement keymap on page 394
• Selection keymap on page 395
• Editing Text keymap on page 396
• Clipboard keymap on page 397
• Search and Replace keymap on page 397
• Buffers and Files keymap on page 397
• Code Completion keymap on page 398
• Code Templates keymap on page 398

Note: Genero Studio default accelerator keys may be customized. See Accelerators in
Tools>>Preferences, User Interface.

Cursor movement keymap

Table 111: Cursor movement keymap

Command / Action Keyboard shortcuts

Left one character Left arrow

Right one character Right arrow

Left one word Ctrl + Left arrow

Right one word Ctrl + Right arrow

Up one line Up arrow

Down one line Down arrow

Beginning of line Home

End of line End

Code Editor | 395

Command / Action Keyboard shortcuts

Last index of current line Alt + End

First index of current line Alt + Home

Scroll window up one line Ctrl + Up arrow

Scroll window down one line Ctrl + Down arrow

Up one screen Page Up

Down one screen Page Down

Top of file Ctrl + Home

Bottom of file Ctrl + End

Next tab stop Tab

Previous tab stop Shift + Tab

Go to line Ctrl + G

Find matching brace, bracket or parenthesis Click one brace to highlight matching braces

Smart backspace Shift + Backspace

Selection keymap

Table 112: Selection keymap

Command / Action Keyboard shortcuts

Select left one character Shift + Left arrow

Select right one character Shift + Right arrow

Select current word Ctrl + L, W

Select to start of current word Ctrl + Shift + Left arrow

Select to end of current word Ctrl + Shift + Right arrow

Select current line Ctrl + L, L

Select to start of line Shift + Home

Select to end of line Shift + End

Select up one line Shift + Up arrow

Select down one line Shift + Down arrow

Select to top of window Ctrl + Shift + Page Up

Select to bottom of window Ctrl + Shift + Page Down

Select up one screen Shift + Page Up

Select down one screen Shift + Page Down

Select to top of file Ctrl + Shift + Home

Select to bottom of file Ctrl + Shift + End

Select all Ctrl + A

Code Editor | 396

Command / Action Keyboard shortcuts

Square selection Alt + mouse (left)

Extend square selection to previous character Alt + Shift + Left arrow

Extend square selection to next character Alt + Shift + Right arrow

Extend square selection to end of current line Alt + Shift + End

Extend square selection to start of current line Alt + Shift + Home

Editing Text keymap

Table 113: Editing Text keymap

Command / Action Keyboard shortcuts

Toggle Insert / Overstrike mode Insert

Comment (comments all selected lines) Ctrl + K, Ctrl + K

Block comment Ctrl + K, Ctrl + C

Unblock comment Ctrl + K, Ctrl + U

Delete character/selection Delete

Delete previous character/selection Backspace

Delete to end of word (kill-word) Ctrl + D

Delete to start of word (backward-kill-word) Ctrl + Backspace

Delete line (kill-line) Ctrl + Del

Delete to end of line Ctrl + Shift + Y

Indent block Tab

Un-indent block Shift + Tab

Lowercase the currently selected text Alt + Shift + L

Uppercase the currently selected text Alt + Shift + U

Toggle case of each character in the selected text Ctrl + U

Lowercase word Ctrl + Alt + W

Uppercase word Ctrl + Alt + Shift + W

Undo Ctrl + Z

Alt + Backspace

Redo Ctrl + Y

Alt + Shift + Backspace

Insert return Enter Shift + Enter

Code Editor | 397

Clipboard keymap

Table 114: Clipboard keymap

Command / Action Keyboard shortcuts

Cut selection Ctrl + X, Shift + Delete, Cut

Copy selection Ctrl + C, Ctrl + Insert, Copy

Paste from clipboard Ctrl + V, Shift + Insert, Paste

Search and Replace keymap

Table 115: Search and Replace keymap

Command / Action Keyboard shortcuts

Find Ctrl + F

Find next F3

Find previous Shift + F3

Find in files Ctrl + Shift + F

Focus back to file Esc

Buffers and Files keymap

Table 116: Buffers and Files keymap

Command / Action Keyboard shortcuts

File | New Ctrl + N

File | Open Ctrl + O

File | Print Ctrl + P

File | Save All Ctrl + Shift + S

File | Save Ctrl + S

File | Save As Ctrl + Alt + S

File | Close Ctrl + F4

Close Genero Studio Ctrl + Shift + Q

Split window vertically Ctrl + Alt + V

Split window horizontally Ctrl + Alt + H

Unsplit window Ctrl + Alt + Shift + N

Unsplit all Ctrl + Alt + Shift + A

Preview view Alt + Shift + P

Code Editor | 398

Code Completion keymap

Table 117: Code Completion keymap

Command / Action Keyboard shortcuts

Auto Complete Ctrl + Space

Note: Code Completion is for 4gl files only.

Code Templates keymap

Table 118: Code Templates keymap

Command / Action Keyboard shortcuts

Code Templates Ctrl + T

vi Commands List
A listing of vi commands currently implemented in Code Editor.

Table 119: Cursor movement

Keystrokes Description

h l k j character left, right; line up, down

b w word/token left, right

ge e end of word/token left, right

0 ^ $ beginning, first, last character of line

nG/:n ngg line n, default the last, first

B W space-separated word left, right

gE E end of space-separated word left, right

H M L Top, middle, bottom of screen

g0 gm beginning, middle of screen line

g^ g$ first, last character of screen line

fc Fc next, previous occurrence of character c

tc Tc before next, previous occurrence of c

Table 120: Insertion and Replace (insert mode)

Keystrokes Description

i a insert before, after cursor

I A insert at beginning of first character, end of line

gI (g + Capital I) insert text in first column/go to first column

o O open a new line below, above the current line

rc replace character under cursor with c

Code Editor | 399

Keystrokes Description

R replace characters starting at the cursor

cm change text of movement command m

cc or S change current line

C change to the end of line

Table 121: Deletion

Keystrokes Description

x X delete character under (right), before (left) cursor

dm delete text of movement command m

dd D delete current line, to the end of line

J gJ join current line with next, without space

:rd delete range r lines

Table 122: Search and Substitution

Keystrokes Description

/s# ?s# search forward, backward for s

n or /# repeat forward last search

N or ?# repeat backward last search

* search backward, forward for complete word under
cursor

g# g* same, but also find partial matches

gd gD local, global definition of symbol under cursor

:rs/f /t/x substitute f by t in range r; x: g -- all occurrences,
c -- confirm changes

Table 123: Copying

Keystrokes Description

ym yank the text of movement command m

yy/:y or Y yank current line into register

:ry yank r range of lines

p P put register after, before cursor position

Table 124: Undoing, Repeating and Registers

Keystrokes Description

u U undo last command, restore last changed line

. repeat last changes

Code Editor | 400

Keystrokes Description

.n repeat last changes with count replaced by n

Table 125: Standard Mode Formatting / Filtering

Keystrokes Description

~ switch case and advance cursor

g~m gum gUm switch case, lc, uc on movement m

Table 126: Insert Mode

Keystrokes Description

esc or ^] abandon editing # command mode

Table 127: Marks, Motions, and Tags

Keystrokes Description

mc mark current position with mark c # [a Z]

'c 'C go to mark c in current, C in any file

Table 128: Misc IO related commands

Keystrokes Description

:e f edit file f, reload current file if no f

:rw f write range r to file f (current file if no f) (:w, :w f)

:q :q! quit and confirm, quit and discard changes

:wq or :x or ZZ write to current file and exit

:r f insert content of file f below cursor

:n next file

:p previous file

:n,kw >> file1 append lines n-k into another file file1.

Table 129: Ranges

Keystrokes Description

, ; separates two line numbers, set to first line

:n,m lines n to m

n an absolute line number n

. $ the current line, the last line in file

% * entire file, visual area (exclude)

't position of mark t

/p/ ?p? the next, previous line where p matches

Code Editor | 401

Keystrokes Description

+n -n +n, #n to the preceding line number

Table 130: Folding

Keystrokes Description

zo zc zO zC open, close one fold; recursively

[z]z move to start, end of current open fold

zj zk move down/up to start/end of next/previous fold

zm zM fold more, close all folds

zr zR fold less, open all folds

Code Analyzer | 402

Code Analyzer

The Code Analyzer reverse engineers existing applications and can generate diagrams to provide an
overview of the application.

• Sequence Diagrams on page 402
• Dependency Diagrams on page 403

Sequence Diagrams
The Sequence Diagram visually displays the flow of your application logic. It shows how the functions of
the application call and/or are called by other functions.

Displaying the Sequence Diagram
To create and display the diagram for a function from an open 4gl source code file, right-click the
function name to display the context menu option Open sequence diagram. To diagram the entire
application, right-click the word MAIN in the MAIN program block.

In an open Sequence Diagram, the right-click option View source opens the source code module (4gl file)
for the function, allowing you to switch back and forth between the source and the diagram.

In the Function calls view of an open Dependency Diagram, the right-click menus for Called Function and
Caller Function have an option Open sequence diagram.

The Sequence Diagram

Figure 228: Sequence Diagram

The starting point of the application is indicated by the stick-figure actor, the user who interacts with the
application.

Code Analyzer | 403

• Processes that exist simultaneously are represented by parallel lines - for a BDL program these lines
represent the source code modules in your application.

• Boxes on the lines represent the functions in each module. The sequence is indicated by the order in
which the boxes are listed; functions which are called by other functions have their boxes stacked on
top. Plus/minus signs on each box allow you to display or hide sub calls.

• Horizontal arrows display the interaction between functions, the messages (calls) that are exchanged
between them, and the order in which the calls occur.

In the example, the user interacts with the MAIN program block (function), which calls the query_cust
function in the custquery.4gl source code module. The query_cust functions calls other functions in
that module in the order indicated. For example, it calls the function cust_select, which calls fetch_cust.
The query_cust function returns to the MAIN.

Zoom

Use Ctrl-mouse wheel to zoom in/zoom out on the diagram.

Structure View

The structure of the program modules is shown in a tree in the Structure view. Use the plus/minus signs to
display/hide the functions in a module. Select a function in the Structure view to display its properties in the
Properties view. Right-click on a node in the Structure view to see a context sensitive menu of options for
that node.

Sub Calls

Right-click on the sequence diagram to display the menu options that will display or hide all the sub calls in
a program.

Customize

Use Tools >> Preferences, Sequence Diagram to define default maximum number of dependencies;
default is 1.

Dependency Diagrams
The Dependency Diagram displays a graphical view of the complex relationships between the various
pieces of a project. It shows the components that depend on other components, and/or have components
that depend on them.

Displaying the Dependency Diagram
To display a diagram, right-click an Application or Group node, and select Open Dependency Diagram.

Code Analyzer | 404

Figure 229: Dependency Diagram

Zoom
Use Ctrl-mouse wheel to zoom in/zoom out on the diagram.

Structure and Function Calls Views
The structure of the project is displayed in a tree in the Structure view. Select a component in the diagram
to display its properties in the Properties view. Select the link in the diagram between components to
display the associated function calls in the Function calls view.

Right-click menu options in Function calls view:

• Caller function

• Symbol definition
• Open call location
• Open sequence diagram

• Called function

• Symbol definition
• Open sequence diagram

• Caller/Called Module

• View source

Code Analyzer | 405

Dependency diagram context menu
The Dependency Diagram has a context menu accessible by right-clicking on the diagram or diagram item.

The context menu displays actions applicable to the item selected.

Table 131: Right-click Context Menu

Option Description

Expand/Collapse Hide or show subcomponents.

Locate in Project Bring focus to the component in the project.

Open Project/Application/Library in new tab Open component in new tab.

Open in new Tab Open diagram in new tab.

Filter Items ... The Filter View dialog allows you to hide and show
items on a diagram.

Hide selected item / Show all items Selectively show or hide items.

Form Designer | 406

Form Designer

Form Designer is a visual editor that supports the creation, editing, and layout of Genero forms in Genero
Studio.

• Forms in Genero applications on page 406
• Quick Start: Creating a first form on page 407
• Creating the user interface on page 407
• Form Designer usage on page 440
• Command-line syntax: gsform on page 442
• Localizing your form on page 443
• Form Designer Reference on page 443

Forms in Genero applications
Forms are used in Genero applications to interact with the application's users primarily by allowing for input
and display of data.

Built-in functionality automatically detects when a user has entered data into a form, or selected a button or
other form item. Frequently the data displayed on the form has been retrieved from a database table or will
be used to update the table.

A Genero form is designed in a Form definition file. In Form Designer, this form definition file has a 4fd
extension. The form definition file is compiled into an XML file having an extension 42f. The 42f is used
by the Genero client to display the application form to the user.

Existing per forms may be imported and then updated with Form Designer.

Program source files (4gl) use high-level Genero BDL instructions to open and display the form and to
allow users to query a database or make changes in the rows of a database table, for example.

Figure 230: Application flow

Form Designer | 407

Figure 231: Form Designer diagram

The Form Designer diagram models an application's forms and screen records.

For Genero Mobile apps, see also the Language and Rendering Guidelines section in the Genero Mobile
Developer Guide.

Quick Start: Creating a first form
This topic will guide you through creating a first form in Form Designer.

The easiest way to create a form for data manipulation is from an existing database.

1. Create a project.

2. Add a meta-schema.

3. Select File >> New Form from Database and use the wizard to assist in building the form. Save your
form.

4. Enhance form by changing widgets, properties, etc. See Creating the user interface on page 407.

5. Select Build >> Preview to preview your form.

6. Write the code to interact with the form.

Creating the user interface
The Form Designer includes two working areas, one for the Form design and layout and one for the
corresponding Record.

For Genero Mobile apps, see also UI Behavior in the Genero Mobile User Guide.

• Forms on page 408
• Containers on page 413
• Widgets on page 420
• Web components on page 432
• Action management (Toolbars, Topmenus) on page 434
• Styles on page 438

Form Designer | 408

Forms
Information about creating and compiling forms.

• Create a form on page 408
• Create form from database on page 409
• Create form with drag and drop on page 409
• Form item properties on page 410
• Tab index on page 410
• Compile a form on page 411
• Preview a form on page 411

Create a form
You can create new forms in Form Designer.

Before you begin, confirm that you have added the Meta-schema file (4db) to your project so that you can
add data fields to your form.

1. Select File >> New, Genero Files and choose a form from Sources.

Option Description

Form from Database (4fdm) Use wizard to select schema, columns and
container from which to build new form.

Form (4fd) Create a blank form (4fd).

Form as Text (per) Create a blank text form file (per).

2. From the form design tab, Add a container. Form items must be in Containers on page 413.

3. Add form items. Within a container you can drag-and-drop various form items such as Widgets on page
420.

4. Each form and form item has properties that control its appearance and behavior. Set properties in the
Properties view on page 448.

5. Save the form to the file system and/or project with File >> Save or File >> Save As...

6. Preview the form with Build >> Preview to validate that it conforms to Genero rules and see how it will
look to users.

7. Compile the form with Build >> Compile File. You can also compile your form from Project Manager
as part of a Build of an entire application.

Add base elements (Containers)
Draw a container from the Container menu onto a form.

All form items must be nested within a container.

1. Open or create a new form.

2. Select a container from the Container menu and draw out the container on the form canvas. If you are
nesting other objects into the container, draw the container first, then drag the other form elements into
the new container. The background of the destination container turns a pale yellow when an object can
be nested within it.

3. Set properties on the container as needed. Containers can be resized by selecting one of the corner
handles on the container and dragging it to a new size.

Add data elements (Widgets)
Each data elements (widget) added to a form and must be nested with in a container.

Every field on the form is of a specific widget type.

1. Open or create a new form.

2. Add a container.

3. Add widgets.

Form Designer | 409

Option Description

Widget Menu Select a widget from the Widget menu and draw
out the widget in a container on the form.

Container >> Data Control Select data fields and a container for the form with
the Data Control wizard on page 449. Each field
will have a default widget type.

Convert Widget Select a widget on the form and change the
widget type with right-click context menu option
Convert Widget.

4. Set properties on the widgets by selecting the widget on the form and setting its properties in the
Properties view.

Adding a field to a form adds that field to the corresponding record on the Records tab. Adding a field
to the form design outside of any existing containers, results in a new record in the Business Records
diagram. You can manage the record and set its properties on the Records tab.

Create form from database
You can create a form from a database using a wizard to select the schema, columns and container from
which to build a new form.

Before you begin, confirm that you have added the meta-schema file to your project.

1. Select File >> New and select a category:

Option Description

Design Select this option if you are creating a form for
use in a Business Application Modeling managed
project. The file created will be a 4fdm.

Genero Files Select this option if you are creating a form for use
in a standard Genero program. The file created
will be a 4fd.

2. Select Form from Database (4fd) or CRUD form from Database (4fdm).
The New Form from Database wizard will guide you through setting up the form.

3. Select the columns from one of more tables to include in the form.

4. Select the container to use.

5. Set the relationships between tables if needed.

6. Change the label and widget used for each field if desired.

Create form with drag and drop
Drag and drop items from the DB Schemas tab to the Form or Records tab.

Before you begin ,confirm that you have added the meta-schema file to your project.

1. Create a new, empty form by selecting File >> New, Genero Files and select Form (.4fd).

2. Select the DB Schemas tab on page 316 to show available meta-schemas.

3. Select a table, field, or multiple fields (Ctrl-click) from the schema and drag them to the Form tab on
page 445 or the Business Record diagram on page 412.
A label and formfield is added for each item dragged to the form. When a table is dragged and dropped,
a container is automatically added.

Note:

For managed forms for generated applications (4fdm), if the record is created and the selection
contains multiple tables linked with foreign keys, the joins corresponding to the foreign keys are
created.

Form Designer | 410

Form item properties
Properties can be set on form items such as containers and widgets to provide information on how the
runtime system should display or handle the item.

Properties for a form or form item can be modified by selecting the form item(s) on the form or a node in
the Structure view. The properties that are valid for the selected item(s) are displayed.

Some properties are used frequently and are grouped together for easier reading and management. The
composition of the groups vary, depending on the selected form item(s).

Default values

Each property has a default value. To reset a default value, use the Reset value button next to the
property.

Initializers
Some properties include an initializer. The initializer defines how the property's default value is determined.
For example, reference information from the database meta-schema (sqltype, notNull, required,
uniqueKey, labels, etc.) is inherited to the form by the initializer. Initializers are computed on schema
change.

If the property has an initializer option, an Initializer button appears to the left of the Reset value button
and displays the Initializer dialog to set or edit the property's initializer value.

When an Initializer property is set or modified, the property name displays in bold and the Initializer button
changes symbol.

Tab index
The Tab Index indicates the order of the form items for data entry when using the Tab key to move from
field to field.

Access the Tab Index by selecting Widget >> Tab Index. All items that allow entries are displayed in the
form design with an index number specifying the order.

Figure 232: Tab Index

The order can be altered in a variety of ways.

• Double-click a number to change it to 1.
• Click any number to change it to the next number after the last used.
• Right-click and select an option from the context menu.
• Finish the current sequence by pressing the Esc key.

Form Designer | 411

• Press the Esc key again to exit tab order.

Compile a form
Compiling a form translates it into an XML file with an extension of 42f.

The compiled form file (42f) is used by the Genero client to display the application form to the user. All
42f files must be included with your application code in distributions.

With the form open, select Build >> Compile file from the main menu.

• A form can also be compiled in Project Manager when the form is a part of a Build of an entire
application.

• A form can also be compiled at the command-line with gsform.

Preview a form
View the form using Genero Desktop Client. The form is automatically validated before the preview
process. Only valid forms can be previewed.

Preview a form by opening it and selecting Build >> Preview.

Migrate per file to 4fd
A Genero text form (per) can be imported and converted into Form Designer form files (4fd).

Import an existing Genero per file into your project with File >> Import text form .per.... This action
imports and converts the file to a Form Designer form 4fd file. If the per file is already in your project,
right-click on the file and choose Import text form....

Import an existing Genero a per file and continue to use it in its text form with Project >> Add files....

Business records (data sets)
Business records model the data definition, structure and table relationships of the data used in a form,
report, and/or web service. Business records are designed and modified in the Business Records diagram.

Forms Business records for forms model the data
definition, structure, and table relationships required
to generate the different CRUD operations for
the form. When you design a form, a record is
automatically created for each container on the
form. The Records tab displays the screen record
for the form in the Business Records diagram,
showing of all the database field names that make
up the fields on the form itself.

Reports Business records for reports (4rd) contain the data
definition, structure, and table relationships required
to generate a rdd (Report Data definition file). The
rdd file is used in conjunction with a Genero report
definition (4rp) file to automatically generate the
reports. A 4rd file opens in the Business Record
diagram.

Services Business records for web services (4ws) contain
the data definition, structure, and table relationships
required to generate the different CRUD operations
for the web service. A 4ws file opens in the
Business Record diagram.

Business records inherit their default information from the meta-schema from which they were created.

Form Designer | 412

Business Record diagram
The Business Record diagram is used to define the data set of the form, report, or web service.

Figure 233: Business Record diagram

Business record properties
Business records have properties that are set in the Properties view.

Table 132: Business Record properties

Property Description

name Record name.

active The active property indicates that the table
participates in the application code generation. It is
checked by default when a managed form (4fdm)
is created. When a table is inactive, it does not
provide the modeling features and cannot be or be
linked to a master record.

masterTable A data set can be composed of several database
tables. The master table is a table on which CRUD
operations will apply. The generator creates the
CRUD operations for a given data set only if its
unique key is composed by fields of the master
table.

unique key A data set unique key is a field or a list of fields
ensuring the uniqueness of data in the data set. It
must be defined as a primary key or a secondary
key in the database schema.

Form Designer | 413

Property Description

Functionality See Enable and disable CRUD logic on page 239.
Only for generated forms and web services.

Query See Joins and Data order on page 453.

Table 133: RecordField properties

Property Description

name Record field name.

lookup See Lookup fields on page 247.

fieldType Used to specify that its data type is derived from
the data types in a database table or that it is
Non_Database, indicating that the data type is not
derived from a database columnSee formFields on
page 421.

sqlTabName The sqlTabName property is the name of the
database table for formField form items.

colName The colName property is the name of the database
column.

tableAliasName Table alias name.

fieldIdRef Unique reference id of the field in the record.

dataType See dataType on page 465.

defaultValue See defaultValue on page 465.

Table 134: Record Relation properties

Property Description

foreignFields The foreign key field(s) in the relation.

primaryFields The primary key field(s) in the relation.

Add or edit a Record, RecordField, or Relation
Records, RecordFields, and Relations are managed in the Business Records diagram.

1. To add a new record, right-click on the background of the Business Records diagram and select Add
Record.

2. Right-click on a record and select Add Field to add a new field to a record. The record and fields are
listed in the Structure view.

In Form Designer, new recordFields are also added to the form design in the Form tab.

3. Set the relationship between two records by right-clicking on the foreign field in one record and
dragging it to the primary key in the other record. Select the Relation and modify the foreignFields
and pimaryFields properties if needed.

Containers
Containers are used to group items on the form. Every form item must be contained within a container.
A parent container can also have child containers. If there are multiple child containers, they must be
grouped in a horizontal or vertical layout.

• HBox and VBox - layouting on page 414

Form Designer | 414

• Grid - positioning on page 415
• ScrollGrid - positioning on page 415
• Group - grouping on page 416
• Folder page - stacking on page 417
• Table - organizing on page 417
• Tree - hierarchy on page 418
• HRec - aligning fields on page 419
• Matrix on page 420
• Data Control on page 420

Note: Some containers are not supported on mobile platforms.

HBox and VBox - layouting
HBox and VBox containers are used to layout the containers nested within them either horizontally from left
to right (HBox) or vertically from top to bottom (VBox).

Containers are packed in the HBox or VBox container in the order in which they appear in the structure. By
combining HBox and VBox layouts for various containers, you can align the containers of your form in any
way you choose.

Example

Figure 234: HBox Layout Container

Example

Figure 235: VBox Layout Container

Form Designer | 415

Properties

name on page 475, posX, posY on page 477, gridHeight, gridWidth on page 470

Grid - positioning
The Grid container declares a formatted text block defining the dimensions and the positions of the form
elements for a unique-record presentation.

With Grid, you can specify the position of labels, formFields for data entry or additional interactive objects
such as buttons. Grids have no visual representation when the form is displayed.

Example

Figure 236: Grid Container

Properties

name on page 475, tag on page 480, style on page 480, posX, posY on page 477, gridHeight,
gridWidth on page 470, hidden on page 470, fontPitch on page 467, comment on page 464,
localizedStr

ScrollGrid - positioning
The ScrollGrid container declares a formatted text block defining the dimensions and the positions of the
form elements for a multi-record presentation.

Example
ScrollGrid is similar to the Grid container, except that you can repeat the screen elements on several "row-
templates", in order to design a multiple-record view that appears with a vertical scrollbar. A ScrollGrid may
be a container of, or contained within, both Grids and ScrollGrids.

Form Designer | 416

Figure 237: ScrollGrid Container

Properties

name on page 475, tag on page 480, style on page 480, posX, posY on page 477, gridHeight,
gridWidth on page 470, hidden on page 470, fontPitch on page 467, comment on page 464,
gridChildrenInParent on page 470, doubleClick on page 466, localizedStr

Group - grouping
A Group container can be used to display a titled box (usually called a groupbox) around contained
elements.

To display a groupbox around a set of fields, nest your Grid or other container within a Group container.

Example

Figure 238: Group Container

Form Designer | 417

Properties

name on page 475, tag on page 480, style on page 480, posX, posY on page 477, gridHeight,
gridWidth on page 470, hidden on page 470, fontPitch on page 467, comment on page 464,
gridChildrenInParent on page 470, doubleClick on page 466, text on page 481

Folder page - stacking
A Folder container is used to display children (Pages) inside a Folder tab.

The Folder container manages the Page containers displayed as tabs. You can add or remove and order
the Pages using the right-click contextual menu on the Folder or Page object on the form.

Example

Figure 239: Folder and Pages

Properties

action on page 462, name on page 475, tag on page 480, style on page 480, posX, posY on page
477, gridHeight, gridWidth on page 470, hidden on page 470, fontPitch on page 467, comment on
page 464, localizedStr

Usage
The text property defines the label of the folder page. The image property can be used to specify which
image to use as an icon.

If needed, you can use the action property to bind an action to a folder Page. When the Page is selected,
the program gets the corresponding action event.

To bring a folder page to the top, in your source code, use NEXT FIELD to one of the active fields
of the page (The NEXT FIELD field-name instruction gives the focus to the specified field.)
or use the ui.Form.ensureFieldVisible() method if the fields are disabled/unused or the
ui.Form.ensureElementVisible() method if the page does not contain focusable elements.

With the tabIndex property of a field in a Page, you can define which field gets the focus when a Page is
selected.

Table - organizing
The Table container defines the presentation of a list of records, bound to a (also called a screen array).

Each record is displayed on a separate line. The screen record appears on the Records tab.

Form Designer | 418

Example

Figure 240: Table Container

Properties

name on page 475, tag on page 480, style on page 480, posX, posY on page 477, gridHeight,
gridWidth on page 470, hidden on page 470, fontPitch on page 467, comment on page 464,
localizedStr, wantFixedPageSize on page 484, unSortableColumns on page 482, unSizableColumns
on page 482, unMovableColumns on page 481, unHidableColumns on page 481, doubleClick on
page 466, totalRows on page 481, rowHeight on page 478

Usage

Drag and drop the columns to change the initial order.

To add or delete columns or edit a column title, select the column title and right-click to display a menu of
options.

The screen record definition on the Records tab must have exactly the same columns as the Table
container. However, the order of the screen record fields can be different from the column order, to match
the program array elements, for example when the database table defines the columns (DEFINE LIKE) in
a different order as the form table.

By default, the current row in a Table is highlighted in display mode, but it is not highlighted in input mode.
You can set decoration attributes of a table with a style.

If the aggregate property is set for one of the columns in the table, a summary line will be displayed.

Tree - hierarchy
The Tree container defines the presentation of a list of ordered records in a tree-view widget.

Example

Figure 241: Tree Container

Form Designer | 419

Properties

name on page 475, tag on page 480, style on page 480, posX, posY on page 477, gridHeight,
gridWidth on page 470, hidden on page 470, fontPitch on page 467, comment on page 464,
localizedStr, wantFixedPageSize on page 484, unSortableColumns on page 482, unSizableColumns
on page 482, unMovableColumns on page 481, unHidableColumns on page 481, doubleClick
on page 466, totalRows on page 481, rowHeight on page 478, parentIdColumn on page
476, idColumn on page 471, expandedColumn on page 467, isNodeColumn on page 474,
imageCollapsed on page 472, imageLeaf on page 473

Usage
Tree views are very similar to regular table containers; before reading further about tree views, you should
be familiar with Table containers. The Tree container allows you to specify the layout of a graphical tree
widget, displaying data in a parent-child relationship. Plus and minus icons allow the user to expand and
contract a branch of the tree.

You specify the layout for the tree in Form Designer; the tree content is provided in your BDL program.

A Tree is made of rows and columns, very similar to a Table container, with the exception that the rows in
a tree can be nested.

The Tree container is created by default with two Edit columns, and two Phantom columns that do not
display on the screen. The Phantom columns of the Tree specify the id and the parent id of each row,
enabling nesting. The other columns display data rows in a normal format without nesting, as in a table.

Properties of the tree container specify the idColumn and parentIdColumn. Additional properties specify
images to be used for the expand/contract icons and leaf icons.

The rows in the tree are automatically defined in your form as a screen array. In your BDL program,
define a corresponding dynamic array that matches the screen array, using the screen record in the Form
to determine column names and their order. Your program must populate the rows of the container at
runtime.

See the topic on Tree Views in the Genero Business Development Language User Guide for more details
about tree-view programming in Genero.

HRec - aligning fields
An HRec item is a special container that uses spacers to align widgets in a form.

Spacers are one or more blanks defining an invisible element that expands automatically. Without
spacers, blank areas are ignored and the resulting form may not display as you expect. Draw out the
HRec container and then drag and drop form items into it. Once you have placed form items into the HRec
container you can right-click on the form item to add additional spacer objects to the right or left of the form
item. The spacer objects force the spacing between the form items within the HRec container.

HRec Container

Properties

name on page 475, posX, posY on page 477, gridHeight, gridWidth on page 470

Form Designer | 420

Matrix
A Matrix container manages a screen array, usually a repetitive array of fields in the screen layout, each
containing identical groups of screen fields.

Each row of a screen array is a screen record. Right-click on a field to Convert to Matrix and set its Matrix
properties. The Structure View marks matrix fields with a preceding + sign.

Properties

Table 135: Matrix Properties

Property Description

repeat Determines if field repeats. Default is checked (TRUE).

columnCount Number of columns of repeated fields.

rowCount Number of rows of repeated fields. Minimum value is 1. Both columnCount and
rowCount cannot be 1, otherwise the field would be a standard formField and not a
repeated field.

stepX Number of cells (horizontally) between the repeated fields. (Relevant only if
columnCount > 1.)

stepY Number of cells (vertically) between the repeated fields. (Relevant only if rowCount >
1.)

Data Control
Although this item appears on the Container menu, it is actually a wizard that allows you to create a new
form or add multiple fields to the form, based on database table columns.

Widgets
Widgets are designed for data handling, action triggering, or decoration.

• Button on page 421
• ButtonEdit on page 421
• Canvas on page 422
• CheckBox on page 422
• ComboBox on page 423
• DateEdit on page 424
• Edit on page 425
• Field on page 426
• HLine on page 426
• Image on page 426
• Label on page 427
• Phantom on page 428
• ProgressBar on page 428
• RadioGroup on page 429
• Slider on page 430
• SpinEdit on page 430
• TimeEdit on page 432
• TextEdit on page 431

Form Designer | 421

formFields
A formField is a type of form object that can be used to display data or take input.

A formField is presented to the user through a widget; the most commonly used widget, Edit, defines a
simple line edit box that allows the user to enter a value directly into the formField. Other widgets, such as
the Combobox and Checkbox, present the data contained in the field in a user-friendly way. For example,
a ComboBox defines a dropdown box of values, allowing the user to select from a list of valid values for the
underlying formField.

In the Properties View, the fieldType property of a formField may be set to specify that its data type is
derived from the data types in a database table or that it is Non_Database, indicating that the data type is
not derived from a database column.

If the data type is to be derived from a database table, the databaseName property of the form must be
set to a database for which there is a database meta-schema file listed in the Db Schemas tab. The
sqlTabName and colName properties of the formField must be selected from the tables and columns in the
schema file. The dataType property will be automatically filled based on the data type for the table column
in the schema file.

A form has built-in validation to insure that the value entered into a formField is compatible with the
declared dataType in the form definition file. Additional validation routines can be specified in your BDL
program.

The values entered into formFields are stored in variables in the Genero program, which may be used in
the program in any way. A common use is to provide values for SQL statements that update a database.

Button
The Button widget defines a push-button with a label or picture that can trigger an action defined in your
BDL program code.

When a button is clicked, the program code defined for the action is triggered.

Example

Figure 242: Button

Properties

action on page 462, comment on page 464, fontPitch on page 467, hidden on page 470, image
on page 471, sample on page 478, sizePolicy on page 478, style on page 480, tabIndex on page
480, text on page 481, tag on page 480

ButtonEdit
A ButtonEdit widget defines a line edit box with a button on the right side.

Purpose

The ButtonEdit editable box is a formField, which can be associated with a database column by changing
the fieldType property to TABLE_COLUMN, and specifying the sqltabName and colName properties. The
button can trigger an action defined in your BDL program code. Frequently this action is designed to open
a window that displays a list of values for the user to choose from.

Example

Figure 243: ButtonEdit

Form Designer | 422

Properties

action on page 462, autoNext on page 462, case on page 463, century on page 463, color on page
464, colorCondition on page 464, comment on page 464, defaultValue on page 465, Display Like
on page 466, case on page 463, fontPitch on page 467, hidden on page 470, format on page
467, image on page 471, include on page 473, invisible on page 473, justify on page 474, notNull
on page 476, noEntry on page 475, picture on page 476, reverse on page 478, sample on page
478, scroll on page 478, sizePolicy on page 478, style on page 480, required on page 477, tag on
page 480, tabIndex on page 480, Validate Like on page 482, verify on page 483

Canvas
A Canvas widget defines an area reserved for drawing.

Example

Figure 244: Canvas

See the topic on Canvas in the Genero Business Development Language User Guide for more information.

Properties

comment on page 464, hidden on page 470, tag on page 480

CheckBox
The CheckBox widget defines a boolean entry with a box and a text label.

Example

Figure 245: CheckBox

Properties
color on page 464, colorCondition on page 464, comment on page 464, defaultValue on page 465,
fontPitch on page 467, color on page 464, include on page 473, justify on page 474, notNull on
page 476,noEntry on page 475, required on page 477, sample on page 478, sizePolicy on page
478, style on page 480, tag on page 480, tabIndex on page 480, text on page 481, Validate Like
on page 482, valueChecked on page 482, valueUnchecked on page 483

Usage

The text on page 481 attribute defines the label to be displayed near the check box.

The box shows a checkmark when the form field contains the value defined in the valueChecked attribute
(for example: "Y"), and shows no checkmark if the field value is equal to the value defined by the
valueUnchecked attribute (for example: "N"). If you do not specify the valueChecked or valueUnchecked
attributes, they respectively default to TRUE (integer 1) and FALSE(integer 0).

Form Designer | 423

By default, during an INPUT, a CheckBox field can have three states:

• Grayed (NULL value)
• Checked (valueChecked value)
• Unchecked (valueUnchecked value)

If the field is declared as notNull, the initial state can be grayed if the default value is NULL; once the user
has changed the state of the CheckBox field, it switches only between checked and unchecked states.

During an CONSTRUCT, a CheckBox field always has three possible states (even if the field is notNull), to
let the user clear the search condition:

• Grayed (No search condition)
• Checked (Condition column = valueChecked value)
• Unchecked (Condition column = valueUnchecked value)

ComboBox
A ComboBox is a data handling widget that defines a drop-down list of values, allowing the user to select a
value.

Purpose

The ComboBox underlying formField can be associated with a database column by changing the fieldType
property to TABLE_COLUMN, and specifying the sqlTabName and colName properties.

Example

Figure 246: Combobox

Properties

case on page 463, color on page 464, colorCondition on page 464, comment on page 464,
defaultValue on page 465, case on page 463, fontPitch on page 467, hidden on page 470, include
on page 473, initializer on page 473, items on page 474, justify on page 474, notNull on page
476, noEntry on page 475, queryEditable on page 477, required on page 477, sample on page
478, scroll on page 478, sizePolicy on page 478, style on page 480, tag on page 480, tabIndex
on page 480, Validate Like on page 482

Usage

The values of the drop-down list are defined by the items property. You can define a simple list of
values like ("A","B","C","D", ...) or you can define a list of key/label combinations like in
((1,"Paris"),(2,"Madrid"),(3,"London")). In the latter, the labels (i.e. the city names) will be
displayed according to the key value (the city number) hold by the field.

The initializer property allows you to define an initialization function for the COMBOBOX. This function will
be invoked at runtime when the form is loaded, to fill the item list dynamically with database records, for
example. It is recommended that you use the tagproperty, so you can identify in the program the kind of
ComboBox form item to be initialized.

If neither items nor initializer properties are specified, the form compiler automatically fills the list of items
with the values of the include property, when specified. However, the item list will not automatically be
populated with include range values (i.e. values defined using the TO keyword). The include property can
be specified directly in the form or indirectly in the schema files.

Form Designer | 424

During an INPUT, a ComboBox field value can only be one of the values specified in the items property.
During an CONSTRUCT, a ComboBox field gets an additional 'empty' item (even if the field is notNull), to
let the user clear the search condition.

If one of the items is explicitly defined with NULL and the notNull property is omitted; In INPUT, selecting
the corresponding combobox list item sets the field value to null. In CONSTRUCT, selecting the list item
corresponding to null will be equivalent to the = query operator, which will generate a "colname is null" SQL
condition.

During a CONSTRUCT, a ComboBox is not editable by default: The end-user is forced to set one of the
values of the list as defined by the items property, or set the 'empty' item. The queryEditable property
can be used to force the ComboBox to be editable during a CONSTRUCT instruction, in order to allow
free search criterion input such as "A*". If queryEditable is used and the items are defined with key/label
combinations, the text entered by the user will be automatically searched in the list of items. If a label
corresponds, the key will be used in the SQL criterion, otherwise the text entered by the user will be used.
For example, if the items are defined as ((1,"Paris"),(2,"Madrid"),(3,"London")), and the
user enters "Paris" in the field, the item (1,"Paris") will match and will be generate "colname = 1".
If the user enters ">2", the text does not match any item so it will be used as is and generate the SQL
"colname > 2". Users may enter values like "Par*", but in this case the runtime system will raise an error
because this criterion does is not valid for the numeric data type of the field. To avoid end-user confusion,
a ComboBox defined with key/label combinations should not use the queryEditable property.

Some front-ends support different presentation options which can be controlled by a style property. You
can for example enable the first item to be selected when pressing keys.

Context Menu

The values in the list of items can be managed (add, delete) by right-clicking on the ComboBox on the form
in Form Designer and selecting Edit Items. Edit the values in the columns of the dialog:

• Name - the value to be stored in the underlying formField represented by the ComboBox, for example,
"W".

• Text - the value in the list to be displayed to the user, for example "West Region".
• Localize string - Specify whether the text is a localized string (true/false).

DateEdit
A DateEdit is a data handling widget that defines a line edit box with a button that opens a calendar
window, allowing the user to select a date value

Purpose

The dateEdit underlying formField can be associated with a database column by changing the fieldType
property to TABLE_COLUMN, and specifying the sqltabName and columnName properties.

Example

Figure 247: DateEdit

Form Designer | 425

Properties
autoNext on page 462, century on page 463, color on page 464, colorCondition on page 464,
comment on page 464, defaultValue on page 465, fontPitch on page 467, format on page 467,
hidden on page 470, include on page 473, justify on page 474, notNull on page 476, noEntry on
page 475, required on page 477, sample on page 478, sizePolicy on page 478, style on page
480, tag on page 480, tabIndex on page 480, Validate Like on page 482

Usage

Some front-ends support different presentation options which can be controlled by a style on page 480
attribute. For example, you can change the first day of the week or the icon of the button.

DateTimeEdit
The DateTimeEdit widget defines a date-time editor widget.

Purpose
The DateTimeEdit form item type allows the user to edit date-time values with a specific widget for date-
time input. A DateTimeEdit field typically provides a calendar and clock widget, to let the end user pick a
date and time from it.

The display and input precision (time part with or without seconds) of the DateTimeEdit widget depends
from the front-end. On some platforms, native date-time editors do not handle the seconds. Further,
some front-ends (especially on mobile devices) deny data types different from DATETIME DAY TO
{MINUTE|SECOND}.

To store DateTimeEdit field values, consider using the appropriate data type according to the target front-
end (DATETIME YEAR TO SECOND or DATETIME YEAR TO MINUTE).

Important: If the front-end does not support the data type used for the DateTimeEdit field, the
runtime system will raise an error and stop the program. Consider testing your application with all
type of front-ends.

On some front-end platforms, the native widget used for DateTimeEdit fields allows only pure date-time
value input, and therefore cannot be used with a CONSTRUCT instruction, where it must be possible to
enter search filters like ">= 2014-01-23 11:00".

Properties
autoNext on page 462, century on page 463, color on page 464, colorCondition on page 464,
comment on page 464, defaultValue on page 465, fontPitch on page 467, format on page 467,
hidden on page 470, include on page 473, justify on page 474, notNull on page 476, noEntry on
page 475, required on page 477, sample on page 478, sizePolicy on page 478, style on page
480, tag on page 480, tabIndex on page 480, Validate Like on page 482

Edit
The Edit item type defines a simple line-edit field for data input or display.

The Edit item type is a data handling widget for an underlying formfield. The Edit formField can be
associated with a database column by changing the fieldType property to TABLE_COLUMN, and
specifying the sqltabName and columnName properties.

Example

Figure 248: Edit item type

Form Designer | 426

Attributes

autoNext on page 462, century on page 463, color on page 464, colorCondition on page 464,
comment on page 464, defaultValue on page 465, Display Like on page 466, fontPitch on page
467, format on page 467, hidden on page 470, include on page 473, justify on page 474, notNull
on page 476, noEntry on page 475, required on page 477, sample on page 478, sizePolicy on page
478, style on page 480, tag on page 480, tabIndex on page 480, Validate Like on page 482, verify
on page 483

Field
The Field item type defines a generic form field for data input or display that is defined in database schema
files.

Example

Figure 249: Field

Properties

comment on page 464, defaultValue on page 465, fontPitch on page 467, hidden on page 470,
notNull on page 476, noEntry on page 475, required on page 477, sample on page 478, style on
page 480, sizePolicy on page 478, tag on page 480, tabIndex on page 480

Usage

This item type defines a generic form field for data input or display. The real item type (i.e. the widget) and
the attributes must be defined in the database schema files.

The definition of the form field is determined by the .val database schema file, based on the field-name
(table.column). The item type (Edit, ComboBox, etc) is defined by the ITEMTYPE attribute in the .val
schema file.

By using this form field specification, you can centralize the definition of form fields in the database schema
file, to enforce reusability. You can, for example, specify that the "order.state" database column is a
ComboBox on page 423, with a list of items on page 474, as if the field was defined directly in the form.

It is also possible to use the properties defined in the database schema files with other Form Item types.

The properties defined directly in the form take precedence over the properties defined in the database
schema files.

The database schema files can be edited manually or by using the Meta-schema Manager on page 288.

HLine
The HLine item type appears in the form as a horizontal line.

Example

Figure 250: HLine

Image
Image items define areas where a picture file can be displayed.

Images can be either static or dynamic formFields.

Form Designer | 427

Example

Figure 251: Image

Properties

autoScale on page 463, comment on page 464, hidden on page 470, style on page 480, stretch on
page 480, tag on page 480

Static Image only: image on page 471

Image Field only: color on page 464, colorCondition on page 464, fontPitch on page 467, justify on
page 474, sizePolicy on page 478, sample on page 478

Usage
A Static Image displays an image that has its source file defined by the image property. This type of image
item must be used to display text that does not change often, such as background pictures or logos. The
item is not a formField. The image file can be changed from the BDL program by using the API provided
to manipulate the user interface (see the Genero Business Development Language User Guide topic
Dynamic User Interface for more details). It is not possible to change the image with a DISPLAY TO
instruction.

A formField Image is a widget that gets the image file based on the underlying formField. The value of the
formField is the image file specified with a URL. The formField can be associated with a database column
by changing the fieldType on page 467 property to TABLE_COLUMN, and specifying the sqltabName
and colName properties. This type of image item must be used to display values that change often during
program execution, like database information. The picture can be changed from the BDL program by using
the DISPLAY TO instruction to set the value of the field.

Label
The Label item type defines a simple text area to display a read-only value.

Labels can be either static or dynamic formFields.

Example

Figure 252: Label

Properties

color on page 464, colorCondition on page 464, comment on page 464, fontPitch on page 467,
hidden on page 470, imageColumn on page 472, justify on page 474, reverse on page 478, sample
on page 478, sizePolicy on page 478, style on page 480, tag on page 480

FormField Label only: format on page 467, sample on page 478

Static Label only: text on page 481

Table Column only: unHidable on page 481, unMovable on page 481, unSizable on page 481,
unSortable on page 482, title on page 481

Form Designer | 428

Usage

A formField Label item is used to display values that change often during program execution, like
database information. The text of the label is defined by the value of the corresponding form field. The text
can be changed from the BDL program by using the DISPLAY TO instruction to set the value of the field, or
within a list by using a DISPLAY ARRAY. This kind of Form Item does not allow data entry; it is only used
to display values. The text automatically changes when the values in the table column change.

Some front-ends support different presentation options which can be controlled by a style attribute. You
can for example change the text format to render HTML content.

A Static Label item is used to display text that does not change often, like field descriptions. The text of
the label is defined by the text attribute; the item is not a form field. Double-click the widget, or right-click
and select Edit Text, to edit the text property. The text can be also changed from the BDL program by
using the API provided to manipulate the user interface (see Dynamic User Interface for more details).
It is not possible to change the text with a DISPLAY TO instruction. This kind of item is not affected by
instructions such as CLEAR FORM. Static labels display only character text values, and therefore do not
follow any justification rule as form field labels.

Phantom
A Phantom field can be used to specify a formField that is listed in a screen-record, but does not have to
be displayed in the form.

Usage
Phantom fields are never displayed to the user, although they can be used by dialog instructions of BDL
programs. If you want to implement a screen-array with all the columns of a database table defined in the
schema file, but you don't want to display all the columns in the table, you must use Phantom fields. With
the screen-array matching the database table, you can easily write program code to fetch all columns into
an array defined with a LIKE clause.

Phantom fields can be based on database columns defined in a schema file or as NON_DATABASE field.

Phantom fields are used to store the id and parent id of the nodes in a tree object.

To add a Phantom field to your form, right-click on the form object and select Add Phantom from the
context menu.

Phantom field data is never send to the front-ends. Therefore, you can use a phantom field to store critical
data that must not go out of the application server.

ProgressBar
A ProgressBar is a data handling widget that can indicate the current progress of an operation.

Example

Figure 253: ProgressBar

Properties

color on page 464, colorCondition on page 464, comment on page 464, fontPitch on page 467,
hidden on page 470, justify on page 474, sample on page 478, sizePolicy on page 478, style on
page 480, tag on page 480, valueMin on page 483, valueMax on page 483

Usage

A ProgressBar item does not allow data entry; it is only used to display integer values.

Form Designer | 429

The position of the progress bar is defined by the value of the corresponding form field. The value can be
changed from the BDL program by using the DISPLAY TO instruction to set the value of the field.

The and valueMin and valueMax properties define respectively the lower and upper integer limit of the
progress information. Any value outside this range will not be displayed. Default values are VALUEMIN=0
and VALUEMAX=100.

Some front-ends support different presentation options which can be controlled by a style property. For
example, you could display a percentage.

This widget has to be used with a SMALLINT or INTEGER variable, larger types like BIGINT or DECIMAL
are not supported.

RadioGroup
A RadioGroup data handling widget presents a set of radio buttons from which the user may select a value.

Purpose

The underlying formField for the RadioGroup can be associated with a database column by changing the
fieldType property to TABLE_COLUMN, and specifying the sqltabName and colName properties. Adding/
deleting values for the radio buttons is managed from the contextual menu.

Example

Figure 254: RadioGroup

Property

color on page 464, colorCondition on page 464, comment on page 464, defaultValue on page 465,
fontPitch on page 467, hidden on page 470, include on page 473, items on page 474, justify on
page 474, notNull on page 476, noEntry on page 475, orientation on page 476, required on page
477, sample on page 478, sizePolicy on page 478, style on page 480, tag on page 480, tabIndex
on page 480, Validate Like on page 482

Usage
This item type defines a set of radio buttons where each button is associated with a value defined in the
items on page 474 property.

The text associated with each value will be used as the label of the corresponding radio button.

If the items property is not specified, the form compiler automatically fills the list of items with the values of
the include property, when specified. However, the item list will not automatically be populated with include
range values (i.e. values defined using the TO keyword). The item property can be specified directly in the
form or indirectly in the schema files.

During an INPUT, a RadioGroup field value can only be one of the values specified in the items property.
During an CONSTRUCT, a RadioGroup field allows to uncheck all items (even if the field is notNull), to let
the user clear the search condition.

If one of the items is explicitly defined with NULL and the notNull property is omitted; In INPUT, selecting
the corresponding radio button sets the field value to null. In CONSTRUCT, selecting the radio button
corresponding to null will be equivalent to the = query operator, which will generate a "colname is null" SQL
condition.

Form Designer | 430

Use the orientation property to define if the radio group must be displayed vertically or horizontally.

Some front-ends support different presentation options which can be controlled by a style property. For
example, you can define what item has to be selected first when pressing keys.

Slider
The Slider item type defines a horizontal or vertical slider.

Example

Figure 255: Slider

Properties

color on page 464, colorCondition on page 464, comment on page 464, defaultValue on page 465,
fontPitch on page 467, hidden on page 470, include on page 473, justify on page 474, orientation
on page 476, sample on page 478, sizePolicy on page 478, step on page 480, style on page
480, tabIndex on page 480, tag on page 480, Validate Like on page 482, valueMin on page 483,
valueMax on page 483

Usage

The slider item type is a data handling widget for the underlying formField. The formField can be
associated with a database column by changing the fieldType property to TABLE_COLUMN, and
specifying the sqltabName and colName properties.

This item type defines a classic widget for controlling a bounded value. It lets the user move a slider along
a horizontal or vertical groove and translates the slider's position into a value within the legal range.

The valueMin and valueMax properties define respectively the lower and upper integer limit of the slider
information. Any value outside this range will not be displayed; the step between two marks is defined by
the step property. The orientation property defines whether the Slider is displayed vertically or horizontally.
If valuemin and/or valuemax are not specified, they default respectively to 0 (zero) and 5.

This widget has to be used with a SMALLINT or INTEGER variable, larger types like BIGINT or DECIMAL
are not supported.

Note: This widget is not designed for CONSTRUCT, as you can only select one value.

SpinEdit
The SpinEdit item type defines a spin box widget.

Example

Figure 256: SpinEdit

Properties

autoNext on page 462, color on page 464, colorCondition on page 464, comment on page 464,
defaultValue on page 465, fontPitch on page 467, hidden on page 470, include on page 473, justify
on page 474, notNull on page 476, noEntry on page 475, required on page 477, sample on page
478, sizePolicy on page 478, step on page 480, style on page 480, tabIndex on page 480, tag on
page 480, Validate Like on page 482,valueMin on page 483,valueMax on page 483

Form Designer | 431

Usage

This item type allows the user to choose a value either by clicking the up/down buttons to increase/
decrease the value currently displayed, or by typing the value directly into the spin box.

The step between two values is defined by the step attribute.

The valueMin and valueMax attributes define respectively the lower and upper integer limit of the spin-edit
range. There is no default min or max value for the SPINEDIT widget.

This widget has to be used with a SMALLINT or INTEGER variable, larger types like BIGINT or DECIMAL
are not supported.

This widget is not designed for CONSTRUCT, as you can only enter an integer value.

TextEdit
The TextEdit item type defines a multi-line edit field for data input or display.

Example

Figure 257: TextEdit

Properties

case on page 463, color on page 464, colorCondition on page 464, comment on page 464,
defaultValue on page 465, fontPitch on page 467, hidden on page 470, include on page 473,
justify on page 474 ,noEntry on page 475, notNull on page 476, required on page 477, sample
on page 478, scrollbars on page 478, sizePolicy on page 478, stretch on page 480, style on page
480, tabIndex on page 480, tag on page 480, Validate Like on page 482, wantTabs on page 484,
wantNoReturns on page 484

Usage

This kind of form field allows the user to enter a long text on multiple lines.

By default, when the focus is in a TextEdit field, the TAB key moves to the next field, while the RETURN
key adds a newline (ASCII 10) character in the text. To control the user input when the TAB and RETURN
keys are pressed, you can specify the wantTabs and wantNoReturns properties. When you specify
wantTabs, the TAB key is consumed by the TextEdit field, and a TAB character is added to the text. The
user can still jump out of the field with the Shift-TAB combination. When you specify wantNoReturns, the
RETURN key is not consumed by the TextEdit field, and the action corresponding to the RETURN key is
triggered. The user can still enter a newline character with Shift-RETURN or Control-RETURN.

You can use the scrollbars property to define vertical and/or horizontal scrollbars. By default, this attribute
is set to Vertical. The stretch property can be used to force the TextEdit field to stretch when the parent
container is re-sized. Values can be NONE, X, Y or BOTH. By default, this attribute is set to NONE. Note that
using either the SCROLLBARS or the STRETCH attribute will automatically set the SCROLL attribute. For
more details about size limitation, see the scroll property.

Some front-ends support different text formats which can be controlled by a style property. You can for
example display and input HTML content in a TextEdit.

Form Designer | 432

Since Genero 2.20, a TextEdit can also be used to edit rich text format. Depending on the front-end,
different formatting options are available (bold, font size, and so on) and can be controlled using either an
integrated toolbox or via local actions. In this case, the value of the field will be an HTML representation of
the text and its decoration.

Note: Each front-end uses its underlying technology to provide this feature and the html
representation may vary between front-ends (GDC uses Qt QTexEdit, GWC/Ajax and GWC/HTML
uses the browser capabilities, GWC/SL uses Silverlight capabilities). They are most of the time
compatible but not every time, and the html representation may change depending on the version
(Qt upgrade for GDC, Silverlight upgrade for GWC/SL, browser update for GWC/Ajax or HTML5).

Note: When using rich text, FGL_DIALOG_SETCURSOR() and FGL_DIALOG_SETSELECTION()
functions must be called carefully. The rich text format, having a corresponding cursor position /
selection between displayed text and html representation, may make it difficult.

TimeEdit
The TimeEdit item type defines a time editor widget.

Example

Figure 258: TimeEdit item type

Properties

autoNext on page 462, color on page 464, colorCondition on page 464, comment on page 464,
defaultValue on page 465, fontPitch on page 467, hidden on page 470, include on page 473, justify
on page 474noEntry on page 475, notNull on page 476, required on page 477, sample on page
478, sizePolicy on page 478, style on page 480, tabIndex on page 480, tag on page 480, Validate
Like on page 482

Usage

This item type allows the user to edit times by using the keyboard or the arrow keys to increase/decrease
time values.

With this widget, the user can only enter a DATETIME HOUR TO SECOND value.

This widget is not designed for CONSTRUCT, as you can only enter time.

Web components
Web Components are usually complex widgets displaying detailed information on the screen, such as
charts, graphs, or calendars.

• Web component widget on page 432
• Add a WebComponent to a form on page 433
• WebComponent setup (advanced) on page 433

Web component widget
The WebComponent item type defines a generic form field that can receive an external widget.

Properties

color on page 464, colorCondition on page 464, componentType on page 465, comment on page
464, defaultValue on page 465, fontPitch on page 467, hidden on page 470, include on page
473, justify on page 474, noEntry on page 475, notNull on page 476, properties, required on page

Form Designer | 433

477, scrollbars on page 478, sizePolicy on page 478, style on page 480, stretch on page 480,
tabIndex on page 480, tag on page 480, Validate Like on page 482

Usage

The WebComoponent item type defines a form field which can be implemented with a plug-in mechanism
on the front-end side.

You must define the type of the widget with the componentType property. This property is mandatory to
identify the external widget that will be used for this field.

The scrollbars and stretch properties can be used to define the behavior of the widget regarding sizing.

The properties property is typically used to define properties that are specific to a given WebComponent.
For example, a chart component might have properties to define x-axis and y-axis labels.

The value of a WebComponent field is usually (XML) formatted, and holds the data that will be rendered by
the external widget through the JavaScript™ shell.

Note: In order for a WebComponent to be listed in the componentType list, it must be described in
an XML file contained in the directory that you specified in GSTWCDIR.

See the topic on WebComponents in the Genero Business Development Language User Guide for more
information.

Add a WebComponent to a form
Each WebComponent widget is described in an XML description file having the extension .wcsettings.

All the description files must be stored in a single directory. This directory must also contain any icon
files to be displayed on the form design page for the WebComponent. Specify the directory using the
GSTWCDIR on page 144 environment variable in a Web Component environment set. See Environment
sets on page 140. Once you have set this directory, you may add the widgets to your form design
documents.

1. Select Widget>>WebComponent from the Genero Studio menu and add the widget to the form.
2. Choose the specific WebComponent from the combobox for the componentType property.

When you add a WebComponent to your form design, a standard image is displayed in the form, indicating
that the object is a WebComponent. The componentType property in the WebComponent section of the
Properties View allows you to select the specific WebComponent that you wish to add. Once you select
the component, the properties specific to that component are also listed in the Properties view; if an icon
associated with this component has been created for the form design page, it will be displayed.

WebComponent setup (advanced)
To make Web Components available for Genero Studio form designers, the description of the Web
Component must be described in an XML file having the extension .wcsettings.

A separate XML file must be created to describe each type of WebComponent, storecalendar.wcsettings
for example. The componentType property in the Properties View is a combobox that displays the names
of the available WebComponent widgets ("storecalendar" for example).

You can display an icon on the form design document when a web component is selected; otherwise the
default icon is displayed. The name of the icon file must be the same as that of the wcsettings file, for
example, storecalendar.wcsettings and storecalendar.jpg.

The form designer must specify the directory that contains the wcsettings and icon files; see Add a
WebComponent to a form on page 433.

WebComponent description files

Example file chart.wcsettings:

<?xml version="1.0" encoding="utf-8"?>

Form Designer | 434

<WebComponent>
 <DynamicProperty name="type" type="TEXT" label="type"
 description="type of chart"
 initialValue="" />
 <DynamicProperty name="caption" type="TEXT" label="caption"
 description="caption"
 initialValue="" />
 <DynamicProperty name="subcaption" type="TEXT" label="subcaption"
 description="subcaption" initialValue="" />
 <DynamicProperty name="xaxisname" type="TEXT" label="X label"
 description="label of X axis" initialValue="" />
 <DynamicProperty name="yaxisname" type="TEXT" label="Y label"
 description="label of Y axis" initialValue="" />
 <DynamicProperty name="numberPrefix" type="TEXT" label="numberPrefix"
 description="number prefix" initialValue="" />
 <DynamicProperty name="labels" type="STRINGLIST" label="labels"
 description="labels" initialValue="" />
 <DynamicProperty name="values" type="STRINGLIST" label="value"
 description="values"
 initialValue="" />
</WebComponent>

The XML schema description for the .wcsettings file is contained in an XSD file named wcsettings.xsd,
located in the Genero Studio installation directory conf/schema.

Action management (Toolbars, Topmenus)
Information about adding Toolbars and Topmenus to forms.

• Action views on page 434
• Action defaults on page 434
• Topmenus on page 435
• Toolbars on page 437

Action views
Action views on a form such as Toolbars, Topmenus, and buttons, trigger actions defined in your program
code.

The value of the name or the action property, must exactly match the name of an action in an ON ACTION
clause of an interactive statement, such as MENU.

For example, a ButtonEdit on the form with the action property value set to "search" would trigger the
action "search" in this BDL program code, when the MENU statement is active and the user clicks the
button.

MENU
 ON ACTION search
 CALL find_customer()
 ...

Action defaults
Action defaults can be used to define the appearance of action views on the form (buttons, menu items,
and Toolbar items, for example).

For more information see "Understanding action defaults" in the BDL User Guide.

Add action defaults
Action defaults can be added to a form.

1. Open form.

2. Right-click the form object in the Structure view and select Add Action Default List from the context
menu.

Form Designer | 435

The form structure now includes an ActionDefaultList node.

3. Right-click on the ActionDefaultList node in the form structure view and select Add Action Default.
Repeat to add additional ActionDefaults.

4. For each ActionDefault, specify the properties associated with text, images, accelerators, and
comments. These properties will be automatically applied to any action views on the form that have the
same name as the property of the ActionDefault in the list.

Import action defaults
An existing action defaults file (4ad) can be imported into a form.

1. Open form.

2. Right-click the form object in the Structure view and select Import Action Defaults from the context
menu.

3. Navigate the file system to find the action default file (4ad) to be used. Select Open to import the file
into your form.
The form structure now includes an ActionDefaultList node with ActionDefault nodes for each action
default.

4. These properties will be automatically applied to any action views on the form that have the same name
as the property of the ActionDefault in the list.

Additional ActionDefaults added to the list will be used for the form, but will not effect the 4ad file
imported.

Topmenus
A Topmenu presents a pull-down menu on the form associated with actions defined by the current
interactive instruction in the BDL code.

When a Topmenu command is selected by the user, the BDL program triggers the action to which the
Topmenu command is bound.

A Topmenu can be defined directly in the form or in a resource file with the extension 4tm.

See the topic on Topmenus in the Genero Business Development Language User Guide for more
information.

Form Designer | 436

Figure 259: Form Structure tab showing a Topmenu

Add a Topmenu
A Topmenu can be added to a form.

Adding a Topmenu at the form level will make the Topmenu available only to that form. To create a
Topmenu the can be used for all forms or as needed, create a 4tm file and add it to your project.

1. Open form.

2. Right-click the form object in the Structure view and select Add Top Menu from the context menu.
The form structure now includes an Topmenu node and the Topmenu structure is added to the form
design.

3. Build your Topmenu:

• Build your Topmenu directly in the form design by using the icons at the top of the form.

Figure 260: Topmenu editor
• Or, right-click on the Topmenu node in the form structure view and add the elements of the

Topmenu.

Form Designer | 437

Option Description

Add Group Adds a TopMenuGroup, the text and parent node
for the pull-down menu group.

Add Command Adds a TopMenuCommand and specifies the
action the menu option must be bound to.

Note: The TopMenuCommands's name
property must exactly match the name of
an action specified in your BDL program.

Add Separator Adds a TopMenuSeparator, an optional horizontal
line to be displayed on the Topmenu, visually
separating some of the commands.

4. Set properties for each of the elements in the Topmenu.

Import a Topmenu
An existing Topmenu (4tm) can be imported into a form.

1. Open form.

2. Right-click the form object in the Structure view and select Import Top Menu from the context menu.

3. Navigate the file system to find the Topmenu file (4tm) to be used. Select Open to import the file into
your form.
The form structure now includes a Topmenu node with nodes for each of the elements defined in the
Topmenu. The Topmenu also appears at the top of the form in the form design window.

4. Set properties for each of the elements in the Topmenu as needed.

Changes made to the Topmenu will be used for the form, but will not effect the 4tm file imported.

Toolbars
A Toolbar presents buttons on the form associated with actions defined by the current interactive
instruction in the BDL code.

When a Toolbar button is selected by the user, the program triggers the action to which the Toolbar button
is bound.

The Toolbar object appears in the Form Structure View, but it does not appear in the design window. It
implements a Toolbar on the form that is displayed to the user.

A Toolbar can be defined directly in a form or in a resource file with the extension 4tb.

See the topic on Toolbars in the Genero Business Development Language User Guide for more
information.

Figure 261: Form with Toolbar displayed using the Genero Desktop Client

Form Designer | 438

Add a Toolbar
A Toolbar can be added to a form.

Adding a Toolbar at the form level will make the Toolbar available only to that form. To create a Toolbar the
can be used for all forms or as needed, create a 4tb file and add it to your project and program.

1. Open form.

2. Right-click the form object in the Structure view and select Add Tool Bar from the context menu.
The form structure now includes an ToolBar node.

3. Right-click on the ToolBar node in the form structure view and add the elements of the Toolbar.

Option Description

Add Item Adds a ToolBarItem node and specifies the action
the Toolbar button must be bound to.

Note: The ToolBarItem's name property
must exactly match the name of an action
specified in your BDL program.

Add Separator Adds a ToolBarSeparator, an optional vertical line
to be displayed on the Toolbar, visually separating
some of the commands.

4. Set properties for each of the elements in the Toolbar.

Import a Toolbar
An existing Toolbar (4tb) can be imported into a form.

1. Open form.

2. Right-click the form object in the Structure view and select Import Tool Bar from the context menu.

3. Navigate the file system to find the Toolbar file (4tb) to be used. Select Open to import the file into your
form.
The form structure now includes a ToolBar node with nodes for each of the elements defined in the
Toolbar.

4. Set properties for each of the elements in the Toolbar as needed.

Changes made to the Toolbar will be used for the form, but will not effect the 4tb file imported.

Styles
Styles allow you to centralize properties related to the appearance of user interface elements.

Typical style properties define font properties and foreground and background colors. Some style
properties will be specific to a given class of widgets (like the first day of week in a DATEEDIT).

Styles can be defined directly in the form or in a resource file having an extension of 4st, which must be
distributed with other runtime files.

Apply a style to a form item
Styles defined in a style file (4st) can be applied to forms and form items for form previews and style
dialogs..

Before you begin, you need a style file defined in order to apply styles to your form items. Styles are
defined in a resource file with the extension (4st).

1. Set the styleFile property for the form.

To explicitly set the style file to use:

a) Select the form node in the Structure view to display its properties.
b) Select the styleFile property.
c) Click the ... button to browse on your system for the style file that you want to use for your form.

Form Designer | 439

If no style file is specified in the styleFile property, and a default.4st file is found in the path
specified by the FGLRESOURCEPATH environment variable, the default.4st file is used for form
previews and style dialogs.

If you add the default.4st file to a library in your project, and a dependency to this library exists,
then the directory is automatically added to FGLRESOURCEPATH.

If no default.4st file is found in FGLRESOURCEPATH, the default.4st file from <FGLDIR>/lib
is used.

This provides flexibility in the use of style files. You can:

• Specify the style file in the form file.
• Add a default.4st style file to a group node, and set a dependency to the form application node.
• Put a default.4st in a directory, and add the path to the FGLRESOURCEPATH environment variable

of an active environment set.
• Automatically use the FGLDIR/lib/default.4st file.

Important: The styleFile attribute is only used by the Form Designer when previewing
the form and for Form Designer-related style dialogs. To apply a style file with your Genero
application, you must load the style file using the ui.Interface.loadStyles method. See
the Genero Business Development Language User Guide for more information regarding the
use of style files by Genero applications.

Figure 262: styleFile property in Properties view

2. Select the form item or items for which you want to apply a style.

3. In the properties view, select the style property, and click the ... button to display the Style Selection
dialog. Select a style or styles for the form item(s). Select OK.
Selected styles are listed, separated by a space, in the style property for the form item.

Create a style file
You can create a style file (4st) for your forms.

Select File >> New >>

Option Description

Design, Resources >> Style (.4st) Creates a style file using the dbapp.4st template
as a basis.

Form Designer | 440

Option Description

Genero Files, Resources >> Style (.4st) Creates a style file using the default.4st
template as a basis.

Form Designer usage
Information about designing a form with Form Designer.

• Drawing on page 440
• Selecting, moving, resizing on page 440
• Aligning on page 441
• Transforming on page 441

Drawing
Containers and widgets can be drawn onto the form.

Using the Toolbar of containers and widgets, you can add one of more container or widget of a specific
type onto the form.

Single-click the Toolbar icon The item is selected, and one occurrence can be
placed on the form.

Double-click the Toolbar icon The item remains selected until explicitly deselected
by clicking in the main window, another icon, or
the select arrow. This allows you to draw several
occurrences of the same item without re-selecting it.

Nesting
All items on the form are in a hierarchy identified in the Structure view. All form items must be nested within
a container. Some containers can be nested within other containers. For example, a table container could
be nested within a folder container. To place a widget within a container on the form design, draw the
widget in the container, or drag the drawn widget into a container. The parent container changes color
indicating that the widget can be nested within it. The structure view will show the widget within the parent
container. You can also use the structure view to change the parenting of containers to containers and
widgets within containers by dragging and dropping the selected item into its new location in the structure.

Selecting, moving, resizing
Form items can be selected individually or in groups, moved, and resized.

Selecting

Select an item Use the mouse to select an item. A selected item on
the form design is displayed with handles around it.

Double-click an item Double-clicking on an item executes the default
action, which depends on the widget. For example,
double-clicking on a button label or group opens the
Edit text dialog. Double-clicking on a combobox or
radiogroup, opens the Edit items dialog.

Multiple selection To select multiple items, select and item and then
hold down the Ctrl key while selecting additional
items.

Square selection While holding down the Shift key, drag a rectangle
touching elements to select.

Form Designer | 441

Select all Right click on the form and select Select all Form
Fields. This selects all form fields within the current
container.

Ctrl-A (select all) selects all elements on the current
tab (Form or Record).

Moving and resizing

Selected items can be moved with the mouse or by using the keyboard arrows (left, right, up, down). This
changes the value of the item's posX and/or posY attributes.

Selected items can be re-sized by holding down the Shift key while using the keyboard arrows. This
changes the value of the item's gridWidth and/or gridHeight attributes.

Aligning

• Align widgets on page 441
• Layout containers on page 441

Align widgets
Widgets within the same container may be aligned.

The parent container size is limited to the form's maximum width and height.

Align items by using the mouse to select. Use Ctrl-mouse click to select multiple items. Select an option
from the Alignment menu.

Layout containers
If a parent container has more than one child container, the child containers must be grouped and aligned
using layouts.

Select the containers to be grouped. Use the Layout menu to group them. The form must be large enough
to contain both the child containers in their desired position, as well as the layout container.

Horizontal Layout Aligns the containers horizontally in a horizontal
layout container.

Vertical Layout Aligns the containers vertically in a vertical layout
container.

Break Layout Removes layout, ungrouping the containers; if you
have grouped containers in a layout, you must
break the layout in order to move the containers.

Transforming
Form items can be transformed from one type to another.

• Convert a widget on page 441
• Convert a container on page 442
• Convert to matrix on page 442

Convert a widget
Right-click on the form item to select the menu option Convert Widget. Select a new widget from the list.

Form Designer | 442

Convert a container
Right-click on the container object in the Form Design window to select the menu option Convert
Container. Select a new container type and options in the Convert Container dialog.

Convert to matrix
Right-click on a field to convert it to a matrix container.

Command-line syntax: gsform
The gsform tool is used at the command line to compile and import forms, convert 4fd files, extract
localized strings, and keep a copy of the per file created during compilation.

The Genero Studio form definition file (4fd) can also be compiled from the operating system command
line, using the tool gsform, which is located in the <Studio-install-dir>/bin directory. The gsform
tool executable file should not be moved to another directory.

Use gsform if you want to:

• compile a 4fd file from the command line
• import a per file into Genero Studio Form Designer format
• convert 4fd files in the old Genero Studio format to the new 4fd format
• extract localized strings
• keep a copy of the per file created during compilation

gsform Syntax

gsform [options] file1[4fd] file2[4fd] ...

where filen is a Genero Studio form file with or without the extension being specified.

Table 136: gsform options

Option Description

-h Display help instead of the standard behavior.

-m Extract localized messages, See the Genero
Business Development Language User Guide topic
Localized Strings for additional information.

-V Version information

-c Convert old format 4fd files to new format. Old
format <filename>4fd files are backed up in
<filename>.bak, New format files are saved
in <filename>4fd. If the backup fails, the
conversion is aborted.

-import Import per file as Genero Studio 4fd file

-keep Keep intermediate per file that is created; do not
delete.

The compilation process uses temporary per files.
In case there are unexpected (internal) errors, this
option avoids the temporary files deletion so that
the file can be read.

Important: Form Designer and gsform
don't allow compilation when per files

Form Designer | 443

Option Description

with the same file name as 4fd files are
present in the same directory.

-dbname database Provide the database name database to use for
form compilation. If the 4fd files use a database,
it Is strongly recommended that you provide
the database name using this option to reduce
computation time.

-i Ignore existing per file; overwrites it.

-M Display all compilation messages. See the
Genero Business Development Lanaguage User
Guide topic Compiling Programs for additional
information.

-W Display warning messages. Option all turns on all
messages.

-ag-templatePath Specifies which Application Generator template
directory used to load the Application Generator
settings (file types, properties).

Localizing your form
Localized Strings allow you to customize the text displayed by your application, for internationalization or
site-specific text.

The localizedStr property allows you to set localization for an individual widget or form item, where
applicable. Setting the checkbox for localized strings to "True" will mark the related strings for localization.

Once the form definition is completed, you can use the gsform utility from the command line to generate a
text file of the localized strings. For example:

gsform -m myform.4fd > myfile.str

The format of the file will be "string key" = "string text". You can copy the file and change the string text as
needed for localization. Do not change the string key, as this is generated by Genero Studio.

The localized strings file must be added to a library node in your project in Project Manager, and the library
linked to your application node. When the application is built, the localized string will be compiled and
linked into your application.

See the topic on Localized Strings in the Genero Business Development Language User Guide.

Form Designer Reference
Reference information for Form Designer.

• Customize Form Designer: preferences on page 444
• Form tab on page 445
• Business Record diagram on page 412
• Menus on page 446
• Views on page 447
• Dialogs on page 449
• Properties list on page 459
• Form Designer error messages on page 484
• Business Records error messages on page 280
• XML validation error messages on page 497

Form Designer | 444

Customize Form Designer: preferences
Information about Form Designer preferences.

New Form section

Table 137: New Form preferences

Property Description

Default width Default width, in number of characters.

Default height Default height, in number of lines.

Import section

The items in this section refer to forms that are imported from the .per format.

Table 138: Import preferences

Open form after import checkbox If checked, form will be opened in Form Designer after being imported.

Convert Text into Label checkbox If checked, forms imported will have text converted into a static label.

Tip: It is preferred to use static labels instead of text to provide
field and widget labels on a form. When you use static labels,
you gain the use of all properties supported by the static
label item type, to include the use of localized strings and
internationalization. It is recommended that you leave this option
selected.

• Form elements settings on page 444
• Database form settings on page 444

Form elements settings

Table and Tree Settings

• Default rows - number of rows
• Default columns - number of columns
• Default column width - size for a new column, in characters

Database form settings

Container

Choose the container for the form.

Table and Tree

• Row count - number of rows
• Maximum column width - in characters

Grid and ScrollGrid

Label and Field Alignment: Icons allow you to specify:

• Label left and field left

Form Designer | 445

• Label right and field right
• Label left and field right
• Label right and field left

Property label and Field:

• Maximum width - in characters
• Number of fields - number of fields per line
• Top border -; in lines
• Bottom border - in lines
• Left margin - in characters
• Right margin

- in characters
• Field gutter - spaces between label and data for a field
• Field gap - gap between two fields on the same line

TextEdit:

• Maximum widget height - enter value

Form tab
The Form tab displays the form in design mode.

Figure 263: Form tab

Form Designer | 446

Business Record diagram
The Business Record diagram is used to define the data set of the form, report, or web service.

Figure 264: Business Record diagram

Menus
Information about Form Designer menus.

• Form Designer context menu on page 446
• Alignment menu on page 447

Form Designer context menu
In Form Designer, each container and widget on a form has a context menu accessible by right-clicking on
the object.

The context menu displays actions applicable to the object selected.

Table 139: Right-click Context Menu

Option Description

Edit Text Edit the text property.

Add Phantom Add a phantom field.

Convert Container Convert container to a different container type.

H-Layout Nest container in Horizontal layout.

V-Layout Nest container in Vertical layout.

Break Layout Remove Horizontal or Vertical layout.

Select All Form Fields Select all form fields in the current container.

Form Designer | 447

Option Description

Add Page Add Page to Folder container.

Add Page Before Add Page before selected Page.

Add Page After Add Page after selected Page.

Add Record Add field to existing record or add field to a new
record.

Add Column Add column to table.

Add Column Before Add column to Table before selected column.

Add Column After Add column to Table after selected column.

Convert Widget Convert widget to a different widget type.

Convert to Text Convert widget to a Text widget.

Convert to Matrix Convert a formField to matrix.

Edit Items Edit the items property.

Locate in design view From form structure node, locate and select item in
design.

Alignment menu
The Alignment menu provides options for aligning widgets on a form.

Table 140: Alignment Menu

Option Description

Left Aligned with the leftmost widget selected.

Right Aligned with the rightmost widget selected.

Center Centered vertically based on the average centering
of all selected items.

Top Aligned with the topmost widget selected.

Bottom Aligned with the bottommost widget selected.

Middle Centered horizontally to the average centering of all
selected items.

Advanced horizontal See Alignment dialog on page 457

Advanced vertical See Alignment dialog on page 457

Distribute Horizontally Aligned with the topmost widget selected (= top
alignment) AND items are evenly distributed.

Distribute Vertically Aligned with the leftmost widget selected (= left
alignment) AND items are evenly distributed

Views
Information about Form Designer views.

• Properties view on page 448
• Structure view on page 448

Form Designer | 448

Properties view

Selecting one item from the design window makes this item current, and its properties are displayed in the
Properties view and available for updating. Each form item, as well as the form itself, has properties that
can be set.

Figure 265: Properties view

Multiple properties can be selected using Ctrl-click. If multiple properties have been selected, only the
common properties will display in the Properties view.

Structure view

The structure of the form is displayed in the Form Structure view. As you add form items to the Form
Design window, the elements are automatically added to a tree structure in the Form Structure view.

Expand the nodes in the tree to display or hide the different form items.

Selecting a form item node also selects the corresponding object in the Form Design window, and displays
the item's properties in the Properties view.

Figure 266: Structure View

Managed Form Lists a node for each record and for the form.

Record(s) Lists a node for each field in the record.

Form Designer | 449

Forms Lists a node for each item on the form such as
containers and widgets.

Right-click on the Form node in the Structure view to add or import other form elements like a Toolbar,
Topmenu, Action Defaults and Styles.

Dialogs
Information about Form Designer dialogs.

• Data Control wizard on page 449
• Style Selection dialog on page 455
• Convert Container dialog on page 456
• Alignment dialog on page 457
• Dynamic properties on page 454

Data Control wizard
The Data Control wizard is used to rapidly create a form from a database meta-schema.

Once you have added a database schema to your project, you can add fields for database columns to your
form.

Access the Data Control wizard from the Form Designer or Business Application diagram:

• Form Designer: Container >> Data Control
• File >> New >> Design, CRUD Form from Database or Genero Files, Form from Database
• BA diagram: Right-click on a Form entity and select Implement Form from Database
• BA diagram: Right-click on a Zoom entity and select Implement Zoom from Database.

Column selection
Use the Column selection dialog to choose a database and select fields for the form.

To use Column Selection

1. Select the database schema from the list of schemas that you have added to your project.
2. Select a table or view name in the schema list to see its columns in the Column description list. If a

schema is not available in the list, add it to the project first.
3. Expand and/or filter the Tables list.
4. Select the desired columns and use the right arrows to transfer the columns to the Selected Fields list.
5. Use the up/down arrows to rearrange the column order. Use the left arrows to remove columns from the

Selected Fields list.
6. Click Next to continue to the Container Selection page.

Form Designer | 450

Figure 267: Data Control Wizard

Database Available schemas.

Tables Tables are listed in alphabetical order. Tables that
have defined relationships in the schema can be
expanded to show the tables to which they relate
and how they relate. The Incoming arrow and
Outgoing arrow buttons at the top of the Tables
list filter the list to show the outgoing and incoming
relationships:

• Incoming - Identifies those tables that have a
relationship with the selected table where the
selected table includes the foreign key(s).

• Outgoing - The default filter. Identifies those
tables include a foreign key relationship to the
selected master table.

The joins are automatically built based on the
schema relationships and can be viewed or

Form Designer | 451

modified in the Joins and Data order on page
453 page of the wizard.

Master table Identifies the master table for the selected fields.

Container selection
The Container selection dialog lets you choose the type of container for the form.

Container

Select the container to hold the fields for the database columns:

• Grid - positioning on page 415
• ScrollGrid - positioning on page 415
• Table - organizing on page 417
• Tree - hierarchy on page 418

Grid and ScrollGrid

Label and Field Alignment:

• Label left and field left
• Label right and field right
• Label left and field right

Form Designer | 452

• Label right and field left

Label and Field Properties:

• Maximum width - in characters
• Number of fields - number of fields per line
• Top border - in lines
• Bottom border - in lines
• Left margin - in characters
• Right margin - in characters
• Field gutter - spaces between label and data for a field
• Field gap - gap between two fields on the same line

Matrix

• Repeat - check to repeat the fields
• Row count - number of rows in matrix
• Column count - number of columns in matrix

Form Designer | 453

Joins and Data order
The Edit query dialog allows you to specify the joins between the tables in a record used for a form,
report, or service. Joins between tables referenced in the form are set up in the query property of the
business record.

Figure 268: Edit query dialog

Join If two tables will be involved in the query, this
section is enabled to enter an SQL Join condition
for the SQL Query.

Additional tables Add a table here that does not have any fields in the
record. For example, list the orders table here if the
orders table is required to enable the join between
the customer and items tables.

Where Add additional conditions to the SQL Where clause,
to restrict the rows returned by the SQL Query to a
subset of the data.

Order by Change the default order in which the SQL Query
will return the rows.

Form Designer | 454

Dynamic properties
The Dynamic properties dialog lets you change the label displayed for a formField or the widget used to
display the value.

Figure 269: Dynamic properties Dialog

Select a field's label or widget property to change it.

Click Finish and the database columns and container are added to the form.

Form Designer | 455

Style Selection dialog
The Style Selection dialog displays available styles from the form's style file.

Figure 270: Style dialog

Name Name of the style in the styles file (4st).

Detail The definition of the style.

Result The attributes resulting from the selection.

Check the styles you want to use. Check or uncheck the file name to select/de-select all styles.

Use the Up/Down arrows to change the priority order of the styles if the same property is defined in several
styles selected.

See the Presentation Styles topic in the Genero Business Development Language User Guide.

Form Designer | 456

Convert Container dialog
The Convert Container dialog displays available containers to which the selected container can be
converted.

Figure 271: Convert Container dialog

Container Select the container to hold the fields for the
database columns:

• Grid - positioning on page 415
• ScrollGrid - positioning on page 415
• Group - grouping on page 416
• Table - organizing on page 417
• Tree - hierarchy on page 418

Matrix • Repeat - check to repeat the fields
• Row count - number of rows in matrix
• Column count - number of columns in matrix

Table/Tree to other conversion • Number of fields - indicates the number of
formfield columns on each line

Form Designer | 457

Alignment dialog
The Alignment dialogs provide advanced settings for item alignment in the form.

Figure 272: Horizontal alignment dialog

Alignment Types Choose whether to align tops, bottoms, or centers
of selected items.

Container Alignment Check to align selected item(s) with parent
container's border.

Spacing Choose whether to not use spacing, use default
spacing, or define spacing by the number of
columns (horizontally) to put between selected
items.

Form Designer | 458

Figure 273: Vertical alignment dialog

Alignment Types Choose whether to align lefts, rights, or centers of
selected items.

Container Alignment Check to align selected item(s) with parent
container's border.

Spacing Choose whether to not use spacing, use default
spacing, or define spacing by the number of lines
(vertically) to put between selected items.

Form Designer | 459

Dynamic properties
The Dynamic properties dialog lets you change the label displayed for a formField or the widget used to
display the value.

Figure 274: Dynamic properties Dialog

Select a field's label or widget property to change it.

Click Finish and the database columns and container are added to the form.

Properties list
Information about Form Designer properties.

• accelerator on page 462
• accelerator2 on page 462
• accelerator3 on page 462
• accelerator4 on page 462
• action on page 462
• aggregateText on page 462
• aggregateType on page 462
• autoNext on page 462
• autoScale on page 463
• buttonTextHidden on page 463
• case on page 463

Form Designer | 460

• century on page 463
• color on page 464
• colName and sqlTabName on page 464
• colorCondition on page 464
• comment on page 464
• completer on page 464
• componentType on page 465
• contextMenu on page 465
• databaseName on page 465
• dataType on page 465
• defaultValue on page 465
• defaultView on page 466
• Display Like on page 466
• doubleClick on page 466
• expandedColumn on page 467
• fieldType on page 467
• fontPitch on page 467
• format on page 467
• gridChildrenInParent on page 470
• gridHeight, gridWidth on page 470
• hidden on page 470
• idColumn on page 471
• image on page 471
• imageCollapsed on page 472
• imageColumn on page 472
• imageExpanded on page 473
• imageLeaf on page 473
• include on page 473
• initializer on page 473
• invisible on page 473
• isNodeColumn on page 474
• items on page 474
• justify on page 474
• keyboardHint on page 475
• minHeight, minWidth on page 475
• name on page 475
• noEntry on page 475
• notNull on page 476
• orientation on page 476
• parentIdColumn on page 476
• PER comments on page 476
• picture on page 476
• posX, posY on page 477
• program on page 477
• queryEditable on page 477
• required on page 477
• reverse on page 478
• rowHeight on page 478
• sample on page 478
• scroll on page 478

Form Designer | 461

• scrollbars on page 478
• sizePolicy on page 478
• sliderOrientation on page 479
• spacing on page 479
• splitter on page 479
• step on page 480
• stretch on page 480
• style on page 480
• styleFile on page 480
• tabIndex on page 480
• tag on page 480
• text on page 481
• title on page 481
• totalRows on page 481
• unHidable on page 481
• unHidableColumns on page 481
• unMovable on page 481
• unMovableColumns on page 481
• unSizable on page 481
• unSizableColumns on page 482
• unSortable on page 482
• unSortableColumns on page 482
• validate on page 482
• Validate Like on page 482
• valueChecked on page 482
• valueMax on page 483
• valueMin on page 483
• valueUnchecked on page 483
• verify on page 483
• version on page 483
• wantFixedPageSize on page 484
• wantNoReturns on page 484
• wantTabs on page 484
• windowStyle on page 484

Form Designer | 462

accelerator
The accelerator property defines the primary accelerator key of an action default item.

accelerator2
The accelerator2 property defines the secondary accelerator key of an action default item.

accelerator3
The accelerator3 property defines the third accelerator key of an action default item.

accelerator4
The accelerator4 property defines the fourth accelerator key of an action default item.

action
The action property defines the name of the action to be sent to the program when the user activates the
form item.

aggregateText
The aggregateText property can be used to define the label to be displayed for aggregate fields.

Usage

The aggregateText property can be specified at the aggregate field level, or globally at the Table
- organizing on page 417 level, to define a label for the whole summary line. When defining the
aggregateText property at the aggregate field level, the text will be anchored to the value cell. If the
aggregateText property is specified at the Table level, the label will appear on the left in the summary line.
When an aggregate text is defined at both levels, the global aggregate text of the table will be ignored.

aggregateType
The aggregateType property defines how the aggregate field value is computed.

Usage

PROGRAM specifies that the aggregate value will be computed and displayed by the program code.

An aggregate type different from PROGRAM specifies that the aggregate value is computed automatically:

• SUM computes the total of all values of the corresponding numeric column.
• AVG computes the average of all values of the corresponding numeric column.
• MIN displays the minimum value of the corresponding numeric column.
• MAX displays the maximum value of the corresponding numeric column.
• COUNT computes the number of rows.

The SUM and AVG aggregate types apply to data types that can be used as operand for an addition, such
as INTEGER, DECIMAL, INTERVAL.

The MIN and MAX aggregate types apply to data types that can be compared, such as INTEGER,
DECIMAL, INTERVAL, CHAR, DATETIME.

autoNext
The autoNext property causes the cursor to automatically advance during input to the next field when the
current field is full.

Usage

If data values entered in the field do not meet the requirements of other field properties like INCLUDE or
PICTURE, the cursor does not automatically move to the next field but remains in the current field, and an
error message displays.

Form Designer | 463

The autoNext property is particularly useful with character fields in which the input data is of a standard
length, such as numeric postal codes or the abbreviations in the state table. It is also useful if a character
field has a length of 1 because only one keystroke is required to enter data and move to the next field.

autoScale
The autoScale property causes the form element contents to automatically scale to the size given to the
item.

Usage

For an Image on page 426 this property forces the image to be stretched to fit in the area reserved for
the image.

buttonTextHidden
The buttonTextHidden property indicates that the labels of the buttons of the element should not be
displayed.

Usage

Use in a Toolbar definition to hide the labels of buttons.

case
The case property forces character input to uppercase or lowercase letters.

Usage

Assign the case property to a character field when you want the runtime system to convert to uppercase
or lowercase letters entered, both on the screen and in the corresponding program variable.

Because uppercase and lowercase letters have different values, storing character strings in one or the
other format can simplify sorting and querying a database.

Characters entered by the user are converted in INPUT, INPUT ARRAY, and CONSTRUCT instructions.

The results of conversions between uppercase and lowercase letters are based on the locale settings
(LANG). When using single byte runners, the conversion of ASCII characters >127 is controlled by the
LC_CTYPE environment variable.

century
The century property specifies how to expand abbreviated one- and two-digit year specifications in a
DATE and DATETIME field.

Purpose

Usage

Expansion is based on this setting (and on the year value from the system clock at runtime).

The century property can specify any of four algorithms to expand abbreviated years into four-digit year
values that end with the same digits (or digit) that the user has entered.

century supports the same settings as the DBCENTURY environment variable, but with a scope that is
restricted to a single field.

If the century and DBCENTURY settings are different, CENTURY takes precedence.

Unlike DBCENTURY, the century property is not case sensitive. However, we recommend that you use
uppercase letters in the property.

Form Designer | 464

color
The color property defines the foreground color of the text displayed by a form element.

Usage

The color property defines the logical color of a value displayed in a field. Value can be BLACK, BLUE,
CYAN, GREEN, MAGENTA, RED,WHITE, and YELLOW.

For backward compatibility, the value an be combined with an intensity keyword: REVERSE, LEFT, BLINK,
and UNDERLINE.

colName and sqlTabName
The colName property is the name of the database column, the sqlTabName property is the name of the
database table for formField form items.

colorCondition
The colorCondition property defines a condition to set the foreground color dynamically, though it is
recommended that you use styles to implement conditional colors.

Usage

The colorCondition property defines the logical color of the text of a field when the value satisfies the
conditional expression.

The Expression Editor allows you to create the expression for which the colorCondition is evaluated.

The condition in colorCondition can only reference the field for which the property is set. The Boolean
expression is automatically evaluated at runtime to check when the color property must be set.

Example Expressions

COLOR = GREEN WHERE today

To refer to the value in the expression, use the keyword $VALUE:

COLOR = RED WHERE $VALUE > 100

comment
The comment property defines text that can be shown in the comment line when the form item becomes
current.

Usage

The most common use of the comment property is to give information or instructions to the user. This is
particularly appropriate when the field accepts only a limited set of values.

The screen location where the message is displayed depends on external configuration. It can be
displayed in the COMMENT LINE, or in the STATUSBAR when using a graphical user interface.

If the OPEN WINDOW statement specifies COMMENT LINE OFF, any output to the comment area is
hidden even if the window displays a form that includes fields that include the COMMENT property.

See the topic on Statusbar in the Genero Business Development Language User Guide.

completer
The completer property enables autocompletion for the edit field.

Form fields with COMPLETER attribute provide suggestions while the end-user types text into the field, it
can be used in text edit fields such as EDIT and BUTTONEDIT item types.

Form Designer | 465

For more information, see the COMPLETER attribute topic in the Genero Business Development
Language User Guide.

componentType
The componentType property defines a name identifying the external widget.

Usage

The componentType property is used to define the type of a WebComponent form item.

The value of this property will be mapped to a specific widget definition on the front-end side. See front-end
specific documentation related to Web Components.

contextMenu
The contextMenu property defines the action default property whether a context menu option must be
displayed for an action.

Usage

contextMenu values:

1. NO indicates that no context menu option must be displayed for this action.
2. YES indicates that a context menu option must always be displayed for this action, if the action is visible

(setActionHidden method).
3. AUTO means that the context menu option is displayed if no explicit action view is used for that action

and the action is visible (setActionHidden method).

The default is YES.

This property applies to the actions defined by the current dialog in the current window.

databaseName
The databaseName property specifies the name of the database shown in the DB Schemas tab.

dataType
The dataType property specifies the data type of the item.

Usage

For NON_DATABASE formField items, the data type has to be specified. For other formField items, data
type is determined from the database column type and cannot be modified.

defaultValue
The defaultValue property assigns a default value to a field during data entry.

Usage

The effect of the defaultValue property depends on the WITHOUT DEFAULTS configuration option of the
dialog using the form:

• With the INPUT statement, form default values have are ignored when using the WITHOUT DEFAULTS
option. With this option, the runtime system displays the values in the program variables to the screen.
Otherwise, the form default values will be displayed when the dialog starts.

• With the INPUT ARRAY statement, the form default values are always used for new rows inserted by
the user. With INPUT ARRAY, the WITHOUT DEFAULTS option indicates if the existing program array
elements have to be used.

Defaults values can also be specified in the database schema file, for formFields defined with database
column reference.

Form Designer | 466

If the field is formonly (NON_DATABASE), you must also specify a data type when you assign the default
property to a field.

If both the default property and the required property are assigned to the same field, the required property
is ignored.

DATETIME and INTERVAL literals are not supported.

defaultView
The defaultView property defines the action default property whether a default view (i.e. button) must be
displayed for a given action.

Usage

defaultView values:

• NO indicates that no default action view must be displayed for this action.
• YES indicates that a default action view must always be displayed for this action, if the action is visible

(setActionHidden).
• AUTO means that a default action view is displayed if no explicit action view is used for that action and

the action is visible (setActionHidden).

The default is AUTO.

This property applies to the actions defined by the current dialog in the current window.

Display Like
The Display Like property takes column properties defined in the database schema files and applies
them to a field.

Usage

Specifying this property is equivalent to listing all the properties that are assigned to table.column in the
database schema file generated from the syscolatt table.

Supply the displayTabName for the table name and displayColName for the column name.

Display properties are automatically taken from the schema file if the field is linked to a table.column .

The Display Like value is evaluated at compile time, not at runtime. If the database schema file
changes, you might need to recompile a program that uses the LIKE clause. Even if all of the fields in
the form are FORMONLY, this property requires the form compiler to access the database schema file that
contains the description of table.

doubleClick
The doubleClick property defines the name of the action to be sent when the user double-clicks on a
Table row.

Usage

This property is typically used in a table container, to define the action to be sent when the user double-
clicks on a row. By default, if the Table is driven by a DISPLAY ARRAY, a double-click invokes the accept
action. When using an INPUT ARRAY, double-click selects the whole text if the current widget is editable.
If doubleclick is defined when using an INPUT ARRAY, the action can only be sent when the user double-
clicks on a non-editable widget like a label.

Form Designer | 467

expandedColumn
The expandedColumn property specifies the formField that indicates whether a tree node is expanded
(opened). This property is optional.

Usage

This property is used in the definition of a container, see Tree Views for more details.

fieldType
The fieldType property specifies the category of the values stored in the item.

Purpose
fieldType values:

• TABLE_COLUMN: the value is defined in terms of a database column. Provide the sqlTabName, the
name of the database table. Provide the colName, the name of the database column.

• NON_DATABASE: the value is not defined in terms of a database column .
• COLUMN_LIKE : the value is like NON_DATABASE, but takes its description from a database column.
• TABLE_ALIAS: the value is defined in terms of an alias that is assigned to a database table.

fontPitch
The fontPitch property defines the character font type as fixed or variable when the default font is used,
though it is recommended that you use styles to define font types.

Usage

By default, most front ends use variable width character fonts, but in some cases you might need to use a
fixed font.

When using FIXED, you force the characters to have a fixed size.

When using VARIABLE, you allow the characters to have a variable size.

format
The format property controls the format of numeric and date time fields for output displays.

Usage

Supply the format-string for the format property.

Note:

1. format-string is a string of characters that specifies a data display format.
2. You must enclose format-string within quotation marks (").
3. If format-string is smaller than the field width, you get a compile-time warning, but the form is

usable.

The format property can be set to define a display format for numeric and date fields. When this property
is not used, environment variable settings define the default format. For MONEY and numeric fields such
as DECIMAL fields, a global format can be specified with the DBMONEY or DBFORMAT environment
variables. For DATE fields, the global format is defined by the DBDATE environment variable.

Understand that the format property is applied when displaying program variable data to formFields. In
order to control user input with a mask, you must use the picture property instead. The picture property
is typically used to specify an input mask for formatted character string fields.

If format-string is smaller than the field width, you get a compile-time warning, but the form is usable.

Form Designer | 468

Numeric formats

For DECIMAL, MONEY, SMALLFLOAT, and FLOAT data types, format-string consists of a set of place
holders that represent digits, currency symbols, thousands and decimal separators. For example,
"###.##@" defines three places to the left of the decimal point and exactly two to the right, plus a
currency symbol at the end of the string.

When used with numeric values, the format-string must use normalized place holders described in format.
The place holders will be replaced by the elements defined in the DBMONEY or DBFORMAT environment
variables.

Field input cannot be supported if the format is not defined with normalized place holders.

If the numeric value is too large to fit in the number of characters defined by the format, an overflow text is
displayed (****).

If the actual number displayed requires fewer characters than format-string specifies, numbers are right-
aligned and padded on the left with blanks.

If necessary to satisfy the format-string specification, the number values are rounded before display.

Table 141: Format-string symbols for Numeric data types

Character Description

* The star placeholder fills with asterisks any position that would otherwise be blank.

&
The ampersand placeholder is used to define the position of a digit, and is replaced
by a zero if that position would otherwise be blank.

#

The sharp placeholder is used to define the position of a digit, it is used to specify
a maximum width for the resulting string. This wildcard character does not change
any blank positions in the display: The character is replaced by a blank if no digit is
to be displayed at that position.

< Consecutive less than characters cause left alignment and define digit positions.

-

Displays a minus sign or a blank at that position. USING displays a minus sign
when the expression is lower than zero, and otherwise a blank character. When
you group several minus signs in the format string, a single minus sign floats
immediately to the left of the displayed number.

+

Displays a plus or minus sign at that position. USING displays a plus sign when the
expression is greater than or equal to zero, and a minus sign when the value is less
than zero. When you group several plus signs in the format string, a single plus sign
floats immediately to the left of the displayed number.

(
Displayed as left parenthesis for negative numbers. It is used to display accounting
parentheses instead of a minus sign for negative numbers. Consecutive left
parentheses display a single left parenthesis to the left of the number being printed.

)
Displayed as right parenthesis for negative numbers. This wildcard character
is used in conjunction with a open brace to display accounting parentheses for
negative numbers.

, (comma)
The comma placeholder is used to define the position for the thousand separator
defined in DBFORMAT. The thousand separator will only be displayed if there is a
number on the left of it.

. (period)
The period placeholder is used to define the position for the decimal separator
defined in DBMONEY or DBFORMAT. You can only have one decimal separator in
a number format string.

Form Designer | 469

Character Description

$

The dollar sign is the placeholder for the front currency symbol defined in
DBMONEY or DBFORMAT. When you group several consecutive dollar signs,
a single front currency symbol floats immediately to the left of the number being
printed. The front currency symbol can be defined in DBFORMAT with more than
one character.

@
The at sign is the placeholder for the back currency symbol defined in DBMONEY
or DBFORMAT. Put several consecutive @ signs at the end of the format string to
display a currency symbol defined in DBFORMAT with more than one character.

Table 142: Combinations of DBFORMAT setting and FORMAT property

FORMAT property Numeric value DBFORMAT Result string

---,--&.&& -1234.56 :.:,: -1.234.56

$---,--&.&& -1234.56 E:.:,: E -1.234,56

---,--&.&&@ -1234.56 :.:,:E -1,234.56E

When the user enters numeric or currency values in fields, the runtime system behaves as follows:

• If a symbol is entered that was defined as a decimal separator in DBFORMAT, it is interpreted as the
decimal separator.

• For MONEY fields, it disregards any front (leading) or back (trailing) currency symbol and any
thousands separators that the user enters.

• For DECIMAL fields, the user must enter values without currency symbols.

Date formats

Table 143: Format-string symbols for DATE and DATETIME data type

Character Description

dd Day of the month as a 2-digit integer.

ddd
Three-letter English-language abbreviation of the
day of the week. For example: Mon, Tue.

mm Month as a 2-digit integer.

mmm
Three-letter English-language abbreviation of the
month. For example: Jan, Feb.

yy
Year, as a 2-digits integer representing the 2 trailing
digits.

yyyy Year as a 4-digit number.

Any other character is interpreted as a literal and will be displayed as is in the field.

Form Designer | 470

Table 144: Format-string examples and corresponding display formats for a DATE field

FORMAT property Date value DBDATE Result string

None (DBDATE applies) 1999-09-23 DMY4/ 23/09/1999

dd-mm-yyyy 1999-09-23 DMY4/ 23-09-1999

dd-mm-yy 1999-09-23 DMY4/ 23-09-99

(ddd.) mmm. dd,
 yyyy

1999-09-23 DMY4/
(Thu.) Sep. 23,
 1999

Example

"mm/dd/yyyy"

gridChildrenInParent
The gridChildrenInParent property is used for a container to align its children to the parent container.

Usage

By default, child elements of a container are aligned locally inside the container layout cells. With this
property, you can force children to be aligned according to the layout cells of the parent container of the
container to which you assign this property.

This is useful, for example, when you want to align fields across Group containers inside aGrid.

gridHeight, gridWidth
The gridHeight and gridWidth properties define the height and width of the form or form item.

hidden
The hidden property indicates that the element should not be displayed.

hidden property values:

1. true sets the underlying item property to 1.
2. user sets the underlying item property to 2.
3. false sets the underlying item property to 0.

Usage

By default, all elements are visible. You can use the hidden property to hide an element, such as a
formField or a groupbox. The runtime system handles hidden formFields. If you write an INPUT statement
using a hidden field, the field is ignored (as if it was declared as noEntry). Programs may change the
visibility of formFields dynamically with the ui.form built-in class.

When set the hidden property to true, the underlying item property is set to 1. The value 1 indicates
that the element is hidden to the user without the possibility of showing the element, for example with the
context menu of table headers. In this hidden mode, the unHidable property is ignored by the front end.

When you set hidden to user, the underlying item property is set to 2. The value 2 indicates that the
element is hidden by default, but the user can show/hide the element as needed. For example, the user
can change a hidden column back to visible. Form elements like table columns that are hidden by the user

Form Designer | 471

might be automatically reshown (hidden=0) by the front-end if the program dialog gives the focus to that
field for input. In such case the program dialog takes precedence over the hidden property.

When you set a hidden property for a formField, the model node gets the hidden property, not the view
node.

formFields hidden with the user option (value 2) might be shown anyway if the field is needed by a dialog
for input.

idColumn
The idColumn property specifies the formField that contains the identifier of a tree node.

Usage

This property is mandatory. This property is used in the definition of a Tree, see Tree Views for more
details.

image
The image property defines the image resource to be displayed in the form item.

Usage:

This property is used to define the image resource to be displayed for form items such as a button,
buttonEdit, or a static image.

The resource string can be:

1. A simple file name (with or without extension), using a relative or an absolute path.
2. A path to an image on a server in the URL (Uniform Resource Locator) form.

It is recommended that you use simple image file names without the file extension, and define the
GSTIMAGEPATH environment variable to centralize image files on the application server in a directory
created specifically for images. For portability reasons, use .png or .svg image file formats only.

Supported image formats

Here is the list of image file formats supported by the different front-ends:

Table 145: List of image file formats supported by different front-ends

Suffix (case insensitive) Front-ends supporting the file format

.BMP GDC, GWC

.GIF GDC, GWC

.ICO GDC, GWC

.JPG GDC, GWC

.PNG GDC, GWC

.SVG GDC, GWC

.TIFF GDC, GWC

According to the front-end type, some image file formats or image data formats might not be supported.

Using file names or paths

If the image specification is a simple string without an URL or URI prefix, it is identified as a file path. The
file is first sought in the picture directory on the client workstation. According to the front-end type, this local
directory can actually be on a remote machine where the GAS middleware component is located. If the file

Form Designer | 472

is not found, the front-end automatically sends an image request to the runtime system, in order to search
for an image on the server where the programs are executed. The runtime system searches for server-side
images by using the GSTIMAGEPATH environment variable. If GSTIMAGEPATH is not set, the image files
are searched in the current working directory.

Important:

By default, if GSTIMAGEPATH is not set, the image files are searched in the current working
directory. Image filenames can use absolute or relative paths and the whole application server file
system can be searched (according to the permissions of the operating system user running the
gstrun process). This can be a security hole because fake front-ends could ask for critical server
files that are not images.

When setting GSTIMAGEPATH, the runtime system will only transfer files found in the directories
listed in that environment variable. You can still use absolute or relative paths in the image file
names, but the files must be located below one of the directories listed in GSTIMAGEPATH. For
maximum security, put the image files in directories that contain only image files, and keep critical
data or program file in separate directories.

Images displayed by program to image fields do not follow the GSTIMAGEPATH security
restriction. Image field do not use the IMAGE property. For image fields, the field value specifies the
image.

Using an image server with URL names

If the image specification starts with a URL prefix, the front-end will try to download the image from the
location specified by the URL.

Currently supported URLs are:

Table 146: Supported image resource locations (URLs)

Image resource location (URL) Description

http://location-specification HTTP server

https://location-specification HTTPS server (HTTP over SSL)

ftp://location-specification FTP server

imageCollapsed
The imageCollapsed property sets the global icon to be used when a tree node is collapsed.

Usage

This property is optional. This property defines the icon to be used for nodes that are collapsed. It
overwrites the program array image defined by imageColumn, if both are used.

This property is used in the definition of a Tree, see Tree Views for more details.

imageColumn
The imageColumn property defines the formField containing the image of a field.

Usage

This property is used in the definition of a Tree, see the Tree View page for more details.

The images defined by the imageCollapsed, imageExpanded, imageLeaf properties take precedence over
the images defined by the imageColumn cell.

Form Designer | 473

imageExpanded
The imageExpanded property sets the global icon to be used when a tree node is expanded.

Usage

This property is optional. This property defines the icon to be used for nodes that are expanded. It
overwrites the program array image defined by imageColumn on page 472, if both are used.

This property is used in the definition of a Tree - hierarchy on page 418, see Tree Views for more
details.

imageLeaf
The imageLeaf property defines the global icon for leaf nodes of a Tree container.

Usage

This property is optional. This property defines the icon to be used for all leaf nodes of the tree. It
overwrites the program array image defined by imageColumn on page 472, if both are used.

This property is used in the definition of a Tree - hierarchy on page 418, see Tree Views for more
details.

include
The include property specifies acceptable values for a field and causes the runtime system to check the
data before accepting an input value.

Usage

If the field is formonly, you must also specify a data type when you assign the include property to a field.

DATETIME and INTERVAL literals are not supported.

initializer
The initializer property allows you to specify an initialization function that will be automatically called
by the runtime system to set up the form item.

Usage

The initialization function must exist in the program using the form file and must be defined with a
ui.Combobox parameter.

invisible
The invisible property prevents user-entered data from being echoed on the screen during an
interactive statement.

Usage

Characters that the user enters in a field with the invisible property are not displayed during data entry.
Depending on the front end type, the typed characters are displayed using the blank, star, underscore or
dot characters.

The invisible property does not prevent display instructions like DISPLAY and DISPLAY ARRAY from
explicitly displaying data in the field.

Form Designer | 474

isNodeColumn
The isNodeColumn property specifies the formField that indicates whether a tree node has children.

Usage

This property is optional. Even if the program node does not contain child nodes for this tree node, this
property may be used, to implement dynamic filling of tree views.

This property is used in the definition of a Tree, see Tree Views for more details.

items
The items property defines a list of possible values that can be used by the form item.

Example

Figure 275: Items Editor

Usage

This property is not used by the runtime system to validate the field, you must use the include property to
force the possible values.

You can specify item labels with localized strings.

You can define a NULL value for an item (An empty string is equivalent to NULL).

justify
The justify property defines the justification of the content of a field and the alignment of table column
headers.

Usage

With the justify property, you specify the justification of the content of a field as LEFT, CENTER or RIGHT
when the field is in display state. This property is ignored for input (i.e. when the field has the focus); only
the default data justification rule applies when a field is in input state. The default data justification depends
on the dialog type, the field data type and the format property. For example, a numeric field value is right
aligned, while a string field is left aligned. The type of dialog also defines the default justification: In a
CONSTRUCT, all input fields are left aligned, for search criteria input.

The justify property can be used with all form item types. Additionally to the field content/data alignment,
justify defines the alignment of table column headers indirectly (i.e. table column header follows the
alignment of field data). However, column header alignment in tables may not be enabled by default;
Check the front-end headerAlignment Style attribute.

Form Designer | 475

keyboardHint
The keyboardHint property gives an indication on the kind of data the form field contains, to let the front-
end adapt the keyboard accordingly.

Usage

The keyboardHint property can be used to give a hint to the front-end, regarding the kind of data the
form field will contain. According to this hint, the front-end will open the virtual keyboard adapted to the
data type, especially useful when designing application forms for mobile platforms.

Valid values for keyboardHint are:

• default: No hint, the only hint is the data type of the program variable bound to the form field.
• email: The field is used to enter an e-mail address.
• number: The field is used to enter a numeric value.
• phone: The field is used to enter a phone number.

For example, when defining a numeric field with the keyboardHint property set to number, the iOS
device will display a numeric keyboard when entering data into that field.

Figure 276: Mobile application using a numeric keyboard

minHeight, minWidth
The minHeight and minWidth properties define the minimum height and width of a form.

Usage

The minHeight and minWidth properties are used to define a minimum height of the form/window. This
property is set on the Form.

name
The name property identifies the name of the item.

noEntry
The noEntry property prevents data entry in the field during an INPUT or INPUT ARRAY statement.

Usage

Use the noEntry property to bypass field input during an INPUT or INPUT ARRAY statement. When using
a WITHOUT DEFAULTS dialog option, the content of the corresponding program variable is displayed in
the field. A noEntry field is like a disabled field, it cannot get the focus.

The noEntry property does not prevent data entry into a field during a CONSTRUCT statement.

Form Designer | 476

notNull
The notNull property specifies that the field does not accept NULL values.

Usage

This property requires that the field contains a value. If the field contains a default value, the notNull
property is satisfied. To insist on data entry from the user, use notNull in the field definition, or make sure
the corresponding column is defined as notNull in the database schema file.

The notNull keywords can also be used in the type definition of formonly fields.

The notNull property is effective only when the field name appears in the list of screen fields of an INPUT
or INPUT ARRAY.

If a DEFAULT property is used for the field and the INPUT dialog does not use the WITHOUT DEFAULTS
option, the runtime system assumes that the default value satisfies the notNull property.

Unlike the REQUIRED property which has no effect when the INPUT dialog uses the WITHOUT DEFAULTS
option, the notNull property is always checked when validating a dialog.

orientation
The orientation property defines whether an element displays vertically or horizontally.

Usage

The orientation property is typically used in the definition of a RadioGroup form item, to specify how radio
items have to be displayed.

parentIdColumn
The parentIdColumn property specifies the formField that contains the identifier of the parent node of a
tree node.

Usage
This property is mandatory. This property is used in the definition of a Tree, see Tree Views for more
details.

PER comments
All comments imported from a per file are grouped in the PER comments properties.

picture
The picture property specifies a character pattern for data entry in a text field, and prevents entry of
values that conflict with the specified pattern.

Usage

format-string can be any combination of characters, where the characters "A", "#" and "X" have a special
meaning.

• The character "A" specifies any letter (alpha-numeric) character at a given position.
• The character "#" specifies any digit character at a given position.
• The character "X" specifies any character at a given position.

Any character different from "A", "X" and "#" is treated as a literal. Such characters automatically appear in
the field and do not have to be entered by the user.

The picture property does not require data entry into the entire field. It only requires that whatever
characters are entered conform to format-string.

When picture specifies input formats for DATETIME and INTERVAL fields, the form compiler does not
check the syntax of format-string, but your form will work if the syntax is correct. Any error in format-string,
however, such as an incorrect field separator, produces a runtime error.

Form Designer | 477

The typical usage for the picture property is for (fixed-length) CHAR fields. It is not recommended to use
picture for other data types, especially numeric or date/time fields: The current value of the field must
always match (i.e. be formatted according to) picture.

Understand that the picture property defines a mask for data entry. In order to format fields when data is
displayed to the field, use the FORMAT property instead. FORMAT is typically used for numeric and date
fields, while picture is typically used for formatted character string fields requiring input control.

posX, posY
The posX and posY properties define the position of the upper left corner of the form item on the x and y
axis of the form.

program
The program property can specify an external application program to work with screen fields of data type
TEXT or BYTE.

queryEditable
The queryEditable property makes a combobox field editable during a CONSTRUCT statement.

Usage

The queryEditable property is effective only during a CONSTRUCT statement.

This property is useful when the display values match the real values in the items property.

required
The required property forces the user to modify the content of a field during an INPUT or INPUT ARRAY
statement.

Usage

This property forces the user to modify the content of the field during the dialog execution. If the user
subsequently erases the entry during the same input, the runtime system considers the required
property satisfied.

The required property is effective only when the field name appears in the list of screen fields of an INPUT
or INPUT ARRAY statement.

If a default property is used for the field and the input dialog does not use the WITHOUT DEFAULTS option,
the runtime system assumes that the default value satisfies the required property.

If both the required and default properties are assigned to the same field, the runtime system assumes that
the default value satisfies the required property.

If the dialog instruction uses the WITHOUT DEFAULTS clause, the current value of the variable linked to
the required field is considered as a default value; the runtime system assumes that the field satisfies the
required property, even if the variable value is NULL. Note however that in an INPUT ARRAY dialog, the
required property applies always to new created rows, even if WITHOUT DEFAULTS is used.

To insist on a non-null entry, use the NOT NULL property instead. The NOT NULL property can be
specified in the field definition or in the corresponding column in the database schema file.

Form Designer | 478

reverse
On character terminals, the reverse property displays any value in the field in reverse video (dark
characters in a bright field).

rowHeight
The rowHeight property forces a specific height for all rows in a Table container.

sample
The sample property defines the text to be used to compute the width of a formField.

Usage

By default, formFields are rendered by the client with a size determined by the current font and the number
of characters used in the layout grid. The field width is computed so that the largest value can fit in the
widget.

Sometimes the default computed width is too wide for the typical values displayed in the field. For example,
numeric fields usually need less space as alphanumeric fields. If the values are always smaller, you can
use the sample property to provide a hint for the front end to compute the best width for that formField.

When specifying the sample property, you do not have to fill the sample string up to the width of the
corresponding field tag: The front-ends will be able to compute a physical width by applying a ratio to
fit the best visual result. For example, for a sample of 'XY' used for a field defined with 10 characters, is
equivalent to specifying a sample of 'XYXYXYXYXY'.

If the sample property is not used, the first 6 cells are always computed with the pixel width of the 'M'
character in the current font. Next cells are computed with the pixel width of the '0' (zero) character. In
other words, the default sample model is 'MMMMMM000000.....", reduced to the size of the field tag in the
layout:

 -123456789-123456789- default sample
 [f01] MMMM
 [f02] MMMMMM
 [f03] MMMMMM0000000000

You can define a default sample for all fields used in the form, by specifying a DEFAULT sample option in
the INSTRUCTIONS section.

scroll
The scroll property can be used to enable horizontal scrolling in a character field with character input.

scrollbars
The scrollbars property can be used to specify scrollbars for a form item.

Usage

This property defines scrollbars for the form item, such as a TextEdit on page 431. Options are vertical,
horizontal, or both.

sizePolicy
The sizePolicy property is a sizing directive to display form elements.

Usage

This property defines how the front-ends will compute the size of some form elements in grids. The
sizePolicy applies only to leaf elements, not to containers. The default value of sizePolicy is initial.

The sizePolicy property is ignored for the widgets used in Table and Tree columns, because in tables, the
size policy is implicitly defined by the cell as fixed (i.e. the size of the column in the form layout).

Form Designer | 479

When the sizePolicy is fixed, the form elements size is exactly the one defined in the Form Specification
File. The size of the element is computed from the width and height in the form grid and the font used on
the front-end side.

When sizePolicy is dynamic, the size of the element grows and shrinks according to the width of the
wider during the life time of the application. This can be used for ComboBox or RadioGroup fields, when
the size of the widget must fit exactly to its content, which can vary during the program execution. With
sizePolicy=DYNAMIC, Buttons, Labels, CheckBoxes, Images, and RadioGroups can shrink and grow all
the time, while ComboBoxes can only grow.

When sizePolicy is initial, the size is computed the first time the element appears on the screen.
Once the widget is displayed, its size is frozen. This is typically used when the size of the element must
be fixed but is not known at design time (for instance, when populating a ComboBox item list from a
database table). This option is also useful when the text of labels is unknown at design time because of
Internationalization. With sizePolicy=initial, the behavior differs depending on the form element
type. Keep in mind that after the firs the display, the element size will be frozen:

• Buttons: The size defined in the form is a minimum size. If the text is bigger, the size grows (width and
height).

• ComboBoxes: The width defined in the form is a minimum width. If one of the items in the value list is
bigger, the size grows in order for the combobox to display the largest item fully.

• Labels, CheckBoxes, and RadioGroups can shrink or grow. The size defined in the form is ignored. The
fields are sized according to the element text.

• Images can shrink and grow according to the picture displayed. Images can use the stretch property,
so that the size of the widget can be dependant from the parent container, overriding the sizePolicy
property. If the width and height properties have to be used, the sizePolicy property must be set to
FIXED.

• Other items such as Edit or widget without items like ProgressBar are not sensitive to the sizePolicy
property.

The sizePolicy property is supported for WebComponent fields, however as the content and behavior is
defined by the front-end, this property may have no effect. See the front-end web-component specific
documentation for more details.

sliderOrientation
The sliderOrientation property determines the vertical or horizontal orientation of the slider.

spacing
The spacing property is a spacing directive to display form elements.

Usage

This property defines the global distance between two neighboring form elements. In NORMAL mode,
the front end displays form elements consistent with the desktop spacing, which is, for example, 6 and 10
pixels on Microsoft™ Windows™ platforms. Some overcrowded forms may need to be displayed with less
space between elements, to let them fit to the screen. In this case you can use the COMPACT mode.

By default, forms are displayed with COMPACT spacing.

splitter
The splitter property forces the container to use a splitter widget between each child element.

Usage

This property indicates that the container (typically, HBox and VBox) must have a splitter between
each child element held by the container. If a container is defined with a splitter and if the children are
stretchable (like Table or TextEdit), users can re-size the child elements inside the container.

Form Designer | 480

step
The step property specifies how a value is increased or decreased in one step (by a mouse click or key
up/down).

Usage

This property is typically used with form items allowing the user to change the current integer value by a
mouse click like Slider and SpinEdit.

stretch
The stretch property specifies how a widget must re-size when the parent container is re-sized.

Usage

This property is typically used with form items that can be re-sized like Image or TextEdit fields. By default
such form items have a fixed width and height, but in some cases you may want to force the widget to re-
size vertically, horizontally, or in both directions.

style
The style property specifies a style for a form element.

Usage

This property specifies a presentation style to be applied to a form element. The presentation style can
define decoration properties such as a background color, a font type, and so on.

styleFile
The styleFile property specifies a style file to apply to a form for form previews and style dialogs.

Usage

Important: The styleFile attribute is only used by the Form Designer when previewing the form
and for Form Designer-related style dialogs. To apply a style file with your Genero application, you
must load the style file using the ui.Interface.loadStyles method. See the Genero Business
Development Language User Guide for more information regarding the use of style files by Genero
applications.

tabIndex
The tabIndex property defines the tab order for a form item.

Usage

This property can be used to define the order in which the form items are selected as the user "tabs" from
field to field when the program is using the formField order option.

It can also be used to define which field must get the focus when a Page is selected.

By default, form items get a tab index according to the order in which they appear on the form.

Tip: tabIndex can be set to zero in order to exclude the item from the tabbing list. The item can
still get the focus with the mouse.

tag
The tag property can be used to identify the form item with a specific string.

Usage

This property is used to identify form items with a specific string. It can be queried in the program to
perform specific processing.

Form Designer | 481

You are free to use this property as you need. For example, you can define a numeric identifier for each
field in the form in order to show context help, or group fields for specific input verification.

If you need to handle multiple data, you can format the text, for example, by using a pipe separator.

text
The text property defines the label associated with a form item, such as the text of a checkbox item.

title
The title property defines the title of a form item used in a table container.

totalRows
The totalRows property defines the total number of rows in a Table container.

unHidable
The unHidable property indicates that the element cannot be hidden or shown by the user with the
context menu.

Usage

By default, a Table container allows the user to hide the columns by a right-click on the column header.
Use this property to prevent the user from hiding a specific column.

unHidableColumns
The unHidableColumns property indicates that the columns of the table cannot be hidden or shown by
the user with the context menu.

Usage

Same effect as unHidable, but at the Table level, to make all columns not hideable.

unMovable
The unMovable property prevents the user from moving a defined column of a table.

Usage

By default, a Table container allows the user to move the columns by dragging and dropping the column
header. Use this property to prevent the user from changing the order of a specific column. Typically,
unMovable is used on at least two columns to prevent the user from changing the order of the input on
these columns.

unMovableColumns
The unMovableColumns property prevents the user from moving columns of a table.

Usage

By default, a Table container allows the user to move the columns by dragging and dropping the column
header. Use this property to prevent the user from changing the order of columns.

unSizable
The unSizable property prevents the user from resizing the element.

Usage

By default, a Table container allows the user to re-size the columns by a drag-click on the column header.
Use this property to prevent a re-size on a specific column.

Form Designer | 482

unSizableColumns
The unSizableColumns property prevents the user from resizing columns of the table.

Usage

By default, a Table container allows the user to size the columns. Use this property to prevent the user
from sizing any of the columns in the table.

unSortable
The unSortable property prevents the user from sorting on a specific column.

Usage

By default, a Table container allows the user to sort the columns by a left-click on the column header. Use
this property to prevent a sort on a specific column.

unSortableColumns
The unSortableColumns property prevents the user from selecting any column of the table for sorting.

Usage

By default, a Table container allows the user to sort on the columns. Use this property to prevent the user
from sorting on any columns in the table.

validate
The validate property is an Action Defaults property defining the data validation level for a given action.

Usage

The action default property VALIDATE = NO indicates that no data validation must occur for this action.
However, current input buffer contains the text modified by the user before triggering the action.

Validate Like
The Validate Like property instructs the form compiler to set the field properties that are defined in
the .val database schema file for the specified column.

Usage

Specifying the Validate Like property is equivalent to writing in the field definition all the properties that are
assigned to table.column in the .val databse schema file generated from the syscolval table.

Note that .val properties are taken automatically from the schema file if the field is linked to table.column in
the field name specification. The Validate Like property is usually specified for FORMONLY fields.

The Validate Like property is evaluated at compile time, not at runtime. If the database schema file
changes, you should recompile all your forms.

Even if all of the fields in the form are FORMONLY, the Validate Like property requires the form compiler to
access the database schema file that contains the description of table.column.

valueChecked
The valueChecked property defines the value associated with a checkbox item when it is checked.

Usage

This property is used in conjunction with the valueUnchecked property to define the values corresponding
to the states of a CHECKBOX.

This property is not used by the runtime system to validate the field, you must use the include property to
control value boundaries.

Form Designer | 483

See CheckBox for more details.

valueMax
The valueMax property defines a upper limit of values displayed in widgets (such as progress bars).

Usage

This property is typically used in ProgressBar, SpinEdit, Slider fields to define the upper limit.

This property is not used by the runtime system to validate the field, you must use the include property to
control value boundaries.

valueMin
The valueMin property defines a lower limit of values displayed in widgets (such as progress bars).

Usage

This property is typically used in ProgressBar, SpinEdit, Slider fields to define the lower limit.

This property is not used by the runtime system to validate the field, you must use the include property to
control value boundaries.

valueUnchecked
The valueUnchecked property defines the value associated with a checkbox item when it is not checked.

Usage

This property is used in conjunction with the valueChecked property to define the values corresponding to
the states of a CHECKBOX.

This property is not used by the runtime system to validate the field, you must use the include property to
control value boundaries.

See CheckBox for more details.

verify
The verify property requires users to enter data in the field twice to reduce the probability of erroneous
data entry.

Usage

This property supplies an additional step in data entry to ensure the integrity of your data. After the user
enters a value into a verify field and presses RETURN, the runtime system erases the field and requests
reentry of the value. The user must enter exactly the same data each time, character for character: 15000
is not exactly the same as 15000.00.

The VERIFY property takes effect in INPUT or INPUT ARRAY instructions only, it has no effect on
CONSTRUCT statements.

version
The version property is used to specify a user version string for the form.

Usage

This property specifies a version string to distinguish different versions of a form. You can specify an
explicit version string or use the TIMESTAMP keyword to force the form compiler to write a timestamp string
into the 42f file.

Typical usage is to specify a version of the form to indicate if the form content has changed. This property
is used by the front-end to distinguish different form versions and to avoid reloading window/form settings
into a new version of a form.

Form Designer | 484

You should use the TIMESTAMP only during development.

wantFixedPageSize
The wantFixedPageSize property gives a fixed height to a Table container.

Usage

By default, the height of a Table container is re-sizeable. Use this property to freeze the number of rows to
the number of screen lines defined by the form design.

wantNoReturns
The wantNoReturns property forces a text field to reject newline characters when the user presses the
RETURN key.

Usage

By default, text fields like TextEdit on page 431 insert a newline (ASCII 10) character in the text when the
user presses the RETURN key. As the RETURN key is typically used to fire the accept action to validate
the dialog, you can force the field to reject RETURN keys with this property.

The user can still enter newline characters with Shift-RETURN or Control-RETURN, if these keys are not
bound to actions.

wantTabs
The wantTabs property forces a text field to insert TAB characters in the text when the user presses the
TAB key.

Usage

By default, text fields like TextEdit on page 431 do not insert a TAB character in the text when the user
presses the TAB key, since the TAB key is used to move to the next field. You can force the field to use
TAB keys with this property.

The user can still jump out of the field with Shift-TAB, if this key is not bound to an action.

windowStyle
The windowStyle property defines the style to be used by the parent window of a form.

Usage

The windowStyle property can be used to specify the style of the parent window that will hold the form.
This property is specific to the form. Do not confuse with the STYLE property, which is used to specify
decoration style of the form elements.

When a form is loaded by the OPEN WINDOW or DISPLAY FORM instructions, the runtime system
automatically assigns the windowStyle to the style property of the parent window element.

Form Designer error messages
A list of Form Designer error messages. For messages that are not self-explanatory, additional information
is provided.

Table 147: Form Designer Error messages

Number Description

GS-10001 Field widget used when no database is attached to form.

The current form does not use a database. The Field element is an abstract Formfield
that can exist only when a database is attached to a form (the widgets depends on the
database column datatype).

Form Designer | 485

Number Description

• Change the form databaseName property to the corresponding database,
• Change the Formfield widget from Field to another widget (Edit, for example).

GS-10002 Property value %1 not available, upgrade to genero version %2 or
later.

The value is not supported in this version of Genero.

Change the property value or upgrade Genero.

GS-10003 Columns with 'aggregate' must have a widget of type 'Edit'.

The column using an aggregate is not an 'Edit' widget type.

• Change the widget type to 'Edit'.
• Remove the aggregate.

GS-10004 Error due to fgl not set well.

When using gsform, the compiler is not working correctly.

• Check whether FGLDIR is set.
• Check whether BDL is licensed and working.

GS-10005 Property %1, does not exist in its wcsettings in the WebComponent
directory.

Open the wcsettings file in Code Editor and add the missing property then reload the
directory and the form file.

GS-10006 Invalid WebComponent directory.

• Check if the WebComponent directory is blank.
• Check if the directory exists on disk.
• Check if there are any .wcsettings files present in the directory.

GS-10007 Property %1 cannot contain '.'. Please upgrade to genero version
%2 or later.

GS-10008 Children are out of container bounds.

The children of the parent are out of its boundaries.

• Increase the size of the parent
• Decrease the size of the children

GS-10011 Widget shares border or intersects with another widget.

Widgets share border or overlap with each other.

• Move them so they no longer intersect or are adjacent.
• Delete them.

GS-10012 Invalid widget, upgrade Genero version.

The SpinEdit, TimeEdit, Slider and Field widgets were not available prior to Genero
version 2.00. The widget WebComponent was introduced in Genero version 2.30. The
Tree container and Phantom widget were introduced in Genero version 2.20

• Change version to corresponding valid version or later.

Form Designer | 486

Number Description

• Change widgets to existing widgets with respect to your current version (Edit, for
example), or do not use these widgets.

GS-10013 Invalid property, upgrade Genero version.

The unitWidth/unitHeight property was added in Genero version 2.00. The doubleClick/
splitter/minWidth/minHeight properties were added in Genero version 2.10The image/
contextMenu properties were added in Genero version 2.20. The valueMin/valueMax
properties were added in Genero version 2.21. The justify/style properties were added in
Genero version 2.30.

• Reset to a supported property.
• Change version to corresponding valid version or later.

GS-10016 Layout required for containers.

Cannot have two or more containers without a layout in a parent container, except for
layout tags (containers in grids).

Layout the containers vertically or horizontally.

GS-10017 Nested grid/scrollgrid cannot contain containers.

Nested grid / ScrollGrid (layout tag ScrollGrid) cannot contain these children: Table,
Group, ScrollGrid, GridNested Group /Scrollgrid (layout tag Group) cannot contain
containers other than: HRec, Table, Tree

Re-arrange your elements using layouts.

GS-10019 Parent container required.

A container is required between the form and the element:

Figure 277: Form without container

• Draw a grid or scrollgrid around the element.
• Move the element into a Grid, Group, scrollGrid.

Figure 278: Form with container

GS-10020 Character not supported in '%1' encoding.

• Change the characters to a supported one.
• Change the encoding.

Form Designer | 487

Number Description

GS-10021 No element below layout tag before Genero 2.01.

Figure 279: Form with element inside grid below layout tag

You cannot have elements inside the grid below a layout tag (container inside grid.)

Move the elements to another grid and layout both grids vertically.

GS-10022 Layout tag width is name length plus 4.

• Increase layout tag width.
• Shorten name attribute.

GS-10026 Non container widgets not beside table in grid before Genero 2.10.

Cannot have widget beside layout tag table, this feature has been implemented in version
2.10.

Figure 280: Form with widget beside layout tag table

• Change Genero configuration fgl to 2.10 or later
• Move the widgets into another grid and layout both grids horizontally

Form Designer | 488

Number Description

Figure 281: Form with widgets into another grid and layout both grids horizontally

GS-10027 Empty container.

This node is missing its required children. Item is missing in the TopMenu or
TopMenuGroupor Toolbar or ActionDefaultList. Widget is missing in group, hrec etc

• Add an valid child.
• Remove the container.

GS-10028 ActionDefault %1 doesn't contain modified attributes applicable to
current Genero version.

ActionDefaultGroup is defined without any attribute applicable to current Genero version.

• Delete it.
• Set one of these attributes: title, image, accelerators ...
• The contextmenu attribute is available since version Genero 2.20, but not before that.
• The validate attribute is available since Genero 2.1x, not before that.
• The Accelerator4 is available since Genero 2.00, not before that.

GS-10029 Redundant table records.

There are two or more records of the table container that are exactly the same, i.e. they
have the same order of recordFields.

• Reorder the recordField(s) in record that is duplicate.
• Delete the duplicate record.

GS-10031 Left edge cannot be shared with table right edge.

Widget left edge cannot be shared with table right edge. For any Genero version, Genero
form compiler needs a space to the right of the table.

Enter a space to the right of the table.

GS-10033 Requires minimum location.

GS-10034 Requires minimum size.

GS-10035 Old widget '%1' was removed during import.

An old widget (canvas) that is no longer supported was present in the imported form and
removed from the document.

Create another element for this widget, or ignore the error.

Form Designer | 489

Number Description

GS-10036 Old widget %1 was transformed to %2 during import.

An old widget that is no longer supported was present in the imported form. It's been
transformed into the form element.

Check that the transformation was correct, or fix it (some attributes may be incorrectly
set).

GS-10040 Expected ValueChecked to be different from valueUnChecked.

Checkbox valueChecked and valueUnchecked attributes cannot have the same value.

Change one of the attribute values.

GS-10042 Requested operation cannot be performed, please check the Genero
configuration settings.

The Genero configuration is not valid.

Check Genero license, directory, and Genero Desktop Client.

GS-10044 Internal error.

An unexpected internal error occurred during compilation.

Contact your local support Center.

GS-10045 Could not delete temporary per file.

A temporary per file cannot be deleted during the compilation process, probably because
the user opened the file or changed the access rights.

Close the temporary file, or set the access rights to read write.

GS-10046 Cannot generate unique tagName, gridwidth is too small.

All available field identifiers are used during per file generation.

Enlarge some field's gridwidth.

GS-10047 Unable to create per file during form compilation.

GS-10049 Value not compatible with data Type.

The Value is not compatible with data type set. This error occurs when defaultValue and
include property value are incompatible with dataType property.

Change defaultValue or include; enter a value compatible to data type format.

GS-10052 Record cannot start with phantom field.

Rearrange record fields.

GS-10054 idColumn/parentIdColumn must be defined for Tree.

Set a valid value, i.e. a name of one of the tree's children, for these properties.

GS-10055 Invalid value set for %1 property.

Check the documentation for the property, and set a valid value. For example, a valid
value for the name property is comprised of alphanumeric characters and underscores,
but can not start with a number:

Form Designer | 490

Number Description

• For accelerator, accelerator2, accelerator3, accelerator4; value should be a valid
accelerator name.

• For imageColumn ,idColumn, parentIdColumn, expandedColumn,
isNodeColumn; value should be one of the children of the table/tree.

• For expandedColumn, isNodeColumn, imageColumn; value could be blank, i.e.
reset to default.

• For Action; value should be a valid action name.
• For FieldType; the Field widget cannot be used with FORM_ONLY or FORM_LIKE

fieldType; the expected fieldType is TABLE_COLUMN or TABLE_ALIAS.
• For formfields; value should be tableName.colName.
• For formonly formfields; value should be formonly.name.
• For tableAlias type formfields; value should be tableAliasName.colName.
• For non-formfields; value should be a valid name.

GS-10056 Include property doesn't support dataType.

An include string is set while dataType is not supported (for example, interval).

Change data type, or remove include string.

GS-10057 Value is out of data Type range.

Some data types have a limitation of size (for example, integer).

Change data type (for example, from integer to bigint), or modify value so that it is valid.

GS-10061 Screen record array has different component sizes.

Matrices corresponding to the Screen Record need to have the same repeat count
(number of rows * number of columns).

• Change the row count or the column count.
• If the current screen record is an array and any of the screenRecordItems correspond

to a FormField, convert it to a matrix.
• If the current screen record is not an array, and any of the screenRecordItems

correspond to a Matrix, convert it to a FormField.

GS-10062 All members of \'Record'\ must reference the same container.

The formfields corresponding to the record field in the same record must belong to the
same container.

• Move the record field to the correct record.
• Move the formfield to the right container.
• Remove the record field or formfield.

GS-10063 First tree column must have a widget of type Edit or Label.

The first Tree widget column is not an Edit or a Label.

• Insert an Edit or Label as the first column.
• Change the first column to an Edit or Label.
• Re-order the columns to have an Edit or Label as the first column.

GS-10064 Invalid/Duplicate name transformed during import.

An invalid name that was present in the imported form was transformed to a valid and
unique name. A valid name is not blank, and is made up of these characters: A-Z, 0-9,
"_". You may edit the transformed name.

Form Designer | 491

Number Description

GS-10065 Multiple lines in Form title.

Genero clients don't support multiple lines.

Remove the carriage return.

GS-10070 Cannot save 4fd file.

The 4fd file cannot be saved due to file system permissions.

Check permissions, or move the per file and import it again.

GS-10076 File not found.

A file is missing.

GS-10077 Cannot load file.

An unexpected error occurred loading the file.

GS-10079 Cannot import file, %1 already exists.

The form file already exists, import is canceled (gsform).

• Delete the 4fd form file
• Force overwrite (-i option).

GS-10081 Container is too small, user defined properties will be ignored.

The layout tagged container is too small to hold identifier. Any user defined properties will
be ignored. This is a warning message.

Increase width of container.

GS-10082 Record has only phantom fields.

• Change widget type of a record field Formfield from phantom to some other type.
• Drag-drop some record field that is not a phantom type into this record.
• Delete record.

GS-10083 valueMin must be lower than valueMax.

• Change valueMin so that it is less than valueMax.
• Change valueMax so that it is greater than valueMin.

GS-10084 Invalid text.

The text property value cannot contain newline characters, '\n' or '\r'.

Delete or replace these characters.

GS-10085 Wrong file extension.

The file chosen for import has an incorrect extension.

Select a file with a per extension to import.

GS-10086 Cannot create compilation task.

Check the build rule; if correct, contact your FourJ's Support center.

GS-10087 Invalid widget position.

Form Designer | 492

Number Description

Change position of widget.

GS-10088 StepX needs to be greater than 1.

The property stepX must have a value greater than 1.

• Edit stepX property.
• Uncheck repeat property.

GS-10089 Invalid nested table position.

Change table position.

GS-10090 Invalid file, closing tag does not correspond to the opening one.

The file is invalid; it contains mismatching tags and XML parsing is not possible.

GS-10091 Invalid file, orphan closing tag.

GS-10092 Empty space required on all sides of layout tag.

Minimum of one unit empty space is required on all sides of layout tag containers.

Re-size layout tag container or its children.

GS-10095 componentType property must be defined as a name of valid
webComponent.

Set a valid value from available WebComponents.

GS-10097 Invalid WebComponent.

The WebComponent is invalid as it does not satisfy XSD file rules.

Open wcsettings file in code editor and rectify in accordance with XSD validation.

GS-10098 Invalid WebComponent schema.

The WebComponent XSD file that is used for validating WebComponent XML files is
invalid.

• Take a clean copy from of file.
• Undo all changes done manually.

GS-10099 Empty text widget will be ignored.

The text property value will be ignored as it is blank. This is a warning message.

Solution: Since property value is blank, it plays no role, and is ignored.

GS-10100 Property '%1' conflicts with 'id' or 'parentid'.

The value of property 'expandedColumn' or 'isNodeColumn' is same as either 'idColumn'
or 'parentIdColumn' of tree widget.

Change the property value of either of the properties so that expandedColumn and
isNodeColumn do not have the same value as either idColumn or parentIdColumn.

GS-10300 Need one and only one relation for program %1.

Form Designer | 493

Business Records error messages
A list of Business Records error messages. For messages that are not self-explanatory, additional
information is provided.

Table 148: Business Records Error Messages

Number Description

GS-24001 Error loading file file.

An error occurred loading the file.

Check the file name and permissions .

GS-24002 Malformed XML.

XML file content is invalid.

Select the correct file or correct the XML.

GS-24003 File file not found in Business Application diagram (<BA file
name>).

A referenced element is not found in the Business Application diagram.

Select the correct file.

GS-24004 Invalid value for %1 property.

Check the property syntax in the documentation and correct any errors.

GS-24005 Conflicted item.

The Business Application diagram and Business Record unique id do not match.

Open the 4ba file and resolve the conflict.

GS-24201 Missing master Record.

The document must contain at least one record that is master.

Create a record.

GS-24202 Unique query key must be set.

At least one field must be declared the unique key in a record.

Set a unique key.

GS-24203 Record used in relation must be active.

Change the record to active, or remove the relation.

GS-24204 Empty relation.

This relation has no field definition.

Add foreign/primary (or source/destination) fields.

GS-24205 Database table column referenced more than once in the form.

In one form, a database table column can be referred only once. Table aliases
should be used to attach more than one field to a database.

• Select one of the wrong Formfields and change the fieldType attribute from
table_column to table_alias.

Form Designer | 494

Number Description

• Select one of the wrong Formfields and change fieldType attribute to
non_database.

GS-24206 Missing master table for record record.

Set the master table property.

GS-24207 Table %1 unused in query.

A database table is used in the record, but there is no join for it in the query.

Add a join for the table in the record query.

GS-24208 No schema attached.

A database is required for the business records.

Set the database name property to an existing database.

GS-24209 Invalid relation, primaryField and foreignField must have
same number of fields.

Modify the relation fields so that a primary field corresponds to each foreign field.

GS-24210 Invalid query, left and right join must have same number of
columns.

Check the query fields so that a left field corresponds to each right field.

GS-24211 Relation types don't match exactly.

The type of a foreign key doesn't match the corresponding primary key's type.

Check the relation, change the field types, or fix the primary / foreign key.

GS-24212 Relation field fieldname not found.

The relation refers a field that is missing in the record.

Modify the relation or add the field to the record.

GS-24213 Non existing schema schema attached to document.

Check the schema being referenced.

GS-24214 Nonexistent table table referenced in document.

The document uses a database table that is not present in the schema.

Update the schema, or change the field using the table.

GS-24215 Nonexistent column table.column referenced in document.

The document uses a database column that is not present in the schema.

Update the schema or change the field using the table.column.

GS-24216 Database table defined in "no database" document.

Set the database property to an existing schema or remove the field.

GS-24217 Table alias referenced more than once in the form.

The same table alias is associated with two columns in the form.

• Change one table alias name.

Form Designer | 495

Number Description

• Change either the table or column name.

GS-24218 Alias alias referenced for different tables in document.

The same alias is used for different tables.

Rename the alias so that it refers to the same database table.

GS-24219 Alias Lookup field is ignored on %1 as it is the master table
of the record.

A lookup field is dedicated to foreign field update in the master table; do not set it
on a master table column.

Remove the lookup property value or update the field database settings.

GS-24220 Name value %1 is already used.

Duplicate name used in the document.

Rename the element so that the name is unique.

GS-24221 Invalid INTERVAL qualifier.

The qual1 or qual2 set for the INTERVAL sqlType is not valid. It should belong to
the INTERVAL classes (i.e., YEAR-MONTH or DAY-TIME)

Change either qual1 or qual2 to fit the respective class range or change the
sqlType property from INTERVAL to another sqlType.

GS-24222 Startfield of DATETIME or INTERVAL qualifiers must come
earlier in the time-list than its endfield.

The qual1 value should be greater than the qual2 value, when the sqlType is
either DATETIME or INTERVAL.

Ensure qual1 is greater than qual2 or change the sqlType property from
INTERVAL to another sqlType.

GS-24223 Query properties set without attached database schema.

Some query properties (join, order, additional tables or where) are defined without
a database schema attached.

Clear the query properties or attach a database schema to document.

GS-24224 Table table referenced by property is not present in the record.

A table is referenced in a query property (join or order), but is not referenced in any
record's field or additional tables.

• Remove the join or order that references this table.
• Add a field referencing a column from this table to the record.
• Add the table to the 'additional properties' property.
• In the join or order, change the table to another one that is present in the

record.

GS-24225 Invalid relation, it must have at least one field.

• Remove the relation.
• Add one or more source, destination field pair.

Form Designer | 496

Number Description

GS-24226 Value not compatible with dataType.

The value is not compatible with dataType set. This error occurs when
defaultValue and include property value is incompatible with dataType property.

Change defaultValue/include, enter a value compatible to dataType format.

GS-24227 Invalid join between %1 and %2.

A join between the two tables is not correct (another one exists with a different
operator).

• Remove the join
• Change the operator
• Change the join table(s)

GS-24228 There is no join between table %1 and master table.

The specified table is joined to another one, but not to the master table, creating a
Cartesian product.

• Add the missing join for the %1 table
• Remove the table %1

GS-24229 Invalid initializer.

The initializer format is incorrect.

Change the initializer to respect the format.

GS-24230 Invalid source %1 for initializer %2.

The initializer source (left of “:”) is unknown.

Change the initializer to respect the format.

GS-24231 Initializer property %1 is missing.

The property used in the initializer does not exist.

Change the property name in the initializer.

GS-24232 Cannot resolve initializer value.

The initializer cannot be resolved, the database element is not found, or the
property is missing.

Change the initializer to point to a valid element.

GS-24233 Orphan property %1, clean document settings to remove it.

The document contains a dynamic property which is not present in the Application
Generator template directory settings (orphan property). These orphan properties
won’t be taken into account during compilation. The Application Generator settings
dynamic properties should match the document ones, otherwise this error is
generated.

• Add the orphan properties to the settings.agconf file.
• Remove the properties from the document using Tools >> Specific setup >>

Clean orphan properties.

GS-24234 Orphan property group %1.

Form Designer | 497

Number Description

The document contains a dynamic property group which is not present in
the Application Generator template directory settings (orphan property). The
Application Generator settings dynamic properties should match the document
ones, otherwise this error is generated.

• Add the orphan property groups to the settings.agconf file.
• Remove the properties from the document using Tools >> Specific setup >>

Clean orphan properties.

GS-24235 File type not defined in Application Generator settings.

A file used in Application Generator to generate code ($generate) is of an
undefined file type in settings.agconf.

Add the item type definition to the settings.agconf.

GS-24236 Cannot resolve initializer without a valid database schema.

The property initializer uses the database schema but the file doesn’t have a
schema.

• Set the database.
• Set the property value so that the initializer is not resolved.
• Remove the initializer.

GS-24237 Unique key field %1 is not present in the Record.

The unique key field value contains one field which is not in the record.

• Remove the field from the unique key.
• Add the field to the record.

GS-24238 Node %1 contains orphan properties, clean document settings
to remove them.

The file settings for the node differ from the Genero Studio ones, either the Genero
Studio settings are not up to date, or the file contains old settings.

• Update the Genero Studio settings.
• Clean the document settings (Tools >> Specific setup >> Clean orphan

properties).

GS-24239 Inactive table %1 in the database schema.

The database table active flag is set to false, the table is inactive and cannot be
used for code generation.

Make the table active or do not use it.

XML validation error messages
A list of XML validation error messages. For messages that are not self-explanatory, additional information
is provided.

Table 149: XML Validation Error messages

Number Description

GS-10400 Invalid root element.

Form Designer | 498

Number Description

Edit the root to be <ManagedForm>.

GS-10401 Invalid child %1.

The element is not a valid child of the parent.

Edit the child to be an acceptable child of the parent.

GS-10402 %1 occurs more than once.

An element is defined more than once, eg: Topmenu, Toolbar can appear just once.

Remove the duplicate occurrences to keep only a single valid definition.

GS-10403 Property %1 occurs more than once.

A property for an element is defined more than once.

Remove the duplicate occurrences to keep only a single valid definition.

GS-10404 Unexpected property %1 is ignored.

This warning is displayed when a property that does not belong to the element is defined.
This is ignored.

Remove the property that does not belong.

GS-10405 Incomplete %1 definition, missing property(s) %2.

Some mandatory property or properties of an element have not been defined.

Contact your support center - provide the 4fd file, the Genero Studio version, and how
this file was created.

GS-10407 Invalid recordField, corresponding formfield not found.

The recordField does not correspond to any formfield, i.e. no formfield is present whose
fieldId property matches the fieldIdRef property of recordField.

• Check if recordField definition is invalid, and make it valid.
• Add a valid formField.
• Remove the recordField.

GS-10408 Incomplete Table definition for %1, missing record.

The table does not have a corresponding record defined.

• Check if any existing records are invalid and could be table's record.
• Add a valid record.
• Remove table.

GS-10409 Invalid record, corresponding table not found.

The record does not correspond to any table.

• Check if record definition is invalid and make it valid.
• Add a valid table.
• Remove the record if not needed.

GS-10410 Incomplete %1 definition, missing mandatory child.

The element's mandatory child has not been defined.

Form Designer | 499

Number Description

Add the missing child.

GS-10411 Invalid geometry for %1.

The geometry of element is invalid.

Edit the geometry properties posX, posY, gridWidth, gridHeight such that the
element lies within the boundaries of its parent.

GS-10412 Incomplete FormField definition for %1, missing recordField.

The formField does not have a corresponding recordField defined.

• Check if any existing recordFields are invalid and could be corresponding to formfield.
• Add a valid RecordField.
• Remove FormField.

GS-10413 Malformed XML.

The xml structure is invalid.

Check for missing tags.

File Browser | 500

File Browser

File Browser is a tool to navigate, open, delete or rename files, and to create new folders or files on a file
system.

File Browser manages files based on the kind of information that they contain (MIME type file
management). File Browser will launch the specific action / executable defined as the default for each file
type, or you may choose between the actions available for that file type.

For example, Code Editor opens for a .4gl file, and Form Designer for a .4fd file.

The File Browser displays in a view named Files.

Navigating files in File Browser
The folders of the file structure in File Browser are displayed as a tree.

Open the File Browser with Tools >> File Browser or Windows >> Views >> Files.

Icons indicate the folders and file types. If the file is under Source Code Management - SVN on page
529, the status is indicated on the icon.

The integrated Toolbar includes options for navigating the tree and refreshing the directory. Navigation
history is maintained across sessions of Genero Studio and accessed by the drop down arrows of the
previous and next buttons in the tool bar.

To show hidden files in the File Browser, check the Show Hidden Files box in Tools >> Preferences, File
Browser.

Selecting files in File Browser
Click the file name to select it, double-click to open it.

Files will open in the Genero Studio module associated with it.

To select consecutive files or folders, click the first item, press and hold down SHIFT, and then click the
last item. To select nonconsecutive files or folders, press and hold down CTRL, and then click each item.

Managing files in File Browser
Manage file actions such as open, cut, copy, paste, rename, and delete.

Use the mouse to drag and drop folders and files from one folder into another. Select a file listing, and
right-click to display the actions available for that file (Open, Cut, Copy, Paste, Rename, Delete, and so
on), based on the mime type of the file.

The New file option allows you to create a new document. See the File >> New on page 94 main menu
option for additional information about creating new files.

You can associate file types handled by Genero Studio applications with predefined actions, and create
user-defined actions.

File Browser | 501

Locate a file (starting at File Browser)
From the File Browser, you can locate the file in the System File Browser.

Before you begin, the File Browser (Files view) is open. See Navigating files in File Browser on page
500.

You have a file visible in the Files view that you wish to locate in the System File Browser for your
operating system.

1. Right-click on the file.
The contextual menu displays.

2. Select Locate in System File Browser.
The System File Browser opens, showing the location of the file.

Graphical Debugger | 502

Graphical Debugger

The Graphical Debugger provides a graphical interface to test and control the behavior of a Genero
application. Navigate through the functions and create and manage breakpoints on functions and code
lines. Choose and group together any variables to watch. Follow a number of variables easily, and even
alter their values while the application is running, for testing purposes.

• Controlling program execution on page 502
• Debugger output on page 509
• Examining data on page 509
• Examining execution flow on page 509
• Record/replay a macro on page 510
• Profiler on page 510
• Local vs. remote debug on page 511
• Reference on page 511

Controlling program execution
Information on using the debugger.

• Start the Debugger on page 502
• Stop the Debugger on page 505
• Debugger output on page 509
• Step through the program on page 506
• Breakpoints on page 506
• Watchpoints on page 507

Start the Debugger
To launch the Debugger right-click on a program node and select Debug.

Graphical Debugger can be launched from within Project Manager:

• Right-click a program node and select Debug from the contextual menu; this will launch the selected
application in debug mode.

• Use the Debug Toolbar icon; this will launch the default application.

If the Debug option is not enabled, check:

• Is the source file directory physically available (delete / rename) ?
• Are you using the correct configuration to access this project ? (local / remote) ?

Once the debugger is launched, the program begins execution. If you have set a breakpoint in a Genero
file (4gl), execution will stop at that breakpoint, and the source file containing the breakpoint is opened in
the Document view.

Start the Debugger on a running program
You can debug a running program.

The procedure you follow to debug a running program will depend on whether the program is local or
remote.

• Debug a running local program on page 503
• Debug a running remote program on page 503

Graphical Debugger | 503

Debug a running local program
Complete this procedure to attach the Graphical Debugger to a running local process.

Before you begin:

• You have a Genero program that is running locally.

1. Select Debug >> Attach to Process....
The Attach to process dialog opens.

2. Select the Attach to local process radio button.

3. In the list of processes, select the process you wish to attach to.

Tip: Each process is identified by the process ID, or PID. On Windows™ systems, you can
use the Task Manager to map the process ID to the fglrun command that started the Genero
program.

4. Click Attach.
The debug session starts. The Select the file dialog opens, as the debugger needs to know where the
source files are located.

5. Navigate to the directory that contains the source files for your application and select the appropriate
source (.4gl) file, then click Open.
The source file opens. You are now in a standard debug session.

With the debug session open, follow the procedures for using the Graphical Debugger.

Debug a running remote program
Complete this procedure to attach the Graphical Debugger to a running remote process.

Before you begin:

• You have a Genero program that is running remotely.
• If the source files are located on a remote machine, you must mount a network drive.

1. Select Debug >> Attach to Process....
The Attach to process dialog opens.

2. Select the Attach to remote process (SSH) radio button.

3. Complete the required fields.

Host The remote host.

Port The port number for communicating with the
remote host.

User The user name needed to connect to the remote
host.

Password The password needed to connect to the remote
host.

FGLDIR The FGLDIR directory for the version of Genero
containing the fglrun used to launch the
program.

Process ID The process ID of the Genero program.

4. Click Attach.
The debug session starts. The Select the file dialog opens, as the debugger needs to know where the
source files are located.

5. Navigate to the directory that contains the source files for your application and select the appropriate
source (.4gl) file, then click Open.
The source file opens. You are now in a standard debug session.

With the debug session open, follow the procedures for using the Graphical Debugger.

Graphical Debugger | 504

Debug a Web services server application
Complete this procedure to debug a Web services server application

Before you begin:

• You have a Genero Studio project that includes a Web services server application and (optionally) a
Web services client application.

• Your Genero Studio configuration for Web applications is correctly configured, and references the
correct parent application (defaultgst-debug) and parent service (ws.defaultgst-debug). These are
defined for you in the default configuration for Web applications; you shouldn't need to define these
yourself.

This procedure assumes you wish to debug the server side of a Web services application pair. For this
procedure, you must run the client and the server application using the Web configuration.

Tip: To debug the client side of a Web services application, simply ensure that the Web services
server application is running, then start the client application in debug mode.

1. Select the Web configuration for Genero Studio.

2. Ensure the Web service property is selected for the Web services server application.

3. Add a breakpoint to the Web services server application.

4. With the server application selected in the Projects view, select Debug >> Debug to run the server
application in debug mode.
A page opens in a Web browser using the Web service URL. This is how Genero Studio starts the Web
service.

5. Start the client application.

You can either:

• Run an external client program.
• Start the client application from the same project as the Web services server. Right-click on the

client application and choose Execute. A dialog appears, informing you that applications are running
and asking you whether you wish to close the applications. Click No. A new Web page opens for the
client application.

6. Use the client application. The Web services server application interrupts execution when the
breakpoint is hit.

7. Use Genero Studio to debug the application.

Debug a mobile application
Complete this procedure to attach the Graphical Debugger to a running mobile process.

Before you begin:

• Genero Studio is set to use a mobile configuration.
• The mobile application was packaged and deployed with the Mobile Debug Package environment set

selected.

Graphical Debugger | 505

See Create a debug version of a deployed app on page 919.

Figure 282: Genero Configuration Management dialog

1. Run the debug version of your deployed app.

• For Android, see Run the debug version of a deployed app (Android) on page 919.
• For iOS, see Run a debug version of a deployed app (iOS) on page 920

2. Select Debug >> Attach to Mobile Process.
This option uses your current configuration to connect to the mobile device.

3. Navigate to the directory that contains the source files for your application and select the appropriate
source (.4gl) file, then click Open.
The source file opens. You are now in a standard debug session.

With the debug session open, follow the procedures for using the Graphical Debugger.

Stop the Debugger
What happens when you stop a debug session depends on how the debug session was started.

Regardless of how the debug session was started, the Graphical Debugger will automatically exit when the
program being debugged terminates.

To exit the Debugger, select Abort last task from the Debug Menu.

• If the program was started in debug mode, the program terminates.
• If the debugger was attached to a running process, the debugger terminates. The program continues to

run.

Graphical Debugger | 506

Step through the program
The step command allows you to "step" through your program executing one line of source code at a
time. When a function call appears within the line of code, that function is also stepped through.

Once launched, program execution will be halted at the first breakpoint encountered, waiting for your
action. Debugger commands can then be selected from the Toolbar, or Debug menu options.

Breakpoints

• Set a Breakpoint
• Conditional breakpoints on page 507

Set a breakpoint
To examine an area of code more closely, set a breakpoint at the desired line or function. A right-click on a
line of code allows you to set, disable, and delete breakpoints.

Add/Delete breakpoint Sets / removes a breakpoint fro the current line.
Clicking in the gutter will also set / remove a
breakpoint at the corresponding code line.

Enable/Disable breakpoint If checked, the current breakpoint is active;
otherwise it is disabled, but still exists and can be
reactivated later. Enabled breakpoints are marked
by a red dot; the dot has an empty center if the
breakpoint is disabled.

Figure 283: Set Breakpoint

About breakpoints
When the program is run, execution will stop at this line, waiting for your action. A breakpoint icon is shown
in the gutter.

Breakpoints are processed as private to each user. They are linked to a source code line, not to a line
number; therefore, altering a source file will not affect the breakpoint's relative position in functions.

Breakpoints are stored when the Debugger is stopped, and set when the Debugger is started. Previously
set breakpoints will be available each time the Debugger is run.

Initial breakpoint

Set initial breakpoints prior to launching the Debugger. Otherwise, the application executes normally within
the Debugger framework and you must use the Debugger Interrupt option to suspend it to monitor Debug
views or employ Debugger functions. Setting a breakpoint at the first function call is usually a good starting
point.

Additional breakpoints

After the initial Breakpoint is set, you can either set additional breakpoints prior to starting the Debug
session or start the session with the single breakpoint. Breakpoints on Function entry points automatically

Graphical Debugger | 507

open the function source module during the debug session so you can examine the code more closely and
even follow program execution line-by-line in the function if needed. You may find it helpful to set function
breakpoints before starting the session, but you can also set additional breakpoints as you use Debugger
commands to navigate during the session.

Tip: You can use the Code Structure view to quickly identify and open source modules so that you
can set breakpoints as desired. This is especially useful for functions in external modules.

Conditional breakpoints
You can specify that the breakpoint is conditional, using a Boolean expression to determine whether to
stop execution of the program.

In the Condition column of the Breakpoints tab, enter the condition or open the Edit Expression dialog.
If a condition is defined, it will be checked each time the line is to be executed. Execution will stop at this
breakpoint only if the condition is true.

Example:

i > 50

Watchpoints

• Set a watchpoint on page 507
• Conditional watchpoints on page 508

Set a watchpoint
Watchpoints can be set to stop program execution each time the value of an expression changes. In order
to set the watchpoint, the program must be running in the Debugger.

1. Set a breakpoint in the function that has the variable expression in scope.

2. Start debugging the program.

3. When the program stops at the breakpoint, select the Data view on page 513 tab to display the
variables.

4. Right-click the variable and select Add to watch to add the variable to the Watchpoints view.

Graphical Debugger | 508

Figure 284: Setting a WatchPoint

5. Continue running the program. The program will stop when the value of a watched variable changes.
You can see the values in the Watchpoint view.

Conditional watchpoints
You can specify that the watchpoint is conditional, using a Boolean expression to determine whether to
stop execution of the program when the variable value has changed.

Each time the value of the watched variable changes (and the BOOLEAN expression, if used, is TRUE),
the program will stop, and the variable values will be displayed Watchpoints view.

In the Condition column of the Watchpoints view, enter the condition or press the ... button to open the
Edit Expression dialog.

Or, you can enter the watch Debugger instruction and condition in the Commands view.

watch expression boolean-expression

Example:

watch i if i > 3

Debugger (fgldb) command prompt
The Graphical Debugger also provides a command line interface. Once you have started a debug session,
you can enter fgldb commands directly into the fgldb Command view.

You can Start the Debugger on page 502 in Genero Studio and then use the command window to enter
fgldb commands, or you can start a debug session at the command line (outside of Genero Studio), with
the –d option: fglrun –d myprog.

Graphical Debugger | 509

Debugger output
The Debugger provides multiple views to assist you with program analysis during the Debug session.

• Command view on page 512
• Data view on page 513
• Breakpoints view on page 514
• Watchpoints view on page 514
• Backtrace view on page 515

Examining data
Monitor the values of program variables while the program is running.

Variables

The Data view on page 513 displays variable values.

Global variables Show the variables defined with global scope as
well as any Genero predefined variables used in the
application, such as INT_FLAG.

Module variables Show the variables defined with module scope.

Local variables Show the variables defined with local scope for the
currently executing function. Local variables are
separated from argument for better visibility.

User variables Allow you to group together variables from any of
the other folders, for convenience in testing. To add
a variable to the User variables set, or delete an
existing User variable, right-click the variable listing
to invoke the contextual menu.

User variables which are not in the scope of the current context are greyed.

Examining execution flow
Information on the call stack, stack frames, and navigating the stack.

The call stack and stack frames

Each time your program performs a function call, information about the call is saved in a block of data
called a stack frame. Each frame contains the data associated with one call to one function.

The stack frames are allocated in a region of memory called the call stack. When your program is
started, the stack has only one frame, that of the function MAIN. This is the initial frame, also known as
the outermost frame. As the debugger executes your program, a new frame is made each time a function
is called. When the function returns, the frame for that function call is eliminated.

The Debugger assigns numbers to all existing stack frames, starting with zero for the innermost frame, one
for the frame that called it, and so on upward. These numbers do not really exist in your program; they are
assigned by the Debugger to allow you to designate stack frames in commands.

Each time your program stops, the Debugger automatically selects the currently executing frame and
describes it briefly. You can use the frame command to select a different frame from the current call stack.

Graphical Debugger | 510

Navigate the stack

Use the Up/Down options to track function calls. Up displays the calling function. The Up command
advances toward the outermost frame each time it is processed. The Data view on page 513 display is
based on the new context.

Down is the opposite of Up: it comes back to the inner frame down to the last executed line.

Record/replay a macro
You can record the Debugger commands that you are executing, save them in a file, and to execute the
commands again from that file.

Options on the Debug menu allow you to record, stop, and play a macro.

Record macro Start recording Debugger commands.

Stop record Stop command recording and store the commands
in a file.

Play macro Execute the recorded commands from the file.

Profiler
The Profiler is a tool built in the runtime system that generates a report about where the program spends
time, and which function calls which function. The Profiler can help to identify areas in the program that are
slower than expected.

Use the Debug >> Execute with Profiler menu option to start the Profiler. After the program finishes
executing, the Profiler information is displayed in the Output tab. The output contains the list of the
functions called while the programs was running. It is presented as a five-column table.

Table 150: Flat profile columns

Column Name Description

count Number of calls for this function.

%total
Percentage of time spent in this function. Includes
time spent in subroutines called from this function.

%child
Percentage of time spent in the functions called
from this function.

%self
Percentage of time spent in this function excluding
the time spent in subroutines called from this
function.

name Function name.

Note: 100% represents the program execution time.

Graphical Debugger | 511

Local vs. remote debug
You can configure Genero Studio to debug a local or remote application.

Check your active configuration before beginning a debug session.

• Use a local Genero configuration to work on your local application.
• Use a remote Genero configuration or your local Genero configuration to access and debug your

remote application.

Use these steps to debug an application where the binaries are located on a remote server (production
server) and the sources are located locally.

1. Set a remote configuration.

2. Confirm that all binaries are on the remote server.

3. Create an empty application node with the same name as the 42r binary located on the remote
server.

4. Set all required environment variables on the application node.

FGLLDPATH Set to the path of the 42m and 42r files located
on the remote server.

FGLRESOURCEPATH Set to the path of the 42f files (and other
resource files).

FGLSOURCEPATH Set to the path of the source files located locally.

Reference
Reference information for the Debugger.

• Debug context menu on page 511
• Views on page 512
• Supported debug commands on page 516

Debug context menu
Commands on the Debug menu execute the application in debug mode.

Table 151: Debug Menu

Menu Option Usage

Debug Begins program execution, debugging up to the first
breakpoint or interruption.

Execute with Profiler Execute selected application with Profiler. See Profiler
on page 510

Next Executes the current line, and stops at the next source
line in the current function. If this source code line is a
call to another function, you can Step in or Step out.

Step in Step into the current function, executing the next source
line inside the called function.

Step out Step out of the called function before it ends, returning
to the next source line following the CALL statement.

Graphical Debugger | 512

Menu Option Usage

Note: Some complex instructions such as
CONSTRUCT or FOR loops need two steps
before going to the next instruction: one step to
prepare the statement, one step to execute it.

Continue Resumes program execution, until another breakpoint is
reached or the program terminates.

Interrupt Interrupts the program execution, displaying the current
line being executed and updates the Debugger views
such as the Data view.

Stops the execution of the program being debugged,
returns control to the debugger, displays the current line
being executed and updates the debugger views such
as the Data view. This allows you to interrupt a program
that is in an endless loop, or that is displaying a form, for
example.

Up Displays the calling function. The up command
advances toward the outermost frame each time it is
processed. The Data view on page 513 is based on
the new context.

Down The opposite of Up: it comes back to the inner frame
down to the last executed line.

Record Macro Start recording Debugger commands.

Stop Record Stop command recording and store the commands in a
file.

Play Macro Execute the recorded commands from the file.

Add/Delete Breakpoint Sets / removes a breakpoint fro the current line.

Enable/Disable Breakpoint If checked, the current breakpoint is active; otherwise it
is disabled, but still exists and can be reactivated later.

Abort Last Task Terminates the debugger session.

Views
Information about Debugger views.

• Command view on page 512
• Data view on page 513
• Watchpoints view on page 514
• Breakpoints view on page 514
• Backtrace view on page 515

Command view
The Command view displays all of the debugger commands that have been executed. fgldb commands
may be entered manually into the Command view.

The output of the command, if any, appears immediately below the command.

Graphical Debugger | 513

Figure 285: Command view

Data view
In the Data view you can examine or set the values of global, module, and function variables while your
application is running.

Figure 286: Data View

In the Data view, variables are organized into groups and displayed in a tree. Expand the group to display
its variables and see each name, value, and type (record, column, data type). Double-click the value to edit
variable values for testing purposes.

Use the integrated Toolbar to:

• Copy a variable to the User variables group
• Add, Delete, or Duplicate a User variable
• Add a variable to watch list
• Display/Edit a variable value
• Show Global, Module, and/or Local variables
• Fetch All variables

Right-click a variable to display a context menu with some of the same commands.

Graphical Debugger | 514

Watchpoints view
Each time the value of a watched variable changes, the program will stop, and the variable values will be
displayed in the Watchpoints view.

Figure 287: Watchpoints View

ID The identification number of the watchpoint.

Enable Check to enable the watchpoint, uncheck to disable
to watchpoint.

Expression The variable name on which the watchpoint is set.

New Value The new value of the watchpoint variable.

Condition A Boolean expression can specify that the
watchpoint is conditional; each time the value of the
variable changes and the condition is TRUE, the
program will stop.

The integrated Toolbar includes options to manage watchpoints.

Delete watchpoint Delete the selected watchpoint.

Edit watchpoint condition Edit the condition associated to the watchpoint.

Delete watchpoint condition Removes the condition associated to the
watchpoint.

Delete all watchpoints Removes all watchpoints.

Disable all watchpoints Disables all watchpoints.

Breakpoints view
This Breakpoints view displays information on all breakpoints that have been set.

Figure 288: Breakpoints view

Graphical Debugger | 515

Id Displays the number assigned to the breakpoint by
the Debugger.

File, Line, Function Identify the breakpoint's location in the source file.

Enable Check to enable to breakpoint, uncheck to disable
the breakpoint.

Condition Specify conditions for the breakpoint. Create or
edit a condition by clicking in the row's Condition
column. If a condition is defined, it will be checked
each time the line is to be executed. Execution will
stop at this breakpoint only if the condition is true.

Hit Count Total number of times a breakpoint has been hit

Skip Hits Specifies the number of times the breakpoint should
be ignored

The integrated Toolbar includes options to manage breakpoints. These options are also available by right-
clicking on a line in the Breakpoints view.

Go to source code Open the file containing the breakpoint. Double-
clicking a line will also open the file containing the
breakpoint.

Delete breakpoint Delete the selected breakpoint.

Edit breakpoint condition Edit the condition associated to the breakpoint.

Delete breakpoint condition Removes the condition associated to the
breakpoint.

Delete all breakpoints Removes all breakpoints.

Disable all breakpoints Disables all breakpoints.

Backtrace view
In the Backtrace view you can view or trace the functions called while running the program.

Figure 289: Backtrace view

The first line displayed is the current line. Then the calling function is displayed, and so on, up to the main
function. The Backtrace view is display-only. Lines are added in the output while the program is running.

An arrow points to the currently executing function.

The integrated Toolbar includes options to navigate a backtrace.

Go to selected frame Make the selected frame the current frame. The
Data view will be updated with the variables
available in the selected frame.

Graphical Debugger | 516

Go to source code Display the source code corresponding to the
selected frame.

Supported debug commands
The Debugger supports a set of command-line commands.

break
Sets a breakpoint at the specified line or function

Syntax

b[reak] { line | module:line | function }

Note:

1. line is a source code line in the current module.
2. module:line is a source code line in a specific module.
3. function is a function name.

Usage

The break command sets a breakpoint at a given position in the program.

When the program is running, the debugger stops automatically at breakpoints defined by this command.

Example

(fgldb) break mymodule:5
Breakpoint 2 at 0x00000000: file mymodule.4gl, line 5.

backtrace
Prints a summary of how your program reached the current state.

Syntax

backtrace
bt

Usage

The backtrace command prints a summary of your program's entire stack, one line per frame. Each line in
the output shows the frame number and function name.

Example

(fgldb) bt
 #1 addcount() at mymodule.4gl:6
 #2 main() at mymodule.4gl:2
 (fgldb)

Graphical Debugger | 517

clear
Clear breakpoint at the specified line or function.

Syntax

clear [function|line]

Note:

1. function - deletes any breakpoints set at entry to the specified function.
2. line - deletes any breakpoints set at or within the code of the line specified by number.

Usage

With the clear command you can delete specific breakpoints in your program. Use the clear command
with no arguments to delete any breakpoints at the next instruction to be executed in the selected stack
frame.

See the delete command to delete individual breakpoints by specifying their breakpoint numbers.

Example

(fgldb) clear mymodule:5
Deleted breakpoint 2
(fgldb)

continue
Continues the execution of the program after a breakpoint.

Syntax

c[ontinue] [ignore-count]

Note:

1. ignore-count defines the number of times to ignore a breakpoint at this location.

Usage

The continue command continues the execution of the program until the program completes normally,
another breakpoint is reached, or a signal is received.

Example

(fgldb) continue
 <..program output..>
Program exited normally.

define
Specifies a user-defined sequence of commands.

Syntax

define command-name { command1 command2 ... }
end

Note:

Graphical Debugger | 518

1. command-name is the name assigned to the command sequence.
2. command is a valid debugger command.
3. end indicates the end of the command sequence.

Usage

The define command allows you to create a user-defined command by assigning a command name to a
sequence of debugger commands that you specify. You may then execute the command that you defined
by entering the command name at the debugger prompt.

User commands may accept up to ten arguments separated by whitespace.

Example

(fgldb) define myinfo
> info breakpoints
> info program
> end
(fgldb)

delete
Removes breakpoints specified in a debugger session.

Syntax

del[ete] breakpoint

Note:

1. breakpoint is the number assigned to the breakpoint by the debugger.

Usage

The delete command allows you to remove breakpoints when they are no longer needed in your
debugger session.

If you prefer you may disable the breakpoint instead. See the disable command.

Example

(fgldb) delete 1
(fgldb) run
Program exited normally.
(fgldb)

disable
Disables the specified breakpoint.

Syntax

disable breakpoint

Note:

1. breakpoint is the number assigned to the breakpoint by the debugger.

Graphical Debugger | 519

Usage

The disable command instructs the debugger to ignore the specified breakpoint when running the
program.

Use the enable command to reactivate the breakpoint for the current debugger session.

Example

(fgldb) disable 1
(fgldb) run
Program exited normally.
(fgldb)

display
Displays the specified expression's value each time the program stops.

Syntax

disp[lay] expression

Note:

1. expression is your program's expression that you wish to examine.

Usage

The display command allows you to add an expression to an automatic display list. The values of the
expressions in the list are printed each time your program stops. Each expression in the list is assigned a
number to identify it.

This is useful in tracking how the values of expressions change during the program's execution.

Example

(fgldb) display a
1: a = 6
(fgldb) display i
2: i = 1
(fgldb) step
2: i = 1
1: a = 6
16 for i = 1 to 10
(fgldb) step
2: i = 2
1: a = 6
17 let a = a+1
(fgldb)

down
Selects and prints the function called by the current function, or the function specified by the frame number
in the call stack.

Syntax

do[wn] [num]

Note:

Graphical Debugger | 520

1. num is the number of frames to move down the stack. The default is 1.

Usage

This command moves down the call stack, to the specified frame, and prints the function identified with that
frame. To print the function called by the current function, use the down command without an argument.

(fgldb) down
#0 query_cust() at custquery.4gl:22
22 CALL cleanup()
(fgldb)

enable
Enables breakpoints that have previously been disabled.

Syntax

enable breakpoint

Note:

1. breakpoint is the number assigned to the breakpoint by the debugger.

Usage

The enable command allows you to reactivate a breakpoint in the current debugger session. The
breakpoint must have been disabled using the disable command.

Example

(fgldb) disable 1
(fgldb) run
Program exited normally.
(fgldb) enable 1
(fgldb) run
Breakpoint 1, at mymodule.4gl:5

file
Specifies the name of the program being debugged.

Syntax

file filename

Note:

1. filename is the name of the program being debugged.

Usage

The file command can be used to change to a different file during a debugging session.

Graphical Debugger | 521

finish
Instructs the program to continue running until just after the function in the selected stack frame returns,
and then stop.

Syntax

finish

Usage

The finish command instructs the program to continue running until just after the function in the
selected stack frame returns, and then stop. The returned value, if any, is printed.

Example

(fgldb) finish

help
Provides information about debugger commands.

Syntax

h[elp] [command]

Note:

1. command is the name of the debugger command for which you wish information.

Usage

The help command displays a short explanation of a specified command.

Enter the help command with no arguments to display a list of debugger commands.

Example

(fgldb) help delete

info
Describes the current state of the program.

Syntax

i[nfo] { breakpoints |sources | program | stack | files |
 line (linespec | module:line | function } }

Note:

1. breakpoints lists the breakpoints that you have set.
2. sources prints the names of all the source files in your program.
3. program displays the status of your program.
4. stack summarizes how your program got where it is.
5. files lists the names of the executable file and core dump files currently in use, and the files from

which symbols were loaded.
6. line linespec maps the specified source code line to program addresses.
7. line module:line maps the specified source code line to program addresses.

Graphical Debugger | 522

8. line function prints the program addresses for the first line of the function named function.

Usage

The info command describes the state of your program.

The command info line linespec prints the starting and ending addresses of the compiled code for
the source line specified. See the list command for all the ways that you can specify the source code
line.

Example

(fgldb) info sources
Source files for which symbols have been read in:

mymodule.4gl, fglwinexec.4gl, fglutil.4gl, fgldialog.4gl, fgldummy4js.4gl
(fgldb)

list
Prints source code lines of the program being executed.

Syntax

l[ist]

Usage

The list command prints source code lines of your program, including the current line.

Example

(fgldb) run
Breakpoint 1, at mymodule.4gl:5
5 call addlist()
(fgldb) list
5 call addlist()
6 call addname()
.
14 end function
(fgldb)

next
Continues running the program by executing the next source line in the current stack frame, and then
stops.

Syntax

n[ext]

Usage

The next command allows you to execute your program one line of source code at a time. The next
command is similar to step, but function calls that appear within the line of code are executed without
stopping. When the next line of code at the original stack level that was executing when you gave the next
command is reached, execution stops.

Graphical Debugger | 523

After reaching a breakpoint, the next command can be used to examine a troublesome section of code
more closely.

Example

(fgldb) next
5 call addlist()
(fgldb) next
6 call addname()
(fgldb)

output
Prints only the value of the specified expression, suppressing any other output.

Syntax

output expression

Note:

1. expression is your program's expression that you wish to examine.

Usage

The output command prints the current value of the expression and nothing else, no newline character,
no "expr=", etc.

The usual output from the debugger is suppressed, allowing you to print only the value.

Example

(fgldb) output b

print
Displays the current value of the specified expression.

Syntax

p[rint] expression

Note:

1. expression is your program's expression that you wish to examine.

Usage

The print command allows you to examine the data in your program.

It evaluates and prints the value of the specified expression from your program, in a format appropriate to
its data type.

Example

(fgldb) print b
 $1=5
(fgldb)

Graphical Debugger | 524

quit
Terminates the debugger session.

Syntax

q[uit]

Usage

The quit command allows you to exit the debugger.

Example

(fgldb) quit
<system prompt>

run
Starts the program executing until a breakpoint is reached or the program terminates normally.

Syntax

r[un] [arg1 arg2 ...]

Note:

1. arg is an argument to be passed to your program.

Example

(fgldb) run
Breakpoint 1, at mymodule.4gl:3
3 call addcount()
(fgldb)

set
Allows you to set the value of specific variables for the duration of the debugger session.

Syntax

set { | environment varname[=value] | verbose {on | off} | annotate }

Note:

1. varname is the environment variable to be set to value.

Usage

The set command changes the values of the these variables:

When setting an environment variable, value may be any string. If the value parameter is omitted, the
variable is set to a null value. The variable is set for your program, not for the debugger itself.

When verbose is set to on, the debugger will display additional messages about its operations, allowing
you to observe that it is still working during lengthy internal operations.

Graphical Debugger | 525

Example

set verbose on

Important: On UNIX™ systems, if your SHELL variable names a shell that runs an initialization file,
any variables you set in that file affect your program. You may wish to move setting of environment
variables to files that are only run when you sign on, such as .login or .profile.

source
Executes a file of debugger commands.

Syntax

source commandfile

Note:

1. commandfile is the name of the file containing the debugger commands.

Usage

The source command allows you to execute a command file of lines that are debugger commands. The
lines in the file are executed sequentially.

The commands are not printed as they are executed, and any messages are not displayed. Commands
are executed without asking for confirmation.

An error in any command terminates execution of the command file.

Example

(fgldb) source mycommands

signal
Sends an INTERRUPT or QUIT signal to the program.

Syntax

sig[nal] SIGINT

sig[nal] SIGQUIT

Usage

The signal SIGINT command resumes execution of your program where it has stopped but immediately
sends an INTERRUPT signal. The source line that was current when the signal was received is displayed.

Use signal SIGQUIT to send a QUIT signal.

Example

(fgldb) signal SIGINT
Program exited normally.
16 for i = 1 to 10
(fgldb)

Graphical Debugger | 526

step
Continues running the program by executing the next line of source code, and then stops.

Syntax

s[tep] [count]

Note:

1. count defines the number of lines to execute before stopping.

Usage

The step command allows you to "step" through your program executing one line of source code at a
time. When a function call appears within the line of code, that function is also stepped through.

A common technique is to set a breakpoint prior to the section or function that is causing problems, run the
program until it reaches the breakpoint, and then step through it line by line.

Example

(fgldb) step
4 call addlist(a)
(fgldb)

Important: The step command cannot be used to step through a function that was compiled
without debugging information. Execution continues until it reaches a function that does have
debugging information.

until
Continues running the program until the specified location is reached.

Syntax

u[ntil] { line | module:line | function }

Note:

1. line is a source code line in the current module.
2. module:line is a source code line in a specific module.
3. function is a function name.

Usage

The until command continues running your program until either the specified location is reached, or the
current stack frame returns. This can be used to avoid stepping through a loop more than once.

Example

(fgldb) until addcount()

up
Selects and prints the function that called this one.

Syntax

up [num]

Graphical Debugger | 527

Note:

1. num is the number of lines to move up the stack. The default is 1.

Usage

The up command advances toward the outermost frame, to frames that have existed longer.

watch
Sets a watch point for an expression which stops execution of your program whenever the value of the
expression changes.

Syntax

watch expression [boolean-expression]

Note:

1. expression is the expression to watch.
2. boolean-expression is an optional boolean expression.

Usage

The watch point stops the program execution when the value of the expression changes.

If boolean-expression is provided, the watch point stops the execution of the program if the expression
value has changed and the boolean-expression evaluates to TRUE.

Example

(fgldb) watch i if i >= 3

where
Alias for backtrace command.

Syntax

w[here]

Usage

The where command, like backtrace, prints a summary of your program's entire stack, one line per
frame. Each line in the output shows the frame number and function name.

Example

(fgldb) where
#1 addcount() at mymodule.4gl:6
#2 main() at mymodule.4gl:2
(fgldb)

Unsupported commands

These debugger commands are not supported in Genero Studio:

• define

• source

• tbreak

Graphical Debugger | 528

• tty

Source Code Management - SVN | 529

Source Code Management - SVN

Genero Source Code Management (SCM) enables collaborative sharing and maintaining of the files in
Genero projects.

• What is Genero Source Code Management? on page 529
• SCM Usage on page 530
• SCM Reference on page 540

What is Genero Source Code Management?
Genero Source Code Management (SCM) enables collaborative sharing and maintaining of the files in
Genero projects.

A Subversion client must be installed on your local machine. Genero Studio for Windows™ includes
Apache's Subversion client. Genero Studio for GNU/Linux relies on Subversion 1.6.2 or later, which
must have been installed on the system. For more information about Apache's Subversion, see: http://
subversion.apache.org/

Options in SCM allow you to manage the files in the Subversion repository. The Subversion repository
stores current and historical versions of the files, allowing you to recover older versions of your data when
necessary. Your files (called working copies) are stored in an ordinary directory on your local file system.
When you make changes to these working copies, you commit the changed files to the SVN repository. If
projects or project files have already been committed to a repository, you can load copies into a working
directory on your local system.

A SVN repository often holds the files (or source code) for several projects; usually, each project is a
subdirectory in the repository's file system. Your working copy will usually correspond to a particular
subtree of the repository.

If a Project is under Source Code Management, the icons for the nodes will have a status icon
superimposed when you open the Project.

Figure 290: Project view with status icons

http://subversion.apache.org/
http://subversion.apache.org/

Source Code Management - SVN | 530

Table 152: Status icons and their meanings

Icon Description

Item is unchanged since it was last committed to
the repository.

Item has been changed and has not been
committed yet. The application and the project will
also have change indicators.

Item is scheduled for addition to the repository.

Item is in conflict with updates received from the
repository.

SCM Usage
Information about using Source Code Management.

• Checkout files on page 530
• Add files on page 531
• Commit / Review changes on page 531
• Locking on page 532
• Revert changes / Un-add files on page 534
• Delete files on page 534
• Update / Update All on page 534
• Cleanup on page 535
• Copy working files and directories on page 535
• Revert from a single revision on page 535
• Merge and revert on page 535
• Move a working copy (Switch) on page 536
• Create patch on page 536
• Apply patch on page 536
• Browse repository on page 537
• View log information on page 537
• Specify the revision range for logs on page 537
• Blame on page 537
• Diff with revised file on page 539

Checkout files
You can checkout a project from the SCM menu or directly from the location of your new working directory.

Before you begin, you must have access to an SVN Repository that has been set up to store your
versioned files. Contact your system administrator or Subversion vendor for information and documentation
on the set up of Subversion and repositories.

Source Code Management - SVN | 531

1. Identify the directory or directories on your local system that will contain the files you checkout from the
repository.

2. Check out the files from the repository to your checkout directory.

Option Description

Select SCM >> Checkout from the main menu. An SVN Checkout dialog will guide you through
the checkout steps.

Navigate to the directory that will serve as
your new working directory. If the directory
does not exist, create it. Right-click on the
directory and select SCM >> Checkout.

An SVN Checkout dialog will guide you through
the checkout steps and the checkout directory
path will be filled in for you.

Once the files have been added to your checkout directory, you are prompted to select a project file
(4pw). If one does not exist, you can create a new project and save it in the checkout directory.

The files to be versioned must be stored in the checkout directory.

3. Use File >> New to create files and store them in the checkout directory and the project structure as
needed.

4. Any files from the checkout directory that have been added to the Project can be committed to the
repository.

At this point, you can use the SCM menu commands to handle versioning for your files in the checkout
directory.

Note: Although the 4pw project file is used internally by Genero Studio, we recommend that you
include it in the checkout directory and commit it to the repository to share it with other developers.
Although the 4pw and .deps files are in the checkout directory, they do not have to be added to the
Project Structure.

Add files
Complete this procedure to add unversioned files found in the checkout directory.

1. Select Window >> Views >> SVN Status.

2. From the SVN Status view, navigate to your checkout directory if it is not already displayed.

3. Click Add mode.

All unversioned files found are listed. The files/folders with 'not a working copy' text status or none
property status within an unversioned folder will also be shown.

4. Check those files you wish to add to the repository.

5. Click the Add button.

The files are added, their text status changes to 'added'. They are not yet committed.

6. To commit these newly added files, select Add Mode again to change views and select Commit.

7. To revert this action (for files that have been added but not committed), see Revert changes.

Commit / Review changes
To commit your updated version of a file to the repository, right-click on the file in your Project and choose
SCM >> Review Changes.

From the SVN Status view, check the box in the Select column for the files you wish to commit, and press
the Commit button at the top of the view. This will invoke the SVN Commit dialog to commit any checked
file.

Source Code Management - SVN | 532

Figure 291: SVN Commit dialog

Commit Comments Enter a comment in the text box, or select a
comment from the list of recent comments.

Files to unlock on commit Unlock committed
files (default)

Unlock only those
locked files that are
committed. Any locked
file that is not committed
will not be unlocked on
commit.

Unlock all files Unlock all locked files
after commit. If some
of the locked files
are modified but not
committed, you are
warned that some of
the modified files will
be unlocked and asked
whether to proceed with
commit.

Keep all locks No file is unlocked after
commit.

Locking
Locking a file provides exclusive rights to a user for changing that file in the repository. As long as the file in
the repository is locked by a user, no other user can change (commit) that file in the repository. This helps
to avoid conflicting commits.

Subversion provides a property svn:needs-lock. This property can be set on files only. The svn:needs-lock
property sets the file to read-only when checked out. A user who has checked out the file will have to lock
the file to modify it in the working copy. If another user wants to modify the same file, they will have to first
acquire the lock on the same file and is informed that the file is already locked by another user. In this way
a locked file cannot be modified simultaneously which avoids possible conflicts.

Source Code Management - SVN | 533

SVN Lock strategies
There are three user strategies for working with locks in Genero Studio; use svn:needs-lock on some files,
on all files, or not at all.

Use svn:needs-lock on some files
There are some file types like binary files, which can not be merged. Setting svn:needs-lock on those files
specifies that only one user can modify them at one time. You must lock the file before modifying or check
for existing locks. If the file is not locked, you may have to merge the changes on commit. Locked files
must be unlocked after commit.

Use svn:needs-lock on all files

With this strategy, no commit conflicts can occur because no two users can modify the same file at the
same time. You will have to lock the file before modifying it. Locked files must be unlocked after commit.

Not using the svn:needs-lock property

This strategy can be used when all the files can be merged manually in case of conflicts. In case of binary
files it is not possible to merge the changes, so modifying the files without locking must be avoided. If the
file is not locked and modified, you may have to manually merge the changes in case of commit conflicts.

Set svn:needs-lock property
Setting svn:needs-lock on a file specifies that only one user can modify it at one time.

1. Use SCM >> Properties from the right-click context menu on a file to make changes to SVN properties.

2. Use the plus sign to add a new property. Select svn:needs-lock from the Property name list.

3. Set the Property value to *.

Figure 292: Set svn:needs-lock

Lock a file
If svn:needs-lock has been set on a file, the current user can lock the file.

1. From the project or SVN Status view, right-click on the file and select Lock.

Source Code Management - SVN | 534

2. Enter a comment and press the Lock button.

Revert changes / Un-add files
You can discard changes to files not yet committed, and you can unadd files which have been added but
not yet committed.

1. Open the SVN Status view.

If you are in Commit mode, the Revert button displays. If you are in Add mode, the Unadd button
displays.

2. Check those files you wish to revert or unadd.

3. Click Revert (Commit mode) or Unadd (Add mode).

4. A dialog asks you to confirm your selection.

Click Yes.

For modified files, the change is reverted and the previously committed version of the files is restored to
your local (working) copy. For added files, the file is changed from 'added' to 'unversioned'.

Delete files
The Delete command deletes a file from your checkout directory and from the repository.

1. Right-click the file.

2. Select Delete from the context menu.

Your local copy is deleted. The next time you commit, the Projects view will request the source code
management system delete the file from its repository.

Update / Update All
Update / Update All updates any outdated files in your project with the latest version stored in the
repository.

The Update options are presented as buttons in the Status view Toolbar, or can be accessed right-clicking
on a specific file selected from the project tree in the Projects view.

Figure 293: SVN Update dialog

Specify what files to update in the SVN Update dialog.

In the Update combobox, specify which files to update. Choices are:

• All (a full checkout)
• Selection (selected files)

In the Directory content to update combobox, specify the depth for the update.

• With an All update, the depth is automatically set to Recursive.

Source Code Management - SVN | 535

• With a Selection update, the choices are Recursive, None, Immediate files only, or Immediate files and
folders only. For updates from the Projects view using the context menu, the depth will always be None.

Select the Omit externals checkbox to exclude external items. External items can be of two types:

• If a working copy contains items from some other location of same repository, these items are called
external for this working copy.

• If there are two repositories and one of the repositories (R1 for example) contains items from other
repository (R2 for example), these items are called "externals" for repository R1.

In the Revision combobox, select the revision to be updated. The Select Revision button opens the SVN
Log Select revision dialog.

Cleanup
The Cleanup command cleans up the working copy, removing stale locks.

1. In the Projects or Files view, right-click on a file or directory.

2. Select SCM >> Cleanup.

Copy working files and directories
A Subversion working copy is an ordinary directory tree on your local system, containing a collection
of files. You can create another copy of your project, project files, or directories, to allow parallel
development, for example.

Before you begin, you must have access to an SVN repository that has been set up to store your versioned
files. Contact your system administrator or Subversion vendor for information and documentation on the
set up of Subversion and repositories.

1. Identify the working directory you wish to copy.

2. Copy the files.

Option Description

Select SCM >> Copy from the main menu. Complete the SVN copy dialog.

In the Files tab, navigate to the working
directory you wish to copy. Right-click on the
directory and select SCM >> Copy.

Complete the SVN copy dialog. The From section
populated for you.

Revert from a single revision
Follow this procedure to revert changes from a single revision.

1. Select SCM >> Merge/Revert... from the main menu to open the Merge/Revert dialog on page 545.

2. Enter the repository URL and version, leaving the Range ends with a different URL check box not
selected.

3. Specify the working copy directory to be updated in the working copy path.

4. Select the desired merge options

5. Click Merge/Revert.

Merge and revert
Follow this procedure to merge and revert changes from a range of revisions.

1. Select SCM >> Merge/Revert... from the main menu to open the Merge/Revert dialog on page 545.

2. Enter the repository URL and Revision.

3. Check the Range ends with a different URL check box and specify the revision URL and version to
close the range.

4. Specify the working copy directory to be updated in the working copy path.

Source Code Management - SVN | 536

5. Select the desired merge options

6. Click Merge/Revert.

Move a working copy (Switch)
The Switch subcommand allows you to move a working copy to a new branch of the repository.

Figure 294: SVN Switch dialog

Create patch
You can create a patch file containing the differences between your working copies and the corresponding
files in the repository. The created file is in Unidiff format.

If one of the checked files is unversioned or missing, the Create Patch command is disabled.

To create the patch file:

1. In the SVN Status view on page 543, check the file(s) that contain the modifications to be included in
the patch.

2. Click Create Patch.

3. In the Save file dialog, select a directory and enter a name for the patch file.

The patch file is created and opened in Code Editor.

Apply patch
The Apply patch command applies a patch file to files in the repository.

This feature is available for Windows™ and Linux™ users only.

1. Identify the patch file to be used.

2. Select SCM >> Apply Patch....

3. Complete the Apply Patch dialog on page 544.

4. Press Apply.

A page containing the output of the command is displayed. The output will indicate Successful when all
the files from the patch file are successfully patched. If only some of the files are patched successfully, the
output will indicate Aborted.

Source Code Management - SVN | 537

Browse repository
The SVN Repository lists the files in your selected repository and branch.

1. Select Window >> Views >> SVN Repository to open the SVN Repository Browser.

2. Enter the URL of the repository or select it from the drop down list.

3. Select the desired version. To select a specific revision within the version, click the Select Revision icon
and modify the selection range.

4. Click the Refresh icon.

View log information

Complete this procedure to view information about the revisions for a specified repository.

1. Select SCM >> Show Log.

2. Enter the URL of the repository. Click the Browse repository icon to display the Repository browser.

3. Select the desired version.

4. Click the Fetch the revisions in the revision range icon (single blue arrow).

The SVN Log view displays. The Revisions, Actions, Author, Date, and Messages are displayed in the
log. The icons for Actions indicate the status.

5. To limit the list of revisions displayed, open and complete the Revision log dialog.

6. Select a specific revision to display information about that revision.

7. The comments and actions/files associated with that revision are displayed.

Figure 295: SVN Log view

Specify the revision range for logs

You can select the range of revision logs to display using the Revision log options dialog.

1. Click the Open revision log options icon.

2. Provide the range in the from: and to: fields, respectively.

3. Click OK.
The view is updated to display only those revisions in the range specified.

4. Use the Fetch actions to retrieve more log entries.

Blame
The Blame command shows author and revision information inline for specified files or URLs.

The Blame view displays the file as read-only in the Code Editor. Each line of text is annotated in the left
margin with the author (username) and the revision number for the last change to that line. On clicking the
left margin, the log comment for the revision displays.

Source Code Management - SVN | 538

Operations available in Blame view

Blame view operations can be accessed from the Toolbar.

Operation Description

Show log Shows the revision log view and the log entries
starting from the selected revision to the first
revision.

Blame in New Tab Shows a new Blame view, where the maximum
blame revision is the selected revision and the
minimum blame revision is the minimum revision for
the current Blame view.

Blame Updates the current Blame view, where the
maximum blame revision is the selected revision
and the minimum blame revision is the minimum
revision for the current blame view.

Diff with previous revision Shows the difference between the selected blame
revision and the previous revision.

Next / Previous If you have viewed blame multiple times in the
Blame view, you can scroll through the views using
the next and previous options.

Access the Blame view

As a prerequisite:

The file must be a versioned file. The blame option is not available for Added files.

Access the Blame view for author and revision information.

1. Open one of these views:

• File Browser
• Projects
• SVN Status
• SVN Log (If the viewed log is about a file, then the blame option is available.)
• SVN Repository Browser

2. Select one or more files.

If multiple files are selected, separate blame views are opened for each file.

3. Right-click on the file and select a Blame option.

Option Description

SCM >> Blame Blame information fetches with the revision range
from 1 to HEAD.

SCM >> Blame... SVN Blame configuration dialog displays. If
multiple files are selected, the dialog displays
once and the selected settings are used for all
files.

• Specify the range.
• Click OK.

If you are in the SVN Log view:

• If one or two revisions are selected, both Blame and Blame... are available.

Source Code Management - SVN | 539

• If one revision is selected, the from is 1 and the to is the revision number selected.
• If two revisions are selected, the from is the smaller revision number and the to is the greater

revision number.
• If no revision is selected, the from is 1 and the to is HEAD.

If you are in the SVN Repository Browser view, the to is currently selected revision.

Diff with revised file

Ctrl-Click to select two revisions of a file in the log. Select Diff from the right-click Menu to call the Using
the Diff tool on page 380 utility to compare the committed file with the file that you have revised.

Integrate bug tracking
Changes made in your project may also be related to a specific bug or issue ID. If you use a bug tracking
system (such as Bugzilla) you can associate the changes you make in your Source Code Management
system (such as Subversion) to its bug tracking ID.

Figure 296: Source Code Management capturing bug ID

Figure 297: Source Code Management displaying bug ID

Source Code Management - SVN | 540

Integrate bug tracking
In Subversion, add specific 'bugtraq' properties on the repository. See SVN documentation for more
information about usage for each of these properties.

bugtraq:logregex Activates the bug tracking system.

bugtraq:message Activates an additional field on the Commit dialog
to prompt the user for an issue number.

bugtraq:label Label for the additonal field on the Commit dialog.

bugtraq:warnifnoissue Display a Warning message if the added field is
empty when doing a commit.

bugtraq:url URL of the bug in the tracking system.

Figure 298: Add properties on SVN repository

SCM Reference
Reference information for Source Code Management.

• Views on page 540
• Dialogs on page 544
• Specify a Subversion client on page 549
• SVN error messages on page 549

Views
To display views that are not visible, use the Window >> Views menu.

The SVN Repository view is covered in the topic Browse repository on page 537.

• SVN Log view on page 541
• SVN Locks view on page 541
• SVN Status view on page 543

http://tortoisesvn.net/docs/nightly/TortoiseSVN_en/tsvn-dug-bugtracker.html

Source Code Management - SVN | 541

SVN Log view
The SVN Log view displays information about the revisions in a repository.

Figure 299: SVN Log view

Repository URL Location of repository of which to view logs.

Repository Browser Display Repository Browser. See Browse repository
on page 537.

Fetch entries in the revision range Fetch entries in current revision range.

Fetch next 100 entries Fetch next 100 entries in current revision range.

Fetch next 5000 entries Fetch next 5000 entries in current revision range.

Open revison log Specify revision range. See Specify the revision
range for logs on page 537

Open diff view See Diff with revised file on page 539.

Open property diff view See diff information for SVN properties.

Properties See properties set on file. SVN Properties dialog on
page 548.

Show repository browser Display Repository Browser. See Browse repository
on page 537.

Edit log comment Edit log comment of selected entry.

Revert changes from selected revisions See Merge and revert on page 535.

Revert to this revision See Merge and revert on page 535.

Show Blame information See Blame on page 537.

SVN Locks view
The SVN Locks view shows the lock and lock information for locked files in the given checkout directory.

From the SVN Locks view you can unlock your locked copies and steal locks from other users if forced
acquisition of a lock is necessary.

Source Code Management - SVN | 542

Figure 300: SVN Locks view

Checkout directory path Enter a working copy directory path to view locked
files in that directory.

Browse Navigate to a checkout directory to populate the
checkout directory path.

Refresh Refresh the data in view.

Unlock Unlock the selected file.

Steal Lock Forcefully acquire the lock if locked by another user.

My locks Display locks owned by the current user.

File list • File: Displays file path relative to checkout
directory path.

• Text Status: File text status in current working
copy.

• Property Status: File property status in current
working copy.

• Lock Type: Information about whether the file is
locked in current working copy or not.

• Working copy: The file is locked in current
working copy.

• Repository only: The file is locked in
repository not in current working copy.

• Lock Owner: User who has locked the file.
• Lock Comment: Lock comment given by the

lock owner when the file was locked.
• Lock Date: Date when the file was locked.

Source Code Management - SVN | 543

SVN Status view
The SVN Status view displays information about changes to your working copy.

Figure 301: SVN Status view

Check the file or files to affect. The spacebar can be used to check / uncheck the current item. Toolbar
icons allow you to execute commands on the selected files. The files displayed, and the icons enabled,
depend on the mode and the status of the files selected.

The text status of a file can be:

added The file has been added to the repository and
needs only to be committed.

modified The file has been modified in the checkout directory
and the update has not yet been committed.

normal A committed file in the repository.

unversioned The file has not yet been added to the repository.
After being added, it should be committed.

conflicted The file was modified in both the repository and
checkout directory, and Subversion cannot resolve
the conflict. Use the menu option Merge.

not working copy All the files within an unversioned folder will have
this status.

missing The file has been deleted from the checkout
directory. If you commit a file marked as missing, it
will be skipped during commit and will remain as it
is.

incomplete If the checkout has stopped without completion, the
directory will have this status.

SVN Status modes

Commit mode Files that can be committed are displayed. Files
that cannot be committed but are not supported in
Genero Studio are displayed (with the exception
of files with 'ignored' and 'external' status).
Unversioned files are not displayed. This is the
default mode.

Source Code Management - SVN | 544

Add mode Files with a status of added, copied/moved,
unversioned, or 'not a working copy' are displayed.

To switch between modes, click the Add mode button.

Dialogs
Information about SCM dialogs.

• Apply Patch dialog on page 544
• Merge/Revert dialog on page 545
• The SVN Copy dialog on page 546
• SVN Checkout dialog on page 546
• SVN Lock dialog on page 548
• SVN Properties dialog on page 548
• SVN Repository view on page 549

Apply Patch dialog
The Apply Patch dialog is used to apply a patch file. Only text modifications are applied.

Figure 302: Apply Patch dialog

Patch file The path of the selected patch file.

Root dir The path of the directory where the patch is to be
applied.

Skip directories Integer value defining the directory level to be
search for the file to be patched.

Create file if not existing If the file to be patched is not present in the current
directory path, the corresponding file will be created
as an unversioned file. If the file is unchecked in the
SVN Status view on page 543, the corresponding
file will not be created.

Source Code Management - SVN | 545

Test apply patch Displays the output of the Apply Patch command
without actually applying it to the files; files will not
be modified.

Show files Opens a dialog displaying a list of all the files that
will be patched.

Merge/Revert dialog

The SVN Merge/Revert dialog lets you merge or revert revisions.

Figure 303: SVN Merge dialog

• URL - Enter the URL of the repository and select the Revision number, or HEAD for the most recent
revision

• To URL - Enter the URL of the repository and Revision number at which you want to end, or click the
Use the start URL button to continue to the end.

To access the dialog:

• Select SCM >> Merge/Revert from the Genero Studio menu.
• Right-click on a file and select SCM >> Merge/Revert from the context menu.
• Right-click on a revision entry from the SVN Log view and select either Revert changes from selected

revisions OR Revert to this revision

You can revert the changes from a single revision, or you can revert the changes across a range of
revisions.

Source Code Management - SVN | 546

The SVN Copy dialog

Figure 304: SVN Copy dialog

Select the corresponding radio buttons (Working Copy/URL) to indicate that you will:

• Copy the working copy of the project file from which you invoked the SVN copy dialog to a different
repository having the URL that you have entered. Select the revision (HEAD is the default).

• Copy the selected file from a repository having the URL that you have entered, to a working copy
having the location that you have entered. Select the revision (HEAD is the default).

• Copy the selected file from one repository to another. Select the revision (HEAD is the default).

The Copy result is shown.

SVN Checkout dialog

The SVN Checkout dialog guides you through the checkout process, allowing you to load copies of
repository files into a checkout directory on your local system:

Source Code Management - SVN | 547

Figure 305: SVN Checkout dialog

The Repository section:

• URL of repository - enter the URL of the SVN repository that you wish to access.
• Checkout directory path - enter the path of the directory for the checked out files; the Browse button

allows you to locate the path.
• Checkout depth - choose the level you desire; for example, "only file children" will checkout the files

but not the directories.
• Omit externals - check to exclude "external items".

The Revision section:

Specify the particular version from which to checkout the files. The Select Revisions button opens the SVN
Log Select revision dialog.

After the Checkout button is clicked

Messages related to the checkout operation display in the Output View.

The results of the Checkout and other SCM commands are displayed in Results pages. A Run in
background button, at the bottom of the SCM dialogs, allows you to close the dialog but continue running
the process in the background, as indicated in the Task Manager.

Source Code Management - SVN | 548

SVN Lock dialog
The SVN Lock dialog is used to lock a file..

Figure 306: SVN Lock dialog

Comment Enter a comment to lock the file.

Steal locks Forcefully acquire the lock if locked by another user.

SVN Properties dialog

Use SCM >> Properties from the right-click context menu on a file to make changes to SVN properties.
Use the integrated Toolbar to add, modify, or delete properties. See your Subversion manual for additional
information about properties.

Figure 307: SVN Properties dialog

Source Code Management - SVN | 549

SVN Repository view
The SVN Repository displays the contents of the selected repository and version.

Figure 308: SVN Repository Browser

When a user does not have the rights to access a directory in the repository, the directory is marked with a
forbidden icon

().

Specify a Subversion client
To specify the location of your SVN client, select Tools >> Preferences >> Source Code Management
>> Subversion from the main menu.

1. Select Tools >> Preferences >> Source Code Management >> Subversion from the main menu.

2. In the SVN client path, enter or browse to the path of your SVN client; include the bin directory in this
path.

3. Press Check Version to validate the SVN client and to show SVN version details.

SVN error messages
A list of SVN error messages. For messages that are not self-explanatory, additional information is
provided.

Important: It is likely that the error is an SVN error. When Genero Studio executes an SVN
command, it asks the SVN executable to perform the command. Genero Studio displays the result,
success or error. You will likely have to refer to the official SVN documentation to identify the
problem and find the solution.

Table 153: SVN Error Messages

Number Description

GS-22001 SVN Tool error.

GS-22003 Cannot start SVN Tool.

The SVN Tool is not properly set in preferences.

http://svnbook.red-bean.com/

Source Code Management - SVN | 550

Number Description

In Tools >> Preferences, Source Code Management, Subversion, set and check
the SVN client path.

GS-22004 SVN Add command failed.

GS-22005 SVN Commit command failed.

GS-22006 SVN Export command failed.

GS-22007 SVN import command failed.

GS-22008 SVN Info command failed.

GS-22009 SVN mkdir command failed.

GS-22010 SVN remove command failed.

GS-22011 SVN rename command failed.

GS-22012 SVN rename URL command failed.

GS-22013 SVN resolved command failed.

GS-22014 SVN revert command failed.

GS-22015 SVN log command failed.

GS-22016 SVN status command failed.

GS-22017 SVN update command failed.

GS-22018 Apply patch failed.

GS-22019 Server certification error.

In the displayed dialog, selection an option:

Accept permanently You will not be asked for the server
certificate for the same repository again.

Accept Once Accepts the certificate only for the current
operation. For the next operation, this
dialog will appear again.

Reject Cancels the operation.

GS-22020 SVN Authentication failed error.

The current user does not have access to the SVN repository.

Provide a valid user name and password in the authentication dialog box.

GS-22021 SVN proplist command failed.

GS-22022 SVN Copy command failed.

GS-22051 Item found in checkout.

Double click to open.

Report Writer | 551

Report Writer

The Genero Report Writer includes a graphical report designer, report engine, and report viewer. Report
applications are written using the Genero Business Development Language.

Important: This feature is not supported on mobile platforms.

• grw_section_getting_started.ditamap
• Create a report program on page 561
• Create the data schema on page 655
• Create a report design document on page 656
• Report templates on page 840

Get Started with Reports
These topics give you the information you need to initially work with Genero Report Writer.

• Introduction to Reports on page 551
• The Reports demo on page 555
• Configure fonts and printers on page 559

Introduction to Reports
Genero Report Writer provides a means for creating high-quality reports.

• What is Genero Report Writer (GRW)? on page 551
• GRW runtime architecture
• Steps to a Report

What is Genero Report Writer (GRW)?
Genero Report Writer provides a GUI interface to design reports that are based on data typically retrieved
from a database; the layout of the report is specified using the drag-and-drop report designer. Gathering
the data for the report is separated from the layout, enhancing security, allowing reuse, and providing an
interface that protects the report from changes to the actual data storage.

Report Creation

• You write an application to retrieve the data; the data may come from a database, from a data file,
from an XML file, or from a Web service. This application retrieves the report data and outputs it to
Genero Report Writer. The application can be coded by hand, or can be generated using the Business
Application Modeler.

• Once the application is created, you use a tool to extract the data schema for the report. The data
schema is used to populate the Data View in the Genero Report Designer. From the Data View, data
objects can be dragged and dropped onto the design page.

• You design the report layout using Genero Report Designer, dragging and dropping the report elements
(including data objects) onto the report design page. This creates a Report Design Document (4rp file).

• You can specify the default report output options using the Report Designer menu, or you can use
language-specific APIs in your application to modify the output options.

• End-to-end streaming (see How It Works) from the Genero DVM to the Genero Report Viewer provides
"print-as-you-go" processing; the data is produced on the fly.

The Report Design Document

The Report Design Document (4rp) specifies the appearance of the report and its data:

Report Writer | 552

• Report elements (containers (such as Mini Page and Horizontal Box), and their child elements (such
as Word Box, Image Box, and data objects) can be dragged and dropped onto the report page and re-
arranged.

• Properties in the Properties View describe the report element. The default values for element
properties can be changed, or calculated using expressions. An expression can be used to change
the appearance of the element, or change it conditionally; for example, an expression might turn the
background color red if the value for the report element is greater than 1000.

• The report design elements can contain values that are based on other values in the report; for
example, totals and subtotals.

• Various Report Design Documents can be created using the data schema from a single 4gl file.
• A Report Design Document can be output in different formats.

See Designing a Report.

The Report Output

A Genero report is based on XML standards (XML reports, XML data, SVG output). Since the data is in
XML format, you can have multiple views of the same data. The report can be output to various formats, or
directly to a printer or other output devices.

You can use Genero Report Writer to create reports for a variety of purposes. For example, you can
produce:

• Lists
• Reports with a customized format, such as invoices, corporate documents, or accounting reports
• Reports that include images
• Reports on pre-printed forms
• Labels
• Business Graphs (such as MapCharts, Category Charts, and XY Charts)
• XML documents
• HTML documents
• Excel spreadsheets
• Documents in Microsoft™ RTF format
• ASCII-based reports, to print legacy Genero reports "as is"

The rapid delivery of pages, with no need for temporary files or temporary tables, consumes less memory
and speeds up the printing of very large reports.

See Configuring Fonts and Printers for tips about printers, fonts, and custom paper sources.

Report Writer | 553

GRW runtime architecture
Information about the Genero components used to produce a report from Genero Report Writer.

Figure 309: Genero Report Writer Workflow

• The Genero Business Development Language (BDL) defines the data needed from the database

• The Genero DVM (Dynamic Virtual Machine) executes the BDL code to retrieve the data
• The Genero DVM streams data from the database to the Genero Report Engine (GRE)

• The Genero Report Designer (GRD) graphically lays out the report

• The Genero Report Engine (GRE) lays out paged streams to Genero Report Viewer (GRV)
• The Genero Report Viewer (GRV) (part of the Genero Desktop Client) displays the report on

the client; the Genero Report Viewer for HTML5 on page 558 displays the report in a browser;
alternatively, the report can be displayed as a PDF or Image, as an HTML or XML file, or output to an
Excel spreadsheet.

Steps to a Report
To use Genero Report Writer to create a report, you need to properly prepare your environment, create the
report application and report, and run and test the report.

• Set the Report Writer environment on page 553
• Create a Report on page 554
• Run the Report on page 554

Set the Report Writer environment
Complete these steps to set up the Report Writer environment

• From the Genero Studio main menu, select Tools>>Configurations.
• In the Compile/Runtime section of the Genero Configuration Management window, the default

environment sets are listed.
• The Report Writer environment set contains the variables that must be set for Genero Report Writer.

This environment set should be active (has a check mark in the box).

Report Writer | 554

Create a Report
Creating a report involves setting up a project to store the report files, developing a report application,
designing the report, and testing the report.

Set the Report Writer environment. See Set the Report Writer environment on page 553.

This procedure is provided to give you a quick start, or overview, for creating a report application. For
each step, there are many options that are not discussed here, but are covered in other topics. Use this
procedure as a guide for using Genero Report Writer to create reports.

1. Create the project.

A project contains the nodes for storing and managing your report application files. While there are a
variety of ways to create a new project

a) Select File >> New, Genero Files, Simple Project (.4pw) and click OK.
b) Select File >> Save as and complete the dialog to save your project.

2. Set up the project's application node.

The project tree should have a Group node, and the Group node should contain an application node, a
databases node, and a library node.

a) Rename the nodes to meaningful names.
b) In your application node, create two virtual folders named "src" and "reports".

These virtual folders are simply a suggestion; you are free to organize your files as you see fit.

3. Create your report application.

The Genero report application (4gl) is responsible for reading data from a database (or alternate data
source) and streaming it to the Genero Report Engine. See Writing the Genero BDL report program on
page 564.

4. Generate the data schema.

The data schema (rdd) file identifies the fields and the grouping of data streamed by the Genero
reporting application to the Genero Report Engine. It is used by the report design document, giving the
designer the ability to select fields for placement on a report and setting report triggers. See Generate a
data schema from a Genero BDL report program on page 572.

5. Create a report design document.

A report design document (4rp) is a file that defines a single report. For each report you need, you
would create a separate report design document. When it comes time to create a specific report, you
tell the report application which file to use.

a) Select File >> New, Reports and select either Empty Report (.4rp) or List Report (.4rp) to start a
new report.

b) On the Data View tab, select the data schema (rdd).
c) Report output can be output in various formats. Select File>>Report properties >> Output

confiugration to change the default output for the report.
d) Save the report design document and add it to the reports virtual folder in your application node.

For more information on working with the report design document, see The Report Design
Document on page 657.

6. Build the report application.

Right-click the report application node or the report group node in the Genero Studio Projects tab and
select Build to compile and link the application.

Run the Report

• Right-click the report application node in the Project Manager and select Execute to run the program.

Note: If the report data will come directly from a database, your BDL program must have
access at execution to the database where the data is stored.

• By default a new report is in SVG format, and the output is set to Preview using the Genero Report
Viewer; you can change these defaults in your Report Design document, or in your BDL program code.

Report Writer | 555

The Reports demo
The OrderReport demo application provides a sample reporting application, along with various reports
design documents.

These topics provide an overview of the general functionality of the demo application, as well as a
description of the provided sample reports.

• The Reports demo overview on page 555
• Run the Reports demo on page 555
• Genero Report Viewer for HTML5 on page 558

The Reports demo overview
When Genero Studio launches, the Welcome Page lists the demo projects. Select Reports to open the
OrderReport demo project in Genero Studio.

The Reports demo project consists of:

• Application files, generated or written using Genero Business Development Language.
• A set of report definition files, created with the Genero Report Designer.
• The data schema for the database used with the demo reports.

The demo project files can be found in Documents and Settings\<username>\Documents\My
Genero Files\samples\Reports. Each project is organized by an appropriately-named directory.

To run the demo:

• Expand the Reports project in the Project Manager, and right click on the Order Report application
node.

• Select Execute from the context menu.

Run the Reports demo
When the report begins to run, the application displays a dialog box to allow you to select the report you
wish to run, and the output format.

Figure 310: Reports demo form

1. Select a report from the combobox. See Reports demo reports on page 556 for the list of reports.
2. Select the output format. See Reports demo outputs on page 557 for the output options.
3. Select the desired action, to Save On Disk or Preview. See Reports demo outputs on page 557 for

more details.

Report Writer | 556

Reports demo reports
When you run the Reports demo. you select the desired output.

With the Reports demo, you select a report from the combobox. The reports include:

OrderReport A report detailing a customer order. This report
illustrates the use of the section property, as well
as the use of different page headers and footers on
each page.

OrderLabels A report consisting of pages of mailing labels
for customers. This report illustrates the labels
functionality, enabling you to print multiple labels on
a single report page.

OrderList A report showing a text-based list, based on the list
template.

OrderStock A report displaying stock information, including
a bar code. This report illustrates the use of
attachment and positioning rules, and shows you
how to design a report onto pre-printed paper using
a background image.

ListDemo a report in list format that includes images, totals,
and conditional text coloring. This report provides
two examples of RTL expressions that control the
font color and the "thumbs-up/thumbs-down" image
at runtime, based on a field value.

Generic List A report that provides an interface that allows you to
select which fields are included in the list report.

TableDemo A report in table format. This report shows a simple
usage of a table.

GroupTableDemo A report in table format. This report shows a table
with several header and body rows.

CategoryChart* Several examples showing a category chart, or a
chart that is grouped by two fields. These examples
show how different charts can be produced from the
same data

MapChart* Several examples showing a map chart, or a chart
that is grouped by one field. These examples show
how different charts can be produced from the
same data

StaticPivotTable A table of customer data, grouped by customers
and orders.

Note: Static pivot tables are not yet
supported in Java.

DynamicPivotTable Allows you to select which fields to use as
dimensions (for grouping) and which fields to
include as measures. Generates a table of user-
selected measures, grouped by user-selected
dimensions.

MasterReport A report showing the use of sub-reports.

Report Writer | 557

Note: Sub-reports are not yet supported in
Java.

Reports demo outputs
When you run the Reports demo, you determine the format of the report output, and whether it is saved to
disk.

Output formats

The Output As section of the Reports user interface allows you to select the output format for your report.

Image An image file is created. By default, with the demo
app, it is created in .jpg format.

• If preview is selected, the image displays in the
default image viewer for the client.

• If save on disk is selected, the image is created
in the GRW demo project directory.

PDF A .pdf file will be created in the GRW demo project
directory. The file can be viewed with an Acrobat
PDF reader.

SVG An SVG file will be created in the GRW demo
project directory.

Browser An SVG file will be created for viewing and is
displayed using HTML5, with the Genero Report
Viewer for HTML5 on page 558.

Excel XLS Spreadsheet The report data is output in Excel format.

RTF (MS-Word) The file is save in Rich Text Format (RTF), which
provides a format for text and graphics interchange
that can be used with different output devices,
operating environments, and operating systems;
more that just Microsoft Word.

HTML The report document is output in HTML format

Output actions
You can either view the report immediately, or you can save the report to disk.

Preview Displays the report according to the selected output
option. A copy is not saved to disk.

Save On Disk Saves a copy of the report to disk. The report will be
saved in the demo project directory. The name of
the report will be "report", with an extension of .pdf
or .svg, or image000#.jpg where # is incremented
sequentially from 1 for each successive image that
is saved to disk.

Genero Report Viewer
If you choose SVG as the output format and Preview as the action, the report displays in the Genero
Report Viewer, which is automatically installed as part of the Genero Desktop Client.

The Report Viewer is a component of the Genero Desktop Client that is automatically installed by the
installation program of the GDC; it can be used to display reports that are in the SVG format only.

Report Writer | 558

Important: SVG format for reports is currently not supported for previewing when running with the
Web Client.

Figure 311: Genero Report Viewer

Use the File>>Print menu option in Report Viewer to send the report to a printer.

Genero Report Viewer for HTML5
If you choose Browser as the output format and Preview as the output action, the report displays in the
Genero Report Viewer for HTML5

Genero Report Viewer for HTML5 is a lightweight report viewer based on pure HTML5 and JavaScript
technologies. It is optimized for low bandwidth and slow networks. The rendering is pixel-exact. Fonts are
optimized, including good performance for Asian fonts. In terms of performance, it allows streaming and
can display pages immediately as they become available. It fetches only what is necessary. The reports
are static files and, as such, can be viewed at any time by sharing the relevant URLs.

Report Writer | 559

Figure 312: Genero Report Viewer

In addition to displaying the report, the report viewer provides navigation options. It supports direct
navigation to a specific page. The Print icon prepares the report in a single HTML page that you can then
print using your browser's print functionality.

Configure fonts and printers
To consistently output well-formatted reports, you should verify that you have the necessary fonts and
printers available.

• Available Fonts and Printers
• Tips on installing common Fonts or new Fonts
• Specific Font Types

Available fonts and printers
Scripts are provided to get information about the available fonts and printers for that machine.

The scripts can be found in the in the $GREDIR/bin directory. The scripts are executed from the
command line.

• fontinfo - Lists the fonts available on your server.
• fontinfopdf - Lists only the fonts that can be used in PDF files.
• printerinfo - Lists the available printers.

For additional information about the use of printerinfo, see Support for custom paper sources on
page 591.

What printers are supported?

The printerinfo script lists the available printers, however not all available printers are supported.

The printers supported must be graphical printers.

• On Windows™, a Windows™ printer driver for the printer in question must be installed.
• On UNIX™, the printer must support Postscript or a converter from Postscript to the printer's native

language (typically a ghostscript backend) must be installed and configured.

Plain text printers or bar code printers with proprietary control languages are not supported.

Report Writer | 560

Search the internet for Windows™ drivers for some brands of thermal transfer bar code printers when the
vendor does not provide a driver, as others have specialized in providing such drivers.

Do not use dot matrix printers in graphical mode, even if the drivers exist. The speed is typically too slow,
and the print results are poor.

UNIX™ and CUPS

• CUPS should be used if available. Direct the browser to http://host:631. Always make use of the "print
the test page" option during the installation.

• If CUPS is not available and the printer is listed in printerinfo but does not work, test if any other
graphical application (such as OpenOffice or FireFox) can print to that printer.

Install new or common fonts
The best results are achieved if the fonts on the server where Genero Report Engine (GRE) is installed
and those used in the Genero Report Designer (GRD) are the same.

• If GRE and GRD are installed on the same machine, there is no problem.
• If GRE and GRD are installed on different machines that have the same operating system and the

same installed fonts, there is no problem.

On Windows™ systems you can use scripts to get information about the available fonts.

A report that uses only a few positioned items will still lay out correctly, however, even if the fonts used in
the Designer and the fonts used in the GRE server differ:

• If the server cannot find a specified font, it does not raise an error; it uses a fallback font instead. A
warning has been added to the runtime system in debugging mode ($GREDEBUG > 0) when a fallback
font is used because a font specified in a template file cannot be found on the system.

• If no font is specified, a default font is used.

Specify a font at the root of the document, to avoid potentially changing output when a new version of
Java™, or a different server, is used. In the Report Designer, set the font property for the Page Root node.

Not all fonts contain all possible characters. Some fonts will not contain certain glyphs. In this case, GRE
will attempt to take the missing characters from a different font that contains the glyphs. For example, the
monospaced (fixed-width) font "Courier" does not contain graphics characters. If a report contains a grid
that is drawn using graphics characters, GRE might substitute characters from a set that is not fixed-width,
causing the layout to break. Avoid this problem by using a font like "Lucida Sans Typewriter", which is both
fixed-width and contains the required characters.

Not all fonts can be used for embedding in PDF: the license flag contained in the font might prevent a
font from being used. The utility $GREDIR/bin/fontinfopdf lists all fonts that can be used in PDF
documents. While True Type fonts generally work, sometimes a Type 1 font will not appear in the list
because it is available only as text (.pfa) but not as a binary file (.pfb). In this case, the binary font can be
created by using font compilation tools such as pfa2pfb or t1binary from the t1binaries package.

Specific font types
Determine whether the fonts you wish to use are available for your system, and are usable by both the
designer and the runtime system.

Type 1 and Windows™ TrueType Fonts

Genero Report Engine is capable of reading both Type 1 and Windows™ TrueType fonts. It is possible
to copy fonts from Windows™ to UNIX™. Since the TrueType directories can differ between Linux™

distributions and between different UNIX™ versions, copy the fonts into /usr/lib/X11/fonts/TTF (for
TTF fonts) or to /usr/lib/X11/fonts/Type1 (for Type1 fonts), where they will be found by GRE. To
check whether GRE sees the font, run the executable $GREDIR/bin/fontinfo, listing the fonts seen by
the GRE.

Report Writer | 561

Important: You must identify whether the fonts you wish to copy violate any copyrights.

Lucida family of Fonts

SUN-Java contains a basic set of fonts (Serif, Sans Serif and Monospaced) in the "Lucida" family. Some
distributions of the Java™ Runtime Environment do not contain all fonts, but it is legal to copy the fonts
from one distribution to another. These fonts contain a large part of the Unicode characters.

The available codes are listed in http://java.sun.com/j2se/1.5.0/docs/guide/intl/font.html#lucida.

Liberation fonts

Another option for free fonts is the "Liberation" fonts originally provided by Red-Hat. These fonts have
the same metrics (character width) as the Microsoft™ fonts Arial, Times New Roman, and Courier, and
a similar look. These fonts can be installed on both Windows™ and Linux™. A description of the fonts
can be found at http://en.wikipedia.org/wiki/Liberation_fonts. The fonts can be downloaded at https://
www.redhat.com/promo/fonts.

Asian Fonts

When using Asian fonts in PDF or SVG documents:

• Set the fidelity property to "true" on any WORDBOX or WORDWRAPBOX using Asian characters.
• For reports running in compatibility, set the parameter fidelity to "true" in calls to the API function

fgl_report_configureCompatibilityOutput().

Make sure the specified fonts contain the required characters. The designer will display the characters
correctly even though the selected font may not contain them; the runtime system does not have this
behavior.

Create a report program
With Genero Report Writer, you create the code to fetch and stream the data to the Genero Report Engine,
to select the report design document, and to influence how the report is output, overriding default output
settings or output settings specified in the report design document.

Genero Report Writer provides the ability to generate or write the data source, which defines the data that
is to be streamed to the report engine.

Two tools exist to assist you in generating your Genero report application:

• The Report Data Wizard provides an easy-to-use interface for creating the data source.
• The Business Application Modeler allows you to diagram an application, of which the report is one

component.

Once defined, a data source can be integrated into the code of your existing applications, or it can be
included in a new custom reporting application. The use of the Genero Report Writer APIs allow further
control over the processing of the reports.

The language you use to create your data source will likely be dependent upon the language used for your
existing applications, as the goal is to have seamless integration of the Genero Report Writer code with
these applications.

• Genero BDL and the Report Writer on page 562

http://java.sun.com/j2se/1.5.0/docs/guide/intl/font.html#lucida
http://en.wikipedia.org/wiki/Liberation_fonts

Report Writer | 562

Genero BDL and the Report Writer
You can create a data source and control the report output with a program written in Genero.

The runtime architecture (GRW for Genero BDL)
The Genero BDL application is one part of the runtime architecture for Genero Report Writer for Genero
Business Development Language.

Figure 313: Genero Report Writer workflow

• The Genero Business Development Language (BDL) defines the data needed from the database

• The Genero DVM (Dynamic Virtual Machine) executes the BDL code to retrieve the data
• The Genero DVM streams data from the database to the Genero Report Engine (GRE)

• The Genero Report Designer (GRD) graphically lays out the report

• The Genero Report Engine (GRE) lays out paged streams to Genero Report Viewer (GRV)
• The Genero Report Viewer (GRV) (part of the Genero Desktop Client) displays the report on the

client; alternatively, the report can be displayed as a PDF or Image, as an HTML or XML file, or output
to an Excel spreadsheet.

Steps to a Report (GRW for BDL)
To use Genero Report Writer to create a report, you need to properly prepare your environment, create the
report application and report, and run and test the report.

• Set the Report Writer environment (GRW for BDL) on page 562
• Create a Report (GRW for Genero BDL) on page 563
• Run the Report (GRW for BDL) on page 564

Set the Report Writer environment (GRW for BDL)

• Select Tools >> Genero Configurations. The Genero Configuration Management window opens.
• The default environment sets are listed in the Environment Sets section.
• The Report Writer environment set contains the environment variables that must be set for Genero

Report Writer. This environment set should be active (checked).

Note: At the application level, you must include the library libgre.42x. See Create a Report
(GRW for Genero BDL) on page 563.

Report Writer | 563

Create a Report (GRW for Genero BDL)
Creating a report involves setting up a project to store the report files, developing a report application,
designing the report, and testing the report.

Before you begin, set the Report Writer environment. See Set the Report Writer environment (GRW for
BDL) on page 562.

This procedure is provided to give you a quick start, or overview, for creating a report application. For
each step, there are many options that are not discussed here, but are covered in other topics. Use this
procedure as a guide for using Genero Report Writer to create reports.

1. Create the project.

A project contains the nodes for storing and managing your report application files.

a) Select File >> New.
b) In the Categories listing, select the language you wish to work with.
c) In the Types listing, select the default project (4pw) and click OK.
d) Select File >> Save as and complete the dialog to save your project.

2. Set up the project's Application node.

The project tree should have a Group node, and the Group node should contain an application node, a
databases node, and a library node.

a) Rename the nodes to meaningful names.
b) Right-click on the application node to create files and folders. For example, create two virtual folders

named src and Designs, and create a source file named myreport.4gl.

Note: You must add the END and END MAIN code to the source file before it enables you to
save.

c) In the Properties view, set the External dependencies value to libgre.42x.

For more information about the libgre.42x library file, see the GRW reference for Genero BDL
applications on page 599 section.

3. Create your report application.

The report application is responsible for reading data from a database (or alternate data source) and
streaming it to the Genero Report Engine.

4. Generate the data schema.

The data schema file identifies the fields and the grouping of data streamed by the Genero reporting
application to the Genero Report Engine. It is used by the report design document, giving the designer
the ability to select fields for placement on a report and setting report triggers. See Generate a data
schema from a Genero BDL report program on page 572.

5. Create a report design document.

A report design document (4rp) is a file that defines a single report. For each report you need, you
would create a separate report design document. When it comes time to create a specific report, you
tell the report application which file to use.

a) Select File >> New, Reports and select either Empty Report (.4rp) or List Report (.4rp) to start a
new report.

b) On the Data View tab, select the data schema.
c) Report output can be output in various formats. Select File >> Report properties >> Output

Configuration to change the default output for the report.
d) Save the report design document and add it to the Designs virtual folder in your application node.

For more information on working with the report design document, see The Report Design
Document on page 657.

6. Build the report application.

Right-click the report application node or the report group node and select Build to compile and link the
application.

Report Writer | 564

Run the Report (GRW for BDL)

• Right-click the report application node in the Projects view and select Execute to run the program.

Note: If the report data will come directly from a database, your report program must have
access at execution to the database where the data is stored.

• By default a new report is in SVG format, and the output is set to Preview using the Genero Report
Viewer; you can change these defaults in your Report Design document, or in your report program
code.

BDL programs
You can code a reporting application using Genero Business Development Language.

• Writing the Genero BDL report program on page 564
• Create labels: the report program (Genero BDL) on page 580
• Report Data Wizard on page 581

Writing the Genero BDL report program
A Genero BDL report program retrieves the data and outputs it to a report.

• Overview on page 564
• Tips on page 565
• Creating a simple report on page 565
• Fetching report data on page 569
• Output options on page 571
• Generate a data schema from a Genero BDL report program on page 572
• Allowing the user to select output options on page 572
• Running a Genero ASCII report using GRW (Compatibility Report) on page 574
• Sub reports on page 575

Overview
Genero BDL is used to write the code for a 4gl file that retrieves the data, often from a database, and
outputs it to a report.

This BDL program contains:

• The Report Driver, which specifies the data the report will include. If you are retrieving data from
database tables, for example, a database cursor is defined to retrieve specific rows. The Report Driver
stores the database values in program variables, and sends these - one record at a time - to the
REPORT program block.

• The REPORT program block, which specifies the control blocks for a report, and sends the data to the
Genero Report Engine. Variables can be defined to allow calculations on the data values, which are
output along with the data values.

The Genero Report Engine uses the data and the Report Design document (4rp - created using Genero
Report Designer) to process and output the report, in accordance with the reporting API functions that have
been called by the BDL program.

See Steps to a Report (GRW for BDL) on page 562 for a complete outline of the reporting process.

Some Tips for Legacy Report Designers provides information about the correlation between Report
Designer and traditional 4GL commands in reports.

The OrderReport.4gl example program included in the GRW demo Reports:

• Retrieves the data and outputs it to the Report Engine.
• Allows the user to select the desired report and the output settings, by displaying a form

(Configuration.42f) for input.
• Uses the Reporting API function fgl_report_loadCurrentSettings() to load the original settings from the

4rp file. (Additional optional functions can specify the changes to be made to those settings, based on
the user input.)

Report Writer | 565

• Uses the Reporting API function fgl_report_commitCurrentSettings() to commit the changes this
program has made.

• The Form Design file for this form, (Configuration.4fd) is one of the files in the GRW demo
project,Reports.

See the Reporting API for the specific functions that you can use to control the output of a report; some
examples are in Change Report Output Options.

Tips
Tips for writing a BDL report program.

1. The Reporting API functions fgl_report_loadCurrentSettings and fgl_report_CommitCurrentSettings
are required and must be called in sequence. (Calls to these functions bracket any calls to other
functions that change the default output options.) These functions must be called in the program prior
to executing the START REPORT command in the Report Driver. If your program does not change the
default output options, you can simply call the single function fgl_report_loadAndCommit instead.

2. Always use ORDER EXTERNAL in the REPORT program block to tell the report that the input records
have already been sorted by the SELECT statement, and there is no need for the program to resort the
fields. This will improve performance.

3. Restrict your use of control blocks in the REPORT program block to FIRST PAGE HEADER, BEFORE
GROUP OF, AFTER GROUP OF, ON EVERY ROW, or ON LAST ROW. See The Report Program
Block.

4. Prefer the use of fields over expressions to hold report values. Since expressions don't have names,
it will be difficult to reference them in the Report Design Document (they could only be referenced by
index).

5. Prefer calculating values in the REPORT program block over calculating in the Report Design
Document, to use the power of the DVM.

6. Don't be stingy when outputting fields; this will enhance the ability to use the BDL source for multiple
report formats. Define a record, orderline for example, that contains all the data fields retrieved from
the database by the database cursor; use that record definition in the OUTPUT to REPORT statement:

 OUTPUT TO REPORT <reportname> (orderline.*)

Creating a simple report
This example BDL program (SimpleReport.4gl) uses data from the officestore database to create a
report. There are more complex examples in the Reports project provided as a demo with Genero Report
Writer.

Type Definition

This section gives the database schema used in variable definitions, and defines a User Type that consists
of a single record containing all the fields from all the referenced tables.

Creating a TYPE allows the record definition to be specified only once in the program; thereafter, the name
of the TYPE is used in the program wherever that record definition would be required.

SCHEMA officestore

TYPE ORDERTYPE RECORD
 orders RECORD LIKE orders.*,
 account RECORD LIKE account.*,
 country RECORD LIKE country.*,
 lineitem RECORD LIKE lineitem.*,
 product RECORD LIKE product.*,
 category RECORD LIKE category.*,
 item RECORD LIKE item.*
 END RECORD

Report Writer | 566

MAIN program block

The MAIN program block contains the program logic that allows a user to run a report.

• defines a report handler object.
• call the mandatory BDL functions that configure the report:

• fgl_report_loadCurrentSettings accepts the name of the Report Design document (4rp) as a
parameter. The return value is a boolean indicating whether the load of the settings from the 4rp file
was successful.

• fgl_report_commitCurrentSettings returns a SaxDocumentHandler object, defined as handler.
• calls the Report Driver function, runReportFromDatabase, to run the report, passing handler.

Note: The example runReportFromDatabase function contains the START REPORT statement.
Do not place any code between the call to fgl_report_commitCurrentSettings and the START
REPORT statement that would allow the user to cancel the report

MAIN

 DEFINE handler om.SaxDocumentHandler-- report handler

 --call the mandatory functions that configure the report
 IF fgl_report_loadCurrentSettings("myreport.4rp") THEN -- if the file
 -- loaded OK
 LET handler = fgl_report_commitCurrentSettings() -- commit the
 file
 -- settings
 ELSE
 EXIT PROGRAM
 END IF

 -- run the report by calling the report driver contained
 -- in your function runReportFromDatabase
 IF handler IS NOT NULL THEN
 CALL runReportFromDatabase(handler)
 END IF

 END MAIN

Important: The libgre.42x library contains these mandatory functions and other BDL helper
functions for Reports. This library must be included in any report application. List this library in the
external dependencies property of any Genero Studio Project Manager application node that
uses Genero Report Writer.

The Report Driver

The runReportFromDatabase function uses SQL to extract the data from the database officestore:

• handler previously created by the fgl_report_commitCurrentSettings function is passed to this
function

• defines a record variable orderline using the User Type defined in MAIN
• defines handler passed as a parameter to this function
• makes a connection to the database in unique-session mode, since the program will not need to

connect to other databases.
• declare a cursor for the SQL statement.
• uses the ORDER BY clause of the SQL statement defines the sort order of the data.
• These next statements are only used when the data is being retrieved from a database.

• the BDL statement START REPORT <reportname> TO XML HANDLER must be used to instantiate
the report driver, using the handler that was passed to this function; this specifies that the report
data should be output in XML format.

Report Writer | 567

• the FOREACH loop opens the cursor and fetches the data from the database into the record
variable, one row at a time.

• the OUTPUT TO REPORT statement outputs each data row to the REPORT program block.
• the FINISH REPORT terminates the BDL report process.
• closes the SQL cursor.

 FUNCTION runReportFromDatabase(handler)
 DEFINE orderline ORDERTYPE, -- User Type defines record
 handler om.SaxDocumentHandler -- definition for parameter
 -- passed to this function

 DATABASE "officestore" -- database connection
 DECLARE c_order CURSOR FOR -- cursor declaration
 SELECT orders.*,
 account.*,
 country.*,
 lineitem.*,
 product.*,
 category.*,
 item.*
 FROM orders, account, lineitem, product, category, item, country
 WHERE
 orders.orderid = lineitem.orderid
 AND orders.userid = account.userid
 AND lineitem.itemid = item.itemid
 AND item.productid = product.productid
 AND product.catid = category.catid
 AND country.code = orders.billcountry
 ORDER BY orders.userid, orders.orderid, lineitem.linenum

 START REPORT report_all_orders TO XML HANDLER handler -- handler that
 was
 -- passed to this
 function
 FOREACH c_order INTO orderline.* -- use cursor to fetch
 data
 OUTPUT TO REPORT report_all_orders(orderline.*) -- send data to
 report
 -- function
 END FOREACH
 FINISH REPORT report_all_orders
 CLOSE c_order

 END FUNCTION

See the Genero Business Development Language User Guide for additional information about the use of
cursors, connections, and BDL report statements.

The REPORT program block

This program block accepts the data from the driver, specifies the order in which the data was sorted, and
outputs the data to be formatted as specified in the report design page (4rp).

The FORMAT section specifies the control blocks for a report. The use of each control break is optional,
depending on the requirements of your report document. We recommend that you restrict your usage to
these control blocks:

• FIRST PAGE HEADER - specifies the action that the runtime system takes before it begins processing
the first input record.

Report Writer | 568

• BEFORE GROUP OF/AFTER GROUP OF - specifies the action the runtime system takes before or
after it processes a group of input records.

• ON EVERY ROW - specifies the action the runtime system takes for every input record that is passed
to the report definition.

• ON LAST ROW - specifies the action the runtime system takes after it processes the last input record
that was passed to the report definition and encounters the FINISH REPORT statement.

See BDL Reports in the Genero Business Development Language User Guide for a complete discussion of
the BDL statements associated with a REPORT block.

Note: Since PAGE HEADER and PAGE TRAILER are triggered based on the line count of the
BDL report, which does not correspond with the actual page breaks, their usage should be avoided.
Create page headers and footers in the report design document instead.

Example REPORT block from SimpleReport.4gl:

• define variables to allow calculations on the data values; the calculations are output along with the data.
• the ORDER EXTERNAL BY statement informs the report that the data was retrieved, and will be

output, in the specified sort order
• the FORMAT section of the report uses control blocks to set the values of the report variables used to

store calculations and to send the report data and calculations to the report. Unlike a Genero report, the
PRINT statement does not contain any formatting of the data or the report line (SPACES, LINE_NO,
and COLUMN operators aren't used, for example.) The report format is specified in the Report Design
document (4rp).

• set the variable overalltotal to zero at the control break at the beginning of the report (FIRST PAGE
HEADER).

• re-set the variable ordertotal to zero each time the value of orderid changes in the data received from
the report driver (BEFORE GROUP OF).

• For each row of data received from the report driver (ON EVERY ROW), these lines store some
calculations in variables. The PRINT statement outputs the database data and variables to the report, in
XML format.

 REPORT report_all_orders(orderline)
 DEFINE
 orderline ORDERTYPE,
 lineitemprice LIKE lineitem.unitprice, -- total price for item
 overalltotal LIKE orders.totalprice, -- accumulator for total
 price
 -- for report
 ordertotal LIKE orders.totalprice -- accumulator for total
 price
 -- for order

 -- specify the order of the sorted data resulting from SQL statement
 ORDER EXTERNAL BY orderline.orders.userid, orderline.orders.orderid,
 orderline.lineitem.linenum

 FORMAT
 FIRST PAGE HEADER
 LET overalltotal=0 -- initialize report total

 BEFORE GROUP OF orderline.orders.orderid
 LET ordertotal=0 -- initialize ordertotal for
 -- each new order

 -- after calculations for each data row, output the data and
 -- the calculations to the Report Engine
 ON EVERY ROW
 LET lineitemprice = orderline.lineitem.unitprice *
 orderline.lineitem.quantity
 LET overalltotal=overalltotal + lineitemprice

Report Writer | 569

 LET ordertotal=ordertotal + lineitemprice
 PRINT orderline.*, lineitemprice, overalltotal, ordertotal

 END REPORT

Fetching report data
You can obtain the data for the report in several ways.

From a database using SQL
You can use SQL statements to retrieve the data for the report from database tables, requiring a
connection to the database and the use of an SQL cursor.

The SimpleReport.4gl program uses this technique, shown in the runReportFromDatabase function.

From a data file
You can get the report data from a data file - one created by the BDL UNLOAD statement, for example.

This example uses the OrderReport.unl file in the GRW demo Reports.

The only change to the MAIN program block would be the call to the runReportFromFile function in line 26.

MAIN

 DEFINE handler om.SaxDocumentHandler -- report handler

 --call the mandatory functions that configure the report
 IF fgl_report_loadCurrentSettings("myreport.4rp") THEN -- if the file
 -- loaded OK
 LET handler = fgl_report_commitCurrentSettings() -- commit the
 file
 -- settings
 ELSE
 EXIT PROGRAM
 END IF

 -- run the report by calling the report driver contained in your
 -- function runReportFromFile
 IF handler IS NOT NULL THEN
 CALL runReportFromFile(handler)
 END IF

END MAIN

The function runReportFromFile replaces the runReportFromDatabase function as the Report Driver. It
uses the unload file OrderReport.unl to provide the data for the report.

• Defines ch as a variable of type base.channel. The BDL Channel class provides read/write access to
files.

• Defines the variable dataFile to specify the unload file containing the data.
• Assigns the report name to the dataFile variable.
• Creates the ch channel object.
• opens the channel to the data file OrderReport.unl in read (r) mode.
• The WHILE statement reads a line from the data file, providing the variable list enclosed in brackets.

The line is output to the REPORT program block. The statement terminates when all the lines have
been read.

• Closes the channel.

 FUNCTION runReportFromFile(handler)
 DEFINE
 orderline OrderType,
 handler om.SaxDocumentHandler,
 ch base.channel, -- definition of channel object

Report Writer | 570

 dataFile String -- file containing report data

 LET dataFile = "./OrderReport.unl"
 LET ch = base.Channel.create()
 CALL ch.openFile(dataFile,"r")

 START REPORT report_all_orders TO XML HANDLER handler
 WHILE ch.read([orderline.*])
 OUTPUT TO REPORT report_all_orders(orderline.*)
 END WHILE
 FINISH REPORT report_all_orders

 CALL ch.close()
 END FUNCTION

From an XML file
You can get the report data from an XML file instead of getting it directly from a database.

The XML file can be a ProcessLevelData file created by a Genero report (Output to an XML File) which
has a special format, or it may be an arbitrary XML file.

From A ProcessLevelData file

This XML file has a special format, and is created using the Report Writer API function
fgl_report_createProcessLevelData File().

The MAIN block of SimpleReport.4gl would change as follows:

• Provides the name of the data file to be used for the report
• Use the BDL function fgl_report_runReportFromProcessLevelDataFile to run a report using a data file.

The parameters are:

• The report handler object
• A String containing the name of the XML file that contains the data

• This function will replay the report from the file thereby replacing the running of the report (START
REPORT, OUTPUT TO REPORT, FINISH REPORT statements).

MAIN

 DEFINE handler om.SaxDocumentHandler, -- report handler
 data_file String, -- XML file containing data
 report_ok boolean -- return value from function

 --call the mandatory functions that configure the report
 IF fgl_report_loadCurrentSettings("myreport.4rp") THEN -- if the file
 -- loaded OK
 LET handler = fgl_report_commitCurrentSettings() -- commit the file
 -- settings
 END IF

 --call the report driver to run the report
 IF handler IS NOT NULL THEN
 LET data_file = "./OrderReportData.xml"
 LET report_ok =
 fgl_report_RunReportFromProcessLevelDataFile(handler, data_file)
 ELSE
 EXIT PROGRAM
 END IF

END MAIN

Report Writer | 571

From Other XML files

XML files that were not created by the Reporting API function fgl_report_createProcessLevelData File()
can be used as the data source for a Genero report. The file OrderData.xml in the demo sample files of
the Reports project is an example of this type of file.

The function fgl_report_runFromXML is used to specify the data source:

• This function sets up the report engine based on the current settings that have previously been
loaded by a call to fgl_report_loadCurrentSettings(), and may have been modified by calls
to fgl_report_selectDevice() or fgl_report_selectPreview(). The function automatically calls
fgl_report_commitCurrentSettings().

• This function will replay the report from the file thereby replacing the running of the report (START
REPORT, OUTPUT TO REPORT, FINISH REPORT statements).

This example is from the OrderReportXML.4gl demo program in the Reports project:

MAIN

 IF NOT fgl_report_loadCurrentSettings("Table.4rp") THEN
 EXIT PROGRAM
 END IF

 IF NOT fgl_report_runFromXML("OrderData.xml") THEN
 DISPLAY "RUN FAILED"
 EXIT PROGRAM
 END IF

END MAIN

From a Web Service
Web Services can be used to fetch data for a report. BDL functions allow you to access a web service and
retrieve data, storing it in BDL program variables.

See Using Web Services in the Genero Studio User Guide, and the GWS User Guide for additional
information and examples.

Output options
Various output formats are available for a report, to include SVG, PDF and image files. The output will be
sent to the destination specified by the output options.

Default Output

If you don't override the default options, on report execution the user will:

• Create an SVG report
• Preview the Report in Genero Report Viewer (for desktop reporting applications) or Genero Report

Viewer for HTML5 (for web-based reporting applications).

From the Genero Report Viewer, a user can then direct the output to a printer.

The Reporting API provides BDL functions to change the output in your BDL program by overriding the
default options. Some examples are provided in Changing Output Options; also see Allow User to Select
Output.

Output Options in the 4rp (Report Design Document)

You can define paper settings and output options for a report within the report design document itself. To
do this, open a report in the Genero Report Designer, and select File >> Report properties >> Paper
settings or File >> Report properties >> Output options. These values can be changed at runtime,
using the reporting APIs. See Change paper settings and output format on page 589.

See also: Configuring Fonts and Printers

Report Writer | 572

Generate a data schema from a Genero BDL report program
After you write or modify a Genero report program, you must generate the data schema (rdd) file. This file
is used by the Genero Report Designer to provide a list of data objects for use in the report design.

The data schema (rdd) file is based on the SQL statement in your Genero report application source file
(4gl). This rdd file is used in the report design document (4rd) to populate the Data View, providing
details about the fields that will be streamed by the application. The schema contains the list of database
columns that make up your data record, as well as grouping details.

Although the data for the report originally may have come from several different data tables, the PRINT
statement in your BDL REPORT program block outputs the data as part of a single record. See the Genero
Studio >> Report Writer documentation topic "Writing the BDL Program" for more information.

From the command line

Use the --buildrdd command-line option of the fglcomp tool to create a data schema (rdd file). For
example:

fglcomp --build-rdd SimpleReport.4gl

The output of this command will be SimpleReport.rdd. The rdd file will be stored in the same location
as the 4gl file.

Note: If your Genero program contains multiple 4gl files, run fglcomp against the file containing
your REPORT program block.

From Genero Studio

Add --build-rdd to the Compiler options property for your Genero source (4gl) file to generate the
rdd file automatically each time the 4gl file is compiled. Select the 4gl file listing in the application node
of the Project tab to display its properties in the Properties View. The rdd file will be stored in the directory
specified in the Target Directory property of the application node that contains the 4gl file.

Allowing the user to select output options
Users can choose the format to see the report output.

In the GRW demo program Order Report, this form allows the user to make choices regarding the output:

Figure 314: Report demo Form

This code implements this functionality. The form definition file, Configuration.4fd, is included in the
demo files for Reports, the GRW Demo.

The MAIN block of SimpleReport.4gl would change as follows:

• Call a function named select_output that displays the form and returns the user's choices

Report Writer | 573

• Configure the report using the mandatory Reporting API functions plus these additional functions:

• fgl_report_selectDevice - sets the report output device; the parameter is one of: "Printer", "PDF",
"Image", "SVG" .

• fgl_report_selectPreview - sets the preview option; the parameter is TRUE (preview) or FALSE (no
preview).

 MAIN

 DEFINE handler om.SaxDocumentHandler, -- report handler
 data_file String, -- XML file containing data
 report_ok boolean, -- return value from function
 r_filename STRING, -- filename of desired report
 r_output STRING, -- output format
 preview INTEGER -- preview indicator

 -- call the mandatory functions that configure the report using the
 -- choices made by the user
 -- in your new select_output function
 CALL select_output() RETURNING r_filename, r_output, preview
 IF fgl_report_loadCurrentSettings(r_filename) THEN -- if the file loaded
 OK
 CALL fgl_report_selectDevice(r_output) -- changing default
 CALL fgl_report_selectPreview(preview) -- changing default
 LET handler = fgl_report_commitCurrentSettings() -- commit changes
 ELSE
 EXIT PROGRAM
 END IF

 -- run the report by calling the report driver contained in
 -- your function runReportFromDatabase
 IF handler IS NOT NULL THEN
 CALL runReportFromDatabase()
 END IF

 END MAIN

select_output - this new function displays a form allowing the user to specify the name of the report to be
run (the name of the 4rp file), the output format, and whether a preview is preferred.

 FUNCTION select_output()
 DEFINE
 r_output STRING, -- output format option
 r_action STRING, -- used to set preview option
 r_filename STRING, -- filename of Report Design document (4rp
 filename)
 preview INTEGER -- preview option TRUE/FALSE, to display
 -- report in Report Viewer

 CLOSE WINDOW SCREEN
 OPTIONS INPUT WRAP
 -- display form allowing user to select the 4rp filename and output
 options
 OPEN WINDOW f_configuration WITH FORM "Configuration"
 LET INT_FLAG=FALSE
 LET preview = FALSE
 INPUT BY NAME r_filename,r_output,r_action
 ON ACTION CANCEL
 EXIT PROGRAM
 ON ACTION CLOSE
 EXIT PROGRAM
 END INPUT

Report Writer | 574

 CLOSE WINDOW f_configuration
 CALL ui.interface.refresh()

 -- set preview variable to match output option r_action
 IF r_action IS NOT NULL THEN
 IF r_action == "preview" THEN
 LET preview = TRUE
 END IF
 END IF

 -- return report name (filename of Report Design Document) and output
 -- option variables to be used to configure the report engine
 RETURN r_filename||"4rp", r_output, preview

 END FUNCTION

Running a Genero ASCII report using GRW (Compatibility Report)
This type of report is referred to as a compatibility report.

If you have an existing Genero BDL program (4gl) that creates an ASCII report, you can execute the
program using the Genero Report Writer without changing the existing Report Driver or the existing Report
program block, and without creating a Report Design document (4rp).

These additional lines would be made in the MAIN program block of the 4gl file, to call the mandatory API
functions that configure the report:

DEFINE handler om.SaxDocumentHandler

IF fgl_report_loadCurrentSettings(NULL) THEN -- switch on
 Compatibility mode
 -- (run without 4rp file)
 LET handler = fgl_report_commitCurrentSettings() -- commit settings
END IF

Switching on Compatibility mode overrides the "TO ..." part of the START REPORT BDL statement.

The formatting of the report will be that specified in the REPORT program block of your BDL program.
(See Auto-formatting for an alternative to the Compatibility format.) The report engine will use the default
output settings, displaying a preview of the report in SVG format in the Report Viewer. Additional SVG
preview options are available, using the API function fgl_report_configureSVGPreview. The API function
fgl_report_configureCompatibilityOutput can optionally be used to change the default output settings.

The demo report OrderReportASCII illustrates this feature.

Auto-formatting Reports that have no 4rp (Report Design Document)
Beginning with version 2.40, auto-formatting of these reports that have no report design document (4rp)
is available, as an alternative to the Compatibility format. New API calls have been added to provide
generic report formatting. Currently only one design is provided, a simple list design that is compatible
with the List Report template that is shipped with Genero Report Writer. This type of auto-formatting is
particularly well suited to produce Excel output from arbitrary reports. See fgl_report_setAutoformatType
and fgl_report_configureAutoformatOutput.

Report Metadata in Compatibility Reports

New API functions allow you to add report metadata to Compatibility Reports. These functions are intended
to be used for compatibility reports only. See Report Metadata functions. For regular reports, the metadata
can be set in corresponding properties in the Properties View of the Report Designer.

Report Writer | 575

Mixing Genero ASCII Reports, GRW Reports, and Compatibility Reports

Genero ASCII (text-based) reports and GRW (graphical) reports can be run from the same Genero
program without requiring any additional calls.

However, running Compatibility Reports requires that Compatibility mode be switched on. Once
Compatibility mode is invoked, it stays active throughout the program, running any subsequent Genero
ASCII reports using the Genero Report Writer also. If your program needs to restore text-based output for
a Genero ASCII report, you must call the API function fgl_report_stopGraphicalCompatibilityMode.

Sub reports
Sub reports allow one report to be called from another.

• What are sub reports? on page 575
• Use cases for sub reports on page 575
• Creating a master report data source on page 576
• Creating a master report design on page 579

What are sub reports?
Sub reports allow one report to be called from another.

Sub reports allow reuse of BDL code in the report application and reuse of available report designs. Sub
reports can be used to break complex designs into smaller reusable parts.

In the BDL code, a sub report call is detected when a START REPORT instruction is found within another
report. The report containing the START REPORT instruction is called the master report, and the called
report is the sub report.

Runtime behavior

At runtime, the reports are combined. The sub report is inserted in the master report.

The behavior at the insertion point follows the same rules that generally apply to nested containers.
The master report needs to be designed with awareness of the configuration of the root container of the
sub report. For example, if the sub report occupies all the space it can get (the height and width of the
MiniPage both set to max), the master report must be prepared to handle that. In particular, the use of
ancestors other than MiniPage should be avoided, since they will become overfull if the sub report requires
more than one page of space.

Use cases for sub reports

Create a report composed of other reports

You have two reports that you want to output as a single report. For example, you have a report that is a
graph showing revenue by region, and you have a list report providing the details on the revenue by region.
You can create a master report that outputs both of these reports - the graph report and the line detail
report- as a single report.

Reuse a report part across multiple reports

Consider an order confirmation report and an invoice report. The two reports could share a table containing
the sales items and their description (the shared part). You can put that table in a sub report. Changing the
sub report then changes the two reports using the sub report.

Create a report where a sublist has more than one sort key item

Imagine you have a report with two loops, where each loop defines a sublist:

REPORT report(r)
...
FORMAT
 ON EVERY ROW

Report Writer | 576

 PRINT r.*
#loop1
 DECLARE c1 CURSOR FOR
 SELECT * FROM t1 WHERE t1.key=r.t1key ORDER BY a,b,c
 FOREACH c1 INTO t1.*
 PRINT t1.*
 END FOREACH
#loop2
 DECLARE c12 CURSOR FOR
 SELECT * FROM t2 WHERE t2.key=r.t2key ORDER BY id
 FOREACH c2 INTO t2.*
 PRINT t2.*
 END FOREACH
END REPORT

Should the loops loop1 and loop2 be replaced by sub reports?

Loop1 specifies three sort key items in the ORDER BY clause. Replacing loop1 with a sub report using
ORDER EXTERNAL a, b, c gives you the flexibility to "trigger" on a, b, and c in the design.

Replacing loop2 by a sub report would not provide any gain (assuming there is no interest to group on id).
For this loop, you might prefer to see the whole design.

Do NOT use sub reports to process nested sub lists

Genero reports support arbitrarily complex models using PRINT statements inside iterator statements
(WHILE, FOR, FOR EACH) and conditional statements (IF, CASE). It is not necessary to use sub reports
for this purpose. When sub reports are used for this purpose to produce complex reports (such as an
invoice report), the report becomes scattered across numerous BDL REPORTs and report design (4rp)
files, obscuring the overall structure. The impossibility to see the design as a whole must be taken into
consideration when using this strategy.

Creating a master report data source
A sub report is a report that is started from within another report via a START REPORT statement.

The START REPORT statement for the sub report takes no arguments. Do not add TO XML HANDLER for
the sub report call.

Sub reports can be called from any control block wherever printing in loops is allowed: ON EVERY ROW,
BEFORE GROUP, AFTER GROUP, or ON LAST ROW.

The START REPORT must be in the calling report block. The START REPORT statement cannot be placed
inside a function called from the report.

The START REPORT, OUTPUT TO REPORT, and FINISH REPORT statements must be in the same
control block. The OUTPUT TO REPORT and FINISH REPORT statements can be placed inside a function
or functions called from the report, however those functions must be in the same control block as the
START REPORT statement.

You can have multiple calls to sub reports from the same control block, however the calls cannot be
nested.

Valid:

REPORT master_report(...)
...
FORMAT
 BEFORE GROUP ...
 ...
 START REPORT detail_report_1
 FOREACH ...
 OUTPUT TO REPORT detail_report_1(...)
 END FOREACH
 FINISH REPORT detail_report_1

Report Writer | 577

 START REPORT detail_report_2
 FOREACH ...
 OUTPUT TO REPORT detail_report_2(...)
 END FOREACH
 FINISH REPORT detail_report_2
...
END REPORT

Not valid:

REPORT master_report(...)
...
FORMAT
 BEFORE GROUP ...
 ...
 START REPORT detail_report_1
 START REPORT detail_report_2 -- Not allowed until after
 -- FINISH REPORT detail_report_1
 ...
END REPORT

Sub reports can be nested to arbitrary depth, but recursion is not allowed.

REPORT master_report(...
 ...
FORMAT
 ON EVERY ROW
 ...
 START REPORT detail_report
 FOREACH ...
 OUTPUT TO REPORT detail_report(...
 END FOREACH
 FINISH REPORT detail_report
END REPORT

REPORT detail_report(...
 ...
 FORMAT
 ON EVERY ROW
 ...
 START REPORT other_detail_report -- Since recursion is not allowed, we
 are
 -- not allowed to call "master-
report" or
 -- "detail_report" from here.
 FOREACH ...
 OUTPUT TO REPORT other_detail_report(...
 END FOREACH
 FINISH REPORT other_detail_report
END REPORT

Detected sub report calls are shown in the report designer. They appear as nodes in the data view, triggers
the structure view, and images in the document view.

Code Example

This code example shows a master report master_report that calls two sub reports (report_orders
and report_items) from the ON EVERY ROW section. The invocation of a sub report requires the START
REPORT, OUTPUT TO REPORT and FINISH REPORT from within the master report.

Report Writer | 578

The START REPORT instructions for sub reports cannot include the TO clause (START REPORT repname
TO XML HANDLER); doing so will yield unexpected results.

FUNCTION run_master_report
...
 START REPORT master_report TO XML HANDLER handler
 FOREACH ...
 OUTPUT TO REPORT master_report
 END FOREACH
 FINISH REPORT master_report
END FUNCTION

REPORT master_report()
 DEFINE
 orderline OrderType,
 ch base.channel

 FORMAT
 ON EVERY ROW

 # Data source for first sub report
 LET ch = base.Channel.create()
 CALL ch.openFile(dataFile,"r")

 # First sub report
 START REPORT report_orders -- Notice there is no TO XML HANDLER
 -- for the sub report
 WHILE ch.read([orderline.*])
 OUTPUT TO REPORT report_orders(orderline.*)
 IF fgl_report_getErrorStatus() THEN
 DISPLAY "FGL: STOPPING REPORT, msg=
\"",fgl_report_getErrorString(),"\""
 EXIT WHILE
 END IF
 END WHILE
 FINISH REPORT report_orders

 CALL ch.close()

 # Data source for second sub report
 LET ch = base.Channel.create()
 CALL ch.openFile(dataFile,"r")

 # Second sub report
 START REPORT report_items -- Notice there is no TO XML HANDLER
 -- for the sub report
 WHILE ch.read([orderline.*])
 OUTPUT TO REPORT report_items(orderline.*)
 IF fgl_report_getErrorStatus() THEN
 DISPLAY "FGL: STOPPING REPORT, msg=
\"",fgl_report_getErrorString(),"\""
 EXIT WHILE
 END IF
 END WHILE
 FINISH REPORT report_items

 CALL ch.close()

END REPORT

REPORT report_orders
 ...
END REPORT

Report Writer | 579

REPORT report_items
 ...
END REPORT

Creating a master report design
Create a new empty report design document (4rp). Select the master report data source as the data
schema. Detected sub report calls are shown in the report designer. They appear as nodes in the data
view, triggers the structure view, and images in the document view.

The Data View

In the data view, the invocation of the sub report is displayed at its position in the application source. While
the execution of the sub report requires three invocations (START REPORT, OUTPUT TO REPORT and
FINISH REPORT), only the location of the START REPORT item is shown in the data view.

Figure 315: Sub reports in the Data View

The Report Structure view

A sub report trigger is created in the document report structure. Set the URL property of the sub report
trigger to a report design that matches the sub report schema.

Figure 316: Sub report triggers in the Report Structure

Report Writer | 580

Document view (Central Work Area)

Sub reports display as images in the document view in the Central Work Area. Double-click the image to
open the design file for editing.

Create labels: the report program (Genero BDL)
A common use of reports is to create a page of labels, such as address labels. Creating labels requires
you to create a report design document representing a single label and a report application that prints
multiple labels on a page.

Create the report design document

The report design document (.4rp) contains the design for a single label. You can put anything you wish
on the label, as long as it fits onto the page.

See Design labels on page 684 for details on creating the single-label report design document (.4rp).

Update your report application

Once the label is defined in a report design document, you update your report application so that it outputs
the data needed for a label within ON EVERY ROW in the REPORT block, and it tells the report engine to
output multiple labels onto a single physical page.

• In the FORMAT section of the REPORT program block, output the data needed for the label ON EVERY
ROW.

• Configure the report engine for labels using Reporting API functions.

• fgl_report_selectLogicalPageMapping allows you to specify that this report will create a
page of labels.

• fgl_report_setPaperMargins sets the margins (top, bottom, left, right).
• fgl_report_configureLabelOutput configures the physical layout of the label page using

these parameters:

• paper Width
• paper Height
• label Width (set to null)
• label Height (set to null)
• number of labels per row
• number of labels per column

Example

This example uses the OrderLabels.4rp report design document from the Reports GRW demo.

In the SimpleReport BDL program, the MAIN program block that configures the report engine is changed
as follows:

• Loads OrderLabels.4rp as the Report Design Document
• The function fgl_report_selectLogicalPageMapping allows you to specify the format of the page as

"labels"
• The function fgl_report_setPaperMargins sets margins using these parameters:

1. top margin
2. bottom margin
3. left margin
4. right margin

• Function fgl_report_configureLabelOutput - configures the physical layout of a label page using these
parameters:

1. paper Width

Report Writer | 581

2. paper Height
3. label Width
4. label Height
5. number of labels per row
6. number of labels per column

 -- configure report engine; the functions prefixed fgl that are called
 here
 -- are part of the Reporting API
 IF fgl_report_loadCurrentSettings("OrderLabels.4rp") THEN -- load the
 labels
 -- design document (4rp
 file)
 -- special settings for labels
 CALL fgl_report_selectLogicalPageMapping("labels")
 CALL fgl_report_setPaperMargins("5mm","5mm","4mm","4mm")
 CALL fgl_report_configureLabelOutput("a4width","a4length",null,null,2,6)
 END IF
 LET handler = fgl_report_commitCurrentSettings() -- commit changes

The rest of the SimpleReport program would remain unchanged. This example would print two labels
across and six labels down per page.

Figure 317: Output of labels on a physical page

Report Data Wizard

• Using the Report Data Wizard on page 581
• Example Wizard code on page 586
• Using the example code on page 587

Using the Report Data Wizard

A Wizard is now available to generate BDL code for your Genero report program (4gl). Select File>>New,
Reports, Report from Database (.4gl) to display the dialogs that guide you in creating the SQL query
statement that will extract the report data from your database.

Table Selection Page

Select the database and tables for the query.

Report Writer | 582

Figure 318: New Query wizard, Table Section page

Press Next to continue.

Define Joins Page

The New Query dialog is used to add the joins between the tables to be used in the SQL query. The
information is pre-filled from the database meta-data in the database meta-schema file (4db). You can
select different columns in the tables, or select a different join method.

Report Writer | 583

Figure 319: New Query wizard, Define joins page

• Left column: The table on the left side of the join operator.
• Right column: The table on the right side of the join operator.
• Operator: the method to be used to join the tables for the result set.

Press Next to Continue.

This table illustrates the effect of the operators on the query result set:

Table 154: Effect of the join operators on the query result set

Operator Description Example WHERE clause
generated for BDL code

INNER JOIN Result set will contain columns
from only the rows in the two
tables where the specified column
value matches.

WHERE orders.userid =
 account.userid

LEFT OUTER JOIN Result set will contain columns
from all the rows in the left table,
joined with columns from the
rows in the right table where the
specified column value matches.
Where there is no matching
value, the columns from the right

WHERE (orders.userid =
 account.userid OR
 account.userid IS
 NULL)

Report Writer | 584

Operator Description Example WHERE clause
generated for BDL code

table in the result set will contain
nulls.

RIGHT OUTER JOIN Result set will contain columns
from all the rows in the right table,
joined with columns from the
rows in the left table in which the
specified column value matches.
Where there is no matching
value, the columns from the left
table in the result set will contain
nulls.

WHERE (orders.userid =
 account.userid OR
 orders.userid IS NULL)

FULL OUTER JOIN Result set will contain columns
from all the rows in the left table,
and columns from all the rows
in the right table, joined on the
specified column value. Where
there is no match in one of the
tables, the columns from that
table will contain nulls.

WHERE (orders.userid =
 account.userid OR
 account.userid IS NULL
 OR
 orders.userid IS NULL)

Result Set Page

Select the database table fields for the result set of the SQL query. The data in the result set is passed by
the BDL REPORT function to the Genero Report Engine and the Report Definition file (4rp).

Report Writer | 585

Figure 320: New Query wizard, Result Set page

Press Next to Continue.

Order By Page

Select the column(s) by which the result set should be sorted.

Report Writer | 586

Figure 321: New Query wizard, Order By page

Press Finish to generate the code and close the Report Data Wizard.

The Wizard creates a BDL file (4gl) containing the generated code, which you can save as part of your
application files.

Example Wizard code

This is the code that was generated by the example covered in Using the Report Data Wizard on page
581

 SCHEMA officestore

 TYPE officestore_data RECORD
 account RECORD
 userid LIKE account.userid,
 email LIKE account.email
 END RECORD,
 orders RECORD
 orderid LIKE orders.orderid,
 orderdate LIKE orders.orderdate,
 shipaddr1 LIKE orders.shipaddr1,
 shipaddr2 LIKE orders.shipaddr2,
 shipcity LIKE orders.shipcity,
 shipstate LIKE orders.shipstate,
 shipzip LIKE orders.shipzip
 END RECORD
 END RECORD

 FUNCTION run_officestore_to_handler(handler)

Report Writer | 587

 DEFINE
 data officestore_data,
 handler om.SaxDocumentHandler
 DECLARE cur CURSOR FOR
 SELECT
 account.userid,
 account.email,
 orders.orderid,
 orders.orderdate,
 orders.shipaddr1,
 orders.shipaddr2,
 orders.shipcity,
 orders.shipstate,
 orders.shipzip
 FROM
 account,
 orders
 WHERE
 orders.userid = account.userid
 ORDER BY
 account.userid

 START REPORT officestore_report TO XML HANDLER handler
 FOREACH cur INTO data.*
 OUTPUT TO REPORT officestore_report(data.*)
 END FOREACH
 FINISH REPORT officestore_report
 CLOSE cur
 END FUNCTION

 REPORT officestore_report(data)
 DEFINE
 data officestore_data
 ORDER EXTERNAL BY
 data.account.userid

 FORMAT
 ON EVERY ROW
 PRINT data.*
 END REPORT

Note:

• Lines 3-17 define a user-type named office_data, which is a RECORD consisting of sub-
records for the fields that were selected in the Result Set page from the tables selected in the
Table Selection page.

• Lines 19-48 define the run_officestore_to handler function.

• Lines 23-40 declare a cursor for the SQL SELECT statement to retrieve the data. The table
join and the sort order were specified in the Define Joins and Order By pages.

• Lines 42-46 fetch the report data and send it to the REPORT function.
• Lines 50-59 define the REPORT function, which outputs the data to the Genero Report Engine.

See The BDL File for additional information about the BDL functions and statements used in conjunction
with reports.

Using the example code

You can create a report application using the generated BDL file, or the file can be incorporated as part of
a larger application. We recommend that you use a different BDL file to contain the additional code that is
required, rather than making changes in the generated file. This allows you to re-execute the Report Data
Wizard without risking the loss of your changes.

Report Writer | 588

1. Create the Report Data Definition file

Create the rdd file that is used to populate the Data View of the Report Design Document, by executing
this from the command line:

fglcomp --build-rdd <generated_file>4gl

Add the resulting <sourcefile>.rdd file to your application files.

2. Design the Report

Specify the rdd file on the Data View page. When your design is complete, save the report definition
file (4rp) as part of your application. See Designing a Report for additional information about the design
process.

3. Add Additional BDL Code to the program

a. To configure the report, call the mandatory report API functions, which identify the report definition
file and create the XML handler for the report:

• fgl_report_loadCurrentSettings accepts the name of the Report Design document (4rp) as a
parameter. The return value is a boolean indicating whether the load of the settings from the 4rp
file was successful.

• fgl_report_commitCurrentSettings returns a SaxDocumentHandler object.

Additional report API functions can be called to change the default output options, if needed.
b. To connect to the Database, add a CONNECT TO or DATABASE statement to the program.
c. Call the run_<databasename>_to_handler function (which is in the file generated by the Report

Data Wizard) to execute the report.

Example MAIN function

This simple function illustrates step 3:

 MAIN

 DEFINE handler om.SaxDocumentHandler -- report handler

 DATABASE officestore --connect to the database

 --call the mandatory functions that configure the report
 IF fgl_report_loadCurrentSettings("myreport.4rp") THEN -- if file loaded
 OK
 LET handler = fgl_report_commitCurrentSettings() -- commit the
 -- file settings
 ELSE
 EXIT PROGRAM
 END IF

 -- run the report by calling the report driver contained in your
 -- generated function
 IF handler IS NOT NULL THEN
 CALL run_officestore_to_handler(handler)
 END IF

 END MAIN

Modifying the output

• Change report output options on page 589
• Using localized strings on page 596

Report Writer | 589

Change report output options

• Change paper settings and output format on page 589
• Some Examples

• Send Output Directly to Printer
• Set Page Margins
• Set Print Quality
• Print Double-sided
• Select a Paper Tray

• Support for Custom Paper Sources
• SVG Preview and other Options
• Sending Report Data to an XML File
• Sending Report Data to an HTML File
• Sending Report Data to an Excel Spreadsheet
• Outputting Report Data in Microsoft™ RTF format
• Creating Multi-Page ISO Reports

See also: Designing a Report, Design HowTo, Configuring Fonts and Printers

Change paper settings and output format
There are several places where you can specify the paper settings and output format for a report.

Set default paper settings for all new reports

The default settings for a report design document (.4rp) are set when you create a new report. They are
based on the default settings for all new reports, as set by the local installation of Genero Studio.

To set the default paper settings for all new reports, go to Tools >> Preferences, Report Writer, Paper
Settings.

Set the paper settings for a report design document

For an existing report, you can change the paper settings and the output format in the report design
document (.4rp). Go to File >> Report properties, and:

• Select Paper Settings... to update the paper settings for the report.

Set the paper settings and output format in the report application

In your report application, you can override the paper settings and output format defined in the report
design document.

For a Genero BDL report program (.4gl), using the functions provided by the Reporting API allows you to
change:

• Page settings
• Output device options
• Printer settings

When adding these functions to your Genero BDL report application, place the functions between
the mandatory configuration functions of fgl_report_loadCurrentSettings() and
fgl_report_commitCurrentSettings():

IF fgl_report_loadCurrentSettings(r_filename) THEN -- load the 4rp
 file mandatory
 CALL fgl_report_selectPreview(preview) -- functions to change
 the output
 -- options are called
 here

Report Writer | 590

 LET handler = fgl_report_commitCurrentSettings() -- commit
 changes mandatory
END IF

Modify report output examples

• Send output directly to the printer - you can send the output to a printer without previewing by calling
the fgl_report_selectDevice function as part of your report configuration function with the parameter
"Printer":

CALL fgl_report_selectDevice("Printer")

Note: For other output formats, the parameter can be one of: "Printer", "PDF", "Image", "SVG",
"HTML", "XLS" or "XLSX" (output to an Excel spreadsheet), "RTF" (output in Microsoft™ RTF
format)

• Set page margins - the logical margins of the report page are read from the 4rp file (Report Design
document.) The fgl_report_setPageMargins function overrides those margins. The syntax is:

CALL fgl_report_setPageMargins (topMargin String, bottomMargin String,
 leftMargin String, rightMargin String)

CALL fgl_report_setPageMargins (".05cm",".05cm",i".05cm",".05cm")

• Set Print Quality - the fgl_report_setPrinterQuality function is used to control the quality used by the
printer. By default this is not set. Setting this option reduces the set of usable printers to those matching
it.

One of these values are passed to the function as a parameter: draft|high|normal. The value is passed
as a String.

CALL fgl_report_setPrinterPrintQuality("high")

• Print Double-sided - the function fgl_report_setPrinterSides is used to specify whether the report
pages should be one-sided or two-sided. By default this is not set. Setting this option reduces the set of
usable printers to those matching it.

One of these values are passed to the function as a parameter. The value is passed as a String:

• one-sided: Each consecutive print-stream page is printed on the same side of consecutive media
sheets.

• two-sided-short-edge: Consecutive pairs of print stream pages are printed on the front and back
sides of consecutive media sheets. The orientation of the pages is correct as if the pages were to be
bound along the short edge of the paper.

• two-sided-long-edge: Consecutive pairs of print stream pages are printed on the front and back
sides of consecutive media sheets. The orientation of the pages is correct as if the pages were to be
bound along the long edge of the paper.

CALL fgl_report_setPrinterSides("two-sided-long-edge")

• Select a Paper Tray - function fgl_report_setPrinterMediaTray controls what tray of the printer to use.
This function and the functions fgl_report_setPrintermediaTray and fgl_report_setPrintermediaName
are mutually exclusive. Setting this option reduces the set of usable printers to those matching it.

One of these values are passed to the function as a parameter: bottom|envelope|large-capacity|main|
manual|middle|side|top. The value is passed as a String.

CALL fgl_report_setPrinterMediaTray("top")

Report Writer | 591

Support for custom paper sources

On Windows™ systems the reporting API function fgl_report_setSVGPaperSource() can be used
to identify a custom paper source for your report. This function must be used in conjunction with these
functions:

• fgl_report_setSVGPrinterName(printerName) - to specify the printer
• fgl_report_configureSVGPreview("PrintOnNamedPrinter") - to bypass the preview and

print silently on the named printer

The printerinfo Script

On Windows™ systems the script $GREDIR/bin/printerinfo is provided to list the supported paper
sources that can be changed programmatically using this function. This script is executed from the
command line.

The output of the script lists the device-specific source names in the left column, with the general
constant in brackets on the right. Either can be used to identify the paper source in calls to
fgl_report_setSVGPaperSource():

This excerpt lists seven paper sources for the printer "Balzac":

Figure 322: printerinfo output

Example:

CALL fgl_report_setSVGPrinterName("Balzac")
CALL fgl_report_setSVGPaperSource("Tray 2")
CALL fgl_report_configureSVGPreview("PrintOnNamedPrinter")

This excerpt of the printerinfo output is for a printer that has 27 paper sources.
Since there are only 15 predefined constants for the paper sources, most of the
paper sources are identified by integer constants, which can be used in calls to
fgl_report_setSVGPaperSource() Using the integer constant can prevent encoding

Report Writer | 592

issues when the device-specific name contains non-ASCII characters, such as "Sèlection
automatique".

Figure 323: printerinfo output

Previewing a report
The SVG report format is provided for previewing a report. A report can be previewed in a desktop
application or in a browser.

Preview in a desktop app: Genero Report Viewer

To preview a report in the desktop version of Genero Report Viewer, specify "SVG" as the output device.

fgl_report_selectDevice("SVG")

Preview in a browser: Genero Report Viewer for HTML5

To preview a report in the browser, you preview using Genero Report Viewer for HTML5. Specify "browser"
as the output device.

fgl_report_selectDevice("Browser")

See Send report data to a browser on page 595 for additional API functions that must be called when
previewing in a browser.

Preview options

When electing to preview to the Genero Report Viewer, you can configure SVG preview options:

Preview The report is shown in a folder tab of the main
preview window.

Report Writer | 593

ShowPrintDialog This option pops up the system print dialog,
allowing the user to select and configure a printer.
If confirmed, the document is printed in the
background.

PrintOnDefaultPrinter This option prints the report silently on the default
printer. The previewer main window is not shown.

PrintOnNamedPrinter This option prints the report silently on a specific
printer. The previewer main window is not shown.

Use the API function fgl_report_configureSVGPreview. For example:

CALL fgl_report_configureSVGPreview("ShowPrintDialog")

Important: Preview options set by fgl_report_configureSVGPreview are
only valid when previewing with Genero Report Viewer in a Desktop configuration
(fgl_report_selectDevice("SVG")). They are not valid when previewing with Genero Report
Viewer for HTML5 in a Web configuration ((fgl_report_selectDevice("Browser")).

Additional API functions provide more SVG options:

• fgl_report_setSVGCopies - function to specify the number of copies to be printed
• fgl_report_setSVGPageRange - function to select which pages should be printed
• fgl_report_setSVGPaperSource - function to select the input source of the printer
• fgl_report_setSVGPrinterName - function to select a specific printer by name
• fgl_report_setSVGSheetCollate - function to control the collation of multiple copies

Send report data to an XML file

The demo program OrderReport.4gl gives the user the option to output the report data to a file
(OrderReportData.xml) in XML format.

The Reporting API function fgl_report_create ProcessLevelData File() instructs the Genero Report Engine
to execute the report, outputting the data specified in the PRINT function of the REPORT program block to
an XML file rather than to a Report Design Document. The output file is stored in your current project. The
name of the data file is passed to the function as a String.

Changing the SimpleReport.4gl example program to use this technique, the MAIN program block becomes:

MAIN

 DEFINE handler om.SaxDocumentHandler, -- return value
 dataFile STRING -- name of XML file to be created

 --configure the report engine to output the XML file
 LET dataFile = "./OrderReportData.xml"
 LET handler = fgl_report_createProcessLevelDataFile(dataFile)

 -- run the report, creating the XML file
 CALL runReportFromDatabase(handler)

END MAIN

Send report data to an HTML file

HTML output can be selected by passing the string "HTML" to the function fgl_report_selectDevice. You
can use this function to output any existing report (including ASCII) as an HTML document.

Graphical elements such as bar codes are implemented by rendering them as images. These images are
included in the document. An option to generate the images on disk and to use external URLs instead is
provided by the function fgl_report_configureHTMLDevice.

Report Writer | 594

When elements overlay each other (or text strings intersect), the default behavior is to create one image
from the two elements and to include the image. An exception to this occurs when the overlaid element is
an image: the "background" image will be removed from the resulting document.

There is an option in the function fgl_report_configureHTMLDevice to ignore the horizontal or vertical
alignment in the document. The default is FALSE for HTML document output.

Send report data to an Excel spreadsheet

The report output can be sent to an Excel spreadsheet by passing the string "XLS" or "XLSX" to the
function fgl_report_selectDevice. The output will be in the specified Excel format, with the XLS format
limited to 65,536 rows. In contrast, for the XLSX format the document is generated with constant memory
consumption. so that very large documents can be produced without exhausting heap space.

Note: The XLSX format can only be opened with newer versions of Microsoft™ Excel (2007 or
later). A backward compatibility pack can be downloaded from Microsoft™; however, the XLSX
format will then be subject to the 65,536 limit of the earlier versions.

Any existing report, including ASCII, can be output to the spreadsheet.

The layout of the cells (size, font color, etc.) can be predictably controlled from the Report Designer.
The goal is to put the report layout into the cells of the spreadsheet efficiently. There is an option in the
functions fgl_report_configureXLSDevice and fgl_report_configureXLSXDevice to ignore the vertical or
horizontal alignment. The default is TRUE for Excel document output, since the emphasis is on the ability
to compute the values in the cells, rather than primarily on the appearance.

When items in the report design overlap, by default the placement is preserved in the spreadsheet, but not
the alignment. To make the necessary decisions, Genero Studio marks the column and row boundaries
internally with tabs, If there are two consecutive tabs that have no element that bounds on them, the
column or row will collapse. The implication of this is:

• Rivers of white space (empty columns, empty rows) are eliminated when possible.
• Elements that overlap may be placed in the same column, but they will still maintain their relative

placement (above/below).
• Contiguous items will never be placed in the same column, they will maintain their relative placement

and alignment.

The values in the cells are generated for the report, not the Excel formulas. Graphical elements such as
bar codes are implemented by rendering them as images. Business charts are currently drawn as tables;
we cannot create charts or pivot tables.

This code fragment illustrates the functions enabling Excel output:

...
CALL fgl_report_configureXLSXDevice (
 NULL, #fromPage INTEGER,
 NULL, #toPage INTEGER,
 NULL, #removeWhitespace INTEGER,
 NULL, #ignoreRowAlignment INTEGER,
 NULL, #ignoreColumnAlignment INTEGER,
 NULL, #removeBackgroundImages INTEGER,
 TRUE) #mergePages INTEGER
CALL fgl_report_selectDevice("XLSX")
...

Creating a report with data but no titles

To obtain a spreadsheet containing only the data in a flat table:

• Create a new empty report (from the main menu, File>>New, Reports, Empty report).
• Configure a large custom page size, 300cm x 200cm, for example (from the main menu, File>>Report

Properties, Paper Setting).

Report Writer | 595

• From the Toolbox, drag a Stripe container into the report design.
• In the Data View, select the button create a table column value object; then, double-click the fields to

select them for the report.
• In the Structure View, associate a Trigger node with the stripe, to specify when the contents of the

stripe should print (ON EVERY ROW, for example)

Creating a report with tables that contain headings

To obtain a spreadsheet containing tables with column headings, use the standard list template (from
the main menu, File>>New, Reports, List report). Use a large custom page size, 300 cm x 200cm, for
example. The output will contain a title for the document and headings for each column.

Creating a single-sheet document

Currently each page produces a separate Sheet in Excel. If the page breaks are not desirable, you
can change the page size to a larger custom value. However, creating a huge page can adversely
affect memory reclamation and performance. To avoid this problem, we recommend that you use a
standard page size and set the mergepages parameter of the function fgl_report_configureXLSDevice or
fgl_report_configureXLSXDevice. This will merge the pages into a single-sheet result.

Note: If you have specified "XLS" in the call to fgl_report_selectDevice to specify the Excel format,
and the resulting sheet has more that 65536 rows, the exceeding rows will spill over into extra
sheets; if you have specified "XLSX" as the Excel format, the size of the sheet is not limited by
available memory.

Output report data in Microsoft™ RTF format

You can use the API function fgl_report_selectDevice("RTF") to output the data in the RTF Format;
configure the output using the function fgl_report_configureRTFDevice.

In order to prevent exhaustion of main memory when processing large documents, the processor can be
instructed to swap parts of the document to a temporary disk file when the document size exceeds this
threshold. Use the function fgl_report_setRTFMemoryThreshold to specify the threshold.

Send report data to a browser
You can view a report in a browser with Genero Report Viewer for HTML5. Specific reporting API functions
must be included in your program to display to this client.

When you start the demo program OrderReport.4gl, the application gives the user the option to output
the report data to the Genero Report Viewer. If the Genero Studio configuration is set to use the Web
configuration, this option displays the report to a browser, using Genero Report Viewer for HTML5.

To do this, the device must be set to "Browser".

CALL fgl_report_selectDevice("Browser");

When the device is set to Browser, some additional APIs must be called. You must set the browser
directory and URL, and you must set the font directory and URL. For example:

IF outputformat=="Browser" THEN
 LET uuid=security.RandomGenerator.CreateUUIDString()
 CALL
 fgl_report_setBrowserDocumentDirectory(fgl_getenv("GRE_PRIVATE_DIR")||"/"||
uuid)
 CALL fgl_report_setBrowserFontDirectory(fgl_getenv("GRE_PRIVATE_DIR"))
 CALL
 fgl_report_setBrowserDocumentDirectoryURL(fgl_getenv("GRE_PRIVATE_URL_PREFIX")||"/"||
uuid)
 CALL
 fgl_report_setBrowserFontDirectoryURL(fgl_getenv("GRE_PRIVATE_URL_PREFIX"))
END IF

Report Writer | 596

The report files

When you select Browser as the output for your report, the report files are written to the document
directory.

If you are using a private directory (GRE_PRIVATE_DIR and GRE_PRIVATE_URL_PREFIX), only the
current session will be able to view the report, and the report will be deleted when the session ends.

If you are using a public directory (GRE_PUBLIC_DIR and GRE_PUBLIC_URL_PREFIX), the report can
be shared and bookmarked.

Warning: The environment variables GRE_PRIVATE_DIR, GRE_PRIVATE_URL_PREFIX,
GRE_PUBLIC_DIR, and GRE_PRIVATE_URL_PREFIX are not documented. You should never
explicitly set these variables.

Create multi-page ISO reports

For reports printed on ISO and JIS-sized pages, you can configure the output to print several logical pages
per physical page. Use these Reporting API functions to change the output options:

• fgl_report_selectLogicalPageMapping - use the parameter multipage to change the logical page
mapping, allowing the printing of multiple pages per physical page.

• fgl_report_configureMultipageOutput - to configure the required number of pages. The parameters are:

1. pageExponent String - Specifies the number of pages to print. The actual number of pages is
calculated by multiplying the page exponent number that you specify by 2. In the example there will
be 2 * 2 = 4 pages per physical page.

2. isoNumber Integer - Specifies the ISO number. This parameter is optional (indicated by passing
a null value). If no value is specified, the page size of the logical page is taken from the 4rp file (if
specified). In the example, 4 refers to ISOA4.

3. portrait boolean - TRUE specifies that the page is in portrait orientation; FALSE= landscape. This
parameter is optional (indicated by passing a null value). If no value is specified, the orientation of
the logical page is taken from the 4rp file.

Example function:

 FUNCTION configure_report()
 DEFINE handler om.SaxDocumentHandler -- configure report
 engine

 IF fgl_report_loadCurrentSettings(NULL) THEN -- there is no 4rp file
 -- change default output options
 CALL fgl_report_selectLogicalPageMapping("multipage")
 CALL fgl_report_configureMultipageOutput(2,4,TRUE)
 LET handler = fgl_report_commitCurrentSettings() -- commit settings
 ELSE
 EXIT PROGRAM
 END IF
 END FUNCTION

Using localized strings

• Localized Strings

• The Source String File
• Using the translate function
• Entries in fglprofile

• Finding the Translated String

Localized strings

The Localized Strings feature allows:

• the captions (titles of report objects) to be customized.

Report Writer | 597

• The translation of the text property for Word Boxes and WordWrap Boxes to be customized.

This feature can be used to implement internationalization in your application, or to use site-specific text
(for example, when business terms change based on territory).

You could have multiple external string files, each containing the translated string in a different language.
The DVM (runtime system) searches the files in order to assign text in the report definition. The localized
text replaces the captions and other specified text at runtime, choosing the correct string file based on
entries in the file fglprofile.

The Source String file

A text file, with a str extension, defines the string to be displayed for the report object captions or
the specified Word Box or WordWrap Box text You can check the Text property of the report object to
determine the exact string to be replaced.

Syntax:

"identifier" = "string

where:

• identifier is the value of the Text property of the caption or label that you want tolocalize
• string is the text that you want to be displayed instead

The backslash "\" is accepted as the escape character, to define non-printable characters.

Example file captions_en.str:

"Userid" = "Client ID"
"Shipcity" = "City"

At runtime, the text 'Userid" or "Shipcity" would be displayed in the report as "Client ID" and "City".

This source string file should be added to the Genero Studio Project Manager application node for your
report program, so it can be compiled when the application is built. The compiled file (42s) is not linked
into the Genero executable.

Note: Although you can call the API function fgl_report_setCallbackLocalization() in your 4GL
source code to specify that the caption of the report object be used instead, we recommend using
localized strings.

Using the translate function

Entries in the source string file can also be used by the translate PXML function to replace text in an
expression that sets a property value. For example, if you set the text of a Word Box) to this value:

"hello "+"world".translate()

and you have this entry in the str file:

"world" = "universe"

then the final text displayed on your WordBox will be “hello universe”.

Report Writer | 598

Entries in fglprofile

You can specify the compiled String File, or a list of these files, with entries in an fglprofile
configuration file. For example:

fglrun.localization.warnKeyNotFound= false -- don't display warnings on
 errors
fglrun.localization.file.count = 1 -- number of string files
fglrun.localization.file.1.name = "captions_en.42s" -- name of the string
 file

See the FGLPROFILE topics in the Genero Business Development Language User Guide for complete
information about the fglprofile file.

See the Localized Strings topics in the Genero Business Development Language User Guide for complete
information and examples.

Finding the translated string

The search behavior that Report Writer uses to find a string in a compiled string file (42s) is similar to that
of Genero BDL. Once the compiled string files are located, Report Writer uses the first occurrence of the
string that it finds. The 42s files are sought in this order:

1. Any localization (42s) files specified in a BDL configuration file. First, the current directory, and then
all directories in DBPATH or FGLRESOURCEPATH, are searched for the specified 42s files. The
precedence of BDL configuration files is:

a. the BDL configuration file, <FGLDIR>/etc/fglprofile.
b. the BDL configuration file specified by the FGLPROFILE environment variable, if set.
c. any BDL configuration file having the same name as the report program, and stored in the directory

<FGLDIR>/defaults.
2. Any localization (42s) file that has the same name as the report definition file, minus the 4rp extension.

First, the current directory, and then all directories listed in the DBPATH or FGLRESOURCEPATH
environment variable, are searched for the <report-name>.42s file.

3. Any localization (42s) file that has the same name as the report application, minus the 42r extension.
First, the current directory, and then all directories in DBPATH or FGLRESOURCEPATH are searched
for the <application-name>.42s file.

Change localization settings at runtime
Use the fgl_report_configureLocalization function to change the directory where the program
seeks the translation files and to change the formatting pattern for numerical data at runtime.

Change the language directory

Change the language directory in which the translation files (42s) are sought with the
fgl_report_configureLocalization function. The names of the translation files (captions.42s
and mappings.42s) remain constant, regardless of what language is selected. It is the directory that is
changed by the API call.

$echo $FGLPROFILE
fglprofile
$cat $FGLPROFILE
fglrun.localization.file.count = 2
fglrun.localization.file.1.name = "captions.42s"
fglrun.localization.file.2.name = "mappings.42s"

$find translation_files
translation_files
translation_files/en
translation_files/en/captions.str
translation_files/en/captions.42s

Report Writer | 599

translation_files/fr
translation_files/fr/captions.str
translation_files/fr/captions.42s
translation_files/common
translation_files/common/mappings.str
translation_files/common/mappings.42s

$cat test.4gl
MAIN
...
#select French translation
 LET handler=configureReport(“translation_files/fr:translation_files/
common”);
 START REPORT invoice TO XML HANDLER handler
...
END MAIN
...
FUNCTION configureReport(resourcePath)
 ...
 LET handler=fgl_report_loadCurrentSettings(“localizable_invoice.4rp”)
 ...
 CALL fgl_report_configureLocalization(NULL,resourcePath,NULL,NULL)
 ...
 RETURN fgl_report_commitCurrentSettings()
END FUNCTION
...

Change the formatting pattern for numerical data

Change the formatting pattern for numerical data at runtime with the
fgl_report_configureLocalization function.

$echo $DBFORMAT
$:,:.:
$cat test.4gl
MAIN
...
#select German number formatting
 LET handler=configureReport(“:.:,:EUR”);
 START REPORT invoice TO XML HANDLER handler
...
END MAIN
...
FUNCTION configureReport(numberFormat)
...
 LET handler=fgl_report_loadCurrentSettings(“invoice.4rp”)
...
 CALL fgl_report_configureLocalization(NULL,NULL,numberFormat,NULL)
...
 RETURN fgl_report_commitCurrentSettings()
END FUNCTION
...

GRW reference for Genero BDL applications

• Reporting API Functions on page 599
• Pivot table library on page 653

Reporting API Functions
Genero Report Writer provides a variety of reporting API functions for use with Genero BDL applications.

• General

Report Writer | 600

• Mandatory report functions

• fgl_report_loadCurrentSettings()
• fgl_report_commitCurrentSettings()
• fgl_report_loadAndCommit()
• Usage

• Additional Functions to Change Default Report and Output options

• Data
• Form
• Page
• Output
• Printer

• Additional functions to set Report Metadata for compatibility reports
• Additional functions to introspect reports at runtime (librdd)

Overview
The Genero Report Writer reporting API for Genero BDL relies upon several files.

1. The libgre.42m file contains the Genero BDL functions that handle Genero Report Writer output
and other features. There are mandatory functions that must be called in your Genero BDL report
application, and there are optional functions that allow you to change the output format, output features
and printer features.

2. These files contain some functions that are used internally by Genero Report Writer:

• CaptionCustom.42m

• CompatCustom.42m

• EncodingCustom.42m

• isotools.42m

The compiled versions of these files are provided in <GREDIR>\lib.

Important: These compiled files are linked in the libgre.42x library, which must be listed in the
external dependencies property of any Genero Studio Project Manager application node that
uses Genero Report Writer. This file should be listed by name only, without a path. Click the ...
button in the Value column of the Properties View to open the Edit List window for that property.

Error Handling

In case of an error, functions from this library will write error messages to stdout using the DISPLAY
statement. The error condition is indicated by a return value.

Verbosity level

Depending on the value of the environment variable "DEBUGLEVEL" Some of the functions issue
warnings and other useful debugging information. Currently any value greater than zero will cause debug
output. Debug information is also output using the DISPLAY statement.

Mandatory functions
These functions are required in the Report Driver section of the Genero BDL file associated with a Genero
BDL reporting application.

See Usage: load and commit on page 602.

Table 155: Mandatory functions

Function Description

fgl_report_loadCurrentSettings (
Loads the report definition and configures the in-
memory settings accordingly.

Report Writer | 601

Function Description

 reportFileName STRING)
 RETURNING ok INTEGER

Note: The fgl_report_loadAndCommit
function may be used in place of the other
mandatory functions if no changes to the
default settings are required.

fgl_report_commitCurrentSettings()
 RETURNING driver
 om.SaxDocumentHandler

Configures the Genero Report Engine based on the
initial report definition and any subsequent function
calls.

Note: The fgl_report_loadAndCommit
function may be used in place of the other
mandatory functions if no changes to the
default settings are required.

fgl_report_loadAndCommit (
 reportFileName STRING)
 RETURNING handler
 om.SaxDocumentHandler

Function that loads a 4rp file and configures the
report engine to execute the report.

fgl_report_loadCurrentSettings
Loads the report definition and configures the in-memory settings accordingly.

Syntax

fgl_report_loadCurrentSettings (
 reportFileName STRING)
 RETURNING ok INTEGER

1. reportFileName - Name of the 4rp report file to process (extract the settings information). The settings
are made using the Configuration menu of the Report Design page. If a relative path is specified,
then it is first converted to an absolute path against the current working directory, then against
FGLRESOURCEPATH, and finally against DBPATH.

The value denotes a path on the machine where the Genero Report Engine is running. In the case of
distributed processing, this may be a different machine than the machine running the dynamic virtual
machine (DVM). When running a legacy Genero BDL report using Report Writer, the reportFileName
should be NULL.

This indicates the ASCII output from the BDL file is to be written to the "SVG" device in preview mode.
2. ok - Returns TRUE if no error occurred.

Important: If your files are loaded asynchronously, a successful call to the
fgl_report_loadCurrentSettings() function does not guarantee that the file has loaded
successfully. If your system is configured to load files asynchronously, it is recommended that you
call fgl_report_getErrorStatus() after every call to START REPORT, OUTPUT TO REPORT,
and FINISH REPORT.

Usage

This function loads the specified 4rp file and configures the current in-memory settings accordingly.
Calling this function is a required prerequisite to calling fgl_report_commitCurrentSettings().

The call sequence is the following:

CALL fgl_report_loadCurrentSettings(filename)
--- Optional functions to change default settings

Report Writer | 602

CALL fgl_report_commitCurrentSettings()

See Usage.

fgl_report_commitCurrentSettings
Configures the Genero Report Engine based on the initial report definition and any subsequent function
calls.

Syntax

fgl_report_commitCurrentSettings()
 RETURNING driver om.SaxDocumentHandler

1. driver - the created XMLhandler.

Usage

This function configures the report engine based on the current settings in the 4rp file that have previously
been loaded by a call to fgl_report_loadCurrentSettings(), and have possibly been modified.

It is mandatory to call fgl_report_commitCurrentSettings to set up the report engine, unless there are no
changes to the default settings; in that case, fgl_report_loadAndCommit can be substituted for both of the
functions.

See Usage.

fgl_report_loadAndCommit
Function that loads a 4rp file and configures the report engine to execute the report.

Syntax

fgl_report_loadAndCommit (
 reportFileName STRING)
 RETURNING handler om.SaxDocumentHandler

1. reportFileName - Name of the 4rp report file to process (extract the settings information). The settings
are made using the Configuration menu of the Report Design page. If a relative path is specified,
then it is first converted to an absolute path against the current working directory, then against
FGLRESOURCEPATH, and finally against DBPATH.

The value denotes a path on the machine where the Genero Report Engine is running. In the case of
distributed processing, this may be a different machine than the machine running the dynamic virtual
machine (DVM). When running a legacy Genero BDL report using Report Writer, the reportFileName
should be NULL.

This indicates the ASCII output from the BDL file is to be written to the "SVG" device in preview mode.
2. handler - Null if an error occurred.

Usage

Use this function when no change of the default settings of the specified report is required.

This function is a convenience function, replacing the need to call both a load function and a commit
function.

CALL fgl_report_loadCurrentSettings(reportFileName)
CALL fgl_report_commitCurrentSettings()

See Usage.
Usage: load and commit

Report Writer | 603

The functions fgl_report_loadCurrentSettings and fgl_report_commitCurrentSettings
work together to configure the report.

The call sequence is:

IF fgl_report_loadCurrentSettings(reportfilename) THEN -- function returns
 TRUE
 -- if settings loaded OK
 -- optional functions to change settings would go here
 LET rephandler = fgl_report_commitCurrentSettings() -- function returns
 the
 -- SAXDocumentHandler
END IF

These functions must appear in the Report Driver section of the BDL file associated with the report. If no
settings are to be changed, the function fgl_report_loadAndCommit may be substituted for these two
functions.

See Writing the Genero BDL report program on page 564 for complete examples.

Functions to change reporting options
Use these functions to change the default settings for a report, and to configure output and printers. The
functions are provided as part of the libgre.42x library.

Table 156: Environment Configuration functions

Function Description

fgl_report_setEnvironment(
 values om.SaxAttributes)

Specifies variable values in the private environment of
the report.

Table 157: Data functions

Function Description

fgl_report_createProcessLevelDataFile(
 dataFileName STRING)
 RETURNING driver
 om.SaxDocumentHandler

Configures the report execution to output an XML
datafile.

fgl_report_runFromXML(
 dataFileName STRING)
 RETURNING ok INTEGER

Replays the report from an XML file.

fgl_report_runReportFromProcessLevelDataFile(
 out om.SaxDocumentHandler,
 fileName STRING)
 RETURNING ok INTEGER

Runs a report from a process level file.

fgl_report_setProcessLevelDataFile(
 dataFileName STRING)

Configures the report execution to output an XML
datafile in addition to the regular processing.

Report Writer | 604

Table 158: Form functions

Function Description

fgl_report_findResourcePath(
 reportName STRING)

Returns the path to a resource searching first
FGLRESOURCEPATH, then FGLDBPATH and finally
DBPATH. (deprecated!)

Table 159: Page Functions

Function Description

fgl_report_configureLabelOutput(
 paperWidth STRING,
 paperHeight STRING,
 labelWidth STRING,
 labelHeight STRING,
 labelsPerRow INTEGER,
 labelsPerColumn INTEGER)

Configures the physical layout of a label page.

fgl_report_configureMultipageOutput(
 pageExponent STRING,
 isoNumber INTEGER,
 portrait BOOLEAN)

Configure the multipage output for ISO or JIS formats.

fgl_report_configurePageSize(
 pageWidth STRING,
 pageHeight STRING)

Set values for the page height and page width for
Genero BDL ASCII reports being run in graphical
mode.

fgl_report_selectLogicalPageMapping(
 mapping STRING)

Configures the mapping of logical pages to physical
pages.

fgl_report_setPageMargins(
 topMargin STRING,
 bottomMargin STRING,
 leftMargin STRING,
 rightMargin STRING)

Configure the logical margins of a report.

fgl_report_setPageSwappingThreshold(
 value INTEGER)

Sets the threshold for page-to-disk swapping.

fgl_report_setPaperMargins(
 topMargin STRING,
 bottomMargin STRING,
 leftMargin STRING,
 rightMargin STRING)

Configure the physical margins of a report.

Report Writer | 605

Table 160: Output functions

Function Description

fgl_report_configureAutoformatOutput(
 fontName STRING,
 fontSize INTEGER,
 fidelity BOOLEAN,
 reportTitle STRING,
 fieldNamePatterns STRING,
 systemId STRING)

Configure the output when auto-formatting is enabled..

fgl_report_configureCompatibilityOutput(
 pageWidthInCharacters INTEGER,
 fontName STRING,
 fidelity BOOLEAN,
 reportName NULL,
 reportCategory STRING,
 systemId STRING)

Configure the output for BDL ASCII reports
(compatibility reports) being run in graphical mode
using Genero Report Writer.

fgl_report_configureHTMLDevice(
 fromPage INTEGER,
 toPage INTEGER,
 embedImages INTEGER,
 imageGenerationDirectory STRING,
 imageURLPrefix STRING,
 removeWhitespace INTEGER,
 ignoreRowAlignment INTEGER,
 ignoreColumnAlignment INTEGER,
 removeBackgroundImages INTEGER)

Configure the HTML output.

fgl_report_configureImageDevice (
 antialiasFonts BOOLEAN,
 antialiasShapes BOOLEAN,
 monochrome BOOLEAN,
 fromPage INTEGER,
 toPage INTEGER,
 fileType STRING,
 filePath STRING,
 fileNamePrefix STRING,
 resolution INTEGER)

Configure the image output.

fgl_report_configureLocalization(
 charSet STRING,
 resourcePath STRING,
 numberFormat STRING,
 dateFormat STRING)

Configures the localization for the current report.

fgl_report_configureOORTFDevice (
 fromPage INTEGER,
 toPage INTEGER,
 imagesResolution INTEGER,

Configure RTF output for Open Office.

Report Writer | 606

Function Description

 imagesFormat STRING)

fgl_report_configurePDFDevice(
 fontDirectory STRING,
 antialiasFonts BOOLEAN,
 antialiasShapes BOOLEAN,
 monochrome BOOLEAN,
 fromPage INTEGER,
 toPage INTEGER)

Configure the PDF output.

fgl_report_configurePDFFontEmbedding(
 preferUnicodeEncoding BOOLEAN)

Configure the font embedding in PDF output.

fgl_report_configureRTFDevice(
 fromPage INTEGER,
 toPage INTEGER,
 imagesResolution INTEGER,
 imagesFormat STRING)

Configure RTF output for Microsoft™.

fgl_report_configureSVGDevice(
 antialiasFonts BOOLEAN,
 antialiasShapes BOOLEAN,
 embedFonts BOOLEAN,
 charsetToEmbed STRING)

Configure the SVG output.

fgl_report_configureSVGPreview(
 preview STRING)

Select how the document is handled by the SVG
previewer.

fgl_report_configureXLSDevice(
 fromPage INTEGER,
 toPage INTEGER,
 removeWhitespace INTEGER,
 ignoreRowAlignment INTEGER,
 ignoreColumnAlignment INTEGER,
 removeBackgroundImages INTEGER,
 mergePages INTEGER)

Configure the XLS (Excel) output.

fgl_report_configureXLSXDevice (
 fromPage INTEGER,
 toPage INTEGER,
 removeWhitespace INTEGER,
 ignoreRowAlignment INTEGER,
 ignoreColumnAlignment INTEGER,
 removeBackgroundImages INTEGER,
 mergePages INTEGER)

Configure Excel output in XLSX format.

fgl_report_selectDevice(
Select the output device.

Report Writer | 607

Function Description

 device STRING)

fgl_report_selectPreview(
 preview INTEGER)

The fgl_report_selectPreview function determines
whether the report is shown in the previewer or written
to a file on disk.

fgl_report_setAutoformatType(
 type STRING)

Sets the auto-formatting type if no 4rp template is
specified.

fgl_report_setBrowserDocumentDirectory(
 directory STRING)

Configures the document directory for browser
viewing.

fgl_report_setBrowserDocumentDirectoryURL(
 directory STRING)

Configures the URL by which the document directory
for browser viewing will be visible from a web server.

fgl_report_setBrowserFontDirectory(
 directory STRING)

Configures the font directory for browser viewing.

fgl_report_setBrowserFontDirectoryURL(
 directory STRING)

Configures the URL by which the font directory for
browser viewing will be visible from a web server.

fgl_report_setCallbackLocalization(
 share BOOLEAN)

Configure the report to use a function to retrieve
localized field titles.

fgl_report_setImageShrinkImagesToPageContent(
 value BOOLEAN)

Configure image cropping.

fgl_report_setImageUsePageNamesAsFileNames(
 value BOOLEAN)

Configure image file name generation.

fgl_report_setOutputFileName(
 fileName STRING)

Configure the file location for the device output. This
function works for all output formats except Image.

fgl_report_setPDFImageResolution(
 imagesResolution INTEGER)

Configure the resolution of embedded images in PDF
output.

fgl_report_setPDFJPEGImageEncoding(
 encodeImagesAsJPEG STRING,
 jpegQuality BOOLEAN)

Configure the encoding method of embedded images
in PDF output.

fgl_report_setRTFMemoryThreshold (
Set the RTF memory threshold.

Report Writer | 608

Function Description

 memoryThreshold INTEGER)

fgl_report_setSharePortWithGDC(
 share BOOLEAN)

Configures the report engine to use the same port as
the Genero Desktop Client for previewing.

fgl_report_setSVGCompression(
 compressOutput BOOLEAN)

Configure SVG compression.

fgl_report_setSVGCopies(
 copies INTEGER)

Specify the number of copies to be printed.

fgl_report_setSVGOrientationRequested(
 orientationRequested String)

Function to control the paper orientation.

fgl_report_setSVGPageRange(
 fromPage INTEGER,
 toPage INTEGER)

Select which pages should be printed.

fgl_report_setSVGPaperSource(
 paperSource STRING)

Select the input source of the printer.

fgl_report_setSVGPrinterName(
 printerName STRING)

Select a specific printer by name.

fgl_report_setSVGSheetCollate (
 sheetCollate STRING)

Control the collation of multiple copies.

fgl_report_setXLSMergeCells (
 mergeCells BOOLEAN)

Configure cell merging in XLS (Excel) output.

fgl_report_setXLSXMergeCells (
 mergeCells BOOLEAN)

Configure cell merging in XLSX (Excel) output.

fgl_report_stopGraphicalCompatibilityMode()
Restore text-based report output.

Table 161: Printer functions

Function Description

fgl_report_setPrinterChromaticity(
 chromaticity STRING)

Control color selection of the printer.

fgl_report_setPrinterCopies(
Specify the number of copies to be printed.

Report Writer | 609

Function Description

 copies INTEGER)

fgl_report_setPrinterDestinationUrl(
 destination STRING)

Specify an alternate destination for the spooled printer
formatted data.

fgl_report_setPrinterFidelity(
 fidelity INTEGER)

Select printer high fidelity mode.

fgl_report_setPrinterJobImpressions(
 jobImpressions INTEGER)

Specify the total size in number of impressions.

fgl_report_setPrinterJobMediaSheets(
 jobMediaSheets INTEGER)

Specify the total number of media sheets.

fgl_report_setPrinterJobName(
 jobName STRING)

Specify a name for the job.

fgl_report_setPrinterJobPriority(
 jobPriority INTEGER)

Specify a priority for the job.

fgl_report_setPrinterJobSheets(
 jobSheets STRING)

Control job sheet printing.

fgl_report_setPrinterMediaName(
 mediaTray STRING)

Select the type of media to use.

fgl_report_setPrinterMediaSizeName(
 mediaSizeName STRING)

Select the media size to be used.

fgl_report_setPrinterMediaTray(
 mediaTray STRING)

Select the tray of the printer.

fgl_report_setPrinterName(
 printerName STRING)

Select a specific printer by name.

fgl_report_setPrinterNumberUp(
 numberUp INTEGER)

Specify the number of print stream pages for a single
side of an instance.

fgl_report_setPrinterOrientationRequested(
 orientationRequested STRING)

Control the paper orientation.

fgl_report_setPrinterPageRanges(
Specify the ranges of pages to print.

Report Writer | 610

Function Description

 pageRanges STRING)

fgl_report_setPrinterPrintQuality(
 printQuality STRING)

Control the quality used by the printer.

fgl_report_setPrinterRequestingUserName(
 requestingUserName STRING)

Specify end user's name.

fgl_report_setPrinterResolution(
 resolution INTEGER)

Specify an exact resolution for the printer.

fgl_report_setPrinterSheetCollate(
 sheetCollate STRING)

Controls the collation of multiple copies.

fgl_report_setPrinterSides(
 sides STRING)

Specify the mapping of pages on the physical media.

fgl_report_setPrinterWriteToFile(
 file STRING)

Specify a file where the report is written in postscript.
(deprecated!)

Table 162: Distributed Mode functions

Function Description

fgl_report_configureDistributedEnvironment(
 FGLDIR STRING,
 FGLPROFILE STRING,
 FGLRESOURCEPATH STRING,
 DBPATH STRING)

Configure the environment in the case of distributed
processing.

fgl_report_configureDistributedProcessing(
 host STRING,
 port INTEGER)

Configure processing via a dedicated server.

fgl_report_setDistributedRequestingUserName(
 requestingUserName STRING)

Specify end user's name for the purpose of identifying
log entries in the case of distributed processing.

fgl_report_configureDistributedURLPrefix(
 urlPrefix STRING)

Configures the URL prefix containing the host and
optionally the port and prepended paths for previewing
a document.

Using report output functions

When you load the current settings of a report, you load report output options specified in the report design
document. To change how the report is output, the output functions must be called after the loading of
the current settings (fgl_report_loadCurrentSettings on page 601), but before committing the
current settings (fgl_report_commitCurrentSettings on page 602).

Report Writer | 611

In this example, the Genero BDL code fragment uses the fgl_report_selectDevice on page 626
function to change the output device to PDF and the fgl_report_selectPreview on page 628
function to select to preview the report.

IF fgl_report_loadCurrentSettings(r_filename) THEN -- load the 4rp file
 -- and continue if
 successful
 CALL fgl_report_selectDevice("PDF") -- change to PDF
 CALL fgl_report_selectPreview(TRUE) -- preview file using
 default previewer
 -- ADD ADDITIONAL API CALLS HERE, BEFORE YOU COMMIT CURRENT SETTINGS.
 LET handler = fgl_report_commitCurrentSettings() -- commit changes
ELSE
 EXIT PROGRAM
END IF

Device-specific function summary list
Device-specific configuration functions listed by device.

Table 163: Device-specific functions

Device Available functions

HTML fgl_report_configureHTMLDevice on page 617.

Image fgl_report_configureImageDevice on page 615,
fgl_report_setImageShrinkImagesToPageContent on page 631,
fgl_report_setImageUsePageNamesAsFileNames on page 631.

OORTF fgl_report_configureOORTFDevice on page 618,
fgl_report_setRTFMemoryThreshold on page 645

PDF fgl_report_configurePDFDevice on page 619,
fgl_report_configurePDFFontEmbedding on page 620,
fgl_report_setPDFJPEGImageEncoding on page 634,
fgl_report_setPDFImageResolution on page 634.

Postscript None.

Printer fgl_report_setPrinterChromaticity on page 635, fgl_report_setPrinterCopies
on page 635, fgl_report_setPrinterDestinationUrl on page 635,
fgl_report_setPrinterFidelity on page 636, fgl_report_setPrinterJobImpressions
on page 636, fgl_report_setPrinterJobMediaSheets on
page 637, fgl_report_setPrinterJobName on page 637,
fgl_report_setPrinterJobPriority on page 637, fgl_report_setPrinterJobSheets
on page 638, fgl_report_setPrinterMediaName on page
638, fgl_report_setPrinterMediaSizeName on page 639,
fgl_report_setPrinterMediaTray on page 639, fgl_report_setPrinterName
on page 640, fgl_report_setPrinterNumberUp on page 640,
fgl_report_setPrinterOrientationRequested on page 640,
fgl_report_setPrinterPageRanges on page 641, fgl_report_setPrinterPrintQuality
on page 641, fgl_report_setPrinterRequestingUserName on
page 642, fgl_report_setPrinterResolution on page 642,
fgl_report_setPrinterSheetCollate on page 643, fgl_report_setPrinterSides on
page 643, fgl_report_setPrinterWriteToFile on page 644.

RTF fgl_report_configureRTFDevice on page 620,
fgl_report_setRTFMemoryThreshold on page 645.

SVG fgl_report_configureSVGDevice on page 621, fgl_report_setSVGCompression
on page 645, fgl_report_setSVGCopies on page 646,

Report Writer | 612

Device Available functions

fgl_report_setSVGOrientationRequested on page 646,
fgl_report_setSVGPageRange on page 647, fgl_report_setSVGPaperSource
on page 647, fgl_report_configureSVGPreview on page 621,
fgl_report_setSVGPrinterName on page 647, fgl_report_setSVGSheetCollate on
page 648.

XLS fgl_report_configureXLSDevice on page 622, fgl_report_setXLSMergeCells on
page 648.

XLSX fgl_report_configureXLSXDevice on page 623, fgl_report_setXLSXMergeCells
on page 649.

fgl_report_configureAutoformatOutput
Configure the output when auto-formatting is enabled.

Syntax

fgl_report_configureAutoformatOutput(
 fontName STRING,
 fontSize INTEGER,
 fidelity BOOLEAN,
 reportTitle STRING,
 fieldNamePatterns STRING,
 systemId STRING)

1. fontName specifies the font to use.
2. fontSize specifies the font size to use
3. fidelity specifies whether or not to set the fidelity property for the produced WORDBOX objects. See

WORDBOX for more information.
4. reportTitle - Title of the report.
5. fieldNamePatterns - A comma separated list of field name patterns; fields not matching any of the

patterns are not printed. The patterns may contain literal characters, the? question mark, the * star
character, and character ranges, as defined for the Genero BDL MATCHES operator. The columns of the
output are sorted in order of the patterns matched and within one pattern by the relative position of the
field in the PRINT statement.

6. systemId specifies an absolute URL against which relative resources such as images in overlays are
resolved.

Usage

This function is applicable when no 4rp template has been specified in the call to either
fgl_report_loadCurrentSettings or fgl_report_loadAndCommit, and auto-formatting with a
value other than COMPATIBILITY has been selected by a call to fgl_report_setAutoformatType.

All arguments to this function are optional (indicated by passing a null value).

For a generic example of Genero code using a reporting function, see Using report output functions on
page 610. This example may not use the specific function discussed in this topic, however it provides
details on where you would place this (and other) report output functions.

fgl_report_configureCompatibilityOutput
Configure the output for BDL ASCII reports (compatibility reports) being run in graphical mode using
Genero Report Writer.

Syntax

fgl_report_configureCompatibilityOutput(

Report Writer | 613

 pageWidthInCharacters INTEGER,
 fontName STRING,
 fidelity BOOLEAN,
 reportName NULL,
 reportCategory STRING,
 systemId STRING)

1. pageWidthInCharacters - For reports that do not contain a RIGHT MARGIN specification this value
should be set. If the report does not contain a RIGHT MARGIN specification and this value is not set, a
value of 132 is assumed.

2. fontName - Specifies the font to use. The default is a fixed pitch font.
3. fidelity - Ensures that the text preview and text printout are100% the same. The font is not embedded in

the report document, it is drawn similar to an image. As a result, you may not be able to select the text
in the resulting report, depending on the output format chosen (pdf, for example).

4. reportName - the value for this parameter is now provided internally. However, because of backwards
compatibility, you must set the value to NULL when you call this function.

5. reportCategory - Specifies the category of the report. The value specified is passed to
the overloadable callback function compat_placePageBackground in $GREDIR/src/
overloadables/CompatCustom.4gl. By default, the Genero Report Engine calls
compat_placePageBackground(out,reportName,reportCategory,pageNumber); if
the report category is "demo" or "form", specific actions are taken to the report as written in the
source code of CompatCustom.4gl. To provide for custom report categories, create a copy of
CompatCustom.4gl in a different path, then update FGLLDPATH and put the path containing your
copy BEFORE the path containing the original; the DVM will load your file instead of the default. For
example, you may want to place a company logo in all reports with the category "correspondence",
such as an invoice, delivery receipt, and so on.

6. systemId - Specifies an absolute URL against which relative resources such as images in overlays are
resolved.

Usage

Function to optionally configure the output for BDL ASCII reports (compatibility reports) being run in
graphical mode using Genero Report Writer.

This function is applicable when no 4rp template has been specified in the call to either
fgl_report_loadCurrentSettings or fgl_report_loadAndCommit. All arguments to this function
are optional (indicated by passing a null value).

For a generic example of Genero code using a reporting function, see Using report output functions on
page 610. This example may not use the specific function discussed in this topic, however it provides
details on where you would place this (and other) report output functions.

fgl_report_configureDistributedEnvironment
Configure the environment in the case of distributed processing.

Syntax

fgl_report_configureDistributedEnvironment(
 FGLDIR STRING,
 FGLPROFILE STRING,
 FGLRESOURCEPATH STRING,
 DBPATH STRING)

1. FGLDIR specifies the value of the environment variable FGLDIR. Passing NULL for this value will
default to the process environment variable value.

2. FGLPROFILE specifies the value of the environment variable FGLPROFILE. Passing NULL for this
value will default to the process environment variable.

Report Writer | 614

3. FGLRESOURCEPATH specifies the value of the environment variable FGLRESOURCEPATH. Passing
NULL for this value will default to the process environment variable value.

4. DBPATH specifies the value of the environment variable DBPATH. Passing NULL for this value will
default to the environment process environment variable value.

Usage

Configure the environment. It is intended for the case of distributed processing with a server running on
a different physical machine with different resource paths. It is not necessary to call this function if the
daemon is running on the local machine or if the remote machine has identical resource directories.

For a generic example of Genero code using a reporting function, see Using report output functions on
page 610. This example may not use the specific function discussed in this topic, however it provides
details on where you would place this (and other) report output functions.

fgl_report_configureDistributedProcessing
Configure processing via a dedicated server.

Syntax

fgl_report_configureDistributedProcessing(
 host STRING,
 port INTEGER)

1. host specifies the host name.
2. port specifies the port number.

Usage

Specify the server where the Genero Report Engine is running in server mode. The engine is started on
the remote machine via the command $GREDIR/bin/greportwriter -l port.

For a generic example of Genero code using a reporting function, see Using report output functions on
page 610. This example may not use the specific function discussed in this topic, however it provides
details on where you would place this (and other) report output functions.

fgl_report_configureDistributedURLPrefix
Configures the URL prefix containing the host and optionally the port and prepended paths for previewing a
document.

Syntax

fgl_report_configureDistributedURLPrefix(
 urlPrefix STRING)

1. urlPrefix is a URL by which the web server can be reached.

Usage

This function is applicable when previewing has been selected by a call to the function
fgl_report_selectPreview and the Genero Report Engine (GRE) is running in distributed mode on a
remote machine.

Note: This option is not needed and not taken into consideration when the GRE is running in
distributed mode on the same machine as the DVM.

This function needs to be called only if the web server deviates from the default
"http://HOST:8080", where "HOST" denoted the value "host" passed in the call to
fgl_report_configureDistributedProcessing(host,port).

Report Writer | 615

For a generic example of Genero code using a reporting function, see Using report output functions on
page 610. This example may not use the specific function discussed in this topic, however it provides
details on where you would place this (and other) report output functions.

fgl_report_configureImageDevice
Configure the image output.

Syntax

fgl_report_configureImageDevice (
 antialiasFonts BOOLEAN,
 antialiasShapes BOOLEAN,
 monochrome BOOLEAN,
 fromPage INTEGER,
 toPage INTEGER,
 fileType STRING,
 filePath STRING,
 fileNamePrefix STRING,
 resolution INTEGER)

1. antialiasFonts - Configures whether fonts should be rendered using antialiasing. The default value is
true.

2. antialiasShapes - Configures whether shapes should be rendered using antialiasing. The default value
is true.

3. monochrome - Configures whether color values should be converted to monochrome output. The
default value is true.

4. fromPage - Selects the lower bound of the range of pages to create images for. The default value is 1.
5. toPage - Selects the upper bound of the range of pages to create images for. By default, images are

created for all pages.
6. fileType - One of jpg|png|bmp|gif
7. filePath - Path of the target directory where the images are created
8. fileNamePrefix - Name prefix of the generated files (e.g. setting namePrefix to "Chart" will cause the

creation of files called "Chart0001", "Chart0002", and so on.
9. resolution - Controls the resolution used for creating the images. If the image is later viewed unscaled

on a device with the specified resolution, all items will have their correct metric length. Beware that high
values may require enormous amounts of memory and the resulting files may become very large. The
formula for calculating the memory consumption in bytes is resolution_in_dpi_x * page_width_in_inches
* resolution_in_dpi_y * page_height_in_inches * 3byte for a color image. For a page of format "letter" at
96 DPI we therefore get 96DPI*8.5"*96DPI*11"*3byte=2.6 MB. At 300 DPI this is 25 MB (color) and 8
MB (grayscale). The renderer currently requires the entire page to be in memory.

Usage

This function is applicable when image output has been selected by a call to the function
fgl_report_selectDevice.

All arguments to this function are optional (indicated by passing a null value).

For a generic example of Genero code using a reporting function, see Using report output functions on
page 610. This example may not use the specific function discussed in this topic, however it provides
details on where you would place this (and other) report output functions.

fgl_report_configureLabelOutput
Configures the physical layout of a label page.

Syntax

fgl_report_configureLabelOutput(

Report Writer | 616

 paperWidth STRING,
 paperHeight STRING,
 labelWidth STRING,
 labelHeight STRING,
 labelsPerRow INTEGER,
 labelsPerColumn INTEGER)

1. paperWidth - width of the page (e.g. a4width)
2. paperHeight - height of the page (e.g. a4length)
3. labelWidth - Physical width of a label (e.g. 99.1mm) The value specified here should be the same or

larger than the width in the 4rp file. The value is optional (indicated by passing null). In this case the
width specified in the 4rp file is used.

4. labelHeight - Physical height of a label (e.g. 42.3mm) The value specified here should be the same or
larger than the height in the 4rp file. The value is optional (indicated by passing null). In this case the
height specified in the 4rp file is used.

5. labelsPerRow - the number of labels across
6. labelsPerColumn - the number of labels down

For additional information about the strings that can be used to specify the parameter values, see
Dimension Resolver on page 801.

Usage

Function that configures the physical layout of a label page.

This function is applicable when selecting "label" as the mapping option by calling the function
fgl_report_selectLogicalPageMapping. This figures the physical layout by specifying the paper
dimensions, the physical label size and the n x m layout. The physical margins (distance between page
border and label) are specified by calling fgl_report_setPaperMargins.

For a generic example of Genero code using a reporting function, see Using report output functions on
page 610. This example may not use the specific function discussed in this topic, however it provides
details on where you would place this (and other) report output functions.

fgl_report_configureLocalization
Configures the localization for the current report.

Syntax

fgl_report_configureLocalization(
 charSet STRING,
 resourcePath STRING,
 numberFormat STRING,
 dateFormat STRING)

1. charSet - Specifies the encoding of the translation files (str and 42s files).
2. resourcePath - A colon- or semicolon-delimited (Windows™) list of directories specifying the search path

for compiled translation files (42s).
3. numberFormat - A formatting string to be used for number formatting. The format is compatible with the

format of the Genero Business Development Language DBFORMAT environment variable.
4. dateFormat - A formatting string to be used for date formatting. The format is compatible with the format

of the Genero Business Development Language DBDATE environment variable.

Usage

Function that configures the localization for the current report.

The function is not applicable for callback localization (See fgl_report_setCallbackLocalization).

Report Writer | 617

For a generic example of Genero code using a reporting function, see Using report output functions on
page 610. This example may not use the specific function discussed in this topic, however it provides
details on where you would place this (and other) report output functions.

fgl_report_configureHTMLDevice
Configure the HTML output.

Syntax

fgl_report_configureHTMLDevice(
 fromPage INTEGER,
 toPage INTEGER,
 embedImages INTEGER,
 imageGenerationDirectory STRING,
 imageURLPrefix STRING,
 removeWhitespace INTEGER,
 ignoreRowAlignment INTEGER,
 ignoreColumnAlignment INTEGER,
 removeBackgroundImages INTEGER)

1. fromPage - Selects the lower bound of the range of pages to include in the HTML document. The
default value is 1.

2. toPage - Selects the upper bound of the range of pages to include in the HTML document. By default all
pages are included.

3. embedImages - Specifies whether to embed images in the resulting HTML output. By default this is not
the case.

4. imageGenerationDirectory - If images are not embedded, this property specifies the directory into which
generated images are written. The directory needs to exist, it is not created. Note that the urls that are
created will not take this value into account. By default, the urls that are created contain the image
name only, so that the images are expected to reside in the same directory as the document. If needed,
the url prefix for the generated urls can be changed with the property imageURLPrefix.

5. imageURLPrefix - If images are not embedded, this property specifies the prefix of the urls of the
generated images. As an example consider that an image of the name "12345.png" is created, and that
this property is set to the value "./images/"; then the "src" attribute of the generated "img" element would
be set to "./images/12345.png".

6. removeWhitespace - Controls whether cells should be created for empty strings. By default whitespace
is stripped from the document.

7. ignoreRowAlignment - When set, only those objects that are entirely above or entirely below each
other will go in separate rows. When set, the option reduces the amount of rows, thereby losing the
horizontal alignment. The placement is not changed so that stacked items remain stacked. By default
row alignment is not ignored.

8. ignoreColumnAlignment - When set, only those objects that are entirely to the left or entirely to the
right of each other will go in separate columns. When set, the option reduces the amount of columns,
thereby losing the vertical alignment. The placement is not changed so that adjacent items remain
adjacent. By default column alignment is not ignored.

9. removeBackgroundImages - Controls the behavior when an IMAGEBOX is partially obscured by
another element. When set, the image is removed from the resulting document; otherwise, the handling
is as in any other case of overlapping items. By default, background images are removed.

Usage

Function to configure the HTML output.

This function is applicable when HTML output has been selected by a call to the function
fgl_report_selectDevice. All arguments to this function are optional (indicated by
passing a null value). If the HTML document should be written to a file, the general functions
fgl_report_setOutputFileName and fgl_report_selectPreview are available for this purpose.

Report Writer | 618

For a generic example of Genero code using a reporting function, see Using report output functions on
page 610. This example may not use the specific function discussed in this topic, however it provides
details on where you would place this (and other) report output functions.

fgl_report_configureMultipageOutput
Configure the multipage output for ISO or JIS formats.

Syntax

fgl_report_configureMultipageOutput(
 pageExponent STRING,
 isoNumber INTEGER,
 portrait BOOLEAN)

1. pageExponent - Specifies the number of pages to print. The actual number of pages is calculated by
the formula count=2^pageExponent.

2. isoNumber - Specifies the ISO number (e.g. 4 to ISOA4) This parameter is optional (indicated by
passing an null value). If no value is specified, the page size of the logical page is taken from the 4rp
file (if specified).

3. portrait - TRUE specifies that the page is in portrait orientation; FALSE= landscape. This
parameter is optional (indicated by passing a null value). If no value is specified, the value of
the logical page is taken from the 4rp file (if specified), or from the value specified in a call to
fgl_report_configurePageSize.

Usage

Function to configure the multipage output for ISO or JIS formats.

This function is applicable for ISO or JIS formats and enables the printing of several logical pages per
physical page. The number of pages per page is always a power of 2.

For a generic example of Genero code using a reporting function, see Using report output functions on
page 610. This example may not use the specific function discussed in this topic, however it provides
details on where you would place this (and other) report output functions.

fgl_report_configureOORTFDevice
Configure RTF output for Open Office.

Syntax

fgl_report_configureOORTFDevice (
 fromPage INTEGER,
 toPage INTEGER,
 imagesResolution INTEGER,
 imagesFormat STRING)

1. fromPage - Selects the lower bound of the range of pages to include in the RTF document. The default
value is 1.

2. toPage - Selects the upper bound of the range of pages to include in the RTF document. Per default all
pages are included.

3. imagesResolution - Specifies the resolution of embedded images. In addition to ImageBoxes, content
from BarCodeBoxes, business charts and HTMLBoxes are embedded as images.

4. imagesFormat - One of :"png", "jpg". Controls the format of images embedded in the RTF document.
Select jpg for compactness, png for lossless compression.

Usage

Function to configure RTF output for Open Office.

Report Writer | 619

This function is applicable when RTF output has been selected by a call to the function
fgl_report_selectDevice. All arguments to this function are optional (indicated by passing a null
value).

If the RTF document should be written to a file, the general functions
fgl_report_setOutputFileName and fgl_report_selectPreview are available for this purpose.

For a generic example of Genero code using a reporting function, see Using report output functions on
page 610. This example may not use the specific function discussed in this topic, however it provides
details on where you would place this (and other) report output functions.

fgl_report_configurePageSize
Set values for the page height and page width for Genero BDL ASCII reports being run in graphical mode.

Syntax

fgl_report_configurePageSize(
 pageWidth STRING,
 pageHeight STRING)

1. pageWidth - width of the page (e.g. a4width).
2. pageHeight - height of the page (e.g. a4length).

Usage

The page dimensions of the report are read from the 4rp file. This function is used to override the values
found there.

For BDL ASCII reports being run in graphical mode (compatibility reports, no 4rp file is being used), this
function is used to set values for the page height and page width.

See Dimension Resolver on page 801 for additional examples of the strings that can be used in these
parameters.

For a generic example of Genero code using a reporting function, see Using report output functions on
page 610. This example may not use the specific function discussed in this topic, however it provides
details on where you would place this (and other) report output functions.

fgl_report_configurePDFDevice
Configure the PDF output.

Syntax

fgl_report_configurePDFDevice(
 fontDirectory STRING,
 antialiasFonts BOOLEAN,
 antialiasShapes BOOLEAN,
 monochrome BOOLEAN,
 fromPage INTEGER,
 toPage INTEGER)

1. fontDirectory - Absolute path to the directory containing the font files
2. antialiasFonts - Configures whether fonts should be rendered using antialiasing. The default value is

false.
3. antialiasShapes - Configures whether shapes should be rendered using antialiasing. The default value

is false.
4. monochrome - Configures whether color values should be converted to monochrome output. The

default value is false.
5. fromPage - Selects the lower bound of the range of pages to include in the PDF document. The default

value is 1.

Report Writer | 620

6. toPage - Selects the upper bound of the range of pages to include in the PDF document. By default all
pages are included.

Usage

Function to configure the PDF output.

This function is applicable when PDF output has been selected by a call to the function
fgl_report_selectDevice. All arguments to this function are optional (indicated by
passing a null value). If the PDF document should be written to a file, the general function
fgl_report_setOutputFileName and fgl_report_selectPreview are available for this purpose.

For a generic example of Genero code using a reporting function, see Using report output functions on
page 610. This example may not use the specific function discussed in this topic, however it provides
details on where you would place this (and other) report output functions.

fgl_report_configurePDFFontEmbedding
Configure the font embedding in PDF output.

Syntax

fgl_report_configurePDFFontEmbedding(
 preferUnicodeEncoding BOOLEAN)

1. preferUnicodeEncoding - Specified to encode characters in UNICODE whenever possible. This
option should be set if non-Latin characters are used in the document. Unsetting the option improves
processing speed and yields slightly smaller documents. By default the parameter has a value of TRUE.

Usage

This function configures the font embedding in PDF output.

This function is applicable when PDF output has been selected by a call to the function
fgl_report_selectDevice.

The argument to this function is optional, indicated by passing a null value.

For a generic example of Genero code using a reporting function, see Using report output functions on
page 610. This example may not use the specific function discussed in this topic, however it provides
details on where you would place this (and other) report output functions.

fgl_report_configureRTFDevice
Configure RTF output for Microsoft™.

Syntax

fgl_report_configureRTFDevice(
 fromPage INTEGER,
 toPage INTEGER,
 imagesResolution INTEGER,
 imagesFormat STRING)

1. fromPage - Selects the lower bound of the range of pages to include in the RTF document. The default
value is 1.

2. toPage - Selects the upper bound of the range of pages to include in the RTF document. Per default all
pages are included.

3. imagesResolution - Specifies the resolution of embedded images. In addition to ImageBoxes, content
from BarCodeBoxes, business charts and HTMLBoxes are embedded as images.

4. imagesFormat - One of :"png", "jpg". Controls the format of images embedded in the RTF document.
Select jpg for compactness, png for lossless compression.

Report Writer | 621

Usage

Function to configure RTF output.

This function is applicable when RTF output has been selected by a call to the function
fgl_report_selectDevice. All arguments to this function are optional (indicated by passing a null
value).

If the RTF document should be written to a file, the general functions
fgl_report_setOutputFileName and fgl_report_selectPreview are available for this purpose.

For a generic example of Genero code using a reporting function, see Using report output functions on
page 610. This example may not use the specific function discussed in this topic, however it provides
details on where you would place this (and other) report output functions.

fgl_report_configureSVGDevice
Configure the SVG output.

Syntax

fgl_report_configureSVGDevice(
 antialiasFonts BOOLEAN,
 antialiasShapes BOOLEAN,
 embedFonts BOOLEAN,
 charsetToEmbed STRING)

1. antialiasFonts - Configures whether fonts should be rendered using antialiasing. The default value is
false.

2. antialiasShapes - Configures whether shapes should be rendered using antialiasing. The default value
is false.

3. embedFonts - Controls whether fonts are embedded within the document. The default value is true.
4. charsetToEmbed - SVG offers the possibility to embed fonts within the document. Documents with

embedded fonts are slightly larger, but they offer the advantage of exact reproduction. Normally one
would embed exactly those characters that were used throughout the document, but that would require
reading the entire document before creating any SVG output. This attribute provides a solution that
does not compromise streaming. The characters in the specified character set are embedded, not
requiring all of them to have been used. Note that the character sets are neither restricted to 255
characters, nor is there any restriction on which unicode characters are used. Furthermore, an entry in
the character set can be a sequence of unicode characters, thus allowing for ligatures. Valid values are:

• DEFAULT - embeds all characters from the code pages iso-8859-1 through iso-8859-10 (about 600
characters).

• ISO-8859-15 - embeds all characters from the named code page (about 200 characters).
• ALL - embeds all characters available in the selected fonts. This option should only be used when

Asian characters are needed, since the size of the glyph definitions will significantly grow the
document size.

Usage

Function to configure the SVG output.

This function is applicable when SVG output has been selected by a call to the function
fgl_report_selectDevice. All arguments to this function are optional (indicated by
passing a null value). If the SVG document should be written to a file, the general function
fgl_report_setOutputFileName and fgl_report_selectPreview are available for this purpose.

For a generic example of Genero code using a reporting function, see Using report output functions on
page 610. This example may not use the specific function discussed in this topic, however it provides
details on where you would place this (and other) report output functions.

fgl_report_configureSVGPreview

Report Writer | 622

Select how the document is handled by the SVG previewer.

This function is available only for the device SVG when previewing is selected.

Syntax

fgl_report_configureSVGPreview(
 preview STRING)

1. preview - There are four possible options:

Preview Makes the previewer visible and shows the
document in a tab folder.

ShowPrintDialog Pops up the print dialog allowing the user to select
and configure a printer. The document is printed in
the background and the previewer main window is
not shown.

PrintOnDefaultPrinter Prints the report silently on the default printer. The
previewer main window is not shown.

PrintOnNamedPrinter Prints the report silently on the a named
printer. The previewer main window is not
shown. The printer is named by a call to
fgl_report_setSVGPrinterName().
and the page range can be set by calling
fgl_report_setSVGPageRange(). If the
previewer is on Windows, then the paper
source can be selected with the function
fgl_report_setSVGPaperSource.
Additional parameters that can be set for
printing from the SVG previewer include
fgl_report_setSVGCopies and
fgl_report_setSVGSheetCollate.

Usage

This function is available only for the device SVG when previewing is selected.

Important: Preview options set by fgl_report_configureSVGPreview are
only valid when previewing with Genero Report Viewer in a Desktop configuration
(fgl_report_selectDevice("SVG")). They are not valid when previewing with Genero Report
Viewer for HTML5 in a Web configuration ((fgl_report_selectDevice("Browser")).

For a generic example of Genero code using a reporting function, see Using report output functions on
page 610. This example may not use the specific function discussed in this topic, however it provides
details on where you would place this (and other) report output functions.

fgl_report_configureXLSDevice
Configure the XLS (Excel) output.

Syntax

fgl_report_configureXLSDevice(
 fromPage INTEGER,
 toPage INTEGER,
 removeWhitespace INTEGER,
 ignoreRowAlignment INTEGER,
 ignoreColumnAlignment INTEGER,

Report Writer | 623

 removeBackgroundImages INTEGER,
 mergePages INTEGER)

1. fromPage - Selects the lower bound of the range of pages to include in the XLS document. The default
value is 1.

2. toPage - Selects the upper bound of the range of pages to include in the XLS document. By default all
pages are included.

3. removeWhitespace - Controls whether or not cells should be created for empty strings. By default
whitespace is stripped from the document.

4. ignoreRowAlignment - When set, only those objects that are entirely above or entirely below each
other will go in separate rows. When set, the option reduces the amount of rows thereby losing the
horizontal alignment. The placement is not changed so that stacked items remain stacked. By default
row alignment is ignored.

5. ignoreColumnAlignment - When set, only those objects that are entirely to the left or entirely to the right
of each other will go in separate columns. When set, the option reduces the amount of columns thereby
losing the vertical alignment. The placement is not changed so that adjacent items remain adjacent. By
default column alignment is ignored.

6. removeBackgroundImages - Controls the behavior in case an IMAGEBOX is partially obscured by
another element. When set, the image is removed from the resulting document otherwise the handling
is as with any other case of overlapping items. By default, background images are removed.

7. mergePages - Controls the behavior when the report has more than one page. By default a separate
sheet is created per page. Setting this parameter causes the pages to be merged, creating a single
result sheet unless the sheet has more that 65536 rows; in that case, the exceeding rows spill over
into extra sheets. Setting this parameter and using a standard page size is the recommended way to
produce single-sheet output; using a huge custom page size instead can adversely affect memory
reclamation and performance.

Usage

Function to configure the XLS (Excel) output.

This function is applicable when XLS output has been selected by a call to the function
fgl_report_selectDevice. All arguments to this function are optional, indicated by
passing a null value. If the XLS document should be written to a file, the general functions
fgl_report_setOutputFileName and fgl_report_selectPreview are available for this purpose.

See also Sending Data to an Excel spreadsheet.

For a generic example of Genero code using a reporting function, see Using report output functions on
page 610. This example may not use the specific function discussed in this topic, however it provides
details on where you would place this (and other) report output functions.

fgl_report_configureXLSXDevice
Configure Excel output in XLSX format.

Syntax

fgl_report_configureXLSXDevice (
 fromPage INTEGER,
 toPage INTEGER,
 removeWhitespace INTEGER,
 ignoreRowAlignment INTEGER,
 ignoreColumnAlignment INTEGER,
 removeBackgroundImages INTEGER,
 mergePages INTEGER)

1. fromPage - Selects the lower bound of the range of pages to include in the XLS document. The default
value is 1.

Report Writer | 624

2. toPage - Selects the upper bound of the range of pages to include in the XLS document. By default all
pages are included.

3. removeWhitespace - Controls whether or not cells should be created for empty strings. By default
whitespace is stripped from the document.

4. ignoreRowAlignment - When set, only those objects that are entirely above or entirely below each
other will go in separate rows. When set, the option reduces the amount of rows thereby losing the
horizontal alignment. The placement is not changed so that stacked items remain stacked. By default
row alignment is ignored.

5. ignoreColumnAlignment - When set, only those objects that are entirely to the left or entirely to the right
of each other will go in separate columns. When set, the option reduces the amount of columns thereby
losing the vertical alignment. The placement is not changed so that adjacent items remain adjacent. By
default column alignment is ignored.

6. removeBackgroundImages - Controls the behavior in case an IMAGEBOX is partially obscured by
another element. When set, the image is removed from the resulting document otherwise the handling
is as with any other case of overlapping items. By default, background images are removed.

7. mergePages - Controls the behavior when the report has more than one page.

Usage

Function to configure Excel output in XLSX format. The functionality is identical to the existing "XLS" output
except for:

• The format can be opened only by newer versions of Microsoft™ Excel (beginning with 2007). It is
possible to download a backward compatibility pack from Microsoft™ that will allow opening of these
files with older versions. Beware that in this case worksheets containing more then 65536 rows will be
truncated at this limit.

• The new format overcomes the 65536 row limit of the "XLS" format. This is the main motivation for
introducing this format.

• The new format is generated with constant memory consumption so that very large documents can be
produced without exhausting heap space.

This function is applicable when "XLSX" output has been selected by a call to the function
fgl_report_selectDevice. All arguments to this function are optional, indicated by
passing a null value. If the XLSX document should be written to a file, the general functions
fgl_report_setOutputFileName and fgl_report_selectPreview are available for this purpose.

See also Sending Data to an Excel spreadsheet.

For a generic example of Genero code using a reporting function, see Using report output functions on
page 610. This example may not use the specific function discussed in this topic, however it provides
details on where you would place this (and other) report output functions.

fgl_report_createProcessLevelDataFile
Configures the report execution to output an XML datafile.

Syntax

fgl_report_createProcessLevelDataFile(
 dataFileName STRING)
 RETURNING driver om.SaxDocumentHandler

1. dataFileName - Name of the data file to generate.
2. driver - Returns an om.SaxDocumentHandler if no error occurred.

Usage

Function that configures the report execution to output an XML datafile.

Report Writer | 625

This function configures the execution to output data to the specified file. Calling this
function will configure the report engine to output the data file only. You can use the function
fgl_report_runReportFromProcessLevelDataFile to run a report getting the data from this XML
file.

For a generic example of Genero code using a reporting function, see Using report output functions on
page 610. This example may not use the specific function discussed in this topic, however it provides
details on where you would place this (and other) report output functions.

fgl_report_findResourcePath
Returns the path to a resource searching first FGLRESOURCEPATH, then FGLDBPATH and finally DBPATH.
(deprecated!)

Syntax

fgl_report_findResourcePath(
 reportName STRING)

1. reportName - Specify the name of the report.

Usage

The function returns the absolute path to the resource specified in the argument. In case that a file cannot
be found the function returns the argument passed.

Important: The function is deprecated since it does not work in distributed mode. The function
fgl_report_loadCurrentSettings now searches the path variables, making this function
obsolete.

The function is typically used in conjunction with the function fgl_report_loadCurrentSettings() as in this
example:

IF
 fgl_report_loadCurrentSettings(fgl_report_findResourcePath("OrderReport.4rp"))
THEN
 ...

Assuming FGLRESOURCEPATH is set to /home/fjs/reports/lists:/home/fjs/
correspondence and the report OrderReport.4rp is located at /home/fjs/correspondence/
OrderReport.4rp, that report will be loaded.

For a generic example of Genero code using a reporting function, see Using report output functions on
page 610. This example may not use the specific function discussed in this topic, however it provides
details on where you would place this (and other) report output functions.

fgl_report_runReportFromProcessLevelDataFile
Runs a report from a process level file.

Syntax

fgl_report_runReportFromProcessLevelDataFile(
 out om.SaxDocumentHandler,
 fileName STRING)
 RETURNING ok INTEGER

1. out - A output pipe obtained by a call to fgl_report_commitCurrentSettings or a similar
function.

2. fileName - A file name of an XML file previously created by a call to
fgl_report_createProcessLevelDataFile.

3. ok INTEGER - "true" if no error occurred.

Report Writer | 626

Usage

Function that runs a report from a process level file, previously created by a call to
fgl_report_createProcessLevelDataFile.

This function will replay the report from the file thereby replacing the running of the report (START
REPORT, OUTPUT TO REPORT, FINISH REPORT statements).

For a generic example of Genero code using a reporting function, see Using report output functions on
page 610. This example may not use the specific function discussed in this topic, however it provides
details on where you would place this (and other) report output functions.

fgl_report_runFromXML
Replays the report from an XML file.

Syntax

fgl_report_runFromXML(
 dataFileName STRING)
 RETURNING ok INTEGER

1. datafileName - file name of an XML file containing the data.
2. ok - "true" if no error occurred.

Usage

Function that can run a report using as the data source an arbitrary XML file. This would be a file that was
not created by a Genero program using fgl_report_createProcessLevelDataFile .

This function will replay the report from the file, replacing the running of the report (the START REPORT,
OUTPUT TO REPORT, and FINISH REPORT statements).

The function sets up the report engine based on the current settings that have previously been
loaded by a call to fgl_report_loadCurrentSettings, and may have been modified by calls to
fgl_report_selectDevice or fgl_report_selectPreview. The function automatically calls
fgl_report_commitCurrentSettings.

See Data From an XML File for an example program.

For a generic example of Genero code using a reporting function, see Using report output functions on
page 610. This example may not use the specific function discussed in this topic, however it provides
details on where you would place this (and other) report output functions.

The Report Design

When it comes to the report design document (.4rp), you must declare the XSD associated with the XML
file, as no data schema (.rdd) is created, as reports using this function do not include the Genero BDL
report statements. See Support for arbitrary XML data sources on page 667.

fgl_report_selectDevice
Select the output device.

Parameters

See Usage.

Syntax

fgl_report_selectDevice(
 device STRING)

1. device STRING - Sets the output device from this list:

Report Writer | 627

• HTML
• Image
• PDF
• Postscript
• Printer - Setting this parameter value selects server-side silent printing. Report Writer selects the

printer that best meets the criteria specified by the functions listed in the Printer Functions section.
• RTF (Microsoft™ RTF)
• OORTF (Open Office RTF)
• SVG
• XLS
• XLSX
• Browser

Usage

Function to select the output device.

Selecting a different output device changes the current settings. The choices are listed in Parameters.

Device-specific configuration functions are also available, as shown in Table 163: Device-specific functions
on page 611.

For a generic example of Genero code using a reporting function, see Using report output functions on
page 610. This example may not use the specific function discussed in this topic, however it provides
details on where you would place this (and other) report output functions.

fgl_report_setEnvironment
Specifies variable values in the private environment of the report.

Syntax

fgl_report_setEnvironment(
 values om.SaxAttributes)

1. values - Attribute set containing the values.

Usage
Can be used to specify the value of environment variables like GREOUTPUTDIR or user-defined variables,
for the purpose of using the values in calls to the RTL function Runtime.getEnvironmentVariable().

For a generic example of Genero code using a reporting function, see Using report output functions on
page 610. This example may not use the specific function discussed in this topic, however it provides
details on where you would place this (and other) report output functions.

fgl_report_selectLogicalPageMapping
Configures the mapping of logical pages to physical pages.

Syntax

fgl_report_selectLogicalPageMapping(
 mapping STRING)

1. mapping - one of oneToOne, labels, or multipage

Report Writer | 628

Usage

Function that configures the mapping from logical pages (page dimensions in the 4rp file) to physical
pages (actual page dimensions on the device).

Table 164: Mapping options

Mapping Option Description

oneToOne The logical and physical pages are identical. Default value.

labels For label printing it is advisable to design one label rather than creating
a fixed n x m layout. Such a layout can be printed on an arbitrary
physical n x m layout as long as the physical labels have at least the
size of the logical labels. The physical dimensions of the layout must be
configured using the function fgl_report_configureLabelOutput
and fgl_report_setPaperMargins. The margins within a label can be
configured by calling fgl_report_setPageMargins.

multipage For ISO and JIS sized pages it is possible to print several pages per page.
This is achieved by setting the mapping to this value and calling the function
fgl_report_configureMultipageOutput to configure the required
number of pages.

For a generic example of Genero code using a reporting function, see Using report output functions on
page 610. This example may not use the specific function discussed in this topic, however it provides
details on where you would place this (and other) report output functions.

fgl_report_selectPreview
The fgl_report_selectPreview function determines whether the report is shown in the previewer or written to
a file on disk.

Syntax

fgl_report_selectPreview(
 preview INTEGER)

1. preview should be set to 0 (FALSE) or 1 (TRUE). When set to FALSE, the file is generated on disk
rather than being previewed.

Usage

Function to select preview mode.

This function sets the output to be shown in the previewer. Suitable to all output formats except "Image".
The appropriate software needs to be installed on the client:

• For PDF: Acrobat Reader (or any other PDF reader)
• For SVG: the Genero Report Viewer is a part of the Genero Desktop Client
• For RTF: Microsoft™ Word
• For XLS and XLSX: Microsoft™ Excel
• For OORTF: Open Office (or any free Office), Open Office Writer is sufficient
• For HTML and Browser: Any browser

For a generic example of Genero code using a reporting function, see Using report output functions on
page 610. This example may not use the specific function discussed in this topic, however it provides
details on where you would place this (and other) report output functions.

fgl_report_setAutoformatType

Report Writer | 629

Sets the auto-formatting type if no 4rp template is specified.

Syntax

fgl_report_setAutoformatType(
 type STRING)

1. type - One of "COMPATIBILITY", "FLAT LIST"

Usage

Function that sets the auto-formatting type if no 4rp template is specified. By default such a report would
be rendered in compatibility mode; this function provides additional rendering options:

• A compatibility report - the report will be output in ASCII format, as in legacy reports
• A flat list - this is a simple list design, similar to the output from the List Report template available

from the Genero Studio main menu option File >> New, Reports, Report Designs. This design is
particularly well suited to produce Excel output from arbitrary reports.

For a generic example of Genero code using a reporting function, see Using report output functions on
page 610. This example may not use the specific function discussed in this topic, however it provides
details on where you would place this (and other) report output functions.

fgl_report_setBrowserDocumentDirectory
Configures the document directory for browser viewing.

Syntax

fgl_report_setBrowserDocumentDirectory(
 directory STRING)

1. directory - The directory to hold the report files for use by Genero Report Viewer for HTML5, when
Browser is selected as the output device.

Usage

See Send report data to a browser on page 595.

For a generic example of Genero code using a reporting function, see Using report output functions on
page 610. This example may not use the specific function discussed in this topic, however it provides
details on where you would place this (and other) report output functions.

fgl_report_setBrowserDocumentDirectoryURL
Configures the URL by which the document directory for browser viewing will be visible from a web server.

Syntax

fgl_report_setBrowserDocumentDirectoryURL(
 directory STRING)

1. directory - The URL by which the document directory for browser viewing will be visible from a web
server.

Usage

For use by Genero Report Viewer for HTML5, when Browser is selected as the output device. See Send
report data to a browser on page 595.

Report Writer | 630

For a generic example of Genero code using a reporting function, see Using report output functions on
page 610. This example may not use the specific function discussed in this topic, however it provides
details on where you would place this (and other) report output functions.

fgl_report_setBrowserFontDirectory
Configures the font directory for browser viewing.

Syntax

fgl_report_setBrowserFontDirectory(
 directory STRING)

1. directory - The directory to hold the font files for use by Genero Report Viewer for HTML5, when
Browser is selected as the output device.

Usage

See Send report data to a browser on page 595.

For a generic example of Genero code using a reporting function, see Using report output functions on
page 610. This example may not use the specific function discussed in this topic, however it provides
details on where you would place this (and other) report output functions.

fgl_report_setBrowserFontDirectoryURL
Configures the URL by which the font directory for browser viewing will be visible from a web server.

Syntax

fgl_report_setBrowserFontDirectoryURL(
 directory STRING)

1. directory - The URL by which the font directory for browser viewing will be visible from a web server.

Usage

For use by Genero Report Viewer for HTML5, when Browser is selected as the output device. See Send
report data to a browser on page 595.

For a generic example of Genero code using a reporting function, see Using report output functions on
page 610. This example may not use the specific function discussed in this topic, however it provides
details on where you would place this (and other) report output functions.

fgl_report_setCallbackLocalization
Configure the report to use a function to retrieve localized field titles.

Syntax

fgl_report_setCallbackLocalization(
 share BOOLEAN)

1. share - when set, the report engine will call the GRE library function report_getFieldCaption for
each field, to retrieve the field caption.

Usage

By default the field titles in a report are retrieved from Genero localization files compiled
by the command fglmkstr. This function configures the report engine to call the function
report_getFieldCaption(matchName,fieldName) instead, and doesn't use the localization file.

See Localized strings on page 596.

Report Writer | 631

For a generic example of Genero code using a reporting function, see Using report output functions on
page 610. This example may not use the specific function discussed in this topic, however it provides
details on where you would place this (and other) report output functions.

fgl_report_setDistributedRequestingUserName
Specify end user's name for the purpose of identifying log entries in the case of distributed processing.

Syntax

fgl_report_setDistributedRequestingUserName(
 requestingUserName STRING)

1. requestingUserName is the user name.

Usage

In order to distinguish between log entries originating from different users, the messages can be prefixed
with the “requestingUserName” value. The requesting user name is an arbitrary string defined by the client,
where you can set the name of the end user who submitted the job (for example). The default is "not set".

For a generic example of Genero code using a reporting function, see Using report output functions on
page 610. This example may not use the specific function discussed in this topic, however it provides
details on where you would place this (and other) report output functions.

fgl_report_setImageShrinkImagesToPageContent
Configure image cropping.

Syntax

fgl_report_setImageShrinkImagesToPageContent(
 value BOOLEAN)

1. value - true or false.

Usage

Function to configure image cropping.

Sets whether the images produced are cropped to the page content (size of the page box) or have full
page size.

The default value is false.

For a generic example of Genero code using a reporting function, see Using report output functions on
page 610. This example may not use the specific function discussed in this topic, however it provides
details on where you would place this (and other) report output functions.

fgl_report_setImageUsePageNamesAsFileNames
Configure image file name generation.

Syntax

fgl_report_setImageUsePageNamesAsFileNames(
 value BOOLEAN)

1. value - true or false.

Usage

Function to configure image file name generation.

Report Writer | 632

Sets whether the page names ("name" attribute) in the document should be used as image file names. In
the case that a name is not unique, a disambiguation number is appended. In the case that a page does
not set the "name" attribute, the default naming scheme explained in fgl_report_configureImageDevice on
page 615 is used.

The default value is false.

For a generic example of Genero code using a reporting function, see Using report output functions on
page 610. This example may not use the specific function discussed in this topic, however it provides
details on where you would place this (and other) report output functions.

fgl_report_setOutputFileName
Configure the file location for the device output. This function works for all output formats except Image.

Syntax

fgl_report_setOutputFileName(
 fileName STRING)

1. fileName - Enter a file name, with or without a file suffix, or a complete path with a file name.

If no suffix is specified, a device-specific suffix is appended, with the extension corresponding to the
output type chosen by the fgl_report_selectDevice() API call.

If you do not specify a path, the file is written to the current directory.

Usage

Function to configure the file location for the device output. This function works for all output
formats except for the Image output format. For the Image output format, you must call the function
fgl_report_configureImageDevice.

You can use this function when file preview has been disabled, by a call to
fgl_report_selectPreview(FALSE).

For a generic example of Genero code using a reporting function, see Using report output functions on
page 610. This example may not use the specific function discussed in this topic, however it provides
details on where you would place this (and other) report output functions.

fgl_report_setPageMargins
Configure the logical margins of a report.

Syntax

fgl_report_setPageMargins(
 topMargin STRING,
 bottomMargin STRING,
 leftMargin STRING,
 rightMargin STRING)

1. topMargin - top margin value of the logical page (e.g. 0.5cm).
2. bottomMargin - bottom margin value of the logical page (e.g. 0.5cm).
3. leftMargin - left margin value of the logical page (e.g. 0.5cm).
4. rightMargin - right margin value of the logical page (e.g. 0.5cm).

Usage

Function that configures the logical margins of a report.

The logical margins of the report are read from the 4rp file. This function is used to override the values
found there.

Report Writer | 633

For BDL ASCII reports (compatibility reports, no 4rp file is specified), this function is used to set the values
of the parameters:

For additional information about the units that can be used to specify the margin values, see Dimension
Resolver.

In the case of label printing (see fgl_report_selectLogicalPageMapping), this function
specifies the margins within a label. Similarly, when multi page output is selected (see
fgl_report_selectLogicalPageMapping) the values specify the margins of the logical pages which
can be smaller than the physical margins since the required width is not limited by device limitations but by
aesthetic aspects only.

For a generic example of Genero code using a reporting function, see Using report output functions on
page 610. This example may not use the specific function discussed in this topic, however it provides
details on where you would place this (and other) report output functions.

fgl_report_setPaperMargins
Configure the physical margins of a report.

Syntax

fgl_report_setPaperMargins(
 topMargin STRING,
 bottomMargin STRING,
 leftMargin STRING,
 rightMargin STRING)

1. topMargin - top margin value of the physical page (e.g. 0.5cm).
2. bottomMargin - bottom margin value of the physical page (e.g. 0.5cm).
3. leftMargin - left margin value of the physical page (e.g. 0.5cm).
4. rightMargin - right margin value of the physical page (e.g. 0.5cm).

Usage

Function that configures the physical margins of a report

The physical margins of the report can be set by this function for the case that either label printing or multi
page output has been selected by a call to fgl_report_selectLogicalPageMapping.

For additional information about the units that can be used to specify the margin values, see Dimension
Resolver.

For a generic example of Genero code using a reporting function, see Using report output functions on
page 610. This example may not use the specific function discussed in this topic, however it provides
details on where you would place this (and other) report output functions.

fgl_report_setPageSwappingThreshold
Sets the threshold for page-to-disk swapping.

Syntax

fgl_report_setPageSwappingThreshold(
 value INTEGER)

1. value - A positive integer greater than zero that specifies the maximum number of pages that may be
held in main memory.

Report Writer | 634

Usage

Function that sets the threshold for page-to-disk swapping to prevent memory exhaustion on very large
documents that use " Page N of M"

The function specifies the maximum number of pages that may be held in main memory. When the value is
exceeded, pages are swapped to the disk. This parameter is only needed for very large report that contain
references to the total number of pages. alternatively it is possible to grow the amount of memory that the
Java™ JVM may allocate by setting the parameter -Xmx (e.g. "java -Xmx512m" for 512 MB) in the script
$GREDIR/bin/greportwriter[.bat]. By default the value is not set so that pages are never swapped
to disk.

For a generic example of Genero code using a reporting function, see Using report output functions on
page 610. This example may not use the specific function discussed in this topic, however it provides
details on where you would place this (and other) report output functions.

fgl_report_setPDFJPEGImageEncoding
Configure the encoding method of embedded images in PDF output.

Syntax

fgl_report_setPDFJPEGImageEncoding(
 encodeImagesAsJPEG STRING,
 jpegQuality BOOLEAN)

1. encodeImagesAsJPEG - Specifies images to be encoded in JPEG format. The default value is False.
2. jpegQuality - Sets the compression quality to a value between 0 and 1. By default a value of 1 is used

(highest quality).

Usage

Function to configure the encoding method of embedded images in PDF output.

Optional JPEG image encoding can be configured to shrink the size of PDF documents using this
function. This function is applicable when PDF output has been selected by a call to the function
fgl_report_selectDevice. All arguments to this function are optional (indicated by passing a null
value).

For a generic example of Genero code using a reporting function, see Using report output functions on
page 610. This example may not use the specific function discussed in this topic, however it provides
details on where you would place this (and other) report output functions.

fgl_report_setPDFImageResolution
Configure the resolution of embedded images in PDF output.

Syntax

fgl_report_setPDFImageResolution(
 imagesResolution INTEGER)

1. imagesResolution - Specifies the maximum resolution of embedded images.

Usage

Function to configure the resolution of embedded images in PDF output.

This function is applicable when PDF output has been selected by a call to the function
fgl_report_selectDevice.

Report Writer | 635

For a generic example of Genero code using a reporting function, see Using report output functions on
page 610. This example may not use the specific function discussed in this topic, however it provides
details on where you would place this (and other) report output functions.

fgl_report_setPrinterChromaticity
Control color selection of the printer.

Syntax

fgl_report_setPrinterChromaticity(
 chromaticity STRING)

1. chromaticity - one of: monochrome|color.

Usage

Function to control color selection of the printer

Controls how the print data should be generated or processed. It does not confine the printer selection to
printers with the specified capability. Default value is color. Setting this option reduces the set of usable
printers to those matching it.

Fails if the argument is not one of the specified values.

For a generic example of Genero code using a reporting function, see Using report output functions on
page 610. This example may not use the specific function discussed in this topic, however it provides
details on where you would place this (and other) report output functions.

fgl_report_setPrinterCopies
Specify the number of copies to be printed.

Syntax

fgl_report_setPrinterCopies(
 copies INTEGER)

1. copies is the number of copies to print.

Usage

Function to specify the number of copies to be printed.

Specifies the number of copies to be printed. Default value: 1

Setting this option reduces the set of usable printers to those matching it.

For a generic example of Genero code using a reporting function, see Using report output functions on
page 610. This example may not use the specific function discussed in this topic, however it provides
details on where you would place this (and other) report output functions.

fgl_report_setPrinterDestinationUrl
Specify an alternate destination for the spooled printer formatted data.

Syntax

fgl_report_setPrinterDestinationUrl(
 destination STRING)

1. destination - the destination URL.

Report Writer | 636

Usage

Function to specify an alternate destination for the spooled printer formatted data.

A URL indicating an alternate destination for the spooled printer formatted data. Some print services will
not support the notion of a destination other than the printer device and so will not support this attribute.
A common use for this attribute will be applications which want to redirect output to a local disk file: e.g.
"file:out.prn". A more platform independent way is to set the fgl_report_setPrinterName to "stdout"
so that postscript is written to stdout or to specify the fgl_report_setPrinterwriteToFile attribute
which causes postscript to be written to the specified file. Another alternative may be the use of the
fgl_report_selectDevice to generate a PDF file .

By default, it is not set. Setting this option reduces the set of usable printers to those matching it.

For a generic example of Genero code using a reporting function, see Using report output functions on
page 610. This example may not use the specific function discussed in this topic, however it provides
details on where you would place this (and other) report output functions.

fgl_report_setPrinterFidelity
Select printer high fidelity mode.

Syntax

fgl_report_setPrinterFidelity(
 fidelity INTEGER)

1. fidelity - true or false

Usage

Function to select printer high fidelity mode.

When set, all attributes of the printer have to meet the requested values, otherwise the printout will fail.
When set to false, a reasonable attempt to print the document is acceptable. Default value is false. Setting
this option reduces the set of usable printers to those matching it.

For a generic example of Genero code using a reporting function, see Using report output functions on
page 610. This example may not use the specific function discussed in this topic, however it provides
details on where you would place this (and other) report output functions.

fgl_report_setPrinterJobImpressions
Specify the total size in number of impressions.

Syntax

fgl_report_setPrinterJobImpressions(
 jobImpressions INTEGER)

1. jobImpressions - number of jobs.

Usage

Function to specify the total size in number of impressions.

Specifies the total size in number of impressions of the document. An "impression" is the image
(possibly many print stream pages in different configurations) imposed onto a single media page. The
jobImpressions attribute describes the size of the job. This attribute is not intended to be a counter; it is
intended to be useful routing and scheduling information. The printer may try to compute the attribute's
value if it is not supplied. Even if a value is supplied, the printer may choose to change the value if the
printer is able to compute a value that is more accurate than the supplied value. The printer may be able to
determine the correct value for the jobImpressions attribute right at job submission or at a later time. Unlike

Report Writer | 637

the fgl_report_setPrinterJobMediaSheets function, the value must not include the multiplicative
factors contributed by the number of copies, specified by the fgl_report_setPrinterCopies function.
Setting this option reduces the set of usable printers to those matching it.

For a generic example of Genero code using a reporting function, see Using report output functions on
page 610. This example may not use the specific function discussed in this topic, however it provides
details on where you would place this (and other) report output functions.

fgl_report_setPrinterJobMediaSheets
Specify the total number of media sheets.

Syntax

fgl_report_setPrinterJobMediaSheets(
 jobMediaSheets INTEGER)

1. jobMediaSheets INTEGER - number of sheets

Usage

Function to specify the total number of media sheets.

Specifies the total number of media sheets to be produced for this job. The jobMediaSheets attribute
describes the size of the job. This attribute is not intended to be a counter; it is intended to be useful
routing and scheduling information. The printer may try to compute the attribute's value if it is not
supplied. Even if a value is supplied, the printer may choose to change the value if the printer is
able to compute a value that is more accurate than the supplied value. The printer may be able to
determine the correct value for the jobMediaSheets attribute right at job submission or at a later time.
The value must include the multiplicative factors contributed by the number of copies, specified by the
fgl_report_setPrintercopies function.

By default, this is not set. Setting this option reduces the set of usable printers to those matching it.

For a generic example of Genero code using a reporting function, see Using report output functions on
page 610. This example may not use the specific function discussed in this topic, however it provides
details on where you would place this (and other) report output functions.

fgl_report_setPrinterJobName
Specify a name for the job.

Syntax

fgl_report_setPrinterJobName(
 jobName STRING)

1. jobName - name of the job.

Usage

Function to specify a name for the job.

Name of the print job useful for tracking the job. The value does not have to be unique. Default: "not set"
Setting this option reduces the set of usable printers to those matching it.

For a generic example of Genero code using a reporting function, see Using report output functions on
page 610. This example may not use the specific function discussed in this topic, however it provides
details on where you would place this (and other) report output functions.

fgl_report_setPrinterJobPriority

Report Writer | 638

Specify a priority for the job.

Syntax

fgl_report_setPrinterJobPriority(
 jobPriority INTEGER)

1. jobPriority - priority of the job. Fails if the argument is not between 1 and 100.

Usage

Function to specify a priority for the job.

If supplied, the value specifies a priority for scheduling the job. A higher value specifies a higher priority.
The value 1 indicates the lowest possible priority. The value 100 indicates the highest possible priority.
Among those jobs that are ready to print, a printer must print all jobs with a priority value of n before
printing those with a priority value of n-1 for all n. Default: "not set" Setting this option reduces the set of
usable printers to those matching it.

For a generic example of Genero code using a reporting function, see Using report output functions on
page 610. This example may not use the specific function discussed in this topic, however it provides
details on where you would place this (and other) report output functions.

fgl_report_setPrinterJobSheets
Control job sheet printing.

Syntax

fgl_report_setPrinterJobSheets(
 jobSheets STRING)

1. jobSheets - one of: none|standard

Usage

Function to control job sheet printing.

Controls if job start and end sheets are to be printed. Default: none. Setting this option reduces the set of
usable printers to those matching it.

Fails if the argument is not one of the specified values.

For a generic example of Genero code using a reporting function, see Using report output functions on
page 610. This example may not use the specific function discussed in this topic, however it provides
details on where you would place this (and other) report output functions.

fgl_report_setPrinterMediaName
Select the type of media to use.

Syntax

fgl_report_setPrinterMediaName(
 mediaTray STRING)

1. mediaTray - one of: iso-a4-transparent|iso-a4-white|na-letter-transparent

Usage

Function to select the type of media to use.

Report Writer | 639

Controls the type of media to choose. This function and the functions
fgl_report_setPrinterMediaSizeName and fgl_report_setPrinterMediaTray are mutually
exclusive. Default: "not set" Setting this option reduces the set of usable printers to those matching it.

Fails if the argument is not one of the specified values.

For a generic example of Genero code using a reporting function, see Using report output functions on
page 610. This example may not use the specific function discussed in this topic, however it provides
details on where you would place this (and other) report output functions.

fgl_report_setPrinterMediaSizeName
Select the media size to be used.

Syntax

fgl_report_setPrinterMediaSizeName(
 mediaSizeName STRING)

1. mediaSizeName - one of: a|b|c|d|e|executive|folio|invoice |iso-a0|iso-a1|iso-a2|iso-a3|iso-a4|iso-a5|iso-
a6|iso-a7|iso-a8|iso-a10|iso-b0 |iso-b1|iso-b2|iso-b3|iso-b4|iso-b5|iso-b6|iso-b7|iso-b8|iso-b10|iso-c0|
iso-c1 |iso-c2|iso-c3|iso-c4|iso-c5|iso-c6|iso-designated-long|iso-italian-envelope |iso-oufuko-postcard|
jis-b0|jis-b1|jis-b2|jis-b3|jis-b4|jis-b5|jis-b6|jis-a7 |jis-b8|jis-b10|ledger|monarch-envelope|na-10x13-
envelope|na-10x14-envelope |na-10x15-envelope|na-5x7|na-6x9-envelope|na-8x10|na-9x11-envelope
|na-9x12-envelope|na-legal|na-letter|na-number-10-envelope|na-number-11-envelope |na-number-12-
envelope|na-number-14-envelope|na-number-9-envelope |personal-envelope|quarto|tabloid

Usage

Function to select the media size to be used.

Selects the media size to be used. Normally this does not need to be specified, as the program will
automatically select the smallest media onto which the current document can be printed without
clipping or scaling. This function and the functions fgl_report_setPrinterMediaTray and
fgl_report_setPrinterMediaName are mutually exclusive. Default value not set (is automatically
selected). Setting this option reduces the set of usable printers to those matching it.

Fails if the argument is not one of the specified values.

For a generic example of Genero code using a reporting function, see Using report output functions on
page 610. This example may not use the specific function discussed in this topic, however it provides
details on where you would place this (and other) report output functions.

fgl_report_setPrinterMediaTray
Select the tray of the printer.

Syntax

fgl_report_setPrinterMediaTray(
 mediaTray STRING)

1. mediaTray STRING - one of: bottom|envelope|large-capacity|main|manual|middle|side|top

Usage

Function to select the tray of the printer.

Controls what tray to take the media from. This function and the functions
fgl_report_setPrintermediaTray and fgl_report_setPrintermediaName are mutually
exclusive. Setting this option reduces the set of usable printers to those matching it.

Fails if the argument is not one of the specified values.

Report Writer | 640

For a generic example of Genero code using a reporting function, see Using report output functions on
page 610. This example may not use the specific function discussed in this topic, however it provides
details on where you would place this (and other) report output functions.

fgl_report_setPrinterName
Select a specific printer by name.

Syntax

fgl_report_setPrinterName(
 printerName STRING)

1. printerName - the name of the printer.

Usage

Function to select a specific printer by name.

Name of requested printer listed as "SERVICE". A special meaning is attached to the name "stdout". If this
value is specified, then postscript is written to stdout. Default value is "Not Set". Setting this option reduces
the set of usable printers to those matching it.

For a generic example of Genero code using a reporting function, see Using report output functions on
page 610. This example may not use the specific function discussed in this topic, however it provides
details on where you would place this (and other) report output functions.

fgl_report_setPrinterNumberUp
Specify the number of print stream pages for a single side of an instance.

Syntax

fgl_report_setPrinterNumberUp(
 numberUp INTEGER)

1. numberUp - number of pages

Usage

Function to specify the number of print stream pages for a single side of an instance.

Specifies the number of print stream pages to impose upon a single side of an instance of selected
medium. That is, if the numberUp value is n, the printer must place n print stream pages on a single side
of an instance of the selected medium. To accomplish this, the printer may add some sort of translation,
scaling or rotation.

Note: Since this feature is available only on a few printers, it is advisable to perform the necessary
transformations using this API Default: "not set" Setting this option reduces the set of usable
printers to those matching it.

For a generic example of Genero code using a reporting function, see Using report output functions on
page 610. This example may not use the specific function discussed in this topic, however it provides
details on where you would place this (and other) report output functions.

fgl_report_setPrinterOrientationRequested
Control the paper orientation.

Syntax

fgl_report_setPrinterOrientationRequested(
 orientationRequested STRING)

Report Writer | 641

1. orientationRequested - one of: landscape|portrait|reverse-landscape|reverse-portrait

Usage

Function to control the paper orientation.

Controls the paper orientation. Normally this value should not be set. The style sets the value internally by
analyzing the page's width and height values. Default: not set Setting this option reduces the set of usable
printers to those matching it.

Fails if argument is not one of the specified values.

For a generic example of Genero code using a reporting function, see Using report output functions on
page 610. This example may not use the specific function discussed in this topic, however it provides
details on where you would place this (and other) report output functions.

fgl_report_setPrinterPageRanges
Specify the ranges of pages to print.

Syntax

fgl_report_setPrinterPageRanges(
 pageRanges STRING)

1. pageRanges - page ranges following the syntax [1-9][0-9]*-[1-9][0-9]*(, [1-9][0-9]*-[1-9][0-9]*)*

Usage

Function to specify the ranges of pages to print.

Specifies the ranges of print stream pages that the printer uses for each copy of the document printed.
Nothing is printed for any pages identified that do not exist in the document. Default: "not set" (everything is
printed) Setting this option reduces the set of usable printers to those matching it.

Fails if argument does not follow syntax.

For a generic example of Genero code using a reporting function, see Using report output functions on
page 610. This example may not use the specific function discussed in this topic, however it provides
details on where you would place this (and other) report output functions.

fgl_report_setPrinterPrintQuality
Control the quality used by the printer.

Syntax

fgl_report_setPrinterPrintQuality(
 printQuality STRING)

1. printQuality - one of: draft|high|normal

Usage

Function to control the quality used by the printer

Specifies the print quality used by the printer. Default: not set Setting this option reduces the set of usable
printers to those matching it.

Fails if argument is not one of the specified values

For a generic example of Genero code using a reporting function, see Using report output functions on
page 610. This example may not use the specific function discussed in this topic, however it provides
details on where you would place this (and other) report output functions.

Report Writer | 642

fgl_report_setPrinterRequestingUserName
Specify end user's name.

Syntax

fgl_report_setPrinterRequestingUserName(
 requestingUserName STRING)

1. requestingUserName - the user name.

Usage

Function to specify end user's name.

Specifies the end user's name who submitted the print job. A requesting user name is an arbitrary
string defined by the client. The printer does not put the client-specific requestingUserName attribute
into the print job's attribute set; rather, the printer puts in a jobOriginatingUserName attribute. This
means that services which support specifying a username with this attribute should also report a
jobOriginatingUserName in the job's attribute set. Note that many print services may have a way to
independently authenticate the user name, and so may state support for a requesting user name, but
in practice will then report the user name authenticated by the service rather than that specified by this
attribute. Default: "not set" Setting this option reduces the set of usable printers to those matching it.

For a generic example of Genero code using a reporting function, see Using report output functions on
page 610. This example may not use the specific function discussed in this topic, however it provides
details on where you would place this (and other) report output functions.

fgl_report_setPrinterResolution
Specify an exact resolution for the printer.

Syntax

fgl_report_setPrinterResolution(
 resolution INTEGER)

1. resolution - the resolution of the printer. You can set a resolution for both the X-axis and the Y-axis, or
you can set the resolution for the X-axis and the Y-axis separately. You can specify DPI (dots per inch)
or DPCM (dots per centimeter). If not specified, DPI is the default measure.

Table 165: Valid resolution entries

Value Description (X-axis, Y-axis, Measure)

300 300,300,dpi

300 dpcm 300,300,dpcm

300,150 300,150,dpi

300,150,dpi 300,150,dpi

300,150,dpcm 300,150,dpcm

Usage

Function to specify an exact resolution.

Specifies an exact resolution supported by a printer or to be used for the job. This attribute assumes that
printers have a small set of device resolutions at which they can operate rather than a continuum.

By default, a resolution is not specified.

Report Writer | 643

Setting this option reduces the set of usable printers to those matching it.

For a generic example of Genero code using a reporting function, see Using report output functions on
page 610. This example may not use the specific function discussed in this topic, however it provides
details on where you would place this (and other) report output functions.

fgl_report_setPrinterSheetCollate
Controls the collation of multiple copies.

Syntax

fgl_report_setPrinterSheetCollate(
 sheetCollate STRING)

1. sheetCollate - Can be either collated or uncollated (default)

Usage

Specifies whether or not the pages of the document are to be in sequence, when multiple copies
of the document are specified by the fgl_report_setPrinterCopies function. When
sheetCollate is "collated", each copy of the document is printed with the pages in sequence. When
sheetCollate is "uncollated", each page is printed a number of times equal to the value of the
fgl_report_setPrinterCopies attribute in succession.

For example, suppose a document produces two pages as output, fgl_report_setPrinterCopies is
6, and sheetCollate is "uncollated"; in this case six copies of the first page are printed, followed by six
copies of the second page.

Tip: It is discouraged to set sheetCollate to "collated" since it requires caching the entire
document which is undesirable for large documents. If necessary, produce the document the
required number of times.

Setting this option reduces the set of usable printers to those who are able to perform the collation as
requested.

The function fails if the argument is not one of the specified values.

For a generic example of Genero code using a reporting function, see Using report output functions on
page 610. This example may not use the specific function discussed in this topic, however it provides
details on where you would place this (and other) report output functions.

fgl_report_setPrinterSides
Specify the mapping of pages on the physical media.

Syntax

fgl_report_setPrinterSides(
 sides STRING)

1. sides - One of: one-sided|two-sided-short-edge|two-sided-long-edge

Usage

Function to specify the mapping of pages on the physical media.

Specifies how print-stream pages are to be imposed upon the sides of an instance of a selected medium,
i.e., an impression.

• one-sided: Imposes each consecutive print-stream page upon the same side of consecutive media
sheets.

Report Writer | 644

• two-sided-short-edge: Imposes each consecutive pair of print stream pages upon front and back sides
of consecutive media sheets, such that the orientation of each pair of print stream pages on the medium
would be correct as if for binding along the short edge.

• two-sided-long-edge: Imposes each consecutive pair of print stream pages upon front and back sides of
consecutive media sheets, such that the orientation of each pair of print stream pages on the medium
would be correct as if for binding along the long edge.

By default, this is not set. Setting this option reduces the set of usable printers to those matching it.

Fails if the argument is not one of the specified values.

For a generic example of Genero code using a reporting function, see Using report output functions on
page 610. This example may not use the specific function discussed in this topic, however it provides
details on where you would place this (and other) report output functions.

fgl_report_setPrinterWriteToFile
Specify a file where the report is written in postscript. (deprecated!)

Syntax

fgl_report_setPrinterWriteToFile(
 file STRING)

1. file - the destination file.

Usage

Function to specify a file where the report is written in postscript.

Important: The function is deprecated and replaced by the "Postscript" output format in calls to
the function fgl_report_selectDevice in conjunction with the standard output specification
function fgl_report_setOutputFileName.

A file name specifying a location where the report output is written in postscript format. If this attribute
is set, all other IPP attribute values are ignored. Default: "not set" Setting this option reduces the set of
usable printers to those matching it.

The function fails if file cannot be opened for writing.

For a generic example of Genero code using a reporting function, see Using report output functions on
page 610. This example may not use the specific function discussed in this topic, however it provides
details on where you would place this (and other) report output functions.

fgl_report_setProcessLevelDataFile
Configures the report execution to output an XML datafile in addition to the regular processing.

Syntax

fgl_report_setProcessLevelDataFile(
 dataFileName STRING)

1. dataFileName - Name of the data file to generate.

Usage

Function that configures the report execution to output an XML datafile in addition to the regular processing

Like the function fgl_report_createProcessLevelDataFile, this function causes a
data file to be produced that can be used for archiving and/or reformatting, using the function
fgl_report_runReportFromProcessLevelDataFile. However, this function causes the file to be
created in addition to the regular processing; for example, a PDF file and a data file can be created at the

Report Writer | 645

same time. Or, you could create a completely different layout for one of the files by specifying a different
4rp template.

For a generic example of Genero code using a reporting function, see Using report output functions on
page 610. This example may not use the specific function discussed in this topic, however it provides
details on where you would place this (and other) report output functions.

fgl_report_setRTFMemoryThreshold
Set the RTF memory threshold.

Syntax

fgl_report_setRTFMemoryThreshold (
 memoryThreshold INTEGER)

1. memoryThreshold - The threshold in bytes above which documents are swapped to disk.

Usage

Function to set the RTF memory threshold. Applies to both RFT (Microsoft™) and OORFT (Open Office).

In order to prevent exhaustion of main memory when processing large documents, the processor can be
instructed to swap parts of the document to a temporary disk file when the document size exceeds this
threshold. The default value is set to 10% of the total available heap space. The default heap space is
64Mb.

For a generic example of Genero code using a reporting function, see Using report output functions on
page 610. This example may not use the specific function discussed in this topic, however it provides
details on where you would place this (and other) report output functions.

fgl_report_setSharePortWithGDC
Configures the report engine to use the same port as the Genero Desktop Client for previewing.

Syntax

fgl_report_setSharePortWithGDC(
 share BOOLEAN)

1. share - Boolean that, when set to true, specifies that the engine will use FGLSERVER as the client port.

Usage

Function that configures the report engine to use the same port as the Genero Desktop Client for
previewing.

By default, the port is shared and the port value specified in the FGLSERVER environment variable is used.

For a generic example of Genero code using a reporting function, see Using report output functions on
page 610. This example may not use the specific function discussed in this topic, however it provides
details on where you would place this (and other) report output functions.

fgl_report_setSVGCompression
Configure SVG compression.

Syntax

fgl_report_setSVGCompression(
 compressOutput BOOLEAN)

Report Writer | 646

1. compressOutput - Boolean specifying whether the output should be compressed. The default value is
false.

Usage

Function to configure SVG compression.

This function is applicable when SVG output has been selected by a call to the function
fgl_report_selectDevice. When set, the function causes SVG to be written in compressed form,
causing files and streams to be shrunk to about a tenth of their original size. This can benefit the overall
performance on slow networks.

The Genero Report Viewer automatically detects if files or streams are compressed and decompresses
them on the fly as necessary.

For a generic example of Genero code using a reporting function, see Using report output functions on
page 610. This example may not use the specific function discussed in this topic, however it provides
details on where you would place this (and other) report output functions.

fgl_report_setSVGCopies
Specify the number of copies to be printed.

Syntax

fgl_report_setSVGCopies(
 copies INTEGER)

1. copies - the number of copies to print.

Usage

Specifies the number of copies to be printed. The default is one (1).

The function applies only if the option PrintOnNamedPrinter is chosen in a call to
fgl_report_configureSVGPreview.

For a generic example of Genero code using a reporting function, see Using report output functions on
page 610. This example may not use the specific function discussed in this topic, however it provides
details on where you would place this (and other) report output functions.

fgl_report_setSVGOrientationRequested
Function to control the paper orientation.

Syntax

fgl_report_setSVGOrientationRequested(
 orientationRequested String)

1. orientationRequested - Valid values are "landscape" or "portrait".

Usage

This function can pre-select (in the case of printing via the print dialog) or set the value of the orientation
property.

Normally this value should not be set. The value is set internally by analyzing the page's width and height
values. If a page's height is greater than its width, the orientation is portrait, otherwise it is landscape.

However, some printers can be loaded with both portrait and landscape paper. Without the printing
software being aware of what type is currently loaded, the wrong orientation setting can cause a misprint.
In the case of matrix or label printers which can be loaded with paper of various dimensions (without the

Report Writer | 647

printer or the driver being aware of the current format), the value should be set to "portrait" for landscape
reports when the printer contains landscape paper.

For a generic example of Genero code using a reporting function, see Using report output functions on
page 610. This example may not use the specific function discussed in this topic, however it provides
details on where you would place this (and other) report output functions.

fgl_report_setSVGPageRange
Select which pages should be printed.

Syntax

fgl_report_setSVGPageRange(
 fromPage INTEGER,
 toPage INTEGER)

1. fromPage - Selects the lower bound of the range of pages to print. The default value is 1.
2. toPage - Selects the upper bound of the range of pages to create print. By default, all pages are printed.

Usage

Function to select which pages should be printed.

The function applies only if the option PrintOnNamedPrinter is chosen in a call to
fgl_report_configureSVGPreview.

For a generic example of Genero code using a reporting function, see Using report output functions on
page 610. This example may not use the specific function discussed in this topic, however it provides
details on where you would place this (and other) report output functions.

fgl_report_setSVGPaperSource
Select the input source of the printer.

Syntax

fgl_report_setSVGPaperSource(
 paperSource STRING)

1. paperSource - one of: Auto, Cassette, Envelope, EnvelopeManual, FormSource, LargeCapacity,
LargeFormat, Lower, Middle, Manual, OnlyOne, Tractor, SmallForm

Usage

Function to select the input source of the printer. Controls what source to take the paper from.

The function applies only if the option PrintOnNamedPrinter is chosen in a call to
fgl_report_configureSVGPreview. The functionality is available only on Windows™.

For a generic example of Genero code using a reporting function, see Using report output functions on
page 610. This example may not use the specific function discussed in this topic, however it provides
details on where you would place this (and other) report output functions.

fgl_report_setSVGPrinterName
Select a specific printer by name.

Syntax

fgl_report_setSVGPrinterName(
 printerName STRING)

Report Writer | 648

1. printerName is the name of the printer.

Usage

Function to select a specific printer by name.

The function applies only if the option PrintOnNamedPrinter is chosen in a call to
fgl_report_configureSVGPreview.

For a generic example of Genero code using a reporting function, see Using report output functions on
page 610. This example may not use the specific function discussed in this topic, however it provides
details on where you would place this (and other) report output functions.

fgl_report_setSVGSheetCollate
Control the collation of multiple copies.

Syntax

fgl_report_setSVGSheetCollate (
 sheetCollate STRING)

1. sheetCollate - one of collated|uncollated.

If sheetCollate is:

• collated, each copy of the document is printed with the pages in sequence.
• uncollated, each page is printed a number of times equal to the value of the

fgl_report_setSVGCopies attribute in succession. This is the default.

Usage

Function to control the collation of multiple copies.

Specifies whether the pages of the document are to be in sequence, when multiple copies of the document
are specified by the fgl_report_setSVGCopies function.

For example, if a document produces two pages as output, fgl_report_setSVGCopies is 6, and
sheetCollate is "uncollated", then six copies of the first page are printed followed by six copies of the
second page.

Note: We discourage setting sheetCollate to "collated" since it requires caching the entire
document, which is undesirable for large documents. If necessary, produce the document the
required number of times.

This function applies only if the option PrintOnNamedPrinter is chosen in a call to
fgl_report_configureSVGPreview.

This function fails if the argument is not one of the specified values.

For a generic example of Genero code using a reporting function, see Using report output functions on
page 610. This example may not use the specific function discussed in this topic, however it provides
details on where you would place this (and other) report output functions.

fgl_report_setXLSMergeCells
Configure cell merging in XLS (Excel) output.

Syntax

fgl_report_setXLSMergeCells (
 mergeCells BOOLEAN)

Report Writer | 649

1. mergeCells - Controls the behavior when an item of the report occupies more than one cell. Setting this
value causes the cells to be merged into one cell. The value is TRUE by default.

Usage

Function to configure cell merging in XLS (Excel) output.

This function is applicable when XLS output has been selected by a call to the function
fgl_report_selectDevice.

For a generic example of Genero code using a reporting function, see Using report output functions on
page 610. This example may not use the specific function discussed in this topic, however it provides
details on where you would place this (and other) report output functions.

fgl_report_setXLSXMergeCells
Configure cell merging in XLSX (Excel) output.

Syntax

fgl_report_setXLSXMergeCells (
 mergeCells BOOLEAN)

1. mergeCells - Controls the behavior when an item of the report occupies more than one cell. Setting this
value causes the cells to be merged into one cell. The value is TRUE by default.

Usage

Function to configure cell merging in XLSX (Excel) output.

This function is applicable when XLSX output has been selected by a call to the function
fgl_report_selectDevice.

For a generic example of Genero code using a reporting function, see Using report output functions on
page 610. This example may not use the specific function discussed in this topic, however it provides
details on where you would place this (and other) report output functions.

fgl_report_stopGraphicalCompatibilityMode
Restore text-based report output.

Syntax

fgl_report_stopGraphicalCompatibilityMode()

Usage

Function to restore text-based report output.

The graphical compatibility mode switched on by calling fgl_report_loadCurrentSettings(NULL)
is switched off using this function.

For a generic example of Genero code using a reporting function, see Using report output functions on
page 610. This example may not use the specific function discussed in this topic, however it provides
details on where you would place this (and other) report output functions.

Report Writer | 650

Functions to set Report Metadata for Compatibility Reports
Use these functions to set report metadata for compatibility reports.

Table 166: Functions to set Report Metadata for Compatibility Reports

Function Description

fgl_report_setAuthor (author STRING)
Function to set the report author metadata value.

fgl_report_setTitle (title STRING)
Function to set the report title metadata value.

fgl_report_setCreator (creator STRING)
Function to set the report creator metadata value.

fgl_report_setSubject (subject STRING)
Function to set the report subject metadata value.

fgl_report_setKeywords (keywords
 STRING)

Function to set the report keywords metadata value.

Important: These Report Metadata functions are intended to be used for compatibility
reports only. To set the metadata for standard reports, select the root node of the report in the
Report Designer Properties View and set the appropriate properties.

If the target file format supports meta data, then the value is inserted into the target document. Typically
this is a whitespace-separated list of key words. Calling this function to set the value supersedes the value
specified in the 4rp template.

Functions to introspect reports at runtime (librdd)
Use these functions to access the structures contained in the rdd files.

The module librdd (part of the standard reporting library libgre.42x) provides programmatic access to
the structures contained in rdd files (files produced by the 4GL compiler from 4GL sources with the option
--build-rdd).

Table 167: Functions to introspect reports at runtime

Function Description

rdd_getEveryRowFields (
 rddFileName STRING,
 reportName STRING)
 RETURNING fieldNames DYNAMIC ARRAY OF
 STRING

Function that loads an rdd file and returns the field
names of the fields contained in the first PRINT
statement from the ON EVERY ROW section of the
specified report.

rdd_loadRddAndGetReportInfos (
 rddFileName STRING)
 RETURNING reportInfos DYNAMIC ARRAY
 OF rddReportInfo

Function that loads a rdd file and returns a data
structure describing the reports contained in this file.

rdd_debugReportInfos (
 reportInfos DYNAMIC ARRAY
 of rddReportInfo)

Function that displays the report information contained
in a rdd file for debugging purposes.

Report Writer | 651

The source of the module is located in $GREDIR/src/api/librdd.4gl.

rdd_getEveryRowFields
Function that loads an rdd file and returns the field names of the fields contained in the first PRINT
statement from the ON EVERY ROW section of the specified report.

Syntax

rdd_getEveryRowFields (
 rddFileName STRING,
 reportName STRING)
 RETURNING fieldNames DYNAMIC ARRAY OF STRING

1. rddFileName STRING - Full path to a rdd file.
2. reportName STRING - Name of the report as specified in the 4gl source file.
3. Returns fieldNames DYNAMIC ARRAY OF STRING - Null if error occurred.

Usage

Function that loads an rdd file and returns the field names of the fields contained in the first PRINT
statement from the ON EVERY ROW section of the specified report.

Files of type rdd files are produced from 4gl source files by the 4GL compiler using the option "--build-
rdd".

rdd_loadRddAndGetReportInfos
Function that loads a rdd file and returns a data structure describing the reports contained in this file.

Syntax

rdd_loadRddAndGetReportInfos (
 rddFileName STRING)
 RETURNING reportInfos DYNAMIC ARRAY OF rddReportInfo

1. rddFileName STRING - Full path to a rdd file.
2. Returns reportInfos DYNAMIC ARRAY OF rddReportInfo - Null if error occurred.

Usage

Function that loads a rdd file and returns a data structure describing the reports contained in this file.

Files of type rdd files are produced from 4gl source files by the compiler using the option "--build-rdd".

rdd_debugReportInfos
Function that displays the report information contained in a rdd file for debugging purposes.

Syntax

rdd_debugReportInfos (
 reportInfos DYNAMIC ARRAY OF rddReportInfo)

1. reportInfos DYNAMIC ARRAY OF rddReportInfo - Structure obtained by a call to
rdd_loadRddAndGetReportInfos.

Usage

Function that displays the report information contained in a rdd file for debugging purposes.

The function displays debugging information for the data structure returned by a call to the function
rdd_loadRddAndGetReportInfos.

Report Writer | 652

Types used in librdd

These data types are used in the librdd module.

rddReportPrintElementInfo

TYPE rddReportPrintElementInfo RECORD
 unionType CHAR(1), #v=variable, e=expression, l=literal
 value STRING, #the value in case of type 'l'
 variableName STRING, #the variable name case of type 'v'
 variableType STRING #the variable or expression type in case of type 'v'
END RECORD

rddReportPrintInfo

TYPE rddReportPrintInfo RECORD
 controlPath DYNAMIC ARRAY OF rddTree, # Path into tree, e.g.
 # REPORT/ON EVERY ROW/IF/THEN/FOR,
 # REPORT/ON EVERY ROW/IF/ELSE/FOR
 printxName STRING,
 printElements DYNAMIC ARRAY OF rddReportPrintElementInfo
END RECORD

rddReportSectionInfo

TYPE rddReportSectionInfo RECORD
 name STRING, # FIRST PAGE HEADER, BEFORE GROUP customer_id, ON EVERY
 ROW, ...
 reportPrints DYNAMIC ARRAY OF rddReportPrintInfo
END RECORD

rddReportInfo

TYPE rddReportInfo RECORD
 reportName STRING,
 reportSections DYNAMIC ARRAY OF rddReportSectionInfo
END RECORD

rddTree

TYPE rddTree RECORD
 firstLine INTEGER,
 lastLine INTEGER,
 type CHAR(1), # l: loop: FOR, FOREACH, WHILE
 # c: conditional: CASE, IF, OTHERWHISE, WHEN
 # i: interaction: MENU, {DISPLAY|INPUT} ARRAY, INPUT,
 PROMPT,
 # ON {KEY|ACTION}, {BEFORE|AFTER} ..
 # d: declaration: GLOBALS, DEFINE, RECORD
 # o: other statements: TRY, CATCH
 # a: trigger in interaction or report
 fileId INTEGER, # references rddFiles (rddFile.id=fileId)
 fileIdEnd INTEGER, # references rddFiles (rddFile.id=fileIdEnd) =
 # the file where the declaration ends
 name STRING # for example BEFORE GROUP
END RECORD

Report Writer | 653

Functions to get error details
Use these functions to get the most current error details. The functions are provided as part of the
libgre.42x library.

Table 168: Functions to return error details

Function Description

fgl_report_getErrorStatus()
 RETURNING ok INTEGER

Returns the most recent error status.

fgl_report_getErrorString()
 RETURNING message STRING

Returns a human-readable error string.

fgl_report_getErrorStatus
Returns the most recent error status.

Syntax

fgl_report_getErrorStatus()
 RETURNING ok INTEGER

1. ok - TRUE if an error occurred, FALSE otherwise.

Usage

This function returns the most recent error status. The function should be called after calling OUTPUT TO
REPORT and FINISH REPORT. Calling the function at any other point in time may return random results.
The function returns TRUE in case of errors in GRE.

fgl_report_getErrorString
Returns a human-readable error string.

Syntax

fgl_report_getErrorString()
 RETURNING message STRING

1. message - An error description if an error occurred, an empty string otherwise.

Usage

This function returns the most recent error string. The function should be called after calling OUTPUT TO
REPORT and FINISH REPORT. Calling the function at any other point in time may return random results. In
case of an error, the function returns a human readable description of the error.

Pivot table library
The library libpivot.4gl provides functions to retrieve information about pivot tables contained in a .4rp
file

• Types defined in the pivot library on page 654
• Pivot library API on page 654
• pivot_debugPivotTables on page 655
• pivot_getLastErrorString on page 655
• pivot_load4rpAndGetPivotTables on page 655

Report Writer | 654

Types defined in the pivot library
Three types are defined for the pivot library: pivotHierarchy, pivotMeasure, and
pivotPivotTable.

PUBLIC TYPE pivotHierarchy RECORD
 name STRING,
 title STRING,
 format STRING,
 value STRING,
 isNumeric STRING,
 enumValues STRING,
 computeTotal STRING,
 computeCount STRING,
 computeDistinctCount STRING,
 computeAverage STRING,
 computeMinimum STRING,
 computeMaximum STRING
END RECORD

PUBLIC TYPE pivotMeasure RECORD
 name STRING,
 title STRING,
 format STRING,
 value STRING,
 isNumeric STRING
END RECORD

PUBLIC TYPE pivotPivotTable RECORD
 name STRING, #PIVOTTABLE
 title STRING, #PIVOTTABLE
 drawAs STRING, #PIVOTTABLE
 computeAggregatesOnInnermostDimension STRING, #PIVOTTABLE
 displayRecurringValues STRING, #PIVOTTABLE
 hierarchiesDisplaySelection STRING, #PIVOTTABLE
 inputOrder STRING, #PIVOTTABLE
 displayFactRows STRING, #FACT
 measuresDisplaySelection STRING, #FACT
 outputOrder STRING, #FACT
 topN INTEGER, #FACT
 hierarchies DYNAMIC ARRAY OF pivotHierarchy,
 measures DYNAMIC ARRAY OF pivotMeasure
END RECORD

Pivot library API
Functions from the pivot table library.

Table 169: Pivot library functions

Function Summary

FUNCTION pivot_debugPivotTables(
 pivotTables DYNAMIC ARRAY OF pivotPivotTable)

Displays the pivot table
information contained in
a 4rp file for debugging
purposes

FUNCTION pivot_getLastErrorString()
 RETURNING errorMessage STRING

Retrieves the error string
of the last function called
that failed.

FUNCTION pivot_load4rpAndGetPivotTables(
 fileName String)

This function loads a
4rp file and returns a
data structure describing

Report Writer | 655

Function Summary
 RETURNING status BOOLEAN,
 pivotTables DYNAMIC ARRAY OF pivotPivotTable

the pivot tables in this
file.

pivot_debugPivotTables
Displays the pivot table information contained in a 4rp file for debugging purposes

FUNCTION pivot_debugPivotTables(
 pivotTables DYNAMIC ARRAY OF pivotPivotTable)

The function displays debugging information for the data structure returned by a call to the function
pivot_load4rpAndGetPivotTables.

Parameters

• pivotTables DYNAMIC ARRAY OF pivotPivotTable - Structure obtained by a call to
pivot_load4rpAndGetPivotTables

pivot_getLastErrorString
Retrieves the error string of the last function called that failed.

FUNCTION pivot_getLastErrorString()
 RETURNING errorMessage STRING

Returns

• errorMessage STRING - null if no error occurred.

pivot_load4rpAndGetPivotTables
This function loads a 4rp file and returns a data structure describing the pivot tables in this file.

FUNCTION pivot_load4rpAndGetPivotTables(
 fileName String)
 RETURNING status BOOLEAN,
 pivotTables DYNAMIC ARRAY OF pivotPivotTable

Parameters

• fileName STRING - Full path to a 4rp file

Returns

• status BOOLEAN - FALSE if an error occurred.
• pivotTables DYNAMIC ARRAY OF pivotPivotTable

Create the data schema
For each report program, a corresponding data schema must be created. The data schema then populates
the Data View in the Genero Report Designer, providing a hierarchical representation of the data objects to
be dragged and dropped into the report design.

Tools have been provided to allow for the generation of a data schema for an application.

Report Writer | 656

Generate a data schema from a Genero BDL report program
After you write or modify a Genero report program, you must generate the data schema (rdd) file. This file
is used by the Genero Report Designer to provide a list of data objects for use in the report design.

The data schema (rdd) file is based on the SQL statement in your Genero report application source file
(4gl). This rdd file is used in the report design document (4rd) to populate the Data View, providing
details about the fields that will be streamed by the application. The schema contains the list of database
columns that make up your data record, as well as grouping details.

Although the data for the report originally may have come from several different data tables, the PRINT
statement in your BDL REPORT program block outputs the data as part of a single record. See the Genero
Studio >> Report Writer documentation topic "Writing the BDL Program" for more information.

From the command line

Use the --buildrdd command-line option of the fglcomp tool to create a data schema (rdd file). For
example:

fglcomp --build-rdd SimpleReport.4gl

The output of this command will be SimpleReport.rdd. The rdd file will be stored in the same location
as the 4gl file.

Note: If your Genero program contains multiple 4gl files, run fglcomp against the file containing
your REPORT program block.

From Genero Studio

Add --build-rdd to the Compiler options property for your Genero source (4gl) file to generate the
rdd file automatically each time the 4gl file is compiled. Select the 4gl file listing in the application node
of the Project tab to display its properties in the Properties View. The rdd file will be stored in the directory
specified in the Target Directory property of the application node that contains the 4gl file.

Create a report design document
The Genero Report Designer provides a graphical interface for designing your reports.

• What's new in Genero Report Designer, v 3.00 on page 656
• The Report Design Document on page 657
• Report Designer Reference on page 722
• RTL Class Reference on page 806
• Upgrading Genero Report Designer on page 837

What's new in Genero Report Designer, v 3.00
This publication includes information about new features and changes in existing functionality.

These changes and enhancements are relevant to this publication.

Table 170: Genero Report Designer, Version 3.00

Overview Reference

Genero Report Designer provides a LastPageFooter section property. See section (Section) on page
754.

Support of Intelligent Mail bar code type. See intelligent-mail on page 795.

Report Writer | 657

Overview Reference

New smartParse bar code property for bar code Code-128.
When enabled, this allows you to enter the bar code value, and the
internal code will be computed for you resulting in the shortest visual
representation.

See smartParse (Smart Parse) on
page 755 and code-128 on page
769.

New gs1* bar code aliases. See Bar Code type listing on page
765.

The Report Design Document

• Overview of Genero Report Designer on page 657
• Designing a Report on page 659
• Design How-To on page 676
• Working with business graphs on page 694
• Expressions in properties on page 712

Overview of Genero Report Designer
Report Designer provides you with the tools to design Genero reports.

• Genero reports on page 657
• Launch the Report Designer on page 657
• The Report Design window on page 657
• The Report output on page 658

Genero reports
Genero reports can take a variety of formats.

Genero reports can be:

• General Documents, such as invoices, corporate documents, and accounting reports; you define the
contents, page size, page headers and footers, output format, and other attributes

• Pre-printed forms, where you define the content for a pre-printed form.
• Labels, where you define the content and label size to be printed on pages of labels.
• Business Graphs, where you specify the type of graph and the data items to graph.
• Compatibility reports, where you output a legacy Genero (4gl) report in ASCII text, using Genero

Report Writer.

A report can be displayed in various output formats.

Launch the Report Designer
There are several ways to launch the Report Designer.

To open the Report Designer:

• Choose File >> New, Reports from the Genero Studio main menu.
• Double-click an existing report design document (4rp) in the Project Manager.

The Report Design window
The Report Design window displays when you launch the Report Designer.

In the Report Design window, you create a Report Design document (.4rp). The Report Design document
(4rp) defines the report page as consisting of box-shaped containers, to hold the data objects and text or
image objects that make up the report.

The Report Design window consists of the work area and several views. If a view is not visible, you may
need to add it using the Window >> Views menu.

Report Writer | 658

Work Area

The work area is located in the center of Genero Studio. When you open a report, this area contains the
report page.

• Report elements (containers such as Mini Page and Layout Nodes, and their child elements such as
Word Box and Image Box) and data values from the Data View can be dragged and dropped onto the
report page and rearranged.

• Page Headers and Footers can be defined.

Structure View

The organization of the report can be seen in the Structure View. Containers and their contents can be
moved around in the View to insure that they print in the correct order.

Triggers in the Structure View specify what should be printed when a trigger event (change in data) occurs.

Data View

Your Report Design Document will use an rdd file to determine the data schema for a report. The same
rdd file can be used for multiple report definitions.

The data schema file is specified in the Data View. Once a data schema has been selected in the Data
View, the available data objects are shown. The data schema is only used during report development. At
runtime, the data is sent to the report by the report application.

Properties View

Each report element has properties, displayed in the Properties View, with values that you can change.

In addition to literal values, expressions can be used to change the value of report elements properties. For
example, the appearance can be changed conditionally, by creating an expression to turn the background
color red if the value for the form element is greater than 1000.

Output View

The Output View is used by any module to display its output. The output of the various modules
(messages, errors, results of commands, and so on) is displayed as tabs in the view.

Document Errors view

The Document Errors tab displays any error messages for the report design document.

The Report output
A report can be output in various formats and different page sizes, to various output devices.

Your report application can use reporting API functions to specify output details.

Default output and printer options can be set for each report design document (4rp).

To set default paper settings for a report, you would open the report (4rp) and select File >> Report
properties >> Paper Settings. Paper settings include:

• The orientation of the page (portrait or landscape)
• The units of measure for the page (centimeter or inch)
• The page size format (standard or custom) as well as the type of paper (letter, legal, and so on)
• Margins.

To set a default output configuration for a report, you would open the report (4rp) and select File >>
Report properties >> Output Configuration.

• Choose an output format, such as SVG, PDF, or Image. If you choose SVG format, it displays in the
Genero Report Viewer. The Genero Report Viewer is provided as part of the Genero Desktop Client. It

Report Writer | 659

provides a preview of the report, and allows the user to select a printer. To view a report output as PDF,
you must have Acrobat Reader.

• Set rendering defaults.
• Set a default page range.
• If you select Image, you can then set Image Settings, to include the file type, the resolution in dpi, and

the image prefix name for the created report file.

Designing a Report
The Report Designer consists of various views, menus and toolbar buttons that enable complex report
designs.

• The Report Design window on page 659
• The work area on page 660
• The Tool Box view on page 661
• Placing elements on the report page on page 661
• Changing a report element type on page 664
• Changing a property value (The Properties view) on page 665
• Adding report data (Data view) on page 666
• Organizing the report structure (the Report Structure view) on page 668
• Using page numbers on page 672
• Report Design Document metadata on page 673
• Configuring the output on page 674

See also: Design HowTo

The Report Design window
The Report Design window displays when you launch the Report Designer.

To open the Report Design window:

• Choose File >> New, Reports from the Genero Studio main menu.
• Double-click an existing report design document (4rp) in the Project Manager.

When creating a new report, you can begin with:

• A blank report.
• A list report template that has a basic structure already in place.
• A report from a template.

Views and windows provide the tools and work areas for the report. Use the Window>>Views main menu
option to display and hide views:

• The work area- main window of the report
• Structure View - a tree of the report containers and their contents.
• Properties View - a list of the properties for a selected report element.
• Data View - a list of the data objects that are available for the report.
• Toolbox - a list of the containers that are available.
• The Output view - display of messages written to standard out
• The Document Errors view - a list of errors in the opened report design document or template.
• The Tasks view - a task manager showing running applications.

Note: Metadata for the report design document can be stored in the properties of the report node.

Report Writer | 660

The work area
The work area in the Main Window provides a GUI interface to the report.

Figure 324: Report Designer work area

You design a report by initially dragging and dropping containers from the Tool Box view into the Work
Area, stacking and arranging them to create the report page. Next, report elements such as Word Boxes,
Decimal Format Boxes, and Images are dragged and dropped into the containers.

From the Data View, you can drag and drop Data Items into a container, if you have specified the data
schema.

When you select a report element in the work area, its properties are listed in the Properties view. In the
Properties view, you can change a property value. For example, a WordBox has a text property where you
can enter text to be displayed in the report.

If you select multiple elements, all items in the current selection are affected by the current operation, such
as moving, sizing, or changing the type or text.

Use the View>>Toggle View menu or the Toggle View icon to toggle the work area between the report
design and a preview of the report. When you preview a report, sample data is displayed on the page.

Figure 325: The Toggle View icon

Zoom buttons on the Toolbar allow you to zoom in and out on the report design document.

Report Writer | 661

Figure 326: Zoom buttons

The Tool Box view
The Tool Box view provides report elements to place on a report design document.

The Tool Box view, typically displayed as a tab, provides the following report elements:

• Containers - for grouping other elements on the report page; see Choosing Containers
• Drawables - the report elements contained by a container; see Choosing Other Report Elements
• Business Graphs - the specific charts and items; see Working with Business Graphs
• References - to define layout-specific elements; see Choosing Other Report Elements
• Bar Codes - specific bar codes; see Bar Code Values

These elements can be dragged and dropped into a report design document.

Placing elements on the report page
When placing elements on a report page, you determine whether the positioning is specific or dynamic by
setting element properties that determine how the element acts as the report changes.
Specific positioning or automatic layout
The position of a report element can be specific, to enable reports that use pre-printed forms, or dynamic,
adjusting as needed based on the length of the report element.

Dynamic Layouting if you CTRL+drag the report element onto the report
page (work area), the element is positioned relative
to the existing elements. Because the design
changes dynamically based on the actual size of
the specific report items, this is the recommended
method. When you drag the element, a moving red
line indicates where the element will be located
when you drop it. A colored dot on the element
indicates its attachment point.

If you select a container and then double-click an
element in the Tool Box view or Data View, the
element will be automatically positioned after the
last existing child object in the container.

Specific Positioning If you drag and drop report elements on the report
page (work area) using the mouse, you can position
the element at a specific spot on the virtual grid of a
container. This is recommended when you need to

Report Writer | 662

match the report design to a pre-printed form. When
you drop the element, it will snap to the closest
point on the grid. A red dot on the element indicates
its attachment point.

As you drag an element, a moving thin black line helps you line it up with other elements on the report if
desired. The X and Y properties of the element in the Properties view indicate its location relative to its
parent. These are automatically calculated when you drop an element into a container, or move it around.
When you move it inside a container, the lines of the container are highlighted in yellow :

Figure 327: Highlighted container

All elements that are dragged from the Tool Box view or Data View have the floatingBehavior property set
to "enclosed", meaning the object will be enclosed in its parent.

• X-Axis and Y-Axis arrows - These indicate the direction of the X-Axis and Y-Axis. On containers, the
Y-Axis arrow indicates the filling or layoutDirection of the container. For example, a Stripe lays out its
children next to each other left-to-right within the container, and the Y-Axis arrow points to the left.
Other containers have the Y-Axis arrow pointing down, as they lay out their children next to each other
in a top-to-bottom direction.

• Attachment point - The attachment point at an intersection of the X-Axis and Y-Axis is indicated by
a green dot (for dynamic layouting) or a red dot (for specific positioning.) If you drag the edge of the
element to expand its size, the attachment point remains fixed. You can move the attachment point
using the right-click context menu.

Elements on a report have a contextual (right-click) menu of options that allow you to:

• Align elements within a vertical or horizontal container, and move the attachment point on the element.
• Change the width and height of elements.
• Change the focus to a different container or other element.
• Change the object type.

Drag multiple objects
You can drag and drop a multiple selection of objects from the Data View onto the report page (work area)
or to the Structure View.

Use the CTRL and SHIFT keys to select the objects, then drag them to the desired location. An object will
be created for each element selected, following the order in which they were selected.

If you drag to the Design work area using specific positioning, an additional container is created for
each element object. If you have chosen to create a form field object, a horizontal container is used so
the elements will appear in a line. When you create a column object, a vertical container is used so the
elements will appear stacked.

If you use dynamic layouting, or drag to the Structure View, the behavior is the same as if each element
has been dragged individually.

Choose the right container
Selecting the right containers gives you the ability to easily manage and organize your reports.

The template for new reports starts with a Page Root in the report structure, which is a Mini Page container
expanded to its maximum width and length. Other containers used for the report are dropped within the

Report Writer | 663

Page Root. Although you could drop all the elements directly on the Page Root, building up the report
in blocks of containers allows you to group elements together, move the groups around, and align the
children elements within a parent container.

• A Mini Page is used for the main container of a report page. The default name is PageRoot. The default
Layout Direction when you add elements to a Mini Page is top to bottom, down the length of the page.
This container propagates: when a report is printed, if a Mini Page fills, a copy is made and the leftover
material flows to the copy or copies as needed.

• Use a Layout Node for page headers and footers. A Vertical Box (Layout Node) defines a rectangular
area in the report in which the elements are laid out top-to-bottom by default. A Layout Node does not
propagate; the contents of headers or footers can not spill over into another page. Within the header or
footer Layout Node, use Stripe (Mini Page) containers for elements that should be laid out left-to-right
across the page. Adding a Stripe to a Layout Node automatically extends the Layout Node across the
page.

• Use a Stripe (Mini Page) container for table rows. A Stripe (Mini Page) container is a Mini Page with the
Y-Size set to "max", so it stretches across the report page. Items added to a Stripe are laid out left-to-
right. if the elements within a Stripe exceed the page width, the row is broken into the next line.

• Use a Mini Page for a report page with a different layout, such as a different first page.

Choose other report elements
After placing a container on a report page, elements are added for data and other report objects.

Data View

From the Data View:

Icons at the top of the data view allow you to specify the type of object you wish to create when you drag
and drop a data value: whether you wish to drag and drop a reference to a data value, or a data item's
caption (title), or to choose to have the values and captions aligned in a table format. See Data Values and
Captions.

• For data values passed to the report, when you place the data item on the design page, it is
automatically enclosed in a Word Box/ Word Wrap Box or Decimal Format Box container, depending on
the data type.

• For captions (titles) for data items, the caption is automatically enclosed in a Word Box.

Tool Box view

From the Tool Box view:

• For additional text - use a Word Box or Word Wrap Box. You can enter the text when you drag
the report element onto the report design page, or you can set the value of the text property in the
Properties View. You can also double-click on the text in the report design page to edit it.

• For Numeric data - use a Decimal Format Box, which makes it possible to parse and format numbers
in any locale. The value property specifies the number. You can define the printed format, including
decimal places, by setting the value of the format property in the Properties View. You can also double-
click on the text in the report design page to edit it.

• For HTML pages - use an HTML Box on page 725. which displays the image of an HTML document
in a report.

• For Images - use an Image Box, which allows you to specify the image to be printed by setting the
location property.

• For page numbers - use a Page Number Box to automatically display the correct page number for each
report page.

• For tables - use a Table on page 729 to set up an object that contains columns and rows to display
rows of data.

• For business graphs - choose the appropriate Business Graphs on page 731 object (chart or pivot
table) for the specific type of graph. See Working with Charts.

Report Writer | 664

• For values like "Total from previous pages" or "Totals until this point" - use an InfoNode and Reference
Box. These two elements work together to enable this type of content. See Design HowTo for additional
information.

Modify the sizing policy of containers
Arrow-shaped controls on the four sizing knobs located at the center of the sides of the item in focus allow
you to view and modify the sizing policy of a container.

Arrows pointing inward indicate a shrinking sizing policy:

• X-Size="min" and Y-Size="min" or
• X-Size-Adjustment="shrinkToChildren" and Y-Size-Adjustment="shrinkToChildren"

Arrows pointing outward indicate a maximizing policy:

• X-Size="max" and Y-Size="max" or
• X-Size-Adjustment="expandToParent" and Y-Size-Adjustment="expandToParent"

Clicking on an arrow toggles its value.

Examples

These images illustrate some common cases.

Figure 328: Container packs the content as tight as possible

Figure 329: Container packs content vertically and expands content horizontally

Figure 330: Container expands the content to use up the available space

A page root container typically expands in all directions to use up the available space.

Changing a report element type

To change a report element from one type to another, right-click the element in the report design document
work area, and select Convert To; choose the new type from the list that displays. To convert the type of
multiple report elements at once, Ctrl-click each element, and right-click to display the context menu.

Report Writer | 665

The name property of the element will not change, unless the name of the old node is of the format [Type]
[Number]. A node named WordBox12 would be renamed, for example.

By default the new object type will have the properties set that it has in common with the old type. For
some type conversions, additional properties may be set. For example, when converting a Decimal Format
Box to a Word Box, the value property is converted to a string value and assigned to the text property.

Changing a property value (The Properties view)
Select a report element in the report page (work area) or Structure View to display the property values in
the Properties View. Once displayed, edit the property value.

Figure 331: Properties View

The values for the properties of a report element can be changed by typing the new value in the Value
column. The value may be a literal value, or it may be an expression written using the RTL Expression
Language. All the properties are assigned a type, and the values entered must be valid for that type. The
type of each property is listed in the Properties page.

Note: For WordBoxes, WordWrapBoxes, and DecimalFormatBoxes, if the text property is a literal
value it may be edited directly in the report design document. Double-clicking on the element
selects the text and places the input cursor in the document. The layout of the document is updated
on each keystroke.

Using expressions for property values
A valid expression for a property value is a sequence of operands, operators, and parentheses that the
runtime system can evaluate as a single value.

The RTL Expression language used in Report Writer closely follows the Java™ syntax for expressions and
evaluation semantics.

• Arithmetic formulas can be used.
• Conditional expressions allow you to express IF/ELSE statements.
• Genero BDL variables can be used

Report Writer | 666

• Functions from the Reporting API can be used.

Press the fx button to open the Expression Editing Window. See Using RTL Expressions for additional
information.

Adding report metadata
Five string properties for Report metadata can be specified for the document root in the Report Designer
Properties View.

The metadata fields include title, author, creator, subject and keyword .

The metadata is inserted into the final document, if the output format supports metadata.

In the case of SVG, the title property is used as a document caption in GRV.

For reports running in compatibility mode (reports having no associated 4rp report design document), the
values can be set by calls to the corresponding API functions. See the Genero Studio >> Report Writer
documentation topic "Reporting API Functions".

The "Keywords" property is currently not working for "xlsx" format.

Adding report data (Data view)
The Data View specifies the structure of the data record for the report.

The structure of the data record is defined by the input Report Schema file. The Report Schema file is
extracted from the application source files:

• For applications written in Genero BDL, an .rdd file is extracted.
• For arbitrary XML data sources, you can generate an .xsd file to describe the data schema. See

Support for arbitrary XML data sources on page 667.

Within the Data View:

• The Arrows icon allows you to sort the data items alphabetically.
• Values in the Sample Data column display when you preview a report. Double-click a value to edit or

replace it.
• The Filter Fields By Name field, located at the bottom of the Data View, allows you to specify filtering

criteria for the Data View, where only fields containing the name entered in the box are displayed in the
data items.

Figure 332: Data View

Report Writer | 667

Click the Open Data Report File icon at the top of the Data View to specify the Report Schema file to
populate the Data View.

Adding data values and captions

Before you place a data object onto the report design window, click one of the icons on the integrated
toolbar to specify whether you wish to drop the item or its title, and whether the object is part of a table:

Dropping the object as a simple report field:

• Form field value object
• Form field title object - Places the caption for the selected object. Use for field labels.

Dropping the object aligned as part of a table (the space allocated for the column will be the larger of the
space required for the data or the title, helping to align the title and data in the columns of a table):

• Table column value object
• Table column title object - Places the caption for the selected object. Use for table column headers.
• Table column value object for a column without a title - if you are not going to have a column header,

the space allocated for the column is set to the maximum required by the value only.

Allow the Report Designer to determine the type of dropped object.

• Create element based on the document context

The object type created for a field is determined by the location in the document. Consider dragging
a numeric field to two different locations in a document. In the first instance, the object is dropped into
the OnEveryRow stripe and it becomes a Decimal Format Box. In the second instance, the object is
dropped onto a Map Chart and it becomes a chart Item element.

Table 171: Rules governing element creation based on context

Element Condition

ITEM (“key” is set if field isn’t numeric, “value”
otherwise)

Parent element is a MAPCHART

CATEGORYITEM (“key” is set if field isn’t
numeric, “value” otherwise)

Parent element is a CATEGORYCHART

Same object as option “Create a table column title
object”

Parent element is of class grwTableHeader

Same object as option “Create a table column
value object”

Parent element is of class grwTableRow

Same object as option “Create a table column
value object for a column without title”

Parent element is of class
grwHeadlessTableRow

Same object as option “Create a form fields value
object”

If none of the above are applicable.

The data objects are automatically contained in a Word Box if the data type is defined as less than 30
CHAR, and in Wordwrap Boxes if the data type is defined as larger than 30 CHAR. If the data type is
Numeric, the data object is contained in a Decimal Format Box.

The text property of the Word Box or Word Wrap Box, or the value property of the Decimal Format Box,
specify what will print in the report output. The value property of the Decimal Format Box can be calculated
using an Expression. See Using RTL Expressions.

Support for arbitrary XML data sources
Genero Report Writer can produce reports from arbitrary XML input sources.

The xml source is described by an XML Schema. The Open schema file dialog proposes rdd and xsd file
formats.

Report Writer | 668

If an xsd file is selected, the designer interprets the file as follows:

• Any XML Attribute is considered a variable.
• Any simple type element with minOccurs=1 and maxOccurs=1 is considered a variable.
• Any complex type elements with minOccurs=0 or maxOccurs>1 produce triggers.

For an example, see the Table.4rp report design document in the Reports sample project, located
under the OrderReportXML application node. Open this report to see the OrderData.xsd used as data
schema for the report (as shown in the Data View tab).

Encoding null values in the data

The attribute “xsi:nil” (with “xsi” representing the namespace “http://www.w3.org/2001/
XMLSchema-instance”) can be used on an empty element to denote a null value. The RTL function
isNull() for input variables will return true for such a variable. For example, consider the following
document fragment:

<input xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”>
 …
 <productReference xsi:nil=”true”></productReference>

The RTL expression productReference.isNull() will yield true for this instance of the variable.

Limitations

Recursive references are not supported. Elements involved in a recursive reference will be ignored by the
designer.

Optional variables are not supported. A variable is optional if one of these conditions is true:

• It is an XML simple type element with minOccurs="0".
• It is an XML Attribute without use="required" in the schema definition.

Simple type element with minOccurs="0" are discarded by the designer. No variable is created.

The designer creates variables for optional attributes and issues a warning. An error occurs if the variable
is not present at runtime.

The Genero application

When you declare the data of a report design document (.4rp) to use an arbitrary XML data sources, you
must use the fgl_report_runFromXML API function in your report. See fgl_report_runFromXML on
page 626.

Organizing the report structure (the Report Structure view)

How do you make sure that the various elements print in the correct place in the report? Use containers
- by combining horizontal boxes, stripes, word boxes, etc., in the correct order in the parent container,
you control the order in which the elements in that parent container print out. Then you can move the
containers around in the Structure View to make sure they print out in the correct spot.

The tree structure
The Structure View is a tree containing object and trigger nodes.

object nodes In the Structure View, the object nodes are the
containers and objects that are to be printed on the
report output.

trigger nodes In the Structure View, the trigger nodes are the
triggers (event handlers) that specify when the
object nodes are to be printed out.

Report Writer | 669

Change the hierarchy of the objects and triggers in the Structure View by dragging and dropping them
within the tree:

• Drag a container or trigger and drop it on a different node; it will become a child of that node.
• Press the ALT key and drag a container or trigger, dropping it on a different node; it will become the

parent of that node.

Triggers
The data for your report is passed from your report program to the report one row at a time, sorted by the
criteria specified in your report.

• For a Genero BDL program, the SQL statement defines the sort criteria.

Each row streamed to the report contains all the data or text specified by the data schema (the data report
file). You may want to print some of the data from each row received; this is generally the report body.
Other data and text should only print when a change in a specific data item takes place; for example, you
may want to print a total each time the customer_id value changes. The triggers in the structure of the
report specify what should be printed when a change in data occurs. Arrange all the report elements for a
single trigger in a parent container.

Triggers and Genero BDL report applications

Trigger nodes are specified by the ORDER EXTERNAL statement in the REPORT program block in your
Genero BDL code, and indicate the data values by which the data is grouped. The final trigger node is ON
EVERY ROW, specifying what is to be printed for each row of data passed to the report. The trigger nodes
display in the Report Structure as red bullets:

Figure 333: The ORDER BY clause and report triggers

When the Data Schema changes

When the data schema associated with a report is modified, the Genero Report Designer regenerates
the triggers to match the new schema. The Genero Report Designer will attempt to update the Report
Structure using the minimum number of modifications required to perform the update. Cases of adding new
triggers and cases of removing triggers that do not contain document fragments are handled automatically.

When it is necessary to move or remove a trigger that contains a document fragment, a warning displays
in the Document Errors view stating that the fragment may require manual correction. These warnings are
stored persistently in the report definition (4rp) file. The warning can only be removed by using the context
menu Clear trigger update message (issue is fixed).

The warning message Data schema changed. The document has been updated to match
the changes is only displayed when a new trigger is inserted, a trigger is removed or a trigger is moved.

Place a trigger within the report structure

Report Writer | 670

Report triggers appear in the report structure after you select the data schema for your report design. You
can organize your report structure using drag-and-drop within the Report Structure view. Alternatively, you
can use the Repeat selected items on contextual menu to easily make a trigger the parent of a document
node.

1. Identify the node in the report structure that you wish to be the child of a specific trigger node.

2. Right-click the node and select Repeat selected items on.
The list of triggers appear in a sub-menu.

3. Select the trigger.

The trigger becomes the parent of the currently selected document fragment. The structure of the
document tree is preserved.

Note: A similar functionality is available by holding the ALT key while dropping a trigger on top of a
document node.

Page headers and footers
Arrange all the elements for a Page Header or Page Footer in a parent container that does not propagate.

A Vertical Box (Layout Node) is typically used. A layout node container has a section property. In this
property, you specify the header or footer you are defining: first page header, any page header, last page
header, first page footer, and so on.

Report Writer | 671

Example report structure
Use the Structure View to examine the structure of your report.

Figure 334: Structure View and Properties of a sample report

The Page (Page Root container)

• Page Header: In the example shown, the Page Header is a Layout Node container that specifies
what is to be printed as a Page Header. See Page Headers and Footers. The example Page Header
contains:

• a Stripe container
• a Word Box named Report Title
• a Page Number box

Report Writer | 672

• The example data-related triggers Group userid, Group orderid, and Group linenum do not cause
anything to print as they have no child containers.

• The example OnEveryRow trigger has a Stripe containing a Decimal Text Box and a Word Box. These
are the data items that will be printed for every data row that was passed to the report.

The Printed page
Placement of the header and footer containers take the page size into account.

When a report page is printed, any Page Header (if defined) will print at the top of the page, followed by
the content of the containers associated with trigger nodes, followed by the Page Footer (if defined) at the
bottom of page, in accordance with the Page Size set for the report. This is the basic design of the report
page, which will be repeated when the report is run for as many pages as are required, based on the data
passed to the Report Writer.

Using page numbers
Use the Page Number drawable to print page numbers on a physical page.

The Page Number drawable (PageNoBox) is a layout container that prints the page number of the physical
page. It is frequently part of a Page Footer. The drawable prints only the page number (a numeric) by
default, but you can use the Text Expression property (textExpression) to create a page number string,
such as the standard "Page N of M". See Using a page number string.

Use the Page Number container properties Offset (pageNoOffset), Format (pageNoFormat), and Text
Alignment (textAlignment) to format the page.

Use the Name (pageName) property if you want to reset the page number each time a specific report
trigger fires. Select a MiniPage under the report trigger to use as a basis for the page number count. You
can add a new MiniPage for this purpose if necessary.

Figure 335: Page Number Box properties

Genero Report Writer automatically calculates a Page Number container size based on a four digit page
number or you can set the size with properties such as X-Size or Text. Set the length explicitly using the
X-Size property (e.g. "3cm"), or use the Text property to hint a smaller size. For example, set the Text
property to "000" to specify a maximum length of 3 digits. If multiple sizing properties are configured,
Genero Report Writer uses the setting with the highest priority as follows (listed in highest to lowest
priority):

1. X-Size
2. Text
3. Text Expression

Report Writer | 673

Using a page number string
For Page Number containers, use the Text Expression property to create a page number string, such as
the standard "Page N of M".

If you set the Text Expression (textExpression) property, it's important to verify that the Page Number
container length is long enough to print the full page number text. The size of the string depends in part on
the number of page breaks in the report. For example, the string "Page 2 of 5" has a smaller length than
"Page 2 of 76".

Because of the unpredictable variation in size, Genero Report Writer defaults to a container size based
on a four digit current page and total number of pages (i.e. "Page 9999 of 9999"). To override the default
behavior you can set the X-Size to an explicit size or hint a smaller size with the Text property (e.g. "Page
99 of 99").

The values of the Name (pageName), Offset (pageNoOffset), and Format (pageNoFormat) properties are
ignored when the Text Expression property is set.

These functions can be used to format and access specific page numbers and totals.

• Class String: format(Numeric number, Enum format) - formats the number as specified. The value for
the format parameter can be ARABIC, LOWERROMAN or UPPERROMAN.

• Class Numeric: getPhysicalPageNumber() - gets the current page number of the physical page.
• Class Numeric: getTotalNumberOfPhysicalPages() - gets the total number of physical pages.
• Class Numeric: getPageNumber(String pageName)- gets the page number of the specified page
• Class Numeric: getTotalNumberOfPages(String pageName) - gets the total number of pages for the

specified page.

Note: If you use functions getTotalNumberOfPhysicalPages() or
getTotalNumberOfPages(), report pages waiting to be updated with the actual page count
will be held back if printing is initiated from the viewer.

Examples

This expression computes the string "Page N of M" for the physical pages. The equivalent of the "Offset"
property can be achieved by doing arithmetic with the results from the page number functions. In this case,
the numbering will start at page 11 since the example formula adds 10 to the value returned from the
function getPhysicalPageNumber.

"Page "+format(getPhysicalPageNumber(),ARABIC)+" of
"+format(getTotalNumberOfPhysicalPages(),ARABIC)

This expression computes the string "Page N of M" for logical pages, providing page numbers for each
order within a batch of several orders.

"Page "+format(getPageNumber("pageRoot"),ARABIC)+" of
"+format(getTotalNumberOfPages("pageRoot"),ARABIC)

Report Design Document metadata
The Title, Author, Creator, Subject, and Keywords properties of the document root allow you to add
metadata for a report.

Select the document root in the Structure View. Enter your values for the properties.

Report Writer | 674

Figure 336: Report Design metadata

The metadata is inserted into the final document (PDF, SVG) if the format supports metadata. In the case
of SVG, the title property is used as a document caption in the Genero Report Viewer.

If your report will run in compatibility mode (having no 4rp design document), the values can be
set by calls to the corresponding Report API functions: fgl_report_setTitle(), fgl_report_setAuthor(),
fgl_report_setSubject() and fgl_report_setKeywords(). See the Genero Studio >> Report Writer
documentation topic "Report API Functions".

Configuring the output
The same report can be output in different formats and different page sizes, and to different output devices.

In Preferences you can change the default paper settings for all reports: Tools>>Preferences, Report
Writer, Paper Settings. See the Genero Studio >> Report Writer documentation topic "Report Writer
Preferences".

The File>>Report Properties main menu option allows you to change the default report options for the
currently open report design document.

• Paper Settings - select the page size and other paper settings for a report

Report Writer | 675

Figure 337: Paper Settings dialog
• Orientation - portrait or landscape
• Units - centimeter or inch
• Page Size Format - select from a list of common formats, or enter a custom height and width
• Margins - set left, right, top, and bottom margins

The Load from Default button restores the default values for paper settings as set in the Genero
Report Writer Preferences. See the Genero Studio >> Report Writer documentation topic "Report Writer
Preferences".

• Output Configuration - select the output format and other options

Report Writer | 676

Figure 338: Output Configuration dialog

Options for Output format:

• SVG (scalable vector graphics - can be displayed using the Report Viewer feature of GDC)

• Rendering - Select options to minimize the aliasing distortion
• PDF (Acrobat PDF format, can be displayed using PDF viewer)

• Rendering - Select options to minimize the aliasing distortion or set monochrome mode
• Page Range - output all pages or enter a range

• Image (creates an image, such as .jpg. You can select the image type.)

• Rendering - Select options to minimize the aliasing distortion or set monochrome mode
• Page Range - output all pages or enter a range
• Image settings - Select image Type, Resolution, prefix for the image filename

Note: The Rendering options for font antialiasing (SVG or PDF documents) will only take effect if
the fidelity property of report text elements is set to "True".

Functions from the Reporting API can be used in your report program to override the default options
at runtime. For example, the function fgl_report_selectdevice provides additional output formats.
See the Genero Studio >> Report Writer documentation topic "Report API Functions".

Design How-To
These procedures help you complete specific report design tasks.

• General Design

Report Writer | 677

• Align Numbers (format)
• Center Elements
• Set the paper settings of a report on page 678
• Force a Page Break

• Print Headers and Footers
• Print Group Totals and Report Totals
• Print Totals at the beginning of the report
• Have Different first and last Pages
• Print an Invoice Page Number instead of the physical page number
• Print a layout-dependent Reference (InfoNodes)
• Design Documents for preprinted forms on page 684
• Design labels on page 684
• Design address labels on page 686
• Modify an object's Borders, Margins, and Padding

• Size Expressions for Bordered Boxes
• Using Hyperlinks in a Report
• Some Tips for Legacy Report Designers

General design
These topics describe some common features of reports and how to do them.

Note: The basics of report design is discussed in Designing a Report.

Align and format numbers
Use proper containers and properties to align and format numbers.

Use the ToolBox object Decimal Format Box as the report element for numbers. It supports different
locales and kinds of numbers, including integers, fixed-point numbers, and currency amounts ($123).

The text property specifies the value for the number to be printed. The value of this property may also be
edited directly in the report design document by double-clicking the Decimal Format Box. The input cursor
will be placed in the document, and the layout of the document is updated on each keystroke.

The format property specifies how the number will print out. The default value for this property is "---,---,---
&.&&". You can change this string, using the specified symbols. The - (minus) symbol represent digits (if
the number is negative, it will print with a leading -), and the period represents the decimal point. The &
symbol fills with zeros any position that would otherwise be blank. If the actual number displayed requires
fewer characters than the format string specifies, numbers are right-aligned and padded on the left with
blanks.

Table 172: Formatting examples

Value of text property Appearance in report

123456.1 123,456.10

15.24 15.24

-1600 -1,600.00

Center elements
Use properties to center elements.

To center an element in its parent container you can set its properties as described in Table 173: Centering
elements on page 678

Report Writer | 678

Table 173: Centering elements

Property Value

x max/2

y max/2

anchorx 0.5

anchory 0.5

An x and y value of max/2 sets the x and y coordinates of the element to the maximum of its parent
container divided by 2. An anchorx and anchory value of 0.5 sets the attachment point to the center of the
element.

Set the paper settings of a report
Paper settings set the paper orientation, the page size format, and the report margins for a report.

Each report defines these paper settings:

Orientation Select Portrait or Landscape as the layout for the
report.

Units Specify whether to use centimeters or inches when
defining the page size and margins for a report.

Page Size Format Set the page size using either Standard sizes
or Custom sizes. With standard, select the
desired standard size from the list provided in the
combobox. For custom, specify the height and width
of the report.

Margins Each page has four margins: top, bottom, left, right.

Paper Settings order of precedence

There are three areas which determine the paper settings for a report, listed here in the order of
precedence:

1. In the report application using reporting APIs.
2. In the report design document (.4rp).
3. GRW default values.

Set paper settings using the reporting APIs

A report application can use the reporting APIs to override the paper settings for an individual report.

• For Genero BDL applications, see Change paper settings and output format on page 589.

Set paper settings for a report design document (.4rp)
The Genero Report Writer preferences specify the initial paper settings for a new report.

To change the paper settings:

1. Open the report in Genero Report Designer.
2. Select File >> Report properties, Paper Settings.... The Paper Settings dialog opens.
3. Set the desired orientation, units of measure, page size format, and margin settings for the report.

Tip: To set the paper settings to the current values set in the Paper Settings Configuration of
the local Genero Report Writer, click Load from Default.

4. Click OK to save your settings and close the Paper Settings dialog.

Report Writer | 679

Set paper setting preferences for GRW

The Paper Settings Configuration page sets the default paper settings for all new reports.

1. Select Tools >> Preferences, Report Writer, Paper Settings.
2. Set the desired orientation, units of measure, page size format, and margin settings.

Tip: To set the paper settings to the installation default values, click Load from Default.

3. Click Apply to save your preferences.
4. Click OK to close the Preferences dialog.

Once created, the paper settings for a report are stored as part of the report design document (.4rp).
Changes to the Paper Settings Configuration have no effect on existing reports.

Force a page break
To force a page break, you set the X-size or Y-size property to "rest".

To force a page break, you can insert a container in the page, using the rest variable in the X-size or Y-
size property of the container; this makes the container consume the remainder of its parent container. The
property to be set is determined by the default layout direction of the container.

To force a page break after a MiniPage or Stripe container, set the height (X-size) to "rest".

To force a page break after a Layout Node, set the Y-size to "rest".

Table 174: Forcing a Page Break

Property Value

X-size rest

Y-size rest

Switch child and parent nodes
In the Report Structure, you have two nodes in a parent-child hierarchy. You want to make the child the
parent, and the parent the child.

While holding the ALT key, drag the child and drop on to the parent.

This example starts with the WordBox being a child of the Orders_orderid trigger node:

Figure 339: WordBox is child of Orders_orderid trigger

While holding the ALT key, click on WordBox, then drag and drop it on top of
Orders_orderid.

Figure 340: Orders_orderid trigger is child of WordBox

The two nodes have effectively switched places.

Report Writer | 680

Print headers and footers
A MiniPage or PageRoot in your Report Design document defines how the content is to be laid out on the
report page. Headers and Footers can be defined for the report pages, which can depend on the relative
position of the page in the overall report.

You can use any Simple Container or Drawable as a container for a header or footer. Generally, a Vertical
Box (LayoutNode) is used.

Add the header or footer container to a MiniPage or PageRoot. To identify the containers as headers
or footers, and to specify where on the report page a container should print, set the container's section
property to one of these ports:

firstPageHeader Page Header, to print on the first page only; if this
section is defined, subsequent Page Headers begin
printing on the second page.

oddPageHeader Page Header, to print on odd pages; has
precedence over anyPageHeader.

evenPageHeader Page Header, to print on even pages; has
precedence over anyPageHeader.

anyPageHeader Page Header is for every page, unless separate
Odd and Even Page Headers are defined.

firstPageFooter Page Footer, to print on the first page only; if this
section is defined, subsequent page footers begin
printing on the second page.

oddPageFooter Page Footer, to print on odd pages; has
precedence over anyPageFooter.

evenPageFooter Page Footer, to print on even pages; has
precedence over anyPageFooter.

anyPageFooter Page Footer, to print for every page, unless
separate Odd and Even Page Footers are defined.

For example, a Vertical Box with the section property set to the firstPageHeader section will print as the
header on the first page of the report. In the parent Container, you cannot have multiple header or footer
containers set to the same section.

If you use a Vertical Box for the header or footer container, set the Layout Node's X-size property to max,
and its Y-Size property to min. Within the container you can build up the header or footer using various
containers and report elements. The Stripe container is useful for report elements that are to be laid out left
to right across the page. Use Stripes, WordBoxes, etc. as needed, to arrange the contents of the header or
footer within the container in the order in which it should be printed.

The properties HidePageHeaderOnLastPage and HidePageFooterOnLastPage provide flexibility in the
printout.

Important: It is an error if any element having the section set is preceded in the same sibling list
by one that doesn't. In other words, any sections for the MinPage need to be specified first. Verify in
the Structure view that the report structure is correct.

Print group totals and report totals

In the Genero BDL report program

In your Genero BDL report application, define variables for the totals, calculate the values, and output them
to the report engine.

Report Writer | 681

In the REPORT program block, define variables:

DEFINE
 data store_order_data,
 --Add variables for totals
 store_total, order_total, item_total, report_total DECIMAL(10,2)

Identify the data columns by which the data is grouped in the ORDER EXTERNAL command:

ORDER EXTERNAL BY
data.orders.store_num,
data.orders.order_num

Calculate the group and report totals, and output them in the FORMAT section.

FORMAT

 --Add FIRST PAGE HEADER, BEFORE GROUP OFs
 FIRST PAGE HEADER
 LET report_total = 0

 BEFORE GROUP OF data.orders.store_num
 LET store_total = 0

 BEFORE GROUP OF data.orders.order_num
 LET order_total = 0

 ON EVERY ROW
 --Add statements to calculate totals
 LET item_total = data.items.price*data.items.quantity
 LET order_total = order_total + item_total
 LET store_total = store_total + item_total
 LET report_total = report_total + item_total
 PRINT data.*, order_total, store_total, report_total

In the report design document (.4rp)

• In the Report Design window, define Stripes in the design document, one for each total. Use Decimal
Format Boxes to hold the values.

• In the Structure View, drag each Stripe and drop it onto the trigger node for the corresponding group
trigger. This will position the Stripe as a child of the trigger node. It is important that the total stripes are
the last child element of a report trigger node.

Consider this example:

Report Writer | 682

Figure 341: Example Report Structure

In this example, the order_total Stripe is the last child of the Group order_num, the store_total Stripe
is the last child of the Group store_num. The report_total Stripe was dropped onto the Page Root, the
main page for the report. This positions the Stripe as a child of the Page Root, and will place it at the very
bottom of the child list for that trigger.

On each change of data, the specified data for every corresponding row will print out, and the appropriate
Stripe will print out after each change of Group. The report_total Stripe will be the last thing to print out on
the report. The values of any data objects in the Stripe will be taken from the immediately preceding row of
data (the last report line of the container for onEveryRow trigger.)

Print totals at the beginning of a report
You can print aggregate values before the first detail row is printed.

For example, totals can be printed at the beginning for a report.

When this feature is used, the output has to be delayed until the input has been processed to the point
where the variable value is shipped. In the case of a grand total, which is shipped at the end of the report,
the entire input must be consumed before the document fragment containing the total would be output. If
the total number of records is small, the delay will hardly be noticeable; for example, when you print the
order total before printing up to a few hundred rows relating to the order.

Print a Layout-dependent reference (InfoNodes)
InfoNodes allow you to print a value on the report that depends on the paged stream resulting from the
report layout.

For example, a value for "total from previous page" can vary depending on how the page options for a
report are set. In order to have a report layout that will work with various page sizes, you can use an
InfoNode and a Reference Box.

This example illustrates how to print the total price (overalltotal) from a previous page.

In the Genero BDL report program
The REPORT block of the Genero BDL file must calculate the desired value and output it to the report. The
following example is from the OrderReport.4gl file in the demo sample programs:

ON EVERY ROW
 LET lineitemprice = orderline.lineitem.unitprice *
 orderline.lineitem.quantity
 LET overalltotal = overalltotal + lineitemprice
 LET ordertotal = ordertotal + lineitemprice
 PRINT orderline.*, lineitemprice, overalltotal, ordertotal

Report Writer | 683

The variable overalltotal contains the running total price of the lineitems on the report.

In the report design document (.4rp)
You will use these objects from the Toolbox in your report design:

• InfoNode - place this object in the container for the ON EVERY ROW trigger of your Structure view.
This will create an invisible column in your report line containing the value of the InfoNode.

The Value property of the InfoNode must be a String. You can use the fglValue member of the
FGLNumericVariable class to convert overalltotal:

 overalltotal.fglValue

This will format the value of overalltotal as a String based on the default format set in the Genero
DVM. Or, you can use the format method of the Numeric class to convert to a string and also specify
the format, as in this example:

 overalltotal.format("-,---,---,--&.&&")

• Reference Box - place this object in the Page Header at the top of the report structure.

• For the InfoNode name property, enter the name of the InfoNode that you created.
• For the text property, enter a string that will only be used to determine the maximum length of the

value in the InfoNode, since the value will not be known at the time the ReferenceBox is positioned.
Examples: Enter "000,000.00" as the maximum length for a value that is from a numeric data type,
or "MMMM" as the maximum length for a value that is from a CHAR(4) data type.

• WordBox - optionally use this object to add some text next to the Reference Box.

A Reference Box points to the immediately previous occurrence of the InfoNode value in the paged
stream. Because you placed the Reference Box in a Page Header, it will point to the last occurrence of the
overalltotal value on the previous page.

Specify different first and last pages
Use MiniPage containers to specify different first and last pages.

How do you have a different first or last page in a report?

• Add a separate MiniPage container for each page variation (first-page, main-report-page, last-page, for
example), as children of the Page Root container.

• Add the report elements that are specific to each container.

In the Structure view the MiniPage containers should be listed in the order in which you want them to
appear in the report. For example:

• Page Root

• first-page - this is a "before" page, to print before the main content
• main-report-page - this would contain all the triggers and containers that make up the body of the

report
• last-page - this is an "after" page, to print after the main content

Print an invoice page number instead of the physical page number
Print an invoice page number instead of the physical page number.

• Use the name property of the MiniPage container of the invoice to assign a name to the page.
• Add a Page Number report object to the page header of this MiniPage container.
• In the Page Number section of the properties for the Page Number object, set the name property to the

name of the MiniPage Container.

The page number of the MiniPage will be printed on the report.

Report Writer | 684

Design Documents for preprinted forms
A simple drag and drop of the report elements will invoke the Positioning method, which allows you to
place an element in the desired location on the form.

To make this easier, add an Image box to the report, containing an image of the form to serve as a
background.

Figure 342: Report with Image

The report design window contains a global grid; as you drag a report element onto the design window,
black grid lines help you align it with the other elements on the form. The red attachment point indicates the
mapping of the element to the global grid.

Once you have dropped an report element, you can refine its location by dragging, or you can select an
element and use the keyboard arrow keys:

• Pressing an arrow key moves the element incrementally in the corresponding direction
• Ctrl-arrow key moves the element along the global grid.

Right-click an element to display a menu of additional options.

Design labels
For a report application that prints out labels, the report design document (.4rp) is the size of a single
label.

A report program programmed to output labels expects the report design document to represent a single
label.

• To code a Genero report application that creates labels in a report format, see Create labels: the report
program (Genero BDL) on page 580.

1. Create a new report.

Select File >> New, Reports, Empty Report (.4rp).

2. In the Data View, specify a Data Schema.

See Adding report data (Data view) on page 666.

Report Writer | 685

3. Set the page size to the size of a single label.

a) Select File >> Report properties >> Paper Settings....
b) Set the Page Size Format to Custom.
c) Set the paper settings to the size of one label. Adjust margins as needed.

4. In the custom page you've created, design the label as you would design any report, to include adding
fields from the Data view.

In this example, the page has a width of 9.90 cm and a height of 4.30 cm. The page contains six
WordBox objects. Each WordBox object is populated with data from fields listed in the Data View.

Figure 343: Label Report and Report Structure

5. In the Report Structure, place the report under the appropriate trigger.

In this example, the label (Page) is positioned under the orderid trigger, meaning a new label is printed
each time there is a change in orderid.

Figure 344: Label Report and Report Structure

6. Save your report.

For an example, see the orderlabels.4rp report in the OrderReport demo application.

Report Writer | 686

Design address labels
Design for a label that may contain three to five lines, depending on the data record.

Before reading this procedure, you should be familiar with designing a basic label report. See Design
labels on page 684 for more information.

A common label need is printing of address labels, yet the number of lines required for an address can
vary, depending on the complexity of the address. In many database tables that store address data, there
are several fields for storing address information, such as addr1, addr2, and so on. When creating an
address record, those fields that are not needed for the new address are set to NULL.

When an address is printed out, however, those addresses that contain empty fields (addr2 is set to
NULL, for example) can cause an issue. No blank line should appear on the label. In addition, we may
have information that we want to print after the last non-blank address line included (such as a postal
code).

Follow this procedure to answer these address issues.

Note: Field names used in this example have been simplified. Use the full field names as they exist
in the Data View.

1. Create your address label report.

a) Use a Vertical Box (Layout Node) to contain all of the label data.
b) Add all the lines of the address as children of this node, using dynamic layouting.

At this point, you have designed a report that prints an address label. If one of the lines is empty,
however, a blank line is printed.

2. Identify which lines may contain empty values.

3. For each line that may contain an empty value, set the visibilityCondition to specify that the line not
print if the content is blank.

For example, if one of the address label lines contains the data value shipaddr2, and
this field has the potential of being empty, you ould set the visibilityCondition as follows:
shipaddr2.trim().length()>0

With the visibilityCondition set properly, the line will not print if it has a length of zero. No blank lines
appear within the address.

4. If you have a set of lines where some may be blank, and you wish to print something at the end of the
last non-blank line, you set this up using a conditionality expression in the value property. With this
expression, you test to see whether any of the subsequent (or following) lines contains a value. If one
or more of the lines contains a value, the current line is printed. If non of the subsequent lines contain a
value, then the postcode is appended to the end of the current line and printed.

For example, consider an address label containing three lines: addr1, addr2, and addr3. You have
an additional field, postcode, that you wish to print after the last non-empty line.

• For the line containing addr1, we test and see whether addr2 and addr3 are empty by
setting the value as follows: addr3.trim().length()+addr2.trim().length()==0?
addr1.trim()+postcode.trim():addr1.trim()

• For the line containing addr2, we test and see whether addr3 is empty by setting the value as
follows: addr3.trim().length()==0?addr2.trim()+postcode.trim():addr2.trim()

• For addr3, it only prints if it is not empty (assuming the visibilityCondition is set correctly).
Therefore, set the value as: addr3.trim()+postcode.trim()

With the value property set properly, the last non-empty line will have the postcode at the end.

Report Writer | 687

Modify an object's borders, margins, or padding
Any box object on a report design document can have margins, borders, and padding.

Figure 345: Border, Padding, and Margin

Set an object's specific properties in the Properties View to change:

• the width of a margin, border, or padding - marginWidth, marginRightWidth, marginBottomWidth,
marginLeftWidth, marginTopWidth, borderWidth, borderRightWidth, borderBottomWidth,
borderLeftWidth, borderTopWidth, paddingWidth, paddingRightWidth. paddingBottomWidth,
paddingLeftWidth, paddingTopWidth

• the style of a border: solid, dashed, double, dotted, groove, ridge, inset, outset - borderStyle,
borderRightStyle, borderBottomStyle. borderLeftStyle, borderTopStyle

• the color of a border - borderColor, borderRightColor, borderBottomColor, borderLeftColor,
borderTopColor

• whether the box will have rounded corners (limited to the border styles solid, dashed, and double) -
roundedCorners

Borders are drawn outside the box and will increase the actual size of the box beyond the value specified
in x-Size and y-Size.

When a bordered item is positioned it behaves like a regular element, so that the attachment point appears
at the specified position.

Report Writer | 688

Illustrations

Figure 346: Examples of borders

Figure 347: Examples of borders

Size expressions for bordered boxes
You can define the outer bounds of a box.

The x-Size and y-Size properties specify the inner size of the box; if we specify a box to be 3cm wide and
have a 1mm thick border on all sides, for example, the box's outer bounds will appear to be 3.2cm wide.
This conforms to the CSS specification.

You can define the outer bounds of a box instead:

Report Writer | 689

• Determine the x-Size and y-Size values by subtracting the width of the borders from the desired height
and width. For example, if you want a box to be 3cm wide on the outside while having 1mm borders on
all sides, calculate the width to be 3cm-2mm=2.8cm wide.

• If you want a box to have the same size as its parent, however, set both the x-Size and y-Size
properties to the value max. You do not have to subtract the borders, since the system automatically
adjusts the value of max in cases where the box has borders. For example, if the box has a 1mm
border and is contained in a box that is 3cm high and wide, the outer bounds of the contained box will
also be 3cm.

Note: Do not use expressions that contain max as only one of its components, such as max/2, to
specify the height and width of bordered boxes. Doing so can have unexpected results.

Size expressions that contain the variable max with other components
With bordered boxes, it may be necessary to customize expressions that use the max variable.

As explained in Size expressions for bordered boxes on page 688, the value of max is automatically
adjusted by the border values. This causes unexpected results in expressions such as max-2cm"or
"max/2", for example, where max is only a component of a more complex expression. Modify such
expressions as follows:

1. Take the original formula and replace any occurrence of "max" with "(max+borders+padding+margin)"
where "borders", "padding" and "margin" denote the width values for each on both sides of the box.

2. Take the resulting formula (which we'll call "f") from step 1, and create the final formula as "f-borders-
padding-margin".

Example

LAYOUTNODE: x-Size="max/2", leftBorderWidth="2mm", leftMargin="1mm", rightBorderWidth="1.5mm",
rightPadding="3mm"

Changing the expression for x-Size:

• Before Step 1: x-Size="max/2"
• After Step 1: x-Size="(max+2mm+1mm+1.5mm+3mm)/2"; this is "f" in the explanation.
• After Step 2: x-Size="(max+2mm+1mm+1.5mm+3mm)/2-2mm-1mm-1.5mm-3mm", which can be

consolidated to "(max-7.5mm)/2-7.5mm".

The final property values for the box are:

LAYOUTNODE: x-Size="(max-7.5mm)/2-7.5mm", leftBorderWidth="2mm", leftMargin="1mm",
rightBorderWidth="1.5mm", rightPadding="3mm"

Use hyperlinks in a report
Use the id and href properties to add hyperlink functionality to a report.

The id and href properties can be specified for text and images in the following containers: wordBox,
wordWrapBox, decimalFormatBox, pageNoBox, referenceBox, imageBox, and htmlBox).

id Can be used to create an anchor in the document.
Nodes can be identified with a unique id and then
used as the target of a hyperlink.

href Can be used to define a hyperlink pointing to any
resource on the Internet, local disk, or any anchor

Report Writer | 690

inside the document. The href should be defined
using the URI syntax. For example:

http://www.google.com

mailto:santa.clauss@northpole.com

file:///C:/animals/images/
honey_badger.jpg

#ref

Hyperlinks are not supported in reports output to Image, Printer or Postscript formats.

Some tips for legacy report designers

This table answers some common questions the correlation between Report Designer and traditional 4GL
commands in reports:

Table 175: Legacy Report to Genero Report Writer

Legacy Report command Using Genero Report Writer

SKIP TO TOP OF PAGE In the report design document, drop a container
that will consume the remainder of the page. See
Forcing a page break.

BEFORE GROUP OF,

AFTER GROUP OF

There is a GROUP trigger for data control breaks
in the report structure. The position and contents of
the child containers of the trigger determine what is
printed out and when. See Group and Report totals.

ON EVERY ROW In the ON EVERY ROW statement of the BDL file,
the PRINT statement just sends the data items
to the report engine. The report design document
specifies what is to be printed out for every row of
data passed to the report.

SPACES, format strings All of the formatting for the report line is done in the
report design document. These keywords are no
longer used in a PRINT statement in the BDL file.

PRINT In the report design document, the Data View tab
displays the list of data items in the order in which
they are specified in the PRINT statement.

ON LAST ROW Drop a container positioned as the last child of the
page root. The contents of the container will print
out after the last report row. See Report Total.

NEED n LINES Put all the report elements that need to be kept
together in a Vertical Box Layout Node container.
If there is not sufficient room on the page to print
all of the elements in the container, the entire
container will be printed on the next page.

PAGE HEADER, PAGE FOOTER Avoid using these control breaks, which are
triggered by the line count of the BDL report, which
does not correspond with the actual page breaks

Report Writer | 691

Legacy Report command Using Genero Report Writer

in the report output by Report Writer. Create page
headers and footers in the report design document
instead.

Backside printing
You can specify that something print on the back side of each report page.

An even page header (or footer) that uses all of the available space in layout direction (Y-size="max") will
be printed “between” all pages.

If a report has the pages 1, 2, 3, 4 then the backside ‘B’ is printed between the pages resulting in the
sequence 1, B, 2, B, 3, B, 4.

If a backside is required after the last page, then an additional backside page need to be defined at the end
of the report yielding 1, B, 2, B, 3, B, 4, B.

Debugging your Report Design Document
Tips to help you debug issues you may have with your report design.

Using a Background Color

To check for overlap of an object on a report design, or to simply visually see where an object falls on your
report, set the Background Color property of the object.

Figure 348: Setting the background color

Using GREDEBUG environment variable

Set GREDEBUG to check overfull boxes. Warning messages regarding any overfull boxes are written to
standard output.

Figure 349: Overfull Box message

Working with tables
A table object has the ability to display data in columns and rows. You can add a table to a report, then
manipulate the table to add or size columns and rows and change other display characteristics.

• Add a table to a report on page 692
• Assign content to a table column on page 692
• Set the triggers for a table in a report on page 692
• Merge cells on page 692

Report Writer | 692

• Add rows or columns on page 693
• Add headers and footers on page 693
• Change the width of a table on page 693
• Change the width of a column on page 694

Add a table to a report
This procedure tells you how to quickly add a simple table to a new report.

While this procedure presumes you are starting with an empty report, it should provide you with the
information you need to add a table to any report.

1. Create a new, empty report.

Select File >> New, Reports, Empty Report (.4rp) and click OK.

An empty report design document (4rp) displays.

2. In the Data View, open a schema file.

3. From the Toolbox, add a table to your report design document.

4. For each column, assign the field to display.

See Assign content to a table column on page 692.

5. Set the report trigger.

See Set the triggers for a table in a report on page 692.

6. Save and execute the report.

You will likely have to modify your report application to call your new report.

Assign content to a table column
A table is comprised of columns and rows. This procedure tells you how to associate a field from the Data
View to a column header and body element.

Although this procedure tells you how to associate a field to a column, a column can contain any content -
to include another table, a chart, any content.

1. Select the Data View tab. Identify the field you wish to use for a column in the table object.

2. Select the Create an element based on the document context icon from the Data View Toolbar.

3. Using relative positioning, drag the field from the Data View and drop it into the header row for the
desired column.
It creates a column header. The column title is placed as a WordBox object. The Class property reflects
that this is a title for the column, rather than a value.

4. Using relative positioning, drag the field from the Data View and drop it into the body row for the desired
column.
It creates an expression with the value of the field. The field is placed as a drawable reflective of the
data type of the field. The Class property reflects that this display the value (instead of the title).

Set the triggers for a table in a report
If you want each data row streamed to your report to result in a table row added to the table in your report,
you need to set the appropriate trigger.

1. In the Report Structure, find the row element for your table.

2. Right-click the row element.
The context menu for the row element displays.

3. Select Repeat selected items on >> On Every Row.
When you place the table row under the On Every Row trigger, each data row results in one row added
to the table.

Merge cells
With a row, you can merge one or more columns (cells) into a single cell. You can also revert the merge
and convert the merged cell back to its original number of cells.

You can only merge the cells within a row. You cannot merge cells across rows.

Report Writer | 693

1. Select multiple cells.

Hold down the Ctrl key and click on each cell you wish to merge. As each cell is selected, it turns blue
in color.

2. Right-click and select Merge Cells from the context menu.

3. To reverse the merge, right-click on the merged cell and select Split Cells from the context menu.
The merged cell is split back into its original columns. Any content of the merged cell is put into the first
column.

Add rows or columns
By default, a column has two rows and three columns. This procedure tells you how to add additional rows
and columns.

To add a column or row to a report table object, you do not use the toolbox.

1. Right click on a row or column. either in the cell itself or on the control (selection tab) for the column or
cell.

You will be inserting a row or column relative to the row or column you click. If you are inserting a new
row, you will be able to add the new row above or below the selected row. If you are inserting a new
column, you will be able to add the new column to the left or right of the existing column.

2. If you clicked on a cell instead of a control (selection tab):

a) From the context menu, select Insert Table Item.
A second context menu displays with options to insert a row or a column.

b) Choose the appropriate option to add a row or a column.

3. If you clicked on a column or row control instead of within a table cell, the context menu is specific to
the column or row. Select the appropriate option from the context menu.

A new column or row is added to the existing table. Adding a column does not change the width of the
table. The columns are resized to fit the new column.
Add headers and footers
By default, a table has a single header (Any Page Header). You can add additional headers or footers as
needed.

To add a header or footer to a table, you do not use the Toolbox.

1. Right click on a cell in a row or column.

Which cell you click into is not relevant, as you will be specifying the type of header or footer to add.

2. From the context menu, select Insert Table Item.
A second context menu displays with options.

3. To add a header, select Insert Header. You are asked to choose between an any page header, a first
page header, an even page header, or an odd page header. Select the appropriate header type.

If an option is grayed out, then that specific header has already been added to a report. To provide two
rows for a specific header, you would not add two headers of the same type; you would add two rows to
the specific header type.

4. To add a footer, select Insert Footer. You are asked to choose between an any page footer, a first
page footer, an even page footer, or an odd page footer. Select the appropriate footer type.

If an option is grayed out, then that specific footer has already been added to a report. To provide two
rows for a specific footer, you would not add two footers of the same type; you would add two rows to
the specific footer type.

A new row is added to the existing table for the added header or footer. Headers are displayed at the top of
the report design document, while footers are displayed at the bottom.
Change the width of a table
You can specify the width of a table. If you do not specify a width, the table expands to the width of the
parent container.

This procedure assumes that you have not explicitly sized individual columns with an absolute value.

Report Writer | 694

Note: You can set the width of a table, but you should not try to set the height of a table. The
height is determined by the number of rows created.

1. Select the Table object.

2. Hover your cursor over the right-most border of the last column tab in the report until the resizing arrows
appear.

3. Move the mouse until the table is the size you desire.

The X-Size property will change from the default (max) to a number representing the width you have
selected.

Change the width of a column
If you do not specify a width, the columns are equal in width, and the width is calculated based on the width
of the table itself.

A column width can be proportional or fixed.

When you specify a value in the Proportional Width property, you are specifying its width in proportion to
other columns in the same table. Consider the following example: A table has three columns: A, B and C.
Column A has a proportional width setting of 1, column B has a proportional width of 2, and column C has
a proportional width of 3. This means that column B is two times as wide as column A, and column C is
three times as wide as column A.

When you specify a value as Fix Width, you are giving an absolute size for that column. By default, the
number entered refers to points, but you can change the unit of measure by specifying the type of units
used. See Unit Names on page 801.

1. Select the table.
The controls (selection tabs) appear at the top of each column and to the left of each row.

2. Place the cursor on the right-side border of the selection tab for the column you wish to size. You can
then drag the column to make it bigger or smaller.

3. For more precision, you can edit the property directly.

• To change the column width in proportion to other columns, change the Proportional Width
property. Using the up and down arrows on the property field increases and decreases in increments
of one.

• To specify a specific width, enter the value in the Fix Width property. Use the Reset button to clear
the value from the Proportional Width property.

Working with business graphs

• Report Writer Business Graphs

• Map Chart
• Category Chart
• XY Chart

• Creating a Graph

• The Data
• The Design
• A Custom Key

• Output Charts as Tables

Report Writer business graphs
All of the Business Graphs in Genero Report Writer map Numeric values, grouping the data as required for
the desired result.
Map Chart
The MapChart layout object allows you to create a graph that has one set for values to be mapped,
grouped together by a specific key.

The MapChart layout object is defined by the MapChartDrawAs class.

Report Writer | 695

Draw As property: This kind of graph can be drawn as a Pie, Pie3D, Bar, Bar3D or Ring, or as a table.
For example, the pie chart in Figure 350: Pie Chart example on page 695 presents the total revenue
(the value) for each customer (the key), based on the OrderReport.rdd file in the Report Writer sample
programs.

Draw Legend and Draw Labels property: These properties have been added to customize the appearance
of the plots. In particular the option to remove the legend is useful when more then several charts are
drawn next to each other in a document; the option can be used to make the charts share a single legend
by specifying the legend only on one of the charts.

Figure 350: Pie Chart example

The Map Chart Item layout object specifies the key data item and the values data item in its properties:

• Key - the data is to be grouped by this property (customer name in the example chart); must be a
String.

• Value - the chart will display the total of this property (total unitprice in the example chart) for each key
(customer name); must be Numeric.

• Name - name of this report item in the Structure view; must be a String.
• Color - gives each slice a specific color. When a color is specified for a particular key in one chart,

then the same color will be used for that key in other charts too, unless specified otherwise. If different
colors are specified for the same key, the most recent value is used. If the same color is specified for a
number of different keys, only one of these keys will be painted with the specified value; the other slices
will be painted with interpolated values. Charts may use gradients, shading, or translucency with the
colors specified.

Category Chart
The Category Chart layout object allows you to create a graph that has two keys for each set of values.

Draw As property: This kind of graph can be drawn as a Bar, Bar3D, Stacked Bar, Line, Line3D, Area,
Stacked Area, Waterfall, or as a table.

Report Writer | 696

In a waterfall graph, the value in the last category of the data set should be (redundantly) specified as the
sum of the items in the preceding categories - otherwise, the final bar in the chart will be incorrectly plotted.
At the present time, the waterfall graph can only have one category.

This Bar chart presents total revenue (the value) by the Customer Name and Product Category (the keys):

Figure 351: 3-D Bar Chart example: Revenue by Customer and Categories

The Category Chart Item layout object specifies the key data items and the values data item in its
properties:

• Category Key - the categories for the data (the type of product purchased in the example chart); must
be a String.

• Key - the data in each category is grouped by this property (the customer name); must be a String.
• Value - the chart will display the total of this property (the unitprice of order line items) for each category

(product) divided into groups by Key (customer name); must be Numeric.
• Name - name of this report item in the Structure view; must be a String.

XY Chart
The XY Chart layout object allows you to create a graph that maps a series that has two values, as an XY-
plot. This chart is used most often for scientific data.

Draw As property: This type of graph can be drawn as a Polar, Scatter, Area, Stacked Area, Line, Step,
Step Area, a table or sorted table, or Time Series (property.) This graph presents the x and y values of
three series of trigonometric functions.

Report Writer | 697

Figure 352: XY Chart example

The XY Chart Item element specifies the value data items in its properties:

• Series Title - the caption for the series of values being charted; there can be more than one series
(three in Figure 352: XY Chart example on page 697); must be a String.

• X - the values for the x axis; must be Numeric.
• Y - the values for the y axis; must be Numeric.
• Name - name of this report item in the Structure view; must be a String.

Creating a graph
A Business Graph uses the same process as any other type of report.

See Steps to a Report for a list of the steps required to create a report.

The data
As with all reports, the data schema defines the data for the graph.

As in other types of reports, the PRINT statement in the BDL file specifies the data structure of the
information that is available for the graph:

ON EVERY ROW
 LET lineitemprice = orderline.lineitem.unitprice *
 orderline.lineitem.quantity
 LET overalltotal = overalltotal + lineitemprice
 LET ordertotal = ordertotal + lineitemprice
 PRINTX orderline.*, lineitemprice, overalltotal, ordertotal

See Creating the BDL File for additional information.

Report Writer | 698

You extract the data structure as an rdd file that you reference in the Data View page of the Report
Designer:

Figure 353: Report Designer Data View

A single rdd file can be used to design multiple reports containing the values of various data items from
the file. The same data items can also be displayed as different types of charts.

The design

1. Open a new or existing report in Report Designer.
2. If you are creating a new report, specify the data schema to be used for the report.
3. From the Tool Box view, drag and drop the desired Business Graph (Map Chart, Category Chart, XY

Chart, or Pivot Table) into a container on the report design.

The Design Window will contain a Chart object and its related Item object (shown as a price tag). If you
cannot view the entire chart in the Report Design window, you can re-size the display of the report in
the window: point the mouse at the report and scroll the mouse scroll button while holding down the
keyboard Control key.

Report Writer | 699

Figure 354: Chart object in the work area
4. Select the chart object and enter the values for its properties in the Properties View. The properties vary

depending on the graph chosen:

• Title - caption at the top of the graph
• Values Title - caption for the values
• Keys Title - caption for the keys
• Category Title - caption for the categories (of a Category Chart)
• X Axis Title - caption for the X axis (of an XY Chart)
• Y Axis Title - caption for the Y axis (of an XY Chart)
• Draw As - the type of chart
• Sort By - sort alphabetically, numerically, or by input order.
• Sort Ascending - sort in ascending or descending order.

5. Select the chart's price tag, which represents the item object, and enter values for its properties. The
specific properties vary depending on the graph type.

• keys - the data items that are used to group values, These data items must be Strings. You are not
limited to existing String data items, however. You can define a custom string for the key, using the
data items in a expression.

• values - the data item that contains the numbers to be charted. These data items must be Numeric.
6. Modify the tree in the Structure view as needed:

• The item object for the chart (Map Chart Item, Category Chart item, XY Chart item) must be a child
of the OnEveryRow trigger node.

• The location of the chart object (Map Chart, Category Chart, XY Chart) specifies how many different
charts will be created, based on the resulting subsets of the data.

Drag and drop the nodes in the Structure view to create the correct hierarchy. If you drop a container or
trigger on a different node, it will be a child of that node. Use alt-drag and it will become the parent of that
node.

Report Writer | 700

Examples

With Figure 355: One chart per each row on page 700, the Structure View that resulted from the creation
of a new report containing a chart. It will create a new page and chart for each data row passed to the
report, and therefore needs to be modified:

Figure 355: One chart per each row

With Figure 356: One chart, one page on page 700, the Structure view will result in a page containing
one chart; the item node is a child of OnEveryRow:

Figure 356: One chart, one page

With Figure 357: One chart for each unique userid on page 700, the Structure View will result in one
chart for every unique userid, since the Map Chart is a child of the userid trigger node; the item node is a
child of OnEveryRow:

Figure 357: One chart for each unique userid

Report Writer | 701

Custom keys
You can enter any valid expression for the String value of a key property.

This could be a substring or a concatenation of existing Strings. For example, this expression would group
the data values based on the first letter of shiplastname:

orderline.orders.shiplastname.substring(0,1)

Examples

This chart uses the last name as the key (trimmed of trailing blanks), as shown in the Properties view. The
unit price on each order for each unique last name is rolled up to a total as shown on the chart. There are
five unique names:

Figure 358: Properties panel for the chart Items (where key uses trimmed last name)

Figure 359: Chart showing Revenue Distribution by Customers (where key uses trimmed last name)

And this chart uses the first letter of the last name as the key, as shown in the Properties View. The unit
price on each order for each unique first letter is rolled up to a total as shown on the chart. In this chart,
there are only four unique first letters, as two customers have last names beginning with D:

Report Writer | 702

Figure 360: Properties panel for the chart Items (where key uses substring)

Figure 361: Revenue Distribution by Customers (where key uses substring)

Output charts as tables
All chart types now support the drawing of the data as tables via the Draw As property.

The tables drawn are "pivot" tables that may contain subtotals. This terminology and rules are applied:

• The columns of the tables are either of type Dimension (the data items that are used to group values)
or of type Value (see Mapping of Chart properties).

• Values are aggregated or totaled by the Dimension.
• Dimension columns precede Value columns in the table.
• The order of the Dimensions specifies the order of the data.
• Subtotals are generated for each Dimension except the rightmost.

Mapping of chart properties

• Map chart - the Key property is mapped to a Dimension column, and the Value property to a Value
column.

• Category chart - the Category Key property and the key property are mapped to Dimension columns,
and the value property to a Value column.

• XY chart - the Series Title property is mapped to a Dimension column and the X and the Y properties
are mapped to Value columns.

Report Writer | 703

There are three types of tables: Table, Sorted table, and Aggregated table.

Table

This option lists all data items in a table. The data needs to be presorted in the order of the dimensions; if
this is not the case, the table will contain useless subtotal rows.

If the number of rows in the table is large, then Table is the preferred choice since it produces the tabular
output row by row while reading the input and does not keep a copy of the table data in memory. In other
words, this option does not delay the output until the end of the input has been read. as the Sorted Table
and Aggregated Table options do.

Sorted Table

This option produces the same output as the Table option, but the data does not need to be presorted. The
output is delayed until the last row of table data has been read, and the entire table data is stored in main
memory.

Aggregated Table

This option draws the same table as the previous two options, but subsequent rows with identical
dimensions are drawn only once and the total values are computed. This option always sorts the data, and
delays the output until the last row of data has been read. This option is not available for XY chart types.

Working with Pivot Tables
The pivot table element defines a table element with fixed roles and types for its columns. Grouping,
sorting and summarizing allows results to be displayed in different ways.

• What are pivot tables? on page 703
• Sample pivot table reports on page 706
• Create a static pivot table on page 707
• Pivot table properties on page 708
• Arrange your hierarchies on page 708
• Add a dimension on page 709
• Add a measure on page 709
• Pivot table elements and the Structure view on page 710

What are pivot tables?
The pivot table element is a table element with fixed roles and types for its columns, suitable for processing
multi-dimensional data. Grouping, sorting, and summarizing are performed. The results can be displayed in
different ways.

A pivot table has two types of columns: dimensions and measures. A column is either a dimension or a
measure. No other column types exist in a pivot table. A pivot table has one type of row: fact rows. The
values in the cells of a row are either dimension values or measures, depending on the column type.

Data is sorted by the dimension values. There are usually many rows with identical dimension values in
a column. The dimensions can be viewed as forming a hierarchy. For this reason dimension can also
referred to a hierarchies.

A measure is aggregated. If the measure is numeric, the aggregation could be an average of the measure
values, the sum of the measure values, the maximum or minimum of the measure values, and so on.

For example, consider a table with the dimension columns "Country" and "Region". After sorting the
data, several rows starting with {"Afghanistan","1 North",..} will be at the top, perhaps followed by some
rows starting with {"Afghanistan","3 South",..} again followed by rows starting with {"Albania","1 North",..}.
"Country" and "Region" form a hierarchy or tree where a country branch has sub branches for it’s regions.
The innermost dimension is said to contain the "facts" or "values" (meaning the measure columns from
the fact rows). In a tree representation, the leaves of the tree are records containing the values for the
measure columns.

Report Writer | 704

Relationship to charts

The pivot table is a generalization the chart objects. As an example one can say that a
CATEGORYCHART is a PIVOTTABLE with two dimensions (The "categoryKey" and "key" attributes in
the CATEGORYITEM element), one measure (the "value" attribute in the CATEGORYITEM element) on
which a summarizing aggregation is performed for both dimensions. This table compares the different chart
objects to the pivot table.

Table 176: Comparing chart objects and pivot tables

Element type Number of
dimensions

Number of
measures

Number of
aggregation
groups

Aggregation
functions

Sorting
options

MAPCHART One (specified
by the key
attribute)

One (specified
by the value
attribute)

One (values
with the same
key value are
summarized)

Summarizing By key, value
and input order

CATEGORY
CHART

Two (specified
by the key and
categoryKey
attributes)

One (specified
by the value
attribute)

One (values
with the
same key +
categoryKey
value
combination are
summarized)

Summarizing By keys, value
and input order

XYCHART None Two (specified
by the x and y
attributes)

None None None

PIVOTTABLE N (specified by
HIERARCHY
elements)

N (specified
by MEASURE
elements)

N (Aggregation
can be
performed on all
dimensions)

Summarizing
and others
(such as count,
average,
maximum,
minimum, and
so on)

Input order
and any
combination of
measures

Set data types
The pivot table makes use of the set data types Column Selector and Order Specifier.

These set data types are defined:

Column Selector The column selector is a comma-separated list of
positive integers numbering 0 for the first column
and n-1 for the last column in a table of n columns.

Example: Given a table with four columns, a column
selection of "0,3,1" selects the first, the last and the
second column.

Order Specifier The order specifier is a comma-separated list of
positive integers numbering 0 for the first column
and n-1 for the last column in a table of n columns.
Positive values specify ascending, negative values
descending order.

Example: Given a table with four columns, a order
specifier of "-0,3" specified an descending order on

Report Writer | 705

the first column and a ascending order on the last
column.

There is a difference between not setting a value and specifying an empty value. The empty value always
means the empty set. Not setting a value may mean selecting all or nothing, depending on the context.

Runtime configurability
The number of possible visualizations for a single pivot table data model is huge.

Consider a table with the dimensions “Country”, “Salesperson” and “Year” and the measure “Turnover”.

The list of possible views:

• Total Turnover by Country
• Total Turnover by Country and Salesperson
• Total Turnover by Country, Salesperson and Year
• Total Turnover by Country and Year
• Total Turnover by Country, Year and Salesperson
• Total Turnover by Salesperson
• Total Turnover by Salesperson and Year
• Total Turnover by Salesperson, Year and Country
• Total Turnover by Salesperson and Country
• Total Turnover by Salesperson, Country and Year
• Total Turnover by Year
• Total Turnover by Year and Country
• Total Turnover by Year, Country and Salesperson
• Total Turnover by Year and Salesperson
• Total Turnover by Year, Salesperson and Country

Adding one more dimension multiplies the number of variations by more than four.

If we add two more measures “Margin” and “Cost”, the number of variations is multiplied by two as we can
now view “Total Margin by …” and “Total Cost by ..” for all existing variations.

If we compute not only the total but also the average and the maximum, the number is again multiplied by
two, as we can now view “Average Turnover by ..” and “Maximum Turnover by ..”

If we sort the output by some measure and display only the top n items, the number of options is again
multiplied by the number of measures and n, since we can produce view such as “Top 3 Selling Countries”
or “Top 5 Salespersons regarding margin”.

The number of variants could be multiplied by the 20+ drawing options (specified by the drawAs property).

Instead of having to provide a separate 4rp file for each variant, the implementation of pivot tables allows
the creation of pivot table models containing a larger amount of dimensions and measures which will likely
never be displayed as a whole. From the static setup, one can then select dimensions and measures
for display via selection properties. By defining RTL expression for these properties, one can create the
different variants described at runtime.

Performance considerations
A pivot table report is capable of handling large amounts of data without exhausting memory, as long as
some constraints are met.

If tabular output is selected and other constraints are met, output is produced without delay and memory
consumption is nearly constant. The processing time is proportional to the input length; for very large data
sets it is advisable to aggregate the data in the database.

Processing should be latency free

A chart displays on a single page. As such, it displays only after all data has been processed.

Report Writer | 706

When outputting a table, the output can span multiple pages. Data can be output during processing, a
page can be returned well before all data is processed. Yet selecting this visualization type alone does not
ensure latency free processing; the data must be pre-sorted (See the hierarchiesInputOrder property). If
the data is partially sorted, there can be periods of delay while the processor waits for the end of a block of
data that needs to be sorted.

Pre-sorting data reduces memory consumption

Sorting is done in memory. Very large reports should therefore be run on (partially) pre-sorted data (See
the hierarchiesInputOrder property). Output sorting is also done in memory (See the outputOrder property)
and should be used with equal care. Suppressing the display of the fact rows (See the displayFactRows
property) can significantly reduce memory consumption.

Not sending duplicate values reduces processing time

In the case that data is pre-sorted (see the hierarchiesInputOrder property), an optional, more compact
form of data representation can be chosen that allows omitting dimension values that did not change from
one row to another, thereby improving performance.

For example, after shipping the first fact row {“Afghanistan”,”1 North”,..} all subsequent rows that contain
measure for north Afghanistan need not ship these two dimensions anymore. When the first row of the next
block {“Afghanistan”,”3 South”,..} is reached only the value “3 South” needs to be reported once on the first
row of the block. See Pivot Table Hierarchy Value on page 733.

Sample pivot table reports
Two sample pivot table reports are provided with the installation of Genero Studio. One report shows a
static pivot table, while the other shows a dynamic pivot table.

The reports are located in the Reports.4pw project. This project can be found in the My Genero
Files/samples/Reports directory.

Static pivot table sample report

The report name is StaticPivotTable.4rp.

This sample report produces a table of customer data, grouped by customers and orders. The input is
presorted. The dimension columns, the userid and orderid, are populated accordingly.

Dynamic pivot table sample report

The report name is DynamicPivotTable.4rp.

When this report is selected, a second dialog opens. From this dialog, you select the dimensions and
measures included in the report, along with how to sort the measures.

The form pivotdialog.4fd defines the dialog. The module pivotdialog.4gl contains the Genero
code driving the dialog, making use of the pivot table library libpivot.4gl.

A new record of type “PivotControlBlock” is shipped in the FIRST PAGE HEADER of the report. The
structure of the record:

TYPE PivotControlBlock RECORD
 title STRING,
 drawAs STRING,
 dimensionsDisplaySelection STRING,
 measuresDisplaySelection STRING,
 outputOrder STRING,
 topN INTEGER,
 displayFactRows BOOLEAN,
 displayRecurringValues BOOLEAN,
 computeAggregatesOnInnermostDimension BOOLEAN,
 computeTotal BOOLEAN,

Report Writer | 707

 computeCount BOOLEAN,
 computeDistinctCount BOOLEAN,
 computeAverage BOOLEAN,
 computeMinimum BOOLEAN,
 computeMaximum BOOLEAN
END RECORD

The definition of the record is located in the file globals.4gl.

The record is populated by a call to the dialog function promptForPivotDialogIfAny (from
pivotdialog.4gl) in OrderReport.4gl in the sample application. This is the code fragment:

CALL promptForPivotDialogIfAny(filename) RETURNING retval, controlBlock.*

IF NOT retval THEN
 RETURN NULL
END IF

IF NOT fgl_report_loadCurrentSettings(filename) THEN
 EXIT PROGRAM
END IF

The function inspects the 4rp file. If it finds exactly one dynamically configurable pivot table, it will prompt
the user to configure it (see pivotdialog.4gl for details).

The last step lies in DynamicPivotTable.4rp where the pivot table properties are defined as RTL
expressions that initialize from the field values in control record. For example, the title property is initialized
to "controlBlock.title".

Figure 362: Properties of the Pivot Table element

This figure displays the values of the properties for the pivot table element.

Create a static pivot table
Follow this procedure to create a static pivot table.

1. Create a new, empty report.

2. In the Data View, associate your data schema.

3. From the Tool Box, add a Pivot Table to the report layout under the Page Root.

4. Add dimensions as Hierarchy elements. See Add a dimension on page 709

Report Writer | 708

5. Add measures under the Fact node. See Add a measure on page 709.

6. Arrange the dimensions and measures in the Structure View. See Arrange your hierarchies on page
708.

7. Set additional properties as needed for all elements of the Pivot Table. See Pivot table properties on
page 708

An example is provided in the Reports project (Reports.4pw), provided as part of the samples directory.
The report is StaticPivotTable.4rp.

Pivot table properties
When you define a pivot table, you set properties specific to the pivot table.

Select the object on the Report Design page to display its properties in the Properties View. You can
change the object's default appearance by setting the values of its properties.

In addition to the attributes available for LAYOUTNODE, the PIVOTTABLE element includes the following
properties:

• title
• drawAs

The drawAs property specifies the type of output that is rendered from the data. Depending on the
type selected and the number of available dimensions, the rendering is delegated to the map chart,
category chart, XY chart or table element. In case that the number of selected dimensions outnumbers
the respective number in the selected visualization, the exceeding dimensions and measures are
ignored. The values are assigned from left to right so that if for example a pivot table with 4 dimensions
and 3 measures is drawn as a category chart which has only 2 dimensions and one measure, then the
chart will be drawn using the first two dimensions and the first measure from the pivot table's columns.
Selecting "Table" causes the output to be drawn in tabular form, displaying all selected columns of the
pivot table.

Valid values for Pivot Table: Pie, Pie3D, Ring, Bar, Bar3D, Area, StackedBar, StackedArea, Line,
Line3D, Waterfall, Polar, Scatter, XYArea, XYStackedArea, XYLine, Step, StepArea, TimeSeries, Table

Arrange your hierarchies
In order to minimize the volume of the data stream, the HIERACHIES can be shipped sparsely, in the
sense that not all hierarchy values need to be shipped for every row.

Comparing the hierarchy values of two consecutive rows from right to left starting with the innermost
dimension, any value can be omitted that is the same in both rows until reaching the first dissimilar column.

This example shows two equivalent pivot tables. The first table uses a flat representation while the second
ships the values using a more space efficient method. It ships the value for “userid” only on changes of
“userid” by placing the value in the corresponding trigger. The value remains the same for all orders of that
customer. The same is done for “orderid” which changes its value for every order but remains the same for
all items within the order. The arrows in the diagrams indicates the location of the hierarchies.

Report Writer | 709

Figure 363: Flat shipping of dimension values

Figure 364: Optimized shipping of dimension values

Add a dimension
Dimensions are the values against which aggregation occurs.

• In the Value property, specify the column name for the dimension.
• Select the desired aggregation types. Compute Totals is selected by default.
• In the Title property, provide a title for the dimension.

Add a measure
Measures are placed under a Fact in the Structure View.

• In the Value property, specify the column name for the measure.
• If numeric, check the Numeric Column checkbox.
• In the Title property, provide a title for the dimension.
• If numeric, specify a format.

Report Writer | 710

Pivot table elements and the Structure view
A static pivot table uses predefined dimensions and measures when creating the report.

A pivot table is constructed from four elements.

• The PIVOTTABLE element represents the table itself and all other elements are contained in it.
• The columns of the table are described by HIERARCHY elements (in case of a dimension column) or

MEASURE elements (in case of a value column).
• MEASURE element are grouped in FACT elements.

Figure 365: Pivot table elements in the Structure View

This image shows a table with six dimensions (HIERARCHY elements) and four measures (MEASURE
elements).

Column definition

This figure shows a pivot table definition on the left and a possible rendering of the table on the right.

• Dimensions and measures define the columns of the table.
• Not all defined dimensions and measures were selected for display.
• The title of the table and the selection of the dimensions is defined in the pivot table element
• The title of the columns are defined in the dimension and measure elements.
• The selection of the measures is defined in the fact element.

Report Writer | 711

Figure 366: Report columns

Row definition

The entity of dimension declaration followed by one fact element forms a row of a table. Typically one row
is defined. It is placed in a trigger to get repeated for each input record.

Figure 367: Report row placed in a single trigger

It is allowed, but highly unusual, to specify the rows literally. All rows have to have exactly the same
structure (number of dimensions and measures, types, and so on).

Report Writer | 712

Figure 368: title

Expressions in properties

• Overview
• Using the RTL Expression Language

• Operators
• Conditional Expressions
• Operands
• 4GL Variables
• Examples

• Using RTL Classes

• Classes
• Members
• Examples

• Using the PXML Expression Language

• Units of Measure
• Variables
• Functions

• Substituting 4GL Variables for Constants

See also: Dimension Resolver

Report Writer | 713

Overview
To define an object, values are specified for the object's properties.

The value for a property of a report item can be a literal value, or it can be derived from an expression
that is written using the RTL Expressions language. RTL Expressions allow you to define runtime values
for any property of a report item, except for those properties that display a specific set of valid values in a
dropdown listbox.

Click the Value field to enter an expression in a field of the Properties View. To enter longer values, or
obtain hints while typing the entry, click the fx button of the desired property to open the RTL Expression
Editor:

Figure 369: Edit Expression dialog

Press CTRL+SPACE and a Code Completion box appears, containing a list of the valid choices based on
the context.

RTL Expressions

RTL Expressions:

• are typed - an expression is composed of items of different types and the expression returns a
particular type. The properties in the Properties View are also typed. Any expression entered as a value
for a property must return the specified type. For example, the text property of a WordBox has a type of
String. So, any RTL expression for the text property is expected to yield a String. See Report Element
Properties for a list of each report property and its type.

• closely follow the Java™ syntax for expressions. The main difference is that the "new" keyword is not
supported; it is not possible to create and subclass objects. RTL Expressions loosely follow the Java™

evaluation semantics (operator precedence, evaluation order, and so on).
• can use 4GL variables. The variable is converted to a specific type within the expression (See

Conversion table) .

RTL Classes provide member functions (methods) and member variables that you can use in your
expressions. There is a class for each type of a report property.

Important: Numeric data types are limited to 15 significant digits. To avoid problems with totals
in reports, do not calculate the value of an item that is part of a total using an RTL expression.
Perform any calculations in the BDL program.

Report Writer | 714

Using the expression language
An Expression is a sequence of operands, operators, and parentheses that the runtime system can
evaluate as a single value.

The RTL Expression language follows the Java™ syntax for expressions and evaluation semantics.
Expressions can include these components:

• Operators on page 715
• Conditional Expressions on page 716
• Operands on page 716
• 4GL Variables on page 716

Report Writer | 715

Operators

Table 177: RTL Operators

Operator Description Example Precedence

% Arithmetic: Modulus x % 2
8

*
Multiplication

x * y
7

/
Division

x / y
7

+
Addition

x + y
7

-
Subtraction

x - y
6

+
Concatenation

string + string
5

< Relational/Boolean: Less
than

numeric < 100
4

<=
Less then or equal to

numeric <= 100
4

>
Greater than

numeric > 100
4

>=
Greater than or equal to

numeric >= 100
4

==
Equal to

numeric == 100
4

!=
Not equal to

numeric <> 100
4

!
Logical inverse (NOT)

!(x = y)
3

&&
Logical intersection
(AND) expr1 && expr2

2

||
Logical union (OR)

expr1 || expr2
1

The first column in the table describes the precedence order of the operators, listed highest to lowest. For
example, the % modulus operator has a higher precedence than the * operator. Parentheses can be used
to overwrite the precedence of operators.

Report Writer | 716

Conditional Expressions

Conditional expressions allow you to express IF/ELSE statements.

Syntax:

 Boolean-expression?expression-1:expression-2

The ? operator indicates that this expression is conditional; the return value is dependent on the result
of the Boolean expression. If the Boolean expression is TRUE, the first expression is the return value;
otherwise, the second expression is the return value.

You can use the null keyword in the ternary conditional operator. The “if then” and “if else” operands can
be either expressions or the keyword null. A property whose RTL expression yields “null” is not set. This
is useful in cases where a property should be set only when a certain condition is met. Consider the case
where the background color of a WORDBOX should be set to red when a variable value x drops below a
value of 10. The expression for this would be:

x<10?Color.RED:null

Operands

Operands include:

• Literal values
• Other expressions
• 4GL Variables
• RTL Class Members

• Objects
• Methods (returning a single value)

A literal value for a string in an expression should be delimited by double quotes: "Test".

4GL Variables

The data types of 4GL variables are taken into account when constructing expressions. For every 4GL
variable an object is created that is either an instance of a FGLNumericVariable or an FGLString Variable.
These objects hold the value of the 4GL variable, and at the same time they contain a member variable
value which also contains the value. For this reason, it is legal to write "order_line.itemprice" in your
expression as a shortcut for "order_line.itemprice.value". Both types of objects have these specific member
variables defined:

• value- value of the 4GL variable
• caption- the title of the field
• name- the name of the variable
• type - the RTL type of the variable
• isoValue- the locale and formatting-independent representation of the value of the variable

The conversion table lists 4GL data types and the type into which they are converted within an RTL
expression:

Table 178: 4GL data types and the type into which they are converted within an RTL expression

4GL type Corresponding RTL type

CHAR, VARCHAR, STRING and TEXT FGLStringVariable

DATE, DATETIME and INTERVAL FGLNumericVariable

Report Writer | 717

4GL type Corresponding RTL type

INTEGER, SMALLINT, FLOAT, SMALLFLOAT,
DECIMAL and MONEY

FGLNumericVariable, limited to 15 significant
digits. The value of a number larger than 15 digits
will be truncated, and the resulting number is
rounded. For example, 12345678901234567 will
be rounded to 123456789012346.

Important: To avoid problems with inaccurate totals on a report due to rounding, do not perform
RTL arithmetic on either the individual values or the total value; calculate the value of the item in the
BDL program instead, before passing the value to the report.

Examples

For the purpose of these examples, order_line has been replaced with order.

1. To add 10% to the itemprice: order.itemprice*1.10

The data item order_line.itemprice is converted to a Numeric type, so we can use the Numeric
operators. In order to display the result of a Numeric expression in a WordBox, we must convert the
result to a String. See Example 1 in the Using RTL Classes section.

2. Let's add 10% to the item price conditionally, depending on the value: order.itemprice<100?
order.itemprice*1.10:order.itemprice

The condition in this Boolean expression tests whether the itemprice is greater than 100; if so, the value
returned is 110% of the itemprice; otherwise, the value returned is simply the itemprice.

3. To set the font of a report item to italic when the 4GL variable order_line.lineitemprice exceeds $20,
we must create an expression for the fontItalic property: order.lineitemprice>20

The property fontItalic is of type boolean, so any RTL expression that we use for that property must
return a boolean value (TRUE/FALSE). Any of the relational operators yields a boolean, so the type of
the returned value of this expression is a boolean (The expression will return TRUE if the lineitemprice
exceeds 20).

Note: A numeric value by itself is not a boolean value as it is in some programming languages.

Using RTL classes
RTL expressions do not contain the primitive data types "byte", "short", "int", "long", "float", "double",
"boolean" and "char". Instead, everything is expressed as objects. All methods are member functions.
There are no global functions.

Basic Object Classes

There are object classes for each type of the report item properties. See the Properties documentation to
identify the type of a specific property.

The basic object class types for properties are:

• String - contains methods used for all string operations
• Numeric - contains methods used for all numeric operations; the class has the precision of a double and

the arithmetic operators are defined for objects of this type.
• Boolean - contains methods used for all logical operations
• Color - contains methods and static member variables related to color.
• Enum - a set consisting of a class for each property of this type; each class contains static member

variables that provide a list of valid values for the corresponding property.
• Date Class - a class representing a Date value; contains methods for parsing and formatting strings.

Report Writer | 718

Members

Instance Member Methods Instance Member methods are called on an object
instance. You can get an object instance by
referencing a 4GL variable or by calling a method
on another object. You can also use a literal value
as an object instance.

When you invoke the method, it is prefixed with the
object instance name and the "." character.

Examples of instance methods are expressions
like "order_line.customer_name.trim()".
This is valid because the 4GL variable
order_line.customer_name has a CHAR data
type, which is converted within the RTL Expression
to an object of the type String. And, the method
trim() is a member function of a String object.

Methods always yield objects, so it is also legal to
call methods on the return value of a method.

Static Member Methods Static Member methods do not require an object
instance. When you invoke the method, it is
prefixed with the classname and the '.' character.

Static Member Objects Static Member objects are member variables that
do not require an object instance. The objects are
prefixed with the classname and the '.' character.
Examples of static member objects are expressions
like "Color.RED" or "Numeric.PI".

Examples

1. This example concatenates the first and last names of a customer, using the trim method of the String
class and the + operator:

 order_line.shipfirstname.trim()+" "+order_line.shiplastname.trim()

This expression prints the first name (trimmed of trailing blanks), a string consisting of a single space,
and the last name (trimmed). Use double quotes instead of single quotes to delimit strings.

2. Parenthesis can be used to change the order of operations. For example:

(order_line.unitprice+10).toString()

Parentheses are used to force the addition to be done prior to the conversion to a String.
3. This conditional expression used in the color property of the order_line.unitprice WordBox will change

the color to red if the value is less than 20:

 order_line.unitprice<20?Color.RED:Color.BLACK

This expression specifies that the return value when the boolean expression is TRUE is the static
member variable RED of the Color class, otherwise the return value is the static member variable
BLACK.

4. It is legal to call methods on the return value of a method. For example, this is a valid expression:

Report Writer | 719

Figure 370: order_line.customer_name.trim().toUpperCas().substring(1)

In this example, the object order_line.customer_name is a BDL CHAR variable; this variable is
assigned to the String type. The String method trim() is called first, returning the String object a. The
method toUpperCase() is called for the object a, returning object b which will be in upper case. Finally,
the method substring() is called for the object b, returning object c. If the customer_name is "Springs",
the resulting object c is the string "PRINGS".

There are many additional examples of expressions in the properties of report elements defined in the
4rp programs that are part of the GRWDemo project.

Using the PXML expression language
Genero Report Writer provides the PXML Expression language to define the value of a property that is of
the PXML (dimension) type.

Tip: The type of each property is listed in the Properties page of the Report Writer documentation.

A PXML expression always yields a Numeric value. The value is expressed in units of measurement. It is
legal, for example, for the value to be 10in. If no unit is specified, the unit is presumed to be points. When
you specify a value in units, it is converted internally to its equivalent value in points.

Units of Measure

The most commonly used units are:

• point|pt
• pica|pc
• inch|in
• cm
• mm

See Dimension Resolver for additional explanations and examples of the units that can be used.

Variables

These variables can be used in any PXML expression to define the layout dynamically:

• max - the maximum extent of the current parent box
• min - the minimum extent of the current parent box
• rest - the remainder of the current parent box

For example, to center an element in its parent container you can use the max variable for these
properties:

Table 179: Centering an element

Property Value

x max/2

y max/2

anchorx 0.5

anchory 0.5

Report Writer | 720

You can use the rest variable in the Y-Size property of a MiniPage container to force a page break by
consuming the remainder of the container:

Table 180: Using rest

Property Value

Y-Size rest

Functions

The PXML Expression language has a 4GL-like syntax. The most commonly used functions are:

• max(valueA, valueB) - this is a function, not the variable listed in Variables on page 719!
• min(valueA, valueB)
• length(value)
• width(value)

For example, this expression uses the functions max and width :

max(10cm,width("HELLO"))

In this example, the report engine first calculates the width of the string "HELLO", taking the current font
metrics into account. It then determines which is larger (10cm or the calculated width of "HELLO") and
returns the larger value.

Substituting 4GL variables for constants
You may want your expression to depend on a data variable rather than on the constant string, such as
"HELLO".

For this, we use RTL expressions embedded in curly braces.

Note: We are now mixing two languages. The content within the braces is RTL, the content outside
the braces is a PXML expression.

The rules for embedding RTL in PXML are:

• wherever a numeric constant is allowed in PXML, you can insert an RTL numeric expression (enclosed
in curly braces) instead.

• wherever a string constant is allowed in PXML, you can insert a RTL string expression (enclosed in
curly braces) instead.

For example, consider this expression:

max(10cm,width("HELLO"))

This PXML expression contains one numeric constant ("10") and one string constant ("HELLO"). These
constants can be replaced by data variables, enclosed in curly braces:

max({order_line.titlewidth}cm,width({order_line.title}))

For this expression to be legal, the variable order_line.titlewidth has to be of type Numeric, and the
variable order_line.title has to be of type String.

Note: You cannot construct a dynamic expression where the function names (such as max or
width) or the unit names (such as cm) are dynamic.

Report Writer | 721

Expression examples
Examples of common expressions used by report writers.
Check a field for a value
You want to check whether a field contains a value, is empty, or is null and act accordingly.

For this example, the data source includes the field orderline.order.contact, and the field is a
STRING. The field either contains a value, is an empty string, or is null.

To test whether it contains a value, you write an expression:

orderline.order.contact.trim().length()>0

This expression will evaluate to either TRUE or FALSE.

To explicitly test for an empty string, there are two options:

orderline.order.contact.trim().length()==0

orderline.order.contact.isEmpty()==TRUE

To explicitly test for null:

orderline.order.contact.isNull()==TRUE

Use in the Visibility Condition property

Expressions that evaluate to TRUE or FALSE can be used in the Visibility Condition
(visibilityCondition) property. If the expression evaluates as TRUE, then the instance of the
element will appear in the report. If the expression evaluates as FALSE, the instance of the element (to
include all its children, i.e. the entire element tree) is removed from the report. If you are using relative
positioning, all sibling elements after this element in the report structure shift accordingly, reclaiming the
space that the element would have occupied.

Use in the Text property

You can use these expressions when defining the Text (text) property. The text property specifies the
text to be drawn.

orderline.orders.contact.trim().length()>0?orderline.orders.contact:""

In this expression, the expression evaluates to TRUE when the length of the trimmed field is greater than
zero and the field value is printed (to include any leading or trailing spaces). If the length is not greater than
zero, the field is identified as not having a value and an empty string is printed; the vertical allocated space
for that field remains in the report.

An alternate expression could simply be:

orderline.orders.contact.trim()

Tip: When you use a character type with a fixed length for a field (such as CHAR(N)), you typically
need to add .trim() or .trimRight() to remove trailing spaces. You can avoid this by using
the STRING data type. With the STRING data type, the value is not padded with trailing spaces
unless trailing spaces are explicitly set.

DEFINE field1 CHAR(5),
DEFINE field2, field3 STRING
LET field1="ABC" -- you end up with "ABC "
LET field2="ABC" -- you end up with "ABC"

Report Writer | 722

LET field3="ABC " -- you end up with "ABC ", as explicitly specified

Report Designer Reference

• Report Design Elements (The Toolbox) on page 722
• Report Element Properties on page 736
• Bar Codes on page 764
• RTL Classes Overview on page 801
• Dimension Resolver on page 801

Report Design Elements (The Toolbox)
The Toolbox contains report object that can be placed on a report design document.

• Simple Containers

• Horizontal Box (Layout Node)
• Vertical Box (Layout Node)

• Propagating Containers

• Horizontal Box (Mini Page)
• Vertical Box (Mini Page)
• Page Root (MiniPage)
• Stripe (MiniPage))

• Drawables

• Word Box
• Word Wrap Box
• HTML Box on page 725
• Decimal Format Box on page 725
• Page Number (PageNoBox) on page 727
• Image Box on page 727
• Table on page 729

• Business Graphs

• Map Chart on page 731
• Map Chart Item on page 731
• Category Chart on page 732
• Category Chart Item on page 732
• XY Chart on page 732
• XY Chart Item on page 732
• Pivot Table on page 733
• Pivot Table Hierarchy Value on page 733
• Pivot Table Fact on page 734
• Pivot Table Measure on page 734

• References

• Reference Box on page 735
• Info Node on page 735

• Bar Codes

• Bar Code Box on page 735

Report Writer | 723

Simple Containers
The Simple Containers section of the toolbox contains those containers that do not propagate. These
containers are used to group and organize objects on a page.

Horizontal Box, Vertical Box (Layout Node)

Container: A Layout Node is a rectangular area in the Report Design page. A Layout Node does not
propagate; the content is not allowed to overflow the container. As a result, a Layout Node can be used for
content that should be kept together on the page.

The Horizontal Box is a Layout Node with the Layout Direction property set lefttoright; elements in the
box are laid out across the page. The Vertical Box is a Layout Node with the layout direction property set
toptobottom; elements in the box are laid out down the page.

Properties

Select the object on the Report Design page to display its properties in the Properties View.

You can change the object's default appearance by setting the values of these properties:

name, color, bgColor, fontName, fontSize, X-SizeAdjustment, Y-SizeAdjustment, fontBold, fontItalic

Some specific properties allow you to define borders, margins, and padding for the boxes:

marginWidth, marginRightWidth, marginBottomWidth, marginLeftWidth, marginTopWidth,
borderWidth, borderRightWidth, borderBottomWidth, borderLeftWidth, borderTopWidth, paddingWidth,
paddingRightWidth. paddingBottomWidth, paddingLeftWidth, paddingTopWidth, borderStyle,
borderRightStyle, borderBottomStyle. borderLeftStyle, borderTopStyle, borderColor, borderRightColor,
borderBottomColor, borderLeftColor, borderTopColor, roundedCorners

The x-Size and y-Size properties specify the INNER size of the box. Adding borders, for example, will
increase the overall size.

Layout Nodes can be used as a container for content that must print at a specific part of the MiniPage, a
page header, for example, by setting its section property.

The clip property can be used to clip the object box and its content along the sides. This property applies to
all layout nodes.

Other properties have values that are derived from the type and position on the page, adjust automatically
if the object is moved or re-sized, and need not be changed manually:

type, baselineType, layoutDirection, swapX, alignment, scaleX, scaleY, x, y, anchorX, anchorY,
floatingBehavior

Propagating Containers (Mini Pages)
The Propagating Containers section of the toolbox contains those containers that propagate; if the
container fills, a copy is generated and the extra content overflows to the copy.

Mini Page

Container: Mini Page. This container formats the report page into lines and columns.

A Mini Page is a propagating box. The boxes can handle unknown amounts of material; if the box is full, a
copy is made and the leftover material flows to the copy or copies, as needed. A MiniPage cannot be used
as a container for a page header, page footer, or separator.

Page Root (Mini Page)

Container: Mini Page. Page Root is the recommended base container when you start creating a report. It
is a Mini Page with the height and width properties set to maximum. The container propagates; if it is full, a
copy is generated and the extra content overflows to the copy.

Report Writer | 724

Stripe (MiniPage)

Container: Mini Page. This container has the y-size property set to "max". This container is recommended
for content that stretches horizontally across the report page (lines in a report, for example.) The container
propagates; if it is full, a copy is generated and the extra content overflows to the copy.

Horizontal Box, Vertical Box (Mini Page)

Container: Mini Page. These containers have their orientation (layoutDirection swapX (Swap X) on
page 756property) set to display the box content horizontally (lefttoright) or vertically (toptobottom). The
containers propagate; if a container is full, a copy is generated and the extra content overflows to the copy.

Properties

These properties are specific to Mini Page:

Hide PageHeader OnLastPage, Hide PageFooter OnLastPage

Additional properties are inherited from Propagating Box and Layout Node. The property floatingBehavior
allows you to specify whether the parent container will resize itself so that this Mini Page object is enclosed
in the parent.

Drawables
The Drawables section of the toolbox contains a variety of objects that can hold static or dynamic values,
such as text, numbers, HTML snippets, page numbers, images, and tables.
Word Box and Word Wrap Box
The Word Box and Word Wrap Box are layout objects for the display of text.

Word Box

Word Box (WordBox type) is a layout container, found in the Drawable group in the Tool Box view.

Use this object for a specified chunk of text, which will use the current font.

These properties are specific to Word Box:

trimText, underline, strikethrough, fidelity, localizeText

Word Wrap Box

Word Wrap Box (WordWrapBox type) is a layout container, found in the Drawable group in the Tool Box
view.

This object is like a WordBox with paragraphs of uniform text.

These properties are specific to Word Wrap Box:

trimText, indent, fidelity, localizeText

Properties

Select the object on the Report Design page to display its properties in the Properties View. You can
change the object's default appearance by setting the values of its properties.

The text property specifies the string to be displayed in the WordBox or Word Wrap Box.

You can set the textAligment property for a Word Box or Word Wrap Box to left, right, or center. The
alignment does not influence page break positions even if the indent property is set to some value. For
Word Wrap Boxes, the textAlignment property can also be set to justified.

The localizeText property enables the localization of text content in Word Boxes and Word Wrap Boxes.

Additional properties are inherited from Layout Node.

Report Writer | 725

Tip:

• Don't set the Y-Size (height) property on a Word Wrap box, because the element should
typically grow in accordance with its content. If you set a fixed Y-Size, you'll prevent that
automatic enlargement.

• The text value of these boxes can be edited directly in the report design document; double-click
the object and the input cursor will be placed in the text. The layout will be updated on each
keystroke.

• To force a line break, use the newline character "\n".
• Beginning in version 2.4x, a Word Wrap Box can span pages; when the available vertical space

for WORDWRAPBOX is not sufficient to display the entire text, the box now propagates the
exceeding content to additional boxes, with the same behavior as a propagating MINIPAGE.

Decimal Format Box
Use a Decimal Format Box for decimal numbers.

Decimal Format Box (DecimalFormatBox type) is a layout container, found in the Drawable group in the
Tool Box view.

Use a Decimal Format Box for decimal numbers. It has a variety of features designed to make it possible
to parse and format numbers in any locale, including support for Western, Arabic, and Indic digits. It
also supports different kinds of numbers, including integers (123), fixed-point numbers (123.4), scientific
notation (1.23E4), percentages (12%), and currency amounts ($123). All of these can be localized. The
value of the number is limited to 15 significant digits.

Properties

Select the object on the Report Design page to display its properties in the Properties View. You can
change the object's default appearance by setting the values of its properties.

format

The value of the text property can also be edited directly in the report design document; double-click the
object and the input cursor will be placed in the text. The layout will be updated on each keystroke.

HTML Box
An HTML Box displays an image of an HTML document in the report.

HTML Box (HTMLBox type) is a layout container, found in the Drawable group in the Tool Box view.

Use the Location property to specify the file name and path of the document whose image is to be
displayed. Press the ... button to open a dialog and select the html file.

Note: The content of an HTML box cannot span pages.

Embedding HTML

To embed an image, we use a URL type that allows encoding the data in the body of the URL text. Such
a URL starts with the protocol name “data” and a short description of the data, followed by a colon and the
encoded data itself. The full syntax of data URLs is:

data:[<MIME-type>][;charset=<encoding>][;base64],<data>

See data URI scheme for a complete description of the concept and the syntax.

For our purposes, it is sufficient to support a simplified subset that omits the “charset” and assumes that
characters are encoded in utf8. Image data is always encoded in base64 while other data such as HTML
content is typically “Percent encoded”.

http://en.wikipedia.org/wiki/Data_URI_scheme
http://en.wikipedia.org/wiki/Base64
http://en.wikipedia.org/wiki/Percent-encoding

Report Writer | 726

For HTML content a URL would have the form “data:text/html,<data>. To embed HTML, we use the
data protocol syntax in the Location property of the HTMLBOX element. The syntax is:

data:text/html, followed by the percent encoded data of the html document

To automatically construct this URL for HTML documents, press the ... button for the Location property.
When the Open dialog displays, select the HTML file located in your file structure, and check the Embed in
document checkbox at the bottom of the dialog:

Figure 371: Embed in document checkbox

Populating HTML content from text variables

Data in text variables was typically input into a database via a TextEdit form field, with the textFormat style
attribute set to html. See the Presentation Styles topic in the Genero Business Development Language
User Guide for more details.

Press the formula button for the Location property of the HTML Box, and enter the expression, including
the name of the text variable.

Figure 372: RTL Expression

The function String.urlEncode() is used to encode the data using percent encoding.

Report Writer | 727

Properties

Select the object on the Report Design page to display its properties in the Properties View. You can
change the object's default appearance by setting the values of its properties.

The Location property is used to specify the html content.

Page Number (PageNoBox)
Use this object for page numbers.

Page Number (PageNoBox type) is a layout container, found in the Drawable group in the Tool Box view.

In order to provide for virtual pages (multiple logical pages on one physical page) a pageName property
can be specified to identify the logical page.

Specific functions are available to allow you to calculate an expression for the page number such as Page
N of M, using the property textExpression. If a value is provided for textExpression, the pageName, the
pageNoOffset, and pageNoFormat properties are ignored.

If values for either the textExpression property or the text property are not set, a default length is
calculated. See Calculating the page number string.

Properties

Select the object on the Report Design page to display its properties in the Properties View. You can
change the object's default appearance by setting the values of its properties.

These properties are specific to PageNoBox:

pageName, pageNoOffset, pageNoFormat, textAlignment, textExpression

Additional properties are inherited from Word Box.

Image Box
Use this object for images.

Image Box (ImageBox type) is a layout container, found in the Drawable group in the Tool Box view.

Drawable: Use this object for images. On all platforms GIF, JPEG, PNG, BMP, WBMP, and SVG formats
are supported. The images are cached on a per document basis. The default resolution is the current
screen resolution.

Use the Location property to specify the location of the image to be rendered. Location values are URLs
supporting the protocols "http", "file" and "data". The URL can be:

• absolute - Press the ... button to open a dialog and select the image located in your file structure; this
populates the file name and path of the image to be rendered.

• variable - using an RTL expression to provide the image name as a variable. For example: ./images/
database/"+orderline.product.prodpic.trim()

If you want to preserve the aspect ratio of an image, set the value of either length (y-size) or width (x-size),
allowing Report Writer to calculate the corresponding value. If you set both properties, the resulting image
will appear distorted.

SVG images - Using SVG images instead of bitmap images can substantially reduce the document size,
which is particularly useful when PDF documents are produced. When providing the SVG content from
a 4GL variable, use the mime type "image/svg" so that the url looks something like "data:image/svg,..."
when read from a string variable and "data:image/svg;base64,..." when read from a BLOB. The currently
supported SVG version is "1.2 Tiny" (See http://www.w3.org/TR/SVGTiny12).

Embedding images

To embed an image, we use a URL type that allows encoding the data in the body of the URL text. Such
a URL starts with the protocol name “data” and a short description of the data, followed by a colon and the
encoded data itself. The full syntax of data URLs is:

http://www.w3.org/TR/SVGTiny12

Report Writer | 728

data:[<MIME-type>][;charset=<encoding>][;base64],<data>

See data URI scheme for a complete description of the concept and the syntax.

For our purposes, it is sufficient to support a simplified subset that omits the “charset” and assumes that
characters are encoded in utf8. Image data is always encoded in base64 while other data such as HTML
content is typically “Percent encoded”.

For images the simplified URL has the form "data:/text:xxx;base64,<data>" where xxx is one of
“png”, “jpg”, “gif” or “bmp”. For an image, the syntax is:

data:image/png;base64, followed by the base 64 encoded bitmap data of the
 image

To automatically construct this URL for an image, press the ... button for the Location property. When
the Open dialog displays, select the image file located in your file structure, and check the Embed in
document box at the bottom of the dialog:

Figure 373: Embed in document checkbox

Populating images from blob variables

If you drag a BYTE variable from the Data View onto the Report Design, an Image Box object will be
created. If the variable was named "imageblob" then the Location property would automatically be filled
with this formula:

data:image/jpg;base64,"+imageblob

where imageblob is the name of the blob

This has the same effect as pressing the formula button for the Location property, and entering the
formula including the blob variable name.

http://en.wikipedia.org/wiki/Data_URI_scheme
http://en.wikipedia.org/wiki/Base64
http://en.wikipedia.org/wiki/Percent-encoding

Report Writer | 729

Figure 374: Entering blob variable name in RTL Expression editor

Note: Since a blob variable may contain images of various types, the implementation ignores the
image type declared in the formula, and looks at the encoded data itself to determine the image
type. This formula would work for blobs that were of png type also.

Properties

Select the object on the Report Design page to display its properties in the Properties View. You can
change the object's default appearance by setting the values of its properties.

The Location property is used to specify the image.

These properties are specific to Image Box:

Intended Resolution, Location, Fill

Note: Beginning with version 2.4x, the tile property is replaced by a new property, fill. If you open a
document containing the tile property, it will be automatically replaced by fill.

Fallback Image

A fallback image is the image to be displayed if the requested image is not found. To specify a fallback
image, set the GRE_DEFAULT_IMAGE_URL environment variable to the image URL. The image URL can
be a relative URL; it resolves relative to the location of the form design (4rp) file.

Table
A table object has the ability to display data in columns and rows.

Table (Table type) is a layout container, found in the Drawable group in the Tool Box view.

When you drag a table onto a report, it creates a table with a default of two rows and three columns. Of the
two rows, one is a header row (Any Page Header) and one is a body row (Body). You can add and remove
rows and columns, size the table or its components, merge columns, define its borders and padding and
much more.

Table Structure

In the Report Structure, you can view the table structure.

Report Writer | 730

Figure 375: Table Object as viewed in the Report Structure

The top-level element is the Table element. It contains three child elements, which make up the parts of
the table. These elements are the column definitions, the head, and the body.

The column definitions (or coldefs) define the basic properties for the columns in this table object. These
properties include settings for padding, width, and alignment.

The head section contains the heading rows.

The body section contains the body rows.

Table Properties

Properties specific to the table involve rules, borders, and padding.

A rule refers to a line that separates two rows or two columns. Rule-related properties include Rule, Rule
Color, Horizontal Rule, and Vertical Rule.

The border refers to the border around the table. Border-related properties include Border, Border Color,
Top Border, Left Border, Bottom Border, and Right Border.

Padding refers to the space between a cell boundary and the value contained within. Padding-related
properties include Padding, Horizontal Padding, and Vertical Padding.

Column Properties

Column properties are specific to the column selected. Any column property set overrides the same
property set for the table.

You can set the padding for the cells of a column. Padding-related properties include Padding, Horizontal
Padding, and Vertical Padding.

You can set the width of a column using Proportional Width or Fix Width.

You can set the alignment of a value within the cells of a column with the Horizontal Alignment and Vertical
Alignment properties.

Report Writer | 731

Cell Properties

Cell properties are specific to the cell selected. Any cell property set overrides the same property set for
the table or the column.

You can set the padding for the cells of a column. Padding-related properties include Padding, Horizontal
Padding, and Vertical Padding.

You can set the alignment of a value within the cells of a column with the Horizontal Alignment and Vertical
Alignment properties.

You can merge cells by setting the Column Span property.

Demos

The Reports demo project includes two report design documents showing reports that include a table
object.

• The TableDemo.4rp shows a report design document with a simple table containing five columns and
two rows. One row is the Any Page Header row, while the other row is the Body row.

• The GroupedTableDemo.4rp shows a report design document where the table is more complex, with
several header and body rows. For each header row, the section property specifies whether it is the
First Page Header, Any Page Header, and so on. Each body row is created with a purpose - to show
a row of data, to show the sum of a group of rows, and so on. Some of the cells in the summary rows
span columns. Triggers are used to determine when each of the body rows is output to the table in the
report.

Business Graphs
The Business Graphs section of the toolbox contains a variety of chart objects (map charts, category
charts, XY charts) and pivot table objects.
Map Chart
The MAPCHART element defines the header for an abstract map dataset that can be used for creating a
variety of one dimensional graphs such as pie charts.

Map Chart (Mapchart type) is a layout container, found in the Business Graphs group in the Tool Box view.

The MAPCHART element defines the header for an abstract map dataset that can be used for creating a
variety of one dimensional graphs such as pie charts. The map items are defined using the ITEM element.
The resulting chart is drawn automatically. See Working with Business Graphs for additional information.

Properties

Select the object on the Report Design page to display its properties in the Properties View. You can
change the object's default appearance by setting the values of its properties.

title, valuesTitle, keysTitle, drawAs, fidelity

The valid values of drawAs for this object are: Pie|Pie3D|Ring|Bar|Bar3D|Table|SortedTable|
AggregatedTable. The default is a Pie.

The fidelity property applies only if the chart is drawn as a table (drawAs="Table").

Map Chart Item
A Map Chart Item defines the data value items for a Map Chart.

Map Chart Item is found in the Business Graphs group in the Tool Box view.

A Map Chart Item defines the data value items for a Map Chart.

Properties

Select the object on the Report Design page to display its properties in the Properties View.

key, value

Report Writer | 732

Category Chart
A Category Chart defines the header for an abstract category dataset that can be used for creating a
variety of two dimensional charts.

Category Chart (Categorychart type) is found in the Business Graphs group in the Tool Box view.

The CATEGORYCHART element defines the header for an abstract category dataset that can be used
for creating a variety of two dimensional charts such as category charts. The categories are defined by
the CATEGORY element and its "key" attribute, which has to be unique within a CATEGORYCHART.
Within a CATEGORY, CATEGORYITEMS define the values within the category. Within one category,
the "key" values of individual CATEGORYITEM elements has to be unique. The resulting chart is drawn
automatically. See Working with Business Graphs for additional information.

Properties

Select the object on the Report Design page to display to display its properties in the Properties View. You
can change the object's default appearance by setting the values of its properties.

title, valuesTitle, keysTitle, drawAs, fidelity

The valid values of drawAs for this object are:

Bar|Bar3D|Area|StackedBar|StackedArea|Line|

Line3D|Waterfall|Table|SortedTable|AggregatedTable. The default is a Bar.

The fidelity property applies only if the chart is drawn as a table (drawAs="Table").

Category Chart Item
A Category Chart Item defines the data value items for a Category chart.

Category Chart Item is found in the Business Graphs group in the Tool Box view.

A Category Chart Item defines the data value items for a Category chart.

Properties

Select the object on the Report Design page to display to display its properties in the Properties View. You
can change the object's default appearance by setting the values of its properties.

category Key, key, value

XY Chart
An XY Chart defines the header for an abstract XY dataset that can be used for creating a variety of XY-
Plots such as line or scatter plots.

XY Chart (XyChart type) is found in the Business Graphs group in the Tool Box view.

The XYCHART element defines the header for an abstract XY dataset that can be used for creating a
variety of XY-Plots such as line or scatter plots. The XY data is defined by XYITEM elements. The resulting
plot is drawn automatically. See Working with Business Graphs for additional information.

Properties

title, xAxisTitle, yAxisTitle, drawAs, fidelity

Value values of drawAs for this object are: Polar|Scatter|Area|Line|Step|StepArea|TimeSeries|Table|
SortedTable. The default is Line.

The fidelity property applies only if the chart is drawn as a table (drawAs="Table").

XY Chart Item
An XY Chart Item defines the data value items for an XY Chart.

XY Chart Item is found in the Business Graphs group in the Tool Box view.

Report Writer | 733

It defines the data value items for an XY Chart.

Properties

Select the object on the Report Design page to display to display its properties in the Properties View. You
can change the object's default appearance by setting the values of its properties.

seriesTitle, x, y

Pivot Table
The PIVOTTABLE element is the enclosing element of an abstract pivot dataset that can be used for
creating a variety of multidimensional outputs such as tables and charts.

Pivot Table is found in the Business Graphs group in the Tool Box view.

The resulting data is drawn into a box defined by X-Size and Y-Size. If these are not defined, the view will
expand to whatever space it can claim in the parent.

The PIVOTTABLE element is part of the Business Graphs group in the Report Designer Tool Box.

Depending on the visualization type (specified by the drawAs property), the output may span several
pages. For these visualitzation types (such at Tables), the enclosing containers should support
propagation.

Properties

Select the object on the Report Design page to display its properties in the Properties View. You can
change the object's default appearance by setting the values of its properties.

In addition to the attributes available for LAYOUTNODE, the PIVOTTABLE element has the following
properties:

• title
• drawAs

The drawAs property specifies the type of output that is rendered from the data. Depending on the
type selected and the number of available dimensions, the rendering is delegated to the map chart,
category chart, XY chart or table element. In case that the number of selected dimensions outnumbers
the respective number in the selected visualization, the exceeding dimensions and measures are
ignored. The values are assigned from left to right so that if for example a pivot table with 4 dimensions
and 3 measures is drawn as a category chart which has only 2 dimensions and one measure, then the
chart will be drawn using the first two dimensions and the first measure from the pivot table's columns.
Selecting "Table" causes the output to be drawn in tabular form, displaying all selected columns of the
pivot table.

The valid values of drawAs for this object are: Area | Bar | Bar3D | Line | Line3D | Pie | Pie3D | Polar |
Ring | Scatter | StackedArea | StackedBar | Step | StepArea | Table | TimeSeries | Waterfall | XYArea |
XYStackedArea | XYLine . The default is a Table.

• fidelity

The fidelity property applies only if the chart is drawn as a table (drawAs="Table").
• computeAggregateInnermostDimension
• hierarchiesInputOrder
• displaySelection
• displayRecurringDimensions

Pivot Table Hierarchy Value
The HIERARCHY elements represent dimensions. An element represents both the declarative aspects of
the column as well as the data value which is typically defined as an RTL expression.

Pivot Table Hierarchy Value is found in the Business Graphs group in the Tool Box view.

Report Writer | 734

HIERARCHY elements are child elements of PIVOTTABLE and need to be located before a FACT element
containing the measures of the row.

The HIERARCHY element is part of the Business Graphs group in the Report Designer Tool Box.

Properties

Select the object on the Report Design page to display its properties in the Properties View. You can
change the object's default appearance by setting the values of its properties.

• dataType (default String)
• title (default is the empty string)
• format (default ---,---,---,--&.&&)
• value
• enumValues
• computeTotal
• computeCount
• computeDistinctCount
• computeAverage
• computeMinimum
• computeMaximum

Pivot Table Fact
Together with the HIERARCHY elements that can precede it the FACT element defines a table row.

Pivot Table Fact is found in the Business Graphs group in the Tool Box view.

Properties

Select the object on the Report Design page to display its properties in the Properties View. You can
change the object's default appearance by setting the values of its properties.

• outputOrder
• displaySelection
• displayFactRows (default true)
• topN

Pivot Table Measure
A MEASURE element represents both the declarative aspects of the column as well as the data value.

Pivot Table Measure is found in the Business Graphs group in the Tool Box view.

The data value is typically defined as an RTL expression. MEASURE elements are child elements of FACT
elements.

The MEASURE element is part of the Business Graphs group in the Report Designer Tool Box.

Properties

Select the object on the Report Design page to display its properties in the Properties View. You can
change the object's default appearance by setting the values of its properties.

• dataType (default String)
• title (default is the empty string)
• format (default ---,---,---,--&.&&)
• value

Report Writer | 735

References
The References section of the toolbox provides two objects: a Reference Box and an Info Node. These two
objects typically work together in a report design.
Reference Box
A Reference Box allows you to create layout-dependent text output like "Total from previous pages: num".

Reference Box (ReferenceBox type) is a layout container, found in the References group in the Tool Box
view.

This object allows you to create layout-dependent text output like "Total from previous pages: num".

Since the space to be allocated may not be known until the report is run, make sure that there is enough
space available to display any possible text. Use the text property to provide an example, based on the
underlying data type of the InfoNode object. This is only used to determine the maximum space to set
aside. For example:

• Data types that are numeric - "000,000,000.00"
• Data types that are strings, for example CHAR(8) - "MMMMMMMM"

Properties

Select the object on the Report Design page to display its properties in the Properties View. You can
change the object's default appearance by setting the values of its properties.

This object works in conjunction with an Info Node object, and its specific properties reference the Info
Node:

• InfoNode Name - the name of the InfoNode to be referenced
• default - text to be displayed if the reference cannot be resolved. The default string is "-".

Additional properties are inherited from PageNo Box, Word Box.

See DesignHowTo for an example, and the demo programs provided with the product.

Info Node
The Info Node helps resolve some layout-dependent problems by enabling the use of references.

Info Node (InfoNode type) is a layout container, found in the References group in the Tool Box view.

This object helps resolve some layout-dependent problems by enabling the use of references. This node is
invisible and does not consume space in the layout. This is the object referenced by a Reference Box, to
print layout specific information, such as a total from a previous page, for example.

Properties

The value is stored for querying by a Reference Box. The value is of type String. If the data type of the field
being referenced does not correspond to a String, the value must be converted.

See DesignHowTo for an example of this use, and the demo programs provided with the product.

Bar Codes
The Bar Codes section of the toolbox contains barcode objects
Bar Code Box
The Bar Code Box displays bar codes.

The Bar Code Box (BarCodeBox type) is a layout container, found in the Bar Codes group in the Tool Box
view.

Use this object for bar codes. Example:

Report Writer | 736

Figure 376: Sample Barcode

The currently supported types are listed in the topic Bar Code type listing on page 765. For licensing
reasons, it may be necessary for the user to supply the fonts required to draw the text for some types of
bar code.

Bar codes are drawn in nominal sizes. By setting the scaleX and scaleY properties it is possible to draw
larger or smaller versions. It is further possible to force a particular width and/or length but specifying the
desired extend value.

Specific functions are available to allow you to calculate an expression for the page number such as Page
N of M, using the property codeValueExpression.

Properties

Select the object on the Report Design page to display its properties in the Properties View. You can
change the object's default appearance by setting the values of its properties.

These properties are specific to Barcode Box:

codeType, fidelity, noText, codeValue, check, noDigits, noCheckDigits, thinToThickRelation,
thinToGapRelation, controlCharacters, codeValueExpression

Additional properties are inherited from Layout Node, and specific bar codes may have unique properties.

See Bar Codes for a description of all the possible bar code types.

Report Element Properties
Each element has associated properties.

Values for these properties may be literal, or they may be RTL expressions. If expressions are used, the
resulting value must be of the specified data type of the property.

See Using Expressions in Properties.

• General Properties on page 736
• Properties related to margins and borders on page 761
• Properties for Report Document Metadata on page 764

General Properties
General properties of a report element.

• alignment (Alignment) on page 739
• anchorX (Anchor X) on page 739
• anchorY (Anchor Y) on page 739
• baselineType (Baseline Type) on page 739
• bBorder (Bottom Border) on page 740
• bgColor (Background Color) on page 740
• border (Border) on page 740
• categoryKey (Category Key) on page 740

Report Writer | 737

• categoryTitle (Categories Title) on page 740
• check (Check) on page 740
• class (Class) on page 740
• clip (Clip) on page 741
• codeType (Code Type) on page 741
• codeValue (Code Value) on page 741
• codeValueExpression (Code Value Expression) on page 741
• color (Color) on page 742
• colspan (Column Span) on page 742
• computeAggregatesInnermostDimension (Compute aggregates on the innermost dimension) on page

742
• computeAverage (Compute Average) on page 742
• computeCount (Compute Count) on page 742
• computeDistinctCount (Compute Distinct Count) on page 742
• computeMaximum (Compute Maximum) on page 743
• computeMinimum (Compute Minimum) on page 743
• computeTotal (Compute Totals) on page 743
• controlCharacters (Control Characters) on page 743
• dataSymbolsPerLine (Data Symbols per Line) on page 743
• displayFactRows (Display Fact Rows) on page 744
• displayRecurringDimensions (Display Recurring Dimension Values) on page 744
• displaySelection (Display Selection) on page 744
• drawAs (Draw As) on page 744
• drawLabels (Draw Labels) on page 745
• drawLegend (Draw Legend) on page 745
• encoding (Encoding) on page 745
• enumValues (Enum Values) on page 745
• errorCorrectionDegree (Error Correction Degree) on page 746
• fidelity (Text Fidelity) on page 746
• fill (Fill) on page 746
• floatingBehavior (Floating Behavior) on page 746
• fontBold (Bold) on page 746
• fontItalic (Italic) on page 747
• fontName (Name) on page 747
• fontSize (Size) on page 747
• format (Format) on page 747
• fWidth (Fix Width) on page 747
• hAlign (Horizontal Alignment) on page 747
• hidePageHeaderOnLastPage (Hide Page Header On Last Page) on page 748
• hidePageFooterOnLastPage (Hide Page Footer On Last Page) on page 748
• hierarchiesInputOrder (Hierarchies input order) on page 748
• href (href) on page 748
• hPadding (Horizontal Padding) on page 748
• hRule (Horizontal Rule) on page 749
• id (id) on page 749
• indent (Indent) on page 749
• intendedResolution (Intended Resolution) on page 749
• key (Key) on page 749
• keysTitle (Keys Title) on page 749
• layoutDirection (Layout Direction) on page 749

Report Writer | 738

• localizeText (Localize Text) on page 751
• location (Location) on page 751
• name (Name) on page 751
• noCheckDigits (Number Check Digits) on page 751
• noDigits (Number Digits) on page 751
• noText (Hide Text) on page 751
• outputOrder (Output Order) on page 751
• padding (Padding) on page 752
• pageName (Name) on page 752
• pageNoOffset (Offset) on page 752
• pageNoFormat (Format) on page 752
• preferRectangularSymbols (Prefer Rectangular Symbols) on page 752
• pWidth (Proportional Width) on page 752
• rawCodeValue (Raw Code Value) on page 753
• rBorder (Right Border) on page 753
• referenceDefault (Default) on page 753
• referenceName (InfoNode Name) on page 753
• rule (Rule) on page 753
• ruleColor (Rule Color) on page 753
• section (Section) on page 754
• scaleX (Scale X) on page 754
• scaleY (Scale Y) on page 755
• seriesTitle (Series Title) on page 755
• smartParse (Smart Parse) on page 755
• sortAscending (Sort Ascending) on page 755
• sortBy (Sort By) on page 755
• splitOversizedItem (Split Oversized Items) on page 755
• strikethrough (Strikethrough) on page 756
• swapX (Swap X) on page 756
• text (Text) on page 756
• textAlignment (Text Alignment) on page 756
• textExpression (Text Expression) on page 756
• thinToGapRelation (Thin To Gap Relation) on page 757
• thinToThickRelation (Thin To Thick Relation) on page 757
• tile - replaced by fill (Fill) on page 746
• title (Title) on page 757
• topN (Top N) on page 758
• trimText (Trim Text) on page 758
• objectType (Type) on page 758
• underline (Underline) on page 758
• URL (Location) on page 758
• vAlign (Vertical Alignment) on page 758
• value (Value) on page 758
• valuesTitle (Values Title) on page 759
• visibilityCondition (Visibility Condition) on page 759
• vPadding (Vertical Padding) on page 759
• vRule (Vertical Rule) on page 759
• x (X) on page 759
• xAxisTitle (xAxisTitle) on page 759
• X-Size (X-Size) on page 759

Report Writer | 739

• X-Size Adjustment (X-Size Adjustment) on page 760
• y (Y) on page 760
• yAxisTitle (yAxisTitle) on page 760
• Y-Size (Y-Size) on page 760
• Y-Size Adjustment (Y-Size Adjustment) on page 760

alignment (Alignment)
Controls alignment of a report element.

In the Properties view, this property is the Alignment property in the Geometry category.

Controls the x position of this report element in its parent container, unless you have set the x property
explicitly.

Type: Enum, the alignment choices are:

• none - there is no adjustment.
• near - shortcut for x = 0; that is, aligns closest to the origin of x within the parent container
• far - shortcut for x = max, anchorX = 1; that is, aligns the most remotely from the origin of x within the

parent container
• center - shortcust for x = max/2, anchorX = 0.5, centered in the parent container
• baseline - uses baseline alignment

The default value is none.

See: Placing Elements on the Report Page, Align Numbers, Center Elements

anchorX (Anchor X)
Shifts the attachment point for self-adjusting nodes.

In the Properties view, this property is the Anchor X property in the Geometry category.

This property is relevant only if the property x is set. Shifts the attachment point for self-adjusting nodes
between the point nearest to the parent's coordinate system's origin (value=0.0) and the most remote
point (value=1.0). For nodes that are adjusted by their parent this attribute has no effect. A value of 0.5, for
example, sets the attachment point to the center of the node.

Type: PXML, point value. The default value is 0.

anchorY (Anchor Y)
Shifts the attachment point for self-adjusting nodes.

In the Properties view, this property is the Anchor Y property in the Geometry category.

This property is relevant only if the property y is set. Shifts the attachment point for self-adjusting nodes
between the point nearest to the parent's coordinate system's origin (value=0.0) and the most remote
point (value=1.0). For nodes that are placed by their parent this attribute has no effect. A value of 0.5, for
example, sets the attachment point to the center of the node.

Type: PXML, point value. The default value is 0.

baselineType (Baseline Type)
Specify which baseline of this report element should be linked to which baseline of a preceding element.

In the Properties view, this property is the Baseline Type property in the Layout category.

Provides additional information for baseline alignment, to specify which baseline of this report element
should be linked to which baseline of a preceding element that also has the property alignment set to
baseline. This property is relevant only if alignment for the report element is set to baseline.

Type Enum, choices are:

• leftleft - the report element and its preceding element will be aligned along their left baselines
• leftright - the left baseline of the report element will be aligned with the right baseline of the preceding

element

Report Writer | 740

• rightleft - the right baseline of the report element will be aligned with the left baseline of the preceding
element

• rightright - the report element and its preceding element will be aligned along their right baselines

bBorder (Bottom Border)
The bBorder property sets the weight of the bottom border of a table object.

In the Properties view, this property is the Bottom Border property in the Table category.

The bBorder property overrides the more general border (Border) on page 740 property for a table
object.

Type: PXML, point value.

Default value: None.

bgColor (Background Color)
Sets the background color for this node.

In the Properties view, this property is the Background Color property in the Color category.

The value is not inherited from the parent node.

Type: Color; valid colors are selected from the Edit Expression color palette. The default value is 'no
background color': transparent.

border (Border)
The border property sets the weight of the border of a table object.

In the Properties view, this property is the Border property in the Table category.

Type: PXML, point value.

Default value: 1

categoryKey (Category Key)
Specifies the key of a category in a Category Chart.

In the Properties view, this property is the Category Key property in the Items category.

Specifies the key of a category in a Category Chart. Must be unique within a chart.

Type: String. The default is a blank String.

categoryTitle (Categories Title)
Specifies the title for the categories axis in a Category Chart.

In the Properties view, this property is the Categories Title property in the Chart category.

Specifies the title for the categories axis in a Category Chart.

Type: String. The default is a blank String.

check (Check)
Check the checksum character.

In the Properties view, this property is the Check property in the Bar Code category.

When set, the checksum character of the specified code value is checked for correctness.

Type Boolean. The default value is true.

class (Class)
Specifies one or more classes for a report element.

In the Properties view, this property is the Class property in the Object category.

Class names that are prefaced with the string "grw" are internally meaningful to the Genero Report Writer.
The class property is available for all PXML nodes.

Report Writer | 741

Example of class names with a "grw" prefix:

• grwTableHeader
• grwTableRow
• grwHeadlessTableRow
• grwTableNumericColumnValue
• grwStringValue

Type String (space separated list of identifiers).

clip (Clip)
Option to clip the report object box and its content along the sides.

In the Properties view, this property is the Clip property in the Layout category.

This applies to all layout nodes.

Figure 377: Clipped field

Type Boolean: The default value is false.

codeType (Code Type)
Specifies the type of Bar code.

In the Properties view, this property is the Code Type property in the Bar Code category.

This is mandatory, a default value is not set. Not all codeTypes are relevant to all Bar Codes.

The currently supported types are: U PC-A, UPC-E, UPC Supplementals 2 and 5, EAN-13, EAN-8, EAN
Supplementals 2 and 5, Code 128 (EAN 128), Code 2/5 Industrial, Code 2/5 Inverted, Code 2/5 IATA ,
Code 2/5 Interleaved, Code 2/5 Matrix, Code 2/5 Datalogic, Code BCD Matrix, Code 11 Matrix, Code 39,
Code 39 extended, Code 32, Code 93, Code 93 extended, Codabar 18 and Codabar 2.

See Bar Codes for additional information.

Type: Enum.

codeValue (Code Value)
Specifies the code value of a bar code.

In the Properties view, this property is the Code Value property in the Bar Code category.

The character set and semantic constraints depend on the code type selected.

Type: String. See Bar Codes for complete information.

codeValueExpression (Code Value Expression)

In the Properties view, this property is the Code Value Expression property in the Bar Code category.

Property of the BARCODEBOX, which expects a PXML string expression value to calculate a page
number string. When set, the value of the property overrides the codeValue property. The value of the
codeValue property is still used for measuring the required space, but if it is not set the default size which
is computed from the expression should be sufficiently exact.

Type: PXML.

If a value for this property, or for the X-Size property, is not set, a default length is used in calculating the
page number string from these functions.

These functions can be used to format and access specific page numbers and totals.

• Class String: format(Numeric number, Enum format) - formats the number as specified. The value for
the format parameter can be ARABIC, LOWERROMAN or UPPERROMAN.

Report Writer | 742

• Class Numeric: getPhysicalPageNumber() - gets the current page number of the physical page.
• Class Numeric: getTotalNumberOfPhysicalPages() - gets the total number of physical pages.
• Class Numeric: getPageNumber(String pageName)- gets the page number of the specified page
• Class Numeric: getTotalNumberOfPages(String pageName) - gets the total number of pages for the

specified page.

See " Page N of M" examples.

color (Color)
Sets the paint color for this node and for all children of this node.

In the Properties view, this property is the Color property in the Color category.

On Map Charts this property is used to assign each slice of the chart a specific color.

Type: Color, valid colors are selected from the Edit Expressions color palette. The default value is inherited
from the parent node. The root node has the color black.

colspan (Column Span)
The colspan property is set when two or more cells are merged in a row definition for a report table.

In the Properties view, this property is the Column Span property in the Table category.

Type: whole number. The number indicates how many cells are included in the merge, starting with zero.
If no cells are merged, the colspan would be zero; if two columns are merged, the colspan value is 1,
meaning it spans one additional column; if three columns are merged, the colspan value is 2, meaning it
spans two additional columns; and so on.

Default value: none.

computeAggregatesInnermostDimension (Compute aggregates on the innermost dimension)
Specifies whether or not compute aggregates on the innermost dimension

In the Properties view, this property is the Compute aggregates on the innermost dimension property in
the Chart category.

Default is TRUE.

Type: Boolean

computeAverage (Compute Average)
Specifies whether or not the average should be computed for a dimension.

In the Properties view, this property is the Compute Average property in the Value category.

Default is FALSE.

Type: Boolean

computeCount (Compute Count)
Specifies whether or not the number of fact rows should be computed for a dimension.

In the Properties view, this property is the Compute Count property in the Value category.

Default is FALSE.

Type: Boolean

computeDistinctCount (Compute Distinct Count)
Specifies whether or not the number of sub elements should be computed for a dimension.

In the Properties view, this property is the Compute Distinct Count property in the Value category.

Sub elements are either sub dimensions or, in the case of the innermost dimension, fact rows.

Default is FALSE.

Type: Boolean

Report Writer | 743

computeMaximum (Compute Maximum)
Specifies whether or not the maximum value should be computed for a dimension.

In the Properties view, this property is the Compute Maximum property in the Value category.

Default is FALSE.

Type: Boolean

computeMinimum (Compute Minimum)
Specifies whether or not the minimum value should be computed for a dimension.

In the Properties view, this property is the Compute Minimum property in the Value category.

Default is FALSE.

Type: Boolean

computeTotal (Compute Totals)
Specifies whether or not totals should be computed for a dimension.

In the Properties view, this property is the Compute Totals property in the Value category.

Considerations regarding chart drawing and output sorting: When selecting a chart visualization (specified
by drawAs) that displays aggregated values, it is necessary that aggregation is performed on the
dimensions required by the chart. Similarly, output sorting requires an aggregation function to be defined
for all dimensions by which these will be sorted. In the case that more then one aggregation option is
selected, the processor will pick the aggregate option that is highest up in the priority list:

1. computeTotal
2. computeAverage
3. computeMaximum
4. computeMinimum
5. computeCount
6. computeDistinctCount

Type: Boolean

Default: TRUE. Unlike the other aggregation options, totals are computed by default.

controlCharacters (Control Characters)
Configures which characters to use for textual printout of control characters in Code 93 and Code 93
extended.

In the Properties view, this property is the Control Characters property in the Bar Code category.

Code 93 defines four control characters "!?\|" which are represented per default by the unicode characters
"circled dash" '#' (229d), "circled asterisk operator" '#' (229b), "circled division slash" '#' (2298) and "circled
plus" '#' (2295). Depending on the font used it might be desirable to used different characters than the
default characters.

Type: String. Default value: "⊝⊛⊘⊕"

dataSymbolsPerLine (Data Symbols per Line)
Specifies the number of data symbols per line.

In the Properties view, this property is the Data Symbols per Line property in the Bar Code category.

This property is unique to the pdf-417 on page 795 bar code type.

Type: Integer value.

Specifies the number of data symbols per line. The value must be an integer between 1 and 30. Low
values cause more narrow printout with more lines. The number of lines is not allowed to exceed 90. It
should be noted, that the overall required image space usually grows with lower values because there
is a constant amount of organizational information which is added with each additional line. This is not

Report Writer | 744

generally the case, since lines have to be filled with padding so that specially with small amounts of data a
larger value may actually create a larger image. If the value is not specified, the system computes a value
that minimizes image space.

Fails if: Value cannot be parsed as a integer value. Value is not in the range 1...30.

Default value: A value that minimizes the overall image size.

displayFactRows (Display Fact Rows)
Specifies whether or not fact rows (the individual unaggregated data items) are displayed.

In the Properties view, this property is the Display Fact Rows property in the Chart category.

This is applicable only if the selected output visualization (specified by drawAs) is capable of drawing
individual rows. This is currently the case for the "Table" visualization type only.

Type: Boolean

displayRecurringDimensions (Display Recurring Dimension Values)
Specifies whether or not recurring dimension values in the same column of table output should be
displayed.

In the Properties view, this property is the Display Recurring Dimension Values property in the Chart
category.

By default, cells with recurring values are left empty.

Type: Boolean

displaySelection (Display Selection)
Selects which of the declared dimensions or measures should be displayed.

In the Properties view, this property is the Display Selection property in the Chart category.

For example, given a table with 4 dimensions, specifying a value of "3,2,0" selects the last, the second last
and the first column for display.

Depending on the visualization type (set by the drawAs property), it is possible that not all selected
dimensions will display.

Not specifying a value is equivalent to selecting all declared dimensions. For example, given a table with
three dimensions, not specifying this attribute is the equivalent of specifying a value of "0,1,2".

For dimensions, specifying an empty set will display the measures only and the grand total line.

For measures, specifying an empty set will display the dimensions, their aggregates and the grand total
line.

Type: Column selector

drawAs (Draw As)
Specifies the type of chart that is rendered from the data.

In the Properties view, this property is the Draw As property in the Chart category.

This property also allows you to specify that the chart displays as a table.

Type: Enum.

Valid values for Category Chart: Bar, Bar3D, Stacked Bar, Line, Line3D, Area, Stacked Area, or Waterfall,
Table, Sorted Table, Aggregated Table

Note: If you select Waterfall as the chart type, the value in the last category of the data set should
be (redundantly) specified as the sum of the items in the preceding categories - otherwise, the final
bar in the chart will be incorrectly plotted. At the present time, the chart can only have one category.

Valid values for Map Chart: Pie, Pie3D, Bar, Bar3D or Ring, Table, Sorted Table, Aggregated Table

Report Writer | 745

Valid values for XY Chart: Polar, Scatter, Area, Stacked Area, Line, Step, Step Area, or Time Series,
Table, Sorted Table

Valid values for Pivot Table: Pie, Pie3D, Ring, Bar, Bar3D, Area, StackedBar, StackedArea, Line, Line3D,
Waterfall, Polar, Scatter, XYArea, XYStackedArea, XYLine, Step, StepArea, TimeSeries, Table

drawLabels (Draw Labels)
Controls whether Labels are drawn for a Map Chart.

In the Properties view, this property is the Draw Labels property in the Chart category.

Controls whether the Labels are drawn for a MapChart.

Type: Boolean. The default value is true.

drawLegend (Draw Legend)
Controls whether the Legend is drawn for a Map Chart.

In the Properties view, this property is the Draw Legend property in the Chart category.

Controls whether the Legend is drawn for a MapChart. The option to remove the legend is useful when
more then several charts are drawn next to each other in a document. You can make the charts share a
single legend by specifying the legend only on one of the charts.

Type: Boolean. The default value is true.

encoding (Encoding)
Sets the encoding for non ascii characters in the code value.

In the Properties view, this property is the Encoding property in the Bar Code category.

This property is unique to the pdf-417 on page 795 bar code type.

Type: Encoding

Sets the encoding for non ascii characters in the code value. Run "java CharsetInfo" for a list of
character set encodings available on a particular platform. Valid example values are 'ISO-8859-15' or
'IBM437'.

Fails if:

• Value is not a valid host name
• Socket connection cannot be established

Default value: not set (the lower 8 bits of the unicode values are encoded)

enumValues (Enum Values)
Specifies an optional list of strings that represent ordinal values.

In the Properties view, this property is the Enum Values property in the Value category.

This attribute is applicable for numeric dimensions only whose value is limited to a range of whole numbers
representing a set of symbols.

Consider a dimension containing the values 0 through 11, representing the months of
the year (0=Jan, 1=Feb, ..., 11=Dec). For this example, you could set the enumValues =
"Jan,Feb,Mar,Apr,May,Jun,Jul,Aug,Sept,Oct,Nov,Dec". When the dimensions are sorted (inputOrder
and displaySelection differ), it can make a visual difference whether the column is declared a numeric
enumeration or as a string column containing the literal value and not its ordinal value. The difference
comes from the sorting. In the first case (a numeric enumeration), the month will be displayed in the order
"Jan, Feb, ..., Dec". In the second case, the alphabetic order of the month names would result in the order
"Apr, Aug, Dec, ...".

Type: List of quotable strings

Report Writer | 746

errorCorrectionDegree (Error Correction Degree)
Specifies the error correction degree.

In the Properties view, this property is the Error Correction Degree property in the Bar Code category.

This property is unique to the pdf-417 on page 795 bar code type.

Type: Integer value.

Specifies the error correction degree. Valid values are in the range 0...8. Higher values make the image
more robust.

Fails if: Value cannot be parsed as a integer value. Value is not in the range 0...8.

Default value: A value that proportional to the data size

fidelity (Text Fidelity)
Controls the way text is output.

In the Properties view, this property is the Text Fidelity property in the Font category.

When set, this property ensures that the preview and printout are 100% the same. In some cases this is
necessary when the operating system font definitions deviate from the built-in font definitions in the printer.
This flag then instructs the output routine not to use the printer font.

Type: Boolean. The default value is false.

fill (Fill)
Specifies how an image fills an area.

In the Properties view, this property is the Fill property in the Image category.

Replaces the previous property tile. When a document containing the tile property is opened in version
2.4x or higher, it is automatically replaced with this property.

This property is relevant when both x-Size and y-Size are set so that the outer image bounds are defined.

Type: Enum. The value can be one of:

• completely - The images is resized to fill the specified area. The aspect ratio is not respected.
• preserveAspectRatio - The images is resized to fit the specified area. The aspect ratio is respected.

Setting the attributes X-Size_Adjustment and Y-Size_Adjustment to a value of "shrinkToChildren" will
shrink the final bounds of the box so that it has the same size as the image.

• tile - The image is painted as tiles into the specified area.
• clip - The image is painted without scaling, and it is clipped at the edges of the specified area if it is too

large to fit.

floatingBehavior (Floating Behavior)
Controls the sizing behavior of the parent box when this node floats (sets x or y).

This property is not relevant if x or y are not set.

In the Properties view, this property is the Floating Behavior property in the Layout category.

The valid values are;

• enclosed - will make the parent size itself so that this object will be enclosed in the parent. All objects
dragged from the toolbox or Data View have this property set to enclosed. Note that the node can still
float outside of the parent using negative values for x or y. A

• free - will make the parent ignore this node during sizing, allowing it to float outside of its bounds.

Type: Enum. Valid values are free or enclosed.

fontBold (Bold)
Sets a bold font style for this node and for all children of this node.

In the Properties view, this property is the Bold property in the Font category.

Report Writer | 747

The root node font style is plain.

Type: Boolean. The default value is inherited from the parent.

fontItalic (Italic)
Sets an italic font style for this node and for all children of this node.

In the Properties view, this property is the Italic property in the Font category.

The root node font style is plain.

Type: Boolean. The default value is inherited from parent.

fontName (Name)
Sets the font face name for this node and for all children of this node.

In the Properties view, this property is the Name property in the Font category.

Type: Enum, platform-dependent. The default value is inherited from the parent. The root node has a
platform-dependent Sans Serif' font.

See the Genero Studio >> Report Writer documentation topic "Configuring Fonts and Printers" for
additional information about fonts.

fontSize (Size)
Sets the font size in points for this node and for all children of this node.

In the Properties view, this property is the Size property in the Font category.

During expression evaluation the variable fontSize is available, which contains the inherited font size. This
variable can be used for relative font sizing. For example, the expression fontSize="fontSize*1.2" makes
the current font 20% larger than the parent font.

Type: Numeric. The default value (not the expression) is inherited from the parent. The root node has a
font size of 12 point.

format (Format)
Specify (control) the output of a numeric display.

In the Properties view, this property is the Format property in the Value category.

For DECIMAL data types, format-string consists of pound signs (#) that represent digits and a decimal
point. For example, "###.##" produces three places to the left of the decimal point and exactly two to the
right.

See Align and Format Numbers. See the BDL format attribute for additional information and format
characters.

Type: String.

fWidth (Fix Width)
Sets the fixed width of a column.

In the Properties view, this property is the Fix Width property in the Table category.

When you specify a value as Fix Width, you are giving an absolute size for that column. By default, the
number entered refers to points, but you can change the unit of measure by specifying the type of units
used. See Unit Names on page 801.

Type: PXML, point value.

Default value: None.

hAlign (Horizontal Alignment)
The hAlign property defines the horizontal alignment of a value in its cell for all cells in a column of a
report table.

In the Properties view, this property is the Horizontal Alignment property in the Table category.

Report Writer | 748

Type: Enum, the alignment choices are:

• left - Left-justify in the column.
• right - Right-justify in the column.
• center - Center in the column
• baseline - uses baseline alignment

The default value is left.

hidePageHeaderOnLastPage (Hide Page Header On Last Page)
Suppresses the drawing of beforeFirst, firstPageHeader, evenPageHeader and oddPageHeader material
on the last page.

In the Properties view, this property is the Hide Page Header On Last Page property in the Mini Page
category.

Child elements querying for available space will, however, be given space values that are reduced by the
size of the header as if it were drawn. Type: Boolean. The default value is false.

See also: Page Headers and Footers

hidePageFooterOnLastPage (Hide Page Footer On Last Page)
Suppresses the drawing of afterLast, firstPageTail, evenPageTail and oddPageTail material on the last
page.

In the Properties view, this property is the Hide Page Footer On Last Page property in the Mini Page
category.

Child elements querying for available space will, however, be given space values that are reduced by the
size of the footer as if it were drawn. Type: Boolean. The default value is false.

See also: Page Headers and Footers

hierarchiesInputOrder (Hierarchies input order)
Specifies the order by which the data is presorted.

In the Properties view, this property is the Hierarchies input order property in the Chart category.

If nothing is specified, the data is assumed to be presorted in the declaration order of the dimensions.
This is the default. For example, given a table with three dimensions, not specifying this attribute is the
equivalent of specifying a value of "0,1,2".

Specifying an empty set indicates that the data will arrive unsorted. Large data amounts should be at least
partially presorted.

Specifying a wrong input order can cause runtime errors and yield incorrect results.

Type: Order specifier

href (href)
This property can be used to define a hyperlink pointing to any resource on the Internet, local disk, or to
any anchor inside the report document.

In the Properties view, this property is the href property in the Hyperlink category.

See id for additional information about creating anchors. The href should be defined using the URI syntax.
See Using Hyperlinks in a Report.

Type: String.

hPadding (Horizontal Padding)
The hPadding property sets the width of the horizontal padding for a column in a table object.

In the Properties view, this property is the Horizontal Padding property in the Table category.

The hPadding property overrides the value set for the padding (Padding) on page 752 property when
setting the vertical padding for a table in a report.

Report Writer | 749

Type: PXML, point value.

Default value: None.

hRule (Horizontal Rule)
The hRule property controls the width of the horizontal rule lines for a table. Horizontal rule lines separate
rows.

In the Properties view, this property is the Horizontal Rule property in the Table category.

The property hRule overrides the rule (Rule) on page 753 property.

Type: PXML, point value.

Default value: none.

id (id)
This property can be used to create an anchor in the report document.

In the Properties view, this property is the id property in the Hyperlink category.

Nodes can be identified with a unique id and then used as the target of an href hyperlink. See Using
Hyperlinks in a Report.

Type: String.

indent (Indent)
Specifies the indentation value for the paragraph.

In the Properties view, this property is the Indent property in the Text category.

The value may be negative.

Type: PXML. The default value is 0.

intendedResolution (Intended Resolution)
Controls the mapping of pixels to device pixels.

In the Properties view, this property is the Intended Resolution property in the Image category.

This property is relevant only if neither X-Size nor Y-Size are set, or if tile is set.

The default is the current screen resolution.

key (Key)
Specifies the key of the item in a chart.

In the Properties view, this property is the Key property in the Items category.

Within a category chart, specifies the key of an item within a category; must be unique.

Type: String.

keysTitle (Keys Title)
Specifies the title of the keys Axis (usually the y Axis) of a Business Chart.

In the Properties view, this property is the Keys Title property in the Chart category.

Type: String. The default is a blank String.

layoutDirection (Layout Direction)
The layoutDirection property controls the direction in which child elements are laid out, which is also the
direction of the Y-axis.

In the Properties view, this property is the Layout Direction property in the Orientation category.

Choices are:

• topToBottom
• leftToRight

Report Writer | 750

• bottomToTop
• rightToLeft
• unturned
• turnRight
• upsideDown
• turnLeft
• inherit - the element inherits the orientation of its parent
• swapped - if the swapX property is also set to swapped, the element inherits the swapped orientation

of its parent.

These values depends on the language of the system where GRE is running; this allows you to have the
layoutDirection follow the custom of the language.

• horizontalNatural - follows the custom of the system language
• horizontalUnnatural - reverses the natural order of the system language
• verticalNatural - follows the custom of the system language
• verticalUnnatural - reverses the natural order of the system language*

For example, to have a horizontal layout that is leftToRight when the language is European, but rightToLeft
for Arabic, select horizontalNatural. Select horizontalUnnatural to reverse the natural order of the
language in the horizontal layout.

Type: Enum. The default value is topToBottom. By default the positive X-axis extends 90 degrees right
(clockwise) of the positive Y-axis.

Layout direction and the graphical report designer

The parent container of the currently focused item is highlighted by a dashed, slowly moving yellow border.
The border moves in the layout direction and is open at the far side of the layout direction forming a “U”
shape.

Figure 378: A top-to-bottom layout direction

In this example, the layout direction is top-to-bottom (as illustrated by the arrow). The box is not closed at
the bottom.

lBorder (Left Border)
The lBorder property sets the weight of the left border of a table object.

In the Properties view, this property is the Left Border property in the Table category.

The lBorder property overrides the more general border (Border) on page 740 property for a table
object.

Type: PXML, point value.

Default value: None.

Report Writer | 751

localizeText (Localize Text)
Check the box to indicate that there is a localized string for this value.

In the Properties view, this property is the Localize Text property in the Text category.

Checking the box enables the localization of text contents in Word Boxes and WordWrap Boxes.

Type: Boolean. Valid choices are True, False. The default value is False.

location (Location)
The location of an image file.

In the Properties view, this property is the Location property in the Image category.

Location values are URLs supporting the protocols "http", "file" and "data".

The location can be set to an absolute path and filename. In this instance, the image file remains the same
for the duration of the report.

Variables (RTL expressions) can be used if the image file will change during processing, such as
when the image file name is stored in the database and the value can change for each row processed.
You specify a URL based on one or more variables using an RTL expression. This is demonstrated
in the "OrderReport.4rp" where the "ImageBox2" element has the expression "./images/
database/"+orderline.product.prodpic.trim()"

Type: String.

name (Name)
Assigns the specified name to the node for debugging purposes.

In the Properties view, this property is the Name property in the Object category.

The name must be unique in the document.

Type: String. The default value is "".

noCheckDigits (Number Check Digits)
Controls the expected number of check digits for codeValue for codes of type "code-11-matrix" and
"code-93".

In the Properties view, this property is the Number Check Digits property in the Bar Code category.

Type: Numeric.

noDigits (Number Digits)
Controls the expected number of digits for codeValue for a code type that allows a variable number of
digits.

In the Properties view, this property is the Number Digits property in the Bar Code category.

Specifically these are the code types "code-2-5-industrial", "code-2-5-inverted", "code-2-5-IATA",
"code-2-5-interleaved", "code-2-5-matrix", "code-2-5-datalogic", "code-BCD-matrix", "code-11-matrix",
"code-39", "code-39-extended", "codabar-18" and "codabar-2".

Type: Numeric.

noText (Hide Text)
Suppresses text output if set.

In the Properties view, this property is the Hide Text property in the Bar Code category.

Type: Boolean. The default value is false.

outputOrder (Output Order)
Specifies the order by which the data should be presented.

In the Properties view, this property is the Output Order property in the Chart category.

Not specifying a value or specifying the empty set will output the data in the order it was received.

Report Writer | 752

Consider a pivot table with the dimensions "country" and "region" and the measure "turnover". Specifying
an output order of "-1" creates an output in which the country with the highest turnover is listed first. Within
that country the region with the highest turnover is listed first and within each country the individual fact
rows are ordered in descending order by the turnover value.

Note: Specifying an output order may cause large latency and memory consumption on large input
data.

When an output order is specified, it is possible to specify a cutoff value called topN that limits the number
of items displayed. Continuing with our example, a cutoff value of 2 would limit the output to the two top
countries; within each country the two top regions; and within each region to the two highest fact rows.

Note: Specifying an output order currently limits the number of displayable aggregations to one per
dimension. If more are specified, one is picked following a priority list. See computeTotal.

Type: Order specifier

padding (Padding)
Sets the width of all of an object's padding.

In the Properties view, this property is the Padding property in the Table category.

Can be overridden by specific padding properties.

Type: PXML, point value.

Default value: None.

pageName (Name)
Name of a parent node.

In the Properties view, this property is the Name property in the Page Number category.

Type: String. No default value is set.

pageNoOffset (Offset)
An offset that is added to the current page number.

In the Properties view, this property is the Offset property in the Page Number category.

When set to 100, for example, the first page will be number 101.

Type: Numeric. The default value is 0.

pageNoFormat (Format)
Sets the number format type.

In the Properties view, this property is the Format property in the Page Number category.

Type: Enum. Valid values are Arabic, Lowerroman, Upperroman. The default value is Arabic.

preferRectangularSymbols (Prefer Rectangular Symbols)
Enables rectangular symbols.

In the Properties view, this property is the Prefer Rectangular Symbols property in the Bar Code
category.

The data-matrix bar code is usually quadratic, and any code value can be represented by a quadratic
symbol. if you are concerned about running out of space in the vertical of the page, you might prefer a
symbol that is wider than it is high. Check the box to enable rectangular symbols.

Type: Boolean. Valid choices are True, False. The default value is False.

pWidth (Proportional Width)
Sets the proportional width of a column.

In the Properties view, this property is the Proportional Width property in the Table category.

Report Writer | 753

When you specify a value in the Proportional Width property, you are specifying its width in proportion to
other columns in the same table. Consider the following example: A table has three columns: A, B and C.
Column A has a proportional width setting of 1, column B has a proportional width of 2, and column C has
a proportional width of 3. This means that column B is two times as wide as column A, and column C is
three times as wide as column A.

Type: PXML, point value.

Default value: None.

rawCodeValue (Raw Code Value)
Specify the code value at a lower level than codeValue.

In the Properties view, this property is the Raw Code Value property in the Bar Code category.

This property is unique to the pdf-417 on page 795 bar code type.

Type: A comma-separated list of integers in the range 0...899.

This attribute can be used instead of codeValue to specify the code value at a lower level giving more
control on the encoded data.

Fails if: Encoding for non-ASCII characters in the code value.

Default value: not set

rBorder (Right Border)
The rBorder property sets the weight of the right border of a table object.

In the Properties view, this property is the Right Border property in the Table category.

The rBorder property overrides the more general border (Border) on page 740 property for a table
object.

Type: PXML, point value.

Default value: None.

referenceDefault (Default)
The text value to be displayed, if the reference cannot be resolved.

In the Properties view, this property is the Default property in the Reference category.

Type: String. The default value is "-" .

referenceName (InfoNode Name)
The name of the Info Node referenced.

In the Properties view, this property is the InfoNode property in the Reference category.

The name of the InfoNode that is referenced.

Type: String. Mandatory; there is no default value.

rule (Rule)
The rule property sets the weight of the line between two rows or two columns in a table object.

In the Properties view, this property is the Rule property in the Table category.

The properties hRule (Horizontal Rule) on page 749 and vRule (Vertical Rule) on page 759 can
override the default value set by the rule property for a table object.

Type: PXML, point value.

Default value: 1

ruleColor (Rule Color)
The ruleColor property controls the color of the rule for a table.

In the Properties view, this property is the Rule Color property in the Table category.

Report Writer | 754

Type: The Color Class on page 807

Default value: none.

section (Section)
The layout node attribute that controls printing within a parent MiniPage.

In the Properties view, this property is the Section property in the Layout category.

This attribute of a Layout Node object specifies that the content of the node should print on its parent
MiniPage at the location specified by this property.

Type: Enum.

When you select a MiniPage for a page header or footer, for example, you specify where the container
should be printed on its parent MiniPage by setting the section property. The report output prints any
headers and footers that you have set, based on priorities of each of these values:

firstPageHeader The Page Header to be printed on the first page
only; if this section is defined, subsequent Page
Headers begin printing on the second page.

anyPageHeader The Page Header for every page, unless separate
Odd and Even Page Headers are defined.

oddPageHeader Specific Page Header to be printed on odd pages.

evenPageHeader Specific Page Header to be printed on even pages.

firstPageFooter A Page Footer that prints on the first page only; if
this section is defined, subsequent page footers
begin printing on the second page.

anyPageFooter The Page Footer for every page, unless separate
Odd and Even Page Footers are defined.

oddPageFooter Specific Page Footer to be printed on odd pages.

evenPageFooter Specific Page Footer to be printed on even pages.

lastPageFooter A Page Footer that prints on the last page
only. For the last page, this node takes priority
over oddPageFooter, evenPageFooter or
anyPageFooter nodes. A node with this section
value set must be located as the last in the sibling
list.

itemSeparator Prints between each sibling element, as long as
there is more than one element.

If you have an anyPageHeader and a firstPageHeader, for example, the anyPageHeader content will print
only on the second and subsequent pages.

Important: If you set the section property for any node, the node may not be preceded in its sibling
list in the Report Structure tree by any nodes that do not have this property set.

A layout node with a defined section attribute is also known as a named port. A layout node without a
defined section attribute is also knows as a primary port.

See Print Headers and Footers.

scaleX (Scale X)
Applies the specified scale in this x-direction.

In the Properties view, this property is the Scale X property in the Geometry category.

Report Writer | 755

The scale affects everything contained in this node (children, children-children, etc.). Scales are
cumulative.

Type: PXML. The default value is 1.0.

scaleY (Scale Y)
Applies the specified scale in this y-direction.

In the Properties view, this property is the Scale Y property in the Geometry category.

The scale affects everything contained in this node (children, children-children, etc.). Scales are
cumulative.

Type: PXML. The default value is 1.0.

seriesTitle (Series Title)
Title of the series in an XY Chart.

In the Properties view, this property is the Series Title property in the Items category.

Type: String .

smartParse (Smart Parse)
Controls the parsing of Bar Code Boxes.

In the Properties view, this property is the Smart Parse property in the Bar Code category.

Specifies that the codeValue property for Bar Code Boxes is parsed in "smart" mode. By default it is
parsed in raw mode.

In "smart" mode the codeValue is interpreted literally. An attempt is made to map the characters contained
in the string to one or more codes choosing the shortest possible representation. Control characters cannot
be displayed in this mode. Currently the functionality is only available for "code-39-extended".

Type: Boolean. The default value is false.

sortAscending (Sort Ascending)
Sorts the values in ascending order.

In the Properties view, this property is the Sort Ascending property in the Chart category.

Set this value to false to reverse the display order specified by the sortBy property.

Type: Boolean.

sortBy (Sort By)
Specifies the order in which the items of a chart are displayed.

In the Properties view, this property is the Sort By property in the Chart category.

Valid values are:

• Key - Sort alphabetically by the key value (MapChart) or by the category/key value (CategoryChart).
• Value - Sort by the numeric value.
• InputOrder - Preserve the order in which the items were defined. If more than one value is received for

a particular key value (MapChart) or categoriy/key value combination (CategoryChart), the first value
received defines the order.

By setting the property sortAscending to false a reverse sorting for each of these options can be obtained.

Type: Enumeration.

splitOversizedItem (Split Oversized Items)
Defines the behavior for when a single item exceeds the space in layout direction.

In the Properties view, this property is the Split Oversized Items property in the Mini Page category.

Report Writer | 756

When set to TRUE, this value allows the splitting of large non-propagating items (such as HTMLBOX,
WORDWRAPBOX or IMAGEBOX) into chunks using preferable breakpoints (if available). Preferable
breakpoints refer to whitespace or between table rows.

Otherwise the box becomes overfull.

Note: The splitting of a large item is a costly operation. The item that is split is kept in memory until
the last split has been performed. The item that is split should not exceed a few pages.

Type: Boolean.

strikethrough (Strikethrough)
Specifies strikethrough for the text.

In the Properties view, this property is the Strikethrough property in the Font category.

Type: Boolean. The default value is false.

swapX (Swap X)
Reverses the direction of the X-axis.

In the Properties view, this property is the Swap X property in the Orientation category.

By default the positive X-axis extends 90 degrees right (clockwise) of the positive Y-axis; if, for example,
the Y-Axis points to north, the X axis will point eastward. Setting this value reverses the direction so that (in
the example) the X-Axis would point to the west which is 90 degrees to the left (counter clockwise) of the
Y-Axis.

Type: Boolean. The default value is false.

text (Text)
The text property specifies the text to be drawn.

In the Properties view, this property is the Text property in the Text category.

Occurrences of the newline character "\n" within the string cause line breaks.

Type: String. The default value is "".

For Word Boxes, WordWrap Boxes, and Decimal Format Boxes, the value of this property may be edited
directly in the report design document instead. Double-click the object and the input cursor will be placed in
the text. The layout of the document is updated on each keystroke.

For PageNo Boxes, BarCode Boxes, and Reference Boxes, the value of the text property specifies the
maximum width.

textAlignment (Text Alignment)
Controls the horizontal alignment of text.

In the Properties view, this property is the Text Alignment property in the Text category.

Type: Enum. Values are left, center, right, justified. The default value is left.

textExpression (Text Expression)
A PXML string expression value to calculate a page number string.

In the Properties view, this property is the Text Expression property in the Text category.

Property of the PAGENOBOX, which expects a PXML string expression value to calculate a page
number string. When set, the value of the property overrides all other formatting relevant properties of the
PAGENOBOX, although the text property is still used to set the width.

Type: PXML.

If a value for this property, or for the X-Size or text properties, is not set, a default length is used in
calculating the page number string from these functions:

These functions can be used to format and access specific page numbers and totals.

Report Writer | 757

• Class String: format(Numeric number, Enum format) - formats the number as specified. The value for
the format parameter can be ARABIC, LOWERROMAN or UPPERROMAN.

• Class Numeric: getPhysicalPageNumber() - gets the current page number of the physical page.
• Class Numeric: getTotalNumberOfPhysicalPages() - gets the total number of physical pages.
• Class Numeric: getPageNumber(String pageName)- gets the page number of the specified page
• Class Numeric: getTotalNumberOfPages(String pageName) - gets the total number of pages for the

specified page.

See " Page N of M" examples.

thinToGapRelation (Thin To Gap Relation)
Controls the ratio of thin bars to the gaps between individual digits.

In the Properties view, this property is the Thin To Gap Relation property in the Bar Code category.

The value of a gap is calculated by the formula GAPWIDTH=THINBARWIDTH/thinToGapRelation. This
parameter applies only to the code types "code-2-5-industrial", "code-2-5-inverted", "code-2-5-IATA",
"code-2-5-interleaved", "code-2-5-matrix", "code-2-5-datalogic", "code-BCD-matrix", "code-11-matrix",
"code-39", "code-39-extended", "code-32", "codabar-18" and "codabar-2".

Type: Numeric. Default values: 0.5 for the types "code-2-5-industrial", "code-2-5-inverted" and "code-2-5-
IATA"; 1 for the types "code-2-5-interleaved", "code-2-5-matrix", "code-2-5-datalogic" "code-BCD-matrix",
"code-11-matrix", "code-39", "code-39-extended", "code-32", "code-93" and "code-93-extended".

thinToThickRelation (Thin To Thick Relation)
Controls the ratio of thin bars to thick bars.

In the Properties view, this property is the Thin To Thick Relation property in the Bar Code category.

The value of a thick bar is calculated using the formulaTHICKBARWIDTH=THINBARWIDTH/
thinToThickRelation. This parameter applies only to the code types "code-2-5-industrial", "code-2-5-
inverted", "code-2-5-IATA", "code-2-5-interleaved", "code-2-5-matrix", "code-2-5-datalogic", "code-BCD-
matrix", "code-11-matrix", "code-39", "code-39-extended","code-32". and "codabar 2".

Type: Numeric. Default values: 1/3

title (Title)
Specifies the title of the report, output, or column.

In the Properties view, this property is the Title property in the Metadata category.

For a report, specifies the metadata for the title of the report. In the case of SVG, the title property is used
as a document caption in Genero Report Viewer.

For a pivot table, specifies the title of the output. If and where this text is rendered depends on the selected
visualization type (specified by drawAs).

For a pivot table hierarchy and measure, specifies the title of the column. If and where this text is rendered
depends on the selected visualization type (specified by drawAs).

Type: String.

tBorder (Top Border)
The tBorder property sets the weight of the top border of a table object.

In the Properties view, this property is the Top Border property in the Table category.

The tBorder property overrides the more general border (Border) on page 740 property for a table
object.

Type: PXML, point value.

Default value: None.

Report Writer | 758

topN (Top N)
Specifies the number of records to display.

In the Properties view, this property is the Top N property in the Chart category.

Only valid when outputOrder is specified. The specified value limits the number of distinct dimension
values displayed for each dimension and the number of fact rows displayed for the innermost dimension to
the specified number.

Type: Integer

trimText (Trim Text)
Controls the trimming of spaces.

In the Properties view, this property is the Trim Text property in the Text category.

Controls the trimming of spaces of the value of the text attribute.

Type: Enum. Values are both, compress, left, right. The default value is not set.

transformTransparently (Transform transparently)
The transformTransparently property changes the effect of the properties layoutDirection and swapX.
When set, the transformation extends to the entire fragment so that entire documents can be rotated.

In the Properties view, this property is the Transform transparently property in the Orientation category.

Type: Boolean.

objectType (Type)
The type of the report element.

In the Properties view, this property is the Type property in the Object category.

This is automatically set when you drop a specific element on the page.

underline (Underline)
Specifies that the text is underlined.

In the Properties view, this property is the Underline property in the Font category.

Type: Boolean. The default value is false.

URL (Location)
Specifies the loading location or the name of the image to display.

In the Properties view, this property is the Location property in the Image category.

Type: String. A value is mandatory; there is no default value.

vAlign (Vertical Alignment)
The vAlign property defines the vertical alignment of a value in its cell for all cells in a column of a report
table.

In the Properties view, this property is the Vertical Alignment property in the Table category.

Type: Enum, the alignment choices are:

• left - Left-justify in the column.
• right - Right-justify in the column.
• center - Center in the column
• baseline - uses baseline alignment

The default value is top.

value (Value)
Specifies the value of the item.

In the Properties view, this property is the Value property in the Miscellaneous category.

Report Writer | 759

Type (non-pivot table): Numeric.

Type (pivot table): Can be a String or Float depending on the declared dataType. In case of a numeric
column, this value is converted to a float value. The entered value will fail if:

• The value is not set.
• The column is declared as numeric and the value cannot be parsed as a float point value.

valuesTitle (Values Title)
Specifies the Title of the values axis of a Business chart.

In the Properties view, this property is the Values Title property in the Chart category.

Type: String.

visibilityCondition (Visibility Condition)
Boolean value (TRUE/FALSE) indicating whether the object is visible (not hidden).

In the Properties view, this property is the Visibility Condition property in the Object category.

Type: Boolean. The default is TRUE.

vPadding (Vertical Padding)
The vPadding property sets the width of the vertical padding for a column in a table object.

In the Properties view, this property is the Vertical Padding property in the Table category.

The vPadding property overrides the value set for the padding (Padding) on page 752 property when
setting the vertical padding for a table in a report.

Type: PXML, point value.

Default value: None.

vRule (Vertical Rule)
The vRule property controls the width of the vertical rule lines for a table. Vertical rule lines separate
columns.

In the Properties view, this property is the Vertical Rule property in the Table category.

The property vRule overrides the rule (Rule) on page 753 property.

Type: PXML, point value.

Default value: none.

x (X)
Specifies the x-value of a X/Y coordinate pair defined by the element.

In the Properties view, this property is the X property in the Geometry category.

The x value is an offset in the X-Size direction of the parent.

Type: Numeric. The default value is calculated during placing by the parent.

xAxisTitle (xAxisTitle)
Specifies the title of the x Axis of a Business Chart.

In the Properties view of an XY chart, this property is the xAxisTitle property in the Chart category.

Type: String.

X-Size (X-Size)
Gives the box a fixed dimension.

In the Properties view, this property is the X-Size property in the Geometry category.

Note: If you want to preserve the aspect ratio of an image, set the value of either Y-Size or X-Size
only, and allow Report Writer to calculate the corresponding value. If you set both properties, the
resulting image will appear distorted.

Report Writer | 760

Type: Numeric. The default value is calculated after the node has completed child alignment. The value is
set to the smallest possible value that encloses all children without clipping any of them.

X-Size Adjustment (X-Size Adjustment)
Specifies how the adjustment to the X-Size is to be made.

In the Properties view, this property is the X-Size Adjustment property in the Geometry category.

A value of shrinktoChildren shrinks the X-Size as much as possible without clipping any of the children. A
value of expandToParent causes the box to stretch as much as possible.

For objects that draw output with a defined size (Word Boxes, BarCode Boxes, Image Boxes where the
tile property is set to FALSE), the value shrinkToChildren will not shrink the object below this size even if
all children are smaller than this size or there are no children at all. Note that self-placing children are not
considered.

Type: Enum. Choices are shrinkToChildren, expandToParent.

y (Y)
Specifies the y-value of a X/Y coordinate pair defined by the element.

In the Properties view, this property is the Y property in the Geometry category.

Changing the value adjusts the node at the specified coordinate. The coordinate value is an offset in the Y-
Size direction of the parent.

Type: Numeric. The default value is calculated during placing by the parent.

yAxisTitle (yAxisTitle)
Specifies the title of the y Axis of a Business Chart.

In the Properties view of an XY chart, this property is the yAxisTitle property in the Chart category.

Type: String.

Y-Size (Y-Size)
Gives the box a fixed dimension.

In the Properties view, this property is the Y-Size property in the Geometry category.

Note: If you want to preserve the aspect ratio of an image, set the value of either Y-Size or X-Size,
allowing Report Writer to calculate the corresponding value. If you set both properties, the resulting
image will appear distorted.

Do not set a value for this property in WordWrapBoxes, because the element should typically grow based
on its content.

Type: Numeric. The default value is calculated after the node has completed its child alignment. The value
is set to the smallest possible value that encloses all children without clipping any of them.

Y-Size Adjustment (Y-Size Adjustment)
Specifies how the adjustment to the Y-Size is to be made.

In the Properties view, this property is the Y-Size Adjustment property in the Geometry category.

A value of shrinktoChildren shrinks the length of y as much as possible without clipping any of the
children. A value of expandToParent causes it to stretch as much as possible.

For objects that draw output with a defined size (Word Boxes, BarCode Boxes, Image Boxes where the
tile property is set to FALSE), the value shrinkToChildren will not shrink the object below this size even if
all children are smaller than this size or there are no children at all. Note that self placing-children are not
considered.

Type: Enum. Choices are shrinkToChildren, expandToParent.

Report Writer | 761

Properties related to margins and borders
Margin and Border-related properties for report elements.

• marginWidth
• marginRightWidth
• marginBottomWidth
• marginLeftWidth
• marginTopWidth
• borderWidth
• borderRightWidth
• borderBottomWidth
• borderLeftWidth
• borderTopWidth
• borderStyle
• borderRightStyle
• borderBottomStyle
• borderLeftStyle
• borderTopStyle
• borderColor
• borderRightColor
• borderBottomColor
• borderLeftColor
• borderTopColor
• roundedCorners
• paddingWidth
• paddingRightWidth
• paddingBottomWidth
• paddingLeftWidth
• paddingTopWidth

marginWidth

Sets the thickness of all an object's margins; can be overridden by specific Margin properties. See Design
HowTo for illustrations.

Type: PXML, point value.

marginRightWidth

Sets the thickness of an object's right margin; overrides the property marginWidth. See Design HowTo for
illustrations.

Type: PXML, point value.

marginBottomWidth

Sets the thickness of an object's bottom margin; overrides the property marginWidth. See Design HowTo
for illustrations.

Type: PXML, point value.

marginLeftWidth

Sets the thickness of an object's left margin; overrides the property marginWidth. See Design HowTo for
illustrations.

Type: PXML, point value.

Report Writer | 762

marginTopWidth

Sets the thickness of an object's top margin; overrides the property marginWidth. See Design HowTo for
illustrations.

Type: PXML, point value.

borderWidth

Sets the thickness of an object's borders; can be overridden by specific border properties. See Design
HowTo for illustrations.

Type: PXML, point value. Default value is 2.

borderRightWidth

Sets the thickness of an object's right border; overrides the borderWidth property. See Design HowTo for
illustrations.

Type: PXML, point value.

borderBottomWidth

Sets the thickness of an object's bottom border; overrides the borderWidth property. See Design HowTo
for illustrations.

Type: PXML, point value.

borderLeftWidth

Sets the thickness of an object's left border; overrides the borderWidth property. See Design HowTo for
illustrations.

Type: PXML, point value.

borderTopWidth

Sets the thickness of an object's top border; overrides the borderWidth property. See Design HowTo for
illustrations.

Type: PXML, point value.

borderStyle

Sets the style for all an object's borders. Can be overridden by specific borderSyle properties. See Design
HowTo for illustrations.

Type: Enum, choices are: none, solid, dotted, dashed, groove, ridge, inset, outset, double. Default is none.

borderRightStyle

Sets the style for an object's right border. Can override the borderStyle property. See Design HowTo for
illustrations.

Type: Enum, choices are: solid, dotted, dashed, groove, ridge, inset, outset, double.

borderBottomStyle

Sets the style for an object's bottom border. Can override the borderStyle property. See Design HowTo for
illustrations.

Type: Enum, choices are: solid, dotted, dashed, groove, ridge, inset, outset, double.

borderLeftStyle

Sets the style for an object's left border. Can override the borderStyle property. See Design HowTo for
illustrations.

Type: Enum, choices are: solid, dotted, dashed, groove, ridge, inset, outset, double.

Report Writer | 763

borderTopStyle

Sets the style for an object's top border. Can override the borderStyle property. See Design HowTo for
illustrations.

Type: Enum, choices are: solid, dotted, dashed, groove, ridge, inset, outset, double.

borderColor
The borderColor property sets the color of all an object's borders.

In the properties window, this property is identified by the label Border Color.

Can be overridden by specific borderColor properties. See Design HowTo for illustrations.

Type: Color, valid colors are selected from the Edit Expression color palette.

borderRightColor

Sets the color of an object's right border. Can override the borderColor property. See Design HowTo for
illustrations.

Type: Color, valid colors are selected from the Edit Expression color palette.

borderBottomColor

Sets the color of an object's bottom border. Can override the borderColor property. See Design HowTo for
illustrations.

Type: Color, valid colors are selected from the Edit Expression color palette.

borderLeftColor

Sets the color of an object's left border. Can override the borderColor property. See Design HowTo for
illustrations.

Type: Color, valid colors are selected from the Edit Expression color palette.

borderTopColor

Sets the color of an object's top border. Can override the borderColor property. See Design HowTo for
illustrations.

Type: Color, valid colors are selected from the Edit Expression color palette.

roundedCorners

Specifies that the object's border corners will be round. This applies to the border styles solid, dashed,
and double only. See Design HowTo for illustrations.

Type: Boolean. Valid choices are True, False. The default value is False.

paddingWidth

Sets the width of all of an object's padding. Can be overridden by specific padding properties. See Design
HowTo for illustrations.

Type: PXML, point value.

paddingRightWidth

Sets the width of an object's right padding. Can override the paddingWidth property. See Design HowTo
for illustrations.

Type: PXML, point value.

paddingBottomWidth

Sets the width of an object's bottom padding. Can override the paddingWidth property. See Design HowTo
for illustrations.

Type: PXML, point value.

Report Writer | 764

paddingLeftWidth

Sets the width of an object's left padding. Can override the paddingWidth property. See Design HowTo for
illustrations.

Type: PXML, point value.

paddingTopWidth

Sets the width of an object's top padding. Can override the paddingWidth property. See Design HowTo for
illustrations.

Type: PXML, point value.

Properties for Report Document Metadata
Report Metadata properties can be set in the report design document (.4rp).

Report Metadata properties can be set in the 4rp report design document. For compatibility reports, which
have no 4rp document, API functions are provided. See Adding Report Document Metadata.

The metadata is inserted into the final document (such as SVG or PDF), if the format supports metadata.

• title
• author
• creator
• subject
• keywords

title
Specifies the title of the object.

Type: String.

author
Specifies the metadata for the author of the report.

Type: String.

creator
Specifies the metadata for the creator of the report.

Type: String.

subject
Specifies the metadata for the subject of the report.

Type: String.

keywords
Specifies the metadata for the keyword of the report.

Type: String.

Bar Codes

The report element container for a Bar Code is a Barcode Box. This flow object draws bar codes.

These properties are specific to the Bar Code Box:

• codeType
• fidelity
• noText
• codeValue
• check
• noDigits
• noCheckDigits

Report Writer | 765

• thinToThickRelation
• thinToGapRelation
• controlCharacters
• CodeValueExpression

Additional properties are inherited from the Layout Node.

Properties that are specific to a bar code type are listed in the bar code type description.

Bar Code type listing

Table 181: Bar Code Types

Bar Code Type Number of Digits Supported Normal size

codabar-18 on page 767 varies (calculated width x 20mm h)

codabar-2 on page 766 varies (calculated width x 20mm h)

code-11-matrix on page 768 varies (calculated width x 1in h)

code-128 on page 769 varies (calculated width x 6.5mm h)

code-2-5-datalogic on page 774 varies (calculated width x 1in h)

code-2-5-IATA on page 774 varies (calculated width x 1in h)

code-2-5-industrial on page 774 varies (calculated width x 1in h)

code-2-5-interleaved on page
774

varies (calculated width x 1in h)

code-2-5-inverted on page 775 varies (calculated width x 1in h)

code-2-5-matrix on page 775 varies (calculated width x 1in h)

code-BCD-matrix on page 775 varies (calculated width x 1in h)

code-32 on page 775 9 (calculated w x h)

code-39 on page 777 varies (calculated width x 1in h)

code-39-extended on page 782 varies (calculated width x 1in h)

code-93 on page 786 varies (calculated w x h)

code-93-extended on page 788 varies (calculated w X h)

data-matrix on page 792 varies

ean-8 on page 793 8 26.73mm x 21.64 mm (w x h)

ean-13 on page 793 13 37.29mm x 26.26mm (w x h)

ean-code-128 on page 794 varies (calculated width x 6.5mm h)

ean-data-matrix on page 794 varies

ean-supplemental-2 on page
794

2 6.6mm x 26.26mm (w x h)

ean-supplemental-5 on page
794

5 15.5mm x 26.26mm (w x h)

gs1-8 on page 794 8 26.73mm x 21.64 mm (w x h)

gs1-13 on page 794 13 37.29mm x 26.26mm (w x h)

Report Writer | 766

Bar Code Type Number of Digits Supported Normal size

gs1-code-128 on page 794 varies (calculated width x 6.5mm h)

gs1-data-matrix on page 794 varies

gs1-supplemental-2 on page
795

2 6.6mm x 26.26mm (w x h)

gs1-supplemental-5 on page
795

5 15.5mm x 26.26mm (w x h)

intelligent-mail on page 795 varies, up to 31 digits.

pdf-417 on page 795 varies (calculated w x h)

qr-code on page 796 varies

upc-a on page 799 12 1.469in x 1.020in (w x h)

upc-e on page 799 8 0.897in x 1.020in (w x h)

upc-supplemental-2 on page
800

2 0.26in x 1.02in (w x h)

upc-supplemental-5 on page
800

5 (0.611in x 1.02in w x h)

Bar Code type details
A description of each code type, the expected value type, semantic constraints and size information.

The character set and semantic constraints depend on the code type selected.

codabar-2
Details on the codabar-2 bar code type.

Codabar 2 can be used to encode text of variable length by using characters from this character set:

Table 182: Character set for Codabar 2

Reference Number Character

0 0

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 -

11 $

12 :

Report Writer | 767

Reference Number Character

13 /

14 .

15 +

16 a

17 b

18 c

19 d

The first and the last character of any code must be either 'a', 'b', 'c' or 'd'. All other characters must have
an ordinal value less than 16.

The last but one character is the checksum character that is calculated as follows:CS=16-(Sum(i=1 to
n of Ref(i))) mod 16) where Ref(i) is the reference number of the character i, and n is the total number
of characters. Example: codeValue="a37859b"CS=16-((16+3+7+8+5+9+17) mod 16),CS=16-(65 mod
16),CS=15 Looking up reference number 15 yields the character '+'. The full code value including
checksum is therefore: codeValue="a37859+b"

When the system is supplied with a value that is one digit shorter than specified by noDigits then the check
digit is calculated automatically.

The nominal height is 20mm. The nominal width of a thin bar is THINBARWIDTH=0.165mm. The width of
a thick bar is THICKBARWIDTH=THINBARWIDTH/ thinToThickRelation where thinToThickRelation should
take values between1/3 and1/2. Between digits a gap having the width GAPWIDTH=THINBARWIDTH/
thinToGapRelationis drawn. The padding on both sides measures 10*THINBARWIDTH.

The "American Blood Commission" defines a code type known as Codabar-ABC. There are two types of
Codabar-ABC codes that can both be built using the Codabar 2 bar code type:

Single bar Codabar-ABC - this type is identical with Codabar 2, the constraint being that values have to
be at least 5 digits long.

Dual bar Codabar-ABC - This type can be printed by printing two Codebar 2 horizontally adjacent to each
other. The gap between the two bars should not exceed 15mm. Additionally the code of the first bar must
end with a 'd' character while the second must start with the character 'd'. This code creates a valid Dual
bar Codabar-ABC bar for the values "c1234d" and "d5678a".

codabar-18
Details on the codabar-18 bar code type.

Codabar 18 can be used to encode text of variable length by using characters from this character set:

Table 183: Character set for Codabar 18

Reference Number Character

0 0

1 1

2 2

3 3

4 4

5 5

Report Writer | 768

Reference Number Character

6 6

7 7

8 8

9 9

10 -

11 $

12 :

13 /

14 .

15 +

16 a

17 b

18 c

19 d

16 t

17 n

18 *

19 e

The first character of any code must be either 'a', 'b', 'c' or 'd'. The last character of any code must be either
't', 'n', '*' or 'e'. All other characters must have an ordinal value less than 16.

The last but one character is the checksum character that is calculated as follows:CS=16-(Sum(i=1 to
n of Ref(i))) mod 16) Where Ref(i) is the reference number of the character i, and n is the total number
of characters. Example: codeValue="a37859n"CS=16-((16+3+7+8+5+9+17) mod 16),CS=16-(65 mod
16),CS=15 Looking up reference number 15 yields the character '+'. The full code value including
checksum is therefore: codeValue="a37859+n"

When the system is supplied with a value that is one digit shorter than specified by noDigits then the check
digit is automatically calculated.

The nominal height is 20mm. The nominal width of a thin bar is THINBARWIDTH=0.165mm. The
width of a character is 2.095mm. Between digits a gap with the width GAPWIDTH=THINBARWIDTH/
thinToGapRelation is drawn. The padding on both sides measures 10*THINBARWIDTH.

code-11-matrix
Details on the code-11-matrix bar code type.

The code represents a character string with a variable number of characters. The string can contain
the digits 0-9 and the '-' character. The number of digits can be specified by setting the noDigits
attribute. The code can contain up to two check characters. The attribute noCheckDigits specifies
how many check characters are used. If two check characters are used, the rightmost character
is the 'K' checksum character and the last but one character is the 'C' checksum character. if only
one checksum character is specified then the rightmost character is a 'C' checksum character.
The 'C' checksum is calculated asC=(Sum(i=1 to n of ((i-1 mod 10)+1)*Ref(n-i+1))) mod 11 and
the 'K' checksum is calculated usingK=(Sum(i=1 to n of ((i-1 mod 9)+1)*Ref(n-i+1))) mod 11 where
n specifies the number of characters to the left of the particular check digit and Ref(i) specifies

Report Writer | 769

the value of the character at position i, starting with the leftmost character having the value 1. For
digits Ref() yields the digit value itself and for the '-' character Ref() yields the value 10. Example
calculating the 'C' checksum: codeValue="12-12345-67890", noDigits="16", noCheckDigits="2",
n=14C=(1*0+2*9+3*8+4*7+....10*2+1*1+2*10+3*2+4*1) mod 11=305 mod 11=8 The K checksum can
then be calculated as: n=15, Ref(15)=C=8K=(1*8+2*0+3*9+4*8+....9*4+1*3+2*2+3*1+4*10+5*2+6*1) mod
11=350 mod 11=9 resulting in the code value codeValue="12-12345-6789089".

If the value supplied in codeValue has the length noDigits- noCheckDigits then the system automatically
calculates and supplies the check digits.

The nominal height is 1 in. Digits can differ in width so that two different values having the same
number of digits can result in bar codes of differing width. The nominal width of a thin bar is
THINBARWIDTH=0.0236in. The width of a thick bar is THICKBARWIDTH=THINBARWIDTH/
thinToThickRelation where thinToThickRelation should take values between1/3 and1/2. Between digits a
gap of width GAPWIDTH=THINBARWIDTH/ thinToGapRelation is drawn. The default relation value is 1.
The padding on both sides measures 10*THINBARWIDTH.

code-128
Details on the code-128 bar code type.

Code 128 can be used to encode ASCII text of variable length. For this purpose characters can be
selected from three character sets, each containing 106 characters. Table 184: Available characters in the
character sets A, B, and C on page 769 lists the available characters in the character sets A, B and C.

Table 184: Available characters in the character sets A, B, and C

Reference Number Character Set A Character Set B Character Set C

0 SP SP 00

1 ! ! 01

2 " " 02

3 # # 03

4 $ $ 04

5 % % 05

6 & & 06

7 ' ' 07

8 ((08

9)) 09

10 * * 10

11 + + 11

12 , , 12

13 - - 13

14 . . 14

15 / / 15

16 0 0 16

17 1 1 17

18 2 2 18

Report Writer | 770

Reference Number Character Set A Character Set B Character Set C

19 3 3 19

20 4 4 20

21 5 5 21

22 6 6 22

23 7 7 23

24 8 8 24

25 9 9 25

26 : : 26

27 ; ; 27

28 < < 28

29 = = 29

30 > > 30

31 ? ? 31

32 @ @ 32

33 A A 33

34 B B 34

35 C C 35

36 D D 36

37 E E 37

38 F F 38

39 G G 39

40 H H 40

41 I I 41

42 J J 42

43 K K 43

44 L L 44

45 M M 45

46 N N 46

47 O O 47

48 P P 48

49 Q Q 49

50 R R 50

51 S S 51

52 T T 52

Report Writer | 771

Reference Number Character Set A Character Set B Character Set C

53 U U 53

54 V V 54

55 W W 55

56 X X 56

57 Y Y 57

58 Z Z 58

59 [[59

60 \ \ 60

61]] 61

62 ^ ^ 62

63 _ _ 63

64 NUL ` 64

65 SOH a 65

66 STX b 66

67 ETX c 67

68 EOT d 68

69 ENQ e 69

70 ACK f 70

71 BEL g 71

72 BS h 72

73 HT i 73

74 LF j 74

75 VT k 75

76 FF l 76

77 CR m 77

78 SO n 78

79 SI o 79

80 DLE p 80

81 DC1 q 81

82 DC2 r 82

83 DC3 s 83

84 DC4 t 84

85 NAK u 85

86 SYN v 86

Report Writer | 772

Reference Number Character Set A Character Set B Character Set C

87 ETB w 87

88 CAN x 88

89 EM y 89

90 SUB z 90

91 ESC { 91

92 FS | 92

93 GS } 93

94 RS ~ 94

95 US DEL 95

96 FNC3 FNC3 96

97 FNC2 FNC2 97

98 SHIFT SHIFT 98

99 CODEC CODEC 99

100 CODEB FNC4 CODEB

101 FNC4 CODEA CODEA

102 FNC1 FNC1 FNC1

103 STARTA STARTA STARTA

104 STARTB STARTB STARTB

105 STARTC STARTC STARTC

- STOP STOP STOP

The code value is expected as a comma-separated list of character names. It must start with a character
set selection character STARTA, STARTB, or STARTC and must end with a checksum character
followed by the STOP character. If these characters are omitted then the system calculates the checksum
automatically and adds the required STOP character.

The control characters CODEA, CODEB and CODEC can be used to switch from one character set to
another.

The control character SHIFT changes the character set for the immediately following character from A to B
and vice versa.

The smartParse property

The smartParse property can be used when the code value consists solely of printable characters. This
alleviates users of the need to manually select character sets. When enabled, the resulting bar code
is encoded with a shortest possible encoding, for the given string, producing a minimally sized visual
representation.

EAN 128 (GS1 128) bar codes

EAN 128 bar codes can be drawn using this bar code type.

Note: ean-code-128 on page 794 and gs1-code-128 on page 794 bar codes are synonymous.

Report Writer | 773

Valid EAN 128 codes start with the sequence "STARTC,FNC1".

Tip: With ean-code-128 or gs1-code-128, the data passes as a string (using smart parse) and the
"STARTC,FNC1," is added by the engine. If the ean-code-128 or gs1-code-128 were not made
available, you would have to manually encode the string starting with "STARTC,FNC1," and then
manually select the appropriate character sets to encode the data.

What follows is a sequence of data packets. Each packet starts with a one digit application identifier (AI)
from the C character set. The AI is followed by data. The type and amount of expected data is AI specific.
The amount can be fixed or variable. In the case of variable amount of data, the end of the data must be
indicated by a FNC1 character. Here is a table with some common AIs.

Table 185: EAN 128 Bar Code Common AIs

AI No of Data Characters Description

00 18 Identification of a delivery unit

01 14 An EAN 13 Number including
check digit

10 up to 20 alphanumeric characters Shipping batch identifier

11 3 Production date in the format
YYMMDD

The complete list of AIs is country specific and is maintained by the local EAN organization. The textual
representation requires AIs to be enclosed in round braces. Examples:

Table 186: EAN 128 Bar Code textual representation

Textual representation code value Remark

(25)03x57 STARTC, FNC1, 25, 03, CODEB,
x, 5, 7

Note that although, it is a variable
length AI, no FNC1 is added at
the end in the case when the AI is
the last one.

(30)19(21)3456789012 STARTC, FNC1, 30, 19, CODEA,
FNC1, CODEC, 21, 12, 34, 56,
78, 90, 12

Note that switching to code a is
not necessary, as FNC1 exists in
all three character sets.

If a code contains the control character FNC2 then the decoder does not transmit this value. Instead it
appends the value to an internal storage. Only after the decoder encounters a value not containing the
FNC2 control character, the decoder transmits the temporary storage and the value read. The temporary
storage is then cleared. The purpose of this mechanism is to allow the breaking of long text sequences into
several lines.

The effects of the control characters FNC3 and FNC4 are decoder specific.

Decoders remove the character STARTA, STARTB, STARTC, CODEA, CODEB, CODEC, SHIFT, FNC1,
FNC2, FNC3, FNC4, STOP, and the checksum character from the data before displaying or transmitting
the value.

The last but one character is the checksum character that is calculated as follows:CS=(Ref(1)+Sum(i=2
to n of (i-1)*Ref(i))) mod 103 where Ref(i) is the reference number of the character i, and n is the
total number of characters. Example: codeValue="STARTB,A,B,C"CS=(104+(1*33)+(2*34)+(3*35))
mod 103,CS=310 mod 103,CS=1 Looking up reference number 1 in character set B yields the
exclamation mark '!' character. The full code value including checksum and stop character is therefore:
codeValue="STARTB,A,B,C,!,STOP"

Report Writer | 774

Height and width

The nominal height is 6.5mm. The width of the bar can be calculated using this formula: L/mm=(5.5Nc
+11Nab+35)*0.19 where Nc is the number of characters from character set C and Nab denotes the number
of characters from character sets A and B. On each side of the bar area 1.9mm padding is added.

code-2-5-datalogic
Details on the code-2-5-datalogic bar code type.

The code represents a decimal number with a variable number of digits. The number of digits can be
specified by setting the noDigits attribute. The last digit is the check character. The check character is
calculated the same way as the ean 13 check sum.

The rightmost digit (checksum digit) can be omitted. When the system is supplied with a value that is one
digit shorter than specified by noDigits then the check digit is automatically calculated by the system.

The nominal height is 1in. Each digit is drawn using a pattern of two wide and three thin bars making a total
of 5 bars per digit. The nominal width of a thin bar is THINBARWIDTH=0.0236in. The width of a thick bar is
THICKBARWIDTH=THINBARWIDTH/ thinToThickRelation where thinToThickRelation thinToGapRelation
is drawn. The padding on both sides measures 10*THINBARWIDTH.

code-2-5-IATA
Details on the code-2-5-IATA bar code type.

The code represents a decimal number with a variable number of digits. The number of digits can be
specified by setting the noDigits attribute. The last digit is the check character. The check character is
calculated the same way as the ean 13 check sum.

The rightmost digit (checksum digit) can be omitted. When the system is supplied with a value that is one
digit shorter than specified by noDigits then the check digit is automatically calculated by the system.

The nominal height is 1in. Each digit is drawn using a pattern of two wide and three thin bars yielding
a total of 5 bars per digit. The nominal width of a thin bar is THINBARWIDTH=0.0236in. The width of
a thick bar is THICKBARWIDTH=THINBARWIDTH/ thinToThickRelation where thinToThickRelation
should take values between1/3 and1/2. Between digits a gap of width GAPWIDTH=THINBARWIDTH/
thinToGapRelation is drawn. The padding on both sides measures 10*THINBARWIDTH.

code-2-5-industrial
Details on the code-2-5-industrial bar code type.

The code represents a decimal number with a variable number of digits. The number of digits can be
specified by setting the noDigits attribute. The last digit is the check character. The check character is
calculated the same way as the ean 13 check sum.

The rightmost digit (checksum digit) can be omitted. When the system is supplied with a value that is one
digit shorter than specified by noDigits then the check digit is automatically calculated by the system.

The nominal height is 1in. Each digit is drawn using a pattern of two wide and three thin bars yielding
a total of 5 bars per digit. The nominal width of a thin bar is THINBARWIDTH=0.0236in. The width of
a thick bar is THICKBARWIDTH=THINBARWIDTH/ thinToThickRelation where thinToThickRelation
should take values between1/3 and1/2. Between digits a gap of the width GAPWIDTH=THINBARWIDTH/
thinToGapRelation (Thin To Gap Relation) on page 757is drawn. The padding on both sides measures
10*THINBARWIDTH.

code-2-5-interleaved
Details on the code-2-5-interleaved bar code type.

The code represents a decimal number with a variable number of digits. The number of digits must be a
multiple of 2. The number of digits can be specified by setting the noDigits attribute. The last digit is the
check character. The check character is calculated the same way as the ean 13 check sum.

The rightmost digit (checksum digit) can be omitted. When the system is supplied with a value that is one
digit shorter than specified by noDigits then the check digit is automatically calculated by the system.

Report Writer | 775

The nominal height is 1in. Each digit is drawn using a pattern of two wide and three thin bars resulting
in a total of 5 bars per digit. The nominal width of a thin bar is THINBARWIDTH=0.0236in. The width
of a thick bar is THICKBARWIDTH=THINBARWIDTH/ thinToThickRelation where thinToThickRelation
should take values between1/3 and1/2. Between digits a gap of width GAPWIDTH=THINBARWIDTH/
thinToGapRelation is drawn. The padding on both sides measures 10*THINBARWIDTH.

code-2-5-inverted
Details on the code-2-5-inverted bar code type.

The code is the same as code 2/5 industrial, the only difference being that the gaps are drawn instead of
the bars.

code-2-5-matrix
Details on the code-2-5-matrix bar code type.

The code represents a decimal number with a variable number of digits. The number of digits can be
specified by setting the noDigits attribute. The last digit is the check character. The check character is
calculated the same way as the ean 13 check sum.

The rightmost digit (checksum digit) can be omitted. When the system is supplied with a value that is one
digit shorter than specified by noDigits then the check digit is automatically calculated by the system.

The nominal height is 1in. Each digit is drawn using a pattern of two wide and three thin bars yielding
a total of 5 bars per digit. The nominal width of a thin bar is THINBARWIDTH=0.0236in. The width of
a thick bar is THICKBARWIDTH=THINBARWIDTH/ thinToThickRelation where thinToThickRelation
should take values between1/3 and1/2. Between digits a gap of width GAPWIDTH=THINBARWIDTH/
thinToGapRelationis drawn. The padding on both sides measures 10*THINBARWIDTH.

code-BCD-matrix
Details on the code-BCD-matrix bar code type.

The code represents a decimal number with a variable number of digits. The number of digits can be
specified by setting the noDigits attribute. The last digit is the check character. The check character is
calculated the same way as the ean 13 check sum.

The rightmost digit (checksum digit) can be omitted. When the system is supplied with a value that is one
digit shorter than specified by noDigits then the check digit is automatically calculated by the system.

The nominal height is 1in. Digits can differ in width so that two different values having the same
number of digits can result in bar codes of differing width. The nominal width of a thin bar is
THINBARWIDTH=0.0236in. The width of a thick bar is THICKBARWIDTH=THINBARWIDTH/
thinToThickRelation where thinToThickRelation should take values between1/3 and1/2. Between digits a
gap of width GAPWIDTH=THINBARWIDTH/ thinToGapRelation is drawn. The default relation value is 1.
The padding on both sides measures 10*THINBARWIDTH.

code-32
Details on the code-32 bar code type.

The code represents a decimal number with 9 digits. The last digit is the check character. The check
character is calculated as follows:CS=Sum(i=1 to 8 of CT((i-1)%2*2*Ref(i))) mod 10 where Ref(i) denotes
the value of the digit at position i (the leftmost digit has the index 1) and CT() denotes the cross total of its
argument (e.g. CT(18)=1+8=9).

The rightmost digit (checksum digit) can be omitted. When the system is supplied with a 8 digit value then
the check digit is automatically calculated.

The specified 9 digit decimal value is translated into a 6 digit base 32 value which is then drawn using
characters from the base 39 character set and bar drawing scheme. This character table is used to encode
the 6 digit base 32 value:

Report Writer | 776

Table 187: 32 character table is used to encode the 6 digit base 32 value

Reference Number Character

0 0

1 2

2 3

3 4

4 5

5 6

6 7

7 8

8 9

9 B

10 C

11 C

12 D

13 F

14 G

15 H

16 J

17 K

18 L

19 M

20 N

21 P

22 Q

23 R

24 S

25 T

26 U

27 V

28 W

29 X

30 Y

31 Z

Report Writer | 777

Based on this table the following bar codes will produce identical bar pattern: <BARCODEBOX
codeType="code 32" check="true" codeValue="026089019" noText="true" orientation="vertical"
mirrored="true"/><BARCODEBOX codeType="code 39" check="false" codeValue="0SW5KV"
noText="true" orientation="vertical" mirrored="true"/> Note that the bars are drawn without text by setting
noText="true". This is necessary to produce identical output since otherwise the code 32 box draws the
decimal number "026089019" while the code 39 box would draw the string "0SW5KV".

The nominal height is 1in. Each digit is drawn using a pattern of two wide and three thin bars making
a total of 5 bars per digit. The nominal width of a thin bar is THINBARWIDTH=0.0197in. The width of a
thick bar is THICKBARWIDTH=THINBARWIDTH/ thinToThickRelation where thinToThickRelation should
take values between1/3 and1/2. Between digits a gap with the width GAPWIDTH=THINBARWIDTH/
thinToGapRelation is drawn. The padding on both sides measures 10*THINBARWIDTH.

code-39
Details on the code-39 bar code type.

Code 39 can be used to encode ASCII text of variable length. Characters can be selected from this set of
characters.

Table 188: Characters for encoding ASCII text of variable length for Code 39

Reference Number Character

0 0

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 A

11 B

12 C

13 D

14 E

15 F

16 G

17 H

18 I

19 J

20 K

21 L

Report Writer | 778

Reference Number Character

22 M

23 N

24 O

25 P

26 Q

27 R

28 S

29 T

30 U

31 V

32 W

33 X

34 Y

35 Z

36 -

37 .

38

39 $

40 /

41 +

42 %

The last but one character is the checksum character that is calculated as follows:CS=Sum(i=1 to n
of Ref(i))) mod 43 where Ref(i) is the reference number of the character i, and n is the total number of
characters. Example: codeValue="DATALOGIC"CS=(13+10+29+10+21+24+16+18+12) mod 43,CS=153
mod 43,CS=24 Looking up reference number 24 yields the character 'O'. The full code value including
checksum and stop character is therefore: codeValue="DATALOGICO"

Some scanners support an "extended mode" in which the scanner recognizes special two-character
sequences of the code 39 character set and decodes these as ASCII characters. With this method the full
128 character ASCII character set can be encoded using the 43 basic characters of code 39. Scanners
are switched into "extended mode" by a bar containing the sequence "+$". The sequence "-$" returns the
scanner into regular mode. This table lists the character sequences needed to encode the ASCII character
set in "extended mode".

Table 189: Character sequences needed to encode the ASCII character set in "extended mode"

ASCII code Code 39 sequence

NUL %U

SOH $A

STX $B

Report Writer | 779

ASCII code Code 39 sequence

ETX $C

EOT $D

ENQ $E

ACK $F

BEL $G

BS $H

HT $I

LF $J

VT $K

FF $L

CR $M

SO $N

SI $O

DLE $P

DC1 $Q

DC2 $R

DC3 $S

DC4 $T

NAK $U

SYN $V

ETB $W

CAN $X

EM $Y

SUB $Z

ESC %A

FS %B

GS %C

RS %D

US %E

SP

! /A

" /B

/C

$ /D

Report Writer | 780

ASCII code Code 39 sequence

% /E

& /F

' /G

(/H

) /I

* /J

+ /K

, /L

- -

. .

/ /O

0 0

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

: /Z

; %F

>TD/TD

= %H

> %I

? %J

@ %V

A A

B B

C C

D D

E E

F F

Report Writer | 781

ASCII code Code 39 sequence

G G

H H

I I

J J

K K

L L

M M

N N

O O

P P

Q Q

R R

S S

T T

U U

V V

W W

X X

Y Y

Z Z

[%K

\ %L

] %M

^ %N

_ %O

` %W

a +A

b +B

c +C

d +D

e +E

f +F

g +G

h +H

Report Writer | 782

ASCII code Code 39 sequence

i +I

j +J

k +K

l +L

m +M

n +N

o +O

p +P

q +Q

r +R

s +S

t +T

u +U

v +V

w +W

x +X

y +Y

z +Z

{ %P

| %Q

} %R

~ %S

DEL %T

The code type "code 39 extended" automatically creates the necessary two-character sequences and can
be used as a more convenient way of creating extended code 39 bar codes.

If the value specified by codeValue is shorter by one character than the number of digits specified by
noDigits then the checksum character is automatically calculated and the character is appended to
codeValue.

The nominal height is 1in. The nominal width of a thin bar is THINBARWIDTH=0.0197in. The width of a
thick bar is THICKBARWIDTH=THINBARWIDTH/ thinToThickRelation where thinToThickRelation should
take values between1/3 and1/2. Between digits a gap with the width GAPWIDTH=THINBARWIDTH/
thinToGapRelation is drawn. The default relation value is 1. The padding on both sides measures
10*THINBARWIDTH.

code-39-extended
Details on the code-39-extended bar code type.

Code 39 Extended can be used to encode text of variable length using the ASCII character set. Depending
on the value of the smartParse property, the code value is either expected as a comma-separated
list of ASCII character names or as a plain string. Table 190: Code 39 Extended names and the textual

Report Writer | 783

representation that is used in printout on page 783 lists the names and the textual representation that is
used in printout.

Table 190: Code 39 Extended names and the textual representation that is used in printout

ASCII code Textual representation

NUL <NUL>

SOH <SOH>

STX <STX>

ETX <ETX>

EOT <EOT>

ENQ <ENQ>

ACK <ACK>

BEL <BEL>

BS <BS>

HT <HT>

LF <LF>

VT <VT>

FF <FF>

CR <CR>

SO <SO>

SI <SI>

DLE <DLE>

DC1 <DC1>

DC2 <DC2>

DC3 <DC3>

DC4 <DC4>

NAK <NAK>

SYN <SYN>

ETB <ETB>

CAN <CAN>

EM

SUB <SUB>

ESC <ESC>

FS <FS>

GS <GS>

RS <RS>

Report Writer | 784

ASCII code Textual representation

US <US>

SP

! !

" "

#

$ $

% %

& &

' '

((

))

* *

+ +

COMMA ,

- -

. .

/ /

0 0

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

: :

; ;

< <

= =

> >

? ?

@ @

Report Writer | 785

ASCII code Textual representation

A A

B B

C C

D D

E E

F F

G G

H H

I I

J J

K K

L L

M M

N N

O O

P P

Q Q

R R

S S

T T

U U

V V

W W

X X

Y Y

Z Z

[[

\ \

]]

^ ^

_ _

` `

a a

b b

Report Writer | 786

ASCII code Textual representation

c c

d d

e e

f f

g g

h h

i i

j j

k k

l l

m m

n n

o o

p p

q q

r r

s s

t t

u u

v v

w w

x x

y y

z z

{ {

| |

} }

~ ~

DEL

code-93
Details on the code-93 bar code type.

Code 93 can be used to encode ASCII text of variable length. Characters can be selected from this set of
characters. You can use the code-93-extended type to encode the full 128 character ASCII character set
using the 47 basic characters of code 93.

Report Writer | 787

Table 191: code-93

Reference Number Character

0 0

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 A

11 B

12 C

13 D

14 E

15 F

16 G

17 H

18 I

19 J

20 K

21 L

22 M

23 N

24 O

25 P

26 Q

27 R

28 S

29 T

30 U

31 V

32 W

Report Writer | 788

Reference Number Character

33 X

34 Y

35 Z

36 -

37 .

38

39 $

40 /

41 +

42 %

43 !

44 ?

45 \

46 |

The textual representation of the last four characters "!?\|" can be configured by setting the
controlCharacters attribute.

noCheckDigits specifies how many check characters are used. In the case of two check characters
the rightmost character is the 'K' checksum character and the last but one character is the 'C'
checksum character. if only one checksum character is specified then the rightmost character is
a 'C' checksum character. The 'C' checksum is calculated as follows C=(Sum(i=1 to n of ((i-1 mod
20)+1)*Ref(n-i+1))) mod 47 and the 'K' checksum is calculated as followsK=(Sum(i=1 to n of ((i-1
mod 15)+1)*Ref(n-i+1))) mod 47 where n specifies the number of characters left of the particular
check digit and Ref(i) specifies the reference value of the character at position i starting with the
leftmost character having the index value 1. Reference numbers can be looked up in the first column.
Example calculating the 'C' checksum: codeValue="DATALOGIC", noDigits="11", noCheckDigits="2",
n=9C=(1*12+2*18+3*16+4*24+....7*29+8*10+9*13) mod 47=757 mod 47=5 The K checksum can then be
calculated as: n=10, Ref(10)=C=5K=(1*5+2*12+3*18+4*16+....8*29+9*10+10*13) mod 47=915 mod 47=22
resulting in the code value codeValue="DATALOGIC5M".

If the value supplied in codeValue has the length noDigits- noCheckDigits then the system automatically
calculates and supplies the check digits.

code-93-extended
Details on the code-93-extended bar code type.

Some scanners support an "extended mode" in which the scanner recognizes special two-character
sequences of the code 93 character set and decodes these as ASCII characters. With this mode, the full
128 character ASCII character set can be encoded using the 47 basic characters of code 93. T

The nominal height is 1in. The nominal width of a bar is BARWIDTH=0.022in. The width of the entire bar is
(1+(noDigits+2)*9)*BARWIDTH. The padding on both sides measures 10*BARWIDTH.

This code type automatically creates the necessary two-character sequences and can be used as a more
convenient way of creating extended code 93 bar codes.

Report Writer | 789

Table 192: code-93-extended sequence table

ASCII code Code 93 sequence

NUL ?U

SOH !A

STX !B

ETX !C

EOT !D

ENQ !E

ACK !F

BEL !G

BS !H

HT !I

LF !J

VT !K

FF !L

CR !M

SO !N

SI !O

DLE !P

DC1 !Q

DC2 !R

DC3 !S

DC4 !T

NAK !U

SYN !V

ETB !W

CAN !X

EM !Y

SUB !Z

ESC ?A

FS ?B

GS ?C

RS ?D

US ?E

SP

Report Writer | 790

ASCII code Code 93 sequence

! \A

" \B

\C

$ $

% %

& \F

' \G

(\H

) \I

* \J

+ +

COMMA \L

- -

. .

/ /

0 0

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

: \Z

; ?F

< ?G

= ?H

> ?I

? ?J

@ ?V

A A

B B

Report Writer | 791

ASCII code Code 93 sequence

C C

D D

E E

F F

G G

H H

I I

J J

K K

L L

M M

N N

O O

P P

Q Q

R R

S S

T T

U U

V V

W W

X X

Y Y

Z Z

[?K

\ ?L

] ?M

^ ?N

_ ?O

` ?W

a |A

b |B

c |C

d |D

Report Writer | 792

ASCII code Code 93 sequence

e |E

f |F

g |G

h |H

i |I

j |J

k |K

l |L

m |M

n |N

o |O

p |P

q |Q

r |R

s |S

t |T

u |U

v |V

w |W

x |X

y |Y

z |Z

{ ?P

| ?Q

} ?R

~ ?S

DEL ?T

data-matrix
Details on the data-matrix bar code type.

A Data matrix bar code can be used to encode text and binary data of variable length. It is possible to
encode up to 1558 code words. Text, binary data and numeric data are compressed into code words so
that the limits for these types are:

• Alphanumeric data - up to 2335 characters
• 8-bit byte data - 1555 characters
• Numeric data - 3116 digits

Report Writer | 793

The limits for mixed text are lower, as control characters are inserted to switch between the different
compression modes.

Data matrix symbols exist in several flavors with varying methods and degrees of error correction. Of the
possible options ECC 000, ECC 050, ECC 080, ECC 100, ECC 140 and ECC 200 this implementation
supports only ECC 200 using Reed Solomon error correction.

Special control characters like FNC1, ECI and "structured append" are currently not available.

The conversion of the data specified in this attribute (codeValue) to the internal representation is done
by an algorithm that minimizes space. Byte values that cannot be represented in an XML document (for
example all characters lower than 0x20 except 0x9, 0xa and 0xd) can be represented by a backslash ('\')
character followed by a 3 digit octal literal. The backslash character itself can be escaped by a sequence of
two backslash characters.

The current implementation can encode any character that exists in the code page ISO-8859-1 (Latin 1).
Any attempt to encode other characters will fail. Future versions will insert ECI control characters to switch
to other code pages if the character is available there.

This attribute is unique to this bar code type:

• preferRectangularSymbols

• Type: Boolean value
• Description: If you are concerned about running out of space in the vertical of the page, you might

prefer a symbol that is wider than it is high. This property produces a rectangular shaped symbol if
the encoded data does not exceed 49 code words.

• Fails if: Value cannot be parsed as a boolean value. Valid values are True, False.
• Default value: False

ean-8
Details on the ean-8 bar code type.

Note: The ean-8 and gs1-8 on page 794 bar codes are synonymous. The gs1-8 synonym can be
used for the ean-8 bar code.

The code represents a 8 digit decimal number. First two digits select the country. The last digit is the check
character. The check character is calculated the same way as the ean 13 check sum.

The rightmost digit (checksum digit) can be omitted. When the system is supplied with such a 7 digit value
then the 8th digit is automatically calculated by the system.

The nominal size is 26.73mm x 21.64mm (w x h). The bar code area has the measurements 22.11mm x
19.88mm. The left padding measures 2.31mm.

ean-13
Details on the ean-13 bar code type.

Note: The ean-13 and gs1-13 on page 794 bar codes are synonymous. The gs1-13 synonym
can be used for the ean-13 bar code.

The code represents a 13-digit decimal number. First two digits are the flag code, the next ten digits are
the data characters and the last digit is the check character. The check character is calculated as follows:

1. Designate the rightmost character odd.
2. Sum all of the characters in the odd positions and multiply the result by three.
3. Sum all of the characters in the even positions.
4. Add the odd and even totals from steps two and three.
5. Determine the smallest number that, when added to the result from step four, will result in a multiple of

10. This is the check character.

In Europe the first two characters (flag code) are the country identifier and the data characters are split
into two groups of five digits each where the first five are a company identifier and the latter five identify an
article within that company. The last digit is the check character.

Report Writer | 794

The rightmost digit (checksum digit) can be omitted. When the system is supplied with such a 12 digit value
then the 13th digit is automatically calculated by the system.

The nominal size is 37.29mm x 26.26mm (w x h). The bar code area has the measurements 31.35mm x
24.50mm. The left padding measures 3.63mm.

ean-code-128
Details on the ean-code-128 bar code type.

Based on the code-128 on page 769 bar code.

Note: The ean-code-128 and gs1-code-128 on page 794 bar codes are synonymous. The gs1-
code-128 synonym can be used for the ean-code-128 bar code.

ean-data-matrix
Details on the ean-data-matrix bar code type.

Based on the data-matrix bar code. The ean-data-matrix supports smart parse, eliminating the need to
manually insert the FNC1 character into the bar code.

Note: The ean-data-matrix and gs1-data-matrix on page 794 bar codes are synonymous. The
gs1-data-matrix synonym can be used for the ean-data-matrix bar code.

ean-supplemental-2
Details on the ean-supplemental-2 bar code type.

The code represents a 2 digit decimal number that can be used in conjunction with the ean 13 bar code
type. Typically the code is placed to the right of the ean 13 bar code. The gap between the rightmost bar of
the ean 13 code and the leftmost bar of the supplemental code should not be less than 2.31mm and should
not exceed 3.3mm.

The nominal size is 6.6mm x 26.26mm (w x h). The bar code is painted without padding at the sides.

Note: The ean-supplemental-2 and gs1-supplemental-2 on page 795 bar codes are
synonymous. The gs1-supplemental-2 synonym can be used for the ean-supplemental-2 bar code.

ean-supplemental-5
Details on the ean-supplemental-5 bar code type.

The code represents a 5 digit decimal number that can be used in conjunction with the ean 13 bar code
type. Typically the code is placed to the right of the ean 13 bar code. The gap between the rightmost bar of
the ean 13 code and the leftmost bar of the supplemental code should not be less than 2.31mm and should
not exceed 3.3mm.

The nominal size is 15.5mm x 26.26mm (w x h). The bar code is painted without padding at the sides.

Note: The ean-supplemental-5 and gs1-supplemental-5 on page 795 bar codes are
synonymous. The gs1-supplemental-5 synonym can be used for the ean-supplemental-5 bar code.

gs1-8
A synonym of the ean-8 bar code type.

See ean-8 on page 793.

gs1-13
A synonym of the ean-13 bar code type.

See ean-13 on page 793.

gs1-code-128
A synonym for the ean-code-128 bar code type.

See ean-code-128 on page 794.

gs1-data-matrix
A synonym for the ean-data-matrix bar code type.

See ean-data-matrix on page 794.

Report Writer | 795

gs1-supplemental-2
A synonym of the ean-supplemental-2 bar code type.

See ean-supplemental-2 on page 794.

gs1-supplemental-5
A synonym of the ean-supplemental-5 bar code type.

See ean-supplemental-5 on page 794.

intelligent-mail
Details on the Intelligent Mail bar code type.

Intelligent Mail is a United States postal service bar code for usage with the USPS mail stream. It is also
known as the USPS OneCode Solution or USPS 4-State Customer Barcode. Valid abbreviations for this
bar code type include 4CB, 4-CB, and USPS4CB.

The bar code encodes up to 31 digits. The code value is expected as two comma-separated fields. Each
field consists solely of digits. The first field contains the tracking code. The second field contains the routing
code.

The encoding is illustrated in the following table. There can be a total of 31 digits maximum.

Table 193: Encoding for the Intelligent Mail bar code

Type Field Digits

Tracking code field Barcode Identifier 2 digits; 2nd digit must be 0-4.

Tracking code field Service Type Identifier 3 digits.

Tracking code field Mailer Identifier 6 or 9 digits.

Tracking code field Serial Number 9 digits, when used with a 6-digit Mailer Identifier.

6 digits, when used with a 9-digit Mailer Identifier.

Routing code field Delivery Point ZIP Code 0, 5, 9, or 11 digits.

pdf-417
Details on the pdf-417 bar code type.

Pdf-417 can be used to encode text and binary data of variable length. It is possible to encode up to 925
code words (minimal error correction degree). Text, binary data and numeric data are compressed into
code words so that the limits for these types are:

• 1850 ASCII characters
• 1108 Byte values
• 2710 numeric values

The limits for mixed text are lower, as control characters are inserted to switch between the different
compression modes.

Setting the error correction degree to the recommended minimum lowers the maximum number of
encodable code words to 863 yielding these limits for the encodable types:

• 1726 ASCII characters
• 1033 Byte values
• 2528 numeric values

The conversion of the data specified in this attribute (codeValue) to the internal representation is done by
an algorithm that minimizes space (Sometimes there is more than one option to encode a particular piece
of data). Non ascii characters are encoded using the specified encoding table. Byte values that cannot be
represented in an XML document (for example all characters lower 0x20 except 0x9, 0xa and 0xd) can be

Report Writer | 796

represented by a backslash ('\') character followed by a 3 digit octal literal. The backslash character itself
can be escaped by a sequence of two backslash characters.

These attributes (properties) are unique to this bar code type:

• dataSymbolsPerLine (Data Symbols per Line) on page 743:

• Type: Integer value.
• Specifies the number of data symbols per line. The value must be an integer between 1 and 30. Low

values cause more narrow printout with more lines. The number of lines is not allowed to exceed 90.
It should be noted, that the overall required image space usually grows with lower values because
there is a constant amount of organizational information which is added with each additional line.
This is not generally the case, since lines have to be filled with padding so that specially with small
amounts of data a larger value may actually create a larger image. If the value is not specified, the
system computes a value that minimizes image space.

• Fails if: Value cannot be parsed as a integer value. Value is not in the range 1...30.
• Default value: A value that minimizes the overall image size.

• rawCodeValue (Raw Code Value) on page 753:

• Type: A comma-separated list of integers in the range 0...899.
• This attribute can be used instead of codeValue to specify the code value at a lower level giving

more control on the encoded data.
• Fails if: Encoding for non-ASCII characters in the code value.
• Default value: not set

• errorCorrectionDegree (Error Correction Degree) on page 746:

• Type: Integer value.
• Specifies the error correction degree. Valid values are in the range 0...8. Higher values make the

image more robust.
• Fails if: Value cannot be parsed as a integer value. Value is not in the range 0...8.
• Default value: A value that proportional to the data size

• encoding (Encoding) on page 745:

• Type: Encoding
• Sets the encoding for non ascii characters in the code value. Run "java CharsetInfo" for a list of

character set encodings available on a particular platform. Valid example values are 'ISO-8859-15'
or 'IBM437'.

• Fails if:

• Value is not a valid host name
• Socket connection cannot be established

• Default value: not set (the lower 8 bits of the unicode values are encoded)

qr-code
QR code (abbreviated from Quick Response Code) is a type of matrix bar code consisting of black
modules (square dots) arranged in a square grid on a white background.

The QR code can be used to encode text and binary data of variable length. It is possible to encode up to
2953 code words. The code value is converted from the XML unicode value to the specified encoding.

By default, the bytes encoded in a QR code image are interpreted as characters from the ISO-8859-1
(Latin 1) encoding. Other encodings can be specified in the encoding attribute and an extended channel
interpretations (ECI) code will be inserted if available for the encoding. The code covers issues such as:

• Is the data compressed? If yes, how?
• Is the data part of a larger message? If yes, which part?
• Is the data encoded in a non standard way? If yes, which encoding was used?

An ECI code exists for the following encodings:

Report Writer | 797

• Cp437 (0,2)
• ISO-8859-1 (ECI codes 1,3)
• ISO-8859-2 (ECI code 4)
• ISO-8859-3 (ECI code 5)
• ISO-8859-4 (ECI code 6)
• ISO-8859-5 (ECI code 7)
• ISO-8859-6 (ECI code 8)
• ISO-8859-7 (ECI code 9)
• ISO-8859-8 (ECI code 10)
• ISO-8859-9 (ECI code 11)
• ISO-8859-10 (ECI code 12)
• ISO-8859-11 (ECI code 13)
• ISO-8859-13 (ECI code 15)
• ISO-8859-14 (ECI code 16)
• ISO-8859-15 (ECI code 17)
• ISO-8859-16 (ECI code 18)
• Shift_JIS (ECI code 20)
• Cp1250, windows-1250(ECI code 21)
• Cp1251, windows-1251(ECI code 22)
• Cp1252, windows-1252(ECI code 23)
• Cp1256, windows-1256(ECI code 24)
• UnicodeBigUnmarked, UTF-16BE, UnicodeBig (ECI code 25)
• UTF-8 (ECI code 26)
• US-ASCII (ECI codes 27,170)
• Big5 (ECI code 28)
• GB18030, GB2312, EUC_CN, GBK (ECI code 29)
• EUC-KR (ECI code 30)

Attributes unique to this bar code type:

• errorCorrectionDegree

• Type: Integer value
• Description: Specifies the error correction degree. Valid values are in the range of 0 - 3. Higher

values make the image more robust (ISO 18004:2006, 6.5.1 defines: 0=~7%, 1=~15%, 2=~25% and
3=~30%).

• Fails if: Value cannot be parsed as an integer value. Value is not in the range of 0 - 3.
• Default value: 3

• encoding

• Type: encoding
• Description: Sets the encoding for non-ASCII characters in the code value. The following encodings

can be set:

Encoding Type Description

ISO-8859-1 Use this setting if all characters in codeValue
are from this code page. Some scanners or
scanner apps interpret the non ASCII characters
non standard (e.g. as Japanese characters).
In this case the scanner may have a setting to
change the interpretation. If this is not the case
then try using "UTF-8" encoding. Please note
that for ISO-8859-1 encoding no ECI code is

Report Writer | 798

Encoding Type Description

embedded (Use the encoding ISO-8859-15 to
force an ECI inclusion.)

Bytes Use this setting to set the byte values. Literal
characters in codeValue are mapped to
ISO-8859-1 byte representation and characters
not representable in XML documents can be
escaped by a backslash ('\') character followed
by a 3 digit octal literal. The backslash character
itself can be escaped by a sequence of two
backslash characters or its octal representation
\134 in ISO-8859-1.

UTF-8 This is the default value and should be used
unless the two other options from above
are applicable. If a scanner fails to interpret
the characters correctly and all character
in codeValue are available from a different
encoding listed by CharsetInfo, then this
encoding should be tried next.

Any encoding listed by CharsetInfo (e.g.
"Shift_JIS", "Big5" or "ISO-8859-8")

If all of the option above are not applicable
this option should be used. For encodings
for which a ECI code exists, the code will be
embedded allowing the scanner to change the
interpretation accordingly.

Any encoding listed by CharsetInfo prefixes with
the string "RAW-" (e.g. "RAW-Shift_JIS", "RAW-
Big5" or "RAW-UTF-8"

Some scanners do not recognize ECI codes
and expect a specific encoding (other than
ISO-8859-1). For this case, this setting should
be used.

• Fails if: Value is not a valid encoding name.
• Default value: UTF-8

QR code examples

Figure 379: Hello World: size not specified (default error correction (3))

Figure 380: Hello World: size not specified (error correction degree (2))

Report Writer | 799

Figure 381: Hello World: size not specified (error correction degree (1))

Figure 382: Hello World: width="3cm"

Figure 383: http://www.4js.com

upc-a
Details on the upc-a bar code type.

The code represents a 12 digit decimal number. First digit is the 'number system character' code, the next
five identify the manufacturer and the following five identify an article. The last digit is the check character.
The check character is calculated the same way as the ean 13 check sum.

The rightmost digit (checksum digit) can be omitted. When the system is supplied with such a 11 digit value
then the 12th digit is automatically calculated by the system.

The nominal size is 1.469in x 1.020in (w x h). The bar code area has the measurements 1.235in x 0.965in.
The left padding measures 0.117in.

upc-e
Details on the upc-e bar code type.

The code represents a 8 digit decimal number. Upc-e is a compressed version of upc-a. By the method of
zero suppression some upc a codes are available as upc e codes. This translation table shows which upc-
a numbers can be transformed to short versions:

Report Writer | 800

Table 194: upc-a numbers that can be transformed to short versions

UPC-E Number Digits to insert Position of Insertion Resulting UPC-A
Number

sNNNNN0c 00000 3 sNN00000NNNc

sNNNNN1c 10000 3 sNN10000NNNc

sNNNNN2c 20000 3 sNN20000NNNc

sNNNNN3c 00000 4 sNNN00000NNc

sNNNNN4c 00000 5 sNNNN00000Nc

sNNNNN5c 00005 6 sNNNNN00005c

sNNNNN6c 00006 6 sNNNNN00006c

sNNNNN7c 00007 6 sNNNNN00007c

sNNNNN8c 00008 6 sNNNNN00008c

sNNNNN9c 00009 6 sNNNNN00009c

The rightmost digit (checksum digit) can be omitted. When the system is supplied with such a 7 digit value
then the 8th digit is automatically calculated by the system.

The nominal size is 0.897in x 1.020in (w x h). The bar code area has the measurements 0.663in x 0.965in.
The left padding measures 0.117in.

upc-supplemental-2
Details on the upc-supplemental-2 bar code type.

The code represents a 2 digit decimal number that can be used in conjunction with the upc a bar code
type. Typically the code is placed to the right of the upc a bar code. The gap between the rightmost bar of
the upc a code and the leftmost bar of the supplemental code should not be less than 2.31mm and should
not exceed 3.3mm.

The nominal size is 0.26in x 1.02in (w x h). The bar code is painted without padding at the sides.

upc-supplemental-5
Details on the bar code type.

The code represents a 5 digit decimal number that can be used in conjunction with the upc a bar code
type. Typically the code is placed to the right of the ean upc a code. The gap between the rightmost bar of
the upc a code and the leftmost bar of the supplemental code should not be less than 2.31mm and should
not exceed 3.3mm.

The nominal size is 0.611in x 1.02in (w x h). The bar code is painted without padding at the sides.

This example shows how the supplemental code can be used in conjunction with a upc a code:

<LAYOUTNODE orientation="horizontal" width="min" length="min">
 <BARCODEBOX codeType="upc a" codeValue="01234567891" fontSize="10"
 mirrored="true"/>
 <BARCODEBOX codeType="upc supplemental 2" codeValue="47" fontSize="10"
 mirrored="true"/>
</LAYOUTNODE>

Report Writer | 801

RTL Classes Overview

Object Classes

There are object classes for each type of the report item properties. The type of each property is indicated
in the Properties page. The methods of these classes may be used in RTL Expressions to define a
property value.

Table 195: RTL Classes

Class Description

Boolean Contains methods used for all logical operations.

Color Contains methods and static member variables related to color.

Enum A set of classes, consisting of a class for each property of this type; each
class contains static member variables that provide a list of valid values for the
corresponding property.

Date Provides methods for date formatting and parsing.

FGLNumericVariable For every 4GL numeric variable of report data, an object is created that is an
instance of an FGLNumericVariable. These objects hold the value of the 4GL
variable.

FGLStringVariable For every CHAR, VARCHAR, STRING, TEXT, DATE, DATETIME and INTERVAL
4GL variable of report data, an object is created that is an instance of an
FGLStringVariable. These objects hold the value of the 4GL variable.

Numeric Contains methods used for all numeric operations. The class has the precision
of a double and the arithmetic operators are defined for objects of this type.

Runtime Provides functions that simplify the creation of dynamic designs that change
behavior based on the runtime setup.

String Contains methods used for all string operations.

Dimension Resolver
Unit Names

Table 196: Unit Names

Unit abbreviations Unit description Point value Example

point|pt Point value (72.27point =
1in)

1 10point

scrpixels[xy] Screen pixel value (e.g.
for 96DPI: 96pixel = 1in
= 72.27point)

Depends on screen
resolution of the current
screen. The default
value is taken from the
local VM, not from a
potential viewer residing
on a different machine.

640scrpixelsx

prnpixels[xy] Printer pixel value (e.g.
for 300DPI 300pixel =
1in = 72.27point)

Depends on printer
resolution of current
printer (printer resolution
defaults to 300 when
there is no printer on

150prnpixelsy

Report Writer | 802

Unit abbreviations Unit description Point value Example

the current pipe or when
the printer is on a part of
the pipe that resides on
another machine).

pica|pc Pica value (12point =
1pica)

12 3pica

inch|in Inch value (72.27point =
1in)

72.27 10in

bigpoint|bp Big point (72bigpoint =
1in)

72.27/72 10bp

cm Centimeter value
(2.54cm = 1in)

72.27/2.54 10cm

mm Centimeter value (10mm
= 1cm)

72.27/2.54/10 10mm

didot|dd Didot point (1157dd =
1238pt)

1238/1157 10dd

cicero|cc Cicero value(1cc =
12dd)

12*1238/1157 0.5cc

Paper Format Abbreviations

Table 197: Paper Format Abbreviations

Unit abbreviations Unit Description Width value Length value

iso4a0(width | length) ISO 4A0 1682mm 2378mm

iso2a0(width | length) ISO 2A0 1189mm 1682mm

(isodesignatedlong | dl |
dinlang)(width | length)

ISO designated long 110mm 220mm

executive(width | length) Executive 7.25in 10.5in

(folio |
germanlegalfanfold)(width
| length)

Folio/German legal fanfold 8.5in 13in

(invoice | statement)(width
| length)

Invoice/Statement 5.5in 8.5in

(ledger | tabloid | 11x7)
(width | length)

Ledger/Tabloid 11in 7in

(naletter | letter | note)
(width | length)

Letter 8.5in 11in

(nalegal | legal)(width |
length)

Legal 8.5in 14in

quarto(width | length) Quarto 215mm 275mm

a(width | length) Engineering A 8.5in 11in

b(width | length) Engineering B 11in 17in

Report Writer | 803

Unit abbreviations Unit Description Width value Length value

c(width | length) Engineering C 17in 22in

d(width | length) Engineering D 22in 34in

e(width | length) Engineering E 34in 44in

(na10x15envelope |
10x15envelope)(width |
length)

Envelope 10x15 10in 15in

(na10x14envelope |
10x14envelope)(width |
length)

Envelope 10x14 10in 14in

(na10x13envelope |
10x13envelope)(width |
length)

Envelope 10x13 10in 13in

(na9x12envelope |
9x12envelope)(width |
length)

Envelope 9x12 9in 12in

(na9x11envelope |
9x11envelope)(width |
length)

Envelope 9x11 9in 11in

(na7x9envelope |
7x9envelope)(width |
length)

Envelope 7x9 7in 9in

(na6x9envelope |
6x9envelope)(width |
length)

Envelope 6x9 6in 9in

(nanumber9envelope |
number9envelope | env9)
(width | length)

Envelope number 9 3+7/8in 8+7/8in

(nanumber10envelope
| number10envelope |
env10)(width | length)

Envelope number 10 1+1/8in 9+1/2in

(nanumber11envelope
| number11envelope |
env11)(width | length)

Envelope number 11 4+1/2in 10+3/8in

(nanumber12envelope
| number12envelope |
env12)(width | length)

Envelope number 12 4+3/4in 11in

(nanumber14envelope
| number14envelope |
env14)(width | length)

Envelope number 14 5in 11+1/2in

(envinvite | inviteenvelope
| invite)(width | length)

Invite envelope 220mm 220mm

(envitaly | italyenvelope |
italy)(width | length)

Italy envelope 110mm 230mm

Report Writer | 804

Unit abbreviations Unit Description Width value Length value

(envmonarch |
monarchenvelope |
monarch)(width | length)

Monarch envelope 3+7/8in 7+1/2in

(envpersonal |
personalenvelope |
personal)(width | length)

Personal Envelope 3+5/8in 6+1/2in

(usstandardfanfold |
usstdfanfold)(width |
length)

US standard fanfold 14.875in 11in

(germanstandardfanfold |
germanstdfanfold)(width |
length)

German standard fanfold 8.5in 12in

(isoa0 | a0 | dina0)(width |
length)

ISO/DIN & JIS A0 841mm 1189mm

(isoa1 | a1 | dina1)(width |
length)

ISO/DIN & JIS A1 594mm 841mm

(isoa2 | a2 | dina2)(width |
length)

ISO/DIN & JIS A2 420mm 594mm

(isoa3 | a3 | dina3)(width |
length)

ISO/DIN & JIS A3 297mm 420mm

(isoa4 | a4 | dina4)(width |
length)

ISO/DIN & JIS A4 210mm 297mm

(isoa5 | a5 | dina5)(width |
length)

ISO/DIN & JIS A5 148mm 210mm

(isoa6 | a6 | dina6)(width |
length)

ISO/DIN & JIS A6 105mm 148mm

(isoa7 | a7 | dina7)(width |
length)

ISO/DIN & JIS A7 74mm 105mm

(isoa8 | a8 | dina8)(width |
length)

ISO/DIN & JIS A8 52mm 74mm

(isoa9 | a9 | dina9)(width |
length)

ISO/DIN & JIS A9 37mm 52mm

(isoa10 | a10 | dina10)
(width | length)

ISO/DIN & JIS A10 26mm 37mm

(isob0 | b0 | dinb0)(width |
length)

ISO/DIN B0 1000mm 1414mm

(isob1 | b1 | dinb1)(width |
length)

ISO/DIN B1 707mm 1000mm

(isob2 | b2 | dinb2)(width |
length)

ISO/DIN B2 500mm 707mm

(isob3 | b3 | dinb3)(width |
length)

ISO/DIN B3 353mm 500mm

Report Writer | 805

Unit abbreviations Unit Description Width value Length value

(isob4 | b4 | dinb4)(width |
length)

ISO/DIN B4 250mm 353mm

(isob5 | b5 | dinb5)(width |
length)

ISO/DIN B5 176mm 250mm

(isob6 | b6 | dinb6)(width |
length)

ISO/DIN B6 125mm 176mm

(isob7 | b7 | dinb7)(width |
length)

ISO/DIN B7 88mm 125mm

(isob8 | b8 | dinb8)(width |
length)

ISO/DIN B8 62mm 88mm

(isob9 | b9 | dinb9)(width |
length)

ISO/DIN B9 44mm 62mm

(isob10 | b10 | dinb10)
(width | length)

ISO/DIN B10 31mm 44mm

(isoc0 | c0 | dinc0)(width |
length)

ISO/DIN C0 917mm 1297mm

(isoc1 | c1 | dinc1)(width |
length)

ISO/DIN C1 648mm 917mm

(isoc2 | c2 | dinc2)(width |
length)

ISO/DIN C2 458mm 648mm

(isoc3 | c3 | dinc3)(width |
length)

ISO/DIN C3 324mm 458mm

(isoc4 | c4 | dinc4)(width |
length)

ISO/DIN C4 229mm 324mm

(isoc5 | c5 | dinc5)(width |
length)

ISO/DIN C5 162mm 229mm

(isoc6 | c6 | dinc6)(width |
length)

ISO/DIN C6 114mm 162mm

(isoc7 | c7 | dinc7)(width |
length)

ISO/DIN C7 81mm 114mm

(isoc8 | c8 | dinc8)(width |
length)

ISO/DIN C8 57mm 81mm

(isoc9 | c9 | dinc9)(width |
length)

ISO/DIN C9 40mm 57mm

(isoc10 | c10 | dinc10)
(width | length)

ISO/DIN C10 28mm 40mm

jisb0(width | length) JIS B0 1030mm 1456mm

jisb1(width | length) JIS B1 728mm 1030mm

jisb2(width | length) JIS B2 515mm 728mm

jisb3(width | length) JIS B3 364mm 515mm

jisb4(width | length) JIS B4 257mm 364mm

Report Writer | 806

Unit abbreviations Unit Description Width value Length value

jisb5(width | length) JIS B5 182mm 257mm

jisb6(width | length) JIS B6 128mm 182mm

jisb7(width | length) JIS B7 91mm 128mm

jisb8(width | length) JIS B8 64mm 91mm

jisb9(width | length) JIS B9 45mm 64mm

jisb10(width | length) JIS B10 32mm 45mm

Customize Report Designer: preferences

Document View

• The Prefer to display item name over RTL expression text checkbox: When selected, user-defined
labels are displayed instead of the expressions. A label is considered user-defined if it does not match
the generated name "[NodeType][Index]" (e.g. "WordBox12").

Paper Settings Preferences

You can specify the default paper settings to be used for report design documents.

• Orientation: portrait, landscape
• Units: centimeter, inch
• Page Size Format: standard - choose a value from the combobox, custom
• Margins - left, right, top, bottom

RTL Class Reference

• The Boolean Class on page 806
• The Color Class on page 807
• The Date Class on page 810
• The Enum Classes on page 812
• The FGLNumericVariable Class on page 819
• The FGLStringVariable Class on page 820
• The Numeric Class on page 821
• The Runtime Class on page 831
• The String Class on page 834

The Boolean Class
Details about the Boolean class and its public members.

• Syntax
• Member Objects
• Usage

Syntax

Boolean

Report Writer | 807

Member Objects

Table 198: Member Objects (Static Member Variables)

Name Description

TRUE Contains the value TRUE.

FALSE Contains the value FALSE.

Usage

With RTL classes, it is not possible to create and subclass objects. The new keyword is not supported.

Member Objects Usage

All expressions in the RTL expression language that contain relational operators return one of these
objects, which are static member variables that do not require an object instance.

To specify TRUE or FALSE in a formula, the variables are prefixed with the 'Boolean' class name and the '.'
character.

Example

Boolean.TRUE

The Color Class
The Color class provides methods for specifying the color of an object.

• Syntax
• Member Objects
• Class Methods
• Object Methods

Syntax

Color

Member Objects: Static Member Variables

These member variables do not require an object. They are prefixed by the Color class name.

Table 199: Member Objects (Static Member Variables)

Name Description

BLACK Specifies a Color object having the color BLACK

BLUE Specifies a Color object having the color BLUE

CYAN Specifies a Color object having the color CYAN

DARK_GRAY Specifies a Color object having the color
DARK_GRAY

GRAY Specifies a Color object having the color GRAY

GREEN Specifies a Color object having the color GREEN

Report Writer | 808

Name Description

LIGHT_GRAY Specifies a Color object having the color
LIGHT_GRAY

MAGENTA Specifies a Color object having the color MAGENTA

ORANGE Specifies a Color object having the color ORANGE

PINK Specifies a Color object having the color PINK

RED Specifies a Color object having the color RED

WHITE Specifies a Color object having the color WHITE

YELLOW Specifies a Color object having the color YELLOW

Usage

With RTL classes, it is not possible to create and subclass objects. The new keyword is not supported.

The default color for a report item, such as a LayoutNode, is black. You can change the color of the item
by entering a value for the color or bgColor property in the Properties View. These properties are of type
Color; Instead of selecting a color from the Edit Expressions color palette, you can use the members of this
class in an expression that returns a Color object.

Member Objects Usage

These objects are static member variables that do not require an object instance. The variables are
prefixed with the Color class name and the '.' character.

Example:

Color.RED

Class Methods

Class methods do not require a Color object instance. When you invoke a class method, it is prefixed with
the Color class name and the '.' character.

Table 200: Class Methods (Static Member Methods)

Name Description

fromHSBA(h Numeric, s Numeric, b
 Numeric)

Returns a Color object based on the specified values
of hue, saturation, and brightness for the HSB color
model.

Color.fromHSBA(h,s,b)

• h (hue) is any floating-point number. The floor of
this number is subtracted from it to create a fraction
between 0 and 1, which is then multiplied by 360.

• s (saturation) is a floating-point value between zero
and one (numbers within the range 0.0-1.0).

Report Writer | 809

Name Description

• b (brightness) is a floating-point value between
zero and one (numbers within the range 0.0-1.0).

fromHSBA(h Numeric, s Numeric, b
 Numeric, a Numeric)

Returns a Color object based on the specified values
of hue, saturation, brightness, and alpha for the HSB
color model.

Color.fromHSBA(h,s,b,a)

• h (hue) is any floating-point number. The floor of
this number is subtracted from it to create a fraction
between 0 and 1, which is then multiplied by 360.

• s (saturation) is a floating-point value between zero
and one (numbers within the range 0.0-1.0).

• b (brightness) is a floating-point value between
zero and one (numbers within the range 0.0-1.0).

• a (alpha) is the alpha component.

fromRGBA(r Numeric, g Numeric, b
 Numeric)

Returns an opaque sRGB Color object with the
specified red, green, and blue values.

Color.fromRGBA(r,g,b)

• r (red) is within the range (0.0 - 255)
• g green) is within the range (0.0 - 255)
• b (blue) is within the range (0.0 - 255)

Alpha defaults to 1.0. The color used depends on the
best match from the colors available for the output
device.

fromRGBA(r Numeric, g Numeric, b
 Numeric, a Numeric)

Returns an sRGB Color object with the specified red,
green, blue, and alpha values.

fromRGBA(r,g,b,a)

• r (red) is within the range (0.0 - 255)
• g green) is within the range (0.0 - 255)
• b (blue) is within the range (0.0 - 255)
• a (alpha) is within the range (0.0 - 255)

The color used depends on the best match from the
colors available for the output device.

Example - Color Class Method

Color.fromRGBA(0.5,0.5,0.5,0.5)

Object Methods

Color object methods are called on a Color object instance. Object methods require an object reference.
When you invoke the method, it is prefixed with the object instance name and the "." character.

Report Writer | 810

Table 201: Object Methods

Name Description

brighter()
Brightens the Color object.

Creates a brighter version of the Color object by
applying an arbitrary scale factor to each of the
RGB components. Invoking a series of invocations
of the darker and brighter methods might give an
inconsistent result because of rounding errors.

darker()
Darkens the Color object.

Creates a darker version of the Color object by
applying an arbitrary scale factor to each of the
RGB components. Invoking a series of invocations
of the darker and brighter methods might give an
inconsistent result because of rounding errors.

getAlpha()
Returns the Numeric alpha component in the range
0-255.

getBrightness()
Returns the Numeric brightness value of the value in
the HSB color model

getBlue()
Returns the Numeric blue component in the range
0-255 in the default sRGB space.

getGreen()
Returns the Numeric green component in the range
0-255 in the default sRGB space.

getRGBA() Returns the Numeric RGB value representing the
color in the default sRGB color model. Bits 24-31 are
alpha, 16-23 are red, 8-15 are green, and 0-7 are
blue.

getHue()
Returns the hue value of the value in the HSB color
model.

getRed()
Returns the Numeric red component in the range
0-255 in the default sRGB space.

getSaturation()
Returns the saturation value of the value in the HSB
color model.

toString()
Return a string representation in the form "#argb".

Example - Color Object Method

Color.RED.darker()

The Date Class
The Date class provides methods for date formatting and parsing.

• Syntax

Report Writer | 811

• Methods
• Usage
• Formatting Symbols for Dates

Syntax

Date

Methods

Class methods are static methods that do not require an object. The method name is prefixed by the class
name.

Table 202: Class Methods (Static Member Methods)

Name Description

fromIsoValue(String value)
Constructs a Date from the date value; returns a Date
instance representing the value. The value is expected
in iso format ("YYYY-MM-DD").

Using the function guarantees that the Date value is
constructed correctly without the danger of runtime
parse errors due to changing 4GL date formatting or
locale settings.

parseString(String value,
 String format)

Constructs a Date from value. The parsing is based on
the passed format pattern. See Formatting Symbols
for Dates.

format(java.lang.String.format)
Formats a Date as a String according to a format
specification. The format specification is 4GL-
compatible. Returns a string representation of the
date. See Formatting Symbols for Dates.

today()
Constructs a Date from the current date value.
Returns a Date instance representing the current date.

Usage

With RTL classes, it is not possible to create and subclass objects. The new keyword is not supported.

These static methods do not require a Date object instance. When you invoke the method, it is
prefixed with the Date class name and the '.' For example, this expression uses the isoValue of
the variable orderline.orders.orderdate to create a valid date for this value in the specified format:
Date.fromIsoValue(orderline.orders.orderdate.isoValue).format("DDD DD MMM
YYYY")

Formatting symbols

The formatting symbol can use either uppercase or lowercase letters.

Table 203: Formatting Symbols for Dates

Character Description

dd Day of the month as a two-digit integer.

Report Writer | 812

Character Description

ddd Three-letter English-language abbreviation of the day
of the week, for example, Mon, Tue.

mm Month as a two-digit integer.

mmm Three-letter English-language abbreviation of the
month, for example, Jan, Feb.

yy Year, as a two-digit integer representing the two
trailing digits.

yyyy Year as a four-digit number.

The Enum Classes
These classes provide the list of valid values for form item properties that are of type Enum.

• The Alignment Class on page 812
• The TextAlignment Class on page 813
• The BaselineType Class on page 813
• The LayoutDirection Class on page 813
• The Y-SizeAdjustment Class on page 814
• The PageNoFormat Class on page 814
• The TrimText Class on page 815
• The X-SizeAdjustment Class on page 815
• FloatingBehavior Class on page 815
• Section Class on page 816
• XYChartDrawAs Class on page 816
• MapChartDrawAs Class on page 817
• CategoryChartDrawAs Class on page 817
• CodeType Class on page 817
• BorderStyles Classes on page 819

The Alignment Class
Public static member variables that represent the valid values for the Alignment property.

Syntax

Alignment

This class consists of a set of public static member variables that represent the valid values for the
alignment property.

Table 204: Member Objects (Static Member Variables)

Name

Baseline

Center

Far

Near

None

Report Writer | 813

The TextAlignment Class
Public static member variables that represent the valid values for the textAlignment property.

Syntax

TextAlignment

The class consists of a set of public static member variables that represent the valid values for the
textAlignment property.

Table 205: Member Objects (Static Member Variables)

Name

Center

Left

Right

The BaselineType Class
public static member variables that represent the valid values for the baselineType property.

Syntax

BaselineType

The class consists of a set of public static member variables that represent the valid values for the
baselineType property.

Table 206: Member Objects (Static Member Variables)

Name

Leftleft

Leftright

Rightleft

Rightright

The LayoutDirection Class
Public static member variables that represent the valid values for the layoutDirection property.

Syntax

LayoutDirection

The class consists of a set of public static member variables that represent the valid values for the
layoutDirection property.

Table 207: Member Objects (Static Member Variables)

Name

BottomToTop

HorizontalNatural

Report Writer | 814

Name

LeftToRight

RightToLeft

Swapped

TopToBottom

TurnLeft

TurnRight

Unturned

UpsideDown

VerticalNatural

VerticalUnnatural

The Y-SizeAdjustment Class
Public static member variables that represent the valid values for the Y-SizeAdjustment property.

Syntax

Y-SizeAdjustment

The class consists of a set of public static member variables that represent the valid values for the Y-
SizeAdjustment property.

Table 208: Member Objects (Static Member Variables)

Name

ExpandtoParent

ShrinktoChildren

The PageNoFormat Class
Public static member variables that represent the valid values for the pageNoFormat property.

Syntax

PageNoFormat

The class consists of a set of public static member variables that represent the valid values for the
pageNoFormat property.

Table 209: Member Objects (Static Member Variables)

Name

Arabic

Lowerroman

Upperroman

Report Writer | 815

The TrimText Class
Public static member variables that represent the valid values for the trimText property.

Syntax

TrimText

The class consists of a set of public static member variables that represent the valid values for the trimText
property.

Table 210: Member Objects (Static Member Variables)

Name

Both

Compress

Left

Right

The X-SizeAdjustment Class
Public static member variables that represent the valid values for the X-SizeAdjustment property.

Syntax

X-SizeAdjustment

The class consists of a set of public static member variables that represent the valid values for the X-
SizeAdjustment property.

Table 211: Member Objects (Static Member Variables)

Name

ExpandtoParent

ShrinktoChildren

FloatingBehavior Class
Public static member variables that represent the valid values for the floatingBehavior property.

Syntax

FloatingBehavior

The class consists of a set of public static member variables that represent the valid values for the
property.

Table 212: Member Objects (Static Member Variables)

Name

Encloses

Free

Report Writer | 816

Section Class
Public static member variables that represent the valid values for the Section property.

Syntax

Section

The class consists of a set of public static member variables that represent the valid values for the
property.

Table 213: Member Objects (Static Member Variables)

Name

AnyPageFooter

AnyPageHeader

EvenPageHeader

EvenPageFooter

FirstPageHeader

FirstPageFooter

OddPageFooter

OddPageHeader

ItemSeparator

XYChartDrawAs Class
Public static member variables that represent the valid values for the XY chart DrawAs property.

Syntax

XYChartDrawAs

The class consists of a set of public static member variables that represent the valid values for the
property.

Table 214: Member Objects (Static Member Variables)

Name

Polar

Scatter

Area

StackedArea

Line

Step

StepArea

TimeSeries

Report Writer | 817

MapChartDrawAs Class
Public static member variables that represent the valid values for the map chart DrawAs property.

Syntax

MapChartDrawAs

The class consists of a set of public static member variables that represent the valid values for the
property.

Table 215: Member Objects (Static Member Variables)

Name

Bar

Bar3D

Pie

Pie3D

Ring

CategoryChartDrawAs Class
Public static member variables that represent the valid values for the category chart DrawAs property.

Syntax

CategoryChartDrawAs

The class consists of a set of public static member variables that represent the valid values for the
property.

Table 216: Member Objects (Static Member Variables)

Name

Area

Bar

Bar3D

Line

Line3D

StackedArea

StackedBar

Waterfall

CodeType Class
Public static member variables that represent the valid values for the codeType property.

Syntax

CodeType

Report Writer | 818

The class consists of a set of public static member variables that represent the valid values for the
property.

Table 217: Member Objects (Static Member Variables)

Name

Upc_a

Upc_e

Upc_supplemental_2

Upc_supplemental_5

Gs1_13

Ean_13

Gs1-8

Ean_8

Gs1_supplemental_2

Ean_supplemental_2

Gs1_supplemental_5

Ean_supplemental_5

Code_128

Gs1_code_128

Ean_Code_128

Code_2_5_industrial

Code_2_5_inverted

Code_2_5_IATA

Code_2_5_interleaved

Code_2_5_matrix

Code_2_5_datalogic

Code_BCD_matrix

Code_11_matrix

Code_39

Code_39_extended

Code_32

Code_93

Code_93_extended

Codabar_18

Codabar_2

Pdf_417

Report Writer | 819

Name

Data_matrix

Gs1_data_matrix

Ean_data_matrix

Qr_code

Intelligent_mail

BorderStyles Classes
Public member variables that represent the valid values for the various border style properties.

Syntax

The attributes borderStyle, borderTopStyle, borderRightStyle,borderBottomStyle and
borderLeftStyle have a set of public member variables that represent the valid values for the property:

Table 218: Member Objects (Static Member Variables)

Name

Dashed

Dotted

Double

Groove

Inset

Outset

Ridge

solid

The FGLNumericVariable Class
For every Genero numeric variable (INTEGER, SMALLINT, FLOAT, SMALLFLOAT, DECIMAL and MONEY)
of report data, an object is created that is an instance of an FGLNumericVariable. These objects hold the
value of the 4GL variable.

• Syntax on page 819
• Member Objects on page 819
• Class Methods on page 820
• Class Usage on page 820

Syntax

FGLStringVariable

Member Objects

Defined fields for the FGLNumericVariable class.

Report Writer | 820

Table 219: Member Objects (Member Variables)

Name Description

value A Numeric containing the value of the field; this is the
same as the value of the 4GL variable. See Usage.

fglValue A String containing the value of the field as formatted
by the DVM. See Usage.

name A String specifying the name of the field.

caption A String specifying the title of the field.

type A String specifying the type of the field.

Class Methods

This subclass inherits the public methods of the Numeric class.

Class Usage

In addition to the value of the 4GL variable, these objects contain member variables, among
which is the variable value also containing the numeric value. For this reason, it is legal to write
"order_line.itemprice" in your expression as a shortcut for "order_line.itemprice.value".

The member variable fglValue contains a String representing the numeric value as formatted by the
DVM, taking into consideration such parameters as USING, DBMONEY, etc. In contrast, the member
variable value is a numeric value without formatting.

The FGLStringVariable Class
For every CHAR, VARCHAR, STRING, TEXT, DATE, DATETIME and INTERVAL Genero variable of report
data, an object is created that is an instance of an FGLStringVariable. These objects hold the value of
the Genero variable.

• Syntax
• Member Objects on page 820
• Class Methods on page 821
• Class Usage on page 821

Syntax

FGLStringVariable

Member Objects
Defined fields for the FGLStringVariable class.

Table 220: Member Objects (Member Variables)

Name Description

value A String containing the value of the field; this is the
same as the value of the Genero variable. See Usage.

name A String specifying the name of the field.

caption A String specifying the title of the field.

type A String specifying the type of the field.

Report Writer | 821

Class Methods

This subclass inherits the public methods of the String class.

Class Usage

In addition to the value of the Genero variable, these objects contain a member variable "value" which
also contains the value. For this reason, it is legal to write "order_line.billState" in your expression
as a shortcut for "order_line.billState.value".

The Numeric Class
Details about the Numeric class and its public members.

Values for this data type are limited to 15 significant digits.

• Syntax
• Methods
• Usage
• Examples

Syntax

Numeric

Report Writer | 822

Methods

Table 221: Object Methods

Name Description

abs()
Returns the absolute value.

atan2(Numeric x)
Returns the angle theta from the conversion of
rectangular coordinates (x, y) to polar coordinates (r,
theta)

byteValue()
Returns the value converted to a byte.

cbrt()
Returns the cube root of a numeric value.

ceil()
Returns the smallest numeric value that is greater
than or equal to the value and is equal to a
mathematical integer.

cos()
Returns the trigonometric cosine of an angle.

cosh()
Returns the hyperbolic cosine of a numeric value.

exp()
Returns the base -e exponential.

floor()
Returns the largest numeric value that is less than
or equal to the value and is equal to a mathematical
integer.

format("format-string") Converts the value to a string representation defined
by a format string.

For example, for DECIMAL and FLOAT data types,
format-string consists of pound signs (#) that
represent digits and a decimal point; that is, "###.##"
produces three places to the left of the decimal point

Report Writer | 823

Name Description

and exactly two to the right. Additional options for the
string are listed in the Usage section, format.

getExponent()
Returns the unbiased exponent used in the
representation of a numeric value.

intValue()
Returns the value converted to an integer.

isInfinite()
Returns TRUE if the value has infinite value

isNaN()
Returns TRUE if the value is not a number

isNull() Returns true if toDouble() is 0 and the object is
tagged as null, otherwise false. This is the case for
null valued input variables read from the input stream.

For backward compatibility, null values do not
have special behavior when used with the various

Report Writer | 824

Name Description

operators. Specifically a numeric input variable that is
null behaves in arithmetic like the 0 value.

log()
Returns the natural logarithm (base e) of a numeric
value.

log10()
Returns the base 10 logarithm of a numeric value.

max(Numeric b)
Returns the greater of two values.

min(Numeric b)
Returns the smaller of two values.

rint()
Returns the Numeric value that is closest in value to
the value and is equal to a mathematical integer.

round()
Returns the closes integer to the value.

signum()
Returns the signum function of the value; zero if the
value is zero, 1.0 if the value is greater than zero, -1.0
if the value is less than zero.

sin()
Returns the trigonometric sine, measured in radians.

sinh()
Returns the hyperbolic sine of a numeric value.

sqrt()
Returns the tangent of an angle measured in radians.

tan()
Returns the tangent of an angle measured in radians.

tanh()
Returns the hyperbolic tangent of a numeric value.

toBoolean() Returns the Boolean false when the value is 0.
Returns true for any other value.

toChar()
Returns the unicode character representation of a
numeric value.

toColor() Returns a color object. The value is interpreted as a
RGB integer.

toDegrees() Converts the value from radians to degrees.

toRadians() Converts the value from degrees to radians.

toString()
Converts the value to a string representation.

getPhysicalPageNumber()
Gets the current page number of the physical page.

getTotalNumberOfPhysicalPages()
Gets the total number of physical pages.

getPageNumber(String pageName)
Gets the page number of the specified page.

getTotalNumberOfPages(String pageName)
Gets the total number of pages for the specified page.

Report Writer | 825

Usage

Important: This data type is limited to 15 significant digits.

With RTL classes, it is not possible to create and subclass objects. The new keyword is not supported.

abs()

abs()

Returns the absolute value of an int value:

• If the value is not negative, the value is returned.
• If the value is negative, the negation of the value is returned.
• If the value is equal to the value of Integer. MIN_VALUE, the most negative representable int value, the

result is that same value, which is negative.

cos()

cos()

Returns the trigonometric cosine of an angle. However, If the value is NaN or an infinity, then the result is
NaN.

The computed result must be within 1 ulp of the exact result. Results must be semi-monotonic.

sin()

sin()

Returns the trigonometric sine of an angle. However,

• If the value is NaN or an infinity, then the result is NaN.
• If the value is zero, then the result is a zero with the same sign as the value.

The computed result must be within 1 ulp of the exact result. Results must be semi-monotonic.

tan()

tan()

Returns the trigonometric tangent of an angle. Special cases:

• If the value is NaN or an infinity, then the result is NaN.
• If the value is zero, then the result is a zero with the same sign as the value.

The computed result must be within 1 ulp of the exact result. Results must be semi-monotonic.

byteValue()

byteValue()

Returns the value converted to a byte .

cbrt()

cbrt()

Report Writer | 826

Returns the cube root of a double value. For positive finite x, cbrt(-x) == -cbrt(x); that is, the cube root of a
negative value is the negative of the cube root of that value's magnitude.

Special cases:

• If the value is NaN, then the result is NaN.
• If the value is infinite, then the result is an infinity with the same sign as the value.
• If the value is zero, then the result is a zero with the same sign as the value.

The computed result must be within 1 ulp of the exact result.

ceil()

ceil()

Returns the smallest (closest to negative infinity) double value that is greater than or equal to the value and
is equal to a mathematical integer.

Special cases:

• If the value is already equal to a mathematical integer, then the result is the same as the value.
• If the value is NaN or an infinity or positive zero or negative zero, then the result is the same as the

value.
• If the value is less than zero but greater than -1.0, then the result is negative zero.

Note that the value of Math.ceil(x) is exactly the value of -Math.floor(-x).

cosh()

cosh()

Returns the hyperbolic cosine of a double value. The hyperbolic cosine of x is defined to be (ex + e-x)/2
where e is Euler's number.

Special cases:

• If the value is NaN, then the result is NaN.
• If the value is infinite, then the result is positive infinity.
• If the value is zero, then the result is 1.0.

The computed result must be within 2.5 ulps of the exact result.

exp()

exp()

Returns Euler's number e raised to the power of a double value. Special cases:

• If the value is NaN, the result is NaN.
• If the value is positive infinity, then the result is positive infinity.
• If the value is negative infinity, then the result is positive zero.

The computed result must be within 1 ulp of the exact result. Results must be semi-monotonic.

floor()

floor()

Returns the largest (closest to positive infinity) double value that is less than or equal to the value and is
equal to a mathematical integer.

Report Writer | 827

Special cases:

• If the value is already equal to a mathematical integer, then the result is the same as the value.
• If the value is NaN or an infinity or positive zero or negative zero, then the result is the same as the

value.

getExponent()

getExponent()

Returns the unbiased exponent used in the representation of a float.

Special cases:

• If the value is NaN or infinite, then the result is Float. MAX_EXPONENT + 1.
• If the value is zero or subnormal, then the result is Float. MIN_EXPONENT -1.

intValue()

intValue()

returns the value converted to an integer (signed 32 bit)

isInfinite()

isInfinite()

returns the Boolean value true in case the value has the infinite value

isNaN()

isNaN()

returns the Boolean value true in case that the value is not a number

log()

log()

Returns the natural logarithm (base e) of a double value.

Special cases:

• If the value is NaN or less than zero, then the result is NaN.
• If the value is positive infinity, then the result is positive infinity.
• If the value is positive zero or negative zero, then the result is negative infinity.

The computed result must be within 1 ulp of the exact result. Results must be semi-monotonic.

log10()

log10()

Returns the base 10 logarithm of a double value.

Special cases:

• If the value is NaN or less than zero, then the result is NaN.
• If the value is positive infinity, then the result is positive infinity.

Report Writer | 828

• If the value is positive zero or negative zero, then the result is negative infinity.
• If the value is equal to 10n for integer n, then the result is n.

The computed result must be within 1 ulp of the exact result. Results must be semi-monotonic.

rint()

rint()

Returns the double (floating-point) value that is closest in value to the value and is equal to a mathematical
integer. If two double values that are mathematical integers are equally close, the result is the integer value
that is even.

Special cases:

• If the value is already equal to a mathematical integer, then the result is the same as the value.
• If the value is NaN or an infinity or positive zero or negative zero, then the result is the same as the

value.

Returns:

the closest floating-point value to a that is equal to a mathematical integer.

round()

round()

Returns the closest int to the value. The result is rounded to an integer by adding 1/2, taking the floor of the
result, and casting the result to type int. In other words, the result is equal to the value of the expression:

(int)Math.floor(a + 0.5f)

Special cases:

• If the value is NaN, the result is 0.
• If the value is negative infinity or any value less than or equal to the value of Integer.MIN_VALUE, the

result is equal to the value of Integer.MIN_VALUE.
• If the value is positive infinity or any value greater than or equal to the value of Integer.MAX_VALUE,

the result is equal to the value of Integer.MAX_VALUE.

See Also:

Integer.MAX_VALUE, Integer.MIN_VALUE

signum ()

signum ()

Returns the signum function of the value; zero if the value is zero, 1.0 if the value is greater than zero, -1.0
if the value is less than zero.

Special Cases:

• If the value is NaN, then the result is NaN.
• If the value is positive zero or negative zero, then the result is the same as the value.

Returns:

the signum function of the value

Report Writer | 829

sinh()

sinh()

Returns the hyperbolic sine of a double value. The hyperbolic sine of x is defined to be (ex - e-x)/2 where e
is Euler's number.

Special cases:

• If the value is NaN, then the result is NaN.
• If the value is infinite, then the result is an infinity with the same sign as the value.
• If the value is zero, then the result is a zero with the same sign as the value.

The computed result must be within 2.5 ulps of the exact result.

sqrt()

sqrt()

Returns the correctly rounded positive square root of a double value.

Special cases:

• If the value is NaN or less than zero, then the result is NaN.
• If the value is positive infinity, then the result is positive infinity.
• If the value is positive zero or negative zero, then the result is the same as the value.

Otherwise, the result is the double value closest to the true mathematical square root of the value

tanh()

tanh()

Returns the hyperbolic tangent of a double value. The hyperbolic tangent of x is defined to be (ex - e-x)/(ex
+ e-x), in other words, sinh(x)/cosh(x). Note that the absolute value of the exact tanh is always less than 1.

Special cases:

• If the value is NaN, then the result is NaN.
• If the value is zero, then the result is a zero with the same sign as the value.
• If the value is positive infinity, then the result is +1.0.
• If the value is negative infinity, then the result is -1.0.

The computed result must be within 2.5 ulps of the exact result. The result of tanh for any finite input must
have an absolute value less than or equal to 1. Note that once the exact result of tanh is within 1/2 of an
ulp of the limit value of ±1, correctly signed ±1.0 should be returned.

toChar()

toChar()

Converts the value to a unicode character representation.

For example, 65.toChar() yields "A".

atan2(Numeric x))

atan2(Numeric x))

Report Writer | 830

Returns the angle theta from the conversion of rectangular coordinates (x, y) to polar coordinates (r, theta).
This method computes the phase theta by computing an arc tangent of y/x in the range of -pi to pi.

Special cases:

• If either value is NaN, then the result is NaN.
• If the value is positive zero and the argument is positive, or the value is positive and finite and the

argument is positive infinity, then the result is positive zero.
• If the value is negative zero and the argument is positive, or the value is negative and finite and the

argument is positive infinity, then the result is negative zero.
• If the value is positive zero and the argument is negative, or the value is positive and finite and the

argument is negative infinity, then the result is the double value closest to pi.
• If the value is negative zero and the argument is negative, or the value is negative and finite and the

argument is negative infinity, then the result is the double value closest to -pi.
• If the value is positive and the argument is positive zero or negative zero, or the value is positive infinity

and the argument is finite, then the result is the double value closest to pi/2.
• If the value is negative and the argument is positive zero or negative zero, or the value is negative

infinity and the argument is finite, then the result is the double value closest to -pi/2.
• If both value and argument are positive infinity, then the result is the double value closest to pi/4.
• If the value is positive infinity and the argument is negative infinity, then the result is the double value

closest to 3*pi/4.
• If the value is negative infinity and the argument is positive infinity, then the result is the double value

closest to -pi/4.
• If both value and argument are negative infinity, then the result is the double value closest to -3*pi/4.

The computed result must be within 2 ulps of the exact result. Results must be semi-monotonic.

Parameters:

x - the abscissa coordinate

max(Numeric b)

max(b)

Returns the greater of two int values. That is, the result is the argument closer to the value of
Integer.MAX_VALUE. If the argument has the same value as the object's value the result is that same
value.

Parameters:

• b - an argument.

See Also: Long.MAX_VALUE

min(Numeric b)

min(b)

Returns the smaller of two int values. That is, the result is the argument closer to the value of
Integer.MIN_VALUE. If the argument has the same value as the objects value the result is that same
value.

Parameters:

• b - an argument.

See Also: Long.MIN_VALUE

Report Writer | 831

format("format-string")

format("format-string")

Converts the value to a string representation defined by a format string. The format string syntax is
compatible to the D4GL "USING" format string. The formatting takes the values of the environment
variables DBFORMAT and DBMONEY into account.

Table 222: Formatting symbols

Character Description

* Fills with asterisks any position that would
otherwise be blank.

& Fills with zeros any position that would otherwise be
blank.

This does not change any blank positions in the
display.

< Causes left alignment.

, (comma) Defines the position of the thousands separator.
The thousands separator is not displayed if there
are no digits to the left. By default, the thousands
separator is a comma, but it can be another
character as defined by DBFORMAT.

. (period) Defines the position of the decimal separator.
Only a single decimal separator may be specified.
By default, the decimal separator is a period,
however it can be another character as defined by
DBMONEY or DBFORMAT.

- Displays a minus sign for negative numbers.

$ This is the placeholder for the front specification of
DBMONEY or DBFORMAT.

(Displayed as left parentheses for negative numbers
(accounting parentheses).

) Displayed as right parentheses for negative
numbers (accounting parentheses).

Examples

1. This example converts the number 65 to "A", its unicode character representation: 65.toChar()
2. This example formats the numeric value of overall total as a string:

overalltotal.format("###.##")

The Runtime Class
The Runtime class provides methods that simplify the creation of dynamic designs that change behavior
based on the runtime setup.

• Syntax
• Methods
• Usage

Report Writer | 832

Syntax

Runtime

Methods

Class methods are static methods that do not require an object. The method name is prefixed by the class
name.

Table 223: Class Methods (Static Member Methods)

Name Description

getDebugLevel()

Numeric, returns the current debug level specified
in the environment variable GREDEBUG, or 0 if no
debug level was set.

getEnvironmentVariable(
 String variableName)

Returns a String containing the value of the specified
environment variable.

getOutputDeviceName() Returns a STRING indicating the output device name
selected in the API call fgl_report_selectDevice. Can
be one of the following:

• PDF
• XLS
• XLSX
• HTML
• Image
• Printer
• Postscript
• SVG
• Browser
• RTF
• OORTF

getPrinterMediaName()

Returns a STRING indicating the
media name specified in the API call
fgl_report_setPrinterMediaName.

getPrinterMediaSizeName()

Returns a STRING indicating the media
size name specified in the API call
fgl_report_setPrinterMediaSizeName.

getPrinterMediaTray()

Returns a STRING indicating the media
tray name specified in the API call
fgl_report_setPrinterMediaTray.

getPrinterName()
Returns a STRING indicating the printer name
specified in the API call fgl_report_setPrinterName.

getSVGPaperSource() Returns a STRING indicating the
paper source specified in the API call
fgl_report_setSVGPaperSource; can be:

"Auto", "Cassette", "Envelope", "EnvelopeManual",
"FormSource", "LargeCapacity", "LargeFormat",

Report Writer | 833

Name Description

"Lower", "Middle", "Manual", "OnlyOne", "Tractor" or
"SmallFormat"

getSVGPrinterName()

Returns a STRING indicating the
printer name specified in the API call
fgl_report_setSVGPrinterName.

producingBrowserOutput()

BOOLEAN; returns TRUE if the device name selected
in the API call fgl_report_selectDevice was "Browser";
otherwise FALSE.

producingExcelOutput()

BOOLEAN; returns TRUE if the device name selected
in the API call fgl_report_selectDevice was "XLS" or
"XLSX"; otherwise FALSE.

producingHTMLOutput()

BOOLEAN; returns TRUE if the device name selected
in the API call fgl_report_selectDevice was "HTML";
otherwise FALSE.

producingImageOutput()

BOOLEAN; returns TRUE if the device name selected
in the API call fgl_report_selectDevice was "Image";
otherwise FALSE.

producingOORTFOutput()

BOOLEAN; returns TRUE if the device name selected
in the API call fgl_report_selectDevice was "OORTF";
otherwise FALSE.

producingPDFOutput()

BOOLEAN; returns TRUE if the device name selected
in the API call fgl_report_selectDevice was "PDF";
otherwise FALSE.

producingPostscriptOutput()

BOOLEAN; returns TRUE if the device name
selected in the API call fgl_report_selectDevice was
"Postscript"; otherwise FALSE.

producingRTFOutput()

BOOLEAN; returns TRUE if the device name selected
in the API call fgl_report_selectDevice was "RTF";
otherwise FALSE.

producingSVGOutput()

BOOLEAN; returns TRUE if the device name selected
in the API call fgl_report_selectDevice was "SVG";
otherwise FALSE.

producingXLSOutput()

BOOLEAN; returns TRUE if the device name selected
in the API call fgl_report_selectDevice was "XLS";
otherwise FALSE.

producingXLSXOutput()

BOOLEAN; returns TRUE if the device name selected
in the API call fgl_report_selectDevice was "XLSX";
otherwise FALSE.

producingPrinterOutput()

BOOLEAN; returns TRUE if the device name selected
in the API call fgl_report_selectDevice was "Printer";
otherwise FALSE.

producingForPreview()

BOOLEAN; returns TRUE if preview was selected
in the API call fgl_report_selectPreview; otherwise
FALSE.

xlsPagesAreMerged()

BOOLEAN, returns TRUE if page
merging was selected in the API call
fgl_report_configureXLSDevice; otherwise FALSE.

Report Writer | 834

Usage

The class provides a number of methods that simplify the job of creating dynamic designs that change
behavior based on the runtime setup.

With RTL classes, it is not possible to create and subclass objects. The new keyword is not supported.

The methods can be used from within RTL expressions. Some common uses might be:

• To suppress headers and footers when Excel output is selected.
• To conditionally Insert a logo based on the printer tray is selected.
• To set a background color when debugging is enabled

These static methods do not require a Runtime object instance. When you invoke the method, it is
prefixed with the Runtime class name and the '.' For example, you can suppress a header by setting its "
visibilityCondition" property to this expression:

"!Runtime.producingExcelOutput()"

The String Class
Details about the String class and its public members.

• Syntax
• Methods
• Usage and Examples

Syntax

String

Methods

Table 224: Object Methods

Name Description

charAt(index Numeric)
 RETURNING result String

Returns a String containing the character at the
specified index in the current String.

contains(s String)
 RETURNING result Boolean

Returns a Boolean value (TRUE/FALSE) specifying
whether s is contained within the current String.

endsWith(s String)
 RETURNING result Boolean

Returns a Boolean value (TRUE/FALSE) specifying
whether the current String ends with s.

equals(s String)
 RETURNING result Boolean

Returns a Boolean value (TRUE/FALSE) specifying
whether s matches the current String. If one of the
Strings is null the method returns FALSE.

equalsIgnoreCase(s String)
 RETURNING result Boolean

Returns a Boolean value (TRUE/FALSE) specifying
whether s matches the current String, ignoring
character case. If one of the Strings is null the method
returns FALSE.

format (number Numeric, format Enum)
Sets the format of the page number string for a
PAGENOBOX. The value for format can be: ARABIC,
LOWERROMAN, UPPERROMAN

Report Writer | 835

Name Description

 RETURNING result String

indexOf(s String)
 RETURNING result Numeric

Returns a Numeric value representing the index of s
within the current String.

indexOf(s String , index Numeric)
 RETURNING result Numeric

Returns a Numeric value representing the index of s
within the current String, starting from byte position
index. Returns zero if the substring was not found.
Returns -1 if the current String is null.

isEmpty()
 RETURNING result Boolean

Returns a Boolean value. Returns true if the current
string has a length of zero (length()=0), otherwise
false.

isNull()
 RETURNING result Boolean

Returns a Boolean value. Returns true if the current
string has a length of zero (length()=0) and the
string is tagged as null, otherwise false. This is the
case for null valued input variables read from the input
stream.

For backward compatibility, null values do not
have special behavior when used with the various
operators. Specifically an input variable of type string
that is null behaves like the empty string.

lastIndexOf(s String)
 RETURNING result Numeric

Returns a Numeric value representing the index
within the current String of the last occurrence of s,
searching backward.

lastIndexOf(s String , index
 Numeric)
 RETURNING result Numeric

Returns a Numeric value representing the index
within the current String of the last occurrence of s,
searching backward. starting at the specified position
index.

length()
 RETURNING result Numeric

Returns a Numeric value representing the length of
the current String.

matches(s String)
 RETURNING result Boolean

Returns a Boolean value specifying whether the
current String matches the regular expressions.

replace(old String, new String)
Replaces old in the current String with new.

replaceAll(old String, new String)
Replaces every occurrence of old in the current String
with new.

replaceFirst(old String, new String)
Replaces every occurrence of old in the current String
with new.

startsWith(s String)
Returns a Boolean value specifying whether the
current String begins with s.

Report Writer | 836

Name Description

 RETURNING result Boolean

startsWith(s String , index Numeric)
 RETURNING result Boolean

Returns a Boolean value specifying whether the
substring in the current String beginning at the position
index contains s. The first byte of a string is at position
0.

subString(sindex Numeric, eindex
 Numeric)
 RETURNING result String

Returns the substring starting at byte position sindex
and ending at the character at eindex-1. The first byte
of a string is at position 0.

subString(index Numeric)
 RETURNING result String

Returns the substring starting at the position index
in the current String. The first byte of a string is at
position 0.

toLowerCase()
Converts the current String to lowercase.

toString()
Converts the current Numeric value to a String.

toUpperCase()
Converts the current String to uppercase.

translate()
 RETURNING result String

Uses the current String as the key for a lookup in
Genero localization files; returns any entry found,
otherwise returns the current String itself.

trim()
Removes white space characters from the beginning
and end of the current String.

trimCompress()
Removes white space characters at the beginning and
end of the current String, as well as any contained
white space.

trimLeft()
Removes white space characters from the beginning
of the current String.

trimRight()
Removes white space characters from the end of the
current String.

urlEncode()
 RETURNING result String

Returns a URL encoding of the current String.

Usage and Examples

With RTL classes, it is not possible to create and subclass objects. The new keyword is not supported.

All literal String values in an expression must be delimited by double quotes.

Report Writer | 837

All the methods require an object instance. When you invoke the method, it is prefixed with the object
instance name and the "." character. You can get an object instance by referencing a 4GL variable or by
calling a method on another object. The object can be a literal value, for example:

"Test".length()

Numeric data items in WordBoxes and WordWrapBoxes

If you enter an expression for the text property of a WordBox or WordWrapBox, the value must be a String.
You can use the toString() function in your expressions to convert numbers to Strings. When you drag a
Numeric data item onto the Report Design Window, it is automatically placed in a WordBox element, and
an expression for the text property is created to convert it to a String.

For example:

order_line.unitprice.toString()

The indexes of a String (example subString)

When specifying the character position (index) of a string, the first character value is at position 0.

For example, when using the subString function, the substring begins at the specified startindex and ends
at the character at endindex -1. The length of the string is endIndex minus startIndex:

order_line.billState.subString(1,5)

If the value of the String billState is "smiles" (indexes 012345), the substring returned is "mile", and the
length of the string is 5 minus 1 = 4.

Concatenating Strings

Use the + operator to concatenate strings. For example:

("Total:"+" "+order_line.totalorderprice).toString()

This expression returns the current value of totalorderprice as part of a String value:

Total: 12.95

Upgrading Genero Report Designer
These topics talk about what steps you need to take to upgrade to the next release of Genero Report
Designer, and allows you to identify which features were added for a specific version.

• What's new in Genero Report Designer, v 3.00 on page 656
• What's new in Genero Report Designer, v 2.50 on page 838

Upgrading reports from prior versions
The gsreport command line utility updates report design documents (.4rp) from previous versions to
the current version.

Syntax

gsreport [OPTIONS] filename [filename [...]]

Report Writer | 838

Table 225: gsreport options

Option Description

-h Show help.

-V Display program name and version.

-c Convert old format 4rp files to new format

-encoding ENCODING Sets the encoding to ENCODING.

Note: When you use the -h option to display command
help, the default encoding for your current environment
displays.

-translate LOCALE Sets the translation file to LOCALE.

Usage
This command line utility accepts a list of files, separated by a space. To include all report files in a
directory, use the wildcard symbol (*).

Invoked without any options, the program performs a dry run that reports issues but does not modify the
files.

Use option “-c” to convert files to the current version.

Warning: The tool does not back up the files.

If the data schema file (.rdd or .xsd) associated with the report design document is not encoded in
system encoding, the -encoding option should be used to specify the encoding.

If error messages and warnings need to be displayed in a language different from the system language,
the “-translate” option can be use to specify an alternate language.

What's new in Genero Report Designer, v 3.00
This publication includes information about new features and changes in existing functionality.

These changes and enhancements are relevant to this publication.

Table 226: Genero Report Designer, Version 3.00

Overview Reference

Genero Report Designer provides a LastPageFooter section property. See section (Section) on page
754.

Support of Intelligent Mail bar code type. See intelligent-mail on page 795.

New smartParse bar code property for bar code Code-128.
When enabled, this allows you to enter the bar code value, and the
internal code will be computed for you resulting in the shortest visual
representation.

See smartParse (Smart Parse) on
page 755 and code-128 on page
769.

New gs1* bar code aliases. See Bar Code type listing on page
765.

What's new in Genero Report Designer, v 2.50
This publication includes information about new features and changes in existing functionality.

These changes and enhancements are relevant to this publication.

Report Writer | 839

Table 227: Genero Report Designer

Overview Reference

Tables support. See Working with tables on page 691

Pivot tables support. See Working with Pivot Tables on page 703.

Distributed mode. Allows the report engine to be started
as a daemon to which Genero applications can connect to
process the reports, allowing for vastly faster processing for
short documents and improved scalability.

See Distributed Mode on page 859.

PDF enhancements. Improved PDF output, to include
better memory consumption, use of the PDF referencing
mechanism to improve Page M of N processing, share
recurring images and CID keyed fonts support.

No further reference.

Null value support. See The String Class on page 834 and The
Numeric Class on page 821, Conditional
Expressions.

Improved trigger updates. Algorithm improved to remove
the need for frequent manual adjustments for each change
within the data schema (rdd) file.

See Triggers on page 669.

Runtime localization. Report can now be localized
independent of the language settings of the application.

See Change localization settings at runtime on
page 598 and fgl_report_configureLocalization
on page 616.

QR code barcode support. See qr-code on page 796.

Display position of footers. Layout nodes designated as
footers display at the bottom of the Mini Page, providing a
WYSIWYG experience for the report designer.

See Page headers and footers on page 670.

Element creation by context. Create elements based on
the document context in the report design. The object
type created for a field is determined by the location in the
document.

See Adding data values and captions on page
667.

Splitting of oversized elements across pages to prevent
overfill.

See splitOversizedItem (Split Oversized Items) on
page 755.

Rotation of items. The transformTransparently property
changes the effect of the properties layoutDirection and
swapX. When set, the transformation extends to the entire
fragment so that entire documents can be rotated.

See transformTransparently (Transform
transparently) on page 758.

Backside printing support. See Backside printing on page 691.

Chart sorting. For MapCharts and CategoryCharts, the
sortBy property allows you to specify how the data is
sorted: alphabetic, numeric, or by order of declaration of
the chart items. The sortAscending property allows you to
sort in ascending or descending order.

See sortBy (Sort By) on page 755 and
sortAscending (Sort Ascending) on page 755.

Fallback image support when the requested image for an
Image Box is not found.

See Image Box on page 727.

Edit triggers with a Repeat selected items on menu option
in the context menu in the Report Structure view, allowing
you to select a trigger to be the parent of a document node.

See Place a trigger within the report structure on
page 669.

Report Writer | 840

Overview Reference

Class property added for report elements. See class (Class) on page 740.

Display and modify the sizing policy of containers. See Modify the sizing policy of containers on page
664.

The fidelity property has been added to business charts
and the pivot table, applied only when the object in
question is drawn as a table.

See Business Graphs on page 731.

The layout direction of a parent container is highlighted in
the Genero Report Designer by the addition of a dashed,
slowly moving, U-shaped yellow border.

See layoutDirection (Layout Direction) on page
749.

Preference added to control the appearance of RTL
expressions in the document view.

See Customize Report Designer: preferences on
page 806.

Added options to facilitate the mass generation of images
that are sized by their content (e.g. for web sites).

See
fgl_report_setImageUsePageNamesAsFileNames
on page 631 and
fgl_report_setImageShrinkImagesToPageContent
on page 631.

Report templates
A report template defines the layout of a professionally-designed report that you can use to quickly create
an initial report design.

When you have multiple reports with the same structure, but with different data sources, you can use
report templates to provide a consistent look-and-feel for all similar reports.

A template is a .4rt file. It is a general report design that is not tied to a specific data source. It is a
graphical design of a report, and you associate data with data placeholders that have been set in the
graphical design. You decide which data to inject by specifying the data source, when you select the data
schema to use.

Once the data source is selected, two things need to be mapped: the structure of the data with the
structure of the template, and the fields from the schema to the data placeholders in the template.

When creating a report, you can choose from the existing list of templates, or you can create your own
report template.

Create a report from an existing template
In this procedure, the New Report from Template wizard is used to create a report design document
(.4rp) from an existing template.

The New Report from Template wizard results in a report design document (.4rp) being created. Once
created, the report design document is a stand-alone document and no longer has any connection to the
template that created it. Any changes made to the report template (.4rt) have no effect on existing report
designs (.4rp).

1. Select File >> New, Report From Template.

A list of templates appear. You can refine the types of templates that appear in the list by selecting
from the Filters drop-down list. See Template filters in the Designer Wizard on page 846. Click on a
template icon to view a sample of the report that can be created from that template.

2. Select a template and click OK.

The New Report From Template wizard opens.

3. In the Schema Association page, you provide information about the data source.

Report Writer | 841

For complete details on this step, see Schema Association page on page 841.

a) In the Schema Location field, select a data schema (.xsd).
Once selected, a list of available classes appears in the Schema Root combo-box. The Record1
appears in the rows box.

b) In the Schema Root combobox, select the schema root.
c) Complete the Repetitions section, mapping the template repetitions to the schema repetitions.
d) Click Next >.

4. In the Add Fields page, select the fields to display in a report object designed to accept a variable
number of fields.

Refer to the report diagram on the right-hand side of the wizard, the object will be highlighted. A new
Add Fields page displays for each variable-field object contained on your report. For complete details
on this step, see Add Fields page on page 842.

5. On the Variables page, provide values for variables in the template.

The Placeholders section provides you with the names of the various variables you can modify. Click
on a variable, and the report image highlights the area or object that is affected by the variable.

For complete details on this step, see Variables page on page 844.

6. Select Finish.
The report is created as an independent .4rp file. It is no longer associated with the template. It is a
report design definition, and can now be treated as a standard report design document (.4rp) file.

Schema Association page
The Schema Association page in the New Report From Template wizard lets you select your schema
and associate schema repetitions to template repetitions.

There are two sections on the Schema Association page.

Figure 384: Schema Association

Report Writer | 842

Schema

In the Schema Location field, you select the name of the data schema file to use. Selecting this file
populates both the Schema Root combobox and Repetitions section with suggested default values.

The Schema Root field, select the root of the data model. If you have a master and details listed, select
the master. If the data schema was generated with the Business Application Modeler, there will only be
one schema root.

Repetitions

A report template has repetitions. You can repeat the whole document, you can repeat sections of the
report, and you can repeat each row. The sections of the report that repeat are listed under the Template
Repetitions column. When you click on a row, the associated repetition is highlighted in the report sample.

A data schema has repetitions. These repetitions represent the hierarchy of data, as defined in the ORDER
BY clause in the query used to extract the data. Once added to a report design document, these repetitions
are identified by report triggers. When you click on a cell in the Schema Repetitions column, a combobox
appears with a list of possible schema repetition fields to select from.

In completing this section, map the template repetitions to the schema repetitions. If the data schema has
groups defined, the wizard attempts the mapping for you.

To change a group setting, click in the Schema Repetitions cell for that group. A combobox appears,
allowing you to select one of the other grouping fields defined in the data schema. The section of the report
that relates to this group is highlighted in the report sample.

The last row of the repetitions box is for the individual data rows themselves; the rows that will appear in
the listing. For most reports, this is going to be the record defined in the data schema.

Add Fields page
The Add Fields page in the New Report From Template wizard lets you select fields for a report object
that is designed to accept a variable number of fields.

This page displays for each report placeholder that can accept a variable number of fields. As such, it may
not appear at all, or it may appear multiple times. The report image on the right-hand side of the wizard
highlights the area of the report that is in focus when using this page.

There is only one section in the Add Fields page, the Select fields section.

Report Writer | 843

Figure 385: Add Fields

Select the fields to use for the highlighted placeholder. While you can click the double-arrow icon to include
all fields in the placeholder, it is typical to pick a subset of the fields to populate the placeholder.

The order of the columns in the list determines the order they appear in the row.

Aggregate fields

As a report designer, you have received a data schema from the reporting application developer. The
developer may have created this application using the Business Application Modeler. One of the options
available to the developer is to specify that a field be aggregated: give me the sum of the price of all
orders, or give me a count of the number of orders.

In the Select fields list, these aggregates appear for each level of the grouping, as well as for the overall
report.

For example, each order has a field called totalprice, that gives the total price for that order. The
total price is something that is typical to summarize in a report, so the developer will specify that the SUM
should be provided for the totalprice field. The data is grouped by account and by country, which
means we are given fields for the sum of all orders for an account or the sum of all orders for a country.

The names generated for these fields are shown in Figure 386: Aggregate fields on page 844.

Report Writer | 844

Figure 386: Aggregate fields

The non-summarized field in this example is orders_totalprice. When the designer specified that a
summary be kept, the additional fields added were:

• order_totalprice_Account_userid_sum to hold the sum of the totalprice for the current account.
• order_totalprice_Country_code_sum to hold the sum of the totalprice for the current country.
• order_totalprice_grand_sum to hold the running total of the totalprice for all the rows.

Further examination of the fields in our example also show the aggregate fields created for the count
aggregate.

Variables page
The Variables page in the New Report From Template wizard lets you provide values for the variables
defined in the template.

There is only one section in the Variables page, the Placeholders section.

Report Writer | 845

Figure 387: Variables page

In the Placeholders section, a table lists all of the template variables. Click on the row containing a
variable to see its location in the report; as you select a variable, the section of the report that relates to the
variable highlighted in the report sample.

Each variable can be set to a single value. There are three types of values that can be applied:

• A value can be static text. To enter a fixed value, type the value directly into the cell.
• A value can be a field name from your data source. Click on a cell to activate the combobox and select

a field from the list.
• A value can be an expression. Click on the expression icon (fx) to launch the expression editor.

Tip: An expression can be comprised of multiple fields. For example, you may wish to put a
customer's first and last name in a field. You would use an expression to concatenate the fields,
with proper spacing.

The types of variables will depend on the template; a template designer has complete freedom to define
the variables necessary for the template being developed. Here are some examples of types of variables:

• Variables can hold strings. Common variables of this type are report titles.
• Variables can display the content of a field or fields. Common variables of this type would be including

grouping data in sub-sections of a report.
• Variables can be boolean flags. You can have a variable that includes a section to print page totals,

based on whether you specify 1 (true) or 0 (false). For example, see printPageTotals in Figure 387:
Variables page on page 845

These are just a few examples of the types of variables that one may have added to a report template. As
a user of a template, ensure you know what each variable does, and what types of values are expected.

Report Writer | 846

Template filters in the Designer Wizard
The templates provided with Genero Report Designer offer a wide range of options to cater for the many
types of report that you can create. When viewing New Reports from Templates in the Designer Wizard,
you can refine the templates that appear in the list by selecting options from the Filters drop-down list.

To assist you in searching for the template most suited to your report type, you can refine the type of
templates that appear in the list by selecting from the list of filters provided.

Table 228: List of default filters on page 846 provides a list of the default filters and a description of each
filter.

Table 228: List of default filters

Filter Description Sample template

Batcheable Templates that can be used
create a single document/print job
that contains multiple documents
(e.g. you create a single print
job that contains invoices
from different customers). The
difference is that if you create
individual documents, other user
may submit a print request that
will be printed in the middle of the
batch.

Invoice (PULSE).

Correspondence Templates for reports that can be
used correspondence purposes,
typically containing an address.

Simple Invoice (PULSE).

Grand Total Templates that can be used
to print grand totals so that a
running total is calculated with the
data.

Group List with Totals (PULSE).

Group Headers Templates that contain headers
for groups of data.

Group List with Totals (PULSE).

Group Totals Templates that can be used to
print group totals for the groups
available from the data.

Group List with Totals (PULSE).

Invoice Templates that create an invoice
document

DIN 5008 Invoice (PULSE)

List Templates that create a list
report.

Form List (PULSE).

PULSE Theme Templates that use the PULSE
graphical style.

Simple List (PULSE).

Totals Block Templates that create a summary
block on the last page.

Invoice (PULSE).

Two Groups Templates that requires the data
to be grouped by at least two
dimensions.

Simple Invoice (PULSE).

Report Writer | 847

Note: When creating a new template, you can add existing filters to your template or create new
filters to add to the list. See Customize the appearance of a new report template in the wizard on
page 851.

Template expansion at runtime
Genero Report Writer provides the option to expand a template dynamically at runtime.

You can create a program to add data sources and the associated mapping to a template at runtime. This
method uses a report template (.4rt) and design-time APIs to provide the details about the schema, the
schema root, the relationships, and the field mappings in order to output the report, bypassing any need for
a report design document. While more complex to set up, the advantage is that changes to your template
are reflected with each new run of the report.

Genero Report Writer allows you to expand templates at runtime, thereby providing end users with generic
reports. Generic reports typically present themselves to end users in the following three phases:

1. The user is prompted for information regarding the template to use and the values to use (variables
and placeholders). While all the same options as sophisticated as the template assistant in the report
designer are available, typically the following things will be simplified:

• You can't choose multiple different templates. If choices are given, they are limited to styles that
match the data source (e.g. don't offer a grouped list when the data source doesn't have groups).

• You won't be prompted for difficult placeholders, for example those that require the construction of
formulas (e.g. Total expressions), and will only be prompted for simple values (e.g. the Title of the
report).

• You must choose fields from a single list of fields. Therefore, templates that offer more than one field
lists will not be used.

Note: Building the dialog in a generic way to avoid hard coding placeholder and field lists
requires software that can introspect schema files and .4rt files. A library is provided for that.

2. The information entered by the user is used to expand the template and generate a .4rp file.

Note: Expanding the template can be done in one of two ways:

• By calling an existing library function.
• By invoking the GenerateReport executable provided with GRE.

3. The data source is run using the generated .4rp file.

Note: The data source is run with the .4rp via the normal runtime API functions.

Create a new report template
In addition to the templates provided, you can create your own report templates and add them to the
Designer Wizard.

To create a new report template, first create a report template schema definition (.rsd) to define the
expected structure for the data source and then create the report template (.4rt). Any new templates
must be added to the Designer Wizard.

Before you begin:

• Create a new directory on your disk (e.g: My Report Templates) where you will store the report
template files that you will create in the following procedure.

Create a new report template schema

1. Go to File > New > Reports and click on Report Template Schema Definition(.rsd).
A new .rsd file opens.

2. Using the available elements, create a structure for the elements that will be used as placeholders in
the report template. See the Report template schema definition (.rsd) file on page 849 topic for more
information.

3. Save the file.

Report Writer | 848

Create a new report template

4. Go to File > New > Reports and select Empty Report Template(.4rt).
A new .4rt file opens.

5. In the Data View tab, click Open Schema File….

6. Navigate to the location that you saved your .rsd file in Step 3, select the .rsd file, and click Open.
The structure of the elements from the .rsd file that you selected is visible in the Data View tab.

7. Save the .4rt.
You have now created a report template that you can design to suit your requirements.

Note: Before you design your report, see Report template (.4rt) file design features on page
850 for more information.

Add the new report template to the wizard

8. Create a new configuration file.

Note: The default configuration file for the Design Wizard is the creatables.conf file,
located in the $GSTDIR/conf directory. To create new settings for the template, you must
create a new createables.conf file, save it in your new directory, and configure the template
to use the new createables.conf file.

a) Go to File > New > Other files and select With no Extension.
b) Save the file to your new directory as createables.conf.

9. Add the following code to the new createables.conf file and edit the label, name, and
directoryPath accordingly:

<?xml version="1.0" encoding="utf-8" ?>
 <Creatables version="2.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance"
 xsi:noNamespaceSchemaLocation="http://www.4js.com/ns/gst/3.00/
creatables.xsd">
 <DocumentDirectory index="35" label="<newreportlabel>"
 name="<newreportname>"
 icon="document_4rp" directoryPath="<./My Report Template>">
 <DocumentType extension="4rt" icon="document_4rt"
 action="RWTemplateWizard"/>
 <DocumentType extension="4rp" icon="document_4rp"
 action="RWTemplateWizard"/>
 </DocumentDirectory>
</Creatables>

10.Configure the new createables.conf.

A reporting template is provided in the Genero Configurations dialog that can be duplicated for your
convenience and then associated with your configuration file.

a) Go to Tools > Genero Configurations.
b) In the Environment Sets list, right-click on Reporting template 1.0 and select Duplicate. A new

reporting template is created at the bottom of the Environment Sets list and is selected by default.
c) Click on the new reporting template. The GSTSETUPDIR directory is listed in the Environment

Variables section.
d) Double-click the GSTSETUPDIR entry and change the Value to the location of your new template

directory.
e) Click OK to close the dialogs.
f) In the Information dialog, click Reload Session.

When you have completed the above procedure, go to File > New to open the wizard and view your new
report template in the list.

Report Writer | 849

Report template schema definition (.rsd) file
The report template schema definition (.rsd) file is used to manually add the structure of the fields and
groups to a report template (.4rt).

The .rsd file is a high level data schema file, unique to templates, that is used to create the XML structure
of the elements that will be included in the report template as placeholders. When creating a report from a
template, the .rsd placeholders are populated with the data of the report design document provided by
the data schema, or XML Schema definition (.xsd) file.

When adding the syntax to the .rsd, you must first add a rootElementName, and then structure the file
with the following available elements:

Table 229: Available elements in the .rsd document

Element Required syntax Description Reference

Field • name=""

• type=""

• sampleValue=""
(optional)

The field element is used
to add the variables that
you want to include in
the report template as
placeholders.

See the Variables page
on page 844 topic for
more information.

Trigger name="" The Trigger element
represents the groups
that you want to add to
the report template as
template repetitions,
which can be mapped
to the repetitions in the
data schema.

See the Schema
Association page on
page 841 topic for
more information.

TemplateFieldsTriggergroupName="" The
TemplateFieldsTrigger
element is added for
fields where real field
data is expected to be
injected. When creating
a report from a template
and the template is
expanded, the option
to choose from the
available fields in the
data schema .xsd is
provided.

• See the Schema
Association page on
page 841 for more
information about
associating the data
schema.

• See the Add Fields
page on page
842 topic for more
information about
selecting real data
fields.

See the following sample taken from the .rsd file for the DIN 5008 Invoice (PULSE) template, provided
with Genero Studio for Genero Report Writer:

<?xml version="1.0" encoding="utf-8"?>
<ReportSchema fileVersion="30000" gstVersion="30000"
 rootElementName="model">
 <Field name="showMeasures" type="boolean" sampleValue="1"/>
 <Field name="fontName" type="string"/>
 <Field name="logoURL" type="string"/>
 ...
 <Trigger name="outerGroups">
 <Trigger name="innerGroups">
 <TemplateFieldsTrigger groupName="fields"/>

Report Writer | 850

 <TemplateFieldsTrigger groupName="fields"/>
 <Trigger name="rows">
 <TemplateFieldsTrigger groupName="fields"/>
 </Trigger>
 </Trigger>
 </Trigger>
</ReportSchema>

Examine the various template schema files in $GREDIR/templates to better understand the different
ways that a template schema file can be written.

Report template (.4rt) file design features
The report template (.4rt) file is the template file and has some unique design features over standard report
files (.4rp).

When you create a report template (.4rt) file and want to add design elements, the process of designing the
template is almost identical to designing a report, except for the following unique features:

The Report Structure: TemplateFieldsTrigger

When you have created the .rsd file and have added the TemplateFieldsTrigger elements to add
placeholders for where you want to inject real data, the color of the template fields trigger is displayed in
the Report Structure view. The template field trigger is blue to distinguish it from the other triggers. See the
Triggers on page 669 topic for more information.

Figure 388: The temple fields trigger in the Report Structure view

The Tool Box view- Template field element

When designing a report template, the Tool Box view has an extra Templates section that includes a
design element called the Template Field.

Figure 389: The Template Field element in the Tool Box view

Report Writer | 851

You can add the template field element to elements in the report that will be expanded with real data when
you use the template to create a report, and should be placed within the template fields trigger groups in
the Report Structure view.

Customize the appearance of a new report template in the wizard
You can add text and images to customize the appearance of your new template in the Wizard.

Templates in the Designer Wizard include preview images, a label and description, and are organized into
different categories by filters. When you have created a new template and added it to the design wizard,
you can customize the appearance of your new template in the wizard.

Template label, description, and filters

Templates are categorized by filters. You can view the list of filters by going to File > New..., selecting
Report from Template, and clicking on the Filters drop-down list.

Each template has a label, a description, and is filtered by the tags that are included in the associated
properties file (.4rt.prop). For more information about the list of existing filters, see Template filters in
the Designer Wizard on page 846.

Report Writer | 852

Figure 390: Report from Template wizard: A = Filters, B = Label, C = Description

See the following example of the syntax in the PULSEDIN5008Template.4rt.prop:

tags: Correspondence, Invoice, Batcheable, Two Groups, PULSE Theme
label:DIN 5008 Invoice (PULSE)
description: General: Invoice following the placement guidelines of the
 German norm DIN 5008\nPaper Format: A4\nStyle: PULSE\nRemarks:\n - The
 measurements can be included in the unrolled report as an editing aid\n -
 The report is batcheable by the outer group

Template images

In the Report From Template page in the Designer Wizard, each template has a thumbnail image
in the list and a large version of the same image displayed on the right of the page. This image is
a screen capture of the report and is stored in the $ProjectDir/gre/templates directory as
<TEMPLATENAME>.4rt.png.

When you have selected a template in the Designer Wizard and the New Report from Template Wizard
opens, images are displayed in each of the three pages; the Schema Association page, the Add Fields
page, and the Variables page, that are designed to call-out the specific section of the report that is relevant
to the current selection in the form.

The sample template images are stored in the $ProjectDir/gre/templates/<TEMPLATENAME>
directories and adhere to the following naming conventions:

• Schema association images: <PLACEHOLDERNAME>_placeholder.png
• Add fields images: field_field<NUMBER>.png

Report Writer | 853

• Variables images: <TRIGGERNAME>_trigger.png

Create a report template from an existing report
You have a report that you like. You can use that report as a basis for a new report template.

You have an existing report, and you want to use it as the basis for a new report template. When you have
finished, you must add the new templates must be added to the Designer Wizard.

Before you begin:

• Have a new directory on your disk (e.g: My Report Templates) where you will store the report
template files that you create in the following procedure. If you have not set up a template directory, see
Set the report template directory on page 854.

• Have an existing report.

1. Create a copy of your report design (.4rp) and save it in your report templates folder.

2. Rename the copy to a different name, and with a .4rt extension.

It is recommended that you not have a .4rp and .4rt sharing the same name in a template folder. If
your report is names SalesList.4rp, you would not simply name it as SalesList.4rt. You would
modify the name in some manner; for example, you can add the word Template to the name and save it
as SalesListTemplate.4rt.

3. Open the .4rt file in Report Designer and examine the report. In the next step, you must have to identify
which fields are to be variable placeholders and which parts are to be template fields.

4. Create a template data schema (.rds).

Rather than starting with an empty file, it is recommended that you take an existing report data schema
(.rsd) file from the templates provided during the installation and modify it to meet your report needs.
You can find template data schemas (.rds) in $GREDIR/templates.

5. Go back to your .4rt file, to the Data View tab, and change the schema to the schema you created in the
previous step.
You are not going to use the actual data fields anymore, you are going to use the fields from your
template schema. In the Design View, the places where you had data fields (from the original report)
are now marked as errors.

6. For the variable placeholders, double-click on each error to bring up the Edit Expression dialog.
Replace the value with one of the names from the template schema file.

7. For the row of fields, such as those contained within a Table Row container, you must replace the fields
with a Template Field placeholder.

a) Delete the existing fields.
b) Go to Tool Box.
c) Drop the Template Field onto the Table Row (or similar container).
d) In the Template Field section in the Properties view, the Name, Type, Size, Title and Role properties

should be preset.

When you drag something from the Data View into the Document View, it creates an object based
on the context of where it is being placed. These five properties provide the information needed to
create the correct object. This field is repeated as many times as needed.

8. If you have column headers, you will also have to replace the column headers with a Template Field.

9. In the Report Structure, organize the TemplateField objects to sit under the fields triggers.

Click on a TemplateField with the right mouse button, select Repeat selected items on, then select the
template fields trigger.

At this point, the template is finished.

10.Create a copy of a .prop file, and modify the contents of the file for your new template. Name the copy
using the same name as the template file.

11.Create a template image (.4rt.png) to serve as the image displayed in the Report From Template
selection list. Save it using the same name as the template file.

Report Writer | 854

12.Create a empty image directory for the new template, using the same name as the template file.

Eventually, you will want to provide an image for each of the placeholders. This can be done at a later
time.

13.Select Tools >> Specific setup >> Reload.

The new template is available for use.

Modify an existing report template
You can modify an existing report template and add them to the Designer Wizard.

To modify an existing report template, you need to create copies of the existing template files and then
modify the copies. When finished, the modified templates must be added to the Designer Wizard.

1. Create a new directory on your disk (e.g: My Report Templates) to hold your customized report
template files.

2. Locate the files for the existing report template, and move them into your new directory.

These files include:

• *.4rt - the existing report template file.
• *.4rt.png - the existing image used for the report template file in the new report from template

wizard.
• *.4rt.prop - the existing configuration file used to categorize the report template.
• *.rsd - the report schema design file used by the report template.
• the template-specific sub-directory, containing the many images used by pages within the template

wizards.

3. Rename the files and sub-directory to use a unique name. All of the files (with the exception of the .rsd
file) and the image directory should share the same name.

4. Make changes to the *.4rt file in Report Designer.

5. Update the *.4rt.prop file to specify your template name, description, and filtering tags.

See Customize the appearance of a new report template in the wizard on page 851.

6. Update the creatables.conf file in your user-based AppData/Roaming/FourJs/GRW/tpl/
reporting1.1 directory and add details about the directory.

See Set the report template directory on page 854 for more details.

7. Update the image files, as necessary. See the section on template images in Customize the
appearance of a new report template in the wizard on page 851.

Set the report template directory
When you create a new report template directory, you need to complete some simple configuration before
the templates in that directory are seen by Genero Studio.

You have created a directory to hold your custom template files. You must update the creatables.conf
configuration file to make Genero Studio aware of this directory. Once added to the configuration, all
templates in the directory appear in the Report From Template selection list.

The initial template directory is defined in the createables.conf file provided in the Genero Studio
installation directory (at $GSTDIR/conf). It is recommended that you add additional directories in your
user-specific createables.conf file.

Before you begin:

• Know the full path to the new template directory.

1. Update the creatables.conf file in the user's AppData/Roaming/FourJs/GRW/tpl/
reporting1.1 directory and add details about the directory.

Report Writer | 855

Use this example as a guide:

<DocumentDirectory index="35" label="Report From Template"
 name="RWReportFromTemplate" icon="document_4rp" directoryPath="D:/
myTemplates">
 <DocumentType extension="4rt" icon="document_4rt"
 action="RWTemplateWizard"/>
 <DocumentType extension="4rp" icon="document_4rp"
 action="RWTemplateWizard"/>
</DocumentDirectory>

2. Select Tools >> Specific Setup >> Reload.

3. Click Reload session.

The templates within the specified directory appear in the Report From Template list.

GenerateReport command options
The GenerateReport command creates report design files (.4rp) based on a predefined template and
schema.

Table 230: GenerateReport options

Option Description

-help or -h Displays a usage text and then exits.

-schemaFileName

Important: Mandatory
option.

Specifies an XML schema file (.xsd) describing the data source of
the report.

-rootElementName

Important: Mandatory
option.

Specifies the expected document root in the XML schema file.

For example, if the schema specifies the elements "invoice" and
"invoice-batch", then rootElementName would be set to "invoice"
if the report will be run against a source that produces documents
whose root element is of type "invoice".

-triggerMapping

Important: Mandatory
option.

Specifies the mapping between the element names in the XML
schema file and the trigger names in the design template.

The map syntax is as follows:

map: map-item (',' map-item)*
map-item: '{' element-name ',' trigger-name '}'

As an example, consider a report template designed against the
schema defined by SimpleListTEmplate.rsd.

Note: Report template schema definition (.rsd) files are
located in GREDIR/templates.

The schema defines the mappable triggers "outerGroups",
"innerGroups" and "rows", where each is a descendant
of its predecessor. If the input schema defines the elements

Report Writer | 856

Option Description

"ProductGroups", "Areas", "Orders" and "Items", then the
following are valid maps:

{ProductGroups,outerGroups},{Areas,innerGroups},
{Items,rows}

{ProductGroups,outerGroups},{Orders,innerGroups},
{Items,rows}

{ProductGroups,outerGroups},{Orders,rows}

{ProductGroups,rows}

{Orders,rows}

The following example mappings are invalid because they violate the
ancestry:

{ProductGroups,innerGroup},{Areas,outerGroups},
{Items,rows}

{Orders,outerGroups},{ProductGroups,rows}

-placeholderMapping Specifies the mapping between fields names in the design template
and expressions of the same type that may be composed using fields
from the XML schema file. Specifying this value is mandatory if the
template contains references to fields.

Note: All placeholder values in placeholderMapping can
either be constant values or RTL expressions enclosed in
curly braces.

The map syntax is as follows:

StringMap: MapEntry (',' MapEntry)*
MapEntry: '{' Key ',' Value? '}'
Key: IdentifierStartChar
 IdentifierFollowChar*
Value: '"' StringToken* '"'
StringToken: [^"\]
 | EscapedQuote
 | EscapedBackslash
 | ExtraEscapes
EscapedQuote: '\' '"'
EscapedBackslash: '\' '\'
ExtraEscapes: '\' 'n'
 | '\' 'r'
 | '\' 't'

This means that encoders need to perform the following operations
on all characters in the input strings:

• Replace '\' by '\' '\'
• Replace '"' by '\' '"'
• Replace '\n' by '\' 'n'
• Replace '\r' by '\' 'r'

Report Writer | 857

Option Description

• Replace '\t' by '\' 't'

As an example, consider a report template that contains:

• the string field "groupTitle", mapped to the RTL expression
"Customer: "+orderline.orders.user_id"

• the field "reportTitle", mapped to the constant string
"Customer list"

• the placeholder "optionalSubtitle", set to null

In this example, the placeholder mapping would be:

-placeholderMapping {groupTitle,"{{\"Customer:
 \"+orderline.orders.user_id}}"},
 {reportTitle,"Customer list"},{optionalSubtitle,}

This assigns the RTL expression
'"Customer:"+orderline.orders.user_id' to the placeholder
"groupTitle", the constant string "Customer list" to the
placeholder "reportTitle", and the value null to the placeholder
"optionalSubtitle".

Note: For clarity, no quoting was done to protect the string
against shell expansion.

-templateFileName Specifies the name of the template (a '.4rp' or '.4rt' file) used as
the base. If this parameter is not specified, then a default list template
is used. The default template is designed against the schema of the
SimpleListTemplate.rsd.

Note: Report template schema definition (.rsd) files are
located in GREDIR/templates.

-fieldNamePatterns Specifies a selection of fields from the XML schema file that are to be
used in the resulting report.

The expected syntax is a comma-separated list of field name
patterns, which may contain the wildcard characters "*" and "?".
The expression can be prefixed with an optional name followed by a
colon. This name denotes a specific field trigger to cater to templates
with multiple field lists.

As an example, consider a report that has the field triggers
"outerGroupFields" and "rowFields". We would like to see the
fields product_id and product_description on the group, and
all fields from the record order_details in the rows. We would
specify two fieldNamePatterns as follows:

-fieldNamePatterns
outerGroupFields:product_id,product_description

-fieldNamePatterns rowFields:order_details.*

-outputFileName

Important: Mandatory
option.

Specifies the name of the resulting .4rp file.

-debuglevel level Sets the debug level to the specified integer level. The debug level
controls the level of verbosity of GRE components during execution.

Report Writer | 858

Option Description

Higher values increase verbosity. By default, the value is set to 0 (no
debugging output).

-stdin Instructs the program to read the command line arguments from
stdin. The list of arguments needs to be terminated by an empty line.
In this case, all other regular command line arguments are ignored.

Report Writer Deployment and Customization
The Genero Report Engine (GRE) and Genero Report Viewer for HTML5 have limited configuration and
customization options.

• GRE environment variables on page 858
• Genero Report Viewer for HTML5 customization on page 859
• Distributed Mode on page 859

GRE environment variables
These environment variables are relevant for the Genero Report Engine (GRE).

• GREDIR on page 858
• GREOUTPUTDIR on page 858
• GRE_MAX_CONCURRENT_JOBS on page 858

GREDIR
The GREDIR environment variable specifies the location of the Genero Report Engine (GRE) installation
directory.

GREOUTPUTDIR
The GREOUTPUTDIR environment variable specifies the directory where all writing operations that
would otherwise be performed in the current working directory of the Genero Report Engine (GRE) will be
performed.

The value can be an absolute or a relative file path. If the value is a relative file path, then it is internally
prepended with the current working directory of GRE. When set, all writing operations that would otherwise
be performed in the current working directory of GRE will be performed in the specified directory.

Examples include relative path specification in the functions fgl_report_setOutputFileName(),
fgl_report_configureImageDevice() (the filePath parameter),
fgl_report_setBrowserDocumentDirectory(), fgl_report_setBrowserFontDirectory()
and the location of the GRE debug files (jdebug0.xml, jdebug1.xml, and so on.)

GRE_MAX_CONCURRENT_JOBS
The GRE_MAX_CONCURRENT_JOBS environment variable limits the number of worker threads in
distributed mode.

By default, the Genero Report Engine runs 25 concurrent threads. As such, by default it can process no
more than 25 concurrent jobs. Jobs that a started at a point in time when the maximum value has been
reached are queued until another job completes. The limit on concurrent threads is to prevent memory
exhaustion in times of critical load.

GRE_MAX_CONCURRENT_JOBS allows the modification of the number of concurrent threads. This
variable takes an integer.

Report Writer | 859

Genero Report Viewer for HTML5 customization
When you select Browser as the output option, files are created for the report. These files are viewed using
the Genero Report Viewer for HTML5.

All files needed to operate the Genero Report Viewer for HTML5 are included in the Genero Report Engine
(GRE) package in the directory $GREDIR/viewer

Customizing the viewer

The Genero Report Viewer for HTML5 is comprised of the files found within $GREDIR/viewer.

Table 231: GRV for HTML5 viewer files and directories

File / Directory Description

viewer.html Main HTML file containing the toolbar and document view. Customizable via CSS. Can
be replaced by custom version if the same classes, ids and event bindings are used.
Loads viewer.js, model.js, bowser.js and styles.css.

print.html Print preview page. Customizable via CSS. Can be replaces by a custom version if
the same classes, ids and event bindings are used. Loads print.js, model.js,
bowser.js and styles.css.

viewer.js JavaScript file that connects the HTML elements in the viewer (viewer.html by
default) with the model (model.js). Can be replaced for the case that a custom HTML
viewer is used that does not use the same classes, ids and event bindings as the default
viewer.

print.js JavaScript file that connects the HTML elements in the print previewer (print.html by
default) with the model (model.js). Can be replaced for the case that a custom HTML
print previewer is used that does not use the same classes, ids and event bindings as
the default print previewer.

model.js A JavaScript object representing a report. Methods exist to query the document (for
example, to get the total number of pages), to navigate in the document (for example, to
make a certain page the current page) and to register for events (for example, to ask to
be notified when a new page is created).

bowser.js A third-party utility for managing browser-specific issues.

styles.css The default styles used by viewer.html and print.html.

images A directory containing the images referenced from viewer.html and print.html.

Distributed Mode
The report engine can be started as a daemon to which report applications can connect to process reports.
One or more engines can be started on the same machine or on a different machine, hence distributed
mode.

Distributed mode offers two advantages:

1. Vastly faster processing for short documents: The startup time of the JVM that is incurred for every
report in regular mode can exceed the processing time of the report causing the overall performance
to be poor. In distributed mode, the JVM is started and initialized only once. For report batches the
improvement in performance is dramatic (A test has shown an increase by factor 24 so that a 500 file
PDF batch completed in 17 seconds rather then in 7 minutes).

2. Improved scalability: Formatting graphical reports is CPU intensive. However CPU is usually expensive
on the server optimized for IO that is running the DVM and/or the database. The distributed mode
allows offloading the report processing entirely to another, very much cheaper, machine such as a

Report Writer | 860

standard PC. Such a dedicated report formatting PC could be installed with Windows™ which has the
additional advantage of handling fonts and printers in a user friendlier way.

To take advantage of distributed mode, you need to do the following:

1. Place your report design documents (.4rp) on the server where the GRE daemon runs.
2. Start the GRE daemon.
3. Provide the remote connection details in your source code.

Place the report design documents (.4rp) on the daemon server

Your report design documents need to be on the server running the daemon.

Start the Genero Report Engine daemon

The daemon is invoked by calling the script $GREDIR/bin/greportwriter with the “–l” option and
specifying the port it listens on. For example:

C:\Program Files\FourJs\Genero Studio\fgl>envcomp
C:\Program Files\FourJs\Genero Studio\fgl>cd ..\gre\bin
C:\Program Files\FourJs\Genero Studio\gre\bin>greportwriter –l 6500

If the Genero Report Engine daemon resides on a different machine than the DVMand you wish to preview
reports, you must start the daemon with both the -l and -u options: C:\Program Files\FourJs
\Genero Studio\gre\bin>greportwriter –l 6500 -u XXX

Connect to a daemon using the reporting API

The API function fgl_report_configureDistributedProcessing is used to select and configure
distributed processing. It takes two parameters that denote the server to use; a host name and a port. This
code shows an example for a GRE daemon running on the local machine (host “localhost”):

IF NOT fgl_report_loadCurrentSettings("OrderReport.4rp") THEN
 ...
END IF
...
CALL fgl_report_configureDistributedProcessing("localhost",6500)
RETURN fgl_report_commitCurrentSettings()

This example connects to a daemon running on the server “PrintServer”:

IF NOT fgl_report_loadCurrentSettings("OrderReport.4rp") THEN
 ...
END IF
...
CALL fgl_report_configureDistributedProcessing("PrintServer",6500)
RETURN fgl_report_commitCurrentSettings()

Logging in distributed mode

If the GREDEBUG environment variable is set, the daemon logs messages of the specified level to the file
gre.log in the home directory of the user invoking the daemon.

The API function fgl_report_setDistributedRequestingUserName can be used to set a user
name in the log file in order to distinguish between log entries originating from different users. See
fgl_report_setDistributedRequestingUserName on page 631.

Report Writer | 861

Previewing reports in distributed mode

Important: The following instructions are not necessary if the GRE and the DVM are running on
the same physical machine.

To preview a report when the GRE daemon is running on a different machine than the DVM and the output
type is either "PDF", "RTF", "XLS", "XLX" or "HTML" (as specified by the fgl_report_selectDevice
function), you must do two things:

1. Start the Web server service by invoking the command grehttpd.

Located at GREDIR/bin/grehttpd, the following options are available:

• -p port, where port is the port number. The default port is 8080.
• -q activates the Web server service in quiet mode.
• -d directory, where directory specifies the Web root. There may be several. If notihing is

specified, then the current working directory (".") is taken as the Web root.
• -license prints the NanoHTTPD license

Note: The Genero Report Engine ships with this minimal Web server, however any other web
server capable of serving static files can be used.

2. Set the GREOUTPUTDIR environment variable to the specified Web root directory in the environment
of the GRE daemon (greportwriter -l).

Genero Report Engine error messages

Table 232: Error messages for the Package designtime.trigger

Number Description

GS-37400 Missing "name" attribute on "input-variable" element

GS-37401 Missing "type" attribute on "input-variable" element

GS-37402 Unrecognized "type" value "%1" on "input-variable" element

GS-37403 Missing "expectedLocation" attribute on "input-variable" element

GS-37404 Unrecognized "expectedLocation" value "%1" on "input-variable" element

GS-37405 Missing "name" attribute on "match" element

GS-37406 Missing "nameConstraint" attribute on "match" element

Table 233: Error messages for the Package designtime

Number Description

GS-37200 Failed to find PXML node in template

GS-37206 Failed to find RTL "stylesheet" element in template

GS-37207 Failed to find element named "%1" in schema

GS-37208 Failed to find match node named "%1" in template

GS-37209 Failed to find root element "%1" in schema file "%2"

GS-37210 Failed to find RTL root match node in template

Report Writer | 862

Table 234: Error messages for the Package layoutnode

Number Description

GS-31200 Internal error: Invalid bar code type

GS-31201 Bar code type "%1": invalid codeValue "%2". Value is not an integer

Error message and resolution should be self-explanatory.

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-31202 Bar code type "%1": invalid codeValue "%2". The value needs to be %3
digits long

Error message and resolution should be self-explanatory.

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-31203 Bar code type "%1": invalid checksum %2 in %3. Value should be %4

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-31204 DocumentStructureException: failed to add text node (cause=%1).

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-31205 DocumentStructureException: failed to finalize text node (cause=%1).

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-31206 Bar code type "%1": invalid codeValue "%2". Value is not an integer

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-31207 Bar code type "%1": invalid codeValue "%2". The value needs to be %3
digits long

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-31208 Bar code type "%1": invalid codeValue "%2". First digit must be either
'0' or '1'

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-31209 Internal error: Wrong initializer for digit "%1"

Report Writer | 863

Number Description

GS-31210 Bar code type "Code128": invalid codeValue "%1". Value cannot be
parsed as comma separated character list

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-31211 Bar code type "Code128": invalid start codeValue "%1". Sequence must
start with STARTA, STARTB or STARTC

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-31212 Bar code type "%1": invalid checksum "%2" in %3. Value should be "%4"

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-31213 Bar code type "Code128": invalid character "%1" in codeValue "%2".
Code is not available in the character set %3.

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-31214 Bar code type "%1": invalid codeValue "%2". Value is not an integer

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-31215 Bar code type "%1": invalid codeValue "%2". The value needs to be %3
digits long

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-31216 Bar code type "%1": invalid checksum %2 in %3. Value should be %4

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-31217 Bar code type "%1": invalid number of digits %2. Value must be a
multiple of 2.

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-31218 Bar code type "%1": invalid value for noCheckDigits %2. Value must be
either 1 or 2.

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

Report Writer | 864

Number Description

GS-31219 Bar code type "%1": invalid codeValue "%2". Value may contain only the
digits 0-9 and the '-' character.

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-31220 Bar code type "%1": invalid codeValue "%2". The value needs to be %3
digits long

Error message and resolution should be self-explanatory.

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-31221 Bar code type "%1": invalid K checksum %2 in %3. Value should be '%4'

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-31222 Bar code type "%1": invalid C checksum %2 in %3. Value should be '%4'

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-31224 Bar code type "%1": invalid character '%2' in codeValue "%3".

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-31225 Bar code type "%1": invalid codeValue "%2". The value needs to be %3
digits long

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-31226 Bar code type "%1": invalid checksum %2 in %3. Value should be %4

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-31227 Bar code type "Code 39 Extended": invalid character "%1" in codeValue
"%2".

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-31228 Bar code type "Code 39 Extended": invalid codeValue "%1". Value cannot
be parsed as comma separated character list

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

Report Writer | 865

Number Description

GS-31229 Bar code type "Code 39 Extended": invalid character "%1" in codeValue
"%2".

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-31230 Bar code type "%1": invalid codeValue "%2". Value is not an integer

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-31231 Bar code type "%1": invalid codeValue "%2". The value needs to be 9
digits long

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-31232 Bar code type "%1": invalid checksum %2 in %3. Value should be %4

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-31233 Internal error: Wrong initializer for digit "%1"

GS-31234 Bar code type "%1": invalid value for controlCharacters %2. Value must
be a four character string.

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-31235 Bar code type "%1": invalid value for noCheckDigits %2. Value must be
either 1 or 2.

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-31236 Bar code type "%1": invalid character '%2' in codeValue "%3".

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-31237 Bar code type "%1": invalid codeValue "%2". The value needs to be %3
digits long

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-31238 Bar code type "%1": invalid K checksum %2 in %3. Value should be '%4'

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

Report Writer | 866

Number Description

GS-31239 Bar code type "%1": invalid C checksum %2 in %3. Value should be '%4'

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-31241 Bar code type "Code 93 Extended": invalid codeValue "%1". Value cannot
be parsed as comma separated character list

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-31242 Bar code type "Code 93 Extended": invalid character "%1" in codeValue
"%2".

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-31243 Bar code type "%1": invalid character '%2' in codeValue "%3".

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-31244 Bar code type "%1": invalid codeValue "%2". The value needs to be %3
digits long

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-31245 Bar code type "%1": invalid codeValue "%2". The first character of the
value needs to be either 'a', 'b', 'c' or 'd'

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-31246 Bar code type "%1": invalid codeValue "%2". The last character of the
value needs to be either 't', 'n', '*' or 'e'

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-31247 Bar code type "%1": invalid codeValue "%2". The character '%3' may not
be used within the value

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-31248 Bar code type "%1": invalid checksum %2 in %3. Value should be '%4'

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

Report Writer | 867

Number Description

GS-31249 Internal error: Codabar 18: invalid check type

GS-31250 Bar code type "%1": invalid codeValue "%2". The last character of the
value needs to be either 'a', 'b', 'c' or 'd'

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-31251 Internal error: Codabar 2: invalid check type

GS-31252 Bar code type "%1": expected text to follow '\' at end of "codeValue"
attribute

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-31253 Bar code type "%1": expected three octal digits to follow '\' in
"codeValue" attribute at position %2

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-31254 Bar code type "%1": expected octal digit in "codeValue" attribute at
position %2

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-31257 Bar code type "%1": code data too long (val=%2), max=928

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-31258 Bar code type "%1": invalid errorCorrectionDegree "%2". Value must
between 0 and 8.

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-31259 Bar code type "%1": invalid value for lines "%2". Value must be a
value between 1 and 90.

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-31260 Bar code type "%1": invalid value for lines "%2". Value causes illegal
value for dataSymbolsPerLine of %3 which must be a value between 1 and
30.

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

Report Writer | 868

Number Description

GS-31261 Bar code type "%1": invalid dataSymbolsPerLine "%2". Value must
between 1 and 30.

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-31262 Bar code type "%1": invalid value for dataSymbolsPerLine "%2". Value
causes illegal value for lines of %3 which must be a value between 1
and 90.

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-31264 Bar code type "%1": value for lines "%2" and dataSymbolsPerLine "%3"
is to small to hold data of %4. The product must be at least %5

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-31265 Bar code type "%1": value for additionalPaddingLines "%2" causes the
data lines to exceed the maximum value of 90 lines

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-31266 Bar code type "%1": encoding error: data needs to end with a latch to
ASCII encodation

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-31267 Bar code type "data-matrix": invalid rawCodeValue "%1". Value cannot
be parsed as comma separated character list

GS-31268 Character '%1' cannot be encoded since it is not available in the code
page ISO-8859-1.

GS-31269 Datamatrix "Shifted ASCII" encoding: Character '%1' not allowed.

GS-31270 Datamatrix "Basic ASCII" encoding: Character '%1' not allowed.

GS-31271 Datamatrix "Shifted ASCII" encoding: Unknown encoding symbol "%1".

GS-31272 Datamatrix "Basic ASCII" encoding: Unknown encoding symbol "%1".

GS-31273 Datamatrix "C40 (basic set)" encoding: Character '%1' not allowed.

GS-31274 Datamatrix "C40 (basic set)" encoding: Illegal position of
"STARTASCII" symbol.

GS-31275 Datamatrix "C40 (basic set)" encoding: Unknown encoding symbol "%1".

GS-31276 Datamatrix "C40 (set 1)" encoding: Unknown encoding symbol "%1".

GS-31277 Datamatrix "C40 (set 2)" encoding: Character '%1' not allowed.

GS-31278 Datamatrix "C40 (set 2)" encoding: Unknown encoding symbol "%1".

Report Writer | 869

Number Description

GS-31279 Datamatrix "C40 (set 3)" encoding: Character '%1' not allowed.

GS-31280 Datamatrix "C40 (set 3)" encoding: Unknown encoding symbol "%1".

GS-31281 Datamatrix "C40" encoding: Encountered non data character as last
character at the end of symbol space.

GS-31282 Datamatrix "C40" encoding: Encoded data exceeds maximum of 1558 bytes

GS-31284 Datamatrix "C40" encoding: Encountered non data character as last
character at the end of symbol space.

GS-31285 Datamatrix "BASE 256" encoding: failed to parse "%1" as byte value.

GS-31286 Datamatrix "BASE 256" encoding: failed to parse "%1" as byte value
(value is outside of the range 0-255).

GS-31287 Datamatrix "ANSI X11" encoding: Character '%1' not allowed.

GS-31288 Datamatrix "ANSI X11" encoding: Illegal position of "STARTASCII"
symbol.

GS-31289 Datamatrix "ANSI X12" encoding: Unknown encoding symbol "%1".

GS-31290 Datamatrix "ANSI X12" encoding: Invalid number of encoded codewords
(%1). The number must be a multiple of 3

GS-31291 Datamatrix "EDIFIACT" encoding: Character '%1' not allowed.

GS-31292 Datamatrix "EDIFACT" encoding: Illegal position of "STARTASCII"
symbol.

GS-31293 Datamatrix "EDIFACT" encoding: Unknown encoding symbol "%1".

GS-31294 Datamatrix "EDIFACT" encoding: Invalid number of encoded codewords
(%1). The number must either be a multiple of 4 or terminated by a
STARTASCII latch.

GS-31295 Code value too long

GS-31296 Invalid number of arguments in gradient paint specification (Required
are x1, y1, color1, x2, y2, color2, cyclic)

Error message and resolution should be self-explanatory.

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-31297 Failed to parse PXML x expression value %1 from the gradientPaint
initializer %2. Parse Error:%3

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-31298 Failed to parse PXML y expression value %1 from the gradientPaint
initializer %2. Parse Error:%3

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

Report Writer | 870

Number Description

GS-31299 Failed to parse PXML color value %1 from the gradientPaint initializer
%2. Parse Error:%3

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-31300 Failed to parse boolean value "cyclic" from the gradientPaint
initializer %1. Parse Error:%2

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-31301 Invalid command "%1" in path "%2"

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-31302 Unknown command "%1" in path "%2"

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-31303 Number of items in xyList not a multiple of 2 (value=%1 count=%2

Error message and resolution should be self-explanatory.

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-31304 Must have same number of values as row titles multiplied by column
titles . Have %1 values and %2 values

Error message and resolution should be self-explanatory.

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-31305 Internal error: Invalid chart type

GS-31306 Syntax error int PXML font size expression (%1)

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-31307 Failed to parse PXML fontsize expression "%1"

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-31308 Decimal format is not available for this input locale

Report Writer | 871

Number Description

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-31309 Decimal format is not available for this output locale

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-31310 Failed to create HTML view (cause=%1:%2)

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-31311 Failed to load image from data (cause=%1)

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-31312 Unsupported image format in data URL "%1"

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-31313 Unsupported image format loading image from URL "%1"

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-31314 Failed to load SVG document from file "%1" (cause=%2)

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-31315 Failed to load image from file "%1" (cause=%2)

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-31316 Unsupported image format loading image from file "%1"

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-31317 Failed to load image (cause="%1")

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-31318 Can't find resource "%1"

Report Writer | 872

Number Description

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-31319 Failed to load SVG document from resource URL "%1" (cause=%2)

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-31320 Failed to load image from resource URL "%1" (cause=%2)

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-31321 Failed to load "Base-64" encoded SVG document from data URL
"%1" (cause=%2)

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-31322 Failed to load SVG document from data URL "%1" (cause=%2)

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-31323 Syntax error in data URL "%1" (Failed to locate delimiter ',')

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-31324 Unsupported encoding in data URL "%1" (Failed to find ";base64")

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-31325 Incomplete data URL "%1" (Data is missing)

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-31326 Failed to load image from data URL "%1" (cause=%2)

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-31327 Failed to load image from URL "%1" (cause=%2)

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-31329 Invalid "anchorX" PXML expression value %1 computed from expression
"%1" (must yield a value between 0 and 1))

Report Writer | 873

Number Description

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-31330 Invalid "anchorY" PXML expression value %1 computed from expression
"%1" (must yield a value between 0 and 1))

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-31331 Invalid font style value "%1" in list "%2" (must be one of: "plain",
"italic" or "bold"

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-31332 Failed to parse font size percent expression %1 (cause=%2)

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-31333 The empty string is not allowed as PXML color expression

Error message and resolution should be self-explanatory.

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-31334 Failed to parse PXML color expression "%1" (must be a '#' followed by
an integer in hex notation) (cause=%2)

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-31335 Invalid port "%1" value

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-31336 invalid value for lowWaterMark (must be integer >= 0) val=%1

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-31337 invalid value for highWaterMark (must be negative or greater than
lowWaterMark) lowWaterMark=%1 highWaterMark=%2

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-31338 SAXException: failed to initialize (cause=%1).

Report Writer | 874

Number Description

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-31339 Timeout: Page was not consumed within %1 milliseconds

GS-31340 SAXException: failed to create page (cause=%1).

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-31341 SAXException: failed to finish document (cause=%1).

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-31342 Internal error: Page not in map

GS-31343 IOException: failed to transform memory queue into disk queue (cause=
%1).

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-31344 IOException: failed to write page to disk queue (cause=%1).

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-31345 IOException: failed to flush queue to disk (cause=%1).

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-31346 Internal error: %1::eventInitializedChild() called for a cloned
LayoutNode

GS-31347 Nodes attached to named ports may not be self placing

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-31348 All nodes attached to named ports must be specified prior to
specifying any nodes for the primary port

A port is the same as a section.

A node is said to be attached to a named port in its parent if it has the Section property set.

A node is said to be attached to the primary port if it does not have the Section property set.

Node lists are ordered. If you look at the Report Structure view where nodes of the same
parent are stacked vertically, a node is prior to another node when it is higher up.

To solve this issue, reorganize the nodes such that all named nodes sit higher in the parent
node than nodes attached to the primary port.

Report Writer | 875

Number Description

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-31349 Internal error: cannot propagate, parent==null||parent not instanceof
LayoutNode

GS-31350 Internal error: have unitializedChild when cloning

GS-31351 Internal error: %1::attachPortedChild() invalid port. Port=%2

GS-31352 The "roundingMode" attribute is not supported on this platform
(requires Java version 1.6 or higher).

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-31353 Failed to parse value "%1" using the specified input format (cause=%2)

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-31354 Failed to format field value "%1" using format "%2"

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-31355 Invalid page number format "%1" (must be one of :
"arabic","lowerroman","roman" or "upperroman"

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-31356 Illegal argument value "%1" as second parameter in call to the PXML
function format(). Valid values are ARABIC, LOWERROMAN and UPPERROMAN

GS-31357 Internal error: getStringReturnValue called on function format. The
function returns a string value

GS-31358 Internal error: getParameterType called on function %1. The function
takes no parameters

GS-31359 Internal error: pushString called on function %1. The function takes
no parameters

GS-31360 Internal error: pushNumeric called on function %1. The function takes
no parameters

GS-31361 Internal error: getStringReturnValue called on function %1. The
function returns a numeric value

GS-31362 Internal error: pushString called on function %1. The function takes
only one string parameter

GS-31363 Internal error: getStringReturnValue called on function %1. The
function returns a numeric value

GS-31364 Number of sizes and titles differ (Have %1 sizes and %2 titles)

Report Writer | 876

Number Description

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-31365 Internal error: Invalid pie graph type

GS-31366 Internal error: %1::eventNewChild() called for a cloned LayoutNode

GS-31367 Internal error: %1::eventInitializedChild() called for a cloned
LayoutNode

GS-31368 Internal error: cannot propagate, parent==null||parent not instanceof
LayoutNode

GS-31369 Internal error: have unitializedChild when cloning

GS-31370 Loading SVG document from url %1 failed (cause=%2)

GS-31371 Loading SVG document from reader failed (cause=%1)

GS-31372 Loading SVG document from input stream failed (cause=%1)

GS-31373 Invalid command in transformInstructions attribute ("%1")

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-31374 not enough arguments to %1 command in transform attribute. Required
are %2

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-31375 Wrong number of matrix values in %1 attribute (%2) required are 6

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-31376 Internal error: %1 expression=%2

GS-31377 Indentation value exceeds width by %1

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-31378 Internal error: No parent

GS-31379 Internal error: Parent not of type LayoutNode (type=%1)

GS-31382 The number of items in all series must be the same for the
"StackedArea" type.

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-31383 The x values of different series need to be the same for the
"StackedArea" type.

Report Writer | 877

Number Description

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-31384 The number of xValues and yValues differ (Have %1 xValues and %2
yValues)

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-31385 When seriesTitles are specified, they must have same number as xValues
and yValues. Have %1 xValues and %2 seriesTitles

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-31386 Internal error: Invalid code type for XYGraph

GS-31388 Internal error: UnsupportedEncodingException "%1" for value "%2" using
encoding "%3"

GS-31389 QR-Code: encoding exception "%1" on encoding value "%2"

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-31391 QR-Code: Unsupported encoding "%1" (Run "CharsetInfo" for a list of
supported encodings)

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-31392 QR-Code: Invalid the error correction degree value %1 (must be a value
between 0 and 3)

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-31393 Invalid font size value %1 (value needs to be to be greater than 0)

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-31394 Error parsing hex digit {0} at position %2 in string "(2)")

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-31395 Parse error: Failed to parse tracking code and routing code from code
value "%1" (Found more than one comma)

Report Writer | 878

Number Description

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-31396 Parse error: Failed to parse tracking code and routing code from code
value "%1" (Encountered non digit character {1})

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-31397 Parse error: routing code "%1" exceeds 11 digits

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-31398 Parse error: Tracking code "%1" is too short (needs to have at least 2
digits)

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-31399 Parse error: The second digit of the tracking code {0} is outside the
allowed range 0 - 4 in tracking code "%2"

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

Table 235: Error messages for the Package main

Number Description

GS-32100 Instantiating the Viewer failed with a TargetInvokationException
(cause=%1:%2)

Table 236: Error messages for the Package shared

Number Description

GS-32700 attribute %1 must be specified

Error message and resolution should be self-explanatory.

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-32701 Invalid value "%1" (must be integer)

Error message and resolution should be self-explanatory.

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-32702 Invalid value "%1" (must be a floating point value)

Report Writer | 879

Number Description

Error message and resolution should be self-explanatory.

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-32703 Invalid value "%1" (must be boolean)

Error message and resolution should be self-explanatory.

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-32704 Invalid enumeration value "%1" (must be one of: %2)

Error message and resolution should be self-explanatory.

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-32705 Invalid option value "%1" (must be one of: %2)

Error message and resolution should be self-explanatory.

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-32706 Required option value (must be one of: %1)

Error message and resolution should be self-explanatory.

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-32707 Invalid mandatory option value "%1" (must be one of: %2)

Error message and resolution should be self-explanatory.

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-32708 Invalid boolean option value "%1" (must be one of: %2)

Error message and resolution should be self-explanatory.

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-32709 Required boolean option value (must be one of: %1)

Error message and resolution should be self-explanatory.

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-32710 Invalid mandatory boolean option value "%1" (must be one of: %2)

Report Writer | 880

Number Description

Error message and resolution should be self-explanatory.

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-32711 Invalid value "%1" (must be a colon separated list of float point
values)

Error message and resolution should be self-explanatory.

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-32712 Invalid value "%1" (must be a colon separated list of POSITIVE float
point values)

Error message and resolution should be self-explanatory.

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-32713 Invalid value "%1" (must be a colon separated list of integer values)

Error message and resolution should be self-explanatory.

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-32714 Invalid object option value "%1" (must be one of: %2)

Error message and resolution should be self-explanatory.

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-32715 Required object option value (must be one of: %1)

Error message and resolution should be self-explanatory.

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-32716 Invalid mandatory object option value "%1" (must be one of: %2)

Error message and resolution should be self-explanatory.

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-32717 Invalid value "%1" (must be a colon separated list of strings):
unexpected character "%2" at position %3. Expected a " " or ","
character

Error message and resolution should be self-explanatory.

Report Writer | 881

Number Description

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-32718 Invalid value "%1" (must be a colon separated list of strings):
encountered unclosed string starting a position %2.

Error message and resolution should be self-explanatory.

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

Table 237: Error messages for the Package stylesheet.rtl

Number Description

GS-33900 Unknown RTL variable type "%1"

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-33901 Failed to initialize numeric RTL attribute variable from the input
string "%1"

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-33902 Missing "url" attribute in RTL call-report element at %1

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-33903 Missing RTL match element at %1

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-33904 Missing RTL "name" attribute in entity declaration at %1

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-33905 Missing "url" attribute in RTL load-entities element at %1

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-33906 Missing "name" attribute in RTL expand-entity element at %1

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

Report Writer | 882

Number Description

GS-33907 Reference to undeclared RTL entity "%1" at %2

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-33908 Failed to replace RTL entity parameter "%1". Parameter was not
specified at %2

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-33909 Missing "name" attribute in RTL entitiy parameter element at %1

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-33910 Missing "value" attribute in RTL entitiy parameter element at %1

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-33911 Failed to find RTL style sheet root element at %1

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-33912 Unknown RTL element %1 at %2

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-33913 Encountered style sheet element with more than one RTL element at %1

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-33914 Missing RTL elements in a sequences block at %1

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-33915 Missing RTL alternatives in a or block at %1

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-33916 Value for attribute %1 cannot be parsed as integer (Value=%2) at RTL
element %3

Report Writer | 883

Number Description

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-33917 Invalid RTL attribute value selector %1 in attribute constraint %2 at
%3

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-33918 Failed to resolve namespace prefix %1 in RTL constraint for %2 at %3

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-33919 Failed to parse regular expresssion for RTL attribute %1. Error=%2 at
%3

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-33920 RTL attribute "name" not specified at "%1"

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-33921 RTL attribute "type" not specified at "%1"

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-33922 Illegal RTL location value "%1" at %2 (must be one of "expectedHere",
"expectedBefore", "expectedAhead" or "expectedWayAhead"

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-33923 Error in input to RTL style: got token opening tag %1 when expecting
%2

GS-33924 Error in input to RTL style: got closing tag %1 when expecting %2

GS-33925 Expression error: %1 evaluating RTL expression "%2" at attribute "%3"
at %4

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-33926 Expression error: No variable value for variable "%1" encountered in
input stream when evaluating RTL expression "%2" at attribute "%3" at
%4

Report Writer | 884

Number Description

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-33927 Expression error: %1 evaluating RTL expression "%2" at attribute "%3"
at %4

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-33928 Type error: Expression %1 yielded null instead of a %2 value at RTL
attribute %3 at %4

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-33929 Type error: Expression %1 yielded %2 instead of a %3 value at RTL
attribute %4 at %5

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-33930 Reference to unknown global RTL method "%1"

GS-33931 Unknown RTL method %1 in the current context of type %2

GS-33932 Unknown RTL method %1 on object of type %2

GS-33933 Wrong number of aguments supplied to method "%1.substring" (Expected 2
or 3, got %2)

GS-33934 %1 to %2 conversion error in RTL function "%3.toNum()" (cannot parse
value "%4" as %5)

GS-33935 Illegal access error. Not able to call RTL method "%1" on object of
type %2 (cause=%3)

GS-33936 Error executing RTL method "%1" on object of type %2 (cause=%3)

GS-33937 Wrong number of args supplied to RTL method "%1.%2" (Expected %3, got
%4)

GS-33938 Invalid type for argument no %1 in call to RTL method "%2.
%3" (Expected %3, got %4)

GS-33939 Invalid null argument for argument no %1 in call to RTL method "%2"

GS-33940 Illegal access error. Not able to obtain value of RTL variable %1 on
obbject of type %2 (cause=%3)

GS-33941 Internal error: Attempt to reference an RTL array element on a null
pointer (key="%1")

GS-33942 Attempt to reference an RTL array element on a non array object of
type %1 (key="%2")

GS-33943 Internal RTL error: Can't find character context

GS-33944 RTL attribute "name" not specified in rtl:array element

Report Writer | 885

Number Description

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-33945 RTL attribute "key" not specified in rtl:array element

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-33946 RTL attribute "name" not specified in rtl:let element at %1

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-33947 RTL attribute "value" not specified in rtl:let element at %1

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-33948 Undeclared RTL variable %1 at %2

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-33949 RTL attribute "name" not specified at %1

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-33950 Expression error "%1" retrieving value of RTL variable "%2" at %2

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-33951 Unknown RTL variable %1 at %2

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-33952 RTO variable %1 in rtl:array-let element is not of type array but of
type %2 at %3

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-33953 RTL attribute "key" not specified at %1

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-33954 RTL expression "%1" in attribute "key" evaluated to null at %2

Report Writer | 886

Number Description

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-33955 RTL attribute "name" not specified at %1

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-33956 RTL expression "%1" in attribute "key" evaluated to null at %2

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-33957 RTL attribute "name" not specified at %1

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-33958 Internal RTL error: Failed to find "toCharacter"

GS-33959 Encountered RTL "%1" element containing an invalid element "%2" at %3

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-33960 missing "enumeration" attribute value in RTL "for-each" element
encountered at %1

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-33961 Invalid object type %1 returned for RTL attribute "enumeration" in
a "for-each" element. Expected expression "%2" to return enumeration
type at %3

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-33962 Missing RTL "condition" attribute value in "while" element encountered
at %1

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-33963 Internal RTL error: Order of calls violated

GS-33964 Illegal trailing '.' in RTL identifier

GS-33965 Redefinition of RTL identifier %1 of type %2 as record

GS-33966 %1 to %2 conversion error in RTL function "%3.toNumeric()" (cannot
parse value "%4" as %5)

Report Writer | 887

Number Description

GS-33967 Date.fromString(): Failed to parse date value "%1" with pattern "%2"

GS-33968 Date.parseString(): Failed to parse date value "%1" with pattern "%2"

Table 238: Error messages for the Package stylesheet.standardpipe

Number Description

GS-33800 Cannot open file

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-33802 Old file format. Use last version of Genero Report Designer to update
the file

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-33803 File format :" + version + " not supported. This executable
supports :" + SUPPORTED_VERSION_T

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-33804 logical page mapping is set to "labels" but
fgl_report_configureLabelOutput() was not called to configure the
layout

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-33805 cannot determine label width. Value was not set in call to
fgl_report_configureLabelOutput() and it is not set in the .4rp
template.

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-33806 cannot determine label height. Value was not set in call to
fgl_report_configureLabelOutput() and it is not set in the .4rp
template.

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-33807 environment variable GREDIR is not set

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-33808 environment variable FGLDIR is not set

Report Writer | 888

Number Description

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

Table 239: Error messages for the Package stylesheet

Number Description

GS-33000 %1: not prepared to handle nested style declarations

GS-33001 Failed to parse style attribute "%1". Parse error=%2

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-33002 Error parsing CSS stylesheet: %1

GS-33003 Internal error: Node %1 (%2) getIdValue() failed

GS-33004 Internal error: Invalid operator %1

GS-33005 Internal error: Invalid Id %1

GS-33006 Internal error: Invalid Id %1

GS-33007 Internal error: failed to find simple selector index

GS-33008 Internal error: garbled selector

GS-33009 error during printing: Exception: %1

GS-33010 Executing process "%1" returned non zero exit code: %2, Process
output:%3

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-33011 Got an exception of type "%1" when attempting to start process
"%2" (cause=%3)

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-33012 IOException writing to file "%1" (cause="%2")

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-33013 Internal error: closing tag="%1"

GS-33014 Internal error: Expected closing '%1' tag. Got "%2" tag instead

GS-33015 Please contact your sales office regarding licensing.

GS-33016 Missing COLDEF section in TABLE

GS-33017 Found illegal tag "%1" within COLDEFS section

GS-33018 COLDEF element requires "fWidth" or "pWidth" attribute

Report Writer | 889

Number Description

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-33019 COL references undeclared column in COLDEFS section

GS-33020 Illegal align value "%1" (must be one of "left", "right", "center" or
"baseline")

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-33021 invalid value %1 for align attribute (must be one of "left", "right"
or "center")

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-33022 LI element is not nested within a OL or UL element

GS-33023 Encountered DIMENSIONS element at unexpected location within a
PIVOTTABLE. DIMENSIONS need to be declared before any VALUES.

GS-33024 Encountered a DATACOLUMN element for an undeclared column.

GS-33025 %1 element encountered at unexpected position.%2

GS-33026 Failed to parse value "%1" as floating point value

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-33027 Not enough dimensions in pivot table to draw as a map chart (Table
needs to have at least one dimension column)

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-33028 Not enough values in pivot table to draw as a map chart (Table needs
to have at least one value column)

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-33029 Not enough dimensions in pivot table to draw as a map chart (Table
needs to have at least two dimension columns)

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-33030 Not enough values in pivot table to draw as a map chart (Table needs
to have at least one value column)

Report Writer | 890

Number Description

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-33031 Not enough values in pivot table to draw as a xy chart (Table needs to
have at least two value columns)

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-33032 First value is not numeric (The first two values need to be numeric in
order to draw a XY chart)

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-33033 Second value is not numeric (The first two values need to be numeric
in order to draw a XY chart)

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-33034 Internal error: closing tag="%1"

GS-33035 Internal error: Expected closing "%1" tag. Got "%2" tag instead

GS-33036 Internal error: Reference to unregistered color "%1"

GS-33037 Internal error: Reference to unregistered font "%1"

GS-33038 Incomplete document

GS-33039 IllegalAccessException: Cannot load class "%1" (cause=%2)

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-33040 InstantiationException: Cannot load class "%1" (cause=%2)

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-33041 NoSuchMethodException: Cannot load class "%1" (cause=%2)

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-33042 InvocationTargetException: Cannot load class "%1" (cause=%2)

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-33043 Internal error: IOException (cause="%1"

Report Writer | 891

Number Description

GS-33044 Internal error: parse called

GS-33045 Syntax error in PXML font size expression (%1) (Missing comma)

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-33046 Syntax error in PXML font size expression (%1) (can't parse "line" and
"column" values as integers)

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-33047 Failed to parse font size percent expression %1 (cause=%2)

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-33048 Internal error: Could not find element %1 with source id %2 (name=%3),
path=%4

GS-33049 Internal error: Could not find element %1 with source id %2 (name=%3),
path=%4

GS-33050 Internal error: Failed to retrieve parent font size: (cause=%1)

GS-33051 Invalid port %1

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-33052 Invalid page number format "%1"

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-33053 Internal error: Got exception of type "%1" during creation of an hex
encoded bitmap (cause=%2)

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-33054 COLDEF element requires "fWidth" or "pWidth" attribute

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-33055 Internal error: failed to find child %1 for parent %2

GS-33056 Internal error: node is of unexpected type %1

GS-33057 COL references undeclared column in COLDEFS section in row %1

GS-33058 Exception of type "%1" encountered when trying to load image from URL
"%2" (cause=%3)

Report Writer | 892

Number Description

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-33059 Value may not contain the file name separator character '%1'

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-33060 Value "%1" is not supported on this platform (Run "java ImageIOInfo"
to obtain a list of available formats)

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-33061 Got an exception of type "%1" when attempting to start the PPM image
processor "%2" (cause=%3)

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-33062 Got an exception of type "%1" when attempting to write to the PPM
image processor "%2" (cause=%3)

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-33063 Executing PPM processor "%1" returned non zero exit code: %2 (Process
output=%3)

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-33064 Executing PPM processor "%1" returned non zero exit code: %2)

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-33065 Failed to save image to file "%1" (cause=%2

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-33066 Encountered exception of type "%1" while attempting to save a page
image to a stream (cause=%2}

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-33067 Failed to save PPM image to file "%1" (cause=%2}

Report Writer | 893

Number Description

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-33068 Invalid value %1 (Allowed values are between 0 and 1)

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-33069 Failed to save PDF document to file "%1" (cause=%2}

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-33070 Encountered exception of type "%1" when attempting to write PDF
document to host "%2" at port %3 (cause=%4)

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-33071 Ecountered '{' in list (no nested lists allowed) at character position
%1 in data "%2"

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-33072 Unexpected character '%1' at character position %2 in data "%3"

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-33076 Ecountered unexpected '{' character at character position %1 in data
"%2"

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-33078 Missing '{' to close list at character position %1 in data "%2"

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-33079 Encountered unfinished attribute declaration at character position %1
in data "%2"

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-33080 Missing '=' character after attribute name at character position %1 in
data "%2"

Report Writer | 894

Number Description

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-33081 Missing attribute value after '=' character at character position %1
in data "%2".

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-33082 %1: failed to write to host "%2" at port %3, reason: %4

GS-33083 Unknown encoding %1

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-33084 Invalid value '%1' for attribute %2

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-33085 Internal error: got exception of type "%1" when creating a "date time"
attribute from value "%2" (cause=%3)

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-33086 Internal error: got exception of type "%1" when creating an integer
attribute from value "%2" (cause=%3)

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-33087 Internal error: got exception of type "%1" when creating a text
attribute from value "%2" (cause=%3)

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-33088 Attribute "mediaTrayNumbers" is only available on the Linux platform

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-33090 No print service found

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-33094 Cannot write to file %1 msg=%2

Report Writer | 895

Number Description

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-33095 Internal error: Failed parse pattern value "%1". Msg=%2

GS-33096 Got an exception of type "%1" when attempting to launch the spooler
command "%2" (cause=%3

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-33097 Got an exception of type "%1" when attempting to write to the spooler
"%2" (cause=%3)

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-33098 cannot find stream printer for mime type "%1"

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-33100 Internal error: reject called

GS-33101 Internal error: got non 2D Graphics

GS-33102 Internal error: pageIndex %1 out of range (%2,%3

GS-33103 Unexpected element "%1". Expected document root element to be a "PXML"
element.

GS-33104 %1 root element has wrong namespace "%2". Expected namespace is "%3".
Try adding xmlns="%4" to the root element.

GS-33105 Class %1 not found

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-33106 Cannot load class %1 (%2)

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-33108 Cannot load class %1. constructor not found (%2)

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-33110 Internal error: %1::endElementEx() current==null

GS-33117 IOException on writing RTF document to file "%1" (cause=%2)

Report Writer | 896

Number Description

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-33118 %1 element is not nested within a %2 element

GS-33120 setting up print service failed (%1)

GS-33121 IO error during printing (%1), cause=%2

GS-33122 aborted printing (%1)

GS-33123 error during printing (%1:%2)

GS-33124 error during printing, printing aborted.

GS-33125 error during printing (%1)

GS-33126 internal error: got invalid value %1 for property
orientationRequested. Setting to %2.

GS-33127 InvocationTargetException: failed to instantiate style sheet
"%1" (cause=%2).

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-33128 Exception: failed to instantiate style sheet "%1" (cause=%2).

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-33129 IOException reading compressed source (cause=%1)

GS-33131 Invalid command in transform attribute ("%1")

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-33132 Not enough arguments to %1 command in transform attribute. Required
are %2

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-33133 Cannot parse argument "%1" as number for the %2 command in transform
attribute

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-33134 Wrong number of matrix values in %1 attribute (%2) required are %3

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

Report Writer | 897

Number Description

GS-33135 Uneven number of values in %1 attribute (%2)

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-33136 Cannot resolve reference in use tag href=%1

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-33137 Internal error: Invalid end cap value %1

GS-33138 Internal error: Invalid line join %1

GS-33139 Attribute value error: %1 must be a value between %2 and %3 (val=%4)

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-33140 Wrt error: failed to read from source

GS-33141 Wrt error: Got non zero status value:%1, msg=%2

GS-33142 Wrt error: Exception=%1, msg="%2"

GS-33143 IOException writing to file "%1". msg="%2"

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-33144 IOException flushing to temp file. msg="%1"

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-33145 The TransformerFactory does not support SAX input and SAX output

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-33146 Encountered "TransformerConfiguationException" trying to initialize
for loading XSLT style from URL "%1" (cause=%2)

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-33147 Encountered "SAXException" trying to initialize for loading XSLT style
from URL "%1" (cause=%2)

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-33148 Encountered "IOException" trying to load XSLT style from URL
"%1" (cause=%2)

Report Writer | 898

Number Description

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-33150 Encountered "TransformerConfigurationException" trying to load XSLT
style from URL "%1" (cause=%2)

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-33151 Encountered "SAXNotRecognizedException" trying to load XSLT style from
URL "%1" (cause=%2)

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-33152 Encountered "SAXNotSupportedException" trying to load XSLT style from
URL "%1" (cause=%2)

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-33153 Encountered "SAXException" on issuing "startDocument" using XSLT style
from URL "%1" (cause=%2)

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-33154 Missing column value for column %1

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-33155 Illegal character set name %1

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-33156 Unsupported character set name %1

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-33157 Failed to write page number template (cause=%1}

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-33158 Path %1 is not a directory

Report Writer | 899

Number Description

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-33159 Failed to create directory %1

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-33160 Unexpected element "%1". Expected document root element to be a "SVG"
element.

GS-33161 Encountered unreferenceable "g" element in "defs" element ("id"
attribute missing).

GS-33162 Encountered unreferenceable "font" element in "defs" element ("id"
attribute missing).

GS-33163 Encountered unreferenceable "image" element in "defs" element ("id"
attribute missing).

GS-33164 Encountered faulty "image" element in "defs" element ("href" attribute
missing).

GS-33165 Failed to create image file in directory %1

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-33166 Failed to create file "index.txt" in directory %1

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-33167 font id "%1" does not end with a style digit.

GS-33168 Failed to create WOFF font file "%1"

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-33169 Failed to create TTF font file "%1"

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-33170 Failed to create EOT font file "%1"

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-33171 Failed to rename file %1.part

Report Writer | 900

Number Description

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-33172 Failed to create generic report design document from template %1

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-33173 Failed to create temporary generic report design document file

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-33174 Printer %1 not found

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-33175 Failed to rename WOFF font file to "%1"

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-33176 Failed to rename TTF font file to "%1"

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-33177 Failed to close image file "%1" (cause=%2}

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-33178 IOException closing file "%1". msg="%2"

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-33179 Failed to rename EOR font file to "%1"

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-33180 Failed to create file "%1"

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

Report Writer | 901

Table 240: Error messages for the Package util.domutil.selection

Number Description

GS-34800 Internal error: Can't find element denoted by the path %1 in the
document fragment %2

Table 241: Error messages for the Package util.domutil

Number Description

GS-34500 Internal error: Element.getLocalName() returned null. Apparantly the
document was modified using DOM Level 1 functions

GS-34501 Attribute type error: Expected integer value for attribute %1

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-34502 Attribute type error: Expected long value for attribute %1

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-34503 Attribute type error: Expected double value for attribute %1

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-34504 Attribute type error: Expected boolean value for attribute %1

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-34505 Failed to parse value "%1" as URL (cause=%2)

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-34506 Cannot resolve relative URL %1. Have no system id to absolutize
against.

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-34507 Failed to parse "systemId" value "%1" as URI (cause=%2)

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-34508 Failed to create absolute URL from systemId="%1" and URL="%2"

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

Report Writer | 902

Number Description

GS-34509 Internal error: failed to convert URI "%1" to URL (cause=%2)

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-34510 Internal error: location path contains unparsable value (path=%1).

GS-34511 Cannot load document %1. Have "FactoryConfigurationError" (cause=%2)

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-34512 Cannot load document %1. Have "ParserConfigurationError" (cause=%2)

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-34513 Cannot load document %1. Have "SAXParseException" (cause=%2) at line
%3

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-34514 Cannot load document %1. Have "SAXException" (type=%2, cause=%3)

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-34515 Cannot load document %1. Have "IOException" (cause=%2)

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-34516 Encountered "IOException" trying obtain input stream for URL
"%1" (cause=%2)

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

Table 242: Error messages for the Package util.expressionparser

Number Description

GS-35400 Internal error: pushString called on function %1. The function takes
only one numeric parameter

GS-35401 Internal error: getStringReturnValue called on function %1. The
function returns a numeric value

GS-35402 Internal error: pushString called on function %1. The function takes
only two numeric parameters

Report Writer | 903

Number Description

GS-35403 Internal error: getStringReturnValue called on function %1. The
function returns a numeric value

GS-35404 RTL expression error: Illegal access error. Not able to obtain value
of variable %1 on object of type %2 (cause=%3)

GS-35405 RTL expression error: Illegal array or array index. Not able to obtain
array value for index %1 on List of type %2 (err=%3)

GS-35406 RTL expression error: Illegal array index. Not able to obtain array
value for index %1 on List of type %2 (cause=%3)

GS-35407 RTL expression error: Unable to resolve non numeric key %1 on array of
type %2 (Non numeric arguments can only be used on "Map" arrays)

GS-35408 Unknown media type "%1"

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-35409 Unknown media type "%1"

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-35410 Unexpected extra text %1 at end of PXML expression "%2"

GS-35411 Unexpected extra text %1 at end of PXML string expression "%2"

GS-35412 Unexpected token %1 in PXML expression. Expected else operator ':' in
ternary conditional expression

GS-35413 Unexpected token %1 following '|' in PXML expression

GS-35414 Unexpected token %1 following '&' in PXML expression

GS-35415 Unexpected token %1 following '%2' in PXML expression

GS-35416 Unexpected end of PXML expression

GS-35417 Type error: illegal call to PXML function "%1" returning %2 while
expecting a function that returns a numeric value

GS-35418 Expected enumeration identifier for parameter number %1 in call to
PXML function %2 but got %3 instead

GS-35419 Missing function arguments in call to PXML function %1. Expected %2
parameters but found %3 instead

GS-35420 Missing ')' in call to PXML function "%1"

GS-35421 Unmatched '(' in PXML expression

GS-35422 Internal error in PXML expression (unexpected token %1)

GS-35423 Unexpected end of PXML string expression

GS-35424 Type error: illegal call to PXML function "%1" returning %2 when
expecting a function that returns a string value

Report Writer | 904

Number Description

GS-35425 Expected enumeration identifier for parameter number %1 in call to
PXML string function "%2" but got %3 instead

GS-35426 Missing function arguments in call to PXML string function
"%1" (Expected %2 parameters but found %3)

GS-35427 Missing ')' in call to PXML string function "%1"

Error message and resolution should be self-explanatory.

GS-35428 Unmatched '(' in PXML string expression

Error message and resolution should be self-explanatory.

GS-35429 Invalid operator in expression: '%1' (%2)

GS-35430 Unexpected extra token "%1" at end of RTL expression "%2"

GS-35431 Unexpected token %1 in RTL expression. Expected else operator ':' in
ternary conditional expression

GS-35432 Error in RTL conditional expression: Expected %1 value to precede '?'
operator but got a %2 value

GS-35433 Error in RTL conditional or expression: Expected left operand to be of
type %1 but got a %2 value

GS-35434 Error in RTL conditional or expression: Expected right operand to be
of type %1 but got a %2 value

GS-35435 Error in RTL conditional and expression: Expected left operand to be
of type %1 but got a %2 value

GS-35436 Error in RTL conditional and expression: Expected right operand to be
of type %1 but got a %2 value

GS-35437 RTL expression error: Relational operator ">=" cannot be applied to
types %1,%2

Error message and resolution should be self-explanatory.

GS-35438 RTL expression error: Relational operator ">" cannot be applied to
types %1,%2

Error message and resolution should be self-explanatory.

GS-35439 RTL expression error: Relational operator "<=" cannot be applied to
types %1,%2

Error message and resolution should be self-explanatory.

GS-35440 RTL expression error: Relational operator "<" cannot be applied to
types %1,%2

Error message and resolution should be self-explanatory.

GS-35441 RTL expression error: Operator '+' cannot be applied to %1,%2

Error message and resolution should be self-explanatory.

GS-35442 RTL expression error: Operator '-' cannot be applied to %1,%2

Report Writer | 905

Number Description

Error message and resolution should be self-explanatory.

GS-35443 RTL expression error: Operator '*' cannot be applied to %1,%2

Error message and resolution should be self-explanatory.

GS-35444 RTL expression, type mismatch: cannot multiply value of type %1

Error message and resolution should be self-explanatory.

GS-35445 RTL expression, division failed (cause=%1)

Error message and resolution should be self-explanatory.

GS-35446 RTL expression: Operator '/' cannot be applied to %1,%2

Error message and resolution should be self-explanatory.

GS-35447 RTL expression, integer division failed (cause=%1)

Error message and resolution should be self-explanatory.

GS-35448 RTL expression error: Operator '%%' cannot be applied to %1,%2

Error message and resolution should be self-explanatory.

GS-35449 RTL expression error: Illegal array index value (null)

GS-35450 RTL expression error: Unexpected token %1 ("%2" following array index
expression. Expected ']' to terminate expression

GS-35451 RTL expression error: Cannot negate object of type %1

GS-35452 RTL expression error: Cannot perform logical negation on an object of
type %1

GS-35453 Unexpected end of RTL expression

GS-35454 RTL expression error: Unexpected token %1 ("%2" in call to function
%3. Expected either ',' or ')'.

GS-35455 RTL expression error: Unmatched '('

GS-35456 RTL expression errror: Unexpected token %1 (type=%2)

GS-35457 ExpressionTokenizer: Internal error: pushBack() called more than once
in a row.

GS-35458 Invalid character '%1' in expression "%2"

GS-35459 Unexpected end of expression in expression "%1", was expecting '%2'

GS-35460 Unexpected character '%1' in expression "%2", was expecting '%3'

GS-35461 Failed to parse numeric value "%1"

GS-35462 Failed to parse "%1" as a numeric value for the RTL variable "%2"

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-35463 Unknown function "%1"

Report Writer | 906

Number Description

GS-35464 Unknown function "%1()"

GS-35465 Unknown function "%1(%2)"

GS-35466 Unknown PXML unit "%1"

GS-35467 Unknown variable "%1"

GS-35468 Unexpected token "" + TOKEN_NAMES[ttype] + "" in PXML string
expression

Table 243: Error messages for the Package util.getopt

Number Description

GS-36000 Invalid '=' character in option "%1"

GS-36001 Internal error: Invalid usage

GS-36002 Invalid option "%1". Expected '-' to start option

GS-36003 Invalid option "%1". Expected option name to follow '-'

GS-36004 Invalid option "%1". Expected option name to follow "--"

GS-36005 Unknown option "%1"

GS-36006 Missing required argument for option "%1".

Table 244: Error messages for the Package util.regexp.derivates

Number Description

GS-36600 Unknown external reference %1

GS-36601 Internal error: Tokenizer returned invalid values n=%1

GS-36603 Internal error: Tokenizer returned invalid values m=%1

GS-36604 Internal error: Tokenizer returned invalid values n=%1 m=%2

GS-36606 Internal error: got internal reference token allthough the stream
claims not to produce these

GS-36607 Reference index %1 out of range (max=%2

GS-36608 found recursive external reference %1. Stack=%2

GS-36609 Line does not consist of two space separated fields

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-36610 Expression file is empty

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-36611 Unexpected end of expression

Report Writer | 907

Number Description

GS-36613 Unexpected EOF in control character specification

GS-36614 Illegal control character specification "\c%1"

GS-36615 Unexpected EOF in external reference

GS-36616 Expected '{' character to follow \R in external reference. Got '%1'
instead

GS-36617 Unclosed external reference

GS-36618 Unexpected EOF in tracked external reference

GS-36619 Expected '{' character to follow \R in a tracked external reference.
Got '%1' instead

GS-36620 Unclosed tracked external reference

GS-36621 Unexpected EOF in marker definition

GS-36622 Expected '{' character to follow \M in marker definition. Got '%1'
instead

GS-36623 Unclosed marker definition

GS-36627 Expected '{' character to follow \p in character class definition. Got
'%1' instead

GS-36628 Unclosed character class definition

GS-36629 Unknown character class name %1

GS-36630 Invalid escape "\%1"

GS-36631 Unclosed character class

GS-36632 illegal digit '%1' in range modifier

GS-36633 Unclosed range modifier

GS-36634 Upper range value smaller than lower range value in range modifier

GS-36635 Invalid range values (%1,%2) in range modifier

GS-36636 Invalid range value (%1,) in range modifier

GS-36637 Invalid range value (,%1) in range modifier

GS-36638 Illegal range modifier

GS-36639 Empty range modifier

GS-36640 Failed to find an element definition

GS-36641 Failed to find referenced element

GS-36642 Failed to find complexType element

GS-36643 Failed to find simpleType element

GS-36644 Failed to find attribute declaration

GS-36645 Failed to find attribute group declaration

GS-36646 Failed to find group declaration

GS-36647 Neither "ref" nor "name" Attributes not set on attribute group

Report Writer | 908

Number Description

GS-36648 Neither "ref" nor "name" Attributes not set on attribute

GS-36649 Encountered empty simpleType

GS-36650 Encountered extension without base declaration

GS-36651 Encountered restriction without base declaration

GS-36652 Neither "ref" nor "name" Attributes not set on element

GS-36653 maxOccurs has value 0 in particle

GS-36654 maxOccurs is smaller than minOccurs in particle

GS-36656 Internal error: Unknown type %1

Table 245: Error messages for the Package util.regexp

Number Description

GS-36300 Unexpected extra text at end of expression at %1 (c='%2')

GS-36301 Unexpected end of expression

GS-36302 Missing ']' at %1

GS-36303 Missing ')' at %1

GS-36305 Expected character to follow '-' at %1

GS-36306 Expected character to follow '[' at %1

GS-36307 Internal error: Called unread() more than once at %1

GS-36308 Internal error: Called unread() more than once at %1

GS-36309 Invalid escape "\%1" at %2

Table 246: Error messages for the Package util

Number Description

GS-34200 Internal error: uri is not allowed to be null

GS-34201 Internal error: localName is not allowed to be null

GS-34202 Internal error: uri is not allowed to be null

GS-34203 Internal error: localName is not allowed to be null

GS-34204 Internal error: uri is not allowed to be null

GS-34205 Internal error: localName is not allowed to be null

GS-34206 Internal error: uri is not allowed to be null

GS-34207 Internal error: localName is not allowed to be null

GS-34208 Internal error: uri is not allowed to be null

GS-34209 Internal error: '0'-'3' or 'u' expected after '\': %1

GS-34210 Internal error: '0'-'7' or 'u' expected after '\': %1

GS-34213 Unmatched quote at end of string "%1"}

Report Writer | 909

Number Description

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-34214 Unmatched quote in string "%1" at position%2

Tip: This is an attribute error. Attribute errors are displayed in a way that makes them
clickable in Genero Studio, as they refer to a particular attribute in the report design
document.

GS-34215 failed to map file %1 into memory. Reason: %2

GS-34216 corrupted file %1. Corruption type: 1

GS-34217 corrupted file %1. Corruption type: 2

GS-34218 corrupted file %1. Corruption type: 3

GS-34219 corrupted file %1. Corruption type: 3 at position %2

GS-34220 Internal error: Encountered open Edge

GS-34221 Internal error: Encountered open CharacterEdge

Web Services | 910

Web Services

Information about using Web Services in Genero Studio.

• Create a Web Services program on page 910
• Add Web Service on page 910
• The Web Services wizard on page 911
• Build the application on page 913
• Update the WSDL on page 914
• Generating web services

See also the Web Services topic in the Genero Business Development Language User Guide.

Create a Web Services program
You can use Genero Studio to write, compile, and execute a Genero Web Services (GWS) client or server
application.

1. Add an application, library, or folder node to a project in Project Manager.

2. Right-click the node, and select Add Web Service. Select either Client Consuming WSDL or Server
Implementing WSDL.

This calls the The Web Services wizard on page 911, to assist you in adding the Web Services client
or server information to the application.

3. Use Code Editor to create or modify a Genero application that calls a Web Service (client) or defines a
Web Service (server).

Use the WSDL information to determine the service name and functions. Code Editor recognizes and
parses the syntax of BDL functions related to Genero Web Services. See the Genero Web Services
User Guide for details on coding your Web services clients and servers.

4. In Genero Studio Project Manager, add the WSHelper.42m file to the external dependency property of
your Genero application; this compiled file contains functions used internally for Web Services.

5. Use the Genero Studio Build menu option to compile and link your new application.

If you must access the web service using a proxy, provide the proxy information using Tools >>
Preferences.

Add Web Service
To access or defile a Web service, you must have the WSDL description created by the service provider.
You can use the WSDL description to determine the operations of the Web Service to use in your BDL
program, the required parameters, and the return values.

1. Right-click an Application, folder or library node in Project Manager and select Add Web Service.

The Web Services Wizard displays.

2. Choose between:

a) Client Consuming WSDL - to retrieve the WSDL information and generate a . 4gl file containing the
BDL functions for the operations in the WSDL, which can be called by a GWS client application.

b) Server Implementing WSDL - to retrieve the WSDL information and generate a 4gl file (GWS
Server Application) containing the BDL functions to create and publish a Web Service which can be
accessed over the web.

The Web Services Wizard guides you through the steps to add the necessary service information to your
application.

Web Services | 911

The Web Services wizard
The Web Services Wizard guides you through the steps to add the necessary service information to your
application.

Web Services selection Page

Provide the Service details to get the WSDL description, using one of these:

• URL - Provide the URL of the web service. Example: http://servername:port/servicename?
WSDL

• File - Provide the name and location of a WSDL file in your file system.

Click the View button. The description of the Web Service is retrieved from the WSDL and displayed.

Figure 391: Add Web Services - Client consuming WSDL dialog

Copy to - Use the Browse button to specify the directory where a copy of the WSDL file should be saved. If
you used the File option to specify the WSDL file, this directory must be different.

Web Services | 912

Advanced Options button - if you select this button, a dialog displays that allows you to add an external
schema file with the WSDL file.

Figure 392: Add Web Services - Client consuming WSDL, Advanced options

Within the Advanced Options dialog:

• Additional Schema File - press the Add icon to add an external schema file. An Add dialog opens,
allowing you to search for the file. Other icons allow you to delete a previously added file, or to edit it.

• Additional Schema Folder- press the Add icon to add the path and filename of the schema folder.
• Https Options - Set the options needed for the fglwsdl tool, which implements adding the external

schema.

Web Services Project Integration (Client only)

Add Web Services to Project - if this radio button is selected, the WSDL file will be added to your project
in Project Manager. Files that show the Web Services operations as functions in a Genero Program are
generated and stored in the Target directory of the application:

• inc file - the globals file containing the definitions of the input and output records, and the prototypes of
the operations.

• 4gl file - contains the definitions of the functions for your GWS client or server application. and the
code that manages the Web Service request or publishes a service,

Web Services | 913

Advanced - this radio button gives you the flexibility to write your own web client stub. The 4gl and inc
files are generated and added to your project in Project manager. The WSDL file is created in the "copy to"
path.

Important: Do not modify the generated 4gl files; they are regenerated on each re-build, so
modifications will be lost.

Advanced Code Generation Options

Select the options for code generation and runtime behavior, if you wish to modify the default behavior.
See The fglwsdl tool for a complete list of the command options.

• Select service/binding - Choose from the list of all Services or binding in the generated wsdl file.
• Behavior and Functionality

• Compatible with Genero 1.xx - Implements the "-compatibility" option of the Genero tool fglwsdl.
• Force RPC convention (applies to RPC only) - Implements "-fRPC" option of fglwsdl.
• Generate choice records for inherited types - Implements "-fInheritance" option of fglwsdl.
• Ignore SOAP faults - Implements "-ignoreFaults" option of fglwsdl.
• Use WS-addressing - Allows support of WS-Addressing (only WS-Addressing 1.0 is supported.)
• Check data type constraints (facets) for simple types - Implements "-noFacets" option of fglwsdl.

By default facet is present, so this option is enabled.
• Generate XML list of arrays - Implements "-fArray" option of fglwsdl.
• Generate DOM callback handlers - Implements "-domHandler" option of fglwsdl.
• Generate FGLPROFILE aliases for server URL Generates FGLPROFILE Logical names in place of

URLs for the client stub - implements "-alias" option of fglwsdl.
• Coding Conventions & Style

• Include service documentation - Implements "-comments" option of fglwsdl.
• Prefix functions, variables, and types with - Implements "-prefix" option of fglwsdl.
• Prefix variables and types with namespace - Implements "-autoNsPrefix" option of fglwsdl.

Specify the number of words of the namespace that are to be excluded from the prefix. The default
prefix is the full namespace, and you may exclude up to nine words. After the ninth word, you can
only add the last word of the namespace as the prefix.

• Define prefix for variables and types per namespace - Implements "- nsPrefix" option of fglwsdl.
For each namespace, you can define a prefix for variables and types.

• Command Line - additional arguments for the execution of the fglwsdl tool.

The command line is read-only, and is automatically updated when you select an option.

Code Generation Result - optional page

This page displays only if you have selected Advanced in the Web Services Project Integration page of
the wizard.

Select Finish to generate the WSDL file and accompanying files.

Note: If you must access the web service using a proxy, provide the proxy information in General
Preferences on page 106.

Build the application
The Genero library file WSHelper.42m must be linked into every application using Web Services.

Build Rules are defined to link the generated 4gl file into your application. The generated 4gl file in the
Target Directory should not be modified, as your changes will be lost if the file is regenerated.

Web Services | 914

Important: The Genero library file WSHelper.42m must be linked into every application using
Web Services. Add the library file to the application node in Project Manager as an external
dependency property, prior to building the application.

When you build the Project, the appropriate files are compiled and linked.

Update the WSDL
Right-click the WSDL node in the project structure to update the WSDL file.

An internet connection is required, unless the Web Services server is local.

While updating the file, any new dependency files are also downloaded.

Add Web services (Server, Services, Forms with services)
Web services are a standard way of communicating between applications over an intranet or Internet.
They define how to communicate between two entities: a server that exposes services and a client that
consumes services. Web services may provide programmable access to the functions of a form or a
standalone service without a form.

• Webservice Server entity on page 216
• Create a Webservice server on page 216
• Webservice entity on page 217
• Create standalone service on page 219
• Create service from a form on page 219
• CRUD form and Webservice, Zoom form and Webservice on page 219
• JSON Web services on page 220
• Public fields on page 220

Mobile applications | 915

Mobile applications

Genero Studio provides the framework for creating robust Genero mobile applications.

Mobile development environment
A complete and inclusive development environment allows you to write and test your Genero mobile apps
from your desktop prior to deploying them to your mobile devices.

The mobile development environment includes the runtime DVM, the development IDE (Genero Studio),
and two development agents: Genero Mobile for iOS (GMI) and Genero Mobile for Android (GMA). During
development, the DVM and the IDE sit on the desktop, and the GMI and GMA display clients sit on mobile
devices. A mobile device can be a physical device, such as a phone or tablet, or it can be an emulator.

During development, you run the app in developer mode. In developer mode, the app runs on a
development machine and displays the user interface (UI) to an Android or iOS device or emulator. The
server app makes the initial connection. The Genero Mobile Development Client runs on the device,
listening at port 6400 (by default) for the connection.

By running the app from your development environment, you can develop and debug your app from within
the Genero Studio IDE. You do not have to continuously copy files to the device. You can quickly see the
user interface and engage with the app. You can quickly switch between various devices.

Figure 393: Developer mode

Options for development

Three clients are available for use while developing Genero mobile apps.

• Genero Mobile for Android (GMA)

This client allows you to test your app on an Android physical device or emulator during development.

To put the GMA client on your Android device, you must connect your device to your computer via the
USB port.

To run your app in developer mode and view it on your Android device, you must connect your device
to your development machine via the USB port.

Mobile applications | 916

See Configure Genero Mobile for Android on page 118 for details on setting up the GMA for
development.

• Genero Mobile for iOS (GMI)

This client allows you to test your app on an iOS physical device or simulator during development. The
development machine must use a Mac OS.

To put the GMI client on your iOS device, you must connect your device to your computer via the USB
port.

To run your app in developer mode and view it on your iOS device, connect to your development
machine via the USB port.

See Configure Genero Mobile for iOS on page 127 for details on setting up the GMI for development.
• Genero Development Client

Using the Genero Development Client, you can view your app on an iOS device when developing with a
Windows or Linux development machine. Mac OS is required on the mobile device.

Important: While this client allows you to view and test your app on the device in developer
mode, it does not give you the ability to create an iOS package or to deploy your app to an iOS
device.

To put the Genero Development Client on your iOS device, you must download the app from the Apple
store.

To run your app in developer mode and view it on your iOS device using the Genero Development
Client, you must use a wireless network (wifi).

See Display to the Genero Mobile Development Client on page 138 for details on using the Genero
Development Client.

Tools to assist with development
Genero Mobile has a variety of tools to aide in development.

• Preview the form on the mobile device.
• Debug your app using the graphical debugger.
• Use the profiler to gather statistics on where your program spends its time and to identify bottleneck

functions.
• View the AUI tree in a browser on your development machine (or any browser on the local wifi network).
• Display the program logs.
• Display the device logs.

See Graphical Debugger on page 502 for deatils on the graphical debugger. The command-line debugger
(fgldb) is described in the Genero Business Development Language User Guide.

See Debugging a mobile app on page 918.

Using command-line tools

Working from the desktop, you have the full suite of command line tools at your disposal: gsmake,
fglrun. fglrun -d, and so on. See the Genero Business Development Language User Guide for
information on the command line tools.

Deploy to the device for testing

The development clients are provided to ease your development efforts, allowing you to view your app
without having to package and deploy your app to the device to view changes in the app code. Towards
the end of the development cycle, you will want to test your app running fully on the device.

Mobile applications | 917

When a package is deployed on a device where the debug package has been activated, debugging tools
available include:

• View the AUI tree in a browser.
• Display the program logs.
• Display the device logs.
• Command-line on-device debugging.

See Packaging, deploying, and distributing apps on page 993.

Genero mobile app demos
There are several demos provided to highlight Genero mobile apps.

If you are looking for code snippets and examples, you are encouraged to view the demo apps that have
been created to highlight Genero mobile apps. You can run the demos in developer mode or you can
deploy each demo to your device.

OfficeStoreMobile OfficeStoreMobile is provided as one of the default
projects. Access the project from the Tutorials &
Samples tab on the Welcome Page. This app was
created using the Business Application Modeler.

This demo is the Office Store demo, where you can
view a list of customers and their orders.

You can deploy the package for the app to your
device or emulator. The package can be found
under the Packages node in the project.

MobilePatterns MobilePatterns is provided as one of the default
projects. Access the project from the Tutorials &
Samples tab on the Welcome Page. This app was
created using the Business Application Modeler.

This demo shows how you can define relationships
between two forms, and how you can use a
common form with multiple relationships defined.

You can deploy the package for the app to your
device or emulator. The package can be found
under the Packages node in the project.

PhoneDemo The PhoneDemo includes the Stores demo and
additional demos that show how various forms,
menus and widgets are displayed on your mobile
device. You can access the project from the
Tutorials & Samples tab on the Welcome Page.

The source code can be found at $GSTDIR/
samples/PhoneDemo or, if you are not using
Genero Studio, $FGLDIR/demo/MobileDemo/
phoneMain.

In addition to running the demo in developer mode
or deploying the demo to your device, you can start
the PhoneDemo from the Genero Mobile client.

Mobile applications | 918

Table 247: Starting the PhoneDemo from your
Genero Mobile client

GMA GMI

1. Start Genero Mobile
on your device.

2. Tap Browse
bundled apps.

3. Tap
InternalGeneroApps.

4. Tap
MobileDemo.xcf.

1. Start Genero Mobile
on your device.

2. Tap Run Demo.

The Stores demo is a non-generated app that
provides a simple order tracking app for a fictional
sporting goods store.

The source code for the Stores Demo can be found
at $GSTDIR/samples/PhoneDemo/stores or, if
you are not using Genero Studio, $FGLDIR/demo/
MobileDemo/stores.

stores2 The Stores2 demo is the Stores demo written for a
tablet device. It demonstrates the implementation
of the split view and the navigator pane. You can
access the project from the Tutorials & Samples tab
on the Welcome Page.

The source code can be found at $GSTDIR/
samples/PhoneDemo/stores2 or, if you are
not using Genero Studio, $FGLDIR/demo/
MobileDemo/stores2.

stores-server The stores-server demo contains the daemon to
sync the stores database on the server.

The source code can be found at $GSTDIR/
samples/PhoneDemo/stores-server or, if you
are not using Genero Studio, $FGLDIR/demo/
MobileDemo/stores-server.

Debugging a mobile app
You have several tools available for debugging your Genero Mobile application.

To use the debugging tools, you will either have:

• An app running in developer mode, with the Debug service enabled.
• A debug version of a deployed app.

Topics:

• Debug version of a deployed app on page 919
• Debug tools for apps in developer mode on page 920
• Viewing the AUI tree on page 921
• Viewing the program logs on page 923

Mobile applications | 919

• Viewing the device logs on page 924
• Debugging a Web Component on page 925

Debug version of a deployed app
Debugging methods and tools are available for the debug versions of standalone apps.

• Create a debug version of a deployed app on page 919
• Run the debug version of a deployed app (Android) on page 919
• Run a debug version of a deployed app (iOS) on page 920

Create a debug version of a deployed app
To create a debug version of an app, you must set the DEBUG_PACKAGE environment variable to 1 (or
TRUE) prior to packaging the app.

Before you begin, your app project must be open in Genero Studio.

Tip: When using the fgldb command line utility to debug a standalone app, you may need to alter
your application in order to set a breakpoint in the MAIN module. This is necessary because the app
needs to be running and interactive to start the use of fgldb. To enable this, you would start your
app with this code:

MAIN
 MENU
 COMMAND "exit"
 EXIT MENU
 END MENU
 ...
END MAIN

With this addition, one can connect easily using fgldb from the command line. For details on using
fgldb, see the Genero Business Development Language User Guide.

1. Select Tools >> Genero Configurations.

2. Select a Configuration Name.

The current configuration is selected by default.

3. Under Environment Sets, check the Mobile Debug Package environment set.

Within this environment set, the DEBUG_PACKAGE environment variable is set to 1 (TRUE). to build a
debug version of the package.

4. Package the app. See Package a mobile app on page 996.
The package for the debug version of the app is created and ready to be deployed.

Run the debug version of a deployed app (Android)
After deploying the app to your device, you must start the app in order to use the debug tools.

Before you begin, the debug version of the app must be deployed to your device or emulator.

Note: You must connect the physical device to your computer using a USB cable in order to use
any debug tools with a deployed debug application.

1. On your device, launch your app.

2. If the debug service is running on the device, stop it.

If the debug service is running, the red Genero Mobile debug service icon appears in the status bar.

a) Drag down from the top of the screen to display a menu.
b) Below the Genero Mobile debug service entry, tap Cancel.

The red Genero Mobile debug service icon no longer appears in the status bar.

3. Set Debug service to ON.
The red Genero Mobile debug service icon appears in the status bar.

Mobile applications | 920

4. Tap Browse bundled apps.

5. Tap InternalGeneroApps.

6. In the list, find the two entries for your app.

The two entries are file names: programname.42r and packagenodename.xcf.

Note: If the package node name and the program name are identical, only one entry
(programname.xcf) displays.

7. Tap on either file name to start the app.
The app starts in debug mode. You can view the AUI tree or log files, or you can connect to and debug
your application using the fgldb command line utility.

Run a debug version of a deployed app (iOS)
After deploying the app to your device, you must start the app in order to use the debug tools.

Before you begin, the debug version of the app must be deployed to your device or emulator.

Note: You must connect the physical device to your computer using a USB cable in order to use
any debug tools with a deployed debug application.

With Genero Mobile for iOS, the debug version of a deployed app enables the debug preferences by
enabling port 6400 for debugging.

Open the app.
The app starts in debug mode. You can view the AUI tree or log files, or you can connect to and debug
your application using the fgldb command line utility.

Debug tools for apps in developer mode
Some debug tools are only available when running your app in developer mode.

These debug tools are only available for apps running in developer mode.

• Preview a form on a mobile device on page 920
• Run an app with the graphical debugger on page 920
• Run an app with the Profiler on page 921

These debug tools can be used for apps running in developer mode.

• View the AUI tree (Android) on page 921
• View program logs (Android) on page 923
• View device logs (Android) on page 924

Preview a form on a mobile device
When working in developer mode, you can preview your form on a mobile device.

Before you begin, select the appropriate Genero Studio configuration for displaying to your mobile device
or emulator, and have your app project open in Genero Studio.

1. Open a form specification file (4fd or 4fdm).

2. Select Build >> Preview.

The form displays on your device.

Run an app with the graphical debugger
When working in developer mode, you can use the graphical debugger to step through your code as your
app executes on your mobile device.

Before you begin, select the appropriate Genero Studio configuration for displaying to your mobile device
or emulator, and have your app project open in Genero Studio.

1. Open an app source (4gl) file.

2. In the source (4gl) file, use Debug >> Add/Delete Breakpoint to set your breakpoints.

Mobile applications | 921

3. Select Debug >> Debug.
The app starts on your device.

4. Use the graphical debugger icons to step through your code.

For more information on using the graphical debugger, see the Genero Studio User Guide.

Run an app with the Profiler
The Profiler is a tool built in the runtime system that generates a report about where the program spends
time, and which function calls which function. The Profiler can help to identify areas in the program that are
slower than expected.

Before you begin, select the appropriate Genero Studio configuration for displaying to your mobile device
or emulator, and have your app project open in Genero Studio.

For more information on using the Profiler, see the Genero Studio User Guide.

Note: When in developer mode, the DVM is running on the desktop. The Profiler is therefore
providing a profile of the app as it runs on the desktop. It many not be a true representation of how
it will perform when deployed to the device.

1. Set the desired app as the default app.

2. Select Debug >> Execute with Profiler.
The app starts on your device.

3. Use the app.

4. End the app.
The Profiler report appears in the Output panel.

Viewing the AUI tree
You can view the AUI tree in a browser. The AUI tree is the tree of the program's objects and user
interface elements, and can be used to see what is present in the AUI tree for the program and the values
of each element's properties.

The app must be running in developer mode or be the debug version of a deployed app.

• View the AUI tree (Android) on page 921
• View the AUI tree (iOS) on page 922
• View the AUI tree (Development Client) on page 923

View the AUI tree (Android)
You can view the AUI tree for your Android mobile app in a browser.

Before you begin, your app must be able to run in development mode or be the deployed debug version
of the app. You must connect the physical device to your computer using a USB cable in order to use any
debug tools with a deployed debug application.

1. If you are going to run your app in developer mode, complete these steps.

a) From Genero Studio, launch your application.
b) Select Tools >> Android Tools >> Show AUI Tree.

The AUI Tree displays in a browser.
c) Click on a node in the tree to highlight the corresponding item on the device or emulator.

2. To view your app in a browser while running the deployed debug version of your app using Genero
Studio, complete these steps.

a) To run the app from your device, launch your app in debug mode. See Run the debug version of a
deployed app (Android) on page 919.
The application launches and the initial form displays.

b) If you are using Genero Studio, select Tools >> Android Tools >> Show AUI Tree.
The AUI Tree displays in a browser.

c) Click on a node in the tree to highlight the corresponding item on the device or emulator.

Mobile applications | 922

3. To view your app in a browser while running the deployed debug version of your app, complete these
steps.

a) To run the app from your device, launch your app in debug mode. See Run the debug version of a
deployed app (Android) on page 919.
The application launches and the initial form displays.

b) Swipe down on the icon bar and locate the entry for the Debug service. Make a note of the URI
address provided.

The URI takes the form of http://<device_ip_address>:<port_number>.
c) Open a browser and enter in the URI from the previous step.
d) Click AUI tree.

The AUI Tree displays in a browser.
e) Click on a node in the tree to highlight the corresponding item on the device or emulator.

Important: The AUI tree does not automatically update in your browser as you move around the
app. As you navigate the app on your device, you must reload your browser to view the changes in
the AUI tree.

View the AUI tree (iOS)
You can view the AUI tree for your iOS mobile app in a browser.

Before you begin, your app must be able to run in development mode or be the deployed debug version
of the app. You must connect the physical device to your computer using a USB cable in order to use any
debug tools with a deployed debug application.

1. If you are going to run your app in developer mode, complete these steps.

a) From Genero Studio, launch your application.
b) Select Tools >> iOS Tools >> Show AUI Tree.

The AUI Tree displays in a browser.
c) Click on a node in the tree to highlight the corresponding item on the device or simulator.

2. If you are going to run the deployed debug version of your app, complete these steps.

a) On the iOS device, open Genero Mobile.
b) In the INFORMATION section, note the HTTP URL provided.

For example, HTTP URL=http://192.168.0.160:6400
c) Launch your application in debug mode. See Run a debug version of a deployed app (iOS) on page

920.
d) Swipe down to view details about the icons in the status bar.

The description for the Genero Mobile debug service displays the URL you must use to access
debug details. It takes the form http://device-ip-address:port-number.

e) Enter the URL in a browser.
f) Click AUI tree.

The AUI Tree displays in a browser.
g) Click on a node in the tree to highlight the corresponding item on the device or simulator.

3. If you are going to run the deployed debug version of your app, and your machine (running Genero
Mobile) and device (running the app) are on the same wireless network, you can use Genero Studio to
view the AUI tree.

a) On the iOS device, open Genero Mobile.
b) Select Tools >> Genero Configurations.
c) Select your iOS configuration from the list.
d) Click the Edit icon next to the Use Display Client field.

The Display Client management window opens.
e) In the Host field, enter the ip address of your device. Click OK until all configuration management

windows close.

Mobile applications | 923

f) Launch your application in debug mode. See Run a debug version of a deployed app (iOS) on page
920.

g) From Genero Studio, select Tools >> iOS Tools >> Show AUI Tree.
The AUI Tree displays in a browser.

h) Click on a node in the tree to highlight the corresponding item on the device or simulator.

Important: The AUI tree does not automatically update in your browser as you move around the
app. As you navigate the app on your device, you must reload your browser to view the changes in
the AUI tree.

View the AUI tree (Development Client)
While viewing your app in the Genero Development Client, you can view the AUI tree for your mobile app
in a browser.

Before you begin, you should have verified your configuration within Genero Studio to display to the
Genero Development Client.

The Genero Development Client allows the developer to view the AUI tree on the default port 6400.

1. On your iOS device, launch the Genero Development Client.

2. Find the HTTP VIEWING URL. Make a note of the URL.

Note: The HTTP VIEWING URL displays in the Development window. If you do not see the
development window, press the Develop button.

3. In Genero Studio, set your configuration for the iOS Dev Client and start your app.
In the Task pane, your app shows as running.

4. In the Genero Development Client interface on your iOS device, click Connect.
The app displays on the device.

5. Open a browser and enter in the HTTP VIEWING URL.
The GMI Information page displays.

6. Click AUI Tree.
The AUI Tree displays.

As you navigate the app on your device, you must reload your browser to view the changes in the AUI tree.

Viewing the program logs
You can view the program logs in a browser.

• View program logs (Android) on page 923
• View program logs (iOS) on page 924
• View program logs (Development Client) on page 924

View program logs (Android)
You can view the program logs for your Android mobile app in a browser. The output displays VM
messages (standard output and standard error).

Before you begin, your app must be the deployed debug version of the app. You cannot view the standard
output and error logs when running an app in developer mode. You must connect the physical device to
your computer using a USB cable in order to use any debug tools with a deployed debug application.

1. To view the standard output and error logs in a web browser:

a) To run the app from your device, launch your app in debug mode. See Run the debug version of a
deployed app (Android) on page 919.
The application launches and the initial form displays.

b) Swipe down on the icon bar and locate the entry for the Debug service. Make a note of the URI
address provided.

The URI takes the form of http://<device_ip_address>:<port_number>.
c) Open a browser and enter in the URI from the previous step.

Mobile applications | 924

d) Click VM Output.
The standard output and standard error messages display.

2. To view using the Display Standard output and error menu option:

a) To run the app from your device, launch your app in debug mode. See Run the debug version of a
deployed app (Android) on page 919.
The application launches and the initial form displays.

b) Select Tools >> Android Tools >> Display Standard output and error.
The program logs (standard output and standard error messages) are written to the Output view.

c) To stop the program logs from appearing in the Output view, select Tools >> Android Tools >>
Stop display Standard output and error.

View program logs (iOS)
You can view the program logs for your iOS mobile app in a browser.

Before you begin, your app must be able to run in development mode or be the deployed debug version
of the app. You must connect the physical device to your computer using a USB cable in order to use any
debug tools with a deployed debug application.

1. On the iOS device, select Settings >> Genero Mobile.

2. Enable GUI LOGGING.

3. Open Genero Mobile (GMI).

4. In the INFORMATION section, note the HTTP URL provided.

For example, HTTP URL=http://192.168.0.160:6400

5. On your development machine, open your project in Genero Studio.

6. Start your app.

7. Open a browser and enter the HTTP URL identified in a previous step.

8. Click Logs.
The program logs display in the browser.

View program logs (Development Client)
While viewing your app in the Genero Development Client, you cannot view the program logs in a browser.

The Genero Development Client acts as a remote GUI client, and therefore does not have logging options
for the client. In order to get logs for an app displayed in the Genero Development Client, you need to
enable the virtual machine's --start-guilog option when starting the app.

See Front-end protocol logging in the Genero Business Development Language User Guide for details
regarding the --start-guilog option.

Viewing the device logs
You can view the device logs in a browser.

The app must be running in developer mode or be the debug version of a deployed app.

Note: At this time, only Genero Mobile for Android offers this feature.

• View device logs (Android) on page 924

View device logs (Android)
You can view the Android device logs in a browser on your development machine.

Before you begin, your app must be able to run in development mode or be the deployed debug version
of the app. You must connect the physical device to your computer using a USB cable in order to use any
debug tools with a deployed debug application.

1. If you are going to run your app in developer mode, complete these steps.

a) From Genero Studio, launch your app.

Mobile applications | 925

b) Select Tools >> Android Tools >> Show Device Logs.
The device logs display in the Output view. New log entries will be appended in real time.

2. If you are going to run the deployed debug version of your app, complete these steps.

a) To run the app from your device, launch your app in debug mode. See Run the debug version of a
deployed app (Android) on page 919.
The application launches and the initial form displays.

b) Swipe down on the icon bar and locate the entry for the Debug service. Make a note of the URI
address provided.

The URI takes the form of http://<device_ip_address>:<port_number>.
c) Open a browser and enter in the URI from the previous step.
d) Click Android Logcat.

The device logs display.

Debugging a Web Component
You can debug a web component on a Genero Mobile application.

• Debug a web component on an Android device on page 925
• Debug a web component on an iOS device on page 925

Debug a web component on an Android device
You can enable the debugging of a Web component through Chrome.

This procedure requires:

• GMA 1.1 or greater.
• Android 4.4 or greater.

You need enable the GMA debug mode and follow the instructions provided at https://
developer.chrome.com/devtools/docs/remote-debugging#configure-webview

1. Connect your device to your desktop with a USB cable.

2. If GMA is running on your device, stop GMA on your device.

3. Enable USB debugging on the device.

4. Run your application with a web component.

Tip: Please be patient as the application may take longer to start.

GMA starts with debug service enabled.

5. Open Chrome on your desktop.

6. In the Chrome address bar, enter chrome://inspect/#devices.

7. Check Discover USB devices.

8. Accept the USB debugging on your device.

A list of URLs appear. You can inspect the individual pages.

Debug a web component on an iOS device
This configuration allows you to debug a web component on an iOS device.

For GMI, you can only debug with the iOS simulator. You cannot debug on the physical device.

1. Start the app.

2. Navigate to the webview you want to debug.

3. Open Safari.

4. Make sure the Show Develop menu in toolbar is enabled in Preferences >> Advanced.

5. Go to Develop >> iOS Simulator and choose the html to debug.

https://developer.chrome.com/devtools/docs/remote-debugging#configure-webview
https://developer.chrome.com/devtools/docs/remote-debugging#configure-webview

Mobile applications | 926

Localize a mobile app
Follow this procedure to localize your mobile app.

Before completing this procedure, you have an app that works but is not yet localized.

You can use localized string files to provide different languages for your mobile app. Before you complete
the steps in this procedure, it would benefit you to read on the use of localized strings in the Genero
Business Development Language User Guide.

Important: An app must be deployed to see localization take place. Localization does not work in
developer mode.

1. Modify your app source and resource files for localized string use.

a) For your text-based source files (4gl and per), see the article Localized strings in program sources
in the Genero Business Development Language User Guide.

b) For your graphical form files (4fd), see Localizing your form on page 443.
c) For your resource files (such as your action defaults (4ad) and presentation styles (4st) files), see

the article Localized strings in XML resource files in the Genero Business Development Language
User Guide.

2. Create the localized string files.

a) For your text-based source files (4gl and per), see the article Extracting strings from sources in the
Genero Business Development Language User Guide.

b) For your graphical form files (4fd), see Localizing your form on page 443.
c) For your resource files (such as your action defaults (4ad) and presentation styles (4st) files), an

extraction tool is not provided. You must create the localized string file by hand.

You now have a localized string file for each of your source files. These files serve as the starting point
for language-specific localized string files; you will create a copy these files for each language you wish
to provide.

Tip: Save these base localized string files in your Resources folder in your project. You do not,
however, want them to be compiled. Select each of the base localized string files and check the
Exclude from compilation property.

3. Update your fglprofile file to list the required string files.

See Using localized strings at runtime in the Genero Business Development Language User Guide.

4. Identify the languages and their corresponding locale codes needed for your localization effort.

The selected language is identified by a locale code following the ISO 639 standard. See Using
localized strings at runtime in the Genero Business Development Language User Guide.

5. Create a sub-directory for each language you wish to localize.

For the directory name, use the locale code identified in the previous step.

6. Copy all the localized string files into each locale sub-directory.

7. Edit the localized string files within each locale sub-directory to provide the translations. Save your
changes.

8. Compile each localized string file.

If you are using the command line to compile the localized string files, see Compiling string files in the
Genero Business Development Language User Guide. If you are using Genero Studio to compile the
localized string files, follow these steps.

a) Create a library node for each language.

For example, you could create a library named en to hold your generic English localized string files,
and you could create a library named en_US to hold your English (United States) localized string
files.

b) Select the library node and change the Target directory property to $(ProjectDir)/bin/xx,
where xx is the language code.

Mobile applications | 927

For example, you would specify $(ProjectDir)/bin/en for the generic English library node,
or $(ProjectDir)/bin/en_US for the English (United States) library node. The target directory
specifies where the compiled string files will be placed after compilation. These examples assume
that the compiled program files are being placed in $(ProjectDir)/bin.

c) Right-click on the library node and select Add Files to add your localized string files (str) from the
corresponding language directory on disk.

d) Right-click on the library node and select Build.
The compiled localized string files (42s) appear in the specified Target directory.

e) Right-click on the Application node and select Advanced Properties.
f) Select the Dependencies page and select each language library in the Dependencies property

page.

9. For each package node, add a Directory node for each language library node.

The Directory node places the compiled string files into the correct directory. For example, if the Source
directory is set to $(ProjectDir)\bin\en_US, then the Destination directory must be set to
$(ProjectDir)\bin\en_US. Set the Included files filter to *.42?.

10.Deploy your package.

11.Test each language.

a) Change the language in the device's settings to one of the languages you have set for localization.
b) Launch your app.

Genero Mobile error messages
A list of Genero Mobile error messages. For messages that are not self-explanatory, additional information
is provided.

Table 248: Genero Mobile error messages

Number Description

GS-09002 File path issue. Path is incorrect or file is missing.

Cannot package file : $filePath source and destination relative
path don't match

Destination directory not in rootDir

Cannot compute zip directory from source dir

Error updating application archive '$appZip'

Error compressing application archive '$appZip'

Error adding $packageName\.xcf to application archive '$appZip'

GS-09003 Bad script arguments such as an incorrect build/package/deploy/run rule.

Missing argument apkFilePath

Missing argument deployData

Missing argument projectDir

Missing argument architecture

GS-09004 Genero configuration settings errors.

Missing dynamic property '$propertyName'

Missing environment variable GMADIR

Mobile applications | 928

Number Description

Cannot find Genero Mobile for Android package, check GMADIR
environment variable

Missing environment variable ANDROID_HOME

Provisioning profile '$provisioningProfile' doesn't exist : The path
contained in PROVISIONING_PROFILE variable is not valid.

Provisioning profile '$provisioningProfile' is not a provisioning
profile : The path contained in PROVISIONING_PROFILE variable is not a
provisioning profile (.mobileprovision) file.

Copy of provisioning profile '$provisioningProfile' failed : The
copy of provisioning profile to package has failed.

Invalid value for DEBUG_PACKAGE variable (should be an integer
superior or equal to 0)." : DEBUG_PACKAGE value is invalid. It should contains
the debug level (a positive integer).

Cannot find Genero Mobile for iOS package, check GMIDIR
environment variable. : Path contained in GMIDIR is not valid.

GS-09005 Cannot read deployment data file '$deployData'

GS-09006 Error parsing deployment data file '$deployData'

GS-09007 Informational messages.

Deploy to $deviceId started

Deploy started

Deploy finished

Starting emulator

Waiting for $deviceId to respond

Emulator started

Starting Genero Mobile for Android on $deviceId

Forwarding android port 6400 to localhost:$displayClientPort

Starting Genero Mobile for Android Genero Mobile for Android
started

GS-09008 Errors in package node in project file (4pw).

Invalid package name '$packageName' : Use alpha numeric characters only.

Invalid package ID '$packageId' : Follows java package naming:
com.company.product

Invalid packageLabel '$packageLabel' : Package label cannot be an empty
string.

Invalid package version '$packageVersion' : Package version must be
integer value.

GS-09009 No module (.42r) in package

GS-09010 An external process failed.

Error displaying $url in browser : $msg

Mobile applications | 929

Number Description

Error forwarding port to $port : $errmsg

Error launching internet browser $browser : $errmsg

Error launching adb devices Connect an Android device or start
the Android Virtual Device emulator

Error decompressing '$gmaZip' : $errmsg

More than one device and emulator

Error launching web browser $browser : $errmsg

No device connected

Several devices connected. Enter device ID in display client
configuration

Failed to open $sourceFileName

Error while signing 'payload/GMI.app': $errmsg

Error while creating ipa file: $errmsg

GS-09011 Multiple modules (.42r) in package $packageName

GS-09012 Incorrect Icon-mdpi extension, only png image format is
supported.

BAM Template Developer Guide | 930

BAM Template Developer Guide

Genero Studio comes with a set of templates used with the Business Application Modeler (BAM) for the
code generation. You are free to customize these templates or create your own templates so that the
generated application meets your requirements.

You can customize and configure Genero Studio and the Business Application Modeler to generate the
application you want to build, the way you want to build it.

For example you may find that instead of adding POINT or BLOCK code repeatedly for each application,
you want to use a template that generates your customized code. Or, perhaps you want to add custom
properties to a modeling diagram.

Options for modifying templates or creating new templates can be categorized in this order of complexity.

Table 249: Options for modifying templates

Option Types of modifications

Modify a generated application without touching
templates.

• Modify diagram property values.
• Use POINT/BLOCKs to modify generated code.

See Using POINTs and BLOCKs on page 262.
• Use resource files (styles, action defaults). See

Modify action defaults (dbapp.4ad) on page 266,
Modify styles (dbapp.4st) on page 267, Modify
the Topmenu (dbapp.4tm) on page 267, Modify
the Toolbar (dbapp.4tb) on page 267

Modify the default template files. • Add, remove, or change diagram properties
• Change generated 4gl code

Customize template files. • Change build rules
• Create new file types
• Create new File >> New options
• Customize Genero Studio diagrams. See

Example 1: Adding a new property on page
931, Example 3: Adding an entity to the BA
Diagram on page 936

• File templates, code templates, user action

Quick Start: Customizing templates
This Quick Start uses examples to illustrate how to customize template files.

Modifying the default templates requires a basic knowledge of Genero Business Development Language
and the Tcl language or another template language. Genero Application Generator uses the Tcl Generator
by default; it can be replaced by a generator of your choice such as XSLT or perl.

BAM Template Developer Guide | 931

Example 1: Adding a new property
In this example, the BA diagram is modified to include a new property. When a value is set in the new
property, the modified tcl script generates the code to include the information from the property.

Configure a copy of the default template set
Create a new template set from which applications can be generated.

1. Copy the entire content of the GSTDIR/gst/bin/src/ag/tpl/dbapp directory to a new directory.
The new template directory could be a common one on the server or it could be part of the entire
versioned project.

You may also create a new empty directory to which you can add the template files one at as time as
you create them.

2. Determine which configuration you want to use to run your generated applications. Select the
configuration. Then, select Tools >> Genero Configurations.

3. Find and select the Template Environment Set.

4. Make a copy of the Template environment set using the duplicate action in the integrated Toolbar.

5. Rename your template environment if you wish by right-clicking on it and selecting Rename.

6. Select your template environment set. Notice that there are environment variables set.

7. Modify GSTSETUPDIR. Double-click GSTSETUPDIR in the list and modify the Value to point to the
location of your template files.

8. Select OK.

9. In the Environment Sets list of Genero configuration management, uncheck the environment set for
Template and check your environment set.

Figure 394: Select new environment set

10.Now you can customize the files that you copied into the new directory. Keep the same file names as
the default template set. All your programs will be generated with these files; the default files will be
ignored.

BAM Template Developer Guide | 932

Add a new property to the BA diagram
This example illustrates how to add a new property to the Business Application diagram by adding a new
icon property to the diagram template.

Figure 395: New property in Program entity properties

1. From Genero Studio, open the settings.agconf file in your template directory.

2. Navigate in the Structure view to find the <Items> element in the <BusinessApplication> element.

3. In the <Items> child element, modify the Program item to include a dynamicProperties attribute
with a value of icon.

BAM Template Developer Guide | 933

Figure 396: Structure view of settings.agconf.

 <Item name="Program"
 label="New Program"
 extension="4prg"
 icon="bullet_class"
 dynamicProperties="icon"/>

4. In the <DynamicProperties> section of the <BusinessApplication> element, add a new
<DynamicProperty> element to define the new icon dynamic property.

<DynamicProperty name="icon"
 type="TEXT"
 label="Icon"
 description="Defines icon to be used in
 window title bar of running application."/>

5. Save your changes.

6. Select Tools >> Specific setup >> Reload.

7. Open the OfficeStore.4pw sample project from your My Genero Files directory.

8. Open the OfficestoreAppFlow.4ba diagram and select the Account or Orders program entity on
the diagram.

9. Note the new Icon property in the Properties view.

Modify tcl script to generate code
Modify the tcl script used to generate the code.

1. Open the main.tcl file in the tpl subdirectory of your template set directory.

2. Find the # Set XPath set of code. On the line following set ROOTFILELocator, add:

set icon [[getUniqueNode $ROOTNode {/AG/File/DynamicProperties/
DynamicProperty
 [@name='icon']}] @value]

BAM Template Developer Guide | 934

3. Find the instruction [gen_MAIN $DBName $outFormRelNode] and add the $icon parameter:

[gen_MAIN $DBName $outFormRelNode $icon]

4. Find the instruction proc gen_MAIN {DBName outFormRelNode} { and add the icon parameter:

proc gen_MAIN {DBName outFormRelNode icon} {

5. Find the instruction CALL ui.Interface.loadStyles(\"dbapp\") and on the following line add
the call to set your image:

CALL ui.Interface.setImage(\"$icon\")

6. Save the changes.

7. Select Tools >> Specific setup >> Reload.

8. In the OfficestoreAppFlow.4ba, select the Account program entity and set the value of the Icon
property to a valid image name. See Image directory structure on page 952.

9. Save the files.

10.Rebuild and run the Account program and see the icon used in the window title of the program.

Figure 397: Custom icon in window title

Example 2: Adding a File >> New item
In this example, the File >> New dialog is modified to include a new, custom item.

Add a new file type definition to settings.agconf
Modify the settings.agconf file to include a new file type based on the 4dbx database schema file
type.

1. Open the settings.agconf file in your template directory.

2. Find the Database section. Notice that there is a File element defining the 4dbx file type. Copy and
paste this File element so that you have an additional File element in your Database element.

3. Modify the extension attribute to use your own database extension, for example 4dbz.

<?xml version="1.0" encoding="UTF-8" ?>
<AGSettings version="5">
 <Form> </Form>
 <BusinessRecord> </BusinessRecord>
 <BusinessApplication> </BusinessApplication>
 <Database>
 <File extension="4dbx">
 <DynamicProperties>

BAM Template Developer Guide | 935

 <DynamicProperty name="widget" type="ENUM" label="Widget"
 initialValue="Edit" description="Associated widget"
 editorInfo="contains:ButtonEdit|CheckBox|ComboBox|DateEdit|
Edit|
 FFImage|FFLabel|Field|Phantom|ProgressBar|RadioGroup|Slider|
 SpinEdit|TextEdit|TimeEdit"/>
 <DynamicProperty name="label" type="TEXT" label="Label"
 initialValue=""
 description="Associated label when generating form"/>
 </DynamicProperties>
 <Items>
 <Item nodeName="column" dynamicProperties="widget;label"/>
 </Items>
 </File>
 <File extension="4dbz">
 <DynamicProperties>
 <DynamicProperty name="widget" type="ENUM" label="Widget"
 initialValue="Edit" description="Associated widget"
 editorInfo="contains:ButtonEdit|CheckBox|ComboBox|DateEdit|
Edit|
 FFImage|FFLabel|Field|Phantom|ProgressBar|RadioGroup|Slider|
 SpinEdit|TextEdit|TimeEdit"/>
 <DynamicProperty name="label" type="TEXT" label="Label"
 initialValue="" description="Associated label when generating
 form"/>
 </DynamicProperties>
 <Items>
 <Item nodeName="column" dynamicProperties="widget;label"/>
 </Items>
 </File>
 </Database>
</AGSettings>

4. Save your files.

Define an action in File >> New for the new item
Modify the creatables.conf file to define the new item in File >> New.

1. Open the creatables.conf file in your template directory.

2. Notice that the Category elements organize the creatables into groups. Find the Category element
with a name attribute of Database. Modify the File element to represent the newly defined database
file by changing the label, extension, and source attributes.

<Category index="30" label="Database" name="Database">
 <File index="30" name="DBXNewERD"
 action="DBOpen"
 label="DB Schema (.4dbz)"
 description="Create a new DB schema"
 icon="document_newSchema"
 extension="4dbz"
 source="creatables/dbapp.4dbz"
 isTemplate="true"/>
</Category>

3. Save the changes.

4. Since the source element was changed to creatables/dbapp.4dbz, create that file in the
creatables subdirectory in your template directory. Copy and rename dbapp.4dbx to dbapp.4dbz.

Test new action
View the new addition to the New dialog.

1. Launch Genero Studio.

BAM Template Developer Guide | 936

2. Select Tools >> Specific setup >> Reload.

3. Select File >> New and select your new database file type from the Database category.

Figure 398: New item

Example 3: Adding an entity to the BA Diagram
In this example, the BA diagram is modified to include a new, custom item.

Add a new item to the BA diagram
Create a new Program entity called Start in the BA diagram.

1. Open the settings.agconf file in your template directory.

2. Find the BusinessApplication section. Add a new DynamicProperty and Item. In
the Item element, define a new Program item with a name, extension, label, icon and
dynamicProperties attribue values of your choice. The value of the dynamicProperties attribute
corresponds with the name attribute in the DynamicProperty element.

<BusinessApplication>
 <DynamicProperties>
 <DynamicProperty
 name="myProp"
 type="TEXT"
 label="myProp" />
 </DynamicProperties>
 <Items>

BAM Template Developer Guide | 937

 <Item
 name="Start"
 label="New Start item"
 extension="4srt"
 icon="bullet_class"
 dynamicProperties="myProp" />
 </Items>
</BusinessApplication>

3. Save the changes.

4. Select Tools >> Specific setup >> Reload to reload the modified template file.

5. Select the Library node in your project and right-click. Select New >> Business Application Diagram
(4ba) to create a new 4ba.

6. Right-click on the BA diagram to see and select a new Start item. Save the 4ba file to your project
directory (not the template directory).

The item cannot yet be implemented because the new file type (4srt) has not yet been defined.

Define the template file association
Add a new file type for the new program type.

1. Select Tools >> Specific setup >> Edit File Associations.

2. Define the file type and associated action. The mimeType and extensions attributes must match
what you defined in your settings.agconf file.

BAM Template Developer Guide | 938

Figure 399: Adding a file type

3. Select OK to save the changes.

Add the new element to the program entity
Add the new element to the program entity.

1. Open the creatables.conf file in your template directory.

2. Find the Managed Code category and add a new New element to represent your new program entity.

<New
 index="900"
 name="CustomProgram"
 action="BANewProgram"
 label="Custom Program (.4srt)"
 actionLabel="Implement Custom Program"

BAM Template Developer Guide | 939

 icon="document_4prg"
 description="Create Program"
 extension="4srt" />

3. Save the changes.

4. Select Tools >> Specific setup >> Reload to reload the modified template file.

5. Close and re-open the new Business Application diagram (4ba) in the Library node of your project.

6. Right-click on the Start entity you added to your program (or add one). Notice the action to implement
your program now exists in the menu. Select this action.

Figure 400: Implement new program entity

7. Save the 4srt file to the Application node in your project.

Define the build rules
Define the build rules for how the new file type is to be compiled.

1. Select Tools >> Specific setup >> Edit Build Rules.

2. Use the duplicate button to make a copy of the 4PRG build rule.

3. Edit the build rule to match your new program definition (4srt).

Figure 401: Creating a new build rule

4. Save.

5. If your modifications include an image other than the default, copy the image file to the folders in the
GSTDIR/images directory. See Image directory structure on page 952.

6. You can now use your new 4SRT entity in your BA diagrams.

BAM Template Developer Guide | 940

How code is generated
When you build an application from a Business Application diagram, the build rules define the various files
that are input into the Code Generation Engine and the application code files that are output.

Figure 402: Code Generation flow

BAM Consolidates and Generates

Data Consolidation The input from the BA diagram and related
entities is gathered into a single XML file, which
consolidates all the inputs into one package. This
file is used when processing and generating the
application code. This file could also be used to
provide input to create the application models.

Code Generation The XML file and a code template are used to
generate the application code. The default Tcl
template produces Genero 4gl files, but another
tool could be used to generate the code (XSL
translator for example). Custom code is preserved;
if any custom code was created earlier, it is
automatically restored in the newly generated
application code.

Example

The build rules define the series of commands used to build and generate the code. In
general, the Build rule for code generation:

• Saves custom code added by the user to the generated source files
• Generates the new source files without user code
• Restores the user code in the generated files
• Compiles the written and generated source files
• Links the compiled files

View default build rules selecting Projects >> Edit Build Rules. This example shows the
build rules used to generate the code for a Program entity in the Business Application
diagram.

BAM Template Developer Guide | 941

Figure 403: Default build rule for a generated program entity

Table 250: Default build rule example

Build rule command Description

$(generate) The $(generate) command creates an
intermediary XML file from modeled entities.

$(blockpoint) -code BLOCK/POINT is extracted from previously
generated and modified code.

tclsh on page 269 The tclsh executable generates the final file by
using both a Tcl template file and the intermediary
XML file crated by the $(generate) command.

$(blockpoint) -storeGenerated Extracted BLOCK/POINT code is put back into the
generated code.

$(fglcomp) The fglcomp tool compiles BDL program sources
files into a p-code version.

$(move) Moves the given file or directory to the given
destination in a platform independent way.

Reviewing the Build

To better understand what is happening during the build of the program, turn on verbose mode using
Tools >> Preferences, Compiler and Runtime, Compilation Configuration. Compile a diagram file,
program, or application and view the results in the output.

BAM Template Developer Guide | 942

The code generation template set
Genero Studio provides a standard template set of files that are used for code generation. The files are
written in XML and Tcl.

Figure 404: Code Generation flow

Default templates

Table 251: Application Generation Templates

Template Description

dbapp3.1 This is the default and recommended template for
2.51.

dbapp3.0 This is the default and recommended template for
2.50.

dbapp2.0 This is the default and recommended template for
2.41.

dbapp1.0 The dbapp template in Genero Studio 2.40 was
renamed in Genero Studio 2.41 to dbapp1.0. The
 dbapp template set is the same template set as
 dbapp1.0. This is the default and recommended
template for 2.40. Using the DIALOG instruction,
sub-dialog statements that display data, query a
database, and edit single records and record lists
can execute in parallel, allowing the application to
handle different parts of a form simultaneously.

2.3x This is a legacy template for compatibility with
applications developed with Genero Studio 2.3x.

The GSTSETUPDIR environment variable specifies which template set is used.

Template directory contents

GSTDIR/bin/src/ag/tpl/... includes:

• settings.agconf
• creatables.conf
• file-types.xml

BAM Template Developer Guide | 943

• build.rules
• *.tcl
• resource/*/*

Note: It is recommended that you not modify the original template files, but make a copy of the
directory. Copy the entire content of the GSTDIR/gst/bin/src/ag/tpl/dbapp directory to a
new directory. The new template directory could be a common one on the server or it could be
part of the entire versioned project.

Interpreting settings.agconf
The settings.agconf file is an XML document with four sections: Form, Business Record, Business
Application, and Database. It is used to manage the properties available to each of the diagrams used by
the Business Application Modeler.

There are four main sections corresponding to the four diagrams that can be customized:

• Form on page 954
• BusinessRecord on page 963
• BusinessApplication on page 971
• Database on page 979

In the default settings.agconf, the Database section, for example, shows the information about the
dynamicProperties defined for the Meta-schema file type (4dbx). The dynamicProperties found in
the Meta-schema diagram for a 4dbx file are widget and label. When an item in the diagram, specified
by nodeName, is selected, the properties appear as assigned by dynamicProperty. These properties are
grouped according to the dynamicPropertyGroup element. These properties have a label as assigned
by the label attribute and data type as specified by type attribute. The widget/wizard used is specified by
elements such as editorInfo.

<Database>
 <File extension="4db">
 <DynamicProperties>
 <DynamicProperty name="widget" type="ENUM" label="Widget"
 initialValue="Edit" description="Associated widget"
 editorInfo="contains:ButtonEdit|CheckBox|ComboBox|DateEdit|Edit|
FFImage|
 FFLabel|Field|ProgressBar|RadioGroup|Slider|SpinEdit|TextEdit|
TimeEdit"/>
 <DynamicProperty name="label" type="TEXT" label="Label"
 initialValue=""
 description="Associated label when generating form" />
 <DynamicPropertyGroup name="formfieldGroup" label="Formfield"
 description="Formfied properties" properties="label;widget" />
 </DynamicProperties>

 <Items>
 <Item nodeName="column" dynamicProperties="widget;label"/>
 </Items>
 </File>
</Database>

BAM Template Developer Guide | 944

Figure 405: Label and Widget properties in Meta-schema diagram (4db)

The WEB custom editor
Custom property editors are defined by the customer. The WEB custom editor is an HTML property editor.

Property info definition

The property info definition in settings.agconf:

• type="WEB"
• editorInfo:

• htmlEditor : path to the html file relative to the template directory
• isDebug:false : activates the webkit debug
• title : title of the dialog (banner + window title)

Example

<DynamicProperty name="expression" type="WEB" label="expression"
 initialValue=""
 editorInfo="htmlEditor:expression.html;isDynamic:true;isDebug:false;title:Expression
 editor"/>

HTML and JavaScript

property.value implicitly contains the property value when the editor is opened. The value present
in property.value is taken as a new property value when the user has validated the dialog (and
onEditorAccept() is called).

The function onDocumentSource(source) is called once the html document is loaded in the webkit.
The source contains the source of the GeneroStudio current document (the document which contains the
property).

The function onEditorAccept() is called when the user presses the OK button to accept the value.

The function onEditorCancel() is called when the user refuses the value (by pressing cancel or the x
window button).

BAM Template Developer Guide | 945

expression.html file

This is an example of an expression HTML file, referenced by the earlier DynamicProperty
editor definition example.

<?xml version="1.0" encoding="utf-8" ?>
<html>
 <head>
 <meta http-equiv="Content-Type" content="text/html;
 charset=utf-8">
 </head>
 <script language="JavaScript" type="text/javascript">
 // onDocumentSource event is called when the custom editor
 is loaded
 // source : the complete document source in xml
 function onDocumentSource(source)
 {
 // find record fields list and populate the ui
 var list = document.getElementById("fieldlist")
 var parser = new DOMParser();
 var xmlDoc = parser.parseFromString (source, "text/
xml");
 var recordNodes = xmlDoc.getElementsByTagName
 ("RecordField");
 for (var i = 0 ; i < recordNodes.length ; i++)
 {
 var recordNode = recordNodes[i];
 var recordName = recordNode.getAttribute ("name");

 // create one item for the recordNode field
 var option=document.createElement("OPTION");
 option.text = recordName;
 option.value = recordName;
 list.add(option);
 }
 // populate the input with the expression
 var elem = document.getElementById("expression");
 elem.value = property.value;
 }

 function pressed(character)
 {
 var elem = document.getElementById("expression");
 elem.value += character;
 property.value = elem.value;
 }

 function clearExpression()
 {
 var elem = document.getElementById("expression");
 elem.value = "";
 property.value = elem.value;
 }

 function selectField(fieldname)
 {
 var elem = document.getElementById("expression");
 elem.value += fieldname;
 property.value = elem.value;
 }

BAM Template Developer Guide | 946

 // onEditorAccept event is called before validating the
 custom editor
 function onEditorAccept()
 {
 alert("editor accepted !");
 }

 // onEditorCancel event is called before validating the
 custom editor
 function onEditorCancel()
 {
 alert("editor cancelled !");
 }
 </script>
<body width="200" height="50">
<center>
<form name="calc" action="">
<table>

<table border=2 width=50 height=60 cellpadding=1 cellspacing=5>
<tr>
<td rowspan="4"><select size="8" id="fieldlist"
 onDblClick="selectField(this.value)" /></td>
<td><input name="btnSeven" type="Button" value=" 7 "
 onclick="pressed(7)"></td>
<td><input name="btnEight" type="Button" value=" 8 "
 onclick="pressed(8)"></td>
<td><input name="btnNine" type="Button" value=" 9 "
 onclick="pressed(9)"></td>
<td align="middle"><input name="btnPlus" type="Button" value="
 + " onclick="pressed('+')"/></td>
</tr>
<tr>
<td><input name="btnFour" type="Button" value=" 4 "
 onclick="pressed(4)"></td>
<td><input name="btnFive" type="Button" value=" 5 "
 onclick="pressed(5)"></td>
<td><input name="btnSix" type="Button" value=" 6 "
 onclick="pressed(6)"></td>
<td align="middle"><input name="btnMinus" type="Button" value="
 - " onclick="pressed('-')"/></td>
</tr>
<tr>
<td><input name="btnOne" type="Button" value=" 1 "
 onclick="pressed('1')"></td>
<td><input name="btnTwo" type="Button" value=" 2 "
 onclick="pressed('2')"></td>
<td><input name="btnThree" type="Button" value=" 3 "
 onclick="pressed('3')"></td>
<td align="middle"><input name="btnMultiply" type="Button"
 value=" * " onclick="pressed('*')"/></td>
</tr>
<tr>
<td><input name="btnZero" type="Button" value=" 0 "
 onclick="pressed(0)"></td>
<td><input name="btnDecimal" type="Button" value=" . "
 onclick="pressed('.')"></td>
<td><input name="btnEquals" type="Button" value=" = "
 onclick="pressed('=')"></td>
<td align="middle"><input name="btnDivide" type="Button" value="
 / " onclick="pressed('/')"></td>
</tr>
<tr><td colspan="4"><input name="expression" type="Text"
 size="45" id="expression" /></td>

BAM Template Developer Guide | 947

<td><input name="btnClear" type="Button" value=" C "
 onclick="clearExpression()"/></td>
</tr>
</table>
</table>

</form>
</center>
 </body>
</html>

The PROCESS custom editor
Custom property editors are defined by the customer. The PROCESS custom editor is a standalone
executable property editor.

Property info definition

The property info definition in settings.agconf:

• type="PROCESS"
• editorInfo:

• processEditor : path to the process editor executable relative to the template directory.

Example

<DynamicProperty name="process" type="PROCESS" label="process"
 description="process"
 editorInfo="processEditor:userPropertyEditor.exe;isDynamic:true"
 dynamicContent="masterTable" />

Executable

The program's first argument is the property value when the editor opens.

If the program outputs a window id to the standard output, Genero Studio will ensure the corresponding
window remains on top of Genero Studio (similar to a modal dialog),. The syntax is a single line:

WindowId: <Window Identifier>

Once the property editing is done, the program should output the property value, on a single line as well:

Value: <property value>

Note: Non-printable characters must be escaped.

Interpreting creatables.conf
File >> New menu options can be defined in the creatables.conf file. Added items are called
creatables.

Within the creatables.conf file there are Category elements. Category on page 988 elements
correspond to a group of actions (creatables). Each New, File, Directory, Wizard on page 989 element
corresponds to a file type that can be created using the File >> New menu or context menu.

In the default creatables.conf file, one of the defined Creatables is the Module Form from Database
(4fdm), specifying its category (Design), subcategory (Managed Code), and type of Creatable (Wizard).

BAM Template Developer Guide | 948

Example: Managed Form File Type

<Creatables version="1.0">
 <Category index="5" label="Design" name="MDA" icon="document_4ba" >
 <Category index="40" label="Managed Code" name="ManagedCode">
 <Wizard index="10"
 name="FDModuleForm"
 action="FDNew"
 label="Module Form from Database (4fdm)"
 icon="document_4fdm"
 description="Create an empty module in Form Designer"
 extension="4fdm" />
 </Category>
 </Category>
</Creatables>

Figure 406: New Items: Creatables

Tcl basics and samples
A Tcl script is used to generate the final file using .tcl files and the intermediary .xml file generated during
the build of the application. The tcl files can be modified to produce different 4gl code or to reference newly
added properties.

Tcl (pronounced "tickle") is a scripting language commonly used for scripted applications and GUIs. You
can use a scripting language of your choice or modify the included tcl files.

To determine which tcl file to modify turn on verbose mode for build, link, execution rules using Tools >>
Preferences, Compiler and Runtime. Then, compile the diagram file that you want to modify. Find tclsh
in the resulting output to see which tcl files are used.

BAM Template Developer Guide | 949

Add POINT and BLOCK sections to template
You can add new POINT and BLOCK areas to a template.

1. To add a POINT or BLOCK section, determine where the POINT or BLOCK should be in the generated
code and modify the (Tcl) file that corresponds to the generated file (4gl).

To better understand what is happening during the build of the program, turn on verbose mode using
Tools >> Preferences, Compiler and Runtime, Compilation Configuration. You will be able to see
what tcl files are being used and when. This can help you identify which tcl file you need to modify.

2. Add a new POINT or BLOCK section. Be sure to give the POINT or BLOCK a unique name that is not
already used by another POINT or BLOCK.

3. Surround your added POINT or BLOCK area using the comment character of the targeted source code
(such as "{" and "}" characters in Genero). Otherwise, the generated source code will not compile.

4. Open your project and rebuild.

5. To revert a change made in the source code, see Revert a change to a POINT or BLOCK on page 264.

Example: Using XSLT instead of Tcl
The code for your application can be generated using XSLT instead of Tcl.

This example demonstrates how to generate a file with AG using XSL Translator.

Generating a form

Instead of generating 4gl as the template does, we'll generate a per file (Genero form definition file). This
example uses a 4rd (report data) file and generate a per form file with formfields corresponding to the
4rd record. We'll add an additional property frmLabel on each record field, which will be displayed to the
left of each per file formfield.

• The new property is added to the 4rd definition in settings.agconf (changes are in bold):

<File extension="4rd">
 <DynamicProperties>
 <DynamicProperty name="foreignFields" type="FIELDS"
 label="foreignFields"
 initialValue="" dynamicContent="srcFieldsContent"
 editorInfo="isDynamic:true" />
 <DynamicProperty name="primaryFields" type="FIELDS"
 label="primaryFields"
 initialValue="" dynamicContent="dstFieldsContent"
 editorInfo="isDynamic:true" />
 <DynamicProperty name="frmlabel" type="TEXT" label="Label FRM"
 initialValue="" />
 </DynamicProperties>
 <Items>
 <Item nodeName="Relation" srcProperty="foreignFields"
 dstProperty="primaryFields"
 dynamicProperties="primaryFields;foreignFields"/>
 <Item nodeName="RecordField" dynamicProperties="frmlabel" />
 </Items>
</File>

• The file managedtextform.xsl is created, to describe what is to be generated. This file should
be saved to the template directory. The GASDIR environment variable should be defined in the GAS
configuration and added to PATH.

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/
Transform">
 <xsl:output method="text" />
 <xsl:template match="/">
--This is generated by the XSL

BAM Template Developer Guide | 950

DATABASE <xsl:for-each select="//Module"><xsl:value-of
 select="@databaseName"/>
</xsl:for-each>

LAYOUT
GRID
{
 <xsl:for-each select="//Fields/Field">
 <xsl:value-of select="DynamicProperties/
DynamicProperty[@name='frmlabel']
 /@value"/>:
 [<xsl:value-of select="@column"/>]
 </xsl:for-each>
}
END -- LAYOUT

TABLES <xsl:for-each select="//Record"><xsl:value-of select="@table"/>
 </xsl:for-each>

ATTRIBUTES
 <xsl:for-each select="//Fields/Field">
 <xsl:value-of select="@column"/> = <xsl:value-of select="@table"/
>.
 <xsl:value-of select="@column"/>;
 </xsl:for-each>

END -- ATTRIBUTES
 </xsl:template>
</xsl:stylesheet>

• A new project is created and a new A Business Application diagram (4ba) is created and saved to the
project.

• A new 4rd file is added to the project and a record created. The properties for frmlabel are added to
the record fields.

• The 4rd Build Rule is updated to generate a per using xslt.

<BuildRule
 additionalDependencies=""
 commands="$(generate) -depth 0 -ba "$(BAFilePath)"
 "$(InputPath)";fglxslp -o
 $(InputDir)/$(InputBaseName)per $(GSTSETUPDIR)/managedTextForm.xsl
 $(InputDir)/$(InputBaseName).xml;"
 description="4RD Report Data compiler"
 enabled="true"
 fileType="application/generostudio-4rd"
 id="1319189142826"
 intermediateFiles=""
 outputFiles="$(InputDir)/$(InputBaseName)per "/>

The same Build Rule displayed in a Genero Studio dialog:

BAM Template Developer Guide | 951

Figure 407: Build Rule
• The 4rd is compiled and a per is generated.

The generated form

When the per file is opened and previewed, it looks like this.

BAM Template Developer Guide | 952

Figure 408: per form

Image directory structure
Genero Studio searches the GSTDIR/images/ directories for images referenced in the templates and
associated files.

A copy of the image, of increasing size, should be stored in the images directory in S1 through S5 size
subdirectories.

• s1 : 16x16 pixels : structure view, Toolbar, file type icon (File Browser, Project Manager)
• s2 : 22x22 pixels
• s3® : 32x32 pixels
• s4 : 48x48 pixels : Business Application diagram
• s5 : 64x64 pixels

Depending on the DPI set on the system, other sizes can be chosen. Existing icons can be found in
GSTDIR/images/s*. These can be used in Business Application settings as well.

BAM Template Developer Guide | 953

Template Reference
Reference topics for the default template set.

XML reference
Reference information for the XML template files.

• settings.agconf elements on page 953
• creatables.conf elements on page 987

settings.agconf elements
The settings.agconf file is an XML document with four sections: Form, Business Record, Business
Application, and Database. It is used to manage the properties available to each of the diagrams used by
the Business Application Modeler.

The file is located in the template directory GSTDIR/gst/bin/src/ag/tpl/dbapp.

The XML schema for settings.agconf is GSTDIR/gst/conf/schema/agconf.xsd.

• AGSettings on page 954

• Form on page 954

• File on page 955

• Messages on page 956
• DynamicProperties

• DynamicProperty on page 957
• DynamicPropertyGroup on page 961

• Items

• Item (Form / BusinessRecord / Database) on page 962
• BusinessRecord on page 963

• File on page 955

• Messages on page 956
• DynamicProperties

• DynamicProperty on page 957
• Items

• Item (Form / BusinessRecord / Database) on page 962
• BusinessApplication on page 971

• DynamicProperties

• DynamicProperty on page 957
• Items

• Item (BusinessApplication) on page 975
• Relation on page 977

• Constraints

• Constraint on page 978
• Database on page 979

• File on page 955

• DynamicProperties

• DynamicProperty on page 957

BAM Template Developer Guide | 954

• Items

• Item (Form / BusinessRecord / Database) on page 962

AGSettings
The AGSettings element is the root element of the settings.agconf file.

The AGSettings element takes an optional attribute version.

Syntax

<AGSettings version="5">
 <Form></Form>
 <BusinessRecord></BusinessRecord>
 <BusinessApplication></BusinessApplication>
 <Database></Database>
</AGSettings>

Child elements

The AGSettings element may contain the following child elements:

1. Zero or one Form element.
2. Zero or one BusinessRecord element.
3. Zero or one BusinessApplication element.
4. Zero or one Database element.

Example
See GSTDIR/bin/src/ag/tpl/dbapp/settings.agconf
Form
The Form section in the settings.agconf file manages the properties available in Form Designer.

The Form element defines the format of a form type.

Syntax

<Form>
 <File attributes>
 <DynamicProperties> dynamic property list </DynamicProperties>
 <Items> item list </Items>
 </File>
</Form>

Child elements

The Form element may contain the following child elements:

1. One or more File elements.

Example

<Form>
 <File extension="4fdm" isManaged="true">
 <DynamicProperties>
 <DynamicProperty
 name="T_QUERY"
 type="BOOLEAN"
 label="canSearch"
 initialValue="1"
 description="Allow search using Query By Example"/>

BAM Template Developer Guide | 955

 <DynamicPropertyGroup
 name="user"
 label="Functionality"
 description="User properties group"

 properties="T_QUERY " />
 </DynamicProperties>
 <Items>
 <Item
 nodeName="Record"
 dynamicProperties="T_QUERY"/>
 </Items>
 </File>
</Form>

File
The File element defines the file type. Add one File element for each new file type.

Syntax

<File>
 <DynamicProperties>
 <DynamicProperty/>
 <DynamicPropertyGroup/>
 </DynamicProperties>
 <Items>
 <Item/>
 </Items>
</File>

Attributes

Table 252: File element attributes

Attribute Options

extension File extension.

isManaged Form element only. True or False (Default is False). Set to True if
the type corresponds to managed form (to generate application code
using records features like queries). If managed, the records in the form
are enabled by default, otherwise they cannot be used for Application
Modeling.

Child elements

The File element may contain the following child elements:

1. One or more DynamicProperty on page 957 and DynamicPropertyGroup on page 961 elements,
within one DynamicProperties element.

2. One or more Item elements, within one Items element.

Example - File elements representing a file type.

 <File extension="4fdm" isManaged="true">
 <DynamicProperties>
 <DynamicProperty name="foreignFields" type="FIELDS"
 label="foreignFields" initialValue=""
 editorInfo="isDynamic:true" dynamicContent="srcFieldsContent"/>

BAM Template Developer Guide | 956

 <DynamicProperty name="primaryFields" type="FIELDS"
 label="primaryFields" initialValue=""
 editorInfo="isDynamic:true" dynamicContent="dstFieldsContent"/>
 <DynamicPropertyGroup name="relations"
 label="Relation"
 description="Relation properties group"
 properties="foreignFields;primaryFields"/>
 <DynamicProperty name="canSearch" type="BOOLEAN"
 label="canSearch" initialValue="true"
 description="Allow search using Query By Example"/>
 <DynamicProperty name="canAdd" type="BOOLEAN"
 label="canAdd" initialValue="true"
 description="Allow adding items"/>
 <DynamicProperty name="canModify" type="BOOLEAN"
 label="canModify" initialValue="true"
 description="Allow modifying existing items"/>
 <DynamicProperty name="canDelete" type="BOOLEAN"
 label="canDelete" initialValue="true"
 description="Allow deleting items"/>
 <DynamicPropertyGroup name="functionality"
 label="Functionality"
 description="Functionality properties group"
 properties="canAdd;canModify;canDelete;canSearch"/>
 </DynamicProperties>
 <Items>
 <Item nodeName="Relation" srcProperty="foreignFields"
 dstProperty="primaryFields"
 dynamicProperties="primaryFields;foreignFields"/>
 <Item nodeName="Record"
 dynamicProperties="canAdd;canModify;canDelete;canSearch"/>
 </Items>
 </File>

Messages
The Messages element is used to identify, for a specific item, error messages to disable during code
generation and/or to reduce from an error to a warning.

The Messages element has attributes.

Attributes

Table 253: Messages element attributes

Attribute Options

warningAsError A semicolon separated list of error identifiers. If an error identifier is
added to an item, the message severity is increased from warning to
error for this specific error for this specific item.

ignoreWarning A semicolon separated list of error identifiers. If an error identifier is
added to an item, the specified error is no longer generated for this
specific item. Disables the message if its severity is warning.

Example

<Database>
 <File extension="4db">
 <Message warningAsError="GS-11000" ignoreWarning
 ="GS-11360;GS-11361">
 <DynamicProperties>

BAM Template Developer Guide | 957

DynamicProperty
The DynamicProperty element is a child element of DynamicProperties.

DynamicProperties can have one or more DynamicProperty children.

The DynamicProperty element has attributes. Valid attributes depend on the parent element of Form,
BusinessRecord, BusinessApplication, or Database.

Syntax

 <File>
 <DynamicProperties>
 <DynamicProperty/>
 <DynamicProperty/>
 <DynamicProperty/>
 </DynamicProperties>
 </File>

Attributes

Table 254: DynamicProperty element attributes

Attribute Options

name Property identifier, name that appears in the xml. Must be unique
among all the dynamic properties. The property gets associated with
the Item / Relation through name.

description Textual description of the property. Displayed in property view tooltip.

type Property type. Defines how the property editor behaves.

BOOLEAN The editor is a checkbox. Valid
values are true, false.

MULTIPLEBOOLEAN The editor is the multiple
checkbox dialog, editorInfo can
have contains(list of checkable
values), title, description and icon

ENUM The editor is combobox, values
are in editorInfo contains: or
dynamic

INTEGER The editor is spinbox , range is in
editorInfo: range

TEXT The editor is for text.

FILE The editor is the browse dialog.

FIELDS The editor is the field selection
dialog. The fields are dynamic.

BRQUERY The editor is the record query
dialog. This property type is
reserved, do not use.

FDTEXT This property type is reserved,
do not use.

FDSTYLE This property type is reserved,
do not use.

BAM Template Developer Guide | 958

Attribute Options

FDINCLUDE This property type is reserved,
do not use.

FDCOLORCONDITION This property type is reserved,
do not use.

MULTIPLELINES This editor is for text with a
dialog for multiple line editing.

MULTIPLEPATH This editor is the multiple path
dialog. The hasBrowseButton
specifies if the editor should have
browse button. editPathMode
can be file or directory.
selectionMode can be single
or multiple.

A custom property is a property which uses a property editor defined
by the customer. We provide only 2 types of custom editors:

WEB The editor is a input field with
a browse button which opens
a dialog box displaying a html
document. See The WEB custom
editor on page 944.

PROCESS The editor is a input field with a
browse button which launches
an external process. See The
PROCESS custom editor on
page 947.

initialValue Default value used when no user value is set. This is the value set
when the restore button is used. The default value is not saved in the
file.

dynamicContent (Form) Name of the dynamic content source if the property is dynamic. The
available dynamic contents in Form Designer are:

databaseName List of available databases in the
project and preferences.

sqlTabName List of available database tables
in the current database.

colName List of available columns
available with the sqlTabName
table in the current database

aggregateColName List of available columns
available with the
aggregateTableName table in
the current database.

displayColName List of available columns
available with the
displayLikeTableName table in
the current database.

BAM Template Developer Guide | 959

Attribute Options

validateColName List of available columns
available with the
validateLikeTableName table in
the current database.

fieldType List of available field type (only
formonly if there is no database).

hidden Adds USER to true, false if the
selection contains only table
columns.

posX, posY, gridwith,
gridHeight

Returns the geometry limits
depending on parent geometry.

rowCount, colCount, stepX,
stepY

Corresponding min and max (for
matrices).

totalRows Min and max rows for table
elements.

expandedColumns Deprecated.

masterTable List of record implicit tables.

componentType List of available web
components.

lookup List of lookups in the parent
record.

srcFieldsContent List of available record fields in
relation source.

dstFieldsContent List of available record fields in
relation destination.

precision Available precision for current
qual1 qualifier.

scale Available scale for current qual2
qualifier.

aggregatePrecision Available aggregate precision for
current aggregateQual1 qualifier.

children List of available children names.

sibling List of available sibling names.

dynamicContent
(BusinessApplication)

Name of the dynamic content source if the property is dynamic.

The available dynamic contents in BusinessApplication are:

srcFieldsContent List of available fields in the
relation source or the current
item if not a relation.

dstFieldsContent List of available fields in the
destination item or the current
item if not a relation.

BAM Template Developer Guide | 960

Attribute Options

actionContent List of available actions in the
source item or the current item if
not a relation.

type List of available types for the
current element.

editorInfo Semi-colon separated list of attribute:value pair containing the
property editor information.

For example:

editorInfo="contains:ButtonEdit|CheckBox
|ComboBox|DateEdit|Edit|FFImage|FFLabel
|Field|ProgressBar|RadioGroup|Slider
|SpinEdit|TextEdit|TimeEdit"

editor Use another editor than the
default one associated to the
property type.

alwaysUpdate If true, the model is modified
immediately on each user action.

contains List of values for ENUM type if
not dynamic.

editMode If true, the property editor is
editable (combobox, BRQuery).

filters For FILE type, set the browse
dialog extension filter.

isDynamic If true, the values (contains
property) is computed.

range Range of values for the spinbox
editor (similar to contains), two
values separated with ‘|’.

icon Contains the banner icon
for property editor opening a
dialog box (text, checkboxlist,
MULTIPLELINES)

title Contains the window title for
property editor opening a
dialog box (text, checkboxlist,
MULTIPLELINES)

description Contains the banner title for
property editor opening a
dialog box (text, checkboxlist,
MULTIPLELINES)

label Text displayed in the Properties view.

readOnly Sets property to read only. Options are true or false.

isHidden Sets visibility of the property. Options are true or false.

BAM Template Developer Guide | 961

Example

 <File extension="4fdm" isManaged="true">
 <DynamicProperties>
 <DynamicProperty name="foreignFields" type="FIELDS"
 label="foreignFields" initialValue=""
 editorInfo="isDynamic:true" dynamicContent="srcFieldsContent"/>
 <DynamicProperty name="primaryFields" type="FIELDS"
 label="primaryFields" initialValue=""
 editorInfo="isDynamic:true" dynamicContent="dstFieldsContent"/>
 <DynamicPropertyGroup name="relations"
 label="Relation"
 description="Relation properties group"
 properties="foreignFields;primaryFields"/>
 <DynamicProperty name="canSearch" type="BOOLEAN"
 label="canSearch" initialValue="true"
 description="Allow search using Query By Example"/>
 <DynamicProperty name="canAdd" type="BOOLEAN"
 label="canAdd" initialValue="true"
 description="Allow adding items"/>
 <DynamicProperty name="canModify" type="BOOLEAN"
 label="canModify" initialValue="true"
 description="Allow modifying existing items"/>
 <DynamicProperty name="canDelete" type="BOOLEAN"
 label="canDelete" initialValue="true"
 description="Allow deleting items"/>
 <DynamicPropertyGroup name="functionality"
 label="Functionality"
 description="Functionality properties group"
 properties="canAdd;canModify;canDelete;canSearch"/>
 </DynamicProperties>
 <Items>
 <Item nodeName="Relation" srcProperty="foreignFields"
 dstProperty="primaryFields"
 dynamicProperties="primaryFields;foreignFields"/>
 <Item nodeName="Record"
 dynamicProperties="canAdd;canModify;canDelete;canSearch"/>
 </Items>
 </File>

DynamicPropertyGroup
The DynamicPropertyGroup element is a child element of DynamicProperties and is used to
organize a group of properties together.

The DynamicPropertyGroup element has attributes.

Syntax

 <DynamicProperties>
 </DynamicPropertyGroup>
 </DynamicProperties>

Table 255: DynamicPropertyGroup element attributes

Attribute Options

name Property identifier, name that appears in the xml.

BAM Template Developer Guide | 962

Attribute Options

description Textual description of the property. Displayed in
Property view tooltip.

label Text displayed in the Properties view.

properties List of dyanmicProperty names to display in the
group, separated by semi-colons.

Example

<DynamicPropertyGroup name="functionality" label="Functionality"
 description="Functionality properties group"

 properties="canAdd;canModify;canDelete;canSearch;canDisplay;canEmpty"/>

Item (Form / BusinessRecord / Database)
The Item element adds new dynamic properties to some existing node(s) in the Form or Business Record
or Meta-schema, depending on nodeName.

The Item element has attributes.

Table 256: Item element attributes

Attribute Options

nodeName Corresponds to the node type name, such as "Relation".

srcProperty Name of the property used as the source fields list, if the item is a Relation on
page 977. Defines the source field while creating the query in application
generation. The value of this property is the name of the dynamic property which
holds source field. This dynamic property must be associated with relation through
the dynamicProperty attribute.

dstProperty Name of the property used as the destination fields list, if the item is a Relation on
page 977. Similar to srcProperty it defines the destination field.

dynamicProperties List of dynamic properties that apply to the item node.

Syntax

<BusinessRecord>
 <File extension="4rd">
 <DynamicProperties>
 <DynamicProperty name="foreignFields" type="FIELDS"
 label="foreignFields"
 initialValue="" dynamicContent="srcFieldsContent"
 editorInfo="isDynamic:true" />
 <DynamicProperty name="primaryFields" type="FIELDS"
 label="primaryFields"
 initialValue="" dynamicContent="dstFieldsContent"
 editorInfo="isDynamic:true" />
 </DynamicProperties>
 <Items>
 <Item
 nodeName="Relation"
 srcProperty="foreignFields"
 dstProperty="primaryFields"
 dynamicProperties="primaryFields;foreignFields" />

BAM Template Developer Guide | 963

 </Items>
 </File>
</BusinessRecord>

BusinessRecord
Similar to Form, the BusinessRecord element defines the settings for a Business Record entity, which
describes the database columns for a report. The only difference is that the isManaged attribute does not
exist (all Business Record files are managed).

In this default format, the only item that differs from the Record associated with a form is a Relation, and
the Dynamic Properties apply to that item.

Syntax

<BusinessRecord>
 <File attributes>
 <DynamicProperties> dynamic property list </DynamicProperties>
 <Items> item list </Items>
 </File>
</BusinessRecord>

Child elements

The BusinessRecord element may contain the following child elements:

1. One or more File elements.

Example

<BusinessRecord>
 <File extension="4rd">
 <DynamicProperties>
 <DynamicProperty name="foreignFields" type="FIELDS"
 label="foreignFields"
 initialValue="" dynamicContent="srcFieldsContent"
 editorInfo="isDynamic:true" />
 <DynamicProperty name="primaryFields" type="FIELDS"
 label="primaryFields"
 initialValue="" dynamicContent="dstFieldsContent"
 editorInfo="isDynamic:true" />
 </DynamicProperties>
 <Items>
 <Item nodeName="Relation" srcProperty="foreignFields"
 dstProperty="primaryFields"
 dynamicProperties="primaryFields;foreignFields" />
 </Items>
 </File>
</BusinessRecord>

File
The File element defines the file type. Add one File element for each new file type.

Syntax

<File>
 <DynamicProperties>
 <DynamicProperty/>
 <DynamicPropertyGroup/>
 </DynamicProperties>
 <Items>

BAM Template Developer Guide | 964

 <Item/>
 </Items>
</File>

Attributes

Table 257: File element attributes

Attribute Options

extension File extension.

isManaged Form element only. True or False (Default is False). Set to True if
the type corresponds to managed form (to generate application code
using records features like queries). If managed, the records in the form
are enabled by default, otherwise they cannot be used for Application
Modeling.

Child elements

The File element may contain the following child elements:

1. One or more DynamicProperty on page 957 and DynamicPropertyGroup on page 961 elements,
within one DynamicProperties element.

2. One or more Item elements, within one Items element.

Example - File elements representing a file type.

 <File extension="4fdm" isManaged="true">
 <DynamicProperties>
 <DynamicProperty name="foreignFields" type="FIELDS"
 label="foreignFields" initialValue=""
 editorInfo="isDynamic:true" dynamicContent="srcFieldsContent"/>
 <DynamicProperty name="primaryFields" type="FIELDS"
 label="primaryFields" initialValue=""
 editorInfo="isDynamic:true" dynamicContent="dstFieldsContent"/>
 <DynamicPropertyGroup name="relations"
 label="Relation"
 description="Relation properties group"
 properties="foreignFields;primaryFields"/>
 <DynamicProperty name="canSearch" type="BOOLEAN"
 label="canSearch" initialValue="true"
 description="Allow search using Query By Example"/>
 <DynamicProperty name="canAdd" type="BOOLEAN"
 label="canAdd" initialValue="true"
 description="Allow adding items"/>
 <DynamicProperty name="canModify" type="BOOLEAN"
 label="canModify" initialValue="true"
 description="Allow modifying existing items"/>
 <DynamicProperty name="canDelete" type="BOOLEAN"
 label="canDelete" initialValue="true"
 description="Allow deleting items"/>
 <DynamicPropertyGroup name="functionality"
 label="Functionality"
 description="Functionality properties group"
 properties="canAdd;canModify;canDelete;canSearch"/>
 </DynamicProperties>
 <Items>
 <Item nodeName="Relation" srcProperty="foreignFields"
 dstProperty="primaryFields"

BAM Template Developer Guide | 965

 dynamicProperties="primaryFields;foreignFields"/>
 <Item nodeName="Record"
 dynamicProperties="canAdd;canModify;canDelete;canSearch"/>
 </Items>
 </File>

Messages
The Messages element is used to identify, for a specific item, error messages to disable during code
generation and/or to reduce from an error to a warning.

The Messages element has attributes.

Attributes

Table 258: Messages element attributes

Attribute Options

warningAsError A semicolon separated list of error identifiers. If an error identifier is
added to an item, the message severity is increased from warning to
error for this specific error for this specific item.

ignoreWarning A semicolon separated list of error identifiers. If an error identifier is
added to an item, the specified error is no longer generated for this
specific item. Disables the message if its severity is warning.

Example

<Database>
 <File extension="4db">
 <Message warningAsError="GS-11000" ignoreWarning
 ="GS-11360;GS-11361">
 <DynamicProperties>

DynamicProperty
The DynamicProperty element is a child element of DynamicProperties.

DynamicProperties can have one or more DynamicProperty children.

The DynamicProperty element has attributes. Valid attributes depend on the parent element of Form,
BusinessRecord, BusinessApplication, or Database.

Syntax

 <File>
 <DynamicProperties>
 <DynamicProperty/>
 <DynamicProperty/>
 <DynamicProperty/>
 </DynamicProperties>
 </File>

BAM Template Developer Guide | 966

Attributes

Table 259: DynamicProperty element attributes

Attribute Options

name Property identifier, name that appears in the xml. Must be unique
among all the dynamic properties. The property gets associated with
the Item / Relation through name.

description Textual description of the property. Displayed in property view tooltip.

type Property type. Defines how the property editor behaves.

BOOLEAN The editor is a checkbox. Valid
values are true, false.

MULTIPLEBOOLEAN The editor is the multiple
checkbox dialog, editorInfo can
have contains(list of checkable
values), title, description and icon

ENUM The editor is combobox, values
are in editorInfo contains: or
dynamic

INTEGER The editor is spinbox , range is in
editorInfo: range

TEXT The editor is for text.

FILE The editor is the browse dialog.

FIELDS The editor is the field selection
dialog. The fields are dynamic.

BRQUERY The editor is the record query
dialog. This property type is
reserved, do not use.

FDTEXT This property type is reserved,
do not use.

FDSTYLE This property type is reserved,
do not use.

FDINCLUDE This property type is reserved,
do not use.

FDCOLORCONDITION This property type is reserved,
do not use.

MULTIPLELINES This editor is for text with a
dialog for multiple line editing.

MULTIPLEPATH This editor is the multiple path
dialog. The hasBrowseButton
specifies if the editor should have
browse button. editPathMode
can be file or directory.
selectionMode can be single
or multiple.

BAM Template Developer Guide | 967

Attribute Options

A custom property is a property which uses a property editor defined
by the customer. We provide only 2 types of custom editors:

WEB The editor is a input field with
a browse button which opens
a dialog box displaying a html
document. See The WEB custom
editor on page 944.

PROCESS The editor is a input field with a
browse button which launches
an external process. See The
PROCESS custom editor on
page 947.

initialValue Default value used when no user value is set. This is the value set
when the restore button is used. The default value is not saved in the
file.

dynamicContent (Form) Name of the dynamic content source if the property is dynamic. The
available dynamic contents in Form Designer are:

databaseName List of available databases in the
project and preferences.

sqlTabName List of available database tables
in the current database.

colName List of available columns
available with the sqlTabName
table in the current database

aggregateColName List of available columns
available with the
aggregateTableName table in
the current database.

displayColName List of available columns
available with the
displayLikeTableName table in
the current database.

validateColName List of available columns
available with the
validateLikeTableName table in
the current database.

fieldType List of available field type (only
formonly if there is no database).

hidden Adds USER to true, false if the
selection contains only table
columns.

posX, posY, gridwith,
gridHeight

Returns the geometry limits
depending on parent geometry.

rowCount, colCount, stepX,
stepY

Corresponding min and max (for
matrices).

BAM Template Developer Guide | 968

Attribute Options

totalRows Min and max rows for table
elements.

expandedColumns Deprecated.

masterTable List of record implicit tables.

componentType List of available web
components.

lookup List of lookups in the parent
record.

srcFieldsContent List of available record fields in
relation source.

dstFieldsContent List of available record fields in
relation destination.

precision Available precision for current
qual1 qualifier.

scale Available scale for current qual2
qualifier.

aggregatePrecision Available aggregate precision for
current aggregateQual1 qualifier.

children List of available children names.

sibling List of available sibling names.

dynamicContent
(BusinessApplication)

Name of the dynamic content source if the property is dynamic.

The available dynamic contents in BusinessApplication are:

srcFieldsContent List of available fields in the
relation source or the current
item if not a relation.

dstFieldsContent List of available fields in the
destination item or the current
item if not a relation.

actionContent List of available actions in the
source item or the current item if
not a relation.

type List of available types for the
current element.

editorInfo Semi-colon separated list of attribute:value pair containing the
property editor information.

For example:

editorInfo="contains:ButtonEdit|CheckBox
|ComboBox|DateEdit|Edit|FFImage|FFLabel
|Field|ProgressBar|RadioGroup|Slider
|SpinEdit|TextEdit|TimeEdit"

BAM Template Developer Guide | 969

Attribute Options

editor Use another editor than the
default one associated to the
property type.

alwaysUpdate If true, the model is modified
immediately on each user action.

contains List of values for ENUM type if
not dynamic.

editMode If true, the property editor is
editable (combobox, BRQuery).

filters For FILE type, set the browse
dialog extension filter.

isDynamic If true, the values (contains
property) is computed.

range Range of values for the spinbox
editor (similar to contains), two
values separated with ‘|’.

icon Contains the banner icon
for property editor opening a
dialog box (text, checkboxlist,
MULTIPLELINES)

title Contains the window title for
property editor opening a
dialog box (text, checkboxlist,
MULTIPLELINES)

description Contains the banner title for
property editor opening a
dialog box (text, checkboxlist,
MULTIPLELINES)

label Text displayed in the Properties view.

readOnly Sets property to read only. Options are true or false.

isHidden Sets visibility of the property. Options are true or false.

Example

 <File extension="4fdm" isManaged="true">
 <DynamicProperties>
 <DynamicProperty name="foreignFields" type="FIELDS"
 label="foreignFields" initialValue=""
 editorInfo="isDynamic:true" dynamicContent="srcFieldsContent"/>
 <DynamicProperty name="primaryFields" type="FIELDS"
 label="primaryFields" initialValue=""
 editorInfo="isDynamic:true" dynamicContent="dstFieldsContent"/>
 <DynamicPropertyGroup name="relations"
 label="Relation"
 description="Relation properties group"
 properties="foreignFields;primaryFields"/>
 <DynamicProperty name="canSearch" type="BOOLEAN"
 label="canSearch" initialValue="true"
 description="Allow search using Query By Example"/>

BAM Template Developer Guide | 970

 <DynamicProperty name="canAdd" type="BOOLEAN"
 label="canAdd" initialValue="true"
 description="Allow adding items"/>
 <DynamicProperty name="canModify" type="BOOLEAN"
 label="canModify" initialValue="true"
 description="Allow modifying existing items"/>
 <DynamicProperty name="canDelete" type="BOOLEAN"
 label="canDelete" initialValue="true"
 description="Allow deleting items"/>
 <DynamicPropertyGroup name="functionality"
 label="Functionality"
 description="Functionality properties group"
 properties="canAdd;canModify;canDelete;canSearch"/>
 </DynamicProperties>
 <Items>
 <Item nodeName="Relation" srcProperty="foreignFields"
 dstProperty="primaryFields"
 dynamicProperties="primaryFields;foreignFields"/>
 <Item nodeName="Record"
 dynamicProperties="canAdd;canModify;canDelete;canSearch"/>
 </Items>
 </File>

Item (Form / BusinessRecord / Database)
The Item element adds new dynamic properties to some existing node(s) in the Form or Business Record
or Meta-schema, depending on nodeName.

The Item element has attributes.

Table 260: Item element attributes

Attribute Options

nodeName Corresponds to the node type name, such as "Relation".

srcProperty Name of the property used as the source fields list, if the item is a Relation on
page 977. Defines the source field while creating the query in application
generation. The value of this property is the name of the dynamic property which
holds source field. This dynamic property must be associated with relation through
the dynamicProperty attribute.

dstProperty Name of the property used as the destination fields list, if the item is a Relation on
page 977. Similar to srcProperty it defines the destination field.

dynamicProperties List of dynamic properties that apply to the item node.

Syntax

<BusinessRecord>
 <File extension="4rd">
 <DynamicProperties>
 <DynamicProperty name="foreignFields" type="FIELDS"
 label="foreignFields"
 initialValue="" dynamicContent="srcFieldsContent"
 editorInfo="isDynamic:true" />
 <DynamicProperty name="primaryFields" type="FIELDS"
 label="primaryFields"
 initialValue="" dynamicContent="dstFieldsContent"
 editorInfo="isDynamic:true" />
 </DynamicProperties>
 <Items>
 <Item

BAM Template Developer Guide | 971

 nodeName="Relation"
 srcProperty="foreignFields"
 dstProperty="primaryFields"
 dynamicProperties="primaryFields;foreignFields" />
 </Items>
 </File>
</BusinessRecord>

BusinessApplication
The BusinessApplication element defines the format of all the entities (items) that a BA diagram can
contain, and their dynamic properties.

Unlike the Form and Business Record formats, the Item elements in this file do not modify the behavior of
an existing item, they create new item definitions with new names, inheriting from a default item. The items
are Program, Form, Zoom, ReportData, WebService and WebServiceServer. This format is similar to the
BusinessRecord, except there is no File element.

DynamicProperty
The DynamicProperty element is a child element of DynamicProperties.

DynamicProperties can have one or more DynamicProperty children.

The DynamicProperty element has attributes. Valid attributes depend on the parent element of Form,
BusinessRecord, BusinessApplication, or Database.

Syntax

 <File>
 <DynamicProperties>
 <DynamicProperty/>
 <DynamicProperty/>
 <DynamicProperty/>
 </DynamicProperties>
 </File>

Attributes

Table 261: DynamicProperty element attributes

Attribute Options

name Property identifier, name that appears in the xml. Must be unique
among all the dynamic properties. The property gets associated with
the Item / Relation through name.

description Textual description of the property. Displayed in property view tooltip.

type Property type. Defines how the property editor behaves.

BOOLEAN The editor is a checkbox. Valid
values are true, false.

MULTIPLEBOOLEAN The editor is the multiple
checkbox dialog, editorInfo can
have contains(list of checkable
values), title, description and icon

ENUM The editor is combobox, values
are in editorInfo contains: or
dynamic

BAM Template Developer Guide | 972

Attribute Options

INTEGER The editor is spinbox , range is in
editorInfo: range

TEXT The editor is for text.

FILE The editor is the browse dialog.

FIELDS The editor is the field selection
dialog. The fields are dynamic.

BRQUERY The editor is the record query
dialog. This property type is
reserved, do not use.

FDTEXT This property type is reserved,
do not use.

FDSTYLE This property type is reserved,
do not use.

FDINCLUDE This property type is reserved,
do not use.

FDCOLORCONDITION This property type is reserved,
do not use.

MULTIPLELINES This editor is for text with a
dialog for multiple line editing.

MULTIPLEPATH This editor is the multiple path
dialog. The hasBrowseButton
specifies if the editor should have
browse button. editPathMode
can be file or directory.
selectionMode can be single
or multiple.

A custom property is a property which uses a property editor defined
by the customer. We provide only 2 types of custom editors:

WEB The editor is a input field with
a browse button which opens
a dialog box displaying a html
document. See The WEB custom
editor on page 944.

PROCESS The editor is a input field with a
browse button which launches
an external process. See The
PROCESS custom editor on
page 947.

initialValue Default value used when no user value is set. This is the value set
when the restore button is used. The default value is not saved in the
file.

dynamicContent (Form) Name of the dynamic content source if the property is dynamic. The
available dynamic contents in Form Designer are:

databaseName List of available databases in the
project and preferences.

BAM Template Developer Guide | 973

Attribute Options

sqlTabName List of available database tables
in the current database.

colName List of available columns
available with the sqlTabName
table in the current database

aggregateColName List of available columns
available with the
aggregateTableName table in
the current database.

displayColName List of available columns
available with the
displayLikeTableName table in
the current database.

validateColName List of available columns
available with the
validateLikeTableName table in
the current database.

fieldType List of available field type (only
formonly if there is no database).

hidden Adds USER to true, false if the
selection contains only table
columns.

posX, posY, gridwith,
gridHeight

Returns the geometry limits
depending on parent geometry.

rowCount, colCount, stepX,
stepY

Corresponding min and max (for
matrices).

totalRows Min and max rows for table
elements.

expandedColumns Deprecated.

masterTable List of record implicit tables.

componentType List of available web
components.

lookup List of lookups in the parent
record.

srcFieldsContent List of available record fields in
relation source.

dstFieldsContent List of available record fields in
relation destination.

precision Available precision for current
qual1 qualifier.

scale Available scale for current qual2
qualifier.

aggregatePrecision Available aggregate precision for
current aggregateQual1 qualifier.

BAM Template Developer Guide | 974

Attribute Options

children List of available children names.

sibling List of available sibling names.

dynamicContent
(BusinessApplication)

Name of the dynamic content source if the property is dynamic.

The available dynamic contents in BusinessApplication are:

srcFieldsContent List of available fields in the
relation source or the current
item if not a relation.

dstFieldsContent List of available fields in the
destination item or the current
item if not a relation.

actionContent List of available actions in the
source item or the current item if
not a relation.

type List of available types for the
current element.

editorInfo Semi-colon separated list of attribute:value pair containing the
property editor information.

For example:

editorInfo="contains:ButtonEdit|CheckBox
|ComboBox|DateEdit|Edit|FFImage|FFLabel
|Field|ProgressBar|RadioGroup|Slider
|SpinEdit|TextEdit|TimeEdit"

editor Use another editor than the
default one associated to the
property type.

alwaysUpdate If true, the model is modified
immediately on each user action.

contains List of values for ENUM type if
not dynamic.

editMode If true, the property editor is
editable (combobox, BRQuery).

filters For FILE type, set the browse
dialog extension filter.

isDynamic If true, the values (contains
property) is computed.

range Range of values for the spinbox
editor (similar to contains), two
values separated with ‘|’.

icon Contains the banner icon
for property editor opening a
dialog box (text, checkboxlist,
MULTIPLELINES)

BAM Template Developer Guide | 975

Attribute Options

title Contains the window title for
property editor opening a
dialog box (text, checkboxlist,
MULTIPLELINES)

description Contains the banner title for
property editor opening a
dialog box (text, checkboxlist,
MULTIPLELINES)

label Text displayed in the Properties view.

readOnly Sets property to read only. Options are true or false.

isHidden Sets visibility of the property. Options are true or false.

Example

 <File extension="4fdm" isManaged="true">
 <DynamicProperties>
 <DynamicProperty name="foreignFields" type="FIELDS"
 label="foreignFields" initialValue=""
 editorInfo="isDynamic:true" dynamicContent="srcFieldsContent"/>
 <DynamicProperty name="primaryFields" type="FIELDS"
 label="primaryFields" initialValue=""
 editorInfo="isDynamic:true" dynamicContent="dstFieldsContent"/>
 <DynamicPropertyGroup name="relations"
 label="Relation"
 description="Relation properties group"
 properties="foreignFields;primaryFields"/>
 <DynamicProperty name="canSearch" type="BOOLEAN"
 label="canSearch" initialValue="true"
 description="Allow search using Query By Example"/>
 <DynamicProperty name="canAdd" type="BOOLEAN"
 label="canAdd" initialValue="true"
 description="Allow adding items"/>
 <DynamicProperty name="canModify" type="BOOLEAN"
 label="canModify" initialValue="true"
 description="Allow modifying existing items"/>
 <DynamicProperty name="canDelete" type="BOOLEAN"
 label="canDelete" initialValue="true"
 description="Allow deleting items"/>
 <DynamicPropertyGroup name="functionality"
 label="Functionality"
 description="Functionality properties group"
 properties="canAdd;canModify;canDelete;canSearch"/>
 </DynamicProperties>
 <Items>
 <Item nodeName="Relation" srcProperty="foreignFields"
 dstProperty="primaryFields"
 dynamicProperties="primaryFields;foreignFields"/>
 <Item nodeName="Record"
 dynamicProperties="canAdd;canModify;canDelete;canSearch"/>
 </Items>
 </File>

Items
The Items element defines the items on the BA diagram and the relations between them.

Item (BusinessApplication)

BAM Template Developer Guide | 976

Unlike Form and BusinessRecord, the Item element of BusinessApplication does not modify the behavior
of an existing item, it defines a new item, with a new name, inheriting from a default item.

The Item element takes attributes.

Table 262: Item element attributes

Attribute Options

name The new item type name.

label Label for item as it will appear in the BA diagram New >> context menu.

extension File extension.

icon The icon used for the item in the Business Application diagram. The
file must be present in the image directory of the Application Generator
template directory. See Image directory structure on page 952.

dynamicProperties List of dynamic properties dynamic properties that apply to the item
node.

depth For example, in a BA diagram specify the number of relations to traverse
while generating the model. Outgoing relations are traversed. The model
always contains the incoming and outgoing relation for the current
item, but if the depth limit is reached, the target item definition is not
generated. The depth is an integer starting from 0, or unlimited to
traverse the complete application.

Syntax

<BusinessApplication>
 <DynamicProperties> dynamic property list </DynamicProperties>
 <Items> item list </Items>
 <Relation relation properties />
</BusinessApplication>

BasicItem
The BasicItem element defines a new item, with a new name. It does not modify the behavior of an
existing item.

Table 263: BasicItem element attributes

Attribute Options

name The new basic item type name.

label Label for item as it will appear in the BA diagram New >> context menu.

icon The icon used for the item in the Business Application diagram. The
file must be present in the image directory of the Application Generator
template directory. See Image directory structure on page 952.

depth For example, in a BA diagram specify the number of relations to traverse
while generating the model. Outgoing relations are traversed. The model
always contains the incoming and outgoing relation for the current
item, but if the depth limit is reached, the target item definition is not

BAM Template Developer Guide | 977

Attribute Options

generated. The depth is an integer starting from 0, or unlimited to
traverse the complete application.

Syntax

<BusinessApplication>
 <DynamicProperties> dynamic property list </DynamicProperties>
 <Items>
 <Item> </Item>
 <BasicItem </BasicItem>
 <Relation> </Relation>
 </Items>
</BusinessApplication>

Relation
The Relation element defines a BA diagram relation.

Table 264: Relation element attributes

Attribute Options

name Defines the type of relation. There can be multiple relations of the type
defined by name in BA diagram. The name must be unique in both item
and relation definition.

dynamicProperties List of dynamic propertiesthat apply to the item node.

Syntax

<BusinessApplication>
 <DynamicProperties> dynamic property list </DynamicProperties>
 <Items>
 <Item> </Item>
 <BasicItem> </BasicItem>
 <Relation> </Relation>
 </Items>
</BusinessApplication>

Example

<Items>
 <Item name="Program" label="Program" extension="4prg"
 icon="bullet_class"/>
 <Item name="Form" label="CRUD Form" extension="4fdm"
 icon="document_4fdm" dynamicProperties=""/> <!--dynamic properties here -->
 <Item name="Zoom" label="Zoom Form" extension="4fdz"
 icon="document_4fdz" dynamicProperties=""/> <!--dynamic properties here -->
 <BasicItem name="Gallery" label="Gallery" icon="ba_choosePhoto"/>
 <BasicItem name="Phone" label="Phone" icon="ba_callPhone"/>
 <BasicItem name="Mail" label="Mail" icon="ba_composeMail"/>
 <BasicItem name="SMS" label="SMS" icon="ba_composeSms"/>
 <BasicItem name="Contact" label="Contact" icon="ba_chooseContact"/>
 <BasicItem name="Maps" label="Maps" icon="ba_mapsTo"/>
 <Relation name="Relation" dynamicProperties=""/> <!--dynamic
 properties here -->
 <Relation name="PhoneRelation"
 dynamicProperties="action;basicItemPhoneSrcField"/>

BAM Template Developer Guide | 978

 <Relation name="MailRelation" dynamicProperties=""/> <!--dynamic
 properties here -->
 <Relation name="SMSRelation"
 dynamicProperties="action;basicItemSMSToSrcField;basicItemSMSContentSrcField"/
>
 <Relation name="MapsRelation"
 dynamicProperties="action;basicItemMapsSrcField"/>
 <Relation name="PhotoRelation"
 dynamicProperties="action;basicItemImagePathSrcField"/>
 <Relation name="GalleryRelation"
 dynamicProperties="action;basicItemImagePathSrcField"/>
 <Relation name="ContactRelation"
 dynamicProperties="action;basicItemVcardSrcField"/>
</Items>

Constraint
Constraints are rules which apply to the relations between items on the BA diagram. If a constraint is
not respected on an item, the corresponding error is displayed in the document errors view. During code
generation, broken constraints generate errors and stop the generate process with an error status.

Constraints are used in the BA diagram to regulate what relations are valid between entities. For example,
with the dbapp template set, if you create a Program and a Form entity on the BA diagram, a valid relation
can be set between the Program and Form.

Figure 409: Valid relation between Program and CRUD Form

However, if you try to set a relation from a Form entity to a Program, you will see the constraint icon

indicating that this relation is not valid.

Each Constraint element manages a constraint on a specific type of relation: Relation, ReportRelation, or
WebServiceRelation.

Table 265: Constraint element attributes

Attribute Value Description

name Any string Name of the constraint. Use to
display the name in case of error.

reference Semi-colon separated list such as
Relation;ReportRelation;WebServiceRelation

Possible relation types, or * for any.

description Any string Textual description of the error.

source Semi-colon separated list of source items
from which the relation begins, such as
ReportData;WebService;Program;Form.

Possible source item types, or * for
any.

BAM Template Developer Guide | 979

Attribute Value Description

destination Semi-colon separated list of destination
items to which the relation ends, such as
Form;Zoom;FormWebService;ZoomWebService.

Possible destination item types, or *
for any.

minSource int >= 0

or ‘*’ for unbounded

The minimum number of relation
sources required for this relation
type. Minimum source relation
cardinality.

maxSource int >= 0 or

‘*’ for unbounded

The maximum number of relation
sources allowed for this relation
type. Maximum source relation
cardinality.

minDestinationint >= 0

or ‘*’ for unbounded

Minimum destination relation
cardinality.

maxDestinationint >= 0

or ‘*’ for unbounded

The maximum number of relation
destinations allowed for this relation
type. Maximum destination relation
cardinality. If set to 0, this means
a relation that meets source and
destination constraints cannot be
used.

Example

<Constraint
 name="Constraint_010"
 reference="WebServiceRelation"
 description="Define at least one outgoing relationship from
 WebServiceServer"
 source="WebServiceServer"
 destination="WebService;FormWebService;ZoomWebService"
 minSource="1"/>

In this example, Constraint_10 specifies that a WebServiceServer source entity must have at least one
WebServiceRelation to a destination of WebService, FormWebservice or ZoomWebService.

Database
This Database section defines the default format for the items that have been added to the Genero Studio
meta-schema file.

The widget and label properties are added to the column item in this section.

<Database>
 <File extension="4db">
 <DynamicProperties>
 <DynamicProperty name="widget" type="ENUM" label="Widget"
 initialValue="Edit" description="Associated widget"
 editorInfo="contains:ButtonEdit|CheckBox|ComboBox|DateEdit|Edit|
FFImage|
 FFLabel|Field|ProgressBar|RadioGroup|Slider|SpinEdit|TextEdit|
TimeEdit"/>
 <DynamicProperty name="label" type="TEXT" label="Label"
 initialValue=""
 description="Associated label when generating form" />
 <DynamicPropertyGroup name="formfieldGroup" label="Formfield"

BAM Template Developer Guide | 980

 description="Formfied properties" properties="label;widget" />
 </DynamicProperties>

 <Items>
 <Item nodeName="column" dynamicProperties="widget;label"/>
 </Items>
 </File>
</Database>

File
The File element defines the file type. Add one File element for each new file type.

Syntax

<File>
 <DynamicProperties>
 <DynamicProperty/>
 <DynamicPropertyGroup/>
 </DynamicProperties>
 <Items>
 <Item/>
 </Items>
</File>

Attributes

Table 266: File element attributes

Attribute Options

extension File extension.

isManaged Form element only. True or False (Default is False). Set to True if
the type corresponds to managed form (to generate application code
using records features like queries). If managed, the records in the form
are enabled by default, otherwise they cannot be used for Application
Modeling.

Child elements

The File element may contain the following child elements:

1. One or more DynamicProperty on page 957 and DynamicPropertyGroup on page 961 elements,
within one DynamicProperties element.

2. One or more Item elements, within one Items element.

Example - File elements representing a file type.

 <File extension="4fdm" isManaged="true">
 <DynamicProperties>
 <DynamicProperty name="foreignFields" type="FIELDS"
 label="foreignFields" initialValue=""
 editorInfo="isDynamic:true" dynamicContent="srcFieldsContent"/>
 <DynamicProperty name="primaryFields" type="FIELDS"
 label="primaryFields" initialValue=""
 editorInfo="isDynamic:true" dynamicContent="dstFieldsContent"/>
 <DynamicPropertyGroup name="relations"
 label="Relation"
 description="Relation properties group"

BAM Template Developer Guide | 981

 properties="foreignFields;primaryFields"/>
 <DynamicProperty name="canSearch" type="BOOLEAN"
 label="canSearch" initialValue="true"
 description="Allow search using Query By Example"/>
 <DynamicProperty name="canAdd" type="BOOLEAN"
 label="canAdd" initialValue="true"
 description="Allow adding items"/>
 <DynamicProperty name="canModify" type="BOOLEAN"
 label="canModify" initialValue="true"
 description="Allow modifying existing items"/>
 <DynamicProperty name="canDelete" type="BOOLEAN"
 label="canDelete" initialValue="true"
 description="Allow deleting items"/>
 <DynamicPropertyGroup name="functionality"
 label="Functionality"
 description="Functionality properties group"
 properties="canAdd;canModify;canDelete;canSearch"/>
 </DynamicProperties>
 <Items>
 <Item nodeName="Relation" srcProperty="foreignFields"
 dstProperty="primaryFields"
 dynamicProperties="primaryFields;foreignFields"/>
 <Item nodeName="Record"
 dynamicProperties="canAdd;canModify;canDelete;canSearch"/>
 </Items>
 </File>

Messages
The Messages element is used to identify, for a specific item, error messages to disable during code
generation and/or to reduce from an error to a warning.

The Messages element has attributes.

Attributes

Table 267: Messages element attributes

Attribute Options

warningAsError A semicolon separated list of error identifiers. If an error identifier is
added to an item, the message severity is increased from warning to
error for this specific error for this specific item.

ignoreWarning A semicolon separated list of error identifiers. If an error identifier is
added to an item, the specified error is no longer generated for this
specific item. Disables the message if its severity is warning.

Example

<Database>
 <File extension="4db">
 <Message warningAsError="GS-11000" ignoreWarning
 ="GS-11360;GS-11361">
 <DynamicProperties>

DynamicProperty
The DynamicProperty element is a child element of DynamicProperties.

DynamicProperties can have one or more DynamicProperty children.

BAM Template Developer Guide | 982

The DynamicProperty element has attributes. Valid attributes depend on the parent element of Form,
BusinessRecord, BusinessApplication, or Database.

Syntax

 <File>
 <DynamicProperties>
 <DynamicProperty/>
 <DynamicProperty/>
 <DynamicProperty/>
 </DynamicProperties>
 </File>

Attributes

Table 268: DynamicProperty element attributes

Attribute Options

name Property identifier, name that appears in the xml. Must be unique
among all the dynamic properties. The property gets associated with
the Item / Relation through name.

description Textual description of the property. Displayed in property view tooltip.

type Property type. Defines how the property editor behaves.

BOOLEAN The editor is a checkbox. Valid
values are true, false.

MULTIPLEBOOLEAN The editor is the multiple
checkbox dialog, editorInfo can
have contains(list of checkable
values), title, description and icon

ENUM The editor is combobox, values
are in editorInfo contains: or
dynamic

INTEGER The editor is spinbox , range is in
editorInfo: range

TEXT The editor is for text.

FILE The editor is the browse dialog.

FIELDS The editor is the field selection
dialog. The fields are dynamic.

BRQUERY The editor is the record query
dialog. This property type is
reserved, do not use.

FDTEXT This property type is reserved,
do not use.

FDSTYLE This property type is reserved,
do not use.

FDINCLUDE This property type is reserved,
do not use.

BAM Template Developer Guide | 983

Attribute Options

FDCOLORCONDITION This property type is reserved,
do not use.

MULTIPLELINES This editor is for text with a
dialog for multiple line editing.

MULTIPLEPATH This editor is the multiple path
dialog. The hasBrowseButton
specifies if the editor should have
browse button. editPathMode
can be file or directory.
selectionMode can be single
or multiple.

A custom property is a property which uses a property editor defined
by the customer. We provide only 2 types of custom editors:

WEB The editor is a input field with
a browse button which opens
a dialog box displaying a html
document. See The WEB custom
editor on page 944.

PROCESS The editor is a input field with a
browse button which launches
an external process. See The
PROCESS custom editor on
page 947.

initialValue Default value used when no user value is set. This is the value set
when the restore button is used. The default value is not saved in the
file.

dynamicContent (Form) Name of the dynamic content source if the property is dynamic. The
available dynamic contents in Form Designer are:

databaseName List of available databases in the
project and preferences.

sqlTabName List of available database tables
in the current database.

colName List of available columns
available with the sqlTabName
table in the current database

aggregateColName List of available columns
available with the
aggregateTableName table in
the current database.

displayColName List of available columns
available with the
displayLikeTableName table in
the current database.

validateColName List of available columns
available with the

BAM Template Developer Guide | 984

Attribute Options

validateLikeTableName table in
the current database.

fieldType List of available field type (only
formonly if there is no database).

hidden Adds USER to true, false if the
selection contains only table
columns.

posX, posY, gridwith,
gridHeight

Returns the geometry limits
depending on parent geometry.

rowCount, colCount, stepX,
stepY

Corresponding min and max (for
matrices).

totalRows Min and max rows for table
elements.

expandedColumns Deprecated.

masterTable List of record implicit tables.

componentType List of available web
components.

lookup List of lookups in the parent
record.

srcFieldsContent List of available record fields in
relation source.

dstFieldsContent List of available record fields in
relation destination.

precision Available precision for current
qual1 qualifier.

scale Available scale for current qual2
qualifier.

aggregatePrecision Available aggregate precision for
current aggregateQual1 qualifier.

children List of available children names.

sibling List of available sibling names.

dynamicContent
(BusinessApplication)

Name of the dynamic content source if the property is dynamic.

The available dynamic contents in BusinessApplication are:

srcFieldsContent List of available fields in the
relation source or the current
item if not a relation.

dstFieldsContent List of available fields in the
destination item or the current
item if not a relation.

actionContent List of available actions in the
source item or the current item if
not a relation.

BAM Template Developer Guide | 985

Attribute Options

type List of available types for the
current element.

editorInfo Semi-colon separated list of attribute:value pair containing the
property editor information.

For example:

editorInfo="contains:ButtonEdit|CheckBox
|ComboBox|DateEdit|Edit|FFImage|FFLabel
|Field|ProgressBar|RadioGroup|Slider
|SpinEdit|TextEdit|TimeEdit"

editor Use another editor than the
default one associated to the
property type.

alwaysUpdate If true, the model is modified
immediately on each user action.

contains List of values for ENUM type if
not dynamic.

editMode If true, the property editor is
editable (combobox, BRQuery).

filters For FILE type, set the browse
dialog extension filter.

isDynamic If true, the values (contains
property) is computed.

range Range of values for the spinbox
editor (similar to contains), two
values separated with ‘|’.

icon Contains the banner icon
for property editor opening a
dialog box (text, checkboxlist,
MULTIPLELINES)

title Contains the window title for
property editor opening a
dialog box (text, checkboxlist,
MULTIPLELINES)

description Contains the banner title for
property editor opening a
dialog box (text, checkboxlist,
MULTIPLELINES)

label Text displayed in the Properties view.

readOnly Sets property to read only. Options are true or false.

isHidden Sets visibility of the property. Options are true or false.

BAM Template Developer Guide | 986

Example

 <File extension="4fdm" isManaged="true">
 <DynamicProperties>
 <DynamicProperty name="foreignFields" type="FIELDS"
 label="foreignFields" initialValue=""
 editorInfo="isDynamic:true" dynamicContent="srcFieldsContent"/>
 <DynamicProperty name="primaryFields" type="FIELDS"
 label="primaryFields" initialValue=""
 editorInfo="isDynamic:true" dynamicContent="dstFieldsContent"/>
 <DynamicPropertyGroup name="relations"
 label="Relation"
 description="Relation properties group"
 properties="foreignFields;primaryFields"/>
 <DynamicProperty name="canSearch" type="BOOLEAN"
 label="canSearch" initialValue="true"
 description="Allow search using Query By Example"/>
 <DynamicProperty name="canAdd" type="BOOLEAN"
 label="canAdd" initialValue="true"
 description="Allow adding items"/>
 <DynamicProperty name="canModify" type="BOOLEAN"
 label="canModify" initialValue="true"
 description="Allow modifying existing items"/>
 <DynamicProperty name="canDelete" type="BOOLEAN"
 label="canDelete" initialValue="true"
 description="Allow deleting items"/>
 <DynamicPropertyGroup name="functionality"
 label="Functionality"
 description="Functionality properties group"
 properties="canAdd;canModify;canDelete;canSearch"/>
 </DynamicProperties>
 <Items>
 <Item nodeName="Relation" srcProperty="foreignFields"
 dstProperty="primaryFields"
 dynamicProperties="primaryFields;foreignFields"/>
 <Item nodeName="Record"
 dynamicProperties="canAdd;canModify;canDelete;canSearch"/>
 </Items>
 </File>

Item (Form / BusinessRecord / Database)
The Item element adds new dynamic properties to some existing node(s) in the Form or Business Record
or Meta-schema, depending on nodeName.

The Item element has attributes.

Table 269: Item element attributes

Attribute Options

nodeName Corresponds to the node type name, such as "Relation".

srcProperty Name of the property used as the source fields list, if the item is a Relation on
page 977. Defines the source field while creating the query in application
generation. The value of this property is the name of the dynamic property which
holds source field. This dynamic property must be associated with relation through
the dynamicProperty attribute.

dstProperty Name of the property used as the destination fields list, if the item is a Relation on
page 977. Similar to srcProperty it defines the destination field.

dynamicProperties List of dynamic properties that apply to the item node.

BAM Template Developer Guide | 987

Syntax

<BusinessRecord>
 <File extension="4rd">
 <DynamicProperties>
 <DynamicProperty name="foreignFields" type="FIELDS"
 label="foreignFields"
 initialValue="" dynamicContent="srcFieldsContent"
 editorInfo="isDynamic:true" />
 <DynamicProperty name="primaryFields" type="FIELDS"
 label="primaryFields"
 initialValue="" dynamicContent="dstFieldsContent"
 editorInfo="isDynamic:true" />
 </DynamicProperties>
 <Items>
 <Item
 nodeName="Relation"
 srcProperty="foreignFields"
 dstProperty="primaryFields"
 dynamicProperties="primaryFields;foreignFields" />
 </Items>
 </File>
</BusinessRecord>

creatables.conf elements
A listing of all available elements in the creatables.conf file.

The file is located in the template directory GSTDIR/gst/bin/src/ag/tpl/dbapp.

The XML schema for creatables.conf is GSTDIR/gst/conf/schema/creatables-2.xsd.

Note:

You can use GSTDIR/gst/conf/schema/creatables.xsd if you want to use the older format.

• creatables.conf elements on page 987

• Category on page 988

• New, File, Directory, Wizard on page 989

Creatables
The Creatables element is the root of the creatables.conf file.

The Creatables element contains two levels of Category elements.

Table 270: Creatables element attributes

Attribute Options

version Optional version information.

xmlns:xsi Standard XML attribute for schema namespace.

xsi:noNamespaceSchemaLocation Standard XML attribute for schema location.

Syntax

<Creatables>
 <Category attributes >
 <Category attributes >
 <New attributes />
 <File attributes />
 <Directory attributes />

BAM Template Developer Guide | 988

 <Wizard attributes />
 </Category>
 </Category>
</Creatables>

Child elements

The Creatables element may contain the following child elements:

1. One or more Category on page 988 elements.

Example

<Creatables version="2.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="http://www.4js.com/ns/gst/2.50/
creatables.xsd">
 <Category index="5" label="Design (MDA)" name="MDA" icon="document_4ba" >

 <Category index="40" label="Managed Code" name="ManagedCode">

 <New index="10"
 name="FDModuleForm"
 action="FDNew"
 label="Module Form (.4fdm)"
 icon="document_4fdm"
 description="Create an empty module in Form Designer"
 extension="4fdm"/>
 </Category>
 </Category>
</Creatables>

Category
Category elements group the actions and are used to organize actions in a way that are easy to find by a
user.

The Creatables element contains two levels of Category elements. The first Category element
corresponds to the Categories list in the File >> New dialog. The second Category element corresponds
to the Types section in the File >> New dialog.

Table 271: Category element attributes

Attribute Required Options

index Index indicates creatable order within a category.

name Creatable name (internal id)

label Creatable text.

icon Icon in GSTDIR/images/

Syntax

<Creatables>
 <Category attributes >
 <Category attributes >
 <New attributes />
 <File attributes />
 <Directory attributes />
 <Wizard attributes />

BAM Template Developer Guide | 989

 </Category>
 </Category>
</Creatables>

Child elements

The Category element may contain the following child elements:

1. One or more Category elements.
2. One or more creatable elements.

Example: Managed Form File Type

<Creatables version="1.0">
 <Category index="5" label="Design" name="MDA" icon="document_4ba" >
 <Category index="40" label="Managed Code" name="ManagedCode">
 <Wizard index="10"
 name="FDModuleForm"
 action="FDNew"
 label="Module Form from Database (4fdm)"
 icon="document_4fdm"
 description="Create an empty module in Form Designer"
 extension="4fdm" />
 </Category>
 </Category>
</Creatables>

New, File, Directory, Wizard
A creatable is created with a New, File, Directory or Wizard element.

Table 272: Creatable element attributes

Attribute Options

index Index of the creatable in a category. New, File,
Directory,
Wizard

name Creatable name (internal id). Required. New, File,
Directory,
Wizard

action See action attribute on page 990. Required for New and
Wizard creatables.

New, File,
Directory,
Wizard

actionLabel Label of the creatable when used as an action. New, File,
Directory,
Wizard

icon Creatable icon found. See Image directory structure on page
952.

New, File,
Directory,
Wizard

extension Extension of the file to be created by the creatable. New,
Wizard,
File

copy Copies file(s) before opening. If used, user is asked to choose
file path and name when executing the creatable.

File,
Directory

BAM Template Developer Guide | 990

Attribute Options

isTemplate Specifies if file(s) should be opened using the template listed in
the source attribute.

File,
Directory

source Path of source directory or source file used as the model for new
file. Required.

File,
Directory

masterFile Specifies the master file (The name of a file in the directory). Directory

open List of files to open. This should specify files in the directory. Directory

nameLabel Label used in the File >> New dialog for the field where the user
enters the name that will be given to the master file.

Directory

Syntax

<Creatables>
 <Category attributes >
 <Category attributes >
 <New attributes />
 <File attributes />
 <Directory attributes />
 <Wizard attributes />
 </Category>
 </Category>
</Creatables>

Example: Managed Form File Type

<Creatables version="1.0">
 <Category index="5" label="Design (MDA)" name="MDA" icon="document_4ba" >
 <Category index="40" label="Managed Code" name="ManagedCode">
 <Wizard index="10"
 name="FDModuleForm"
 action="FDNew"
 label="Module Form from Database (4fdm)"
 icon="document_4fdm"
 description="Create an empty module in Form Designer"
 extension="4fdm" />
 </Category>
 </Category>
</Creatables>

action attribute
The action attribute specifies the name of the action to activate when executing the creatable.

Action is required for New and Wizard creatables. If no action is provided for File and Directory
creatables, GSOpenFileAction is used.

Note: Some file actions are unable to open some file types. If an action is used with an
unsupported file type, the action will not be executed and the corresponding module error is
displayed.

Table 273: action values

Name Module Content type Description

GSOpenWithShell Global any Open with external program.

BAM Template Developer Guide | 991

Name Module Content type Description

GSOpenFile Global any Open file.

BAFileOpenAction Business
Application
Modeling

application/genero-ba Open BA diagram.

BROpen Business Record application/genero-br Open Business Record.

CEOpen Code Editor any Open in Code Editor.

CEOpenReadOnly Code Editor any Open in Code Editor (read
only).

CEOpenWithNoEdit Code Editor any Open in Code Editor (no
edit).

DBOpen Meta-schema
Manager

application/genero-db Open Schema file.

DBImportSchemaFile Meta-schema
Manager

sch mime type based Import sch file.

DBReloadSchema Meta-schema
Manager

application/genero-db Update schema.

DBGenerateSCHFile Meta-schema
Manager

application/genero-db Generate sch file.

DBGenerateDBCreationFileMeta-schema
Manager

application/genero-db Generation database
creation script.

DBGenerateDBUpdateFile Meta-schema
Manager

application/genero-db Generate database update
script

FDOpen Form Designer application/genero-form Open form.

FDFileImport Form Designer per mime type based Import text form file (per).

PMOpenWorkspace Project Manager 4pw mime type based Open project.

RWLoad Report Writer 4rp mime type based Open report.

WPOpenUrl WP Open url.

WSOpen Web Services wsdl mime type based View 4gl source.

WSUpdate Web Services mime type based Update wsdl.

POINT and BLOCK reference
POINT and BLOCK sections that appear in the generated source code are defined within the template (Tcl)
files. You can add additional POINT and BLOCK sections to the generated code.

Syntax

<POINT areaAttributes >…</POINT>

<BLOCK areaAttributes >…</BLOCK>

areaAttributes are standard XML attributes.

BAM Template Developer Guide | 992

Table 274: areaAttributes

Attribute Required / Optional Usage

Name required Application’s unique string
identifier. Alphanumeric
characters are allowed plus "_"
and "."

Aliases optional Space separated list of POINT /
BLOCK names. This is used
to rename a POINT / BLOCK.
This value never appears in the
generated source.

Status optional MODIFIED | LOST

Action optional REVERT

Name and Aliases Attribute

If the name of a POINT or BLOCK is to be changed and source code has been generated, the name can
be updated using the Aliases attribute. The Name attribute will contain the new POINT / BLOCK name.
The previous name of the POINT / BLOCK is preserved in the Aliases attribute.

A POINT / BLOCK may be renamed several times, thus the Aliases attribute is a space-separated list
of names. It is recommended that this space-separated list is sorted from the most recent to the oldest
POINT / BLOCK alias.

Packaging, deploying, and distributing apps | 993

Packaging, deploying, and distributing apps

When you create a package, you create a bundled file that contains all of the files needed to run the app
via the Genero Application Server (GAS) or on a mobile device. Once the package file is built, it can be
deployed to the GAS or to a device for testing.

Genero Studio eases the packaging and deployment of your app for testing by enabling you to build your
package from within your project. See Packaging, deploying, and distributing apps in the Genero Studio
User Guide.

Genero Archive (GAR) packaging
A Genero Archive (GAR) packages your application for deployment to the Genero Application Server.

To create a packaging node for your Genero Archive:

1. Add a package.
2. For the Platform property, select "Genero Application Server".

Note: The application configuration file (.xcf) should be included in the package. See Create and
apply a custom XCF for your Web application on page 151.

A default manifest is generated for the package. If you want to create a custom manifest, see the Genero
Application Server User Guide; the menu option File >> New, Web / AS, Genero Archive MANIFEST
creates this template:

<?xml version="1.0" encoding="utf-8"?>
<MANIFEST xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="http://www.4js.com/ns/gas/3.00/mf.xsd">
 <DESCRIPTION>manifest description</DESCRIPTION>
 <TRIGGERS component="component_name">
 <DEPLOY>deploy_command</DEPLOY>
 <UNDEPLOY>undeploy_command</UNDEPLOY>
 </TRIGGERS>
 <RESOURCES>resources_directory</RESOURCES>
 <APPLICATION xcf="application.xcf" />
 <SERVICE xcf="service.xcf" />
</MANIFEST>

Packaging for a mobile device
Topics in this section are only relevant for packaging for a mobile device.

In terms of a mobile package, the package includes all files needed to run the program. It specifies the
directory structure containing those files when the package is installed on the device.

Android packages have an apk extension, iOS packages have an ipa extension.

Packaging and Deploying topics:

• What is packaging? on page 994
• Packaging process overview for a mobile device on page 996
• Package a mobile app on page 996
• Deploy a mobile app for testing on page 998
• Package and Directory nodes and properties on page 999
• Platform: Package and deploy rules on page 1003

Packaging, deploying, and distributing apps | 994

• Distribute your app on page 1005
• Manage App updates on page 1008

What is packaging?
Packaging prepares and packages all files required to deploy an app onto a mobile device.

In other words, packaging involves identifying what files are needed for the app, organizing those files,
and creating a package file that can be deployed to the app. The specifics are summarized in the following
paragraphs.

Directories involved

When you create a mobile app, and when you prepare for packaging, there are three directory structures
that you must understand and manage.

Source directory structure There is a directory structure containing the app
sources. These are your source files - 4gl files,
form definition files, image files, and so on.

Target directory structure There is a directory structure containing the
compiled binary files. As part of the compilation
process, the compiled binaries are placed in target
directories. In Genero Studio, you specify this
location with the Target directory property. You
specify this property for group nodes, application
nodes, and library nodes.

Root directory structure There is a directory structure containing the files
needed on the mobile device. The mobile device or
platform will have rules on what structure is allowed.
The top-level directory in this structure is known
as the Root directory (rootdir). In Genero Studio,
the Root directory is defined as a property of the
Package node. All file that needs to be deployed to
the mobile device must sit under the Root directory.

The goal of packaging

To package your app, start by having an inventory of all files needed to run the app on the mobile device.
Some of these files will be in your source directory structure (such as image files), while others will sit in
your target directory structure (the compiled binary files).

You must also define the directory structure you will need to create in the Root directory for your mobile
device. This may sound complicated, but in reality it is quite simple. For both the Android and iOS devices,
you can place all of the files required into a single folder. If you examine the default packaging nodes
provided when you create a new BAM Mobile Project (.4pw), you see that all files end up in the directory
$(ProjectDir)/bin, which is the packaging Root directory. You could build a more complex Root
directory structure, however it is not necessary.

Once you have your inventory of required files and your plan for the directory structure on your device, you
can build your packaging node.

In the Package node, you define the Root directory and specify which platform the package is for.

Under the Package node, you create a Directory node for each directory you need to retrieve files from.
You will have multiple Directory nodes, where each Directory node serves a purpose: locating the binaries,
database files, fglprofile, images and so on.

Packaging, deploying, and distributing apps | 995

Important: It is not sufficient to physically put a file in the Root directory on disk to have it included
in the final package. Any file you want to include in the package must be listed as a source file in
one of the directory nodes.

The Source directory indicates where the files exist prior to packaging, the Destination directory indicates
where the files will be located in the package. The Destination directory must be located within the Root
directory. In the Directory node, the Included files and Excluded files properties tell which files from the
Source directory to include or exclude, based on filtering criteria (such as the filename or file extension).

During the packaging process, the files are copied from the source directory to the Destination directory, if
these directories differ.

Note: If you examine the default packaging nodes provided when you create a new BAM Mobile
Project (.4pw), you will see many Directory nodes where both the Source and Destination
directories specify $(ProjectDir)/bin. Having the Source and Destination specify the same directory
allows for packaging optimization, by not requiring files to be copied from one directory to another.
Files are only copied when then are moving to a different directory. You can define separate Source
and Destination directories, however the packaging process would not be optimized as a complete
directory copy would be required each time the package is built.

Have your program move files into a read-write (writable) directory

If you create a flat file to hold all the files required by the app, a flat file is created on the mobile device.
This is what is done by the default packaging nodes when you create a new BAM Mobile Project (.4pw).

For your Android applications, this works out-of-the-box. After the package is deployed to the device, it is
unpacked into a single directory on the device. This is a read-write directory, which means that any file that
need to be writable (such as a database file) can be updated by the app.

Warning: If you redeploy an Android application, ALL files are overwritten, to include files such as
a database file. You must take this into account as you plan your application upgrades, and handle
any upgrade strategy in your app.

For your iOS applications, however, the directory created and holding the app files is a read-only directory.
If there exists writable files that need to be updated by the app (such as a database file), those files must
be placed into a read-write directory on the device. Moving files from the read-only directory to a read-write
directory is not something handled by packaging. You must handle it within your app.

You are provided with two APIs that allow you to reference the underlying directories transparently:

• The base.Appliation.getProgramDir() method returns the base program directory, storing your
compiled files, an initial database file, and so on. On an iOS device, this is a read-only directory.

• os.Path.pwd() defines a writable directory for holding writable files, such as an error log or the user
database.

At deployment, when your application initially starts, we recommend that you copy the writable files from
the application directory (using the function base.Application.getProgramDir()) to the current
working directory (using the function os.Path.pwd()).

For an example, open the OfficeStoreMobile demo project, open the OrdersApp.4gl intermediate file,
and look for the OrdersApp_install function. In this function, the os.Path.copy method is used to
copy a database file from the read-only source directory to the read-write destination directory.

Warning: Take care that you do not use the same file name for a read-only resource and a read-
write resource. Using the same name for both can lead to problems.

Create the user database in a writable directory

In addition to simply copying writable files, one of the first things your app needs to do is create the user
database. This database may use the initial database file when creating the user database, or it may
create one with a different schema for the user.

Packaging, deploying, and distributing apps | 996

For an example, open the OfficeStoreMobile demo project, open the OrdersApp.4gl intermediate file,
and look for the OrdersApp_install function. In this function, the os.Path.copy method is used to
copy a database file from the read-only source directory to the read-write destination directory.

App initial deployment versus App upgrade

The example provided by the OrdersApp.4gl example needs to be evaluated in terms of initial installation
and in terms of future upgrades to the application. This example solves how to initially place the file in the
read-write directory. It does NOT cover an upgrade strategy. The developer needs to ensure that any new
files need to be written to the read-write directory are written, that files that should not be overwritten are
not overwritten, and that files that need to be updated or merged or replaced are handled. See Manage
App updates on page 1008.

Packaging process overview for a mobile device
Creating a package gathers and organizes all required files for a single mobile app.

If you created your project using the BAM Mobile Project (.4pw) or Mobile Project (.4pw) options, default
package nodes were created for both Android and iOS devices. If you need to create a package from
scratch, the steps include:

• Create a Package node in your project and set its properties.
• Create Directory nodes in your Package node and set their properties.
• Confirm the Package Rules for the Platform defined for the Package node.
• Right-click on the Package node and select Build. A package is built.
• Right-click on the Package node and select Deploy. A package is moved to the connected device or

emulator.
• Distribute your app to users. See Distribute your app on page 1005.

Package a mobile app
Follow this procedure to create a package for your mobile app.

If you created your project using the BAM Mobile Project (.4pw) or Mobile Project (.4pw) options, default
package nodes were created for both Android and iOS devices. Even with these packaging nodes, you
should still read through this procedure to add any additional directories and validate all properties.

1. Launch Genero Studio.

2. Open your project.

3. Make a list of all the files needed to run your app and the full path to where these files currently reside.

4. Right-click on the Group node and select New Package.

5. Define the package properties.

You can accept many of the default values. You should, however, provide details for the properties
listed under the Package group.

Figure 410: Package properties

Packaging, deploying, and distributing apps | 997

6. Create a New Directory in the Package node for each physical directory on disk that contains files to be
included in the package.

Right-click on the Package node and select New Directory. Define the properties for each directory
added.

In the Source directory property, you must specify the directory where the file(s) will come from. In the
Destination directory directory, specify the directory where you want the file copied to. This directory
must be contained in the Root directory.

Note: In the default project that is set up when you create a new BAM Mobile Project (.4pw),
both of these properties are set to $(ProjectDir)/bin. If the source and destination
directories are the same, the packaging process does not have to perform the copy, resulting in
an optimization of the packaging process.

If you need to include or exclude files from the source directory, you would add the criteria to the
Included files and/or Excluded files properties.

Figure 411: Directory properties

7. Confirm the Package rules. Right-click on the Package node and select Edit Package Rules.

Note: You will typically not have to modify the package rules.

Packaging, deploying, and distributing apps | 998

8. Right-click on the package node and select Build. This action builds the package according to the
package rules. Progress of the packaging will appear in the output panel.

Important: You need an internet connection for the first time you build an Android package.
During this first build, an automated process will download and install Gradle with all necessary
extensions into a directory in your user directory. Gradle is a project automation tool, find out
more about Gradle at http://www.gradle.org.

Figure 412: Build package

9. Confirm that the package is on your local file system.

10.Validate this package on a device by transferring it to the device, installing it on the device, and running
it on the device. To do so, follow the instructions to Deploy a mobile app for testing on page 998.

Troubleshoot Android packaging issues
Here are troubleshooting tips for issues you may encounter when packaging your Android app.

Unexpected warning regarding a timestamp

If you are packaging with Java version 1.7.51 or later, you may receive this message:

Warning: No -tsa or -tsacert is provided and this jar is not timestamped.
Without a timestamp, users may not be able to validate this jar after
the signer certificate's expiration date (YYYY-MM-DD) or after any future
revocation date.

This warning appears because the .apk is signed without a timestamp. A timestamp is not required for
Android. The debug certificate validity period is very long; its expiration should not be a problem.

Deploy a mobile app for testing
Follow this procedure to move your package to a connected device or emulator.

This procedure assumes you have packaged an app.

1. If deploying to a device, plug the device into a USB port.

If necessary, update the drivers for your device.

For Android, you can check that your computer recognizes your device by selecting Tools >> Android
Tools >> List Devices. See Configuring Genero Mobile for development for full configuration
information.

2. In Genero Studio, select the correct Genero configuration.

For example, select Android ARM for Android devices.

http://www.gradle.org/

Packaging, deploying, and distributing apps | 999

3. Right-click on the package in your project and select Deploy.

The Deploy action executes the commands in the Deploy rule for the platform specified for the package
node. Progress of the deploy action appears in the output panel.

You can test this with the OfficeStoreMobile project. Open the project and deploy the corresponding
package in the Packages group.

Figure 413: Deploying one of the example packages

The app will appear on the device or emulator.

4. Tap the app icon to launch the app.

Package and Directory nodes and properties
A package node defines the packaging instructions for the app. A directory nodes specifies one or more
files to be included in the package.

Package and Directory Nodes

Packaging, deploying, and distributing apps | 1000

Package nodes

Each Package node defines the information needed to build and deploy the app. Similar to an Application
node, a Package node can have dependencies set to other Libraries or Application in the project. Package
nodes can be created within a Group node in a project. Build and Deploy actions are available by right-
clicking on the Package node. Each Package node can have Directory nodes to further organize the
package.

Table 275: Default Package nodes

Node Description

MyApp_Android_arm Default package setup for an Android package to be deployed to an
Android physical device.

MyApp_Android_x86 Default package setup for an Android package to be deployed to an
Android Virtual Device.

MyApp_iOS Default package setup for an iOS package to be deployed to an iOS
physical device.

MyApp_iOS_Simulator Default package setup for an iOS package to be deployed to an iOS
Simulator.

Table 276: Package Node properties

Group Property Description

Project Description Optional textual description of the package.

Project Exclude from build Excludes the node from the build process.

Settings Platform Platform used to package and deploy. See Platform on
page 1003.

Settings Distribution directory Directory where the output files should be generated. The
output files refer to the packaged deliverables -- the .apk
file for Android devices or the .ipa file for iOS devices.
The last step of the packaging process would be to put all
of the Root directory files into an .apk or .ipa file and to
put that final file into the Distribution directory.

Settings Root directory Directory from which files will be packaged. The package
contents are organized using the path relative to this
directory.

Package ID Unique id.

Package Name Package name. Also used in package file names.

Package label Label displayed to user.

Package Version Optional version number.

Android VersionName Optional version name.

Android Primary color Define the primary color, or the main color used in
the app (Android 5.0 and later). For more information,
see the gmabuildtool topic in the Genero Business
Development Language User Guide

Android Primary dark color Define the primary dark color, used for the status bar
and the navigation bar (Android 5.0 and later). For more

Packaging, deploying, and distributing apps | 1001

Group Property Description

information, see the gmabuildtool topic in the Genero
Business Development Language User Guide

Android Accent color Define the accent color, used for widgets and table
lines (Android 5.0 and later).For more information,
see the gmabuildtool topic in the Genero Business
Development Language User Guide

Android Action bar text color Define the action bar text color, used as the foreground
color for the texts in the action bar (Android 5.0 and later).
For more information, see the gmabuildtool topic in the
Genero Business Development Language User Guide

Android Icon-ldpi (36x36 px)
Icon-mdpi (48x48 px)
Icon-hdpi (72x72 px)
Icon-xhdpi (96x96 px)
Icon-xxhdpi (144x144 px)

Application icon. Icons must be in PNG format. See
Iconography and Devices and Displays on the Android
Developer site for more information about icons and their
use with Android apps.

Android Permissions Android permissions requested during package install, such
as request to access device camera.

iOS Launch Screen (320x480 px)
Launch Screen (640x960 px)
Launch Screen (640x1136
px)
Launch Screen (750x1334
px)
Launch Screen (1334x750
px)
Launch Screen (1242x2208
px)
Launch Screen (2208x1242
px)
Launch Screen (768x1024
px)
Launch Screen (1024x768
px)
Launch Screen (1536x2048
px)
Launch Screen (2048x1536
px)

Image used for the iOS Launch Screen. The iOS Launch
Screen displays when your app is first run and before
the first window displays, allowing the user to see your
app responding while startup tasks are completing. See
Launch Images on the iOS Developer Library site for more
information about icons and their use with iOS apps.

• Launch Screen (320x480 px) is the launch screen for
iPhone

• Launch Screen (640x960 px) is the launch screen for
iPhone 4

• Launch Screen (640x1136 px) is the launch screen for
iPhone 5

• Launch Screen (750x1334 px) is the launch screen for
iPhone 6 (portrait)

• Launch Screen (1334x750 px) is the launch screen for
iPhone 6 (landscape)

• Launch Screen (1242x2208 px) is the launch screen for
iPhone 6+ (portrait)

• Launch Screen (2208x1242 px) is the launch screen for
iPhone 6+ (landscape)

• Launch Screen (768x1024 px) is the launch screen for
iPad (portrait)

• Launch Screen (1024x768 px) is the launch screen for
iPad (landcape)

• Launch Screen (1536x2048 px) is the launch screen for
iPad (portrait)

• Launch Screen (2048x1536 px) is the launch screen for
iPad (landscape)

iOS Launch Screen XIB iOS 8.0 introduced a new launch screen file format as a
replacement to the PNG images. This format is created
using Xcode 6.0 or later.

http://developer.android.com/design/style/iconography.html
http://developer.android.com/design/style/devices-displays.html
https://developer.apple.com/library/ios/documentation/userexperience/conceptual/mobilehig/LaunchImages.html#//apple_ref/doc/uid/TP40006556-CH22-SW1

Packaging, deploying, and distributing apps | 1002

Group Property Description

To create the file, open Xcode and select
File>>New>>File...>>User Interface>>Launch Screen.
Design the launch screen using Xcode.

For more information, see Apple's documentation on
launch images.

iOS Icon (29x29 px)
Icon (40x40 px)
Icon (58x58 px)
Icon (60x60 px)
Icon (76x76 px)
Icon (80x80 px)
Icon (120x120 px)
Icon (152x152 px)
Icon (180x180 px)

Application icon. Icons must be in PNG format. See Icon
and Image Sizes and App Icon on the iOS Developer
Library site for more information about icons and their use
with iOS apps.

• Icon (29x29 px) is a 29x29 pixel icon (used for Settings)
• Icon (40x40 px) is a 40x40 pixel icon (used for Settings)
• Icon (58x58 px) is a 58x58 pixel icon (used for Settings)
• Icon (60x60 px) is a 60x60 pixel icon (used for Settings)
• Icon (76x76 px) is a 76x76 pixel icon (used for the

Home Screen)
• Icon (80x80 px) is a 80x80 pixel icon (used for the

Home Screen)
• Icon (87x87 px) is a 87x87 pixel icon (used for the

Home Screen)
• Icon (120x120 px) is a 120x120 pixel icon (used for the

Home Screen)
• Icon (152x152 px) is a 152x152 pixel icon (used for the

Home Screen)
• Icon (180x180 px) is a 180x180 pixel icon (used for the

Home Screen)

Directory nodes

The Directory nodes specify the source and destination directories, which files to include and which
files to exclude as they move from source to destination, and whether to recursively search in the sub
directories. Default Directory nodes are created when creating a mobile project. The properties of the
default directories can be modified and additional directories can be added as needed. Any physical
directory that includes files that need to be included in the package must have a virtual directory created.
Some of the default directory nodes correspond to the default project structure.

Table 277: Default Directory nodes

Directory Description

Binaries Location of binary files such as the compiled modules (42m files).

Config Location of configuration files. By default, fglprofile, is packaged
to provide the database driver and source information.

Database Location of database files. By default, db files are specified to be
included as SQLite is the supported database.

Images Location of image files. By default, png and jpg files are specified to
be included as these are the supported image types.

libdbapp Location of the Business Application Modeling template libraries.

libgst Location of the libraries used with the Database Generation script.

https://developer.apple.com/library/ios/documentation/userexperience/conceptual/mobilehig/LaunchImages.html
https://developer.apple.com/library/ios/documentation/userexperience/conceptual/mobilehig/IconMatrix.html#//apple_ref/doc/uid/TP40006556-CH27-SW1
https://developer.apple.com/library/ios/documentation/userexperience/conceptual/mobilehig/IconMatrix.html#//apple_ref/doc/uid/TP40006556-CH27-SW1
https://developer.apple.com/library/ios/documentation/userexperience/conceptual/mobilehig/AppIcons.html

Packaging, deploying, and distributing apps | 1003

Directory Description

Resources Location of external files such as action defaults file (4ad) and style
file (4st).

Resources_dbapp Location of Business Application Modeling template resource files,
dbapp.4ad and dbapp.4st.

Webcomponents Location of web component files.

Table 278: Directory Node properties

Group Property Description

Project Description Description of directory.

Settings Source directory The path to the directory containing the resources.

Settings Destination directory Directory where files are put during the packaging process.
Must be within the package Root directory.

Settings Included files Filter of the files to include in the resources. For example,
* to include all files, *42f *42m to include only files that
match these types.

Important: Separate filters with a space, not a
comma.

Settings Excluded files Filter of the files to exclude from the resources.

Settings Recursive Check to search the files recursively in the sub directories.

Platform: Package and deploy rules
A platform includes a package rule and a deploy rule. These rules are the commands used to create and
deploy a package file.

Platform

A platform is similar to the concept of building and running an app based on a set of build, link and
execution rules, but instead the rules are for packaging and deploying. The platform corresponds to the
Platform property for the Package node in the project, defining the package and deploy rules to use.

There are currently four platforms for Genero Mobile:

Android (arm) For Android, use the appropriate processor
depending on the setup of your Android Virtual
Device (AVD) or you physical device hardware.
To avoid performance issues, we recommend that
you configure your AVD with an x86 processor and
Intel Hardware emulation enabled (HAX). When you
create the default AVD using the Genero Studio
menu option, the AVD has an x86 processor.

Android (x86) See Android (arm).

iOS For an iOS physical device.

iOS Simulator For an iOS simulator.

Packaging, deploying, and distributing apps | 1004

Package rules

The package rule contains a list of files that are generated by the package rule (output files) and a list of
dependencies to determine if the output files are up to date. The Package Rules can be viewed by right-
clicking on the Package Node and selecting Edit Package Rules.

Figure 414: Example Package Rule

Deploy rules

A deploy rule runs a script to deploy the package to a connected device or emulator.

Figure 415: Example Deploy Rule

Commands and variables
These commands and variables are specific to package and deploy rules, but other predefined node
variables such as $(ProjectDir) and $(InstallDir) are also valid. See the Predefined node
variables topic in the Genero Studio Developer Guide for a list of node variables.

$(delete) This command, available in a package rule, deletes
the specified file.

$(DistDir) Variable for the path of the destination directory of
the current package node.

Packaging, deploying, and distributing apps | 1005

$(generateXMLPackage) This command, available in a package rule,
generates an XML file that describes the contents of
the package.

$(generateXMLPackage) -o
 outputFile.xml

$(GMATOOLSDIR) Environment variable for the path to the tools that
support Genero Mobile for Android.

$(GMITOOLSDIR) Environment variable for the path to the tools that
support Genero Mobile for iOS. Set

$(PackageFiles) Variable for the list of files in the package.

$(packageId) Variable for the package id.

$(PackageName) Variable for the name of the current package node.

Distribute your app
After creating your app package, you are responsible for getting the app into the hands of your users.

• Distribute an iOS app on page 1005
• Distribute using Over-The-Air installation on page 1005
• Distribute an Android app on page 1007
• Distribute your app through Google Play on page 1007
• Distribute using other tools for testing on page 1008

Distribute an iOS app
Apple provides two options for distributing your app to iOS devices.

With Genero Mobile, you are able to create a signed iOS app package (with an .ipa extension).

At this point, you have two options offered by Apple for distributing your apps.

• To distribute your app using the App Store, you must join the Apple iOS Developer Program.
• To distribute proprietary, in-house iOS apps to your employees, you must join the iOS Developer

Enterprise Program.

These are two separate programs. The Apple ID that you get with your iOS Developer Enterprise Program
will not let you submit your app to the App Store. You will need to join both programs (and get two Apple
IDs) if you need to submit your app to the App Store and distribute proprietary, in-house iOS apps to your
employees.

Distribute using Over-The-Air installation
Follow this procedure to distribute your app in-house to iOS devices via an over-the-air (OTA) installation.

This procedure assumes you have prepared to package the app for iOS. As you are packaging an iOS
app, this can only be done from an Mac OS development machine. You must be a member of the iOS
Developer Enterprise Program.

Note: If you are not a member of the iOS Developer Enterprise Program, yet want to distribute
your app in-house for testing purposes only, see Distribute using other tools for testing on page
1008.

This procedure allows you to create and distribute an iOS package using an Over the Air (OTA)
installation.

1. Set the OTA_URL environment variable to a URL. When the package is created, a
packagename.plist file is generated. A URL is displayed in the output that can be used for OTA
install.

https://developer.apple.com/programs/ios/
https://developer.apple.com/programs/ios/enterprise/
https://developer.apple.com/programs/ios/enterprise/
https://developer.apple.com/programs/ios/enterprise/
https://developer.apple.com/programs/ios/enterprise/

Packaging, deploying, and distributing apps | 1006

2. Upload the plist file, the ipa package, image57x57.png, and image512x512.png to the server in
the directory corresponding to the given URL.

Important: The Web server must be an HTTPS server.

3. Send the URL to the iOS device by mail or SMS, or add it to an HMTL document on a web server.

4. On the iOS device, click on the URL.
The app installs on the device.

Submit an iOS app to the AppStore
If you want your users to download their app from the Apple AppStore, you must submit your app for
approval.

It is assumed you have Apple Developer Program membership, which is required to request, download,
and use signing certificates issued by Apple. See http://developer.apple.com/programs/ios/.

This procedure provides you with the steps for submitting an app to the AppStore. It includes steps for:

• Creating an App ID
• Obtaining a distribution certificate
• Creating an iOS Distribution Provisioning Profile
• Delivering an app to the AppStore

1. Go to https://developer.apple.com/ web site and sign in to the Member Center using your Apple ID.

2. Go to the iOS platform page and register an iOS App ID by providing an app name and an App ID
suffix. There are two options for setting the App ID Suffix:

• By setting Explicit App ID
• By setting a WildCard App ID

Note: An Explicit App ID matches a single app and a WildCard App ID matches multiple
apps; both methods are explained in the iOS App developer site.

3. Create an iOS Distribution Certificate:

a) Go to the Certificates page and select the plus button +
b) Select App Store and Ad Hoc under the Production section
c) Follow the instructions to create your Certificate Signing Request (CSR) and upload it
d) Download your iOS Distribution Certificate and open it in Keychain Access (Apple’s password-

management application). In Keychain Access you should see your iOS Distribution Certificate with
the private key.

4. Add a new iOS Distribution Provisioning Profile

a) In the https://developer.apple.com/ web site go to the Provisioning Profiles page and select the plus
button (+) to add a new profile

b) Select the App Store
c) Select your App ID (previously registered)
d) Select your iOS Distribution Certificate
e) Set a profile name
f) Generate and download your iOS Distribution Provisioning Profile

5. In Genero Mobile's configuration window

a) Set the IDENTITY to your iOS Distribution Certificate's User ID
b) Set PROVISIONING_PROFILE variables to the path to your Distribution Provisioning Profile

(*.mobileprovision)
c) On your project, edit the ID property of the iOS package you wish to submit, to match the suffix of

the iOS app ID previously created
d) Build your iOS Package

6. Create your application on iTunesConnect.

http://developer.apple.com/programs/ios/
https://developer.apple.com/
https://developer.apple.com/

Packaging, deploying, and distributing apps | 1007

Refer to Apple's documentation for information about using iTunes Connect

Note: Only an agent of the Apple iOS Developer Program can connect to iTunesConnect

a) From Genero Studio, select Tools iOS >> iOS Tools>>App Store deployment>>Open
iTunesConnect. (This opens the http://itunesconnect.apple.com web page.)

b) Select My Apps and the option to add a New iOS App
c) In the form, choose your iOS App ID from the Bundle ID field
d) Fill in the other fields according to your app.
e) Select Create

7. Upload the app for submission to Apple using Xcode's Application Loader

a) From Genero Studio, select Tools >> iOS Tools >> iOS App Store deployment >> Launch
Application Loader. This opens Xcode's Application Loader application. Refer to Apple's
documentation for information about using Application Loader

b) Select Deliver your App
c) Select the Choose button and select the iOS App Store Package (.ipa) file generated on building

your app with Genero Mobile. Your application will now be validated. If there are errors, they will be
displayed at the end of the validation process.

Important: Only an agent of the Apple iOS Developer Program can submit the app.

Distribute an Android app
Android has several methods for distributing your app to Android devices.

With Genero Mobile, you are able to create an Android app package (with an apk extension).

As an open platform, Android offers several methods for distributing your app: via email, via a Web site, or
via the Google Play Store. See Open Distribution for more details.

Distribute your app through Google Play
To reach the broadest possible audience, distribute your Genero Mobile for Android (GMA) app through
the Google Play marketplace.

Before you begin, you must have a Google Developer account. To sign up, visit https://play.google.com/
apps/publish/signup/. To see the agreement, visit https://play.google.com/about/developer-distribution-
agreement.html

Create an APK package that meets the requirements of Google Play, and load it to the Google Play Store.

1. Create the APK for the app.

The APK must meet specific requirements in order to upload to the Google Play Store.

Set the environment variables dedicated to application signing. These environment variables must be
defined in Genero Studio configuration settings, typically in the Android environment set:

• KEYSTORE_PATH - Path to the key store
• KEYSTORE_PW - Key store password
• KEYSTORE_KEY_ALIAS - Entry name for the key in the key store
• KEYSTORE_KEY_PW - Key password in the key store

By default, these variables are set to use a dummy key (androiduserkey:android). Change to
package with another key.

Note: We recommend you use the default key store for development, in order to avoid
distributing your company private signing key to all developers. Set up a separate secured
environment for signing with your company key.

2. Open the Google Play Developer Console and follow the process to add your app to the store.

http://developer.apple.com/library/ios/documentation/LanguagesUtilities/Conceptual/iTunesConnect_Guide/Chapters/About.html
http://itunesconnect.apple.com/
http://itunesconnect.apple.com/docs/UsingApplicationLoader.pdf
http://developer.android.com/distribute/open.html
https://play.google.com/apps/publish/signup/
https://play.google.com/apps/publish/signup/
https://play.google.com/about/developer-distribution-agreement.html
https://play.google.com/about/developer-distribution-agreement.html
https://play.google.com/apps/publish/

Packaging, deploying, and distributing apps | 1008

Distribute using other tools for testing
After creating your app package, there are various third-party tools to distribute your app for testing
purposes only.

Additional tools are available to assist you in beta testing your apps, such as TestFlight or HockeyApp
(which offers Android support) . Such tools provide an additional method for beta testing your app, and
includes such features as Over-The-Air distribution and the gathering of feedback from testers. They are
not, however, alternate solutions for the final distribution of your apps to your end users.

Manage App updates
When an new version of an app installs on a device, you might want to keep all or part of the data created
with the previous version.

It is the role of the deployed program to manage the updates.

App Update Strategy

Detect if a previous app is installed. Each deployed app should store a file (named version.txt for this
example) that contains the version of the deployed app. This file allows the app to detect if an older version
of the app is installed by checking for the existence of the version.txt file. By reading the file contents,
the app can retrieve the exact version of the previously deployed app.

When no previous app is detected, perform a fresh install. This might involve these tasks:

• Create version.txt.
• Create configuration files.
• Create and populate the database.
• Copy read-only files to the writable document area.

When an previous install of the app is detected and its version identified, perform an upgrade. This might
evolve these tasks:

• Update version.txt to the new version number.
• Convert existing configuration files to a new file format.
• Upgrade the database schema while keeping the data.
• Delete obsolete files.
• Copy read-only files to the writable document area.

Tip: Having a clear separation between the initialization data (in the read-only directory) and the
current user data (in the read-write directory) can help you manage your upgrades.

You are provided with two APIs that allow you to reference the underlying directories
transparently:

• The base.Appliation.getProgramDir() method returns the base program directory,
storing your compiled files, an initial database file, and so on. On an iOS device, this is a
read-only directory.

• os.Path.pwd() defines a writable directory for holding writable files, such as an error log or
the user database.

When the version of the previous install is an older version of the app, a strategy might be to run in
sequence all upgrade scripts from the detected version to the latest. For example, when installing v1.5 on
a device where v1.3 is the previous version, the upgrade script from v1.3 to v.4 will be executed first, then
the upgrade script from v1.4 to v1.5.

This strategy involves storing modified data outside of the directory folders where the app installs, to
prevent user data from being overwritten during install. This allows the programmer to read old data and do
the appropriate steps to (eventually) convert them to a newer format.

http://testflightapp.com/
http://hockeyapp.net/

Packaging, deploying, and distributing apps | 1009

Tools

The Diff Schema and Generate Database Update Script tools in Genero Studio provides database
migration scripts from a previous database schema to a newer database schema.

• Diff Schema identifies the differences between two schemas
• Generate Database Update Script takes the file created using Diff Schema and generates an

upgrade script. This database upgrade script can be incorporated in the app sources to manage the
database upgrade.

These scripts can be called in sequence to migrate from an older version to the current.

Testing updates

App updates should be tested in a real life environment.

• Install the previous production app on a device.
• Use the app such that it stores user data.
• Deploy the new version of the app.
• Verify the upgrade works as expected.

For more information, see Technical Note TN2285: Testing iOS App Updates in the iOS Developer Library.

https://developer.apple.com/library/ios/technotes/tn2285/_index.html#//apple_ref/doc/uid/DTS40011323

Upgrading | 1010

Upgrading

These topics talk about what steps you need to take to upgrade to the next release of Genero Studio, and
allows you to identify which features were added for a specific version.

• New Features of Genero Studio on page 1010
• Upgrade Guides on page 1022
• Migrating to a new BAM template set on page 1027

New Features of Genero Studio
These topics provide a look back at the new features introduced with each release of Genero Studio.

• What's new in Genero Studio, v 3.00 on page 11
• What's new in Genero Studio, v 2.51 on page 1014
• What's new in Genero Studio, v 2.50 on page 1014
• What's new in Genero Studio, v 2.41 on page 1021
• What's new in Genero Studio, v 2.40 on page 1021

What's new in Genero Studio, v 3.00
This publication includes information about new features and changes in existing functionality.

Important: Please read What's new in Genero Studio, v 2.51 on page 1014, for a list of features
that were introduced with the Genero Mobile 1.0 release.

These changes and enhancements are relevant to this publication.

Table 279: General, Version 3.00

Overview Reference

Genero Studio now supports Genero, Genero Report Writer for BDL, and
Genero Mobile from a single installation.

N/A

Genero Studio now supports the Genero Web Client for Javascript
(GWC-JS).

See Web: GAS/GWC configurations
on page 147.

Genero Studio now supports connecting to the application server using
HTTPS.

See Web: GAS/GWC configurations
on page 147.

Generate a Genero archive (GAR) from Studio, for deployment to the
GAS.

See Genero Archive (GAR)
packaging on page 993

Genero Studio gives the ability to locate a document in the File Browser,
in a BA diagram, or in the System File Browser (the file browser of the
operating system). The new System File Browser feature facilitates
the use of system file explorer integrated tools, such as SVN or Git
integration.

See Locate a file (starting at Project
Manager) on page 353 or Locate
a file (starting at File Browser) on
page 501.

New configuration option for GAS, allowing the ability to run and debug
Web services from Genero Studio.

See Web: GAS/GWC configurations
on page 147.

Upgrading | 1011

Table 280: Project Manager, Version 3.00

Overview Reference

The properties Web Service and Web Service URL suffix have been
added for the Application node, allowing the ability to run and debug Web
services from Genero Studio.

See Project Manager node
properties on page 364.

Table 281: DB Explorer, Version 3.00

Overview Reference

DB Explorer module introduced to view and modify data in database
tables and to test SQL query results. With this tool, you can right-click on
forms, reports and Web services to view the data.

See DB Explorer on page 332.

DB Explorer expands support of SQL commands, in addition to SELECT,
INSERT, UPDATE, and DELETE.

See DB Explorer on page 332 and
Write a SQL query by hand on page
338.

Table 282: Meta-Schema Manager, Version 3.00

Overview Reference

Enhanced schema view displays database schema modifications at a
glance.

See Viewing a meta-schema on
page 300.

Mouse over items in the schema for more detail, to include a summary of
schema changes, primary key column details, and more.

See Viewing and manipulating a
meta-schema.

Reorder columns using drag-and-drop. See Viewing and manipulating a
meta-schema.

Move columns to another table using drag-and-drop. See Viewing and manipulating a
meta-schema.

HTML meta-schema documentation provides details of all database
objects and facilitates global schema review.

See Generate meta-schema
documentation on page 305.

Toggle label display shows or hides foreign key names in the diagram. See Viewing and manipulating a
meta-schema.

Table 283: Genero Mobile, Version 3.00

Overview Reference

You can debug an application deployed to a mobile device. With this new
feature, the application is running on the mobile device and the Graphical
Debugger is able to attach to the process.

See Debug a mobile application on
page 504

The DBAPP_MOBILE environment variable provides warning messages
regarding features not supported by mobile devices during the
compilation of applications generated by the Business Application
Modeler.

See DBAPP_MOBILE on page 268.

Upgrading | 1012

Table 284: Business Application Modeler, Version 3.00

Overview Reference

Publish JSON Web services via the Business Application Modeler. See JSON Web services on page
220.

SOAP Web services enhanced with XML and XSD Schema Serialization
attributes.

See Webservice entity on page
217.

Table 285: Code Editor, Version 3.00

Overview Reference

Code Editor supports a horizontal view in the Diff tool, in addition to the
vertical view of previous versions.

See Using the Diff tool on page
380.

Table 286: Form Designer, Version 3.00

Overview Reference

Support for new Form properties: keyboardHint, completer,
wantFixedPageSize, action, Disclosure Indicator

See Properties list on page 459.

Support for new DateTimeEdit widget. See DateTimeEdit on page 425.

Table 287: Search, Version 3.00

Overview Reference

Search Results pane displays an improved search view, to include
previous and current search results organized as a collapsible tree.

See The Search Results view on
page 393.

Table 288: Genero Report Writer, Version 3.00

Overview Reference

Genero Report Viewer for HTML5 provides a browser equivalent of the
Genero Report Viewer.

See fgl_report_selectDevice on
page 626.

A command-line utility checks and upgrades report design documents
(.4rp) files in batch.

See Upgrading reports from prior
versions on page 837.

Report templates provide a wizard-based method for creating report
design documents (.4rp) from a generic report design. The wizard
allows you to bind repeating sections, add fields, and bind placeholders
and parameters from a data schema, in order to create a stand-alone
report design document. A library of report templates have been
provided, and you can create your own templates. A template expansion
mechanism is available as a command line tool, usable from applications
for generic reports.

See Report templates on page 840.

The report engine now limits the number worker threads in distributed
mode, to prevent memory exhaustion in times of critical load.
Change the default value (25 threads) with the environment variable
GRE_MAX_CONCURRENT_JOBS.

See
GRE_MAX_CONCURRENT_JOBS
on page 858.

You can now configure the default output directory for the Genero Report
Engine with the GREOUTPUTDIR environment variable.

See GREOUTPUTDIR on page
858.

Upgrading | 1013

Overview Reference

There is an improved architecture using HTTP for previewing documents
in a distributed setup. Besides improvements in performance, the solution
no longer requires the installation of a DVM on the remote machine.

See Distributed Mode on page 859.

Table 289: Genero BDL Reporting APIs

Overview

APIs support the Genero Report Viewer for HTML5: See
fgl_report_setBrowserDocumentDirectory
on page 629,
fgl_report_setBrowserDocumentDirectoryURL
on page 629,
fgl_report_setBrowserFontDirectory
on page 630,
fgl_report_setBrowserFontDirectoryURL
on page 630

A new API supports distributed mode. See
fgl_report_configureDistributedURLPrefix
on page 614.

APIs have been introduced to get error details. See Functions to get error details
on page 653.

A new API can programatically set the value of environment or user-
defined variables.

See fgl_report_setEnvironment on
page 627.

Table 290: Genero Report Designer, Version 3.00

Overview Reference

Genero Report Designer provides a LastPageFooter section property. See section (Section) on page 754.

Support of Intelligent Mail bar code type. See intelligent-mail on page 795.

New smartParse bar code property for bar code Code-128.
When enabled, this allows you to enter the bar code value, and the
internal code will be computed for you resulting in the shortest visual
representation.

See smartParse (Smart Parse) on
page 755 and code-128 on page
769.

New gs1* bar code aliases. See Bar Code type listing on page
765.

Table 291: Graphical Debugger, Version 3.00

Overview Reference

You can debug an already running process by attaching to the process.
The process can be running locally or on a remote computer. Attaching to
a remote process allows you to debug an application at a production site
where Genero Studio is not installed.

See Start the Debugger on a
running program on page 502.

You can debug an application deployed to a mobile device. With this new
feature, the application is running on the mobile device and the Graphical
Debugger is able to attach to the process.

See Debug a mobile application on
page 504

Upgrading | 1014

Overview Reference

You can debug Web services: server, client or both. See Debug a Web services server
application on page 504.

What's new in Genero Studio, v 2.51
This publication includes information about new features and changes in existing functionality.

These changes and enhancements are relevant to this publication.

Table 292: General, Version 2.51

Overview Reference

Genero Studio 2.51 includes features to support mobile app
development for Android and iOS.

No additional reference.

What's new in Genero Studio, v 2.50
This publication includes information about new features and changes in existing functionality.

These changes and enhancements are relevant to this publication. See also Migration notes for Version
2.50.

• General
• Project Manager
• Form Designer
• Business Application Modeling
• Meta-schema Manager
• Graphical Debugger
• Source Code Management
• Genero Report Designer
• Genero Reporting APIs

Table 293: General, Version 2.50

Overview Reference

Mac OS support. No further reference.

All build processes are done remotely for remote host configurations,
optimizing speed and efficiency of remote builds on slower
connections.

See Setting up a remote
environment on page 154.

Configurations are stored on the remote host allowing users to
reconnect from another machine with configurations intact.

See Migration notes for 2.50
upgrade guide on page 1023.

Improved file compatibility. If you open a file that had been saved with
a prior version, you have the option to convert and open the file in
the current version or to open in a different version of Genero Studio.
When working in environments with multiple versions of Genero
Studio installed, files will open in the appropriate version.

See Opening a file from a prior
version on page 96.

Improved Diff tool. Modifications made to a file are shown as
annotations, indicating added, modified and removed lines. You can
now switch from a single pane view to a dual pane view showing the
original file (as it is in the SVN repository for example) and the locally
edited file.

See Using the Diff tool on page
380.

Upgrading | 1015

Overview Reference

-diff file1 file2 support. Genero Studio opens the given files
in diff mode. This option is also integrated in File Browser.

See Command line options on
page 103.

GAS Standalone (httpdispatch) can be automatically started by
setting the startup script in the GAS configuration.

See Web: GAS/GWC
configurations on page 147.

The Environment Variable definition dialog now includes a value list
type.

See Add or edit environment
variables on page 144

User documentation has been migrated to XML-based DITA (Darwin
Information Typing Architecture).

No further reference.

Table 294: Project Manager

Overview Reference

Project Manger extended to support other programming languages. See Building and linking programs
on page 343.

A Deploy Project 4pw template (File >> New, Genero Files, Deploy
Project) creates a directory structure recommended for a project
which is to be deployed on the Genero Application Server (GAS).

No further reference.

Build Rules dialog and File Associations dialogs are accessible from
the Tools menu (Tools >> Global setup or Tools >> Specific setup)
and no longer in Preferences. The global setup overrides the built-in
factory setup. It applies to all configuration of a user for the current
machine or remote machine. The specific setup overrides the global
setup and is specified by setting the GSTSETUPDIR variable in the
Genero configuration.

User build rules, template build rules, user and template file
associations are also stored on the server and not on the local
machine allowing users to reconnect from another machine with build
rules intact.

See Migration notes for 2.50
upgrade guide on page 1023

$(tcl) has been deprecated and replaced with tclsh in Business
Application Modeling build rules. The tclsh executable generates
the final file by using both a Tcl template file and the intermediary
XML file crated by the $(generate) command.

See tclsh on page 269.

Standard/error output redirection supported in build rules and user
actions.

See Add/Edit a build rule on page
345.

Table 295: Form Designer

Overview Reference

Graphical Topmenu editor allows for Topmenu editing directly in the
form design.

See Add a Topmenu on page
436.

Improved ergonomics in the Form from Database wizard. Easier to
create complex queries and select appropriate fields. Shows foreign
key relations and NOT NULL constraints.

See Create form from database
on page 409.

New and improved form item properties: See Joins and Data order on
page 453.

Upgrading | 1016

Overview Reference

query A single query property is now
used to enter queries instead of
several properties.

uniqueKey Replaces uniqueQueryKey.
Instead of having one
uniqueQueryKey boolean on
each field, one uniqueKey
contains the list of unique fields.

Form properties benefit from a new initializer functionality which can
set its value from another property.

See Form item properties on page
410.

Web components locations are specified with the environment
variable GSTWCDIR and are no longer specified in Tools >>
Preferences. Environment set configuration now includes a Web
Components set.

See GSTWCDIR on page 144,
Migration notes for 2.50 upgrade
guide on page 1023.

Table 296: Business Application Modeling

Overview Reference

New dbapp3.0 template with improved functionality:

• Properties in Business Application diagram allow for customization
of the UI behavior.

• Cascade delete supported in generated code.
• Web Services can be generated and provide CRUD operations.
• Improved architecture based on different layers: ui, webservice,

uidata, database.
• Improved insert, update, delete in the data layer.
• Improved libdbapp architecture.
• Dialog modularization used. Declarative DIALOG blocks are now

defined as module elements and reused with the SUBDIALOG
keyword of procedural DIALOG blocks. (See DIALOG Block
Structure in the BDL User Guide.)

• Centralized actions in the generated code.
• The business record is checked to confirm that the unique key

is defined as a primary key or a secondary key in the database
schema.

• The foreign key database constraint existence is checked.
• Code generation uses unique constraint instead of unique index.
• Constraints on the relations of Business Application diagram

entities can be defined in the settings.agconf file. Validation is
done on the constraints during editing.

• Added native serial management for Informix® database.
• Manages concurrent access.
• New support for business record and form files without a database

or a masterTable property set.
• New relation properties allow for specifying the row position in an

opened form and applying a SQL filter while opening a form.

See The default template features
on page 199

Form behavior in CRUD states on
page 241

Cascade delete on page 232

Add Web services (Server,
Services, Forms with services) on
page 215

Add constraints or indexes on
page 294

Managing SERIALs in a
generated application on page
231

Managing concurrency on page
231

Add Relations on page 220

Upgrading | 1017

Overview Reference

Business Application Modeling template files locations are specified
with the environment variable GSTSETUPDIR and are no longer
specified in Tools >> Preferences. Environment set configuration
now includes a set for each available template set.

See GSTSETUPDIR on page
144, Migration notes for 2.50
upgrade guide on page 1023.

Create BA entities in the current view only instead of all views. New
BA entities are only visible in the current view and are automatically
hidden in the other views.

No further reference.

A new Toolbar has been added in the Business Application Modeler.
This Toolbar contains all the items defined for the Business
Application Modeler in the settings.agconf file.

No further reference.

Orphan properties now managed. Templates used in Application
Generator define dynamic properties that can be used in objects
such as records, form fields, and database objects. Opening a
file generated with a template version different than the one set in
Application Generator preferences may produce a warning indicating
that some properties are not found in the current template definition.
New warnings signal that those properties can now be removed using
the Tools >> Specific setup >> Clean orphan properties menu
option.

No further reference.

Added built-in Find. No further reference.

Improved performance for large 4dbx database meta-schema files. No further reference.

Table 297: Meta-schema Manager

Overview Reference

Enhanced Revert action. A dialog is displayed listing changes made
on the selected items in the schema with option to select which
changes to revert.

See Revert schema changes
dialog on page 315.

Database >> Diff Schema... option. See Using the Diff tool on page
380.

Generate Database Update Script option. The Meta-schema
Manager is able to generate a database update script. This script will
modify the database according to the changes made in the Meta-
schema. Previous version of the tables will be backed up and the data
will be migrated to the new tables when applicable.

See Generate a database script
from meta-schema on page 303.

Improved database creation script. The database creation script now
supports Secondary Keys and case sensitivity and has improved
support for Oracle MySQL and SQLite databases.

See Generate a database script
from meta-schema on page 303.

Improved Locate in Diagram action. See Meta-schema diagram
context menu on page 318.

Create database objects in the current view only instead of all views.
New Meta-schema objects are only visible in the current view and are
automatically hidden in the other views.

No further reference.

Secondary Keys (also known as Unique Constraints) have been
added in the Meta-schema Manager.

See Add constraints or indexes
on page 294

Global meta-schema files are now specified with the environment
variable GSTSCHEMANAMES and are no longer specified in Tools

See GSTSCHEMANAMES on
page 143, Migration notes for

Upgrading | 1018

Overview Reference

>> Preferences. Environment set configuration now includes a set
for Global Database Schemas.

2.50 upgrade guide on page
1023.

Table 298: Graphical Debugger

Overview Reference

Stack frames support, provided Genero 2.50 DVM is used. Navigate
the call stack. Data view is automatically updated according to the
current frame.

See Examining execution flow on
page 509.

User variables of type ARRAY or RECORD are displayed in the Data
view. Values can be re-assigned for complex types.

See Examining data on page 509.

Enhanced performance when retrieving and displaying data. No further reference.

Support of signal SIGINT and signal SIGQUIT. See Debugger (fgldb) command
prompt on page 508, signal on
page 525.

Table 299: Source Code Management (SCM)

Overview

SVN Blame command support and integration with Code Editor and
SVN Lock command with a new view to manage all locks.

See Blame on page 537 and
Locking on page 532.

Status view optimized for unversioned files. See SVN Status view on page
543.

User and password are based on repository. Different users can now
connect to different repositories at the same time.

No further reference.

Ignore List action now adds to the ignore list of the current directory
only, not recursive up to the checkout directory.

No further reference.

SCM tasks are properly interrupted to avoid lock on the checkout. No further reference.

Authentication is global to the checkout and is no longer folder based. No further reference.

Table 300: Genero Report Designer

Overview Reference

Tables support. See Working with tables on page 691

Pivot tables support. See Working with Pivot Tables on page 703.

Distributed mode. Allows the report engine to be started
as a daemon to which Genero applications can connect to
process the reports, allowing for vastly faster processing for
short documents and improved scalability.

See Distributed Mode on page 859.

PDF enhancements. Improved PDF output, to include
better memory consumption, use of the PDF referencing
mechanism to improve Page M of N processing, share
recurring images and CID keyed fonts support.

No further reference.

Null value support. See The String Class on page 834 and The
Numeric Class on page 821, Conditional
Expressions.

Upgrading | 1019

Overview Reference

Improved trigger updates. Algorithm improved to remove
the need for frequent manual adjustments for each change
within the data schema (rdd) file.

See Triggers on page 669.

Runtime localization. Report can now be localized
independent of the language settings of the application.

See Change localization settings at runtime on
page 598 and fgl_report_configureLocalization on
page 616.

QR code barcode support. See qr-code on page 796.

Display position of footers. Layout nodes designated as
footers display at the bottom of the Mini Page, providing a
WYSIWYG experience for the report designer.

See Page headers and footers on page 670.

Element creation by context. Create elements based on
the document context in the report design. The object
type created for a field is determined by the location in the
document.

See Adding data values and captions on page
667.

Splitting of oversized elements across pages to prevent
overfill.

See splitOversizedItem (Split Oversized Items) on
page 755.

Rotation of items. The transformTransparently property
changes the effect of the properties layoutDirection and
swapX. When set, the transformation extends to the entire
fragment so that entire documents can be rotated.

See transformTransparently (Transform
transparently) on page 758.

Backside printing support. See Backside printing on page 691.

Chart sorting. For MapCharts and CategoryCharts, the
sortBy property allows you to specify how the data is
sorted: alphabetic, numeric, or by order of declaration of
the chart items. The sortAscending property allows you to
sort in ascending or descending order.

See sortBy (Sort By) on page 755 and
sortAscending (Sort Ascending) on page 755.

Fallback image support when the requested image for an
Image Box is not found.

See Image Box on page 727.

Edit triggers with a Repeat selected items on menu option
in the context menu in the Report Structure view, allowing
you to select a trigger to be the parent of a document node.

See Place a trigger within the report structure on
page 669.

Class property added for report elements. See class (Class) on page 740.

Display and modify the sizing policy of containers. See Modify the sizing policy of containers on page
664.

The fidelity property has been added to business charts
and the pivot table, applied only when the object in
question is drawn as a table.

See Business Graphs on page 731.

The layout direction of a parent container is highlighted in
the Genero Report Designer by the addition of a dashed,
slowly moving, U-shaped yellow border.

See layoutDirection (Layout Direction) on page
749.

Preference added to control the appearance of RTL
expressions in the document view.

See Customize Report Designer: preferences on
page 806.

Added options to facilitate the mass generation of images
that are sized by their content (e.g. for web sites).

See
fgl_report_setImageUsePageNamesAsFileNames
on page 631 and

Upgrading | 1020

Overview Reference

fgl_report_setImageShrinkImagesToPageContent
on page 631.

Table 301: Genero Reporting APIs

Overview

Specify the server where a Genero Report Engine is
running in server mode.

See fgl_report_configureDistributedProcessing on
page 614.

Configure the environment when the daemon is running on
a different machine with different resource directories.

See fgl_report_configureDistributedEnvironment
on page 613.

Distinguish between log entries originating from different
users.

See
fgl_report_setDistributedRequestingUserName on
page 631.

“Postscript” has been added as an output format to the
function fgl_report_selectDevice. The function
fgl_report_setPrinterWriteToFile is deprecated.

See fgl_report_setPrinterWriteToFile on page 644
and fgl_report_selectDevice on page 626.

The Reporting API source has been split into two files,
libgre.4gl and libgreprivate.4gl. These two files
replace helpers.4gl.

See Reporting API Functions on page 599.

Function to control the paper orientation. See fgl_report_setSVGOrientationRequested on
page 646.

Switch off Unicode embedding. This is useful when
the entire report uses Latin characters only, improving
performance and document size.

See fgl_report_configurePDFFontEmbedding on
page 620.

The function
fgl_report_configureAutoformatOutput
has changed from "sort by position of fields in PRINT
statement" to "sort by matched pattern and then by position
of field in PRINT statement."

See fgl_report_configureAutoformatOutput on
page 612.

To follow the general pattern that calling a function
with a NULL value exhibits the same behavior as
not calling the function at all, the default values
for the first three first parameters of the function
fgl_report_configureImageDevice have changed to
true.

See fgl_report_configureImageDevice on page
615.

The functions to load and commit report settings for the
Genero Report Engine now search FGLRESOURCEPATH
and DBPATH for relative file names. The function
fgl_report_findResourcePath has been deprecated
as a result.

See fgl_report_loadCurrentSettings on page 601,
fgl_report_loadAndCommit on page 602, and
fgl_report_findResourcePath on page 625.

Upgrading | 1021

What's new in Genero Studio, v 2.41
This topic lists features added for the 2.41 release of Genero Studio.

Table 302: Genero Studio, Version 2.41 New Features

Overview Reference

Business Application Modeling (BAM) includes
a new default Database Applications template,
dbapp2.0.

See The code generation template set on page 942,
Migrating to a new BAM template set on page 1027

The dbapp template in Genero Studio 2.40 was
renamed in Genero Studio 2.41 to dbapp1.0.

See The code generation template set on page 942

dbapp2.0 includes new build.rules file for dedicating
a set of build rules to a template.

See Build tab on page 359.

A new database schema file type, 4dbx, is used for
generated applications.

See Database meta-schema (4dbx) on page 226

What's new in Genero Studio, v 2.40
This topic lists features added for the 2.40 release of Genero Studio.

Table 303: Genero Studio Version 2.40 New Features

Overview Reference

Update settings in Source Code Manager have
been updated. For example, you can now omit
externals.

See Update / Update All on page 534.

You can now add multiple files. See Add files on page 531.

The Meta-Schema Manager has been updated
for easier editing and viewing. Options have been
added in Edit mode, and document errors and
warnings are displayed while editing.

See Meta-schema Manager on page 288.

Multiple views of the same database can be
created.

See Viewing a meta-schema on page 300.

With Business Application Modeling, new business
records have been added for reports.

See Add a Report Design Document (4rp) on page
213.

With Business Application Modeling, an improved
editor assists with search and document errors.

No further reference.

With Business Application Modeling, new templates
for a new architecture and for the generation or
report code are provided.

See The code generation template set on page 942.

With Business Application Modeling, advanced
customization is now possible.

See BAM Template Developer Guide on page 930.

With Business Application Modeling, an integrated
code analyzer is provided.

See Code Analyzer on page 402.

With Report Writer, data matrix barcodes are
supported.

See Bar Code type details on page 766.

With Report Writer, new properties for Text and
Image fields allow them to behave as hyperlinks.

See Use hyperlinks in a report on page 689.

Upgrading | 1022

Overview Reference

With Report Writer, additional options have been
added for MapCharts.

See Map Chart on page 694.

With Report Writer, new report output format for
Excel.

See Send report data to an Excel spreadsheet on
page 594.

With Report Writer, ew report output format for
Word (rtf).

See Output report data in Microsoft RTF format on
page 595 .

With Report Writer, there is a new function to create
a process-level data file and a document at the
same time

See fgl_report_setProcessLevelDataFile on page
644.

With Report Writer, there are new functions to
create document metadata for compatibility reports

See Report Design Document metadata on page
673.

With Report Writer, there are new functions to
provide generic report auto-formatting when no
report design document (4rp) is specified for a
report

See Auto-formatting Reports that have no 4rp
(Report Design Document) on page 574.

With Report Writer, there are additional new
report API functions, indicated by a "New in 2.40"
designation.

See Reporting API Functions on page 599.

Additional support for application rendering with the
Genero Web Client.

See Genero Configuration Management dialog on
page 171.

You can now import configuration setup and
preferences of earlier versions of Genero Studio
when you first start up a new installation of Genero
Studio.

See General Preferences on page 106.

For ease of use, the Window menu allows you to
select the default layout, and you can toggle Full
Size Documents or Full Screen to maximize your
working space

No further reference.

States of previous sessions are remembered. See Workspaces configuration on page 108.

Support of high contrast mode and of Windows™

screen readers for accessibility standards.
See Configuring Genero Studio on page 115

Multiple instances of Genero Studio can be opened
simultaneously.

See Configuring Genero Studio on page 115

Various performance improvements have been
implemented.

No further reference.

Upgrade Guides
Review the list of migration recommendations each time you move to a new version.

• 3.00 upgrade guide on page 1023
• 2.50 upgrade guide on page 1023
• 2.41 upgrade guide on page 1025
• 2.40 upgrade guide on page 1026
• 2.30 upgrade guide on page 1026
• 2.20 upgrade guide on page 1026

Upgrading | 1023

3.00 upgrade guide
Review when migrating to Genero Studio 3.00.

Genero Report Engine deployment

When in distributed mode, if the Genero Report Engine sits on a different machine than the runtime system
(DVM) processing the report, you must do the following in order to preview reports:

• Start the Web server service (grehttpd).
• Set the GREOUTPUTDIR environment variable.

See Distributed Mode on page 859 for more details.

2.50 upgrade guide
Review when migrating to Genero Studio 2.50.

Add Remote Host Configurations
Configuration information is now kept on the host. This means that when a user connects to a remote host
from a client, the host's configurations about the compiler, environment sets, GDC and GWC displays
are available. To use your configurations from a prior version, you will need to follow these steps to re-
associate the information to a named configuration. The named configurations are not transferred in 2.50,
but the information to create them is available.

1. Start Genero Studio 2.50 on the client.

2. Select your remote host from the list in the lower right corner of Genero Studio. If you do not see your
host in the list, follow these steps to add your remote host(s). See Add a remote host on page 155.

3. Select the wrench icon to display the Genero Configuration Management dialog on page 171. This
dialog has changed to allow easy access to all configuration dialogs.

Figure 416: Select remote host and then configurations
4. Select the Import Configuration button. You will be prompted to choose a Genero Studio installation

from which to import.

Figure 417: Import configurations

Upgrading | 1024

5. Select Import. Genero installations are imported and added to the Genero Installation list.
Environment sets are imported and added to the Environment Sets list.

6. If you wish, add new Configuration Names to the list using the Add button. All of the configuration
information is available on the remote host to use in your named configurations. The named
configurations, however, are not imported and you may want to recreate a new named configuration
in 2.50 for each prior version configuration that you had listed. Each configuration contains information
about:

• Compiler / Runtime configuration (Genero Installations) on page 172
• Environment sets on page 140
• Desktop: GDC configurations on page 146
• Web: GAS/GWC configurations on page 147

Figure 418: Add a named configuration

BAM Templates - GSTSETUPDIR

Business Application Modeling template files locations are specified with the environment variable
GSTSETUPDIR and are no longer specified in Tools >> Preferences.

An environment set is listed for each default template set. Select the correct template set to be used.

If you use a custom template set, you will need to create an Environment Set and set GSTSETUPDIR
on page 144 to the location of your template files. Be sure to check mark your environment set in the
configuration(s) for which it is being used. See Migrate customized template sets on page 1029 for specific
instructions.

Web Components - GSTWCDIR

Web components locations are specified with the environment variable GSTWCDIR and are no longer
specified in Tools >> Preferences.

If you use web components, you will need to create an Environment Set and set GSTWCDIR on page
144 to the location of your web components. An environment set named Web Components is listed
in the Environment Sets list and can be used as your web component environment set by setting its

Upgrading | 1025

GSTWCDIR to the location of your web components. Be sure to check mark your environment set in the
configuration(s) for which it is being used.

Meta-Schemas - GSTSCHEMANAMES

It is recommended that you add schemas to projects so that they are loaded when the project is opened
(and not at Genero Studio launch) and so that the project can be available to all developers without any
additional configuration needed. However, specifying global schemas is still supported. Global meta-
schema files are now specified with the environment variable GSTSCHEMANAMES and are no longer
specified in Tools >> Preferences.

To make meta-schemas available to all projects and to appear in the DB Schemas tab, you can use
the Global Database Schemas Environment Set and define the two environment variables within the
environment set:

GSTSCHEMANAMES on page 143 Defines the filenames of the schemas to make
available. (Do not include file extension.) Use the
Value List environment variable type to list multiple
meta-schemas separated by semi-colons.

FGLDBPATH Defines the directories in which to find the schema
files entered in the GSTSCHEMANAMES variable.

Be sure to check mark your environment set in the configuration(s) for which it is being used.

Genero Report Writer

The fieldNamePatterns input parameter for the reporting API function
fgl_report_configureAutoformatOutput() has changed from "sort by position of fields in PRINT
statement" to "sort by matched pattern and then by position of field in PRINT statement." If you have
a report application that uses this function to define the output of an auto-format report that is not of a
COMPATIBILITY type, verify that the report formats as expected and make modifications if necessary.

See fgl_report_configureAutoformatOutput on page 612.

Prior to version 2.50, localization information (FGLPROFILE, FGLRESOURCEPATH, DBPATH, DBFORMAT
and so on) was statically defined at the start of a program and could not be changed at runtime. A work-
around at the time was to place reports in separate executables, then to run these executables from
the main application with a modified environment. This achieved the effect of modifying the localization
configuration on a per report basis. This work-around will not work with reports run in distributed mode; the
fgl_report_configureLocalization function should be used instead.

See Change localization settings at runtime on page 598.

2.41 upgrade guide
Review when migrating to Genero Studio 2.41.

Application Generator

• New default Database Applications template, dbapp2.0
• If you already have a BAM project, you should change the current template used to the environment set

for the new template. See Environment sets on page 140.
• dbapp2.0 includes new build.rules file for dedicating a set of build rules to a template.
• The dbapp template in Genero Studio 2.40 was renamed in Genero Studio 2.41 to dbapp1.0.

The dbapp template set is the same template set as dbapp1.0.

Upgrading | 1026

2.40 upgrade guide
Version 2.40 migration notes.

The format of all Genero Studio XML files (4fd, 4rp, 4pw etc.) has been modified, and you will receive
a warning if you execute an application compiled using Genero Studio versions 2.2x or 2.3x. For Genero
Report Writer reports only, an error will occur if you have not converted the 4rp file. Opening a file in
Genero Studio and saving it will convert it.

Form Designer

For Genero Studio form definition files (4fd), the gsform command-line tool can be used for a batch
conversion of the files to version 2.40:

gsform -c <files>

Application Generation

The format of the settings.agconf file in the templates directory (<Studio-install-dir>/gst/bin/
src/ag/tpl/dbapp/settings.agconf) has changed. If you have previously modified this file, you
must make comparable changes in the 2.40 version of this file.

2.30 upgrade guide
Version 2.30 migration notes.

Report Writer

• TOP Margin is ignored in compatibility reports.

TOP MARGIN is now ignored when ASCII reports are run in compatibility mode. Margins can be set by
using the API function fgl_report_setPageMargins().

• Parameter changed in fgl_report_configureCompatibilityOutput().

The reportName value for the fgl_report_configureCompatibilityOutput function is now automatically set
to the name of the currently running report. When using the function, however, you must pass NULL as
the value, for compatibility reasons.

• 4GL Boolean type is now interpreted as Numeric instead of String.

The 4GL Boolean type is now regarded as a Numeric type, instead of String as in previous versions.
Existing expressions that contain references to boolean variables may require modification accordingly.

• START REPORT syntax must be TO XML HANDLER.

The BDL statement START REPORT <repname> TO XML HANDLER handler is now the only valid
syntax for starting graphical reports using a 4rp design document.

2.20 upgrade guide
Version 2.20 migration notes.

Important: Genero Studio Form files (4fd), Project files (4pw), and Report files (4rp) are
converted to the Genero Studio 2.20 format when opened. We strongly advise making a backup of
your files before migrating them.

Meta-Schema Manager (formerly Database Browser)

1. Database Browser is replaced by Meta-schema Manager.
2. Schema availability has changed.

Upgrading | 1027

Form Designer

1. Form files (4fd) will be converted to the Genero Studio 2.20 form format when opened.
2. The Matrix container replaces the MFArray container.

Project Manager

1. Project files (4pw) will be converted to the Genero Studio 2.20 project format when opened.
2. The Genero variable FGLRESOURCEPATH defines the path to resource files.

Report Writer

1. Report files (4rp) will be converted to the Genero Studio 2.20 project format when opened.
2. The Reporting API is now linked as one library, libgre.42x.
3. The callback function fgl_report_getFieldCaption() is no longer called by default.
4. The Configuration menu has moved to File>>Report Properties.

Migrating to a new BAM template set
Topics to assist you with upgrading your generated application from one template set to another.

• Migrate from dbapp3.2 to dbapp4.0 on page 1027
• Migrate from dbapp3.1 to dbapp3.2 on page 1027
• Migrate from dbapp3.0 to dbapp3.1 on page 1028
• Migrate from dbapp2.0 to dbapp3.0 on page 1028
• Migrate from dbapp1.0 to dbapp2.0 on page 1028
• Migrate from 2.3x to dbapp1.0 on page 1029
• Migrate customized template sets on page 1029

Migrate from dbapp3.2 to dbapp4.0
To migrate your generated application from the dbapp3.2 template set to the dbapp4.0 template set, you
simply need to confirm that you are using the dbapp4.0 template set.

The template dbapp4.0 provides the following benefits:

• The DBAPP_MOBILE environment variable can be set to 1 (TRUE) for generating applications for
mobile devices. See DBAPP_MOBILE on page 268.

• In settings.agconf, the editorInfo attribute for MULTIPLELINES has changed for dialog titles to
match other editorInfo syntax:

• bannerTitle is now description.
• dialogTitle is now title.

See settings.agconf elements on page 953 for details on the settings.agconf

Migrate from dbapp3.1 to dbapp3.2
To migrate your generated application from the dbapp3.1 template set to the dbapp3.2 template set, you
simply need to confirm that you are using the dbapp3.2 template set.

The template dbapp3.2 provides the following benefits:

• The canDisplay and canEmpty functionalities can be specified for a form.
• Concurrent access management is disabled for generated mobile apps, as there is no need for a mobile

app to manage concurrent access.

1. Select Tools >> Genero Configurations.

Upgrading | 1028

2. In the Environment sets on page 140 list, select the environment set named Template dbapp3.2. This
should be the only template environment set selected.

Migrate from dbapp3.0 to dbapp3.1
You can migrate your generated application from the dbapp3.0 template set to the dbapp3.1 template set.

1. Confirm that you are using the dbapp3.1 template set. Select Tools >> Genero Configurations.

2. In the Environment sets on page 140 list check mark the environment set named Template dbapp3.1.

3. Data refresh on page 243 is a new feature in the dbapp3.1 template and affects relations between
forms. After migrating templates, the default value of the property is Current Row, therefore if you want
to have the same functional behavior as in dbapp3.0, you must set the Data Refresh property to
None on all relations between forms.

Migrate from dbapp2.0 to dbapp3.0
You can migrate your generated application from the dbapp2.0 template set to the dbapp3.0 template set.

1. Confirm that you are using the dbapp3.0 template set. Select Tools >> Genero Configurations.

2. In the Environment sets on page 140 list check mark the environment set named Template dbapp3.0.

3. Confirm that your business records each have a unique key. Set the unique key if it has not already
been defined as a primary key or secondary key in the database meta-schema.

4. The Source Field and Destination Field properties have been replaced by the Source
Field in the group Position and by Source Field/Destination Field in the group Filter.
Consequently, you may need to update some relations in your Business Application Diagram. When
you open your existing BA diagram, the values of the orphan property Source Field are in the
Source Field of the group Position and the Destination Field property becomes an orphan
property. Update your relations between forms:

Option Description

Relation between a Form and a Form • In the Filter group, update the Source Field
property with the same values as those in
the Source Field property in the group
Position.

• Update the Destination Field with the
same values as those in the Destination
Field.

• In the Position group, reset the values
specified in the property Source Field.

Relation between a Form and a Zoom No update needed.

5. The dbapp3.0 template set is a new application architecture thus some BLOCK/POINT sections are in
different source files. To migrate your modified BLOCK/POINT sections, please contact your support
center.

Migrate from dbapp1.0 to dbapp2.0
You can migrate your generated application from the dbapp1.0 template set to the dbapp2.0 template set.

1. Modify your 4pw project file by removing any Application Generator file build rules. Delete the duplicate
rules from the Edit Build Rules dialog so that your program will use the new template build rules.

2. The dbapp2.0 build rules are in a file called build.rules. If you have your own template directory,
you must copy the build.rules file from the dbapp2.0 template directory. If you have modified the
build rules, reintegrate your changes in the build.rules file.

3. The dbapp2.0 template uses the 4dbx database schema file type. Before using the dbapp2.0 template,
replace the 4db files with 4dbx ones.

Upgrading | 1029

4. Open the 4db file and use Save As to save the file with a 4dbx extension. If you have defined your
own template directory:

a) Confirm that you have the 4dbx file type definition.
b) Confirm that the actions are present in the creatable.conf.
c) Remove the build rules from your projects if you have added them (or update them to execute the

same operations as the provided ones).
d) Confirm that the build.rules file contains the same build rules as the provided one for 4dbx.
e) Confirm that the settings.agconf contains the 4dbx section.

5. Report instruction names have changed. For each 4rp file, you need to select its data source again.
The data source can be created by building your 4rd file.

6. Confirm that you are using the dbapp2.0 template set. Select Tools >> Preferences, Application
Generator and select Database Applications 2.0.

Migrate from 2.3x to dbapp1.0
You can migrate your generated application from a 2.3x template set to the dbapp1.0 template set.

This procedure assumes you have not modified your source files with code in BLOCK and POINT sections
or modified the Tcl files. If so, you will have to re-generate the program and then manually add your code
changes to the newly generated code.

1. Open the project to be migrated from 2.3x to dbapp1.0.

2. Right-click on the 4pw and select Edit Build Rules. Remove any user-defined build rules.

3. Save and close your project.

4. Select Tools >> Genero Configurations and select the dbapp 1.0 environment set. This will now be
the code generation template used for the project.

5. Open your project.

6. Remove libag.42m from the External Dependencies of the Library node and save the project.

7. The CRUD Form and Zoom Form types replace the Module type. Open the Business Application
Diagram. For every Module entity corresponding to a form, right-click on the entity and select Convert
to >> CRUD Form. For every Module entity corresponding to a zoom, right-click on the entity and
select Convert to >> Zoom Form.

8. Save the project.

9. Rebuild the project.

Migrate customized template sets
You can migrate your customized template set.

1. Confirm that you are using your template set. Select Tools >> Genero Configurations.

2. In the Environment sets on page 140 list check mark the environment set for your template, or create
one pointing GSTSETUPDIR on page 144 to your template set.

3. Open the settings.agconf file and modify the version attribute of the root element to 5.
<AGSettings version="5">

4. Open the other settings files in the Code Editor and check if there are errors (file-types.xml,
creatable.conf, and build.rules).

5. In case of errors, review the template setting files to which you want to migrate and modify your settings
to match the new file format.

6. A new template may generate different code. If you have modified the template files, you may lose
those changes when using a new template set. If you want to use a new template, you may have to
manually integrate your changes into the new template set.

If the Application Generator model is identical or there is no impact on your template files or you are
not interested in the new template features, you can keep your templates unchanged. If you have
modified the generated source (4gl) code in a BLOCK or a POINT, changing the current template does

Upgrading | 1030

not delete your changes. If the corresponding BLOCK/POINT still exists in the template, your changes
will be integrated during the next compilation. If the BLOCK/POINT has been removed from the
template, it will appear at the end of the file in a lost BLOCK/POINT, that you can reintegrate into your
code (with copy/paste, for example).

Legal Notices | 1031

Legal Notices

This product includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit (http://
www.openssl.org/).

This product includes cryptographic software written by Eric Young (eay@cryptsoft.com).

This product includes software developed by CollabNet (http://www.Collab.Net/).

This product includes software developed by the University of California, Berkeley and its contributors.

This product includes software developed or owned by Caldera International, Inc

http://www.openssl.org/
http://www.openssl.org/
http://www.Collab.Net/

	Contents
	What's new in Genero Studio, v 3.00
	Welcome to Genero Enterprise
	What is Genero Enterprise
	Tour Genero Studio
	Running the Demos
	Switching Genero Clients
	Creating with Quick Starts
	Finding more information

	Welcome to Genero Studio
	Getting Started with Genero Studio
	Quick Start: Tour of Genero Studio
	Run the OfficeStore demo
	Explore the Debugger
	vi emulator and diff tools in Code Editor
	Explore Source Code Management
	Explore database meta-schemas
	Explore forms
	Analyze code
	Generate code

	The Genero Studio framework
	The Welcome Page
	Modules
	BAM - Application Modeling and Code Generation
	Code Analyzer
	Code Editor
	Debugger
	Diff
	File Browser
	Form Designer
	Meta-schema Manager
	Project Manager
	Report Writer
	Source Code Management - SVN
	Web Services

	Toolbars and Menus
	File >> New
	Save / Save As / Save All
	Opening a file from a prior version

	Views
	Show, dock, or move a view
	Views Listing
	Bookmarks view
	Document view
	Document Errors view
	Output view
	Properties view
	Projects view
	Structure view
	Tasks view

	Dialogs
	Filter View dialog
	Print preview dialog

	Learning to use Genero Studio
	Command line options
	Samples directory
	Integrating existing applications
	Setting Preferences
	General Preferences
	File associations configuration
	Workspaces configuration
	User actions configuration
	Messages configuration
	History configuration

	User interface preferences
	Toolbar configuration
	Menus configuration
	Accelerators (Shortcuts) configuration

	Compiler and Runtime preferences
	Run/debug configuration
	Compilation configuration

	Integrate your tools into Genero Studio

	Access Help

	Creating with Quick Starts
	Configuring Genero Studio
	Software configuration scenarios
	Default configuration
	Change the active configuration
	Configuring for BAM
	Configure for Genero Mobile
	Configure Genero Mobile for Android
	Install and configure Java SDK and Android SDK
	Configuration for extending Genero Mobile for Android
	Display to an Android virtual device
	Troubleshoot Android SDK issues
	Troubleshoot Android emulator issues

	Display to an Android physical device
	Configure multiple Android display devices

	Configure Genero Mobile for iOS
	Install and configure Xcode
	Configuration for extending Genero Mobile for iOS
	Display to an iOS simulator
	Display to an iOS physical device
	Configure multiple iOS display devices

	Display to the Genero Mobile Development Client

	Setting up a local environment
	Local environment software requirements
	Define local Genero installations, GAS configurations, and environment sets

	Environment sets
	GST-specific environment variables
	GREDEBUG
	GRE_DEFAULT_IMAGE_URL
	GREDIR
	GSTDIR
	GSTLIBRARYDIR
	GSTSCHEMANAMES
	GSTSETUPDIR
	GSTUSERSAMPLESDIR
	GSTWCDIR

	Add or edit environment variables

	Display clients
	Desktop: GDC configurations
	Web: GAS/GWC configurations
	Create and apply a custom XCF for your Web application

	Mobile clients: GMI and GMA configurations

	Setting up a remote environment
	Remote environment software requirements
	Add a remote host
	SSH
	SSH advanced security
	Configure public key authentication on Windows™
	Pageant
	How to use openSSH keys with Pageant

	Configure public key authentication on Linux™
	ssh-agent
	How to use PuTTY keys with the ssh-agent

	SSH troubleshooting

	TCP (deprecated): How to launch Genero Studio Server

	Define mount points to shared drives
	Define remote Genero installations, GAS configurations, and environment sets

	Share projects / source code management
	Access a database
	Language support (text encoding)
	Configure Genero Studio to use a different character set
	Add a text encoding plugin
	Character mapping table (encodingMap.xml)
	Configure keyboard and language on a Windows™ client
	Configure LANG on a Genero Studio Server
	Test text encoding configuration

	Configuration reference
	Genero Configuration Management dialog
	Compiler / Runtime configuration (Genero Installations)
	Import Configuration dialog
	Import Preferences dialog
	GAS standalone dispatcher: httpdispatch

	Business Application Modeling (BAM)
	Quick Start: Generate an application
	Create a managed project
	Add a meta-schema to the project (4dbx)
	Create the Business Application diagram (4ba)
	Implement the program and form
	Generate and run the application
	Add a detail list to the form

	Quick Start: Generating a mobile app
	Create a BAM mobile project
	Mobile projects

	Create a database
	Create form from database
	Generate and run the app
	Add phone functionality to the app
	Customize the app
	Package and Deploy

	BAM Concepts
	What is Business Application Modeling (BAM)?
	How code is generated
	The modeling diagrams
	Mobile apps vs Desktop applications
	The default template features

	Configuring for BAM
	BAM Projects
	Managed projects
	Mobile projects

	Modeling the application
	The Business Application (BA) diagram
	Create a BA diagram
	Add and implement a program
	Program entity

	Add Forms
	CRUD Form entity
	Add CRUD forms
	Zoom form entity
	Add Zoom forms
	Implement a form

	Add Reports
	Report entity
	Implement reports
	Add a Report Design Document (4rp)
	Report print settings

	Add Web services (Server, Services, Forms with services)
	Webservice Server entity
	Create a Webservice server
	Webservice entity
	Create standalone service
	Create service from a form
	CRUD form and Webservice, Zoom form and Webservice
	JSON Web services
	Public fields

	Add Relations
	Relations

	Add mobile device features (Photo, Gallery, Phone, Mail, SMS, Contact, Maps, Barcode)
	Mobile device function properties

	Import files into the diagram from the project

	Modeling the database
	Database meta-schema (4dbx)
	Create a meta-schema
	Extract meta-schema information from database
	Add a meta-schema to a project
	Managing SERIALs in a generated application
	Managing concurrency
	Cascade delete

	Working with forms
	Mobile forms
	Mobile form patterns
	Display image with table row in mobile form
	Reuse a common form
	Rowbound actions

	Enable and disable CRUD logic
	Form behavior in CRUD states
	Data refresh
	Control the row position in form
	Opening a form with a subset of data
	Field activation
	Define queries and data order
	Define a dynamically populated ComboBox
	Lookup fields
	Define an ascending lookup field

	Add buttons to form
	Add formonly (nondatabase) fields to a form
	Master-detail forms

	Adding custom code
	Understanding what gets generated
	Program.4gl
	Form_ui.4gl
	Form_uidialog.4gl
	Form_uidialogdata.4gl
	Form_uidata.4gl
	Schema_dbxdata.4gl
	Schema_dbxconstraints.4gl

	Finding the right place to customize
	Using POINTs and BLOCKs
	Revert a change to a POINT or BLOCK
	Lost POINT or BLOCK

	Modifying the look and feel
	Default actions
	Modify action defaults (dbapp.4ad)
	Default Topmenu and Toolbar
	Modify the Topmenu (dbapp.4tm)
	Modify the Toolbar (dbapp.4tb)
	Modify styles (dbapp.4st)

	BAM Reference
	BAM-specific environment variables
	DBAPP_MOBILE
	GSTSETUPDIR

	$(generate)
	tclsh
	$(tcl) - deprecated
	$(blockpoint)
	Business Application Modeling error messages
	Business Records error messages
	Business Application Diagram error messages

	Meta-schema Manager
	What is a database meta-schema? (4db)
	Creating a meta-schema
	Create a meta-schema
	Extract meta-schema information from database
	BDL schema file (sch)
	Add a meta-schema to a project

	Adding more information to a meta-schema
	Add new tables and columns
	Add constraints or indexes
	Add foreign keys
	Add a many-to-many relationship
	Manage SERIALs
	Centralize field information (label, widget, default value)

	Viewing a meta-schema
	Comparing two meta-schemas
	Update a meta-schema from database
	Generate a database script from meta-schema
	Generate meta-schema documentation
	Meta-schema Manager Reference
	Meta-schema properties
	Data types
	Database server/user information
	IBM® DB2®
	Informix®
	MySQL
	Oracle
	PostgreSQL
	SQLServer
	SQLite

	Dialogs
	Advanced Properties dialog
	Connection information dialog
	Database Generation Script dialog
	Revert schema changes dialog

	Views
	DB Schemas tab
	Filter view

	Meta-Schema Manager preferences
	Meta-schema diagram context menu
	Meta-schema Manager error messages

	DB Explorer
	Open DB Explorer
	Using the Views menu
	From the meta-schema or Data Model

	Change connection details
	Show data
	Show table data (start with meta-schema diagram)
	Show table data (start with DB Explorer)
	Show data for select columns
	Show data for a business record

	Change the data
	Show data from a table in edit mode
	Show data from a different table in edit mode
	Update data
	Insert a row
	Duplicate a row
	Delete a row

	Limit rows
	Write a SQL query by hand
	Execute a query

	Project Manager
	Genero project file (4pw)
	Quick Start: Create a project
	Creating new projects
	Create a new project
	Import existing files as a new project
	mkproject - Convert a Makefile to a project
	Connect to existing build systems

	Organizing projects
	Groups, Applications, and Libraries
	Using external libraries
	Setting external dependencies

	Building and linking programs
	Languages
	What are build rules
	Add/Edit a build rule
	Example: How build rules work
	Link rules
	Execution rules
	Command line options for build, link, execution rules
	Environment variables
	Add or edit environment variables
	What determines the value of an environment variable

	Pre/Post compile
	Pre/Post link
	gsmake - Command line option to build projects

	Packaging
	Locate a file (starting at Project Manager)
	Project Manager Reference
	Project Manager context menu
	Dialogs
	Advanced Properties dialog
	Import Project dialog
	Build Rules Configuration dialog (Languages)
	Build tab
	Link tab
	Execution tab
	Variables tab

	Project Manager node properties
	Predefined node variables

	Project Manager error messages

	Code Editor
	Editing code files
	Code Editor basics
	Smart editing - indenting, tabs, and backspace
	Fold text
	Bookmarks
	Auto completion (Ctrl+Space)
	Code templates (Ctrl+T)
	Split a document
	Square selection
	XML editing
	Search and replace
	Using wildcards in search
	Using regular expressions in search
	Group capture in regular expressions
	Function search

	Using the Diff tool
	Printing files
	Using XML catalog files
	XML catalog files
	The XML catalog file
	Manage XML catalog entries

	Code Editor Reference
	Code Editor preferences
	Encoding (i18n)
	Behavior & Display preferences
	Color and font preferences
	Template preferences
	XML Schema/DTD preferences

	Customize Diff tool: preferences
	Views
	Code structure view
	The Search/Replace view
	The Search Results view
	Tasks view
	Document Errors view
	Output view
	Bookmarks view

	Keyboard Shortcuts
	Cursor movement keymap
	Selection keymap
	Editing Text keymap
	Clipboard keymap
	Search and Replace keymap
	Buffers and Files keymap
	Code Completion keymap
	Code Templates keymap

	vi Commands List

	Code Analyzer
	Sequence Diagrams
	Dependency Diagrams
	Dependency diagram context menu

	Form Designer
	Forms in Genero applications
	Quick Start: Creating a first form
	Creating the user interface
	Forms
	Create a form
	Add base elements (Containers)
	Add data elements (Widgets)

	Create form from database
	Create form with drag and drop
	Form item properties
	Tab index
	Compile a form
	Preview a form
	Migrate per file to 4fd

	Business records (data sets)
	Business Record diagram
	Business record properties
	Add or edit a Record, RecordField, or Relation

	Containers
	HBox and VBox - layouting
	Grid - positioning
	ScrollGrid - positioning
	Group - grouping
	Folder page - stacking
	Table - organizing
	Tree - hierarchy
	HRec - aligning fields
	Matrix
	Data Control

	Widgets
	formFields
	Button
	ButtonEdit
	Canvas
	CheckBox
	ComboBox
	DateEdit
	DateTimeEdit
	Edit
	Field
	HLine
	Image
	Label
	Phantom
	ProgressBar
	RadioGroup
	Slider
	SpinEdit
	TextEdit
	TimeEdit

	Web components
	Web component widget
	Add a WebComponent to a form
	WebComponent setup (advanced)

	Action management (Toolbars, Topmenus)
	Action views
	Action defaults
	Add action defaults
	Import action defaults

	Topmenus
	Add a Topmenu
	Import a Topmenu

	Toolbars
	Add a Toolbar
	Import a Toolbar

	Styles
	Apply a style to a form item
	Create a style file

	Form Designer usage
	Drawing
	Selecting, moving, resizing
	Aligning
	Align widgets
	Layout containers

	Transforming
	Convert a widget
	Convert a container
	Convert to matrix

	Command-line syntax: gsform
	Localizing your form
	Form Designer Reference
	Customize Form Designer: preferences
	Form elements settings
	Database form settings

	Form tab
	Business Record diagram
	Menus
	Form Designer context menu
	Alignment menu

	Views
	Properties view
	Structure view

	Dialogs
	Data Control wizard
	Column selection
	Container selection
	Joins and Data order
	Dynamic properties

	Style Selection dialog
	Convert Container dialog
	Alignment dialog
	Dynamic properties

	Properties list
	accelerator
	accelerator2
	accelerator3
	accelerator4
	action
	aggregateText
	aggregateType
	autoNext
	autoScale
	buttonTextHidden
	case
	century
	color
	colName and sqlTabName
	colorCondition
	comment
	completer
	componentType
	contextMenu
	databaseName
	dataType
	defaultValue
	defaultView
	Display Like
	doubleClick
	expandedColumn
	fieldType
	fontPitch
	format
	gridChildrenInParent
	gridHeight, gridWidth
	hidden
	idColumn
	image
	imageCollapsed
	imageColumn
	imageExpanded
	imageLeaf
	include
	initializer
	invisible
	isNodeColumn
	items
	justify
	keyboardHint
	minHeight, minWidth
	name
	noEntry
	notNull
	orientation
	parentIdColumn
	PER comments
	picture
	posX, posY
	program
	queryEditable
	required
	reverse
	rowHeight
	sample
	scroll
	scrollbars
	sizePolicy
	sliderOrientation
	spacing
	splitter
	step
	stretch
	style
	styleFile
	tabIndex
	tag
	text
	title
	totalRows
	unHidable
	unHidableColumns
	unMovable
	unMovableColumns
	unSizable
	unSizableColumns
	unSortable
	unSortableColumns
	validate
	Validate Like
	valueChecked
	valueMax
	valueMin
	valueUnchecked
	verify
	version
	wantFixedPageSize
	wantNoReturns
	wantTabs
	windowStyle

	Form Designer error messages
	Business Records error messages
	XML validation error messages

	File Browser
	Navigating files in File Browser
	Selecting files in File Browser
	Managing files in File Browser
	Locate a file (starting at File Browser)

	Graphical Debugger
	Controlling program execution
	Start the Debugger
	Start the Debugger on a running program
	Debug a running local program
	Debug a running remote program

	Debug a Web services server application
	Debug a mobile application
	Stop the Debugger
	Step through the program
	Breakpoints
	Set a breakpoint
	Conditional breakpoints

	Watchpoints
	Set a watchpoint
	Conditional watchpoints

	Debugger (fgldb) command prompt

	Debugger output
	Examining data
	Examining execution flow
	Record/replay a macro
	Profiler
	Local vs. remote debug
	Reference
	Debug context menu
	Views
	Command view
	Data view
	Watchpoints view
	Breakpoints view
	Backtrace view

	Supported debug commands
	break
	backtrace
	clear
	continue
	define
	delete
	disable
	display
	down
	enable
	file
	finish
	help
	info
	list
	next
	output
	print
	quit
	run
	set
	source
	signal
	step
	until
	up
	watch
	where
	Unsupported commands

	Source Code Management - SVN
	What is Genero Source Code Management?
	SCM Usage
	Checkout files
	Add files
	Commit / Review changes
	Locking
	SVN Lock strategies
	Set svn:needs-lock property
	Lock a file

	Revert changes / Un-add files
	Delete files
	Update / Update All
	Cleanup
	Copy working files and directories
	Revert from a single revision
	Merge and revert
	Move a working copy (Switch)
	Create patch
	Apply patch
	Browse repository
	View log information
	Specify the revision range for logs
	Blame
	Access the Blame view

	Diff with revised file
	Integrate bug tracking

	SCM Reference
	Views
	SVN Log view
	SVN Locks view
	SVN Status view

	Dialogs
	Apply Patch dialog
	Merge/Revert dialog
	The SVN Copy dialog
	SVN Checkout dialog
	SVN Lock dialog
	SVN Properties dialog
	SVN Repository view

	Specify a Subversion client
	SVN error messages

	Report Writer
	Get Started with Reports
	Introduction to Reports
	What is Genero Report Writer (GRW)?
	GRW runtime architecture

	Steps to a Report
	Set the Report Writer environment
	Create a Report
	Run the Report

	The Reports demo
	The Reports demo overview
	Run the Reports demo
	Reports demo reports
	Reports demo outputs

	Genero Report Viewer
	Genero Report Viewer for HTML5

	Configure fonts and printers
	Available fonts and printers
	Install new or common fonts
	Specific font types

	Create a report program
	Genero BDL and the Report Writer
	The runtime architecture (GRW for Genero BDL)
	Steps to a Report (GRW for BDL)
	Set the Report Writer environment (GRW for BDL)
	Create a Report (GRW for Genero BDL)
	Run the Report (GRW for BDL)

	BDL programs
	Writing the Genero BDL report program
	Overview
	Tips
	Creating a simple report
	Fetching report data
	From a database using SQL
	From a data file
	From an XML file
	From a Web Service

	Output options
	Generate a data schema from a Genero BDL report program
	Allowing the user to select output options
	Running a Genero ASCII report using GRW (Compatibility Report)
	Sub reports
	What are sub reports?
	Use cases for sub reports
	Creating a master report data source
	Creating a master report design

	Create labels: the report program (Genero BDL)
	Report Data Wizard
	Using the Report Data Wizard
	Example Wizard code
	Using the example code

	Modifying the output
	Change report output options
	Change paper settings and output format
	Modify report output examples
	Support for custom paper sources
	Previewing a report
	Send report data to an XML file
	Send report data to an HTML file
	Send report data to an Excel spreadsheet
	Output report data in Microsoft™ RTF format
	Send report data to a browser
	Create multi-page ISO reports

	Using localized strings
	Localized strings
	Finding the translated string
	Change localization settings at runtime

	GRW reference for Genero BDL applications
	Reporting API Functions
	Overview
	Mandatory functions
	fgl_report_loadCurrentSettings
	fgl_report_commitCurrentSettings
	fgl_report_loadAndCommit
	Usage: load and commit

	Functions to change reporting options
	Using report output functions
	Device-specific function summary list
	fgl_report_configureAutoformatOutput
	fgl_report_configureCompatibilityOutput
	fgl_report_configureDistributedEnvironment
	fgl_report_configureDistributedProcessing
	fgl_report_configureDistributedURLPrefix
	fgl_report_configureImageDevice
	fgl_report_configureLabelOutput
	fgl_report_configureLocalization
	fgl_report_configureHTMLDevice
	fgl_report_configureMultipageOutput
	fgl_report_configureOORTFDevice
	fgl_report_configurePageSize
	fgl_report_configurePDFDevice
	fgl_report_configurePDFFontEmbedding
	fgl_report_configureRTFDevice
	fgl_report_configureSVGDevice
	fgl_report_configureSVGPreview
	fgl_report_configureXLSDevice
	fgl_report_configureXLSXDevice
	fgl_report_createProcessLevelDataFile
	fgl_report_findResourcePath
	fgl_report_runReportFromProcessLevelDataFile
	fgl_report_runFromXML
	fgl_report_selectDevice
	fgl_report_setEnvironment
	fgl_report_selectLogicalPageMapping
	fgl_report_selectPreview
	fgl_report_setAutoformatType
	fgl_report_setBrowserDocumentDirectory
	fgl_report_setBrowserDocumentDirectoryURL
	fgl_report_setBrowserFontDirectory
	fgl_report_setBrowserFontDirectoryURL
	fgl_report_setCallbackLocalization
	fgl_report_setDistributedRequestingUserName
	fgl_report_setImageShrinkImagesToPageContent
	fgl_report_setImageUsePageNamesAsFileNames
	fgl_report_setOutputFileName
	fgl_report_setPageMargins
	fgl_report_setPaperMargins
	fgl_report_setPageSwappingThreshold
	fgl_report_setPDFJPEGImageEncoding
	fgl_report_setPDFImageResolution
	fgl_report_setPrinterChromaticity
	fgl_report_setPrinterCopies
	fgl_report_setPrinterDestinationUrl
	fgl_report_setPrinterFidelity
	fgl_report_setPrinterJobImpressions
	fgl_report_setPrinterJobMediaSheets
	fgl_report_setPrinterJobName
	fgl_report_setPrinterJobPriority
	fgl_report_setPrinterJobSheets
	fgl_report_setPrinterMediaName
	fgl_report_setPrinterMediaSizeName
	fgl_report_setPrinterMediaTray
	fgl_report_setPrinterName
	fgl_report_setPrinterNumberUp
	fgl_report_setPrinterOrientationRequested
	fgl_report_setPrinterPageRanges
	fgl_report_setPrinterPrintQuality
	fgl_report_setPrinterRequestingUserName
	fgl_report_setPrinterResolution
	fgl_report_setPrinterSheetCollate
	fgl_report_setPrinterSides
	fgl_report_setPrinterWriteToFile
	fgl_report_setProcessLevelDataFile
	fgl_report_setRTFMemoryThreshold
	fgl_report_setSharePortWithGDC
	fgl_report_setSVGCompression
	fgl_report_setSVGCopies
	fgl_report_setSVGOrientationRequested
	fgl_report_setSVGPageRange
	fgl_report_setSVGPaperSource
	fgl_report_setSVGPrinterName
	fgl_report_setSVGSheetCollate
	fgl_report_setXLSMergeCells
	fgl_report_setXLSXMergeCells
	fgl_report_stopGraphicalCompatibilityMode

	Functions to set Report Metadata for Compatibility Reports
	Functions to introspect reports at runtime (librdd)
	rdd_getEveryRowFields
	rdd_loadRddAndGetReportInfos
	rdd_debugReportInfos
	Types used in librdd

	Functions to get error details
	fgl_report_getErrorStatus
	fgl_report_getErrorString

	Pivot table library
	Types defined in the pivot library
	Pivot library API
	pivot_debugPivotTables
	pivot_getLastErrorString
	pivot_load4rpAndGetPivotTables

	Create the data schema
	Generate a data schema from a Genero BDL report program

	Create a report design document
	What's new in Genero Report Designer, v 3.00
	The Report Design Document
	Overview of Genero Report Designer
	Genero reports
	Launch the Report Designer
	The Report Design window
	The Report output

	Designing a Report
	The Report Design window
	The work area
	The Tool Box view
	Placing elements on the report page
	Specific positioning or automatic layout
	Drag multiple objects
	Choose the right container
	Choose other report elements
	Modify the sizing policy of containers

	Changing a report element type
	Changing a property value (The Properties view)
	Using expressions for property values
	Adding report metadata

	Adding report data (Data view)
	Adding data values and captions
	Support for arbitrary XML data sources

	Organizing the report structure (the Report Structure view)
	The tree structure
	Triggers
	Place a trigger within the report structure

	Page headers and footers
	Example report structure
	The Printed page

	Using page numbers
	Using a page number string

	Report Design Document metadata
	Configuring the output

	Design How-To
	General design
	Align and format numbers
	Center elements
	Set the paper settings of a report
	Force a page break
	Switch child and parent nodes

	Print headers and footers
	Print group totals and report totals
	Print totals at the beginning of a report
	Print a Layout-dependent reference (InfoNodes)
	Specify different first and last pages
	Print an invoice page number instead of the physical page number
	Design Documents for preprinted forms
	Design labels
	Design address labels
	Modify an object's borders, margins, or padding
	Size expressions for bordered boxes
	Size expressions that contain the variable max with other components

	Use hyperlinks in a report
	Some tips for legacy report designers
	Backside printing
	Debugging your Report Design Document

	Working with tables
	Add a table to a report
	Assign content to a table column
	Set the triggers for a table in a report
	Merge cells
	Add rows or columns
	Add headers and footers
	Change the width of a table
	Change the width of a column

	Working with business graphs
	Report Writer business graphs
	Map Chart
	Category Chart
	XY Chart

	Creating a graph
	The data
	The design
	Custom keys

	Output charts as tables

	Working with Pivot Tables
	What are pivot tables?
	Set data types
	Runtime configurability
	Performance considerations

	Sample pivot table reports
	Create a static pivot table
	Pivot table properties
	Arrange your hierarchies
	Add a dimension
	Add a measure
	Pivot table elements and the Structure view

	Expressions in properties
	Overview
	Using the expression language
	Using RTL classes
	Using the PXML expression language
	Substituting 4GL variables for constants
	Expression examples
	Check a field for a value

	Report Designer Reference
	Report Design Elements (The Toolbox)
	Simple Containers
	Propagating Containers (Mini Pages)
	Drawables
	Word Box and Word Wrap Box
	Decimal Format Box
	HTML Box
	Page Number (PageNoBox)
	Image Box
	Table

	Business Graphs
	Map Chart
	Map Chart Item
	Category Chart
	Category Chart Item
	XY Chart
	XY Chart Item
	Pivot Table
	Pivot Table Hierarchy Value
	Pivot Table Fact
	Pivot Table Measure

	References
	Reference Box
	Info Node

	Bar Codes
	Bar Code Box

	Report Element Properties
	General Properties
	alignment (Alignment)
	anchorX (Anchor X)
	anchorY (Anchor Y)
	baselineType (Baseline Type)
	bBorder (Bottom Border)
	bgColor (Background Color)
	border (Border)
	categoryKey (Category Key)
	categoryTitle (Categories Title)
	check (Check)
	class (Class)
	clip (Clip)
	codeType (Code Type)
	codeValue (Code Value)
	codeValueExpression (Code Value Expression)
	color (Color)
	colspan (Column Span)
	computeAggregatesInnermostDimension (Compute aggregates on the innermost dimension)
	computeAverage (Compute Average)
	computeCount (Compute Count)
	computeDistinctCount (Compute Distinct Count)
	computeMaximum (Compute Maximum)
	computeMinimum (Compute Minimum)
	computeTotal (Compute Totals)
	controlCharacters (Control Characters)
	dataSymbolsPerLine (Data Symbols per Line)
	displayFactRows (Display Fact Rows)
	displayRecurringDimensions (Display Recurring Dimension Values)
	displaySelection (Display Selection)
	drawAs (Draw As)
	drawLabels (Draw Labels)
	drawLegend (Draw Legend)
	encoding (Encoding)
	enumValues (Enum Values)
	errorCorrectionDegree (Error Correction Degree)
	fidelity (Text Fidelity)
	fill (Fill)
	floatingBehavior (Floating Behavior)
	fontBold (Bold)
	fontItalic (Italic)
	fontName (Name)
	fontSize (Size)
	format (Format)
	fWidth (Fix Width)
	hAlign (Horizontal Alignment)
	hidePageHeaderOnLastPage (Hide Page Header On Last Page)
	hidePageFooterOnLastPage (Hide Page Footer On Last Page)
	hierarchiesInputOrder (Hierarchies input order)
	href (href)
	hPadding (Horizontal Padding)
	hRule (Horizontal Rule)
	id (id)
	indent (Indent)
	intendedResolution (Intended Resolution)
	key (Key)
	keysTitle (Keys Title)
	layoutDirection (Layout Direction)
	lBorder (Left Border)
	localizeText (Localize Text)
	location (Location)
	name (Name)
	noCheckDigits (Number Check Digits)
	noDigits (Number Digits)
	noText (Hide Text)
	outputOrder (Output Order)
	padding (Padding)
	pageName (Name)
	pageNoOffset (Offset)
	pageNoFormat (Format)
	preferRectangularSymbols (Prefer Rectangular Symbols)
	pWidth (Proportional Width)
	rawCodeValue (Raw Code Value)
	rBorder (Right Border)
	referenceDefault (Default)
	referenceName (InfoNode Name)
	rule (Rule)
	ruleColor (Rule Color)
	section (Section)
	scaleX (Scale X)
	scaleY (Scale Y)
	seriesTitle (Series Title)
	smartParse (Smart Parse)
	sortAscending (Sort Ascending)
	sortBy (Sort By)
	splitOversizedItem (Split Oversized Items)
	strikethrough (Strikethrough)
	swapX (Swap X)
	text (Text)
	textAlignment (Text Alignment)
	textExpression (Text Expression)
	thinToGapRelation (Thin To Gap Relation)
	thinToThickRelation (Thin To Thick Relation)
	title (Title)
	tBorder (Top Border)
	topN (Top N)
	trimText (Trim Text)
	transformTransparently (Transform transparently)
	objectType (Type)
	underline (Underline)
	URL (Location)
	vAlign (Vertical Alignment)
	value (Value)
	valuesTitle (Values Title)
	visibilityCondition (Visibility Condition)
	vPadding (Vertical Padding)
	vRule (Vertical Rule)
	x (X)
	xAxisTitle (xAxisTitle)
	X-Size (X-Size)
	X-Size Adjustment (X-Size Adjustment)
	y (Y)
	yAxisTitle (yAxisTitle)
	Y-Size (Y-Size)
	Y-Size Adjustment (Y-Size Adjustment)

	Properties related to margins and borders
	marginWidth
	marginRightWidth
	marginBottomWidth
	marginLeftWidth
	marginTopWidth
	borderWidth
	borderRightWidth
	borderBottomWidth
	borderLeftWidth
	borderTopWidth
	borderStyle
	borderRightStyle
	borderBottomStyle
	borderLeftStyle
	borderTopStyle
	borderColor
	borderRightColor
	borderBottomColor
	borderLeftColor
	borderTopColor
	roundedCorners
	paddingWidth
	paddingRightWidth
	paddingBottomWidth
	paddingLeftWidth
	paddingTopWidth

	Properties for Report Document Metadata
	title
	author
	creator
	subject
	keywords

	Bar Codes
	Bar Code type listing
	Bar Code type details
	codabar-2
	codabar-18
	code-11-matrix
	code-128
	code-2-5-datalogic
	code-2-5-IATA
	code-2-5-industrial
	code-2-5-interleaved
	code-2-5-inverted
	code-2-5-matrix
	code-BCD-matrix
	code-32
	code-39
	code-39-extended
	code-93
	code-93-extended
	data-matrix
	ean-8
	ean-13
	ean-code-128
	ean-data-matrix
	ean-supplemental-2
	ean-supplemental-5
	gs1-8
	gs1-13
	gs1-code-128
	gs1-data-matrix
	gs1-supplemental-2
	gs1-supplemental-5
	intelligent-mail
	pdf-417
	qr-code
	upc-a
	upc-e
	upc-supplemental-2
	upc-supplemental-5

	RTL Classes Overview
	Dimension Resolver
	Unit Names
	Paper Format Abbreviations

	Customize Report Designer: preferences

	RTL Class Reference
	The Boolean Class
	The Color Class
	The Date Class
	The Enum Classes
	The Alignment Class
	The TextAlignment Class
	The BaselineType Class
	The LayoutDirection Class
	The Y-SizeAdjustment Class
	The PageNoFormat Class
	The TrimText Class
	The X-SizeAdjustment Class
	FloatingBehavior Class
	Section Class
	XYChartDrawAs Class
	MapChartDrawAs Class
	CategoryChartDrawAs Class
	CodeType Class
	BorderStyles Classes

	The FGLNumericVariable Class
	The FGLStringVariable Class
	The Numeric Class
	The Runtime Class
	The String Class

	Upgrading Genero Report Designer
	Upgrading reports from prior versions
	Version 3.00
	Version 2.50

	Report templates
	Create a report from an existing template
	Schema Association page
	Add Fields page
	Variables page
	Template filters in the Designer Wizard
	Template expansion at runtime

	Create a new report template
	Report template schema definition (.rsd) file
	Report template (.4rt) file design features
	Customize the appearance of a new report template in the wizard

	Create a report template from an existing report
	Modify an existing report template
	Set the report template directory
	GenerateReport command options

	Report Writer Deployment and Customization
	GRE environment variables
	GREDIR
	GREOUTPUTDIR
	GRE_MAX_CONCURRENT_JOBS

	Genero Report Viewer for HTML5 customization
	Distributed Mode

	Genero Report Engine error messages

	Web Services
	Create a Web Services program
	Add Web Service
	The Web Services wizard
	Build the application
	Update the WSDL
	Add Web services (Server, Services, Forms with services)

	Mobile applications
	Mobile development environment
	Genero mobile app demos
	Debugging a mobile app
	Debug version of a deployed app
	Create a debug version of a deployed app
	Run the debug version of a deployed app (Android)
	Run a debug version of a deployed app (iOS)

	Debug tools for apps in developer mode
	Preview a form on a mobile device
	Run an app with the graphical debugger
	Run an app with the Profiler

	Viewing the AUI tree
	View the AUI tree (Android)
	View the AUI tree (iOS)
	View the AUI tree (Development Client)

	Viewing the program logs
	View program logs (Android)
	View program logs (iOS)
	View program logs (Development Client)

	Viewing the device logs
	View device logs (Android)

	Debugging a Web Component
	Debug a web component on an Android device
	Debug a web component on an iOS device

	Localize a mobile app
	Genero Mobile error messages

	BAM Template Developer Guide
	Quick Start: Customizing templates
	Example 1: Adding a new property
	Configure a copy of the default template set
	Add a new property to the BA diagram
	Modify tcl script to generate code

	Example 2: Adding a File >> New item
	Add a new file type definition to settings.agconf
	Define an action in File >> New for the new item
	Test new action

	Example 3: Adding an entity to the BA Diagram
	Add a new item to the BA diagram
	Define the template file association
	Add the new element to the program entity
	Define the build rules

	How code is generated
	The code generation template set
	Interpreting settings.agconf
	The WEB custom editor
	The PROCESS custom editor

	Interpreting creatables.conf

	Tcl basics and samples
	Add POINT and BLOCK sections to template
	Example: Using XSLT instead of Tcl

	Image directory structure
	Template Reference
	XML reference
	settings.agconf elements
	AGSettings
	Form
	File
	Messages
	DynamicProperty
	DynamicPropertyGroup
	Item (Form / BusinessRecord / Database)

	BusinessRecord
	File
	Messages
	DynamicProperty
	Item (Form / BusinessRecord / Database)

	BusinessApplication
	DynamicProperty
	Items
	Item (BusinessApplication)
	BasicItem
	Relation

	Constraint

	Database
	File
	Messages
	DynamicProperty
	Item (Form / BusinessRecord / Database)

	creatables.conf elements
	Creatables
	Category
	New, File, Directory, Wizard
	action attribute

	POINT and BLOCK reference

	Packaging, deploying, and distributing apps
	Genero Archive (GAR) packaging
	Packaging for a mobile device
	What is packaging?
	Packaging process overview for a mobile device
	Package a mobile app
	Troubleshoot Android packaging issues

	Deploy a mobile app for testing
	Package and Directory nodes and properties
	Platform: Package and deploy rules
	Distribute your app
	Distribute an iOS app
	Distribute using Over-The-Air installation
	Submit an iOS app to the AppStore
	Distribute an Android app
	Distribute your app through Google Play
	Distribute using other tools for testing

	Manage App updates

	Upgrading
	New Features of Genero Studio
	Version 3.00
	Version 2.51
	Version 2.50
	Version 2.41
	Version 2.40

	Upgrade Guides
	3.00 upgrade guide
	2.50 upgrade guide
	2.41 upgrade guide
	2.40 upgrade guide
	2.30 upgrade guide
	2.20 upgrade guide

	Migrating to a new BAM template set
	Migrate from dbapp3.2 to dbapp4.0
	Migrate from dbapp3.1 to dbapp3.2
	Migrate from dbapp3.0 to dbapp3.1
	Migrate from dbapp2.0 to dbapp3.0
	Migrate from dbapp1.0 to dbapp2.0
	Migrate from 2.3x to dbapp1.0
	Migrate customized template sets

	Legal Notices
	Index

