

Simply JavaScript
(Chapters 1, 2, and 3)

Thank you for downloading these three chapters of Simply JavaScript
by Kevin Yank and Cameron Adams.

This excerpt encapsulates the Summary of Contents, Information about
the Author and SitePoint, Table of Contents, Preface, three chapters of
the book, and the Index.

We hope you find this information useful in evaluating the book.

For more information, visit sitepoint.com

http://www.sitepoint.com/launch/6188d9

Summary of Contents of this Excerpt
Preface .. xvii
1. The Three Layers of the Web .. 1
2. Programming with JavaScript ... 13
3. Document Access .. 61
Index .. 387

Summary of Additional Book Contents
4. Events ... 105
5. Animation .. 163
6. Form Enhancements .. 213
7. Errors and Debugging .. 277
8. Ajax .. 305
9. Looking Forward ... 345
A. The Core JavaScript Library ... 363

SIMPLY
JAVASCRIPT

BY KEVIN YANK
& CAMERON ADAMS

Simply JavaScript
by Kevin Yank and Cameron Adams

Copyright © 2007 SitePoint Pty. Ltd.

Editor: Georgina LaidlawManaging Editor: Simon Mackie

Index Editor: Max McMasterTechnical Editor: Kevin Yank

Cover Design: Alex WalkerTechnical Director: Kevin Yank

Printing History:

First Edition: June 2007

Notice of Rights
All rights reserved. No part of this book may be reproduced, stored in a retrieval system or transmitted

in any form or by any means, without the prior written permission of the publisher, except in the case

of brief quotations embodied in critical articles or reviews.

Notice of Liability
The author and publisher have made every effort to ensure the accuracy of the information herein.

However, the information contained in this book is sold without warranty, either express or implied.

Neither the authors and SitePoint Pty. Ltd., nor its dealers or distributors will be held liable for any

damages to be caused either directly or indirectly by the instructions contained in this book, or by the

software or hardware products described herein.

Trademark Notice
Rather than indicating every occurrence of a trademarked name as such, this book uses the names only

in an editorial fashion and to the benefit of the trademark owner with no intention of infringement of

the trademark.

Published by SitePoint Pty. Ltd.

424 Smith Street Collingwood

VIC Australia 3066

Web: www.sitepoint.com

Email: business@sitepoint.com

ISBN 978-0-9802858-0-2

Printed and bound in Canada

Simply JavaScriptiv

About Kevin Yank

As Technical Director for SitePoint, Kevin Yank keeps abreast of all that is new and exciting

in web technology. Best known for his book, Build Your Own Database Driven Website Using

PHP & MySQL,1 now in its third edition, Kevin also writes the SitePoint Tech Times,2 a free,

biweekly email newsletter that goes out to over 150,000 subscribers worldwide.

When he isn’t speaking at a conference or visiting friends and family in Canada, Kevin lives

in Melbourne, Australia, and enjoys performing improvised comedy theater with Impro

Melbourne,3 and flying light aircraft. His personal blog is Yes, I’m Canadian.4

About Cameron Adams

Cameron Adams melds a background in Computer Science with almost a decade's experience

in graphic design, resulting in a unique approach to interface design. He uses these skills to

play with the intersection between design and code, always striving to create interesting and

innovative sites and applications.

Having worked with large corporations, government departments, nonprofit organizations,

and tiny startups, he's starting to get the gist of this Internet thing. In addition to the projects

that pay his electricity bills, Cameron muses about web design on his well-respected web-

log—The Man in Blue5—and has written several books on topics ranging from JavaScript to

CSS and design.

Sometimes he's in Melbourne, other times he likes to fly around the world to talk about

design and programming with other friendly geeks. If you ever see him standing at a bar, buy

him a Baileys and say “hi.”

About SitePoint

SitePoint specializes in publishing fun, practical, and easy-to-understand content for web

professionals. Visit http://www.sitepoint.com/ to access our books, newsletters, articles, and

community forums.

1 http://www.sitepoint.com/books/phpmysql1/
2 http://www.sitepoint.com/newsletter/
3 http://www.impromelbourne.com.au/
4 http://yesimcanadian.com/
5 http://themaninblue.com/

vSimply JavaScript

http://www.sitepoint.com/books/phpmysql1/
http://www.sitepoint.com/books/phpmysql1/
http://www.sitepoint.com/newsletter/
http://www.impromelbourne.com.au/
http://www.impromelbourne.com.au/
http://yesimcanadian.com/
http://themaninblue.com/

Without you, Lisa, this book would

never have been written. I can

only hope to return the same

amount of love and support that

you have given me.

—Cameron

To Jessica,

my partner in crime,

the lemon to my lime.

—Kevin

Table of Contents

Preface . xvii

Who Should Read this Book? . xviii

What’s Covered in this Book? . xviii

The Book’s Web Site . xx

The Code Archive . xx

Updates and Errata . xx

The SitePoint Forums . xxi

The SitePoint Newsletters . xxi

Your Feedback . xxi

Acknowledgments . xxi

Kevin Yank . xxi

Cameron Adams . xxii

Conventions Used in this Book . xxiii

Code Samples . xxiii

Tips, Notes, and Warnings . xxiv

Chapter 1 The Three Layers of the Web 1

Keep ’em Separated . 2

Three Layers . 4

HTML for Content . 6

CSS for Presentation . 8

JavaScript for Behavior . 9

The Right Way . 11

JavaScript Libraries . 11

Let’s Get Started! . 12

Chapter 2 Programming with JavaScript 13

Running a JavaScript Program . 14

Statements: Bite-sized Chunks for your Browser 17

Comments: Bite-sized Chunks Just for You . 18

Variables: Storing Data for your Program . 19

Variable Types: Different Types for Different Data 23

Conditions and Loops: Controlling Program Flow 35

Conditions: Making Decisions . 36

Loops: Minimizing Repetition . 43

Functions: Writing Code for Later . 48

Arguments: Passing Data to a Function . 50

Return Statements: Outputting Data from a Function 52

Scope: Keeping your Variables Separate . 54

Objects . 55

Unobtrusive Scripting in the Real World . 58

Summary . 59

Chapter 3 Document Access . 61

The Document Object Model: Mapping your HTML 61

Text Nodes . 64

Attribute Nodes . 65

Accessing the Nodes you Want . 66

Finding an Element by ID . 67

Finding Elements by Tag Name . 70

Finding Elements by Class Name . 74

Navigating the DOM Tree . 79

Interacting with Attributes . 82

Changing Styles . 85

Changing Styles with Class . 87

Simply JavaScript (www.sitepoint.com)

Simply JavaScriptx

http://www.sitepoint.com/launch/6188d9

Example: Making Stripy Tables . 92

Finding All Tables with Class dataTable . 93

Getting the Table Rows for Each Table . 94

Adding the Class alt to Every Second Row 96

Putting it All Together . 96

Exploring Libraries . 99

Prototype . 99

jQuery . 100

Dojo . 102

Summary . 102

Chapter 4 Events . 105

An Eventful History . 106

Event Handlers . 107

Default Actions . 111

The this Keyword . 112

The Problem with Event Handlers . 115

Event Listeners . 116

Default Actions . 119

Event Propagation . 122

The this Keyword . 127

The Internet Explorer Memory Leak . 128

Putting it All Together . 129

Example: Rich Tooltips . 132

The Static Page . 133

Making Things Happen . 134

The Workhorse Methods . 135

The Dynamic Styles . 140

Putting it All Together . 142

Order the print version of this book to get all 400+ pages!

xiSimply JavaScript

http://www.sitepoint.com/launch/6188d9

Example: Accordion . 144

The Static Page . 144

The Workhorse Methods . 146

The Dynamic Styles . 148

Putting it All Together . 150

Exploring Libraries . 158

Summary . 160

Chapter 5 Animation . 163

The Principles of Animation . 163

Controlling Time with JavaScript . 165

Using Variables with setTimeout . 168

Stopping the Timer . 172

Creating a Repeating Timer . 174

Stopping setInterval . 175

Revisiting Rich Tooltips . 175

Old-school Animation in a New-school Style . 176

Path-based Motion . 181

Animating in Two Dimensions . 190

Creating Realistic Movement . 192

Moving Ahead . 198

Revisiting the Accordion Control . 198

Making the Accordion Look Like it’s Animated 198

Changing the Code . 199

Exploring Libraries . 208

script.aculo.us . 208

Summary . 211

Simply JavaScript (www.sitepoint.com)

Simply JavaScriptxii

http://www.sitepoint.com/launch/6188d9

Chapter 6 Form Enhancements 213

HTML DOM Extensions . 214

Example: Dependent Fields . 216

Example: Cascading Menus . 226

Form Validation . 239

Intercepting Form Submissions . 240

Regular Expressions . 243

Example: Reusable Validation Script . 249

Custom Form Controls . 256

Example: Slider . 256

Exploring Libraries . 271

Form Validation . 272

Custom Controls . 274

Summary . 275

Chapter 7 Errors and Debugging 277

Nothing Happened! . 278

Common Errors . 282

Syntax Errors . 283

Runtime Errors . 288

Logic Errors . 292

Debugging with Firebug . 296

Summary . 303

Chapter 8 Ajax . 305

XMLHttpRequest: Chewing Bite-sized Chunks of Content 306

Creating an XMLHttpRequest Object . 307

Calling a Server . 310

Dealing with Data . 314

Order the print version of this book to get all 400+ pages!

xiiiSimply JavaScript

http://www.sitepoint.com/launch/6188d9

A Word on Screen Readers . 316

Putting Ajax into Action . 316

Seamless Form Submission with Ajax . 329

Exploring Libraries . 337

Prototype . 339

Dojo . 340

jQuery . 341

YUI . 341

MooTools . 342

Summary . 343

Chapter 9 Looking Forward . 345

Bringing Richness to the Web . 346

Easy Exploration . 346

Easy Visualization . 347

Unique Interaction . 349

Rich Internet Applications . 352

Widgets . 355

JavaScript Off the Web . 356

Exploring Libraries . 357

Dojo . 358

Google Web Toolkit . 361

Summary . 362

Appendix A The Core JavaScript Library 363

The Object . 363

Event Listener Methods . 364

Script Bootstrapping . 375

CSS Class Management Methods . 378

Simply JavaScript (www.sitepoint.com)

Simply JavaScriptxiv

http://www.sitepoint.com/launch/6188d9

Retrieving Computed Styles . 379

The Complete Library . 379

Index . 387

Order the print version of this book to get all 400+ pages!

xvSimply JavaScript

http://www.sitepoint.com/launch/6188d9

Simply JavaScript (www.sitepoint.com)

http://www.sitepoint.com/launch/6188d9

Preface
On the surface, JavaScript is a simple programming language that lets you make

changes to your web pages on the fly, while they’re being displayed in a web browser.

How hard could that be to learn, right? It sounds like something you could knock

over in an afternoon.

But JavaScript is bigger on the inside than it seems from the outside. If you were a

Dr. Who fan, you might call it the Tardis of programming languages. If you’re not a

Dr. Who fan, roll your eyes with me as the fanboys (and girls) geek out.

Everyone back with me? Put your Daleks away, Jimmy.

As I was saying, JavaScript sounds like it should be simple. Nevertheless, throughout

its ten year history (so far), the best ways of doing things with JavaScript have

seemed to change with the seasons. And advice on how to write good JavaScript

can be found everywhere: “Do it this way—it’ll run faster!” “Use this code—it’ll

run on more browsers!” “Stay away from that feature—it causes memory leaks!”

Too many other JavaScript books—some of them from very respected names in the

industry—will teach you a handful of simple solutions to simple problems and then

call it a day, leaving you with just enough rope with which to hang yourself when

you actually try to solve a real-world problem on your own. And when in desperation

you go looking on the Web for an example that does what you need it to, you’ll

likely be unable to make sense of the JavaScript code you find, because the book

you bought didn’t cover many of the truly useful features of the language, such as

object literals, event listeners, or closures.

This book aims to be different. From the very first page, we’ll show you the right

way to use JavaScript. By working through fully fleshed-out examples that are ready

to be plugged right into a professionally-designed web site, you’ll gain the confidence

not only to write JavaScript code of your own, but to understand code that was

written by others, and even to spot harmful, old-fashioned code that's more trouble

than it’s worth!

Throughout this book, we’ve tried to go the extra mile by giving you more than just

the basics. In particular, we’ve covered some of the new JavaScript-powered devel-

opment techniques—like Ajax—that are changing the face of the Web. We’ve also

included sections that explore the new crop of JavaScript libraries like jQuery,

Prototype, Yahoo! UI, and Dojo, making this the only beginner’s JavaScript book to

cover these powerful time-savers.

… all of which made this book a lot harder to write, but that’s why they pay us the

big bucks.

Who Should Read this Book?
Whether you’ve never seen a line of JavaScript code in your life, or you’ve seen one

too many lines that doesn’t do what you expect, this book will show you how to

make JavaScript work for you.

We assume going in that you’ve got a good handle on web design with HyperText

Markup Language (HTML) and Cascading Style Sheets (CSS). You needn’t be an

expert in these languages, but as we’ll see, JavaScript is just another piece in the

puzzle. The better you understand basic web design techniques, the more you can

enhance them with JavaScript.

If you need a refresher, we highly recommend Build Your Own Web Site The Right

Way Using HTML & CSS1 (Melbourne: SitePoint, 2006).

What’s Covered in this Book?
Chapter 1: The Three Layers of the Web

A big part of learning JavaScript is learning when it’s the right tool for the job,

and when ordinary HTML and CSS can offer a better solution. Before we dive

into learning JavaScript, we’ll take a little time to review how to build web sites

with HTML and CSS, and see just how JavaScript fits into the picture.

Chapter 2: Programming with JavaScript

JavaScript is a programming language. To work with it, then, you must get your

head around the way computer programs work—which to some extent means

learning to think like a computer. The simple concepts introduced in this

1 http://www.sitepoint.com/books/html1/

Simply JavaScript (www.sitepoint.com)

Simply JavaScriptxviii

http://www.sitepoint.com/books/html1/
http://www.sitepoint.com/books/html1/
http://www.sitepoint.com/launch/6188d9

chapter—statements, variables, expressions, loops, functions, and objects—are

the building blocks for every JavaScript program you’ll ever write.

Chapter 3: Document Access

While certain people enjoy writing JavaScript code for its own sake, you wouldn’t

want to run into them in a dark alley at night. As a well-adjusted web developer,

you’ll probably want to use JavaScript to make changes to the contents of your

web pages using the Document Object Model (DOM). Lucky for you, we wrote

a whole chapter to show you how!

Chapter 4: Events

By far the most eventful portion of this book (ha ha ha … I slay me), this chapter

shows you how to write JavaScript programs that will respond to the actions of

your users as they interact with a web page. As you’ll see, this can be done in

a number of ways, for which varying degrees of support are provided by current

browsers.

Chapter 5: Animation

Okay, okay. We can talk all day about the subtle usability enhancements that

JavaScript makes possible, but we know you won’t be satisfied until you can

make things swoosh around the page. In this chapter, you’ll get all the

swooshing you can handle.

Chapter 6: Form Enhancements

I know what you’re thinking: forms are boring. Nobody leaps out of bed in the

morning, cracks their knuckles, and shouts, “Today, I’m going to fill in some

forms!” Well, once you trick out your forms with the enhancements in this

chapter, they just might. Oh, and just to spice up this chapter a bit more, we’ll

show you how to make an element on your page draggable.

Chapter 7: Errors and Debugging

When things go wrong in other programming languages, your computer will

usually throw a steady stream of error messages at you until you fix the problem.

With JavaScript, however, your computer just folds its arms and gives you a

look that seems to say, “You were expecting, maybe, something to happen?”

No, English is not your computer’s first language. What did you expect? It was

made in Taiwan. In this chapter, we’ll show you how to fix scripts that don’t

behave the way they should.

Order the print version of this book to get all 400+ pages!

xixSimply JavaScript

http://www.sitepoint.com/launch/6188d9

Chapter 8: Ajax

You might have heard about this thing called Ajax that makes web pages look

like desktop applications, and shaky business ventures look like solid invest-

ments. We put it into this book for both those reasons.

Chapter 9: Looking Forward

JavaScript doesn’t just have a future; JavaScript is the future! Okay, you might

think that’s taking it a bit far, but when you read this chapter and see the many

amazing things that JavaScript makes possible, you might reconsider.

Appendix A: The Core JavaScript Library

As we progress through the book, we’ll write code to solve many common

problems. Rather than making you rewrite that code every time you need it,

we’ve collected it all into a JavaScript library that you can reuse in your own

projects to save yourself a ton of typing. This appendix will provide a summary

and breakdown of all the code that’s collected in this library, with instructions

on how to use it.

The Book’s Web Site
Located at http://www.sitepoint.com/books/javascript1/, the web site that supports

this book will give you access to the following facilities.

The Code Archive
As you progress through this book, you’ll note file names above many of the code

listings. These refer to files in the code archive, a downloadable ZIP file that contains

all of the finished examples presented in this book. Simply click the Code Archive

link on the book’s web site to download it.

Updates and Errata
No book is error-free, and attentive readers will no doubt spot at least one or two

mistakes in this one. The Corrections and Typos page on the book’s web site2 will

provide the latest information about known typographical and code errors, and will

offer necessary updates for new releases of browsers and related standards.

2 http://www.sitepoint.com/books/javascript1/errata.php

Simply JavaScript (www.sitepoint.com)

Simply JavaScriptxx

http://www.sitepoint.com/books/javascript1/errata.php
http://www.sitepoint.com/launch/6188d9

The SitePoint Forums
If you’d like to communicate with other web developers about this book, you should

join SitePoint’s online community.3 The JavaScript forum,4 in particular, offers an

abundance of information above and beyond the solutions in this book, and a lot

of fun and experienced JavaScript developers hang out there. It’s a good way to

learn new tricks, get questions answered in a hurry, and just have a good time.

The SitePoint Newsletters
In addition to books like this one, SitePoint publishes free email newsletters includ-

ing The SitePoint Tribune, The SitePoint Tech Times, and The SitePoint Design

View. Reading them will keep you up to date on the latest news, product releases,

trends, tips, and techniques for all aspects of web development. If nothing else,

you’ll get useful CSS articles and tips, but if you’re interested in learning other

technologies, you’ll find them especially valuable. Sign up to one or more SitePoint

newsletters at http://www.sitepoint.com/newsletter/.

Your Feedback
If you can’t find an answer through the forums, or if you wish to contact us for any

other reason, the best place to write is books@sitepoint.com. We have an email

support system set up to track your inquiries, and friendly support staff members

who can answer your questions. Suggestions for improvements as well as notices

of any mistakes you may find are especially welcome.

Acknowledgments
Kevin Yank
I’d like to thank Mark Harbottle and Luke Cuthbertson, SitePoint’s Co-founder and

General Manager, who sat me down late in 2006 and—for the second time in my

career—convinced me that stepping away from SitePoint’s day-to-day operations

to write a book wouldn’t be the worst career move ever. I also owe a beverage to

3 http://www.sitepoint.com/forums/
4 http://www.sitepoint.com/launch/jsforum/

Order the print version of this book to get all 400+ pages!

xxiSimply JavaScript

http://www.sitepoint.com/forums/
http://www.sitepoint.com/launch/jsforum/
http://www.sitepoint.com/launch/6188d9

Simon Mackie, whose idea it was in the first place. Let’s hope someone buys it,

guys!

To Jessica, for the many evenings that I stayed at the office to write long past the

hour I said I’d be home, and for the boundless support and patience with which

she greeted my eventual arrival, I owe something big and chocolaty.

And to the more than 150,000 readers of the SitePoint Tech Times newsletter,5 with

whom I shared many of the ideas that made their way into this book, and who

provided valuable and challenging feedback in return, my gratitude.

Cameron Adams
The knowledge I’ve accrued on JavaScript has been drawn from so many sources

that it would be impossible to name them all. Anything that I can pass on is only

due to the contributions of hundreds—if not thousands—of charitable individuals

who use their valuable time to lay out their knowledge for the advantage of others.

If you're ever in a position to add to those voices, try your hardest to do so. Still,

I’d like to put out an old school shout-out to the Webmonkey team, in particular

Thau and Taylor, who inspired me in the beginning. I'd also like to thank my coding

colleagues, who are always available for a quick question or an extended discussion

whenever I’m stuck: Derek Featherstone, Dustin Diaz, Jonathan Snook, Jeremy Keith,

Peter-Paul Koch, and Dan Webb.

5 http://www.sitepoint.com/newsletter/

Simply JavaScript (www.sitepoint.com)

Simply JavaScriptxxii

http://www.sitepoint.com/newsletter/
http://www.sitepoint.com/launch/6188d9

Conventions Used in this Book
You’ll notice that we’ve used certain typographic and layout styles throughout this

book to signify different types of information. Look out for the following items.

Code Samples
Any code will be displayed using a fixed-width font like so:

<h1>A perfect summer's day</h1>
<p>It was a lovely day for a walk in the park. The birds
were singing and the kids were all back at school.</p>

If the code may be found in the book’s code archive, the name of the file will appear

at the top of the program listing, like this:

example.css

.footer {
 background-color: #CCC;
 border-top: 1px solid #333;
}

If only part of the file is displayed, this is indicated by the word excerpt:

example.css (excerpt)

 border-top: 1px solid #333;

Order the print version of this book to get all 400+ pages!

xxiiiSimply JavaScript

http://www.sitepoint.com/launch/6188d9

Tips, Notes, and Warnings

Hey, You!

Tips will give you helpful little pointers.

Ahem, Excuse Me …

Notes are useful asides that are related—but not critical—to the topic at hand.

Think of them as extra tidbits of information.

Make Sure you Always …

… pay attention to these important points.

Watch Out!

Warnings will highlight any gotchas that are likely to trip you up along the way.

Simply JavaScript (www.sitepoint.com)

Simply JavaScriptxxiv

http://www.sitepoint.com/launch/6188d9

Chapter1
The Three Layers of the Web
Once upon a time, there was … ‘A king!’ my little readers will say right away. No,

children, you are wrong. Once upon a time there was a piece of wood…

—The Adventures of Pinocchio

You can do a lot without JavaScript. Using Hypertext Markup Language (HTML),1

you can produce complex documents that intricately describe the content of a

page—and that content’s meaning—to the minutest detail. Using Cascading Style

Sheets (CSS), you can present that content in myriad ways, with variations as subtle

as a single color, as striking as replacing text with an image.

No matter how you dress it up, though, HTML and CSS can only achieve the static

beauty of the department store mannequin—or at best, an animatronic monstrosity

that wobbles precariously when something moves nearby. With JavaScript, you can

bring that awkward puppet to life, lifting you as its creator from humble shop clerk

to web design mastery!

1 Throughout this book, we’ll refer to HTML and XHTML as just HTML. Which you choose is up to you,

and doesn’t have much to do with JavaScript. In case it matters to you, the HTML code we’ll present in

this book will be valid XHTML 1.0 Strict.

But whether your new creation has the graceful stride of a runway model, or the

shuffling gait of Dr. Frankenstein’s monster, depends as much on the quality of its

HTML and CSS origins as it does on the JavaScript code that brought it to life.

Before we learn to work miracles, therefore, let’s take a little time to review how to

build web sites that look good both inside and out, and see how JavaScript fits into

the picture.

Keep ’em Separated
Not so long ago, professional web designers would gleefully pile HTML, CSS, and

JavaScript code into a single file, name it index.html,2 and call it a web page. You

can still do this today, but be prepared for your peers to call it something rather less

polite.

Somewhere along the way, web designers realized that the code they write when

putting together a web page does three fundamental things:

2 Or default.htm, if they had been brainwashed by Microsoft.

Simply JavaScript (www.sitepoint.com)

Simply JavaScript2

http://www.sitepoint.com/launch/6188d9

■ It describes the content of the page.
■ It specifies the presentation of that content.
■ It controls the behavior of that content.

They also realized that keeping these three types of code separate, as depicted in

Figure 1.1, made their jobs easier, and helped them to make web pages that work

better under adverse conditions, such as when users have JavaScript disabled in

their browsers.

Computer geeks have known about this for years, and have even given this principle

a geeky name: the separation of concerns.

Figure 1.1. Separation of concerns

Now, realizing this is one thing, but actually doing it is another—especially if you’re

not a computer geek. I am a computer geek, and I’m tempted to do the wrong thing

all the time.

I’ll be happily editing the HTML code that describes a web page’s content, when

suddenly I’ll find myself thinking how nice that text would look if it were in a

slightly different shade of gray, if it were nudged a little to the left, and if it had that

hee-larious photocopy of my face I made at the last SitePoint office party in the

background. Prone to distraction as I am, I want to make those changes right away.

Order the print version of this book to get all 400+ pages!

3The Three Layers of the Web

http://www.sitepoint.com/launch/6188d9

Now which is easier: opening up a separate CSS file to modify the page’s style sheet,

or just typing those style properties into the HTML code I’m already editing?

Like behaving yourself at work functions, keeping the types of code you write sep-

arate from one another takes discipline. But once you understand the benefits, you

too will be able to summon the willpower it takes to stay on the straight and narrow.

Three Layers
Keeping different kinds of code as separate as possible is a good idea in any kind

of programming. It makes it easier to reuse portions of that code in future projects,

it reduces the amount of duplicate code you end up writing, and it makes it easier

to find and fix problems months and years later.

When it comes to the Web, there’s one more reason to keep your code separate: it

lets you cater for the many different ways in which people access web pages.

Depending on your audience, the majority of your visitors may use well-appointed

desktop browsers with cutting-edge CSS and JavaScript support, but many might

be subject to corporate IT policies that force them to use older browsers, or to browse

with certain features (like JavaScript) disabled.

Visually impaired users often browse using screen reader or screen magnifier soft-

ware, and for these users your slick visual design can be more of a hindrance than

a help.

Some users won’t even visit your site, preferring to read content feeds in RSS or

similar formats if you offer them. When it comes time to build these feeds, you’ll

want to be able to send your HTML content to these users without any JavaScript

or CSS junk.

The key to accommodating the broadest possible range of visitors to your site is to

think of the Web in terms of three layers, which conveniently correspond to the

three kinds of code I mentioned earlier. These layers are illustrated in Figure 1.2.

Simply JavaScript (www.sitepoint.com)

Simply JavaScript4

http://www.sitepoint.com/launch/6188d9

Figure 1.2. The three layers of the Web

When building a site, we work through these layers from the bottom up:

1. We start by producing the content in HTML format. This is the base layer, which

any visitor using any kind of browser should be able to view.

2. With that done, we can focus on making the site look better, by adding a layer

of presentation information using CSS. The site will now look good to users able

to display CSS styles.

3. Lastly, we can use JavaScript to introduce an added layer of interactivity and

dynamic behavior, which will make the site easier to use in browsers equipped

with JavaScript.

If we keep the HTML, CSS, and JavaScript code separate, we’ll find it much easier

to make sure that the content layer remains readable in browsing environments

where the presentation and/or behavior layers are unable to operate. This “start at

the bottom” approach to web design is known in the trade as progressive enhance-

ment.

Let’s look at each of these layers in isolation to see how we can best maintain this

separation of code.

Order the print version of this book to get all 400+ pages!

5The Three Layers of the Web

http://www.sitepoint.com/launch/6188d9

HTML for Content
Everything that’s needed to read and understand the content of a web page belongs

in the HTML code for that page—nothing more, nothing less. It’s that simple. Web

designers get into trouble when they forget the K.I.S.S. principle,3 and cram non-

content information into their HTML code, or alternatively move some of the page’s

content into the CSS or JavaScript code for the page.

A common example of non-content information that’s crammed into pages is

presentational HTML—HTML code that describes how the content should look

when it’s displayed in the browser. This can include old-fashioned HTML tags like

, <i>, <u>, <tt>, and :

<p>Whatever you do, don't
 click this link!</p>

It can take the form of inline CSS applied with the style attribute:

<p>Whatever you do, don't
 click this link!</p>

It can also include the secret shame of many well-intentioned web designers—CSS

styles applied with presentational class names:

<p>Whatever you do, don't click
 this link!</p>

Presentational Class Names?

If that last example looks okay to you, you’re not alone, but it’s definitely bad

mojo. If you later decide you want that link to be yellow, you’re either stuck up-

dating both the class name and the CSS styles that apply to it, or living with the

embarrassment of a class named “red” that is actually styled yellow. That’ll turn

your face yellow—er, red!

3 Keep It Simple, Stupid.

Simply JavaScript (www.sitepoint.com)

Simply JavaScript6

http://www.sitepoint.com/launch/6188d9

Rather than embedding presentation information in your HTML code, you should

focus on the reason for the action—for example, you want a link to be displayed in

a different color. Is the link especially important? Consider surrounding it with a

tag that describes the emphasis you want to give it:

<p>Whatever you do, don't click this
 link!</p>

Is the link a warning? HTML doesn’t have a tag to describe a warning, but you could

choose a CSS class name that conveys this information:

<p>Whatever you do, don't
 click this link!</p>

You can take this approach too far, of course. Some designers mistake tags like <h1>

as presentational, and attempt to remove this presentational code from their HTML:

<p class="heading">A heading with an identity crisis</p>

Really, the presentational information that you should keep out of your document

is the font, size, and color in which a heading is to be displayed. The fact that a

piece of text is a heading is part of the content, and as such should be reflected in

the HTML code. So this code is perfectly fine:

<h1>A heading at peace with itself</h1>

In short, your HTML should do everything it can to convey the meaning, or semantics

of the content in the page, while steering clear of describing how it should look.

Web standards geeks call HTML code that does this semantic markup.

Writing semantic markup allows your HTML files to stand on their own as mean-

ingful documents. People who, for whatever reason, cannot read these documents

by viewing them in a typical desktop web browser will be better able to make sense

of them this way. Visually impaired users, for example, will be able to use assistive

software like screen readers to listen to the page as it’s read aloud, and the more

clearly your HTML code describes the content’s meaning, the more sense tools like

these will be able to make of it.

Order the print version of this book to get all 400+ pages!

7The Three Layers of the Web

http://www.sitepoint.com/launch/6188d9

Best of all, however, semantic markup lets you apply new styles (presentation) and

interactive features (behavior) without having to make many (or, in some cases,

any!) changes to your HTML code.

CSS for Presentation
Obviously, if the content of a page should be entirely contained within its HTML

code, its style—or presentation—should be fully described in the CSS code that’s

applied to the page.

With all the work you’ve done to keep your HTML free of presentational code and

rich with semantics, it would be a shame to mess up that file by filling it with

snippets of CSS.

As you probably know, CSS styles can be applied to your pages in three ways:

inline styles

Inline styles are tempting for the reasons I explained earlier: you can apply

styles to your content as you create it, without having to switch gears and edit

a separate style sheet. But as we saw in the previous section, you’ll want to

avoid inline styles like the plague if you want to keep your HTML code mean-

ingful to those who cannot see the styles.

embedded styles

<style type="text/css">
.warning {

 color: red;
 }
</style>
⋮

Embedded styles keep your markup clean, but tie your styles to a single docu-

ment. In most cases, you’ll want to share your styles across multiple pages on

your site, so it’s best to steer clear of this approach as well.

Simply JavaScript (www.sitepoint.com)

Simply JavaScript8

http://www.sitepoint.com/launch/6188d9

external styles

<link rel="stylesheet" href="styles.css" />
⋮

styles.css

.warning {
 color: red;
}

External styles are really the way to go, because they let you share your styles

between multiple documents, they reduce the amount of code browsers need

to download, and they also let you modify the look of your site without having

to get your hands dirty editing HTML.

But you knew all that, right? This is a JavaScript book, after all, so let’s talk about

the JavaScript that goes into your pages.

JavaScript for Behavior
As with CSS, you can add JavaScript to your web pages in a number of ways:

■ You can embed JavaScript code directly in your HTML content:

■ You can include JavaScript code at the top of your HTML document in a <script>

tag:

<script type="text/javascript"><!--//--><![CDATA[//><!--
JavaScript code here

//--><!]]></script>
⋮

Order the print version of this book to get all 400+ pages!

9The Three Layers of the Web

http://www.sitepoint.com/launch/6188d9

CDATA?

If you’re wondering what all that gobbledygook is following the <script>

tag and preceding the </script> tag, that’s what it takes to legitimately embed

JavaScript in an XHTML document without confusing web browsers that don’t

understand XHTML (like Internet Explorer).

If you write your page with HTML instead of XHTML, you can get away with

this much simpler syntax:

<script type="text/javascript">
JavaScript code here

</script>

■ You can put your JavaScript code in a separate file, then link to that file from as

many HTML documents as you like:

<script type="text/javascript" src="script.js"></script>
⋮

script.js (excerpt)

JavaScript code here

Guess which method you should use.

Writing JavaScript that enhances usability without cluttering up the HTML docu-

ment(s) it is applied to, without locking out users that have JavaScript disabled in

their browsers, and without interfering with other JavaScript code that might be

applied to the same page, is called unobtrusive scripting.

Unfortunately, while many professional web developers have clued in to the benefits

of keeping their CSS code in separate files, there is still a lot of JavaScript code

mixed into HTML out there. By showing you the right way to use JavaScript in this

book, we hope to help change that.

Simply JavaScript (www.sitepoint.com)

Simply JavaScript10

http://www.sitepoint.com/launch/6188d9

The Right Way
So, how much does all this stuff really matter? After all, people have been building

web sites with HTML, CSS, and JavaScript mixed together for years, and for the

majority of people browsing the Web, those sites have worked.

Well, as you come to learn JavaScript, it’s arguably more important to get it right

than ever before. JavaScript is by far the most powerful of the three languages that

you’ll use to design web sites, and as such it gives you unprecedented freedom to

completely mess things up.

As an example, if you really, really like JavaScript, you could go so far as to put

everything—content, presentation, and behavior—into your JavaScript code. I’ve

actually seen this done, and it’s not pretty—especially when a browser with Java-

Script disabled comes along.

Even more telling is the fact that JavaScript is the only one of these three languages

that has the ability to hang the browser, making it unresponsive to the user.4

Therefore, through the rest of this book, we’ll do our darnedest to show you the

right way to use JavaScript, not just because it keeps your code tidy, but because it

helps to keep the Web working the way it’s meant to—by making content accessible

to as many people as possible, no matter which web browser they choose to use.

JavaScript Libraries
As I mentioned, one of the benefits of keeping different kinds of code separate is

that it makes it easier to take code that you’ve written for one site and reuse it on

another. Certain JavaScript maniacs (to be referred to from this point on as “people”)

have taken the time to assemble vast libraries of useful, unobtrusive JavaScript code

that you can download and use on your own web sites for free.

Throughout this book, we’ll build each of the examples from scratch—all of the

JavaScript code you need can be found right here in these pages. Since there isn’t

always time to do this in the real world, however, and because libraries are quickly

4 We’ll show you an example of this in Chapter 7.

Order the print version of this book to get all 400+ pages!

11The Three Layers of the Web

http://www.sitepoint.com/launch/6188d9

becoming an important part of the JavaScript landscape, we’ll also look at how the

popular JavaScript libraries do things whenever the opportunity presents itself.

Here are the libraries that we’ll use in this book:

Prototype http://www.prototypejs.org/

script.aculo.us http://script.aculo.us/

Yahoo! User Interface Library

(YUI)

http://developer.yahoo.com/yui/

Dojo http://dojotoolkit.org/

jQuery http://jquery.com/

MooTools http://mootools.net/

Not All Libraries are Created Equal

Watch out for sites offering snippets of JavaScript code for you to copy and paste

into your web pages to achieve a particular effect. There is a lot of free code out

there, but not all of it is good.

In general, the good libraries come in the form of JavaScript (.js) files that you can

link into your pages unobtrusively, instead of pasting JavaScript directly into your

HTML code.

If you don’t feel confident to judge whether a particular JavaScript library is good

or bad, ask for some advice in the SitePoint Forums,5 or just stick with the libraries

mentioned in this book—they’re all very good.

Let’s Get Started!
Enough preaching—you picked up this book to learn JavaScript, right? (If you didn’t,

I’m afraid you’re in for a bit of a disappointment.) Clean HTML and CSS are nice

and all, but it’s time to take the plunge into the third layer of the Web: behavior.

Turn the page, and get ready to start using some cool (and unobtrusive) JavaScript.

5 http://www.sitepoint.com/forums/

Simply JavaScript (www.sitepoint.com)

Simply JavaScript12

http://www.sitepoint.com/forums/
http://www.sitepoint.com/launch/6188d9

Chapter2
Programming with JavaScript
Programming is all about speaking the language of computers. If you’re a robot, this

should be pretty easy for you, but if you’re unlucky enough to be a human, it might

take a bit of adjustment.

If you want to learn how to program, there are really two things you have to get

your head around. First, you have to think about reducing one big problem into

small, digestible chunks that are just right for a computer to crunch. Second, you

have to know how to translate those chunks into a language that the computer un-

derstands.

I find that the second part—the syntax—gradually becomes second nature (much

like when you learn a real second language), and experienced programmers have

very little trouble switching between different languages (like JavaScript, PHP, Ruby,

or Algol 60). Most of the thought in programming is focused on the first

part—thinking about how you can break down a problem so that the computer can

solve it.

By the time you’ve finished this book, you’ll understand most of the syntax that

JavaScript has to offer, but you’ll continue learning new ways to solve programming

problems for as long as you continue to program. We’ll tell you how to solve quite

a few problems in this book, but there are always different ways to achieve a given

task, and there will always be new problems to solve, so don’t think that your

learning will stop on the last page of this book.

Running a JavaScript Program
Before you even start writing your first JavaScript program, you’ll have to know

how to run it.

Every JavaScript program designed to run in a browser has to be attached to a doc-

ument. Most of the time this will be an HTML or XHTML document, but exciting

new uses for JavaScript emerge every day, and in the future you might find yourself

using JavaScript on XML, SVG, or something else that we haven’t even thought of

yet. We’re just going to worry about HTML in this book, because that’s what 99%

of people use JavaScript with.

To include some JavaScript on an HTML page, we have to include a <script> tag

inside the head of the document. A script doesn’t necessarily have to be JavaScript,

so we need to tell the browser what type of script we’re including by adding a type

attribute with a value of text/javascript:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
 "http://www.w3.org/TR/html4/strict.dtd">
<html lang="en-US">
 <head>
 <title>The Running Man</title>
 <meta http-equiv="Content-Type"
 content="text/html; charset=utf-8">

<script type="text/javascript">
 </script>

 </head>
</html>

You can put as much JavaScript code as you want inside that <script> tag—the

browser will execute it as soon as it has been downloaded:

Simply JavaScript (www.sitepoint.com)

Simply JavaScript14

http://www.sitepoint.com/launch/6188d9

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
 "http://www.w3.org/TR/html4/strict.dtd">
<html lang="en-US">
 <head>
 <title>The Running Man</title>
 <meta http-equiv="Content-Type"
 content="text/html; charset=utf-8">

 <script type="text/javascript">
alert("Arnie says hi!");

 </script>

 </head>
</html>

XHTML and Embedded JavaScript don’t Mix

For this one example, we’ve switched from an XHTML DOCTYPE to an HTML

DOCTYPE. As mentioned in Chapter 1, embedding JavaScript in XHTML requires

gobbledygook that few mortals can remember:

<script type="text/javascript"><!--//--><![CDATA[//><!--
 alert("Arnie says hi!");
//--><!]]></script>

For many, this is reason enough to avoid embedded JavaScript.

Even though it’s nice and easy to just type some JavaScript straight into your HTML

code, it’s preferable to include your JavaScript in an external file. This approach

provides several advantages:

■ It maintains the separation between content and behavior (HTML and JavaScript).
■ It makes it easier to maintain your web pages.
■ It allows you to easily reuse the same JavaScript programs on different pages of

your site.

To reference an external JavaScript file, you need to use the src attribute on the

<script> tag:

Order the print version of this book to get all 400+ pages!

15Programming with JavaScript

http://www.sitepoint.com/launch/6188d9

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" lang="en-US">
 <head>
 <title>The Running Man</title>
 <meta http-equiv="Content-Type"
 content="text/html; charset=utf-8" />

 <script type="text/javascript" src="example.js"></script>

 </head>
</html>

Any JavaScript that you might have included between your <script> and </script>

tags can now be put into that external file and the browser will download the file

and run the code.

The file can be called whatever you want, but the common practice is to include a

.js extension at the end of it.

If you’d like to try out the little program above, create a new HTML document (or

open the closest one to hand) and insert the <script> tag inside the head. Once

you’ve done that, put this snippet into a file called example.js in the same directory

or folder:

alert("Arnie says hi!");

Now, open the HTML file in your browser, and see what happens! As you read

through the rest of this chapter, you can replace the contents of example.js with each

of the simple programs that I’ll show you, and try them for yourself!

Absolute URLs Work Too

As with the src attribute of an image, you can reference a file anywhere on your

server, or anyone else’s server:

<script type="text/javascript"
 src="http://www.example.com/script.js"></script>

Simply JavaScript (www.sitepoint.com)

Simply JavaScript16

http://www.sitepoint.com/launch/6188d9

It’s possible to include as many external scripts on your page as you want:

<script type="text/javascript" src="library.js"></script>
<script type="text/javascript" src="more.js"></script>
<script type="text/javascript" src="example.js"></script>

This capability is what makes JavaScript libraries, where you include a standard

library file on your page alongside other code that uses the contents of that library,

possible.

Every time you load a page with JavaScript on it, the browser will interpret all of

the included JavaScript code and figure out what to do with it. If you’ve loaded a

page into your browser, and then you make some changes to that page’s JavaScript

(either on the page itself or in an external file), you’ll need to refresh the page before

those changes will be picked up by the browser.

Statements: Bite-sized Chunks
for your Browser
So now you know how to tell the browser that it needs to run some JavaScript, but

you don’t know any JavaScript for it to run. We’d better fix that!

Earlier, we were talking about reducing a problem into steps that a computer can

understand. Each small step you take in a program is called a statement, and it tells

the browser to perform an action. By building up a series of these actions, we create

a program. Statements are to programs as sentences are to books.

In JavaScript each statement has to be separated by a new line or a semicolon. So,

two statements could be written like this:

Statement one
Statement 2.0

Or they could be written like this:

Statement one;Statement 2.0;

Order the print version of this book to get all 400+ pages!

17Programming with JavaScript

http://www.sitepoint.com/launch/6188d9

It is generally considered best practice, however, to do both—separate statements

by a semicolon and a new line:

Statement one;
Statement 2.0;

This way, each of your statements will be easy to read, and you’ll have removed

the potential for any ambiguity that might occur if two statements accidentally run

together.

There’s a whole bunch of different tasks you can achieve inside each statement; the

first one that we’ll look at shortly is creating variables.

Comments: Bite-sized Chunks Just for You
If you follow the advice in this book and keep your JavaScript code simple and well

structured, you should be able to get the gist of how it works just by looking at it.

Every once in a while, however, you’ll find yourself crafting a particularly tricky

segment of code, or some esoteric browser compatibility issue will force you to insert

a statement that might seem like nonsense if you had to come back and work on

the program later. In situations like these, you may want to insert a comment.

A comment is a note in your code that browsers will ignore completely. Unlike the

rest of the code you write, comments are there to be read by you (or other program-

mers who might later need to work on your code). In general, they explain the sur-

rounding code, making it easier to update the program in future.

JavaScript supports two types of comments. The first is a single-line comment,

which begins with two slashes (//) and runs to the end of the line:

Statement one; // I'm especially proud of this one
Statement 2.0;

As soon as the browser sees two slashes, it closes its eyes and sings a little song to

itself until it reaches the end of the line, after which it continues to read the program

as usual.

Simply JavaScript (www.sitepoint.com)

Simply JavaScript18

http://www.sitepoint.com/launch/6188d9

If you need to write a more sizable comment, you can use a multi-line comment,

starting with /* and ending with */:

/* This is my first JavaScript program. Please forgive any
 mistakes you might find here.
 If you have any suggestions, write to n00b@example.com. */
Statement one; // I'm especially proud of this one
Statement 2.0;

You’ll notice a distinct lack of comments in the code presented in this book. The

main reason for this is that all of the code is explained in the surrounding text, so

why not save a few trees? In real-world programs, you should always include a

comment if you suspect that you might not understand a piece of code when you

return to work on it later.

Variables: Storing Data for your Program
It’s possible to write a program that defines the value of every single piece of data

it uses, but that’s like driving a ski lift—you don’t really get to choose where you’re

going. If you want your program to be able to take user input, and adapt to different

pages and situations, you have to have some way of working with values that you

don’t know in advance.

As with most programming concepts, it’s very useful at this point to think of your

computer as a BGC (Big, Giant Calculator). You know where you are with a calcu-

lator, so it makes programming a bit easier to understand.

Now, we could write a program for a calculator that said:

4 + 2

But every time we run that program, we’re going to get exactly the same answer.

There’s no way that we can substitute the values in the equation for something

else—values from another calculation, data from a file, or even user input.

If we want the program to be a bit more flexible, we need to abstract some of its

components. Take a look at the equation above and ask yourself, “What does it

really do?”

Order the print version of this book to get all 400+ pages!

19Programming with JavaScript

http://www.sitepoint.com/launch/6188d9

It adds two numbers.

If we’re getting those numbers when we run the program, we don’t know what

they’ll be when we write the program, so we need some way of referring to them

without using actual numbers. How about we give them names? Say … “x” and “y.”

Using those names, we could rewrite the program as:

x + y

Then, when we get our data values from some faraway place, we just need to make

sure it’s called x and y. Once we’ve done that, we’ve got variables.

Variables allow us to give a piece of data a name, then reference that data by its

name further along in our program. This way, we can reuse a piece of data without

having to remember what its actual value was; all we have to do is remember a

variable name.

In JavaScript, we create a variable by using the keyword var and specifying the

name we want to use:

var chameleon;

This is called declaring a variable.

Having been declared, chameleon is ready to have some data assigned to it. We can

do this using the assignment operator (=), placing the variable name on the left and

the data on the right:

var chameleon;
chameleon = "blue";

This whole process can be shortened by declaring and assigning the variable in one

go:

var chameleon = "blue";

Simply JavaScript (www.sitepoint.com)

Simply JavaScript20

http://www.sitepoint.com/launch/6188d9

In practice, this is what most JavaScript programmers do—declare a variable

whenever that variable is first assigned some data.

If you’ve never referenced a particular variable name before, you can actually assign

that variable without declaring it using var:

chameleon = "blue";

The JavaScript interpreter will detect that this variable hasn’t been declared before,

and will automatically declare it when you try to assign a value to it. At first glance,

this statement seems to do exactly the same thing as using the var keyword; however,

the variable that it declares is actually quite different, as we’ll see later in this chapter

when we discuss functions and scoping. For now, take it from me—it’s always safest

to use var.

The var keyword has to be used only when you first declare a variable. If you want

to change the value of the variable later, you do so without var:

var chameleon = "blue";
⋮
chameleon = "red";

You can use the value of a variable just by calling its name. Any occurrence of the

variable name will automatically be replaced with its value when the program is

run:

var chameleon = "blue";
alert(chameleon);

The second statement in this program tells your browser to display an alert box

with the supplied value, which in this case will be the value of the variable

chameleon, as shown in Figure 2.1.

Order the print version of this book to get all 400+ pages!

21Programming with JavaScript

http://www.sitepoint.com/launch/6188d9

Figure 2.1. JavaScript replacing the variable name with its value

Your variable names can comprise almost any combination of letters and numbers,

though no spaces are allowed. Most punctuation and symbols have special meaning

inside JavaScript, so the dollar sign ($) and the underscore (_) are the only non-al-

phanumeric characters allowed in variable names. Variable names are also case-

sensitive, so the names chameleon, Chameleon, and CHAMELEON refer to unique

variables that could exist simultaneously.

Given those rules, these are all acceptable variable declarations:

var chameleon = "blue";
var Chameleon = "red";
var CHAMELEON = "green";
var yellow_chameleon = "yellow";
var orangeChameleon = "orange";
var chameleon$ = "greedy";

It’s standard practice to create variable names in lowercase letters, unless you’re

concatenating more than one word. And as I mentioned, variable names can’t have

spaces in them, so if you want a variable name to include more than one word, you

can separate each word with an underscore (multi_word_variable) or capitalize

the first letter of each word except for the first (multiWordVariable)—an approach

called camel casing, because the name has humps like a camel (if you squint your

eyes and tilt your head slightly … kind of).

The approach you use to name variables really comes down to personal preference,

and which name style you find more readable. I use camel casing because some

long-forgotten lecturer beat it into me with a big plank.

Simply JavaScript (www.sitepoint.com)

Simply JavaScript22

http://www.sitepoint.com/launch/6188d9

Variable Types: Different Types for Different Data
A lot of programming languages feature strictly typed variables. With these, you

have to tell the program what type of data the variable is going to hold when it’s

declared, and you can’t change a variable’s type once it has been created.

JavaScript, however, is loosely typed—the language doesn’t care what your variables

hold. A variable could start off holding a number, then change to holding a character,

a word, or anything else you want it to hold.

Even though you don’t have to declare the data type up front, it’s still vital to know

what types of data a variable can store, so that you can use and manipulate them

properly inside your own programs. In JavaScript, you can work with numbers,

strings, Booleans, arrays and objects. We’ll take a look at the first four of these types

now, but you’ll have to wait till the end of the chapter to read about objects, because

they’re a bit trickier.

Numbers
Eventually, everything inside a computer is broken down into numbers (see the Big

Giant Calculator theory we explored earlier). Numbers in JavaScript come in two

flavors: whole numbers and decimals. The technical term for a whole number is an

integer or int. A decimal is called a floating point number, or float. These terms are

used in most programming languages, including JavaScript.

To create a variable with numerical data, you just assign a number to a variable

name:

var whole = 3;
var decimal = 3.14159265;

Floating point numbers can have a practically unlimited number of decimal places:

var shortDecimal = 3.1;
var longDecimal = 3.14159265358979323846264338327950288419716939937;

And both floats and integers can have negative values if you place a minus sign (-)

in front of them:

Order the print version of this book to get all 400+ pages!

23Programming with JavaScript

http://www.sitepoint.com/launch/6188d9

var negativeInt = -3;
var negativeFloat = -3.14159265;

Mathematical Operations

Numbers can be combined with all of the mathematical operations you’d expect:

addition (+), subtraction (-), multiplication (*), and division (/). They’re written in

fairly natural notation:

var addition = 4 + 6;
var subtraction = 6 – 4;
var multiplication = 5 * 9;
var division = 100 / 10;
var longEquation = 4 + 6 + 5 * 9 – 100 / 10;

The symbols that invoke these operations in JavaScript—+, -, *, and /—are called

operators, and as we’ll see through the rest of this chapter, JavaScript has a lot of

them!

In a compound equation like the one assigned to longEquation, each of the opera-

tions is subject to standard mathematical precedence (that is, multiplication and

division operations are calculated first, from left to right, after which the addition

and subtraction operations are calculated from left to right).

If you want to override the standard precedence of these operations, you can use

brackets, just like you learned in school. Any operations that occur inside brackets

will be calculated before any multiplication or division is done:

var unbracketed = 4 + 6 * 5;
var bracketed = (4 + 6) * 5;

Here, the value of unbracketed will be 34, because 6 * 5 is calculated first. The

value of bracketed will be 50, because (4 + 6) is calculated first.

You can freely combine integers and floats in your calculations, but the result will

always be a float:

Simply JavaScript (www.sitepoint.com)

Simply JavaScript24

http://www.sitepoint.com/launch/6188d9

var whole = 3;
var decimal = 3.14159265;
var decimal2 = decimal – whole;
var decimal3 = whole * decimal;

decimal2 now equals 0.14159265 and decimal3 equals 9.42477795.

If you divide two integers and the result is not a whole number, it will automatically

become a float:

var decimal = 5 / 4;

The value of decimal will be 1.25.

Calculations can also involve any combination of numbers or numerical variables:

var dozen = 12;
var halfDozen = dozen / 2;
var fullDozen = halfDozen + halfDozen;

A handy feature of JavaScript is the fact that you can refer to the current value of a

variable in describing a new value to be assigned to it. This capability lets you do

things like increase a variable’s value by one:

var age = 26;
age = age + 1;

In the second of these statements, the age reference on the right uses the value of

age before the calculation; the result of the calculation is then assigned to age,

which ends up being 27. This means you can keep calculating new values for the

same variable without having to create temporary variables to store the results of

those calculations.

The program above can actually be shortened using the handy += operator, which

tells your program to add and assign in one fell swoop:

var age = 26;
age += 1;

Order the print version of this book to get all 400+ pages!

25Programming with JavaScript

http://www.sitepoint.com/launch/6188d9

Now, age will again equal 27.

It turns out that adding 1 to a variable is something that happens quite frequently

in programming (you’ll see why when we get to loops later in this chapter), and

there’s an even shorter shortcut for adding 1 to a variable:

var age = 26;
age++;

By adding the special ++ operator to the end of age, we tell the program to increment

the value of age by 1 and assign the result of this operation as the new value. After

those calculations, age again equals 27.

Before or After?

As an alternative to placing the increment operator at the end of a variable name,

you can also place it at the beginning:

var age = 26;
++age;

This achieves exactly the same end result, with one subtle difference in the pro-

cessing: the value of age is incremented before the variable’s value is read. This

has no effect in the code above, because we’re not using the variable’s value there,

but consider this code:

var age = 26;
var ageCopy = age++;

Here, ageCopy will equal 26. Now consider this:

var age = 26;
var ageCopy = ++age;

In this code, ageCopy will equal 27.

Due to the possible confusion arising from this situation, the tasks of incrementing

a variable and reading its value are not often completed in a single step. It’s safer

to increment and assign variables separately.

Simply JavaScript (www.sitepoint.com)

Simply JavaScript26

http://www.sitepoint.com/launch/6188d9

As well as these special incrementing operators, JavaScript also has the correspond-

ing decrementing operators, -= and --:

var age = 26;
age -= 8;

Now age will be 18, but let’s imagine we just wanted to decrease it by one:

var age = 26;
age--;

age will now be 25.

You can also perform quick assignment multiplication and division using *= and

/=, but these operators are far less common.

Strings
A string is a series of characters of any length, from zero to infinity (or as many as

you can type in your lifetime; ready … set … go!). Those characters could be letters,

numbers, symbols, punctuation marks, or spaces—basically anything you can find

on your keyboard.

To specify a string, we surround a series of characters with quote marks. These can

either be single or double straight quote marks,1 just as long as the opening quote

mark matches the closing quote mark:

var single = 'Just single quotes';
var double = "Just double quotes";
var crazyNumbers = "18 crazy numb3r5";
var crazyPunctuation = '~cr@zy_punctu&t!on';

The quote marks don’t appear in the value of the string, they just mark its boundaries.

You can prove this to yourself by putting the following code into a test JavaScript

file:

1 Some text editors will let you insert curly quotes around a string, “like this.” JavaScript will not recognize

strings surrounded by curly quotes; it only recognizes straight quotes, "like this."

Order the print version of this book to get all 400+ pages!

27Programming with JavaScript

http://www.sitepoint.com/launch/6188d9

var single = 'Just single quotes';
alert(single);

When you load the HTML page that this file’s attached to, you’ll see the alert shown

in Figure 2.2.

Figure 2.2. The string’s value displaying without the quotes used to create the string

It’s okay to include a single quote inside a double-quoted string, or a double quote

inside a single-quoted string, but if you want to include a quote mark inside a string

that’s quoted with the same mark, you must precede the internal quote marks with

a backslash (\). This is called escaping the quote marks:

var singleEscape = 'He said \'RUN\' ever so softly.';
var doubleEscape = "She said \"hide\" in a loud voice.";

Don’t worry—those backslashes disappear when the string is actually used. Let’s

put this code into a test JavaScript file:

var doubleEscape = "She said \"hide\" in a loud voice.";
alert(doubleEscape);

When you load the HTML page the file’s attached to, you’ll see the alert box shown

in Figure 2.3.

Simply JavaScript (www.sitepoint.com)

Simply JavaScript28

http://www.sitepoint.com/launch/6188d9

Figure 2.3. The string’s value displaying without the backslashes used to escape quote marks in the string

It doesn’t matter whether you use single or double quotes for your strings—it’s just

a matter of personal preference. I tend to use double quotes, but if I’m creating a

string with a lot of double quotes in it (such as HTML code), I’ll switch to using

single quotes around that string, just so I don’t have to escape all the double quotes

it contains.

String Operations

We can’t perform as many operations on strings as we can on numbers, but a couple

of very useful operators are available to us.

If you’d like to add two strings together, or concatenate them, you use the same +

operator that you use for numbers:

var complete = "com" + "plete";

The value of complete will now be "complete".

Again, you can use a combination of strings and string variables with the + operator:

var name = "Slim Shady";
var sentence = "My name is " + name;

The value of sentence will be "My name is Slim Shady".

You can use the += operator with strings, but not the ++ operator—it doesn’t make

sense to increment strings. So the previous set of statements could be rewritten as:

Order the print version of this book to get all 400+ pages!

29Programming with JavaScript

http://www.sitepoint.com/launch/6188d9

var name = "Slim Shady";
var sentence = "My name is ";
sentence += name;

There’s one last trick to concatenating strings: you can concatenate numbers and

strings, but the result will always end up being a string. If you try to add a number

to a string, JavaScript will automatically convert the number into a string, then

concatenate the two resulting strings:

var sentence = "You are " + 1337

sentence now contains "You are 1337". Use this trick when you want to output

sentences for your h4x0r friends.

Booleans
Boolean values are fairly simple, really—they can be either true or false. It’s

probably easiest to think of a Boolean value as a switch that can either be on or off.

They’re used mainly when we’re making decisions, as we’ll see in a few pages time.

In order to assign a Boolean value to a variable, you simply specify which state you

want it to be in. true and false are keywords in JavaScript, so you don’t need to

put any quote marks around them:

var lying = true;
var truthful = false;

If you were to surround the keywords in quote marks, they’d just be normal strings,

not Boolean values.

Arrays
Numbers, strings and Booleans are good ways to store individual pieces of data, but

what happens when you have a group of data values that you want to work with,

like a list of names or a series of numbers? You could create a whole bunch of

variables, but they still wouldn’t be grouped together, and you’d have a hard time

keeping track of them all.

Simply JavaScript (www.sitepoint.com)

Simply JavaScript30

http://www.sitepoint.com/launch/6188d9

Arrays solve this problem by providing you with an ordered structure for storing

a group of values. You can think of an array as being like a rack in which each slot

is able to hold a distinct value.

In order to create an array, we use the special array markers, which are the opening

and closing square brackets:

var rack = [];

The variable rack is now an array, but there’s nothing stored in it.

Each “slot” in an array is actually called an element, and in order to put some data

into an element you have to correctly reference which element you want to put it

in. This reference is called an index, which is a number that represents an element’s

position in an array. The first element in an array has an index of 0, which can be

a little confusing at first, but it’s just a programming quirk you have to get used to.

The second element has an index of 1, the third: 2, and so on.

To reference a particular element, we use the variable name, followed by an opening

square bracket, then the index and a closing square bracket, like this:

var rack = [];
rack[0] = "First";
rack[1] = "Second";

With that data in the array, you could imagine it looking like Figure 2.4.

Figure 2.4. An array storing data sequentially, with an index for each element, starting at 0

Order the print version of this book to get all 400+ pages!

31Programming with JavaScript

http://www.sitepoint.com/launch/6188d9

When we want to retrieve a particular element, we use the array-index notation just

like a normal variable name. So, if we had an array like the one above, we could

create an alert box displaying the value of the second element like this:

alert(rack[1]);

The resulting alert is shown in Figure 2.5.

Figure 2.5. An alert box displaying a value retrieved from an array

It’s possible to populate an array when it’s declared. We simply insert values, sep-

arated with commas, between the square brackets:

var rack = ["First", "Second", "Third", "Fourth"];

That statement says that we should create an array—rack—that has four elements

with the values specified here. The first value will have an index of 0, the second

value an index of 1, and so on. The array that’s created will look like Figure 2.6.

Figure 2.6. The resulting array

Simply JavaScript (www.sitepoint.com)

Simply JavaScript32

http://www.sitepoint.com/launch/6188d9

Arrays can contain any data type—not just strings—so you could have an array of

numbers:

var numberArray = [1, 2, 3, 5, 8, 13, 21, 34];

You might have an array of strings:

var stringArray = ["Veni", "Vidi", "Vici"];

A mixed array, containing multiple data types, would look like this:

var mixedArray = [235, "Parramatta", "Road"];

Here’s an array of arrays:

var subArray1 = ["Paris", "Lyon", "Nice"];
var subArray2 = ["Amsterdam", "Eindhoven", "Utrecht"];
var subArray3 = ["Madrid", "Barcelona", "Seville"];

var superArray = [subArray1, subArray2, subArray3];

That last example is what we call a multi-dimensional array—it’s a two-dimensional

array, to be precise—and it’s useful if you want to create a group of groups. In order

to retrieve a value from one of the sub-arrays, you have to reference two indices,

like so:

var city = superArray[0][2];

If we translate that statement, starting from the right side, it says:

[2] Get the third element …

[0] of the first array …

superArray in superArray ...

var city = and save that value in a new variable, city.

Order the print version of this book to get all 400+ pages!

33Programming with JavaScript

http://www.sitepoint.com/launch/6188d9

It’s possible to have arrays of arrays of arrays, and arrays of arrays of arrays of arrays,

but as you can probably tell from these descriptions, such arrangements quickly

become unmanageable, so two-dimensional arrays are normally as far as you ever

need to go.

The last thing to understand about arrays is the fact that a very useful property is

attached to them: length. Sometimes, you’ll be dealing with an unknown array—an

array you’ve obtained from somewhere else—and you won’t know how many ele-

ments it contains. In order to avoid referencing an element that doesn’t exist, you

can check the array’s length to see how many items it actually contains. We perform

this check by adding .length to the end of the array name:

var shortArray = ["First", "Second", "Third"];
var total = shortArray.length;

The value of total will now be 3 because there are three items in the array

shortArray.

It’s important to note that you can’t use array.length to get the index of the last

item in the array. Because the first item’s index is 0, the last item’s index is actually

array.length – 1:

var lastItem = shortArray[shortArray.length – 1];

This situation might seem a bit annoying, until you realize that this makes it easy

to add an element to the end of the array:

shortArray[shortArray.length] = "Fourth";

Associative Arrays
Normal arrays are great for holding big buckets of data, but they can sometimes

make it difficult to find the exact piece of data you’re looking for.

Associative arrays provide a way around this problem—they let you specify key-

value pairs. In most respects an associative array is just like an ordinary array, except

that instead of the indices being numbers, they’re strings, which can be a lot easier

to remember and reference:

Simply JavaScript (www.sitepoint.com)

Simply JavaScript34

http://www.sitepoint.com/launch/6188d9

var postcodes = [];
postcodes["Armadale"] = 3143;
postcodes["North Melbourne"] = 3051;
postcodes["Camperdown"] = 2050;
postcodes["Annandale"] = 2038;

Now that we’ve created our associative array, it’s not hard to get the postcode for

Annandale. All we have to do is specify the right key, and the value will appear:

alert(postcodes["Annandale"]);

The resulting alert is shown in Figure 2.7.

Figure 2.7. Finding a postcode using an associative array

Although the keys for an associative array have to be strings, the values can be of

any data type, including other arrays or associative arrays.

Conditions and Loops: Controlling
Program Flow
So far, we’ve seen statements that allow you to set and retrieve variables inside your

program. For a program to be really useful, however, it has to be able to make de-

cisions based on the values of those variables.

The way we make those decisions is through the use of special structures called

conditions and loops, which help to control which parts of your program will run

under particular conditions, and how many times those parts will be run.

Order the print version of this book to get all 400+ pages!

35Programming with JavaScript

http://www.sitepoint.com/launch/6188d9

Conditions: Making Decisions
If you think of your program as being like a road map, and the browser as a car

navigating those roads, you’ll realize that the browser has to be able to take different

paths depending on where the user wants to go. Although a program might seem

like a linear path—one statement following another—conditional statements act

like intersections, allowing you to change directions on the basis of a given condition.

if Statements
The most common conditional statement is an if statement. An if statement checks

a condition, and if that condition is met, allows the program to execute some code.

If the condition isn’t met, the code is skipped.

The flow of a program through an if statement can be visualized as in Figure 2.8.

Figure 2.8. The logical flow of an if statement

Simply JavaScript (www.sitepoint.com)

Simply JavaScript36

http://www.sitepoint.com/launch/6188d9

Written as code, if statements take this form:

if (condition)
{
conditional code;

}

Instead of a semicolon, an if statement ends with the conditional code between

curly braces ({…}).2 It’s considered best practice to put each of these braces on its

own line, to make it as easy as possible to spot where blocks of code begin and end.

Indenting Code

It’s standard practice to indent the code that’s inside curly braces.

On each indented line, a standard number of spaces or tab characters should appear

before the first character of the statement. This helps to improve the readability

of your code and makes it easier to follow the flow of your programs.

We use two spaces as the standard indentation in this book, but you can use four

spaces, one tab—whatever looks best to you. Just be consistent. Every time you

nest curly braces (for instance, in another if statement inside a block of condi-

tional code), you should increase the indentation for the nested lines by one

standard indent.

The condition has to be contained within round brackets (also called parentheses)

and will be evaluated as a Boolean, with true meaning the code between the curly

braces will be executed and false indicating it will be skipped. However, the con-

dition doesn’t have to be an explicit Boolean value—it can be any expression that

evaluates to a value that’s able to be used as a Boolean.

Expressions

An expression is a combination of values, variable references, operators, and

function calls that, when evaluated, produce another value. Wherever a JavaScript

value (like a number or a string) is expected, you can use an expression instead.

2 If the conditional code consists of just one statement, you can choose to omit the curly braces. I find

it clearer to always include the braces, which is what we’ll do in this book.

Order the print version of this book to get all 400+ pages!

37Programming with JavaScript

http://www.sitepoint.com/launch/6188d9

Here’s a simple expression:

4 + 6

When evaluated, it produces a value (10). We can write a statement that uses this

expression like so:

var effect = 4 + 6;

We now have in our program a variable called effect, with a value of 10.

With conditional statements, the most useful types of expressions are those that

use comparison operators to test a condition and return a Boolean value indicating

its outcome.

You might remember comparison operators such as greater than (>) and less than

(<) from some of your old mathematics classes, but there are also equality (==) and

inequality (!=) operators, and various combinations of these. Basically, each com-

parison operator compares what’s on the left of the operator with what’s on the

right, then evaluates to true or false. You can then use that result in a conditional

statement like this:

var age = 27;

if (age > 20)
{
 alert("Drink to get drunk");
}

The greater than and less than operators are really only useful with numbers, because

it feels a bit too Zen to ask “is one string greater than another?”

However, the equality operator (==) is useful with both strings and numbers:

var age = 27;

if (age == 50){
 alert("Half century");
}

Simply JavaScript (www.sitepoint.com)

Simply JavaScript38

http://www.sitepoint.com/launch/6188d9

var name = "Maximus";

if (name == "Maximus")
{
 alert("Good afternoon, General.");
}

In the first condition, age is 27 and we’re testing whether it is equal to 50; obviously,

this condition will evaluate to false, so the conditional code will not be run.

In the second condition, name is "Maximus" and we’re testing whether it is equal to

"Maximus". This condition will evaluate to true and the conditional code will be

executed.

== versus =

Be careful to use two equals signs rather than one when you intend to check for

equality. If you use only one, you’ll be assigning the value on the right to the

variable on the left, rather than comparing them, so you’ll end up losing your

original value rather than checking it!

We can reverse the equality test by using the inequality operator (!=):

var name = "Decimus";

if (name != "Maximus")
{
 alert("You are not allowed in.");
}

Now, because name is "Decimus" and we’re testing whether it isn’t equal to "Maximus"

that condition will evaluate to true and the conditional code will be run.

Table 2.1 lists the most commonly used comparison operators, and the results they’ll

return with different values:

Order the print version of this book to get all 400+ pages!

39Programming with JavaScript

http://www.sitepoint.com/launch/6188d9

Table 2.1. Commonly Used Comparison Operators

ResultExampleOperator

true if A is greater than BA > B>

true if A is greater than or equal to BA >= B>=

true if A is less than BA < B<

true if A is less than or equal to BA <= B<=

true if A equals BA == B==

true if A does not equal BA != B!=

true if A’s Boolean value is false!A!

Multiple Conditions

Instead of using just one test as a condition, you can create a whole chain of them

using the logical operators AND (&&) and OR (||).3

Both of these operators may be used to combine conditional tests. The AND operator

specifies that both tests must evaluate to true in order for the whole expression to

evaluate to true. The OR operator specifies that only one of the tests has to evaluate

to true in order for the whole expression to evaluate to true.

Take a look at this conditional statement:

var age = 27;

if (age > 17 && age < 21)
{
 alert("Old enough to vote, too young to drink");
}

Here, age is greater than 17 but it’s not less than 21, so, since one of the tests evalu-

ated to false, the entire condition evaluates to false. This is a good way to check

if a number falls within a specific range.

On the other hand, the OR operator is good for checking whether a variable matches

one of a few values:

3 That’s two vertical bars, not lowercase Ls or number 1s.

Simply JavaScript (www.sitepoint.com)

Simply JavaScript40

http://www.sitepoint.com/launch/6188d9

var sport = "Skydiving";

if (sport == "Bungee jumping" || sport == "Cliff diving" ||
 sport == "Skydiving")
{
 alert("You're extreme!");
}

Although the first two tests in this expression evaluate to false, sport matches the

last test in the OR expression, so the whole condition will evaluate to true.

if-else Statements
An if statement allows you to execute some code when a condition is met, but

doesn’t offer any alternative code for cases when the condition isn’t met. That’s the

purpose of the else statement.

In an if-else statement, you begin just as you would for an if statement, but im-

mediately after the closing brace of the if, you include an else, which specifies

code to be executed when the condition of the if statement fails:

if (condition)
{
conditional code;

}
else
{
alternative conditional code;

}

The flow of this construct can be visualized as shown in Figure 2.9.

To provide some alternative code, all you have to do is append an else statement

to the end of the if:

var name = "Marcus";

if (name == "Maximus")
{
 alert("Good afternoon, General.");
}

Order the print version of this book to get all 400+ pages!

41Programming with JavaScript

http://www.sitepoint.com/launch/6188d9

Figure 2.9. The logical flow of an if-else statement

else
{
 alert("You are not allowed in.");
}

This approach saves you from creating a separate if statement with a negative for-

mulation of the original condition.

else-if Statements
Technically speaking, else-if isn’t a separate type of statement from if-else, but

you should be aware of it, because it can be quite useful.

Simply JavaScript (www.sitepoint.com)

Simply JavaScript42

http://www.sitepoint.com/launch/6188d9

If you want to provide some alternative code for cases in which an if statement

fails, but you want to further assess the data in order to decide what course of action

to take, an else-if statement is what you need. Instead of just typing else, type

else if, followed by the extra condition you want to test:

var name = "Marcus";

if (name == "Maximus")
{
 alert("Good afternoon, General.");
}
else if (name == "Marcus")
{
 alert("Good afternoon, Emperor.");
}
else
{
 alert("You are not allowed in.");
}

You can chain together as many else-if statements as you want, and at the end,

you can include a normal else statement for use when everything fails (though it’s

not necessary).

Loops: Minimizing Repetition
Computers are meant to make life easier, right? Well, where are those darn robot

servants, huh?

Luckily, computers have a few capabilities that will save you thinking and typing

time when you’re programming. The most effective of these are loops, which auto-

mate repetitive tasks like modifying each element in an array.

There are a couple of different loop statements but they essentially do the same

thing: repeat a set of actions for as long as a specified condition is true.

while Loops
while is the simplest of the loops. All it needs is a condition, and some conditional

code:

Order the print version of this book to get all 400+ pages!

43Programming with JavaScript

http://www.sitepoint.com/launch/6188d9

while (condition)
{
conditional code;

}

When the program first encounters the while loop, it checks the condition. If the

condition evaluates to true, the conditional code will be executed. When the pro-

gram reaches the end of the conditional code, it goes back up to the condition,

checks it, and if it evaluates to true, the conditional code will be executed … and

so on, as Figure 2.10 shows.

A while loop only finishes when its condition evaluates to false. This means it’s

important to have something inside the conditional code that will affect the condi-

tion, eventually making it evaluate to false. Otherwise, your program will never

escape the while loop, and will repeat the conditional code forever, causing the

browser to become unresponsive.4

Loops are extremely handy when they’re used in conjunction with arrays, because

they allow you to step sequentially through the array and perform the same operation

on each element.

To step through an array with a while loop, you need an incrementing counter that

starts at 0 and increases by one each time the loop executes. This incrementer will

keep track of the index of the element that we’re currently working with. When we

reach the end of the array, we need to make it stop—that’s where we use the array’s

length property.

In this example, we’ll multiply each element of the numbers array by two:

var numbers = [1, 2, 3, 4, 5];
var incrementer = 0;
while (incrementer < numbers.length)
{
 numbers[incrementer] *= 2;
 incrementer++;
}

4 In Firefox, the browser will eventually display a message to the user complaining that your script is

taking a long time to execute. Oh, the shame!

Simply JavaScript (www.sitepoint.com)

Simply JavaScript44

http://www.sitepoint.com/launch/6188d9

Figure 2.10. The logical flow of a while loop

The conditional code inside that while loop uses incrementer as the index for the

array. Starting at 0, this variable will reference the first element, but because we

increase it by one for each execution of the loop, it will step through all of the ele-

ments in turn. Once incrementer has the same value as numbers.length, the con-

dition will fail and the program will exit the while loop, having doubled all the

elements in the array.

i is for incrementer

The variable name incrementer is frequently shortened to i, which is a com-

monly used name for a variable that increments inside a loop. This variable is

often called a counter variable, because it counts how many times the loop has

been executed.

Order the print version of this book to get all 400+ pages!

45Programming with JavaScript

http://www.sitepoint.com/launch/6188d9

do-while Loops
A do-while loop behaves almost identically to a while loop, with one key difference:

the conditional code is placed before the condition, so the conditional code is always

executed at least once, even if the condition is immediately false.

The conditional code is placed inside the curly braces of the do; the while statement

contains the condition right after that:

do
{
conditional code;

}
while (condition);

The flow of the program can be described as in Figure 2.11.

do-while loops aren’t used very much. In fact, I don’t think I’ve used one in ten

years of programming.5 Your friends and family will be impressed if you know

about them, though.

for Loops
for loops are my favorite kind of loops—they’re so succinct!

They’re a lot like while loops, but they offer a couple of handy shortcuts for state-

ments that we commonly use with loops. Consider this while loop:

var numbers = [1, 2, 3, 4, 5];
var i = 0;
while (i < numbers.length)
{
 numbers[i] *= 2;
 i++;
}

With a for loop, you can reduce the code above to:

5 The co-author wishes it noted that he uses them all the time … possibly just because he likes to show

off.

Simply JavaScript (www.sitepoint.com)

Simply JavaScript46

http://www.sitepoint.com/launch/6188d9

Figure 2.11. The logical flow of a do-while loop

var numbers = [1, 2, 3, 4, 5];

for (var i = 0; i < numbers.length; i++)
{
 numbers[i] *= 2;
}

A for loop shortens two aspects of the while loop: the declaration of a counter

variable, and the incrementing of that variable.

If you look inside the round brackets immediately after the for keyword, you’ll see

three different statements separated by semicolons. The first statement is the declar-

ation. It allows us to declare a counter variable—in this case i—and set its initial

value.

Order the print version of this book to get all 400+ pages!

47Programming with JavaScript

http://www.sitepoint.com/launch/6188d9

The second statement is the condition that controls the loop. Just like the condition

in a while loop, this condition must evaluate to true in order for the conditional

code to be executed. It’s evaluated as soon as the program reaches the for loop (but

after the counter has been declared), so if it evaluates to false immediately, the

conditional code will never be executed.

The third statement is an action that will be executed every time the program reaches

the end of the conditional code. It is normally used to increment (or decrement) the

counter, but you could theoretically put anything in there.

A for loop can be thought to exhibit a flow similar to that shown in Figure 2.12.

Functions: Writing Code for Later
So far, all the JavaScript code we’ve seen (and you’ve perhaps tried out) executes

as soon as the page loads in your browser. It runs from top to bottom and then stops,

never to run again (at least, until the page is reloaded).

Quite often, we’ll want to execute different parts of our program at different times,

or re-run the same code quite a few times. In order to do this, you have to put your

code into functions.

Functions are like little packages of JavaScript code waiting to be called into action.

You’ve seen one function already in this chapter—the alert function we used to

pop up an alert box in the browser. alert is a function that’s native to all

browsers—that means it comes built-in with the browser’s JavaScript interpreter—but

it’s possible to create your own functions, which you can call whenever you want.

A function can essentially be seen as a wrapper for a block of code. All you need

to do is name that block, and you’ll be able to call it from other areas of your program,

whenever you like.

You can define your own functions using the function keyword. This tells the

program that you’re defining a new function, and that the code contained between

the curly braces that follow should be executed whenever that function is called:

Simply JavaScript (www.sitepoint.com)

Simply JavaScript48

http://www.sitepoint.com/launch/6188d9

Figure 2.12. The logical flow of a for loop

function warning()
{
 alert("This is your final warning");
}

Order the print version of this book to get all 400+ pages!

49Programming with JavaScript

http://www.sitepoint.com/launch/6188d9

The name that follows the function keyword is the name that you want to give

your function (function names have the same restrictions as variable names). This

is the name you’ll call whenever you want your program to run the code inside the

function. The name must be followed by round brackets—they’re empty in this in-

stance, but as you’ll see in the next section, this will not always be the case.

In the example above, we created a new function called warning, so whenever we

make a call to this function, the statements inside the function will be executed,

causing an alert box to appear, displaying the text, “This is your final warning.”

As in the function declaration above, round brackets must appear immediately after

the function name in a function call:

warning();

These brackets serve two purposes: they tell the program that you want to execute

the function, and they contain the data—also known as arguments—that you want

to pass to the function.6 Not every function has to have arguments passed to it, but

you always have to use the brackets in a function call.

Arguments: Passing Data to a Function
If you look at the ways we used the alert function on previous pages, you’ll notice

that we always inserted a string between the brackets of the function call:

alert("Insert and play");

The string "Insert and play" is actually an argument that we’re passing to the

alert function; the alert is designed to take that argument and display it in the

browser’s alert box.

Functions can be designed to take as many arguments as you want, and those argu-

ments don’t have to be strings—they can be any sort of data that you can create in

JavaScript.

6 Some people like to call these “parameters.” Some people also like to eat sheep’s brains.

Simply JavaScript (www.sitepoint.com)

Simply JavaScript50

http://www.sitepoint.com/launch/6188d9

When you define your function, you can provide names for the arguments that are

to be passed to it. These are included in the round brackets immediately after the

function name, with a comma separating arguments in cases where there’s more

than one:

function sandwich(bread, meat)
{
 alert(bread + meat + bread);
}

Once an argument name has been defined in the function declaration, that argument

becomes a variable that’s available every time the function is run, allowing you to

use the data passed to the function inside the function itself.

As you can see in the sandwich function above, two arguments are defined: bread

and meat. These two arguments are used in a call to alert and produce a little

nonsensical message to the user.

Let’s call the function sandwich with the arguments "Rye" and "Pastrami":

sandwich("Rye", "Pastrami");

When the code for sandwich is executed, those arguments become available as the

variables bread and meat, respectively. So, as Figure 2.13 indicates, the user would

end up with a pastrami on rye.

Figure 2.13. Using a function argument as a variable

Order the print version of this book to get all 400+ pages!

51Programming with JavaScript

http://www.sitepoint.com/launch/6188d9

The arguments Array

In addition to being available in their assigned argument names, the values that

are passed to a function are also made available inside an automatically generated

array variable named arguments.

Even if you don’t declare any argument names in your function declaration, you

can actually pass one or more arguments when you call the function. These argu-

ments will still be available in the arguments array. This can be useful for writing

functions that will accept any number of arguments.

Imagine we called a function with these arguments:

debate("affirmative", "negative");

We could access those arguments via the arguments array inside the function,

like this:

function debate()
{
 var affirmative = arguments[0];
 var negative = arguments[1];
}

Return Statements: Outputting Data from a Function
Thus far, the outcome of most of our functions has been to display an alert box to

the user with a message in it. But most of the time, you’ll want your functions to

be silent, simply passing data to other parts of your program.

A function may return data to the statement that called it. The neat thing about that

is that you can assign a function call as the value of a variable, and that variable’s

value will become whatever was returned by the function.

To get a function to return a value, we use the return keyword, followed by the

value we want it to return:

Simply JavaScript (www.sitepoint.com)

Simply JavaScript52

http://www.sitepoint.com/launch/6188d9

function sandwich(bread, meat)
{
 var assembled = bread + meat + bread;

return assembled;
}

Then, the function’s all ready to be used in an expression:

var lunch = sandwich("Rye", "Pastrami");

The lunch variable now contains the string "RyePastramiRye".

If you want to get really tricky, you’ll be pleased to hear that the return value can

even be an expression:

function sandwich(bread, meat)
{
 return bread + meat + bread;
}

The expression will be evaluated and the result will be returned, producing the

same effect as the previous version of the code.

A return statement is always the final act of a function; nothing else is processed

after a function has returned. Consider this code:

function prematureReturner()
{
 return "Too quick";

 alert("Was it good for you?");
}

The alert function wouldn’t be called, because the return statement would always

“cut off” execution of the function. This ability to “cut off” execution of a function

with a return statement can be handy when used in conjunction with a conditional

statement, where you only want the rest of the function to be executed if a certain

condition is met.

Order the print version of this book to get all 400+ pages!

53Programming with JavaScript

http://www.sitepoint.com/launch/6188d9

Scope: Keeping your Variables Separate
Right back at the start of this chapter I mentioned that you should avoid using

variables without first declaring them using the var keyword. This will help you

prevent variable clashes in your functions.

Most of the variables we saw in this chapter weren’t declared inside a function, and

therefore reside in what’s known as global scope. Variables declared in global scope

may be accessed from any other JavaScript code running in the current web page.

This mightn’t sound too bad, and it often won’t be a problem … until you start using

common variable names inside your functions.

Take a look at this program:

function countWiis()
{
 stock = 5;
 sales = 3;

 return stock - sales;
}

stock = 0;
wiis = countWiis();

What will be the value of stock after this code has run?

You’d probably expect it still to be 0, which is what we set it to be before calling

countWiis. However, countWiis also uses a variable called stock. But because the

function doesn’t use var to declare this variable, JavaScript will go looking outside

the function—in the global scope—to see whether or not that variable already exists.

Indeed it does, so JavaScript will assign the value 5 to that global variable.

What we really intended was for countWiis to use its own separate stock variable.

To achieve this, we need to declare that variable with local scope. A variable with

local scope exists only within the confines of the function in which it was created.

It also takes precedence over variables with global scope—if a local variable and a

global variable both have the same name, a function will always use the local vari-

able, leaving the global variable untouched.

Simply JavaScript (www.sitepoint.com)

Simply JavaScript54

http://www.sitepoint.com/launch/6188d9

How do you declare a local variable? Put var in front of it.

Let’s reformulate our code with all our variables correctly declared:

function countWiis()
{
var stock = 5;
var sales = 3;

 return stock - sales;
}

var stock = 0;
var wiis = countWiis();

The stock variable declared outside the countWiis function will remain untouched

by the stock variable declared inside countWiis—our function can live in peace

and harmony with the rest of the universe!

The lesson here is that unless you intend a variable to be shared throughout your

program, always declare it with var.7

Objects
Now that we’ve looked at variables and functions, we can finally take a look at ob-

jects.

Objects are really just amorphous programming blobs. They’re an amalgam of all

the other data types, existing mainly to make life easier for programmers. Still, their

vagueness of character doesn’t mean they’re not useful.

Objects exist as a way of organizing variables and functions into logical groups. If

your program deals with bunnies and robots, it’ll make sense to have all the functions

and variables that relate to robots in one area, and all the functions and variables

7 Strictly speaking, variables created outside of functions will always be in the global scope, whether

they are declared with var or created simply by assigning a value to an undeclared variable name.

Nevertheless, declaring all your variables with var is a good habit to get into, and is considered best

practice.

Order the print version of this book to get all 400+ pages!

55Programming with JavaScript

http://www.sitepoint.com/launch/6188d9

that relate to bunnies in another area. Objects do this by grouping together sets of

properties and methods.

Properties are variables that are only accessible via their object, and methods are

functions that are only accessible via their object. By requiring all access to properties

and methods to go through the objects that contain them, JavaScript objects make

it much easier to manage your programs.

We’ve actually played with objects already—when you create a new array, you’re

creating a new instance of the built-in Array object. The length of an array is actually

a property of that object, and arrays also have methods like push and splice, which

we’ll use later in this book.

An array is a native object, because it’s built in to the JavaScript language, but it’s

easy to create your own objects using the Object constructor:

var Robot = new Object();

Naming Conventions

Variable names start with a lowercase letter, while object names start with an

uppercase letter. That’s just the way it is. After decades of finely honed program-

ming practice, this convention helps everyone distinguish between the two.

Once you’ve instantiated your new object, you’re then free to add properties and

methods to it, to modify the values of existing properties, and to call the object’s

methods. The properties and methods of an object are both accessed using the dot

(.) syntax:

Robot.metal = "Titanium";
Robot.killAllHumans = function()
{
 alert("Exterminate!");
};

Robot.killAllHumans();

The first line of this code adds to our empty Robot object a metal property, assigning

it a value of "Titanium". Note that we don’t need to use the var keyword when

Simply JavaScript (www.sitepoint.com)

Simply JavaScript56

http://www.sitepoint.com/launch/6188d9

we’re declaring properties, since properties are always in object scope—they must

be accessed via the object that contains them.

The statement that begins on the second line adds a killAllHumans method to our

Robot object. Note that this is a little different from the syntax that we used previ-

ously to declare a standalone function; here, our method declaration takes the form

of an assignment statement (note the assignment operator, =, and the semicolon at

the end of the code block).

Alternative Syntax for Standalone Functions

As it turns out, you can also use this syntax to declare standalone functions if you

want to. Never let it be said that JavaScript doesn’t give you options! Before, we

used this function declaration:

function sandwich(bread, meat)
{
 alert(bread + meat + bread);
}

JavaScript lets you write this in the form of a variable assignment, if you prefer:

var sandwich = function(bread, meat)
{
 alert(bread + meat + bread);
};

As you might expect, there is a very subtle difference between the effects of these

two code styles: a function declared with the former syntax can be used by any

code in the file, even if it comes before the function declaration. A function de-

clared with the latter syntax can only be used by code that executes after the as-

signment statement that declares the function. If your code is well organized,

however, this difference won’t matter.

Finally, the last line of our program calls the Robot object’s killAllHumans method.

As with a lot of JavaScript, we can shortcut this whole sequence using the object

literal syntax:

Order the print version of this book to get all 400+ pages!

57Programming with JavaScript

http://www.sitepoint.com/launch/6188d9

var Robot =
{
 metal: "Titanium",
 killAllHumans: function()
 {
 alert("Exterminate!");
 }
};

Rather than first creating an empty object and then populating it with properties

and methods using a series of assignment statements, object literal syntax lets you

create the object and its contents with a single statement.

In object literal syntax, we represent a new object with curly braces; inside those

braces, we list the properties and methods of the object, separated by commas. For

each property and method, we assign a value using a colon (:) instead of the assign-

ment operator.

Object literal syntax can be a little difficult to read once you’ve been using the

standard assignment syntax for a while, but it is slightly more succinct.

We’re going to use this object literal syntax throughout this book to create neatly

self-contained packages of functionality that you can easily transport from page to

page.

Unobtrusive Scripting in the Real World
After reading Chapter 1, you no doubt have it fairly clear in your head that HTML

is for content and JavaScript is for behavior, and never the twain shall meet. How-

ever, it’s not quite that simple in the real world.

If you have a close look at the way JavaScript is downloaded alongside the HTML

page that links to it, you should notice that sometimes—in fact most of the time—the

JavaScript will download before all of the HTML has downloaded. This presents

us with a slight problem.

Browsers execute JavaScript files as soon as the JavaScript file is downloaded—not

the HTML file. So chances are that the JavaScript will be executed before all of the

HTML has been downloaded. If your JavaScript executes and is trying to enhance

Simply JavaScript (www.sitepoint.com)

Simply JavaScript58

http://www.sitepoint.com/launch/6188d9

the HTML content with behavior before it’s ready, you’re probably going to start

seeing JavaScript errors about HTML elements not being where they’re supposed

to be.

One way around this problem is to wait until all of the HTML is ready before you

run any JavaScript that modifies or uses the HTML. Luckily, JavaScript has a way

of detecting when the web page is ready to do this. Unluckily, the code involved is

rather complicated.

To get you up to speed quickly, I’ve created a special library object, Core. This object

includes a method called start that monitors the status of the page, and lets your

JavaScript objects know when it’s safe to start playing around with the HTML. It

does this by calling your object’s init method. All you have to do is let the function

know which objects require this notification, and make sure each of those objects

has an init method that will start working with the web page when it’s called.

So, if you had a Robot object that wanted to find all the robots on your page, you’d

write the following code:

var Robot =
{
 init: function()
 {

Your HTML modifying code;
 }
};

Core.start(Robot);

By registering Robot with Core.start on the final line, you can rest assured that

Robot.init will be run only when it’s safe to do so.

Core.start uses some JavaScript voodoo that we’ll learn about in later chapters,

but if you want to know all the details now, flick to Appendix A.

Summary
If you’ve never programmed before, stepping into JavaScript can be a little daunting,

so don’t think you have to understand it straight away. Take the time to read through

Order the print version of this book to get all 400+ pages!

59Programming with JavaScript

http://www.sitepoint.com/launch/6188d9

this chapter’s explanations again, and maybe try out some of the examples—I find

I learn best by practical experience and experimentation.

Once you’ve got a firm understanding of the concepts behind programming and the

basics of JavaScript, continue on to the next chapter, where we’ll learn how to work

with the contents of web pages and create some real-world programs.

Simply JavaScript (www.sitepoint.com)

Simply JavaScript60

http://www.sitepoint.com/launch/6188d9

Chapter3
Document Access
Without a document, JavaScript would have no way to make its presence felt. It’s

HTML that creates the tangible interface through which JavaScript can reach its

users.

This relationship makes it vital that JavaScript be able to access, create, and manip-

ulate every part of the document. To this end, the W3C created the Document Object

Model—a system through which scripts can influence the document. This system

not only allows JavaScript to make changes to the structure of the document, but

enables it to access a document’s styles and change the way it looks.

If you want to take control of your interfaces, you’ll first have to master the DOM.

The Document Object Model:
Mapping your HTML
When an HTML document is downloaded to your browser, that browser has to do

the job of turning what is essentially one long string of characters into a web page.

To do this, the browser decides which parts are paragraphs, which parts are headings,

which parts are text, and so on. In order to save poor JavaScript programmers from

having to do the exact same work, the browser stores its interpretation of the HTML

code as a structure of objects, called the Document Object Model, or DOM.

Within this model, each element in the HTML document becomes an object, as do

all the attributes and text. JavaScript can access each of these objects independently,

using built-in functions that make it easy to find and change what we want on the

fly.

As a result of the way in which HTML is written—as a hierarchy of nested elements

marked with start and end tags—the DOM creates a different object for each element,

but links each element object to its enclosing (or parent) element. This creates an

explicit parent-child relationship between elements, and lends the visualization of

the DOM most readily to a tree structure.

Take, for example, this HTML:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" lang="en-US">
 <head>
 <title>DOMinating JavaScript</title>
 <meta http-equiv="Content-Type"
 content="text/html; charset=utf-8" />
 </head>
 <body>
 <h1>
 DOMinating JavaScript
 </h1>
 <p>
 If you need some help with your JavaScript, you might like
 to read articles from <a href="http://www.danwebb.net/"
 rel="external">Dan Webb,
 PPK
 and Jeremy
 Keith.
 </p>
 </body>
</html>

Simply JavaScript (www.sitepoint.com)

Simply JavaScript62

http://www.sitepoint.com/launch/6188d9

These elements, as mapped out in the DOM, can most easily be thought of as shown

in Figure 3.1.

Figure 3.1. Each element on an HTML page linking to its parent in the DOM

To create the DOM for a document, each element in the HTML is represented by

what’s known as a node. A node’s position in the DOM tree is determined by its

parent and child nodes.

An element node is distinguished by its element name (head, body, h1, etc.), but

this doesn’t have to be unique. Unless you supply some identifying characterist-

ic—like an id attribute—one paragraph node will appear much the same as another.

Technically, there’s a special node that’s always contained in a document, no matter

what that document’s content is. It always sits right at the top of the tree and it’s

called the document node. With that in mind, Figure 3.2 would be a more accurate

representation of the DOM.

Order the print version of this book to get all 400+ pages!

63Document Access

http://www.sitepoint.com/launch/6188d9

Figure 3.2. The DOM tree, including the document node

Element nodes (that is, nodes that represent HTML elements) are one type of node,

and they define most of the structure of the DOM, but the actual content of a docu-

ment is contained in two other types of nodes: text nodes and attribute nodes.

Text Nodes
In HTML code, anything that’s not contained between angled brackets will be inter-

preted as a text node in the DOM. Structurally, text nodes are treated almost exactly

like element nodes: they sit in the same tree structure and can be reached just like

element nodes; however, they cannot have children.

If we reconsider the HTML example we saw earlier, and include the text nodes in

our visualization of the DOM, it becomes a lot bigger, as Figure 3.3 illustrates.

Simply JavaScript (www.sitepoint.com)

Simply JavaScript64

http://www.sitepoint.com/launch/6188d9

Figure 3.3. The complete DOM tree, including text nodes

Although those text nodes all look fairly similar, each node has its own value, which

stores the actual text that the node represents. So the value of the text node inside

the title element in this example would be “DOMinating JavaScript.”

Whitespace May Produce Text Nodes

As well as visible characters, text nodes contain invisible characters such as new

lines and tabs. If you indent your code to make it more readable (as we do in this

book), each of the lines and tabs that you use to separate any tags or text will be

included in a text node.

This means you may end up with text nodes in between adjacent elements, or

with extra white space at the beginning or end of a text node. Browsers handle

these whitespace nodes differently, and this variability in DOM parsing is the

reason why you have to be very careful when relying upon the number or order

of nodes in the DOM.

Attribute Nodes
With tags and text covered by element and text nodes, the only pieces of information

that remain to be accounted for in the DOM are attributes. At first glance, attributes

would appear to be part of an element—and they are, in a way—but they still occupy

their own type of nodes, handily called attribute nodes.

Order the print version of this book to get all 400+ pages!

65Document Access

http://www.sitepoint.com/launch/6188d9

Any of the three anchor elements in the example DOM we saw earlier could be

visualized as shown in Figure 3.4 with the element’s attribute nodes.

Figure 3.4. The href and rel attributes represented as attribute nodes in the DOM

Attribute nodes are always attached to an element node, but they don’t fit into the

structure of the DOM like element and text nodes do—they’re not counted as children

of the element they’re attached to. Because of this, we use different functions to

work with attribute nodes—we’ll discuss those functions later in the chapter.

As you can see from the diagrams presented here, the DOM quickly becomes com-

plex—even with a simple document—so you’ll need some powerful ways to

identify and manipulate the parts you want. That’s what we’ll be looking at next.

Accessing the Nodes you Want
Now that we know how the DOM is structured, we’ve got a good idea of the sorts

of things we’ll want to access. Each node—be it an element, text, or attribute

node—contains information that we can use to identify it, but it’s a delicate matter

to sort through all of the nodes in a document to find those we want.

In many ways, manipulating an element via the DOM is a lot like applying element

styles via CSS. Both tasks take this general pattern:

1. Specify the element or group of elements that you want to affect.

2. Specify the effect you want to have on them.

Simply JavaScript (www.sitepoint.com)

Simply JavaScript66

http://www.sitepoint.com/launch/6188d9

Although the ways in which we manipulate elements vary greatly between the two

technologies, the processes we use to find the elements we want to work on are

strikingly similar.

Finding an Element by ID
The most direct path to an element is via its id attribute. id is an optional HTML

attribute that can be added to any element on the page, but each ID you use has to

be unique within that document:

<p id="uniqueElement">
 ⋮
</p>

If you set out to find an element by ID, you’ll need to make one big assumption:

that the element you want has an ID. Sometimes, this assumption will mean that

you need to massage your HTML code ahead of time, to make sure that the required

element has an ID; at other times, that ID will naturally appear in the HTML (as part

of the document’s semantic structure). But once an element does have an ID, it be-

comes particularly easy for JavaScript to find.

If you wanted to reference a particular element by ID in CSS, you’d use an ID selector

beginning with #:

#uniqueElement
{
 color: blue;
}

Roughly translated, that CSS says:

Find the element with the ID uniqueElement.

Make its color blue.

CSS is quite a succinct language. JavaScript is not. So, to reference an element by

ID in JavaScript, we use the getElementById method, which is available only from

the document node. It takes a string as an argument, then finds the element that has

that string as its ID. I like to think of getElementById as a sniper that can pick out

Order the print version of this book to get all 400+ pages!

67Document Access

http://www.sitepoint.com/launch/6188d9

one element at a time—highly targeted. For instance, imagine that our document

included this HTML:

<h1>
 Sniper (1993)
</h1>
<p>
 In this cinema masterpiece,
 Tom Berenger plays
 a US soldier working in the Panamanian jungle.
</p>

We can obtain a reference to the HTML element with the ID berenger, irrespective

of what type of element it is:

var target = document.getElementById("berenger");

The variable target will now reference the DOM node for the anchor element

around Tom Berenger’s name. But let’s suppose that the ID was moved onto another

element:

<h1 id="berenger">
 Sniper (1993)
</h1>
<p>
 In this cinema masterpiece,
 Tom Berenger plays a US soldier
 working in the Panamanian jungle.
</p>

Now, if we execute the same JavaScript code, our target would reference the h1

element.

Once you have a reference to an element node, you can use lots of native methods

and properties on it to gain information about the element, or modify its contents.

You’ll explore a lot of these methods and properties as you progress through this

book.

If you’d like to try to get some information about the element we just found, you

can access one or more of the element node’s native properties. One such property

Simply JavaScript (www.sitepoint.com)

Simply JavaScript68

http://www.sitepoint.com/launch/6188d9

is nodeName, which tells you the exact tag name of the node you’re referencing. To

display the tag name of the element captured by getElementById, you could run

this code:

var target = document.getElementById("berenger");
alert(target.nodeName);

An alert dialog will pop up displaying the tag name, as shown in Figure 3.5.

Figure 3.5. Displaying an element’s tag name using the nodeName property

If an element with the particular ID you’re looking for doesn’t exist, getElementById

won’t return a reference to a node—instead, it will return the value null. null is a

special value that usually indicates some type of error. Essentially, it indicates the

absence of an object when one might normally be expected.

If you’re not sure that your document will contain an element with the particular

ID you’re looking for, it’s safest to check that getElementById actually returns a

node object, because performing most operations on a null value will cause your

program to report an error and stop running. You can perform this check easily using

a conditional statement that verifies that the reference returned from getElementById

isn’t null:

var target = document.getElementById("berenger");

if (target != null)
{
 alert(target.nodeName);
}

Order the print version of this book to get all 400+ pages!

69Document Access

http://www.sitepoint.com/launch/6188d9

Finding Elements by Tag Name
Using IDs to locate elements is excellent if you want to modify one element at a

time, but if you want to find a group of elements, getElementsByTagName is the

method for you.

Its equivalent in CSS would be the element type selector:

li
{
 color: blue;
}

Unlike getElementById, getElementsByTagName can be executed as a method of

any element node, but it’s most commonly called on the document node.

Take a look at this document:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" lang="en-US">
 <head>
 <title>Tag Name Locator</title>
 <meta http-equiv="Content-Type"
 content="text/html; charset=utf-8" />
 </head>
 <body>
 <p>
 There are 3 different types of element in this body:
 </p>

 paragraph

 unordered list

 list item

Simply JavaScript (www.sitepoint.com)

Simply JavaScript70

http://www.sitepoint.com/launch/6188d9

 </body>
</html>

We can retrieve all these list item elements using one line of JavaScript:

var listItems = document.getElementsByTagName("li");

By executing that code, you’re telling your program to search through all of the

descendants of the document node, get all the nodes with a tag name of "li", and

assign that group to the listItems variable.

listItems ends up containing a collection of nodes called a node list. A node list

is a JavaScript object that contains a list of node objects in source order. In the ex-

ample we just saw, all the nodes in the node list have a tag name of "li".

Node lists behave a lot like arrays, which we saw in Chapter 2, although they lack

some of the useful methods that arrays provide. In general, however, you can treat

them the same way. Since getElementsByTagName always returns a node list in

source order, we know that the second node in the list will actually be the second

node in the HTML source, so to reference it you would use the index 1 (remember,

the first index in an array is 0):

var listItems = document.getElementsByTagName("li");
var secondItem = listItems[1];

secondItem would now be a reference to the list item containing the text “unordered

list.”

Node lists also have a length property, so you can retrieve the number of nodes in

a collection by referencing its length:

var listItems = document.getElementsByTagName("li");
var numItems = listItems.length;

Given that the document contained three list items, numItems will be 3.

Order the print version of this book to get all 400+ pages!

71Document Access

http://www.sitepoint.com/launch/6188d9

The fact that a node list is referenced similarly to an array means that it’s easy to

use a loop to perform the same task on each of the nodes in the list. If we wanted

to check that getElementsByTagName only returned elements with the same tag

name, we could output the tag name of each of the nodes using a for loop:

var listItems = document.getElementsByTagName("li");

for (var i = 0; i < listItems.length; i++)
{
 alert(listItems[i].nodeName);
}

Unlike getElementById, getElementsByTagName will return a node list even if no

elements matched the supplied tag name. The length of this node list will be 0.

This means it’s safe to use statements that check the length of the node list, as in

the loop above, but it’s not safe to directly reference an index in the list without

first checking the length to make sure that the index will be valid. Looping through

the node list using its length property as part of the loop condition is usually the

best way to do this.

Restricting Tag Name Selection
At the start of this section, I mentioned that getElementsByTagName can be executed

from any element node, not just the document node. Calling this method from an

element node allows you to restrict the area of the DOM from which you want to

select nodes.

For instance, imagine that your document included multiple unordered lists, like

this:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" lang="en-US">
 <head>
 <title>Tag Name Locator</title>
 <meta http-equiv="Content-Type"
 content="text/html; charset=utf-8" />
 </head>
 <body>
 <p>

Simply JavaScript (www.sitepoint.com)

Simply JavaScript72

http://www.sitepoint.com/launch/6188d9

 There are 3 different types of element in this body:
 </p>

 paragraph

 unordered list

 list item

 <p>
 There are 2 children of html:
 </p>

 head

 body

 </body>
</html>

Now, you might want to get the list items from the second list only—not the first.

If you were to call document.getElementsByTagName("li"), you’d end up with a

collection that contained all five list items in the document, which, obviously, is

not what you want. But if you get a reference to the second list and use that reference

to call the method, it’s possible to get the list items from that list alone:

var lists = document.getElementsByTagName("ul");
var secondList = lists[1];
var secondListItems = secondList.getElementsByTagName("li");

secondListItems now contains just the two list items from the second list.

Here, we’ve used two getElementsByTagName calls to get the elements we wanted,

but there is an alternative. We could use a getElementById call to get the required

reference to the second list (if the second list had an ID) before we called

Order the print version of this book to get all 400+ pages!

73Document Access

http://www.sitepoint.com/launch/6188d9

getElementsByTagName, to get the list items it contains. Combining multiple DOM

method calls is something you should get a feel for fairly quickly. The best approach

will often depend upon the structure of the HTML you’re dealing with.

Finding Elements by Class Name
It’s quite often very handy to find elements based on a class rather than a tag name.

Although we’re stuck with the same 91 HTML elements wherever we go, we can

readily customize our classes to create easily referenced groups of elements that

suit our purposes.

Compared to searching by tag name, using a class as a selector can be a more gran-

ular way to find elements (as it lets you get a subset of a particular tag name group)

as well as a broader way to find elements (as it lets you select a group of elements

that have a range of tag names).

Unfortunately, no built-in DOM function lets you get elements by class, so I think

it’s time we created our first real function! Once that’s done, we can add the function

to our custom JavaScript library and call it whenever we want to get all elements

with a particular class.

Starting your First Function
When you’re writing a function or a program, your first step should be to define

clearly in plain English what you want it to do. If you’re tackling a relatively simple

problem, you might be able to translate that description straight into JavaScript, but

usually you’ll need to break the task down into simple steps.

The full description of what we want to do here could be something like, “find all

elements with a particular class in the document.”

That sounds deceptively simple; let’s break it down into more logical steps:

1. Look at each element in the document.

2. For each element, perform a check that compares its class against the one we’re

looking for.

3. If the classes match, add the element to our group of elements.

Simply JavaScript (www.sitepoint.com)

Simply JavaScript74

http://www.sitepoint.com/launch/6188d9

A couple of things should jump out at you immediately from those steps. Firstly,

whenever you see the phrase “for each,” chances are that you’re going to need a

loop. Secondly, whenever there’s a condition such as “if it matches,” you’re going

to need a conditional statement. Lastly, when we talk about a “group,” that usually

means an array or node list.

With those predictions in mind, let’s turn these three steps into code.

Looking at All the Elements
First of all, we’ll need to get all the elements in the document. We do this using

getElementsByTagName, but we’re not going to look for a particular tag; instead,

we’re going to pass this method the special value "*", which tells it to return all

elements.

Unfortunately, Internet Explorer 5.x doesn’t understand that special value, so we

have to write some additional code in order to support that browser. In Internet

Explorer 5.x, Microsoft created a special object that contains all the elements in the

document, and called it document.all. document.all is basically a node list con-

taining all the elements, so it’s synonymous with calling

document.getElementsByTagName("*").

Most other browsers don’t have the document.all object, but those that do implement

it just like Internet Explorer, so our code can simply test to see whether document.all

exists. If it does, we use the Internet Explorer 5.x way of getting all the elements. If

it doesn’t, we use the normal approach:

var elementArray = [];

if (typeof document.all != "undefined")
{
 elementArray = document.all;
}
else
{
 elementArray = document.getElementsByTagName("*");
}

The conditional statement above uses the typeof operator to check for the existence

of document.all. typeof checks the data type of the value that follows it, and pro-

Order the print version of this book to get all 400+ pages!

75Document Access

http://www.sitepoint.com/launch/6188d9

duces a string that describes the value’s type (for instance, "number", "string",

"object", etc.). Even if the value is null, it will still return a type ("object"), but

if you supply typeof with a variable or property name that hasn’t been assigned

any value whatsoever, it will return the string "undefined". This technique, called

object detection, is the safest way of testing whether an object—such as

document.all—exists. If typeof returns "undefined", we know that the browser

doesn’t implement that feature.

Whichever part of the conditional statement the browser decides to execute, we

end up correctly assigning to elementArray a node list of every element in the

document.

Checking the Class of Each Element
Now that we have a collection of elements to look at, we can check the class of each:

var pattern = new RegExp("(^|)" + theClass + "(|$)");

for (var i = 0; i < elementArray.length; i++)
{
 if (pattern.test(elementArray[i].className))
 {
 ⋮
 }
}

The value that we assign to the variable pattern on the first line will probably look

rather alien to you. In fact, this is a regular expression, which we’ll explore more

fully in Chapter 6. For now, what you need to know is that regular expressions help

us search strings for a particular pattern. In this case, our regular expression uses

the variable theClass as the class we want to match against; theClass will be passed

into our function as an argument.

Once we’ve set up our regular expression with that class name, we use a for loop

to step through each of the elements in elementArray.

Every time we move through the for loop, we use the pattern regular expression,

testing the current element’s class attribute against it. We do this by passing the

element’s className property—a string value—to the regular expression’s test

Simply JavaScript (www.sitepoint.com)

Simply JavaScript76

http://www.sitepoint.com/launch/6188d9

method. Every element node has a className property, which corresponds directly

to that element’s class attribute in the HTML.

When pattern.test is run, it checks the string argument that’s passed to it against

the regular expression. If the string matches the regular expression (that is, it contains

the specified class name), it will return true; if the string doesn’t match the regular

expression, it will return false. In this way, we can use a regular expression test

as the condition for an if statement. In this example, we use the conditional state-

ment to tell us if the current element has a class that matches the one we’re looking

for.

But why can’t we just perform a direct string comparison on the class, like this?

if (elementArray[i].className == theClass) // this won't work

The thing about dealing with an element’s className property is that it can actually

contain multiple classes, separated by spaces, like this:

<div class="article summary clicked">

For this reason, simply checking whether the class attribute’s value equals the

class that we’re interested in is not always sufficient. When checking to see

whether class contains a particular class, we need to use a more advanced method

of searching within the attribute value, which is why we used a regular expression.

Adding Matching Elements to our Group of Elements
Once we’ve decided that an element matches the criteria we’ve set, we need to add

it to our group of elements. But where’s our group? Earlier, I said that a node list is

a lot like an array. We can’t actually create our own node lists—the closest thing

we can create is an array.

Outside the for loop, we create the array that’s going to hold the group of elements,

then add each matched element to the array as we find it:

var matchedArray = [];
var pattern = new RegExp("(^|)" + theClass + "(|$)");

for (var i = 0; i < elementArray.length; i++)

Order the print version of this book to get all 400+ pages!

77Document Access

http://www.sitepoint.com/launch/6188d9

{
 if (pattern.test(elementArray[i].className))
 {

matchedArray[matchedArray.length] = elementArray[i];
 }
}

Within the if statement we wrote in the previous step, we add any newly matched

elements to the end of matchedArray, using its current length as the index of the

new element (remember that the length of an array will always be one more than

the index of the last element).

Once the for loop has finished executing, all of the elements in the document that

have the required class will be referenced inside matchedArray. We’re almost done!

Putting it All Together
The guts of our function are now pretty much written. All we have to do is paste

them together and put them inside a function:

core.js (excerpt)

Core.getElementsByClass = function(theClass)
{
 var elementArray = [];

 if (typeof document.all != "undefined")
 {
 elementArray = document.all;
 }
 else
 {
 elementArray = document.getElementsByTagName("*");
 }

 var matchedArray = [];
 var pattern = new RegExp("(^|)" + theClass + "(|$)");

 for (var i = 0; i < elementArray.length; i++)
 {
 if (pattern.test(elementArray[i].className))
 {

Simply JavaScript (www.sitepoint.com)

Simply JavaScript78

http://www.sitepoint.com/launch/6188d9

 matchedArray[matchedArray.length] = elementArray[i];
 }
 }

return matchedArray;
};

We’ve called our new function Core.getElementsByClass, and our function

definition contains one argument—theClass—which is the class we use to construct

our regular expression. As well as placing the code inside a function block, we in-

clude a return statement that passes matchedArray back to the statement that called

Core.getElementsByClass.

Now that it’s part of our Core library, we can use this function to find a group of

elements by class from anywhere in our JavaScript code:

var elementArray = Core.getElementsByClass("dataTable");

Navigating the DOM Tree
The methods for finding DOM elements that I’ve described so far have been fairly

targeted—we’re jumping straight to a particular node in the tree without worrying

about the connections in between.

This works fine when there’s some distinguishing feature about the element in

question that allows us to identify it: an ID, a tag name, or a class. But what if you

want to get an element on the basis of its relationship with the nodes that surround

it? For instance, if we have a list item node and want to retrieve its parent ul, how

do we do that? For that matter, how do we get the next item in the list?

For each node in the tree, the DOM specifies a number of properties, and it’s these

properties that allow us to move around the tree one step at a time. Where

document.getElementById and its ilk are like direct map references (“go to S37°

47.75’, E144° 59.01’”), these DOM properties are like giving directions: “turn left

onto the Bayshore Freeway and a right onto Amphitheater Parkway.” Some people

call this process walking the DOM.

Order the print version of this book to get all 400+ pages!

79Document Access

http://www.sitepoint.com/launch/6188d9

Finding a Parent
Every element node—except for the document node—has a parent. Consequently,

each element node has a property called parentNode. When we use this property,

we receive a reference to the target element’s parent.

Consider this HTML:

<p>
 Oliver Twist
</p>

Once we have a reference to the anchor element, we can get a reference to its parent

paragraph using parentNode like so:

var oliver = document.getElementById("oliver");
var paragraph = oliver.parentNode;

Finding Children
The parent-child relationship isn’t just one way. You can find all of the children of

an element using the childNodes property.

An element can only have one parent, but it can have many children, so childNodes

is actually a node list that contains all of the element’s children, in source order.

Take, for instance, a list like this:

<ul id="baldwins">

 Alec

 Daniel

 William

Simply JavaScript (www.sitepoint.com)

Simply JavaScript80

http://www.sitepoint.com/launch/6188d9

 Stephen

The unordered list node will have four child nodes,1 each of which matches a list

item. To get the third list item (the one containing “William”) in the list above, we’d

get the third element in the childNodes list:

var baldwins = document.getElementById("baldwins");
var william = baldwins.childNodes[2];

Two shortcut properties are available to help us get the first child or last child of

an element: the firstChild and lastChild properties, respectively.

To get the “Alec” list item, we could just use:

var alec = baldwins.firstChild;

And to get the “Stephen” list item, we can use:

var stephen = baldwins.lastChild;

I don’t think firstChild is all that much easier than typing childNodes[0], but

lastChild is definitely shorter than childNodes[childNodes.length – 1], so it’s

a shortcut that I use regularly.

Finding Siblings
As well as moving up and down the DOM tree, we can move from side to side by

getting the next or previous node on the same level. The properties we use to do so

are nextSibling and previousSibling.

If we continued on from the example we saw a moment ago, we could get to the

“Stephen” list item from “William” using nextSibling:

var stephen = william.nextSibling;

1 As noted at the start of this chapter, the number of nodes may vary depending on whether the browser

in question counts the whitespace between each of the list items.

Order the print version of this book to get all 400+ pages!

81Document Access

http://www.sitepoint.com/launch/6188d9

We could get to the “Daniel” list item using previousSibling:

var daniel = william.previousSibling;

If we’re at the last node on a level, and try to get the nextSibling, the property will

be null. Similarly, if we’re at the first node on a level and try to get

previousSibling, that property will also be null. You should check to make sure

you have a valid node reference whenever you use either of these properties.

Figure 3.6 provides a clear visualization of where each of these DOM-walking

properties will get you to from a given node in the DOM tree.

Figure 3.6. Moving around the DOM tree using the element node’s DOM properties

Interacting with Attributes
As I mentioned when we discussed the structure of the DOM, attributes are localized

to the elements they’re associated with—they don’t have much relevance in the

larger scheme of things. Therefore, we don’t have DOM functions that will let you

find a particular attribute node, or all attributes with a certain value.

Attributes are more focused on reading and modifying the data related to an element.

As such, the DOM only offers two methods related to attributes, and both of them

can only be used once you have an element reference.

Simply JavaScript (www.sitepoint.com)

Simply JavaScript82

http://www.sitepoint.com/launch/6188d9

Getting an Attribute
With a reference to an element already in hand, you can get the value of one of its

attributes by calling the method getAttribute with the attribute name as an argu-

ment.

Let’s get the href attribute value for this link:

Let's all hug Koko

We need to create a reference to the anchor element, then use getAttribute to re-

trieve the value:

var koko = document.getElementById("koko");
var kokoHref = koko.getAttribute("href");

The value of kokoHref will now be "http://www.koko.org/".

This approach works for any of the attributes that have been set for an element:

var koko = document.getElementById("koko");
var kokoId = koko.getAttribute("id");

The value of kokoId will now be "koko".

At least, that’s how it’s supposed to work, according to the W3C. But in reality,

getAttribute is beset by problems in quite a few of the major browsers.2 Firefox

returns null for unset values when it’s supposed to return a string, as does Opera

9. Internet Explorer returns a string for most unset attributes, but returns null for

non-string attributes like onclick. When it does return a value, Internet Explorer

subtly alters a number of the attribute values it returns, making them different from

those returned by other browsers. For example, it converts href attribute values to

absolute URLs.

2 getAttribute is a bit of a mess across all browsers, but most noticeably in Internet Explorer. For

a complete rundown of what’s going on, visit http://tobielangel.com/2007/1/11/attribute-nightmare-in-ie.

Order the print version of this book to get all 400+ pages!

83Document Access

http://www.sitepoint.com/launch/6188d9

With all of these problems currently in play, at the moment it’s safer to use the old-

style method of getting attributes, which we can do by accessing each attribute as

a dot property of an element.

In using this approach to get the href on our anchor, we’d rewrite the code as fol-

lows:

var koko = document.getElementById("koko");
var kokoHref = koko.href;

In most cases, fetching an attribute value is just a matter of appending the attribute

name to the end of the element, but in a couple of cases the attribute name is a re-

served word in JavaScript. This is why we use element.className for the class

attribute, and why, if you ever need to get the for attribute, you’ll need to use

element.htmlFor.

Setting an Attribute
As well as being readable, all HTML attributes are writable via the DOM.

To write an attribute value, we use the setAttribute method on an element, spe-

cifying both the attribute name we want to set and the value we want to set it to:

var koko = document.getElementById("koko");
koko.setAttribute("href", "/koko/");

When we run those lines of code, the href for Koko’s link will change from

http://www.koko.org/ to /koko/.

Thankfully, there are no issues with setAttribute across browsers, so we can safely

use it anywhere.

setAttribute can be used not only to change preexisting attributes, but also to add

new attributes. So if we wanted to add a title that described the link in more detail,

we could use setAttribute to specify the value of the new title attribute, which

would be added to the anchor element:

var koko = document.getElementById("koko");
koko.setAttribute("title", "Web site of the Gorilla Foundation");

Simply JavaScript (www.sitepoint.com)

Simply JavaScript84

http://www.sitepoint.com/launch/6188d9

If you were to take the browser’s internal representation of the document following

this DOM change and convert it to HTML, here’s what you’d get:

<a id="koko" href="http://www.koko.org/"
 title="Web site of the Gorilla Foundation">Let's all hug
 Koko

Changing Styles
Almost every aspect of your web page is accessible via the DOM, including the way

it looks.

Each element node has a property called style. style is a deceptively expansive

object that lets you change every aspect of an element’s appearance, from the color

of its text, to its line height, to the type of border that’s drawn around it. For every

CSS property that’s applicable to an element, style has an equivalent property that

allows us to change that property’s value.

To change the text color of an element, we’d use style.color:

var scarlet = document.getElementById("scarlet");
scarlet.style.color = "#FF0000";

To change its background color, we’d use style.backgroundColor:

var indigo = document.getElementById("indigo");
indigo.style.backgroundColor = "#000066";

We don’t have enough space here to list every property you could change, but there’s

a good rule of thumb: if you wish to access a particular CSS property, simply append

it as a property of the style object. Any properties that include hyphens (like

text-indent) should be converted to camel case (textIndent). If you leave the

hyphen in there, JavaScript will try to subtract one word from the other, which

makes about as much sense as that sentence!

Any changes to the style object will take immediate effect on the display of the

page. Using style, it’s possible to change a page like Figure 3.7 into a page like

Figure 3.8 using just three lines of code.

Order the print version of this book to get all 400+ pages!

85Document Access

http://www.sitepoint.com/launch/6188d9

Figure 3.7. A standard page

Figure 3.8. The same page, altered using style

Here’s the code that makes all the difference:

style_object.js (excerpt)

var body = document.getElementsByTagName("body")[0];
body.style.backgroundColor = "#000000";
body.style.color = "#FFFFFF";

Simply JavaScript (www.sitepoint.com)

Simply JavaScript86

http://www.sitepoint.com/launch/6188d9

The color CSS property is inherited by child elements, so changing style.color

on the body element will also affect every element inside the body to which a spe-

cific color is not assigned.

The style object directly accesses the HTML style attribute, so the JavaScript code

we just saw is literally equivalent to this HTML:

<body style="background-color: #000000; color: #FFFFFF;">

As it is the inline style of an element, if you make a change to an element’s style

property, and that change conflicts with any of the rules in your CSS files, the style

property will take precedence (except, of course, for properties marked !important).

Changing Styles with Class
In the world of CSS, it’s considered bad practice to use inline styles to style an

element’s appearance. Equally, in JavaScript it’s considered bad practice to use the

style property as a means of styling an element’s appearance.

As we discussed in Chapter 1, you want to keep the layers separated, so HTML

shouldn’t include style information, and JavaScript shouldn’t include style inform-

ation.

The best way to change an element’s appearance with JavaScript is to change its

class. This approach has several advantages:

■ We don’t mix behavior with style.
■ We don’t have to hunt through a JavaScript file to change styles.
■ Style changes can be made by those who make the styles, not the JavaScript

programmers.
■ It’s more succinct to write styles in CSS.

Most of the time, changes to an element’s appearance can be defined as distinct

changes to its state, as described in its class. It’s these state changes that you should

be controlling through JavaScript, not specific properties of its appearance.

The only situation in which it’s okay to use the style property arises when you

need to calculate a CSS value on the fly. This often occurs when you’re moving

objects around the screen (for instance, to follow the cursor), or when you animate

Order the print version of this book to get all 400+ pages!

87Document Access

http://www.sitepoint.com/launch/6188d9

a particular property, such as in the “yellow fade” technique (which changes an

element’s background-color by increments).

Comparing Classes
When we’re checking to see whether className contains a particular class, we need

to use a special search, like the one we used to write Core.getElementsByClass

earlier in this chapter. In fact, we can use that same regular expression to create a

function that will tell us whether or not an element has a particular class attached

to it:

core.js (excerpt)

Core.hasClass = function(target, theClass)
{
 var pattern = new RegExp("(^|)" + theClass + "(|$)");

 if (pattern.test(target.className))
 {
 return true;
 }

 return false;
};

Core.hasClass takes two arguments: an element and a class. The class is used inside

the regular expression and compared with the className of the element. If the

pattern.test method returns true, it means that the element does have the specified

class, and we can return true from the function. If pattern.test returns false,

Core.hasClass returns false by default.

Now, we can very easily use this function inside a conditional statement to execute

some code when an element has (or doesn’t have) a matching class:

var scarlet = document.getElementById("scarlet");

if (Core.hasClass(scarlet, "clicked"))
{
 ⋮
}

Simply JavaScript (www.sitepoint.com)

Simply JavaScript88

http://www.sitepoint.com/launch/6188d9

Adding a Class
When we’re adding a class, we have to take the same amount of care as we did when

comparing it. The main thing we have to be careful about here is to not overwrite

an element’s existing classes. Also, to make it easy to remove a class, we shouldn’t

add a class to an element that already has that class. To make sure we don’t, we’ll

use Core.hasClass inside Core.addClass:

core.js (excerpt)

Core.addClass = function(target, theClass)
{
 if (!Core.hasClass(target, theClass))
 {
 if (target.className == "")
 {
 target.className = theClass;
 }
 else
 {
 target.className += " " + theClass;
 }
 }
};

The first conditional statement inside Core.addClass uses Core.hasClass to check

whether or not the target element already has the class we’re trying to add. If it

does, there’s no need to add the class again.

If the target doesn’t have the class, we have to check whether that element has

any classes at all. If it has none (that is, the className is an empty string), it’s safe

to assign theClass directly to target.className. But if the element has some

preexisting classes, we have to follow the syntax for multiple classes, whereby each

class is separated by a space. Thus, we add a space to the end of className, followed

by theClass. Then we’re done.

Now that Core.addClass performs all these checks for us, it’s easy to use it

whenever we want to add a new class to an element:

Order the print version of this book to get all 400+ pages!

89Document Access

http://www.sitepoint.com/launch/6188d9

class.js (excerpt)

var body = document.getElementsByTagName("body")[0];
Core.addClass(body, "unreadable");

Then, we specify some CSS rules for that class in our CSS file:

class.css

.unreadable
{
 background-image: url(polka_dots.gif);
 background-position: 15px 15px;
 color: #FFFFFF;
}

The visuals for our page will swap from those shown in Figure 3.9 to those depicted

in Figure 3.10.

Figure 3.9. The page before we start work

Simply JavaScript (www.sitepoint.com)

Simply JavaScript90

http://www.sitepoint.com/launch/6188d9

Figure 3.10. The display after we change the class of the body element

Removing a Class
When we want to remove a class from an element, we use that same regular expres-

sion (it’s a pretty handy one, huh?), but with a slightly different twist:

core.js (excerpt)

Core.removeClass = function(target, theClass)
{
 var pattern = new RegExp("(^|)" + theClass + "(|$)");

 target.className = target.className.replace(pattern, "$1");
 target.className = target.className.replace(/ $/, "");
};

In Core.removeClass, instead of using the regular expression to check whether or

not the target element has the class, we assume that it does have the class, and in-

stead use the regular expression to replace the class with an empty string, effectively

removing it from className.

Order the print version of this book to get all 400+ pages!

91Document Access

http://www.sitepoint.com/launch/6188d9

To do this, we use a built-in string method called replace. This method takes a

regular expression and a replacement string, then replaces the occurrences that

match the regular expression with the replacement string. In this case, we’re using

an empty string as the replacement, so any matches will be erased. If the class exists

inside className, it will disappear.

The second call to replace just tidies up className, removing any extraneous

spaces that might be hanging around after the class was removed (some browsers

will choke if any spaces are present at the start of className). Since we assign both

these operations back to className, the target element’s class will be updated

with the changes straight away, and we can return from the function without fuss.

Example: Making Stripy Tables
Earlier in this chapter, we made our first real function, Core.getElementsByClass,

but now I think you’re ready to make your first real program, and a useful one it is

too!

In my days as an HTML jockey, there was one task I dreaded more than any other,

and that was making stripy tables. On static pages, you had to hand code tables so

that every odd row had a special class like alt, but I just knew that as soon as I

finished classing 45 different rows my manager was going to come along and tell

me he wanted to add one more row right at the top. Every odd row would become

even and every even row would become odd. Then I’d have to remove 45 classes

and add them to 45 other rows. Argh!

Of course, that was before I knew about JavaScript. With JavaScript and the magic

of the for loop, you can include one JavaScript file in your page, sit back, and

change tables to your heart’s delight. Obviously we’re going to be using JavaScript

to add a class to every second row in this example. But it might help to break down

the desired outcome into a series of simple steps again.

In order to achieve stripy tables, we’ll want to:

1. Find all tables with a class of dataTable in the document.

2. For each table, get the table rows.

3. For every second row, add the class alt.

Simply JavaScript (www.sitepoint.com)

Simply JavaScript92

http://www.sitepoint.com/launch/6188d9

By now, glancing at that list should cause a few key ideas to spring to mind. On the

programming structure side of the equation, you should be thinking about loops,

and plenty of them. But on the DOM side you should be thinking about

getElementsByTagName, className, and maybe even our own custom function,

Core.getElementsByClass. If you found yourself muttering any of those names

under your breath while you read through the steps in that list, give yourself a pat

on the back.

Finding All Tables with Class dataTable
This first step’s pretty simple, since we did most of the related work mid-chapter.

We don’t want to apply striping to every table in the document (just in case

someone’s been naughty and used one for layout), so we’ll apply it only to the tables

marked with a class of dataTable. To do this, all we have to do is dust off

Core.getElementsByClass—it will be able to go and find all the dataTable elements:

stripy_tables.js (excerpt)

var tables = Core.getElementsByClass("dataTable");

Done. You can’t beat your own custom library!

Remember to Load your Library

Remember to add a <script> tag to your HTML document to load the Core library

of functions (core.js) before the <script> tag that runs your program, as shown

in the code below. Otherwise, your program won’t be able to find

Core.getElementsByClass, and your browser will report a JavaScript error.

stripy_tables.html (excerpt)

<script type="text/javascript" src="core.js"></script>
<script type="text/javascript" src="stripy_tables.js">
</script>

Order the print version of this book to get all 400+ pages!

93Document Access

http://www.sitepoint.com/launch/6188d9

Getting the Table Rows for Each Table
There’s that phrase “for each” again. Inside the variable tables we have the collec-

tion of tables waiting to be striped—we just need to iterate through each of them

using a for loop.

Every time we move through the for loop, we’ll want to get the rows for that partic-

ular table. This sounds okay, but it’s not that simple. Let’s look at the markup for a

nicely semantic and accessible table:

stripy_tables.html (excerpt)

<table class="dataTable">
 <thead>
 <tr>
 <th scope="col">
 Web Luminary
 </th>
 <th scope="col">
 Height
 </th>
 <th scope="col">
 Hobbies
 </th>
 <th scope="col">
 Digs microformats?
 </th>
 </tr>
 </thead>
 <tbody>
 <tr>
 <td>
 John Allsopp
 </td>
 <td class="number">
 6’1”
 </td>
 <td>
 Surf lifesaving, skateboarding, b-boying
 </td>
 <td class="yesno">

 </td>

Simply JavaScript (www.sitepoint.com)

Simply JavaScript94

http://www.sitepoint.com/launch/6188d9

 </tr>
 ⋮
 </tbody>
</table>

There’s one row in there that we don’t want to be susceptible to striping—the row

inside the thead.

To avoid affecting this row through our row striping shenanigans, we need to get

only the rows that are inside a tbody. This means we must add a step to our

code—we need to get all of the tbody elements in the table (HTML allows more

than one to exist), then get all the rows inside each tbody. This process will actually

require two for loops—one to step through each of the table elements in the docu-

ment, and another inside that to step through each of the tbody elements—but that’s

fine; it just means more work for the computer. Since the variable name i is used

for the counter in the outer for loop, we’ll name the counter variable in our inner

for loop j:

stripy_tables.js (excerpt)

for (var i = 0; i < tables.length; i++)
{
 var tbodys = tables[i].getElementsByTagName("tbody");

 for (var j = 0; j < tbodys.length; j++)
 {
 var rows = tbodys[j].getElementsByTagName("tr");
 ⋮
 }
}

The results for both uses of getElementsByTagName in the code above will be limited

to the current table, because we’re using it as a method of a particular element, not

the entire document. The variable rows now contains a collection of all the tr ele-

ments that exist inside a tbody element of the current table.

Order the print version of this book to get all 400+ pages!

95Document Access

http://www.sitepoint.com/launch/6188d9

Adding the Class alt to Every Second Row
“For every” is equivalent to “for each” here, so we know that we’re going to use yet

another for loop. It will be a slightly different for loop though, because we only

want to modify every second row.

To do this, we’ll start the counter on the second index of the collection and increment

it by two, not one:

stripy_tables.js (excerpt)

for (var i = 0; i < tables.length; i++)
{
 var tbodys = tables[i].getElementsByTagName("tbody");

 for (var j = 0; j < tbodys.length; j++)
 {
 var rows = tbodys[j].getElementsByTagName("tr");

for (var k = 1; k < rows.length; k += 2)
 {
 Core.addClass(rows[k], "alt");
 }
 }
}

We’re already using the variables i and j as the counters for the outer for loops,

and we don’t want to overwrite their values, so we create a new counter variable

called k. k starts at 1 (the second index), and for every execution of this inner loop

we increase its value by 2.

The conditional code for this inner loop is just one line that uses our pre-rolled

Core.addClass function to add the class alt to the current row. Once the inner for

loop finishes, every second row will be marked with this class, and once the outer

for loops finish, every data table will be stripy.

Putting it All Together
The main code for our function is now complete; we just have to wrap it inside a

self-contained object:

Simply JavaScript (www.sitepoint.com)

Simply JavaScript96

http://www.sitepoint.com/launch/6188d9

stripy_tables.js (excerpt)

var StripyTables =
{
 init: function()
 {
 var tables = Core.getElementsByClass("dataTable");

 for (var i = 0; i < tables.length; i++)
 {
 var tbodys = tables[i].getElementsByTagName("tbody");

 for (var j = 0; j < tbodys.length; j++)
 {
 var rows = tbodys[j].getElementsByTagName("tr");

 for (var k = 1; k < rows.length; k += 2)
 {
 Core.addClass(rows[k], "alt");
 }
 }
 }
}

};

Kick-start it when the page loads, using Core.start:

stripy_tables.js (excerpt)

Core.start(StripyTables);

Now, whenever you include this script file (and the Core library) on your page,

StripyTables will go into action to automatically stripe all your tables:

stripy_tables.html (excerpt)

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" lang="en-US">
 <head>
 <title>Stripy Tables</title>
 <meta http-equiv="Content-Type"

Order the print version of this book to get all 400+ pages!

97Document Access

http://www.sitepoint.com/launch/6188d9

Figure 3.11. Hard-to-scan table content without stripes

Figure 3.12. Using a script to produce stripy tables and improve the usability of the document

 content="text/html; charset=utf-8" />
 <link rel="stylesheet" type="text/css"
 href="stripy_tables.css" />

<script type="text/javascript" src="core.js"></script>
 <script type="text/javascript"
 src="stripy_tables.js"></script>

You can style the alt class however you want with a simple CSS rule:

stripy_tables.css (excerpt)

tr.alt
{
 background-color: #EEEEEE;
}

Simply JavaScript (www.sitepoint.com)

Simply JavaScript98

http://www.sitepoint.com/launch/6188d9

You can turn a plain, hard-to-follow table like the one in Figure 3.11 into something

that’s much more usable—like that pictured in Figure 3.12—with very little effort.

This type of script is a great example of progressive enhancement. Users who browse

with JavaScript disabled will still be able to access the table perfectly well; however,

the script provides a nice improvement for those who can run it.

Exploring Libraries
Most of the available JavaScript libraries have little helper functions that can help

you expand the functionality of the DOM. These range from neat little shortcuts to

entirely different ways of finding and manipulating elements.

Prototype
Prototype was one of the first libraries to swap the painful-to-type

document.getElementById for the ultra-compact $.

The $ function in Prototype not only acts as a direct substitute for

document.getElementById, it also expands upon it. You can get a reference to a

single element by ID, so this normal code:

var money = document.getElementById("money");

would become:

var money = $("money");

But you don’t have stop at getting just one element; you can specify a whole list of

element IDs that you want, and $ will return them all as part of an array. So this

normal code:

var elementArray = [];
elementArray[0] = document.getElementById("kroner");
elementArray[1] = document.getElementById("dollar");
elementArray[2] = document.getElementById("yen");

becomes considerably shorter:

Order the print version of this book to get all 400+ pages!

99Document Access

http://www.sitepoint.com/launch/6188d9

var elementArray = $("kroner", "dollar", "yen");

Earlier in this chapter we created our own library function to get elements by class.

Prototype has a similar function, which is slightly more powerful. It creates an ex-

tension to the document node, called getElementsByClassName. Like our function

Core.getElementsByClass, this method allows us to retrieve an array of elements

that have a particular class:

var tables = document.getElementsByClassName("dataTable");

It also takes an optional second argument, which allows us to specify a parent ele-

ment under which to search. Only elements that are descendants of the specified

element, and have a particular class, will be included in the array:

var tables =
 document.getElementsByClassName("dataTable", $("content"));

The variable tables will now be an array containing elements that are descendants

of the element with ID content, and that have a class of dataTable.

Prototype also replicates all of the class functions that we created for our own library.

These functions take exactly the same arguments that ours did, but the functions

themselves are methods of Prototype’s Element object. So Prototype offers

Element.hasClassName, Element.addClassName, and Element.removeClassName:

var body = document.getElementsByTagName("body")[0];
Element.addClassName(body, "unreadable");

if (Element.hasClassName(body, "unreadable"))
{
 Element.removeClassName(body, "unreadable");
}

jQuery
jQuery was one of the first libraries to support an entirely different way of finding

elements with JavaScript: it allows us to find groups of elements using CSS selectors.

Simply JavaScript (www.sitepoint.com)

Simply JavaScript100

http://www.sitepoint.com/launch/6188d9

The main function in jQuery is also called $, but because it uses CSS selectors, this

function is much more powerful than Prototype’s version, and manages to roll a

number of Prototype’s functions into one.3

If you wanted to use jQuery to get an element by ID, you’d type the following:

var money = $("#money");

indicates an ID selector in CSS, so $("#money") is the equivalent of typing

document.getElementById("money").

To get a group of elements by tag name, you’d pass $ a CSS element type selector:

var paragraphs = $("p");

And to get a group of elements by class, you’d use a class selector:

var tables = $(".dataTable");

And, as with CSS, you can combine all these simple selector types in, say, a des-

cendant selector:

var tables = $("#content table.dataTable");

tables is now an array of table elements that are descendants of the element with

ID content, and that have a class of dataTable.

The CSS rule parsing in jQuery is really quite spectacular, and it supports the ma-

jority of selectors from CSS1, CSS2, and CSS3, as well as XPath.4 This makes it

possible for us to use selectors like this:

var complex = $("form > fieldset:only-child input[@type=radio]");

3 In fact, based on the popularity of this feature in jQuery, Prototype went on to include similar function-

ality in a function named $$.
4 XPath is a zany language for selecting nodes from XML documents (including XHTML documents).

While XPath is extremely powerful, the process of learning it is likely to give you a facial tick.

Order the print version of this book to get all 400+ pages!

101Document Access

http://www.sitepoint.com/launch/6188d9

Once you break it down, that query finds all radio button input elements inside

fieldsets that are direct children of form elements, but only where the fieldset

is the only child of the form. Phew!

Dojo
Dojo follows the previous two libraries closely in how they deal with the DOM.

It has its own shortcut to document.getElementById, but it doesn’t expand upon

the DOM’s native functionality:

var money = dojo.byId("money");

It also has its own getElementsByClass function inside the html module:

var tables = dojo.html.getElementsByClass("dataTable");

This function allows you to get elements by class under a particular parent:

var tables = dojo.html.getElementsByClass("dataTable",
 dojo.byId("content"));

For completeness, it has the usual class handling functions, which take the same

form as our own Core functions:

var body = document.getElementsByTagName("body")[0];
dojo.html.addClass(body, "unreadable");

if (dojo.html.hasClass(body, "unreadable"))
{
 dojo.html.removeClass(body, "unreadable");
}

Summary
An understanding of the DOM is central to using JavaScript, which is why the use

of JavaScript on the Web is sometimes referred to as “DOM scripting.”

Simply JavaScript (www.sitepoint.com)

Simply JavaScript102

http://www.sitepoint.com/launch/6188d9

As you delve further into this book, and we begin to look at more complex interfaces,

our manipulation of the DOM will also become more complex, so your familiarity

with the basics presented in this chapter is vital.

In the next chapter, we take a look at events, which allow your JavaScript programs

to respond to users’ interactions with your web pages. Dynamic interfaces, here we

come!

Order the print version of this book to get all 400+ pages!

103Document Access

http://www.sitepoint.com/launch/6188d9

Simply JavaScript (www.sitepoint.com)

http://www.sitepoint.com/launch/6188d9

WWhat’s Neext?
If you’ve en
to unleash t
copy?

njoyed these ch
the awesome po

apters from Sim
ower of JavaScr

mply JavaScript
ript, why not o

t and are ready
rder yourself a

Packed with
start program
use JavaScri
user events
catching ani
the DOM an

h full-color exa
mming in JavaS
ipt to solve rea
 (such as mou
imations. Then

nd Ajax.

amples, Simply
Script the right
l-world problem
se clicks and k
move on to mo

JavaScript is a
way. Learn ho

ms, build smart
key strokes), an
ore powerful tec

all you need to
ow easy it is to
ter forms, track
nd design eye-
chniques using

In the rest oof the book, you’’ll learn how to

 Use JavaScript to reespond to the acctions of your users.

 Creaate animations tthat bring your wweb site to life.

 Quicckly and effectively debug and correct errors.

 Builld forms that vaalidate entries annd interact withh your users.

 Builld a richer user experience withh Ajax.

 The
Java

n explore just h
aScript.

how far you cann take the awessome power of

The book’s
enjoyable Ja

full-color layo
avaScript books

out makes it o
available.

one of the moost usable and

All JavaScri
for downloa
and ready to

ipt code used to
ad, and is guar
o use in your ow

o create each o
anteed to be si

wn web site.

f the componen
imple, efficient,

nts is available
, best practice,

Kevin and
especially f
easy-to-und

Cameron’s uniq
for the book m
erstand beginne

que use of the
makes Simply J
ers’ book availab

JavaScript libr
JavaScript the m
ble.

rary developed
most readable,

You won’t ffind a better way to learn JavaSScript from scraatch.

Buyy the full versionn now!

https://sitepoint.com/bookstore/go/109/6188d9

Index

Symbols
$ function, 99, 101

A
absolute positioning, 183

acceleration (animation), 195–197

accommodation

looking for, 346

accordionContent, 201–202

accordion control, 144–158, 198

animation, 198–199

changing the code, 199–207

collapsing, 206–207

expanding, 203–205

initialization method, 199–201

collapsing a fold, 147–148

content overflow, 198

dynamic styles, 148–150

expanding a fold, 148

offleft positioning, 149

putting it all together, 150–158

static page, 144–146

workhorse methods, 146–148

ActiveX

unreliability of, 307

ActiveX objects

creating, 308

add and assign operator (+=), 25

use with strings, 29

addEventListener, 366, 368, 371

addEventListener method, 117, 118, 122,

129, 130, 158

adding 1 to a variable, 26

adding a class, 89–91

adding two strings together, 29

addition operator (+), 24

use with strings, 29

Ajax, 305–343

and form validation, 331

and screen readers, 316

calling a server, 310–314

chewing bite-sized chunks of content,

306–316

dealing with data, 314–316

libraries, 337–343

putting it into action, 316–328

seamless form submission, 329–337

XMLHttpRequest, 306–316

Ajax request, 306

Ajax weather widget, 317–328

Ajax.Request, 339

Ajax.Updater, 339

alert boxes, 32, 48, 256, 325

alert function, 48, 50, 296

_allListeners property, 370

"alt" class, 96, 98

AND operator, 40

animate method, 186, 187

animation, 163–211

accordion control, 198–207

along a linear path, 181–190

and positioning, 183

controlling time with JavaScript, 165–

175

libraries, 208–210

movements to an object, 198

old-style using a film reel, 176–181

path-based motion, 181–198

principles, 163–165

setTimeout use, 188

slowing it down, 193–194

Soccerball

creating realistic movement, 192–

198

in two dimensions, 190–192

linear path, 181–190

speeding it up, 195–197

stopping it from going forever, 194

two dimensional, 190–192

appendChild method, 137, 234

argument names, 51

arguments, 50–52

arguments array, 52

array-index notation, 32

array markers [], 31

array of arrays, 33

arrays, 30–34

adding elements to the end of, 34

and node lists, 77

associative, 34

data types in, 33

elements, 31

index, 31

length, 34, 56, 78

multi-dimensional, 33

populating, 32

while loops use with, 44

assignment operator (=), 20, 57, 295

assignment statement, 57

associative arrays, 34

asterisk (*), 244

astIndependentField., 220

asynchronous requests, 306, 311

attachEvent method, 117, 118, 122, 129,

368

attribute nodes, 64, 65

getting, 83–84

interacting with, 82–85

setting, 84

B
background color, 85, 142

background-position property, 177, 181

changing at regular intervals, 178

changing using setTimeout, 178

behavior of content, 3

using JavaScript, 5, 9–10, 58

bind method, 160

bindAsEventListener method, 159

blur events, 123, 175

blur method, 214

body element, 87

Boolean values, 30, 37

bootstrapping, 375–378

border, 142

brackets (mathematical operations), 24

browsers, 4, 14, 17

alert functions in, 48

and DOM Level 2 Events standard,

106

and event handlers, 107–116

configuring to show JavaScript errors,

278

default actions, 111–112, 119–121

document.all object, 75

execution of JavaScript and HTML, 58

getAttribute problems, 83

ignoring comments, 18

interpreting HTML, 61

Simply JavaScript (www.sitepoint.com)

388

http://www.sitepoint.com/launch/6188d9

page-request mechanism, 306

responding to statements, 17

supporting XMLHttpRequest, 307

bubbling phase, 123

Bunny Hunt game, 351

buttons, 213

C
calling a server, 310–314

camel casing, 22

Cancel button, 111

cancelBubble property, 124, 129, 373

canvas element, 350, 354

capture phase, 122

capturing event listeners, 122

caret (^), 245

cascading menus, 226–239

complete JavaScript, 236–239

creating from single menus, 227

process steps, 228

to improve uability, 227

catch statement, 308, 309

CDATA, 10

change event, 216

checkboxes, 213, 216, 334

dependence on previous field, 217

checked property, 215

childNodes, 80, 81

chrome errors, 278

chunking, 13

class attribute, 77, 136

adding a class, 89–91

changing styles with, 87–92

comparing classes, 88

removing a class, 91

class name

to find elements, 74–79

className property, 76, 88, 92

multiple classes within, 77

classResult variable, 254

clearTimeout, 172, 176

click event listener, 318

click events, 108

preventing from bubbling, 124, 125

click method, 214

clickHandler function, 108, 110, 112, 113

clickListener, 318, 320, 321

client-side validation, 239, 240

using an event handler, 240

using an event listener, 240

closures, 171

collapseAll method, 203

collapseAnimate, 206, 207

color, 85, 87, 142

ComboBox widget, 359–361

comments, 18

beginning with slashes (//), 18

multi-line, 19

comparison operators, 38, 40

component frameworks, 355

computed style, 184

concatenating numbers and strings, 30

concatenating strings, 29

conditional statements, 36–43

comparison operators, 38

else-if statements, 42

if statements, 36–39

multiple conditions, 40

if-else statement, 41–42

use with return statements, 53

ContactForm, 331

Order the print version of this book to get all 400+ pages!

389

http://www.sitepoint.com/launch/6188d9

ContactForm.writeError, 336

ContactForm.writeSuccess, 336

content of the page, 3

in HTML format, 5, 6–8, 58

content overflow, 199

Content-Type header, 311, 336

convertLabelToFieldset method, 230,

234

Core, 59

Core JavaScript library, 363–385

complete library, 379–385

CSS class management methods, 378

event listener methods, 364–374

object, 363–364

retrieving computed styles, 379

script bootstrapping, 375–378

Core.addClass, 89, 96, 378

Core.addEventListener, 130, 131, 159,

160, 365

Core.getComputedStyle, 185, 379

Core.getElementsByClass, 79, 88, 92,

100, 378

Core.hasClass, 88, 89, 248, 378

Core.js library, 79

(see also Core JavaScript library)

core.js library, 130

Core.preventDefault, 131, 152, 337, 365

Core.removeClass, 91, 378

Core.removeEventListener, 131, 159,

160, 365

Core.start method, 59, 131, 173, 189

Core.stopPropagation, 131, 365

counter variable, 45

createElement method, 136

createLabelFromTitle method, 230, 234

CSS

element type selector, 70, 101

for presentation, 5

for web pages, 2, 4, 8–9

ID selector, 67

CSS class management methods, 378

CSS class names, 7

CSS styles

applied to presentational class names,

6

embedded styles, 8

external styles, 9

inline styles, 6, 8

slider control, 258–260

CSS support, 4

currentStyle property, 185

custom form controls, 256–271

library, 274–275

D
Dashboard Widgets, 356

"dataTable", 92, 101

Debug menu (Safari), 282

debugging with Firebug, 296–303

deceleration, 193–194

decimals, 23, 25

validation, 250

declaring a variable, 20

declaring and assigning variables, 20

decrementing operators (-= and --), 27

default actions (event handlers), 111–112

default actions (event listeners), 119–121

preventing, 119

default.htm, 2

dependent fields (form control), 216–226

Simply JavaScript (www.sitepoint.com)

390

http://www.sitepoint.com/launch/6188d9

adding event listeners to each form on

the page, 219, 220

assumptions, 216

complete JavaScript code, 224–226

disabling and enabling, 218, 222–223

scanning a form to build a list of, 220

setting initial states, 221

DependentFields, 217

desktop browsers, 4

detachEvent method, 119, 129, 372, 374

disable method, 222, 223

disabled property, 215, 216, 218

display property, 149

div element, 177, 202

styled to the exact dimensions of a

frame, 177

division and assign operator (/=), 27

division operator (/), 24

document access, 61–103

document node, 63, 136

to reference getElementById, 67

to reference getElementsByTagName,

70, 72

Document Object Model (DOM), 61–66

attribute nodes, 65

changing styles, 85–92

combining multiple methods, 74

element nodes, 66–79

Level 0, 106

Level 1, 106

Level 2 Events standard, 106

linking each element on an HTML

page to its parent, 63

nodes, 63–66

accessing the ones you want, 66–85

text nodes, 64

tree structure, 62, 64, 65, 79–82

walking the, 79

document.all object, 75

use of typeof operator to check for ex-

istence of, 75

document.getElementById, 99, 102

Dojo library, 102, 272, 358–361

Ajax handler, 340

custom controls, 274–275

Form Widgets, 274–275

validation widgets, 272

widgets, 358–361

dollar character ($)

in regular expressions, 245

dollar function ($), 99, 101

dollar sign ($)

in variable names, 22

DOM

(see also Docment Object Model)

DOM building, 136

DOM events

for HTML form controls, 216

DOM methods

for HTML form controls, 214

DOM nodes

transplanting from one element to an-

other, 231

DOM properties

for HTML form controls, 215

DOM tree, 62, 63

finding a parent, 80

finding children, 80–81

finding siblings, 81

including document nodes, 64

including text nodes, 65

Order the print version of this book to get all 400+ pages!

391

http://www.sitepoint.com/launch/6188d9

moving around using element node’s

DOM properties, 82

navigating, 79–82

DOMContentLoaded event, 376–377

dot (.), 244, 249

double quotes (strings), 27, 29

do-while loop, 46

logical flow through, 47

draggable slider thumb, 264–268

drop-down menus and lists, 213

E
Effect object, 208

Effect.Highlight, 209–210

element classes, 76–77

element nodes, 63, 64, 66

execution of getElementByTagName,

70, 72

finding by class name, 74–79

adding matching elements to our

group of elements, 77

checking the class of each element,

76–77

looking at all the elements, 75

putting it all together, 78–79

starting your first function, 74

finding by ID, 67–69

finding by tag name, 70–74

native properties, 68

searching by class name versus tag

name, 74

Element object, 100

Element.addClassName, 100

Element.hasClassName, 100

Element.removeClassName, 100

elementArray (variable), 76

elements (arrays), 31

adding to the end of an array, 34

retrieving, 32

elements (HTML)

computed style, 184

moving along a linear path, 181–190

steps required to move an element

from point A to point B, 182

elements property, 215

else-if statements, 42

embedded JavaScript

and XHTML, 15

embedded JavaScript code, 9

embedded styles, 8

Enable Firebug, 298

enable method, 222, 223

encodeURIComponent, 336

Enter button, 111, 240

equality operators (==), 38, 295

versus equal sign (=), 39

Error Console (Firefox), 278

Error Console (Opera), 280

Error Console (Safari), 282

error messages, 255, 277

Firefox, 278

Internet Explorer, 280–282

logic errors, 292–296

Opera, 280

runtime errors, 288–292

Safari, 282

syntax errors, 283–288

weather widget, 325

when the pattern is not satisfied, 251

Errors (Firefox), 279

escape sequences, 246–247

escapeURIComponent function, 321

Simply JavaScript (www.sitepoint.com)

392

http://www.sitepoint.com/launch/6188d9

escaping the quote marks, 28

event handlers, 107–116

as HTML attributes, 110

assigning multiple handlers, 115

default actions, 111–112

definition, 107

for client-sided validation, 240

plugging into DOM node, 107

problem with, 115–116

script execution, 109

setting up functions as, 108

using this Keyword, 112–114

event listeners, 116–132

adding to each form on a page, 219,

220

adding to slider controls, 263–264

applications, 116

code for, 117

core.js library, 130–131

default actions, 119–121

definition, 117

event propagation, 122–127

for client-side validation, 240, 241–

242

methods, 364–374

plugging into DOM node, 117

putting it all together, 129–132

unplugging from a DOM node, 119

using this Keyword, 127–128

W3C DOM 2 versions, 365–366

event objects, 119

event propagation, 122–127

bubbling phase, 123

capture phase, 122

target phase, 122

Event.observe method, 158

Event.stopObserving method, 158

events, 105

and JavaScript, 106

exec method, 261

expand function, 203

expandAnimate, 204, 205

exploration through sliders, 346

expressions, 37

external JavaScript file, 15

external styles, 9

extractMasterMenu method, 230, 232

F
fieldset element, 102, 230

film strip (in HTML), 176–181

changing position of background im-

age to specify which frame is in

view, 178

moving the image around and display-

ing different parts of the strip,

177

using div to display frame at a time,

177

_findListener method, 367, 368, 373, 374

Firebug

adding a custom watch expression,

299, 302

console tab, 298

downloading and installing, 296

enabling, 298

examining the clues, 302

for debugging, 296–303

pausing execution, 301

Script tab, 299

selecting the file to debug, 300

setting a breakpoint, 299

Order the print version of this book to get all 400+ pages!

393

http://www.sitepoint.com/launch/6188d9

to track an infinite loop, 297–302

Firefox, 357

DOMContentLoaded event, 376

getAttribute problems, 83

Firefox error console, 278, 282

errors, warnings and messages dis-

played, 279

syntax errors, 284, 286, 288

firstChild property, 81

Flash, 346, 351

Flickr

inline editing capability, 348

floating point numbers (float), 23, 24

focus events, 123, 134, 153, 175

focus method, 214

for loops, 46–48, 76, 77, 94

functioning, 47

logical flow through, 49

form controls, 213

(see also HTML form controls)

cascading menus, 226–239

dependent fields, 216–226

sliders, 256–271

form enhancements, 213–275

form fields

disabled, 218

enabled, 218

form property, 215

form submissions

intercepting, 240–242

verifying a user had filled in a value

for a particular field, 241–242

with Ajax, 329–337

success/failure message, 336

form validation, 239–256

and Ajax, 331

client-side validation, 239

error messages, 251

intercepting form submission, 240–

242

libraries, 272–273

reusable validation script, 249–256

server-side validation, 239

formal parameters, 285

formElements, 334

FormValidation.errors, 255

FormValidation.rules, 254

forward slashes (/)

to create regular expressions, 243

frame rate, 166

frameHeight property, 180

frames, 177

frames property, 180

from0 (slider control), 257

function argument as a variable, 51

function call, 50

function declaration, 51, 57

function keyword, 48

function names, 50

functions, 48–55

arguments, 50–52

defining your own, 48

keeping your variables separate, 54–

55

outputting data from, 52–53

passing data to, 50–52

return statements, 52–53

scope, 54–55

G
GET request, 311

getAttribute method, 83

Simply JavaScript (www.sitepoint.com)

394

http://www.sitepoint.com/launch/6188d9

getComputedStyle method, 379

getElementById method, 67, 69, 73

checking that it isn't null, 69

getElementsByClass, 102

getElementsById method, 290, 291

getElementsByTagName method, 70–72,

93, 95, 134

returning all elements by using “*",

75

returns node lists in source order, 71

getting an attribute, 83–84

global modifiers, 253

global scope, 54

global variables, 54, 170

Google Calendar interface, 353

Google Web Toolkit (GWT), 361

greater than (>) operators, 38

H
hasChildNodes method, 231, 234

hasClass method, 248

head, 14

hideTip method, 135, 138

hideTipListener, 135, 176

href attribute, 83, 318, 320

href property, 114

HTML

and Document Object Model (DOM),

62–66

applications, 1

editing, 4

for content, 5, 6–8, 58

for web pages, 2

presentational, 6

semantics of the content of the page,

7

HTML DOM extensions, 214–216

HTML form controls

DOM events, 216

DOM methods, 214

DOM properties, 215

HTML forms, 213

HTTP error codes, 312

hyphens, 85

I
id attribute (elements), 67

IDs

to find elements, 67–69

if statements, 36–39

conditional code, 37

expressions, 37

form, 37

indenting code, 37

logical flow of, 36

multiple conditions, 40

if-else statements, 41–42

logical flow, 41

illegal characters, 288

in-browser instant messaging client, 350

increment operator (++), 26, 29

placement, 26

_increment property, 204

incrementer (i), 44

indenting code, 37

index (arrays), 31

index property, 215

index.html, 2

inequality operators (!=), 38, 39

infinite loop, 294–295

tracking with Firebug, 297–302

Order the print version of this book to get all 400+ pages!

395

http://www.sitepoint.com/launch/6188d9

init (method), 59, 114, 132, 134, 180,

183, 186, 220, 221, 223, 228, 260,

377

initOnce function, 377

inline editing, 347

inline styles, 6, 8

innerHTML property, 136, 140

input element, 219, 220

integers (int), 23, 24

IntegerTextbox widget, 272

interactive capabilities, 349–351

Internet Explorer

and event listeners, 116, 117, 119,

127, 128, 129

computed style, 185

error messages, 280–282

Events model, 364, 366–374

GET requests, 311

getAttribute probems, 83

memory leak, 128

non-acceptance of DOM Level 2

Events standard, 106

preventing default action, 120

support for XMLHttpRequest, 307

Internet Explorer 5.x, 75

J
JavaScript, 1

adding to web pages, 9

and events, 106

bringing richness to the Web, 346–351

combining with vector-rendering

standards, 350

executing before HTML, 58

for behavior of content, 5, 9–10, 58

for web pages, 2

in a <script> tag, 9

in a separate file, 10

interactive capabilities, 349–351

looking forward, 345–362

off the Web, 356–357

placement in external file, 15

relationship with HTML, 61

replacing variable name with its value,

22

time controls, 165–175

using it the right way, 11

using with HTML, 14

JavaScript code

nothing happened!, 278–282

JavaScript code snippets, 12

JavaScript errors, 277

JavaScript libraries, 11, 17, 99–102, 158–

160, 357–362

Ajax code, 337–343

Core library, 363–385

custom form controls, 274–275

Dojo, 102, 272, 274–275, 340, 358–361

form validation, 272–273

jQuery, 100–102, 160, 341

MooTools, 342–343

Prototype, 99–100, 158, 273, 339

Yahoo! UI, 341

JavaScript object, 363–364

JavaScript programming, 13–60

comments, 18

conditional statements, 36–43

functions, 48–55

loops, 43–48

objects, 55–58

statements, 17

variable types, 23–35

Simply JavaScript (www.sitepoint.com)

396

http://www.sitepoint.com/launch/6188d9

variables, 19–22

JavaScript programs

running, 14–17

JavaScript support, 4

JavaScript.js files, 12, 16

jQuery library, 100–102

Ajax calls, 341

.js file extension, 16

K
K.I.S.S. principle, 6

L
lastChild property, 81

legend element, 230

length of arrays, 34, 56, 78

length of node, 72

less than (<) operators, 38

libraries (JavaScript), 11, 17, 99–102,

158, 271–275, 337–343, 357–362,

363–385

libraries (non-JavaScript), 208

script.aculo.us, 208–210

linear path (animation), 181–190

steps required to move from point A

to point B, 182

listenerIndex, 372

listenerRecord, 369, 372

load event, 132, 375

load function, 340

local scope, 54

local variables, 54

logic errors, 292–296

looking forward, 345–362

easy exploration with sliders, 346

easy visualization, 347–348

Rich Internet Applications, 352–355

unique interaction, 349–351

widgets, 355

loops, 43–48

do-while loop, 46

for loops, 46–48, 76, 77, 94

while loops, 43–45, 231

loosely typed variables, 23

M
MacOS X widgets, 356

_master property, 223

matchedArray (variable), 78, 79

Math.round, 189, 194

mathematical operations, 24–27

brackets in, 24

order of operations, 24

Meebo

instant messaging applications, 349

Messages (Firefox), 279

Messages (Opera), 280

methods (objects), 56, 59

mimetype property, 340

minimal match, 245

mixed arrays, 33

MooTools library

Ajax handler, 342–343

mousedown event, 264

mousedown event listener, 263, 265, 268

mousemove event listener, 268

mousemove events, 264

mouseover event, 134, 175

mouseup event listener, 268

mouseup events, 264

movementRatio, 197

Mozilla browsers, 311

Order the print version of this book to get all 400+ pages!

397

http://www.sitepoint.com/launch/6188d9

multi-dimensional arrays, 33

retrieving data from, 33

multi-line text areas, 213

multiplication and assign operator (+=),

27

multiplication operator (*), 24

multi-word variable names, 22

N
naming conventions, 56

negative values (numbers), 23

new Ajax.Request, 339

newHeight, 205

nextSibling property, 81

node lists, 71, 75

similarity to arrays, 77

nodeName property, 69

nodes, 63

accessing the ones you want, 66–85

attribute, 64, 65

document, 63

element, 63, 64

text, 64

whitespace, 65

nodeType property, 148

nodeValue, 290, 320

non-content information

in web pages, 6

normal page request, 306

numbers

as variables, 23

combining with mathematical opera-

tions, 24–27

in arrays, 33

validation, 249

numerical data

as variables, 23

O
object constructor, 56

object detection, 76, 118

object literal syntax, 58

object names

naming conventions, 56

object scope, 57

objects, 55–58

(see also Document Object Model

(DOM))

methods, 56, 59

properties, 56

standalone functions alternative syn-

tax, 57

offleft positioning, 149, 219

OK button, 111

onclick attribute, 83

oneClass variable, 255

onreadystatechange, 321

open function, 113

open method, 310, 311

Opera

DOMContentLoaded event, 376

setting Content-Type header, 311, 336

Opera error console, 280

operators, 24

(see also specific types, eg. equality

operators)

optgroup elements, 227, 234

option elements, 227

options property, 215

OR operator, 40

order of operations (mathematics), 24

Simply JavaScript (www.sitepoint.com)

398

http://www.sitepoint.com/launch/6188d9

overflowing content, 198

P
page-request mechanisms, 306

parameters variable, 334

parent-child relationship between ele-

ments (DOM), 62

parentNode property, 80, 154

parentWindow property, 369

parseInt function, 261

path-based motion, 181–198

linear path, 181–190

pattern variable, 76

pattern.test method, 88

pauses, 166

phone numbers

validation, 250

photo gallery pages

inline editing, 347–348

plus (+)

in regular expressions, 244

polling, 378

positioning

and animation, 183

POST request, 311, 336

presentation of content, 3

using CSS, 5, 8–9

presentational class names, 6

presentational HTML, 6

preventDefault method, 119, 121, 129,

131, 135, 160, 372

preventing default action, 119

in Internet Explorer, 120

in Safari 2.0.3 and earlier, 121

previousSibling property, 81

programming

breaking programs into bite-size

chunks, 13

define clearly in plain English what

you want to do, 74

syntax, 13

programming with JavaScript, 13–60

comments, 18

conditional statements, 36–43

functions, 48–55

loops, 43–48

objects, 55–58

statements, 17

variable types, 23–35

variables, 19

programs, 17

progressive enhancement, 5

properties (objects), 56

Prototype library, 99–100, 158, 273

Ajax calls, 339

push, 56

Q
Query library, 160

question mark (?), 245

quote marks (strings), 27, 29

escaping, 28

R
radio buttons, 213, 216, 219, 335

readyState property, 312

monitoring changes in, 312

readystatechange callback function

specifying inline, 313

readystatechange event handler, 313,

321, 336, 337

Order the print version of this book to get all 400+ pages!

399

http://www.sitepoint.com/launch/6188d9

readystatechange events, 312

Really Easy Field Validation library, 273

regular expressions, 76, 243–248

alternative syntax, 243

creating, 243

escape sequences, 246–247

for form validation, 249–256

special characters, 244–246

to validate script, 249–251

relative code, 140

relative positioning, 183

_removeAllListeners method, 373, 374

removeEventListener method, 119, 129,

131, 158, 371

removing a class, 91

repeating timer, 174

replaceChild method, 231

requester variable, 308

requester.open, 321

reset method, 214

responseText property, 314, 339

responseXML property, 314, 315, 322

return assembled, 53

return keyword, 52

return matchedArray, 79

return statements, 52–53

placement, 53

use with conditional statements, 53

return values, 52

returnValue property, 120, 121, 129, 373

reusable validation script, 249–256

based on regular expressions, 249–251

error messages when pattern is not

satisfied, 251

Rich Internet Applications (RIAs), 352–

355

client-side, 352

complex nature of, 353

examples, 352

Rich Tooltips (see tooltips)

robot animation, 177–181

Robot.animate, 179, 187

Robot.offsetY, 180

round brackets (...), 245

RSS format, 4

running a JavaScript program, 14–17

runtime errors, 288–292

S
Safari

Debug menu, 282

error console, 282

scale4 (slider control), 257

scope, 54–55

global, 54

local, 54

object, 57

screen readers, 316

script bootstrapping, 375–378

<script> tags, 9, 14

numbers permitted on a page, 17

src attribute, 15, 16

script.aculo.us library, 208–210

scrollHeight property, 204

scrollTop property, 205

seamless form submission with Ajax,

329–337

select elements, 227, 228, 230

select event, 216

select menu, 226

select method, 214

selected property, 215

Simply JavaScript (www.sitepoint.com)

400

http://www.sitepoint.com/launch/6188d9

selectedIndex property, 215, 236

semantic markup, 7

semantics (of the content of a page), 7

send method, 310, 311

separation of code, 3

importance of, 4, 5

separation of concerns (web pages), 3

serialized contents of the form, 334

servers

calling, 310–314

reading their response, 314

retrieving data from, 310

server-side validation, 239

setAttribute method, 84

setInterval, 174

stopping, 175

setRequestHeader method, 311

setTimeout, 166–168, 312, 320

creating a repeat timer, 174

in the middle of your code, 167

operation of, 166

stopping the timer, 172–174

to change background-position, 178

use in animation, 188

use with tooltips, 175

using variables with, 168–172

closure use, 171

concatenating the variable into the

string, 170

global variables, 170

setting an attribute, 84

showTip method, 135, 137, 175

showTipListener, 135, 175

single menus, 226, 227

single quotes (strings), 27, 29

slashes (//)

used with comments, 18

slider control, 256–271

code for, 260–261

complete JavaScript, 268–271

creating, 262

CSS approach, 258–260

event llsteners, 263–264

exploration applications, 346

finished version, 268

slider thumb, 262, 265

image of, 258

making it draggable, 264–268

slider track

image of, 258

Soccerball animation

creating realistic movement, 192–198

in two dimensions, 190–192

linear path, 181–190

slowing the ball down, 193–195

speeding the ball up, 195–197

stopping it from going forever, 194

span elements, 136, 258, 262

special characters (regular expressions),

244–246

splice, 56

square brackets [...], 245

src attribute, 15, 16

standalone functions, 127

declaring, 57

start (method), 59

"start at the bottom approach", 5

Start button, 173

statements, 17

static page (accordion control), 144–146

static page (toolkit), 133

Order the print version of this book to get all 400+ pages!

401

http://www.sitepoint.com/launch/6188d9

status property, 312

Stop button, 173

stopping setInterval, 175

stopping the propagation of an event,

124

stopping the timer, 172–174

stopPropagation method, 124, 129, 160,

372

stray click producing a helpful/annoying

message, 124, 125

strictly typed variables, 23

string operations, 29

strings, 27–29

concatenating, 29

definition, 27

in arrays, 33

specifying using quote marks, 27

stripy tables

making (example), 92–99

StripyTables, 97

style attribute, 87, 110

style changes, 85–92

adding a class, 89–91

comparing classes, 88

removing a class, 91

with class, 87–92

style property, 85

style.backgroundColor code, 85

style.backgroundPosition, 180

style.color code, 85, 87

style.height proprety, 203, 205

style.left property, 186, 189

style.top property, 192

Submit button, 111

submit event, 216, 331

submit event listener, 252

submit method, 214

submitForm method, 334

submitListener method, 331–334

subtraction operator (-), 24

syntax, 13

syntax errors, 283–288

T
Tab, 111, 132, 152, 156

tables

stripy, 92–99

adding class "alt" to every second

row, 96

finding all tables with class "data-

Table", 93

getting the table rows for each table,

94–95

putting it all together, 96–99

tables (variable name), 94, 100, 101

tabling, 132, 152

tag name

restricting selection, 72–74

to find elements, 70–74

target, 369

target phase, 122

target.document, 369

tbody element, 95

teleportation, 164

text input fields, 213

text nodes, 64

invisible characters in, 65

thead element, 95

theClass (variable), 76, 79, 89

this Keyword

use with event handlers, 112–114

use with event listeners, 127–128

Simply JavaScript (www.sitepoint.com)

402

http://www.sitepoint.com/launch/6188d9

value of, 127

three layers of the Web, 4–5

behavior in JavaScript, 5, 9–10

content in HTML format, 5, 6–8

presentation in CSS, 5, 8–9

time controls, 165–175

creating a repeating timer, 174

setTimeout, 166–168

stopping the timer, 172–174

using variables with setTimeout, 168–

172

timers

repeating, 174

stopping, 172–174

title attribute, 132, 133, 228

title poperty, 137

to100 (slider control), 257

tooltips, 132–144

adding to a document as a child of the

link, 137

displaying on a page, 136

displaying on top of surrounding

document content, 140

dynamic styles, 140–142

ensuring there is no tip to display, 139

making things happen, 134–135

putting in a short delay on an action,

175

putting it all together, 142–144

removing, 138–139

static page, 133

style property declarations, 141

workhorse methods, 135–139

tr elements, 95

Travelocity

use of JavaScript sliders, 347

try-catch statement, 307–308, 337

logical structure, 309

try statement, 308, 309

two dimensional animation, 190–192

type attribute, 14

typeof operator, 75

U
unbind method, 160

underscore (_)

in variable names, 22

Unicode character numbers, 324

unload event, 129

unobtrusive scripting, 10

updateDependents method, 221, 222

updateSlaveMenu method, 230, 235

URL calls, 310

URLs

referenced in src attribute, 16

V
validation errors, 251, 255, 256

value property, 215

var (keyword), 20, 21, 54

variable assignment, 57

variable names, 22

multi word, 22

naming conventions, 56

no spaces allowed in, 22

symbols in, 22

variable types, 23–35

arrays, 30–34

Boolean values, 30

numbers, 23

mathematical operations, 24–27

strings, 27–29

Order the print version of this book to get all 400+ pages!

403

http://www.sitepoint.com/launch/6188d9

string operations, 29

variables, 19–22

assigning, 20

associative arrays, 34

counter, 45

declaring, 20, 54

global, 54

local, 54

loosely typed, 23

strictly typed, 23

use with setTimeout, 168–172

vector-rendering standards, 350

visualization, 347–348

visually impaired users, 4

W
walking the DOM, 79

Warnings (Firefox), 279

weather widget, 317–328

Ajax functionality, 318–322

complete code, 325–328

error handling if server doesn't return

proper data, 325

extracting the pertinent data, 322–324

HTML code, 317, 324

updated content, 325

XML code, 322

XMLHttpRequest connection, 318, 320

Web

not designed to support applications,

354

web application standard, 354

web design

mixed codes used in, 2

Web Hypertext Application Technology

Working Group (WhatWG), 354

web pages

functions, 2

mix codes used, 2

separation of concerns, 3

wForms library, 272

while loops, 43–45, 46, 231

finishing, 44

logical flow through, 45

use with arrays, 44

whitespace nodes, 65, 315

whole numbers, 23

widgets, 355, 356

Dojo library, 358–361

window object, 129, 132

window.event, 121

Windows Vista

supporting "gadgets", 357

writeError, 325

writeUpdate method, 322, 323

X
XHTML

and embedded JavaScript, 15

XMLHttpRequest, 306–316

retrieving data from the server, 311

XMLHttpRequest object

check to see if data successfully re-

ceived, 312

course of action for unsuccessful re-

quests, 313

creating, 307–310

using cross-browser method, 308

libraries, 337–343

reading the server’s response, 314–316

readyState property, 312

returns HTTP error code, 312

Simply JavaScript (www.sitepoint.com)

404

http://www.sitepoint.com/launch/6188d9

single call use only, 314

status property, 312

use of event handler to notify that

server has returned a response,

312

xtractMasterMenu method, 236

Y
Yahoo!

widget tool, 357

Yahoo! Pipes intuitive and interactive

interface, 351

Yahoo! UI Library, 160

Ajax object, 341

Z
z-index property, 141

Order the print version of this book to get all 400+ pages!

405

http://www.sitepoint.com/launch/6188d9

	Simply JavaScript
	Summary of Contents of this Excerpt
	Table of Contents
	Preface
	Who Should Read this Book?
	What’s Covered in this Book?
	The Book’s Web Site
	The Code Archive
	Updates and Errata

	The SitePoint Forums
	The SitePoint Newsletters
	Your Feedback
	Acknowledgments
	Kevin Yank
	Cameron Adams

	Conventions Used in this Book
	Code Samples
	Tips, Notes, and Warnings

	The Three Layers of the Web
	Keep ’em Separated
	Three Layers
	HTML for Content
	CSS for Presentation
	JavaScript for Behavior

	The Right Way
	JavaScript Libraries
	Let’s Get Started!

	Programming with JavaScript
	Running a JavaScript Program
	Statements: Bite-sized Chunks for your Browser
	Comments: Bite-sized Chunks Just for You
	Variables: Storing Data for your Program
	Variable Types: Different Types for Different Data
	Numbers
	Mathematical Operations

	Strings
	String Operations

	Booleans
	Arrays
	Associative Arrays

	Conditions and Loops: Controlling Program Flow
	Conditions: Making Decisions
	if Statements
	Multiple Conditions

	if-else Statements
	else-if Statements

	Loops: Minimizing Repetition
	while Loops
	do-while Loops
	for Loops

	Functions: Writing Code for Later
	Arguments: Passing Data to a Function
	Return Statements: Outputting Data from a Function
	Scope: Keeping your Variables Separate

	Objects
	Unobtrusive Scripting in the Real World
	Summary

	Document Access
	The Document Object Model: Mapping your HTML
	Text Nodes
	Attribute Nodes

	Accessing the Nodes you Want
	Finding an Element by ID
	Finding Elements by Tag Name
	Restricting Tag Name Selection

	Finding Elements by Class Name
	Starting your First Function
	Looking at All the Elements
	Checking the Class of Each Element
	Adding Matching Elements to our Group of Elements
	Putting it All Together

	Navigating the DOM Tree
	Finding a Parent
	Finding Children
	Finding Siblings

	Interacting with Attributes
	Getting an Attribute
	Setting an Attribute

	Changing Styles
	Changing Styles with Class
	Comparing Classes
	Adding a Class
	Removing a Class

	Example: Making Stripy Tables
	Finding All Tables with Class dataTable
	Getting the Table Rows for Each Table
	Adding the Class alt to Every Second Row
	Putting it All Together

	Exploring Libraries
	Prototype
	jQuery
	Dojo

	Summary

	What’s Next?
	Index

