
IBM Informix SQL
Reference Manual
Version 7.3
January 2002
Part No. 000-5471A

ii IBM Informix SQL Ref
This document contains proprietary information of IBM. It is provided under a license agreement and is
protected by copyright law. The information contained in this publication does not include any product
warranties, and any statements provided in this manual should not be interpreted as such.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information
in any way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1996, 2002. All rights reserved.

US Government User Restricted Rights—Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

Note:
Before using this information and the product it supports, read the information in the appendix
entitled “Notices.”
erence Manual

Table of Contents

Table of
Contents
Introduction
In This Introduction 3
About This Manual 3

Organization of This Manual 3
Types of Readers 5
Software Dependencies 5
Assumptions About Your Locale. 5
Demonstration Database and Examples 6

Documentation Conventions 6
Typographical Conventions 7
Icon Conventions 7

Additional Documentation 8
Syntax Conventions 9

Documentation Included with INFORMIX-SQL 13
On-Line Manuals 14
Useful On-Line Files 14
On-Line Help 14
On-Line Error Messages. 14
Related Reading 15

Informix Welcomes Your Comments 16

Chapter 1 The INFORMIX-SQL Main Menu
In This Chapter 1-3
Product Overview 1-3
Accessing INFORMIX-SQL 1-4
The INFORMIX-SQL Screens 1-4

Menu Screens 1-4
Text-Entry Screens 1-5

Maps of the Menu Structure 1-7

iv IBM In
The INFORMIX-SQL Main Menu Options 1-10
DATABASE. 1-10
EXIT . 1-11
FORM . 1-12
QUERY LANGUAGE 1-14
REPORT 1-19
TABLE . 1-21
USER MENU 1-25

Chapter 2 The FORMBUILD Transaction Form Generator
In This Chapter 2-5

PERFORM Error Messages 2-5
Sample Forms 2-5

Creating and Compiling a Custom Form 2-6
Using the Menu System to Create a Form 2-6
Using the Operating System to Create a Form 2-8

Structure of a Form Specification File 2-9
DATABASE Section 2-11
SCREEN Section 2-12

Page Layout 2-14
Graphics Characters in Forms 2-18

TABLES Section 2-21
Remote Databases 2-23
External Tables and Synonyms 2-23

ATTRIBUTES Section 2-24
Display Field Order 2-25
Table Order. 2-25
Fields Linked to Database Columns 2-26
Display-Only Fields 2-28
Joining Columns 2-29
ATTRIBUTES Syntax 2-32
AUTONEXT 2-33
CENTURY 2-34
COLOR . 2-36
COMMENTS 2-39
DEFAULT 2-40
DOWNSHIFT 2-42
FORMAT 2-43
INCLUDE 2-46
INVISIBLE 2-48
LOOKUP 2-49
formix SQL Reference Manual

NOENTRY 2-51
NOUPDATE 2-52
PICTURE 2-53

PROGRAM 2-55
QUERYCLEAR 2-57
REQUIRED 2-58
REVERSE 2-59
RIGHT . 2-60
UPSHIFT 2-61
VERIFY 2-62
WORDWRAP 2-63
ZEROFILL 2-66

INSTRUCTIONS Section 2-67
COMPOSITES 2-68
DELIMITERS 2-70
MASTER OF 2-71
Control Blocks 2-73
BEFORE 2-74
AFTER 2-75
EDITADD and EDITUPDATE 2-76
ADD . 2-78
UPDATE 2-79
QUERY 2-80
REMOVE 2-81
DISPLAY 2-82
Action Syntax 2-83
ABORT 2-84
LET . 2-85
NEXTFIELD 2-88
COMMENTS 2-90
IF-THEN-ELSE 2-91

The SAMPLE Form Specification File 2-93
The CUSTOMER INFORMATION Screen 2-95
The ORDER INFORMATION Screen 2-96
Table of Contents v

vi IBM In
Chapter 3 The PERFORM Screen Transaction Processor
In This Chapter 3-3
Running PERFORM 3-3

Accessing PERFORM from the Main Menu 3-4
The PERFORM Screen 3-6

The Information Lines 3-6
The Screen Form 3-8
Status Lines 3-9
Running Operating-System Commands from PERFORM . . . 3-10
Entering Data 3-10
Data Types 3-10
Special Functions 3-13
Positioning the Cursor 3-14
Field Editing 3-14
Using the Multiline Editor 3-16
Display Field Order 3-17

Data Checking 3-18
User Access Privileges 3-19

The Current List 3-20
Menu Options 3-20

ADD . 3-21
CURRENT 3-23
DETAIL . 3-24
EXIT . 3-26
MASTER 3-27
NEXT . 3-28
OUTPUT 3-29
PREVIOUS 3-33
QUERY . 3-34
REMOVE 3-38
SCREEN 3-39
TABLE . 3-40
UPDATE 3-41
VIEW . 3-42
formix SQL Reference Manual

Chapter 4 The ACE Report Writer
In This Chapter 4-5
Creating and Compiling a Custom Report 4-5

Using the Menus to Create a Report 4-6
Creating a Report from the Command Line 4-8

Information About ACE 4-10
ACE Filename Conventions 4-10
Owner Naming 4-10
Using Expressions in a Report Specification 4-11
ACE Error Messages 4-13

Sample Reports 4-13
Structure of a Report Specification File 4-14
DATABASE Section 4-16
DEFINE Section 4-17

ASCII . 4-18
PARAM 4-20
VARIABLE 4-21

INPUT Section 4-23
PROMPT FOR 4-24

OUTPUT Section 4-26
REPORT TO 4-27
LEFT MARGIN 4-29
RIGHT MARGIN 4-30
TOP MARGIN 4-32
BOTTOM MARGIN 4-33
PAGE LENGTH 4-34
TOP OF PAGE 4-35

SELECT Section 4-37
READ Section 4-40

READ . 4-41
FORMAT Section 4-44

EVERY ROW 4-46
Control Blocks 4-49

AFTER GROUP OF 4-50
BEFORE GROUP OF 4-53
FIRST PAGE HEADER 4-56
ON EVERY ROW 4-58
ON LAST ROW. 4-60
PAGE HEADER 4-61
PAGE TRAILER 4-63
Table of Contents vii

viii IBM
Statements . 4-65
FOR . 4-66
IF THEN ELSE 4-67
LET . 4-69
NEED. 4-71
PAUSE . 4-72
PRINT . 4-73
PRINT FILE 4-75
SKIP . 4-76
SKIP TO TOP OF PAGE 4-77
WHILE . 4-78
Aggregates 4-79
ASCII . 4-82
CLIPPED 4-84
COLUMN 4-85
CURRENT 4-86
DATE . 4-87
DATE() . 4-88
DAY() . 4-89
LINENO. 4-90
MDY() . 4-91
MONTH() 4-92
PAGENO 4-93
SPACES . 4-94
TIME . 4-95
TODAY . 4-96
USING . 4-97
WEEKDAY() 4-107
WORDWRAP 4-108
YEAR() . 4-109

Chapter 5 User-Menu
In This Chapter 5-3
Accessing a Menu 5-4

Using a Menu Within INFORMIX-SQL 5-4
Designing a Menu 5-6
Creating a Menu 5-8

Accessing PERFORM with the menuform Form 5-8
Entering Menu Data 5-10
Steps for Entering Your Own Data 5-14

Modifying a Menu 5-16
 Informix SQL Reference Manual

Menu Display Fields 5-16
MENU NAME 5-17
MENU TITLE 5-18
SELECTION NUMBER 5-19
SELECTION TYPE. 5-20
SELECTION TEXT 5-22
SELECTION ACTION 5-23

Creating a Script Menu 5-25

Chapter 6 Functions in ACE and PERFORM
In This Chapter 6-3
Calling C Functions from ACE 6-4

FUNCTION 6-5
CALL (in ACE) 6-7

Calling C Functions from PERFORM 6-9
CALL (in PERFORM). 6-10
ON BEGINNING and ON ENDING 6-12

Writing the C Program 6-13
Organizing the C Program 6-13
Passing Values to a C Function 6-16
Returning Values to ACE and PERFORM 6-19

PERFORM Library Functions 6-20
PF_GETTYPE() 6-21
PF_GETVAL() 6-23
PF_PUTVAL () 6-26
PF_NXFIELD () 6-29
PF_MSG() 6-31

Compiling, Linking, and Running Reports and Forms 6-32
Syntax of the cace and cperf programs 6-32
Use of cace and cperf 6-33

Examples . 6-33
ACE Example 1 6-33
ACE Example 2 6-35
PERFORM Example 6-36

Appendix A The Demonstration Database and Examples

Appendix B Setting Environment Variables

Appendix C Global Language Support
Table of Contents ix

x IBM In
Appendix D Modifying termcap and terminfo

Appendix E The ASCII Character Set

Appendix F Reserved Words

Appendix G Accessing Programs from the Operating System

Appendix H Notices

Index
formix SQL Reference Manual

Introduction
Introduction
In This Introduction 3

About This Manual 3
Organization of This Manual 3
Types of Readers 5
Software Dependencies 5
Assumptions About Your Locale 5
Demonstration Database and Examples 6

Documentation Conventions 6
Typographical Conventions 7
Icon Conventions 7

Feature, Product, and Platform Icons 8

Additional Documentation 8
Syntax Conventions 9

Elements That Can Appear on the Path 9
How to Read a Syntax Diagram 11

Documentation Included with INFORMIX-SQL 13
On-Line Manuals 14
Useful On-Line Files 14
On-Line Help 14
On-Line Error Messages. 14
Related Reading 15

Informix Welcomes Your Comments 16

2 IBM In
formix SQL Reference Manual

In This Introduction
This introduction provides an overview of the information in this manual
and describes the conventions it uses.

About This Manual
This manual is a complete reference to the facilities that make up
INFORMIX-SQL. It contains information about everything you can do with
INFORMIX-SQL, and it is organized by facility name. Once you have used the
INFORMIX-SQL User Guide and are familiar with INFORMIX-SQL basics, you
can use this manual to learn about advanced features and to quickly locate
specific information.

Organization of This Manual
The manual includes the following chapters and appendixes:

■ Chapter 1, “The INFORMIX-SQL Main Menu,” explains how to use
the INFORMIX-SQL Main menu and describes what each option on
the menu does.

■ Chapter 2, “The FORMBUILD Transaction Form Generator,” focuses
on FORMBUILD, supplying the information needed to build a screen
form.

■ Chapter 3, “The PERFORM Screen Transaction Processor,” considers
each PERFORM menu option in detail, explaining how to enter,
modify, remove, and retrieve data.

■ Chapter 4, “The ACE Report Writer,” lists the formatting features
you can use with ACE to prepare custom reports.
Introduction 3

Organization of This Manual
■ Chapter 5, “User-Menu,” describes the User-menu option and
provides the information needed to build a menu.

■ Chapter 6, “Functions in ACE and PERFORM,” shows you how to
call C functions from ACE reports and PERFORM forms.

■ Appendix A, “The Demonstration Database and Examples,”
describes the sample forms and reports used in this manual and the
INFORMIX-SQL User Guide.

■ Appendix B, “Setting Environment Variables,” describes how to use
environment variables and documents a few environment variables
specific to INFORMIX-SQL. For detailed documentation of
environment variables for all Informix products, see the Informix
Guide to SQL: Reference.

■ Appendix C, “Global Language Support,” describes Global
Language Support (GLS), and how it affects INFORMIX-SQL in non-
US-English environments.

■ Appendix D, “Modifying termcap and terminfo,” discusses how to
modify termcap and terminfo files to use special graphics characters
in the FORMBUILD transaction processor.

■ Appendix E, “The ASCII Character Set,” is an ASCII chart.

■ Appendix F, “Reserved Words,” lists reserved words for all Informix
products.

■ Appendix G, “Accessing Programs from the Operating System,”
demonstrates how to access each INFORMIX-SQL program from the
command line.
4 IBM Informix SQL Reference Manual

Types of Readers
Types of Readers
This manual is written for all INFORMIX-SQL developers. You do not need
database management experience or familiarity with relational database
concepts to use this manual. A knowledge of SQL (Structured Query
Language), however, and experience using a high-level programming
language would be useful.

Software Dependencies
This manual is written with the assumption that you are using an Informix
database server, Version 7.x or later.

You can easily use applications developed with an earlier version of
INFORMIX-SQL, such as Version 4.x or 6.x or 7.2, with this version of
INFORMIX-SQL.

Assumptions About Your Locale
Informix products can support many languages, cultures, and code sets.
All culture-specific information is brought together in a single environment,
called a GLS (Global Language Support) locale.

The examples in this manual are written with the assumption that you are
using the default locale, en_us.8859-1. This locale supports U.S. English
format conventions for dates, times, and currency. In addition, this locale
supports the ISO 8859-1 code set, which includes the ASCII code set plus
many 8-bit characters such as é, è, and ñ.

If you plan to use non-ASCII characters in your data or your SQL identifiers,
or if you want to conform to the nondefault collation rules of character data,
you need to specify the appropriate nondefault locale.

For instructions on how to specify a nondefault locale, additional syntax, and
other considerations related to GLS locales, see the Informix Guide to GLS
Functionality.
Introduction 5

Demonstration Database and Examples
Demonstration Database and Examples
INFORMIX-SQL includes a demonstration database called stores7 that
contains information about a fictitious wholesale sporting-goods distributor.
You can create the stores7 database in any directory you like by changing to
the directory and entering the following command:

isqldemo

Many (but not all) of the examples in the INFORMIX-SQL documentation set
are based on the stores7 database. This database is described in detail in the
Informix Guide to SQL: Reference. The examples are installed with your
software in the $INFORMIXDIR/demo/sql directory. For U.S. English, go to
the en_us/0333 subdirectory; for other languages, go to the appropriate
subdirectory under the fgl directory.

Documentation Conventions
This section describes the conventions that this manual uses. These
conventions make it easier to gather information from this and other volumes
in the documentation set. The following conventions are discussed:

■ Typographical conventions

■ Icon conventions

■ Example-code conventions

■ Syntax conventions
6 IBM Informix SQL Reference Manual

Typographical Conventions
Typographical Conventions
This manual uses the following conventions to introduce new terms,
illustrate screen displays, describe command syntax, and so forth.

Tip: When you are instructed to “enter” characters or to “execute” a command,
immediately press RETURN after the entry. When you are instructed to “type” the
text or to “press” other keys, no RETURN is required.

Icon Conventions
Throughout the documentation, you will find text that is identified by several
different types of icons. This section describes these icons.

Convention Meaning

KEYWORD All primary elements in a programming language statement
(keywords) appear in uppercase letters in a serif font.

italics
italics
italics

Within text, new terms and emphasized words appear in italics.
Within syntax diagrams and code examples, identifiers or values
that you are to specify appear in italics.

boldface
boldface

Names of program entities (such as classes, events, and tables),
environment variables, file and pathnames, and interface
elements (such as icons, menu items, and buttons) appear in
boldface.

monospace
monospace

Information that the product displays and information that you
enter appear in a monospace typeface.
Introduction 7

Additional Documentation
Feature, Product, and Platform Icons

Feature, product, and platform icons identify paragraphs that contain
feature-specific, product-specific, or platform-specific information.

These icons can apply to a row in a table, one or more paragraphs, or an entire
section. A ♦ symbol indicates the end of the feature-specific, product-
specific, or platform-specific information.

Additional Documentation
For additional information, you might want to refer to the following types of
documentation:

■ Documentation included with INFORMIX-SQL

■ On-line manuals

■ On-line error messages

■ Related reading

Icon Description

Identifies information that relates to the Informix Global
Language Support (GLS) feature

Identifies information or syntax that is specific to Informix
Dynamic Server and its editions

Identifies information or syntax that is specific to
INFORMIX-SE

GLS

IDS

SE
8 IBM Informix SQL Reference Manual

Syntax Conventions
Syntax Conventions
This section describes conventions for syntax diagrams. Each diagram
displays the sequences of required and optional keywords, terms, and
symbols that are valid in a given statement or segment, as Figure 1 shows.

Figure 1
Example of a Simple Syntax Diagram

Each syntax diagram begins at the upper-left corner and ends at the upper-
right corner with a vertical terminator. Between these points, any path that
does not stop or reverse direction describes a possible form of the statement.
(For a few diagrams, however, notes in the text identify path segments that
are mutually exclusive.)

Syntax elements in a path represent terms, keywords, symbols, and segments
that can appear in your statement. The path always approaches elements
from the left and continues to the right, except in the case of separators in
loops. For separators in loops, the path approaches counterclockwise. Unless
otherwise noted, at least one blank character separates syntax elements.

Elements That Can Appear on the Path

You might encounter one or more of the following elements on a path.

Element Description

KEYWORD A word in UPPERCASE letters is a keyword. You must
spell the word exactly as shown; you can, however,
use either uppercase or lowercase letters.

(. , ; @ + * - /) Punctuation and other nonalphanumeric characters
are literal symbols that you must enter exactly as
shown.

" "

' '

Double quotes must be entered as shown. If you
prefer, you can replace the pair of double quotes with
a pair of single quotes, but you cannot mix double and
single quotes.

(1 of 3)

OPEN FORM form FROM "filename"
Introduction 9

Syntax Conventions
variable A word in italics represents a value that you must
supply. A table immediately following the diagram
explains the value.

A reference in a box represents a subdiagram. Imagine
that the subdiagram is spliced into the main diagram
at this point. When a page number is not specified, the
subdiagram appears on the same page. The aspect
ratios of boxes are not significant.

A reference to SQL:S in a syntax diagram represents an
SQL statement or segment that is described in the
Informix Guide to SQL: Syntax. Imagine that the
segment were spliced into the diagram at this point.

An icon is a warning that this path is valid only for
some products, or only under certain conditions.
Characters on the icons indicate what products or
conditions support the path.

These icons appear in some syntax diagrams:

This path is valid only for INFORMIX-SE
database servers.

This path is valid only for Informix
Dynamic Server.

A shaded option is the default, if you provide no other
specification.

A syntax segment within a pair of arrows is a
subdiagram.

The vertical line terminates the syntax diagram.

A branch below the main path indicates an optional
path. (Any term on the main path is required, unless
a branch can circumvent it.)

Element Description

(2 of 3)

ATTRIBUTE Clause

ATTRIBUTE Clause
p. 3-288

SELECT Statement
see SQL:S

SE

SE

IDS

ALL

. . .

NOT

IS NULL
10 IBM Informix SQL Reference Manual

Syntax Conventions
How to Read a Syntax Diagram

Figure 2 shows a syntax diagram that uses some of the path elements that the
previous table lists.

Figure 2
Example of a Syntax Diagram

The “Case III” label above the diagram implies that this statement can have at
least two other syntax patterns. To use this diagram to construct a statement,
start at the top left with the keyword DISPLAY. Then follow the diagram to the
right, proceeding through the options that you want.

A set of multiple branches indicates that a choice
among more than two different paths is available.

A loop indicates a path that you can repeat.
Punctuation along the top of the loop indicates the
separator symbol for list items.

If no symbol appears, a blank space is the separator, or
(as here) the Linefeed that separates successive
statement in a source module.

A gate () on a path indicates that you can only use
that path the indicated number of times, even if it is
part of a larger loop. You can specify size no more than
three times within this statement segment.

Element Description

(3 of 3)

ERROR

NOT FOUND

WARNING

,

variable

statement

3

,

size

3

ATTRIBUTE Clause

variable

,

value

,

DISPLAY

BY NAME

Field Clause

,

TO

Case III: (display output in a screen form)
Introduction 11

Syntax Conventions
The following steps are shown in the diagram:

1. Type the keyword DISPLAY.

2. You can display the values of a list of variables to an explicit list of
fields within the current screen form:

■ Type the name of a variable. If you want to display the values of
several variables, separate successive variables by comma.

■ Type the keyword TO after the name of the last variable.

■ Type the name of a field in the current form in which to display
the first variable. To find the syntax for specifying field names,
go to the “Field Clause” segment on the specified page.

3. If you are using a form whose fields have the same names as the
variables that you want to display, you can follow the lower path:

■ Type the keywords BY NAME after DISPLAY.

■ Type the name of a variable. If you want to display the values of
several variables, separate successive variables by comma.

4. You can optionally set a screen attribute for the displayed values:

■ Use the syntax of the “ATTRIBUTE Clause” segment on the
specified page to specify the screen attribute that you desire.

5. Follow the diagram to the terminator.

Your DISPLAY TO or DISPLAY BY NAME statement is now complete.

A restriction on step 2 (that there must be as many fields as variables)
appears in notes that follow the diagram, rather than in the diagram
itself. “Usage” notes also follow the syntax for each statement.
12 IBM Informix SQL Reference Manual

Documentation Included with INFORMIX-SQL
Documentation Included with INFORMIX-SQL
The INFORMIX-SQL documentation set includes the following manuals.

Manual Description

INFORMIX-SQL
Reference Manual

A complete reference to the programs that make up INFORMIX-SQL. It
contains information about everything you can do with INFORMIX-SQL and
is organized by program name. Once you have used the INFORMIX-SQL User
Guide and are familiar with INFORMIX-SQL basics, you can use the
INFORMIX-SQL Reference Manual to learn about advanced features and to
quickly locate specific information.

INFORMIX-SQL User
Guide

Introduces INFORMIX-SQL and provides the context needed to understand
the other manuals in the documentation set. You do not need database
management experience or familiarity with basic database management
concepts to use this manual. It includes general information about database
systems and leads you through the steps necessary to create a database, enter
and access database information, and produce printed reports.

Informix Guide to SQL:
Tutorial

Provides a tutorial on SQL as it is implemented by Informix products, and
describes the fundamental ideas and terminology that are used when planning
and implementing a relational database. It also describes how to retrieve infor-
mation from a database, and how to modify a database.

Informix Guide to SQL:
Reference

Provides full information on the structure and contents of the demonstration
database that is provided with INFORMIX-SQL. It includes details of the
Informix system catalog tables, describes Informix and common environment
variables that should be set, and describes the column data types that are
supported by Informix database engines. It also provides a detailed description
of all of the SQL statements that Informix products support.

Informix Guide to SQL:
Syntax

Contains syntax diagrams for all of the SQL statements and statement
segments that are supported by the 7.3 database server.

Informix Guide to GLS
Functionality

Provides full information about using Global Language Support features.

Informix Error Messages Provides error messages organized by error number. When an error occurs you
can look it up by number and learn its cause and solution.
Introduction 13

On-Line Manuals
On-Line Manuals
The Informix Answers OnLine CD allows you to print chapters or entire
books and perform full-text searches for information in specific books or
throughout the documentation set. You can install the documentation or
access it directly from the CD. For information about how to install, read, and
print on-line manuals, see the installation insert that accompanies Answers
OnLine. You can also access Answers OnLine on the Web at the following
URL: www.informix.com/answers.

Useful On-Line Files
In addition to the Informix set of manuals, the following on-line files, located
in the $INFORMIXDIR/release directory, may supplement the information in
the INFORMIX-SQL User Guide and Reference Manual:

On-Line Help
INFORMIX-SQL provides on-line Help; invoke Help by pressing CONTROL-W.

On-Line Error Messages
Use the finderr script to display a particular error message or messages on
your screen. The script is located in the $INFORMIXDIR/bin directory.

Documentation
Notes

describe feature and performance topics not covered in the
manual or that have been modified since publication. The
file containing the Documentation Notes for
INFORMIX-SQL is called ISQLDOC_7.3.

Release Notes describe performance differences from earlier versions of
Informix products and how these differences may affect
current products. The file containing the Release Notes for
INFORMIX-SQL and other products is called TOOLS_7.3.
14 IBM Informix SQL Reference Manual

Related Reading
The finderr script has the following syntax.

For example, to display the -359 error message, you can enter either of the
following:

finderr -359

or, equivalently:

finderr 359

The following example demonstrates how to specify a list of error messages.
The example also pipes the output to the UNIX more command to control the
display. You can also direct the output to another file so that you can save or
print the error messages:

finderr 233 107 113 134 143 144 154 | more

A few messages have positive numbers. These messages are used solely
within the application tools. In the unlikely event that you want to display
them, you must precede the message number with the + sign.

The messages numbered -1 to -100 can be platform-dependent. If the message
text for a message in this range does not apply to your platform, check the
operating system documentation for the precise meaning of the message
number.

Related Reading
The following Informix database server publications provide additional
information about the topics that this manual discusses:

■ Informix database servers and the SQL language are described in
separate manuals, including Informix Guide to SQL: Tutorial, Informix
Guide to SQL: Syntax, and Informix Guide to SQL: Reference.

msg_num Indicates the number of the error message to display. Error
message numbers range from -1 to -32000. Specifying the - sign
is optional.

finderr msg_num
Introduction 15

Informix Welcomes Your Comments
■ Information about setting up Informix database servers is provided
in the Administrator’s Guide for your particular server.

■ The Informix Guide to GLS Functionality describes how to use Global
Language Support to create applications for international markets.

Informix Press, in partnership with Prentice Hall, publishes books about
Informix products. Authors include experts from Informix user groups,
employees, consultants, and customers. You can access Informix Press on the
Web at the following URL: www.informix.com/ipress.

Informix Welcomes Your Comments
Let us know what you like or dislike about our manuals. To help us with
future versions of our manuals, we want to know about any corrections or
clarifications that you would find useful. Include the following information:

■ The name and version of the manual that you are using

■ Any comments that you have about the manual

■ Your name, address, and phone number

Write to us at the following address:

Informix Software, Inc.
SCT Technical Publications Department
4100 Bohannon Drive
Menlo Park, CA 94025

If you prefer to send electronic mail, our address is:

doc@informix.com

We appreciate your suggestions.

Important: The doc alias is monitored only by the Informix departments that create
and maintain manuals and on-line documentation files. It is not an appropriate
channel for technical support issues, sales inquiries, or questions about the avail-
ability of Informix products.
16 IBM Informix SQL Reference Manual

1
Chapter
The INFORMIX-SQL Main Menu
In This Chapter . 1-3

Product Overview 1-3

Accessing INFORMIX-SQL 1-4

The INFORMIX-SQL Screens 1-4
Menu Screens 1-4

Selecting Options 1-5
Exiting the Menu 1-5
Asking for Help 1-5

Text-Entry Screens 1-5
Entering Text 1-6
Exiting a Text-Entry Screen 1-6
Asking for Help 1-6

Maps of the Menu Structure. 1-7

The INFORMIX-SQL Main Menu Options 1-10
DATABASE . 1-10
EXIT . 1-11
FORM . 1-12
QUERY LANGUAGE 1-14
REPORT . 1-19
TABLE . 1-21
USER MENU 1-25

1-2 IBM
 Informix SQL Reference Manual

In This Chapter
This chapter gives an overview of INFORMIX-SQL and details about the main
menu.

Product Overview
INFORMIX-SQL is a computer-based record-keeping system. As a database
management system, INFORMIX-SQL consists of useful programs or modules
that perform data management tasks. INFORMIX-SQL can substantially
reduce the amount of time required to organize, store, and retrieve infor-
mation. It can summarize, group, and format information in a variety of
helpful ways. With INFORMIX-SQL, you can perform these database
management tasks:

■ Create, modify, and drop databases and tables

■ Load data from operating system files

■ Run queries using an interactive query language

■ Insert, delete, update, and query on data in the database

■ Create and drop privileges and indexes

■ Create and compile custom forms or reports

■ Create and run custom menus
The INFORMIX-SQL Main Menu 1-3

Accessing INFORMIX-SQL
Accessing INFORMIX-SQL
To begin working with INFORMIX-SQL, enter isql at the operating-system
prompt. At this point, INFORMIX-SQL displays the Main menu.

The INFORMIX-SQL Screens
The INFORMIX-SQL menu system uses two kinds of screens: a menu screen,
like the INFORMIX-SQL Main menu, and a text-entry screen.

Menu Screens
The top line of a menu screen lists your options. One option is always
highlighted. The second line gives a brief description of the highlighted
option. Each time you press the SPACEBAR, the highlight moves to the next
option and the description changes. You can also use the [→] and [←] keys
to move the highlight. The fourth line displays the name of the current
database and the following message:

Press CONTROL-W for Help

INFORMIX-SQL: Form Report Query-language User-menu Database Table Exit
Run, Modify, Create, or Drop a form.

--Press CONTROL-W for Help ----
1-4 IBM Informix SQL Reference Manual

Text-Entry Screens
Selecting Options

You can normally select menu options in two ways:

■ Use the SPACEBAR to move the highlight over the option you want
to choose and press RETURN.

■ Type the first letter of the option you want to select. Case is not
important—you can type t or T to select the Table option.

INFORMIX-SQL displays the screen for the menu option you have selected.

Exiting the Menu

Each menu has an Exit option. To leave a menu screen, type e for Exit.
INFORMIX-SQL displays the previous menu or screen.

Asking for Help

The CONTROL-W key displays the help message appropriate for each part of
INFORMIX-SQL. When you are finished reading the message displayed on the
HELP screen, press RETURN. INFORMIX-SQL redisplays the screen you were
working with before you called for help.

Text-Entry Screens
The text-entry screen is the second kind of screen. It requires that you enter
text instead of choosing a menu option. The top line of the screen displays the
screen name, followed by double angle (>>) brackets. The second line gives
directions.
The INFORMIX-SQL Main Menu 1-5

Text-Entry Screens
The RUN FORM screen is an example of a text-entry screen. Some of the items
it includes follow.

Entering Text

Whatever you type appears after the double angle brackets at the top of the
screen. Press the RETURN key when you are finished typing. Some screens,
like the RUN FORM screen, give you the option of selecting an item from a list
on the lower part of the screen instead of typing your selection. Use the
Arrow keys to position the highlight over the item you want, and then press
RETURN. INFORMIX-SQL displays the next screen.

Exiting a Text-Entry Screen

Text-entry screens do not have an Exit option. Press CONTROL-C and
INFORMIX-SQL redisplays the previous menu or screen.

Asking for Help

The CONTROL-W key works with text-entry screens exactly as it does with
menu screens. When you are finished reading the Help message, press
RETURN. INFORMIX-SQL redisplays the screen you were working with before
you called for help.

RUN FORM >>
Choose a form with the Arrow Keys, or enter a name, then press RETURN.

--------------------------- stores2 ----------- Press CONTROL-W for Help ----

customer

orderform

sample
1-6 IBM Informix SQL Reference Manual

Maps of the Menu Structure
Maps of the Menu Structure
The INFORMIX-SQL Main menu has seven options: Form, Report,
Query-language, User-menu, Database, Table, and Exit. Each option on the
Main menu calls a submenu, which displays options that allow you to work
with a part of INFORMIX-SQL. The INFORMIX-SQL menu structure is
displayed in Figure 1-1 on page 1-8 and Figure 1-2 on page 1-9.

Figure 1-1 on page 1-8 is a map of the INFORMIX-SQL menu hierarchy. This
figure illustrates the options on each of the submenus available from the
Main menu.
The INFORMIX-SQL Main Menu 1-7

Maps of the Menu Structure
Figure 1-1
INFORMIX-SQL Menu Hierarchy

Create create a new table
Alter alter the structure of an existing table
Info give information about the structure of a table
Drop drop a table from the database
Exit exit to the INFORMIX-SQL Main menu

New enter new SQL statements
Run run the current SQL statements
Modify modify the current SQL statements
Use-editor use a system editor to modify the current SQL statements
Output send the results of the current SQL statements to a printer, file, or pipe
Choose choose a file that contains SQL statements and make those statements the current statements
Save save the current SQL statements in a file so you can use them again later
Info display information about the current database
Drop drop an INFORMIX-SQL command file
Exit return to the INFORMIX-SQL Main menu

Select select an existing database
Create create a new database
Drop drop an existing database
Exit exit to the INFORMIX-SQL Main menu

FormTableFormDatabase

Run run the user-menu for the
current database

Modify modify the user-menu for the
current database

Exit return to the INFORMIX-SQL
Main menu

FormUser-menu

Run display a report
Modify change an existing report specification
Generate generate a default report specification

based on a database table
New create a new report specification
Compile compile a report specification
Drop drop a report
Exit return to the INFORMIX-SQL Main menu

FormQuery-languageFormReport

Run use a form to enter data or query a database
Modify modify a form specification
Generate generate a default form
New create a new form specification
Compile compile a form
Drop drop a form from the database
Exit return to the INFORMIX-SQL Main menu

FormForm
1-8 IBM Informix SQL Reference Manual

Maps of the Menu Structure
Figure 1-2 is a functional guide to the INFORMIX-SQL menu system. Menu
options are grouped according to activity or task.

Figure 1-2
A Functional Guide to the Menu Hierarchy

Menu Options

Function Form Report
Query-
Language User-menu Database Table

Use it Run Run Run Run Select

Modify it Modify Modify Modify Modify Alter

Create it
Default
Custom

Generate
New

Generate
New

New
Use-editor

Create Create

Compile it Compile Compile

Special Tasks Info
Choose
Output
Save

Info

Drop it Drop Drop Drop Drop Drop

Exit Exit Exit Exit Exit Exit Exit
The INFORMIX-SQL Main Menu 1-9

The INFORMIX-SQL Main Menu Options
The INFORMIX-SQL Main Menu Options
The following sections discuss the options on the INFORMIX-SQL Main menu.
The options are presented in alphabetical order.

DATABASE
Use the Database option to create a new database, make an existing database
current, or drop an existing database (see Figure 1-3).

Figure 1-3
DATABASE Menu

Menu Options
The DATABASE menu displays four options:

Select makes a database the current database.

Create creates a new database and makes that database the current
database.

Drop removes a database from the system.

Exit exits the DATABASE menu and returns to the INFORMIX-SQL
Main menu.

DATABASE: Select Create Drop Exit
Select database to work with.

--------------------- stores ------------- Press CONTROL-W for Help ---------
1-10 IBM Informix SQL Reference Manual

EXIT
Usage
■ When you create a database with the Create option, that database

becomes the current database.

■ When you use the Select option, you can type the name of an existing
database rather than highlight one of the database names listed on
your screen. If you do so, you must enter the name of a database
located in the current directory or a directory specified in your
DBPATH environment variable. If you enter the name of a nonex-
istent database or a database that INFORMIX-SQL cannot locate,
INFORMIX-SQL displays the following messages:

329:Database not found or no system permission.
2: No such file or directory

■ Be careful when you drop a database; all data in the database is
permanently discarded.

■ The Informix Guide to SQL: Syntax explains the workings of all SQL
database statements that Informix products support.

■ When using the Query-language option, you are not allowed to drop
the current database. You must explicitly close it first with the CLOSE
DATABASE statement. For details about the CLOSE DATABASE
statement, see the Informix Guide to SQL: Syntax.

■ For more information on the DATABASE menu, see the
INFORMIX-SQL User Guide.

EXIT
Use the Exit option to leave the INFORMIX-SQL Main menu and return to the
operating system.

To exit from the Main menu

1. From the INFORMIX-SQL Main menu, type e to select the Exit option.

2. You leave the INFORMIX-SQL Main menu and return to the operating
system.
The INFORMIX-SQL Main Menu 1-11

FORM
FORM
Use the Form option to run a screen form, create or modify a screen form,
compile a screen form, or drop an existing screen form (see Figure 1-4).

Figure 1-4
FORM Menu

Menu Options
The FORM menu displays the following seven options:

Run runs a previously compiled screen form.

Modify modifies a screen form specification.

Generate creates a default screen form.

New creates a custom screen form specification.

Compile compiles a screen form specification.

Drop drops a screen form.

Exit exits the FORM menu and returns to the INFORMIX-SQL
Main menu.

FORM: Run Modify Generate New Compile Drop Exit
Use a form to enter data or query a database.

--Press CONTROL-W for Help --------
1-12 IBM Informix SQL Reference Manual

FORM
Usage
■ After you edit a form specification file (with the New or Modify

options on the FORM menu), you must compile it. (You cannot use
the form in INFORMIX-SQL until it has been compiled.) Menus
allowing you to compile an edited form are displayed when you
select the New or Modify options. You can also use the Compile
option on the FORM menu to compile a form specification.

INFORMIX-SQL notifies you if errors are in the form specification.
Follow the directions on the screen to correct and recompile the form.
You can save or discard the form after compilation. You can also save
an uncompiled form to work on at a later time or discard it
completely.

■ The INFORMIX-SQL program that compiles a form specification is
called FORMBUILD. See Chapter 2, “The FORMBUILD Transaction
Form Generator,” for information about FORMBUILD.

■ The INFORMIX-SQL program that runs a screen form is called
PERFORM. See Chapter 3, “The PERFORM Screen Transaction
Processor,” for information about PERFORM.

■ For more information on the FORM menu, see the INFORMIX-SQL
User Guide.
The INFORMIX-SQL Main Menu 1-13

QUERY LANGUAGE
QUERY LANGUAGE
Select the Query-language option to use the SQL query language, as
Figure 1-5 shows.

Figure 1-5
SQL menu

Menu Options
The SQL menu displays the following ten options:

New allows you to enter new SQL statements using the SQL editor.

Run executes the current SQL statement or statements.

Modify allows you to use the SQL editor to modify the current SQL
statement or statements.

Use-editor allows you to enter or edit SQL statements with a system
editor.

Output routes the output from executing the current SQL statements
to a system file, a printer, or a system pipe.

Choose allows you to select an existing command file that contains
SQL statements and make them your current statements. You
can run or edit the current statements.

SQL: New Run Modify Use-editor Output Choose Save Info Drop Exit
Enter new SQL statements using SQL editor.

---Press CONTROL-W for Help -----
1-14 IBM Informix SQL Reference Manual

QUERY LANGUAGE
Usage
■ If there is no current database, INFORMIX-SQL displays the CHOOSE

DATABASE screen after you select the Query-language option on the
INFORMIX-SQL Main menu.

■ In addition to the tables listed, you can request information about
external tables if you are using Informix Dynamic Server. To specify
an external table, you must enter the expanded table name at the
prompt. For example, the following entry requests information from
the richard.customer table in the stores7 database that accesses the
INFORMIX-OnLine system called central:

INFO FOR TABLE >> stores7@central:richard.customer

You can also use synonyms in place of the extended table name.

If you select the Status option of the INFO menu, INFORMIX-SQL
displays information on the dbspace that contains the table. The
Status option does not display audit trail information because the
logging facility replaces audit trails.

■ The INFORMIX-SQL User Guide describes how to use the SQL menu
and how to create and run SQL statements.

■ The Informix Guide to SQL: Syntax explains the SQL database state-
ments that Informix products support.

Save saves the current SQL statements in a command file. You can
use this command file later by selecting the Choose option on
the SQL menu.

Info allows you to retrieve information about the columns,
indexes, privileges, and status of a table.

Drop drops a command file from the database.

Exit exits the SQL menu and returns to the INFORMIX-SQL
Main menu.
The INFORMIX-SQL Main Menu 1-15

QUERY LANGUAGE
The following sections give some special notes about using SQL statements
with the VARCHAR, TEXT, and BYTE data types.

Querying VARCHAR, TEXT, and BYTE Data

The INFORMIX-SQL Interactive Editor displays the results of a query in a
format that depends on the data type of the selected column. If you execute
a query on a VARCHAR column, INFORMIX-SQL displays the entire VARCHAR
value, just as it displays CHAR values. If you select a TEXT column,
INFORMIX-SQL displays the contents of the TEXT column and you can scroll
through the contents one screen at a time by using the Next option. If you
select a BYTE column, INFORMIX-SQL displays the words <BYTE value>.

Using the CREATE TABLE and ALTER TABLE Statements with Blobs

When you use the CREATE TABLE and ALTER TABLE statements, you can
place quotes around blobspace names as shown in the following example:

CREATE TABLE mytab (column1 TEXT IN "blob1")

In this case, the quotes are optional. However, if the name of your blobspace
is table, INFORMIX-SQL requires the quotes to distinguish the blobspace
name with the keyword TABLE. This is demonstrated in the following ALTER
TABLE statement:

ALTER TABLE mytab ADD (column1 TEXT IN "table")

In this case, the quotes are required to avoid any ambiguity with the keyword
TABLE.

Using the LOAD and UNLOAD Statements with VARCHARs and Blobs

You can use the LOAD and UNLOAD statements to transfer data between a
table and an operating-system file of ASCII data. This file contains only
printable ASCII and newline characters.

You can use these statements on tables and files that contain the VARCHAR,
TEXT, and BYTE data types. You should read these sections if you are loading
or unloading files that contain VARCHAR or blob data.

For more information on using the LOAD and UNLOAD statements, see the
Informix Guide to SQL: Syntax.
1-16 IBM Informix SQL Reference Manual

QUERY LANGUAGE
UNLOAD Statement

If you are unloading files that contain VARCHAR, TEXT, or BYTE data types,
note the following information:

■ BYTE items are written in hexadecimal dump format with no spaces
or newline characters. Thus the logical length of an unloaded file that
contains BYTE items can be very long, and it might be impossible to
print or edit such a file.

■ Trailing blanks are retained in VARCHAR columns.

■ Do not use the following characters as delimiting characters in an
unload file:

❑ 0-9

❑ a-f

❑ A-F

❑ space

❑ tab

❑ \

LOAD Statement

If you are loading files that contain VARCHAR, TEXT, and BYTE data types,
note the following information:

■ You can give the LOAD statement data in which the character
(including VARCHAR) fields are longer than the column size; the
excess characters are disregarded.

■ You can have leading and trailing blanks in noncharacter fields,
except BYTE fields.

■ In all character fields (including VARCHAR and TEXT), embedded
delimiter and backslash characters are escaped with the backslash.

■ In VARCHAR columns, you must escape newline characters.

■ Data being loaded into a BYTE column must be in ASCII-hexadecimal
form. BYTE columns cannot contain preceding blanks.
The INFORMIX-SQL Main Menu 1-17

QUERY LANGUAGE
■ Do not use the following characters as delimiting characters in a load
file:

❑ 0-9

❑ a-f

❑ A-F

❑ space

❑ tab

❑ \
1-18 IBM Informix SQL Reference Manual

REPORT
REPORT
Use the Report option to run a report, create or modify a report, compile a
report, or drop an existing report from the database, as Figure 1-6 shows.

Figure 1-6
REPORT menu

Menu Options
The REPORT menu displays the following seven options:

Run runs a report.

Modify modifies a report specification.

Generate creates a default report specification.

New creates a custom report specification.

Compile compiles a report specification.

Drop drops a report specification from the database.

Exit exits the REPORT menu and returns to the INFORMIX-SQL
Main menu.

REPORT: Run Modify Generate New Compile Drop Exit
Run a report.

---Press CONTROL-W for Help -----
The INFORMIX-SQL Main Menu 1-19

REPORT
Usage
■ After you edit a report specification file (with the New or Modify

options on the REPORT menu), you must compile it. (You cannot use
the report in INFORMIX-SQL until it has been compiled.) Menus
allowing you to compile an edited report are displayed when you
select the New or Modify options. You can also use the Compile
option on the REPORT menu to compile a report specification.

INFORMIX-SQL notifies you if there are errors in the report specifi-
cation. Follow the directions on the screen to correct and recompile
the report. You can save or discard the report after compilation. You
can also save an uncompiled report to work on later or discard the
report completely.

■ The INFORMIX-SQL program that compiles a report specification is
called ACEPREP. The INFORMIX-SQL program that runs a report
specification is called ACEGO. See Chapter 4, “The ACE Report
Writer,” for complete information about these programs.

■ The INFORMIX-SQL User Guide describes how to create and use
reports.
1-20 IBM Informix SQL Reference Manual

TABLE
TABLE
Use the Table option to create or modify a table, retrieve information about a
table, or drop a table from the database, as Figure 1-7 shows.

Figure 1-7
TABLE menu

Menu Options
The TABLE menu displays the following five options:

Create allows you to use the interactive schema editor to create a new
table.

Alter allows you to modify a table using the interactive schema editor.

Info retrieves information about the structure of a table.

Drop deletes a table from the database.

Exit exits the TABLE menu and returns to the INFORMIX-SQL
Main menu.

TABLE: Create Alter Info Drop Exit
Create a new table.

---Press CONTROL-W for Help -----
The INFORMIX-SQL Main Menu 1-21

TABLE
Usage
■ If there is no current database, the CHOOSE DATABASE screen

appears after you select the Table option.

■ Be careful when you drop a table. You lose all the data in the table.

■ The INFORMIX-SQL User Guide describes the use of options on the
TABLE menu.

■ The Informix Guide to SQL: Syntax explains the workings of all SQL
database statements supported by Informix products.

Using the Table Option with Informix Dynamic Server

If you use the Table option to create a table, you get only the default size for
initial and next extents. If you want other sizes, you must use the
INFORMIX-SQL Interactive Editor to execute the CREATE TABLE statement
that contains the explicit extent sizes.

When you are connecting to a database server, the ADD or MODIFY TYPE
menu includes an additional choice of Variable-length as shown in the
following screen.

MODIFY TYPE longtablename : ... Interval Variable-length
Displays the VARIABLE-LENGTH Menu for variable-length columns

----- Page 1 of 1 ----- dbname ---------------- Press CONTROL-W for Help --
1-22 IBM Informix SQL Reference Manual

TABLE
If you select Variable-length, the menu shows types unique to Informix
Dynamic Server, as shown here.

You can select any of these types to set up a variable-length column in
your table.

If you select the VARCHAR data type, you are prompted for the column
length. A VARCHAR column has two lengths: a maximum size and a
minimum space. You can specify these two numbers at the subsequent
prompts, as shown in the following screens.

VARIABLE-LENGTH: Varchar Text Byte
Variable-length data containing a maximum of 255 characters.

----- Page 1 of 1 ----- dbname ---------------- Press CONTROL-W for Help --

ADD MAXIMUM LENGTH >>
Enter maximum length of data from 1 to 255. RETURN adds it.

----- Page 1 of 1 ----- dbname ---------------- Press CONTROL-W for Help --

ADD MINIMUM SPACE >>
Enter amount of space to reserve for each item from 0 to max length.

----- Page 1 of 1 ----- dbname ------------------ Press CONTROL-W for Help -
The INFORMIX-SQL Main Menu 1-23

TABLE
If you select either TEXT or BYTE, you must indicate where the data is stored.
The BLOBSPACE menu is shown here.

If you choose Table, the column data is stored in the same dbspace as the
other columns. If you choose BLOBSpace-name, you see the following
prompt.

You can enter the name of any existing blobspace at the prompt.

ADD BLOBSPACE tab1: Table BLOBSpace-name
Column data is stored in the same table-space as other columns.

----- Page 1 of 1 ----- dbname ---------------- Press CONTROL-W for Help -

ADD BLOBSPACE NAME >>
Enter name of BLOBSpace

----- Page 1 of 1 ----- dbname --------- Press CONTROL-W for Help -
-

1-24 IBM Informix SQL Reference Manual

USER MENU
USER MENU
Use the User-menu option to run a user-created menu, create a user-menu, or
modify an existing user-menu as Figure 1-8 shows.

Figure 1-8
USER-MENU menu

Menu Options
The USER-MENU menu displays the following three options:

Usage
■ After you select the User-menu option, the CHOOSE DATABASE

screen appears if there is no current database.

■ Use the Modify option to both create and modify a user-menu.

■ If there is no User-menu for the current database, INFORMIX-SQL
displays a message notifying the user when the Run or Modify
option is selected.

■ See Chapter 5, “User-Menu,” for more information about creating,
modifying, and using a menu.

Run runs the user-menu for the current database.

Modify allows you to create or modify a user-menu.

Exit exits the USER-MENU and returns to the INFORMIX-SQL
Main menu.

USER-MENU: Run Modify Exit
Run the user-menu for the current database.

--Press CONTROL-W for Help ----
The INFORMIX-SQL Main Menu 1-25

2
Chapter
The FORMBUILD Transaction
Form Generator
In This Chapter . 2-5
PERFORM Error Messages 2-5
Sample Forms 2-5

Creating and Compiling a Custom Form 2-6
Using the Menu System to Create a Form 2-6
Using the Operating System to Create a Form 2-8

Structure of a Form Specification File 2-9

DATABASE Section 2-11

SCREEN Section 2-12
Page Layout . 2-14
Graphics Characters in Forms 2-18

Required Terminal Entries. 2-21

TABLES Section . 2-21
Remote Databases 2-23
External Tables and Synonyms 2-23

ATTRIBUTES Section 2-24
Display Field Order 2-25
Table Order . 2-25
Fields Linked to Database Columns 2-26
Display-Only Fields 2-28
Joining Columns 2-29

Verify Joins 2-31
ATTRIBUTES Syntax 2-32
AUTONEXT 2-33
CENTURY . 2-34

2-2 IBM
COLOR . 2-36
COMMENTS 2-39
DEFAULT . 2-40
DOWNSHIFT 2-42
FORMAT . 2-43
INCLUDE . 2-46
INVISIBLE . 2-48
LOOKUP . 2-49
NOENTRY . 2-51
NOUPDATE . 2-52
PICTURE . 2-53

PROGRAM . 2-55
QUERYCLEAR 2-57
REQUIRED . 2-58
REVERSE . 2-59
RIGHT . 2-60
UPSHIFT . 2-61
VERIFY . 2-62
WORDWRAP 2-63
ZEROFILL . 2-66

INSTRUCTIONS Section 2-67
COMPOSITES 2-68
DELIMITERS 2-70
MASTER OF 2-71
Control Blocks 2-73
BEFORE . 2-74
AFTER . 2-75
EDITADD and EDITUPDATE 2-76
ADD . 2-78
UPDATE . 2-79
QUERY . 2-80
REMOVE . 2-81
DISPLAY . 2-82
Action Syntax 2-83
ABORT . 2-84
LET . 2-85
 Informix SQL Reference Manual

NEXTFIELD . 2-88
COMMENTS . 2-90
IF-THEN-ELSE 2-91

The SAMPLE Form Specification File 2-93
The CUSTOMER INFORMATION Screen 2-95
The ORDER INFORMATION Screen 2-96
The FORMBUILD Transaction Form Generator 2-3

2-4 IBM
 Informix SQL Reference Manual

In This Chapter
Before you can use PERFORM with a customized screen form (see Chapter 3,
“The PERFORM Screen Transaction Processor”), you must first use
FORMBUILD to compile a form specification file. The form specification file
contains the screen format and the instructions to PERFORM about how to
display the data.

PERFORM Error Messages
The text of all error messages and suggestions for corrections is included in
Informix Error Messages in Answers OnLine.

Sample Forms
Examples that are in the INFORMIX-SQL User Guide and the INFORMIX-SQL
Reference Manual are based on the following five sample form specifications.
These form specifications illustrate a wide variety of commands available
with PERFORM.

customer.per A simple form used to enter and retrieve customer
information.

orders.per A simple form used to enter and retrieve order information.

orderform.per A more complex form used to enter and retrieve
information about customer orders.

sample.per The most sophisticated form included with the stores7
database. It is an expanded version of the ORDERFORM
form.

p_ex1.per Illustrates calling a C function from within a form.
The FORMBUILD Transaction Form Generator 2-5

Creating and Compiling a Custom Form
Appendix A, “The Demonstration Database and Examples,” contains the full
text of these sample form specifications. In addition, a copy of the sample
specification is included in the section entitled “The SAMPLE Form Specifi-
cation File” on page 2-92.

Creating and Compiling a Custom Form
You can create a form specification file in one of two ways: you can use the
Form option on the INFORMIX-SQL Main menu, or you can work directly
with the appropriate programs from the operating system command line.
Either alternative requires that you have already created the database and all
the tables to which the form will refer. The following two sections describe
these alternative procedures. They do not, however, describe the rules on
how to construct or modify the form specification file. These rules are defined
in the remaining sections of this chapter.

Using the Menu System to Create a Form
To create a customized screen form using the INFORMIX-SQL menu system,
follow these steps:

1. Select the Form option on the INFORMIX-SQL Main menu and then
the Generate option on the FORM menu.

2. If there is no current database, the SELECT DATABASE screen
appears. After you select a database, the GENERATE FORM screen
displays. Enter the name you want to assign to the form (for
example, NEWFORM). INFORMIX-SQL asks you for the names of the
tables whose columns you want in your form. The GENERATE FORM
menu allows you to enter up to eight tables. (If you want to include
more than eight tables in your form specification, use the New option
on the FORM menu to create it from scratch.) When you have selected
all the tables you want to include, FORMBUILD creates a default
form specification file. The FORM menu then displays. You can now
use the default screen form with PERFORM.
2-6 IBM Informix SQL Reference Manual

Using the Menu System to Create a Form
The default form specification file formats the screen as a list of all
the columns in the tables included in the form. It does not provide
any special instructions to PERFORM about how to display the data,
nor does it include instructions to perform data manipulations.

3. Select the Modify option on the FORM menu, and INFORMIX-SQL
displays the MODIFY FORM screen. Indicate the name of the default
form specification (NEWFORM). If you have not specified an editor
previously in this session or set the DBEDIT environment variable (as
explained in Appendix B, “Setting Environment Variables”),
INFORMIX-SQL asks for the name of your editor. Then
INFORMIX-SQL calls your system editor with the file.

Edit the default form specification file to produce your customized
screen form and associated instructions. Exit from the editor.

4. The MODIFY FORM menu displays. Select the Compile option.

5. If your form specification file compiles correctly, a message to that
effect displays, and FORMBUILD creates a form file with the filename
extension .frm (for example, newform.frm). Go to step 7. If your
form specification file contains errors, a message to that effect
displays, and FORMBUILD creates a form file with the filename
extension .err (for example, newform.err). Go to step 6.

6. Select the Correct option from the COMPILE FORM menu.
INFORMIX-SQL calls your system editor with the form specification
file marked with the compilation errors. When you correct your
errors, you need not delete the error messages. INFORMIX-SQL does
that for you. Repeat step 4.

7. When the compilation is successful, select the Save-and-exit option
on the MODIFY FORM menu.

As an alternative to using the Generate option and creating a default form
specification, you can select the New option. INFORMIX-SQL calls your
system editor.

The Generate option is usually a more efficient way to create a custom form
because, if you use the New option, you must enter all form specification
instructions into the file.
The FORMBUILD Transaction Form Generator 2-7

Using the Operating System to Create a Form
Using the Operating System to Create a Form
To create a customized screen form directly from the operating system
command line, follow these steps:

1. Create a default form specification file by entering the following
command at the operating-system prompt:

sformbld -d

FORMBUILD asks for the name of your form specification file, the
name of your database, and the names of the tables whose columns
you want in your form. FORMBUILD allows you to enter up to 14
tables. When you enter a blank line for the table name, FORMBUILD
assumes you have selected all the tables and creates a default form
specification file. FORMBUILD appends the extension .per to the
name of the file.

Alternatively, you can create a form specification file using a system
editor. You do not need to add the .per extension to the name of the
form file, but you can if you want. If you use this method, proceed to
step 3.

2. Use a system editor to modify the default form specification file to
meet your specifications.

3. Enter the command
sformbld newform

where newform is the name of your form specification file (without
the .per extension). If the compilation is successful, FORMBUILD
creates a compiled form file called newform.frm, and you are
finished creating your customized screen form. If your compilation
is not successful, FORMBUILD creates a file named newform.err, and
you must proceed to step 4.

4. Edit the file newform.err and correct the compilation errors. You
must erase the error messages. Overwrite the file newform.per with
this corrected version and repeat step 3.

To run the compiled form specification directly from the command line, enter
the following command:

sperform newform
2-8 IBM Informix SQL Reference Manual

Structure of a Form Specification File
You can also create a customized screen form from the operating system
command line using a shortened version of the INFORMIX-SQL Main menu
options. Appendix G, “Accessing Programs from the Operating System,”
discusses this method in detail.

Structure of a Form Specification File
Form specification files consist of four required sections (DATABASE,
SCREEN, TABLES, and ATTRIBUTES) and one optional section
(INSTRUCTIONS) as shown in Figure 2-1.

Figure 2-1
Syntax of a Form Specification File

INSTRUCTIONS
Section
p. 2-66

DATABASE
Section
p. 2-11

SCREEN
Section
p. 2-12

TABLES
Section
p. 2-22

ATTRIBUTES
Section
p. 2-25

DATABASE section Each form specification file must begin with a DATABASE
section that identifies the database you want to use with
the form.

SCREEN section The SCREEN section appears next and shows the exact layout
of the form as you want it to appear on the screen. If the form
has several screens, this section includes the layout for each
screen, one after another. You can use graphics characters to
enhance the appearance of the screen.

TABLES section Each form specification file must contain a TABLES section
following the SCREEN section. The TABLES section identifies
the tables whose columns appear in the form.

ATTRIBUTES
section

The ATTRIBUTES section describes each field on the form
including, for example, appearance, acceptable input values,
displayed comments, and default values.

INSTRUCTIONS
section

The INSTRUCTIONS section is optional and specifies master-
detail relationships, composite joins, alternative field delim-
iters, and control blocks.
The FORMBUILD Transaction Form Generator 2-9

Structure of a Form Specification File
Using the END keyword to mark the end of sections in the form specification
file is optional. Some users find it helpful to indicate the close of a section
with END. The forms included with the demonstration database use the END
keyword.

Figure 2-2 illustrates the overall structure of a form specification file.

Figure 2-2
A Partial Form Specification File

database stores7

screen
{
--
CUSTOMER INFORMATION:
Customer Number: [c1] Telephone: [c10]

.

.

.

SHIPPING INFORMATION:
Customer P.O.: [o20]

Ship Date: [o21] Date Paid: [o22]
}

end

tables
customer orders

attributes
c1 = *customer.customer_num

= orders.customer_num;
c10 = phone, picture = "###-###-####x#####";

.

.

.
o20 = po_num;
o21 = ship_date;
o22 = paid_date;

instructions
customer master of orders;
orders master of items;
end
2-10 IBM Informix SQL Reference Manual

DATABASE Section
DATABASE Section
The DATABASE section of a form specification file identifies the database with
which the form is designed to work.

Use the WITHOUT NULL INPUT option only if you have elected to create and
work with a database that does not have NULL values. For fields that have no
other defaults, this option causes INFORMIX-SQL to display zeros as default
values for number and INTERVAL fields, and blanks for character fields.

The default DATE value is 12/31/1899; the default DATETIME value is 1899-
12-31 23:59:59.99999.

The following DATABASE section is from the sample form specification file at
the end of this chapter:

database
stores7

With Informix Dynamic Server, you can specify the full name of a remote
database in the DATABASE section. List the simple names of the tables in the
TABLES section. For more information, see “TABLES Section” on page 2-21.

DATABASE is a required keyword.
database-name is the name of the database.
WITHOUT NULL INPUT are optional keywords that enable you to disallow

NULL values.

DATABASE Section

DATABASE database name

WITHOUT NULL INPUT
The FORMBUILD Transaction Form Generator 2-11

SCREEN Section
SCREEN Section
The SCREEN section of the form specification file describes how the form
appears on the screen when you use it with PERFORM. A form specification
can include multiple SCREEN sections that correspond to multiple page
layouts.

Usage
■ Each page layout is preceded by the SCREEN keyword and is

enclosed in braces ({ }). A page layout consists of an array of display
fields and textual information, such as titles, field labels, and graphics
characters. Display fields are indicated by brackets ([]) that define
the field length and by field tags that identify the field.

■ The default SCREEN section is SCREEN SIZE 24 by 80. FORMBUILD
prepares a screen of up to 20 lines (4 lines are reserved for system
use) and up to 80 characters in a line.

■ Use the SIZE keyword to indicate an alternative screen size. If you do
not indicate a larger screen size, and if you include more than 20
screen lines between a pair of braces, FORMBUILD splits the page,
with line 21 at the top of the second page.

SCREEN

SIZE lines BY columns

{ }
Page Layout

p. 2-14

SCREEN
Section

END

SCREEN is a required keyword.
SIZE is an optional keyword that tells FORMBUILD to create a screen that is

a specific number of lines long and cols wide.
lines is an integer that specifies the screen length in lines. The default is 24

lines.
BY is an optional keyword.
cols is an integer that specifies the screen width in columns. The default is

80 columns.
END is an optional keyword to end the SCREEN section.
2-12 IBM Informix SQL Reference Manual

SCREEN Section
■ If you specify a screen size, the size must appear on the first screen.
The size applies to all the screens.

■ You can use command-line syntax to override either or both of the
lines or dimensions of the SCREEN section by specifying:

sformbld -l lines -c cols filename

where lines and cols are defined as in the above syntax diagram, and
filename is the name of the form specification file. FORMBUILD uses
the INFORMIXTERM environment variable to determine whether to
use termcap or terminfo at compile time to set screen characteristics.
If INFORMIXTERM is unset, FORMBUILD uses termcap.

The following example illustrates the use of the SCREEN keyword with
multiple page layouts:

SCREEN SIZE 18 BY 75
{

.

.

.
display fieldspage layout

.

.

.

}

SCREEN
{

.

.

.
display fieldspage layout

.

.

.

}

The sample form included at the end of this chapter demonstrates the
SCREEN sections of a multiple-page form.
The FORMBUILD Transaction Form Generator 2-13

Page Layout
Page Layout
You indicate where data is to be displayed on the screen by using brackets
([]) to delimit a field. Each field has an associated field tag that identifies the
field in the ATTRIBUTES and INSTRUCTIONS sections.

Usage
■ Each field must have a field tag. The field tag is from 1 to 50

characters long. The first character must be a letter; the rest of the tag
can include letters, numbers, and underscores (_). The field tag must
be short enough to fit within the brackets. You can use the same field
tag at more than one position in the SCREEN section of the form
specification if you want the same column information to appear in
more than one place.

■ Field tags are not the same as database column names; they are the
associations used in the SCREEN section, the ATTRIBUTES section,
and the INSTRUCTIONS section to tell PERFORM where to display and
store information. The ATTRIBUTES section associates each field tag
with a column in your database or identifies it as a display-only field.

■ FORMBUILD ignores the case of a field tag; a1 and A1 are the same.

text is the material you want displayed on the screen.
[] are delimiters for a field. The width of the field is the number of

characters that can placed between the brackets. In this context, the
brackets do not signify an optional input.

| denotes the close of one field and the beginning of the next field.
field-tag is the field tag used to identify the display field.

[field-tag

|

Page Layout

text]
2-14 IBM Informix SQL Reference Manual

Page Layout
■ One-character columns are given the display tags a through z. This
means that a screen form can use no more than 26 one-character
columns.

■ When you create a default form specification file, the widths of all
fields are determined by the data type of the corresponding columns
in the database tables.

■ The width of a field in the SCREEN section of the form specification
is normally set equal to the width of the database column to which it
corresponds. You can reduce or expand the screen width, but you
should be careful because this can truncate the screen presentation or
database storage of the data.

■ Fields corresponding to numeric columns should be large enough to
contain the largest number that you might display. If the field is too
small to display the number you assign to it, PERFORM fills the field
with asterisks.

■ Fields for BYTE data are never displayed; the phrase <BYTE value>
is shown in the display field to indicate that the user cannot see the
BYTE data. The following excerpt from a form specification shows a
TEXT field resume and a BYTE field photo. You do not need to have
more than one line on a form for a TEXT field. The BYTE field is short
because only the words <BYTE value> are displayed.

resume [f003]
photo [f004]
attributes
f003 = employee.resume
f004 = employee.photo

■ Fields for CHAR type data can be shorter than the defined length of
the column. PERFORM fills the field from the left and truncates the
right end of any longer CHAR string assigned to the field. Through
subscripting, you can assign portions of a CHAR column to one or
more fields. (See the “ATTRIBUTES Section” on page 2-24.)
The FORMBUILD Transaction Form Generator 2-15

Page Layout
■ If you edit and modify the default form specification file or create
one from scratch, you can verify that the character column field
widths match the data type of the corresponding columns by using
the verify (-v) option of FORMBUILD. Enter the following command
in response to the system prompt:

sformbld -v newform

FORMBUILD reports any discrepancies in the file newform.err, where
newform is the name of the form specification file that has been
verified.

■ The | bar symbol can be used to denote the close of one field and
the beginning of the next field. In the following example, field-
tag1 identifies the first display field; field-tag2 identifies the
second display field:

text [field-tag1 | field-tag2]

When you use the bar symbol to denote the close of one field and the
beginning of the next field, you must include a DELIMITERS
statement in the INSTRUCTIONS section of the form specification.
Use the same symbol as both the left and right delimiters in the
statement.
2-16 IBM Informix SQL Reference Manual

Page Layout
The screen layout from the sample form specification file follows:

screen
{
==
==

Customer Number: [c1]
Company: [c4]

First Name: [c2] Last Name: [c3]
Address: [c5]

[c6]
City: [c7] State: [c8] Zip: [c9]

Telephone: [c10]

==
==
}
screen
{
==
CUSTOMER NUMBER: [c1] COMPANY: [c4]

ORDER INFORMATION:
Order Number: [o11] Order Date: [o12]

Stock Number: [i13] Manufacturer: [i16]
Description: [s14] [m17]

Unit: [s16]
Quantity: [i18]
Unitprice: [s15]

Total Price: [i19]
SHIPPING INFORMATION:
Customer P.O.: [o20] Ship Charge: [d1]

Backlog: [a] Total Order Amount: [d2]
Ship Date: [o21]
Date Paid: [o22]

Instructions: [o23]
}
end
The FORMBUILD Transaction Form Generator 2-17

Graphics Characters in Forms
Graphics Characters in Forms
You can use graphics characters to place boxes and other rectangular shapes
in a screen form.

You can enter command strings to invoke a simple line drawing or graphics
in which standard characters produce special effects on a compiled,
displayed form. The letter p, for example, becomes the upper left corner of a
box while a series of hyphens becomes a solid horizontal rule, as shown in
Figure 2-3.

Figure 2-3
Form Specification

and Displayed Form
(Method 1)database STORES7

screen
{

\gp---q
\g|------------------------\gCUSTOMER\g-----------------------|
\g|\g
\g|\g Cust No [f000] Company [f001] \g|
\g|\g \g|
\g|\g Name: [f002] [f003] \g|
\g|\g \g|
\g|\g Telephone Number: [f004] \g|
\g|\g
\g|\g
\g|\g
\g|\g
\g|\g
}
e

CUSTOMER
Cust No. [112] Company [Runners & Others]

Name [Margaret] [Lawson]

Telephone Number: [415-887-7235]

Form Specification

Displayed Form
2-18 IBM Informix SQL Reference Manual

Graphics Characters in Forms
The following procedure outlines the steps for specifying graphics
characters:

1. Create a form in the usual manner.

2. Use the following characters in the SCREEN section to indicate the
borders of one or more boxes on the form.

The meanings for these six characters are derived from the gb speci-
fication in the termcap file, or the acsc specification in the terminfo
file. INFORMIX-SQL substitutes the graphics characters specified in
the termcap or terminfo file for these characters when you display
the compiled form.

Character Produces

p upper left corner of box

q upper right corner of box

b lower left corner of box

d lower right corner of box

_ a horizontal-line character

| a vertical-line character
The FORMBUILD Transaction Form Generator 2-19

Graphics Characters in Forms
3. After the form has the desired configuration, use the \g string to
indicate when to begin graphics mode and when to end graphics
mode.

Insert the \g string before the first p, q, d, b, dash, or pipe that repre-
sents a graphics character. To leave graphics mode, insert the string
\g after the p, q, d, b, dash, or pipe. Figure 2-4 shows the commands
that draw a box around text.

Do not insert the \g strings in original white space on the form. The backslash
should displace the first graphics character in the row and push the
remaining row to the right. Although this distorts the way the form specifi-
cation looks on screen, the actual output will not be distorted.

In your form specification, you can include not only the characters used to
create a box or rectangle, but also other graphics characters. However, the
meaning of a character other than p, q, d, b, dash, and pipe depends on your
terminal.

Figure 2-4
Drawing a Box

Around Text

\gp-----------------------q
\g|\g \g|
\g|\g this is text \g|
\g|\g \g|
\g|\g text, 2 \g|
\g|\g \g|
\gb-----------------------d

Specification

Displayed Result

this is text

text, 2
2-20 IBM Informix SQL Reference Manual

TABLES Section
Required Terminal Entries

If you plan to use graphics characters, your terminal entry in the termcap or
terminfo files must include the following variables:

termcap:

terminfo:

For information about making changes to your termcap and terminfo files,
see Appendix B, “Setting Environment Variables,” or check the manual that
comes with your terminal.

TABLES Section
The third section of the form specification file lists all the tables from which
columns appear in the screen form. You need not display in the screen form
every column of every table listed, but any table contributing data to the form
must be included.

The TABLES section consists of the TABLES keyword, followed by a table
name or a list of table names separated by spaces.

gs the escape sequence for entering graphics mode.

ge the escape sequence for leaving graphics mode.

gb the concatenated, ordered list of ASCII equivalents for the six
graphics characters used to draw the border.

smacs the escape sequence for entering graphics mode.

rmacs the escape sequence for leaving graphics mode.

acsc the concatenated, ordered list of ASCII equivalents for the six
graphics characters used to draw the border.
The FORMBUILD Transaction Form Generator 2-21

TABLES Section
In an ANSI-compliant database, a form must qualify any table name with the
owner. prefix if users other than owner run the form. If you specify an owner
name, you must specify a simple alias for owner.table-name in the TABLES
section to reference the table in other sections of the form specification file.

Usage
■ You cannot include a temporary table in your table list.

■ You can build a form based on a view as long as the columns that
contribute data to the view belong to only one table. Aggregate data
is not allowed.

■ The number of tables that you can use in a form is machine
dependent. On most UNIX systems, the maximum number of tables
open at one time is 12.

The TABLES section from the sample form specification file at the end of this
chapter is as follows:

tables
customer items stock
orders manufact

The following TABLES section specifies aliases for two tables:

tables
tab1 = refdept.archive
tab2 = athdept.equip

TABLES is a keyword to begin the TABLES section.
alias is the table name, synonym, or alias for the name of the table in the

form specification file.
owner is the username of the user who created the table.
table-name is the identifier or synonym of the table in its database.
END is an optional keyword to end the TABLES section.

TABLES

TABLES
Section

owner .

table-name

ENDalias =
2-22 IBM Informix SQL Reference Manual

Remote Databases
Remote Databases
With Informix Dynamic Server, you can specify remote databases, external
tables, and external, distributed tables in forms. You can make a remote
database the current database for use with the form, or you can specify a table
external to the current database in your form.

You can specify the full name of a remote database in the DATABASE section
of the form. List the simple names of the tables in the TABLES section. You can
also use table-name synonyms in the TABLES section as long as they have
been defined for the current database. These synonyms can stand for tables
in the current database or in other databases.

In the ATTRIBUTES section of the form, refer to tables in the current database
with their simple table names. You can also use synonyms in the ATTRIBUTES
section as follows:

ATTRIBUTES
f0 = table-name.colname,;
f1 = synonym.colname,;
f2 = view-name.colname,;
.
.
.

External Tables and Synonyms
If you want to use a table or synonym that has a multipart name, you must
first give it an alias. Examples of objects that require table aliases follow:

■ External tables

■ Tables within the current database that are qualified by their owner
names

■ Multipart synonyms

Use the following syntax to give an object a table alias:

TABLES
.
.
.
table-alias=database@servername:[owner.]table
table-alias=[owner.]table

The table-alias is a single-word identifier.
The FORMBUILD Transaction Form Generator 2-23

ATTRIBUTES Section
In the ATTRIBUTES and INSTRUCTIONS sections of the form, refer to external
tables in the following way:

ATTRIBUTES
.
.
.
f3 = table-alias.colname,;
.
.
.

For example, if you have the following declaration in your tables section:

timecard_a = otherdb:acctg.timecard

part of your attributes section might look like this:

f3 = timecard_a.sickleave

You see the alias rather than the actual table name in error messages. If you
are using PERFORM, you see the alias instead of the table name on the second
line of the screen.

ATTRIBUTES Section
The ATTRIBUTES section describes the behavior and appearance of each field
defined in the SCREEN section. Every field in the SCREEN section must be
described in the ATTRIBUTES section. You use attributes to describe how
PERFORM should display the field, to specify a default value, to limit the
values that can be entered, and to set other parameters, as described in the
“ATTRIBUTES Syntax” on page 2-31.

The order in which the fields are described in the ATTRIBUTES section deter-
mines the default order for the cursor movement on the screen. The order in
which columns are referenced determines the order in which PERFORM
makes tables active (that is, available for data entry).
2-24 IBM Informix SQL Reference Manual

Display Field Order
Fields in the SCREEN section do not have to be associated with a column.
A field not associated with a column is called a display-only field. The
ATTRIBUTES section contains the following two kinds of link statements: state-
ments that link field tags to database columns and statements that link field
tags to display-only fields.

Display Field Order
When you use the Query, Add, and Update options in PERFORM, the cursor
advances by default from field to field in the active table according to the
order in which the field tags appear in the ATTRIBUTES section of the form
specification. When the cursor has advanced through all the fields in the
active table on the screen, it returns to the first field. You can change the
default order by using control blocks, described in the “INSTRUCTIONS
Section” on page 2-66.

Table Order
When a form contains fields that correspond to several database tables,
PERFORM puts the tables in an ordered list. When you use the Table option,
PERFORM changes the active table by selecting the next table in the list.
PERFORM assigns tables in the order in which columns in the tables are refer-
enced in the ATTRIBUTES section. You reference a table whenever you
associate a column from the table with a tag name or another column in a
join.

ATTRIBUTES is a required keyword.
field-tag is the field tag used in the SCREEN section

ATTRIBUTES

Displayonly Field
p. 2-28

ATTRIBUTES
Section

field-tag =

=

;Field Description
p. 2-26
The FORMBUILD Transaction Form Generator 2-25

Fields Linked to Database Columns
Fields Linked to Database Columns
You can link two kinds of fields to database columns in the ATTRIBUTES
section: fields that accept input and fields that do not. Fields that are linked
to database columns and that do not allow input from the keyboard are called
lookup fields. You specify lookup fields with the LOOKUP attribute, defined in
“ATTRIBUTES Syntax” on page 2-31.

This section describes column-linked fields that allow input.

* is optional punctuation that identifies the dominant column
in a verify join.

table is the optional name or alias of a database table. You need to
specify table only if the same column name occurs in more
than one table in the form. (This allows PERFORM to
uniquely identify a column.)

column-name is the name of a column.
attribute-specification is a FORMBUILD attribute or a list of attributes separated by

commas. All the attributes are described in the
“ATTRIBUTES Section” on page 2-24.

Field Description

table .

column-
name ;

attribute-
specification

,

,

*

2-26 IBM Informix SQL Reference Manual

Fields Linked to Database Columns
Usage
■ You can display portions of CHAR-type columns in a field by using

subscripting. For example, the orders table has a ship_instruct
column that is a CHAR-type column of length 40. You can display it
on the screen as two display fields of length 20. If the field tags for
the two fields are inst1 and inst2, respectively, the ATTRIBUTES
section entry is as follows:

inst1 = ship_instruct[1,20];
inst2 = ship_instruct[21,40];

You can also use the WORDWRAP attribute to display long CHAR
fields on multiple lines.

■ If you use an alias in the TABLES section, you must use the alias to
refer to the table in the ATTRIBUTES section.

■ In the ATTRIBUTES and INSTRUCTIONS sections of the form, refer to
external tables in the following way:

ATTRIBUTES
.
.
.
f3 = table-alias.colname,;
.
.
.

For example, if you have the following declaration in your tables
section:

timecard_a = otherdb:acctg.timecard

part of your ATTRIBUTES section might look like this:
f3 = timecard_a.sickleave

You see the alias rather than the actual table name in error messages.
If you are using PERFORM, you see the alias instead of the table name
on the second line of the screen.

For more information about accessing external tables, see “TABLES
Section” on page 2-21.
The FORMBUILD Transaction Form Generator 2-27

Display-Only Fields
Display-Only Fields
Display-only fields are not associated with columns of the database and
appear only on the screen. They receive their values as a result of calculations
or logical decisions based on the values in other fields.

■ Do not give a length to type CHAR; the display width determines the
length.

■ If you specify the precision for a DECIMAL or MONEY type, be certain
that the display width can hold the value.

■ When the field does not allow input, you can use only the following
attributes with display-only fields:

DEFAULT DOWNSHIFT
FORMAT QUERYCLEAR
REVERSE RIGHT
UPSHIFT ZEROFILL

DISPLAYONLY is a required keyword that indicates that the field does
not correspond to a column of a table in the database.
You describe how such a field receives its value in the
INSTRUCTIONS section.

ALLOWING INPUT are optional keywords that you use to allow input.
TYPE is a required keyword.
data-type is any one of the data types permitted by INFORMIX-SQL

except SERIAL. (For information about data types, see
Informix Guide to SQL: Reference.)

NOT NULL are optional keywords that inform INFORMIX-SQL that,
if the field allows input, the user must give it a value.

attribute-specification is an attribute or a list of attributes separated by commas.
All the attributes are described in the “ATTRIBUTES
Section” on page 2-24.

DISPLAYONLY

attribute-
 specification

Displayonly Field

TYPE data-type NOT NULL ;

,

,

ALLOWING
INPUT
2-28 IBM Informix SQL Reference Manual

Joining Columns
■ When you specify that one or more display-only fields allow
input, PERFORM collects these fields into a database table named
displaytable. No database table is actually created, but PERFORM
behaves as though displaytable existed and as though its field tags
were column names. You use displaytable in the INSTRUCTIONS
section to control data entry and cursor movement in display-only
fields that allow input.

■ If a displaytable exists, it is always the last table in the sequence of
active tables, regardless of how you order its fields among the other
field tags.

■ When the DATABASE section has the WITHOUT NULL INPUT clause,
the NOT NULL keywords instruct INFORMIX-SQL to use zero
(number data type) or blanks (CHAR data type) as a default for this
field.

■ With Informix Dynamic Server, you can use the keywords TEXT and
BYTE when you define a display-only (FORMBUILD) field. There is
marginal value in designating one field as type BYTE because only
the words <BYTE value> are displayed.

The ATTRIBUTES section of the sample form specification file contains the
following two DISPLAYONLY fields:

d1 = displayonly type money;
d2 = displayonly type money;

These fields are used to calculate the shipping charge and total order amount
for each order. This information is not stored in any columns in the database.

Joining Columns
A screen form that contains information from several database tables
normally includes a display field that joins two (or more) database columns
that contain the same information. While it is not required that the join
columns be indexed, it is advisable because cross-table queries do not run as
quickly if the underlying join columns are not indexed.

The database columns you join must be of the same data type. If they are
CHAR columns, they must be the same length. Do not join two SERIAL
columns to each other; join a SERIAL column only to an INTEGER column.
The FORMBUILD Transaction Form Generator 2-29

Joining Columns
You join columns by equating them to the same field tag in the ATTRIBUTES
section:

field-tag = col1 = col2;

An example from the sample form follows:

o11 = *orders.order_num = items.order_num;

Field-tag o11 joins the order_num column of the orders table with the
order_num column of the items table. (The asterisk placed before the
orders.orders_num column name indicates that this is a special kind of
join—a verify join. Verify joins are explained on page 2-30.)

The placement of attributes determines when they take effect. If you want an
attribute to apply regardless of which table in the join is active, place the
column names on the same line and the attribute after the last column name:

field-tag = col1 = col2, attr;

If you want different attributes to apply for each of the columns in the join,
place the column names on separate lines:

field-tag= col1, attr1;
= col2, attr2;

attr1 is effective when the table that contains col1 is active, and attr2 is
effective when the table that contains column2 is active.

Here is an example from the sample form:

i13 = items.stock_num;
= *stock.stock_num, noentry,

noupdate, queryclear;

The attributes NOENTRY, NOUPDATE, and QUERYCLEAR (explained in
“ATTRIBUTES Syntax” on page 2-31) are effective only when the stock table
is active.

The FORMAT and REVERSE attributes, also described in the “ATTRIBUTES
Syntax” section, always take effect, regardless of their placement.
2-30 IBM Informix SQL Reference Manual

Joining Columns
Verify Joins

You can verify that the value you enter into a field that corresponds to a
column in one table already exists in another column (the dominant column)
in another table. You do this through a verify join. You indicate the verify join
by placing an asterisk in front of the dominant column name, as follows:

field-tag = col1 = *col2;

PERFORM prevents entry of any value into field-tag that does not already
occur in col2. (This applies for noncomposite conditions.)

For example, when you assign orders to customers, you want to ensure that
the customer number entered for a store is a valid customer number in the
customer table. The following statement in the ATTRIBUTES section of the
sample form does just this:

c1 = *customer.customer_num
= orders.customer_num;

In the previous statement, the customer.customer_num column is the
dominant column in a verify join; when the orders table is active, you cannot
enter a value into field c1 that does not already exist in the customer_num
column of the customer table.

A third kind of join, described under “LOOKUP” on page 2-48, allows you to
display or verify data from a table that is not active.
The FORMBUILD Transaction Form Generator 2-31

ATTRIBUTES Syntax
ATTRIBUTES Syntax
PERFORM recognizes the following attributes. The syntax for each attribute is
detailed in the following sections.

AUTONEXT
CENTURY
COLOR
COMMENTS
DEFAULT
DOWNSHIFT
FORMAT
INCLUDE
INVISIBLE
LOOKUP
NOENTRY
NOUPDATE
PICTURE
PROGRAM
QUERYCLEAR
REQUIRE
REVERSE
RIGHT
UPSHIFT
VERIFY
WORDWRAP
ZEROFILL
2-32 IBM Informix SQL Reference Manual

AUTONEXT
AUTONEXT
Use the AUTONEXT attribute to cause the cursor to advance automatically to
the next field when the current field is full.

Usage
■ AUTONEXT is particularly useful for entering text into a CHAR type

database column that is split among two or more display fields with
the use of subscripts.

■ Another use of AUTONEXT is with CHAR fields in which the input
data is of a standard length (for example, the abbreviation for a state
name is always two digits) or when the CHAR field has a length of
one (only one keystroke is required to enter the data and to move to
the next field).

The sample form specification file uses the AUTONEXT attribute to display
the state and zipcode columns from the customer table, as shown:

c8 = state, upshift, autonext;
c9 = zipcode, autonext;

When two characters are entered into the c8 field (and the field is full), the
cursor moves automatically to the beginning of the next field (the c9 field).
When five characters are entered into the c9 field (and the field is full), the
cursor moves automatically to the beginning of the next field.

AUTONEXT
The FORMBUILD Transaction Form Generator 2-33

CENTURY
CENTURY
The CENTURY attribute specifies how to expand abbreviated one- and two-
digit year specifications in a DATE and DATETIME field. Expansion is based on
this setting (and on the year value from the system clock at runtime).

Usage
In most releases of INFORMIX-SQL earlier than 7.20, if the user enters only the
two trailing digits of a year for literal DATE or DATETIME values, these are
automatically prefixed with the digits 19. For example, 12/31/02 is always
expanded to 12/31/1902, regardless of when the program is executed.
This legacy behavior is sometimes called the Y2K problem.

CENTURY can specify any of four algorithms to expand abbreviated years
into four-digit year values that end with the same digits (or digit) that the
user entered. CENTURY supports the same settings as the DBCENTURY
environment variable, but with a scope that is restricted to a single field.

Here past, current, and future are all relative to the system clock.

C or c is used for the past, future, or current year closest to the current
date.

F or f is used for the nearest year in the future to expand the entered
value.

P or p is used for the nearest year in the past to expand the entered
value.

R or r is used to prefix the entered value with the first two digits of the
current year.

 CENTURY = "R"

"C"

"F"

"P"
2-34 IBM Informix SQL Reference Manual

CENTURY
For more information on the DBCENTURY environment variable, see the
INFORMIX-SQL User Guide and the Informix Guide to SQL: Reference.

Unlike DBCENTURY, which sets a global rule for expanding abbreviated year
values in DATE and DATETIME fields that do not have the CENTURY attribute,
CENTURY is not case-sensitive. You can substitute lowercase letters (r, c, f, p)
for these uppercase letters. If you specify anything else (for example, a
number), then R is used as the default. If the CENTURY and DBCENTURY
settings are different, then CENTURY takes precedence.

Three-digit years are not expanded. A single-digit year is first expanded to
two digits by prefixing it with a zero. CENTURY then expands this value to
four digits, according to the setting that you specified. Years between 99 BC
(or BCE) and 99 AD (or CE) require leading zeros (to avoid expansion).

Just as with DBCENTURY, expansion of abbreviated years is sensitive to time
of execution and to the accuracy of the system clock-calendar. To avoid the
need to rely on CENTURY, require the user to enter four-digit years.

Important: The CENTURY attribute has no effect on DATETIME fields that do not
include YEAR as the first time unit, nor on fields that are not DATE or DATETIME
fields. If an abbreviated year value is entered in a character field or a number field, for
example, then neither CENTURY nor DBCENTURY has any effect.
The FORMBUILD Transaction Form Generator 2-35

COLOR
COLOR
Use COLOR to display field text in one of eight colors, either alone or
combined with one or more of four intensities.

Usage
The display mode consists of zero attributes or one attribute from the color list,
and zero or more attributes from the intensity list, as follows.

COLOR is a required keyword.
display mode is one or more display attributes selected from the list of

available colors and intensities.
WHERE is an optional keyword.
where condition is a situation under which you want specified display attributes

to be in effect.

Color Intensity Displayed As

WHITE White

YELLOW Yellow

MAGENTA Magenta

RED Red

CYAN Cyan

GREEN Green

BLUE Blue

BLACK Black

(1 of 2)

WHERE
where

condition

display
modeCOLOR =
2-36 IBM Informix SQL Reference Manual

COLOR
■ If you do not select a where condition, the display mode always
applies to the field. When you select a where condition, FORMBUILD
tests the condition whenever a new value enters the field.

■ If the condition is true, FORMBUILD displays the field with the mode
you selected. If the condition is false, FORMBUILD displays the field
with default characteristics.

■ You can code the where condition syntax in any one of the following
ways:

expr LIKE expr
expr NOT LIKE expr
expr MATCHES expr
expr NOT MATCHES expr
expr IS NULL
expr IS NOT NULL
expr BETWEEN expr AND expr
expr NOT BETWEEN expr AND expr
expr IN (list of exprs)
expr NOT IN (list of exprs)
expr relop expr
(bool-expr)
bool-expr OR bool-expr
bool-expr AND bool-expr

where expr can represent any one of the following items:
field tag
constant
TODAY
CURRENT
agg-function OF field tag
- expr
expr [+ - * /] expr
(expr)

and relop can be any of the following comparison operators:
= <> != >= <= < >

BLINK Blinking

UNDERLINE Underlined

REVERSE Reverse Video

LEFT Left Justified (number fields)

Color Intensity Displayed As

(2 of 2)
The FORMBUILD Transaction Form Generator 2-37

COLOR
The following example illustrates how to specify that field text should be
displayed in red type:

f000 = customer.customer_num, color=red;

The following examples illustrate conditional use of COLOR:

f002 = manufact.manu_code,
color=red where f002="HRO";

f003 = customer.lname,
color=red where f003 not like "Quinn";

f004 = customer.zipcode
color=red blink where f004 > 10000;

The evaluation of MATCHES, LIKE, and BETWEEN expressions that contain
character arguments is dependent on collation settings. Refer to Appendix C,
“Global Language Support,” and the Informix Guide to GLS Functionality.♦

GLS
2-38 IBM Informix SQL Reference Manual

COMMENTS
COMMENTS
Use COMMENTS to cause PERFORM to display a message on the Comment
line at the bottom of the screen. The message displays when the cursor moves
to the associated field.

Usage
■ The message must appear in quotation marks on a single line of the

form specification file.

■ The Status line is the bottom line of the screen. The Comment line is
just above the Status line.

■ The most common use of the COMMENTS attribute is to give infor-
mation or instructions to the user. This is particularly appropriate
when the field accepts only a limited set of user-specified values.

An example from the sample form specification file follows:

c2 = fname, comments =
"Please enter initial if available." ;

Related Attribute
INCLUDE

COMMENTS is a required keyword.
message is a character string enclosed in quotes.

COMMENTS = "message"
The FORMBUILD Transaction Form Generator 2-39

DEFAULT
DEFAULT
Use the DEFAULT attribute to assign a default value to a display field.

Usage
■ If you do not use the DEFAULT attribute, display fields default to

blanks.

■ Enclose DATE values and CHAR values that contain spaces or special
characters in quotation marks. Using quotation marks around CHAR
values that contain no spaces or special characters is optional.

■ PERFORM displays the default value whenever the field displays for
data entry in an Add operation.

■ If both the DEFAULT attribute and the REQUIRED attribute are
assigned to the same field, the REQUIRED attribute is ignored.

■ Use the TODAY keyword as the value to assign the current date as the
default value of a DATE field.

■ Use the CURRENT keyword to assign the current date and time as the
default value of a DATETIME field.

■ If you use the WITHOUT NULL INPUT option in the DATABASE
section and you do not use the DEFAULT attribute, then character
fields default to blanks, number and INTERVAL fields default to 0,
and MONEY fields default to $0.00. The default DATE value is
12/31/1899, and the default DATETIME value is 1899-12-31
23:59:59.99999.

■ If you do not use WITHOUT NULL INPUT in the DATABASE section,
all fields default to NULL values unless you use the DEFAULT
attribute.

■ You cannot use DEFAULT with fields of type TEXT or BYTE.

DEFAULT is a required keyword.
value is the default value.

DEFAULT = value
2-40 IBM Informix SQL Reference Manual

DEFAULT
Two examples from the sample form specification file follow:

c8 = state, upshift, autonext,
default = "CA" ;

o12 = order_date, default = today,
format = "mm/dd/yyyy" ;
The FORMBUILD Transaction Form Generator 2-41

DOWNSHIFT
DOWNSHIFT
Assign the DOWNSHIFT attribute to a CHAR field when you want PERFORM
to convert uppercase letters to lowercase letters.

Usage
Because uppercase and lowercase letters have different ASCII values, storing
character strings in one format or the other can simplify sorting and querying
a database.

The results of conversion between uppercase and lowercase can be tailored
to the national language in use, as defined by GLS settings. Refer to Appendix
C, “Global Language Support,” and the Informix Guide to GLS Functionality. ♦

Related Attribute
UPSHIFT

DOWNSHIFT

GLS
2-42 IBM Informix SQL Reference Manual

FORMAT
FORMAT
Use the FORMAT attribute with a DECIMAL, SMALLFLOAT, FLOAT, or DATE
column to control the format of the display.

Usage
■ For DECIMAL, SMALLFLOAT, or FLOAT data types, fstring consists of

pound signs (#) that represent digits and a decimal point. For
example, ###.## produces up to three places to the left of the
decimal point and exactly two places to the right.

■ If the actual displayed number is shorter than the fstring, PERFORM
right-justifies it and pads the left with blanks.

■ If the fstring is smaller than the display width, FORMBUILD gives a
warning, but the form is usable.

■ If necessary, PERFORM rounds numbers before displaying them.

FORMAT is a required keyword.
fstring is a (format) string of characters that specifies the desired data

format. You must enclose fstring in quotation marks.

FORMAT = fstring
The FORMBUILD Transaction Form Generator 2-43

FORMAT
■ For DATE data types, PERFORM recognizes the following symbols as
special in the string fstring:

For dates, FORMBUILD interprets any other characters as literals and
displays them wherever you place them within fstring.

■ You cannot use the FORMAT attribute with DATETIME or INTERVAL
data types.

The following table lists example FORMAT attributes for DATE fields.

Two examples from the sample form specification file follow:

o12 = order_date,
default = today,
format = "mm/dd/yyyy";

o22 = paid_date,
format = "mm/dd/yyyy";

mm produces the two-digit representation of the month.

mmm produces a three-letter abbreviation of the month, for
example, Jan, Feb, and so on.

dd produces the two-digit representation of the day.

ddd produces a three-letter abbreviation of the day of the week,
for example, Mon, Tue, and so on.

yy produces the two-digit representation of the year.

yyyy produces a four-digit year.

Input Result

no FORMAT attribute 09/15/1994

FORMAT = "mm/dd/yy" 09/15/94

FORMAT = "mmm dd, yyyy" Sep 15, 1994

FORMAT = "yymmdd" 940915

FORMAT = "dd-mm-yy" 15-09-94

FORMAT = "(ddd.) mmm. dd, yyyy" (Thu.) Sep. 15, 1994
2-44 IBM Informix SQL Reference Manual

FORMAT
The way the format string in the FORMAT attribute is interpreted for numeric
and monetary data can be modified by GLS settings. In the format string, the
period symbol (.) is not a literal character but a placeholder for the decimal
separator specified by environment variables. Likewise, the comma symbol
(,) is a placeholder for the thousands separator specified by environment
variables. The $ symbol is a placeholder for the leading currency symbol. The
@ symbol is a placeholder for the trailing currency symbol. Thus, the format
string $$#,###.## will format the value 1234.56 as £1,234.56 in a British locale
but as f1.234,56 in a French locale. Refer to Appendix C, “Global Language
Support,” and the Informix Guide to GLS Functionality.

The mmm and ddd specifiers in a format string can display language-specific
month name and day name abbreviations on the form. This requires the
installation of message files in a subdirectory of $INFORMIXDIR/msg and
subsequent reference to that subdirectory by way of the environment
variable DBLANG. For example, the ddd specifier in a Spanish locale trans-
lates the day Saturday into the day name abbreviation Sab, which stands for
“Sabado” (the Spanish word for Saturday). ♦

Related Attribute
PICTURE

GLS
The FORMBUILD Transaction Form Generator 2-45

INCLUDE
INCLUDE
Use the INCLUDE attribute to specify acceptable values for a field and to
cause PERFORM to check input before accepting it.

Usage
■ When you specify a range of values, the lower value must appear

first.

■ For ranges of character values, PERFORM uses dictionary ordering
with the printable ASCII character set. (See Appendix E, “The ASCII
Character Set,” for an ordered list of the ASCII character set.) In a
number field, the range (5 to 10) is acceptable. In a CHAR field, it is
incorrect. The character string 10 is less than the string 5, since 1
comes before 5 in the ASCII character set.

■ If you include a character string that contains a blank space, a
comma, or any special characters, you must enclose the entire string
in quotation marks. It is advisable to enclose character strings in
quotation marks at all times.

■ Before PERFORM accepts a new row, you must enter an acceptable
value in each display field with the INCLUDE attribute. Use the
keyword NULL to indicate that a NULL value is acceptable. If a field
has both the DEFAULT and INCLUDE attributes, then the DEFAULT
value must appear in the INCLUDE list. Otherwise the form does not
compile.

INCLUDE is a required keyword.
value is either a list of individual values (value1, value2, ...), a range of

values (value1 TO value2), or a combination of individual values and
ranges, all separated by commas.

NULL is an optional keyword that specifies a NULL value.

NULL

INCLUDE = ()

,

 TO value

value
2-46 IBM Informix SQL Reference Manual

INCLUDE
■ Including COMMENTS that indicate acceptable values makes data
entry easier.

An example from the sample form specification file follows:

i18 = items.quantity,
include = (1 to 50),
comments = "Acceptable values are 1 through 50";

The results of evaluation of character data in INCLUDE ranges can be affected
by GLS settings. A given character will be contained in an INCLUDE range or
not depending on where it collates relative to the INCLUDE values. Refer to
Appendix C, “Global Language Support,” and the Informix Guide to GLS
Functionality. ♦

Related Attributes
COMMENTS, REQUIRE

GLS
The FORMBUILD Transaction Form Generator 2-47

INVISIBLE
INVISIBLE
If a field is defined as INVISIBLE, INFORMIX-SQL does not display the value
assigned to the field or the value the user is entering in the field.

Usage
■ If you assign both INVISIBLE and COLOR attributes to a field,

INFORMIX-SQL ignores the COLOR attribute, unless you specify
COLOR=REVERSE. In this case, INFORMIX-SQL displays the field in
reverse video and maintains the invisibility of the field’s contents.

■ If you assign both INVISIBLE and PICTURE attributes to a field,
INFORMIX-SQL does not display the picture pattern.

INVISIBLE
2-48 IBM Informix SQL Reference Manual

LOOKUP
LOOKUP
Use the LOOKUP attribute to display data from another table while entering
data into or querying the active table. You can also use it to prevent data from
being entered into the active table if the value does not exist in another table.

Usage
■ If you use an alias in the TABLES section, you must use the alias to

refer to the table in the ATTRIBUTES section.

■ The optional asterisk placed in front of table2.col tells PERFORM to
accept a value for table1.col only if the same value already exists in
table2.col.

table2.col

*

JOININGLOOKUP

field-tag1 = table2.col1

, field-tag2 = table2.col2

LOOKUP is the keyword that specifies a join.
field-tag1 is the field tag of a field that displays a value from the LOOKUP

table.
table2.col1 is a column in table2 whose value displays in field-tag1.
JOINING is the keyword that identifies the joined column.
* is optional punctuation that identifies the dominant column in a

verify join. (See “Verify Joins” on page 2-30.)
table2.col is the name of a column that belongs to table2 and is joined to

table1.col.
field-tag2 is the field tag of a field that displays a value from the LOOKUP

table.
table2.col2 is a column in table2 whose value displays in field-tag2.
The FORMBUILD Transaction Form Generator 2-49

LOOKUP
■ The optional list of field tags with column names following the
LOOKUP attribute directs PERFORM to display these values
whenever there is a successful join between table1.col and table2.col.
You cannot enter values into these fields from the keyboard.

■ If the join columns in a LOOKUP are not indexed, the LOOKUP does
not run as quickly.

An example of the LOOKUP join from the sample form specification file
follows:

i16 = items.manu_code,
lookup m17 = manufact.manu_name
joining *manufact.manu_code;

In this example, the entry of the item manufacturer code number is checked
against the list of manufacturer code numbers in the manufact table. If the
same value is found there, the manufacturer’s name is extracted from the
manufact table and displays in field m17.
2-50 IBM Informix SQL Reference Manual

NOENTRY
NOENTRY
Use the NOENTRY attribute to prevent data entry when a new row is created
during an Add operation.

Usage
■ The NOENTRY attribute does not prevent you from modifying the

field during an Update operation.

■ The NOENTRY attribute is unnecessary with a SERIAL column.

Two examples from the sample form specification file follow:

i13 = items.stock_num;
= *stock.stock_num, noentry,

noupdate, queryclear;

s14 = stock.description, noentry,
noupdate;

When the stock table is active, the columns i13 and s14 (corresponding to the
columns stock.stock_num and stock.description, respectively) cannot have
values added. (The inclusion of the NOUPDATE attribute prevents data entry
during an Update operation.)

Related Attribute
NOUPDATE

NOENTRY
The FORMBUILD Transaction Form Generator 2-51

NOUPDATE
NOUPDATE
Use the NOUPDATE attribute to prevent data entry when a row is modified
during an Update operation.

Usage
The NOUPDATE attribute does not prevent you from entering data into the
field during an Add operation.

Two examples from the sample form specification file follow:

s15 = stock.unit_price, noentry,
noupdate;

s16 = stock.unit_descr, noentry,
noupdate;

When the stock table is active, the fields s15 and s16 (corresponding to the
columns stock.unit_price and stock.unit_descr, respectively) cannot receive
values during an Update operation. (The inclusion of the NOENTRY attribute
prevents data entry during an Add operation.)

Related Attribute
NOENTRY

NOUPDATE
2-52 IBM Informix SQL Reference Manual

PICTURE
PICTURE
Use the PICTURE attribute to specify the character pattern for data entry to a
non-number field.

Usage
■ pstring is a combination of three special symbols.

Any other character in the pstring is treated as a literal and occurs,
during data entry, in the exact location indicated.

■ If you attempt to enter a character that does not conform with the
pstring, you hear a beep and PERFORM does not echo the character on
the screen.

■ The PICTURE attribute does not require the entry of the entire field; it
only requires that what you enter conforms to pstring. Note that the
length of pstring must equal the length of the corresponding display
field.

■ PERFORM reminds data entry operators of the required pattern by
displaying the literal characters in the display field and leaving
blanks elsewhere.

PICTURE is a required keyword.
pstring is a (picture) string of characters that specifies the desired character

pattern.

Symbol Meaning

A

#

X

Any letter

Any digit

Any character

PICTURE = "pstring"
The FORMBUILD Transaction Form Generator 2-53

PICTURE
The following examples are from the sample form specification file:

c10 = phone,
picture = "###-###-####x####";

produces the following display field before data entry:

[- -]

As another example, if you specify a field for part numbers like this:

f1 = part_no, picture = "AA#####-AA(X)";

PERFORM would accept any of the following inputs:

LF49367-BB(*)
TG38524-AS(3)
YG67491-ZZ(D)

The PICTURE attribute is not affected by the GLS settings because PICTURE
only formats character information. ♦

Related Attribute
FORMAT

GLS
2-54 IBM Informix SQL Reference Manual

PROGRAM
PROGRAM
You can use the PROGRAM attribute with a blob (BYTE or TEXT) column to call
an external program to work with the TEXT or BYTE data. You invoke an
external program by pressing the exclamation key while your cursor is in a
blob field. The external program then takes over control of the screen. When
you exit the external program, the form is restored on your screen.

The syntax of the PROGRAM attribute follows.

Usage
If you call the program on an empty field, when you finish working in the
external program and save your work, the data is stored in the blob field. If
you call the program from a field that already contains data, the specified
program works on the data in that field. In either case, Informix Dynamic
Server writes the blob to a temporary file, which is then passed to the external
program. The external program must write its changes back to the temporary
file. You do not need to know the name of the temporary file; the application
development tool keeps track of it. For example, you might use PROGRAM to
call a CAD or graphics program to display a drawing that you have stored.
You can also use PROGRAM to invoke an editor for a TEXT field.

For example, a TEXT field might be tagged with the following line:

f003 = personnel.resume, WORDWRAP, PROGRAM = "edit";

When you display a field with data type TEXT, INFORMIX-SQL displays as
many of the leading characters as will fit in the defined field. When you
display a field with data type BYTE, INFORMIX-SQL displays <BYTE value>.

field-tag is the field tag used in the SCREEN section.
table.col is the name of a field, either related to a column, form-only field,

or display-only (INFORMIX-SQL) field.
PROGRAM is a required keyword.
name is a command string to, or the name of, a batch file that invokes

an editing program.

PROGRAM = "name"field-tag = table.col,
The FORMBUILD Transaction Form Generator 2-55

PROGRAM
When you place the cursor in a TEXT field, and you press the exclamation-
mark key in the first character position of a TEXT or BYTE field, the external
program is invoked. This program receives the contents of the field and takes
control of the screen to permit editing or alteration of the field. When the
program is finished, your application regains control of the screen and
continues execution.

One of the following programs is invoked for a TEXT field:

■ The program specified by the PROGRAM ="name" attribute defined
for that field, if any.

■ The program named in the DBEDIT environment variable, if one is
defined.

■ The default editor, which depends on the host operating system.

You must explicitly define the external program for a BYTE field; the default
editor is not called, and the DBEDIT environment variable is not examined.

Before invoking the program, INFORMIX-SQL copies the BYTE or TEXT field to
a temporary disk file. It then issues a system command composed of the
name that you specify after the PROGRAM keyword followed by the name of
the temporary file.

The name string need not be a single word. You can add additional command
parameters. The program can also be a shell script, so that you can initiate a
whole series of actions.

If you are invoking an external program from PERFORM, the data is stored in
the blob column when you complete the Add or Update. For example:

f010 = contract, PROGRAM = "edit";
2-56 IBM Informix SQL Reference Manual

QUERYCLEAR
QUERYCLEAR
Use the QUERYCLEAR attribute to clear a joining field on the screen when you
enter a Query operation.

Usage
■ When you enter the Query option, PERFORM normally clears all

fields except joining and display-only fields.

■ QUERYCLEAR does not apply to display-only fields. You must give
explicit instructions in the INSTRUCTIONS section to clear display-
only fields.

An example from the sample form specification file follows:

i13 = items.stock_num;
= *stock.stock_num, noentry,

noupdate, queryclear;

Here the items table and the stock table are joined through the stock number.
When the stock table is the active table and a query is made, the stock_num
field is cleared. When items is the active table, however, the stock_num field
is not cleared when a query is made.

QUERYCLEAR
The FORMBUILD Transaction Form Generator 2-57

REQUIRED
REQUIRED
Use the REQUIRED attribute to force data entry into a particular field during
an Add operation.

Usage
■ The REQUIRED attribute has no effect during a PERFORM Update

operation. You are free to erase values from REQUIRED fields when
you use an Update operation.

■ There is no default value for a REQUIRED field. If you assign both the
REQUIRED attribute and the DEFAULT attribute to the same field, the
REQUIRED attribute is ignored.

An example from the sample form follows:

o20 = po_num, required;

FORMBUILD requires the entry of a purchase order value when adding a new
order to the database.

REQUIRED
2-58 IBM Informix SQL Reference Manual

REVERSE
REVERSE
Assign the REVERSE attribute to fields you want PERFORM to display in
reverse video.

Usage
On computers that do not support reverse video, fields that have the
REVERSE attribute are enclosed in angle brackets (< >).

REVERSE
The FORMBUILD Transaction Form Generator 2-59

RIGHT
RIGHT
Assign the RIGHT attribute to fields in which you want the data to be right-
justified.

Usage
■ PERFORM right-justifies data you enter during an Add or Update

operation.

■ To search for a right-adjusted CHAR field of value ‘‘string’’ during a
Query operation, use the wildcard search pattern ‘‘*string’’ to
account for potential leading blanks.

RIGHT
2-60 IBM Informix SQL Reference Manual

UPSHIFT
UPSHIFT
Assign the UPSHIFT attribute to a CHAR field when you want PERFORM to
convert lowercase letters to uppercase letters.

Usage
Because uppercase letters and lowercase letters have different ASCII values,
storing character strings in one format or the other can simplify sorting and
querying of a database.

An example from the sample form follows:

c8 = state, upshift, autonext,
include = ("CA", "OR", "NV", "WA"),
default = "CA" ;

Because of the UPSHIFT attribute, PERFORM enters uppercase characters in
the state field regardless of the case used to enter them.

The results of conversion between uppercase and lowercase can be made
appropriate for different languages using GLS settings. Refer to Appendix C,
“Global Language Support,” and the Informix Guide to GLS Functionality. ♦

Related Attribute
DOWNSHIFT

UPSHIFT

GLS
The FORMBUILD Transaction Form Generator 2-61

VERIFY
VERIFY
Use the VERIFY attribute when you want PERFORM to require users to enter
data twice for a particular field to reduce the probability of erroneous data
entry.

Usage
Because some data is critical, the VERIFY attribute supplies an additional step
in data entry to ensure the integrity of the data in your database. After you
enter a value into a VERIFY field and press RETURN, PERFORM erases the field
and requests that you reenter the value. You must enter exactly the same data
each time, character for character: 15000 is not exactly the same as 15000.00.

If you specify the following field for salary information:

s10 = salary, verify;

PERFORM requires the entry of exactly the same data twice.

VERIFY
2-62 IBM Informix SQL Reference Manual

WORDWRAP
WORDWRAP
Use the WORDWRAP attribute when you want PERFORM to wrap a long
character string to the next field that has the same field tag.

Usage
■ The keyword WORDWRAP enables the multiline editor. When you

enter text from the keyboard and reach the end of a line, the editor
brings the current word down to the next line, moving text to subse-
quent lines as necessary. When you delete text, the editor pulls words
up from lower lines whenever it can.

If you do not use the WORDWRAP attribute, words do not flow from
one line in the field to the next, and you must edit text by using the
arrow keys or the RETURN key to move from field to field.

■ The editor distinguishes between intentional blanks (blanks that you
typed or that are part of the data) and editor blanks (blanks that the
editor inserts at the ends of lines to make text wrap around to the
next line). Intentional blanks are retained as part of the data. Editor
blanks are inserted and deleted automatically as required for word
wrapping.

■ The COMPRESS attribute tells PERFORM to discard editor blanks. If
you do not use the COMPRESS attribute, and the sum of the segment
lengths exceeds the column size, PERFORM might truncate some
trailing words.

■ When you design a multiline field, allow room for editor blanks. You
can expect the average number of editor blanks per line to be half the
length of an average word.

WORDWRAP is the required keyword that instructs PERFORM to wrap long
character strings to the next successive field.

COMPRESS is the optional keyword that tells PERFORM to discard any
spaces that you did not type and that are not part of the data.

WORDWRAP

COMPRESS
The FORMBUILD Transaction Form Generator 2-63

WORDWRAP
■ The editor breaks lines between words whenever possible.
Ordinarily, the field is as long as, or longer than, the column size, and
PERFORM displays all text.

■ If the column data is longer than the field, the editor fills the field and
discards the excess data. You lose data if you use a truncated display
to update a database.

The following example shows the SCREEN and ATTRIBUTES sections of a
form specification file that specifies a multiple-line field:

database...
screen
{
Enter text: [mlf]

[mlf]
[mlf]
[mlf]

}
tables...
attributes

mlf = charcolm, wordwrap compress;

Because the screen field whose tag is mlf appears in four physical segments
in the screen layout and has the WORDWRAP attribute, it is a multiple-line
field. Its value is composed of the physical segments taken in top-to-bottom,
left-to-right order. The field should ordinarily be as long as or longer than the
column so that it can display all of the text. It is not necessary that the
segments be the same size, as they are in the example.

In the field description in the ATTRIBUTES section, the keyword WORDWRAP
enables the multiline editor. If you omit it, words cannot flow from one
segment to the next.

If a field is defined to accept VARCHAR data, you must assign the
WORDWRAP attribute to the field to enable the multiline editor.
2-64 IBM Informix SQL Reference Manual

WORDWRAP
VARCHARs are similar to character fields; both are supported by the multiline
editor. You must assign the WORDWRAP attribute to VARCHAR fields to
enable the multiline editor. For example, the following excerpt from a form
specification shows the VARCHAR field history in the employee table and the
attributes assigned to the field:

history [f002]
[f002]
[f002]

attributes

f002 = employee.history, WORDWRAP COMPRESS;

If you generate a default form for a table that has a VARCHAR column, the
VARCHAR field is broken into subscripted fields. To enable WORDWRAP,
revise the form and use the same field tag for all the components of the
VARCHAR field; then add the WORDWRAP and COMPRESS attributes.

You can use VARCHAR as the data type for a display-only (FORMBUILD) field.

You can use the DEFAULT attribute to give a VARCHAR field a default value.

Specifying TEXT and BYTE Data

You can use columns of types TEXT or BYTE as fields. Assign the WORDWRAP
attribute to a TEXT field to display the field so that it fits into the display
without having any lines start with a blank. For a TEXT field, the WORDWRAP
attribute only affects how the value is displayed; WORDWRAP does not
enable the multiline editor. If you want to edit a TEXT field, you must use the
PROGRAM attribute to indicate the name of an external editor.
The FORMBUILD Transaction Form Generator 2-65

ZEROFILL
ZEROFILL
Assign the ZEROFILL attribute to fields that you want to be right-justified and
padded with leading zeros.

Usage
This attribute is most useful with numeric fields. If the number entered into
the field is shorter than the field itself, PERFORM right-justifies it and fills the
leading blanks with zeros.

ZEROFILL
2-66 IBM Informix SQL Reference Manual

INSTRUCTIONS Section
INSTRUCTIONS Section
The final section of the form specification file is the optional INSTRUCTIONS
section. This section is used for the following tasks:

■ Establishing composite joins

■ Specifying alternative field delimiters

■ Creating master/detail relationships

■ Defining control blocks

You can also call C functions from within the INSTRUCTIONS section. For
details, see Chapter 6, “Functions in ACE and PERFORM.”

The INSTRUCTIONS keyword begins the INSTRUCTIONS section as shown in
the following diagram.

INSTRUCTIONS
Section

COMPOSITES
Section
p. 2-67

DELIMITERS
Section
p. 2-69

Control Block
Section
p. 2-72

MASTER OF
Section
p. 2-70

INSTRUCTIONS

END
The FORMBUILD Transaction Form Generator 2-67

COMPOSITES
COMPOSITES
Establish a COMPOSITE JOIN between two tables when you must specify the
values of more than one column in a table to specify a row uniquely.

Usage
■ If you use an alias in the TABLES section, you must use that alias to

refer to the table in the composite join.

■ Each column included in a composite join must also be individually
joined in the ATTRIBUTES section of the form specification. This
means that table1.col1 must be joined individually to table2.col1 in the
ATTRIBUTES section, as must table1.col2 to table2.col2, and so on.

■ There can be no additional joins between columns of the two tables
that are not included in the composite join.

■ If the columns in a composite join are not individually and jointly
indexed, cross-table queries do not run as quickly.

An example from the sample form specification file follows:

composites <items.stock_num, items.manu_code>
* <stock.stock_num, stock.manu_code>

COMPOSITES table1.col1 . table1.colJ

,

*

table2.col1 . table2.colJ

,

;

COMPOSITES
Section

COMPOSITES is the keyword indicating that the following sets of column names
enclosed in angle brackets (< >) are to be treated as composite
columns that are joined to each other.

table1.colJ (where J = 1, 2, 3, ...) is a column in table1.
table2.colJ (where J = 1, 2, 3, ...) is a column in table2.
* indicates that the join is a verify join—that is, unless the marked

composite exists in table2, PERFORM does not allow the corre-
sponding row to be written to table1.
2-68 IBM Informix SQL Reference Manual

COMPOSITES
The stock_num and manu_code fields in the items and stock table are
included in a composite join. This is a composite verify join. When the items
table is active, values entered in the stock_num and manu_code fields are
compared with values existing in those two columns in the stock table.
PERFORM notifies the user if there is not a match and rejects the entry. This
precludes the entry of stock numbers and manufacturer codes that individ-
ually exist in the database but, as a composite, do not correspond to a unique
row in the stock table.

To specify a unique row in the stock table requires both the stock_num and
manu_code. For example, the stock table contains three rows with the stock
number 1, and four rows with the manufacturer code HRO. (See Appendix A,
“The Demonstration Database and Examples,” for a list of data included in
the sample database.) Knowing the stock number or manufacturer code
alone does not allow you to locate a unique row. You need both the stock
number (1) and the manufacturer code (HRO) to specify a unique row
(baseball gloves produced by Hero) in the table.
The FORMBUILD Transaction Form Generator 2-69

DELIMITERS
DELIMITERS
You can change the delimiters that PERFORM uses to enclose the fields when
the form appears on the screen. The default delimiters are brackets ([]), but
you can substitute any other printable character, including blank spaces.

Usage
■ The DELIMITERS instruction tells PERFORM the symbol to use as a

delimiter when it displays the fields on the screen.

■ Each delimiter is a single character only.

■ FORMBUILD still requires that you use brackets in the
form specification file.

■ If your form has columns from more than one database table, you
might not want to use blank spaces as delimiters. If you use blank
spaces, you have no visual indication on the screen of which fields
correspond to columns in the active table.

■ You can use the | bar symbol to denote both a closing delimiter and
an opening delimiter. For example,

Name [tag1 |tag2]

tag1 identifies the first display field; tag2 identifies the second
display field. If you use the bar symbol in the SCREEN section, you
must include a DELIMITERS statement in the INSTRUCTIONS section
of the form specification. Use two identical symbols for the left and
right delimiter in the DELIMITERS statement.

DELIMITERS is a required keyword.
a is the opening delimiter.
b is the closing delimiter.

DELIMITERS "ab"

;

DELIMITERS
Section
2-70 IBM Informix SQL Reference Manual

MASTER OF
MASTER OF
Create a master/detail relationship between two tables when a row of one
table (master) is associated with several rows of another table (detail).

Usage
■ If you have used an alias in the TABLES section, you must use that

alias to refer to the table in the master/detail relationship.

■ You cannot include a temporary table in your table list.

■ The master/detail relationship simplifies cross-table queries,
especially when one row of table1 is associated with several rows of
table2.

■ Master/detail relationships can be defined in both directions.

■ If no explicit master/detail relationship exists, PERFORM displays an
error message when you use the Master or Detail option.

Two examples from the sample form specification file follow:

customer master of orders;
orders master of items;

These master/detail relationships are useful because each customer can have
many orders, and each order can have many items.

table1 is a table in the database that is designated as the master table.
MASTER OF are required keywords.
table2 is a table in the database that is designated as the detail table.

;

table1 MASTER OF table2

MASTER OF
Section
The FORMBUILD Transaction Form Generator 2-71

MASTER OF
Additional examples are displayed in the following table.

These master/detail relationships are useful where several staff members
(personnel) work on the same project (projects), each purchase order
(orders) contains more than one item (items), or a single agent (agents) has
many clients (clients).

With a master/detail relationship defined in both directions, you can explore
the database in the following way. Suppose you have a database that consists
of personnel and projects tables. Each person is assigned to a single project,
and each project has several people working on it. The screen form includes
an INSTRUCTIONS section stating:

personnel master of projects;
projects master of personnel;

Assume that you want to query the database to find all employees who work
with a particular employee, but you do not know on which project they work.
When you identify and bring the particular employee to the screen (the
personnel table is active) and select the Detail option, PERFORM moves to the
PROJECT INFORMATION screen (the projects table is active) and displays the
information on the employee’s project. If you then choose the Detail option,
PERFORM selects all employees on that project and shifts to the PERSONNEL
INFORMATION screen (the personnel table is active).

Master Detail

projects personnel

orders items

agents clients

parents children
2-72 IBM Informix SQL Reference Manual

Control Blocks
Control Blocks
Use control blocks to perform these functions:

■ Control the cursor movement when you add or update a row.

■ Check the value of data you enter against criteria that depend on
other data that has already been entered.

■ Modify the data in fields after Add, Update, and Query operations.

■ Perform calculations on field values and enter the results into
another field.

■ Display aggregate information like averages and totals on columns
in the current list. (The current list is the set of rows that results from
a Query as modified by subsequent Add or Remove actions.)

■ Call C functions from PERFORM. For details, see Chapter 6.

Each control block is either a BEFORE block or an AFTER block. Screen control
actions can be taken either before or after PERFORM operations are
completed. You can use BEFORE blocks with the Add, Update, and Remove
operations. You can use AFTER blocks with the Add, Update, Query, Remove,
and Display operations.

Control Block
Section

AFTER
Block

p. 2-74

BEFORE
Block

p. 2-73

ON BEGINNING
Block

p. 6-12

ON ENDING
Block

p. 6-12
The FORMBUILD Transaction Form Generator 2-73

BEFORE
BEFORE
Use a BEFORE control block to cause PERFORM to take a series of actions
before it executes an operation.

■ The EDITADD and EDITUPDATE keywords refer to the act of editing
during an Add and an Update, respectively. For EDITADD and
EDITUPDATE, the actions are taken before PERFORM writes the row
to the table.

■ You can use the BEFORE REMOVE operation with the ABORT
keyword (described on page 2-83) to prevent a user from removing
the last row from a detail table.

BEFORE columnEDITADD

REMOVE

OF

,

Action
p. 2-82

BEFORE
Block

table .
EDITUPDATE

BEFORE is a required keyword.
OF is a required keyword.
table.column is a list of up to 16 names or aliases of database tables and/or names

of columns. Depending on your operating system, the limit on the
number of table names may be lower.
2-74 IBM Informix SQL Reference Manual

AFTER
AFTER
Use an AFTER control block to cause PERFORM to take a series of actions after
it executes an option.

■ The ADD, UPDATE, QUERY, and REMOVE keywords correspond to
the PERFORM options Add, Update, Query, and Remove, respec-
tively. For more information about the PERFORM options, see
Chapter 3, “The PERFORM Screen Transaction Processor,”.

■ The DISPLAY keyword refers to the display of fields after PERFORM
executes Next, Previous, Query, or other options.

■ EDITADD and EDITUPDATE differ from ADD and UPDATE. For
EDITADD and EDITUPDATE, the actions are taken before PERFORM
writes the row to a table. For ADD and UPDATE, they are taken after
PERFORM writes the row to the table.

■ You can list only table names or aliases, including displaytable in
table.column following the ADD, UPDATE, QUERY, REMOVE, and
DISPLAY keywords.

AFTER is a required keyword.
OF is a required keyword.
table.column is a list of up to 16 names or aliases of database tables and/or names

of columns. Depending on your operating system, the limit on the
number of table names may be lower.

AFTER OFEDITADD Action
p. 2-82

AFTER
Block

column

,

table .

EDITUPDATE

ADD

UPDATE

QUERY

REMOVE

DISPLAY
The FORMBUILD Transaction Form Generator 2-75

EDITADD and EDITUPDATE
EDITADD and EDITUPDATE
The EDITADD and EDITUPDATE keywords give you the ability to perform
one or more actions before or after you enter data into a field during an Add
and an Update operation, respectively. The action occurs before the row is
written to the table.

Usage
■ If you are using EDITADD or EDITUPDATE in a BEFORE control block

and the table.column contains the names of columns only, the BEFORE
keyword instructs PERFORM to execute the actions when the cursor
moves to the corresponding field, before you enter data.

■ If you are using EDITADD or EDITUPDATE in an AFTER control block
and the table.column contains the names of columns only, the AFTER
keyword instructs PERFORM to execute the actions when you enter
data into the corresponding field and press RETURN. PERFORM
makes all the attribute-specified checks (such as INCLUDE, VERIFY,
and so on) before executing the actions.

■ When you specify a database table or alias instead of a column in a
BEFORE block, PERFORM executes the actions before you enter any
data into the form. Using this feature, you can make PERFORM enter
defaults into fields and display comments depending on the active
table.

■ When you specify a database table or alias instead of a column in an
AFTER block, PERFORM executes the actions after you enter all the
data and press ESCAPE to complete the transaction, before the row is
written to the database. Using this technique, you can make consis-
tency checks of all the data entered and return to data entry if you
find inconsistencies.

EDITUPDATE

EDITADD
2-76 IBM Informix SQL Reference Manual

EDITADD and EDITUPDATE
■ In a BEFORE block, when you refer to a CHAR column that is split into
more than one field, PERFORM executes the actions before each
section of the displayed field. If you want these actions executed only
before the first section of a split field, replace the BEFORE block of the
split field with an AFTER block of the immediately preceding field.

■ If you want the actions executed only after the last section of a split
field, replace the AFTER block of the split field with a BEFORE block
of the immediately succeeding field.

The following examples are taken from the sample form specification file at
the end of this chapter. The syntax of the action statements used in these
examples is described in “Action Syntax” on page 2-82.

after editadd editupdate of quantity
let i19 = i18 * s15
nextfield = o11

After you enter a value in the quantity field (using the Add or Update
options), PERFORM calculates and places the value in the i19 (Total Price)
column, and places the cursor in the o11 (Order Number) field.

before editadd editupdate of orders
nextfield = o20

In this example, as soon as you indicate that you want either the Add or
Update options when orders is the active table, PERFORM is instructed to
move the cursor to the o20 (Customer P.O.) field. Without this instruction, the
cursor would go first to the o11 (Order Number) field because it is the first
orders field to appear in the ATTRIBUTES section of the form.
The FORMBUILD Transaction Form Generator 2-77

ADD
ADD
Use the ADD keyword to cause PERFORM to execute actions after the Add
operation. The action occurs after the row is written to the table.

Usage
The main use of the ADD keyword involves keeping track of the number of
rows written, computing statistics on the values entered into particular
fields, and other bookkeeping operations.

The following example is from the sample form. The action statements used
in this example are described in “Action Syntax” on page 2-82.

after add update query of items
if (total of i19) <= 100 then

let d1 = 7.50
else
let d1 = (total of i19) * .04

let d2 = (total of i19) + d1

After you press ESCAPE following an Add, Update, or Query of the items
table, PERFORM calculates values for the d1 and d2 fields and displays the
values on the screen.

ADD
2-78 IBM Informix SQL Reference Manual

UPDATE
UPDATE
Use the UPDATE keyword to cause PERFORM to execute actions after the
Update operation.

Usage
The main use of the UPDATE keyword involves keeping track of the number
of rows written, computing statistics on the values entered into particular
fields, and other bookkeeping operations.

The following example is from the sample form specification file. The action
statements used in this example are described in “Action Syntax” on
page 2-82.

after add update query of items
if (total of i19) <= 100 then

let d1 = 7.50
else
let d1 = (total of i19) * .04

let d2 = (total of i19) + d1

After you press ESCAPE following an Add, Update, or Query of the items
table, PERFORM calculates values for the d1 and d2 fields and displays the
values on the screen.

UPDATE
The FORMBUILD Transaction Form Generator 2-79

QUERY
QUERY
Use the QUERY keyword to cause PERFORM to execute actions after the
Query operation.

Usage
The main use of the QUERY keyword involves keeping track of the number
of rows written, computing statistics on the values entered into particular
fields, and other bookkeeping operations.

The following example is from the sample form specification file. The action
statements used in this example are described in “Action Syntax” on
page 2-82.

after add update query of items
if (total of i19) <= 100 then

let d1 = 7.50
else
let d1 = (total of i19) * .04

let d2 = (total of i19) + d1

After you press ESCAPE following an Add, Update, or Query of the items
table, PERFORM calculates values for the d1 and d2 fields and displays the
values on the screen.

QUERY
2-80 IBM Informix SQL Reference Manual

REMOVE
REMOVE
Use the REMOVE keyword to cause PERFORM to execute actions before or
after the Remove operation.

Usage
■ The main use of the AFTER REMOVE operation involves keeping

track of the number of rows removed, computing statistics on the
values entered into particular fields, and other bookkeeping
operations.

■ Use the BEFORE REMOVE operation to cause PERFORM to take one or
more actions before removing a row from a database table.

The following statement prints a message on the screen whenever a user
selects the Remove option:

. . .

instructions

before remove of customer
comments reverse
"Remember to send a notice to the sales department"

. . .

You can use the BEFORE REMOVE operation with the ABORT keyword
(see “ABORT” on page 2-83) to prevent a user from removing the last row
from a detail table.

REMOVE
The FORMBUILD Transaction Form Generator 2-81

DISPLAY
DISPLAY
Use the DISPLAY keyword to cause PERFORM to execute actions after any of
the PERFORM operations that cause data to be displayed on the screen.

Usage
The following example is taken from the sample form specification file at the
end of this chapter.

after display of orders
let d1 = 0
let d2 = 0

As soon as the data displays when the orders table is active, this control block
instructs PERFORM to set the values in the d1 (Ship Charge) and d2 (Total
Order Amount) fields to zero.

DISPLAY
2-82 IBM Informix SQL Reference Manual

Action Syntax
Action Syntax
This section provides the syntax of the following actions.

For these actions to compile properly, you must include them in a BEFORE or
AFTER control block.

ABORT exits to the PERFORM menu without making a change to the
database.

COMMENTS displays a message on the Status line.
IF-THEN-ELSE performs other actions based on conditions among the values in

the fields.
LET assigns values to fields.
NEXTFIELD moves the cursor to a specific field or exits to the PERFORM

menu.

Action

ABORT Option
p. 2-83

IF-THEN-ELSE
Option
p. 2-90

COMMENTS
Option
p. 2-89

NEXTFIELD
Option
p. 2-87

LET Option
p. 2-84
The FORMBUILD Transaction Form Generator 2-83

ABORT
ABORT
Use the ABORT keyword in the INSTRUCTIONS section of a form specification
to end a current Add, Update, or Remove action without altering the
database and return to the PERFORM menu.

Usage
■ The ABORT action compares to the NEXTFIELD EXITNOW action in

the following respects:

❑ With NEXTFIELD EXITNOW, PERFORM executes an Update,
Remove, or Add, and then exits to the PERFORM menu.
NEXTFIELD EXITNOW is equivalent to pressing ESCAPE.

❑ With ABORT, PERFORM exits to the PERFORM menu without
executing an Update, Remove, or Add. ABORT is equivalent to
pressing CONTROL-C.

■ You can use the ABORT keyword with the EDITADD, EDITUPDATE,
and REMOVE options.

For example, suppose you maintain a master table with employee
information and a detail table with information about employee
projects (joined to the master table by employee number). Projects
are added and deleted on a regular basis, and you want to ensure
that all employees have projects. (It is an administrative or clerical
error to remove the last detail row, thereby leaving the employee
with no project.) You can use the ABORT keyword with the BEFORE
REMOVE operation to call a C function that checks the number of
rows in the detail table. If the current row is the last detail row, the
operation aborts. For information about calling C functions from
PERFORM, see Chapter 6, “Functions in ACE and PERFORM.”

ABORT

Abort Option
2-84 IBM Informix SQL Reference Manual

LET
LET
Use the LET action to attach a value to a field tag for display on the form.

Usage
■ FORMBUILD gives an error if field-tag does not satisfy the preceding

conditions.

■ You can assign values only to fields corresponding to columns in the
active table or to display-only fields.

■ An expression is:

❑ A field tag

❑ A constant value

❑ One of the aggregate functions followed by the phrase OF
tagname, where tagname is the field tag of a database column and
not the name of a display-only field. The aggregate function
values are computed over the current list.

LET is a required keyword.
field-tag is the field tag of a display-only field, of a column named in the

table.column list in the control block, or of a column belonging to each
of the tables named in the table.column list.

expression is an expression as defined below.

LET field-tag = expression

LET Option
The FORMBUILD Transaction Form Generator 2-85

LET
The aggregate functions are as follows:

❑ The keyword TODAY that returns today’s date

❑ The keyword CURRENT that returns the current date and time

❑ Any combination of the preceding functions, combined with the
arithmetic operators +, -, *, and /

For more information about aggregate functions, see the Informix
Guide to SQL: Syntax.

■ An expression can contain parentheses to make explicit the prece-
dence of the arithmetic operators.

The following example is from the sample form:

after add update query of items
if (total of i19) <= 100 then

let d1 = 7.50
else
let d1 = (total of i19) * .04

let d2 = (total of i19) + d1

After you press ESCAPE following an Add, Update, or Query of the items
table, PERFORM calculates values for the d1 (Ship Charge) and d2 (Total
Order Amount) fields. If the value of the i19 (Total Price) field (all items in
the order) is less than or equal to 100, then the value of the d1 field (Ship
Charge) is set to 7.50; otherwise the value is set to the sum of the i19 (Total
Price) field times .04.

The value of the d2 (Total Order Amount) field is set to the sum of the i19
(Total Price) field plus the value in the d1 (Ship Charge) field.

COUNT the number of rows

TOTAL the arithmetic sum of the values of tagname

AVERAGE the average of the values of tagname (AVERAGE can
also be written as AVG)

MAX the maximum value of tagname

MIN the minimum value of tagname
2-86 IBM Informix SQL Reference Manual

LET
Additional examples of the uses of the LET statement follow:

let f1 = f2 * 1.065

let s2 = "default string"

let f3 = (f5 + f8) * f7

let ftax = 0.065 * f_price

let f9 = average of f_price

let yr = (today - hdate)/365

The conversion of numeric or monetary values to character strings through
the LET statement is influenced by GLS settings. Both the default conversion
and the conversion with a USING clause insert locale-specific separator and
currency symbols into the created strings, not US English symbols. ♦

GLS
The FORMBUILD Transaction Form Generator 2-87

NEXTFIELD
NEXTFIELD
When you use the EDITADD or EDITUPDATE options, use the NEXTFIELD
action to direct the movement of the cursor. The NEXTFIELD action overrides
the default progression as determined by the ATTRIBUTES section of the
form specification file.

Usage
■ You cannot change the active table by using the NEXTFIELD action to

move the cursor to the field of a column in a new table.

■ The NEXTFIELD EXITNOW action compares to the ABORT action in
the following respects:

❑ With NEXTFIELD EXITNOW, PERFORM executes an Update,
Remove, or Add, and then exits to the PERFORM menu.
NEXTFIELD EXITNOW is equivalent to pressing the ESCAPE key.

❑ With ABORT, PERFORM exits to the PERFORM menu without
executing an Update, Remove, or Add.

■ Because the NEXTFIELD action controls the movement of the cursor,
it is effective only after the EDITADD and EDITUPDATE options.

An example from the sample form follows:

before editadd editupdate of orders
nextfield = o20

NEXTFIELD is the keyword that instructs PERFORM to move the cursor to a
particular field or to end the current Add or Update.

field-tag is the field tag that corresponds to a database column in the active
table.

EXITNOW is a keyword value for NEXTFIELD that ends the current editing.

NEXTFIELD = field-tag

EXITNOW

NEXTFIELD
Option
2-88 IBM Informix SQL Reference Manual

NEXTFIELD
In this example, as soon as you indicate that you want either the Add or
Update options when orders is the active table, PERFORM is instructed to
move the cursor to the o20 column (Customer P.O.). Without this instruction,
the cursor would go first to the o11 field (Order Number) because it is the first
orders field to appear in the ATTRIBUTES section of the form.
The FORMBUILD Transaction Form Generator 2-89

COMMENTS
COMMENTS
Use the COMMENTS action to display a message on the Status line of the
screen. This use of COMMENTS contrasts with the COMMENTS attribute
included in the ATTRIBUTES section that writes a message on the Comment
line.

Usage
■ If you use the REVERSE keyword, you must take care on some

monitors to account for the space required at the beginning of the
line for the control characters.

■ The message is cleared at the next keystroke. Because PERFORM
writes a message whenever a row is written, an Update or an Add is
aborted, or a Query or Remove is made, this action is useful only for
the EDITADD and EDITUPDATE keywords.

COMMENTS is the keyword that directs PERFORM to write a message on the
Status line.

BELL is the keyword that directs PERFORM to ring the bell as it writes
the message.

REVERSE is the keyword that directs PERFORM to write the message in
reverse video. The default is normal video.

mstring is the message (string) and must be enclosed in quotation marks.
It must fit on one screen line and on one line of the
form specification file.

COMMENTS

BELL

REVERSE

"mstring"

COMMENTS
Option
2-90 IBM Informix SQL Reference Manual

IF-THEN-ELSE
IF-THEN-ELSE
Use the IF-THEN-ELSE action to take actions that depend on the values in the
displayed fields.

Usage
■ A Boolean expression is a combination of logical comparisons (=, <>,

>, <, >=, <=) and logical operations (AND, OR, NOT) among expres-
sions as previously defined. You can also use the operators IS NULL
and IS NOT NULL.

■ For CHAR type fields only, a Boolean expression may be also of the
form

field-tag MATCHES "string"

where string must be enclosed within quotation marks and can
include wildcard characters as defined in the Informix Guide to SQL:
Syntax.

■ t-action and f-action are either single actions as defined in this section
or more than one such action between the keywords BEGIN and END.

IF is a required keyword.
boolean-expression is a Boolean expression involving field tags that can take on the

values true and false.
THEN is a required keyword.
t-action is the action or actions to be taken if boolean-expression is true.
ELSE is a keyword.
f-action is the action or actions to be taken if boolean-expression is false.

IF-THEN-ELSE
Option

IF boolean-expression THEN t-action

ELSE f-action
The FORMBUILD Transaction Form Generator 2-91

IF-THEN-ELSE
The following example illustrates a simple IF-THEN-ELSE with one true
action and one false action:

if (f1 * f2 > 200) then LET f5 = -f4
else LET f5 = -5

A more complex example from the sample form specification file follows:

after add update query of items
if (total of i19) <= 100 then

let d1 = 7.50
else
let d1 = (total of i19) * .04

let d2 = (total of i19) + d1

After you press ESCAPE following an Add, Update, or Query of the items
table, PERFORM calculates values for the d1 (Ship Charge) and d2 (Total
Order Amount) fields. If the value of the Total Price field (all items in the
order) is less than or equal to 100, then the value of the d1 field (Ship Charge)
is set to 7.50; otherwise, the value is set to the sum of the Total Price field times
.04.

The value of the d2 (Total Order Amount) field is set to the sum of the Total
Price field (all items in the order) plus the value in the Ship Charge field.

The results that character comparisons and OF MATCHES, LIKE and
BETWEEN expressions contain character arguments are dependent on GLS
collation settings. Refer to Appendix C, “Global Language Support,” and the
Informix Guide to GLS Functionality. ♦

GLS
2-92 IBM Informix SQL Reference Manual

The SAMPLE Form Specification File
The SAMPLE Form Specification File
The sample form specification file was designed for entering and
maintaining data on customers and orders listed in the stores7 demon-
stration database. The first screen displays information from the customer
table and is labeled CUSTOMER INFORMATION. The second screen is used to
enter and retrieve information about customer orders.

database stores7

screen
{
==
==
CUSTOMER INFORMATION:

Customer Number: [c1]

Company: [c4]
First Name: [c2] Last Name: [c3]

Address: [c5]
[c6]

City: [c7] State: [c8] Zip: [c9]
Telephone: [c10]

==
==
}

screen

{
==
CUSTOMER NUMBER: [c1] COMPANY: [c4]

ORDER INFORMATION:
Order Number: [o11] Order Date: [o12]

Stock Number: [i13] Manufacturer: [i16]
Description: [s14] [m17]

Unit: [s16]
Quantity: [i18]
Unitprice: [s15]

Total Price: [i19]

SHIPPING INFORMATION:
Customer P.O.: [o20] Ship Charge: [d1]

Backlog: [a] Total Order Amount: [d2]
The FORMBUILD Transaction Form Generator 2-93

The SAMPLE Form Specification File
Ship Date: [o21]
Date Paid: [o22]

Instructions: [o23]

}
end
tables
customer items stock
orders manufact

attributes
c1 = *customer.customer_num

= orders.customer_num;
c2 = fname,

comments = "Please enter initial if available";
c3 = lname;
c4 = company, reverse;
c5 = address1;
c6 = address2;
c7 = city;
c8 = state, upshift, autonext,

include = ("CA","OR","NV","WA"),
default = "CA" ;

c9 = zipcode, autonext;
c10 = phone, picture = "###-###-####x####";
o11 = *orders.order_num = items.order_num;
o12 = order_date, default = today, format = "mm/dd/yyyy";
i13 = items.stock_num;

= *stock.stock_num, noentry, noupdate, queryclear;
i16 = items.manu_code, lookup m17 = manufact.manu_name

joining *manufact.manu_code, upshift, autonext;
= *stock.manu_code, noentry, noupdate,

upshift, autonext, queryclear;
s14 = stock.description, noentry, noupdate;
s16 = stock.unit_descr, noentry, noupdate;
s15 = stock.unit_price, noentry, noupdate;
i18 = items.quantity, include = (1 to 50),

comments = "Acceptable values are 1 through 50" ;
i19 = items.total_price;
o20 = po_num, required,

comments = "If no P.O. Number enter name of caller" ;
a = backlog, autonext;
o21 = ship_date, default = today, format = "mm/dd/yyyy";
o22 = paid_date, format = "mm/dd/yyyy";
o23 = ship_instruct;
d1 = displayonly type money;
d2 = displayonly type money;

instructions

customer master of orders;
orders master of items;
composites <items.stock_num, items.manu_code>

*<stock.stock_num, stock.manu_code>

before editadd editupdate of orders
nextfield = o20

before editadd editupdate of items
nextfield = i13
2-94 IBM Informix SQL Reference Manual

The CUSTOMER INFORMATION Screen
after editadd editupdate of quantity
let i19 = i18 * s15
nextfield = o11

after add update query of items
if (total of i19) <= 100 then

let d1 = 7.50
else
let d1 = (total of i19) * .04

let d2 = (total of i19) + d1

after display of orders

let d1 = 0
let d2 = 0

end

The CUSTOMER INFORMATION Screen
The CUSTOMER INFORMATION screen contains fields for the entry and
display of all the columns in the customer table. You can use this screen to
add or remove a customer from the database.

This screen has the following important points:

■ The customer table is joined with the orders table at the
customer_num column. The customer table is the dominant table in
this join.

■ A Comment line appears when the cursor moves into the c2 (First
Name) field.

■ The c4 (Company) field appears in reverse video.

■ PERFORM automatically enters uppercase letters into the c8 (State)
field. The default value for the field is CA, and only abbreviations for
four states are allowed.

■ A character pattern is specified for the c10 (Telephone) field.
The FORMBUILD Transaction Form Generator 2-95

The ORDER INFORMATION Screen
The ORDER INFORMATION Screen
The second screen contains fields drawn from the orders, items, stock, and
manufact tables. This screen is used to enter information about a customer’s
order. Shipping information (purchase order number, instructions, date sent,
and so on), and order information (order number, date, items included in the
order, total prices on each item, and so on) are entered on this screen.

This screen has the following important points:

■ The c1 (Customer Number) and c4 (Company) fields are repeated
from the CUSTOMER INFORMATION screen.

The verify join between the customer.customer_num column and
the orders.customer_num column prevents the assignment of an
order to a nonexisting customer. When the orders table is active, no
value can be entered into a field that does not already exist in the
customer table.

■ The orders and items tables are joined at the order_num column.
This verify join prevents the assignment of an item to a nonexisting
order number. When the items table is active, no value can be
entered into the field that does not already exist in the orders table.

■ The o12 (Order Date) field has an assigned format and defaults to the
current date.

■ The stock_num column in the items table is joined with the
stock_num column in the stock table. This is a verify join.

■ The manu_code column in the items table is joined with the
manu_code column in the stock table. This is a verify join.
2-96 IBM Informix SQL Reference Manual

The ORDER INFORMATION Screen
■ The i13 (Stock Number) and i16 (Manufacturer) fields are members
of a composite join between the items and stock tables. This is a
composite verify join, so no values can be entered in the stock_num
and manu_code fields (when the items table is active) that do not
already exist in those two columns in the stock table. This precludes
entry of stock numbers and manufacturer codes that individually
exist in the database but, as a composite, do not correspond to a
unique row in the stock table.

To specify a unique row in the stock table requires both the
stock_num and manu_code. For example, the stock table contains
three rows with the stock number 1 and four rows with the manufac-
turer code HRO. Knowing the stock number or manufacturer code
alone does not allow you to locate a unique row. You need both the
stock number (1) and the manufacturer code (HRO) to specify a
unique row (baseball gloves produced by Hero) in the table.

■ Once the i13 (Stock Number) and i16 (Manufacturer) fields are filled,
PERFORM can locate the corresponding unique row in the stock
table. The s14 (Description), s16 (Unit), and s15 (Unitprice) fields
automatically display this information.

■ The i16 (Manufacturer) field is involved in a lookup join that locates
the appropriate manufacturer name in the manufact table and places
this information in the m17 field.

■ The i18 (Quantity) field allows the entry of values 1 through 50 only,
and it displays a comment when the cursor moves into the field. This
helps to prevent mistaken entries of an extra digit (for example, 100
in place of 10).

■ The cursor does not visit the o11 (Order Number) field when the
orders table is the active table because the order_num column in the
orders table is a SERIAL data type.

■ The following entry in the INSTRUCTIONS section tells PERFORM that
when the orders table is the active table, the cursor first goes to the
o20 (Customer P.O.) field, rather than the o12 (Order Date) field:

before editadd editupdate of orders
nextfield = o20

■ The default value for field o21 (Ship Date) is set to today.
The FORMBUILD Transaction Form Generator 2-97

The ORDER INFORMATION Screen
■ The d1 and d2 fields do not correspond to any database columns.
One of these is the Ship Charge field and is the total shipping charge
for the entire order. The second is the Total Order Amount field and
is the total charge for the entire order, including all items and the
shipping charge. PERFORM calculates each field automatically. The
following entry in the INSTRUCTIONS section tells PERFORM that if
the total of all values in the field i19 for this order is less than or equal
to 100, then set the value in the field d1 to 7.50. If the total of all values
in the field i19 for this order is greater than 100, then set the value in
field d1 to the product of this total times .04.

after add update query of items
if (total of i19) <= 100 then

let d1 = 7.50
else
let d1 = (total of i19) * .04

let d2 = (total of i19) + d1

The Total Order Amount (the d2 field) is the sum of all values in Total
Price (the i19 field) for the order plus the Shipping Charge (the d1
field).

The total price of an individual item in a customer order is calculated
automatically by FORMBUILD. This field is filled in by PERFORM as
soon as you supply information for the fields i13 (the Stock Number
of the item), i16 (the Manufacturer of the item), and i18 (the Quantity
of the item). PERFORM can do this because, in the INSTRUCTIONS
section, PERFORM is told to calculate the value of the Total Price (the
i19 field) based on the values entered into the i18 (the Quantity) and
s15 (the Unit Price) fields.

■ The customer table is the master of the orders table. You can easily
query the orders table (and locate all orders placed by a customer)
based on the current row in the customer table by selecting the Detail
option.

■ The orders table is the master of the items table. You can easily query
the items table (and locate all items contained in each order) based
on the current row in the orders table by selecting the Detail option.
2-98 IBM Informix SQL Reference Manual

3
Chapter
The PERFORM Screen
Transaction Processor
In This Chapter . 3-3

Running PERFORM 3-3
Accessing PERFORM from the Main Menu 3-4

The PERFORM Screen 3-6
The Information Lines 3-6
The Screen Form 3-8
Status Lines 3-9
Running Operating-System Commands from PERFORM 3-10
Entering Data 3-10
Data Types . 3-10
Special Functions 3-13
Positioning the Cursor 3-14
Field Editing 3-14
Using the Multiline Editor 3-16
Display Field Order 3-17

Data Checking . 3-18
User Access Privileges 3-19

The Current List . 3-20

Menu Options . 3-20
ADD . 3-21
CURRENT . 3-23
DETAIL . 3-24
EXIT . 3-26
MASTER . 3-27
NEXT . 3-28
OUTPUT . 3-29

3-2 IBM
PREVIOUS . 3-33
QUERY . 3-34
REMOVE . 3-38
SCREEN . 3-39
TABLE . 3-40
UPDATE . 3-41
VIEW . 3-42
 Informix SQL Reference Manual

In This Chapter
PERFORM is an INFORMIX-SQL program designed to streamline data entry
and retrieval. After you create a screen form with FORMBUILD, you can use
the form with PERFORM to query and modify the data in a database. For
information about designing and building screen forms, see Chapter 2, “The
FORMBUILD Transaction Form Generator.”

This chapter is divided into two parts. The first part describes the following
PERFORM procedures:

■ Accessing PERFORM from the Main menu

■ Running operating-system commands while using PERFORM

■ Using special keys to position the cursor and edit text

■ Entering and editing data on the screen

■ Data checking with PERFORM

■ Controlling user privileges in PERFORM

■ Using the current list

The second part of this chapter discusses each PERFORM option. The options
are listed in alphabetical order.

Running PERFORM
PERFORM uses the file that FORMBUILD generates when you compile a form
specification file. This file must be in your working directory or a directory
included in your DBPATH environment variable.

You can use PERFORM from the INFORMIX-SQL Main menu or directly from
the operating system. For information about command-line usage, see
Appendix G, “Accessing Programs from the Operating System.”
The PERFORM Screen Transaction Processor 3-3

Accessing PERFORM from the Main Menu
Accessing PERFORM from the Main Menu
Select the Form option on the INFORMIX-SQL Main menu. The FORM menu is
displayed.

Select the Run option on the FORM menu. The RUN FORM screen is displayed
with a list of available screen forms.

FORM: Run Modify Generate New Compile Drop Exit
Use a form to enter data or query a database.

-- Press CONTROL-W for Help ---

RUN FORM >>
Choose a form with Arrow Keys, or enter a name, then press Enter.

-- Press CONTROL-W for Help ---

customer

orderform

sample
3-4 IBM Informix SQL Reference Manual

Accessing PERFORM from the Main Menu
Type the name of the form you want to use or use the Arrow keys to highlight
your choice on the screen. Press RETURN. The form you select appears on the
screen with the PERFORM menu, as shown in the following figure.

PERFORM: Query Next Previous View Add Update Remove Table . . .
Searches the active database table. ** 1: customer table**

CUSTOMERS

Customer Number: []

Company :
First Name: [] Last Name: []

Address : []
[]

City : [] State : [] Zip : []

Telephone : []

__

The PERFORM Screen Transaction Processor 3-5

The PERFORM Screen
The PERFORM Screen
The PERFORM screen is divided into three sections:

■ The first two lines of the screen (the Information lines) display the
PERFORM menu options, a message describing the highlighted
option, and the number and name or alias of the active table.

■ The middle section of the screen (the screen form) displays the form
you selected.

■ The bottom two lines of the screen (the Comment line and Status
line) display PERFORM messages, as well as comments specified in
the form file.

The Information Lines
The PERFORM menu is two pages long. The first Information line displays a
list of menu options; the second Information line describes the current option
and indicates the number and name or alias of the active database table. The
next two screens illustrate the Information lines on the two-page PERFORM
menu.

PERFORM: . . . Current Master Detail Output Exit
Displays the current row of the current table. ** 1: customer table**

PERFORM: Query Next Previous View Add Update Remove Table Screen . .
.
Searches the active database table. ** 1: customer table**
3-6 IBM Informix SQL Reference Manual

The Information Lines
The ellipsis on the first menu page indicates that additional menu items are
available on the second menu page. The ellipsis on the second menu page
indicates that additional menu items are available on the previous menu
page.

Tip: The number of options that appears on the first menu page depends on the
character capacity of your screen. The two-page screens displayed here demonstrate
a terminal or monitor with an 80-character screen. Terminals with a larger character
capacity show more options on the first menu page.

Use the SPACEBAR or the Arrow keys to move the highlight onto the menu
options. When you move the highlight past the first or last menu option on a
page, the alternate menu page appears; the menu does not scroll. The
highlight never rests on the ellipses; when you move the highlight past the
last or first option on each screen page, the next PERFORM menu page
appears.

PERFORM is a menu-driven program. To work with the data on the screen,
select one of the menu options. You select a menu option on the first Infor-
mation line by using the Arrow keys or the SPACEBAR to position the
highlight on a menu option and then pressing RETURN, or by typing the first
letter of the menu option. PERFORM immediately displays the screen for the
selected option. If you want to return to the menu without making any
entries, press the Interrupt key. This key is DEL on most systems.

The PERFORM screen has the following menu options:

Query retrieves rows from the database based on search values you
enter on the form and stores the rows in the current list.

Next displays the next row in the current list.

Previous displays the previous row in the current list.

View displays the contents of a field of data type TEXT or BYTE.

Add adds data to the database.

Update modifies data in the database.

Remove deletes a row from a database table.

Table displays a different table in the form.
The PERFORM Screen Transaction Processor 3-7

The Screen Form
The Information lines also indicate the number and name or alias of the
active table. Every table included in the screen form has a table number
assigned according to the order in which display field tags (including joins)
for the table first appear in the ATTRIBUTES section of the form specification
file. This number appears next to the table name in the right-hand corner of
the second Information line when the table is active. The table number is
useful for nonsequential moves to another table using the Detail and Table
options.

The Screen Form
The screen form consists of one or more display fields in which PERFORM
displays—and you enter—data. Each display field on a screen form corre-
sponds to one or more of the database columns or to a display-only field
specified in the form file. Unless you specify alternative delimiters in the
form specification file, active display fields are surrounded on the screen by
brackets ([]). Fields with no delimiters are not active; values may appear in
them if they are LOOKUP fields or display-only fields, but you cannot enter
data into them.

A screen form may be one page or several pages long and can contain
columns from several tables. All tables included in a form must be part of the
same database.

Screen displays a different screen page of the form.

Current restores the base current list in multitable queries and displays
the most up-to-date version of the displayed row in multiuser
environments.

Master displays the master table of the active table.

Detail displays the detail table of the active table.

Output writes the selected row or rows to an operating system file in
either Screen or Unload format.

Exit leaves PERFORM.
3-8 IBM Informix SQL Reference Manual

Status Lines
Here is how the PERFORM screen looks when you use the customer form
included with the demonstration database.

Status Lines
PERFORM uses the last two lines of the screen to display PERFORM error
messages, as well as any messages generated by the form itself.

PERFORM: Query Next Previous View Add Update Remove Table . . .
Searches the active database table. ** 1: customer table**
__
__

CUSTOMERS

Customer Number: []

Company :
First Name: [] Last Name: []

Address : []
[]

City : [] State : [] Zip : []

Telephone : []

__
__

The two entries were not the same - please try again.
The PERFORM Screen Transaction Processor 3-9

Running Operating-System Commands from PERFORM
Running Operating-System Commands from PERFORM
To run operating-system commands from the PERFORM menu, press the
exclamation point (!) key. PERFORM displays the exclamation point at the
bottom of the screen. Enter an operating-system command and press
RETURN. PERFORM displays the results of your command and then the
following message:

Press RETURN to continue

 Press RETURN to leave the operating system and return to PERFORM.

Entering Data
Use the Add and Update options to enter data directly into the database from
the screen form. You must enter data of the type specified when the table was
created—dates in DATE fields, money in MONEY fields, and so on. If you
make a mistake entering data, you can use the field-editing keys to correct it.
(See “Field Editing” on page 3-14.)

Data Types
The following list discusses the kind of data to enter for each data type. If you
enter data of the wrong type, PERFORM displays the following message on
the Status line:

Error in field
3-10 IBM Informix SQL Reference Manual

Data Types
Enter an acceptable value or press the Interrupt key to cancel the option you
are using. You can use the Info options on the SQL or TABLE menu to find out
the data type for each column in a table. For more information about data
types, see the INFORMIX-SQL User Guide.

BYTE You can use the View option of the PERFORM menu to
display BYTE fields that are referenced in your form with
the PROGRAM attribute. You can display but not change
the contents of a BYTE field.

CHAR[(n)] Enter letters, numbers, and symbols. During an Add or
Update, the character data string can be as long as the
display field.

CHARACTER is a synonym for CHAR.

SMALLINT Enter a whole number from -32,767 to +32,767.

INTEGER Enter a whole number from -2,147,483,647 to
+2,147,483,647.

INT is a synonym for INTEGER.

SERIAL PERFORM assigns SERIAL values automatically, so you
never add data to a SERIAL field or update it. However,
you can enter search values in SERIAL fields when you use
the Query option.

DECIMAL[(m,[n])] Enter decimal numbers. The format of the number
(number of places to the right and left of the decimal
point) depends on the format you specified when you
created the database table. If you enter a number with too
many spaces after the decimal point, PERFORM rounds
it off.

DEC is a synonym for DECIMAL.

NUMERIC is a synonym for DECIMAL.

MONEY Enter dollars-and-cents amounts without dollar signs and
commas (for example, 4254.30 not $4,254.30). When
you press RETURN, PERFORM automatically adds a dollar
sign.
The PERFORM Screen Transaction Processor 3-11

Data Types
SMALLFLOAT Enter floating point numbers with up to 7 significant
digits. PERFORM sometimes introduces a slight
discrepancy when you type numbers into SMALLFLOAT
fields. The entry 1.1, for example, might display as
1.11000001 after you press RETURN or ESCAPE. This
occurs because of the way a computer stores numbers
internally, and only affects you when a precision of more
than 7 digits is required.

REAL is a synonym for SMALLFLOAT.

FLOAT[(n)] Enter floating-point numbers with up to 14 significant
digits. The discrepancies mentioned for SMALLFLOAT
data also apply to this data type if you require a precision
of more than 14 digits.

DATE Enter dates in the form [mm]m[d]d[yy]yy, with any
nonnumeric characters as optional dividers (for May 2,
1985, you could enter May 2 85, 08/02/85, 8.2.85, or
08 02 1985).

DATETIME Enter DATETIME values in the form
[yyy]y-[m]m-[d]d [h]h:[m]m:[s]s.[ffff] .
You must separate the fields as follows: YEAR-MONTH,
MONTH-DAY, DAY(space)HOUR, HOUR:MINUTE,
MINUTE:SECOND, SECOND.FRACTION.

INTERVAL Enter INTERVAL values in the form
[yyy]y-[m]m or [d]d [h]h:[m]m:[s]s.[ffff]f.
You must separate the fields as follows: YEAR-MONTH,
DAY(space)HOUR, HOUR:MINUTE, MINUTE:SECOND,
SECOND.FRACTION.

TEXT You can only display the contents of a TEXT field; you
cannot change it.

VARCHAR Enter letters, numbers, and symbols. During an Add or
Update, the character data string can be as long as the
display field.
3-12 IBM Informix SQL Reference Manual

Special Functions
The numeric and decimal separators can be tailored using GLS settings. These
settings change the separators displayed on the screen in a numeric or
monetary field. For example, 1234.56 will display as 1234,56 in a French or
German locale. Also, in the French or German locale values input by the user
will be expected to contain commas, not periods, as decimal separators.

The installation of message files in a subdirectory of $INFORMIXDIR/msg
and subsequent reference to that subdirectory by way of the environment
variable DBLANG causes DATETIME and DATE values to display locale-
specific month name abbreviations on the form. Similarly, month name
values are expected to be valid locale specific names when input. For
example, the month name June in a French locale would have to be input as
the month name abbreviation Jui, which stands for Juin (the French word for
June), rather than Jun. If you are unsure about the correct month name,
specify months numerically. ♦

Special Functions
As you enter data or a query, three special functions are available by using
selected keys.

Function Key Used

Help CONTROL-W displays a HELP screen that contains a short
summary of special keys, control keys, editing keys, and other infor-
mation about PERFORM.

Execute ESCAPE runs the option you select. To add a new row, type a to
select the Add option, enter the information for the row, and press
ESCAPE to add the row to the database.

Interrupt On most systems DELETE or CONTROL-C interrupts or cancels the
option you are using. For example, if you select Add when you
really want Query, press CONTROL-C and then select the Query
option.

GLS
The PERFORM Screen Transaction Processor 3-13

Positioning the Cursor
Positioning the Cursor
You can use the following keys to position the cursor on the screen.

Field Editing
If you make a mistake entering data in a field, you can correct it by
backspacing and retyping. However, you might find it faster to use the
PERFORM field-editing feature. You can use two editing modes to enter data
into a field:

■ In typeover mode, the characters you type replace existing data. For
example, you could use typeover mode to change “Sports ’R Us” to
“Abe’s Sporting Goods.”

■ In insert mode, the characters you type push existing data to the right.
For example, you could use insert mode to add an i to Rchard.

Whenever the cursor enters a field, PERFORM is in typeover mode; you must
press the Insert key to activate the insert mode. Press the Insert key or
CONTROL-A a second time to return to typeover mode. Move the cursor into
a new field, and you are automatically in typeover mode.

Movement Key Used

Next Field The RETURN and [↓] keys move the cursor to the next field.

Backspace The BACKSPACE and [←] keys move the cursor backward one
character at a time without erasing any text. Pressing either key at
the beginning of a field moves the cursor to the previous field.

Forward The [→] key moves the cursor forward one character at a time
without erasing any text. Pressing the [→] key at the end of a field
moves the cursor to the next field.

Fast Forward CONTROL-F moves the cursor down the screen rapidly, stopping
in the first field on each line. Use CONTROL-F to move quickly to
the bottom of a form that contains many fields.

Fast CONTROL-B moves the cursor up the screen rapidly, stopping at
Backspace the last field on each line. Use CONTROL-B to move
quickly to the top of a long form.
3-14 IBM Informix SQL Reference Manual

Field Editing
Use the following keys to edit data that appears in a field.

Function Key Used

Backspace The BACKSPACE and [←] keys move the cursor back one
character at a time without erasing any text. If you press
either key at the beginning of a field, the cursor moves back
to the previous field.

Forward The [→] key moves the cursor forward one character at a
time without erasing any text. If you press [→] at the end of
a field, the cursor moves forward to the next field.

Delete a Character Delete or CONTROL-X deletes the character beneath the
cursor. The cursor remains in place, and text shifts over to fill
the space that was occupied by the deleted character.

Change Mode Insert or CONTROL-A shifts between insert and typeover
mode. When you access PERFORM, you are in typeover
mode.

Delete Forward CONTROL-D deletes everything from the current cursor
position to the end of the field.

Repeat Data CONTROL-P enters the most recently displayed value in a
field. When you use the Add option to enter several rows in
which one or more fields contain the same data, you can
avoid retyping the data by pressing CONTROL-P. When you
use the Update option, CONTROL-P restores the value that
appeared in a field before you modified the field.

Clear Screen CONTROL-C clears any search criteria you have entered
with the Query option.
The PERFORM Screen Transaction Processor 3-15

Using the Multiline Editor
Using the Multiline Editor
A multiline editor is available for editing long character fields, also called
multiline fields. A multiline field has more than one physical field, as shown
in the following form specification file.

database reference

screen
{

TITLE: [b001]
AUTHOR: [b002]

SYNOPSIS: [b003]
[b003]
[b003]
[b003]

}

tables
booktab

attributes
b001 = refdpt.booktab.title
b002 = refdpt.booktab.author
b003 = refdpt.booktab.synopsis,WORDWRAP COMPRESS

.

.

.

3-16 IBM Informix SQL Reference Manual

Display Field Order
You invoke the multiline editor by using the WORDWRAP attribute (see
“WORDWRAP” on page 2-63 for detailed information). Most keys function
the same in multiline editing as they do in normal field editing, with a few
exceptions.

Display Field Order
The cursor ordinarily moves through the display fields in the order in which
their field tags are listed in the ATTRIBUTES section of the form file. You can
modify this order by using a NEXTFIELD statement in the INSTRUCTIONS
section of the form file.

RETURN RETURN causes the cursor to leave the current multiline field
and move to the first position in the next field.

Up Arrow The [↑] key moves the cursor one line up within the same
multiline field. The cursor moves to the left if necessary to
avoid editor blanks (see “WORDWRAP” on page 2-63). If the
cursor is on the top line of a multiline field, the [↑] key
moves the cursor to the first character position in the
preceding field.

Down Arrow The [↓] key moves the cursor one line down within the same
multiline field. The cursor moves to the left if necessary to
avoid editor blanks. If the cursor is on the bottom line of a
multiline field, the [↓] key moves the cursor to the first
character position in the following field.

TAB If you are in typeover mode, TAB moves the cursor to the next
field.

CONTROL-N CONTROL-N inserts a newline character, causing subsequent
text to move to the first position in the following line of the
same multiline field. This could cause text to ripple down
toward the bottom of the field, and you might lose the text
that was in the last line of the field.
The PERFORM Screen Transaction Processor 3-17

Data Checking
Data Checking
The attributes and instructions in the form file can affect data entry, data
storage, data display, and cursor movement when you use the Add, Update,
and Query options. If you get undesired displays or cursor movement, you
can modify the form file. The effects of some attributes and instructions are
listed here, followed by the relevant options. For details about attributes and
instructions, see Chapter 2.

■ The case of the character data on the screen is different from what
you type. Check for UPSHIFT and DOWNSHIFT attributes (Add,
Update, Query).

■ SMALLFLOAT or FLOAT data on the screen is different from what you
type. Check for a FORMAT attribute that causes rounding off by
specifying the number of places to the right and left of the decimal
point (Add, Update).

■ PERFORM displays the following message:
This value is not among the valid possibilities.

Check for an INCLUDE attribute that specifies acceptable values and
ranges of values (Add, Update).

■ The terminal beeps and does not echo your entry on the screen.
Check for a PICTURE attribute that limits data entry to a specified
pattern of variables and literals (Add, Update).

■ The cursor skips over a bracketed display field. If the field is not a
SERIAL field, check for a NOENTRY attribute (for Add only), a
NOUPDATE attribute (for Update only), or a NEXTFIELD action (both
Add and Update).

■ PERFORM displays the following message:
This field requires an entered value.

Check for a REQUIRED attribute (Add). You must explicitly enter all
values for a field with the REQUIRED attribute unless you have
specified a value with DEFAULT.

■ PERFORM displays the following message:
Please type again for verification.

Check for a VERIFY attribute (Add, Update).
3-18 IBM Informix SQL Reference Manual

User Access Privileges
■ Data you enter appears on the screen justified to the right. Check for
a RIGHT attribute (Add).

■ Number data appears on the screen justified to the right and padded
with leading zeros. Check for a ZEROFILL attribute (Add).

■ A value you did not enter appears in a field. Check for a DEFAULT
attribute, a PICTURE attribute with literals (Add, Query), a joined
field (Add, sometimes Query), or a LET action (Add).

■ The cursor moves automatically to the next field after this field is full.
Check for an AUTONEXT attribute (Add, Update).

■ A line of text appears on the screen. Check for a COMMENTS attribute
(Add, Update, Query).

■ A line of text appears on the screen, in regular or reverse video,
and/or the terminal bell rings. Check for a COMMENTS action (Add,
Update, Query).

■ Data stores automatically before you press ESCAPE. Check for a
NEXTFIELD EXITNOW action (Add, Update).

■ PERFORM displays the following message:
This is an invalid value--it does not exist in
tablename.

Check for a verify join (Add, Update).

User Access Privileges
Access privileges controlled by the GRANT and REVOKE statements can affect
your ability to display, enter, modify, and remove data for a table or a display
field. A message like the following means that you do not have access
privileges:

Permission not granted to allow update

Use the Info option on the SQL or TABLE menu to find out the access
privileges for a particular table.

See the Informix Guide to SQL: Syntax for more information about privileges.
The PERFORM Screen Transaction Processor 3-19

The Current List
The Current List
The current list is a temporary storage area where PERFORM stores the results
of a query. It can hold from one row to all the rows in a database. Whenever
you select the Query option, PERFORM erases the existing current list to make
room for new query results.

The Query, Next, Previous, Remove, and Update options all involve the
current list. The Query option finds all rows that satisfy the search conditions
and puts them in the current list. The Next and Previous options step through
the rows in the current list in sequential order. The Update and Remove
options can only work with rows in the current list.

Menu Options
The menu options you can use with PERFORM are described in detail on the
following pages. They are listed in alphabetical order, rather than menu
order, for easy reference.
3-20 IBM Informix SQL Reference Manual

ADD
ADD
Use the Add option to create new rows in the active table. You can type data
on a screen form, review it, edit it, and store it in the database.

Use the following procedure for the ADD option:

1. Type a to select the Add option.

PERFORM clears all data from the screen form except joined fields
and some display-only fields, displays spaces or default values in the
fields, and positions the cursor in the first field.

2. Fill in the form with the values you want to enter.

If you enter data inappropriate to the data type of the display field,
PERFORM displays the following message:

Error in field

You cannot move on to the next display field until you correct the
entry.

3. Press ESCAPE to store the row or the program Interrupt key to cancel
the addition and redisplay the PERFORM menu options.
The PERFORM Screen Transaction Processor 3-21

ADD
Usage
■ If PERFORM displays this message, it does not store a row when you

press ESCAPE:
Could not insert new row - duplicate value in a unique
index column

You are trying to enter a duplicate value where it is not permitted.
Use the Info option on the SQL or TABLE menu (or execute an INFO
statement) to check for unique indexes.

■ Tables may be fully or partly unavailable to you because another
user has invoked the LOCK TABLE statement or because another user
is updating a row that you attempt to update or remove. In such a
case, PERFORM displays an error message.

■ PERFORM sometimes introduces a slight discrepancy when you enter
numbers in SMALLFLOAT or FLOAT fields. The entry 1.11, for
example, might display as 1.11000001 after you press RETURN or
ESCAPE. This discrepancy occurs because of the way a computer
stores numbers internally.

Related Options
Update, Remove
3-22 IBM Informix SQL Reference Manual

CURRENT
CURRENT
The Current option rereads and redisplays the current row in the current list
for the active table.

Use the following procedure for the Current option:

1. Type c to select the Current option.

2. PERFORM displays the most up-to-date version of the screen you
were looking at before you moved to another table.

Usage
The Current option is useful in two situations:

■ In a LAN environment, another user can modify the information
corresponding to a display field on your screen. When you use the
Current option, PERFORM rereads the row, displaying the most
recent information.

■ When a form includes a join field, each table represented on the
screen form has its own current list. Looking at the information in the
active table might make you “lose your place” in one or more of the
other current lists. The Current option returns you to your original
position in the current list of the active table.
The PERFORM Screen Transaction Processor 3-23

DETAIL
DETAIL
The INSTRUCTIONS section of the form file can include one or more master-
detail table relationships for tables with join fields to simplify multitable
queries. The Detail option automatically selects, displays, and queries the
detail table of the active table.

Use the following procedure for the Detail option:

1. Enter d to select the Detail option.

2. If the active table has no detail table, PERFORM displays an error
message. If the active table has one or more detail tables specified,
PERFORM locates and displays the first detail table of the active table,
no matter what the absolute table number of the detail table is.

3. PERFORM automatically runs a query on the detail table, using the
current values in the fields in the master table that join the fields in
the detail table as search values. PERFORM then puts the rows that
satisfy the query conditions in the current list of the detail table. You
can use the Next and Previous options to examine the rows. If no
rows are found, PERFORM displays the following message:

There are no rows satisfying the conditions.

4. Type m to make the master table the active table again. You will see
the first master-table row with join-field values that match the
current values in the detail table.
3-24 IBM Informix SQL Reference Manual

DETAIL
Usage
■ If no explicit master/detail relationship exists, PERFORM displays an

error message when you use the Master option or the Detail option
without a table number.

■ If more than one detail table has been specified for a master table in
the INSTRUCTIONS section, type d to display and query the first
detail table; type d preceded by the number of another detail table to
display and query the other detail tables.

■ You use a table number to query any detail table that joins the active
table, even if no master-detail relationship is specified. Type 4d; if
table number 4 joins the active table, PERFORM queries table number
4 and it becomes the new active table. However, PERFORM displays
an error message when you type d without a table number if no
master-detail relationship has been specified in the INSTRUCTIONS
section.

Related Option
Master
The PERFORM Screen Transaction Processor 3-25

EXIT
EXIT
Use the Exit option to exit from PERFORM.

Use the following procedure for the Exit option:

1. Type e to run the Exit option.

2. PERFORM returns you to your starting place, either the FORM menu
or the operating system.
3-26 IBM Informix SQL Reference Manual

MASTER
MASTER
Use the Master option to move directly from a detail table to its master table.

Use the following procedure for the Master option:

1. Type m to select the Master option.

2. If the active table has no master table, PERFORM displays an error
message. If the active table has a master table, PERFORM displays the
master table with the row found joining the detail table.

3. You must declare a Master-Detail relationship in the INSTRUCTIONS
section to use this option.

Related Option
Detail
The PERFORM Screen Transaction Processor 3-27

NEXT
NEXT
Use the Next option to step forward through the rows in the current list.

Use the following procedure for the Next option:

1. Use the Query option to put the rows you want to inspect in the
current list.

2. Type n to run the Next option. PERFORM displays the next sequential
row in the current list.

3. Type n repeatedly. When you reach the last row in the current list,
PERFORM displays the following message:

There are no more rows in the direction you are going.

Usage
If you want to move forward several rows at once, enter a number before the
Next option; for example, entering 10n skips ahead 10 rows.

Related Options
Query, Previous
3-28 IBM Informix SQL Reference Manual

OUTPUT
OUTPUT
You can use the Output option on the PERFORM menu to write one or all rows
in the current list to a new or existing file.

You can produce an output file in which rows appear just as they do on your
screen, including data, display field labels, boxes, lines, and so on. Alterna-
tively, you can produce an output file in which rows appear just as they do
when you run an UNLOAD statement. Rows retrieved using this alternative
method appear in an ASCII file, one row per record, with fields separated by
the default delimiter. You can use a file in this Unload format with the ACE
READ statement to produce a report.

Use the following procedure for the Output option:

1. Select the Query option of the PERFORM menu to retrieve a list of the
row or rows that you want to write to a file. If necessary, use the Next
or Previous options to display the single row that you want to write
to the file.

2. Type o to select the Output option. PERFORM prompts you for a
filename:

Enter output file (default is perform.out):

3. Press RETURN to accept the default filename. Alternatively, type the
name of a file in which to store your output and press RETURN. If you
want to store your output in a different directory, make sure you
include the complete pathname. The name you enter becomes the
new default filename of the Output option for the rest of the session,
or until you enter another, different, filename.

PERFORM displays the FORM OUTPUT FILE menu as follows.

FORM OUTPUT FILE: Append Create
Adds new data to an existing output file
The PERFORM Screen Transaction Processor 3-29

OUTPUT
4. Type a or press RETURN to append the information to the file that
you specified in step 3. Type c to create a new file that contains this
information.

Tip: If you enter an existing filename in step 3 and select the Create option,
PERFORM overwrites the old version of the file when you run the Output option.
You lose any data stored in the old file.

PERFORM displays the FORM OUTPUT FILE LIST menu as follows.

5. Type c or press RETURN if you want to store every row in the current
list. Type o to store only the row that currently appears on your
screen.

PERFORM prompts you for the format of the output file.

FORM OUTPUT FILE LIST: Current-list One-page
Writes the Current List to the file

OUTPUT FORMAT: Unload-format Screen-format
Writes the selected output in ascii format
3-30 IBM Informix SQL Reference Manual

OUTPUT
6. Press RETURN or type u to store the retrieved row or rows as an ASCII
file (Unload-format). Select this option if you plan to use this file in
an ACE report or as input for another application.

Type s if you want to store the retrieved row or rows in a file
formatted to look the same as your screen display (Screen-format).
The file includes the data and any additional field labels, boxes, lines,
or other screen items.

PERFORM writes the rows to the file. A counter at the bottom of the
screen increments as each output row is written to the file:

Output record number 1

If you select the Current-list option in step 5, PERFORM displays each
row that it writes and updates the counter as it does so.

Usage
■ If you select the Screen-format option on the OUTPUT FORMAT

menu, PERFORM copies one page of a screen form for each row in the
current list. To copy a row that occupies more than one screen, you
must use the Output option separately with each screen.

If you want to copy all the screens of a three-screen form, for
example, perform the following operations:

1. Type O, A, C, and S to select the Output, Append, Current-List,
and Screen-format options to copy all the first screens in the
current list to a file.

2. Select the Screen option to display the second screen.

3. Repeat the same Output options to copy the second screen.

4. Use Screen to display the third screen, and then type O, A, C,
and S to append the third screen to the file.

If the query retrieves multiple rows, the file contains all the first
screens, followed by all the second screens, and so on.
The PERFORM Screen Transaction Processor 3-31

OUTPUT
■ The Unload-format option on the OUTPUT FORMAT menu copies
entire rows in unload format, regardless of the number of screens in
the form.

■ The Unload-format option on the OUTPUT FORMAT menu copies the
value of every field listed in the ATTRIBUTES section of the form
specification file for each row. Fields appear in an output row in the
same order in which the corresponding fields are listed in the
ATTRIBUTES section of the form specification file. Look-up fields are
appended to the end of the row.
3-32 IBM Informix SQL Reference Manual

PREVIOUS
PREVIOUS
Use the Previous option to display prior rows in the current list.

Use the following procedure for the Previous option:

1. Use the Query option to put the rows you want to look at in the
current list.

2. Type n to display the next row.

3. Type p to use the Previous option. PERFORM displays the previous
row (in this case, the first row) in the current list.

4. When you reach the first row in the current list, type p. PERFORM
displays the following message:

There are no more rows in the direction you are going.

5. You can use the Previous option whenever you want to display prior
rows in the current list.

Usage
If you want to move backward several rows at once, enter a number before
the Previous option; for example, entering 10p skips back 10 rows.

Related Options
Query, Next
The PERFORM Screen Transaction Processor 3-33

QUERY
QUERY
Use the Query option to search for database rows and columns with specified
values based on search values you enter directly into the display fields on a
screen form. You can specify the search criteria with 11 different query
operators, including 6 relational operators, 2 range operators, 2 wildcard
operators, and highest/lowest value operators. PERFORM finds all the
database rows that satisfy the conditions and puts them in the current list.
You can use the Next and Previous options to view them.

Use the following procedure for the Query option:

1. Type q to select the Query option. PERFORM clears the fields in the
active table of all data (except data in joined fields with no QUERY-
CLEAR attribute) and puts the cursor in the first field.

2. Enter search values in one or more display fields using the syntax
described on page 3-35. To find all the rows in the table, do not enter
any search values.

If a display field is too short to hold the search value you enter,
PERFORM creates a workspace at the bottom of the screen. When you
press RETURN, PERFORM removes the workspace. The display field
contains what you entered in the workspace even though you can
only see the part of it that fits in the field.

3. Press ESCAPE to run the query; press the Interrupt key to cancel the
query and display the PERFORM menu again. When you run the
query, PERFORM searches the active table, puts all the rows that
satisfy the conditions in the current list, and displays the first
matching row on the screen. A Status line message reads as follows:

row(s) found

where # represents the number of rows that contain the specified
search value(s) in the specified display field(s). You can use the Next
and Previous options to look at the rows in the current list. If no rows
satisfy the conditions, the Status line message reads as follows:

There are no rows satisfying the conditions
3-34 IBM Informix SQL Reference Manual

QUERY
The following symbols can be used in the specification of queries.

Symbol Name Data Types Pattern

= equal to all =x

> greater than all >x

< less than all <x

>= greater than or equal to all >=x

<= less than or equal to all <=x

<> not equal to all <>x

: range all x:y

.. range DATETIME x..y

INTERVAL

* wildcard CHAR *x, x*, *x*

? single-character wildcard CHAR ?x, x?, ?x?, x??

| or all a|b

>> highest value all >>

<< lowest value all <<
The PERFORM Screen Transaction Processor 3-35

QUERY
= The default query operator; if you do not enter another operator,
PERFORM assumes the equal sign.

Enter the equal sign by itself to search for a database row that contains
a null CHAR column; enter =* to find a row that contains a column with
an asterisk.

x Any search value with the appropriate data type for the search field.
Enter the search value immediately after any one of the first six query
operators in the previous table. Do not leave a space between the query
operator and the search value.

> For CHAR data, greater than means later in ASCII order (a>A>1). For
DATE or DATETIME data, greater than means after. (See Appendix E,
“The ASCII Character Set,” in this manual for more information.)

< For CHAR data, less than means earlier in ASCII order (1<A<a). For
DATE or DATETIME data, less than means before.

y Any search value with a value higher than x.

| The search operator that signifies or. 110|118|112 in the Customer
Number field, for instance, would search for rows with the value 110,
118, or 112 in the customer_num column.

: The search operator that specifies a range. You must give the lower
value before the search operator and the higher value after the operator
in a range query. Queries with the range operator are inclusive. The
search criterion 1:10 would find all rows with a value in that column
from 1 through 10, inclusive.

When an odd number of colons appear in a query expression, the
middle one is assumed to be a query operator. If the query expression
contains an even number of colons and is not a valid single DATETIME
or INTERVAL value, INFORMIX-SQL returns an error.

.. An alternative search operator that specifies a range with DATETIME
and INTERVAL data types. Because DATETIME and INTERVAL constants
might include colons, use the .. search operator to avoid ambiguity.

? A wildcard character. It represents a single character. A ?ick search
value in the First Name display field of the orderform form would find
“Dick,” “Rick,” “Nick,” and so on.
3-36 IBM Informix SQL Reference Manual

QUERY
Usage
■ Because of the way a computer stores floating-point numbers, you

might not be able to retrieve FLOAT and SMALLFLOAT data by
querying for the exact value you entered. You can solve this problem
by using a range query. Specifying a FORMAT with a few places to the
right of the decimal point in the FORMBUILD ATTRIBUTES section
might also help.

■ If the RIGHT attribute is specified for a display field, you might have
to use an asterisk in front of a search value. (RIGHT does not right-
justify the search value after you enter it.)

■ Although the literals in PICTURE specifications appear on the screen
when you add and update data, they do not appear on the screen
when you query. If you enter the wrong literal value, your search will
not be successful. A COMMENTS entry in the form file can help you
avoid this problem.

The evaluation of less than (<) and greater than (>) expressions that contain
character arguments is dependent on GLS settings. Refer to Appendix C,
“Global Language Support,” and the Informix Guide to GLS Functionality.♦

Related Options
Next, Previous

* A wildcard character. It represents zero or more characters. An S*
search value in the Last Name display field of the orderform form
would find Sadler and Sipes. An *r search value would find five
names: Baxter, Jaeger, Miller, Sadler, and Vector.

>> The highest-value search operator. Enter it (with no search value) in a
display field to find the highest value for the field.

<< The lowest-value search operator. Enter it (with no search value) in a
display field to find the lowest value for the field.

GLS
The PERFORM Screen Transaction Processor 3-37

REMOVE
REMOVE
Use the Remove option to delete the row on the screen from the active table.

Use the following procedure for the Remove option:

1. Use the Query, Next, and Previous options to display the row you
want to delete.

2. Type r to select the Remove option.

3. PERFORM displays the following screen.

Enter y to delete the row, or n to keep it. In either case, the PERFORM
menu appears on the screen next. The following message appears at
the bottom of the screen when you remove a row:

Row deleted

Usage
You cannot remove a verify join row from one table (generally the master
table, against which the join field is verified) unless you first remove all the
rows that join it in other tables (generally detail tables, which are verified
against the master table). For example, using the ORDERFORM form, you can
remove rows in the items table. However, you cannot remove a row in the
orders table without removing all rows in the items table that join that row
because the Order Number display field is a verify join.

Related Options
Add, Update

REMOVE: Yes No
Removes this row from the active table.
3-38 IBM Informix SQL Reference Manual

SCREEN
SCREEN
Use the Screen option to cycle through the screen pages of the form.

Use the following procedure for the Screen option:

1. Type s to run the Screen option.

2. PERFORM displays the next screen page of the form. When you reach
the last screen page, type s to display the first page again.
The PERFORM Screen Transaction Processor 3-39

TABLE
TABLE
Use the Table option when there is more than one table in the screen form and
you want to select a new active table. Each table is assigned a table number
assigned according to the order in which display field tags (including joins)
for the table first appear in the ATTRIBUTES section of the form file. This
number appears next to the table name or alias in the screen Information lines
when the table is active. The Table option steps through the tables in table-
number order starting with the active table.

Use the following procedure for the Table option:

1. Type t. If your screen form includes fields from two or more tables,
PERFORM automatically selects and displays whichever page of the
screen form contains the greatest number of fields from the new
active table and surrounds those fields with delimiters (brackets);
fields that belong to other tables do not have delimiters.

If each table is on a separate screen page, PERFORM displays the
screen page for the new active table.

2. Type t again. PERFORM displays the next sequential table. When you
reach the last table, PERFORM displays the first table again.

Usage
If you know the number of the table you want to view next, you can go
directly to that table without passing through the intervening tables. For
example, suppose your form has five tables and you are looking at table
number 4. If you want to see table number 2 next, type 2t and PERFORM
displays table number 2. Tables number 5 and 1 are skipped.
3-40 IBM Informix SQL Reference Manual

UPDATE
UPDATE
Use the Update option to modify the data in the displayed row of the current
list.

Use the following procedure for the Update option:

1. Use the Query, Next, and Previous options to display the row you
want to modify.

2. Type u to run the Update option. PERFORM puts the cursor in the first
active field.

3. Edit the data, modifying as many display fields as you like.

4. Press ESCAPE to store the changed row, or the Interrupt key to ignore
the changes and display the menu again.

Usage
■ You cannot update a field that is a verify join field for another table

without first updating the relevant field in the other table.

■ If you press ESCAPE after you select the Update option, PERFORM
displays the following message whether or not you actually changed
anything:

This row has been changed.

■ PERFORM sometimes introduces a slight discrepancy when you enter
numbers in SMALLFLOAT or FLOAT fields. The entry 1.11, for
example, might display as 1.11000001 after you press RETURN or
ESCAPE. This discrepancy occurs because of the way a computer
stores numbers internally.
The PERFORM Screen Transaction Processor 3-41

VIEW
VIEW
Use the View option to display the contents of TEXT fields and of BYTE fields
that are referenced in your form with the PROGRAM attribute. Blobs (Binary
Large OBjects) include the TEXT and BYTE data types. You can only display
the contents of the blob. You cannot change the blob from within the
PERFORM form.

When you select the View option, INFORMIX-SQL positions the cursor on the
first TEXT field, or the first BYTE field that uses the PROGRAM attribute. To
display the blob, type an exclamation point (!). Press RETURN, TAB, or the
down arrow key to skip to the next blob field that can be displayed; type an
up arrow key to move to the previous blob field. Press ESCAPE to exit the
View option and to redisplay the Main menu.

If you select the View option and the form contains no blob fields,
INFORMIX-SQL displays the following error message:

There are no BLOB fields to view.
3-42 IBM Informix SQL Reference Manual

4
Chapter
The ACE Report Writer
In This Chapter . 4-5

Creating and Compiling a Custom Report 4-5
Using the Menus to Create a Report 4-6

Generating a Default Report 4-6
Creating a Custom Report. 4-7

Creating a Report from the Command Line 4-8
Command-Line Options 4-9

Information About ACE 4-10
ACE Filename Conventions 4-10
Owner Naming. 4-10
Using Expressions in a Report Specification 4-11
ACE Error Messages 4-13

Sample Reports . 4-13

Structure of a Report Specification File 4-14

DATABASE Section 4-16

DEFINE Section . 4-17
ASCII . 4-18
PARAM . 4-20
VARIABLE . 4-21

INPUT Section . 4-23
PROMPT FOR 4-24

4-2 IBM
OUTPUT Section. 4-26
REPORT TO . 4-27
LEFT MARGIN 4-29
RIGHT MARGIN 4-30
TOP MARGIN 4-32
BOTTOM MARGIN 4-33
PAGE LENGTH. 4-34
TOP OF PAGE 4-35

SELECT Section . 4-37

READ Section . 4-40
READ . 4-41

FORMAT Section 4-44
EVERY ROW 4-46

Control Blocks . 4-49
AFTER GROUP OF 4-50
BEFORE GROUP OF 4-53
FIRST PAGE HEADER 4-56
ON EVERY ROW 4-58
ON LAST ROW. 4-60
PAGE HEADER 4-61
PAGE TRAILER. 4-63

Statements . 4-65
FOR . 4-66
IF THEN ELSE 4-67
LET . 4-69
NEED . 4-71
PAUSE . 4-72
PRINT . 4-73
PRINT FILE . 4-75
SKIP. 4-76
SKIP TO TOP OF PAGE 4-77
WHILE. 4-78
Aggregates . 4-79
ASCII . 4-82
CLIPPED . 4-84
 Informix SQL Reference Manual

COLUMN . 4-85
CURRENT . 4-86
DATE . 4-87
DATE() . 4-88
DAY() . 4-89
LINENO. 4-90
MDY() . 4-91
MONTH() . 4-92
PAGENO . 4-93
SPACES . 4-94
TIME . 4-95
TODAY . 4-96
USING . 4-97
WEEKDAY() . 4-107
WORDWRAP . 4-108
YEAR() . 4-109
The ACE Report Writer 4-3

4-4 IBM
 Informix SQL Reference Manual

In This Chapter
ACE is a general-purpose relational report writer that produces reports based
on the tables of a database or the data in an ASCII input file. ACE can draw
information from several database tables based on relationships that you
specify among the tables when you design the report.

Creating and Compiling a Custom Report
You can create a report specification file based on a database table or tables
in one of two ways:

■ You can use the Report option on the ISQL (INFORMIX-SQL) Main
menu.

■ You can work directly with the appropriate programs from the
operating-system command line.

Either alternative requires that you have already created the database and all
the tables from which the report will draw information. The following two
sections describe these alternative procedures. They do not, however,
describe the rules for constructing or modifying the report specification file.
These rules are defined in “Information About ACE” on page 4-10.

Creating a report from the command line is also described in Appendix G,
“Accessing Programs from the Operating System.” Use this option if you are
retrieving data for the report from an input file.
The ACE Report Writer 4-5

Using the Menus to Create a Report
Using the Menus to Create a Report
The procedure for creating, compiling, and running a report from the
REPORT menu is described in the next two sections. “Generating a Default
Report” explains the procedure used to produce a default report. “Creating a
Custom Report” covers the steps involved in the production of a custom
report. A more detailed description of each procedure is presented in the
INFORMIX-SQL User Guide.

Generating a Default Report

To create a default report using the INFORMIX-SQL menu system, follow
these steps:

1. Select the Report option on the INFORMIX-SQL Main menu and then
the Report option on the REPORT menu.

2. If there is no current database, the CHOOSE DATABASE screen
appears. After you select a database, the GENERATE REPORT screen
is displayed. Enter the name you want to assign to the report (for
example, newrpt). Do not use the .ace filename extension;
INFORMIX-SQL automatically adds the required extension.

3. INFORMIX-SQL prompts you for the name of the table you want it to
use to create the default report. After you enter the table name,
INFORMIX-SQL automatically compiles the report specification and
displays the REPORT menu. The report is now available to be used.

4. Select the Run option on the REPORT menu to run the report.

The default report specification file formats a report as a list of all columns in
the table included in the report. It does not provide any special instructions
to ACE about how to display the data, nor does it include instructions to
perform data manipulations. Only one table contributes information to a
default report.
4-6 IBM Informix SQL Reference Manual

Using the Menus to Create a Report
Creating a Custom Report

To create a customized report using the INFORMIX-SQL menu system, follow
these steps:

1. Complete the steps described in the previous section, “Generating a
Default Report.”

2. The REPORT menu should now appear on the screen. Select the
Modify option on the REPORT menu.

3. The MODIFY REPORT screen appears. Enter the name of the default
report (newrpt) just created.

4. If you have not specified an editor previously in the session or set the
DBEDIT environment variable as described in Appendix B, “Setting
Environment Variables,” INFORMIX-SQL asks you to select the editor
with which you want to work. Press RETURN if you want to select the
editor whose name is displayed on the top line of the screen. If you
want to work with a different editor, enter the name of the editor.
INFORMIX-SQL calls the editor with the default report specification
file.

Modify the specification to include the data you need and the
appearance you desire. Exit from the editor.

5. The MODIFY REPORT menu is displayed. Select the Compile option.

6. If your report specification file compiles correctly, a message to that
effect is displayed, and ACE creates a report file with the filename
extension .arc (for example, newrpt.arc). Go to step 8. If your report
specification file contains errors, a message to that effect is displayed,
and ACE creates a report file with the filename extension .err (for
example, newrpt.err). Go to step 7.

7. Select the Correct option from the COMPILE REPORT menu.
INFORMIX-SQL calls your system editor and the report specification
file with the compiler errors. When you correct the errors, you need
not delete the error messages. INFORMIX-SQL does that for you.
Return to step 5.

8. When the compilation is successful, select the Save-and-exit option
on the MODIFY REPORT menu. The REPORT menu is displayed. The
report is now available for use.

9. Select the Run option on the REPORT menu and run the report.
The ACE Report Writer 4-7

Creating a Report from the Command Line
As an alternative to using the Generate option and creating a default report
specification, you can select the New option. INFORMIX-SQL calls your
system editor, and you enter all the report specification instructions.

Creating a Report from the Command Line
To create a customized report specification directly from the operating-
system command line, follow these steps:

1. Use the system editor to create a report specification file. Append the
extension .ace to the filename.

2. Compile the specification with the ACEPREP program. Call ACEPREP
as saceprep. You can omit the .ace filename extension when you call
ACEPREP.

For example, use this command line to compile the newrpt.ace speci-
fication file:

saceprep newrpt

3. If the compilation is successful, ACE creates a compiled report file
called newrpt.arc and you are finished creating your customized
report. Go to step 5. If errors are detected in the report specification,
a newrpt.err file is created. Go to step 4.

4. Use the system editor to edit this specification. Remove all error
comments from the specification file. Overwrite the file newrpt.ace
with this corrected version. Go to step 2.

5. To run the newrpt.arc report, use the ACEGO program. Call ACEGO
as sacego. Do not include the .arc filename extension when you call
ACEGO.

For example, use this command line to run the newrpt.arc report:
sacego newrpt

Creating a report from the command line is also described in Appendix G.
4-8 IBM Informix SQL Reference Manual

Creating a Report from the Command Line
Command-Line Options

The following four command-line options are available for use with ACE:

Do not use -ansi with ACEGO.

You can also check for non-ANSI syntax by setting the DBANSIWARN
environment variable. See Appendix B for more information about using
DBANSIWARN.

-o Use the -o (output) option, followed by the pathname of a directory,
to indicate the directory where ACEPREP places its output file. If you
do not use this option, ACEPREP puts the file in your working
(current) directory.

For example, to instruct ACEPREP to place the output file from
compiling the NEWRPT specification in the OUTPUT directory, use
the following command line:

saceprep -o output newrpt

-s Use the -s (silent) option with both ACEGO and ACEPREP to suppress
all nonessential screen messages. For example, use this command
line to suppress program banners in ACEPREP:

saceprep -s newrpt

-ansi When you use -ansi to compile a report, ACEPREP generates a
warning whenever it encounters an Informix extension to the SELECT
statement. ACEPREP places the warnings in a name.err file. When
you invoke INFORMIX-SQL with -ansi, ACEPREP automatically
checks for non-ANSI syntax. Use the following command:

saceprep -ansi newrpt

-d Use the -d (database) option with ACEGO, followed by the name of a
database, to override the database that is named in the report speci-
fication. For example, to substitute the sales database for the
database included in the NEWRPT specification, use this command
line:

sacego -d sales newrpt
The ACE Report Writer 4-9

Information About ACE
Information About ACE
The report specification file, the compiled report specification, and database
files used in the report must be in your working directory or in a directory
named in the DBPATH environment variable. You must refer to an input file
by its full pathname if it is not in your current directory.

ACE Filename Conventions
ACE uses the following file-naming conventions:

■ A report specification filename can be up to ten characters long. The
filename must have an .ace filename extension. Without the .ace
filename extension, the ACE compiler does not recognize the file.

When you use the New or Generate options on the REPORT menu,
INFORMIX-SQL automatically adds the .ace extension to the filename;
you must not include it in the filename you choose.

■ When you compile a report specification, you can omit the filename
extension.

■ The extension that the ACE compiler gives the output file depends on
whether the compile is successful. If the compile is successful, the
extension .arc is appended to the filename. If the compile is unsuc-
cessful, the extension .err is appended to the filename.

An .err file is a text file that contains the original specification file and
error messages that describe and point to the problem ACE found.

Owner Naming
In an ANSI-compliant database, the prefix owner. must precede the table name
if the report will be run by users other than the owner. The prefix owner. is
optional in a database that is not ANSI-compliant. INFORMIX-SQL does check
the accuracy of owner. if you include it in the statement, however.
4-10 IBM Informix SQL Reference Manual

Using Expressions in a Report Specification
Using Expressions in a Report Specification
An expression can be anything from a simple number or alphabetic constant
to a more complex series of column values, functions, quoted strings,
operators, and keywords. ACE evaluates expressions when it generates a
report. It can display the result of the evaluation, assign it to a variable, or use
it in a calculation.

When ACE evaluates an expression, it combines elements of the expressions
that are separated from each other by operators. It combines elements in the
order shown in Figure 4-1 on page 4-12. You can use parentheses to override
this order.

When this manual refers to a number expression (num-expr), you can supply
any type of expression, including character, as long as ACE can evaluate it as
a number. The character string ‘‘123’’ is a valid number expression, while
‘‘m23’’ is not.

Similarly, date-expr is an expression that ACE can evaluate as a date. You can
use a quoted string (‘‘01012010’’ or ‘‘1-1-2010’’) or an INTEGER that evaluates
to a legal date.

A quoted string is any string of characters in quotation marks. You can use a
quoted string anywhere ACE requires a type CHAR or VARCHAR expression.

You cannot name a TEXT column in any arithmetic, aggregate, or Boolean
expression, or in a BEFORE GROUP OF or AFTER GROUP OF clause.

You can name a TEXT column in a PRINT statement. The PRINT statement acts
like a PRINT FILE statement with the TEXT item as a file.

Exponents are treated as integers and not as decimals. If a decimal is
provided as an exponent, ACE truncates the number to an integer. For
example, the expression 4 ** 3.4 is truncated to 4 ** 3 before it is
evaluated.
The ACE Report Writer 4-11

Using Expressions in a Report Specification
Figure 4-1
Operator Precedence

A unary minus indicates or changes the algebraic sign of a value (from
positive to negative or from negative to positive). It operates on a single
operand.

Operator Function Precedence

- unary minus 1

** exponentiation 2

* multiplication 3

/ division 4

+ addition 4

- subtraction 4

is [not] null presence/absence of a
value

5

matches equality for strings 5

= equal 5

!= or <> not equal 5

> greater than 5

< less than 5

>= greater than or equal 5

<= less than or equal 5

not not 6

and and 7

or or 8

Precedence of operators: 1 is highest, 8 is lowest.
4-12 IBM Informix SQL Reference Manual

ACE Error Messages
ACE Error Messages
The text of all INFORMIX-SQL error messages and suggestions for corrections
is included in Informix Error Messages in Answer OnLine.

Sample Reports
The sample reports in this chapter are taken from the following list.
Additional reports, included with the demonstration database, are available
for further study. These reports illustrate a variety of the commands available
with ACE.

Appendix A, “The Demonstration Database and Examples,” contains the full
text of each sample report specification.

mail1.ace A simple report that generates mailing labels

mail2.ace A more sophisticated report that produces one column of
mailing labels

mail3.ace An interactive report that generates one to three columns of
mailing labels

clist1.ace A report that lists customer information

clist2.ace An interactive customer report

ord1.ace A custom report of orders placed with the store

ord2.ace A second customer order report

ord3.ace An interactive report that lists daily orders
The ACE Report Writer 4-13

Structure of a Report Specification File
Structure of a Report Specification File
A report specification file contains the instructions that specify what data a
report includes and how that data appears. A report specification consists of
three required sections (DATABASE, SELECT or READ, and FORMAT) and
three optional sections (DEFINE, INPUT, and OUTPUT). The following
diagram and list define the required and optional sections of a report
specification.

The ACE report specification sections must be kept in the following general
order:

1. DATABASE section: Each report specification must begin with a
DATABASE section that identifies the database you want the report to
use.

2. DEFINE section: The optional DEFINE section is used to declare
variables that are used by the report as well as parameters that the
report can accept from the command line. This section is also used to
specify the field names and data types of values in an ASCII input file.

3. INPUT section: The INPUT section is optional. It is used to pass
parameters to the report.

4. OUTPUT section: The OUTPUT section is optional. It is used to control
page length and margin width, and to direct the output from the
report to a file, a system printer, or a pipe.

DEFINE
Section
p. 4-17

FORMAT
Section
p. 4-44OUTPUT

Section
p. 4-26

DATABASE
Section
p. 4-16

SELECT
Section
p. 4-37INPUT

Section
p. 4-23

READ
Section
p. 4-40
4-14 IBM Informix SQL Reference Manual

Structure of a Report Specification File
5. SELECT or READ section:

■ SELECT section: If you retrieve data from a database table, the
SELECT section specifies the columns and tables on which the
report is based.

■ READ section: If you retrieve data from an ASCII file, the READ
section specifies the name of the input file on which the report is
based.

6. FORMAT section: The FORMAT section appears next. It includes
commands that determine the appearance of the data in the report.

You can include comments anywhere in an ACE report specification. Simply
enclose comments within a set of braces ({ }) or precede them with the
pound sign (#) or double dash (--).
The ACE Report Writer 4-15

DATABASE Section
DATABASE Section
Every report specification must have a DATABASE section. The DATABASE
section specifies the database ACE uses as the basis of the report. You can
override the database that you specify in this section with the -d command-
line option. See the section “Command-Line Options” on page 4-9 for more
information.

The DATABASE section must be the first section in an ACE report specifi-
cation. It begins with the DATABASE keyword, followed by the name of the
database, and ends with the END keyword.

If you want to retrieve data from an ASCII file using the READ statement, you
still must specify a database in the DATABASE section even though a report
based on an ASCII file is not related to a database. You can either specify the
name of an existing database or use the ASCII keyword.

The following diagram shows the structure of the DATABASE section.

The following example DATABASE section is from the clist1.ace report:

database {use stores7 database}
stores7

end

The following example illustrates the use of the ASCII keyword:

database {using the READ statement}
ascii

end

database-name is the name of the database accessed.

DATABASE
Section

database-
name

DATABASE END

ASCII
4-16 IBM Informix SQL Reference Manual

DEFINE Section
DEFINE Section
An ACE report specification can optionally contain a DEFINE section. The
DEFINE section is used to declare variables used in the report and parameters
the report can accept from the command line. If you are retrieving values
from an input file using the READ statement, you must use the ASCII
keyword in the DEFINE section to specify the field names and data types for
the data in that file.

The DEFINE section begins with the DEFINE keyword and ends with the
corresponding END keyword. The variable definition list appears between
these keywords and is composed of one or more PARAM or VARIABLE state-
ments or a combination of both. You can use a single ASCII keyword and field
list between the DEFINE and END keywords.

The following diagram shows the structure of the DEFINE section.

The next three sections describe the ASCII, PARAM, and VARIABLE
statements. The FUNCTION statement is described in Chapter 6, “Functions
in ACE and PERFORM.”

database-name is the name of the database accessed.

DEFINE
Section

DEFINE database-name ENDASCII
Statement

p. 4-18

PARAM
Statement

p. 4-20

VARIABLE
Statement

p. 4-21

FUNCTION
Statement

p. 6-5
The ACE Report Writer 4-17

ASCII
ASCII
You use an ASCII statement in a DEFINE section to specify the field names and
data types of the records in an ASCII input file. The ACE report writer accesses
this file in a READ statement.

Usage
■ You must include an ASCII statement in the DEFINE section if you use

a READ statement in the READ section.

■ You cannot use a SELECT statement to access an ASCII file, nor can
you use a READ statement to access a database table.

■ Although a report based on ASCII data is not related to a database,
you must specify a database in the DATABASE section. Either specify
the name of an existing database or use the ASCII keyword.

■ The number of fields in the ASCII statement must match the number
of fields in the ASCII file.

■ Each field-name must be followed by a data type specification. ACE
does not check the accuracy of data types, so run-time errors can
occur if a data type has been specified incorrectly.

■ No further specification of the MONEY data type is permitted beyond
the keyword MONEY.

■ See the Informix Guide to SQL: Reference for information about SQL
data types.

ASCII is a required keyword that specifies ASCII input.
field-name is a required identifier for a field in the file.
data-type is a valid SQL data type.

ASCII
Statement

field-name data-typeASCII

,

4-18 IBM Informix SQL Reference Manual

ASCII
The following ASCII statement defines a record from an ASCII file in unload
format:

define
ascii stock_num smallint, manu_code char(3),

description char(15), unit_price money,
unit char(4), unit_descr char(15)

end

In this instance, the field names happen to have the same names and
sequence as the column names in the stock table of the stores7 database. Like
the variable names of a PARAM or VARIABLE statement, the field names do
not need to match the column names of any table. The number, order, and
data types of the field names must be consistent with the fields in the ASCII
file.

Related Commands
READ, UNLOAD
The ACE Report Writer 4-19

PARAM
PARAM
This statement allows you to use arguments specified on the command line
at the time you run an ACE report. It declares a variable whose initial value
is that of a command-line argument. To use PARAM, you must call ACE from
a custom user menu (see Chapter 5, “User-Menu”) or the command line (see
“Creating and Compiling a Custom Report” on page 4-5).

Usage
■ You can define a total of 100 variables using PARAM and VARIABLE

statements in an ACE report specification.

■ If a report specification uses a PARAM statement and you fail to
provide arguments on the command line when you run the report,
ACE gives an error message.

■ If you want to use a variable defined by a PARAM statement in the
SELECT section, you must precede the variable name with a dollar
sign. Refer to the “SELECT Section” on page 4-37 for more
information.

■ See the Informix Guide to SQL: Reference for information about variable
data types.

PARAM is a required keyword.
int is a required integer that specifies the position of the argument on the

command line. The first argument is number 1.
var-name is the name of the variable that you are declaring—it will initially have

the value of a command-line argument when you run the report.
data-type is a valid SQL data type.

PARAM
Statement

PARAM [int] var-name data-type
4-20 IBM Informix SQL Reference Manual

VARIABLE
VARIABLE
This statement declares a variable that you can use in an ACE report
specification.

Usage
■ You can define a total of 100 variables using PARAM and VARIABLE

statements in an ACE report specification.

■ If you want to use a variable that you declare in a PARAM or
VARIABLE statement in the SELECT section, you must precede the
variable name with a dollar sign. (Refer to the “SELECT Section” on
page 4-37 for more information.)

■ No further specification of the MONEY data type is permitted beyond
the keyword MONEY.

■ VARCHAR columns and variables in expressions act the same way as
CHAR columns and variables. When you define a VARCHAR in a
report, do not give the min-space parameter with which the
VARCHAR was defined for the database. Rather, indicate how many
characters you want printed.

For example, if in the employee table history is defined as
VARCHAR(255,10), in the report you should define it as
VARCHAR(255). If you only want to output a portion of the column,
you can define VARCHAR with a shorter length, such as
VARCHAR(120).

■ See the Informix Guide to SQL: Reference for information about variable
data types.

VARIABLE is a required keyword.
var-name is the name of the variable that you are defining.
data-type is a valid SQL data type.

VARIABLE
Statement

VARIABLE var-name data-type
The ACE Report Writer 4-21

VARIABLE
The following example is from the ord3.ace report:

define
variable begin_date date
variable end_date date

end

The following example shows the use of the VARCHAR data type:

define
variable history varchar(255)

end

The user enters the values for the variables when the program runs. See the
“INPUT Section” on page 4-23 for a description of this process.
4-22 IBM Informix SQL Reference Manual

INPUT Section
INPUT Section
An ACE report specification optionally can contain an INPUT section. The
INPUT section allows you to produce an interactive ACE report by prompting
for and accepting input while ACE is running a report.

The INPUT section consists of the keywords INPUT and END with one or more
PROMPT FOR statements in between. The following diagram shows the
structure of the INPUT section.

INPUT
Section

INPUT END
PROMPT FOR

Statement
p. 4-24
The ACE Report Writer 4-23

PROMPT FOR
PROMPT FOR
This statement prompts you while ACE is running a report and assigns the
value you enter to a variable.

Usage
■ You cannot prompt for, or accept, a database name using the

PROMPT FOR statement. Refer to the DATABASE section and to the
discussion of the -d option in “Command-Line Options” on page 4-9.

■ You cannot prompt for, or accept, an output filename using the
PROMPT FOR statement.

The following example is from the ord3.ace report:

input
prompt for begin_date
using "Enter beginning date for report: "

prompt for end_date
using "Enter ending date for report: "

end

PROMPT FOR are required keywords.
var-name is the name of the variable that receives your input. You must

declare this variable in the DEFINE section of the ACE report
specification.

USING is a required keyword.
string is the string of characters that ACE uses as a prompt. You must

enclose this string in quotation marks.

PROMPT FOR
Statement

PROMPT FOR var-name USING "string"
4-24 IBM Informix SQL Reference Manual

PROMPT FOR
The two character strings "Enter beginning date for report:" and
"Enter ending date for report:" appear as prompts on the screen when
the ord3.ace report runs. The response to the first prompt is entered as the
value to the begin_date variable; the response to the second prompt is entered
as the value to the end_date variable. These two variables are used at several
points in the ord3.ace report.
The ACE Report Writer 4-25

OUTPUT Section
OUTPUT Section
An ACE report specification can optionally contain an OUTPUT section. The
OUTPUT section controls the width of the margins and the length of the page.
The OUTPUT section also allows you to direct the output from the ACE report
to a file or a printer.

The OUTPUT section begins with the OUTPUT keyword and ends with the
corresponding END keyword, with one or more statements in between. The
following diagram shows the structure of the OUTPUT section.

OUTPUT
Section

BOTTOM MARGIN
Statement

p. 4-5

REPORT TO
Statement

p. 4-5

LEFT MARGIN
Statement

p. 4-5

RIGHT MARGIN
Statement

p. 4-5

TOP OF PAGE
Statement

p. 4-5

PAGE LENGTH
Statement

4-5

TOP MARGIN
Statement

p. 4-5

ENDOUTPUT
4-26 IBM Informix SQL Reference Manual

REPORT TO
REPORT TO
This statement directs the output of the ACE report to a file or a printer.

REPORT TO are required keywords.
filename is the name of a system file that receives the report. You must

enclose the filename in quotation marks.
PRINTER is the keyword that sends the report to the printer.
program is the name of a system command.

REPORT TO
Statement

"filename"

PRINTER "program"

REPORT TO
The ACE Report Writer 4-27

REPORT TO
Usage
■ When you do not use one of the REPORT TO statements, ACE sends

the report to your screen.

■ You cannot use more than one REPORT TO statement in a report
specification.

■ The TO PRINTER keywords cause ACE to send the report to the
program named by the DBPRINT environment variable. If you do not
define this environment variable, ACE sends the report to the lp
program.

■ If you want to send the report to a printer other than the system
printer, you can use the REPORT TO filename statement to send the
output to a file and then send the file to the printer of your choice.

■ If the REPORT TO filename statement writes to an existing filename,
the file is replaced with the new output. You can also use the REPORT
TO PIPE statement to direct the output to a program that will send the
output to the appropriate printer.

The following example directs the output to the labels file:

output
report to "labels"

end
4-28 IBM Informix SQL Reference Manual

LEFT MARGIN
LEFT MARGIN
This statement sets a left margin for a report.

Usage
The default left margin is five spaces.

The following example is from the mail2.ace report. ACE prints the left side
of the report as far to the left as possible.

output
top margin 0
bottom margin 0
left margin 0
page length 9
report to "labels"

end

LEFT MARGIN are required keywords.
integer is an integer that specifies the width of the left margin in spaces.

LEFT MARGIN integer

LEFT MARGIN
Statement
The ACE Report Writer 4-29

RIGHT MARGIN
RIGHT MARGIN
This statement sets a right margin for a report.

Usage
■ The RIGHT MARGIN determines the right margin by specifying the

width of the page in characters. It does not depend on the LEFT
MARGIN but always starts its count from the left edge of the page
(space 0).

■ The RIGHT MARGIN is only effective when the FORMAT section
contains an EVERY ROW statement.

■ The default right margin is 132 characters.

RIGHT MARGIN are required keywords.
integer is an integer that specifies the width of the text on the page in

characters.

RIGHT MARGIN integer

RIGHT MARGIN
Statement
4-30 IBM Informix SQL Reference Manual

RIGHT MARGIN
The following example report specification demonstrates the use of the
RIGHT MARGIN statement. ACE sets the right margin for the report at 70
characters.

database
stores7

end

output
right margin 70

end

select *
from customer

end

format
every row

end
The ACE Report Writer 4-31

TOP MARGIN
TOP MARGIN
This statement sets a top margin for a report.

Usage
■ The default top margin is three lines.

■ The top margin appears above any page header you specify.

Example
The following example is from the mail2.ace report. ACE begins printing at
the top of each page.

output
top margin 0
bottom margin 0
left margin 0
page length 9
report to "labels"

end

TOP MARGIN are required keywords.
integer is an integer that specifies the number of blank lines that ACE

leaves at the top of each page.

TOP MARGIN integer

TOP MARGIN
Statement
4-32 IBM Informix SQL Reference Manual

BOTTOM MARGIN
BOTTOM MARGIN
This statement sets a bottom margin for a report.

Usage
■ The default bottom margin is three lines.

■ The bottom margin appears below any page trailer.

In the following example, the printing continues to the bottom of each page:

output
top margin 0
bottom margin 0

end

BOTTOM MARGIN are required keywords.
integer is an integer that specifies the number of blank lines that

ACE is to leave at the bottom of each page.

BOTTOM MARGIN integer

BOTTOM MARGIN
Statement
The ACE Report Writer 4-33

PAGE LENGTH
PAGE LENGTH
This statement sets the number of lines on each page of a report.

Usage
■ The default page length is 66 lines.

■ The PAGE LENGTH includes the TOP MARGIN and BOTTOM
MARGIN.

The following example demonstrates the use of the PAGE LENGTH statement.
ACE prints each page with 22 lines.

output
{This length works on std 24-line crt}
page length 22
top margin 0
bottom margin 0

end

PAGE LENGTH are required keywords.
integer is an integer that specifies the length of the page in lines.

PAGE LENGTH integer

PAGE LENGTH
Statement
4-34 IBM Informix SQL Reference Manual

TOP OF PAGE
TOP OF PAGE
This statement specifies the character string that causes your printer to eject
a page.

Usage
■ On most printers, char-string is "^L", the ASCII form-feed character.

ACE uses the first character of the string as the TOP OF PAGE
character unless it is the ^ character. If the first character is the ^
character, ACE decodes the second character as a control character.
(If you are unsure of the character string to specify for your printer,
refer to the documentation provided with your printer.)

■ ACE places the character string in the report to advance to the next
page whenever the program causes a new page to be set up. Any of
the following items can initiate a new page:

❑ The next print line meets the bottom margin.

❑ A SKIP TO TOP OF PAGE statement is executed.

❑ A SKIP n LINES statement skips more lines than are available on
the current page.

❑ A NEEDS statement specifies more lines than are available on the
current page.

■ If you specify the TOP OF PAGE statement, ACE uses the specified
page-eject character to set up new pages instead of using line feeds.

■ If you omit the TOP OF PAGE statement, ACE fills the remaining lines
of the current page with line feeds when a new page is set up.

TOP OF PAGE are required keywords.
char-string is a one- or two-character string that causes your printer to eject

a page.

TOP OF PAGE "char-string"

TOP OF PAGE
Statement
The ACE Report Writer 4-35

TOP OF PAGE
The following example sets CONTROL-L as the page-eject character:

output
top of page “^L”
report to “r_out”

end

select * from customer
end

format
on every row

end
4-36 IBM Informix SQL Reference Manual

SELECT Section
SELECT Section
Every report specification must have a SELECT section or a READ section. The
SELECT section specifies the columns or tables or both that the report is based
on if you retrieve data from a database. The READ section specifies the input
file the report is based on if you retrieve data from an ASCII file. See the
“READ Section” on page 4-40 for details on how to use ASCII files in ACE
reports.

You can use the SELECT section to specify criteria for selecting and ordering
rows based on the contents of specific columns. The FORMAT section can
group rows in the report based on the order you specify in the SELECT
section.

The SELECT section contains one or more SELECT statements. These state-
ments are identical to the SELECT statements described in the Informix Guide
to SQL: Syntax. This chapter does not define the SELECT statement but shows
how to incorporate it in an ACE report specification.

The SELECT section begins with the SELECT keyword. This keyword intro-
duces both the SELECT section and the first SELECT statement. Other SELECT
statements can follow the first—each must begin with the SELECT keyword.
All SELECT statements, except for the last, must end with a semicolon. (If
there is only one SELECT statement, it does not require a semicolon.) The
SELECT section ends with the END keyword. All but the last SELECT
statement must have an INTO TEMP clause.

If you use an ORDER BY clause in the SELECT section, you cannot use an
integer or a column with a table prefix (table.column) to indicate the column
to sort by. If you cannot use the column name alone because it is not unique
or because it is an expression, define a display label in the select list and use
it in both the ORDER BY clause and the FORMAT section in the AFTER and
BEFORE GROUP OF control blocks. The second example in this section
demonstrates the use of a display label.

If you use an ACE variable in the SELECT section, you must precede the
variable name with a dollar sign. The third example in this section demon-
strates the use of a variable name.
The ACE Report Writer 4-37

SELECT Section
The following diagram shows the structure of the SELECT section.

The following example is from the mail1.ace report. ACE selects all rows from
the customer table and orders the rows first by zip code and then by last
name.

select *
from customer
order by zipcode, lname

end

The following example is from the ord1.ace report:

select
orders.order_num number,
order_date, customer_num,
po_num, ship_date, ship_charge,
paid_date,

items.order_num, stock_num, manu_code,
quantity, total_price

from orders, items

where orders.order_num = items.order_num

order by number
end

ACE selects the indicated columns from the orders and items tables. The
order_num column in the orders table is given the display label number and
is joined to the order_num column in the items table. ACE orders the rows by
the values in the number column.

SELECT
Section

END
SELECT

Statement
SQLR

;

4-38 IBM Informix SQL Reference Manual

SELECT Section
The following example is from the clist2.ace report:

select
customer_num,
fname,
lname,
company,
city,
state,
zipcode,
phone

from
customer

where
state matches $thisstate

order by
zipcode,
lname

end

ACE selects the indicated columns from the customer table. The WHERE
clause tells ACE to select only those rows where the value in the state column
matches the value in the variable thisstate. ACE orders the rows by the values
in the zipcode column first and then by lname.
The ACE Report Writer 4-39

READ Section
READ Section
As an alternative to the SELECT section, you can include a READ section
containing a READ statement. Unlike the SELECT statement, which queries
the database for rows, the READ statement retrieves rows from an ASCII input
file. Every report specification must have either a READ section or a SELECT
section.

The READ statement allows you to retrieve data from ASCII files produced by
the UNLOAD statement of SQL or the Output option of PERFORM. In addition,
you can produce reports from ASCII files created or edited by other software
products.

The following conditions must be satisfied before you can read data from an
ASCII file:

■ You must know the complete pathname of the ASCII data file. You
must also know the number of fields, the delimiter symbol, and the
order and data type of each field of a record in the file.

■ You must use the ASCII statement in the DEFINE section of a report
specification to indicate the format of a record in the ASCII file. The
ASCII keyword is followed by an ordered list of the field names and
data types of the ASCII file. See the “DEFINE Section” on page 4-17
for details on using the ASCII statement.

■ Although a report based on ASCII data is not related to a database,
you must include a DATABASE section in the report specification. You
can either specify an existing database or use the ASCII keyword. See
the “DATABASE Section” on page 4-16 for details on using the ASCII
keyword.

The following diagram shows the structure of the READ section.

END
READ

Statement
p. 4-41

READ
Section
4-40 IBM Informix SQL Reference Manual

READ
READ
Use the READ statement in the READ section to retrieve data from an ASCII
input file in unload format. The READ section specifies the name of the input
file, any nondefault delimiter, and optional sorting specifications. You use the
ASCII statement in the DEFINE section to specify the fields of each record in
the input file.

READ is a required keyword that specifies ASCII input.
filename is the name of the ASCII file enclosed in quotes. If the file is not

located in the current directory, you must include the complete
pathname.

DELIMITER is an optional keyword that is used if the field separator symbol is
not the default delimiter (|) .

symbol is the character, enclosed in quotation marks, that is used between
fields of the records in filename.

ORDER BY is an optional keyword that is required if records from the input file
are to be sorted in the report according to the values in one or more
fields.

EXTERNAL is an optional keyword indicating that the records in the input file
are already sorted.

READ
Statement

DELIMITER "symbol"

READ "filename"

ORDER BY

EXTERNAL

fieldname ASC

DESC

,

The ACE Report Writer 4-41

READ
Usage
■ The READ statement requires an ASCII statement in the DEFINE

section. You cannot use a SELECT statement to access an ASCII file,
nor can you use a READ statement to access a database table.

■ The default delimiter is a vertical bar (| = ASCII 124). See
Appendix B, “Setting Environment Variables,” for information on
how to specify a different default delimiter with the DBDELIMITER
environment variable.

■ ACE uses the delimiter specified in the READ statement as the field
separator, regardless of whether you have set the DBDELIMITER
environment variable.

■ An ORDER BY clause in a READ statement can list up to eight field
names as sorting keys. These names must match the field names that
are specified in the ASCII statement. Specify an existing database,
rather than use the ASCII keyword, if you are using an ORDER BY
clause.

■ If more than one sorting key is specified in an ORDER BY clause, the
primary key is the first field named in the ORDER BY list, the
secondary sorting key is the second field named in that list, and so
on.

■ If the ASCII file named in a READ statement is already sorted, and the
FORMAT section contains BEFORE GROUP OF or AFTER GROUP OF
control blocks on two or more fields, then an ORDER EXTERNAL BY
clause must specify the hierarchy of the order.

■ ACE does not allow the use of the space or double quotation mark
(") as a delimiter in the ASCII file.

fieldname is the name of a field in an input file record, as defined in the ASCII
statement of the DEFINE section, that is used as a sorting key.

ASC is an optional keyword specifying that the values in the fieldname
field are used to sort records in ascending order (smallest values
first).

DESC is an optional keyword specifying that the values in the fieldname
field are used to sort records in descending order (largest values
first).
4-42 IBM Informix SQL Reference Manual

READ
The following READ statement specifies an ASCII file (in unload format) that
corresponds to the stock table of the stores7 database:

read "stock1" delimiter ":"
order by unit_price desc, description

end

This READ statement tells ACE to read the records in an ASCII file called
STOCK1 that uses the colon (:) as a delimiter, and to sort the records in
descending order according to the values in the field unit_price. Since the
description field is a secondary sorting key, records that have the same
unit_price value appear in ascending alphabetical order according to the
label in their description field.

The next example reverses the previous order of the sorting keys and sorts
unit prices in default (ascending) order:

read "stock1" delimiter ":"
order external by description, unit_price

end
. . .

format
. . .

after group of description
. . .

after group of unit_price
. . .

The ORDER EXTERNAL BY clause specifies that the stock1 file is already
sorted. Totals or subtotals specified in the AFTER GROUP OF control blocks
are printed after the groups of rows have been printed according to the
sorting instructions in the ORDER BY clause.

Related Commands
ASCII, ORDER BY (option of SELECT), OUTPUT (option of PERFORM),
UNLOAD (SQL statement)
The ACE Report Writer 4-43

FORMAT Section
FORMAT Section
An ACE report specification must contain a FORMAT section. The FORMAT
section determines the appearance of the report. It works with the data that
is qualified by the last (or only) SELECT statement in the SELECT section, or
with the contents of an ASCII file referenced by the READ statement in the
READ section. The FORMAT section begins with the FORMAT keyword and
ends with the corresponding END keyword as shown in the following
diagram.

FORMAT
Section

FORMAT END

PAGE HEADER
Control Block

p. 4-63

PAGE TRAILER
Control Block

p. 4-44

FIRST PAGE TRAILER
Control Block

p. 4-44

ON EVERY ROW
Control Block

p. 4-44

ON LAST ROW
Control Block

p. 4-60

BEFORE GROUP OF
Control Block

p. 4-53

AFTER GROUP OF
Control Block

p. 4-50

EVERY ROW
Statement

p. 4-44

CALL
Statement

p. 6-7
4-44 IBM Informix SQL Reference Manual

FORMAT Section
The simplest FORMAT section contains only an EVERY ROW statement
between the FORMAT and END keywords. If you use an EVERY ROW
statement, you cannot use any other statements or control blocks in the
FORMAT section. The following example shows the structure of this type of
FORMAT section:

FORMAT
EVERY ROW statement

END

More complex FORMAT sections can contain control blocks such as ON
EVERY ROW and BEFORE GROUP OF. Each of these control blocks must
contain at least one statement such as PRINT or SKIP n LINES. In the FORMAT
section, you cannot refer to a column using its table name (table.column) as a
prefix. If you do not use an EVERY ROW statement, you can combine control
blocks as required. You can place control blocks in any order within the
FORMAT section.
The ACE Report Writer 4-45

EVERY ROW
EVERY ROW
The EVERY ROW statement causes ACE to output every row that the SELECT
or READ section retrieves. It uses a default format.

Usage
■ This statement is useful when you want to develop a report quickly

using a default format. The report uses as column headings the
column names you assigned when you created the table or the field
names that you assigned in the ASCII statement. Because the EVERY
ROW statement cannot contain any control blocks or other state-
ments, you cannot alter the default format to create a custom report.

■ The EVERY ROW statement stands by itself—you cannot modify it
with any of the statements listed in “Statements” on page 4-65.

■ When you use the EVERY ROW statement, you cannot use any control
blocks in the FORMAT section.

■ A report generated by an EVERY ROW statement uses the column
names you assigned when you created the table.

■ If the columns that you specify in the SELECT section, or the values
that you retrieve in the READ section, fit on one line, ACE produces a
report with column or field names across the top of each page;
otherwise, ACE produces a report with the column or field names
down the left side of the page.

■ You can use the RIGHT MARGIN statement in the OUTPUT section to
control the width of a report that uses the EVERY ROW statement.

■ Use the ON EVERY ROW control block if you want to display every
row in a format other than the default format. (See the discussion of
“ON EVERY ROW” on page 4-58.)

EVERY ROW
Statement

EVERY ROW
4-46 IBM Informix SQL Reference Manual

EVERY ROW
The following example shows a minimal ACE report specification using the
EVERY ROW statement:

database
stores7

end

select *
from customer

end

format
every row

end

The following example shows a portion of the output from the preceding
specification:

customer_num 101
fname Ludwig
lname Pauli
company All Sports Supplies
address1 213 Erstwild Court
address2
city Sunnyvale
state CA
zipcode 94086
phone 408-791-8075

customer_num 102
fname Carole
lname Sadler
company Sports Spot
address1 785 Geary St
address2
city San Francisco
state CA
zipcode 94117
phone 415-822-1291

customer_num 103
fname Philip
lname Currie

.

.

.

The ACE Report Writer 4-47

EVERY ROW
The following example shows another example of a brief report specification
that uses the EVERY ROW statement:

database
stores7

end

select order_num, customer_num,
order_date
from orders

end

format
every row

end

The following example shows the output from the preceding specification:

order_num customer_num order_date

1001 104 01/20/1991
1002 101 06/01/1991
1003 104 10/12/1991
1004 106 04/12/1991
1005 116 12/04/1991
1006 112 09/19/1991
1007 117 03/25/1991
1008 110 11/17/1991
1009 111 02/14/1991
1010 115 05/29/1991
1011 104 03/23/1991
1012 117 06/05/1991
1013 104 09/01/1991
1014 106 05/01/1991
1015 110 07/10/1991
4-48 IBM Informix SQL Reference Manual

Control Blocks
Control Blocks
Control blocks provide the structure for a custom report. The control blocks
that you can use in a FORMAT section follow:

■ AFTER GROUP OF

■ BEFORE GROUP OF

■ FIRST PAGE HEADER

■ ON EVERY ROW

■ ON LAST ROW

■ PAGE HEADER

■ PAGE TRAILER

Each control block is optional, but if you do not use the EVERY ROW
statement, you must include at least one control block in a report
specification.

Each control block must include at least one statement. (See “Statements” on
page 4-65.) If you have INFORMIX-ESQL/C, you can also call C functions from
within a control block. See the INFORMIX-ESQL/C Programmer’s Manual and
Chapter 6, “Functions in ACE and PERFORM,” for details.

When you use an ORDER BY clause in the SELECT or READ section of an ACE
report specification, you can use BEFORE GROUP OF and AFTER GROUP OF
control blocks in the FORMAT section. When you use the BEFORE GROUP OF,
AFTER GROUP OF, and ON EVERY ROW control blocks in a single report speci-
fication, ACE processes the control blocks in the order shown in Figure 4-2.
(The figure assumes that the SELECT or READ section orders by columns a, b,
and c.)

Figure 4-2
Order of Group Processing

before group of a
before group of b

before group of c
on every row

after group of c
after group of b

after group of a
The ACE Report Writer 4-49

AFTER GROUP OF
AFTER GROUP OF
The AFTER GROUP OF control block specifies what action ACE takes after it
processes a group of rows. Grouping is determined by the ORDER BY clause
of the SELECT or READ section.

Usage
■ A group of rows is all the rows that contain the same value for a given

column. ACE automatically groups rows when you use an ORDER BY
clause in the SELECT or READ section of a report specification (that is,
groups come together when you order a list).

When you specify more than one column in an ORDER BY clause,
ACE orders the rows first by the first column you specify (most
significant), second by the second column you specify, and so on,
until the last column you specify (least significant).

ACE processes the statements in an AFTER GROUP OF control block
each time the specified column changes value, each time a more
significant column changes value, and at the end of a report. (See
Figure 4-2 on page 4-49.)

AFTER GROUP OF are required keywords.
column-name is the name of one of the columns or identifiers specified in

the ORDER BY clause of the SELECT or READ section.
int1,int2 are optional subscripts that you can use with a type CHAR

column to refer to a subset of the column beginning at
character position int1 and ending at character position int2.
If int2 is not specified, the end of the column is used.

statement is a list of one or more statements or a compound statement.

AFTER GROUP OF
Control Block

AFTER GROUP OF column-name

[int1

,int2

statement

]

4-50 IBM Informix SQL Reference Manual

AFTER GROUP OF
■ Each column specified in the ORDER BY clause in the SELECT or
READ section can contain one AFTER GROUP OF control block.

■ If you have more than one AFTER GROUP OF control block, their
order within the FORMAT section is not significant. ACE processes
the AFTER GROUP OF control blocks in the reverse order specified in
the ORDER BY clause in the SELECT or READ section. (See Figure 4-2
on page 4-49.)

■ When ACE finishes generating a report, it executes all of the state-
ments in the AFTER GROUP OF control blocks before it executes those
in the ON LAST ROW control block.

■ You cannot reference the column-name in the AFTER GROUP OF clause
using the name of a table (the table.column structure is not allowed).
If you cannot use the column name alone because it is not unique or
because it is an expression, define a display label in the select list of
the SELECT section and use it in the AFTER GROUP OF clause.

■ You cannot use an integer to indicate by which column of the select
list the grouping is to occur.

■ You can only use group aggregates in AFTER GROUP OF control
blocks. You cannot use group aggregates in any other control blocks.

■ If you specify a substring of a CHAR column in an ORDER BY clause
in the SELECT or READ section, you must use the same substring
specification as the column-name in an AFTER GROUP OF control
block.

■ You can use a SKIP TO TOP OF PAGE statement in an AFTER GROUP
OF control block to start a new page after each group.

■ When ACE processes the statements in an AFTER GROUP OF control
block, the columns that the report is processing still have the values
from the last row of the group. From this perspective, the AFTER
GROUP OF control block could be called the ‘‘on last row of group’’
control block.
The ACE Report Writer 4-51

AFTER GROUP OF
The following example is from the ord2.ace report:

after group of number

skip 1 line
print 4 spaces, "Shipping charges for the order: ",

ship_charge using "$$$$.&&"
skip 1 line

print 5 spaces, "Total amount for the order: ",
ship_charge + group total of total_price
using "$$,$$$,$$$.&&"

skip 3 lines

after group of custnum
skip 2 lines
4-52 IBM Informix SQL Reference Manual

BEFORE GROUP OF
BEFORE GROUP OF
The BEFORE GROUP OF control block specifies what action ACE is to take
before it processes a group of rows. Grouping is determined by the ORDER
BY clause of the SELECT or READ section.

Usage
■ A group of rows is all the rows that contain the same value for a given

column. ACE automatically groups rows when you use an ORDER BY
clause in the SELECT or READ section of a report specification (that is,
groups come together when you order a list).

When you specify more than one column in an ORDER BY clause,
ACE orders the rows first, by the first column you specify (most
significant), second, by the second column you specify, and so on,
until the last column you specify (least significant).

ACE processes the statements in a BEFORE GROUP OF control block
at the start of a report, each time the specified column changes value,
and each time a more significant column changes value. (See
Figure 4-2 on page 4-49.)

BEFORE GROUP OF are required keywords.
column-name is the name of one of the columns or identifiers specified in

the ORDER BY clause of the SELECT or READ section.
int1,int2 are optional subscripts that you can use with a type CHAR

column to refer to a subset of the column beginning at
character position int1 and ending at character position
int2. If int2 is not specified, the end of the column is used.

statement is a list of one or more statements or a compound
statement.

BEFORE GROUP OF
Control Block

BEFORE GROUP OF column-name

[int1

statement

]

, int2
The ACE Report Writer 4-53

BEFORE GROUP OF
■ Each column specified in the ORDER BY clause in the SELECT or
READ section can contain one BEFORE GROUP OF control block.

■ If you have more than one BEFORE GROUP OF control block, their
order within the FORMAT section is not significant. ACE processes
the BEFORE GROUP OF control blocks in the reverse order specified
in the ORDER BY clause in the SELECT or READ section. (See
Figure 4-2 on page 4-49.)

■ When ACE starts to generate a report, it executes all of the statements
in the BEFORE GROUP OF control blocks before it executes those in
the ON EVERY ROW control block.

■ You cannot reference the column-name in the BEFORE GROUP OF
clause using the name of a table (the table.column structure is not
allowed). If you cannot use the column name alone because it is not
unique or because it is an expression, define a display label in the
select list of the SELECT section and use it in the BEFORE GROUP OF
clause.

■ You cannot use an integer to indicate by which column of the select
list the grouping is to occur.

■ If you specify a substring of a CHAR column in an ORDER BY clause
in the SELECT or READ section, you must use the same substring
specification as the column-name in a BEFORE GROUP OF control
block.

■ You can use a SKIP TO TOP OF PAGE statement in a BEFORE GROUP
OF control block to start a new page after each group.

■ When ACE processes the statements in a BEFORE GROUP OF control
block, the columns that the report is processing have the values from
the first row of the row group. From this perspective, the BEFORE
GROUP OF control block could be called the “on first row of group”
control block.

■ You cannot name a TEXT column in a BEFORE GROUP OF or AFTER
GROUP OF clause.
4-54 IBM Informix SQL Reference Manual

BEFORE GROUP OF
The following example is from the ord1.ace report:

before group of ordnum

print "Order number: ", ordnum using "#####",
" for customer number: ", customer_num
using "#####"

print "Customer P.O. : ", po_num,
" Date ordered: ", order_date

skip 1 line
print "Stockno", column 20,

"Mfcode", column 28, "Qty", column 38, "Price"
The ACE Report Writer 4-55

FIRST PAGE HEADER
FIRST PAGE HEADER
The FIRST PAGE HEADER control block specifies what information appears at
the top of the first page of the report.

Usage
■ The vertical size of the first page header is equal to the number of

lines that you specify in the FIRST PAGE HEADER control block. The
TOP MARGIN (in the OUTPUT section) affects how close to the top of
the page ACE displays the page header.

■ A FIRST PAGE HEADER control block overrides a PAGE HEADER
control block on the first page of a report.

■ You cannot use the SKIP TO TOP OF PAGE statement in a FIRST PAGE
HEADER control block.

■ If you use an IF THEN ELSE statement in a FIRST PAGE HEADER
control block, the number of lines displayed by the PRINT and SKIP
statements following the THEN keyword must be equal to the
number of lines displayed by the PRINT and SKIP statements
following the ELSE keyword.

■ You cannot use the PRINT FILE statement to read and display text
from a file in a FIRST PAGE HEADER control block.

■ You can use a FIRST PAGE HEADER control block to produce a title
page as well as column headings.

FIRST PAGE HEADER are required keywords.
statement is a list of one or more statements or a compound

statement.

FIRST PAGE HEADER
Control Block

FIRST PAGE HEADER statement
4-56 IBM Informix SQL Reference Manual

FIRST PAGE HEADER
The following example is from the mail3.ace report:

first page header

let i = 1

let l_size = 72/count1

let white = 8/count1

This FIRST PAGE HEADER does not display any information. Because ACE
executes the FIRST PAGE HEADER control block before it generates any output,
you can use this control block (as demonstrated in the example) to initialize
variables that you use in the FORMAT section.
The ACE Report Writer 4-57

ON EVERY ROW
ON EVERY ROW
The ON EVERY ROW control block specifies what action ACE takes after the
SELECT section qualifies a row, or after the READ section retrieves a row.

Usage
■ ACE processes the statements in an ON EVERY ROW control block as

each new row is formatted.

■ If a BEFORE GROUP OF control block is triggered by a change in
column value, all BEFORE GROUP OF control blocks are executed
(in the order of their significance) before the ON EVERY ROW control
block is executed.

■ If an AFTER GROUP OF control block is triggered by a change in
column value, all AFTER GROUP OF control blocks are executed (in
the order of their significance) after the ON EVERY ROW control block
is executed.

■ You cannot name a TEXT column in a BEFORE GROUP OF or AFTER
GROUP OF clause.

ON EVERY ROW are required keywords.
statement is a list of one or more statements or a compound statement.

ON EVERY ROW
Control Block

ON EVERY ROW statement
4-58 IBM Informix SQL Reference Manual

ON EVERY ROW
The following example is from the clist1.ace report:

on every row
print customer_num using "####",
column 9, fname clipped, 1 space, lname clipped,
column 32, city clipped, ", " , state,
column 54, zipcode,
column 62, phone

The following example is from the mail2.ace report:

on every row
if (city is not null) and

(state is not null) then
begin

print fname clipped, 1 space, lname
print company
print address1
if (address2 is not null) then

print address2
print city clipped, ", " , state,
2 spaces, zipcode
skip to top of page

end
The ACE Report Writer 4-59

ON LAST ROW
ON LAST ROW
The ON LAST ROW control block specifies the action ACE takes after
processing the last row qualified by the SELECT section, or the last row
retrieved by the READ section.

Usage
■ ACE executes the statements in the ON LAST ROW control block after

it executes those in the ON EVERY ROW and AFTER GROUP OF control
blocks.

■ You can use the ON LAST ROW control block to display report totals.

■ When ACE processes the statements in an ON LAST ROW control
block, the values from the last row returned by the SELECT statement
or the last row retrieved by the READ statement are current and can
be used.

The following example is from the clist1.ace report:

on last row
skip 1 line
print "TOTAL NUMBER OF CUSTOMERS:",

column 30, count using "##"

ON LAST ROW are required keywords.
statement is a list of one or more statements or a compound statement.

ON LAST ROW
Control Block

ON LAST ROW statement
4-60 IBM Informix SQL Reference Manual

PAGE HEADER
PAGE HEADER
The PAGE HEADER control block specifies what information will appear at
the top of each page of the report.

Usage
■ The vertical size of the page header is equal to the number of lines

that you specify in the PAGE HEADER control block. The TOP
MARGIN (in the OUTPUT section) affects how close to the top of the
page ACE displays the page header.

■ A FIRST PAGE HEADER control block overrides a PAGE HEADER
control block on the first page of a report.

■ You cannot use the SKIP TO TOP OF PAGE statement in a PAGE
HEADER control block.

■ If you use an IF THEN ELSE statement in a PAGE HEADER control
block, the number of lines displayed by the PRINT and SKIP state-
ments following the THEN keyword must be equal to the number of
lines displayed by the PRINT and SKIP statements following the ELSE
keyword.

■ If you use a FOR or WHILE statement that contains a PRINT statement
in a PAGE HEADER control block, you must terminate the PRINT
statement with a semicolon. The semicolon suppresses any
NEWLINE (RETURN) characters in the loop, keeping the number of
lines in the header constant from page to page.

■ You cannot use a PRINT FILE statement to read and display text from
a file in a PAGE HEADER control block.

PAGE HEADER are required keywords.
statement is a list of one or more statements or a compound statement.

PAGE HEADER
Control Block

PAGE HEADER statement
The ACE Report Writer 4-61

PAGE HEADER
■ You can use a PAGE HEADER control block to display column
headings in a report.

■ You can use the PAGENO expression in a PRINT statement within a
PAGE HEADER control block to display the page number automati-
cally at the top of every page.

■ ACE delays the processing of the PAGE HEADER control block until
the first PRINT, SKIP, or NEED statement to guarantee that any group
columns printed in the PAGE HEADER control block have the same
values as the columns printed in the ON EVERY ROW control block.

The following example is from the clist1.ace report:

page header
print "NUMBER",

column 9, "NAME",
column 32, "LOCATION",
column 54, "ZIP",
column 62, "PHONE"

skip 1 line
4-62 IBM Informix SQL Reference Manual

PAGE TRAILER
PAGE TRAILER
The PAGE TRAILER control block specifies what information will appear at
the bottom of each page of the report.

Usage
■ The vertical size of the page trailer is equal to the number of lines that

you specify in the PAGE TRAILER control block. The BOTTOM
MARGIN (in the OUTPUT section) affects how close to the bottom of
the page ACE displays the page trailer.

■ You cannot use the SKIP TO TOP OF PAGE statement in a PAGE
TRAILER control block.

■ If you use an IF THEN ELSE statement in a PAGE TRAILER control
block, the number of lines displayed by the PRINT and SKIP state-
ments following the THEN keyword must be equal to the number of
lines displayed by the PRINT and SKIP statements following the ELSE
keyword.

■ If you use a FOR or WHILE statement that contains a PRINT statement
in a PAGE TRAILER control block, you must terminate the PRINT
statement with a semicolon. The semicolon suppresses any
NEWLINE (RETURN) characters in the loop, keeping the number of
lines in the trailer constant from page to page.

PAGE TRAILER are required keywords.
statement is a list of one or more statements or a compound statement.

PAGE TRAILER
Control Block

PAGE TRAILER statement
The ACE Report Writer 4-63

PAGE TRAILER
■ You cannot use the PRINT FILE statement to read and display text
from a file in a PAGE TRAILER control block.

■ You can use the PAGENO expression in a PRINT statement within a
PAGE TRAILER control block to display the page number automati-
cally at the bottom of every page.

The following example is from the ord3.ace report:

page trailer
print column 28, pageno using "page <<<<"
4-64 IBM Informix SQL Reference Manual

Statements
Statements
The format control blocks determine when ACE takes an action, while the
statements determine what action ACE takes.

Statements are composed of keywords and expressions, as explained under
each of the specific statements.

Any statement can be a single statement or a compound statement. A
compound statement is one or more statements, including other compound
statements, preceded by the BEGIN keyword and followed by an END
keyword.
The ACE Report Writer 4-65

FOR
FOR
The FOR statement defines a loop. It repeatedly executes a simple or
compound statement, incrementing the loop index before each pass through
the loop. Control passes to the first statement following the end of the loop
when the termination condition is satisfied.

Usage
■ You cannot have a decrementing loop—the value of expr3 must be

positive.

■ If a compound statement follows the DO keyword, you must precede
the compound statement with a BEGIN keyword and follow it with
END.

FOR is a required keyword.
loop-index is the name of a variable declared in the DEFINE section. The FOR

statement uses this variable as the loop index, changing its value each
time through the loop.

= is a required keyword.
expr1 is a required expression that specifies the starting value of the loop

index.
TO is a required keyword.
expr2 is a required expression that specifies the ending value of the loop

index. This expression specifies the termination condition for the loop.
STEP is an optional keyword.
expr3 is an optional expression that specifies the amount the FOR statement

increments the loop index each time through the loop. If you do not
specify STEP and expr3, the FOR statement assumes an increment
value of 1.

DO is a required keyword.
statement is a single statement or a compound statement.

FOR loop-index = expr1 TO expr2

STEP expr3

DO statement
4-66 IBM Informix SQL Reference Manual

IF THEN ELSE
IF THEN ELSE
This statement defines a conditional branch. It evaluates an expression and
executes specific statements based on the result of the evaluation.

Usage
■ If a compound statement follows the THEN or ELSE keyword, you

must precede the compound statement with the BEGIN keyword and
follow it with END.

■ You can nest IF THEN ELSE statements to 128 levels.

IF is a required keyword.
expr is a required expression that determines which, if any, of the state-

ments IF executes.
THEN is a required keyword.
statement1 is a required single statement or compound statement that IF executes

if expr evaluates as true (not equal to zero).
ELSE is an optional keyword.
statement2 is an optional single statement or compound statement that IF

executes if expr evaluates as false (equal to zero).

IF expr THEN statement1

ELSE statement2
The ACE Report Writer 4-67

IF THEN ELSE
The following example is from the mail3.ace report:

if i = count1 then
begin

print array1 clipped
print array2 clipped
print array3 clipped

skip 1 line

let array1 = " "
let array2 = " "
let array3 = " "

let i = 1
end

else
let i = i + 1
4-68 IBM Informix SQL Reference Manual

LET
LET
The LET statement assigns a value to a declared variable.

LET is a required keyword.
variable is a required variable name; that is, a variable declared in a previous

DEFINE section.
num-expr is an optional number expression or list of one or two number expres-

sions. They specify a substring of the CHAR variable to which LET is
to assign a value. If one num-expr is specified, the substring is the
beginning character within the variable through the end of the string.
If two num-expr are present, the substring is from the first num-expr
through the second one.
You can only use these substring operations with a CHAR variable. You
must enclose subscripts in brackets ([]).

= is a required keyword.
expr is a required list of one or more expressions separated by commas. LET

assigns the value of this list to the variable.
If the list contains more than one expression, the variable must be of
type CHAR. LET assigns the value of the string generated by the
concatenation of all expressions in the expression list to the variable.
The result that ACE assigns to the variable takes the same form as if you
had displayed the same expression list with a PRINT statement. LET
accepts all the expressions that PRINT accepts including USING,
CLIPPED, ASCII, COLUMN, and subscripted character expressions.

LET variable

[num-expr

num-expr

= expr

,

]

The ACE Report Writer 4-69

LET
Usage
■ If you assign a value with a fractional part to an INTEGER or

SMALLINT variable, ACE truncates the fractional part.

■ Refer to the descriptions of expressions beginning on page 4-82 for
more information about type conversion.

The following example is from the FORMAT section of the mail3.ace report:

let i = 1

let l_size = 72/count1

let white = 8/count1

Conversion of a monetary or numeric value to a character string using the
LET statement results in a string containing locale-specific formatting if you
enable certain GLS settings. This is true for both the default conversion and
the conversion with a USING clause. Refer to Appendix C, “Global Language
Support,” and the Informix Guide to GLS Functionality.

GLS
4-70 IBM Informix SQL Reference Manual

NEED
NEED
This statement causes subsequent display to start on the next page if the
specified number of lines cannot be placed on the current page.

Usage
Use the NEED statement to prevent ACE from separating parts of the report
that you want to keep together on a single page.

NEED is a required keyword.
num-expr is an expression that evaluates to a number specifying the number of

lines needed.
LINES is a required keyword.

NEED num-expr LINES
The ACE Report Writer 4-71

PAUSE
PAUSE
This statement causes output to the terminal to pause until you press
RETURN.

Usage
The PAUSE statement has no effect if you use a REPORT TO filename or a
REPORT TO PRINTER statement in the OUTPUT section.

The following example causes ACE to pause while running the report:

after group of item_num
.
.
.

skip to top of page
pause "Press RETURN to continue"

PAUSE is a required keyword.
string is an optional message that PAUSE displays. If you do not supply a

message, PAUSE does not display a message.

PAUSE

"string"
4-72 IBM Informix SQL Reference Manual

PRINT
PRINT
This statement displays information on the screen or as specified in the
OUTPUT section.

Usage
■ Unless you use the optional WORDWRAP keyword, one PRINT

statement displays its output on one line, no matter how many lines
the statement occupies in the report specification.

■ Unless you use the keyword CLIPPED or USING following an
expression, ACE displays an expression so that it occupies a prede-
termined number of spaces.

■ You can name a TEXT column in a PRINT statement. The PRINT
statement acts like a PRINT FILE statement with the TEXT item as a
file.

Figure 4-3
Default Display Widths

PRINT is a required keyword.
expr is an optional list of one or more expressions, separated by commas.
; is an optional keyword that suppresses a NEWLINE (RETURN) at the

end of the line.

Column Default Size

CHAR declared size

DATE 10

FLOAT 14 (including sign and decimal point)

SMALLINT 6 (including sign)

(1 of 2)

PRINT

expr
;

,

The ACE Report Writer 4-73

PRINT
The following example is from the clist2.ace report:

first page header
print column 32, "CUSTOMER LIST"
print column 32, "-------------"
skip 2 lines
print "Listings for the State of ", thisstate
skip 2 lines
print "NUMBER",

column 9, "NAME",
column 32, "LOCATION",
column 54, "ZIP",
column 62, "PHONE"

skip 1 line

page header
print "NUMBER",

column 9, "NAME",
column 32, "LOCATION",
column 54, "ZIP",
column 62, "PHONE"

skip 1 line

on every row
print customer_num using "####",

column 9, fname clipped, 1 space, lname clipped,
column 32, city clipped, ", " , state,
column 54, zipcode,
column 62, phone

INTEGER 11 (including sign)

SMALLFLOAT 14 (including sign and decimal point)

DECIMAL number of digits plus 2 (including sign and decimal
point)

SERIAL 11

MONEY number of digits plus 3 (including sign, decimal point,
and dollar sign)

DATETIME depends on precision

INTERVAL depends on precision

Column Default Size

(2 of 2)
4-74 IBM Informix SQL Reference Manual

PRINT FILE
PRINT FILE
This statement displays the contents of a text file in a report.

Usage
You can use the PRINT FILE statement to include the body of a form letter in
a report that generates custom letters.

PRINT FILE are required keywords.
filename is a required filename that can be a pathname. You must enclose the

filename in quotation marks.

PRINT FILE "filemane"
The ACE Report Writer 4-75

SKIP
SKIP
This statement skips lines in a report.

The following example is from the mail1.ace report:

format
on every row

print fname, lname
print company
print address1
print address2
print city, ", " , state,

2 spaces, zipcode
skip 2 lines

SKIP is a required keyword.
in is an integer specifying the number of lines to skip.
LINES is a required keyword. You can use the keyword LINE in place of LINES

if you like.

SKIP int LINES
4-76 IBM Informix SQL Reference Manual

SKIP TO TOP OF PAGE
SKIP TO TOP OF PAGE
This statement causes subsequent printing to begin at the top of the next
page.

Usage
You cannot use a SKIP TO TOP OF PAGE statement in a FIRST PAGE HEADER,
PAGE HEADER, or PAGE TRAILER control block.

The following example is from the mail2.ace report:

format
on every row

if (city is not null) and
(state is not null) then

begin
print fname clipped, 1 space, lname
print company
print address1
if (address2 is not null) then

print address2
print city clipped, ", " , state,

2 spaces, zipcode
skip to top of page

end
end

SKIP TO TOP OF PAGE
The ACE Report Writer 4-77

WHILE
WHILE
The WHILE statement defines a loop that repeatedly executes a simple or
compound statement while the expression is true. Control passes to the first
statement following the loop when the expression evaluates as false.

Usage
If more than one statement follows the DO keyword, you must precede them
with the BEGIN keyword and follow them with END to create a compound
statement.

WHILE is a required keyword.
expression is a required expression. While this expression evaluates as true,

WHILE executes the loop. When this expression evaluates as false,
control passes to the first statement following the loop.

DO is a required keyword.
statement is a single statement or a compound statement.

WHILE expression DO statement
4-78 IBM Informix SQL Reference Manual

Aggregates
Aggregates
Aggregates allow you to summarize information in a report.

GROUP is an optional keyword that causes the aggregate to reflect infor-
mation for a specific group only. The group must have been
designated by an ORDER BY clause in the SELECT or READ section
of the report specification. You can only use this keyword in an
AFTER GROUP OF control block.

COUNT is a keyword that is evaluated as the total number of rows qualified
by the SELECT section or retrieved by the READ section, and
qualified by the optional WHERE expr2 expression that can appear
in an aggregate statement.

PERCENT is the keyword that evaluates COUNT as a percent of the total
number of rows qualified by the SELECT section or retrieved by the
READ section, and qualified by the optional WHERE expr2
expression that can appear in an aggregate statement.

TOTAL evaluates as the total of expr1 in the rows qualified by the SELECT
section or retrieved by the READ section, and qualified by the
optional WHERE expr2 expression that can appear in an aggregate
statement.

AVERAGE/
AVG

evaluates as the average of expr1 in the rows qualified by the
SELECT section or retrieved by the READ section, and qualified by
the optional WHERE expr2 expression that can appear in an
aggregate statement.

GROUP WHERE expr2

COUNT

PERCENT

TOTAL

AVG

MIN

MAX

OF expr1

AVERAGE
The ACE Report Writer 4-79

Aggregates
Usage
■ The WHERE part of an aggregate statement further qualifies rows

that the SELECT section already qualified or that the READ statement
already retrieved. WHERE cannot select rows that were not qualified
by the SELECT section or retrieved by the READ section.

■ Aggregates produce unpredictable results when expr1 or expr2
contains user-defined variables. (See “PARAM” on page 4-20 and
“VARIABLE” on page 4-21.)

MIN evaluates as the minimum of expr1 in the rows qualified by the
SELECT section or retrieved by the READ section, and qualified by
the optional WHERE expr2 expression that can appear in an
aggregate statement.

MAX evaluates as the maximum of expr1 in the rows qualified by the
SELECT section or retrieved by the READ section, and qualified by
the optional WHERE expr2 expression that can appear in an
aggregate statement.

OF is a keyword.
EXPR1 is the expression that TOTAL, AVERAGE, MIN, and MAX evaluate.

It is typically a column or a number expression that includes a
number column.

WHERE is a keyword.
EXPR2 is a logical expression that qualifies the aggregate.
4-80 IBM Informix SQL Reference Manual

Aggregates
The following example is from the ord2.ace report:

on every row
print snum using "###", column 10, manu_code,

column 18, description clipped, column 38,
quantity using "###", column 43, unit_price
using "$$$$.&&", column 55,
total_price using "$$,$$$,$$$.&&"

after group of number

skip 1 line

print 4 spaces,
"Shipping charges for the order: ",
ship_charge using "$$$$.&&"

skip 1 line

print 5 spaces, "Total amount for the order: ",
ship_charge + group total of
total_price using "$$,$$$,$$$.&&"
The ACE Report Writer 4-81

ASCII
ASCII
ACE evaluates this expression as a value that you can use as a character. You
can use it to display control characters.

Usage
Do not confuse this keyword with the ASCII keyword used in the DEFINE
section to specify the identifiers and data values of an input file.

The following PRINT statement rings the bell (ASCII value of 7) of your
computer:

print ascii 7

The next report specification segments show how to implement special
printer or computer functions. They assume that when the printer receives
the sequence of ASCII characters 9, 11, and 1, it starts printing in red, and
when it receives 9, 11, and 0, it reverts to black printing. The values used in
the example are hypothetical; refer to your printer or terminal manual for
information on your printer or terminal.

ASCII is a required keyword.
num-expr is a number expression.

ASCII num-expr
4-82 IBM Informix SQL Reference Manual

ASCII
This specification uses the FIRST PAGE HEADER control block to initialize
variables that are used in other control blocks.

.

.
define

variable red_on char(3)
variable red_off char(3)

end
.
.

format
first page header

let red_on =
ascii 9, ascii 11, ascii 1

let red_off =
ascii 9, ascii 11, ascii 0

on every row
.
.
print red_on,

"Your bill is overdue.",
red_off

.

.

Tip: ACE cannot distinguish printable and nonprintable ASCII characters. Be sure to
account for the nonprinting characters when you use the COLUMN expression to
format your page. Because various devices print spaces with control characters differ-
ently, you might have to use trial and error to line up columns when you print
control characters.
The ACE Report Writer 4-83

CLIPPED
CLIPPED
This expression displays the character field that precedes it without any
trailing blanks.

Usage
You normally use CLIPPED following a column-name in a PRINT statement.

The following example is from the mail2.ace report:

format
on every row

if (city is not null) and
(state is not null) then

begin
print fname clipped, 1 space, lname
print company
print address1
if (address2 is not null) then

print address2
print city clipped, ", " , state,

2 spaces, zipcode
skip to top of page

end
end

char-expr is a required character expression.
CLIPPED is a required keyword.

char-expr CLIPPED
4-84 IBM Informix SQL Reference Manual

COLUMN
COLUMN
This expression evaluates to a string of spaces long enough to position the
next item in the designated column.

Usage
■ ACE calculates the column number by adding the number to the left

margin you set in the OUTPUT section.

■ If ACE has already printed past the column specified by num-expr,
ACE ignores the COLUMN expression.

The following example is from the clist2.ace report:

page header
print "NUMBER",

column 9, "NAME",
column 32, "LOCATION",
column 54, "ZIP",
column 62, "PHONE"

skip 1 line

COLUMN is a required keyword.
num-expr is a required number expression that specifies the column position for

the next item to be printed.

COLUMN num-expr
The ACE Report Writer 4-85

CURRENT
CURRENT
This expression evaluates as a character string with the value of the current
date and time as supplied by the operating system.

The following example prints the current date and time to a precision of
MINUTE:

print current year to minute

CURRENT is a required keyword.
first is an optional qualifier that specifies the first field to be returned.
TO is a required keyword if you include first and last qualifiers.
last is an optional qualifier that specifies the last field to be returned.

CURRENT

first TO last
4-86 IBM Informix SQL Reference Manual

DATE
DATE
This expression evaluates as a character string with a value of today’s date in
the form “Thu Feb 17 1999.”

Because DATE evaluates as type CHAR, you can use it with subscripts to
express a day, month, date, or year. The following example:

print "Today is ", date[1,3]

displays the three-letter abbreviation for the day of the week.

Today is Mon

The installation of message files in a subdirectory of $INFORMIXDIR/msg
and subsequent reference to that subdirectory by way of the environment
variable DBLANG causes month and day portions of the character string
returned by DATE to contain language-specific month name and day name
abbreviations. For example, in a Spanish locale the day Saturday is translated
into the day name abbreviation Sab, which stands for Sabado (the Spanish
word for Saturday).♦

DATE

GLS
The ACE Report Writer 4-87

DATE()
DATE()
The DATE function converts the expression with which you call it to type
DATE.

Usage
■ The DATE function is typically used to convert date strings to type

DATE.

■ A properly formatted date string is required. The default format is
mm/dd/yy, but this can be changed by way of the environment
variable DBDATE.

DATE is a required keyword.
date-expr is a required expression of any type that evaluates to a type DATE

value.

DATE (date-expr)
4-88 IBM Informix SQL Reference Manual

DAY()
DAY()
The DAY function returns the day of the month when you call it with a type
DATE or DATETIME expression.

DAY is a required keyword.
date-expr is a required expression that evaluates to a type DATE or DATETIME

value.

DAY (date-expr)
The ACE Report Writer 4-89

LINENO
LINENO
This expression has the value of the line number of the line that ACE is
currently displaying. ACE computes the line number by calculating the
number of lines from the top of the page.

Usage
Do not use LINENO within a page header or trailer. LINENO works on the first
page header but does not work on any subsequent pages.

LINENO
4-90 IBM Informix SQL Reference Manual

MDY()
MDY()
The MDY function returns a type DATE value when you call it with three
expressions that evaluate to integers representing the month, date, and year.

MDY is a required keyword.
num-expr1 is an expression that evaluates to an integer that represents the

number of the month (1-12).
num-expr2 is an expression that evaluates to an integer that represents the

number of the day of the month (1-28, 29, 30, or 31, depending on the
month).

num-expr3 is an expression that evaluates to a four-digit integer that represents
the year.

MDY (num-expr1 , num-expr2 , num-expr3)
The ACE Report Writer 4-91

MONTH()
MONTH()
The MONTH function returns an integer that corresponds to the month (1-12)
of its type DATE or DATETIME argument.

MONTH is a required keyword.
date-expr is a required expression that evaluates to a type DATE or DATETIME

value.

MONTH (date-expr)
4-92 IBM Informix SQL Reference Manual

PAGENO
PAGENO
This expression has the value of the page number of the page that ACE is
currently displaying.

Usage
Use PAGENO in a PRINT statement in the PAGE HEADER or PAGE TRAILER
control block to number the pages of a report. (You can also use PAGENO in
other control blocks.)

The following example is from the ord3.ace report:

page trailer
print column 28, pageno using "page <<<<"

PAGENO
The ACE Report Writer 4-93

SPACES
SPACES
This expression evaluates as a string of spaces. It is identical to a quoted
string of spaces.

The following example is from the mail1.ace report:

format
on every row

print fname, lname
print company
print address1
print address2
print city, ", " , state,

2 spaces, zipcode
skip 2 lines

end

num-expr is a number expression that designates how many spaces.
SPACE[S] is a required keyword. You can use either the keyword SPACE or

SPACES.

SPACES

num-expr SPACE
4-94 IBM Informix SQL Reference Manual

TIME
TIME
This expression evaluates as a character string with a value of the current
time in the form hh:mm:ss.

TIME
The ACE Report Writer 4-95

TODAY
TODAY
This expression evaluates as type DATE with a value of the current date as
supplied by the operating system.

The following example is from the ord3.ace report:

skip 1 line
print column 15, "FROM: ", begin_date

using "mm/dd/yy",
column 35, "TO: ", end_date

using "mm/dd/yy"
print column 15, "Report run date: ",

today using "mmm dd, yyyy"
skip 2 lines
print column 2, "ORDER DATE", column 15,

"COMPANY", column 35, "NAME",
column 57, "NUMBER", column 65, "AMOUNT"

TODAY
4-96 IBM Informix SQL Reference Manual

USING
USING
This expression allows you to format a number or date expression. With a
number expression, you can use USING to line up decimal points, right- or
left-justify numbers, put negative numbers in parentheses, and perform
other formatting functions. With a date expression, USING converts the date
to a variety of formats.

Usage
■ The format string must appear between quotation marks.

■ Although USING is generally used as part of a PRINT statement, you
can also use it with LET.

■ If you attempt to display a number that is too large for a display field,
ACE fills the field with asterisks to indicate an overflow.

expr1 is the required expression that specifies what USING is to format.
USING is a required keyword.
expr2 is the required format string that specifies how USING is to format expr1.

expr1 USING expr2
The ACE Report Writer 4-97

USING
Formatting Number Expressions

The format string consists of combinations of the following characters: * & #
< , . - + () $. The following characters float: - + () $. When a character floats,
ACE displays multiple leading occurrences of the character as a single
character as far to the right as possible, without interfering with the number
that is being displayed. Refer to the following list:

* This character fills with asterisks any positions in the display field that
would otherwise be blank.

& This character fills with zeros positions in the display field that would
otherwise be blank.

This character does not change any blank positions in the display field.
Use this character to specify a maximum width for a field.

< This character causes the numbers in the display field to be left-
justified.

, This character is a placeholder for the thousands separator. The default
thousands separator is a comma. Environment variables DBFORMAT,
DBMONEY, and LANG determine the thousands separator.

. This character is a placeholder for the decimal separator. The default
decimal separator is a period. Environment variables DBFORMAT,
DBMONEY, and LANG determine the decimal separator.

- This character is a literal; USING displays it as a minus sign when expr1
is less than zero. When you group several in a row, a single minus sign
floats to the rightmost position without interfering with the number
being printed.

+ This character is a literal; USING displays it as a plus sign when expr1
is greater than or equal to zero and as a minus sign when it is less than
zero. When you group several in a row, a single plus sign floats to the
rightmost position without interfering with the number being printed.

(This character is a literal; USING displays it as a left parenthesis before
a negative number. It is the accounting parenthesis that is used in place
of a minus sign to indicate a negative number. When you group several
in a row, a single left parenthesis floats to the rightmost position
without interfering with the number being printed.
4-98 IBM Informix SQL Reference Manual

USING
Refer to “Sample Format Strings” on page 4-101 for examples of formatting
number expressions.

Formatting Date Expressions

The format string consists of combinations of the characters m, d, and y that
Figure 4-4 shows.

Figure 4-4
Combinations of Date Format Characters

) This is the accounting parenthesis that is used in place of a minus sign
to indicate a negative number. A single one of these characters
generally closes a format string that begins with a left parenthesis.

$ This character is a placeholder for the leading currency symbol. The
default leading currency symbol is a dollar sign. Environment
variables DBFORMAT, DBMONEY, and LANG determine the leading
currency symbol. When you group several in a row, a single dollar sign
(or leading specified currency symbol) floats to the rightmost position
without interfering with the number being printed.

@ This character is a placeholder for the trailing currency symbol.The
default trailing currency symbol defaults to NULL. Environment
variables DBFORMAT, DBMONEY, and LANG determine the trailing
currency symbol. When you group several in a row, a single at sign (or
locale specified trailing currency symbol) floats to the leftmost position
without interfering with the number being printed.

Format Substring Formatted Result

dd Day of the month as a two-digit number (01-31)

ddd Day of the week as a three-letter abbreviation
(Sun through Sat)

mm Month as a two-digit number (01-12)

mmm Month as a three-letter abbreviation (Jan through Dec)

yy Year as a two-digit number in the 1900s (00-99)

yyyy Year as a four-digit number (0001-9999)
The ACE Report Writer 4-99

USING
Figure 4-5 shows some sample conversions for December 25, 1999.

Figure 4-5
Results of Date Format Strings

GLS settings can affect the way the format string in the USING expression is
interpreted for numeric and monetary data. In the format string, the period
symbol (.) is not a literal character but a placeholder for the decimal
separator specified by environment variables. Likewise, the comma symbol
(,) is a placeholder for the thousands separator specified by environment
variables. The $ symbol is a placeholder for the leading currency symbol. The
@ symbol is a placeholder for the trailing currency symbol. Thus, the format
string $$#,###.## will format the value 1234.56 as $1,234.56 in a US English
locale but as DM1.234,56 in a German locale. Note that setting the DBFORMAT
or DBMONEY environment variables override settings in LC variables. Refer
to Appendix C, “Global Language Support,” and the Informix Guide to GLS
Functionality.

Format String Formatted Result

“mmddyy” 122599

“ddmmyy” 251299

“yymmdd” 991225

“yy/mm/dd” 99/12/25

“yy mm dd” 99 12 25

“yy-mm-dd 99-12-25

“mmm. dd, yyyy” Dec. 25, 1999

“mmm dd yyyy” Dec 25 1999

“yyyy dd mm” 1999 25 12

“mmm dd yyyy” Dec 25 1999

“ddd, mmm. dd, yyyy” Tue, Dec. 25, 1999

“(ddd) mmm. dd, yyyy” (Tue) Dec. 25, 1999

GLS
4-100 IBM Informix SQL Reference Manual

USING
The installation of locale files in a subdirectory of $INFORMIXDIR/msg and
subsequent reference to that subdirectory by way of the environment
variable DBLANG causes mmm and ddd specifiers in a format string to display
locale-specific month name and day name abbreviations on the form. For
example, the ddd. specifier in a Spanish locale translates the day Saturday into
the day name abbreviation Sab., which stands for Sabado (the Spanish word
for Saturday). ♦

The following example prints the balance field using a format string that
allows up to $9,999,999.99 to be formatted correctly:

print "The current balance is ",
23485.23 using "$#,###,##&.&&"

The result of executing this PRINT statement with the value 23,485.23 follows:

The current balance is $ 23,485.23

This example fixes the dollar sign. If dollar signs had been used instead of
characters, the dollar sign would have floated with the size of the number.
It also uses a mix of # and & fill characters. The # character provides blank fill
for unused character positions, while the & character provides zero filling.
This format ensures that even if the number is zero, the positions marked
with & characters appear as zeros, not blanks.

The tables on the following pages illustrate the results of various combina-
tions of data and USING format strings.

Sample Format Strings

Format String Data Value Formatted Result

"#####" 0 bbbbb

"&&&&&" 0 00000

"$$$$$" 0 bbbb$

"*****" 0 *****

"<<<<<" 0 (NULL string)

Here the character b represents a blank or space.

(1 of 6)
The ACE Report Writer 4-101

USING
"<<<,<<<" 12345 12,345

"<<<,<<<" 1234 1,234

"<<<,<<<" 123 123

"<<<,<<<" 12 12

"##,###" 12345 12,345

"##,###" 1234 b1,234

"##,###" 123 bbb123

"##,###" 12 bbbb12

"##,###" 1 bbbbb1

"##,###" -1 bbbbb1

"##,###" 0 bbbbbb

"&&,&&&" 12345 12,345

"&&,&&&" 1234 01,234

"&&,&&&" 123 000123

"&&,&&&" 12 000012

"&&,&&&" 1 000001

"&&,&&&" -1 000001

"&&,&&&" 0 000000

"&&,&&&.&&" 12345.67 12,345.67

"&&,&&&.&&" 1234.56 01,234.56

"&&,&&&.&&" 123.45 000123.45

"&&,&&&.&&" 0.01 000000.01

"$$,$$$" 12345 ****** (overflow)

Format String Data Value Formatted Result

Here the character b represents a blank or space.

(2 of 6)
4-102 IBM Informix SQL Reference Manual

USING
"$$,$$$" 1234 $1,234

"$$,$$$" 123 bb$123

"$$,$$$" 12 bbb$12

"$$,$$$" 1 bbbb$1

"$$,$$$" 0 bbbbb$

"**,***" 12345 12,345

"**,***" 1234 *1,234

"**,***" 123 ***123

"**,***" 12 ****12

"**,***" 1 *****1

"**,***" 0 ******

"##,###.##" 12345.67 12,345.67

"##,###.##" 1234.56 b1,234.56

"##,###.##" 123.45 bbb123.45

"##,###.##" 12.34 bbbb12.34

"##,###.##" 1.23 bbbbb1.23

"##,###.##" 0.12 bbbbb0.12

"##,###.##" 0.01 bbbbbb.01

"##,###.##" -0.01 bbbbbb.01

"##,###.##" -1 bbbbb1.00

"$$,$$$.$$" 12345.67 ********* (overflow)

"$$,$$$.$$" 1234.56 $1,234.56

"$$,$$$.##" 0.00 $.00

Format String Data Value Formatted Result

Here the character b represents a blank or space.

(3 of 6)
The ACE Report Writer 4-103

USING
"$$,$$$.##" 1234.00 $1,234.00

"$$,$$$.&&" 0.00 $.00

"$$,$$$.&&" 1234.00 $1,234.00

"-$$$,$$$.&&" -12345.67 -$12,345.67

"-$$$,$$$.&&" -1234.56 -b$1,234.56

"-$$$,$$$.&&" -123.45 -bbb$123.45

"--$$,$$$.&&" -12345.67 -$12,345.67

"--$$,$$$.&&" -1234.56 -$1,234.56

"--$$,$$$.&&" -123.45 -bb$123.45

"--$$,$$$.&&" -12.34 -bbb$12.34

"--$$,$$$.&&" -1.23 -bbbb$1.23

"-##,###.##" -12345.67 -12,345.67

"-##,###.##" -123.45 -bbb123.45

"-##,###.##" -12.34 -bbbb12.34

"--#,###.##" -12.34 -bbb12.34

"---,###.##" -12.34 -bb12.34

"---,-##.##" -12.34 -12.34

"---,--#.##" -1.00 -1.00

"-##,###.##" 12345.67 12,345.67

"-##,###.##" 1234.56 1,234.56

"-##,###.##" 123.45 123.45

"-##,###.##" 12.34 12.34

"--#,###.##" 12.34 12.34

Format String Data Value Formatted Result

Here the character b represents a blank or space.

(4 of 6)
4-104 IBM Informix SQL Reference Manual

USING
"---,###.##" 12.34 12.34

"---,-##.##" 12.34 12.34

"---,---.##" 1.00 1.00

"---,---.--" -.01 -.01

"---,---.&&" -.01 -.01

"----,--$.&&" -12345.67 -$12,345.67

"----,--$.&&" -1234.56 -$1,234.56

"----,--$.&&" -123.45 -$123.45

"----,--$.&&" -12.34 -$12.34

"----,--$.&&" -1.23 -$1.23

"----,--$.&&" -.12 -$.12

"$***,***.&&" 12345.67 $*12,345.67

"$***,***.&&" 1234.56 $**1,234.56

"$***,***.&&" 123.45 $****123.45

"$***,***.&&" 12.34 $*****12.34

"$***,***.&&" 1.23 $******1.23

"$***,***.&&" .12 $*******.12

"($$$,$$$.&&)" -12345.67 ($12,345.67)

"($$$,$$$.&&)" -1234.56 (b$1,234.56)

"($$$,$$$.&&)" -123.45 (bbb$123.45)

"(($$,$$$.&&)" -12345.67 ($12,345.67)

"(($$,$$$.&&)" -1234.56 ($1,234.56)

"(($$,$$$.&&)" -123.45 (bb$123.45)

Format String Data Value Formatted Result

Here the character b represents a blank or space.

(5 of 6)
The ACE Report Writer 4-105

USING
"(($$,$$$.&&)" -12.34 (bbb$12.34)

"(($$,$$$.&&)" -1.23 (bbbb$1.23)

"((((,(($.&&)" -12345.67 ($12,345.67)

"((((,(($.&&)" -1234.56 ($1,234.56)

"((((,(($.&&)" -123.45 ($123.45)

"((((,(($.&&)" -12.34 ($12.34)

"((((,(($.&&)" -1.23 ($1.23)

"((((,(($.&&)" -.12 ($.12)

"($$$,$$$.&&)" 12345.67 $12,345.67

"($$$,$$$.&&)" 1234.56 $1,234.56

"($$$,$$$.&&)" 123.45 $123.45

"(($$,$$$.&&)" 12345.67 $12,345.67

"(($$,$$$.&&)" 1234.56 $1,234.56

"(($$,$$$.&&)" 123.45 $123.45

"(($$,$$$.&&)" 12.34 $12.34

"(($$,$$$.&&)" 1.23 $1.23

"((((,(($.&&)" 12345.67 $12,345.67

"((((,(($.&&)" 1234.56 $1,234.56

"((((,(($.&&)" 123.45 $123.45

"((((,(($.&&)" 12.34 $12.34

"((((,(($.&&)" 1.23 $1.23

"((((,(($.&&)" .12 $.12

Format String Data Value Formatted Result

Here the character b represents a blank or space.

(6 of 6)
4-106 IBM Informix SQL Reference Manual

WEEKDAY()
WEEKDAY()
The WEEKDAY function returns an integer that represents the day of the week
when you call it with a type DATE or DATETIME expression.

WEEKDAY returns an integer in the range 0-6. 0 represents Sunday, 1
represents Monday, and so forth.

WEEKDAY is a required keyword.
date-expr is a required expression that evaluates to a type DATE or

DATETIME value.

WEEKDAY (date-expr)
The ACE Report Writer 4-107

WORDWRAP
WORDWRAP
This expression displays the character field that precedes it on multiple lines
with lines broken between words at temporary left and right margins.

Usage
■ The temporary left margin is the current printing column. The

contents of char-expr are displayed on as many lines as necessary
between the temporary left and right margins.

■ Line breaks are positioned to avoid breaking words where possible.

■ A line break is forced where the data contains a line feed (ASCII 10),
a return (ASCII 13), or a combination of the two.

The following example invokes WORDWRAP with a temporary right margin
at column 70:

print column 10, textcol wordwrap right margin 70

char-expr is an expression with a CHAR value.
WORDWRAP is a required keyword.
RIGHT
MARGIN

introduces a temporary right margin that overrides the right
margin of the report.

column specifies the column number of the temporary right margin.

RIGHT MARGIN column

char-expr WORDWRAP
4-108 IBM Informix SQL Reference Manual

YEAR()
YEAR()
The YEAR function returns an integer that represents the year when you call
it with a type DATE or DATETIME expression.

YEAR is a required keyword.
date-expr is a required expression that evaluates to a type DATE or DATETIME

value.

YEAR (date-expr)
The ACE Report Writer 4-109

5
Chapter
User-Menu
In This Chapter . 5-3

Accessing a Menu 5-4
Using a Menu Within INFORMIX-SQL 5-4

Designing a Menu 5-6

Creating a Menu. 5-8
Accessing PERFORM with the menuform Form 5-8
Entering Menu Data 5-10
Steps for Entering Your Own Data 5-14

Modifying a Menu 5-16

Menu Display Fields 5-16
MENU NAME 5-17
MENU TITLE 5-18
SELECTION NUMBER 5-19
SELECTION TYPE 5-20
SELECTION TEXT 5-22
SELECTION ACTION 5-23

Creating a Script Menu 5-25

5-2 IBM
 Informix SQL Reference Manual

In This Chapter
The User-menu option allows you to create and run custom menus. The
options on a user-menu can call the following items:

■ Submenus

■ INFORMIX-SQL programs (PERFORM, for example)

■ Other programs or sets of programs in your software library

■ Operating system utilities

■ Forms or reports

Use a special PERFORM screen form to create or alter a menu structure. Two
special tables hold the menus, text, and command references for each menu
option in the menu structure.

You can create one user-menu for each database. You cannot create a user-
menu without specifying a database. The options in a user-menu, however,
do not have to refer to any particular database.

A user-menu cannot exist separately from a database. If you want to keep the
user-menu apart from your working databases, create a database that
contains only menu data.

This chapter contains six sections:

■ Accessing a Menu

■ Designing a Menu

■ Creating a Menu

■ Modifying a Menu

■ Menu Display Fields

■ Creating a Script Menu
User-Menu 5-3

Accessing a Menu
Accessing a Menu
You can access a menu from the INFORMIX-SQL Main menu or from the
operating-system command line. The next section describes the use of the
User-menu option on the INFORMIX-SQL Main menu. Appendix G explains
how to access a user-menu directly from the operating-system command
line.

Using a Menu Within INFORMIX-SQL
Follow these steps to access the user-menu included with the stores7 demon-
stration database:

1. Use the Database option on the INFORMIX-SQL Main menu to make
the stores7 database your current database.

2. Select the User-menu option on the INFORMIX-SQL Main menu. The
USER-MENU menu displays, as Figure 5-1 shows.

Figure 5-1
The USER-MENU Menu

3. Select the Run option on the USER-MENU menu. The Main menu of
the USER-MENU for the stores7 database displays, as Figure 5-2 on
page 5-5 shows.

USER-MENU: Run Modify Exit
Run the user-menu for the current database.

------------------- stores7 -----------------------Press CONTROL-W for Help -----
5-4 IBM Informix SQL Reference Manual

Using a Menu Within INFORMIX-SQL
Figure 5-2
The Main Menu of the stores7 User-Menu

4. Select a menu option by typing the number to the left of the desired
option or positioning the highlight on the option with the Arrow
keys. Press RETURN. INFORMIX-SQL executes the option you select.

5. Type e to exit a menu. If you type e from the demonstration database
menu, the INFORMIX-SQL USER-MENU menu displays.

WEST COAST WHOLESALERS, INC.

1. FORMS

2. REPORTS

3. QUERIES

4. TABLE DEFINITIONS

5. UTILITIES

Use space bar, arrow keys, or type number to make selection.
Enter ’e’ to return to previous menu or exit.
Enter carriage return to execute selection: 1
User-Menu 5-5

Designing a Menu
Designing a Menu
You can have up to 19 levels of menus in the user-menu structure and up to
28 options on each menu.

The total number of options in a single menu depends on two factors:

■ The number of lines your screen can hold

■ The length of the menu titles

Most screens can accommodate 14 single-spaced menu lines. Each menu line
can display 2 options of up to 33 characters of text in each option. If the text
for each option on a menu does not exceed 33 characters, you can display up
to 14 double-spaced menu options (2 options per line) or 28 single-spaced
menu options (2 options per line). If the text for an option is longer than 33
characters, it requires an entire line, reducing the total number of options
available for that menu.

As an example of a simple menu, consider the user-menu for the stores7
demonstration database. It has five options on the top or main level:

■ FORMS

■ REPORTS

■ QUERIES

■ TABLE DEFINITIONS

■ UTILITIES
5-6 IBM Informix SQL Reference Manual

Designing a Menu
Each option on the Main menu calls a menu, and each option on a menu
performs an action. A design outline for the user-menu included with the
stores7 database might look like this:

WEST COAST WHOLESALERS, INC.

1. USE DATA ENTRY FORMS
1. CUSTOMER ENTRY/QUERY FORM
2. ORDER ENTRY/QUERY FORM
3. DISPLAY CUSTOMER FORM SPECIFICATION
4. DISPLAY ORDER FORM SPECIFICATION

2. RUN REPORTS
1. RUN CUSTOMER REPORT
2. RUN REPORT ON CUSTOMER BY DESIGNATED STATE
3. RUN CUSTOMER MAILING LABELS
4. RUN MATRIX REPORT ON MONTHLY SALES
5. DISPLAY REPORT 1 SPECIFICATION
6. DISPLAY REPORT 2 SPECIFICATION
7. DISPLAY REPORT 3 SPECIFICATION
8. DISPLAY REPORT 4 SPECIFICATION

3. EXECUTE DATABASE QUERIES
1. DISPLAY CUSTOMER INFORMATION BASED ON

PARTIAL NAME MATCH
2. INSERT, UPDATE, SELECT, AND DELETE NEW

CUSTOMER ROW
3. DISPLAY ALL CURRENTLY UNPAID ORDERS
4. DISPLAY INFORMATION BASED ON A VIEW
5. DISPLAY CUSTOMERS PLUS OUTSTANDING ORDERS

(NO OUTER JOIN)

4. DISPLAY DATABASE TABLE DEFINITIONS
1. TABLE "CUSTOMER"
2. TABLE "ITEMS"
3. TABLE "MANUFACT"
4. TABLE "ORDERS"
5. TABLE "STOCK"
6. TABLE "STATE"
7. TABLE "CUST_CALLS"

5. UTILITY MENU
1. DISPLAY DATE AND TIME
2. CHECK CUSTOMER TABLE
3. UNLOAD CUSTOMER TABLE
User-Menu 5-7

Creating a Menu
Creating a Menu
The first step in creating a menu is to access the PERFORM program with the
menuform screen form. The second step is to enter data through this screen
form.

The menuform form is a special PERFORM screen form that you use only to
create or to modify a user-menu. You can enter, change, and remove menu
information with the form, but you cannot change the appearance of the
screen form itself, and you cannot run FORMBUILD on it.

Accessing PERFORM with the menuform Form
Select the User-menu option on the INFORMIX-SQL Main menu. If there is no
current database, the CHOOSE DATABASE screen appears. After you select a
database, the USER-MENU menu displays. Select the Modify option and
INFORMIX-SQL displays the PERFORM menu with the menuform form (see
Figure 5-3).

Figure 5-3
The PERFORM Menu with the menuform Entry Form

PERFORM: Query Next Previous View Add Update Remove Table . . .
Searches the active database table. ** 1: sysmenus table**

===========================MENU ENTRY FORM=================================

Menu Name: []

Menu Title: []

--------------------------SELECTION SECTION--------------------------------

Selection Number: Selection Type:

Selection
Text:

Selection
Action:
5-8 IBM Informix SQL Reference Manual

Accessing PERFORM with the menuform Form
Two tables are accessed in the menuform form:

■ The sysmenus table stores information about each menu in the user-
menu. This information includes the Menu name (used by
INFORMIX-SQL to identify the menu), and the Menu title (text that
you want to appear when the menu displays).

■ The sysmenuitems table stores information about the options on
each menu. This information includes the following:

❑ The option number

❑ The option type (program, report, form, INFORMIX-SQL
command file, script menu, or menu)

❑ The option title (text that appears on the screen)

❑ The action the option specifies (execute a program, report, form,
or script menu, or call an INFORMIX-SQL command file or a
menu). A script menu allows the user to run multiple actions in
sequence for a single item. Script menus are described in
“Creating a Script Menu” on page 5-25.

The sysmenus table is the master of the sysmenuitems table.

The first person to press Modify from the USER-MENU menu creates both
tables. The creator of the sysmenus and sysmenuitems tables is also the
owner of those tables. Ownership is important when an ANSI-compliant
database is created because, though anyone can run the user-menu, only the
owner of the tables can modify the menu items. Any other user who tries to
modify the menu items receives an error message.
User-Menu 5-9

Entering Menu Data
Entering Menu Data
You enter menu data in two steps. First you enter data for a menu in the two
fields at the top of the screen form (the fields associated with the sysmenus
table). For example, the entry into the sysmenus table for the Main menu in
the stores7 database is shown in this screen.

The following table shows the information for the Main menu and its
options, which are stored in the sysmenus table in the stores7 database.

Menu Name Menu Title

main WEST COAST WHOLESALERS, INC.

forms FORMS

reports REPORTS

queries DATABASE QUERIES

tables DATABASE TABLE DEFINITIONS

utilities UTILITIES

PERFORM: Query Next Previous View Add Update Remove Table . . .
Searches the active database table. ** 2: sysmenus table**

==========================MENU ENTRY FORM=================================

Menu Name: [main]

Menu Title: [WEST COAST WHOLESALERS, INC.]

-------------------------SELECTION SECTION--------------------------------

Selection Number: Selection Type:

Selection
Text:

Selection
Action:
5-10 IBM Informix SQL Reference Manual

Entering Menu Data
Second, you enter data for each option of each menu in the fields on the lower
half of the screen (the fields associated with the sysmenuitems table).

You must make an entry in the sysmenus table before you make entries for a
menu option in the sysmenuitems table. This step is necessary because
INFORMIX-SQL checks when you enter data in the sysmenuitems table to
make sure that menus cited in that table exist in the sysmenus table.

For example, the complete entry for option 1 on the Main menu is shown in
this screen.

In this instance, the Selection Action (forms) is the name of a menu (corre-
sponding to Selection Type M). Information about the FORMS menu must be
entered into the sysmenus table before you complete the entry for option 1.

The information stored in the sysmenuitems table in the stores7 database
appears in Figure 5-4 on page 5-12.

PERFORM: Query Next Previous View Add Update Remove Table . . .
Searches the active database table. ** 2: sysmenuitems table**

==========================MENU ENTRY FORM=================================

Menu Name: [main]

Menu Title: WEST COAST WHOLESALERS, INC.

-------------------------SELECTION SECTION--------------------------------

Selection Number: [1] Selection Type: [M]

Selection
Text: [FORMS]

Selection
Action: [forms]
User-Menu 5-11

Entering Menu Data
Figure 5-4
Data in the sysmenuitems Table

Menu Name Option Selection Text Type Action

main 1 FORMS M forms

main 2 REPORTS M reports

main 3 QUERIES M queries

main 4 TABLE DEFINITIONS M tables

main 5 UTILITIES M utilities

forms 1 CUSTOMER ENTRY/QUERY FORM F customer

forms 2 ORDER ENTRY/QUERY FORM F orders

forms 3 DISPLAY CUSTOMER FORM SPECIFICATION P type customer.per

forms 4 DISPLAY ORDER FORM SPECIFICATION P type orders.per

reports 1 RUN CUSTOMER REPORT R clist1

reports 2 RUN REPORT ON CUSTOMER BY DESIGNATED
STATE

R clist2

reports 3 RUN CUSTOMER MAILING LABELS S mailinglabels

reports 4 RUN MATRIX REPORT ON MONTHLY SALES R months

reports 5 DISPLAY REPORT1 SPECIFICATION P type clist1.ace

reports 6 DISPLAY REPORT2 SPECIFICATION P type clist2.ace

reports 7 DISPLAY REPORT3 SPECIFICATION P type mail.ace

reports 8 DISPLAY REPORT4 SPECIFICATION P type months.ace

mailinglabels 1 run mailing labels report R mail

mailinglabels 2 display output file from mailing labels report P type mail.out

queries 1 DISPLAY CUSTOMER INFORMATION BASED ON
PARTIAL NAME MATCH

S query1

queries 2 INSERT, UPDATE, SELECT, AND DELETE NEW
CUSTOMER ROW

S query2

(1 of 3)
5-12 IBM Informix SQL Reference Manual

Entering Menu Data
queries 3 DISPLAY ALL CURRENTLY UNPAID ORDERS S query3

queries 4 DISPLAY INFORMATION BASED ON A VIEW S query4

queries 5 DISPLAY CUSTOMERS PLUS OUTSTANDING
ORDERS

S query5

query1 1 display SQL syntax for query menu choice 1 P type cust_nme.sql

query1 2 run query menu choice 1 Q cust_nme

query2 1 display SQL syntax for query menu choice 2 P type cust_row.sql

query2 2 run query menu choice 2 Q cust_row

query3 1 display SQL syntax for query menu choice 3 P type unpaid.sql

query3 2 run query menu choice 3 Q unpaid

query4 1 display SQL syntax for query menu choice 4 P type view_c.sql ;
type view_s.sql ;
type view_d.sql

query4 2 run query menu choice 4 Q view_s

query5 1 display SQL syntax for query menu choice 5 P type orders1.sql ;
type orders2.sql

query5 2 run query menu choice 5 Q orders1

query5 3 run query menu choice 5 Q orders2

tables 1 TABLE “CUSTOMER” P type c_custom.sql

tables 2 TABLE “ITEMS” P type c_items.sql

tables 3 TABLE “MANUFACT” P type c_manuf.sql

tables 4 TABLE “ORDERS” P type c_orders.sql

tables 5 TABLE “STOCK” P type c_stock.sql

tables 6 TABLE “STATE” P type c_state.sql

tables 7 TABLE “CUST_CALLS” P type c_custcl.sq1

Menu Name Option Selection Text Type Action

(2 of 3)
User-Menu 5-13

Steps for Entering Your Own Data
Steps for Entering Your Own Data
The following steps describe the procedure for entering your own menu and
option data. See the list of display fields in “Menu Display Fields” on
page 5-16 for information on the kind of data to enter for each display field.

1. Select the User-menu option on the INFORMIX-SQL Main menu.

2. Select the Modify option on the USER-MENU Menu. The MENUFORM
screen form displays.

3. Type a to select the Add option.

4. Enter a menu name and menu title for the first menu. Note that main
must be the first menu name. Press ESCAPE when you finish.

5. Enter data in the same way for the second menu. Press ESCAPE when
you finish.

6. When you have entered the menu name and menu title data for all
menus in the user-menu, you are ready to enter data into the
SELECTION SECTION of the form. You should now enter information
about all options on the Main menu. Select the Query option, enter
main in the Menu Name field, and press ESCAPE.

7. Type d to make the detail table (sysmenuitems) active.
INFORMIX-SQL displays the following message:

There are no rows satisfying the conditions.

The sysmenuitems table contains no rows joining the main entry and
the Menu Name field.

utilities 1 DISPLAY DATE AND TIME P date

utilities 2 CHECK CUSTOMER TABLE Q ch_cust

utilities 3 UNLOAD CUSTOMER TABLE S utility3

utility3 1 display SQL syntax for utility menu choice 3 P type u_cust.sql

utility3 2 run utility menu choice 3 Q u_cust

utility3 3 display output of utility menu choice 3 P type customer.unl

Menu Name Option Selection Text Type Action

(3 of 3)
5-14 IBM Informix SQL Reference Manual

Steps for Entering Your Own Data
8. Select the Add option. Enter the Selection Number, Selection Type,
Selection Text, and Selection Action data for the first option on the
Main Menu. Press ESCAPE when you finish entering data about the
first menu option. If there is a second option to the Main Menu, select
Add and enter data about that option. Press ESCAPE when you
finish.

Repeat this step until you have entered data for each option on the
Main Menu.

9. Type m to call the master table again. Use the Query option to locate
and display the Menu Name and Menu Title data for your next
menu. Type d to display the detail table joined to the current row of
the master table.

10. Enter the Selection Number, Selection Type, Selection Text, and
Selection Action data for the first option on this menu. Press ESCAPE
when you finish entering data. Repeat this step for each option in this
menu.

11. Repeat steps 9 and 10 to enter data for the remaining menu options.
When you have entered data for all the options in each menu, the
menu is complete. Select the Exit option to leave PERFORM and
return to the USER-MENU menu.

12. Select the Run option on the USER-MENU menu to run the new
menu.
User-Menu 5-15

Modifying a Menu
Modifying a Menu
You change a user-created menu in the same way you create one. Select the
User-menu option from the INFORMIX-SQL Main menu. Then select the
Modify option on the USER-MENU menu. Use the PERFORM options to
modify the menu entries in the MENUFORM screen form.

For information about PERFORM, see Chapter 3, “The PERFORM Screen
Transaction Processor.”

Menu Display Fields
This section discusses the kinds of information you can enter for each field in
the MENUFORM screen.
5-16 IBM Informix SQL Reference Manual

MENU NAME
MENU NAME
INFORMIX-SQL uses the entry in the Menu Name field to find the menu you
want when you make a selection that calls another menu. The menu name is
used only by INFORMIX-SQL and never displays on a screen.

Usage
■ The menu name must follow the standard rules for identifiers. It can

be from 1 to 18 characters long; the first character must be a letter;
and you can use numbers, letters, and underscores (_) for the rest of
the name.

■ The top-level menu must be named main in all lowercase letters.

The Menu Name entry for the Main menu must be main, as shown in the
following screen.

PERFORM: Query Next Previous View Add Update Remove Table . . .
Searches the active database table. ** 1: sysmenus table**

==========================MENU ENTRY FORM=================================

Menu Name: [main]

Menu Title: []

-------------------------SELECTION SECTION--------------------------------

Selection Number: Selection Type:

Selection
Text:

Selection
Action:
User-Menu 5-17

MENU TITLE
MENU TITLE
Use this field to enter the text INFORMIX-SQL displays at the top of the menu.

Usage
The brackets on the screen show the maximum length of the text. It can
contain any number of words that fit within the brackets.

The Menu Title entry for the Main menu follows.

PERFORM: Query Next Previous View Add Update Remove Table . . .
Searches the active database table. ** 1: sysmenus table**

==========================MENU ENTRY FORM=================================

Menu Name: [main]

Menu Title: [WEST COAST WHOLESALERS, INC.]

-------------------------SELECTION SECTION--------------------------------

Selection Number: Selection Type:

Selection
Text:

Selection
Action:
5-18 IBM Informix SQL Reference Manual

SELECTION NUMBER
SELECTION NUMBER
Use the Selection Number field to enter the option number you want to
appear to the left of each menu item on the screen.

Usage
■ INFORMIX-SQL displays the menu items in numbered order. The user

selects items by number.

■ The total number of options you can have in one menu depends on
two factors: the number of lines your screen can hold and the length
of the menu titles you enter. Most screens can accommodate 14
single-spaced menu lines, and each menu line can display 2 options
of up to 33 characters. If the text for each option on a menu does not
exceed 33 characters, you can display up to 14 double-spaced menu
options (2 options per line) or 28 single-spaced menu options
(2 options per line). If the text for an option is longer than 33
characters, it requires an entire line, reducing the total number of
options available for that menu.

The Selection Number entry for an option on the REPORTS menu follows.

PERFORM: Query Next Previous View Add Update Remove Table . . .
Searches the active database table. ** 2: sysmenuitems table**

==========================MENU ENTRY FORM=================================

Menu Name: [reports]

Menu Title: REPORTS

-------------------------SELECTION SECTION--------------------------------

Selection Number: [3] Selection Type: [S]

Selection
Text: [RUN CUSTOMER MAILING LABELS]

Selection
Action: [mailinglabels]
User-Menu 5-19

SELECTION TYPE
SELECTION TYPE
Use the Selection Type field to specify the type of action an option performs.
You can indicate that an option runs a form or report; calls a menu; executes
an INFORMIX-SQL command file, a program, or an operating system
command; or invokes a script menu.

The following options are available for the Selection Type field.

Usage
■ The entry in the Selection Type field must agree with the entry in the

Selection Action field. For example, when the Selection Type is R, the
Selection Action must be the name of a compiled report.

■ You can enter the Selection Type option in either an uppercase or
lowercase letter. INFORMIX-SQL automatically displays it as an
uppercase letter on the screen.

Option Purpose

F Runs a form

R Runs a report

M Calls a menu

Q Executes an INFORMIX-SQL command file

P Executes a program or an operating system command

S Executes a script menu
5-20 IBM Informix SQL Reference Manual

SELECTION TYPE
The Selection Type entry for running the clist2 report follows.

The Selection Type entry for running the customer entry form follows.

PERFORM: Query Next Previous View Add Update Remove Table . . .
Searches the active database table ** 2: sysmenuitems table**

==========================MENU ENTRY FORM=================================

Menu Name: [reports]

Menu Title: REPORTS

-------------------------SELECTION SECTION--------------------------------

Selection Number: [2] Selection Type: [R]

Selection
Text: [RUN REPORT ON CUSTOMER BY DESIGNATED STATE]

Selection
Action: [clist2]

PERFORM: Query Next Previous View Add Update Remove Table . . .
Searches the active database table ** 2: sysmenuitems table**

==========================MENU ENTRY FORM=================================

Menu Name: [forms]

Menu Title: FORMS

-------------------------SELECTION SECTION--------------------------------

Selection Number: [1] Selection Type: [F]

Selection
Text: [CUSTOMER ENTRY/QUERY FORM]

Selection
Action: [customer]
User-Menu 5-21

SELECTION TEXT
SELECTION TEXT
Use the Selection Text field to enter the text you want to appear to the right
of the option number on the screen.

Usage
■ The brackets on the screen show the maximum length of the text

allowed in this field.

■ The length of the selection text affects the total number of options
you can include in a single menu. See the “Usage” section on page
5-19 for more information.

The Selection Text entry for an option on the REPORTS menu follows.

PERFORM: Query Next Previous View Add Update Remove Table . . .
Searches the active database table. ** 2: sysmenuitems table**

==========================MENU ENTRY FORM=================================

Menu Name: [reports]

Menu Title: REPORTS

-------------------------SELECTION SECTION--------------------------------

Selection Number: [3] Selection Type: [S]

Selection
Text: [RUN CUSTOMER MAILING LABELS]

Selection
Action: [mailinglabels]
5-22 IBM Informix SQL Reference Manual

SELECTION ACTION
SELECTION ACTION
Use the Selection Action field to specify the name of the action executed
when the user selects the option indicated in the Selection Type field. You can
enter a compiled form or report specification, an INFORMIX-SQL command
file, a menu, an operating system command, a program, or a script menu.

Usage
■ The entry in the Selection Action field must agree with the entry in

the Selection Type field, as the following table shows.

■ You can enter Q in the Selection Type field and nothing in the
Selection Action field. When the user selects that option,
INFORMIX-SQL calls the Query-language option on the
INFORMIX-SQL Main menu. The user can then enter one or more SQL
statements.

Selection Type Selection Action

M Enter the menu name (not the menu title) of the
menu. You cannot enter a menu name that does not
exist in the Menu Name field in the sysmenus table.
Example: reports

P Enter a program name or an operating system
command. Example: date

F Enter a form name. It is not necessary to add the .frm
extension. Example: customer

PR Enter a report name. It is not necessary to add the
.arc extension. Example: clist1

Q Enter an SQL command filename. It is not necessary
to add the .sql extension. Example: cust_city

S Enter a script menuname. Example: mailing label
User-Menu 5-23

SELECTION ACTION
■ You can enter an R or F in the Selection Type field and enter nothing
in the Selection Action field. When the user selects this option,
INFORMIX-SQL calls the Report or Form options, respectively, on the
INFORMIX-SQL Main menu.

■ When you finish using the Query-language Report or Form option,
choose the E option to exit. INFORMIX-SQL then returns you to the
USER-MENU menu.

The Selection Action entry used in the demonstration database for running
the clist1 report follows.

The Selection Type R specifies that a report should be run. The Selection
Action specifies clist1 as the name of the report to be run.

PERFORM: Query Next Previous View Add Update Remove Table . . .
Searches the active database table. ** 2: sysmenuitems table**

==========================MENU ENTRY FORM=================================

Menu Name: [reports]

Menu Title: REPORTS

-------------------------SELECTION SECTION--------------------------------

Selection Number: [1] Selection Type: [R]

Selection
Text: [RUN CUSTOMER REPORT]

Selection
Action: [clist1]
5-24 IBM Informix SQL Reference Manual

Creating a Script Menu
Creating a Script Menu
A script menu includes more than one action for a single menu item. By
selecting the appropriate menu option, these actions are run in sequence
without the necessity of displaying the menu on the screen. An S in the
Selection Type field requires the entry of a script menu name in the Selection
Action field.

The following list describes the procedure used to create the mailinglabels
script included in the demonstration user-menu. This script runs and
displays customer mailing labels. It is Selection Number 3 on the REPORTS
menu. When the user selects option 3 on the REPORTS menu, the mailing
labels report runs, and the output file displays on the screen.

1. Select the Modify option on the USER-MENU menu. (See the section
“Creating a Menu” on page 5-8.)

2. Type a to select the Add option.

3. Enter reports in the Menu Name field. The script becomes an option
on the REPORTS Menu.

4. Enter REPORTS in the Menu Title field.

5. Press ESCAPE when you finish.
User-Menu 5-25

Creating a Script Menu
The preceding steps show you how to enter the necessary information in the
sysmenus table. The following display shows how the PERFORM screen
appears at this point.

The following steps show how to enter data into the lower half of the screen
(the sysmenuitems table fields):

1. Type d to make the detail table active.

2. Type a to Add.

3. Enter 3 in the Selection Number field. The script becomes the third
choice on the REPORTS menu.

4. Enter S in the Selection Type field. This indicates you will run a script
menu.

5. Enter the following text in the Selection Text field:
RUN CUSTOMER MAILING LABELS

This text appears to the right of the option number on the screen.

6. Enter mailinglabels in the Selection Action field. This is the name
of the script menu you want to run.

7. Press ESCAPE when you finish.

PERFORM: Query Next Previous View Add Update Remove Table . . .
Added a row to the active database table. ** 1: sysmenus table**

==========================MENU ENTRY FORM=================================

Menu Name: [reports]

Menu Title: [REPORTS]

-------------------------SELECTION SECTION--------------------------------

Selection Number: Selection Type:

Selection
Text:

Selection
Action:

Row Added

PERFORM: Query Next Previous View Add Update Remove Table . . .
Added a row to the active database table. ** 1: sysmenus table**

==========================MENU ENTRY FORM=================================

Menu Name: [reports]

Menu Title: [REPORTS]

-------------------------SELECTION SECTION--------------------------------

Selection Number: Selection Type:

Selection
Text:

Selection
Action:

Row Added
5-26 IBM Informix SQL Reference Manual

Creating a Script Menu
The following screen is the PERFORM screen as it appears at this point.

You must now enter the actions you want the script to perform and the order
in which you want them to be performed, as follows:

1. Type m for Master to make the sysmenus table active.

2. Type a to select the Add option.

3. Enter mailinglabels in the Menu Name field. This is the name of
the script menu.

4. Enter the following text in the Menu Title field:
run report menu selection 3 and display the output file

Unlike all other user-menu menus, the entry in the Menu Title field
for a script menu does not display on the screen. You can use it as a
Comment line to list the series of actions that comprise the script
menu.

5. Press ESCAPE when you finish.

PERFORM: Query Next Previous View Add Update Remove Table . . .
Added a row to the active database table. ** 2: sysmenuitems table**

==========================MENU ENTRY FORM=================================

Menu Name: [reports]

Menu Title: REPORTS

-------------------------SELECTION SECTION--------------------------------

Selection Number: [3] Selection Type: [S]

Selection
Text: [RUN CUSTOMER MAILING LABELS
]

Selection
Action: [mailinglabels]

Row added
User-Menu 5-27

Creating a Script Menu
The preceding steps show how to enter the necessary information in the
sysmenus table. The following screen shows how the PERFORM screen
appears at this point.

The following steps show how to enter data for each option on the menu into
the lower half of the screen (the sysmenuitems table fields):

1. Type d to make the detail table active.

2. Select the Add option.

3. Enter 1 in the Selection Number field. INFORMIX-SQL executes this
action first.

4. Enter R in the Selection Type field. This runs a report.

5. Enter the following text in the Selection Text field:
run mailing labels report

Unlike other user-menu menus, the entry in the Selection Text field
for a script menu does not display on the screen. You can use it as a
Comment Line to describe the action specified by the entry in the
Selection Type field.

PERFORM: Query Next Previous View Add Update Remove Table . . .
Adds a row to the active database table. ** 1: sysmenus table**

==========================MENU ENTRY FORM=================================

Menu Name: [mailinglabels]

Menu Title: [run report menu selection 3 and display the output file]

-------------------------SELECTION SECTION--------------------------------

Selection Number: Selection Type:

Selection
Text:

Selection
Action:

Row added
5-28 IBM Informix SQL Reference Manual

Creating a Script Menu
6. Enter mail in the Selection Action field. This is the name of the
compiled report specified by the action.

7. Press ESCAPE when you finish.

The following screen is the PERFORM screen as it appears at this point.

You enter the second action for the mailinglabels script in a similar fashion
to what you did when you set up the initial action, as follows:

1. Type a for Add.

2. Enter 2 in the Selection Number field. INFORMIX-SQL executes this
action second.

3. Enter P in the Selection Type field. This executes a program.

4. Enter the following text in the Selection Text field:
display output file from mailing labels report

5. Enter type mail.out in the Selection Action field. This is the name
of the operating-system program you want to run.

6. Press ESCAPE when you finish.

PERFORM: Query Next Previous View Add Update Remove Table . . .
Adds a row to the active database table. ** 2: sysmenuitems table**

==========================MENU ENTRY FORM=================================

Menu Name: [mailinglabels]

Menu Title: run report menu selection 3 and display the output file

-------------------------SELECTION SECTION--------------------------------

Selection Number: [1] Selection Type: [R]

Selection
Text: [run mailing labels report]

Selection
Action: [mail]

Row added
User-Menu 5-29

Creating a Script Menu
The following screen is the completed PERFORM screen as it appears at this
point.

The two actions of running the report and displaying the output file are now
entered as details of the mailinglabels script menu. When the user selects
option 3 on the REPORTS menu, the mailinglabels script menu is selected, the
mailing labels report is run, and the output file displays on the screen.

Use the Selection Type S when you want to run more than one action for a
single menu item.

PERFORM: Query Next Previous View Add Update Remove Table . . .
Adds a row to the active database table. ** 2: sysmenuitems table**

==========================MENU ENTRY FORM=================================

Menu Name: [mailinglabels]

Menu Title: run report menu selection 3 and display the output file

-------------------------SELECTION SECTION--------------------------------

Selection Number: [2] Selection Type: [P]

Selection
Text: [display output file from mailing labels report]

Selection
Action: [type mail.out]

Row added
5-30 IBM Informix SQL Reference Manual

6
Chapter
Functions in ACE and PERFORM
In This Chapter . 6-3

Calling C Functions from ACE 6-4
FUNCTION . 6-5
Calling C Functions 6-6
CALL (in ACE) 6-7
Compiling the Report Specification 6-8

Calling C Functions from PERFORM 6-9
Calling C Functions in the INSTRUCTIONS Section 6-9
CALL (in PERFORM) 6-10
ON BEGINNING and ON ENDING Control Blocks 6-11
ON BEGINNING and ON ENDING 6-12
Compiling the Form Specification 6-13

Writing the C Program 6-13
Organizing the C Program 6-13
Passing Values to a C Function 6-16

Testing for the Data Type 6-16
Converting the Data Type 6-18

Returning Values to ACE and PERFORM 6-19

PERFORM Library Functions 6-20
PF_GETTYPE 6-21
PF_GETVAL 6-23
PF_PUTVAL 6-26
PF_NXFIELD 6-29
PF_MSG . 6-31

6-2 IBM
Compiling, Linking, and Running Reports and Forms 6-32
Syntax of the cace and cperf programs. 6-32
Use of cace and cperf 6-33

Examples . 6-33
ACE Example 1 6-33
ACE Example 2 6-35
PERFORM Example 6-36
 Informix SQL Reference Manual

In This Chapter
This chapter discusses calling C functions from ACE and PERFORM. While
both ACE and PERFORM usually can handle all your database report and
screen needs without modification, occasionally you might find it necessary
to add a feature that is not present. For example, a C function called from ACE
might make statistical computations on the data presented in a report and
add these to the report. PERFORM might call C functions to check on the
validity of data, to record the date, time, and name of the person updating the
records, or to update the database.

The C functions can contain the following:

■ Math functions or other C subroutines described in your system’s
C development manuals.

■ If used with PERFORM, the functions described beginning on
page 6-20.

■ If used with INFORMIX-ESQL/C, the library routines and the
INFORMIX-ESQL/C statements described in the INFORMIX-ESQL/C
Programmer’s Manual.

This chapter discusses the following topics:

■ Calling C functions from ACE

■ Calling C functions from PERFORM

■ Writing the C program

■ Using the PERFORM library functions

■ Compiling, linking, and running customized versions of ACE and
PERFORM

The chapter concludes with several examples.
Functions in ACE and PERFORM 6-3

Calling C Functions from ACE
Calling C Functions from ACE
The general format of an ACE report specification file includes the following
seven sections:

■ DATABASE section (required)

■ DEFINE section

■ INPUT section

■ OUTPUT section

■ SELECT section (SELECT or READ required)

■ READ section (SELECT or READ required)

■ FORMAT section (required)

You call a C function from within a report specification file by declaring
the function name in the DEFINE section and by using the function in the
FORMAT section. Then use ACEPREP to compile the report specification file.
6-4 IBM Informix SQL Reference Manual

FUNCTION
FUNCTION
You declare a C function in the DEFINE section of the report specification file
using the FUNCTION statement.

Usage
You can declare several functions at the same time by repeating the keyword
FUNCTION followed by the next function name. Do not include parentheses
after the function name.

You can have PARAM, VARIABLE, and ASCII statements within the DEFINE
section in addition to the FUNCTION statement.

FUNCTION is a required keyword.
userfunc is the name by which the C function is referenced in the specification

file. userfunc must satisfy the conditions for an ACE identifier.

FUNCTION
Statement

FUNCTION userfunc
Functions in ACE and PERFORM 6-5

FUNCTION
Calling C Functions
The FORMAT section of the report specification file contains one or more of
the following control blocks that determine when ACE takes an action:

■ PAGE HEADER control block

■ PAGE TRAILER control block

■ FIRST PAGE HEADER control block

■ ON EVERY ROW control block

■ ON LAST ROW control block

■ BEFORE GROUP OF control block

■ AFTER GROUP OF control block

Each control block contains one or more statements that tell ACE what action
to take. For more information on the statements that ACE allows, see Chapter
4. In addition to the statements described in Chapter 4, you can use a C
function call with the syntax shown on page 6-7.
6-6 IBM Informix SQL Reference Manual

CALL (in ACE)
CALL (in ACE)

Usage
An expression can include the following items:

■ Numeric or character constants

■ Column names

■ ACE variables

■ ACE parameters

■ ACE functions (such as group aggregates and date functions)

■ Quoted strings

■ Arithmetic and logical operators

■ Keywords

ACE statements are composed of keywords and expressions. You can use a C
function in an expression wherever you can use a constant. When you use a
function in this way you need not use the CALL keyword, but you must make
sure the function returns a value.

CALL is an optional keyword that you must use when the C function does
not return a value. If you omit the CALL keyword, userfunc must
return a value.

userfunc is the name of a C function that you have previously declared in the
DEFINE section.

expression is 1 to 10 expressions, separated by commas.

CALL
Statement

CALL

userfunc (

expression

)

Functions in ACE and PERFORM 6-7

CALL (in ACE)
If you are connecting to Informix Dynamic Server, you can pass columns of
type VARCHAR, TEXT, or BYTE. You cannot, however, return TEXT or BYTE
values from a C function. ♦

The following control block calls a C function stat that calculates statistics on
the data in the rows that correspond to the order_num order:

after group of order_num
call stat(order_num)

The following control block prints the order number and a value intended to
correlate the total price of each order with the period of time the order has
been outstanding. It calls a C function that computes the logarithm.

on every row
print order_num,
logarithm((total of total_price)/(today - order_date))

The following control block is taken from “ACE Example 1” on page 6-33. It
prints the system date and time at the top of the first page of the report. The
function to_unix sends its string argument to UNIX.

first page header
call to_unix("date")

Compiling the Report Specification
Use ACEPREP to compile the report specification that includes calls to
C function calls, just as you compile a report with no calls. When you name
the file that contains the report specification file, assign it the .ace extension.
For example, you could name the file specfile.ace. To invoke ACEPREP for
this file, enter the following statement on the command line:

saceprep specfilefs

The .ace extension is optional when you identify the report specification file
for the saceprep command.

For more information on compiling report specification files, see Chapter 4,
“The ACE Report Writer.”

IDS
6-8 IBM Informix SQL Reference Manual

Calling C Functions from PERFORM
Calling C Functions from PERFORM
The general format of a PERFORM form specification file includes the
following five sections:

■ DATABASE section (required)

■ SCREEN section (required)

■ TABLES section (required)

■ ATTRIBUTES section (required)

■ INSTRUCTIONS section (optional)

You can use C functions in the control blocks in the INSTRUCTIONS section
of a form specification file. You can also use the ON BEGINNING and
ON ENDING control blocks with a function call within the INSTRUCTIONS
section.

Calling C Functions in the INSTRUCTIONS Section
In control blocks, you can use C functions anywhere you can use an
expression, or the function can stand alone. Use the CALL statement for
expressions or for simple function calls. The syntax of the CALL statement is
described on page 6-10.
Functions in ACE and PERFORM 6-9

CALL (in PERFORM)
CALL (in PERFORM)
Use the CALL statement in PERFORM to execute a C function or to retrieve
values from a C function.

If you are connecting to Informix Dynamic Server, you can pass columns of
type VARCHAR, TEXT, or BYTE. You cannot, however, return TEXT or BYTE
values from a C function. ♦

CALL is an optional keyword that you must use when the C function does
not return a value. If you omit the keyword CALL, userfunc must
return a value.

userfunc is the name by which the C function is referenced in the PERFORM
specification.

expression is a list of 1 to 10 expressions. An expression is defined as follows:
■ A field tag

■ A constant value

■ An aggregate value

■ A C function

■ The keyword TODAY

■ The keyword CURRENT

■ Any combination of the preceding items, combined by using the
arithmetic operators +, -, *, and /.

CALL
Statement

CALL

userfunc (

expression

)

IDS
6-10 IBM Informix SQL Reference Manual

CALL (in PERFORM)
The following examples demonstrate several methods of calling C functions:

after editadd of proj_num
let f001 = userfunc(f002)

fs
before editupdate of paid_date

if boolfunc(f003) then
let f004 = 15

else
let f004 = 10

after add update remove of customer
call userfunc()

ON BEGINNING and ON ENDING Control Blocks
You can use the ON BEGINNING and ON ENDING control blocks only with
calls to C functions. Specify these control blocks in the INSTRUCTIONS section
of the form specification file. ON BEGINNING executes immediately after
invoking PERFORM, and ON ENDING executes immediately after the EXIT
command.

For example, use ON BEGINNING to perform one of the following actions:

■ Give instructions

■ Request a special password

■ Initialize a temporary work file in which to keep a batch of trans-
action records

For example, use ON ENDING to perform one of the following actions:

■ Perform calculations to summarize the changes made in the database
during the PERFORM session that just concluded

■ Print summaries of the records added

■ Erase work files

You can include multiple ON BEGINNING and ON ENDING control blocks in
the INSTRUCTIONS section. However, you can include only one CALL
statement in each control block.
Functions in ACE and PERFORM 6-11

ON BEGINNING and ON ENDING
ON BEGINNING and ON ENDING
Use ON BEGINNING to designate that a C function call occurs immediately
after you invoke PERFORM. Use ON ENDING to designate that a C function
call occurs immediately after the EXIT command.

ON are required keywords that begin the ON BEGINNING
BEGINNING control block.
ON ENDING are required keywords that begin the ON ENDING control block.
CALL is a required keyword.
userfunc is the name by which the C function is referenced in the

PERFORM specification.
expression is a list of 1 to 10 expressions. An expression is defined as one of

the following items:
■ A field tag

■ A constant value

■ An aggregate value

■ A C function

■ The keyword TODAY

■ The keyword CURRENT

■ Any combination of the preceding items, combined by using
the arithmetic operators +, -, *, and /

ON BEGINNING
Block

expression

)ON BEGINNING CALL userfunc (

ON ENDING
Block

expression

)ON ENDING CALL userfunc (
6-12 IBM Informix SQL Reference Manual

Writing the C Program
Compiling the Form Specification
Use FORMBUILD to compile the form specification file that includes calls to C
functions just as you compile a report with no calls to C. When you name the
form specification file, assign it the .per extension. For example, you could
name the file specfile.per. To invoke FORMBUILD with this file, enter the
following statement on the command line:

sformbld specfile

The .per extension is optional when you identify the form specification file
for the sformbld command.

For more information on compiling form specification files, see Chapter 2,
“The FORMBUILD Transaction Form Generator.”

Writing the C Program
The C program must include the appropriate header files and structure
declarations, as well as the C functions. This section describes the following
topics:

■ Organizing the C program

■ Passing values to the C program

■ Returning values to ACE and PERFORM

Organizing the C Program
To create a custom version of ACE or PERFORM that includes your functions,
you must write a C program that contains the appropriate declarations. Your
program can have one or more functions, and you can define other functions
to use internally in your program. The following example illustrates the
general structure of a C program that includes two user-defined functions:

#include "ctools.h"
/* add other includes as desired */

valueptr funct1();
valueptr funct2();

struct ufunc userfuncs[] =
Functions in ACE and PERFORM 6-13

Organizing the C Program
{
"myfunct1", funct1,
"myfunct2", funct2,
0,0
};

/* add other global declarations */

valueptr funct1()
{

.

.

.
/* funct1 takes no arguments

and returns a character string */
.
.
.

strreturn(s, len);
}

valueptr funct2(arg1, arg2)
valueptr arg1, arg2;
{
.
.
.
/* funct2 takes two arguments

and returns no value */
.
.
.
}

The following steps describe how to organize your C program:

1. Place the ctools.h header file at the top of the program:
#include "ctools.h"

You might want to include other header files, such as math.h or
stdio.h, depending on your application. If you use
INFORMIX-ESQL/C, you can include sqlca.h and other header files.

The ctools.h header file automatically includes the following
additional header files:

■ value.h

■ datetime.h

■ sqltypes.h
6-14 IBM Informix SQL Reference Manual

Organizing the C Program
2. Before you initialize the required array of ufunc structures, you must
declare your functions. Included in ctools.h is the definition of the
value structure and pointers to that structure, as shown in the
following example:

typedef struct value *valueptr;
typedef struct value *acevalue;
typedef struct value *perfvalue;

The last two pointers are included for compatibility with earlier
releases of ACE and PERFORM. All your functions must be of type
valueptr. If funct1() and funct2(arg1, arg2) are your functions,
declare them next:

valueptr funct1();
valueptr funct2();

3. Make the structure declaration and initialization for userfuncs[] the
next section of your program. This structure is required so that ACE
and PERFORM can call your functions at run time:

struct ufunc userfuncs[] =
{
"myfunct1", funct1,
"myfunct2", funct2,
0,0
};

The quoted strings, "myfunct1" and "myfunct2", must be the
names of the functions as they appear in the specification file. funct1
and funct2 (which correspond to "myfunct1" and "myfunct2"), are
pointers to the functions as defined within the C program. Note that
the C functions do not need to have the same names that you used in
your specification file. The purpose of the userfuncs array is to make
the connection between these two names. The two zeros at the end of
the array are required as terminators.

4. The last section of the C program is the code for your functions. As
stated earlier, all the functions that you call in ACE or PERFORM must
be declared as returning pointers to a value structure. Also, all
arguments of your functions must be declared type valueptr.

Several macros are included that you can use to return values of type
valueptr. These and other conversion routines are described in
“Passing Values to a C Function” on page 6-16.
Functions in ACE and PERFORM 6-15

Passing Values to a C Function
Passing Values to a C Function
Including the ctools.h header file allows you to pass values to the C functions
from ACE and PERFORM. When passing values to a C function, the C function
must determine the data type of the data passed. The C function has two
options for determining the data type:

■ Testing for the data type

■ Converting the data type

Testing for the Data Type

By using the following definitions, you can test for the type of data passed to
the C function. For example, if the parameter passed to the C function is arg,
you can use the following definitions to detect the data type of arg and to
extract the value of arg.

Definition Returns

arg->v_charp pointer to string

arg->v_len length of string

arg->v_int integer value

arg->v_long long value

arg->v_float float value

arg->v_double double value

arg->v_decimal decimal, money, datetime, or interval value

arg->v_type data type

arg->v_ind null indicator

arg->v_prec datetime/interval qualifier
6-16 IBM Informix SQL Reference Manual

Passing Values to a C Function
You can determine the data type of arg by checking arg->v_type against a
series of integer constants defined in sqltypes.h.

If arg->v_type is SQLCHAR, then the pointer to the string is available in
arg->v_charp, and the number of characters in the string (length) is
available in arg->v_len. The string is not null-terminated.

arg->v_ind is set to a negative value if the value of arg is NULL; otherwise
arg->v_ind is set to zero.

If you are connecting to Informix Dynamic Server, you can use the VARCHAR
data type as well. You can check arg->v_type against the following in
sqltypes.h.

You cannot pass TEXT or BYTE values. ♦

v_type SQL Type C Type

SQLCHAR CHAR char
string
fixchar

SQLSMINT SMALLINT short

SQLINT INTEGER long

SQLFLOAT FLOAT double

SQLSMFLOAT SMALLFLOAT float

SQLDECIMAL DECIMAL dec_t

SQLSERIAL SERIAL long

SQLDATE DATE long

SQLMONEY MONEY dec_t

SQLDTIME DATETIME dtime_t

SQLINTERVAL INTERVAL intrvl_t

v_type SQL Type C Type

SQLVCHAR VARCHAR char

IDS
Functions in ACE and PERFORM 6-17

Passing Values to a C Function
Converting the Data Type

The ctools.h header file provides an alternative to testing the type of the
parameter passed from ACE or PERFORM. Several functions, listed in the
following table, can force conversion of a parameter passed as a pointer to a
value structure, to a C data type of your choice.

All these functions require a pointer to a type value structure and return a
value of the type indicated. The todecimal, todatetime, and tointerval
functions each require a second argument, as the following table shows.

If the type conversion is not successful, the global integer toerrno is set to a
negative value; if the conversion is successful, toerrno is set to zero.

Function Returned Type

toint int

tolong long

tofloat double

todouble double

todate long

todecimal dec_t

todatetime dtime_t

tointerval intrvl_t

Function Second Argument

todecimal pointer to the dec_t structure

todatetime pointer to the dtime_t structure

tointerval pointer to the intrvl_t structure
6-18 IBM Informix SQL Reference Manual

Returning Values to ACE and PERFORM
Returning Values to ACE and PERFORM
If a function returns a value to ACE or PERFORM, you must insert the value in
a type value structure and return a pointer to that structure. The ctools.h
header file contains the following macros to perform that procedure for you.

Use the appropriate macro even when you want to return an error condition.
Do not use a simple return.

Because strreturn(s,c) returns a pointer to the string s, be sure to define s as a
static or external variable.

If you are connecting to Informix Dynamic Server, you can use the following
macro to return VARCHAR values.

You cannot return TEXT or BYTE values. ♦

Macro Type Returned

intreturn(i) returns integer i

lngreturn(l) returns long l

floreturn(f) returns float f

dubreturn(d) returns double d

strreturn(s,c) returns string s of length c (short)

decreturn(d) returns decimal d (of type dec_t)

dtimereturn(d) returns datetime d (of type dtime_t)

invreturn(i) returns interval i (of type intrvl_t)

Macro Type Returned

vcharreturn(s,c) returns string s of length c (short)

IDS
Functions in ACE and PERFORM 6-19

PERFORM Library Functions
PERFORM Library Functions
The following five C functions are designed to control PERFORM screens
from within C functions.

These functions are described in detail on the following pages. If these
functions execute successfully, they return 0; if they are unsuccessful, they
return a non-zero error code.

Function Purpose

pf_gettype() determines the type and length of a display field

pf_getval() reads a value from a display field

pf_putval() puts a value onto a display field

pf_nxfield() moves the cursor to a specified field

pf_msg() writes a message at the bottom of the screen
6-20 IBM Informix SQL Reference Manual

PF_GETTYPE()
PF_GETTYPE()
The pf_gettype() function returns the SQL data type and the length of the
display field for a specified field tag.

pf_gettype(tagname, type, len)
char *tagname;
short *type, *len;

Usage
The options for type follow.

tagname is a string containing the field tag that specifies a display field.

type is a pointer to a short integer that describes the data type of the
display field tagname.

len is a pointer to a short integer that is the length of the display field
tagname on the PERFORM screen.

type SQL Type

SQLCHAR CHARACTER

SQLSMINT SMALLINT

SQLINT INTEGER

SQLFLOAT FLOAT

SQLSMFLOAT SMALLFLOAT

SQLDECIMAL DECIMAL

SQLSERIAL SERIAL

SQLDATE DATE

SQLMONEY MONEY

SQLDTIME DATETIME

SQLINTERVAL INTERVAL
Functions in ACE and PERFORM 6-21

PF_GETTYPE()
If you are connecting to Informix Dynamic Server, you can also specify the
following data types.

All these types are defined in the sqltypes.h header file. ♦

Return Codes

type SQL Type

SQLVCHAR VARCHAR

SQLTEXT TEXT

SQLBYTE BYTE

0 The operation was successful; display field was found.

3759 There is no such field tag in the form.

IDS
6-22 IBM Informix SQL Reference Manual

PF_GETVAL()
PF_GETVAL()
If the display field is a character field, pf_getval() obtains the value found in
a display field and the length of the value.

pf_getval(tagname, retvalue, valtype, vallen)
char *tagname, *retvalue;
short valtype, vallen;

Usage
The parameter retvalue must be a pointer to the variable that contains the
value. A common programming error is to use the variable itself. This results
in a run-time system error and is not detected by the compiler.

The options for valtype are as follows.

tagname is a string containing the field tag that specifies a display field.

retvalue is a pointer to the string, short, long, float, double, decimal,
datetime, or interval structure returned by pf_getval().

valtype is a short integer indicating the type of value to which retvalue
should point.

vallen is a short integer specifying the length of the string (plus 1 for the
terminating null byte) returned in retvalue, when valtype is
CCHARTYPE. For any other value for valtype, vallen is ignored.

valtype SQL Type

CCHARTYPE

CFIXCHARTYPE CHARACTER

CSTRINGTYPE

CINTTYPE INTEGER

CSHORTTYPE SMALLINT

CLONGTYPE INTEGER, DATE, SERIAL

(1 of 2)
Functions in ACE and PERFORM 6-23

PF_GETVAL()
The value given to the parameter valtype determines the type of retvalue. The
parameter valtype need not correspond exactly to the data type of the display
field, but both should be either a number or a character so that PERFORM can
do the proper type conversion.

If valtype is a number field and the display field is a character field,
INFORMIX-SQL tries to convert the data type of valtype. If the conversion is
unsuccessful, retvalue points to a zero. If valtype is character and the display
field is a number field, a conversion to a string occurs. If the string does not
fit in the length specified by vallen, retvalue contains the string, truncated to
fit and null-terminated.

If you are connecting to Informix Dynamic Server, you can also specify the
following data types for valtype.

For VARCHAR values, vallen must contain the number of bytes the value
buffer can hold. For TEXT and BYTE values, if you point retvalue to a loc_t
structure, PERFORM copies the internal locator of loc_t to your structure. ♦

CFLOATTYPE SMALLFLOAT

CDOUBLETYPE FLOAT

CDECIMALTYPE DECIMAL, MONEY

CDATETIME DATETIME

CINTERVAL INTERVAL

valtype SQL Type

CVCHARTYPE SQLVCHAR

CLOCATORTYPE SQLTEXT

SQLBYTES

valtype SQL Type

(2 of 2)

IDS
6-24 IBM Informix SQL Reference Manual

PF_GETVAL()
Return Codes
0 The operation was successful; display field was found.

3700 The user is not permitted to read the field.

3759 There is no such field tag in the form.
Functions in ACE and PERFORM 6-25

PF_PUTVAL ()
PF_PUTVAL ()
The pf_putval() function puts a value into a PERFORM screen in a specified
display field. The user must have permission to update or to enter data into
the desired destination field.

pf_putval(pvalue, valtype, tagname)
char *pvalue;
short valtype;
char *tagname;

Usage
The pvalue parameter must be a pointer to the variable containing the value.
A common programming error is to use the variable itself. This results in a
run-time system error and is not detected by the compiler.

The options for valtype are as follows.

pvalue is a pointer to a string, short, integer, long, float, double, decimal,
datetime, or interval structure inserted into the display field
designated by tagname.

valtype is a short integer indicating the type of the value to which pvalue
points.

tagname is a string containing the field tag that specifies the display field
where the information pointed to by pvalue is placed.

valtype SQL Type

CCHARTYPE

CFIXCHARTYPE CHARACTER

CSTRINGTYPE

CINTTYPE INTEGER

CSHORTTYPE SMALLINT

CLONGTYPE INTEGER, DATE

(1 of 2)
6-26 IBM Informix SQL Reference Manual

PF_PUTVAL ()
If valtype is one of the character types and the display field is a number field,
PERFORM tries to convert valtype. If the conversion is unsuccessful, PERFORM
enters 0 in the display field.

If the type specified is a number field and the display field is character, a
conversion to a string occurs. If the string does not fit in the display field,
PERFORM truncates the display field.

If a number value does not fit in a number display field, PERFORM fills the
field with asterisks.

If you are connecting to Informix Dynamic Server, you can also specify the
following data types for valtype.

Use this function with VARCHAR values just as you use it with CHARACTER
values.

If you use this function with TEXT or BYTE data types, pvalue must point to a
loc_t structure. PERFORM requires that the loc_t structure contain exactly the
same information as the loc_t structure corresponding to tagname. For this
reason, refrain from changing anything in your copy of the locator. You can
then use the locator to change the actual value of the TEXT or BYTE data type,
which PERFORM stores in a temporary file.♦

CFLOATTYPE SMALLFLOAT

CDOUBLETYPE FLOAT

CDECIMALTYPE DECIMAL, MONEY

CDATETIME DATETIME

CINTERVAL INTERVAL

valtype SQL Type

CVCHARTYPE SQLVCHAR

CLOCATORTYPE SQLTEXT

SQLBYTES

valtype SQL Type

(2 of 2)

IDS
Functions in ACE and PERFORM 6-27

PF_PUTVAL ()
Return Codes
0 The operation was successful; display field was found.

3710 The user is not permitted to update the field.

3720 The user is not permitted to add to the field.

3756 The display field is not in the current table.

3759 There is no such field tag in the form.
6-28 IBM Informix SQL Reference Manual

PF_NXFIELD ()
PF_NXFIELD ()
The pf_nxfield() function controls the cursor placement on a PERFORM
screen when you add a new record or update an old record.

pf_nxfield(tagname)
char *tagname;

Usage
The following list describes what happens at the different times when you
call pf_nxfield:

■ If called during a BEFORE EDITADD or a BEFORE EDITUPDATE of a
table, it controls which display field is edited first.

■ If called during an AFTER EDITADD or an AFTER EDITUPDATE of a
table, it causes the cursor to move to the designated display field
tagname for further editing, rather than allowing PERFORM to write
the record.

■ If called either BEFORE or AFTER an EDITADD or EDITUPDATE of a
column, it determines the next field to be edited.

■ If called either AFTER ADD or AFTER UPDATE, it is inoperative, since
the record has already been written.

If tagname is set equal to the value EXITNOW, pf_nxfield causes an immediate
exit from the add or update operation with the row being added or updated.
This option performs the same as when you press ESCAPE to complete the
transaction.

tagname is a string that contains the field tag for the display field on a
PERFORM screen to which the cursor is sent.
Functions in ACE and PERFORM 6-29

PF_NXFIELD ()
Return Codes
0 The operation was successful; display field was found.

3710 The user is not permitted to update the field.

3720 The user is not permitted to add to the field.

3755 The display field is display-only.

3756 The display field is not in the current table.

3759 There is no such field tag in the form.
6-30 IBM Informix SQL Reference Manual

PF_MSG()
PF_MSG()
The pf_msg() function displays a message at the bottom of the screen.

pf_msg(msgstr, reverseflag, bellflag)
char *msgstr;
short reverseflag, bellflag;

Usage
If several calls to pf_msg are invoked at the same time in response to
satisfying several conditions simultaneously, only the last message displayed
is visible to the user.

In normal video display, msgstr can have up to 80 characters. In reverse video
display, the maximum number of characters is less than 80 because the
reverse video control characters require one or more spaces on some
monitors.

msgstr is a string containing the message displayed at the bottom of
the screen.

reverseflag is a short integer indicating whether the message is displayed
in reverse video. 0 indicates normal video; 1 indicates reverse
video.

bellflag is a short integer indicating whether the terminal bell is rung
when the message is displayed. 0 indicates not to ring the bell;
1 indicates to ring the bell.
Functions in ACE and PERFORM 6-31

Compiling, Linking, and Running Reports and Forms
Compiling, Linking, and Running Reports and Forms
After you have written the file containing your C functions, you must
compile the files and link the necessary library functions to create a custom
version of sacego or sperform.

INFORMIX-SQL provides programs to simplify the compiling and linking
process. You do not need to be concerned with names of special ACE or
PERFORM libraries, nor with the location of the include files associated with
these programs; the cace and cperf programs include these files
automatically.

Syntax of the cace and cperf programs

cace is the program that creates a custom version of sacego.
cperf is the program that creates a custom version of sperform.
cprogram is the name of the C program that contains your functions, as

described in the previous sections.
.C is the extension to use if cprogram only contains C statements.
.EC is the extension to use if you have INFORMIX-ESQL/C and

cprogram includes any INFORMIX-ESQL/C statements.
-m compiles real-mode application—medium model only
-pm create protected-mode application—large model only
-o specifies the output filename.
custprog is the name of your custom version of sacego or sperform.
other-C-list is the rest of the arguments that you want to pass to the standard cc

program.

cace

cperf

cprogram.c

cprogram.ec

-o custprog other-C-list

-m

-pm
6-32 IBM Informix SQL Reference Manual

Use of cace and cperf
Use of cace and cperf
You can compile several C programs at the same time.

After you compile your custom version of sacego or sperform, you can run
reports or forms with the following command line:

custprog specfile

where custprog is the output file of the cace or cperf command, and specfile is
the name of the report or form specification file you compiled using ACEPREP
or FORMBUILD. When using sacego, specify the .arc suffix for specfile; when
using sperform, specify the .frm suffix for specfile.

Examples
This section contains examples of both ACE applications and PERFORM
applications. ACE C functions can be used with PERFORM as well. These
sample programs are delivered with the demonstration database.

ACE Example 1
The following specification file calls a user function to execute a system
command. The program is named a_ex1.ace in the demonstration database.

database
stores

end

define
function to_unix

end

select * from customer
end

format
first page header

call to_unix("date")
skip 1 line

on every row
print customer_num, 3 spaces,

fname clipped, 1 space, lname
end
Functions in ACE and PERFORM 6-33

ACE Example 1
The function to_unix.c follows:

#include "ctools.h"

valueptr to_unix();

struct ufunc userfuncs[] =
{
"to_unix", to_unix,
0,0
};

valueptr to_unix(string)
valueptr string;
{
char savearea[80];

/*copy bytes from string to savearea*/
bycopy(string->v_charp, savearea, string->v_len);

/*put null on end*/
savearea[string->v_len]=0;

system(savearea);
}

To execute this example, perform the following steps:

1. Compile the report by executing the following command:
saceprep a_ex1.ace

2. Create a custom version of sacego by executing the following
command:

cace to_unix.c -o output_file

where output_file is the name of the file to contain the customer
version of sacego.

3. Run the program by executing the following command:
output_file a_ex1.ace

where output_file is the name of the file containing the customer
version of sacego.
6-34 IBM Informix SQL Reference Manual

ACE Example 2
ACE Example 2
The following ACE program computes the average and the standard
deviation of the total cost of all the orders in the stores7 demonstration
database. This program is named a_ex2.ace in the demonstration database.

database
stores

end

define
function decsqroot

end

select o.order_num, sum(total_price) t_cost
from orders o, items i
where o.order_num = i.order_num
group by o.order_num

end

format
on every row

print order_num, t_cost
on last row

skip 1 line
print "The average total order is : ",

(total of t_cost)/count
using "$#####.##"

print "Standard deviation is : ",
decsqroot((total of t_cost*t_cost)/count

- ((total of t_cost)/count)**2)
using "$#####.##"

end

The function decsqrt.c follows:

#include "ctools.h"
#include <math.h>

valueptr squareroot();

struct ufunc userfuncs[] =
{
"decsqroot", squareroot,
0, 0
};

valueptr squareroot(pnum)
valueptr pnum;
{
double dub;
dec_t dec;
Functions in ACE and PERFORM 6-35

PERFORM Example
/* convert decimal to double */
dectodbl(&pnum->v_decimal, &dub);

dub = sqrt(dub);

/* convert double to decimal */
deccvdbl(dub, &dec);

/* return decimal */
decreturn(dec);

}

To execute this example, perform the following steps:

1. Compile the report by executing the following command:
saceprep a_ex2.ace

2. Create a custom version of sacego by executing the following
command:

cace decsqrt.c -o output_file -lm

where output_file is the name of the file to contain the customer
version of sacego. You must specify -lm to include the math libraries.

3. Run the program by executing the following command:
output_file a_ex2.ace

where output_file is the name of the file containing the customer
version of sacego.

PERFORM Example
This example demonstrates accessing and displaying the following data from
UNIX:

■ The current user’s login

■ The time the user entered some data

The sample program then displays the data on a form.

The following form specification file uses the customer table to let you enter
new customers into the stores7 database. The form also includes two
DISPLAYONLY fields that display the name of the entry clerk and the entry
time. (To include the name of the entry clerk and the entry time in the
database, you would need to add entry clerk and entry time columns to the
customer table, rather than use the DISPLAYONLY fields.)
6-36 IBM Informix SQL Reference Manual

PERFORM Example
The cursor moves from the upper left down through the Customer Data by
following the order of the fields listed in the ATTRIBUTES section. After the
Telephone field, the cursor moves to the Owner Name field. When the entry
clerk presses ESCAPE to complete the transaction, PERFORM calls the C
function stamptime().

The form is in p_ex1.per in the demonstration database; stamp.c contains the
function stamptime().

database stores7
screen
{

**
* Customer Form *
==
* Number :[f000] *
* Owner Name :[f001][f002] *
* Company :[f003] *
* Address :[f004] *
* [f005] *
* City :[f006] State:[a0] Zipcode:[f007] *
* Telephone :[f008] *
**
* Entry Clerk :[f009] Time Entered :[f010] *
**

}

tables
customer

attributes
f000 = customer.customer_num, noentry;
f001 = customer.fname;
f002 = customer.lname;
f003 = customer.company;
f004 = customer.address1;
f005 = customer.address2;
f006 = customer.city;
a0 = customer.state, default="CA", upshift, autonext;
f007 = customer.zipcode, autonext;
f008 = customer.phone;
f009 = displayonly type char;
f010 = displayonly type char;

instructions

after editadd editupdate of phone
nextfield = f001

after editadd editupdate of customer
call stamptime()

end
Functions in ACE and PERFORM 6-37

PERFORM Example
The function stamptime(), called by the form specification file when the entry
clerk presses ESCAPE to complete the transaction, follows. In addition to the
special function pf_putval() defined earlier in this section, stamptime() uses
the system functions time(), localtime(), and getlogin(). The login name of
the order taker is obtained from the string function getlogin() and is
displayed in the screen field Entry Clerk.

The system time is decomposed into hours and minutes and then
reconstructed into a string variable displayed in the screen field Time
Entered. PERFORM then writes the record to the customer table, using the
data on the screen.

#include <stdio.h>
#include <time.h>
#include "ctools.h"

valueptr stamptime();

struct ufunc userfuncs[] =
{
"stamptime", stamptime,
0,0
};

valueptr stamptime()
{
long seconds, time();
char usertime[10], *getlogin();
struct tm *timerec, *localtime();

seconds = time((long *) 0);
timerec = localtime(&seconds);

pf_putval(getlogin(), CCHARTYPE, "f009");

sprintf(usertime, "%02d:%02d",
timerec->tm_hour, timerec->tm_min);

pf_putval(usertime, CCHARTYPE, "f010");
}

6-38 IBM Informix SQL Reference Manual

PERFORM Example
To execute this example, perform the following steps:

1. Compile the form by executing the following command:
sformbld p_ex1.per

2. Create a custom version of sperform by executing the following
command:

cperf stamp.c -o output_file

where output_file is the name of the file to contain the customer
version of sperform.

3. Run the program by executing the following command:
output_file p_ex1.frm

where output_file is the name of the file containing the customer
version of sperform.
Functions in ACE and PERFORM 6-39

A
Appendix
The Demonstration
Database and Examples
The stores7 demonstration database contains a set of tables that
describe an imaginary business. You can access the data in the
stores7 demonstration database using the sample programs that
appear in this book, as well as through application programs
that are listed in the documentation of other Informix products.
The stores7 demonstration database is not MODE ANSI.

For a description of the tables and data in the stores7 database,
see the Informix Guide to SQL: Reference.

This appendix contains the following sections:

■ Instructions for creating the demonstration database
and examples.

■ Listings for the sample forms and reports used in this
manual and the INFORMIX-SQL User Guide.

Creating the Demonstration Database
To use the demonstration database and examples, you need to
copy them. To do this, first create a directory to store the database
and examples and make it your current working directory. Then,
from the operating-system command line, enter:

isqldemo

The isqldemo program places the stores7 demonstration
database files in your current directory. It also copies all the
sample reports, forms, and command files into your current
directory.

Creating the Demonstration Database
If you list the contents of your current directory, you will see filenames
similar to the following ones (if you are using an INFORMIX-SE server, you
will also see a directory named stores.dbs that contains files for the sample
database.) ♦

Additional forms, reports, and command files are included that are not part
of the examples described in the manuals. These provide further opportu-
nities for practice after you become familiar with the demonstration database
and examples.

c_index.sql sample.frm mail2.ace ex9.sql

c_custom.sql clist1.ace mail2.arc ex10.sql

c_items.sql clist2.arc mail3.ace ex11.sql

c_orders.sql clist2.ace mail3.arc ex12.sql

c_manuf.sql clist2.arc ex1.sql ex13.sql

c_state.sql ord1.ace ex2.sql ex14.sql

c_stock.sql ord1.arc ex3.sql ex15.sql

c_stores.sql ord2.ace ex4.sql ex16.sql

customer.per ord2.arc ex5.sql ex17.sql

customer.frm ord3.ace ex6.sql ex18.sql

orderform.per ord3.arc ex7.sql ex19.sql

orderform.frm maill.ace ex8.sql

sample.per mail1.arc

SE
A-2 IBM Informix SQL Reference Manual

Restoring the Demonstration Database
Restoring the Demonstration Database
As you work with your copy of the demonstration database, you can make
changes in such a way that the illustrations in this manual no longer reflect
what you actually see on your screen. This can happen if you enter a great
deal of new information into the stores7 demonstration database, delete the
information that came with the database, or significantly alter the structure
of the tables, forms, reports, or command files.

You can restore the demonstration database to an original condition (the one
upon which the examples are based) by re-creating the database with the
isqldemo command.

For example, you might want to make a fresh copy of the demonstration
database each time you start a new chapter. The files that make up the
demonstration database are protected so that you cannot make any changes
to the original copy.
The Demonstration Database and Examples A-3

The customer Specification
Sample PERFORM Form Specifications
This section gives the complete listings for the sample form specifications
included with your software.

The customer Specification
database
stores7

screen
{

_

CUSTOMERS

Customer Number: [f000]

Company : [f001]
First Name: [f002] Last Name: [f003]

Address : [f004]
[f005]

City : [f006] State : [a0] Zip : [f007]

Telephone : [f008]

}
end

tables
customer

attributes

f000 = customer_num;
f001 = company, reverse;
f002 = fname, comments = "Please enter first name if available";
f003 = lname;
f004 = address1;
f005 = address2;
f006 = city;
a0 = state, upshift, autonext, include = ("CA", "OR", "NV", "WA");

comments = "Legal states are CA, OR, NV, or WA";
f007 = zipcode, autonext;
f008 = phone, picture = "###-###-####XXXXXX";

end
A-4 IBM Informix SQL Reference Manual

The orderform Specification
The orderform Specification
database stores7

screen
{
===
CUSTOMER INFORMATION:
Customer Number: [c1] Telephone: [c10]

Company: [c4]
First Name: [c2] Last Name: [c3]

Address: [c5]
[c6]

City: [c7] State: [c8] Zip: [c9]

===
ORDER INFORMATION:

Order Number: [o11] Order Date: [o12]
Stock Number: [i13]Manufacturer: [i16]

[manu_name]
Quantity: [i18]

Total Price: [i19]
SHIPPING INFORMATION:

Customer P.O.: [o20]

Ship Date: [o21] Date Paid: [o22]
}

end

tables
customer orders
items manufact

attributes

c1 = *customer.customer_num = orders.customer_num;
c2 = fname,

comments = "Please enter initial if available ";
c3 = lname;
c4 = company;
c5 = address1;
c6 = address2;
c7 = city;
c8 = state, upshift, autonext,

include = ("CA","OR","NV","WA");
c9 = zipcode;
c10 = phone, picture = "###-###-####x#####";
o11 = *orders.order_num = items.order_num;
The Demonstration Database and Examples A-5

The orderform Specification
o12 = order_date,
default = today;

i13 = items.stock_num;
i16 = items.manu_code , lookup manu_name = manufact.manu_name,

joining *manufact.manu_code, upshift;

i18 = quantity, include = (1 to 100);
i19 = total_price;
o20 = po_num;
o21 = ship_date;
o22 = paid_date;

instructions

customer master of orders;
orders master of items;

end
A-6 IBM Informix SQL Reference Manual

The sample Specification
The sample Specification
database stores7

screen
{
==
==
CUSTOMER INFORMATION:

Customer Number: [c1]

Company: [c4]
First Name: [c2] Last Name: [c3]

Address: [c5]
[c6]

City: [c7] State: [c8] Zip: [c9]
Telephone: [c10]

==
==
}

screen

{
==
CUSTOMER NUMBER: [c1] COMPANY: [c4]

ORDER INFORMATION:
Order Number: [o11] Order Date: [o12]

Stock Number: [i13] Manufacturer: [i16]
Description: [s14] [m17]

Unit: [s16]
Quantity: [i18]
Unitprice: [s15]

Total Price: [i19]

SHIPPING INFORMATION:
Customer P.O.: [o20] Ship Charge: [d1]

Backlog: [a] Total Order Amount: [d2]
Ship Date: [o21]
Date Paid: [o22]

Instructions: [o23]

}
end

tables
customer items stock
orders manufact

attributes
c1 = *customer.customer_num

= orders.customer_num;
The Demonstration Database and Examples A-7

The sample Specification
c2 = fname,
comments = "Please enter initial if available";

c3 = lname;
c4 = company, reverse;
c5 = address1;
c6 = address2;
c7 = city;
c8 = state, upshift, autonext,

include = ("CA","OR","NV","WA"),
default = "CA" ;

c9 = zipcode, autonext;
c10 = phone, picture = "###-###-####x####";
o11 = *orders.order_num = items.order_num;
o12 = order_date, default = today, format = "mm/dd/yyyy";
i13 = items.stock_num;

= *stock.stock_num, noentry, noupdate, queryclear;
i16 = items.manu_code, lookup m17 = manufact.manu_name

joining *manufact.manu_code, upshift, autonext;
= *stock.manu_code, noentry, noupdate,

upshift, autonext, queryclear;
s14 = stock.description, noentry, noupdate;
s16 = stock.unit_descr, noentry, noupdate;
s15 = stock.unit_price, noentry, noupdate;
i18 = items.quantity, include = (1 to 50),

comments = "Acceptable values are 1 through 50" ;
i19 = items.total_price;
o20 = po_num, required,

comments = "If no P.O. Number enter name of caller" ;
a = backlog, autonext;
o21 = ship_date, default = today, format = "mm/dd/yyyy";
o22 = paid_date, format = "mm/dd/yyyy";
o23 = ship_instruct;
d1 = displayonly type money;
d2 = displayonly type money;

instructions

customer master of orders;
orders master of items;
composites <items.stock_num, items.manu_code>

*<stock.stock_num, stock.manu_code>

before editadd editupdate of orders
nextfield = o20

before editadd editupdate of items
nextfield = i13

after editadd editupdate of quantity
let i19 = i18 * s15
nextfield = o11

after add update query of items

if (total of i19) <= 100 then
let d1 = 7.50
else
let d1 = (total of i19) * .04

let d2 = (total of i19) + d1
A-8 IBM Informix SQL Reference Manual

The sample Specification
after display of orders

let d1 = 0
let d2 = 0

end
The Demonstration Database and Examples A-9

The clist1 Specification
Sample ACE Report Specifications

The clist1 Specification
{ File: clist1.ace - Customer List Specification 1}

database
stores7

end

output
left margin 2

end

select
customer_num,
fname,
lname,
company,
city,
state,
zipcode,
phone

from
customer

order by
city

end

format

first page header
print column 32, "CUSTOMER LIST"
print column 32, "-------------"
skip 2 lines
print "NUMBER",

column 9, "NAME",
column 32, "LOCATION",
column 54, "ZIP",
column 62, "PHONE"

skip 1 line

page header
print "NUMBER",

column 9, "NAME",
column 32, "LOCATION",
column 54, "ZIP",
column 62, "PHONE"

skip 1 line

on every row
print customer_num using "####",

column 9, fname clipped, 1 space, lname clipped,
column 32, city clipped, ", " , state,
column 54, zipcode,
column 62, phone
A-10 IBM Informix SQL Reference Manual

The clist1 Specification
on last row
skip 1 line
print "TOTAL NUMBER OF CUSTOMERS:",

column 30, count using "##"
end
The Demonstration Database and Examples A-11

The clist2 Specification
The clist2 Specification
{ File: clist2.ace - Customer List Specification 2 }

database
stores7

end

define
variable thisstate char(2)

end

input
prompt for thisstate using

"Enter state (use UPPER CASE) for which you wish a customer list: "
end

output
left margin 0

end

select
customer_num,
fname,
lname,
company,
city,
state,
zipcode,
phone

from
customer

where
state matches $thisstate

order by
zipcode,
lname

end

format

first page header
print column 32, "CUSTOMER LIST"
print column 32, "-------------"
skip 2 lines
print "Listings for the State of ", thisstate
skip 2 lines
print "NUMBER",

column 9, "NAME",
column 32, "LOCATION",
column 54, "ZIP",
column 62, "PHONE"

skip 1 line

page header
print "NUMBER",

column 9, "NAME",
column 32, "LOCATION",
column 54, "ZIP",
column 62, "PHONE"
A-12 IBM Informix SQL Reference Manual

The clist2 Specification
skip 1 line

on every row
print customer_num using "####",

column 9, fname clipped, 1 space, lname clipped,
column 32, city clipped, ", " , state,
column 54, zipcode,
column 62, phone

on last row
skip 2 lines
print "Number of customers in ",thisstate, " is ", count using "<<<<&"

end
The Demonstration Database and Examples A-13

The mail1 Specification
The mail1 Specification
{file mail1.ace

Mailing Label Specification - 1 }

{Customized report to print mailing labels.
The report will be sorted by zip code and
last name. The use of PRINT commands in
the FORMAT section allow specific columns
to be printed on a line.
Blank lines will appear where data is
absent, and spaces appear next to
city field as not clipped as in
mail2.ace specification
}

database
stores7
end

select *
from customer
order by zipcode, lname
end

format
on every row

print fname, lname
print company
print address1
print address2
print city, ", " , state, 2 spaces, zipcode
skip 2 lines

end
A-14 IBM Informix SQL Reference Manual

The mail2 Specification
The mail2 Specification
{mail2.ace file

Mailing Label Specification - 2 }

{This improved report has an OUTPUT section added,
and uses nested IF statements. }

database
stores7
end

output
top margin 0
bottom margin 0
left margin 0
page length 9
report to "labels"

end

select
fname, lname,
company,
address1,
address2,
city, state, zipcode

from customer
order by zipcode, lname
end

format
on every row
if (city is not null) and
(state is not null) then

begin
print fname clipped, 1 space, lname
print company
print address1
if (address2 is not null) then

print address2
print city clipped, ", " , state,

2 spaces, zipcode
skip to top of page

end
end
The Demonstration Database and Examples A-15

The mail3 Specification
The mail3 Specification
{file mail3.ace

Mailing Label Specification - 3 }

{This report prints 1-3 mailing labels across a page.
It stores the labels in character strings (array1,
array2, and array3) as it reads each row, and prints
the labels when it has read the proper number of rows.
At run time, you specify the number of labels (1-3)
that you want ACE to print across the page. }

database
stores7
end

define
variable name char(75) {holds first and last names}
variable cstzp char(75) {holds city, state, and zip}
variable array1 char(80) {Array for name line}
variable array2 char(80) {Array for street line}
variable array3 char(80) {Array for city, state, and zipcode}
variable start smallint {start of current label in array}
variable finish smallint {end of current label in array}
variable l_size smallint {label width}
variable white smallint {spaces between each label}
variable count1 smallint {number of labels across page}
variable i smallint {label counter}

end

input
prompt for count1 using "Number of labels across page? [1-3] "

end

output
top margin 0
bottom margin 0
left margin 0
report to "labels.out"

end

select
*

from
customer

order by
zipcode

end

format
first page header {Nothing is displayed in this

control block. It just
A-16 IBM Informix SQL Reference Manual

The mail3 Specification
initializes variables that are
used in the ON EVERY ROW
control block.}

let i = 1 {Initialize label counter.}
let l_size = 72/count1 {Determine label width (allow

eight spaces total between labels).}
let white = 8/count1 {Divide the eight spaces between

the number of labels across the page.}

on every row
let name = fname clipped, 1 space, lname
let cstzp = city clipped,

", ",
state,
2 spaces, zipcode

let finish = (i * l_size) + white
{This section assigns names, }

let start = finish - l_size
{addresses, and zip codes to }

let array1[start, finish] = name
{arrays 1, 2, 3 until }

let array2[start, finish] = address1
{i = the number of labels }

let array3[start, finish] = cstzp
{across a page. }

if i = count1 then
begin

print array1 clipped {Print the stored addresses.}
print array2 clipped {Use clipped to remove trailing}
print array3 clipped {spaces for quicker printing.}

skip 1 line

let array1 = " " {Reset the arrays to spaces.}
let array2 = " "
let array3 = " "

let i = 1
end

else
let i = i + 1

on last row
if i > 1 then {Print the last set of addresses}

begin {if there were any left.}
print array1 clipped
print array2 clipped
print array3 clipped

end
end
The Demonstration Database and Examples A-17

The ord1 Specification
The ord1 Specification
{file ord1.ace

Order Specification - 1 }

database
stores7
end

output
report to "ordlist1"

end

select

orders.order_num ordnum,
order_date, customer_num,
po_num, ship_date, ship_charge,
paid_date,

items.order_num, stock_num, manu_code,
quantity, total_price

from orders, items

where orders.order_num = items.order_num

order by ordnum
end

format

before group of ordnum
print "Order number: ", ordnum using "#####",
" for customer number: ", customer_num
using "#####"

print "Customer P.O. : ", po_num,
" Date ordered: ", order_date

skip 1 line
print "Stockno", column 20,
"Mfcode", column 28, "Qty", column 38, "Price"

on every row
print stock_num using "###", column 20,
manu_code, column 28, quantity using "###",
column 38, total_price using "$$$,$$$.&&"

after group of ordnum
skip 1 line
print 5 spaces, "Total amount for the order: ",
group total of total_price using "$$,$$$,$$$.&&"

skip 3 lines

end
A-18 IBM Informix SQL Reference Manual

The ord2 Specification
The ord2 Specification
{file ord2.ace

Order Specification - 2 }

database
stores7
end

output
left margin 0
report to "ordlist2"

end

select

customer.customer_num custnum, fname,
lname, company,

orders.order_num ordnum, order_date,
orders.customer_num, po_num, ship_date,
ship_charge, paid_date,

items.order_num, items.stock_num snum,
items.manu_code, quantity, total_price,

stock.stock_num, stock.manu_code,
description, unit_price

from customer, orders, items, stock

where customer.customer_num = orders.customer_num
and orders.order_num = items.order_num
and items.stock_num = stock.stock_num
and items.manu_code = stock.manu_code

order by custnum, ordnum, snum

end

format

before group of custnum
print "Orders for: ", fname clipped, 1 space,
lname print 13 spaces, company
skip 1 line

before group of ordnum
print "Order number: ", ordnum using "#####"
print "Customer P.O. : ", po_num,
" Date ordered: ", order_date

skip 1 line
print "Stockno", column 10, "Mfcode", column 18,
"Description", column 38, "Qty", column 43,
"Unit price" , column 55, "Total for item"

on every row
print snum using "###", column 10, manu_code,
column 18, description clipped, column 38,
The Demonstration Database and Examples A-19

The ord2 Specification
quantity using "###", column 43,
unit_price using "$$$$.&&", column 55,
total_price using "$$,$$$,$$$.&&"

after group of ordnum

skip 1 line
print 4 spaces,
"Shipping charges for the order: ",
ship_charge using "$$$$.&&"

skip 1 line

print 5 spaces, "Total amount for the order: ",
ship_charge + group total of
total_price using "$$,$$$,$$$.&&"

skip 3 lines

after group of custnum
skip 2 lines

end
A-20 IBM Informix SQL Reference Manual

The ord3 Specification
The ord3 Specification
{file ord3.ace

Order Specification - 3 }

database
stores7
end

define
variable begin_date date
variable end_date date

end

input
prompt for begin_date using
"Enter beginning date for report: "
prompt for end_date using
"Enter ending date for report: "

end

output
left margin 0
report to "ordlist3"

end

select

customer.customer_num, fname, lname, company,

orders.order_num ordnum, orders.customer_num,
order_date, month(order_date) months,
day(order_date) days, year(order_date) years,

items.order_num, quantity, total_price

from customer, orders, items

where customer.customer_num = orders.customer_num
and orders.order_num = items.order_num and
order_date between $begin_date and $end_date

order by years, months, days, company, ordnum
end

format

first page header
print column 10, "=="
print column 10, " DAILY ORDER REPORT"
print column 10, "=="

skip 1 line
print column 15, "FROM: ", begin_date
using "mm/dd/yy",
column 35, "TO: ", end_date
using "mm/dd/yy"

print column 15, "Report run date: ",
today using "mmm dd, yyyy"

skip 2 lines
The Demonstration Database and Examples A-21

The ord3 Specification
print column 2, "ORDER DATE", column 15,
"COMPANY", column 35, "NAME",
column 57, "NUMBER", column 65, "AMOUNT"

before group of days
skip 2 lines

after group of ordnum
print column 2, order_date, column 15,
company clipped, column 35, fname clipped,
1 space, lname clipped, column 55,
ordnum using "####", column 60,
group total of total_price using "$$,$$$,$$$.&&"

after group of days
skip 1 line
print column 21, "Total amount ordered for the day: ",
group total of total_price using "$$$$,$$$,$$$.&&"

skip 1 line
print column 15, "=="

on last row
skip 1 line
print column 15, "=="
skip 2 lines
print "Total Amount of orders: ", total of
total_price using "$$$$,$$$,$$$.&&"

page trailer
print column 28, pageno using "page <<<<"

end
A-22 IBM Informix SQL Reference Manual

B
Appendix
Setting Environment
Variables
Various environment variables affect the functionality of your
Informix products. You can set environment variables that
identify your terminal, specify the location of your software, and
define other parameters.

Some environment variables are required and others are
optional. For example, you must set—or accept the default
setting for—certain UNIX environment variables.

For a discussion of specific environment variables, see the
Informix Guide to SQL: Reference. For a detailed discussion of
variables and settings for Global Language Support, see the
Informix Guide to GLS Functionality. This chapter documents only
the following specific variables not described in those manuals:

■ DBFORM (specific for INFORMIX-SQL): Specifies a
directory where menu form files reside.

■ DBFORMAT (specific for Informix tools): Specifies the
default format in which the user inputs, displays, or
prints values of numeric and money data types.

■ DBTEMP (specific for INFORMIX-SE servers): Specifies
the full pathname of the directory into which you want
INFORMIX-SE to place its temporary files. ♦

SE

Where to Set Environment Variables
Where to Set Environment Variables
You can set Informix and UNIX environment variables in the following ways:

■ At the system prompt on the command line

When you set an environment variable at the system prompt, you
must reassign it the next time you log into the system.

■ In a special shell file, as follows:

When you set an environment variable in your .login, .cshrc, or
.profile file, it is assigned automatically every time you log into the
system.

Important: Check that you do not inadvertently set an environment variable
differently in your .login and .cshrc C shell files.

■ In an environment-configuration file

This is a common or private file where you can define all the environ-
ment variables that are used by Informix products. Using a
configuration file reduces the number of environment variables that
you must set at the command line or in a shell file.

Use the ENVIGNORE environment variable to later override one or
more entries in this file. Use the following Informix chkenv utility to
check the contents of an environment configuration file, and return
an error message if an environment variable entry in the file is bad or
if the file is too large:

chkenv filename

The chkenv utility is described in the Informix Guide to SQL: Reference.

The common (shared) environment-configuration file resides in
$INFORMIXDIR/etc/informix.rc. The permission for this shared file
must be set to 644. A private environment-configuration file must be
stored in the user’s home directory as .informix and must be read-
able by the user.

.login or .cshrc for the C shell

.profile for the Bourne shell or the Korn shell
B-2 IBM Informix SQL Reference Manual

How to Set Environment Variables
Tip: The first time you set an environment variable in a shell or configuration file,
before you work with your Informix product, you should log out and then log back in,
“source” the file (C shell), or use “.” to execute an environment-configuration file
(Bourne or Korn shell). This allows the process to read your entry.

How to Set Environment Variables
You can change default settings and add new ones by setting one or more of
the environment variables recognized by your Informix product. If you are
already using an Informix product, some or all the appropriate environment
variables might already be set.

After one or more Informix products have been installed, enter the following
command at the system prompt to view your current environment settings:

Use standard UNIX commands to set environment variables. Depending on
the type of shell you use, Figure B-1 shows how you set the fictional ABCD
environment variable to value.

Figure B-1
Setting Environment Variables in Different Shells

When Bourne-shell example settings are shown in this chapter, the Korn shell
(a superset of the Bourne shell) is implied as well. Korn-shell syntax allows
for a shortcut, as Figure B-1 shows.

Tip: The environment variables are case sensitive.

BSD UNIX: env

UNIX System V: printenv

C shell: setenv ABCD value

Bourne shell or
Korn shell:

ABCD=value
export ABCD

Korn shell: export ABCD=value
Setting Environment Variables B-3

Default Environment Variable Settings
The following diagram shows how the syntax for setting an environment
variable is represented throughout this chapter. These diagrams indicate the
setting for the C shell; for the Bourne or Korn shell, follow the syntax in
Figure B-1.

For more information on how to read syntax diagrams, see the introduction.

To unset most of the environment variables that this chapter shows, enter the
following command:

Default Environment Variable Settings
The following list describes the main default assumptions that are made
about your environment when you use Informix products. Environment
variables used to change the specific default values are shown in parentheses.
Other product-specific default values are described where appropriate
throughout this chapter.

■ The program, compiler, or preprocessor, and any associated files and
libraries of your product have been installed in the /usr/informix
directory.

■ The default Informix Dynamic Server or INFORMIX-SE database
server for explicit or implicit connections is indicated by an entry in
the $INFORMIXDIR/etc/sqlhosts file (INFORMIXSERVER). ♦

■ The default directory for message files is $INFORMIXDIR/msg
(DBLANG unset and LANG unset).

■ If you are using INFORMIX-SE, the target or current database is in the
current directory (DBPATH).

setenv ABCD value

C shell: unsetenv ABCD

Bourne shell or
Korn shell:

unset ABCD

IDS

SE

SE
B-4 IBM Informix SQL Reference Manual

Rules of Precedence
■ Temporary files for INFORMIX-SE are stored in the /tmp directory
(DBTEMP). ♦

■ The default terminal-dependent keyboard and screen capabilities are
defined in the termcap file in the $INFORMIXDIR/etc directory.
(INFORMIXTERM)

■ For products that use an editor, the default editor is the predominant
editor for the operating system, usually vi. (DBEDIT)

■ For products that have a print capability, the program that sends files
to the printer is usually:

■ The default format for money values is $000.00. (DBMONEY set to
$.)

■ The default format for dates is MM/DD/YYYY. (DBDATE set to
MDY4/)

■ The field separator for unloaded data files is the vertical bar
(|=ASCII 124). (DBDELIMITER set to |)

Rules of Precedence
When an Informix product accesses an environment variable, normally the
following rules of precedence apply:

1. The highest precedence goes to the value as defined in the
environment (shell).

2. The second-highest precedence goes to the value as defined in the
private environment-configuration file in the user’s home directory
(~/.informix).

3. The next-highest precedence goes to the value as defined in the
common environment-configuration file
($INFORMIXDIR/etc/informix.rc).

4. The lowest precedence goes to the default value.

lp for UNIX System V

lpr for BSD and other UNIX systems (DBPRINT)
Setting Environment Variables B-5

Environment Variables
Environment Variables
Important: Most of the environment variables you need are described in the
“Informix Guide to SQL: Reference” and the “Informix Guide to GLS Function-
ality.” This appendix covers only environment variables not described in those
manuals.

DBFORM
The DBFORM environment variable specifies the subdirectory of
$INFORMIXDIR (or full pathname) in which the menu form files for the
currently active language reside. ($INFORMIXDIR means “the name of the
directory referenced by the environment variable INFORMIXDIR”). Menu
form files provide a set of language-translated menus to replace the standard
INFORMIX-SQL menus. Menu form files have the suffix .frm. Menu form files
are included in language supplements, which contain instructions specifying
where the files should be installed and what DBFORM settings to specify.

Usage

If DBFORM is not set, the default directory for menu form files is
$INFORMIXDIR/forms. The files should be installed in a subdirectory under
the forms subdirectory under $INFORMIXDIR. For example, French menu
files could be installed in $INFORMIXDIR/forms/french or in
$INFORMIXDIR/forms/fr.88591. The English language version will normally
be installed in $INFORMIXDIR/forms or $INFORMIXDIR/forms/english.
Non-English menu form files should not be installed in either of the locations
where English files are normally found.

pathname specifies the subdirectory of $INFORMIXDIR or the full pathname of
the directory that contains the message files.

setenv DBFORM pathname
B-6 IBM Informix SQL Reference Manual

DBFORM
Figure B-2 illustrates the search method employed for locating message files
for a particular language (where the value set in the DBFORM environment
variable is indicated as $DBFORM).

Figure B-2
Directory Search

Order, Depending
on $DBFORM

$INFORMIXDIR/forms/$DBFORM/

$INFORMIXDIR/$DBFORM/

$INFORMIXDIR/forms/

$INFORMIXDIR/forms/english/

search
order
Setting Environment Variables B-7

DBFORM
If the LANG variable is set, and DBFORM is not, the search order changes, as
Figure B-3 shows.

If both DBFORM and LANG are set, LANG is ignored in establishing search
order.

To specify a menu form directory

1. Use the mkdir command to create the appropriate subdirectory in
$INFORMIXDIR/forms.

2. Set the owner and group of the subdirectory to informix and the
access permission for this directory to 755.

3. Set the DBFORM environment variable to the new subdirectory,
specifying only the subdirectory name and not the full pathname.

4. Copy the .frm files to the new menu form directory specified by
$INFORMIXDIR/forms/$DBFORM. All files in the menu form
directory should have the owner and group informix and access
permission 644.

5. Run your program or otherwise continue working with your
product.

Figure B-3
Directory Search

Order, Depending
on $LANG

$INFORMIXDIR/forms/$LANG/

$INFORMIXDIR/$LANG/

$INFORMIXDIR/forms/

$INFORMIXDIR/forms/english/

search
order
B-8 IBM Informix SQL Reference Manual

DBFORMAT
For example, you can store the set of menu form files for the French language
in $INFORMIXDIR/forms/french as follows:

setenv DBFORM french

DBFORMAT
The Informix-defined DBFORMAT environment variable specifies the default
format in which the user inputs, displays, or prints values of the following
data types:

■ DECIMAL

■ FLOAT

■ SMALLFLOAT

■ INTEGER

■ SMALLINT

■ MONEY

The default format specified in DBFORMAT affects how numeric and
monetary values are:

■ Displayed and input on the screen

■ Printed

■ Input to and output from ASCII files using LOAD and UNLOAD

DBFORMAT is used to specify the leading and trailing currency symbols (but
not their default positions within a monetary value) and the decimal and
thousands separators. The decimal and thousands separators defined by
DBFORMAT apply to both monetary and numeric data, and override the sets
of separators established by GLS settings. For this reason, countries that use
different formatting conventions for their monetary and numeric data should
use GLS SETTINGS and avoid DBFORMAT. For more information on GLS, see
Appendix C, “Global Language Support” and the Informix Guide to GLS
Functionality.

The setting in DBFORMAT will affect the following INFORMIX-SQL keywords:

■ USING expression in ACE

■ FORMAT attribute in PERFORM
Setting Environment Variables B-9

DBFORMAT
■ PRINT statement in ACE

■ LET statement in ACE, where a character string is receiving a
monetary or numeric value

The syntax for setting DBFORMAT is as follows.

thousands decimal backfront

: : :setenv DBFORMAT

front is the leading currency symbol. The front value is optional. The null
string, represented by “*”, is allowed, and means that the leading
currency symbol is not applicable.

thousands is a list of one or more characters that determine the possible thousands
separator. The user can use any of the specified characters as the
thousands separator when inputting values. The values in the list are
not separated by spaces or other characters. INFORMIX-SQL uses the
first value specified as the thousands separator when displaying the
output value.

You can specify any characters for the thousands separator except the
following:

■ Digits

■ <, >, |, ?, !, =, [,]

If you specify the * character, INFORMIX-SQL omits the thousands
separator. The thousands value is optional. The default value is the *. A
blank space can be the thousands separator and is used for this purpose
in some locales.

In versions prior to 6.0, the colon symbol (:) was not allowed as a
thousands separator. In version 6.0, the colon symbol is permitted, but
must be preceded by a backslash (\) symbol, as in the specification
:\::.:DM.

(1 of 2)
B-10 IBM Informix SQL Reference Manual

DBFORMAT
You must specify all three colons in the syntax. Enclosing the DBFORMAT
specification in a pair of single quotes is suggested to prevent the shell from
interpreting any of the characters.

Usage

The setting in DBFORMAT directly specifies the leading and trailing currency
symbol, and the numeric and decimal separators. It adds the currency
symbol and changes the separators displayed on the screen in a monetary or
numeric field, and in the default format of a PRINT statement. For example,
if DBFORMAT is set to:

*:.:,:DM

the value 1234.56 will print or display as:

1234,56DM

DM stands for deutsche marks. In the case of a screen form, values input by
the user are expected to contain commas, not periods, as decimal separators
if this DBFORMAT string has been specified.

decimal is a list of one or more characters that determine the possible decimal
separators. The user can use any of the specified characters as the
decimal separator when inputting values. INFORMIX-SQL uses the
first value specified as the decimal separator when displaying the
output value.
You can specify any characters except the following characters:

■ Digits

■ <, >, |, ?, !, =, [,]

■ Any characters specified for the thousands value

The decimal value is optional. Specification of an asterisk symbol in the
decimal position will cause displayed values not to have a decimal
separator.

The colon symbol is permitted as a decimal separator but must be
preceded by a backslash (\) symbol in the DBFORMAT specification.

back is a value that determines the trailing currency symbol. The back value
is optional.

(2 of 2)
Setting Environment Variables B-11

DBFORMAT
The setting in DBFORMAT also affects the way format strings in the FORMAT
attribute in ACE and the USING clause in PERFORM are interpreted. In these
format strings, the period symbol (.) is not a literal character but a placeholder
for the decimal separator specified by DBFORMAT. Likewise, the comma
symbol (,) is a placeholder for the thousands separator specified by
DBFORMAT. The dollar sign is a placeholder for the leading currency
symbol. The at-sign (@) symbol is a placeholder for the trailing currency
symbol. Figure B-4 illustrates the results of different combinations of
DBFORMAT setting and format string on the same value.

Figure B-4
Illustration of the Results of Different DBFORMAT Settings and Format Strings

When the user enters values, INFORMIX-SQL behaves as follows:

■ Disregards any currency symbols (leading or trailing) and thousands
separators that the user enters.

■ If a symbol appears that is defined as the decimal separator in
DBFORMAT, it is interpreted in the input value as a decimal
separator.

When INFORMIX-SQL displays or prints values:

■ The DBFORMAT-defined leading or trailing currency symbol is
displayed for MONEY values.

■ If a leading or trailing currency symbol is specified by the FORMAT
attribute for non-MONEY data types, the symbol is displayed.

■ The thousands separator does not display, unless it is included in a
FORMAT attribute or USING operator.

■ The decimal separator is displayed unless the decimal separator is
defined as NULL (*) in DBFORMAT or the data type is integer (INT
or SMALLINT).

Value Format String DBFORMAT Setting Displayed Result

1234.56 $$#,###.## $:,:.: $1,234.56

1234.56 $$#,###.## :.:,:DM 1.234,56

1234.56 #,###.##@@ $:,:.: 1,234.56

1234.56 #,###.##@@ :.:,:DM 1.234,56DM
B-12 IBM Informix SQL Reference Manual

DBTEMP
When money values are converted to character strings using the LET
statement in ACE, both the default conversion and the conversion with a
USING clause will insert the DBFORMAT-defined separators and currency
symbol into the created strings.

DBFORMAT, like DBMONEY, dictates both the numeric and monetary
formats for data. In some countries, including Portugal and Italy, the correct
use of decimal and thousands separators differs between numeric and
monetary data. For such countries, GLS CONFIGURATION FILE SETTINGS
provide for independently defined numeric and monetary formatting. This is
in contrast to DBFORMAT and DBMONEY.

DBTEMP
Set the DBTEMP environment variable to specify the full pathname of the
directory into which you want INFORMIX-SE to place its temporary files. You
need not set DBTEMP if the default, /tmp, is satisfactory.

Set the DBTEMP environment variable as follows to specify the pathname
usr/magda/mytemp:

For the creation of temporary tables, if DBTEMP is not set, the temporary
tables are created in the directory of the database (that is, the .dbs directory).

pathname is the full pathname of the directory for temporary files.

C shell: setenv DBTEMP usr/magda/mytemp

Bourne shell: DBTEMP=usr/magda/mytemp
export DBTEMP

setenv DBTEMP pathname
Setting Environment Variables B-13

C
Appendix
Global Language Support
This appendix identifies fundamental terms and concepts, as
well as supported features, for Global Language Support (GLS)
as implemented by INFORMIX-SQL.

Much of the information covered here is discussed in greater
detail in the Informix Guide to GLS Functionality, primarily from
the perspective of the database server. If you have no knowledge
of GLS, consider reading that manual before using this appendix.

INFORMIX-SQL implements GLS in several areas:

■ Entry, display, and editing of non-English characters

■ References to SQL identifiers containing non-English
characters

■ Collation of strings containing non-English symbols

■ Non-English formats for number, currency, and time
values

Global Language Support Terms
Global Language Support Terms
GLS refers to the set of features that makes it possible to use non-Roman
alphabets, diacritical marks, and so on. In order to understand the require-
ments of GLS, you will need to become familiar with the terms described in
this section.

GLS is a set of features that enable you to use languages other than U.S.
English. GLS includes the localized representation of dates, currency values,
and numbers. INFORMIX-SQL supports the entry, retrieval, and display of
multibyte characters in some East Asian languages, such as Japanese and
Chinese.

Code Sets and Logical Characters
For a given language, the code set specifies a one-to-one correspondence
between each logical element (called a logical character, or a code point) of the
character set, and the bit patterns that uniquely encode that character. In U.S.
English, for example, the ASCII characters constitute a code set.

Code sets are based on logical characters, independent of the font that a
display device uses to represent a given character. The size or font in which
INFORMIX-SQL displays a given character is determined by factors
independent of the code set. (But if you select, for example, a font that
includes no representation of the Chinese character for “star,” then only
whitespace will be displayed for that character, until you specify a font that
supports it.)

Collation Order
Collation order is the sequence in which character strings are sorted. Database
servers can support collation in either code-set order (the sequence of code
points) or localized order (some other predefined sequence). For details of
localized collation, see the Informix Guide to GLS Functionality.

INFORMIX-SQL supports only code-set order; the database server, rather than
INFORMIX-SQL, must do the sorting if you require localized collation of data
values in NCHAR or NVARCHAR columns of the database.
C-2 IBM Informix SQL Reference Manual

Single-Byte and Multibyte Characters
Single-Byte and Multibyte Characters
Most alphabet-based languages, such as English, Greek, and Tagalog, require
no more than the 256 different code points that a single byte can represent.
This simplifies aspects of processing character data in those languages;
for example, the number of bytes of storage that an ASCII character string
requires has a linear relationship to the number of characters in the string.

In non-alphabetic languages, however, the number of different characters can
be much greater than 256. Languages like Chinese, Japanese, and Korean
include thousands of different characters, and typically require more than
one byte to store a given logical character. Characters that occupy two or
more bytes of storage are called multibyte characters.

Locales
For INFORMIX-SQL (and for Informix database servers and connectivity
products), a locale is a set of files that specify the linguistic and cultural
conventions that the user expects to see when the software runs. A locale can
specify these:

■ The name of the code set

■ The collation order for character-string data

■ Culture-specific display formats for other data types

■ The correspondence between uppercase and lowercase letters

■ Determination of which characters are printable and which are
nonprintable

The Informix Guide to GLS Functionality provides details of formats for
number, currency, and time values. If no locale is specified, then default
values are for United States English, which is the en_us.8859-1 locale on UNIX
systems.

INFORMIX-SQL requires the en_us.0333 locale. It accepts as input any source
file containing data values in the format of the client locale.
Global Language Support C-3

GLS Features Supported in INFORMIX-SQL
GLS Features Supported in INFORMIX-SQL
GLS features supported in INFORMIX-SQL include:

■ Character data sorting and comparison according to the rules of a
national language locale.

■ Use of extended-ASCII characters permitted in user-defined names
such as database, table, and column names.

■ Nationalized money and numeric decimal formats in reports, screen
forms, and data assignment statements.

■ Character conversion between database data and national language
specific keyboards and screens.

■ The ability for different users to simultaneously access, on the same
server, databases with different locale settings.
C-4 IBM Informix SQL Reference Manual

Data Types and Menu Options
Data Types and Menu Options
Figure C-1 and Figure C-2 present an overview of the affected data types and
INFORMIX-SQL menu options and keywords. (For information about locale
files and locale categories, see the Informix Guide to GLS Functionality.)

Figure C-1
Impact of GLS Support on Data Types

Data Type Impact

CHAR Transparently maps to NCHAR

VARCHAR Transparently maps to NVARCHAR

NCHAR Sorts in the order of the user locale. Available only by way of SQL CREATE TABLE

NVARCHAR Sorts in the order of the user locale. Available only by way of SQL CREATE TABLE

DECIMAL Display depends on values in DBFORMAT, DBMONEY, and the NUMERIC
category (highest to lowest precedence)

SMALLFLOAT Display depends on values in DBFORMAT, DBMONEY, and the NUMERIC
category (highest to lowest precedence)

FLOAT Display depends on values in DBFORMAT, DBMONEY, and the NUMERIC
category (highest to lowest precedence)

MONEY Display depends on values in DBFORMAT, DBMONEY, and the MONETARY
category (highest to lowest precedence)

DATE Separator symbol and order of month, day, and year depends on the value in
DBDATE. Display of language-specific month and day names depends on instal-
lation of message files, whose location is referenced by DBLANG.

DATETIME Display of language-specific month and day names depends on the installation of
message files, whose location is referenced by DBLANG
Global Language Support C-5

Data Types and Menu Options
Figure C-2
Impact of GLS Support on Menu Options and Keywords

Menu Option or Keyword IMPACT

LOAD The LOAD statement expects incoming text files to be in the format
specified by the GLS and Informix locale settings and environment
variables

UNLOAD Text files produced by an UNLOAD are output in the format specified
by GLS and Informix GLS and Informix locale settings and environment
variables but without thousands separators

USING Interpretation of format strings is dependent on settings in DBFORMAT,
DBMONEY, DBDATE, and the NUMERIC and MONETARY categories

CREATE TABLE,
ALTER TABLE

CHAR and VARCHAR columns defined in non-English locales are
created as NCHAR and NVARCHAR. CHAR and VARCHAR columns
that behave as CHAR and VARCHAR in these environments can only be
created by way of the SQL CREATE TABLE and ALTER TABLE
statements

FORMAT Same as USING except that FORMAT does not support currency
symbols

ORDER BY, MATCHES,
WHILE, INCLUDE,
and IF

Comparisons of character values are based on collation sequences
defined by the COLLATE category

LET Conversions between character and numeric, monetary or date values
are dependent on settings in DBFORMAT, DBMONEY, DBDATE, and
the NUMERIC and MONETARY categories

UPSHIFT and DOWNSHIFT Translations between upper and lowercase are specified by the CTYPE
category

ASCII (ACE) Characters generated by particular ASCII values are dependent on
which character set is specified by the CTYPE category

DATE The date displayed contains month and day names specified by the
message files pointed to by DBLANG

MENU NAME Menu names can include locale-specific characters

CALL (to C function) Called C functions can include locale-specific characters in identifiers, if
the C compiler can support these
C-6 IBM Informix SQL Reference Manual

The Character Set
Date, Time, and Currency Formats

To use localized formats for dates, time, and money values, set the Informix
environment variables DBFORMAT, DBMONEY, and DBDATE. Formatting
conventions of some East Asian locales require that the GL_DATE or
GL_DATETIME environment variable be set. For more information about
these and other environment variables, see the Informix Guide to GLS
Functionality.

Informix System Error Messages

Informix provides error message translation for a variety of languages. You
can use the DBLANG environment variable to point to a message directory
containing translated messages. Contact your local Informix sales office for a
list of available language translations.

The Character Set
INFORMIX-SQL can handle the following non-English characters that are
valid in the client locale:

■ Names of identifiers

■ Values of CHAR and VARCHAR variables and formal arguments

■ Characters within TEXT blobs

■ Message text, quoted strings, and values returned by functions

■ Text within comments, forms, menus, and output from reports

Named entities include variables, functions, cursors, formal arguments,
labels, reports, and prepared objects. INFORMIX-SQL has a limit of 50 bytes on
the lengths of these names.

The default environment for INFORMIX-SQL is based on the ASCII code set of
128 characters, as listed in Appendix E, “The ASCII Character Set.” Each of
these encoded values (or code points) requires seven bits of a byte to store each
of the values 0 through 127, representing the letters, digits, punctuation, and
other logical characters of ASCII. Because each ASCII character can be stored
within a single byte, ASCII is called a single-byte character set. All other
character sets that INFORMIX-SQL can support must include ASCII as a subset.
Global Language Support C-7

The Character Set
In non-English locales, INFORMIX-SQL can include non-ASCII characters in
identifiers if those characters are defined in the code set of the locale that
CLIENT_LOCALE specifies. In multibyte East Asian locales that support
languages whose written form is not alphabet-based, an identifier need not
begin with a letter, but the storage length cannot exceed 50 bytes. (A Chinese
identifier, for example, that contains 50 logical characters would exceed this
limit if any logical character in the identifier required more than one byte of
storage.)

You can enter, edit, and display valid characters from the code set of the client
locale in INFORMIX-SQL. Whether a given character from a non-English code
set is printable or nonprintable depends on the client locale.

The PERFORM screen transaction processor can process form specifications
that include non-English characters that are valid in the client locale. It can
also produce compiled forms that can display characters from the client
locale, and that can accept such characters in input from the user.

Values that include non-English characters can be passed between
INFORMIX-SQL and the database server, if the client and server systems have
the same locale. If the locales are different, data can still be transferred
between the client and the database server, provided that the client locale
includes appropriate code-set conversion tables. See “Configuring the
Language Environment” on page C-16 or the Informix Guide to GLS Function-
ality, for information about establishing a locale and about code-set
conversion between locales. See also “Handling Code-Set Conversion” on
page C-21 of this appendix.

SQL Identifiers

SQL identifiers are the names of database entities, such as table and column
names, indexes, and constraints. The first character must be an alphabetic
character, as defined by the locale, or an underscore (= ASCII 95) symbol. You
can use alphanumeric characters and underscores (_) for the rest of the SQL
identifier. Most SQL identifiers can be up to 18 bytes in length. What
characters are valid in SQL identifiers depends on the locale of the database
server (see “Client Locales and Server Locales” on page C-15). Neither single-
byte nor multibyte whitespace characters can appear in SQL identifiers.

For INFORMIX-SE database servers, whether non-English characters are
permitted in the names of databases, tables, or log files depends on whether
the operating system permits such characters in filenames. ♦

UNIXSE
C-8 IBM Informix SQL Reference Manual

The Character Set
The user interface of INFORMIX-SQL is in English. If edit fields contain
multibyte characters, there is no checking, and the results might be unpre-
dictable. SQL statements can include valid non-English identifiers for some
database entities.The following tables summarize the instances where non-
English characters are valid as identifiers.

Input and output filenames cannot be localized. Only ASCII characters are
valid in input and output pathnames or filenames.

Collation Sequence

The collation (sorting) sequence is implied by the code-set order in the files that
define the client locale. (Any collating that is specified by the COLLATE
category of the client locale is ignored.) Collation in SQL operations (where
the database server uses its own collation sequence) depends on the data
type and on the server locale (which can specify a localized order of
collation). It is possible for INFORMIX-SQL and the database server to use a
different collating sequence, or for INFORMIX-SQL to connect to two or more
servers that use different collating sequences. The collation sequence can
affect the value of Boolean expressions that use relational operators, and the
sorted order of rows in queries and in reports.

SQL Identifier Allow Non-English Characters?
Column name Yes
Constraint name Yes
Database name Yes (Operating System limitations on INFORMIX-SE)
Index name Yes
Log filename Yes (Operating System limitations on INFORMIX-SE)
Stored procedure name Yes
Synonym Yes
Table name Yes (Operating System limitations on INFORMIX-SE)
View name Yes
Global Language Support C-9

East Asian Language Support
East Asian Language Support
INFORMIX-SQL can accept Asian languages that use multibyte code sets. The
following features are supported in multibyte locales:

■ Menu items, identifiers, and text labels in the native language

■ Features to avoid the creation of partial characters

■ Non-English data

■ Cultural conventions, including the representation of date, time,
currency, and numeric values, and localized collation

■ Kinsoku processing for Japanese language text with WORDWRAP

■ Text geometry that adjusts automatically to meet localization needs

■ Comparisons that adopt the comparison rules and collating
sequence that the locale defines implicitly (SQL comparison and
collation depend on the database server.)

This version of INFORMIX-SQL does not support composite characters, such
as are required in some code sets that support the Thai language.

Character string values can include multibyte characters that are supported
by the client locale in contexts like these:

■ Character expressions and multiple-value character expressions

■ Literal values within quoted strings

■ Variables, formal arguments, and returned values of CHAR,
VARCHAR, and TEXT data types

Multibyte characters can also appear in user-defined query criteria that
specify the SQL identifier of any of the database objects listed in the table on
“SQL Identifiers” on page C-8. INFORMIX-SQL does not, however, support
multibyte characters as currency symbols or as separators in display formats
specified by the DBDATE or DBFORMAT environment variables.
C-10 IBM Informix SQL Reference Manual

East Asian Language Support
Logical Characters

Within a single-byte locale, every character of data within character-string
values requires only a single byte of memory storage, and a single character
position for display by a character-mode device.

This simple one-to-one relationship in character-string operations between
data characters, display width, and storage requirements does not exist in
East Asian locales that support multibyte characters. In such locales, a single
logical character might correspond to a single byte or to two or more bytes.
In such locales, it becomes necessary to distinguish among the logical
characters within a string, the display width that the corresponding glyph
occupies in a display or in report output, and the number of bytes of memory
storage that must be allocated to hold the string.

In locales that support multibyte characters, some built-in functions and
operators that process string values operate on logical characters, rather than
on bytes. For code sets that use multibyte characters, this modifies the byte-
based behavior of several features in INFORMIX-SQL 6.x (and earlier) releases.
A single logical character can occupy one or more character positions in a
screen display or in output of a report, and requires at least one byte of
storage, and possibly more than one.

Declaring the CHAR or VARCHAR data types of variables, formal arguments,
and returned values is byte-based. Runtime processing of some character
strings, however, is done on a logical character basis in multibyte locales.

Partial Characters

The most important motivation for distinguishing between logical characters
and their component bytes is the need to avoid partial characters. These are
fragments of multibyte characters. Entering partial characters into the
database implies corruption of the database, and risks malfunction of the
database server.

Partial characters are created when a multibyte character is truncated or split
up in such a manner that the original sequence of bytes is not retained. Partial
characters can be created during operations like the following:

■ Substring operations

■ INSERT and UPDATE operations of SQL
Global Language Support C-11

East Asian Language Support
■ Word wrapping in reports and screen displays

■ Buffer to buffer copy

INFORMIX-SQL does not allow partial characters and handles them as
follows:

■ Replaces truncated multibyte characters by single-byte whitespaces

■ Wraps words in a way that ensures that no partial characters are
created in reports and screen displays

■ Performs code-set conversion in a way that ensures that no partial
characters are created

For example, suppose that the following SELECT statement of SQL:

SELECT col1[3,5] FROM tab1

retrieved three data values from col1 (where col1 is a CHAR, NCHAR,
NVARCHAR, or VARCHAR column); here the first line is not a data value but
indicates the alignment of bytes within the substrings:

AA2BB2AA becomes "s1Bs1"
ABA2C2AA becomes "A2s1"
A2B2CABC becomes "B2C"

Here the notation s1 denotes a single-byte whitespace. Any uppercase letter
followed by a superscript (2) means an East Asian character with multibyte
storage width; for simplicity, this example assumes a 2-byte storage
requirement for the multibyte characters. In the first example, the A2 would
become a partial character in the substring, so it is replaced by a single-byte
whitespace. In the same substring, the B2 would lose its trailing byte, so a
similar replacement takes place.
C-12 IBM Informix SQL Reference Manual

Installing INFORMIX-SQL in Non-English Locales
Installing INFORMIX-SQL in Non-English Locales
This section identifies the general requirements for installation of
INFORMIX-SQL in non-English locales. Because “non-English” refers to all
locales other than en_us.8859-1, most locales of the English-speaking world
are “non-English” in this context, as are the locales of most of the rest of the
world.

The directory structure of Informix GLS products is shown in Figure C-3.

Figure C-3
Directory Structure

of GLS Products
*.cv

cv9
*.cvo

*.cm
cm3

*.cmo

*.lc
en_us

*.lcolc11

gls

etc (similar to msg subdirectory)

forms (similar to msg subdirectory)

*.iemen_us
msg

0333

release (similar to msg subdirectory)

sql
demo

*en_us 0333

$INFORMIXDIR
Global Language Support C-13

Language Supplements
Language Supplements
Use of INFORMIX-SQL with some non-English languages might require an
Informix language supplement specific to the conventions of the country or
language. Language supplements are currently required, for example, for
Informix database servers to support each of the following East Asian
languages.

Language supplements for these East Asian languages include locale files,
translated message files, and translated menu files. Localized versions of
INFORMIX-SQL for East Asian locales (for example, Japanese INFORMIX-SQL)
will include the relevant files. See the release notes for additional
information.

A corresponding International Language Supplement includes locale files
and code-set conversion files for most European languages. Because most of
these files are included with the Client SDK software that is provided with
INFORMIX-SQL, this supplement need not be purchased by INFORMIX-SQL
customers unless the required locale is not included with INFORMIX-SQL.

When the Informix database server is installed in locales based on non-
English European languages, both the default (English) database server and
the International Language Supplement must be installed.

When INFORMIX-SQL is installed, the locale files must also be installed.
Contact your Informix sales office for information regarding current support
for specific locales.

Country or Language Informix Language Supplement

People’s Republic of China Language Supplement ZHCN 7.20

Taiwanese Language Supplement ZHTW 7.20

Japanese Language Supplement JA 7.20

Korean Language Supplement KO 7.20

Thai (simplified) Language Supplement TH 7.20
C-14 IBM Informix SQL Reference Manual

Locales that INFORMIX-SQL Supports
Locales that INFORMIX-SQL Supports
A locale is the part of the processing environment that defines conventions for
a given language or culture, such as formatting time and money values, and
classifying, converting, and collating characters. The Informix GLS locale
definition is similar to the X/Open CAE Specification.

Languages that INFORMIX-SQL supports include the following:

■ People’s Republic of China

■ Taiwanese

■ Japanese

■ Korean

■ Eastern European (Latin)

■ Eastern European (Cyrillic)

■ Western European (Latin)

■ Greek

■ Turkish

“Latin” denotes what is also called the “Roman” alphabet in U.S. English. In
any locale, INFORMIX-SQL requires at least one font that supports the code
set.

INFORMIX-SQL provides limited support for the Thai language with
Language Supplement TH 7.20, for non-composite Thai characters.
(INFORMIX-SQL does not support composite Thai characters.)

Client Locales and Server Locales

The locale of the system on which INFORMIX-SQL is running is called the
client locale. The locale of the database server is called the server locale.
“Handling Code-Set Conversion” on page C-21 describes special procedures
that might be required if the client locale and the server locale are not
identical.
Global Language Support C-15

Configuring the Language Environment
Specifying Locales

INFORMIX-SQL requires that locales be specified, through environment
variables and settings in locale files, on UNIX systems that support the
database server.

For details about configuring UNIX systems for global language support and
for an example of non-English locale files, see the Informix Guide to GLS
Functionality. For additional information about setting environment
variables, see also “Configuring the Language Environment” on page C-16.

Configuring the Language Environment
Using the GLS features of INFORMIX-SQL with Informix database servers
involves several compatibility issues:

■ The English servers create English databases with ASCII data.
For these, INFORMIX-SQL must access the servers with DB_LOCALE
set to en_us.8859-1.

■ The 5.x ALS versions of Informix servers can use variables such
as DBCODESET and DBCSOVERRIDE as substitutes for DB_LOCALE
and DBCONNECT, respectively.

■ The 5.xALS versions use DBASCIIBC to emulate the 4.x ASCII servers.
This environment variable should be set if such behavior is desired.

■ The SERVER_LOCALE environment variable is set on the database
server, not on the INFORMIX-SQL client. This specifies the locale that
the database server uses to read or write operating system files.
If this is not set, the default is U.S. English (en_us.8859-1).

If no setting is specified, INFORMIX-SQL uses an English locale.

The non-internationalized portions of the product are initialized with
the default (U.S. English) locale. That is, both CLIENT_LOCALE and
DB_LOCALE (en_us.8859-1) are set to English. This initialization is necessary
because many common functions are shared between the internationalized
and non-internationalized components.

Important: Except for DBFORMAT, all the environment variables that are described
in the sections that follow apply to Informix database servers.
C-16 IBM Informix SQL Reference Manual

Environment Variables That Support GLS
The following considerations apply:

■ INFORMIX-SQL cannot support connections to different databases
with different locales concurrently; for example, in extended joins.

■ The environment variables discussed here deal with the
environment DB_LOCALE that is passed to the server.

■ CLIENT_LOCALE cannot be changed dynamically during execution.

■ The previous point has one exception: the CLIENT_LOCALE can
always be set to English (because English is a subset of all locales).

When connecting to a GLS, NLS, or ALS (Asian Language Support) database,
the DB_LOCALE code set should match the DB_LOCALE code set of the
database. Otherwise, data corruption can occur, because no validation of
code-set compatibility is performed by the server. An ALS server can refuse
the connection when the code sets do not match, but an NLS server cannot.

Environment Variables That Support GLS
This section examines the environment variables that support the GLS
capabilities of INFORMIX-SQL, including the following environment
variables:

■ DBDATE defines date display formats.

■ DBMONEY defines monetary display formats.

■ DBFORMAT defines numeric and monetary display formats and has
more options than DBMONEY.

INFORMIX-SQL also supports the following GLS environment variables:

■ DB_APICODE specifies a code set that has a mapping file.

■ DB_LOCALE is the locale of the database to which INFORMIX-SQL
is connected.

■ CLIENT_LOCALE is the locale of the system that is executing
INFORMIX-SQL.

■ DBLANG points to the directory for Informix error messages.

■ GL_DATE defines date displays, including East Asian formats.

■ GL_DATETIME defines date and time displays, including East Asian
formats.
Global Language Support C-17

Environment Variables That Support GLS
■ SERVER_LOCALE is the locale of the database server for file I/O.

INFORMIX-SQL does not use DB_LOCALE directly; this variable, as well as
DBLANG, is used by the GLS version of Client SDK. See the Informix Guide to
GLS Functionality for details on how DBLANG, DB_LOCALE, GL_DATE and
GL_DATETIME are set. For details of other Informix environment variables,
see Appendix B, “Setting Environment Variables.”

DBAPICODE

This environment variable specifies the name of a mapping file for peripheral
devices (for example, a keyboard, a display terminal, or a printer) whose
character set is different from that of the database server.

DB_LOCALE

This environment variable specifies the locale of the database to which
INFORMIX-SQL is connected. The format for setting DB_LOCALE is
DB_LOCALE=<locale>.

The following points should be noted regarding DB_LOCALE:

■ The locale of the database must match the value specified in
DB_LOCALE. If it does not match, the database connection might be
refused (unless DBCSOVERRIDE is set to 1), depending on the server
version.

■ If a database is created, then this new database has the value
specified by DB_LOCALE.

■ If DB_LOCALE is invalid, either because of wrong formatting or
specifying a locale that does not exist, then an error is issued.

■ If the code set implied by DB_LOCALE cannot be converted to what
CLIENT_LOCALE implies, or vice versa, an error is issued.

■ If DB_LOCALE is not specified, there is no default value; in this case,
the GLS version of Client SDK behaves as if code-set conversion were
not needed.
C-18 IBM Informix SQL Reference Manual

Environment Variables That Support GLS
CLIENT_LOCALE

This environment variable specifies the locale of the (input) source code and
the compiled code (to be generated). This is also the locale of the error files (if
any) and the intermediate files. The format of CLIENT_LOCALE is the same
as that of DB_LOCALE:

■ The characters that reach the user interface (the non-ASCII
characters) must be in the CLIENT_LOCALE.

■ If DB_LOCALE is invalid, either because of incorrect formatting
or specifying a locale that does not exist, an error is issued.

■ The DB_LOCALE and CLIENT_LOCALE settings need to be
compatible, meaning there should be proper code-set conversion
tables between them. Otherwise, an error is generated.

■ Collation follows the code-set order of CLIENT_LOCALE, except in
SQL statements (where the database server uses its own collation
sequence). Any COLLATE specification is ignored.

DBLANG

The value of DBLANG is used to complete the pathname to the directories
that contain the required message, help, and demo files. The format of
DBLANG is the same as that of DB_LOCALE.

If DBLANG is not set, the value defaults to that of CLIENT_LOCALE.

See also the description of DBLANG in the Informix Guide to GLS Functionality.

DBDATE

The DBDATE environment variable has been modified to support era-based
dates (Japanese and Taiwanese). The days of the week and months of the year
(in local form) are stored in the locale files. If this environment variable is set,
it might override other means of specifying date formats.
Global Language Support C-19

Environment Variables That Support GLS
DBMONEY

This environment variable has been modified to accept multibyte currency
symbols. INFORMIX-SQL must read the value of DBMONEY (or DBFORMAT)
and be able to correctly process multibyte characters as currency symbols. If
DBMONEY is set, its value might override other means of specifying currency
formats.

DBFORMAT

This environment variable has been modified to accept multibyte currency
symbols. Unlike the version of DBFORMAT for English products, display of
the decimal point is optional, rather than mandatory, in INFORMIX-SQL.

If DBFORMAT is set, its value can override other means of specifying number
or monetary formats.

See also the descriptions of DBDATE, DBFORMAT, and DBMONEY in
Appendix B and the Informix Guide to SQL: Reference.

The glfiles utility is described in the Informix Guide to GLS Functionality. This
utility allows you to generate lists of the following files:

■ GLS locales available in the system

■ Informix code-set conversion files available

■ Informix code-set files available

Default Values of GLS Environment Settings

Default values assumed by INFORMIX-SQL (which differ from those of ALS
environments) are described in this section.

The following table shows the values assumed by INFORMIX-SQL when you
define only some of the required values of locales.
C-20 IBM Informix SQL Reference Manual

System Environment Variables
(A value of ja-jp.ujis is assumed in the following example, CL means
CLIENT_LOCALE, and DL means DB_LOCALE.)

If you do not set the DBLANG environment variable, it is set to the value of
CLIENT_LOCALE.

System Environment Variables
The value of the X/Open-defined LANG environment variable specifies the
language environment. There is no standardization of LANG locale values
between systems. Exact values to specify for locale variables are specific to
the system and also depend on which language supplements have been
installed on the system.

For more information about the LANG environment variable, see the Informix
Guide to SQL: Reference.

User Defined Values in Product

CL Defined CL Value DL Defined DL Value CL Value DL Value

No -- No -- en_us.8859 en_us.8859

Yes ja_jp.ujis No -- ja_jp.ujis ja_jp.ujis

Yes ja_jp.ujis Yes ja_jp.ujis ja_jp.ujis ja_jp.ujis

No -- Yes ja_jp.ujis en_us.8859 ja_jp.ujis
Global Language Support C-21

Handling Code-Set Conversion
Handling Code-Set Conversion
The process of converting characters at the locale where INFORMIX-SQL is
running to characters at the locale of the database server (or vice versa) is
called code-set conversion. If INFORMIX-SQL needs to run on computers that
encode different character sets, it might be necessary to enable code-set
conversion. This section provides some background and details.

Code-set conversion is performed by Client SDK; no explicit code-set
conversion is done by INFORMIX-SQL. Figure C-4 shows the relationship
between INFORMIX-SQL, Client SDK, and the database.

The code sets in the CLIENT_LOCALE can differ from those in DB_LOCALE.

Code-set conversion is done by way of a code-set conversion file. Files for
code-set conversion between CLIENT_LOCALE and DB_LOCALE need to be
present on the client. For conversion to take place, conversion files need to be
present in the $INFORMIXDIR/gls/cv directory.

For details of converting between client and server code sets, see the sections
that follow. See also the Informix Guide to GLS Functionality.

Figure C-4
Processes and Their Locales

INFORMIX-SQL INFORMIX-CSDK Database

CLIENT_LOCALE DB_LOCALE
C-22 IBM Informix SQL Reference Manual

What Is Code-Set Conversion?
What Is Code-Set Conversion?
Different operating systems sometimes encode the same characters in
different ways. For example, the character a-circumflex is encoded:

■ in Windows code page 1252 as hexadecimal 0xE2.

■ in IBM CCSID 437 as hexadecimal 0x83.

If the encoding for a-circumflex on the Windows system is sent unchanged
to the IBM system, it will be printed as the Greek character gamma. This
happens because, on the IBM system, gamma is encoded as 0xE2.

This means character data strings that are passed between two computers
using different character set encodings must be converted between the two
different encodings. Otherwise, character data originating from one
computer will not be correctly displayed or processed on the other computer.

This appendix uses the term code set in the same way that the Windows
documentation uses the terms character set and code page.

Converting character data from one encoding schema to another is called
code-set conversion. If a code-set conversion is required from computer A to
computer B, it is also required from computer B to computer A. You must
explicitly enable code-set conversion; no conversion is done by default.

What Code-Set Conversion Is Not

Code-set conversion is not a semantic translation; that is, it does not convert
words between different languages. For example, it does not convert
between English yes and French oui. It only ensures that each character is
processed and printed the same, regardless of how the characters are
encoded.

Code-set conversion does not create a character in the target code set if the
character exists only in the source code set. For example, if the character
a-circumflex is being passed to a computer whose code set does not contain an
a-circumflex character, the target computer will never be able to exactly
process or print the a-circumflex character. This situation is described in more
detail in “Mismatch Processing” on page C-24.
Global Language Support C-23

What Data Values Are Converted
When You Do Not Need Code-Set Conversion

You do not need code-set conversion in any of the following situations:

■ The client and the server are on the same computer.

■ The code set of your client and of all the databases to which you are
connecting are the same.

■ The subset of characters that you will be sending between the client
and the server are encoded identically. For example, if you are
sending only English characters between a client and a server, and
each English character has the same encoding on both computers, no
code-set conversion is required. In this case, the non-English
characters can have different encodings.

■ The character-string data values are passed from the client to the
server for storage only and are neither processed nor printed by the
server. For example, no code-set conversion is required if a client:

❑ passes character-string data to the server.

❑ does not process or print the data on the server computer.

❑ retrieves the same data for processing or printing on computers
that use the same code set as the client that populated the
database.

Sorting data by using the ORDER BY statement or retrieving data by using
a LIKE or MATCHES clause, however, will probably produce erroneous
results if the data strings are not converted before they are stored.

What Data Values Are Converted
If you enable code-set conversion, data values are converted by Client SDK
from the INFORMIX-SQL client to the database server, and from the server to
the client. The CHAR, VARCHAR, and TEXT blob data types are converted, as
are column names, table names, database names, and SQL command text.
C-24 IBM Informix SQL Reference Manual

Mismatch Processing
Mismatch Processing
If both code sets encode exactly the same characters, then mismatch handling
is unnecessary. If the source code set contains any characters that are not
contained in the target code set, however, the conversion must define how
the mismatched characters are to be mapped to the target code set.

Four ways code-set conversions handle mismatch processing are as follows:

■ Round-trip conversion. This maps each mismatched character
in the source code set to a unique character in the target code set.
On the return, the original character is mapped back to itself. This
guarantees that a two-way conversion will result in no loss of infor-
mation; however, data converted in only one direction might confuse
the processing or printing on the target computer.

■ Substitution conversion. This maps all mismatched characters in
the source code set to a single specific character in the target code set
that serves to highlight mismatched characters. This guarantees that
a one-way conversion will clearly show the mismatched characters;
however, a two-way conversion will result in information loss if
mismatched characters are transferred.

■ Graphical replacement conversion. This maps each mismatched
character in the source code set to a character in the target code set
that resembles the source character (this includes mapping one-
character ligatures to their two-character equivalents). This might
confuse printing on the target computer. Round-trip conversions
should contain as many graphical replacement conversions as
possible.

■ Substitution plus graphical replacement. This maps as many
mismatched characters as possible to their graphical replacements,
and maps the remaining mismatched characters to the substitution
character.

Informix-supplied code-set conversion source files have header comments
that indicate which method was used.
Global Language Support C-25

Enabling Code-Set Conversion
Enabling Code-Set Conversion
Code-set conversion on UNIX is handled by UNIX environment variables.

To establish code-set conversion

1. Determine the code set used by the client.

2. Determine the code set used by all the databases to which this client
will be connecting in a single connection.

3. Specify the conversion filenames.

Because each operating system has its own way of declaring the code set
it is using, consult your UNIX operating system documentation or your
system administrator to determine the code set used by the client computer.

Your system administrator should also know which code set is being used
by the database.

Set the DBAPICODE environment variable to specify a code set that has
a mapping file in the message directory $INFORMIXDIR/msg (or a directory
pointed to by the LANG or DBLANG value). The Informix crtcmap utility
helps you to create mapping files.

For detailed information about DBAPICODE and the crtcmap utility, see the
Informix Guide to SQL: Reference. ♦
C-26 IBM Informix SQL Reference Manual

D
Appendix
Modifying termcap and
terminfo
You can include color and graphics characters in your PERFORM
screen forms. The meaning of these characters, however, is
terminal dependent. To determine terminal-dependent charac-
teristics, INFORMIX-SQL uses the information in the termcap file
or in the terminfo directory. INFORMIX-SQL uses the
INFORMIXTERM environment variable to determine whether to
use termcap or terminfo. For more information about
INFORMIXTERM, read the discussion of environment variables
in the ‘Environment Variables’ appendix or in the Preface.

With INFORMIX-SQL, Informix distributes termcap files that
contain additional capabilities for many common terminals
(such as the Wyse 50 and the Televideo 950). This appendix
describes these capabilities, as well as the general format of
termcap and terminfo entries.

Because terminfo does not support color, you can only use
INFORMIX-SQL color functionality with termcap. If you want to
use color in INFORMIX-SQL screen forms, you must set
INFORMIXTERM to termcap.

You can use the information in this appendix, combined with the
information in your terminal manual, to modify the contents of
your termcap file or terminfo files. This appendix is divided into
two main sections, termcap and terminfo. Depending on which
you are using, you should read the appropriate section.

termcap
termcap
When INFORMIX-SQL is installed on your system, a termcap file is placed in
the etc subdirectory of $INFORMIXDIR. This file is a superset of an operating-
system termcap file. The Informix termcap file contains additional capabil-
ities for many terminals. You might want to modify this file further in the
following instances:

■ The entry for your terminal has not been modified to include color-
change and intensity-change capabilities.

■ You want to specify or alter the graphics characters used for borders.

Tip: Some terminals cannot support color or graphics characters. You should read
this appendix and the user guide that comes with your terminal to determine whether
or not the changes described in this appendix are applicable to your terminal.

Format of a termcap Entry
This section describes the general format of termcap entries. For a complete
description of termcap, refer to your operating-system documentation.

A termcap entry contains a list of names for the terminal, followed by a list
of the terminal’s capabilities. The three types of capabilities are:

■ Boolean

■ Numeric

■ String

All termcap entries have the following format:

■ ESCAPE is specified as a backslash (\) followed by the letter E, and
CONTROL is specified as a caret (^). Do not use the ESCAPE or
CONTROL keys to indicate escape sequences or control characters in
a termcap entry.

■ Each capability, including the last one in the entry, is followed by a
colon (:).

■ Entries must be defined on a single logical line; a backslash (\)
appears at the end of each line that wraps to the next line.
D-2 IBM Informix SQL Reference Manual

Format of a termcap Entry
Figure D-1 shows a basic termcap entry for the Wyse 50 terminal.

Tip: Comment lines begin with a pound sign (#).

Terminal Names

A termcap entry starts with one or more names for the terminal, each of
which is separated by a vertical bar (|). For example, the termcap entry for
the Wyse 50 terminal starts with the following line:

w5|wy50|wyse50:\

The termcap entry can be accessed with any one of these names.

Boolean Capabilities

A Boolean capability is a two-character code that indicates whether or
not a terminal has a specific feature. If the Boolean capability is present in the
termcap entry, the terminal has that particular feature. Figure D-2 shows
some of the Boolean capabilities for the Wyse 50 terminal.

Figure D-1
Wyse 50 termcap

Entry

Entry for Wyse 50:

w5|wy50|wyse50:\
:if=/usr/lib/tabset/std:\
:al=\EE:am:bs:ce=\Et:cm=\E=%+ %+ :cl=\E*:co#80:\
:dc=\EW:dl=\ER:ho=^^:ei=:kh=^^:im=:ic=\EQ:in:li#24:\
:nd=^L:pt:se=\EG0:so=\EG4:sg#1:ug#1:\
:up=^K:ku=^K:kd=^J:kl=^H:kr=^L:kb=:\
:k0=^A@^M:k1=^AA^M:k2=^AB^M:k3=^AC^M:k4=^AD^M:\
:k5=^AE^M:k6=^AF^M:k7=^AG^M:\
:HI=^|:Po=^R:Pe=^T:

Figure D-2
Boolean

Capabilities for the
Wyse 50

bs:am:

bs backspace with CTRL-H
am automatic margins
Modifying termcap and terminfo D-3

Format of a termcap Entry
Numeric Capabilities

A numeric capability is a two-character code followed by a pound symbol
(#) and a value. Figure D-3 shows the numeric capabilities for the number
of columns and the number of lines on a Wyse 50 terminal.

Similarly, sg is a numeric capability that indicates the number of character
positions required on the screen for reverse video. The entry :sg#1: indicates
that a terminal requires one additional character position when reverse video
is turned on or off. If you do not include a particular numeric capability,
INFORMIX-SQL assumes that the value is zero.

String Capabilities

A string capability specifies a sequence that can be used to perform a terminal
operation. A string capability is a two-character code followed by an equal
sign (=) and a string ending at the next delimiter (:).

Figure D-3
Numeric

Capabilities
for the Wyse 50

:co#80:li#24:

co number of columns in a line
li number of lines on the screen
D-4 IBM Informix SQL Reference Manual

Specifying Graphics Characters in Screen Forms
Most termcap entries include string capabilities for clearing the screen,
cursor movement, arrow keys, the underscore, function keys, and so on.
Figure D-4 shows many of the string capabilities for the Wyse 50 terminal.

Specifying Graphics Characters in Screen Forms
INFORMIX-SQL uses characters defined in the termcap file to draw the
borders of boxes and other rectangular shapes that appear in a screen form.
If no characters are defined in the termcap file, INFORMIX-SQL uses the
hyphen (–) for horizontal lines, the vertical bar (|) for vertical lines, and the
plus sign (+) for corners.

The termcap file provided with INFORMIX-SQL contains border character
definitions for many common terminals. You can look at the termcap file to
see if the entry for your terminal has been modified to include these defini-
tions. If your terminal entry does not contain border character definitions, or
if you want to specify alternative border characters, you or your system
administrator can modify the termcap file.

Figure D-4
String Capabilities

for the Wyse 50
:ce=\Et:cl=\E*:\
:nd=^L:up=^K:\
:so=\EG4:se=\EG0:\
:ku=^K:kd=^J:kr=^L:kl=^H:\
:k0=^A@^M:k1=^AA^M:k2=^AB^M:k3=^AC^M:

ce=\Etclear to end of line
cl=\E*clear the screen
nd=^Lnon-destructive cursor right
up=^Kup one line
#
so=\EG4start stand-out
se=\EG0end stand-out
#
ku=^Kup arrow key
kd=^Jdown arrow key
kr=^Lright arrow key
kl=^Hleft arrow key
#
k0=^A@^Mfunction key F1
k1=^AA^Mfunction key F2
k2=^AB^Mfunction key F3
k3=^AC^Mfunction key F4
Modifying termcap and terminfo D-5

Specifying Graphics Characters in Screen Forms
Perform the following steps to modify the definition for your terminal type
in the termcap file:

1. Determine the escape sequences for turning graphics mode on and
off. This information is located in the manual that comes with your
terminal. For example, on Wyse 50 terminals, the escape sequence for
entering graphics mode is ESC H^B and the escape sequence for
leaving graphics mode is ESC H^C.

Tip: Terminals without a graphics mode do not have this escape sequence. The
procedure for specifying alternative border characters on a non-graphics terminal is
discussed at the end of this section.

2. Identify the ASCII equivalents for the six graphics characters that
INFORMIX-SQL requires to draw the border. (The ASCII equivalent of
a graphics character is the key you would press in graphics mode to
obtain the indicated character.)

Figure D-5 shows the graphics characters and the ASCII equivalents
for a Wyse 50 terminal.

Figure D-5
Wyse 50 ASCII Equivalents for Border Graphics Characters

Again, this information should be located in the manual that comes
with your terminal.

3. Edit the termcap entry for your terminal.

Window Border
Position

Graphics
Character

ASCII
Equivalent

upper left corner  2

lower left corner  1

upper right corner  3

lower right corner  5

horizontal - z

vertical  6
D-6 IBM Informix SQL Reference Manual

Specifying Graphics Characters in Screen Forms
Tip: You might want to make a copy of your termcap file before you edit it. You can
use the TERMCAP environment variable to point to whichever copy of the termcap
file you want to access.

Use the format
termcap-capability=value

to enter values for the following termcap capabilities:

Follow these guidelines when you insert information in the termcap
entry:

■ Delimit entries with a colon (:).

■ End each continuing line with a backslash (\).

■ End the last line in the entry with a colon.

For example, if you are using a Wyse 50 terminal, you would add the
following information in the termcap entry for the Wyse 50:

:gs=\EH^B:\
sets gs to ESC H CTRL B

:ge=\EH^C:\
sets ge to ESC H CTRL C

:gb=2135z6:\
sets gb to the ASCII equivalents
of graphics characters for upper
left, lower left, upper right,
lower right, horizontal,
and vertical

If you prefer, you can enter this information in a linear sequence:
:gs=\EH^B:ge=\EH^C:gb=2135z6:\

gs The escape sequence for entering graphics mode. In the term-
cap file, ESCAPE is represented as a backslash (\) followed by
the letter E; CONTROL is represented as a caret (^). For exam-
ple, the Wyse 50 escape sequence ESCAPE-H CONTROL-B is
represented as \EH^B.

ge The escape sequence for leaving graphics mode. For example,
the Wyse 50 escape sequence ESCAPE-H CONTROL-C is
represented as \EH^C.

gb The concatenated, ordered list of ASCII equivalents for the six
graphics characters used to draw the border. Use the following
order: upper left corner, lower left corner, upper right corner,
lower right corner, horizontal lines, vertical lines.
Modifying termcap and terminfo D-7

Adding Color and Intensity
Terminals Without Graphics Capabilities

For terminals without graphics capabilities, you must enter a blank value for
the gs and ge capabilities. For gb, enter the characters you want
INFORMIX-SQL to use for the window border.

The following example shows possible values for gs, ge, and gb in an entry
for a terminal without graphics capabilities. In this example, window borders
would be drawn using underscores (_) for horizontal lines, vertical bars
(|) for vertical lines, periods (.) for the top corners, and vertical bars (|)
for the lower corners.

:gs=:ge=:gb=.|.|_|:

INFORMIX-SQL uses the graphics characters in the termcap file when you
specify a screen border in a PERFORM screen.

Adding Color and Intensity
Many of the terminal entries in the Informix termcap file (in the etc subdi-
rectory of $INFORMIXDIR) have been modified to include color or intensity
capabilities or both. You can view the termcap file to determine if the entry
for your terminal type includes these capabilities. If your terminal entry
includes the ZA capability, your terminal is set up for color or intensity or
both. If it does not, you can add color and intensity capabilities by using the
information in this section. The following topics are outlined in this section:

■ Color and intensity

■ The ZA capability

■ Stack operations

■ Examples

Read these topics before you modify your terminal entry.

Color and Intensity Attributes

You can display your PERFORM screen on either a monochrome or a color
terminal. If you set up the termcap files as described here, color attributes and
intensity attributes are related, as shown in Figure D-6.
D-8 IBM Informix SQL Reference Manual

Adding Color and Intensity
Figure D-6
Color-Monochrome Correspondence

The background for colors is BLACK in all cases. In Figure D-6, the † signifies
that, if the keyword BOLD is indicated as the attribute, the field will be RED
on a color terminal, or if the keyword DIM is indicated as the attribute, the
field will be BLUE on a color terminal.

In either color or monochrome mode, you can add the REVERSE, BLINK, or
UNDERLINE attributes if your terminal supports them. You can select only
one of these three attributes.

The ZA String Capability

INFORMIX-SQL uses a parameterized string capability ZA in the termcap file
to determine color assignments. Unlike other termcap string capabilities that
you set equal to a literal sequence of ASCII characters, ZA is a function string
that depends on four parameters:

Number
Color
Terminal

Monochrome
Terminal

0 WHITE NORMAL

1 YELLOW BOLD

2 MAGENTA BOLD

3 RED BOLD†

4 CYAN DIM

5 GREEN DIM

6 BLUE DIM†

7 BLACK INVISIBLE

Parameter 1 (p1) Color number between 0 and 7 (see Figure D-6)

Parameter 2 (p2) 0 = Normal; 1 = Reverse
Modifying termcap and terminfo D-9

Adding Color and Intensity
ZA uses the values of these four parameters and a stack machine to determine
which characters to send to the terminal. The ZA function is called and these
parameters are evaluated when a color attribute specification is encountered
during PERFORM. You can use the information in your terminal manual to set
the ZA parameters to the correct values for your terminal.

To define the ZA string for your terminal, you use stack operators to push and
pop values onto and off the stack. The next section describes several stack
operators. Use these descriptions and the subsequent examples to under-
stand how to define the string for your terminal.

Stack Operations

The ZA string uses stack operations to either push values onto the stack or
pop values off the stack. Typically, the instructions in the ZA string push a
parameter onto the stack, compare it to one or more constants, and then send
an appropriate sequence of characters to the terminal. More complex opera-
tions are often necessary and, by storing the display attributes in static stack
machine registers (named a through z), you can achieve terminal-specific
optimizations.

A summary follows of the different stack operators you can use to write the
descriptions. For a complete discussion of stack operators, consult your
operating system documentation.

Parameter 3 (p3) 0 = No-Blink; 1 = Blink

Parameter 4 (p4) 0 = No-Underscore; 1 = Underscore
D-10 IBM Informix SQL Reference Manual

Adding Color and Intensity
Operators that Send Characters to the Terminal

Operators that Manipulate the Stack

%d pops a numeric value from the stack and sends a maximum of
three digits to the terminal. For example, if the value 145 is at the
top of the stack, %d pops the value off the stack and sends the
ASCII representations of 1, 4, and 5 to the terminal. If the value
2005 is at the top of the stack, %d pops the value off the stack and
sends the ASCII representation of 5 to the terminal.

%2d pops a numeric value from the stack and sends a maximum of two
digits to the terminal, padding to two places. For example, if the
value 145 is at the top of the stack, %2d pops the value off the stack
and sends the ASCII representations of 4 and 5 to the terminal. If
the value 5 is at the top of the stack, %2d pops the value off the
stack and sends the ASCII representations of 0 and 5 to the termi-
nal.

%3d pops a numeric value from the stack and sends a maximum of
three digits to the terminal, padding to three places. For example,
if the value 7 is at the top of the stack, %3d pops the value off the
stack and sends the ASCII representations of 0, 0, and 7 to the ter-
minal.

%c pops a single character from the stack and sends it to the terminal.

%p[1-9] pushes the value of the specified parameter on the stack. The nota-
tion for parameters is p1, p2, ... p9. For example, if the value of p1
is 3, %p1 pushes 3 on the stack.

%P[a-z] pops a value from the stack and stores it in the specified variable.
The notation for variables is Pa, Pb, ... Pz. For example, if the value
45 is on the top of the stack, %Pb pops 45 from the stack and stores
it in the variable Pb.

%g[a-z] gets the value stored in the corresponding variable (P[a-z]) and
pushes it on the stack. For example, if the value 45 is stored in the
variable Pb, %gb gets 45 from Pb and pushes it on the stack.

%´c´ pushes a single character on the stack. For example, %’k’ pushes k
on the stack.
Modifying termcap and terminfo D-11

Adding Color and Intensity
Arithmetic Operators

Each arithmetic operator pops the top two values from the stack, performs an
operation, and pushes the result on the stack.

%{n} pushes an integer constant on the stack. The integer can be any
length and can be either positive or negative. For example, %{0}
pushes the value 0 on the stack.

%S[a-z] pops a value from the stack and stores it in the specified static vari-
able. (Static storage is nonvolatile since the stored value remains
from one attribute evaluation to the next.) The notation for static
variables is Sa, Sb, ... Sz. For example, if the value 45 is on the top
of the stack, %Sb pops 45 from the stack and stores it in the static
variable Sb. This value is accessible for the duration of the
INFORMIX-SQL program.

%G[a-z] gets the value stored in the corresponding static variable (S[a-z])
and pushes it on the stack. For example, if the value 45 is stored in
the variable Sb, %Gb gets 45 from Sb and pushes it on the stack.

%+ Addition. For example, %{2}%{3}%+ is equivalent to 2+3.

%- Subtraction. For example, %{7}%{3}%- is equivalent to 7-3.

%* Multiplication. For example, %{6}%{3}%* is equivalent to 6*3.

%/ Integer division. For example, %{7}%{3}%/ is equivalent to 7/3
and produces a result of 2.

%m Modulus (or remainder). For example, %{7}%{3}%m is equivalent
to (7 mod 3) and produces a result of 1.
D-12 IBM Informix SQL Reference Manual

Adding Color and Intensity
Bit Operators

The following bit operators pop the top two values from the stack, perform
an operation, and push the result on the stack:

%& Bit-and. For example, %{12}%{21}%& is equivalent to (12 and 21) and
produces a result of 4.

Binary Decimal

0 1 1 0 0 = 12

1 0 1 0 1 = 21

---------------------- and

0 0 1 0 0 = 4

%| Bit-or. For example, %{12}%{21}%| is equivalent to (12 or 21) and pro-
duces a result of 29.

Binary Decimal

0 1 1 0 0 = 12

1 0 1 0 1 = 21

---------------------- or

1 1 1 0 1 = 29

%^ Exclusive-or. For example, %{12}%{21}%^ is equivalent to (12
exclusive-or 21) and produces a result of 25.

Binary Decimal

0 1 1 0 0 = 12

1 0 1 0 1 = 21

---------------------- exclusive or

1 1 0 0 1 = 25
Modifying termcap and terminfo D-13

Adding Color and Intensity
The following unary operator pops the top value from the stack, performs an
operation, and pushes the result on the stack:

Logical Operators

The following logical operators pop the top two values from the stack,
perform an operation, and push the logical result (either 0 for false or 1 for
true) on the stack:

The following unary operator pops the top value from the stack, performs an
operation, and pushes the logical result (either 0 or 1) on the stack.

%~ Bitwise complement. For example, %{25}%~ results in a value of -26, as
shown in the following display.

Binary Decimal

0 0 0 1 1 0 0 1 = 25

------------------------------------- Complement

1 1 1 0 0 1 1 0 = -26

%= Equal to. For example, if the parameter p1 has the value 3, the expres-
sion %p1%{2}%= is equivalent to 3=2 and produces a result of 0 (false).

%> Greater than. For example, if the parameter p1 has the value 3, the
expression %p1%{0}%> is equivalent to 3>0 and produces a result of 1
(true).

%< Less than. For example, if the parameter p1 has the value 3, the expres-
sion %p1%{4}%< is equivalent to 3<4 and produces a result of 1 (true).

%! Logical negation. This operator produces a value of zero for all non-
zero numbers and a value of 1 for zero. For example, %{2}%! results in
a value of 0, and %{0}%! results in a value of 1.
D-14 IBM Informix SQL Reference Manual

Adding Color and Intensity
Conditional Statements

The condition statement IF-THEN-ELSE has the following format:

The %e elsepart is optional. You can nest conditional statements in the thenpart
or the elsepart.

When INFORMIX-SQL evaluates a conditional statement, it pops the top value
from the stack and evaluates it as either true or false. If the value is true,
INFORMIX-SQL performs the operations after the %t; otherwise it performs
the operations after the %e (if any).

For example, the expression:

%?%p1%{3}%=%t;31%;

is equivalent to:

if p1 = 3 then print ";31"

Assuming that p1 has the value 3, INFORMIX-SQL performs the following
steps:

■ %? does not perform an operation but is included to make the condi-
tional statement easier to read.

■ %p1 pushes the value of p1 on the stack.

■ %{3} pushes the value 3 on the stack.

■ %= pops the value of p1 and the value 3 from the stack, evaluates the
Boolean expression p1=3, and pushes the resulting value 1 (true)
on the stack.

■ %t pops the value from the stack, evaluates 1 as true, and executes
the operations after %t. (Since ‘‘;31’’ is not a stack machine operation,
INFORMIX-SQL prints ‘‘;31’’ to the terminal.)

■ %; terminates the conditional statement.

%? expr %t thenpart %e elsepart %;
Modifying termcap and terminfo D-15

Adding Color and Intensity
Summary of Operators

Figure D-7 summarizes the allowed operations.

Figure D-7
Stack Operations

Operation Description

%d write pop() in decimal format

%2d write pop() in 2-place decimal format

%3d write pop() in 3-place decimal format

%c write pop() as a single character

%p[1-9] push ith parameter

%P[a-z] pop and store variable

%g[a-z] get variable and push on stack

%’c’ push char constant

%{n} push integer constant

%S[a-z] pop and store static variable

%G[a-z] get static variable and push

%+ addition. push(pop() op pop())

%- subtraction. push(pop() op pop())

%* multiplication. push(pop() op pop())

%/ integer division. push(pop() op pop())

%m modulus. push(pop() op pop())

%& bit and. push(pop() op pop())

%| bit or. push(pop() op pop())

%^ bit exclusive or. push(pop() op pop())

%~ bitwise complement. push(op pop())

(1 of 2)
D-16 IBM Informix SQL Reference Manual

Adding Color and Intensity
Examples

To illustrate, consider the monochrome Wyse terminal. Figure D-8 shows the
sequences for various display characteristics.

The characters after G form an ASCII sequence from the character 0 (zero)
through ?. You can generate the character by starting with 0 and adding 1 for
blank, 2 for blink, 4 for reverse, and 8 for underline.

%= equal to. push(pop() op pop())

%> greater than. push(pop() op pop())

%< less than. push(pop() op pop())

%! logical negation. push(op pop())

%? expr %t then
part %e elsepart %
;

if-then-else; the %e elsepart is optional.
else-if’s are possible (c’s are conditions):
%? c1 %t...%e c2 %t...%e c3 %t...%e...%;
nested if’s allowed.

All other characters are written to the terminal; use ’%%’ to write ’%’.

Figure D-8
Wyse Escape

Sequences

Operation Description

(2 of 2)

ESCAPE G 0 Normal
ESCAPE G 1 Blank(invisible)
ESCAPE G 2 Blink

ESCAPE G 4 Reverse
ESCAPE G 5 Reverse and blank
ESCAPE G 6 Reverse and blink

ESCAPE G 8 Underscore
ESCAPE G 9 Underscore and blank
ESCAPE G : Underscore and blink

ESCAPE G < Underscore and reverse
ESCAPE G = Underscore, reverse, and blank
ESCAPE G > Underscore, reverse, and blink
Modifying termcap and terminfo D-17

Adding Color and Intensity
You can construct the termcap entry in stages, as outlined in the following
display. %pi refers to pushing the ith parameter on the stack. The designation
for is \E. The termcap entry for the Wyse terminal must contain the following
ZA entry in order for INFORMIX-SQL monochrome attributes such as
REVERSE and BOLD to work correctly:

ZA =
\EG #print \EG
%’0’#push ’0’ (normal) on the stack
%?%p1%{7}%=%t%{1}%|#if p1 = 7 (invisible), set
#the 1 bit (blank);
%e%p1%{3}%> #if p1 > 3 and < 7, set the 64 flag (dim);
%p1%{7}%<%&%t%{64}%|#

%;%;#
%?%p2%t%{4}%|%;#if p2 is set, set the 4 bit (reverse)
%?%p3%t%{2}%|%;#if p3 is set, set the 2 bit (blink)
%?%p4%t%{8}%|%;#if p4 is set, set the 8 bit (underline)
%c: #print whatever character

is on top of the stack

You then concatenate these lines as a single string that ends with a colon and
has no embedded NEWLINEs. The actual ZA entry for the Wyse 50 terminal
follows:

ZA = \EG%’0’%?%p1%{7}%=%t%{1}%|%e%p1%{3}%>%p1%{7}%<%&%t%{64}
%|%;%;%?%p2%t%{4}%|%;%?%p3%t%{2}%|%;%?%p4%t%{8}%|%;%c:
D-18 IBM Informix SQL Reference Manual

Adding Color and Intensity
The next example is for the ID Systems Corporation ID231, a color terminal.
On this terminal, to set color and other characteristics you must enclose a
character sequence between a lead-in sequence (ESCAPE [0) and a termi-
nating character (m). The first in the sequence is a two-digit number that
determines whether the assigned color is in the background (30) or in the
foreground (40). The next is another two-digit number that is the other of 30
or 40, incremented by the color number. These characters are followed by 5 if
there is blinking and by 4 for underlining. The code in Figure D-9 sets up the
entire escape sequence.

When you concatenate these strings, the termcap entry is as shown in
Figure D-10.

In addition to the ZA capability, you can use other termcap capabilities. ZG is
the number of character positions on the screen occupied by the attributes of
ZA. Like the sg numeric capability, ZG is not required if no extra character
positions are needed for display attributes. The value for the ZG entry is
usually the same value as for the sg entry.

Figure D-9
Sample ZA String

for ID231

Figure D-10
Concatenated

ZA String
for ID231

ZA =
\E[0;#print lead-in
%?%p1%{0}%=%t%{7}#encode color number (translate
%e%p1%{1}%=%t%{3}# from Figure D-6 to the number
%e%p1%{2}%=%t%{5}# for the ID231)
%e%p1%{3}%=%t%{1}#
%e%p1%{4}%=%t%{6}#
%e%p1%{5}%=%t%{2}#
%e%p1%{6}%=%t%{4}#
%e%p1%{7}%=%t%{0}%;#
%?%p2%t30;%{40}%+%2d#if p2 is set, print ’30’ and

’40’ + color number (reverse)
%e40;%{30}%+%2d%;# else print ’40’ and

’30’ + color number (normal)
%?%p3%t;5%;#if p3 is set, print 5 (blink)
%?%p4%t;4%;#if p4 is set, print 4 (underline)
m #print ’m’ to end character

sequence

ZA =\E[0;%?%p1%{0}%=%t%{7}%e%p1%{1}%=%t%{3}%e%p1%{2}%=
%t%{5}%e%p1%{3}%=%t%{1}%e%p1%{4}%=%t%{6}%e%p1%{5}%=%t%
{2}%e%p1%{6}%=%t%{4}%e%p1%{7}%=%t%{0}%;%?%p2%t30;%{40}
%+%2d%e40;%{30}%+%2d%;%?%p3%t;5%;%?%p4%t;4%;m
Modifying termcap and terminfo D-19

terminfo
terminfo
If you have set the INFORMIXTERM environment variable to terminfo,
INFORMIX-SQL uses the terminfo directory indicated by the TERMINFO
environment variable (or /usr/lib/terminfo if TERMINFO is not set).
INFORMIX-SQL uses the information in terminfo to draw borders and display
certain intensity attributes.

You might want to modify a file in the terminfo directory if you want to
specify or change the graphics characters used for borders in screen forms.

Tip: If you use terminfo (instead of termcap), you cannot use color or certain
intensity attributes with INFORMIX-SQL. To use color attributes with
INFORMIX-SQL, you must use termcap.

Some terminals cannot support graphics characters. You should read this
appendix and the user guide that comes with your terminal to determine
whether or not the changes described in this appendix are applicable to your
terminal.

To modify a terminfo file, you need to be familiar with the following:

■ The format of terminfo entries

■ The infocmp program

■ The tic program

This information is summarized in this appendix; however, you should refer
to your operating system documentation for a complete discussion.
D-20 IBM Informix SQL Reference Manual

Format of a terminfo Entry
Format of a terminfo Entry
terminfo is a directory that contains a file for each terminal name that is
defined. Each file contains a compiled terminfo entry for that terminal. This
section describes the general format of terminfo entries. For a complete
description of terminfo, refer to your operating system documentation.

A terminfo entry contains a list of names for the terminal, followed by a list
of the terminal’s capabilities. The three types of capabilities are:

■ Boolean

■ Numeric

■ String

All terminfo entries have the following format:

■ ESCAPE is specified as a backslash (\) followed by the letter E, and
CONTROL is specified as a caret (^). Do not use the ESCAPE or
CONTROL keys to indicate escape sequences or control characters in
a terminfo entry.

■ Each capability, including the last entry, is followed by a comma (,).

Figure D-11 shows a basic terminfo entry for the Wyse 50 terminal.

Tip: Comment lines begin with a period (.).

Terminal Names

A terminfo entry starts with one or more names for the terminal (each
separated by a vertical bar (|)). For example, the terminfo entry for the
Wyse 50 terminal starts with the following line:

w5|wy50|wyse50,

The terminfo entry can be accessed using any one of these names.

Figure D-11
Wyse 50

terminfo Entry
. Entry for Wyse 50:

w5|wy50|wyse50,
am, cols#80, lines#24, cuul=^K, clear=^Z,
home=^^, cuf1=^L, cup=\E=%p1%’\s’%+%c%p2%’\s’%+%c,
bw, ul, bel=^G, cr=\r, cud1=\n, cub1=\b, kpb=\b, kcud1=\n,
kdub1=\b, nel=\r\n, ind=\n,
xmc#1, cbt=\EI,
Modifying termcap and terminfo D-21

Format of a terminfo Entry
Boolean Capabilities

A Boolean capability is a two- to five-character code that indicates whether
or not a terminal has a specific feature. If the Boolean capability is present in
the terminfo entry, the terminal has that particular feature.

Figure D-12 shows some of the Boolean capabilities for the Wyse 50 terminal.

Numeric Capabilities

A numeric capability is a two- to five-character code followed by a pound
symbol (#) and a value. Figure D-13 shows the numeric capabilities for the
number of columns and the number of lines on a Wyse 50 terminal.

String Capabilities

A string capability specifies a sequence that can be used to perform a terminal
operation. A string capability is a two- to five-character code followed by an
equal sign (=) and a string ending at the next delimiter (,).

Figure D-12
Boolean

Capabilities
for the Wyse 50

Figure D-13
Numeric

Capabilities
for the Wyse 50

bw,am,

. bwbackward wrap

. amautomatic margins

cols#80,lines#24,

. colsnumber of columns in a line

. linesnumber of lines on the screen
D-22 IBM Informix SQL Reference Manual

Specifying Graphics Characters in Screen Forms
Most terminfo entries include string capabilities for clearing the screen,
cursor movement, arrow keys, underscore, function keys, and so on.
Figure D-14 shows many of the string capabilities for the Wyse 50 terminal.

Specifying Graphics Characters in Screen Forms
INFORMIX-SQL uses characters defined in a terminfo file to draw the borders
of boxes and other rectangular shapes that appear in a screen form. If no
characters are defined in the terminfo file, INFORMIX-SQL uses the hyphen
(-) for horizontal lines, the vertical bar (|) for vertical lines, and the plus
sign (+) for corners.

Look at the terminfo source file (using infocmp) to see if the entry for your
terminal includes these definitions (look for the acsc capability, described
later in this section). If the file does not contain border character definitions
for your terminal type, or if you want to specify alternative border characters,
you or your system administrator can modify the terminfo source file. Refer
to your operating-system documentation for a description of how to
decompile terminfo entries using the infocmp program.

Figure D-14
String

Capabilities
for the

Wyse 50

el=\ET,clear=\E*,
cuf1=^L,cuu1=^K,
smso=\EG4,rmso=\EG0,
kcuu1=^K,kcud1=^J,kcuf1=^L,kcub1=^H,
kf0=^A@^M,kf1=^AA^M,kf2=^AB^M,kf3=^AC^M,

. el=\Etclear to end of line

. clear=\E*clear the screen

. cuf1=^Lnon-destructive cursor right

. cuu1=^Kup one line

. smso=\EG4start stand-out

. rmso=\EG0end stand-out

. kcuu1=^Kup arrow key

. kcud1=^Jdown arrow key

. kcuf1=^Lright arrow key

. kcub1=^Hleft arrow key

. kf0=^A@^Mfunction key F1

. kf1=^AA^Mfunction key F2

. kf2=^AB^Mfunction key F3

. kf3=^AC^Mfunction key F4
Modifying termcap and terminfo D-23

Specifying Graphics Characters in Screen Forms
To specify border characters in the terminfo source file for your terminal

1. Determine the escape sequences for turning graphics mode on and
off.

This information is located in the manual that comes with your ter-
minal. For example, on Wyse 50 terminals, the escape sequence for
entering graphics mode is ESCAPE H^B and the escape sequence for
leaving graphics mode is ESCAPE H^C.

Tip: Terminals without a graphics mode do not have this escape sequence. The
procedure for specifying alternative border characters on a non-graphics terminal is
discussed at the end of this section.

2. Identify the ASCII equivalents for the six graphics characters that
INFORMIX-SQL requires to draw the border.

The ASCII equivalent of a graphics character is the key you would
press in graphics mode to obtain the indicated character.

Figure D-15 shows the graphics characters and the ASCII equivalents
for a Wyse 50 terminal.

Figure D-15
Wyse 50 ASCII Equivalents for Border Graphics Characters

Again, this information should be located in the manual that comes
with your terminal.

3. Edit the terminfo source file for your terminal (you can decompile it
using infocmp redirected to a file).

Window Border
Position

Graphics
Character

ASCII
Equivalent

upper left corner  2

lower left corner  1

upper right corner  3

lower right corner  5

horizontal - z

vertical  6
D-24 IBM Informix SQL Reference Manual

Specifying Graphics Characters in Screen Forms
Tip: You might want to make a copy of your terminfo directory before you edit files.
You can use the TERMINFO environment variable to point to whichever copy of the
terminfo directory you want to access.

Use the format:
terminfo-capability=value

to enter values for the following terminfo capabilities:

smacs The escape sequence for entering graphics mode. In a
terminfo file, ESCAPE is represented as a backslash (\)
followed by the letter E; CONTROL is represented as a caret
(^). For example, the Wyse 50 escape sequence ESCAPE-H
CONTROL-B is represented as \EH^B.

rmacs The escape sequence for leaving graphics mode. For
example, the Wyse 50 escape sequence ESCAPE-H
CONTROL-C is represented as \EH^C.

acsc The concatenated, paired list of ASCII equivalents for the six
graphics characters used to draw the border. You can
specify the characters in any order, but you must pair the
ASCII equivalents for your terminal with the following
system default characters.
Modifying termcap and terminfo D-25

Specifying Graphics Characters in Screen Forms
Figure D-16
System Default Characters for Border Positions

Use the following format to specify the acsc value:
defnewdefnew . . .

where def is the default character for a particular border character
and new is that terminal’s equivalent for the same border character.

For example, on the Wyse 50 terminal, given the ASCII equivalents in
Figure D-15 and the system default characters in Figure D-16, the
acsc capability would be set as shown in Figure D-17.

4. Use tic to recompile the modified terminfo file. See your operating-
system documentation for a description of the tic program.

The following example shows the full setting for specifying alternative
border characters on the Wyse 50:

smacs=\EH^B, . sets smacs to ESC H CTRL B
rmacs=\EH^C, . sets rmacs to ESC H CTRL C
acsc=l2m1k3j5qzx6, . sets acsc to the ASCII equivalents

. of graphics characters for upper

. left (l), lower left (m), upper right (k),

. lower right (j), horizontal (q),

. and vertical (x)

If you prefer, you can enter this information in a linear sequence:

smacs=\EH^B,rmacs=\EH^C,acsc=l2m1k3j5qzx6,

Position System Default Character

upper left corner l

lower left corner m

upper right corner k

lower right corner j

horizontal q

vertical x

Figure D-17
Wyse 50 acsc

Setting
acsc=l2m1k3j5qzx6
D-26 IBM Informix SQL Reference Manual

Color and Intensity
Terminals Without Graphics Capabilities

For terminals without graphics capabilities, you must enter a blank value for
the smacs and rmacs capabilities. For acsc, enter the characters you want
INFORMIX-SQL to use for the window border.

The following example shows possible values for smacs, rmacs, and acsc in
an entry for a terminal without graphics capabilities. In this example,
window borders would be drawn using underscores (_) for horizontal lines,
vertical bars (|) for vertical lines, periods (.) for the top corners, and vertical
bars (|) for the lower corners.

smacs=,rmacs=,acsc=l.m|k.j|q_x|,

INFORMIX-SQL uses the graphics characters in the terminfo file when you
specify a screen border in a PERFORM screen.

Color and Intensity
If you use terminfo, you cannot use color or the BOLD or BLINK intensity
attributes with the COLOR attribute in PERFORM. If you specify these
attributes, they are ignored.

If the terminfo entry for your terminal contains the ul and so attributes, you
can use the UNDERLINE and REVERSE intensity attributes, however. You can
see if your terminfo entry includes these capabilities by using the infocmp
program. Refer to your operating-system documentation for information
about infocmp.

If you want to use color and intensity in your INFORMIX-SQL screen forms,
you must use termcap (by setting the INFORMIXTERM environment variable
to termcap, and by setting the TERMCAP environment variable to
$INFORMIXDIR/etc/termcap). For more information, refer to the
“Environment Variables” Appendix and the Preface.
Modifying termcap and terminfo D-27

E
Appendix
The ASCII Character Set
In the following table, ^ represents the CONTROL key.

Num Char Num Char Num Char

0 ^@ 43 + 86 V

1 ^A 44 , 87 W

2 ^B 45 - 88 X

3 ^C 46 . 89 Y

4 ^D 47 / 90 Z

5 ^E 48 0 91 [

6 ^F 49 1 92 \

7 ^G 50 2 93]

8 ^H 51 3 94 ^

9 ^I 52 4 95 _

10 ^J 53 5 96 ‘

11 ^K 54 6 97 a

12 ^L 55 7 98 b

13 ^M 56 8 99 c

14 ^N 57 9 100 d

15 ^O 58 : 101 e

16 ^P 59 ; 102 f

17 ^Q 60 < 103 g

18 ^R 61 = 104 h

19 ^S 62 > 105 i

20 ^T 63 ? 106 j

21 ^U 64 @ 107 k

22 ^V 65 A 108 l

(1 of 2)
E-2 IBM Informix SQL Reference Manual

23 ^W 66 B 109 m

24 ^X 67 C 110 n

25 ^Y 68 D 111 o

26 ^Z 69 E 112 p

27 esc 70 F 113 q

28 ^\ 71 G 114 r

29 ^] 72 H 115 s

30 ^^ 73 I 116 t

31 ^_ 74 J 117 u

32 75 K 118 v

33 ! 76 L 119 w

34 " 77 M 120 x

35 # 78 N 121 y

36 $ 79 O 122 z

37 % 80 P 123 {

38 & 81 Q 124 |

39 ’ 82 R 125 }

40 (83 S 126 ~

41) 84 T 127 del

42 * 85 U

Num Char Num Char Num Char

(2 of 2)
The ASCII Character Set E-3

F
Appendix
Reserved Words
In this release of INFORMIX-SQL, very few words are reserved.
You can use the words that were reserved in previous releases of
INFORMIX-SQL as identifiers. For example, you can execute a
statement such as the following:

CREATE TABLE table (column INTEGER,
date DATE, char CHAR(20))

However, using some of the formerly reserved words can cause
ambiguities in your INFORMIX-SQL statements. These ambigu-
ities can cause INFORMIX-SQL to:

■ process the statement differently than you intended.

■ produce an error.

This section discusses these potential ambiguities and syntax
errors.

If your table is ANSI compliant, some words are still reserved.
For a list of the ANSI reserved words, see the section entitled
“Avoiding the ANSI Reserved Words” on page F-9.

Potential Ambiguities and Syntax Errors
Potential Ambiguities and Syntax Errors
Although you can now use the formerly reserved words as identifiers in
INFORMIX-SQL statements, syntactic ambiguities can occur. Thus, a
statement might not produce the desired results. This section describes:

■ using functions as column names.

■ using keywords as column names.

■ using keywords as table names.

■ workarounds that use the keyword AS.

Using Functions as Column Names
When using built-in function names as column names, the database server
can interpret the column name as a function. For example, the following
statement specifies a column named avg. This statement fails because the
database server interprets avg as an aggregate function rather than as a
column name.

SELECT avg FROM mytab

You can avoid this ambiguity by including a table name with the column
name, as shown in the following example:

SELECT mytab.avg FROM mytab

This ambiguity applies to the aggregate functions (AVG, COUNT, MAX, MIN,
SUM), the LENGTH function, the date functions (DATE, DAY, MDY, MONTH,
WEEKDAY, YEAR), and the datetime function EXTEND. For general descrip-
tions of these functions, refer to the Informix Guide to SQL: Tutorial.

If you use the keyword TODAY, CURRENT, or USER as a column name,
ambiguity can also occur, as shown in the following example:

CREATE TABLE mytab (user CHAR(10),
current DATETIME HOUR TO SECOND,today DATE)

INSERT INTO mytab VALUES("josh","11:30:30","1/22/89")

SELECT user,current,today FROM mytab
F-2 IBM Informix SQL Reference Manual

Using Keywords as Column Names
The database server interprets user, current, and today in the SELECT
statement as the functions USER, CURRENT, and TODAY. Thus, instead of
returning josh, 11:30:30,1/22/89, the SELECT statement returns the
current user name, the current time, and the current date.

If you want to select the actual columns of the table, you must write the
SELECT statement in one of two ways:

SELECT mytab.user, mytab.current, mytab.today FROM mytab

or, equivalently:

SELECT * FROM mytab

For general descriptions of the TODAY, CURRENT, and USER functions, see
the Informix Guide to SQL: Tutorial.

Using Keywords as Column Names
INFORMIX-SQL supports specific workarounds for using a formerly reserved
keyword as a column name in an INFORMIX-SQL statement. In some cases,
INFORMIX-SQL offers more than one workaround. This section describes:

■ using ALL as a column name.

■ using UNIQUE or DISTINCT as a column name.

■ using INTERVAL or DATETIME as a column name.

■ using rowid as a column name.

Using ALL as a Column Name
Using all as a column name causes the following SELECT statement to fail
because the database server interprets all as a keyword rather than as a
column name:

SELECT all FROM mytab

To include a column name all in a SELECT statement, you can include the ALL
keyword prior to the all column name, as shown in the following example:

SELECT ALL all FROM mytab
Reserved Words F-3

Using UNIQUE or DISTINCT as a Column Name
You can also prefix the column name with the table name. For example, you
could specify the following:

SELECT mytab.all FROM mytab

Using UNIQUE or DISTINCT as a Column Name
Using unique or distinct as a column name causes the CREATE TABLE
statement to fail because the database server interprets unique as a keyword
rather than as a column name:

CREATE TABLE mytab (unique INTEGER)

You can, however, name a column unique by using two statements. The first
statement creates the column mycol; the second statement renames the
column mycol to unique, as follows:

CREATE TABLE mytab (mycol INTEGER)

RENAME COLUMN mytab.mycol TO unique

Using INTERVAL or DATETIME as a Column Name
Using interval as a column name causes the following SELECT statement to
fail because the database server interprets interval as a keyword and expects
it to be followed by an INTERVAL qualifier:

SELECT interval FROM mytab

To include a column named interval in a SELECT statement, you should
preface the column name with the table name, as shown in the following
example:

SELECT mytab.interval FROM mytab

You can also include the owner name as well as the table name:

SELECT josh.mytab.interval FROM josh.mytab
F-4 IBM Informix SQL Reference Manual

Using rowid as a Column Name
Using rowid as a Column Name
Every Informix database table has a virtual column named rowid. This
column contains the record number associated with each row in a table. To
avoid ambiguity, you cannot use rowid as a column name. The following
actions cause an error:

■ Creating a table or view with a column named rowid.

■ Altering a table by adding a column named rowid.

■ Renaming a column to rowid.

You can, however, use the term rowid as a table name:

CREATE TABLE rowid (column INTEGER,
date DATE, char CHAR(20))

Using Keywords as Table Names
If you use a previously reserved word as the name for a table, some SQL state-
ments might be ambiguous. You can avoid ambiguous statements by
prefixing the table name with the name of the table’s owner.

For example, using statistics as a table name causes the following UPDATE
statement to fail because the database server interprets it as part of the
UPDATE STATISTICS syntax rather than as a table name in an UPDATE
statement:

UPDATE statistics SET mycol = 10

You can, however, include a table named statistics in an UPDATE statement
by specifying an owner name with the table name, as shown in the following
example:

UPDATE josh.statistics SET mycol = 10

Using outer as a table name causes the following SELECT statement to fail
because the database server interprets outer as a keyword for performing an
outer join:

SELECT mycol FROM outer
Reserved Words F-5

Workarounds that Use the Keyword AS
Again, by specifying an owner name with the table name, you can avoid any
ambiguity and create a SELECT statement that executes properly, as shown in
the following example:

SELECT mycol FROM josh.outer

Workarounds that Use the Keyword AS
Some formerly reserved words cannot be used as column labels or table
aliases. As a workaround, INFORMIX-SQL provides the AS keyword that lets
you use these words as column labels and table aliases.

Because the AS keyword syntax is a part of the proposed ANSI SQL2 standard,
but is not included in the ANSI SQL89 standard, the database server generates
ANSI warnings if you use the AS keyword and one of the following state-
ments is true:

■ The DBANSIWARN environment variable is set.

■ You specify the -ansi flag when invoking INFORMIX-SQL.

The syntax for using AS with a column label is as follows:

column-name AS display-label FROM table-name

The syntax for using AS with a table alias is as follows:

SELECT select-list FROM table-name AS table-alias

Both of these options are described below.

Using AS With Column Labels
To use one of the following keywords as a column label, you must use the AS
keyword:

✮ AS

■ FROM

■ UNITS

■ YEAR

■ MONTH

■ DAY

■ HOUR
F-6 IBM Informix SQL Reference Manual

Using AS With Column Labels
■ MINUTE

■ SECOND

■ FRACTION

For example, the following statement fails because the database server inter-
prets units as a DATETIME qualifier for the column named mycol:

SELECT mycol units FROM mytab

By using the keyword AS, however, you can avoid any ambiguity, as shown
in the following example:

SELECT mycol AS units FROM mytab

You must also use the AS keyword to select a column labeled as or from. For
example, the following statement fails because INFORMIX-SQL does not find
the required FROM clause. INFORMIX-SQL interprets the column label as as the
keyword AS. INFORMIX-SQL then interprets the keyword FROM as the column
label to assign to mycol:

SELECT mycol as FROM mytab

By using the keyword AS, however, you can avoid any ambiguity, as shown
in the following example:

SELECT mycol AS as FROM mytab

The following statement fails because the database server expects a table
name to follow the first from:

SELECT mycol from FROM mytab

By using the keyword AS, however, you can identify the first from as a
column label, as shown in the following example:

SELECT mycol AS from FROM mytab
Reserved Words F-7

Using AS with Table Aliases
Using AS with Table Aliases
To use one of the following keywords as a table alias, you must use the AS
keyword:

✮ ORDER

■ FOR

■ GROUP

■ HAVING

■ INTO

■ UNION

■ WHERE

For example, the following statement fails because the database server inter-
prets order as part of an ORDER BY clause:

SELECT * FROM mytab order

By using the keyword AS, however, you can identify order as a table alias:

SELECT * FROM mytab AS order

You must also use the keyword AS to give a table the alias of WITH, CREATE,
or GRANT. For example, the following statement fails because the database
server interprets with as part of the WITH CHECK OPTION syntax:

SELECT * FROM mytab with

By using the keyword AS, however, you can identify with as a table alias, as
shown in the following example:

SELECT * FROM mytab AS with

The following statement fails because the database server interprets the
keyword create as part of the syntax to create an entity such as a table,
synonym, or view:

SELECT * FROM mytab create

By using the keyword AS, however, you can identify create as a table alias, as
shown in the following example:

SELECT * FROM mytab AS create
F-8 IBM Informix SQL Reference Manual

Avoiding the ANSI Reserved Words
Avoiding the ANSI Reserved Words
If you have an ANSI-compliant table, several words are reserved.
INFORMIX-SQL generates a warning if you use an ANSI reserved word as an
identifier in a statement and one or both of the following statements is true:

■ The DBANSIWARN environment variable is set.

■ You specify the -ansi flag when invoking INFORMIX-SQL.

The ANSI reserved words are as follows.

all cursor goto of smallint

and dec grant on some

any decimal group open sql

as declare having option sqlcode

asc delete in or sqlerror

avg desc indicator order sum

begin distinct insert pascal table

between double int pli to

by end integer precision union

char escape into privileges unique

character exec is procedure update

check exists language public user

close fetch like real values

cobol float max rollback view

commit for min schema whenever

continue fortran module section where

count found not select with

create from null set work

current go numeric
Reserved Words F-9

G
Appendix
Accessing Programs from
the Operating System
You can access the modules that comprise INFORMIX-SQL in the
following three ways:

■ From the INFORMIX-SQL Main menu

■ Directly from the operating-system command line using
the module names

■ Directly from the operating-system command line using
a shortened version of the INFORMIX-SQL Main menu
options

If you are accessing a program through either the Main menu or
the User-menu option, and you receive an error message that
indicates that you have run out of space in memory, exit to the
command line. This action clears memory. Then enter isql from
the command line and you can resume your operations.

The command-line syntax for accessing each INFORMIX-SQL
module is described later in this appendix. The procedure for
using the shortened version of the INFORMIX-SQL Main menu
from the command line is described in “Accessing FORM Menu
Options” on page G-2.

For easy reference, the INFORMIX-SQL Main menu options are
shown in Figure G-1 on page G-2.

Accessing FORM Menu Options
Figure G-1
INFORMIX-SQL Main menu Options

Accessing FORM Menu Options
The operating system command-line syntax for accessing INFORMIX-SQL
FORM menu options is as follows.

INFORMIX-SQL returns you to the operating system after you complete the
specified operation.

Form Run, Modify, Generate, New, Compile, Drop

Report Run, Modify, Generate, New, Compile, Drop

Query-language New, Run, Modify, User-editor, Output, Choose, Save,
Info, Drop

Database Create, Drop

User-menu Run, Modify

Table Create, Alter, Info, Drop

isql is the program call for INFORMIX-SQL.
-s calls the silent option and suppresses all non-essential screen

messages.
database-name is the name of a database in your current directory or a directory

cited in your DBPATH environment variable.
-f calls the Form option from the INFORMIX-SQL Main menu.
options are the first letters of the FORM menu options you select. Do not

include a blank space between -f and any option letters.
form-name is the name of the form you want to access. Do not include an

extension.

database-name options

isql

-s

-f

form-name
G-2 IBM Informix SQL Reference Manual

Accessing REPORT Menu Options
The following command runs the customer form:

isql -fr customer

The following generates a form based on the stores7 demonstration database:

isql stores7 -fg

Accessing REPORT Menu Options
The operating system command-line syntax for accessing INFORMIX-SQL
REPORT menu options is as follows.

INFORMIX-SQL returns you to the operating system after you complete the
specified operation.

The following command compiles the clist1 report:

isql -rc clist1

database-name -ansi options

isql

-s

-r

report-name

isql is the program call for INFORMIX-SQL.
-s calls the silent option and suppresses all non-essential screen

messages.
database-name is the name of a database in your current directory or a directory

cited in your DBPATH environment variable.
-ansi causes INFORMIX-SQL to generate a warning if it encounters an

Informix extension to the SELECT statement when compiling
your report.

-r calls the Report option from the INFORMIX-SQL Main menu.
options are the first letters of the REPORT menu options you select. Do

not include a blank space between -r and any option letters.
report-name is the name of the report you want to access. Do not include an

extension in the report name.
Accessing Programs from the Operating System G-3

Accessing QUERY-LANGUAGE Menu Options
Accessing QUERY-LANGUAGE Menu Options
The operating system command-line syntax for accessing INFORMIX-SQL
QUERY-LANGUAGE menu options is as follows.

INFORMIX-SQL returns you to the operating system after you complete the
specified operation.

The following command chooses the ex1 file and makes the SQL statements
it contains the current statements:

isql -s stores7 -qc ex1

database-name

isql

-s

-q

command-
file-name

-

-ansi options

isql is the program call for INFORMIX-SQL.
-s calls the silent option and suppresses all non-essential screen

messages.
- indicates that the database name is created or established in the

command file.
database-name is the name of a database in your current directory or a directory

cited in your DBPATH environment variable.
-ansi causes INFORMIX-SQL to generate a warning whenever it

encounters an Informix extension to ANSI syntax.
-q calls the Query-language option from the INFORMIX-SQL Main

menu.
options are the first letters of the QUERY-LANGUAGE menu options you

select. Do not include a blank space between -q and any option
letters.

command-file is the name of the .sql file that you want to access. Do not include
an extension in the command filename.
G-4 IBM Informix SQL Reference Manual

Accessing DATABASE Menu Options
Accessing DATABASE Menu Options
The operating system command-line syntax for accessing INFORMIX-SQL
DATABASE menu options is as follows.

INFORMIX-SQL returns you to the operating system after you complete the
specified operation.

The following statement calls the Select option on the DATABASE menu:

isql -s -ds

isql is the program call for INFORMIX-SQL.
-s calls the silent option and suppresses all non-essential screen

messages.
database-name is the name of a database in your current directory or a directory

cited in your DBPATH environment variable.
-d calls the Database option from the INFORMIX-SQL Main menu.
options are the first letters of the DATABASE menu options you select. Do

not include a blank space between -d and any option letters.
database-name is the name of the database you want to access.

isql

-s database-nameoptionsdatabase-name

-d
Accessing Programs from the Operating System G-5

Accessing USER-MENU Menu Options
Accessing USER-MENU Menu Options
The operating system command-line syntax for accessing INFORMIX-SQL
USER-MENU menu options is as follows.

INFORMIX-SQL returns you to the operating system after you complete the
specified operation.

The following command runs the User-menu for the stores7 demonstration
database:

isql stores7 -ur

isql is the program call for INFORMIX-SQL.
-s calls the silent option and suppresses all non-essential screen

messages.
database-name is the name of a database in your current directory or a directory

cited in your DBPATH environment variable.
-u calls the User-menu option from the INFORMIX-SQL Main

menu.
options are the first letters of the USER-MENU menu options you select.

Do not include a blank space between -u and any option letters.
user-menu-name is the name of the User-menu you want to run.

-s

-u

user-menu-nameoptionsdatabase-name
G-6 IBM Informix SQL Reference Manual

Accessing TABLE Menu Options
Accessing TABLE Menu Options
The operating system command-line syntax for accessing INFORMIX-SQL
TABLE menu options is as follows.

INFORMIX-SQL returns you to the operating system after you complete the
specified operation.

The following command creates a table in the stores7 database:

isql -s stores7 -tc

isql is the program call for INFORMIX-SQL.
-s calls the silent option and suppresses all nonessential screen

messages.
database-name is the name of a database in your current directory or a directory

cited in your DBPATH environment variable.
-t calls the Table option from the INFORMIX-SQL Main menu.
options are the first letters of the TABLE menu options you select. Do not

include a blank space between -t and any option letters.
table-name is the name of the table you want to access.

database-name options

isql

-s

-t

table-name
Accessing Programs from the Operating System G-7

FORMBUILD
FORMBUILD
The command syntax for compiling a customized screen form directly from
the operating system is as follows.

FORMBUILD reports any discrepancies in the file filename.err.

The -d option causes FORMBUILD to construct a SCREEN SIZE 20 statement
to emphasize the default size.

sformbld is the program call for FORMBUILD.
-s calls the silent option and suppresses all non-essential screen

messages.
-l lines are optional symbols and an integer to specify the total number of

lines of characters (measured vertically) that the terminal can
display. (The default is 24.)

-c cols are optional symbols and an integer to specify the width of the
screen, in characters. (The default is the number of characters in the
longest line of the screen layout, as specified in the SCREEN
section.)

-v tells FORMBUILD to verify that the fields contained in the screen
section of the form specification are consistent with the field widths
of the corresponding columns.

filename is the name of the form specification file. Do not include the .per
extension (filename.per) on the command line.

-d replaces filename and instructs FORMBUILD to prompt you for the
information required to create and compile a default form
specification.

-l lines

sformbld

-s

-d

-c cols

filename

-v
G-8 IBM Informix SQL Reference Manual

FORMBUILD
Usage
If the compilation is successful, FORMBUILD creates a compiled form
specification named filename.frm. You can use this compiled form specifi-
cation with PERFORM as a screen form. If the compilation is unsuccessful,
FORMBUILD creates an error file named filename.err. You must edit the error
file, remove the error messages, and recompile with FORMBUILD before you
can use the screen form.

You can also create a customized screen form directly from the operating
system using the shortened version of the INFORMIX-SQL Main menu
options. This method is described earlier in this appendix.
Accessing Programs from the Operating System G-9

FORMBUILD
PERFORM
The command syntax for running a compiled screen form directly from the
operating system is as follows.

Usage
The maximum number of filenames you can include on the command line is
operating-system dependent.

PERFORM displays each form in the order that it appears on the command
line.

If PERFORM cannot display a form, it aborts. When multiple filenames are
included on the command line, subsequent filenames are not displayed.

You can also run a compiled screen form directly from the operating system
using the shortened version of the INFORMIX-SQL Main menu options. This
method is described earlier in this appendix.

sperform is the program call for PERFORM.
filename is the name of the compiled form specification file. Do not include

the .frm extension (filename.frm) on the command line.

sperform filename
G-10 IBM Informix SQL Reference Manual

FORMBUILD
ACEPREP
The command syntax for compiling a customized report form directly from
the operating system is as follows.

Usage
If the compilation is successful, ACEPREP creates a compiled report specifi-
cation file named filename.arc. You can use this compiled report specification
with ACEGO to produce a report. If the compilation is unsuccessful, ACEPREP
creates an error file named filename.err. You must edit the error file, remove
the error messages, and recompile with ACEPREP before you can run the
report.

You can also compile a customized report form directly from the operating
system using the shortened version of the INFORMIX-SQL Main menu
options. This method is described in “Accessing REPORT Menu Options” on
page G-3.

saceprep is the program call for ACEPREP.

-s calls the silent option and suppresses all non-essential screen
messages.

-ansi tells ACEPREP to generate a warning when it encounters an
Informix extension to the SELECT statement in your report.

-o directory-name tells ACEPREP to place the output file (either the compiled
report specification or the error file) in the indicated directory.

filename is the name of the report specification file. Do not include the
.ace extension (filename.ace) on the command line.

saceprep

-s

filename

-o directory-name-ansi
Accessing Programs from the Operating System G-11

FORMBUILD
ACEGO
The command syntax for running a compiled report directly from the
operating system is as follows.

Usage
The maximum number of filenames you can include on the command line is
operating-system dependent.

ACEGO executes each report in the order in which it appears on the command
line.

If ACEGO cannot execute a report, it aborts. When multiple filenames are
included on the command line, subsequent filenames are not executed.

You can also run a compiled report directly from the operating system using
the shortened version of the INFORMIX-SQL Main menu options. This method
is described in “Accessing REPORT Menu Options” on page G-3.

sacego is the program call for ACEGO.
-s calls the silent option and suppresses all non-essential screen

messages.
-d database-name overrides the database that is named in the report specification

and substitutes database-name.
filename is the name of the compiled report specification. Do not include

the .ace extension (filename.ace) on the command line.

sacego

-s -d database-name

filename
G-12 IBM Informix SQL Reference Manual

H
Appendix
Notices
IBM may not offer the products, services, or features discussed
in this document in all countries. Consult your local IBM repre-
sentative for information on the products and services currently
available in your area. Any reference to an IBM product,
program, or service is not intended to state or imply that only
that IBM product, program, or service may be used. Any
functionally equivalent product, program, or service that does
not infringe any IBM intellectual property right may be used
instead. However, it is the user’s responsibility to evaluate and
verify the operation of any non-IBM product, program, or
service.

IBM may have patents or pending patent applications covering
subject matter described in this document. The furnishing of this
document does not give you any license to these patents. You
can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information,
contact the IBM Intellectual Property Department in your
country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any
other country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not
apply to you.

This information could include technical inaccuracies or typographical
errors. Changes are periodically made to the information herein; these
changes will be incorporated in new editions of the publication. IBM may
make improvements and/or changes in the product(s) and/or the
program(s) described in this publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those
Web sites. The materials at those Web sites are not part of the materials for
this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the
purpose of enabling: (i) the exchange of information between independently
created programs and other programs (including this one) and (ii) the mutual
use of the information which has been exchanged, should contact:

IBM Corporation
J74/G4
555 Bailey Ave
P.O. Box 49023
San Jose, CA 95161-9023
U.S.A.

Such information may be available, subject to appropriate terms and condi-
tions, including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer
Agreement, IBM International Program License Agreement, or any equiv-
alent agreement between us.
H-2 IBM Informix SQL Reference Manual

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environ-
ments may vary significantly. Some measurements may have been made on
development-level systems and there is no guarantee that these measure-
ments will be the same on generally available systems. Furthermore, some
measurements may have been estimated through extrapolation. Actual
results may vary. Users of this document should verify the applicable data
for their specific environment.

Information concerning non-IBM products was obtained from the suppliers
of those products, their published announcements or other publicly available
sources. IBM has not tested those products and cannot confirm the accuracy
of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be
addressed to the suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to
change or withdrawal without notice, and represent goals and objectives
only.

All IBM prices shown are IBM’s suggested retail prices, are current and are
subject to change without notice. Dealer prices may vary.

This information contains examples of data and reports used in daily
business operations. To illustrate them as completely as possible, the
examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the names
and addresses used by an actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:
This information contains sample application programs in source language,
which illustrate programming techniques on various operating platforms.
You may copy, modify, and distribute these sample programs in any form
without payment to IBM, for the purposes of developing, using, marketing
or distributing application programs conforming to the application
programming interface for the operating platform for which the sample
programs are written. These examples have not been thoroughly tested
under all conditions. IBM, therefore, cannot guarantee or imply reliability,
serviceability, or function of these programs. You may copy, modify, and
distribute these sample programs in any form without payment to IBM for
the purposes of developing, using, marketing, or distributing application
programs conforming to IBM’s application programming interfaces.
Notices H-3

Trademarks
Each copy or any portion of these sample programs or any derivative work,
must include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived
from IBM Corp. Sample Programs. © Copyright IBM Corp. (enter the
year or years). All rights reserved.

If you are viewing this information softcopy, the photographs and color illus-
trations may not appear.

Trademarks
AIX; DB2; DB2 Universal Database; Distributed Relational Database
Architecture; NUMA-Q; OS/2, OS/390, and OS/400; IBM Informix ;
C-ISAM ; Foundation.2000TM; IBM Informix 4GL; IBM Informix

DataBlade Module; Client SDKTM; CloudscapeTM; CloudsyncTM;
IBM Informix Connect; IBM Informix Driver for JDBC; Dynamic
ConnectTM; IBM Informix Dynamic Scalable ArchitectureTM (DSA);
IBM Informix Dynamic ServerTM; IBM Informix Enterprise Gateway
Manager (Enterprise Gateway Manager); IBM Informix Extended Parallel
ServerTM; i.Financial ServicesTM; J/FoundationTM; MaxConnectTM; Object
TranslatorTM; Red Brick Decision ServerTM; IBM Informix SE;
IBM Informix SQL; InformiXMLTM; RedBack ; SystemBuilderTM; U2TM;
UniData ; UniVerse ; wintegrate are trademarks or registered trademarks
of International Business Machines Corporation.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States and other
countries.

Windows, Windows NT, and Excel are either registered trademarks or trade-
marks of Microsoft Corporation in the United States and/or other countries.

UNIX is a registered trademark in the United States and other countries
licensed exclusively through X/Open Company Limited.

Other company, product, and service names used in this publication may be
trademarks or service marks of others.
H-4 IBM Informix SQL Reference Manual

@

Index

O QCA B D E F G H I J K L M N P R S T U V W X Y Z
Index
A
Abbreviated years 2-34
ACE report

calling C functions 6-4
DEFINE section in specification

file 6-4
example 6-33, 6-35
FORMAT section in specification

file 6-4
how to compile 6-8
using sacego 6-32
using saceprep 6-8

ACE report writer
AFTER GROUP OF control

block 4-50
ASCII expression 4-82
ASCII statement 4-18
BEFORE GROUP OF control

block 4-53
BOTTOM MARGIN

statement 4-33
clauses in 4-14
CLIPPED expression 4-84
COLUMN expression 4-85
command line options 4-9
compiling a report

specification 4-5
compound statement 4-65
control block 4-49
CURRENT expression 4-86
DATABASE section 4-14, 4-16
DATE expression 4-87
DATE() function 4-88
DAY() function 4-89
DEFINE section 4-14
error messages 4-13

EVERY ROW statement 4-46
expressions 4-11
expressions, formatting 4-98
filename conventions 4-10
FIRST PAGE HEADER control

block 4-56
FOR statement 4-66
FORMAT section 4-15
formatting number

expressions 4-98
grouping data 4-49
IF THEN ELSE statement 4-67
INPUT section 4-14
LEFT MARGIN statement 4-29
LET statement 4-69
LINENO expression 4-90
MDY() function 4-91
menus 4-6
MONTH() function 4-92
NEED statement 4-71
number expressions,

formatting 4-98
ON EVERY ROW control

block 4-58
ON LAST ROW control

block 4-60
OUTPUT section 4-14
PAGE HEADER control

block 4-61
PAGE LENGTH statement 4-34
PAGE TRAILER control

block 4-63
PAGENO expression 4-93
PARAM statement 4-20
PAUSE statement 4-72
PRINT FILE statement 4-75
PRINT statement 4-73

O QCA B D E F G H I J K L M N P R S T U V W X Y Z @
PROMPT FOR statement 4-24
READ section 4-14
READ statement 4-40
report specifications 4-14, A-10
REPORT TO statement 4-27
RIGHT MARGIN statement 4-30
running a report 4-5
SELECT section 4-14
SELECT statement 4-37
SKIP statement 4-76
SKIP TO TOP OF PAGE

statement 4-77
SPACES expression 4-94
summary of sections 4-14
TIME expression 4-95
TODAY expression 4-96
TOP MARGIN statement 4-32
TOP OF PAGE statement 4-35
USING expression 4-97
using with menus 4-6
WEEKDAY() function 4-107
WHILE statement 4-78
WORDWRAP expression 4-108
YEAR() function 4-109

ACEGO, running a compiled report
with G-12

ACEPREP, compiling report
specifications with 6-8, G-11

a-circumflex character,
coding C-23

Add option
PERFORM 3-21

AFTER control block, in
PERFORM 2-75

AFTER GROUP OF control block, in
ACE reports 4-50

Aggregate functions, listed 2-86
Alias, table 2-23
Alphanumeric characters C-8
ALS. See Asian Language Support.
Alter option, TABLE menu 1-21
ALTER TABLE statement

in GLS C-6
ANSI-compliance

and reserved words F-1, F-9
Application Server Class

Library C-15
AS keyword F-6

ASCII
character chart E-2
character set C-4, C-6
code set C-7
expression, in ACE reports 4-82
statement, in ACE reports 4-18

Asian Language Support (ALS)
Asian languages C-2, C-10
At (@) symbol. See Trailing currency

symbol.
ATTRIBUTES section

AUTONEXT 2-33
CENTURY 2-34
COLOR 2-36
COMMENTS 2-39
DEFAULT 2-40
description of 2-9
DOWNSHIFT 2-42
FORMAT 2-43
INCLUDE 2-46
INVISIBLE 2-48
LOOKUP 2-49
NOENTRY 2-51
NOUPDATE 2-52
PICTURE 2-53
PROGRAM 2-55
QUERYCLEAR 2-57
REQUIRED 2-58
REVERSE 2-59
RIGHT 2-60
syntax 2-32
UPSHIFT 2-61
VERIFY 2-62
WORDWRAP 2-63
ZEROFILL 2-66

AUTONEXT attribute 2-33, 2-34

B
BEFORE control block, in

PERFORM 2-74
BEFORE GROUP OF control block,

in ACE reports 4-53
Blank characters, default character

value 2-11

Blobs
querying with INFORMIX-

OnLine 1-16
specifying external programs in

forms 2-55
specifying in forms 2-65
transferring with LOAD and

UNLOAD 1-16
with DEFAULT 2-40

Boldface type Intro-7
BOTTOM MARGIN statement, in

ACE reports 4-33
Bourne shell

how to set environment
variables B-3

.profile file B-2
BYTE data type

defining column 1-24
specifying in forms 2-65

Byte-based string operations C-11

C
C functions

calling from ACE 6-6
calling from PERFORM 6-9
calling in report specification

file 6-6
declaring in report specification

file 6-4, 6-5
in ACE reports 6-8
in expressions 6-10, 6-12
in PERFORM forms 6-13
passing values to 6-16
to control PERFORM screens 6-20

C program structure
return value macros 6-19
strreturn macro 6-19
userfuncs array 6-15
valueptr 6-15

C shell
how to set environment

variables B-3
.cshrc file B-2
.login file B-2

cace program, used to customize
sacego 6-32
2 IBM Informix SQL Reference Manual

O QCA B D E F G H I J K L M N P R S T U V W X Y Z @
CALL keyword
in ACE report specification

file 6-7
in PERFORM form specification

file 6-10
Calling C functions, in ACE 6-6
CENTURY attribute 2-34
CHAR data type

in forms 3-11
in GLS C-5

Character set C-7, C-23
Character string printable

characters C-8
Chinese language C-2, C-15
Choose option, SQL menu 1-14
Client locale C-15
CLIENT_LOCALE C-19
CLIENT_LOCALE environment

variable C-8
CLIPPED expression, in ACE

reports 4-84
Code points C-7
Code set C-2
Code-set conversion

handling C-22
tables C-8

Code-set order of collation C-2, C-9
COLLATE locale category C-9
Collation C-4, C-6
Collation order C-2
Collation sequence C-9
COLOR attribute

in PERFORM 2-34, 2-36
intensity list 2-36

COLUMN expression, in ACE
reports 4-85

Column name C-9
Columns, join 2-29
Comma symbol. See Thousands

separator.
Command line

accessing ACE 4-9
accessing DATABASE menu G-5
accessing FORM menu G-2
accessing I-SQL modules G-1
accessing PERFORM G-10
accessing QUERY-LANGUAGE

menu G-4
accessing REPORT menu G-3

accessing TABLE menu G-7
accessing USER-MENU

menu G-6
compiling a customized report

form G-11
compiling a customized screen

form G-8
using ACEGO G-12
using ACEPREP G-11
using sperform 2-8

COMMENTS attribute, in
PERFORM 2-39

Compile option
FORM menu 1-13
REPORT menu 1-20

Compiling
form specifications 1-13, 6-13
report specifications 6-8, G-11
reports 1-20
with saceprep 6-8
with sformbld 6-13

Compiling form specifications G-8
Composite characters C-10, C-15
Composite joins, in PERFORM 2-68
Compound statement, in ACE 4-65
COMPRESS keyword 2-65
Constraint name C-9
Contact information Intro-16
Control blocks

AFTER GROUP OF 4-50
BEFORE GROUP OF 4-53
FIRST PAGE HEADER 4-56
FORMBUILD 2-73
in ACE specification file 6-6
in FORMAT section of ACE

report 4-49
ON BEGINNING 6-11
ON ENDING 6-11
ON EVERY ROW 4-58
ON LAST ROW 4-60
PAGE HEADER 4-61
PAGE TRAILER 4-63

cperf program, used to customize
sperform 6-32

Create option
DATABASE menu 1-11
TABLE menu 1-21

CREATE TABLE statement
in GLS C-6

Creating
a menu with the User-menu 5-8
a script menu 5-25

crtcmap utility C-26
Currency symbols C-10
CURRENT expression, in ACE

reports 4-86
Current list, in PERFORM 2-73
Current option, in PERFORM 3-23
Customized screen form,

FORMBUILD 2-8
Cyrillic alphabet C-15

D
Data

checking in PERFORM fields 3-18
displaying on the screen with

PERFORM 2-14
entering for a menu 5-10
entering into fields with

PERFORM 3-10
entering with the User-menu 5-14
updating in PERFORM 3-41

Data type
BYTE 1-24
CHAR, in forms 3-11, 3-12
CHAR, in GLS C-5
choosing with INFORMIX-

OnLine 1-23
DATETIME, in forms 3-12
DATE, in forms 3-12
DATE, in GLS C-5
DECIMAL, in forms 3-11
DECIMAL, in GLS C-5
definition of 3-10
FLOAT, in forms 3-12
FLOAT, in GLS C-5
formatting in forms 2-43
INTEGER, in forms 3-11
MONEY, in forms 3-11
MONEY, in GLS C-5
NCHAR C-2, C-5
NVARCHAR C-2, C-5
SERIAL, in forms 3-11
SMALLFLOAT, in forms 3-12
SMALLFLOAT, in GLS C-5
SMALLINT, in forms 3-11
Index 3

@O QCA B D E F G H I J K L M N P R S T U V W X Y Z
synonyms 3-10
TEXT 1-24
VARCHAR 1-23
VARCHAR, in GLS C-5

Database
connection C-17, C-18
name C-9
stores7 demonstration database

described A-1
DATABASE menu

Create option 1-11
Drop option 1-11
Exit option 1-10
how to use 1-11
Select option 1-11

DATABASE section
in form specifications 2-9, 2-11
in forms, WITHOUT NULL

INPUT 2-40
in report specifications 4-16

DATE data type
formatting 2-34
formatting in form 2-43
in forms 3-12
in GLS C-5

DATE expression, in ACE
reports 4-87

DATETIME data type
acceptable values 3-12
in forms 3-12

DATE() function, in ACE
reports 4-88

DAY() function, in ACE
reports 4-89

DBASCIIBC environment
variable C-16

DBCODESET environment
variable C-16

DBCONNECT environment
variable C-16

DBCSOVERRIDE environment
variable C-16

DBDATE environment
variable C-7

DBFORM environment
variable B-6

DBFORMAT environment
variable B-9, C-7, C-20

DBLANG environment
variable C-19

DBMONEY environment
variable C-7, C-20

DBTEMP environment
variable B-13

DB_LOCALE environment
variable C-18

DECIMAL data type
formatting in form 2-43
in forms 3-11
in GLS C-5

Decimal point C-20
Decimal separator 4-98, B-9
Declaring C functions, in ACE 6-4,

6-5
Default assumptions for your

environment B-4
DEFAULT attribute

in PERFORM 2-40
with blobs 2-40
with WITHOUT NULL

INPUT 2-40
Default locale Intro-5
DEFINE section

ASCII statement 4-18
declaring a C function 6-4
PARAM statement 4-20
PROMPT FOR statement 4-24
VARIABLE statement 4-21

Delimiters
FORMBUILD 2-14

Demonstration database
copying A-1
restoring the original

database A-3
sample forms 2-5
stores7, tables in A-1

Dependencies, software Intro-5
Designing a menu with the User-

menu 5-6
Detail option, in PERFORM 3-24
Diacritical marks C-2
Directory structure, for GLS

products C-13
Display field

FORMBUILD 2-14
order 2-25

Display width C-11

Display-only field,
FORMBUILD 2-14

Documentation, on-line
manuals Intro-14

Documentation, types of
related reading Intro-15

Dollar sign. See Leading currency
symbol.

Dominant column
FORMBUILD 2-31
joins 2-31

DOWNSHIFT attribute
in GLS C-6
in PERFORM 2-42

Drop option
DATABASE menu 1-11
FORM menu 1-12
REPORT menu 1-19
SQL menu 1-15
TABLE menu 1-22

E
East Asian languages C-10
Editor, multiline 3-17
Environment configuration file

example B-2
where stored B-2

Environment variable
and case sensitivity B-3
DBEDIT 2-7
DBFORM B-6
DBFORMAT B-9
DBTEMP B-13
default assumptions B-4
defining in environment

configuration file B-2
how to set in Bourne shell B-3
how to set in C shell B-3
how to set in Korn shell B-3
INFORMIXDIR B-6
INFORMIXTERM D-1, D-20
overriding a setting B-2
rules of precedence B-5
setting at the command line B-2
setting in a shell file B-2
where to set B-2
4 IBM Informix SQL Reference Manual

O QCA B D E F G H I J K L M N P R S T U V W X Y Z @
Environment variables Intro-7
CLIENT_LOCALE C-8, C-19
DBDATE C-7, C-10
DBFORMAT C-7, C-10, C-20
DBLANG C-19
DBMONEY C-7, C-20
DB_LOCALE C-18
LANG C-21
SERVER_LOCALE C-16
Windows system language

variables C-21
en_us.8859-1 C-13
en_us.8859-1 locale Intro-5
EVERY ROW statement, in ACE

reports 4-46
Exit option

DATABASE menu 1-10
FORM menu 1-12
PERFORM 3-26
REPORT menu 1-19
SQL menu 1-15
TABLE menu 1-21
USER-MENU menu 1-25

Expressions
definition of 6-10, 6-12
in ACE 4-11
in PERFORM control block 6-10,

6-12

F
Feature icons Intro-8
Field tag, FORMBUILD 2-14
Field width, FORMBUILD 2-14
Fields

delimiters, in PERFORM 2-70
display 2-14
display order 2-25
display-only 2-28
FORMBUILD 2-14
linked to database columns 2-26
lookup 2-26

File
environment configuration B-2
shell B-2
temporary for SE B-13

File extension
for compiling ACE reports 6-8
for compiling PERFORM

forms 6-13
.ACE 4-6, 4-8, 4-10, 6-8
.ARC 4-7, 4-8, 4-10
.C 6-32
.EC 6-32
.ERR 2-7, 4-7, 4-10
.FRM 2-7, B-6
.PER 2-8, 6-13

finderr script Intro-14
FIRST PAGE HEADER control

block, in ACE reports 4-56
FLOAT data type

formatting in form 2-43
in forms 3-12
in GLS C-5

Font requirements C-2
FOR statement, in ACE

reports 4-66
FORM menu

Compile option 1-13
Drop option 1-12
Exit option 1-12
Generate option 1-12
Modify option 1-12
New option 1-12
Run option 1-12, 3-4

FORM OUTPUT FILE menu, in
PERFORM 3-29

Form specifications
ATTRIBUTES section 2-9, 2-24
compiling 1-13, G-8
customizing 2-6
DATABASE section 2-9, 2-11
default 2-6, 2-8
editing 1-13
INSTRUCTIONS section 2-9, 2-67
sample file 2-93
SCREEN section 2-9, 2-12
sections in 2-9
TABLES section 2-9, 2-21

Format
date data 2-44, 4-99
monetary data 4-98, B-1, B-9
numeric data 2-43, 4-98, B-1, B-9

FORMAT attribute
in GLS C-6
in PERFORM 2-43

FORMAT section of report
specification

AFTER GROUP OF control
block 4-50

BEFORE GROUP OF control
block 4-53

control blocks 4-49
EVERY ROW statement 4-46
FIRST PAGE HEADER control

block 4-56
FOR statement 4-66
IF THEN ELSE statement 4-67
LET statement 4-69
NEED statement 4-71
ON EVERY ROW control

block 4-58
ON LAST ROW control

block 4-60
PAGE HEADER control

block 4-61
PAGE TRAILER control

block 4-63
PAUSE statement 4-72
PRINT FILE statement 4-75
PRINT statement 4-73
SKIP statement 4-76
SKIP TO TOP OF PAGE

statement 4-77
WHILE statement 4-78

Formatting
ACE 4-98
data types in form 2-43
date values 2-34

FORMBUILD transaction form
generator

ATTRIBUTES section 2-9
BEGIN keyword 2-91
BELL keyword 2-90
compiling a customized form 2-6,

6-13, G-8
control block 2-73
creating a customized form 2-6
CURRENT keyword 2-86
current list 2-73
DATABASE section 2-9
DATE format 2-44
Index 5

@O QCA B D E F G H I J K L M N P R S T U V W X Y Z
default form-specification
file 2-6, 2-8

delimiters 2-14
display field 2-14
display-only field 2-14, 2-57
dominant column 2-31
END keyword 2-91
EXITNOW keyword 2-88
field 2-14
field tag 2-14
field width 2-14
FLOAT format 2-43
forms, sample 2-5
INSTRUCTIONS section 2-9
operating system, use in form

creation 2-8, G-8
ORDER INFORMATION

screen 2-96
REVERSE keyword 2-90
SCREEN section 2-9
sformbld 2-8
SMALLFLOAT format 2-43
subscripting a CHAR

column 2-15
TABLES section 2-9
TODAY 2-86
verify join 2-31

Forms
compiling 1-12
compiling, linking, and

running 6-32
creating and compiling

custom 2-6
creating with the operating

system 2-8
default 1-12
graphics characters in 2-18
running 1-12
using synonyms for external

tables 2-23
with blobs 2-65
with external tables 2-23

Forms, and VARCHAR data 2-64
Function library

pf_gettype 6-21
pf_getval 6-23
pf_msg 6-31
pf_nxfield 6-29
pf_putval 6-26

Functions
aggregate, listed 2-86
names used as column names F-2
to control PERFORM screens 6-20

G
Generate option

FORM menu 1-12
REPORT menu 1-19

Global Language Support
(GLS) Intro-5, C-1

features supported C-4
GLS directory structure C-13
GL_DATE environment

variable C-7
GL_DATETIME environment

variable C-7
Graphical replacement

conversion C-25
Graphics characters, in forms 2-18
Greek characters C-23
Greek language C-15

H
Highest value operator, in

PERFORM 3-37

I
Icons

feature Intro-8
platform Intro-8
product Intro-8
syntax diagram Intro-10

Identifiers C-8
in GLS C-4
rules for menu names 5-17

IF THEN ELSE statement, in ACE
reports 4-67

INCLUDE attribute, in
PERFORM 2-46

Index name C-9
Info option

SQL menu 1-15
TABLE menu 1-21

.informix environment
configuration file B-2

INFORMIXDIR environment
variable B-6

INFORMIX-NET C-22
INFORMIX-SE database server C-9
INFORMIX-SQL

how to access 1-4
how to access the User-menu 5-4
Main menu 1-4
menu screens 1-4
text-entry screens 1-5

INFORMIXTERM environment
variable D-1, D-20

informix.rc file B-2
Insert mode, in PERFORM 3-14
INSTRUCTIONS section

ABORT 2-84
ADD 2-78
AFTER 2-75
BEFORE 2-74
COMMENTS 2-90
COMPOSITES 2-68
DELIMITERS 2-70
DISPLAY 2-82
EDITADD 2-76
EDITUPDATE 2-76
IF-THEN-ELSE 2-91
in form specifications 2-9
LET 2-85
MASTER OF 2-71
NEXTFIELD 2-88
QUERY 2-80
REMOVE 2-81
UPDATE 2-79

INTEGER data type
in forms 3-11
with display fields 2-11

International Language
Supplement C-14

Internationalization
codeset conversion C-22

enabling for UNIX C-26
INTERVAL data type, in

forms 3-12
INVISIBLE attribute, in

PERFORM 2-48
ISO 8859-1 code set Intro-5
6 IBM Informix SQL Reference Manual

O QCA B D E F G H I J K L M N P R S T U V W X Y Z @
J
JA 7.20 supplement C-14
Japanese language C-2, C-14, C-15
Join

composite 2-68
dominant column 2-31
FORMBUILD 2-29, 2-31
verify 2-31

Join columns
in screen forms 2-29

Joins C-17

K
Keys

cursor positioning, in
PERFORM 3-14

field editing, in PERFORM 3-14
special function, in

PERFORM 3-13
Keywords in PERFORM

ABORT 2-84
AFTER 2-75
AFTER ADD OF 2-78
AFTER DISPLAY OF 2-82
AFTER QUERY OF 2-80
AFTER UPDATE OF 2-79
ALLOWING INPUT 2-28
AUTONEXT 2-33, 2-34
BEFORE 2-74
BELL 2-90
BY 2-12
COLOR 2-34, 2-36
COMMENTS 2-39, 2-90
COMPOSITES 2-68
COMPRESS 2-63
DATABASE 2-11
DEFAULT 2-40
DELIMITERS 2-70
DISPLAYONLY 2-28
DOWNSHIFT 2-42
EDITADD 2-76
EDITUPDATE 2-76
END 2-22
EXITNOW 2-88
FORMAT 2-43
IF-THEN-ELSE 2-91

INCLUDE 2-46
INVISIBLE 2-48
JOINING 2-49
LET 2-85
LOOKUP 2-49
MASTER OF 2-71
NEXTFIELD 2-88
NOT NULL 2-28
NOUPDATE 2-52
OF 2-74, 2-75
PICTURE 2-53
QUERYCLEAR 2-57
REMOVE OF 2-81
REQUIRED 2-58
REVERSE 2-59, 2-90
RIGHT 2-60
SCREEN 2-12
SIZE 2-12
TABLES 2-22
TYPE 2-28
UPSHIFT 2-61
VERIFY 2-62
WHERE 2-34, 2-36
WITHOUT NULL INPUT 2-11
WORDWRAP 2-63
ZEROFILL 2-66

Keywords, names used as column
names F-3

Kinsoku processing C-10
KO 7.20 supplement C-14
Korean language C-14, C-15
Korn shell

how to set environment
variables B-3

.profile file B-2

L
LANG environment variable C-21
Language supplement C-14
Latin alphabet C-15
Leading currency symbol 4-99, B-9
LEFT MARGIN statement, in ACE

reports 4-29
Length of identifiers C-8
LET statement

in ACE reports 4-69
in NLS C-6

Levels of menus in a User-menu
structure 5-6

Library functions
in PERFORM 6-20
pf_gettype() 6-21
pf_getval() 6-23
pf_msg() 6-31
pf_nxfield() 6-29
pf_putval() 6-26

LINENO expression, in ACE
reports 4-90

LOAD statement
in GLS C-6
with INFORMIX-OnLine 1-17
with VARCHARs and blobs 1-17

Locale Intro-5
Locale categories

COLLATE C-9
Locale consistency checking. See

Consistency checking.
Locale variables C-21
Locales

client C-15, C-19
server C-15, C-18

Localized collation order C-2
LOCK TABLE statement, in

PERFORM 3-22
Logfile names C-9
Logical characters C-2, C-11
Logical-character-based

operations C-11
LOOKUP attribute, in

PERFORM 2-49
Lookup fields

specifying with the LOOKUP
attribute 2-26

Lowest value operator, in
PERFORM 3-37

M
Main menu

Form option 1-12, 2-6
how to exit 1-11
map of INFORMIX-SQL menu

hierarchy 1-7
Query-language option 1-14
Index 7

@O QCA B D E F G H I J K L M N P R S T U V W X Y Z
Report option 1-19
Table option 1-21
User-menu option 1-25

Mapping files C-26
Master option, in PERFORM 3-27
Master-detail relationship

Detail menu option, in
PERFORM 3-24

Master menu option, in
PERFORM 3-27

specifying 2-71
MDY() function, in ACE

reports 4-91
Menu items C-10
menuform screen form

accessing the sysmenuitems
table 5-9

accessing the sysmenus table 5-9
definition of 5-8
entering data in fields 5-16
Menu Name field 5-17
Menu Title field 5-18
Selection Action field 5-23
Selection Number field 5-19
Selection Text field 5-22
Selection Type field 5-20

Menus
creating a script 5-25
creating custom with User-menu

facility 5-3
creating your own 5-8
designing 5-6
entering data 5-10
FORM 1-12
how to access 5-4
in a national language B-6
levels in the user-menu

structure 5-6
map of hierarchy 1-7
maximum number of options per

menu 5-6
modifying ones you created 5-16
naming ones you create 5-17
REPORT 1-19
SQL 1-14
TABLE 1-21
USER-MENU 1-25

Mismatch handling C-25

Mode
insert, in PERFORM 3-14
typeover, in PERFORM 3-14

Modify option
FORM menu 1-12
REPORT menu 1-19
SQL menu 1-14
USER-MENU menu 1-25

MONEY data type
in forms 3-11
in GLS C-5

MONTH() function, in ACE
reports 4-92

Multibyte locale C-11
Multiline editor, how to

invoke 3-17

N
Named values C-7
Naming conventions, User-menu

names 5-17
Native Language Support

(NLS) C-17
NCHAR data type C-2, C-5
NEED statement, in ACE

reports 4-71
New option

FORM menu 1-12
REPORT menu 1-19
SQL menu 1-14

Next option, in PERFORM 3-28
NLS. See Native Language Support.
Non-ASCII characters C-8
Non-composite Thai

characters C-15
Non-English characters C-24
Nonprintable characters C-8
NOUPDATE attribute, in

PERFORM 2-52
NVARCHAR data type C-2, C-5

O
ON BEGINNING control block, in

PERFORM 6-11
ON ENDING control block, in

PERFORM 6-11

ON EVERY ROW control block, in
ACE reports 4-58

ON LAST ROW control block, in
ACE reports 4-60

On-line error messages Intro-14
On-line manuals Intro-14
Operating system, using to create a

form 2-8
Order

of display fields 2-25
of tables 2-25

OUTPUT FORMAT screen, in
PERFORM 3-30

Output option
PERFORM 3-29
SQL menu 1-14

OUTPUT section
BOTTOM MARGIN

statement 4-33
LEFT MARGIN statement 4-29
PAGE LENGTH statement 4-34
REPORT TO statement 4-27
RIGHT MARGIN statement 4-30
TOP MARGIN statement 4-32
TOP OF PAGE statement 4-35

P
PAGE HEADER control block, in

ACE reports 4-61
Page layout 2-14
PAGE LENGTH statement, in ACE

reports 4-34
PAGE TRAILER control block, in

ACE reports 4-63
PAGENO expression, in ACE

reports 4-93
PARAM statement, in ACE

reports 4-20
Partial characters C-11
Passing values to a C function 6-16
PAUSE statement, in ACE

reports 4-72
People’s Republic of China C-14,

C-15
8 IBM Informix SQL Reference Manual

O QCA B D E F G H I J K L M N P R S T U V W X Y Z @
PERFORM
accessing from the command

line G-10
accessing from the Main

menu 3-4
accessing with the menuform

form 5-8
Add option 3-21
altering a menu structure 5-3
CALL keyword 6-10
calling C functions 6-9
checking data 3-18
creating a menu 5-8
creating a menu structure 5-3
Current option 3-23
data types 3-10
Detail option 3-24
entering menu data 5-10
example form 6-36
Exit option 3-26
expression 6-10, 6-12
field editing keys 3-14
FORM OUTPUT FILE menu 3-29
how to compile 6-13
how to run 3-3
INSTRUCTIONS section 6-9
invoking the multiline editor 3-17
library functions 6-20
Master option 3-27
Next option 3-28
ON BEGINNING control

block 6-11
ON ENDING control block 6-11
OUTPUT FORMAT menu 3-30
Output option 3-29
positioning the cursor 3-14
Previous option 3-33
Query option 3-34
Remove option 3-38
running operating-system

commands 3-10
Screen option 3-39
special functions 3-13
Table option 3-40
Update option 3-41
using sperform 6-32
using the menuform screen

form 5-8
View option 3-42

PERFORM functions
pf_gettype() 6-21
pf_getval() 6-23
pf_msg() 6-31
pf_nxfield() 6-29
pf_putval() 6-26

PERFORM screen
divided into three sections 3-6
entering data 3-10
information lines 3-6
menu options listed 3-7
screen form 3-8
status lines 3-9

PERFORM screen transaction
processor

accessing from Main menu 3-4
Add option 3-7
adding data with 3-10
comments line 2-39, 2-55
current list 2-73
Current option 3-8
cursor positioning keys 3-14
data types 3-10
Detail option 3-8
Exit option 3-8
exiting from 3-7
field editing 3-14
highest value operator 3-37
how to call up 3-3
Information lines in 3-6, 3-7
insert mode 3-14
LOCK statement with 3-22
lowest value operator 3-37
Master option 3-8
menu options 3-7
Next option 3-7
operating- system commands

within 3-10
Output option 3-8
Previous option 3-7
Query option 3-7
Remove option 3-7
screen forms with 3-8
Screen option 3-7
Status lines in 3-6, 3-9
Table option 3-7
typeover mode 3-14
Update option 3-7
View option 3-7

wildcard characters in 3-36
Period symbol. See Decimal

separator.
pf_gettype() function, in

PERFORM 6-21
pf_getval() function, in

PERFORM 6-23
pf_msg() function, in

PERFORM 6-31
pf_nxfield() function, in

PERFORM 6-29
pf_putval() function, in

PERFORM 6-26
Platform icons Intro-8
Precedence, rules for environment

variables B-5
Previous option, in PERFORM 3-33
PRINT FILE statement, in ACE

reports 4-75
PRINT statement, in ACE

reports 4-73
Printable characters C-8
Product icons Intro-8
Program

demonstration database
samples 6-33

example, p_ex1.per 6-37
example, stamp.c 6-38

PROMPT FOR statement, in ACE
reports 4-24

Q
Query option, in PERFORM 3-34
Querying the database

VARCHAR, TEXT and BYTE
data 1-16

Query-language option, Main
menu 1-14

Query, syntax for PERFORM 3-35
Quoted string C-7

R
R symbol, CENTURY 2-34
Range operators, in

PERFORM 3-36
Index 9

@O QCA B D E F G H I J K L M N P R S T U V W X Y Z
READ section, READ
statement 4-40

READ statement, in a report
specification 4-40

Related reading Intro-15
Relational operators C-9
Remove option, in PERFORM 3-38
REPORT menu

Drop option 1-19
Exit option 1-19
Generate option 1-19
how to use 1-20
Modify option 1-19
New option 1-19
Run option 1-19

REPORT TO statement, in ACE
reports 4-27

Reports
compiling 1-20, 4-5
compiling, linking, and

running 6-32
editing 1-20
running 1-19, 4-5
using control blocks to

customize 4-49
Return value macros, in C program

structure 6-19
RIGHT MARGIN statement, in

ACE reports 4-30
Round-trip conversion C-25
Run option

FORM menu 1-12
REPORT menu 1-19
SQL menu 1-14
USER-MENU menu 1-25

S
sacego

customizing for ACE 6-32
syntax G-12
using the cace program 6-32

saceprep, compiling report
specifications 6-8, G-11

Sample form specifications
customer A-4
orderform A-5
sample A-7

Sample report specifications,
ACE A-10

Save option, SQL menu 1-15
Screen

menu 1-4
menuform fields 5-16
PERFORM 3-6
RUN FORM 1-6
sample PERFORM, customer

information 2-95
sample PERFORM, order

information 2-95
text entry 1-5

Screen option, in PERFORM 3-39
SCREEN section

FORMBUILD 2-9
graphics characters in 2-9

Script menu, how to create 5-25
Select option, DATABASE

menu 1-11
SELECT statement, in ACE

reports 4-37
Separators C-10
SERIAL data type, in forms 3-11
Server locale C-15
SERVER_LOCALE environment

variable C-16
Setting environment variables B-3
sformbld

and the .PER extension 6-13
definition of 2-8
syntax G-8

Shell, setting environment variables
in a file B-2

Single-byte locale C-11
SKIP statement, in ACE

reports 4-76
SKIP TO TOP OF PAGE statement,

in ACE reports 4-77
SMALLFLOAT data type

formatting in form 2-43
in forms 3-12
in GLS C-5

SMALLINT data type
in forms 3-11

Software dependencies Intro-5
Sorting data

in a query C-9
in a report C-9

SPACES expression, in ACE
reports 4-94

sperform
creating a new form 2-8
customizing for PERFORM 6-32
syntax G-10
using the cperf program 6-32

SQL identifiers C-8
SQL menu

Choose option 1-14
Drop option 1-15
Exit option 1-15
how to use 1-14, 1-15
Info option 1-15
Modify option 1-14
New option 1-14
Output option 1-14
Run option 1-14
Save option 1-15
Use-editor option 1-14

SQL statements
modifying 1-14
running 1-14
saving 1-15
selecting 1-14

Statements
ACE 4-14
ASCII 4-18
BOTTOM MARGIN 4-33
EVERY ROW 4-46
FOR 4-66
IF THEN ELSE 4-67
LEFT MARGIN 4-29
LET 4-69
link 2-25
NEED 4-71
PAGE LENGTH 4-34
PARAM 4-20
PAUSE 4-72
PRINT 4-73
PRINT FILE 4-75
PROMPT FOR 4-24
READ 4-40
REPORT TO 4-27
RIGHT MARGIN 4-30
SKIP 4-76
SKIP TO TOP OF PAGE 4-77
TOP MARGIN 4-32
TOP OF PAGE 4-35
10 IBM Informix SQL Reference Manual

O QCA B D E F G H I J K L M N P R S T U V W X Y Z @
VARIABLE 4-21
WHILE 4-78

Status lines, about 2-39
Stored procedure C-9
stores7 demonstration

database Intro-6
copying A-1
creating A-3
described A-1
restoring the original A-3
user-menu design outline 5-7

Strings
character C-8
quoted C-7

Substitution conversion C-25
Substrings C-12
Synonym, SQL identifier C-9
Syntax

for ATTRIBUTES section in
PERFORM 2-32

for DISPLAY instructions in
PERFORM 2-83

for Query option in
PERFORM 3-35

Syntax conventions
description of Intro-9
icons used in Intro-10

Syntax diagrams, elements
in Intro-9

sysmenuitems table
accessing with PERFORM 5-9
definition of 5-9

sysmenus table
accessing with PERFORM 5-9
definition of 5-9
sample data in 5-11

System requirements
database Intro-5
software Intro-5

T
Table

alias 2-23
creating a master-detail

relationship 2-71
creating and altering with

INFORMIX-OnLine 1-16

order in forms 2-25
sysmenuitems 5-9
sysmenus 5-9

TABLE menu
Alter option 1-21
Create option 1-21
Drop option 1-22
Exit option 1-21
how to use 1-22
Info option 1-21

Table name C-9
Table option, in PERFORM 3-40
TABLES section, in form

specifications 2-9
Taiwanese C-14, C-15
Temporary

files, specifying directory with
DBTEMP B-13

termcap file
color and intensity D-8
description of D-2
graphics characters in screen

form D-5
graphics characters in screen

forms 2-19
Terminal characteristics

termcap file D-2
terminfo directory D-20

terminfo directory
description of D-20
graphics characters in screen

form 2-19, D-23
TEXT blobs C-7
TEXT data type

defining columns 1-24
specifying in forms 2-65
using in reports 4-11, 4-54, 4-58

Text entry screen 1-6
Text geometry C-10
Text labels C-10
Text, how to enter 1-5
TH 7.20 supplement C-14
Thai language C-10, C-15
Thousands separator 4-98, B-9
TIME expression, in ACE

reports 4-95
TODAY expression, in ACE

reports 4-96

TOP MARGIN statement, in ACE
reports 4-32

TOP OF PAGE statement, in ACE
reports 4-35

Trailing currency symbol 4-99, B-9
Turkish language C-15
Typeover mode, in PERFORM 3-14

U
Underscore (_) symbol C-8
UNIX

default print capability in
BSD B-5

default print capability in System
V B-5

environment variable setting in
BSD and System V B-3

UNLOAD statement
in GLS C-6
with INFORMIX-OnLine 1-17
with VARCHARs and blobs 1-17

Update option, in PERFORM 3-41
UPSHIFT attribute

in GLSS C-6
Use-editor option, SQL menu 1-14
User locale. See Locale, user locale.
User-menu

designing a menu 5-6
entering menu data 5-10
guidelines for using 1-25
how to access 5-4
layout specifications 5-6
levels of menus 5-6
maximum options per menu 5-6
menu data, entering 5-10
modifying a menu you

created 5-16
sample design outline 5-7
steps for entering your own

data 5-14
sysmenuitems information 5-9
sysmenus information 5-9

USER-MENU menu
Exit option 1-25
how to access from the Main

menu 5-4
how to use 1-25
Index 11

@O QCA B D E F G H I J K L M N P R S T U V W X Y Z
Modify option 1-25
Run option 1-25

USING expression
in ACE reports 4-97
in GLS C-6

U.S. English language code C-2

V
Values

passing to a C function 6-16
returned to ACE 6-19
returned to PERFORM 6-19

VARCHAR data type
defining columns 1-23
defining in reports 4-21
in forms 3-12
in GLS C-5
querying with INFORMIX-

OnLine 1-16
transferring with LOAD and

UNLOAD 1-16
VARCHAR data, and

WORDWRAP 2-64
Verify joins

FORMBUILD 2-31
in PERFORM 2-31

View name C-9
View option, in PERFORM 3-42

W
WEEKDAY() function, in ACE

reports 4-107
Western European languages C-15
WHILE statement, in ACE

reports 4-78
White-space characters C-2, C-8,

C-12
Wildcard characters, in

PERFORM 3-36
WITHOUT NULL INPUT

option 2-40
WORDWRAP

and blobs 2-65
and VARCHAR data 2-64
expression, in ACE reports 4-108
keyword 2-65

X
X/Open C-15

Y
Y2K compliance 2-34
Years, abbreviated 2-34
YEAR() function, in ACE

reports 4-109

Z
Zero, default INTERVAL

value 2-11
ZHCN 7.20 supplement C-14
ZHTW 7.20 supplement C-14
12 IBM Informix SQL Reference Manual

	Informix Online Documentation
	Table of Contents
	Introduction
	In This Introduction
	About This Manual
	Organization of This Manual
	Types of Readers
	Software Dependencies
	Assumptions About Your Locale
	Demonstration Database and Examples

	Documentation Conventions
	Typographical Conventions
	Icon Conventions
	Feature, Product, and Platform Icons

	Additional Documentation
	Syntax Conventions
	Elements That Can Appear on the Path
	How to Read a Syntax Diagram

	Documentation Included with INFORMIX-SQL
	On-Line Manuals
	Useful On-Line Files
	On-Line Help
	On-Line Error Messages
	Related Reading

	Informix Welcomes Your Comments

	The INFORMIX-SQL Main Menu
	In This Chapter
	Product Overview
	Accessing INFORMIX-SQL
	The INFORMIX-SQL Screens
	Menu Screens
	Selecting Options
	Exiting the Menu
	Asking for Help

	Text-Entry Screens
	Entering Text
	Exiting a Text-Entry Screen
	Asking for Help

	Maps of the Menu Structure
	The INFORMIX-SQL Main Menu Options
	DATABASE
	EXIT
	FORM
	QUERY LANGUAGE
	REPORT
	TABLE
	USER MENU

	The FORMBUILD Transaction Form Generator
	In This Chapter
	PERFORM Error Messages
	Sample Forms

	Creating and Compiling a Custom Form
	Using the Menu System to Create a Form
	Using the Operating System to Create a Form

	Structure of a Form Specification File
	DATABASE Section
	SCREEN Section
	Page Layout
	Graphics Characters in Forms
	Required Terminal Entries

	TABLES Section
	Remote Databases
	External Tables and Synonyms

	ATTRIBUTES Section
	Display Field Order
	Table Order
	Fields Linked to Database Columns
	Display-Only Fields
	Joining Columns
	Verify Joins

	ATTRIBUTES Syntax
	AUTONEXT
	CENTURY
	COLOR
	COMMENTS
	DEFAULT
	DOWNSHIFT
	FORMAT
	INCLUDE
	INVISIBLE
	LOOKUP
	NOENTRY
	NOUPDATE
	PICTURE

	PROGRAM
	QUERYCLEAR
	REQUIRED
	REVERSE
	RIGHT
	UPSHIFT
	VERIFY
	WORDWRAP
	ZEROFILL

	INSTRUCTIONS Section
	COMPOSITES
	DELIMITERS
	MASTER OF
	Control Blocks
	BEFORE
	AFTER
	EDITADD and EDITUPDATE
	ADD
	UPDATE
	QUERY
	REMOVE
	DISPLAY
	Action Syntax
	ABORT
	LET
	NEXTFIELD
	COMMENTS
	IF-THEN-ELSE

	The SAMPLE Form Specification File
	The CUSTOMER INFORMATION Screen
	The ORDER INFORMATION Screen

	The PERFORM Screen Transaction Processor
	In This Chapter
	Running PERFORM
	Accessing PERFORM from the Main Menu

	The PERFORM Screen
	The Information Lines
	The Screen Form
	Status Lines �
	Running Operating-System Commands from PERFORM
	Entering Data
	Data Types
	Special Functions
	Positioning the Cursor
	Field Editing
	Using the Multiline Editor
	Display Field Order

	Data Checking
	User Access Privileges

	The Current List
	Menu Options
	ADD
	CURRENT
	DETAIL
	EXIT
	MASTER
	NEXT
	OUTPUT
	PREVIOUS
	QUERY
	REMOVE
	SCREEN
	TABLE
	UPDATE
	VIEW

	The ACE Report Writer
	In This Chapter
	Creating and Compiling a Custom Report
	Using the Menus to Create a Report
	Generating a Default Report
	Creating a Custom Report

	Creating a Report from the Command Line
	Command-Line Options

	Information About ACE
	ACE Filename Conventions
	Owner Naming
	Using Expressions in a Report Specification
	ACE Error Messages

	Sample Reports
	Structure of a Report Specification File
	DATABASE Section
	DEFINE Section
	ASCII
	PARAM
	VARIABLE

	INPUT Section
	PROMPT FOR

	OUTPUT Section
	REPORT TO
	LEFT MARGIN
	RIGHT MARGIN
	TOP MARGIN
	BOTTOM MARGIN
	PAGE LENGTH
	TOP OF PAGE

	SELECT Section
	READ Section
	READ

	FORMAT Section
	EVERY ROW

	Control Blocks
	AFTER GROUP OF
	BEFORE GROUP OF
	FIRST PAGE HEADER
	ON EVERY ROW
	ON LAST ROW
	PAGE HEADER
	PAGE TRAILER

	Statements
	FOR
	IF THEN ELSE
	LET
	NEED
	PAUSE
	PRINT
	PRINT FILE
	SKIP
	SKIP TO TOP OF PAGE
	WHILE
	Aggregates
	ASCII
	CLIPPED
	COLUMN
	CURRENT
	DATE
	DATE()
	DAY()
	LINENO
	MDY()
	MONTH()
	PAGENO
	SPACES
	TIME
	TODAY
	USING
	WEEKDAY()
	WORDWRAP
	YEAR()

	User-Menu
	In This Chapter
	Accessing a Menu
	Using a Menu Within INFORMIX-SQL

	Designing a Menu
	Creating a Menu
	Accessing PERFORM with the menuform Form
	Entering Menu Data
	Steps for Entering Your Own Data

	Modifying a Menu
	Menu Display Fields
	MENU NAME
	MENU TITLE
	SELECTION NUMBER
	SELECTION TYPE
	SELECTION TEXT
	SELECTION ACTION

	Creating a Script Menu

	Functions in ACE and PERFORM
	In This Chapter
	Calling C Functions from ACE
	FUNCTION
	CALL (in ACE)

	Calling C Functions from PERFORM
	CALL (in PERFORM)
	ON BEGINNING and ON ENDING

	Writing the C Program
	Organizing the C Program
	Passing Values to a C Function
	Testing for the Data Type
	Converting the Data Type

	Returning Values to ACE and PERFORM

	PERFORM Library Functions
	PF_GETTYPE()
	PF_GETVAL()
	PF_PUTVAL ()
	PF_NXFIELD ()
	PF_MSG()

	Compiling, Linking, and Running Reports and Forms
	Syntax of the cace and cperf programs
	Use of cace and cperf

	Examples
	ACE Example 1
	ACE Example 2
	PERFORM Example

	The Demonstration Database and Examples
	Setting Environment Variables
	Global Language Support
	Modifying termcap and terminfo
	The ASCII Character Set
	Reserved Words
	Accessing Programs from the Operating System
	Notices
	Index

